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This book is dedicated,
in respect and admiration,

to

The Principle of Least Action

“The author has spared himself no pains in his endeavour to
present the main ideas in the simplest and most intelligible form,
and on the whole, in the sequence and connection in which they
actually originated. In the interest of clearness, it appeared to
me inevitable that I should repeat myself frequently, without pay-
ing the slightest attention to the elegance of the presentation. I
adhered scrupulously to the precept of that brilliant theoretical
physicist L. Boltzmann, according to whom matters of elegance
ought be left to the tailor and to the cobbler.”

Albert Einstein, in Relativity, the Special and General Theory,
(1961), p. v
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Preface

“In almost all textbooks, even the best, this
principle is presented so that it is impossible to
understand.” (K. Jacobi, Lectures on Dynamics,
1842-1843). I have not chosen to break with
tradition.

V. I. Arnold, Mathematical Methods of Classical
Mechanics [5], footnote, p. 246

If you can’t explain it simply, you don’t
understand it well enough.

Albert Einstein

There has been a remarkable revival of interest in classical me-
chanics in recent years. We now know that there is much more
to classical mechanics than previously suspected. The behavior of
classical systems is surprisingly rich; derivation of the equations
of motion, the focus of traditional presentations of mechanics, is
just the beginning. Classical systems display a complicated array
of phenomena such as nonlinear resonances, chaotic behavior, and
transitions to chaos.

Traditional treatments of mechanics concentrate most of their
effort on the extremely small class of symbolically tractable dy-
namical systems. We concentrate on developing general methods
for studying the behavior of systems, whether or not they have
a symbolic solution. Typical systems exhibit behavior that is
qualitatively different from the solvable systems and surprisingly
complicated. We focus on the phenomena of motion, and we make
extensive use of computer simulation to explore this motion.

Even when a system is not symbolically tractable, the tools of
modern dynamics allow one to extract a qualitative understand-
ing. Rather than concentrating on symbolic descriptions, we con-
centrate on geometric features of the set of possible trajectories.
Such tools provide a basis for the systematic analysis of numerical
or experimental data.

Classical mechanics is deceptively simple. It is surprisingly easy
to get the right answer with fallacious reasoning or without real
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understanding. Traditional mathematical notation contributes to
this problem. Symbols have ambiguous meanings that depend on
context, and often even change within a given context.1 For exam-
ple, a fundamental result of mechanics is the Lagrange equations.
In traditional notation the Lagrange equations are written

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

The Lagrangian Lmust be interpreted as a function of the position
and velocity components qi and q̇i, so that the partial deriva-
tives make sense, but then in order for the time derivative d/dt
to make sense solution paths must have been inserted into the
partial derivatives of the Lagrangian to make functions of time.
The traditional use of ambiguous notation is convenient in simple
situations, but in more complicated situations it can be a serious
handicap to clear reasoning. In order that the reasoning be clear
and unambiguous, we have adopted a more precise mathematical
notation. Our notation is functional and follows that of modern
mathematical presentations.2 An introduction to our functional
notation is in an appendix.

Computation also enters into the presentation of the mathe-
matical ideas underlying mechanics. We require that our mathe-

1In his book on mathematical pedagogy [17], Hans Freudenthal argues that
the reliance on ambiguous, unstated notational conventions in such expressions
as f(x) and df(x)/dx makes mathematics, and especially introductory calcu-
lus, extremely confusing for beginning students; and he enjoins mathematics
educators to use more formal modern notation.

2In his beautiful book Calculus on Manifolds [40], Michael Spivak uses func-
tional notation. On p. 44 he discusses some of the problems with classical
notation. We excerpt a particularly juicy passage:

The mere statement of [the chain rule] in classical notation requires the
introduction of irrelevant letters. The usual evaluation for D1(f ◦ (g, h))
runs as follows:

If f(u, v) is a function and u = g(x, y) and v = h(x, y) then

∂f(g(x, y), h(x, y))

∂x
=

∂f(u, v)

∂u

∂u

∂x
+

∂f(u, v)

∂v

∂v

∂x

[The symbol ∂u/∂x means ∂/∂x g(x, y), and ∂/∂u f(u, v) means
D1f(u, v) = D1f(g(x, y), h(x, y)).] This equation is often written simply

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
.

Note that f means something different on the two sides of the equation!
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matical notations be explicit and precise enough that they can be
interpreted automatically, as by a computer. As a consequence of
this requirement the formulas and equations that appear in the
text stand on their own. They have clear meaning, independent of
the informal context. For example, we write Lagrange’s equations
in functional notation as follows:3

D(∂2L ◦ Γ[q])− ∂1L ◦ Γ[q] = 0.

The Lagrangian L is a real-valued function of time t, coordi-
nates x, and velocities v; the value is L(t, x, v). Partial derivatives
are indicated as derivatives of functions with respect to particu-
lar argument positions; ∂2L indicates the function obtained by
taking the partial derivative of the Lagrangian function L with
respect to the velocity argument position. The traditional partial
derivative notation, which employs a derivative with respect to a
“variable,” depends on context and can lead to ambiguity.4 The
partial derivatives of the Lagrangian are then explicitly evaluated
along a path function q. The time derivative is taken and the
Lagrange equations formed. Each step is explicit; there are no
implicit substitutions.

Computational algorithms are used to communicate precisely
some of the methods used in the analysis of dynamical phenomena.
Expressing the methods of variational mechanics in a computer
language forces them to be unambiguous and computationally
effective. Computation requires us to be precise about the repre-
sentation of mechanical and geometric notions as computational
objects and permits us to represent explicitly the algorithms for
manipulating these objects. Also, once formalized as a procedure,
a mathematical idea becomes a tool that can be used directly to
compute results.

Active exploration on the part of the student is an essential
part of the learning experience. Our focus is on understanding
the motion of systems; to learn about motion the student must
actively explore the motion of systems through simulation and

3This is presented here without explanation, to give the flavor of the notation.
The text gives a full explanation.

4“It is necessary to use the apparatus of partial derivatives, in which even
the notation is ambiguous.” V.I. Arnold, Mathematical Methods of Classical
Mechanics [5], Section 47, p. 258. See also the footnote on that page.
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experiment. The exercises and projects are an integral part of the
presentation.

That the mathematics is precise enough to be interpreted au-
tomatically allows active exploration to be extended to it. The
requirement that the computer be able to interpret any expres-
sion provides strict and immediate feedback as to whether the
expression is correctly formulated. Experience demonstrates that
interaction with the computer in this way uncovers and corrects
many deficiencies in understanding.

In this book we express computational methods in Scheme,
a dialect of the Lisp family of programming languages that we
also use in our introductory computer science subject at MIT.
There are many good expositions of Scheme. We provide a short
introduction to Scheme in an appendix.

Even in the introductory computer science class we never for-
mally teach the language, because we do not have to. We just
use it, and students pick it up in a few days. This is one great
advantage of Lisp-like languages: They have very few ways of
forming compound expressions, and almost no syntactic structure.
All of the formal properties can be covered in an hour, like the
rules of chess. After a short time we forget about the syntactic
details of the language (because there are none) and get on with
the real issues—figuring out what we want to compute.

The advantage of Scheme over other languages for the exposi-
tion of classical mechanics is that the manipulation of procedures
that implement mathematical functions is easier and more natural
in Scheme than in other computer languages. Indeed, many theo-
rems of mechanics are directly representable as Scheme programs.

The version of Scheme that we use in this book is MIT/GNU
Scheme, augmented with a large library of software called Scmutils
that extends the Scheme operators to be generic over a variety
of mathematical objects, including symbolic expressions. The
Scmutils library also provides support for the numerical methods
we use in this book, such as quadrature, integration of systems of
differential equations, and multivariate minimization.

The Scheme system, augmented with the Scmutils library, is
free software. We provide this system, complete with documen-
tation and source code, in a form that can be used with the
GNU/Linux operating system, on the Internet at
mitpress.mit.edu/classical mech.
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This book presents classical mechanics from an unusual per-
spective. It focuses on understanding motion rather than deriving
equations of motion. It weaves recent discoveries in nonlinear dy-
namics throughout the presentation, rather than presenting them
as an afterthought. It uses functional mathematical notation that
allows precise understanding of fundamental properties of classical
mechanics. It uses computation to constrain notation, to capture
and formalize methods, for simulation, and for symbolic analysis.

This book is the result of teaching classical mechanics at MIT.
The contents of our class began with ideas from a class on non-
linear dynamics and solar system dynamics by Wisdom and ideas
about how computation can be used to formulate methodology
developed in an introductory computer science class by Abelson
and Sussman. When we started we expected that using this ap-
proach to formulate mechanics would be easy. We quickly learned
that many things we thought we understood we did not in fact
understand. Our requirement that our mathematical notations
be explicit and precise enough that they can be interpreted auto-
matically, as by a computer, is very effective in uncovering puns
and flaws in reasoning. The resulting struggle to make the math-
ematics precise, yet clear and computationally effective, lasted far
longer than we anticipated. We learned a great deal about both
mechanics and computation by this process. We hope others, es-
pecially our competitors, will adopt these methods, which enhance
understanding while slowing research.

Second Edition

We have taught classical mechanics using this text every year at
MIT since the first edition was published. We have learned a
great deal about what difficulties students encountered with the
material. We have found that some of our explanations needed
improvement. This edition is the result of our new understanding.

Our software support has improved substantially over the years,
and we have exploited it to provide algebraic proofs of more gen-
erality than could be supplied in the first edition. This advantage
permeates most of the new edition.

In the first chapter we now go more directly to the coordinate
representation of the action, without compromising the impor-
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tance of the coordinate independence of the action. We also
added a simple derivation of the Euler–Lagrange equations from
the Principle of Stationary Action, supplementing the more formal
derivation of the first edition.

In the chapter on rigid-body motion we now provide an alge-
braic derivation of the existence of the angular-velocity vector.
Our new derivation is in harmony with the development of gener-
alized coordinates for a rigid body as parameters of the transfor-
mation from a reference orientation to the actual orientation. We
also provide a new section on quaternions as a way of avoiding
singularities in the analysis of the motion of rigid bodies.

A canonical transformation is a transformation of phase-space
coordinates and an associated transformation of the Hamiltonian
that maintains a one-to-one correspondence between trajectories.
We allow time-dependent systems and transformations, complicat-
ing the treatment of canonical transformations. The chapter on
canonical transformations has been extensively revised to clarify
the relationship of canonical transformations to symplectic trans-
formations. We split off the treatment of canonical transforma-
tions that arise from evolution, including Lie transforms, into a
new chapter.

We fixed myriad minor mistakes throughout. We hope that we
have not introduced more than we have removed.
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1 
Lagrangian Mechanics 

The purpose of mechanics is to describe how 
bodies change their position in space with "time." 
I should load my conscience with grave sins against 
the sacred spirit of lucidity were I to formulate the 
aims of mechanics in this way, without serious 
reflection and detailed explanations . Let us 
proceed to disclose these sins . 

Albert Einstein , Relativity, the Special and 
General Theory [16], p. 9 

The subject of this book is motion and the mathematical tools 
used to describe it . 

Centuries of careful observations of the motions of the planets 
revealed regularities in those motions , allowing accurate predic
tions of phenomena such as eclipses and conjunctions. The effort 
to formulate these regularities and ultimately to understand them 
led to the development of mathematics and to the discovery that 
mathematics could be effectively used to describe aspects of the 
physical world . That mathematics can be used to describe natural 
phenomena is a remarkable fact . 

A pin thrown by a juggler takes a rather predictable path and 
rotates in a rather predictable way. In fact , the skill of juggling 
depends crucially on this predictability. It is also a remarkable 
discovery that the same mathematical tools used to describe the 
motions of the planets can be used to describe the motion of the 
juggling pin . 

Classical mechanics describes the motion of a system of par
ticles , subject to forces describing their interactions . Complex 
physical objects ,  such as juggling pins , can be modeled as myriad 
particles with fixed spatial relationships maintained by stiff forces 
of interaction . 

There are many conceivable ways a system could move that 
never occur . We can imagine that the juggling pin might pause 
in midair or go fourteen times around the head of the juggler be
fore being caught , but these motions do not happen . How can 
we distinguish motions of a system that can actually occur from 
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other conceivable motions? Perhaps we can invent some mathe
matical function that allows us to distinguish realizable motions 
from among all conceivable motions . 

The motion of a system can be described by giving the position 
of every piece of the system at each moment . Such a description of 
the motion of the system is called a configuration path; the config
uration path specifies the configuration as a function of time. The 
juggling pin rotates as it flies through the air ; the configuration of 
the juggling pin is specified by giving the position and orientation 
of the pin . The motion of the juggling pin is specified by giving 
the position and orientation of the pin as a function of time. 

The path-distinguishing function that we seek takes a configu
ration path as an input and produces some output . We want this 
function to have some characteristic behavior when its input is a 
realizable path.  For example , the output could be a number , and 
we could try to arrange that this number be zero only on realiz
able paths. Newton 's equations of motion are of this form; at each 
moment Newton 's differential equations must be satisfied . 

However , there is an alternate strategy that provides more in
sight and power : we could look for a path-distinguishing function 
that has a minimum on the realizable paths-on nearby unreal
izable paths the value of the function is higher than it is on the 
realizable path.  This is the variational strategy: for each physical 
system we invent a path-distinguishing function that distinguishes 
realizable motions of the system by having a stationary point for 
each realizable path.  1 For a great variety of systems realizable 
motions of the system can be formulated in terms of a variational 
principle . 2 

1 A stationary point of a function is a point where the function's value does not 
vary as the input is varied. Local maxima or minima are stationary points. 

2The variational formulation successfully describes all of the Newtonian me
chanics of particles and rigid bodies. The variational formulation has also been 
usefully applied in the description of many other systems such as classical elec
trodynamics , the dynamics of inviscid fluids , and the design of mechanisms 
such as four-bar linkages. In addition , modern formulations of quantum me
chanics and quantum field theory build on many of the same concepts. How
ever , it appears that not all dynamical systems have a variational formulation. 
For example , there is no simple prescription to apply the variational apparatus 
to systems with dissipation , though in special cases variational methods can 
still be used. 
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Mechanics , as invented by Newton and others of his era, de
scribes the motion of a system in terms of the positions , velocities , 
and accelerations of each of the particles in the system. In contrast 
to the Newtonian formulation of mechanics , the variational formu
lation of mechanics describes the motion of a system in terms of 
aggregate quantities that are associated with the motion of the 
system as a whole . 

In the Newtonian formulation the forces can often be written 
as derivatives of the potential energy of the system. The motion 
of the system is determined by considering how the individual 
component particles respond to these forces . The Newtonian for
mulation of the equations of motion is intrinsically a particle-by
particle description . 

In the variational formulation the equations of motion are for
mulated in terms of the difference of the kinetic energy and the 
potential energy. The potential energy is a number that is char
acteristic of the arrangement of the particles in the system; the 
kinetic energy is a number that is determined by the velocities of 
the particles in the system. Neither the potential energy nor the 
kinetic energy depends on how those positions and velocities are 
specified . The difference is characteristic of the system as a whole 
and does not depend on the details of how the system is specified . 
So we are free to choose ways of describing the system that are 
easy to work with;  we are liberated from the particle-by-particle 
description inherent in the Newtonian formulation . 

The variational formulation has numerous advantages over the 
Newtonian formulation . The equations of motion for those param
eters that describe the state of the system are derived in the same 
way regardless of the choice of those parameters : the method of 
formulation does not depend on the choice of coordinate system. 
If there are positional constraints among the particles of a system 
the Newtonian formulation requires that we consider the forces 
maintaining these constraints ,  whereas in the variational formu
lation the constraints can be built into the coordinates . The vari
ational formulation reveals the association of conservation laws 
with symmetries . The variational formulation provides a frame
work for placing any particular motion of a system in the context 
of all possible motions of the system. We pursue the variational 
formulation because of these advantages . 
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1.1 Configuration Spaces 

Let us consider mechanical systems that can be thought of as 
composed of constituent point particles , with mass and position , 
but with no internal structure.3 Extended bodies may be thought 
of as composed of a large number of these constituent particles 
with specific spatial relationships among them. Extended bodies 
maintain their shape because of spatial constraints among the 
constituent particles . Specifying the position of all the constituent 
particles of a system specifies the configuration of the system. The 
existence of constraints among parts of the system, such as those 
that determine the shape of an extended body, means that the 
constituent particles cannot assume all possible positions . The 
set of all configurations of the system that can be assumed is 
called the configuration space of the system. The dimension of the 
configuration space is the smallest number of parameters that have 
to be given to completely specify a configuration . The dimension 
of the configuration space is also called the number of degrees of 
freedom of the system.4 

For a single unconstrained particle it takes three parameters to 
specify the configuration ; a point particle has a three-dimensional 
configuration space . If we are dealing with a system with more 
than one point particle , the configuration space is more compli
cated . If there are k separate particles we need 3k parameters 
to describe the possible configurations . If there are constraints 
among the parts of a system the configuration is restricted to a 
lower-dimensional space . For example , a system consisting of two 
point particles constrained to move in three dimensions so that the 
distance between the particles remains fixed has a five-dimensional 
configuration space : thus with three numbers we can fix the posi-

3We often refer to a point particle with mass but no internal structure as a 
point mass. 

4Strictly speaking, the dimension of the configuration space and the number 
of degrees of freedom are not the same. The number of degrees of freedom is 
the dimension of the space of configurations that are "locally accessible." For 
systems with integrable constraints the two are the same. For systems with 
non-integrable constraints the configuration dimension can be larger than the 
number of degrees of freedom. For further explanation see the discussion of 
systems with non-integrable constraints in section 1.10.3. Apart from that 
discussion, all of the systems we consider have integrable constraints (they are 
"holonomic" ). This is why we have chosen to blur the distinction between the 
number of degrees of freedom and the dimension of the configuration space. 
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tion of one particle , and with two others we can give the position 
of the other particle relative to the first . 

Consider a juggling pin . The configuration of the pin is specified 
if we give the positions of the atoms making up the pin . However , 
there exist more economical descriptions of the configuration . In 
the idealization that the juggling pin is truly rigid, the distances 
among all the atoms of the pin remain constant . So we can specify 
the configuration of the pin by giving the position of a single atom 
and the orientation of the pin . Using the constraints ,  the positions 
of all the other constituents of the pin can be determined from 
this information . The dimension of the configuration space of 
the juggling pin is six: the minimum number of parameters that 
specify the position in space is three , and the minimum number 
of parameters that specify an orientation is also three . 

As a system evolves with time, the constituent particles move 
subject to the constraints .  The motion of each constituent particle 
is specified by describing the changing configuration . Thus , the 
motion of the system may be described as evolving along a path 
in configuration space . The configuration path may be specified 
by a function , the configuration-path function , which gives the 
configuration of the system at any time. 

Exercise 1 . 1 :  Degrees of freedom 

For each of the mechanical systems described below, give the number of 
degrees of freedom of the configuration space. 

a. Three juggling pins. 

h. A spherical pendulum, consisting of a point mass (the pendulum bob) 
hanging from a rigid massless rod attached to a fixed support point . 
The pendulum bob may move in any direction subject to the constraint 
imposed by the rigid rod. The point mass is subject to the uniform force 
of gravity. 

c. A spherical double pendulum, consisting of one point mass hanging 
from a rigid massless rod attached to a second point mass hanging from 
a second massless rod attached to a fixed support point . The point 
masses are subject to the uniform force of gravity. 

d. A point mass sliding without friction on a rigid curved wire . 

e. A top consisting of a rigid axisymmetric body with one point on the 
symmetry axis of the body attached to a fixed support , subject to a 
uniform gravitational force. 

f. The same as e, but not axisymmetric . 
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1.2 Generalized Coordinates 

In order to be able to talk about specific configurations we need 
to have a set of parameters that label the configurations . The 
parameters used to specify the configuration of the system are 
called the generalized coordinates. Consider an unconstrained free 
particle . The configuration of the particle is specified by giving 
its position . This requires three parameters . The unconstrained 
particle has three degrees of freedom. One way to specify the po
sition of a particle is to specify its rectangular coordinates relative 
to some chosen coordinate axes . The rectangular components of 
the position are generalized coordinates for an unconstrained par
ticle . Or consider an ideal planar double pendulum: a point mass 
constrained to be a given distance from a fixed point by a rigid 
rod ,  with a second mass constrained to be at a given distance 
from the first mass by another rigid rod ,  all confined to a vertical 
plane . The configuration is specified if the orientation of the two 
rods is given . This requires at least two parameters ; the planar 
double pendulum has two degrees of freedom. One way to specify 
the orientation of each rod is to specify the angle it makes with a 
vertical plumb line . These two angles are generalized coordinates 
for the planar double pendulum. 

The number of coordinates need not be the same as the dimen
sion of the configuration space , though there must be at least that 
many. We may choose to work with more parameters than neces
sary, but then the parameters will be subject to constraints that 
restrict the system to possible configurations , that is , to elements 
of the configuration space . 

For the planar double pendulum described above , the two angle 
coordinates are enough to specify the configuration . We could also 
take as generalized coordinates the rectangular coordinates of each 
of the masses in the plane , relative to some chosen coordinate axes . 
These are also fine coordinates , but we would have to explicitly 
keep in mind the constraints that limit the possible configurations 
to the actual geometry of the system. Sets of coordinates with 
the same dimension as the configuration space are easier to work 
with because we do not have to deal with explicit constraints 
among the coordinates . So for the time being we will consider 
only formulations where the number of configuration coordinates 
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is equal to the number of degrees of freedom; later we will learn 
how to handle systems with redundant coordinates and explicit 
constraints .  

In general , the configurations form a space M of some dimen
sion n. The n-dimensional configuration space can be parameter
ized by choosing a coordinate function X that maps elements of 
the configuration space to n-tuples of real numbers .5 If there is 
more than one dimension , the function X is a tuple of n indepen
dent coordinate functions6 Xi, i = 0, . . .  , n - 1 ,  where each Xi is 
a real-valued function defined on some region of the configuration 
space . 7 For a given configuration m in the configuration space M 
the values Xi (m) of the coordinate functions are the generalized 
coordinates of the configuration . These generalized coordinates 
permit us to identify points of the n-dimensional configuration 
space with n-tuples of real numbers .8 For any given configura
tion space , there are a great variety of ways to choose generalized 
coordinates . Even for a single point moving without constraints ,  
we can choose rectangular coordinates , polar coordinates , or any 
other coordinate system that strikes our fancy. 

The motion of the system can be described by a configuration 
path , mapping time to configuration-space points .  Correspond
ing to the configuration path is a coordinate path q = xo, mapping 
time to tuples of generalized coordinates .9 If there is more than 

5 A tuple is an ordered list of elements. An element may itself be a tuple. 

6 A tuple of functions that all have the same domain is itself a function on that 
domain: Given a point in the domain, the value of the tuple of functions is a 
tuple of the values of the component functions at that point. 
7The use of superscripts to index the coordinate components is traditional , 
even though there is potential confusion with exponents. We use zero-based 
indexing. 

sMore precisely, the generalized coordinates identify open subsets of the con
figuration space with open subsets of Rn. It may require more than one set of 
generalized coordinates to cover the entire configuration space. For example , 
if the configuration space is a two-dimensional sphere , we could have one set 
of coordinates that maps (a little more than) the northern hemisphere to a 
disk, and another set that maps (a little more than) the southern hemisphere 
to a disk, with a strip near the equator common to both coordinate systems. 
A space that can be locally parameterized by smooth coordinate functions is 
called a differentiable manifold. 

9Here 0 denotes composition of functions: (f 0 g)(t) = f(g(t)). 
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one degree of freedom the coordinate path is a structured object : 
q is a tuple of component coordinate path functions q i = Xi 0 ,. 
At each instant of time t ,  the values q (t) = (qO (t) , . . .  , q n - l (t) ) are 
the generalized coordinates of a configuration . 

The derivative Dq of the coordinate path q is a function 10 that 
gives the rate of change of the configuration coordinates at a given 
time: Dq (t) = (DqO (t) , . . .  , Dq n - l (t) ) .  The rate of change of a 
generalized coordinate is called a generalized velocity. 

Exercise 1 .2: Generalized coordinates 

For each of the systems in exercise 1 . 1 ,  specify a system of generalized 
coordinates that can be used to describe the behavior of the system. 

1.3 The Principle of Stationary Action 

Let us suppose that for each physical system there is a path
distinguishing function that is stationary on realizable paths. We 
will try to deduce some of its properties . 

Experience of mot ion 

Our ordinary experience suggests that physical motion can be de
scribed by configuration paths that are continuous and smooth. l l  
We do  not see the juggling pin jump from one place to  another . 
Nor do we see the juggling pin suddenly change the way it is mov
ing. 

Our ordinary experience suggests that the motion of physical 
systems does not depend upon the entire history of the system. 
If we enter the room after the juggling pin has been thrown into 
the air we cannot tell when it left the juggler 's hand . The juggler 
could have thrown the pin from a variety of places at a variety 
of times with the same apparent result as we walk through the 

laThe derivative of a function f is a function, denoted D f. Our notational 
convention is that D is a high-precedence operator. Thus D operates on the 
adjacent function before any other application occurs: D f (x) is the same as 
(Df)(x). 

1 1  Experience with systems on an atomic scale suggests that at this scale sys
tems do not travel along well-defined configuration paths. To describe the 
evolution of systems on the atomic scale we employ quantum mechanics. Here , 
we restrict attention to systems for which the motion is well described by a 
smooth configuration path. 
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door . 12 So the motion of the pin does not depend on the details 
of the history. 

Our ordinary experience suggests that the motion of physical 
systems is deterministic. In fact , a small number of parameters 
summarize the important aspects of the history of the system and 
determine its future evolution. For example , at any moment the 
position , velocity, orientation , and rate of change of the orientation 
of the juggling pin are enough to completely determine the future 
motion of the pin . 

Realizable pat hs 

From our experience of motion we develop certain expectations 
about realizable configuration paths. If a path is realizable , then 
any segment of the path is a realizable path segment . Conversely, 
a path is realizable if every segment of the path is a realizable 
path segment . The realizability of a path segment depends on 
all points of the path in the segment . The realizability of a path 
segment depends on every point of the path segment in the same 
way; no part of the path is special . The realizability of a path 
segment depends only on points of the path within the segment ; 
the realizability of a path segment is a local property. 

So the path-distinguishing function aggregates some local prop
erty of the system measured at each moment along the path seg
ment . Each moment along the path must be treated in the same 
way. The contributions from each moment along the path segment 
must be combined in a way that maintains the independence of 
the contributions from disjoint subsegments .  One method of com
bination that satisfies these requirements is to add up the contri
butions , making the path-distinguishing function an integral over 
the path segment of some local property of the path. 13 

So we will try to arrange that the path-distinguishing func
tion , constructed as an integral of a local property along the path,  
assumes a stationary value for any realizable path.  Such a path
distinguishing function is traditionally called an action for the 
system. We use the word "action" to be consistent with common 

12Extrapolation of the orbit of the Moon backward in time cannot determine 
the point at which it was placed on this trajectory. To determine the origin 
of the Moon we must supplement dynamical evidence with other physical 
evidence such as chemical compositions. 

13We suspect that this argument can be promoted to a precise constraint on 
the possible ways of making this path-distinguishing function. 
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usage . Perhaps it would be clearer to continue to call it "path
distinguishing function ,"  but then it would be more difficult for 
others to know what we were talking about . 14 

In order to pursue the agenda of variational mechanics , we must 
invent action functions that are stationary on the realizable tra
jectories of the systems we are studying. We will consider actions 
that are integrals of some local property of the configuration path 
at each moment . Let q = X 0 , be a coordinate path in the con
figuration space ; q (t) are the coordinates of the configuration at 
time t. Then the action of a segment of the path in the time 
interval from h to t2 is 15 

( 1 . 1  ) 

where F [q] is a function of time that measures some local property 
of the path.  It may depend upon the value of the function q at 
that time and the value of any derivatives of q at that time. 16 

The configuration path can be locally described at a moment in 
terms of the coordinates , the rate of change of the coordinates , and 
all the higher derivatives of the coordinates at the given moment . 
Given this information the path can be reconstructed in some 
interval containing that moment . 17 Local properties of paths can 
depend on no more than the local description of the path.  

14Historically, Huygens was the first to use the term "action" in mechanics , 
referring to "the effect of a motion." This is an idea that came from the 
Greeks. In his manuscript "Dynamica" ( 1690) Leibniz enunciated a "Least 
Action Principle" using the "harmless action," which was the product of mass , 
velocity, and the distance of the motion. Leibniz also spoke of a "violent 
action" in the case where things collided. 

15 A definite integral of a real-valued function f of a real argument is written 
J: f· This can also be written J: f(x)dx. The first notation emphasizes that 
a function is being integrated. 

16Traditionally, square brackets are put around functional arguments. In this 
case , the square brackets remind us that the value of S may depend on the 
function q in complicated ways, such as through its derivatives. 

HIn the case of a real-valued function, the value of the function and its deriva
tives at some point can be used to construct a power series. For sufficiently 
nice functions (real analytic) , the power series constructed in this way con
verges in some interval containing the point. Not all functions can be locally 
represented in this way. For example , the function f(x) = exp(- 1/x2) ,  with 
f(O) = 0, is zero and has all derivatives zero at x = 0, but this infinite number 
of derivatives is insufficient to determine the function value at any other point. 
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The function F measures some local property of the coordi
nate path q . We can decompose F [q] into two parts :  a part that 
measures some property of a local description and a part that ex
tracts a local description of the path from the path function . The 
function that measures the local property of the system depends 
on the particular physical system; the method of construction of a 
local description of a path from a path is the same for any system. 
We can write F [q] as a composition of these two functions: 18 

F [q] = L 0 r [q] . ( 1 .2 )  

The function r takes the coordinate path and produces a func
tion of time whose value is an ordered tuple containing the time, 
the coordinates at that time, the rate of change of the coordinates 
at that time, and the values of higher derivatives of the coordi
nates evaluated at that time. For the path q and time t : 

r [q] (t) = (t , q (t) , Dq (t) , . . .  ) . ( 1 .3) 

We refer to this tuple , which includes as many derivatives as are 
needed , as the local tuple. The function r [q] depends only on the 
coordinate path q and its derivatives ; the function r [q] does not 
depend on X or the fact that q is made by composing X with ,. 

The function L depends on the specific details of the physical 
system being investigated , but does not depend on any particular 
configuration path.  The function L computes a real-valued local 
property of the path.  We will find that L needs only a finite num
ber of components of the local tuple to compute this property: 
The path can be locally reconstructed from the full local descrip
tion ; that L depends on a finite number of components of the local 
tuple guarantees that it measures a local property. 19 

The advantage of this decomposition is that the local descrip
tion of the path is computed by a uniform process from the con
figuration path,  independent of the system being considered . All 
of the system-specific information is captured in the function L .  

18In our notation the application of a path-dependent function to its path is 
of higher precedence than the composition , so L 0 r[q] = L 0 (r[q]). 

19We will later discover that an initial segment of the local tuple is sufficient 
to determine the future evolution of the system. That a configuration and a 
finite number of derivatives determine the future means that there is a way 
of determining all of the rest of the derivatives of the path from the initial 
segment. 
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The function L is called a Lagrangian20 for the system, and the 
resulting action , 

( 1 .4) 

is called the Lagrangian action. For Lagrangians that depend only 
on time, positions , and velocities the action can also be written 

( 1 .5 )  

Lagrangians can be found for a great variety of systems . We will 
see that for many systems the Lagrangian can be taken to be the 
difference between kinetic and potential energy. Such Lagrangians 
depend only on the time, the configuration , and the rate of change 
of the configuration . We will focus on this class of systems , but 
will also consider more general systems from time to time. 

A realizable path of the system is to be distinguished from oth
ers by having stationary action with respect to some set of nearby 
unrealizable paths. Now some paths near realizable paths will 
also be realizable : for any motion of the juggling pin there is an
other that is slightly different . So when addressing the question 
of whether the action is stationary with respect to variations of 
the path we must somehow restrict the set of paths we are con
sidering to contain only one realizable path.  It will turn out that 
for Lagrangians that depend only on the configuration and rate 
of change of configuration it is enough to restrict the set of paths 
to those that have the same configuration at the endpoints of the 
path segment . 

The principle of stationary action asserts that for each dynam
ical system we can cook up a Lagrangian such that a realizable 
path connecting the configurations at two times tl and t2 is dis-

20The classical Lagrangian plays a fundamental role in the path-integral for
mulation of quantum mechanics (due to Dirac and Feynman) , where the com
plex exponential of the classical action yields the relative probability ampli
tude for a path. The Lagrangian is the starting point for the Hamiltonian 
formulation of mechanics (discussed in chapter 3), which is also essential in 
the Schrodinger and Heisenberg formulations of quantum mechanics and in 
the Boltzmann-Gibbs approach to statistical mechanics. 
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tinguished from all conceivable paths by the fact that the action 
S [q] (tl ' t2 ) is stationary with respect to variations of the path. 21 
For Lagrangians that depend only on the configuration and rate 
of change of configuration , the variations are restricted to those 
that preserve the configurations at tl and t2 . 22 

Exercise 1 . 3 :  Fermat optics 

Fermat observed that the laws of reflection and refraction could be ac
counted for by the following facts :  Light travels in a straight line in any 
particular medium with a velocity that depends upon the medium. The 
path taken by a ray from a source to a destination through any sequence 
of media is a path of least total time, compared to neighboring paths. 
Show that these facts imply the laws of reflection and refraction. 23 

21 The principle becomes the "principle of least action" if the path is sufficiently 
short. In the more general case the action is stationary. The term "principle 
of least action" is also commonly used to refer to a result , due to Maupertuis , 
Euler , and Lagrange , which says that free particles move along paths for which 
the integral of the kinetic energy is minimized among all paths with the given 
endpoints. Correspondingly, the term "action" is sometimes used to refer 
specifically to the integral of the kinetic energy. (Actually, Euler and Lagrange 
used the vis viva, or twice the kinetic energy.) 

220ther ways of stating the principle of stationary action make it sound teleo
logical and mysterious. For instance , one could imagine that the system con
siders all possible paths from its initial configuration to its final configuration 
and then chooses the one with the smallest action. Indeed, the underlying vi
sion of a purposeful, economical , and rational universe played no small part in 
the philosophical considerations that accompanied the initial development of 
mechanics. The earliest action principle that remains part of modern physics is 
Fermat's principle , which states that the path traveled by a light ray between 
two points is the path that takes the least amount of time. Fermat formu
lated this principle around 1660 and used it to derive the laws of reflection 
and refraction. Motivated by this , the French mathematician and astronomer 
Pierre-Louis Moreau de Maupertuis enunciated the principle of least action as 
a grand unifying principle in physics. In his Essai de cosmologie (1750) Mau
pertuis appealed to this principle of "economy in nature" as evidence of the 
existence of God, asserting that it demonstrated "God's intention to regulate 
physical phenomena by a general principle of the highest perfection." For a 
historical perspective on Maupertuis's, Euler's, and Lagrange's roles in the 
formulation of the principle of least action , see [28]. 

23For reflection the angle of incidence is equal to the angle of reflection. Re
fraction is described by Snell's law: when light passes from one medium to 
another , the ratio of the sines of the angles made to the normal to the interface 
is the inverse of the ratio of the refractive indices of the media. The refractive 
index is the ratio of the speed of light in the vacuum to the speed of light in 
the medium. 



14 Chapter 1 Lagrangian Mechanics 

1.4 Computing Actions 

To illustrate the above ideas , and to introduce their formulation as 
computer programs , we consider the simplest mechanical system
a free particle moving in three dimensions. Euler and Lagrange 
discovered that for a free particle the time integral of the kinetic 
energy over the particle 's actual path is smaller than the same 
integral along any alternative path between the same points :  a 
free particle moves according to the principle of stationary action , 
provided we take the Lagrangian to be the kinetic energy. The ki
netic energy for a particle of mass m and velocity v is �mv2 , where 
v is the magnitude of v. In this case we can choose the generalized 
coordinates to be the ordinary rectangular coordinates . 

Following Euler and Lagrange , the Lagrangian for the free par
ticle is24 

L(t , x , v) = �m(v . v) , ( 1 .6 )  

where the formal parameter x names a tuple of components of the 
position with respect to a given rectangular coordinate system, 
and the formal parameter v names a tuple of velocity compo
nents . 25 

We can express this formula as a procedure : 

( def ine « L-free -part icle mas s )  local) 
( let « v  (velocity local» ) 

( *  1 / 2  mas s ( dot -product v v» » 

The definition indicates that L-free -part i c l e  is a procedure that 
takes mass as an argument and returns a procedure that takes a 

24Here we are making a function definition. A definition specifies the value 
of the function for arbitrarily chosen formal parameters. One may change 
the name of a formal parameter, so long as the new name does not conflict 
with any other symbol in the definition. For example , the following definition 
specifies exactly the same free-particle Lagrangian: 

L(a,b,c) = �m(c.c). 

25The Lagrangian is formally a function of the local tuple , but any particular 
Lagrangian depends only on a finite initial segment of the local tuple. We 
define functions of local tuples by explicitly declaring names for the elements 
of the initial segment of the local tuple that includes the elements upon which 
the function depends. 
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local tuple l o c al ,  extracts the generalized velocity with the pro
cedure velocity ,  and uses the velocity to compute the value of 
the Lagrangian . 26 

Suppose we let q denote a coordinate path function that maps 
time to position components : 27 

q (t) = (x (t) , y (t) , z (t) ) . 

We can make this definition28 

( def ine q 
(up ( l it eral-funct ion ' x) 

( l it eral-funct ion ' y) 
( l it eral-funct ion ' z ) ) )  

( 1 . 7) 

where lit eral-funct i on makes a procedure that represents a 
function of one argument that has no known properties other than 
the given symbolic name. The symbol q now names a procedure 
of one real argument (time) that produces a tuple of three com
ponents representing the coordinates at that time. For example , 
we can evaluate this procedure for a symbolic time t as follows : 

(q ' t )  

(up (x t )  (y t )  (z t ) ) 

26 We represent the local tuple as a composite data structure , the components 
of which are the time, the generalized coordinates, the generalized velocities , 
and possibly higher derivatives. We do not want to be bothered by the details 
of packing and unpacking the components into these structures , so we provide 
utilities for doing this. 

27Be careful. The x in the definition of q is not the same as the x that was used 
as a formal parameter in the definition of the free-particle Lagrangian above. 
There are only so many letters in the alphabet , so we are forced to reuse them. 
We will be careful to indicate where symbols are given new meanings. 

28 A tuple of coordinate or velocity components is made with the procedure 
up. Component i of the tuple q is (ref q i ) . All indexing is zero based. The 
word up is to remind us that in mathematical notation these components are 
indexed by superscripts. There are also down tuples of components that are 
indexed by subscripts. See the appendix on notation. 

The constructor up is also used to package the time, the coordinates, and 
the velocities into a data structure representing a local tuple. The selectors 
t ime, coordinat e ,  and veloc ity extract the appropriate pieces from the local 
structure. The procedure t ime is the same as the procedure ( component 0) , 
and similarly coordinate is ( component 1) and veloc ity is ( component 2).  
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The derivative of the coordinate path Dq is the function that 
maps time to velocity components :  

Dq(t) = (Dx (t) , Dy (t) , Dz (t) ) .  

We can make and use the derivative of a function . 29 For example , 
we can write: 

«D q) ' t )  

(up ( (D x) t )  ( (D y) t )  ( (D z )  t ) ) 

The function r takes a coordinate path and returns a function of 
time that gives the local tuple (t , q (t) , Dq (t) , . . .  ) . We implement 
this r with the procedure Gamma.30 Here is what Gamma does : 

«Gamma q) ' t )  

(up t 

(up (x t) (y t) (z t ) ) 

(up ( (D x) t) ( (D y) t) ( (D z) t ) ) )  

So the composition L o r  is a function of time that returns the 
value of the Lagrangian for this point on the path:31 

« compose (L-free -part icle ' m) (Gamma q» ' t )  

(+ ( * 1/2 m (expt ( (D x) t )  2) )  

( * 1/2 m (expt ( (D y) t )  2) )  

( * 1/2 m (expt ( (D z )  t )  2) ) )  

The procedure show-expre s s i on simplifies the expression and uses 
'lEX to display the result in traditional infix form. We use this 
method of display to make the boxed expressions in this book. 

29Derivatives of functions yield functions. For example , (CD cube ) 2) => 12 
and «D cube ) ' a) => (* 3 ( expt a 2» . 

30 Although r produces an arbitrarily long local tuple , our procedure Gamma 
produces by default only the first three elements. If a longer local tuple 
is needed, Gamma can be given the length of the required tuple as an extra 
argument. 

31 In our system, arithmetic operators are generic over symbolic expressions 
as well as numeric values; arithmetic procedures can work uniformly with 
numbers or expressions. For example , given the procedure (def ine ( cube x) 
(* x x x» we can obtain its value for a number ( cube 2) => 8 or for a literal 
symbol ( cube ' a) => (* a a a) . 
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The procedure show-expre s s i on also produces the prefix form, 
but we usually do not show this . 32 

( show-expre s s ion 
« compose (L-free -part icle ' m) (Gamma q» ' t »  

1 2 1 2 1 2 2m (Dx (t) ) + 2m (Dy (t) ) + 2m (Dz (t) ) 

According to equation ( 1 .4) we can compute the Lagrangian 
action from time h to time t2 as : 

( def ine (Lagrangian-act ion L q t l  t 2 )  
( def init e - int egral ( c ompose L (Gamma q »  t l  t 2 »  

Lagrangi an-act i on takes as arguments a procedure L that com
putes the Lagrangian , a procedure q that computes a coordinate 
path,  and starting and ending times tl and t2. The def inite

int egral used here takes as arguments a function and two lim
its tl and t2, and computes the definite integral of the function 
over the interval from tl to t2.33 Notice that the definition of 
Lagrangi an-act i on does not depend on any particular set of co
ordinates or even the dimension of the configuration space . The 
method of computing the action from the coordinate representa
tion of a Lagrangian and a coordinate path does not depend on 
the coordinate system. 

We can now compute the action for the free particle along a 
path.  For example , consider a particle moving at uniform speed 
along a straight line t f--7 (4t + 7, 3t + 5 , 2t + 1 ) . 34 We represent 
the path as a procedure 

32For very complicated expressions the prefix notation of Scheme is often bet
ter, but simplification is almost always useful. We can separate the functions 
of simplification and infix display. We will see examples of this later. 

33Scmutils includes a variety of numerical integration procedures. The ex
amples in this section were computed by rational-function extrapolation of 
Euler-MacLaurin formulas with a relative error tolerance of 10-10. 

34For a real physical situation we would have to specify units for these quan
tities , but in this illustration we leave them unspecified. 



18  

( def ine (test-path t )  
(up ( +  ( *  4 t )  7) 

(+ ( *  3 t )  5) 
(+ ( *  2 t )  1 ) ) 

Chapter 1 Lagrangian Mechanics 

For a particle of mass 3, we obtain the action between t = 0 and 
t = 10 as35 

(Lagrangian-act ion (L-free -part icle 3 . 0 ) t e st -path 0 . 0  1 0 . 0 ) 
435. 

Exercise 1 .4 :  Lagrangian actions 

For a free particle an appropriate Lagrangian is36 

L(t,x,v) = �mv2. ( 1 .8 )  

Suppose that x i s  the constant-velocity straight-line path of a free par
ticle, such that Xa = x(ta) and Xb = X(tb). Show that the action on the 
solution path is 

m (Xb - xa)2 
2 tb - ta 

Pat hs of minimum action 

( 1 .9 )  

We already know that the actual path of a free particle is uniform 
motion in a straight line . According to Euler and Lagrange , the 
action is smaller along a straight-line test path than along nearby 
paths. Let q be a straight-line test path with action S [q] (tl ' t2 ) '  
Let q + ErJ be a nearby path,  obtained from q by adding a path 
variation rJ scaled by the real parameter E.37 The action on the 
varied path is S [q + ErJ] (t l , t2 ) '  Euler and Lagrange found that 
S [q+ErJ] (t l , t2 ) > S [q] (h, t2 ) for any rJ that is zero at the endpoints 
and for any small nonzero E. 

35Here we use numerals with decimal points to specify the parameters. This 
forces the representations to be floating point , which is efficient for numerical 
calculation. If symbolic algebra is to be done it is essential that the numbers 
be exact integers or rational fractions , so that expressions can be reliably 
reduced to lowest terms. Such numbers are specified without a decimal point. 

36The squared magnitude of the velocity is if· if, the vector dot product of the 
velocity with itself, so we write simply v2 = v . v. 

37Note that we are doing arithmetic on functions. We extend the arithmetic 
operations so that the combination of two functions of the same type (same 
domains and ranges) is the function on the same domain that combines the 
values of the argument functions in the range. For example , if f and 9 are 
functions of t, then fg is the function t >--+ f(t)g(t). A constant multiple of 
a function is the function whose value is the constant times the value of the 
function for each argument: cf is the function t>--+ cf(t). 
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Let 's check this numerically by varying the test path,  adding 
some amount of a test function that is zero at the endpoints t = tl 
and t = t2 . To make a function TJ that is zero at the endpoints ,  
given a sufficiently well-behaved function v, we can use TJ (t) = 
(t - td(t - t2 ) V (t) . This can be implemented : 

( def ine « make -eta nu t l  t 2 )  t )  
( *  ( - t ti ) ( - t t 2 )  (nu t » ) 

We can use this to compute the action for a free particle over a 
path varied from the given path,  as a function of E:38 

( def ine « varied-free -part icle -act i on mas s q nu t l  t 2 )  eps )  
( let « eta (make -eta nu t l  t 2 » ) 

(Lagrangian-act ion (L-free -part icle mas s )  
( +  q ( *  eps eta» 
t l  
t 2 » ) 

The action for the varied path,  with v(t) = (sin t , cos t , t2 ) and 
E = 0 .00 1 ,  is, as expected , larger than for the test path:  

« varied-free -part icle -act i on 3 . 0  t e st -path 

0 . 00 1 )  
436. 29121428571153 

(up s in cos  square)  
0 . 0  1 0 . 0 ) 

We can numerically compute the value of E for which the action 
is minimized . We search between , say, - 2 and 1 :39 

(minimize 
(varied-free -part icle -act i on 3 . 0  t e st -path 

-2 . 0  1 . 0 ) 

(up s in cos  square)  
0 . 0  1 0 . 0 ) 

(-1. 5987211554602254e-14 435. 0000000000237 5) 

38Note that we are adding procedures. Paralleling our extension of arithmetic 
operations to functions , arithmetic operations are extended to compatible pro
cedures. 

39The arguments to minimize are a procedure implementing the univariate 
function in question , and the lower and upper bounds of the region to be 
searched. Scmutils includes a choice of methods for numerical minimization; 
the one used here is Brent's algorithm, with an error tolerance of 10-5. The 
value returned by minimize is a list of three numbers: the first is the argument 
at which the minimum occurred, the second is the minimum obtained, and 
the third is the number of iterations of the minimization algorithm required 
to obtain the minimum. 
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We find exactly what is expected-that the best value for E is 
zero ,40 and the minimum value of the action is the action along 
the straight path.  

Finding trajectories t hat minimize t he action 

We have used the variational principle to determine if a given 
trajectory is realizable . We can also use the variational principle 
to find trajectories . Given a set of trajectories that are specified by 
a finite number of parameters , we can search the parameter space 
looking for the trajectory in the set that best approximates the real 
trajectory by finding one that minimizes the action . By choosing 
a good set of approximating functions we can get arbitrarily close 
to the real trajectory.4l 

One way to make a parametric path that has fixed endpoints 
is to use a polynomial that goes through the endpoints as well 
as a number of intermediate points .  Variation of the positions 
of the intermediate points varies the path;  the parameters of the 
varied path are the coordinates of the intermediate positions . The 
procedure make -path constructs such a path using a Lagrange 
interpolation polynomial . The procedure make -path is called with 
five arguments :  (make -path to qO tl ql qs ) ,  where qO and ql 

are the endpoints ,  to and tl are the corresponding times , and qs 

is a list of intermediate points .42 

40Yes , -1. 5987211554602254e-14 is zero for the tolerance required of the min
imizer. And 435.0000000000237 is arguably the same as 435 obtained before. 

41There are lots of good ways to make such a parametric set of approximating 
trajectories. One could use splines or higher-order interpolating polynomials; 
one could use Chebyshev polynomials; one could use Fourier components. The 
choice depends upon the kinds of trajectories one wants to approximate. 

42Here is one way to implement make-path: 

(define (make-path to qO tl ql qs) 
(let ((n (length qs») 

(let ((ts (linear-interpolants to tl n») 
(Lagrange-interpolation-function 

(append (list qO) qs (list ql» 
(append (list to) ts (list tl»»» 

The procedure l inear-interpolant s produces a list of elements that linearly 
interpolate the first two arguments. We use this procedure here to specify t s ,  
the n evenly spaced intermediate times between to and t 1 at which the path 
will be specified. The parameters being adjusted, qs , are the positions at these 
intermediate times. The procedure Lagrange- interpolat ion-funct i on takes 
a list of values and a list of times and produces a procedure that computes 
the Lagrange interpolation polynomial that passes through these points. 
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Having specified a parametric path,  we can construct a para
metric action that is just the action computed along the paramet
ric path:  

( def ine « parametr i c -path-act ion Lagrangian t o  qO tl  ql ) qs ) 
( let « path (make -path to qO t l  ql qs » ) 

(Lagrangian-act ion Lagrangian path to t l » ) 

We can find approximate solution paths by finding parameters 
that minimize the action . We do this minimization with a canned 
multidimensional minimization procedure :43 

( def ine ( f ind-path Lagrangian to qO t l  ql n) 
( let « init ial-qs ( l inear- int erpolant s qO ql n» ) 

( let « minimiz ing-qs 
(multidimens ional-minimize 

(parametr i c -path-act ion Lagrangian t o  qO tl ql ) 
init ial-qs » ) 

(make -path to qO t l  ql minimiz ing-qs » » 

The procedure mul t idimen s i onal-minimize takes a procedure (in 
this case the value of the call to parametric-path-act i on) that 
computes the function to be minimized (in this case the action) 
and an initial guess for the parameters . Here we choose the initial 
guess to be equally spaced points on a straight line between the 
two endpoints ,  computed with l inear-int erpolant s .  

To illustrate the use of this strategy, we will find trajectories of 
the harmonic oscillator , with Lagrangian44 

L(t , q , v) = �mv2 - � kq2 , ( 1 . 10) 

for mass m and spring constant k .  This Lagrangian is imple
mented by45 

43The minimizer used here is the NeIder-Mead downhill simplex method. As 
usual with numerical procedures , the interface to the neIder-mead procedure 
is complex, with lots of optional parameters to let the user control errors 
effectively. For this presentation we have specialized neIder-mead by wrapping 
it in the more palatable multidimensional-minimiz e .  Unfortunately, you will 
have to learn to live with complicated numerical procedures someday. 

44Don't worry. We know that you don't yet know why this is the right La
grangian. We will get to this in section 1.6. 

45The square of a structure of components is defined to be the sum of the 
squares of the individual components. 
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+0.0002 ,...---------.....,-----------, 

o 

-0 .0002 '-----------'------------' 
o 7f /2 

Figure 1 . 1  The difference between the polynomial approximation 
with minimum action and the actual trajectory taken by the harmonic 
oscillator. The abscissa is the time and the ordinate is the error. 

( def ine « L-harmoni c m k) local) 
( let « q  ( coordinat e local» 

(v (velocity local» ) 

( - ( *  1 / 2  m ( square v»  ( *  1 / 2  k ( square q» » )  

We can find an approximate path taken by the harmonic oscil
lator for m = 1 and k = 1 between q (O) = 1 and q (7f /2) = 0 as 
follows : 46 

( def ine q 
( f ind-path ( L-harmoni c 1 . 0  1 . 0 ) 0 . 0  1 . 0  : pi/2 0 . 0  3 »  

We know that the trajectories of this harmonic oscillator , for 
m = 1 and k = 1 ,  are 

q (t) = A cos (t + <p) ( 1 . 1 1 ) 

where the amplitude A and the phase <p are determined by the 
initial conditions . For the chosen endpoint conditions the solution 
is q (t) = cos (t) . The approximate path should be an approxima
tion to cosine over the range from 0 to 7f /2 . Figure 1 . 1 shows the 
error in the polynomial approximation produced by this process .  

46By convention, named constants have names that begin with a colon. The 
constants named : pi and : -pi are what we would expect from their names. 
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The maximum error in the approximation with three intermedi
ate points is less than 1 . 7 x 10-4 . We find , as expected , that the 
error in the approximation decreases as the number of intermedi
ate points is increased . For four intermediate points it is about a 
factor of 1 5  better . 

Exercise 1 . 5 :  Solution process 

We can watch the progress of the minimization by modifying the proce
dure parametr i c -path-act ion to plot the path each time the action is 
computed . Try this: 

(def ine win2 (frame 0 . 0  : pi/2 0 . 0  1 . 2 » 

(def ine ( (parametric-path-act ion Lagrangian to qO t l  ql ) 
intermediate-qs )  

(let ( (path (make-path to qO t l  q l  intermediate-qs » ) 
; ;  display path 
(graphics-clear win2 ) 
(plot-funct ion win2 path to t l  ( /  (- t l  to)  100» 
; ;  compute act ion 
(Lagrangian-act ion Lagrangian path to t l » ) 

(f ind-path (L-harmonic 1 . 0  1 . 0 ) 0 . 0  1 . 0  : pi/2 0 . 0  2 )  

Exercise 1 .6 :  Minimizing action 

Suppose we try to obtain a path by minimizing an action for an im
possible problem. For example, suppose we have a free particle and we 
impose endpoint conditions on the velocities as well as the positions that 
are inconsistent with the particle being free. Does the formalism protect 
itself from such an unpleasant attack? You may find it illuminating to 
program it and see what happens . 

1.5 The Euler-Lagrange Equations 

The principle of stationary action characterizes the realizable 
paths of systems in configuration space as those for which the 
action has a stationary value . In elementary calculus, we learn 
that the critical points of a function are the points where the 
derivative vanishes . In an analogous way, the paths along which 
the action is stationary are solutions of a system of differential 
equations . This system, called the Euler-Lagrange equations or 
just the Lagrange equations, is the link that permits us to use 
the principle of stationary action to compute the motions of me
chanical systems , and to relate the variational and Newtonian 
formulations of mechanics . 
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Lagrange equat ions 

We will find that if L is a Lagrangian for a system that depends 
on time, coordinates , and velocities , and if q is a coordinate path 
for which the action S [q] (tl ' t2 ) is stationary (with respect to any 
variation in the path that keeps the endpoints of the path fixed) , 
then 

D(EhL 0 nq] ) - ch L 0 nq] = O .  ( 1 . 1 2) 

Here L is a real-valued function of a local tuple ; Eh L and EhL de
note the partial derivatives of L with respect to its generalized po
sition argument and generalized velocity argument respectively.47 
The function EhL maps a local tuple to a structure whose com
ponents are the derivatives of L with respect to each component 
of the generalized velocity. The function nq] maps time to the 
local tuple : nq] (t) = (t, q (t) , Dq (t) , . . .  ) . Thus the compositions 
oi L 0 nq] and 02L 0 nq] are functions of one argument , time. The 
Lagrange equations assert that the derivative of 02L 0 nq] is equal 
to olLonq] , at any time. Given a Lagrangian , the Lagrange equa
tions form a system of ordinary differential equations that must 
be satisfied by realizable paths. 

Lagrange's equations are traditionally written as a separate 
equation for each component of q : 

i = 0, . . .  , n  - 1 . 

In this way of writing Lagrange's equations the notation does not 
distinguish between L, which is a real-valued function of three 
variables (t, q, q) , and L 0 nq] , which is a real-valued function of 
one real variable t. If we do not realize this notational pun , the 
equations don 't make sense as written-oL/oq is a function of 
three variables , so we must regard the arguments q, q as functions 
of t before taking d/dt of the expression . Similarly, oL/oq is a 
function of three variables , which we must view as a function of t 
before setting it equal to d/dt (oL/oq) .  

47The derivative or partial derivative of a function that takes structured argu
ments is a new function that takes the same number and type of arguments. 
The range of this new function is itself a structure with the same number of 
components as the argument with respect to which the function is differenti
ated. See the appendix on notation for more. 
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A correct use of the traditional notation is more explicit : 

d ( OL(t , w ' W) 1 ) oL(t , w , w) I dt OWi w = q (t) - OWi W = q (t) = 0 , 
. _ dq(t) . _ dq(t) W - � w - � 
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where i = 0, . . .  , n - 1 .  In these equations we see that the partial 
derivatives of the Lagrangian function are taken , then the path 
and its derivative are substituted for the position and velocity 
arguments of the Lagrangian , resulting in an expression in terms 
of the time. 

1 . 5 . 1  Derivat ion of t he Lagrange Equat ions 

We will show that the principle of stationary action implies that 
realizable paths satisfy the Euler-Lagrange equations . 

A D irect Derivation 

Let q be a realizable coordinate path from (h, q (tl ) )  to (t2 ' q (t2 ) ) .  
Consider nearby paths q + Ery where ry (tl ) = ry (t2 ) = O .  Let 

Expanding as a power series in E 

g (E) = g (O) + EDg(O) + . . .  

and using the chain rule we get 

it2 
Dg(O) = (olL (t ,  q (t) , Dq (t) )ry (t) ) dt 

tl it2 
+ (o2L (t , q (t) , Dq(t) )Dry (t) ) dt . 

tl 
Integrating the second term by parts we obtain 

it2 
Dg(O) = (olL (t ,  q (t) , Dq (t) )ry (t) ) dt 

tl 
+ o2L (t ,  q (t) , Dq (t)Dry (t) )ry (t) I �� it2 d - -d (o2L (t , q (t) , Dq(t) ) )  ry (t)dt .  

tl t 

( 1 . 13) 

( 1 . 14) 

( 1 . 15 )  

( 1 . 1 6) 
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The increment 6.8 in the action due to the variation in the path is, 
to first order in E, EDg(O) .  Because TJ is zero at the endpoints the 
integrated term is zero . Collecting together the other two terms , 
and reverting to functional notation , we find the increment to be 

lt2 
6.8 = E {fhL 0 r [q] - D (fhL 0 r [q] ) } TJ · tl ( 1 . 1 7) 

If 6.8 is zero the action is stationary. We retain enough freedom 
in the choice of the variation that the factor in the integrand 
multiplying TJ is forced to be zero at each point along the path.  
We argue by contradiction : Suppose this factor were nonzero at 
some particular time. Then it would have to be nonzero in at 
least one of its components .  But if we choose our TJ to be a bump 
that is nonzero only in that component in a neighborhood of that 
time, and zero everywhere else , then the integral will be nonzero . 
So we may conclude that the factor in curly brackets is identically 
zero and thus obtain Lagrange's equations :48 

D(fhL 0 r [q] ) - fhL 0 r [q] = O .  ( 1 . 18)  

T h e  Variat ion O perator 

First we will develop tools for investigating how path-dependent 
functions vary as the paths are varied . We will then apply these 
tools to the action , to derive the Lagrange equations . 

Suppose that we have a function J [q] that depends on a path q . 
How does the function vary as the path is varied? Let q be a 
coordinate path and q + ETJ be a varied path,  where the function 
TJ is a path-like function that can be added to the path q , and the 
factor E is a scale factor . We define the variation 61]f [q] of the 
function f on the path q by49 

61]f [q] = lim ( f [q + ETJ] - f [q] ) . £---+0 E ( 1 . 19 )  

The variation of f i s  a linear approximation to the change in the 
function f for small variations in the path.  The variation of f 
depends on TJ . 

48To make this argument more precise requires careful analysis. 

49The variation operator 0'1) is like the derivative operator in that it acts on 
the immediately following function: o'1) f[q] = ( o'1) f ) [q] . 
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A simple example is the variation of the identity path function : 
I [q] = q . Applying the definition , we find 

(1)I [q] = lim ( (q + Ery) - q) = ry . E--+O E ( 1 . 20) 

It is traditional to write (1)I [q] simply as 5q . Another example is 
the variation of the path function that returns the derivative of 
the path.  We have50 

(D(q + Ery) - Dq) (1)g [q] = lim = Dry with g [q] = Dq. E--+O E 

It is traditional to write (1)g [q] as 5Dq . 

( 1 . 2 1 )  

The variation may be represented in  terms of  a derivative . Let 
g(E) = f [q + Ery] ; then 

5 f [q] = lim (9 (E) - g(O) ) = Dg(O) . 1) E--+O E ( 1 .22) 

Variations have the following derivative-like properties . For 
path-dependent functions f and 9 and constant c: 

(1) (f g) [q] = (1)f [q] g [q] + j [q] (1)g [q] 
(1) (f + g) [q] = (1)f [q] + (1)g [q] 

(1) (cf) [q] = c (1)f [q] · 

( 1 .23) 
( 1 . 24) 
( 1 .25) 

Let F be a path-independent function and 9 be a path-dependent 
function ; then 

( 1 .26) 

The operators D (differentiation) and 5 (variation) commute in 
the following sense : 

( 1 . 27) 

Variations also commute with integration in a similar sense . 
If a path-dependent function f is stationary for a particular 

path q with respect to small changes in that path,  then it must be 

50We separate out the definition of g: We cannot substitute Dq for g[q] in 
81)g[q] because 81) applies to 9 not g[q] . 
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stationary for a subset of those variations that results from adding 
small multiples of a particular function TJ to q . So the statement 
51)J [q] = 0 for arbitrary TJ implies the function f is stationary for 
small variations of the path around q . 

Exercise 1 . 7:  Properties of 15 
Show that 15 has the properties 1 . 23-1 .27. 

Exercise 1 . 8 :  Implementation of 15 
a. Suppose we have a procedure f that implements a path-dependent 
function: for path q and time t it has the value ( ( f q) t ) . The pro
cedure delta computes the variation (J,d ) [q] (t ) as the value of the ex
pression ( (  ( ( delta eta) f )  q) t ) . Complete the definition of delta: 

(def ine ( ( (delta eta) f) q) 

b.  Use your delta procedure to verify the properties of 15 listed in exer
cise 1 . 7  for simple functions such as implemented by the procedure f : 5 1  

(def ine (f q) 
( c ompo s e  

( l iteral-function ' F  
( - >  (UP Real (UP* Real ) (UP* Real » Real » 

(Gamma q» ) 

This implements an n-degree-of-freedom path-dependent function that 
depends on the local tuple of the path at each moment . You can define 
a literal two-dimensional path by 

(def ine q ( l iteral-function ' q  ( - >  Real (UP Real Real » » 

You should compute both sides of the equalities and subtract the results .  
The answer should be zero . 

A Derivat ion wit h t he Variation O perator 

The action is the integral of the Lagrangian along a path:  

( 1 .28) 

51The type of a literal function is  described by a function signature. The 
default function signature is (-> Real Real ) indicating a real-valued function 
of a real argument. In this case F is declared as a function that is shaped like 
a Lagrangian , with an unspecified number of degrees of freedom. For more 
information about function signatures see the appendix on notation. 
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For a realizable path q the variation of the action with respect to 
any variation rJ that preserves the endpoints ,  rJ(td = rJ(t2 ) = 0 ,  is 
zero : 

( 1 .29) 

Variation commutes with integration , so the variation of the 
action is 

( 1 . 30) 

Using the fact that 

b1)r [q] (t) = (0 , rJ(t) , DrJ(t) ) ,  ( 1 . 3 1  ) 

which follows from equations ( 1 .20 ) and ( 1 . 2 1 ) ,  and using the chain 
rule for variations ( 1 .26 ) , we get52 

( 1 .32 ) 

Integrating the last term of equation ( 1 .32 ) by parts gives 

( 1 .33 ) 

For our variation rJ we have rJ(td = rJ(t2 ) = 0 ,  so the first term 
vanishes . 

Thus the variation of the action is zero if and only if 

( 1 .34) 

52 A function of multiple arguments is considered a function of an up tuple of 
its arguments. Thus , the derivative of a function of multiple arguments is a 
down tuple of the partial derivatives of that function with respect to each of 
the arguments. So in the case of a Lagrangian L ,  

DL(t,q , v ) = [ooL(t,q ,V ) ,Ol L(t,q ,V ) ,02L(t,q ,v )] . 
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The variation of the action is zero because , by assumption , q is a 
realizable path.  Thus ( 1 . 34) must be true for any function rJ that 
is zero at the endpoints .  Since rJ is arbitrary, except for being zero 
at the endpoints ,  the bracketed factor of the integrand is zero . So 

D (EhL 0 r [q] ) - (EhL 0 r [q] ) = O . ( 1 .35) 

This is just what we set out to obtain, the Lagrange equations . 
A path satisfying Lagrange's equations is one for which the 

action is stationary, and the fact that the action is stationary de
pends only on the values of L at each point of the path (and at 
each point on nearby paths) , not on the coordinate system we 
use to compute these values . So if the system's path satisfies La
grange's equations in some particular coordinate system, it must 
satisfy Lagrange's equations in any coordinate system. Thus the 
equations of variational mechanics are derived the same way in 
any configuration space and any coordinate system. 

Harmonic oscillator 

For an example , consider the harmonic oscillator . A Lagrangian is 

( 1 .36) 

Then 

EhL (t ,  x , v) = -kx and EhL (t ,  x , v) = mv .  ( 1 .37) 

The Lagrangian is applied to a tuple of the time, a coordinate, 
and a velocity. The symbols t , x , and v are arbitrary; they are 
used to specify formal parameters of the Lagrangian . 

Now suppose we have a configuration path y , which gives the 
coordinate of the oscillator y (t) for each time t. The initial seg
ment of the corresponding local tuple at time t is 

r [y] (t) = (t , y (t) , Dy (t) ) .  ( 1 .38) 

So 

(EhL 0 r [y] ) (t) = -ky (t) and (EhL 0 r [y] ) (t) = mDy(t) , ( 1 .39 ) 

and 

D(EhL 0 r [y] ) (t) = mD2y (t) , ( 1 .40) 

so the Lagrange equation is 
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mD2y (t) + ky (t) = 0 , 

which is the equation of motion of the harmonic oscillator . 

O rbital mot ion 
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( 1 .41 ) 

As another example , consider the two-dimensional motion of a 
particle of mass m orbiting a fixed center of attraction , with grav
itational potential energy -fJ,j r ,  where r is the distance to the 
center of attraction . This is called the Kepler problem. 

A Lagrangian for this problem is53 

1 2 2 f.L L (t ; � , rJ ; Vi;. , Vry ) = -m(vi;. + Vry ) + , 2 Ve + rJ2 ( 1 .42) 

where � and rJ are formal parameters for rectangular coordinates 
of the particle , and vi;. and Vry are formal parameters for corre
sponding rectangular velocity components .  Then 

Similarly, 

( 1 .44) 

Now suppose we have a configuration path q = (x , y) , so that 
the coordinate tuple at time t is q (t) (x (t) , y (t) ) .  The initial 
segment of the local tuple at time t is 

r [q] (t) = (t ; x (t) , y (t) ; Dx (t) , Dy (t) ) .  ( 1 .45) 

So 

(0 L r [ ] ) ( ) - [ -f.Lx (t) -f.Ly (t) ] 1 
0 q t - ( (x (t) ) 2 + (y (t) ) 2 )3/2

' 
( (x (t) ) 2 + (y (t) ) 2 )3/2 

(o2L 0 r [q] ) (t) = [mDx(t) , mDy(t) ] ( 1 .46 ) 

and 

( 1 .47) 

53 When we write a definition that names the components of the local tuple , we 
indicate that these are grouped into time, position , and velocity components 
by separating the groups with semicolons. 
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The component Lagrange equations at time t are 

mD2x (t) + fJx (t) = 0 
( (x (t) ) 2 + (y (t) ) 2 )3/2 

D2 (t) + fJy (t) 0 m y 
( (x (t) ) 2 + (y (t) ) 2 )3/2 

= 
. 

Exercise 1 . 9 :  Lagrange's equations 

( 1 .48) 

Derive the Lagrange equations for the following systems , showing all of 
the intermediate steps as in the harmonic oscillator and orbital motion 
examples . 

a. An ideal planar pendulum consists of a bob of mass m connected to 
a pivot by a massless rod of length I subject to uniform gravitational 
acceleration g. A Lagrangian is L(t,8,B) = �m12B2 + mgl cos 8 .  The 
formal parameters of L are t, 8, and B; 8 measures the angle of the 
pendulum rod to a plumb line and B is the angular velocity of the rod . 54 

h. A particle of mass m moves in a two-dimensional potential V(x, y) = 
(x2 + y2)/2 + x2y - y3/3 ,  where x and y are rectangular coordinates of 
the particle . A Lagrangian is L(t; x,y ; vx,Vy) = �m(v; + v�) - V(x,y). 
c. A Lagrangian for a particle of mass m constrained to move on a 
sphere of radius R is L(t; 8, 'P; ex , ;3) = �mR2(ex2 + (;3 sin 8)2). The angle 
8 is the colatitude of the particle and 'P is the longitude; the rate of 
change of the colatitude is ex and the rate of change of the longitude 
is ;3.  

Exercise 1 . 10 :  Higher-derivative Lagrangians 

Derive Lagrange's equations for Lagrangians that depend on accelera
tions . In particular , show that the Lagrange equations for Lagrangians 
of the form L(t, q, q, ij) with ij terms are55 

( 1 .49) 

In general, these equations , first derived by Poisson, will involve the 
fourth derivative of q. Note that the derivation is completely analogous 

54 The symbol il is just a mnemonic symbol; the dot over the 8 does not 
indicate differentiation. To define £ we could have just as well have written: 
£(a,b,c) = �mec2 + mgl cos b. However, we use a dotted symbol to remind 
us that the argument matching a formal parameter, such as il, is a rate of 
change of an angle , such as 8 .  
55In traditional notation these equations read 

d2 8£ d 8£ 8£ 
dt2 8ij - dt 84 + 8q 

= o. 
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to the derivation of the Lagrange equations without accelerations ; it is 
just longer. What restrictions must we place on the variations so that 
the critical path satisfies a differential equation? 

1 . 5 . 2  C omputing Lagrange 's Equat ions 

The procedure for computing Lagrange's equations mirrors the 
functional expression ( 1 . 1 2) , where the procedure Gamma imple
ments f :56 

( def ine « Lagrange-equat ions Lagrangian) q) 
(- (D ( c ompose « part ial 2) Lagrangian) (Gamma q» ) 

( c ompose « part ial 1 )  Lagrangian) (Gamma q» » 

The argument of Lagrange-equat i ons is a procedure that com
putes a Lagrangian . The Lagrange-equat i ons procedure returns 
a procedure that when applied to a path q returns a procedure 
of one argument (time) that computes the left-hand side of the 
Lagrange equations ( 1 . 1 2 ) . These residual values are zero if q is a 
path for which the Lagrangian action is stationary. 

Observe that the Lagrange-equat i ons procedure , like the La
grange equations themselves , is valid for any generalized coordi
nate system. When we write programs to investigate particular 
systems , the procedures that implement the Lagrangian function 
and the path q will reflect the actual coordinates chosen to rep
resent the system, but we use the same Lagrange-equat i ons pro
cedure in each case . This abstraction reflects the important fact 
that the method of derivation of Lagrange's equations from a La
grangian is always the same; it is independent of the number of 
degrees of freedom, the topology of the configuration space , and 
the coordinate system used to describe points in the configuration 
space . 

The free particle 

Consider again the case of a free particle . The Lagrangian is 
implemented by the procedure L-free -part i c l e .  Rather than 
numerically integrating and minimizing the action , as we did in 
section 1 .4 , we can check Lagrange's equations for an arbitrary 
straight-line path t � (at + ao , bt + bo ,  ct + co ) : 

56The Lagrange-equat ions procedure uses the operations (part ial 1) and 
(part ial 2) , which implement the partial derivative operators with respect 
to the second and third argument positions (those with indices 1 and 2). 
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( def ine (test-path t )  
(up ( +  ( *  ' a  t )  ' aO )  

( +  ( *  ' b  t )  ' bO )  
( +  ( *  ' c  t )  ' cO » ) 

« (Lagrange-equat ions (L-free -part icle ' m» 
t e st -path) 

' t )  

(down 0 0 0) 

That the residuals are zero indicates that the test path satisfies 
the Lagrange equations .57 

We can also apply the Lagrange-equat i ons procedure to an 
arbitrary function :58 

( show-expre s s ion 
« (Lagrange-equat ions (L-free -part icle ' m» 

( l it eral-funct ion ' x» 
' t »  

( * ( ( (expt D 2) x) t )  m) 

The result is an expression containing the arbitrary time t and 
mass m, so it is zero precisely when D2x = 0, which is the expected 
equation for a free particle . 

The harmonic oscillator 

Consider the harmonic oscillator again, with Lagrangian ( 1 . 10) . 
We know that the motion of a harmonic oscillator is a sinusoid 
with a given amplitude , frequency, and phase : 

x (t) = a cos (wt + zp) . ( 1 . 50) 

57There is a Lagrange equation for every degree of freedom. The residuals of 
all the equations are zero if the path is realizable. The residuals are arranged 
in a down tuple because they result from derivatives of the Lagrangian with 
respect to argument slots that take up tuples. See the appendix on notation. 

58 Observe that the second derivative is indicated as the square of the derivative 
operator ( expt D 2) . Arithmetic operations in Scmutils extend over operators 
as well as functions. 
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Suppose we have forgotten how the constants in the solution relate 
to the mass m and spring constant k of the oscillator . Let 's plug 
in the proposed solution and look at the residual : 

( def ine (proposed-solut ion t )  
( *  ' A  ( co s  ( +  ( *  ' omega t )  ' phi » » 

( show-expre s s ion 
« (Lagrange-equat ions ( L-harmoni c 'm ' k» 

proposed-solut ion) 
' t »  

cos (wt + rp) A ( k  - mw2) 

The residual here shows that for nonzero amplitude , the only so
lutions allowed are ones where (k - mw2) = 0 or w = Jk/m. 

Exercise 1 . 1 1 :  Kepler 's third law 

A Lagrangian suitable for studying the relative motion of two particles , 
of masses ml and m2 , with potential energy V, is : 

(def ine « L- central-polar m V) local) 
(let « q  ( c oordinat e  local» 

(qdot (veloc ity local» ) 
(let « r  (ref q 0 »  (phi (ref q 1 »  

(rdot (ref qdot 0 »  (phidot (ref qdot 1 » ) 
(- ( *  1/2  m 

(+ ( s quare rdot ) ( s quare ( *  r phidot » ) 
(V r » » )  

The argument m is the reduced mass of the system 

m = ml + m2 

For gravity, the potential energy function is 

(def ine « gravitat ional-energy G m1 m2) r )  
( - ( I  ( *  G m 1  m 2 )  r » ) 

where r is the distance between the two particles . 

( 1 . 5 1  ) 

Consider the simple situation of the particles in circular orbits around 
their common center of mass. Construct a circular orbit and plug it into 
the Lagrange equations . Show that the residual gives Kepler 's  law: 

( 1 . 52 )  

where n i s  the angular frequency of the orbit and a i s  the distance 
between the particles . 
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Exercise 1 . 12: Lagrange's Equations 

Compute Lagrange's equations for the Lagrangians in exercise 1 . 9  using 
the Lagrange-equat ions procedure . Additionally, use the computer to 
perform each of the steps in the Lagrange-equat ions procedure and 
show the intermediate results .  Relate these steps to the ones you showed 
in the hand derivation of exercise 1 . 9 .  

Exercise 1 . 13 :  Higher-derivative Lagrangians 

a. Write a procedure to compute the Lagrange equations for Lagrang
ians that depend upon acceleration, as in exercise 1 . 10 .  Note that Gamma 
can take an optional argument giving the length of the initial segment 
of the local tuple needed. The default length is 3, giving components of 
the local tuple up to and including the velocities . 

h. Use your procedure to compute the Lagrange equations for the La
grangian 

L(t , x , v , a) = - �mxa - � kX2 . 

Do you recognize the resulting equation of motion? 

c .  For more fun, write the general Lagrange equation procedure that 
takes a Lagrangian that depends on any number of derivatives, and the 
number of derivatives, to produce the required equations of motion. 

1.6 How to Find Lagrangians 

Lagrange's equations are a system of second-order differential 
equations . In order to use them to compute the evolution of a 
mechanical system, we must find a suitable Lagrangian for the 
system. There is no general way to construct a Lagrangian for 
every system, but there is an important class of systems for which 
we can identify Lagrangians in a straightforward way in terms of 
kinetic and potential energy. The key idea is to construct a La
grangian L such that Lagrange's equations are Newton 's equations 
F = mit 

Suppose our system consists of N particles indexed by 0:, with 
mass rna and vector position xa (t) . Suppose further that the 
forces acting on the particles can be written in terms of a gradient 
of a potential energy V that is a function of the positions of the 
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particles and possibly time, but does not depend on the velocities . 
In other words , the force on particle CY is Fa = -"9 x" V, where 
"9 x" V is the gradient of V with respect to the position of the 
particle with index CY. We can write Newton 's equations as 

D(ma DXa) (t) + "9 x" V(t, xo (t) , . . .  , XN- 1 (t) ) = O .  ( 1 . 53) 

Vectors can be represented as tuples of components of the vec
tors on a rectangular basis . So X1 (t) is represented as the tuple 
Xl ( t) . Let V be the potential energy function expressed in terms 
of components :  

V(t; xo (t) , . . .  , XN- 1 (t) ) = V(t, xo (t) , . . .  , XN- 1 (t) ) .  ( 1 . 54) 

Newton 's equations are 

where 81 ,a V is the partial derivative of V with respect to the Xa (t) 
argument slot . 

To form the Lagrange equations we collect all the position 
components of all the particles into one tuple x (t) , so x (t) = 
(xo (t) , . . .  , XN- 1 (t) ) .  The Lagrange equations for the coordinate 
path x are 

( 1 . 56) 

Observe that Newton 's equations ( 1 .55 ) are just the compo
nents of the Lagrange equations ( 1 .56)  if we choose L to have the 
properties 

(f.hL 0 r [x] ) (t) = [moDxo (t) , . . .  , mN-1DxN-1 (t) ] 
([hL 0 r [x] ) (t) = [-81 ,0 V(t, x (t) ) ,  . . .  , -81 ,N- 1 V(t, x (t) ) ] ; ( 1 . 57) 

here V(t, x (t) ) = V(t; xo (t) , . . .  , XN- 1 (t) ) and 81 ,aV (t, x (t) ) is the 
tuple of the components of the derivative of V with respect to 
the coordinates of the particle with index CY, evaluated at time t 
and coordinates x (t) . These conditions are satisfied if for every 
Xa and Va 
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fhL (t ;  Xo , · · · , XN- l ;  VO , · . .  , vN-d 
= [movo , . . .  , mN-lvN- l ]  

and 

fhL (t ;  Xo , · · · , XN- l ;  vo , · . .  , vN-d 
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( 1 . 58) 

= [-ih ,oV(t, x) , . . .  , -fh ,N- l V(t, x) ] , ( 1 . 59) 

where x = (Xo ,  . . .  , xN-d .  One choice for L that has the required 
properties ( 1 . 58-1 .59)  is 

1 � 2 L(t ,  x ,  v ) = 2 L mava - V(t, x) , ( 1 . 60) 
a 

where v; is the sum of the squares of the components of va .59 
The first term is the kinetic energy, conventionally denoted T. 

So this choice for the Lagrangian is L(t ,  x ,  v ) = T(t, x ,  v ) - V(t, x) , 
the difference of the kinetic and potential energy. We will often 
extend the arguments of the potential energy function to include 
the velocities so that we can write L = T - V.60 

Hamilton's principle 

Given a system of point particles for which we can identify the 
force as the (negative) derivative of a potential energy V that is 
independent of velocity, we have shown that the system evolves 
along a path that satisfies Lagrange's equations with L = T - V. 
Having identified a Lagrangian for this class of systems , we can 
restate the principle of stationary action in terms of energies . This 
statement is known as Hamilton's principle: A point-particle sys
tem for which the force is derived from a velocity-independent 
potential energy evolves along a path q for which the action 

59 Remember that x and v are just formal parameters of the Lagrangian. This 
x is not the path x used earlier in the derivation, though it could be the value 
of that path at a particular time. 

60We can always give a function extra arguments that are not used so that it 
can be algebraically combined with other functions of the same shape. 
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is stationary with respect to variations of the path q that leave 
the endpoints fixed , where L = T - V is the difference between 
kinetic and potential energy.61 

It might seem that we have reduced Lagrange's equations to 
nothing more than F = rna, and indeed , the principle is motivated 
by comparing the two equations for this special class of systems . 
However , the Lagrangian formulation of the equations of motion 
has an important advantage over F = rna. Our derivation used 
the rectangular components Xu of the positions of the constituent 
particles for the generalized coordinates , but if the system's path 
satisfies Lagrange's equations in some particular coordinate sys
tem, it must satisfy the equations in any coordinate system. Thus 
we see that L = T - V is suitable as a Lagrangian with any set of 
generalized coordinates . The equations of variational mechanics 
are derived the same way in any configuration space and any co
ordinate system. In contrast , the Newtonian formulation is based 
on elementary geometry: In order for D2i5(t) to be meaningful 
as an acceleration , i5(t) must be a vector in physical space . La
grange's equations have no such restriction on the meaning of the 
coordinate q. The generalized coordinates can be any parameters 
that conveniently describe the configurations of the system. 

61 William Rowan Hamilton formulated the fundamental variational principle 
for time-independent systems in 1834-1835. Jacobi gave this principle the 
name "Hamilton's principle." For systems subject to generic , nonstationary 
constraints Hamilton's principle was investigated in 1848 by Ostrogradsky, and 
in the Russian literature Hamilton's principle is often called the Hamilton
Ostrogradsky principle. 

Hamilton ( 1805-1865) was a brilliant mathematician. His early work on 
geometric optics (based on Fermat's principle) was so impressive that he was 
elected to the post of Professor of Astronomy at Trinity College and Royal 
Astronomer of Ireland while he was still an undergraduate. He produced two 
monumental works of mathematics. His discovery of quaternions revitalized 
abstract algebra and sparked the development of vector techniques in physics. 
His 1835 memoir "On a General Method in Dynamics" put variational me
chanics on a firm footing, finally giving substance to Maupertuis's vaguely 
stated Principle of Least Action of 100 years before. Hamilton also wrote 
poetry and carried on an extensive correspondence with Wordsworth, who 
advised him to put his energy into writing mathematics rather than poetry. 

In addition to the formulation of the fundamental variational principle , 
Hamilton also emphasized the analogy between geometric optics and mechan
ics , and stressed the importance of the momentum variables (which were ear
lier introduced by Lagrange and Cauchy) , leading to the "canonical" form of 
mechanics discussed in chapter 3. 
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C onstant accelerat ion 

Consider a particle of mass m in a uniform gravitational field with 
acceleration g . The potential energy is mgh where h is the height 
of the particle . The kinetic energy is just �mv2 . A Lagrangian 
for the system is the difference of the kinetic and potential en
ergies . In rectangular coordinates , with y measuring the vertical 
position and x measuring the horizontal position , the Lagrangian 
is L(t ;  x , y; vx , vy ) = �m (v; + v; )  - mgy . We have62 

( def ine « L-unif orm-ac celerat ion m g) local) 
( let « q  ( coordinat e local» 

(v (velocity local» ) 
( let « y  (ref q 1 » ) 

( - ( *  1 / 2  m ( square v»  ( *  m g y» » )  

( show-expre s s ion 
« ( Lagrange-equat ions 

( L-unif orm-ac celerat ion 'm ' g» 
(up ( l it eral-funct ion ' x) 

( l it eral-funct ion ' y» ) 
' t »  

This equation describes un accelerated motion in the horizontal 
direction (mD2x (t) = 0) and constant acceleration in the vertical 
direction (mD2y (t) = -gm) .  
Cent ral force field 

Consider planar motion of a particle of mass m in a central force 
field , with an arbitrary potential energy U(r) depending only upon 
the distance r to the center of attraction . We will derive the La
grange equations for this system in both rectangular coordinates 
and polar coordinates . 

In rectangular coordinates (x , y) , with origin at the center of 
attraction , the potential energy is V(t; x , y) = U(Jx2 + y2 ) and 

62When applied to a tuple , square means the sum of the squares of the com
ponents of the tuple. 
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the kinetic energy is T(t; x , y ;  Vx , vy ) = �m(v; +v; ) .  A Lagrangian 
for the system is L = T - V: 

As a procedure : 

( def ine « L-central-re ctangular m U) local) 
( let « q  ( coordinat e local» 

(v (velocity local» ) 
( - ( *  1 / 2  m ( square v»  

(U ( sqrt ( square q» » »  

The Lagrange equations are 

( show-expre s s ion 
« ( Lagrange-equat ions 

(L-central-re ctangular ' m ( l it eral-funct ion ' U» ) 
(up ( l it eral-funct ion ' x) 

( l it eral-funct ion ' y» ) 
' t »  

We can rewrite these Lagrange equations as : 

mD2x (t) = -:��J DU(r (t) ) 

mD2y (t) = -���� DU(r (t) ) ,  

( 1 . 6 1  ) 

( 1 .62) 

( 1 .63) 

where r (t) = J(x(t) ) 2 + (y (t) ) 2 . We can interpret these as fol
lows . The particle is subject to a radially directed force with 
magnitude -DU(r) .  Newton 's equations equate the force with 
the product of the mass and the acceleration . The two Lagrange 
equations are just the rectangular components of Newton 's equa
tions . 
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We can describe the same system in polar coordinates . The 
relationship between rectangular coordinates (x, y) and polar co
ordinates (r, 'P) is 

x = r cos 'P 
y = r sin 'P. ( 1 . 64) 

The relationship of the generalized velocities is derived from the 
coordinate transformation . Consider a configuration path that is 
represented in both rectangular and polar coordinates . Let x and 
y be components of the rectangular coordinate path,  and let r 
and Ij5 be components of the corresponding polar coordinate path.  
The rectangular components at time t are (x(t) , y(t) ) and the polar 
coordinates at time t are (r(t) , lj5(t) ) .  They are related by ( 1 .64) : 

x(t) = r(t) cos lj5(t) 
y(t) = r(t) sin lj5(t) . ( 1 .65) 

The rectangular velocity at time t is (Dx(t) , DY(t) ) .  Differentiat
ing ( 1 .65)  gives the relationship among the velocities 

Dx(t) = Dr(t) cos lj5(t) - r(t)DIj5(t) sin lj5(t) 
Dy(t) = Dr(t) sin lj5(t) + r(t)DIj5(t) cos lj5(t) . ( 1 .66 ) 

These relations are valid for any configuration path at any mo
ment , so we can abstract them to relations among coordinate 
representations of an arbitrary velocity. Let Vx and Vy be the 
rectangular components of the velocity and i and rp be the rate 
of change of r and 'P. Then 

Vx = i cos 'P - rrp sin 'P 
Vy = i sin 'P + rrp cos 'P. 

The kinetic energy is �m( v; + v; ) : 

T(t i r, 'P i i , rp) = �m(i2 + r2rp2 ) ,  

and the Lagrangian is 

( 1 .67) 

( 1 .68) 

( 1 .69 ) 
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We express this Lagrangian as follows : 

( def ine « L- central-polar m U) local) 
( let « q  ( coordinat e local» 

( qdot (velocity local» ) 
( let « r  (ref q 0 »  (phi (ref q 1 »  

(rdot (ref qdot 0 »  (phidot (ref qdot 1 » ) 
( - ( *  1 / 2  m 

(+ ( square rdot ) 
( square ( *  r phidot » ) 

(U r » » )  

Lagrange's equations are 

( show-expre s s ion 
« ( Lagrange-equat ions 

(L-central-polar ' m ( l it eral-funct ion ' U» ) 
(up ( l it eral-funct ion ' r ) 

' t »  
( l it eral-funct ion ' phi » ) 

[mD2r (t) - mr (t) (Dcp (t) ) 2 + DU (r (t) ) 1 

2m Dr (t) r (t) Dcp (t) + mD2cp (t) (r (t) ) 2 
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We can interpret the first equation as saying that the product of 
the mass and the radial acceleration is the sum of the force due 
to the potential and the centrifugal force . The second equation 
can be interpreted as saying that the derivative of the angular 
momentum mr2 Dcp is zero , so angular momentum is conserved . 

Note that we used the same Lagrange-equat i ons procedure 
for the derivation in both coordinate systems . Coordinate repre
sentations of the Lagrangian are different for different coordinate 
systems , and the Lagrange equations in different coordinate sys
tems look different . Yet the same method is used to derive the 
Lagrange equations in any coordinate system. 

Exercise 1 . 14:  Coordinate-independence of Lagrange equations 

Check that the Lagrange equations for central force motion in polar 
coordinates and in rectangular coordinates are equivalent . Determine 
the relationship among the second derivatives by substituting paths into 
the transformation equations and computing derivatives, then substitute 
these relations into the equations of motion. 
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1 . 6 . 1  C oordinate Transformat ions 

The motion of a system is independent of the coordinates we use to 
describe it . This coordinate-free nature of the motion is apparent 
in the action principle . The action depends only on the value of the 
Lagrangian along the path and not on the particular coordinates 
used in the representation of the Lagrangian . We can use this 
property to find a Lagrangian in one coordinate system in terms 
of a Lagrangian in another coordinate system. 

Suppose we have a mechanical system whose motion is de
scribed by a Lagrangian L that depends on time, coordinates , 
and velocities . And suppose we have a coordinate transformation 
F such that x = F (t , x' ) .  The Lagrangian L is expressed in terms 
of the unprimed coordinates . We want to find a Lagrangian L' ex
pressed in the primed coordinates that describes the same system. 
One way to do this is to require that the value of the Lagrangian 
along any configuration path be independent of the coordinate 
system. If q is a path in the unprimed coordinates and q/ is the 
corresponding path in primed coordinates , then the Lagrangians 
must satisfy: 

L' 0 nq/] = L 0 nq] . ( 1 . 70) 

We have seen that the transformation from rectangular to polar 
coordinates implies that the generalized velocities transform in a 
certain way. The velocity transformation can be deduced from the 
requirement that a path in polar coordinates and a correspond
ing path in rectangular coordinates are consistent with the coor
dinate transformation . In general , the requirement that paths in 
two different coordinate systems be consistent with the coordinate 
transformation can be used to deduce how all of the components 
of the local tuple transform. Given a coordinate transformation 
F, let C be the corresponding function that maps local tuples in 
the primed coordinate system to corresponding local tuples in the 
unprimed coordinate system: 

C 0 nq/] = nq] · 

We will deduce the general form of C below. 

( 1 . 7 1 )  
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Given such a local-tuple transformation C, a Lagrangian L' that 
satisfies equation ( 1 .  70) is 

L' = L o C. ( 1 . 72) 

We can see this by substituting for L' in equation ( 1 . 70) : 

L' 0 nq'] = L 0 C 0 nq'] = L 0 nq] . ( 1 .  73) 

To find the local-tuple transformation C given a coordinate 
transformation F, we deduce how each component of the local 
tuple transforms . The coordinate transformation specifies how 
the coordinate component of the local tuple transforms 

x = F(t, x' ) .  ( 1 . 74) 

The generalized-velocity component of the local-tuple transforma
tion can be deduced as follows . Let q and q' be the same configu
ration path expressed in the two coordinate systems . Substituting 
these paths into the coordinate transformation and computing the 
derivative , we find 

Dq(t) = ooF(t, q' (t) ) + olF(t, q' (t) )Dq' (t) . ( 1 . 75 ) 

Through any point there is always a path of any given velocity, so 
we may generalize and conclude that along corresponding coordi
nate paths the generalized velocities satisfy 

v = ooF(t, x' ) + olF(t, x' )v' . ( 1 . 76 ) 

If needed , rules for higher-derivative components of the local tuple 
can be determined in a similar fashion . The local-tuple transfor
mation that takes a local tuple in the primed system to a local 
tuple in the unprimed system is constructed from the component 
transformations : 

(t , x , v , . . .  ) = C(t, , , x , v , . . .  ) 
= (t , F (t, x' ) ,  ooF(t, x' ) + olF(t, x' )v' , . . .  ) .  ( 1 . 77) 

So if we take the Lagrangian L' to be 

L' = L o C, ( 1 . 78) 
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then the action has a value that is independent of the coordinate 
system used to compute it . The configuration path of stationary 
action does not depend on which coordinate system is used to 
describe the path.  The Lagrange equations derived from these 
Lagrangians will in general look very different from one another , 
but they must be equivalent . 

Exercise 1 . 15 :  Equivalence 

Show by direct calculation that the Lagrange equations for L' are satis
fied if the Lagrange equations for L are satisfied . 

Given a coordinate transformation F, we can use ( 1 . 77) to find 
the function C that transforms local tuples . The procedure F->C 

implements this : 63 

( def ine « F->C F) local) 
(up (t ime local) 

(F  local) 

( +  « (part ial 0 )  F )  local) 
( *  « (part ial 1)  F )  local) 

(velocity local» » )  

As an illustration , consider the transformation from polar to 
rectangular coordinates , x = r cos <p and y = r sin <p,  with the 
following implementation : 

( def ine (p->r local) 
( let « polar-tuple ( coordinat e local» ) 

( let « r  (ref polar-tuple 0 »  
(phi (ref polar-tuple 1 » ) 

( let « x  ( *  r ( co s  phi » ) 
(y ( *  r ( s in phi » » 

(up x y» » )  

In terms of the polar coordinates and the rates of change of the po
lar coordinates , the rates of change of the rectangular components 
are64 

63 As described in footnote 26 above , the procedure up constructs a local tuple 
from an initial segment of time, coordinates, and velocities. 

64We hope you appreciate the 'lEX magic here. Symbols with carets ,  under
lines , the names of Greek letters , and those terminating in the characters "dot" 
are converted by show-expression to the corresponding 'lEX expression. 
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( show-expre s s ion 
(velocity 

«F->C p->r) 
(up ' t  (up ' r  ' phi ) (up ' rdot ' phidot ) ) ) ) )  

( -cpr sin ( 'P) + r cos ( 'P) ) 

cpr cos ( 'P) + r sin ( 'P ) 

4 7  

We can use F->C t o  find the Lagrangian for central force motion in 
polar coordinates from the Lagrangian in rectangular components ,  
using equation ( 1 . 72 ) : 

( def ine (L-central-polar m U) 
( c ompose (L-central-re ctangular m U) (F->C p->r) ) )  

( show-expre s s ion 
« L- central-polar 'm ( l it eral-funct ion ' U) )  

(up ' t  (up ' r ' phi ) (up ' rdot ' phidot ) ) ) )  

The result is the same as Lagrangian ( 1 .69) . 

Exercise 1 . 16 :  Central force motion 

Find Lagrangians for central force motion in three dimensions in rect
angular coordinates and in spherical coordinates . First , find the La
grangians analytically, then check the results with the computer by gen
eralizing the programs that we have presented . 

C oriolis and centrifugal forces 

The equations of motion of a free particle in a rotating coordinate 
system have additional terms . Consider a free particle moving in 
two dimensions. A Lagrangian is : 

( def ine « L-free-re ctangular m) local) 
( let « vx (ref (velo c i t i e s  local) 0 ) ) 

(vy (ref (velo c i t i e s  local) 1 ) ) )  
( *  1 / 2  m ( +  ( square vx) ( square vy) ) ) ) )  

The rotation will be easy to describe in polar coordinates, so we 
transform to polar coordinates : 
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( def ine (L-free-polar m) 
( c ompose (L-free-re ctangular m) (F->C p->r» ) 

Now we can make a simple time-dependent transformation to ro
tating coordinates , with rate of rotation Omega: 

( def ine « F  Omega) local) 
( let « t  (t ime local» 

(r  (ref ( coordinat e s  local) 0» 
(theta (ref ( coordinat e s  local) 1 » ) 

(up r (+ theta ( *  Omega t » » )  

( def ine ( L-rotat ing-polar m Omega) 
( c ompose (L-free-polar m) (F->C (F Omega» » 

Now let 's transform back to rectangular coordinates : 

( def ine ( L-rotat ing-rectangular m Omega) 
( c ompose ( L-rotat ing-polar m Omega) (F->C r->p» ) 

The new Lagrangian , in the rotating rectangular coordinate sys
tem is : 

« L-rotat ing-rectangular 'm ' Omega) 
(up ' t  (up ' x� ' y� ) (up ' xdot _r ' ydot _r » ) 

(+ ( * 1/2 (expt Omega 2) m (expt x_r 2) )  

( * 1/2 (expt Omega 2) m (expt y_r 2) )  

( * -1 Omega m xdot_r y_r) 

( * Omega m ydot_r x_r) 

( * 1/2 m (expt xdot_r 2) )  

( * 1/2 m (expt ydot_r 2) ) )  

Although the transformation of coordinates is time dependent the 
resulting Lagrangian is independent of time. 

The Lagrange equations for the free particle in the rotating co
ordinate system have force terms involving the angular velocity n :  

« (Lagrange-equat ions ( L-rotat ing-rectangular ' m  ' Omega» 
(up ( l it eral-funct ion ' x� ) ( l it eral-funct ion ' y_r » ) 

' t )  

(down 

(+ ( * -1 (expt Omega 2) m (x_r t ) ) 

( * -2 Omega m ( (D y_r) t ) ) 

( * m (( (expt D 2) x_r) t ) ) )  

( +  ( * -1 (expt Omega 2) m (y_r t ) ) 

( * 2 Omega m (( D x_r) t ) ) 

( * m (( (expt D 2) y_r) t ) ) ) )  
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The terms that are proportional to n2 are called centrifugal force 
terms , and the ones that are proportional to n are called Corio
lis force terms . Note that the centrifugal force terms are radial , 
pointing away from the center of rotation . These additional force 
terms are derived from the corresponding terms in the Lagrangian . 
The terms in the Lagrangian that are proportional to n2 can be 
thought of as the negation of a centrifugal potential energy. 

Because this is a free particle the velocity in the original unro
tated coordinates is constant . In rotating coordinates, the Corio lis 
terms describe an acceleration that is perpendicular to the veloc
ity, causing the trajectory to curve . 

1 . 6 . 2  Systems wit h Rigid Const raints 

We have found that L = T - V is a suitable Lagrangian for a 
system of point particles subject to forces derived from a potential .  
Extended bodies can sometimes be conveniently idealized as a 
system of point particles connected by rigid constraints .  We will 
find that L = T - V, expressed in irredundant coordinates , is 
also a suitable Lagrangian for modeling systems of point particles 
with rigid constraints .  We will first illustrate the method and then 
provide a justification . 

Lagrangians for rigidly constrained systems 

The system is presumed to be made of N point masses , indexed 
by 0:, in ordinary three-dimensional space . The first step is to 
choose a convenient set of irredundant generalized coordinates q 
and redescribe the system in terms of these . In terms of the gen
eralized coordinates the rectangular coordinates of particle 0: are 

( 1 . 79) 

For irredundant coordinates q all the coordinate constraints are 
built into the functions fa . We deduce the relationship of the 
generalized velocities v to the velocities of the constituent particles 
Va by inserting path functions into equation ( 1 .  79 ) ,  differentiating, 
and abstracting to arbitrary velocities (see section 1 .6 . 1 ) .  We find 

( 1 .80) 

We use equations ( 1 . 79 )  and ( 1 .80) to express the kinetic en�rgy 
in terms of the generalized coordinates and velocities . Let T be 
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the kinetic energy as a function of the rectangular coordinates and 
velocities : 

� ", 1 2 T(t ; XO , · · ·  , XN- l ;  VO , · · · , VN-d = � 2mava , 
a 

( 1 . 81  ) 

where v� is the squared magnitude of Va . As a function of the 
generalized coordinate tuple q and the generalized velocity tuple 
v , the kinetic energy is 

T(t, q ,  v) = T(t, f (t , q) , oof (t, q) + od(t, q)v) 
", 1 2 = � 2ma (oofa (t ,  q) + oda (t ,  q)v) . 
a 

( 1 .82) 

Similarly, we use equation ( 1 . 79 )  to reexpress the potential en
ergy in terms of the generalized coordinates . Let V(t, x) be the 
potential energy at time t in the configuration specified by the 
tuple of rectangular coordinates x. Expressed in generalized co
ordinates the potential energy is 

V(t, q, v) = V(t, f (t , q) ) .  ( 1 .83) 

We take the Lagrangian to be the difference of the kinetic energy 
and the potential energy: L = T - V. 

A pendulum driven a t  t h e  pivot 

Consider a pendulum (see figure 1 .2 )  of length I and mass m, 
modeled as  a point mass, supported by a pivot that i s  driven in 
the vertical direction by a given function of time Ys . 

The dimension of the configuration space for this system is one ; 
we choose () ,  shown in figure 1 .2 ,  as the generalized coordinate. 

The position of the bob is given, in rectangular coordinates , by 

x = I sin () and y = ys (t) - I cos () .  

The velocities are 

Vx = Ie cos () and Vy = Dys (t) + le sin () , 

( 1 . 84) 

( 1 .85 ) 
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Figure 1 .2 The pendulum is driven by vertical motion of the pivot . 
The pivot slides on the y-axis . Although the bob is drawn as a blob 
it is modeled as a point mass. The bob is acted on by the uniform 
acceleration g of gravity in the negative y direction. 

obtained by differentiating along a path and abstracting to veloc
ities at the moment . 

The kinetic energy is T(t; x ,  y ;  Vx , vy ) = �m(v; + v; ) .  Expressed 
in generalized coordinates the kinetic energy is 

( 1 .86) 

The potential energy is V(t; x ,  y) = mgy . Expressed in gener
alized coordinates the potential energy is 

V(t, B , 0) = gm (Ys (t) - I cos B) . 

A Lagrangian is L = T - V: 

L (t , B , O) =lm (/202 + (Dys (t) ) 2 + 2IDYs (t) 0 sin B) 
- gm (Ys (t) - 1 cos B) . 

( 1 . 87) 

( 1 . 88) 
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The Lagrangian is expressed as 

( def ine « T-pend m 1 g y s )  local) 
( let « t  (t ime local» 

(theta ( coordinat e local» 
(thet adot (velocity local» ) 

( let « vys (D y s » ) 
( *  1 / 2  m 

(+ ( square ( *  1 thet adot » 
( square (vys t »  
( *  2 1 (vys t )  thet adot ( s in theta» » » )  

( def ine « V-pend m 1 g y s )  local) 
( let « t  (t ime local» 

(theta ( coordinat e local» ) 
( *  m g ( - (ys t )  ( * 1 ( co s  theta» » »  

( def ine L-pend ( - T-pend V-pend» 

Lagrange's equation for this system is 

( show-expre s s ion 
« ( Lagrange-equat ions 

(L-pend 'm ' 1  ' g  ( l it eral-funct ion ' y_s » ) 
( l it eral-funct ion ' theta» 

' t »  

Exercise 1 . 17 :  Bead o n  a helical wire 

A bead of mass m is constrained to move on a frictionless helical wire . 
The helix is oriented so that its axis is horizontal. The diameter of the 
helix is d and its pitch (turns per unit length) is h. The system is in 
a uniform gravitational field with vertical acceleration g. Formulate a 
Lagrangian that describes the system and find the Lagrange equations 
of motion. 

Exercise 1 . 18 :  Bead on a triaxial surface 

A bead of mass m moves without friction on a triaxial ellipsoidal surface. 
In rectangular coordinates the surface satisfies 

x2 y2 z2 
2 + b2 + 2" = 1  a c 

( 1 .89)  

for some constants a , b , and c. Identify suitable generalized coordinates, 
formulate a Lagrangian, and find Lagrange's equations . 
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Figure 1 . 3  A two-bar linkage is modeled by three point masses con
nected by rigid massless struts .  This linkage is subject to a uniform 
vertical gravitational acceleration. 

----- x 

Figure 1 .4  This pendulum is pivoted on a point particle of mass m l  
that i s  allowed to slide on a horizontal rail. The pendulum bob is  a point 
particle of mass m2 that is acted on by the vertical force of gravity. 

Exercise 1 . 19 :  Two-bar linkage 

The two-bar linkage shown in figure 1 . 3  is constrained to move in the 
plane. It is composed of three small massive bodies interconnected by 
two massless rigid rods in a uniform gravitational field with vertical 
acceleration g. The rods are pinned to the central body by a hinge that 
allows the linkage to fold. The system is arranged so that the hinge is 
completely free : the members can go through all configurations without 
collision. Formulate a Lagrangian that describes the system and find 
the Lagrange equations of motion. Use the computer to do this , because 
the equations are rather big. 

Exercise 1 .20 : Sliding pendulum 

Consider a pendulum of length l attached to a support that is free to 
move horizontally, as shown in figure 1 .4 .  Let the mass of the support be 
m l  and the mass of the pendulum bob be m2 .  Formulate a Lagrangian 
and derive Lagrange 's equations for this system. 
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Why it works 

In this section we show that L = T - V is in fact a suitable 
Lagrangian for rigidly constrained systems . We do this by requir
ing that the Lagrange equations be equivalent to the Newtonian 
vectorial dynamics with vector constraint forces .65 

We consider a system of particles . The particle with index a has 
mass ma and position xa (t) at time t. There may be a very large 
number of these particles , or just a few. Some of the positions may 
also be specified functions of time, such as the position of the pivot 
of a driven pendulum. There are rigid position constraints among 
some of the particles . We assume that all of these constraints are 
of the form 

( 1 .90) 

that is , the distance between particles a and f3 is la(3 . 
The Newtonian equation of motion for particle a says that the 

mass times the acceleration of particle a is equal to the sum of the 
potential forces and the constraint forces . The potential forces are 
derived as the negative gradient of the potential energy, and may 
depend on the positions of the other particles and the time. The 
constraint forces Fa(3 are the vector constraint forces associated 
with the rigid constraint between particle a and particle f3. So 

D(ma DXa) (t) 
= -"9xa V(t, xo (t) , . . .  , XN- l (t) ) + L Fa(3 (t) , 

{(3 I (3+-+ a } 
( 1 . 9 1 )  

where in  the summation f3 ranges over only those particle indices 
for which there are rigid constraints with the particle indexed by a ;  
we use the notation f3 +--7 a for the relation that there i s  a rigid 
constraint between the indicated particles . 

65We will simply accept the Newtonian procedure for systems with rigid con
straints and find Lagrangians that are equivalent. Of course , actual bodies 
are never truly rigid , so we may wonder what detailed approximations have 
to be made to treat them as if they were truly rigid. For instance , a more 
satisfying approach would be to replace the rigid distance constraints by very 
stiff springs. We could then immediately write the Lagrangian as L = T - V ,  
and we should be able to  derive the Newtonian procedure for systems with 
rigid constraints as an approximation. However, this is too complicated to do 
at this stage , so we accept the Newtonian idealization. 
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The force of constraint is directed along the line between the 
particles , so we may write 

( 1 .92) 

where Fa(3 (t) is the scalar magnitude of the tension in the con
straint at time t. Note that Pa(3 = -P(3a . In general , the scalar 
constraint forces change as the system evolves . 

Formally, we can reproduce Newton 's equations with the La
grangian66 

L (t ; x , F ; x , F ) = L �max; - V(t , x) 

where the constraint forces are being treated as additional gener
alized coordinates . Here x is a structure composed of all the rect
angular components Xa of all the xa , x is a structure composed 
of all the rectangular components xa of all the velocity vectors 
Va , and F is a structure composed of all the Fa(3 .  The velocity of 
F does not appear in the Lagrangian , and F itself appears only 
linearly. So the Lagrange equations associated with F are 

( 1 . 94) 

but this is just a restatement of the constraints .  The Lagrange 
equations for the coordinates of the particles are Newton 's equa
tions ( 1 . 9 1 )  

( 1 .95) 

66This Lagrangian is purely formal and does not represent a model of the con
straint forces. In particular , note that the constraint terms do not add up to 
a potential energy with a minimum when the constraints are exactly satisfied. 
Rather , the constraint terms in the Lagrangian are zero when the constraint 
is satisfied, and can be either positive or negative depending on whether the 
distance between the particles is larger or smaller than the constraint distance. 
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Now that we have a suitable Lagrangian , we can use the fact 
that Lagrangians can be reexpressed in any generalized coordi
nates to find a simpler Lagrangian . The strategy is to choose 
a new set of coordinates for which many of the coordinates are 
constants and the remaining coordinates are irredundant . 

Let q be a tuple of generalized coordinates that specify the de
grees of freedom of the system without redundancy. Let c be a 
tuple of other generalized coordinates that specify the distances 
between particles for which constraints are specified . The c co
ordinates will have constant values . The combination of q and c 
replaces the redundant rectangular coordinates x .67 In addition , 
we still have the F coordinates , which are the scalar constraint 
forces . Our new coordinates are the components of q, c, and F .  

There exist functions fa that give the rectangular coordinates 
of the constituent particles in terms of q and c: 

Xa = fa (t ,  q , c) . ( 1 . 96) 

To reexpress the Lagrangian in terms of q ,  c, and F ,  we need to 
find va in terms of the generalized velocities q and c: we do this 
by differentiating fa along a path and abstracting to arbitrary 
velocities (see section 1 . 6 . 1 ) : 

Va = 80fa (t ,  q , c) + 8da (t ,  q , c) q + 82fa (t ,  q , c) c. 

Substituting these into Lagrangian ( 1 . 93 ) , and using 

c;j3 = (xj3 - xa ) 2 , 

we find 

L' (t ; q , c, F; q, c, F) 

( 1 . 97) 

( 1 . 98) 

= L �ma (8ofa (t ,  q , c) + 8da (t ,  q , c) q + 82fa (t ,  q , c) c) 2 

- V(t, f (t , q , c) )  - L Fzaj3 [c;j3 - Z;j3 ] . ( 1 . 99) 2 aj3 { a ,j3 l a<j3,a+-+j3} 

67Typically the number of components of x is equal to the sum of the number 
of components of q and C; adding a strut removes a degree of freedom and 
adds a distance constraint. However, there are singular cases in which the 
addition of single strut can remove more than a single degree of freedom. We 
do not consider the singular cases here. 
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The Lagrange equations are derived by the usual procedure . 
Rather than write out all the gory details , let 's think about how 
it will go . 

The Lagrange equations associated with F just restate the con
straints :  

( 1 . 100) 

and consequently we know that along a solution path,  c(t) = l 
and Dc(t) = D2c(t) = O .  We can use this result to simplify the 
Lagrange equations associated with q and c. 

The Lagrange equations associated with q are the same as if 
they were derived from the Lagrangian68 

- V(t, f (t , q, l ) ) ,  ( 1 . 101  ) 

but this is exactly T - V where T and V are computed from the 
generalized coordinates q , with fixed constraints .  Notice that the 
constraint forces do not appear in the Lagrange equations for q 
because in the Lagrange equations they are multiplied by a term 
that is identically zero on the solution paths. So the Lagrange 
equations for T - V with irredundant generalized coordinates q 
and fixed constraints are equivalent to Newton 's equations with 
vector constraint forces . 

The Lagrange equations for c can be used to find the constraint 
forces . The Lagrange equations are a big mess so we will not show 
them explicitly, but in general they are equations in D2c, Dc, and 
c that will depend upon q , Dq, and F. The dependence on F is 
linear , so we can solve for F in terms of the solution path q and 
Dq, with c = l and Dc = D2c = O .  

If  we are not interested in the constraint forces , we can abandon 
the full Lagrangian ( 1 . 99 ) in favor of Lagrangian ( 1 . 101 ) , which is 

68 Consider a function g of, say, three arguments ,  and let go be a function of two 
arguments satisfying go(x ,y )  = g(x ,y ,O ). Then (OOgo )(x ,y )  = (OOg )(x ,y ,O ). 
The substitution of a value in an argument commutes with the taking of 
the partial derivative with respect to a different argument. In deriving the 
Lagrange equations for q we can set c = I and c = 0 in the Lagrangian, but we 
cannot do this in deriving the Lagrange equations associated with c,  because 
we have to take derivatives with respect to those arguments. 



58 

rno 
Xo , Yo 

Chapter 1 Lagrangian Mechanics 

() 

Figure 1 . 5  A rigid rod o f  length l constrains two massive particles in 
a plane. 

equivalent as far as the evolution of the generalized coordinates q 
is concerned . 

The same derivation goes through even if the lengths la(3 speci
fied in the interparticle distance constraints are a function of time. 
It can also be generalized to allow distance constraints to time
dependent positions , by making some of the positions of particles 
x(3 be specified functions of time. 

Exercise 1 .21 :  A dumbbell 

In this exercise we will recapitulate the derivation of the Lagrangian for 
constrained systems for a particular simple system. 

Consider two massive particles in the plane constrained by a massless 
rigid rod to remain a distance l apart , as in figure 1 . 5 .  There are appar
ently four degrees of freedom for two massive particles in the plane, but 
the rigid rod reduces this number to three . 

We can uniquely specify the configuration with the redundant coor
dinates of the particles , say Xo (t) ,  Yo �t) and Xl (t) ,  YI (t) . The constraint 
(XI (t) - xO (t) ) 2  + (YI (t) - YO (t) ) 2  = l eliminates one degree of freedom. 

a .  Write Newton's equations for the balance of forces for the four rect
angular coordinates of the two particles , given that the scalar tension in 
the rod is F.  

b.  Write the formal Lagrangian 

such that Lagrange's equations will yield the Newton's equations you 
derived in part a. 

c. Make a change of coordinates to a coordinate system with center of 
mass coordinates XCM , YCM , angle e , distance between the particles c, and 
tension force F.  Write the Lagrangian in these coordinates , and write 
the Lagrange equations . 
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d. You may deduce from one of these equations that c(t ) = I .  From 
this fact we get that Dc = 0 and D2c = O. Substitute these into the 
Lagrange equations you just computed to get the equation of motion for 
XCM , YCM , B .  
e.  Make a Lagrangian ( = T - V) for the system described with the irre
d undant generalized coordinates XCM , YCM , B and compute the Lagrange 
equations from this Lagrangian. They should be the same equations as 
you derived for the same coordinates in part d.  

Exercise 1 .22: Driven pendulum 

Show that the Lagrangian ( 1 .93) can be used to describe the driven 
pendulum (section 1 . 6 . 2 ) , where the position of the pivot is a specified 
function of time: Derive the equations of motion using the Newtonian 
constraint force prescription, and show that they are the same as the 
Lagrange equations . Be sure to examine the equations for the constraint 
forces as well as the position of the pendulum bob. 

Exercise 1 .23 : Fill in the details 

Show that the Lagrange equations for Lagrangian ( 1 . 10 1 )  are the same 
as the Lagrange equations for Lagrangian ( 1 .99) with the substitution 
c(t ) = I, Dc(t ) = D2c(t ) = o .  

Exercise 1 .24: Constraint forces 

Find the tension in an undriven planar pendulum. 

1 . 6 . 3  C onst raints as C oordinate Transformations 

The derivation of a Lagrangian for a constrained system involves 
steps that are analogous to those in the derivation of a coordinate 
transformation . 

We can make a Lagrangian for the unconstrained system of 
particles in rectangular coordinates . In general there will be more 
coordinates than real degrees of freedom; the constraints will elim
inate the redundancy. We then choose a convenient set of irredun
dant generalized coordinates that incorporate the constraints to 
describe our system. We express the redundant rectangular co
ordinates and velocities in terms of the irredundant generalized 
coordinates and generalized velocities , and we use these transfor
mations to reexpress the Lagrangian in the generalized coordi
nates . 

To carry out a coordinate transformation we specify how the 
configuration of a system expressed in one set of generalized coor
dinates can be reexpressed in terms of another set of generalized 
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coordinates . We then determine the transformation of general
ized velocities implied by the transformation of generalized coor
dinates . A Lagrangian that is expressed in terms of one of the 
sets of generalized coordinates can then be reexpressed in terms 
of the other set of generalized coordinates . 

These are really two applications of the same process, so we 
can make Lagrangians for constrained systems by composing a 
Lagrangian for unconstrained particles with a coordinate trans
formation that incorporates the constraint . Our deduction that 
L = T - V is a suitable Lagrangian for a constrained systems was 
in fact based on a coordinate transformation from a set of coor
dinates subject to constraints to a set of irredundant coordinates 
plus constraint coordinates that are constant . 

Let Xa be the tuple of rectangular components of the con
stituent particle with index (x, and let Va be its velocity. The 
Lagrangian 

Lf (t ; Xo , · . .  , XN- l ;  Vo , · . .  , VN- l ) 
= L �mav; - V(t; Xo , · · · , XN- l ;  vo , · . .  , VN- l ) 

a 
( 1 . 102) 

is the difference of kinetic and potential energies of the constituent 
particles . This is a suitable Lagrangian for a set of unconstrained 
free particles with potential energy V.  

Let q be a tuple of  irredundant generalized coordinates and v 
be the corresponding generalized velocity tuple . The coordinates 
q are related to Xa , the coordinates of the constituent particles , by 
Xa = fa (t ,  q) , as before . The constraints among the constituent 
particles are taken into account in the definition of the fa .  Here 
we view this as a coordinate transformation . What is unusual 
about this as a coordinate transformation is that the dimension 
of x is not the same as the dimension of q . From this coordinate 
transformation we can find the local-tuple transformation function 
(see section 1 . 6 . 1 ) 

(t ; Xo ,  . . .  , XN- l ;  Vo , . . .  , VN- l ) = C(t, q, v ) . ( 1 . 103) 

A Lagrangian for the constrained system can be obtained from 
the Lagrangian for the unconstrained system by composing it with 
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the local-tuple transformation function from constrained coordi
nates to unconstrained coordinates : 

L = Lj 0 c. ( 1 . 104) 

The constraints enter only in the transformation . 
To illustrate this we will find a Lagrangian for the driven pen

dulum introduced in section 1 .6 . 2 .  As we saw on page 40 ,  the 
T - V Lagrangian for a free particle of mass m in a vertical plane 
subject to a gravitational potential with acceleration 9 is 

( 1 . 105) 

where y measures the height of the point mass. A program that 
computes this Lagrangian is 

( def ine « L-unif orm-ac celerat ion m g) local) 
( let « q  ( coordinat e local» 

(v (velocity local» ) 
( let « y  (ref q 1 » ) 

( - ( *  1 / 2  m ( square v»  ( *  m g y» » )  

The coordinate transformation from generalized coordinate B to 
rectangular coordinates is x = I sin B, y = ys (t) - I cos B, where 
I is the length of the pendulum and Ys gives the height of the 
support as a function of time. It is interesting that the drive en
ters only through the specification of the constraints .  A program 
implementing this coordinate transformation is 

( def ine « dp-coordinat e s  1 y_s ) local) 
( let « t  (t ime local» 

(theta ( coordinat e local» ) 
( let « x  ( *  1 ( s in theta» ) 

(y ( - (y_s t )  ( *  1 ( co s  theta» » )  

(up x y» » 

Using F->C we can deduce the local-tuple transformation and de
fine the Lagrangian for the driven pendulum by composition : 

( def ine (L-pend m 1 g y_s ) 
( c ompose ( L-unif orm-ac celerat ion m g) 

(F->C ( dp-coordinat e s  1 y_s » » 
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The Lagrangian is 

( show-expre s s ion 
« L-pend ' m ' 1  ' g  ( l it eral-funct ion ' y_s » 

(up ' t  ' thet a  ' thet adot » ) 

1 2 · 2 · 1 2 glm cos (B) -gmys (t) + 2 l mB + lmBDys (t) sin (B) + 2m (Dys (t) ) 

This is the same as the Lagrangian of equation ( 1 .88) on page 5 1 .  
We have found a very interesting decomposition of the La

grangian for constrained systems . One part consists of the dif
ference of the kinetic and potential energy of the constituents .  
The other part describes the constraints that are specific to the 
configuration of a particular system. 

Exercise 1 .25: Foucault pendulum Lagrangian 

A Foucault pendulum is a long-period pendulum of length l and mass 
m that is suspended at a height l above the surface of the Earth (radius 
R) at colatitude ¢. If the pendulum is released, at rest , with non
zero displacement from the local vertical, it will oscillate in an apparent 
plane. However, the apparent plane of oscillation precesses as the Earth 
rotates . The Earth rotates with angular speed Sl .  

One way to  specify the position o f  the bob i s  t o  erect a Foucault 
pendulum at the North Pole and rotate it to a point on the surface of 
the Earth at the appropriate colatitude and a fixed longitude. Because 
the Earth is rotating this is a time-varying transformation. There are 
two parts of this transformation. 

First , we relate the generalized coordinates e and A to the coordinates 
of the pendulum bob with the pendulum at the North pole. Let e be 
the angle of the bob relative to the line through the center of the Earth 
and let A be the precession angle . The rectangular coordinates of the 
bob for a pendulum at the North Pole are : 

Xo = l sin e cos A 
Yo = l sin e sin A 
Zo = (R + l ) - l cos e . 

Next , we rotate the pendulum to its actual location at colatitude ¢. 
We can choose the longitude to be zero , so the angular position of the 
support of the bob is rotated by Slt . The transformation of coordinates 
is :69 

(x , y ,  z ) = Rz (Slt)Ry (¢) (xo , Yo , zo ) . 

69 Rz (a) yields a function that rotates its argument about the 2 axis by the 
angle a, and Ry is similar. 
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This second transformation can be implemented with the following code: 

( ( compose (Rz (* ' Omega ' t ) ) (Ry ' phi ) ) 
(up ' x-O ' y_O ' z_O ) ) 

( up 
( +  ( * X_a ( cos phi ) ( cos ( * Omega t ) ) )  

( * z_o (sin  phi ) ( COS ( * Omega t ) ) )  
( * -1 y_O (sin  ( * Omega t ) ) ) )  

( +  ( * X_a ( COS phi ) (sin  ( * Omega t ) ) )  
( * z_O (sin  phi ) (sin  ( * Omega t ) ) )  
( * y_O ( COS ( * Omega t ) ) ) )  

( +  ( * -1 x_a (sin  phi ) )  ( * z_O ( cos phi ) ) ) )  

Construct a coordinate transformation F from these parts that you 
can use with F->C to compose with the free Lagrangian for a particle in a 
gravitational potential to make a Lagrangian for the Foucault pendulum. 
The Newtonian potential energy is -Gl'vImjr, where r is the distance of 
the bob from the center of the Earth, and M is the mass of the Earth. 

1 . 6 . 4  The Lagrangian I s  Not Unique 

Lagrangians are not in a one-to-one relationship with physical 
systems-many Lagrangians can be used to describe the same 
physical system. In this section we will demonstrate this by show
ing that the addition to the Lagrangian of a "total time deriva
tive" of a function of the coordinates and time does not change 
the paths of stationary action or the equations of motion deduced 
from the action principle . 

Total t ime derivat ives 

Let 's first explain what we mean by a "total time derivative ."  Let 
F be a function of time and coordinates . The function F on the 
path at time t is 

(F 0 r [q] ) (t) = F(t, q (t) ) .  ( 1 . 106) 

So, by the chain rule 

D(F 0 r [q] ) (t) = ooF(t, q (t) ) + olF(t, q (t) )Dq(t) . ( 1 . 107) 

More formally, the time derivative of F along a path q is 

D(F 0 r [q] ) = (DF 0 r [q] ) Dr [q] . ( 1 . 108) 

Because F depends only on time and coordinates , we have 

DF 0 r [q] = rooF 0 r [q] , olF 0 r [q] ] . ( 1 . 109) 
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So we need only the first two components of Dr [q] , 

(Dr [q] ) (t) = ( 1 , Dq(t) , D2q (t) , . . .  ) , 

to form the product 

D(F 0 r [q] ) = oaF 0 r [q] + (oiF 0 r [q] )Dq 
= (oaF + (oIF)Q) 0 r [q] , 

( 1 . 1 10) 

( 1 . 1 1 1 ) 

where Q = h is a selector function : 70 c Q(a, b ,  c) , so Dq = 
Q 0 r [q] . 

The function 

( 1 . 1 1 2) 

is called the total time derivative of F; it is a function of three 
arguments :  the time, the generalized coordinates , and the gener
alized velocities . 

In general , the total time derivative of a local-tuple function F 
is that function DtF that when composed with a local-tuple path 
is the time derivative of the composition of the function F with 
the same local-tuple path:  

DtF 0 r [q] = D(F 0 r [q] ) .  ( 1 . 1 1 3) 

The total time derivative DtF is explicitly given by 

DtF(t, q , v , a , . . .  ) = ooF(t, q , v , a , . . .  ) 
+ olF(t, q, v , a, . . .  ) v 
+ o2F(t, q, v , a, . . .  ) a + . . .  , ( 1 . 1 14) 

where we take as many terms as needed to exhaust the arguments 
of F. 

Exercise 1 .26 : Properties of Dt 
The total time derivative DtF is not the derivative of the function F.  
Nevertheless , the total time derivative shares many properties with the 
derivative . Demonstrate that Dt has the following properties for local
tuple functions F and G, number c, and a function H with domain 
containing the range of G. 

70Components of a tuple structure , such as the value of r [q] Ct) , can be selected 
with selector functions: Ii gets the element with index i from the tuple. 
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a. Dt (F + G) = DtF + DtG 
h. Dt (cF) = cDtF 
c. Dt (FG) = F DtG + (DtF)G 
d.  Dt (H 0 G) = (DH 0 G)DtG 

Adding total t ime derivat ives to Lagrangians 

65 

Consider two Lagrangians L and L' that differ by the addition of 
a total time derivative of a function F that depends only on the 
time and the coordinates 

L' = L + DtF. ( 1 . 1 1 5) 

The corresponding action integral is 

( 1 . 1 1 6) 

The variational principle states that the action integral along a 
realizable trajectory is stationary with respect to variations of the 
trajectory that leave the configuration at the endpoints fixed . The 
action integrals S [q] (tl ' t2 ) and S' [q] (tl , t2 ) differ by a term 

( 1 . 1 1 7) 

that depends only on the coordinates and time at the endpoints 
and these are not allowed to vary. Thus , if S [q] (tl ' t2 ) is stationary 
for a path,  then S' [q] (tl , t2 ) will also be stationary. So either 
Lagrangian can be used to distinguish the realizable paths. 

The addition of a total time derivative to a Lagrangian does 
not affect whether the action is stationary for a given path.  So if 
we have two Lagrangians that differ by a total time derivative , the 
corresponding Lagrange equations are equivalent in that the same 
paths satisfy each . Moreover , the additional terms introduced into 
the action by the total time derivative appear only in the endpoint 
condition and thus do not affect the Lagrange equations derived 
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from the variation of the action , so the Lagrange equations are the 
same. The Lagrange equations are not changed by the addition 
of a total time derivative to a Lagrangian . 

Exercise 1 .27: Lagrange equations for total time derivatives 

Let F(t , q) be a function of t and q only, with total time derivative 

( 1 . 1 18 )  

Show explicitly that the Lagrange equations for DtF are identically zero , 
and thus that the addition of DtF to a Lagrangian does not affect the 
Lagrange equations . 

The driven pendulum provides a nice illustration of adding total 
time derivatives to Lagrangians. The equation of motion for the 
driven pendulum (see section 1 .6 . 2 ) , 

( 1 . 1 19 )  

has an interesting and suggestive interpretation : i t  i s  the same 
as the equation of motion of an undriven pendulum, except that 
the acceleration of gravity 9 is augmented by the acceleration of 
the pivot D2ys . This intuitive interpretation was not apparent in 
the Lagrangian derived as the difference of the kinetic and poten
tial energies in section 1 .6 . 2 .  However , we can write an alternate 
Lagrangian with the same equation of motion that is as easy to 
interpret as the equation of motion : 

( 1 . 1 20) 

With this Lagrangian it is apparent that the effect of the acceler
ating pivot is to modify the acceleration of gravity. Note, however , 
that it is not the difference of the kinetic and potential energies . 
Let 's compare the two Lagrangians for the driven pendulum. The 
difference t1L = L - L' is 

t1L(t ,  e, iJ) = �m(DYs (t)? + mlDYs (t) iJ sin e 
- gmys (t) - mlD2Ys (t) cos e .  ( 1 . 1 2 1 )  

The two terms in  t1L that depend on  neither e nor e do  not affect 
the equations of motion . The remaining two terms are the total 
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time derivative of the function F(t, B) = -mlDys (t) cos B ,  which 
does not depend on e .  The addition of such terms to a Lagrangian 
does not affect the equations of motion . 

Properties of total t ime derivat ives 

If the local-tuple function G, with arguments (t, q, v) , is the total 
time derivative of a function F, with arguments (t , q) , then G 
must have certain properties . 

From equation ( 1 . 1 1 2 ) , we see that G must be linear in the 
generalized velocities 

G(t, q , v) = Go (t , q , v) + Gl (t , q , v) v ( 1 . 122) 

where neither Gl nor Go depends on the generalized velocities : 
EhGl = EhGo = O .  

If  G i s  the total time derivative of  F then Gl = EhF and Go = 
aoF, so 

aOGl = aoalF 
01 Go = alOOF. ( 1 . 123) 

The partial derivative with respect to the time argument does 
not have structure, so aoalF = alOoF. So if G is the total time 
derivative of F then 

( 1 . 1 24) 

Furthermore , Gl = alF,  so 

( 1 . 125 ) 

If there is more than one degree of freedom these partials are 
actually structures of partial derivatives with respect to each co
ordinate. The partial derivatives with respect to two different 
coordinates must be the same independent of the order of the 
differentiation . So 01 Gl must be symmetric. 

Note that we have not shown that these conditions are sufficient 
for determining that a function is a total time derivative , only that 
they are necessary. 
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Exercise 1 .28 : Identifying total time derivatives 

For each of the following functions , either show that it is not a total 
time derivative or produce a function from which it can be derived. 

a. G (t , x , vx ) = mvx 

h. G (t , x , vx ) = mvx cos t 

c. G (t , x , vx ) = vx cos t - x sin t 

d. G (t , x , vx ) = vx cos t + x sin t 

e. G (t ;  x, y ;  vx , vy ) = 2 (xvx + YVy ) cos t - (x2 + y2 ) sin t 

f. G (t ;  x, y ;  vx , vy ) = 2 (xvx + YVy ) cos t - (x2 + y2 ) sin t + y3vx + XVy 

Exercise 1 .29 : Galilean invariance of kinetic energy 

We have taken the kinetic energy of a set of particles indexed by a to 
be Lo: �mo:v; . This form is Galilean invariant . 

a. Start with a Lagrangian for free particles , which is only the sum of 
their kinetic energies: 

L (t ,  x ,  v ) = L �mo:v; . ( 1 . 126)  
0: 

Carry out a coordinate transformation from old to new coordinates that 
consists of a shift and a uniform translation 

Xo: = x� + �x + �vt. ( 1 . 1 27) 

Derive the Lagrangian in new coordinates . 

h. The new Lagrangian can be put in the form Lo: �mo: (v� ) 2 plus some 
additional terms . Show that the additional terms are a total time deriva
tive . 

Thus the kinetic energy can be taken to be Lo: �mo:v; in any uni
formly moving coordinate system. 

1. 7 Evolution of Dynamical State 

Lagrange's equations are ordinary differential equations that the 
path must satisfy. They can be used to test if a proposed path is 
a realizable path of the system. However , we can also use them 
to develop a path,  starting with initial conditions . 

The state of a system is defined to be the information that 
must be specified for the subsequent evolution to be determined . 
Remember our juggler : he or she must throw the pin in a cer
tain way for it to execute the desired motion . The juggler has 
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control of the initial position and orientation of the pin , and the 
initial velocity and spin of the pin . Our experience with juggling 
and similar systems suggests that the initial configuration and the 
rate of change of the configuration are sufficient to determine the 
subsequent motion . Other systems may require higher derivatives 
of the configuration . 

For Lagrangians that are written in terms of a set of generalized 
coordinates and velocities we have shown that Lagrange's equa
tions are second-order ordinary differential equations . If the dif
ferential equations can be solved for the highest-order derivatives 
and if the differential equations satisfy the Lipschitz conditions , 71 
then there is a unique solution to the initial-value problem: given 
values of the solution and the lower derivatives of the solution at 
a particular moment , there is a unique solution function . Given 
irredundant coordinates the Lagrange equations satisfy these con
ditions . 72 Thus a trajectory is determined by the generalized co
ordinates and the generalized velocities at any time. This is the 
information required to specify the dynamical state. 

A complete local description of a path consists of the path and 
all of its derivatives at a moment . The complete local descrip
tion of a path can be reconstructed from an initial segment of 
the local tuple , given a prescription for computing higher-order 
derivatives of the path in terms of lower-order derivatives . The 
state of the system is specified by that initial segment of the local 
tuple from which the rest of the complete local description can be 
deduced . The complete local description gives us the path near 
that moment . Actually, all we need is a rule for computing the 
next higher derivative ; we can get all the rest from this . Assume 
that the state of a system is given by the tuple (t, q , v) . If we are 

7l The Lipschitz condition is that the rate of change of the state is bounded 
by a constant in an open set around each state. See [25] for a good treatment 
of the Lipschitz condition. 
72 If the coordinates are redundant we cannot , in general , solve for the highest
order derivative. However, since we can transform to irredundant coordinates, 
since we can solve the initial-value problem in the irredundant coordinates, 
and since we can construct the redundant coordinates from the irredundant 
coordinates, we can in general solve the initial-value problem for redundant 
coordinates. The only hitch is that we cannot specify arbitrary initial condi
tions: the initial conditions must be consistent with the constraints. 
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given a prescription for computing the acceleration a = A(t, q, v ) , 
then 

( 1 . 1 28) 

and we have as a consequence 

( 1 . 1 29) 

and so on . So the higher-derivative components of the local tuple 
are given by functions DtA, D; A, . . . . Each of these functions 
depends on lower-derivative components of the local tuple . All we 
need to deduce the path from the state is a function that gives 
the next-higher derivative component of the local description from 
the state. We use the Lagrange equations to find this function . 

First , we expand the Lagrange equations 

(hL 0 r [q] = D(fhL 0 r [q] ) 

so that the second derivative appears explicitly: 

{hL 0 r [q] 
= 0002L 0 r [q] + (OI02L 0 r [q] ) Dq + (0202L 0 r [q] ) D2q . 

Solving this system for D2q , one obtains the generalized accelera
tion along a solution path q : 

D2q = 
[0202L 0 r [q] ] - l [OIL 0 r [q] - (OI02L 0 r [q] ) Dq - 0002L 0 r [q] ] 

where [0202L 0 r] is a structure that can be represented by a sym
metric square matrix, so we can compute its inverse . 73 The func
tion that gives the acceleration is 

( 1 . 1 30) 

where Q = 12 is the velocity component selector . 

73We may encounter singularities that make this matrix uninvertable , but in 
real systems these singularities are isolated and can be avoided by changing 
coordinates. 
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That initial segment of the local tuple that specifies the state 
is called the local state tuple , or , more simply, the state tuple . 74 

We can express the function that gives the acceleration as a 
function of the state tuple as the following procedure . It takes 
a procedure that computes the Lagrangian , and returns a pro
cedure that takes a state tuple as its argument and returns the 
acceleration . 75 

( def ine (Lagrangian->ac celerat i on L )  
( let « P  « part ial 2 )  L »  (F  « part ial 1 )  L » ) 

( solve -linear-left 
« part ial 2 )  P )  
( - F 

(+ « part ial 0 )  P )  
( *  « part ial 1 )  P )  velocity» » »  

Once we have a way of computing the acceleration from the 
coordinates and the velocities , we can give a prescription for com
puting the derivative of the state as a function of the state. For 
the state (t , q (t) , Dq (t) ) at the moment t the derivative of the state 
is ( 1 , Dq(t) , D2q (t) ) = ( 1 , Dq(t) , A(t, q (t) , Dq(t) ) ) . The procedure 
Lagrangi an-> s t at e -derivat ive takes a Lagrangian and returns 
a procedure that takes a state and returns the derivative of the 
state: 

( def ine (Lagrangian->stat e -derivat ive L )  
( let « accelerat ion (Lagrangian->ac celerat i on L » ) 

(lambda ( st at e )  
(up 1 

(velocity stat e )  
(accelerat ion stat e » » )  

We represent a state by an up tuple of the components of that 
initial segment of the local tuple that determine the state. 

74For Lagrangians that depend on time, coordinates, and velocities the state 
is specified by time, coordinates , and velocities. However, if a Lagrangian 
depends on the first four components of the local tuple (time, coordinates, 
velocities , and accelerations) the state of the system will be specified by the 
first five components of the local tuple. 
75The procedure solve-l inear-left multiplies its second argument by the 
inverse of its first argument on the left. So, if u = Mv then v = M-1u ;  
( solve-l inear-left M u) produces v.  
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For example , the parametric state derivative for a harmonic 
oscillator is 

( def ine (harmoni c-stat e -derivat ive m k) 
(Lagrangian->stat e -derivat ive ( L-harmoni c m k» ) 

« harmoni c-stat e -derivat ive ' m  ' k) 
(up ' t  (up ' x  ' y) (up ' v_x ' v_y» ) 

(up 1 (up v_x v_y) (up (/ ( * -1 k x) m) (/ ( * -1 k y) m) ) )  

The Lagrange equations are a second-order system of differen
tial equations that constrain realizable paths q. We can use the 
state derivative to express the Lagrange equations as a first-order 
system of differential equations that constrain realizable coordi
nate paths q and velocity paths v : 

( def ine « Lagrange-equat ions-first-order L )  q v )  
( let « stat e -path ( qv->stat e -path q v» ) 

( - (D stat e -path) 
( c ompose (Lagrangian->stat e -derivat ive L )  

stat e -path» » 

( def ine « qv->stat e -path q v) t )  
(up t ( q  t )  (v t » ) 

For example , we can find the first-order form of the equations of 
motion of a two-dimensional harmonic oscillator : 

( show-expre s s ion 
« (Lagrange-equat ions-f irst-order ( L-harmoni c 'm ' k» 

(up ( l it eral-funct ion ' x) 
( l it eral-funct ion ' y» 

(up ( l it eral-funct ion ' v_x) 

' t »  
( l it eral-funct ion ' v_y» ) 

o 

( DX
(
t
)
- VX

(
t
)
) 

Dy 
(
t
) 
- Vy 

(
t
) ( k�t

) 
+ Dvx 

(
t
) ) 

ky 
(
t
) 

D 
( )  -- + v t m y 



1 . 7 Evolution of Dynamical State 
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Figure 1 . 6  The input to the system derivative is the state. The func
tion A gives the acceleration as a function of the components that de
termine the state. The output of the system derivative is the derivative 
of the state. The integrator takes the derivative of the state as its in
put and produces the integrated state, starting at the initial conditions . 
Notice how the second-order system is put into first-order form by the 
routing of the Dq(t)  components in the system derivative . 

The zero in the first element of the structure of the Lagrange 
equations residuals is just the tautology that time advances uni
formly: the time function is just the identity, so its derivative is 
one and the residual is zero . The equations in the second element 
constrain the velocity path to be the derivative of the coordinate 
path.  The equations in the third element give the rate of change 
of the velocity in terms of the applied forces . 

Numerical integrat ion 

A set of first-order ordinary differential equations that give the 
state derivative in terms of the state can be integrated to find the 
state path that emanates from a given initial state. Numerical 
integrators find approximate solutions of such differential equa
tions by a process illustrated in figure 1 .6 .  The state derivative 
produced by Lagrangi an-> s t at e -derivat ive can be used by a 
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package that numerically integrates systems of first-order ordinary 
differential equations . 

The procedure stat e - advancer can be used to find the state of 
a system at a specified time, given an initial state, which includes 
the initial time, and a parametric state-derivative procedure . 76 
For example , to advance the state of a two-dimensional harmonic 
oscillator we write77 

« state-advancer harmoni c-stat e -derivat ive 2 . 0  1 . 0 ) 
(up 1 . 0  (up 1 . 0  2 . 0 ) (up 3 . 0  4 . 0 » 
1 0 . 0  
1 . 0 e - 1 2 )  

(up 11. 0 

(up 3. 7127916645844437 5. 420620823651583) 

(up 1. 6148030925459782 1. 8189103724750855) )  

The arguments to stat e - advancer are a parametric state deriva
tive ,  harmonic-stat e -derivat ive , and the state-derivative pa
rameters (mass 2 and spring constant 1 ) . A procedure is returned 
that takes an initial state, (up 1 (up 1 2) (up 3 4» ; a time in
crement , 1 0 ;  and a relative error tolerance , 1 . 0 e - 1 2 .  The output 
is an approximation to the state at the specified final time. 

Consider the driven pendulum described in section 1 .6 . 2  with a 
periodic drive .  We choose ys (t) = A cos wt. 

( def ine « periodic -drive amplitude frequency phase )  t)  
( *  amplitude ( co s  ( +  ( *  frequency t )  phase » » 

( def ine ( L-periodi cally-driven-pendulum m 1 g A omega) 
( let « ys (periodi c -drive A omega 0 » ) 

(L-pend m 1 g y s » ) 

76The Scmutils system provides a variety of numerical integration routines 
that can be accessed through this interface. These include quality-controlled 
Runge-Kutta and Bulirsch-Stoer. The default integration method is Bulirsch
Stoer. 
77The procedure state-advancer automatically compiles state-derivative pro
cedures the first time they are encountered. The first time a new state deriva
tive is used there is a delay while compilation occurs. 
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Lagrange's equation for this system is 

( show-expre s s ion 
« ( Lagrange-equat ions 

( L-periodi cally-driven-pendulum 'm ' 1  ' g  ' A  ' omega) ) 
( l it eral-funct ion ' theta) ) 

' t ) ) 

D2() (t) 1 2m - cos (wt) sin (() (t) ) Almw2 + sin (() (t) ) glm 

75 

The parametric state derivative for the periodically driven pendu
lum is 

( def ine (pend- stat e -derivat ive m 1 g A omega) 
(Lagrangian->stat e -derivat ive 

( L-periodi cally-driven-pendulum m 1 g A omega) ) )  

( show-expre s s ion 
« pend- stat e -derivat ive 'm ' 1  ' g  ' A  ' omega) 

(up ' t  ' thet a  ' thet adot ) ) )  

1 

Aw2 cos (wt) sin (()) 
I 

9 sin (()) 
I 

To examine the evolution of the driven pendulum we need a 
mechanism that evolves a system for some interval while moni
toring aspects of the system as it evolves . The procedure evolve 

provides this service , using stat e - advancer repeatedly to advance 
the state to the required moments .  The procedure evolve takes 
a parametric state derivative and its parameters and returns a 
procedure that evolves the system from a specified initial state to 
a number of other times , monitoring some aspect of the state at 
those times . To generate a plot of the angle versus time we make 
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a monitor procedure that generates the plot as the evolution pro
ceeds: 78 

( def ine « monitor-theta win) stat e )  
( let « thet a  « princ ipal-value : pi )  ( coordinat e stat e » » 

(plot -po int win (t ime stat e )  theta» ) 

( def ine plot -win (frame 0 . 0  1 00 . 0  : -pi : pi »  

« evolve pend- stat e -derivat ive 

(up 0 . 0  
1 . 0  
0 . 0 ) 

1 . 0  ; m= l kg 

1 . 0  ; l= lm 

9 . 8  ; g=9 . 8m/ s2 

0 . 1  ; a= 1 / 1 0  m 
( *  2 . 0  ( sqrt 9 . 8 » ) ; omega 

; to=O 
; thet ao = l  radian 
; thet adoto =O radians / s  

(monit or-theta plot -win) 
0 . 0 1 ; step between plotted pOint s  

; f inal t ime 1 00 . 0  
1 . 0 e - 1 3 )  ; local error tolerance 

Figure 1 . 7  shows the angle e versus time for a couple of orbits for 
the driven pendulum. The initial conditions for the two runs are 
the same except that in one the bob is given a tiny velocity equal to 
lO- lOm/s ,  about one atom width per second. The initial segments 
of the two orbits are indistinguishable . After about 75 seconds the 
two orbits diverge and become completely different . This extreme 
sensitivity to tiny changes in initial conditions is characteristic of 
what is called chaotic behavior. Later , we will investigate this 
example further , using other tools such as Lyapunov exponents ,  
phase space , and Poincare sections . 

78The results are plotted in a plot window created by the procedure frame with 
arguments xmin, xmax, ymin, and ymax that specify the limits of the plotting 
area. Points are added to the plot with the procedure plot-po int that takes 
a plot window and the abscissa and ordinate of the point to be plotted. 

The procedure princ ipal-value is used to reduce an angle to a standard 
interval. The argument to princ ipal-value is the point at which the circle is 
to be cut. Thus (princ ipal-value : p i )  is a procedure that reduces an angle 
e to the interval -Jr ::; e < Jr .  
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Figure 1 . 7  Orbits o f  the driven pendulum. The angle e i s  plotted 
against time. Because angles are periodic, this plot may be thought of 
as being wound around a cylinder. The upper plot shows the results of 
a simulation with initial conditions e = 1 and e = O. The orbit oscillates 
for a while , then circulates , then resumes oscillating. In the lower plot 
we show the result for a slightly different initial angular velocity, e = 
10- 10 . The initial behavior is indistinguishable from the top figure, but 
the two trajectories become un correlated after the transition between 
oscillation and circulation. This extreme sensitivity to initial conditions 
is characteristic of systems with chaotic behavior. 
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Exercise 1 .30:  Orbits in a central potential 

A Lagrangian for planar motion of a particle of mass m in a central field 
with potential energy V(r) = -(3ro. is 

. . . ' _ 1 · 2 . 2 L(t ,  r, e , r , e) - 'im(r + (re) ) + V(r) . 

a. Write a program to evolve the motion of a particle subject to this 
Lagrangian and display the orbit in the plane. 

b. Evolve this system with ex = +2 (harmonic oscillator) .  Observe that 
it describes an ellipse with its center at the origin , for a wide variety of 
initial conditions. 

c .  Evolve this system with ex = -1 (Newtonian gravity) . Observe that 
it describes an ellipse with a focus at the origin , for a wide variety of 
initial conditions. 

d.  Evolve this system with ex = +1/4 .  Observe that it describes a trefoil 
with its center at the origin . 

Exercise 1 . 3 1 :  Foucault pendulum evolution 

If a Foucault pendulum is erected at the North Pole, it will precess 
exactly once in a day. If it is erected at the Equator it will not precess 
at all . It is widely reported that the precession rate is proportional to 
the cosine of the colatitude. 

a. Evolve the Foucault pendulum, using the Lagrangian you constructed 
in exercise 1 . 25 on page 62 .  You should look at the precession angle A 
as a function of time. 

b.  How does the rate of precession compare to the predicted rate? You 
should expect to see an error caused by the fact that the local vertical, 
as defined by a plumb bob, is not directed to the center of the Earth. 

c .  Let 6.¢ be the angle between the local vertical and the direction to 
the center of the Earth. How does the precession rate compare to the 
predicted precession rate with the colatitude corrected to ¢ - 6.¢? Is 
this perfect? 

1.8 Conserved Quantities 

A function of the state of the system that is constant along a solu
tion path is called a conserved quantity or a constant of motion. 79 
If G is a conserved quantity, then 

D (G 0 r [q] ) = DtG 0 r [q] = 0 ( 1 . 1 3 1  ) 

79In older literature conserved quantities are sometimes called first integrals. 
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for solution paths q . In this section , we will investigate systems 
with symmetry and find that symmetries are associated with con
served quantities . For instance , linear momentum is conserved 
in a system with translational symmetry, angular momentum is 
conserved if there is rotational symmetry, energy is conserved if 
the system does not depend on the origin of time. We first con
sider systems for which a coordinate system can be chosen that 
expresses the symmetry naturally, and later discuss systems for 
which no coordinate system can be chosen that simultaneously 
expresses all symmetries . 

1 . 8 . 1  C onserved Momenta 

If a Lagrangian L (t , q , v ) does not depend on some particular co
ordinate qi , then 

( 1 . 1 32) 

and the corresponding ith component of the Lagrange equations is 

(D(fhL 0 r [q] ) ) i = 0 .  ( 1 . 1 33) 

The derivative of a component is equal to the component of the 
derivative , so this is the same as 

D ( (fhL) i 0 r [q] ) = 0, ( 1 . 1 34) 

and we can see that 

( 1 . 135)  

is a conserved quantity. The function P is called the momen
tum state function. The value of the momentum state function 
is the generalized momentum. We refer to the ith component of 
the generalized momentum as the momentum conjugate to the ith 
coordinate.8o The momenta depend on the choice of Lagrangian 
used to describe the system.81 A generalized coordinate compo-

8°Observe that we indicate a component of the generalized momentum with a 
subscript , and a component of the generalized coordinates with a superscript. 
These conventions are consistent with those commonly used in tensor algebra, 
which is sometimes helpful in working out complex problems. 

81 For example , we may construct equivalent Lagrangians that differ only by 
a total time derivative. The momentum state functions for these Lagrangians 
are different. 
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nent that does not appear explicitly in the Lagrangian is called 
a cyclic coordinate. The generalized momentum component con
jugate to any cyclic coordinate is a constant of the motion . Its 
value is constant along realizable paths; it may have different val
ues on different paths. As we will see , momentum is an important 
quantity even when it is not conserved . 

Given the coordinate path q and the Lagrangian L, the momen
tum path p is 

P = [hL 0 r [q] = P 0 r [q] , 

with components 

Pi = Pi 0 r [q] . 

( 1 . 1 36) 

( 1 . 1 37) 

The momentum path is well defined for any path q . If the path is 
realizable and the Lagrangian does not depend on qi , then Pi is a 
constant function 

( 1 . 1 38) 

The constant value of Pi may be different for different trajectories . 

Examples of conserved momenta 

The free-particle Lagrangian L(t ,  x, v) = �mv2 is independent 
of x .  So the momentum state function , P(t, q, v) = mv, is con
served along realizable paths. The momentum path P for the 
coordinate path q is p(t) = P o r [q] (t) = m Dq(t) . For a realizable 
path Dp(t) = O. For the free particle the usual linear momentum 
is conserved for realizable paths. 

For a particle in a central force field (section 1 .6 ) , the La
grangian 

depends on r but is independent of cpo The momentum state 
function is 

P(t ; r, cp ; r , cp) = [mr , mr2cp] . 

It has two components .  The first component , the "radial mo
mentum," is not conserved . The second component , the "angular 
momentum," is conserved along any solution trajectory. 
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If the central-potential problem had been expressed in rectan
gular coordinates , then all of the coordinates would have appeared 
in the Lagrangian . In that case there would not be any obvious 
conserved quantities . Nevertheless , the motion of the system does 
not depend on the choice of coordinates , so the angular momen
tum is still conserved . 

We see that there is great advantage in making a judicious 
choice for the coordinate system. If we can choose the coordinates 
so that a symmetry of the system is reflected in the Lagrangian 
by the absence of some coordinate component , then the existence 
of a corresponding conserved quantity will be evident .82 

1 . 8 . 2  Energy C onservat ion 

Momenta are conserved by the motion if the Lagrangian does not 
depend on the corresponding coordinate. There is another con
stant of the motion , the energy, if the Lagrangian L(t ,  q, q) does 
not depend explicitly on the time: DoL = O . 

Consider the time derivative of the Lagrangian along a solution 
path q : 

D (L o r [q] ) = DoL 0 r [q] + (D1L o r [q] )Dq +  (D2L o r [q] )D2q . ( 1 . 139) 

Using Lagrange's equations to rewrite the second term yields 

Isolating DoL and combining the other terms we get 

(DoL) 0 r [q] = D(L 0 r [q] ) - D ( (D2L 0 r [q] )Dq) 
= D( L 0 r [q] ) - D( (D2L 0 r [q] ) (Q 0 r [q] ) )  
= D( (L - PQ) 0 r [q] ) ,  ( 1 . 141 ) 

where , as before , Q selects the velocity from the state. So we see 
that if DoL = 0 then 

E = PQ - L  ( 1 . 142) 

82In general , conserved quantities in a physical system are associated with 
continuous symmetries , whether or not one can find a coordinate system in 
which the symmetry is apparent. This powerful notion was formalized and 
a theorem linking conservation laws with symmetries was proved by Noether 
early in the 20th century. See section 1.8.5  on Noether's theorem. 
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is conserved along realizable paths. The function £ is called the 
energy state Junction.83 The energy state function for a system de
pends on the choice of Lagrangian used to describe the system.84 
Let E = £ 0 r [q] denote the energy function on the path q . The 
energy function has a constant value along any realizable trajec
tory if the Lagrangian has no explicit time dependence ; the energy 
E may have a different value for different trajectories . A system 
that has no explicit time dependence is called autonomous. 

Given a Lagrangian procedure L, we may construct the energy 
function : 

( def ine (Lagrangian->energy L )  
( let « P  « part ial 2 )  L » ) 

( - ( *  P velocity) L » ) 

Energy in terms of kinetic and potent ial energies 

In some cases the energy can be written as the sum of kinetic 
and potential energies . Suppose the system is composed of parti
cles with rectangular coordinates Xa , the movement of which may 
be subject to constraints ,  and that these rectangular coordinates 
are some functions of the generalized coordinates q and possibly 
time t : Xa = Ja (t ,  q) . We form the Lagrangian as L = T - V and 
compute the kinetic energy in terms of q by writing the rectangu
lar velocities in terms of the generalized velocities : 

Va = aoJa (t ,  q) + ada (t ,  q)v . ( 1 . 143) 

The kinetic energy is 

( 1 . 144) 

where Va is the magnitude of Va . 
If the Ja functions do not depend explicitly on time (aoJa = 0) , 

then the rectangular velocities are homogeneous functions of the 
generalized velocities of degree 1 ,  and T is a homogeneous function 
of the generalized velocities of degree 2, because it is formed by 

83The sign of the energy state function is a matter of convention. 

84We may construct equivalent Lagrangians that differ only by a total time 
derivative. The energy state functions for these Lagrangians are different. 
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summing the square of homogeneous functions of degree 1 . If T is 
a homogeneous function of degree 2 in the generalized velocities 
then 

PQ = ([hT)Q = 2T, ( 1 . 145) 

where the second equality follows from Euler 's theorem on homo
geneous functions.85 The energy state function is 

E = PQ - L = 2T - T + V. ( 1 . 146) 

So if fa is independent of time, the energy function can be rewrit
ten 

E = 2T - T + V = T + V. ( 1 . 147) 

Notice that if V depends on time the energy is still the sum of 
the kinetic energy and potential energy, but the energy is not 
conserved . 

The energy state function is always well defined , whether or 
not it can be written in the form T + V, and whether or not it is 
conserved along realizable paths. 

Exercise 1 . 32: Time-dependent constraints 

An analogous result holds when the fo: depend explicitly on time. 

a. Show that in this case the kinetic energy contains terms that are 
linear in the generalized velocities . 

h. By adding a total time derivative , show that the Lagrangian can be 
written in the form L = A - B, where A is a homogeneous quadratic 
form in the generalized velocities and B is independent of velocity. 

c. Show, using Euler 's  theorem, that the energy function is E = A + B . 
An example in which terms that were linear in the velocity were removed 
from the Lagrangian by adding a total time derivative has already been 
given: the driven pendulum. 

85 A function f is homogenous of degree n if and only if f (ax ) = an f (x ). 
Euler's theorem says that if f is a homogeneous function of degree n , then 
D f(x )x = n f(x ). The proof is as follows: Let 9x (a) = f(ax ). Then D9x (a) = 
D f(ax )x. But 9x (a) = an f(x ) by the definition of homogeneity. Therefore 
D9x (a) = nan- 1 f(x ). Equating these , we find D f(ax )x = nan- 1 f(x ). Spe
cializing to a = 1 we obtain D f(x )x = n f(x ) as required. 
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Exercise 1 .33:  Falling off a log 

A particle of mass m slides off a horizontal cylinder of radius R in a uni
form gravitational field with acceleration g .  If the particle starts close to 
the top of the cylinder with zero initial speed , with what angular velocity 
does it leave the cylinder? Use the method of incorporating constraint 
forces that we introduced in section 1 . 6 . 2 ,  together with conservation of 
energy. 

1 . 8 . 3  C entral Forces i n  Three Dimensions 

One important physical system is the motion of a particle in a cen
tral field in three dimensions , with an arbitrary potential energy 
V(r) depending only on the radius. We will describe this system 
in spherical coordinates r, 0, and cp, where 0 is the colatitude and 
cp is the longitude . The kinetic energy has three terms : 

T(t; r, 0 , cp; r , iJ , 0) = �m(r2 + r2iJ2 + r2 (sin 0) 202 ) .  

As a procedure : 

( def ine « T3- spherical m) stat e )  
( let « q  ( coordinat e stat e »  

( qdot (velocity stat e » ) 
( let « r  (ref q 0 »  

(theta (ref q 1 »  
(rdot (ref qdot 0 »  
(thet adot (ref qdot 1 »  
(phidot (ref qdot 2 » ) 

( *  1 / 2  m 
(+ ( square rdot ) 

( square ( *  r thet adot » 
( square ( *  r ( s in theta) phidot » » » )  

A Lagrangian is then formed by subtracting the potential energy: 

( def ine (L3-central m Vr ) 
( def ine (Vs stat e )  

( let « r  (ref ( coordinat e stat e )  0 » ) 
(Vr r » ) 

( - (T3- spherical m) Vs»  

Let 's first look at the generalized forces (the derivatives of the La
grangian with respect to the generalized coordinates) . We com
pute these with a partial derivative with respect to the coordinate 
argument of the Lagrangian : 



1 . 8. 3 Central Forces in Three Dimensions 

( show-expre s s ion 
« (part ial 1) (L3-central 'm ( l it eral-funct ion ' V) ) )  

(up ' t  
(up ' r  ' thet a  ' phi ) 
(up ' rdot ' thet adot ' phidot ) ) ) )  [mCP2r (sin (8) ) 2 + m1'iP - DV (1') 1 

mcp21'2 cos (8) sin (8) 

o 

85 

The <p component of the force is zero because <p does not appear 
in the Lagrangian (it is a cyclic coordinate) . The corresponding 
momentum component is conserved . Compute the momenta: 

( show-expre s s ion 
« (part ial 2 )  (L3-central 'm ( l it eral-funct ion ' V) ) )  

(up ' t  
(up ' r  ' thet a  ' phi ) 
(up ' rdot ' thet adot ' phidot ) ) ) )  

The momentum conjugate to <p is conserved . This is the z com
ponent of the angular momentum f X (mv) , for vector position 
f and linear momentum mv. We can show this by writing the z 

component of the angular momentum in spherical coordinates : 

( def ine « ang-mom-z m) rectangular-stat e )  
( let « xyz ( coordinat e rectangular-stat e ) ) 

(v (velocity rectangular-stat e ) ) )  
(ref ( cross-product xyz ( *  m v) ) 2 ) ) )  

( def ine ( s ->r spheri cal-stat e )  
( let « q  ( coordinat e spheri cal-stat e ) ) )  

( let « r  (ref q 0 ) ) 
(theta (ref q 1 ) ) 
(phi (ref q 2 ) ) )  

( let «x ( *  r ( s in theta) ( co s  phi ) ) )  
(y  ( *  r ( s in theta) ( s in phi ) ) )  
( z  ( *  r ( co s  theta) ) ) )  

(up x y z ) ) ) ) )  
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( show-expre s s ion 
« compose ( ang-mom-z ' m) (F->C s->r» 

(up ' t  
(up ' r  ' thet a  ' phi ) 
(up ' rdot ' thet adot ' phidot » » 

The choice of the z-axis is arbitrary, so the conservation of any 
component of the angular momentum implies the conservation of 
all components .  Thus the total angular momentum is conserved . 
We can choose the z-axis so all of the angular momentum is in 
the z component . Since 55 · (55 x iJ) = iJ · (55 x 55) = 0 ,  the motion 
is confined to the plane perpendicular to the angular momentum: 
B = 7r /2, and iJ = 0 .  Planar motion in a central-force field was 
discussed in section 1 .6 . 

We can also see that the energy state function computed from 
the Lagrangian for a central field is in fact T + V: 

( show-expre s s ion 
« Lagrangian->energy (L3-central 'm ( l it eral-funct ion ' V» ) 

(up ' t  
(up ' r  ' thet a  ' phi ) 
(up ' rdot ' thet adot ' phidot » » 

1 . 2 2 .  ) ) 2 1 2 ' 2  1 . 2  2mc.p r (sm (B + 2 mr B + 2mr + V (r) 

The energy is conserved because the Lagrangian has no explicit 
time dependence . 

Exercise 1 .34: Driven spherical pendulum 

A spherical pendulum is a massive bob, subject to uniform gravity, that 
may swing in three dimensions , but remains at a given distance from 
the pivot . Formulate a Lagrangian for a spherical pendulum driven by 
vertical motion of the pivot . What symmetry(ies) can you find? Find 
coordinates that express the symmetry(ies) . What is conserved? Give 
analytic expression(s) for the conserved quantity(ies) . 

1 . 8 . 4  The Restricted Three-Body P roblem 

Consider the situation of two bodies of masses Mo and Ml in 
circular orbit about their common center of mass. What is the 
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behavior of a third particle , gravitationally attracted to the other 
two, that must move in the plane of their circular orbit? Assume 
that the third particle has such small mass that we can neglect its 
effect on the orbits of the two massive particles . 

The third particle , of mass m, moves in a field derived from a 
time-varying gravitational potential energy. We have : 

( def ine « LO m V) local) 
( let « t  (t ime local» 

( q  ( coordinat e s  local» 
(v (velo c i t i e s  local» ) 

( - ( *  1 / 2  m ( square v»  (V t q» » 

Let a be the constant distance between the two bodies . If we put 
the center of mass at the origin of the coordinate system then the 
distances of the two particles from the origin are : 

Ml Mo aO = M M 
a and a l = M M 

a 
0 + 1 0 + 1 

( 1 . 148) 

Each massive particle revolves in a circle about their common 
center of mass with angular frequency D .  The radii of the circles 
are the distances given above . Kepler 's law gives the angular 
frequency of the orbit : 

( 1 . 149) 

We choose our axes so that at t = 0 the body with mass Ml is on 
the positive i: axis and the body with mass Mo is on the negative 
i: axis. The gravitational potential energy function is : 

( def ine « V a  GMO GM1 m) t xy) 
( let « Omega ( sqrt ( I  ( +  GMO GM1 )  ( expt a 3 » » 

( aO ( *  ( I  GM1 (+ GMO GM1 »  a» 
(a1 (* (I GMO ( +  GMO GM1 »  a» ) 

( let « x  (ref xy 0 »  (y (ref xy 1 »  
(xO ( *  - 1  aO ( co s  ( * Omega t » » 
(yO ( * - 1  aO ( s in ( * Omega t » » 
(x1  ( * + 1  a1 ( co s  ( * Omega t » » 
(y1  ( * + 1  a1 ( s in ( * Omega t » » )  

( let « rO 
( sqrt (+ ( square ( - x xO» ( square ( - y yO» » )  

( r 1  
( sqrt (+ ( square ( - x x 1 »  ( square ( - y y 1 » » »  

( - ( +  ( I  ( * GMO m) rO)  ( I  ( * GM1 m) r 1 » » » )  
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It is convenient to examine the motion of the third particle 
in a rotating coordinate system where the massive particles are 
fixed . We can place the rotating axes so that the two massive 
particles are on the x' axis, and we can choose the rotating and 
nonrotating axes to be coincident at t = O . We can transform to 
the rotating rectangular coordinates as we did on page 48 . The 
resulting Lagrangian is the Lagrangian for the free particle with 
the addition of two gravitational potential energy terms : 

Lr (t ; Xr , Yr ; Xr , Yr ) 
= �m(x; + Y; )  + �m02 (x; + Y; ) + mO (xrYr - xrYr ) 

GMom GMlm + + ( 1 . 1 50) ro rl 

where now r6 = (xr + ao? + Y; and rr = (xr - aI ) 2 + Y; . As a 
program we can write: 

( def ine « LR3B m a GMO GM1 )  local) 
( let « q  ( coordinat e s  local» 

( qdot (velo c i t i e s  local» 
( Omega ( sqrt ( I  ( +  GMO GM1 )  ( expt a 3 » » 
( aO ( *  ( I  GM1 (+ GMO GM1 »  a» 
(a1 (* (I GMO ( +  GMO GM1 »  a» ) 

( let « x  (ref q 0 »  (y (ref q 1 »  
(xdot (ref qdot 0 »  (ydot (ref qdot 1 » ) 

( let « rO ( sqrt (+ ( square (+ x aO » ( square y» » 
( r 1  ( sqrt (+ ( square ( - x a1 » ( square y» » )  

(+ ( *  1 / 2  m ( square qdot » 
( * 1 / 2  m ( square Omega) ( square q» 

( *  m Omega ( - ( * x ydot ) ( * xdot y» ) 
( I  ( * GMO m) rO)  ( I  ( * GM1 m) r 1 » » »  

Notice that the Lagrangian in rotating coordinates is indepen
dent of time. So the energy state function defined by this La
grangian is a conserved quantity. Let 's compute it . It is clearest if 
we express the result in terms of 0 ,  ao , and a I ,  so we make those 
into explicit parameters of the Lagrangian : 
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( def ine « LR3B 1 m aO a1 Omega GMO GM1 )  local) 
( let « q  ( coordinat e s  local» 

( qdot (velo c i t i e s  local» ) 
( let « x  (ref q 0 »  (y (ref q 1 »  

(xdot (ref qdot 0 »  (ydot (ref qdot 1 » ) 
( let « rO ( sqrt (+ ( square (+ x aO » ( square y» » 

( r 1  ( sqrt (+ ( square ( - x a1 » ( square y» » )  
( +  ( *  1 / 2  m ( square qdot » 

( *  1 / 2  m ( square Omega) ( square q» 
( * m Omega ( - ( * x ydot ) ( * xdot y» ) 
U ( *  GMO m) rO)  U ( *  GM1 m) r 1 » » »  
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And we compute the energy state function (with a bit of hand 
simplification) : 

« Lagrangian->energy ( LR3B 1 ' m  ' a_O ' a_1 ' Omega ' GM_O ' GM_1 » 
(up ' t  (up ' x� ' y� )  (up ' v_r -x ' v�-y» ) 

(+ ( * 1/2 m (expt v_r -x 2) )  

( * 1/2 m (expt v_r -y 2) )  

(/ ( * - 1  GM_ O m) 

(sqrt (+ (expt (+ x_r a_O) 2) (expt y_r 2) ) ) )  

(/ ( * -1 GM-1 m) 

(sqrt (+ (expt (- x_r a_1) 2) (expt y_r 2) ) ) )  

( * -1/2 m (expt Omega 2) (expt x_r 2) )  

( * -1/2 m (expt Omega 2) (expt y_r 2) ) )  

If we separate this into a velocity-dependent part and a velocity
independent part we get 

( 1 . 1 5 1 ) 

where 

( 1 . 1 52) 

This constant of motion of the restricted three-body problem is 
called the Jacobi constant. 86 Notice that the energy function is a 
positive definite quadratic form in the components of the velocity 
(in rotating coordinates) plus a function that depends only on the 
rotating coordinates . Note that the energy state function does not 
have terms that are linear in the velocities xr and Yr l although 
such terms appear in the Lagrangian ( 1 . 1 50) .  

86Traditionally the Jacobi constant is defined as CJ = -2£. 
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Exercise 1 .35 :  Restricted equations of motion 

Derive the Lagrange equations for the restricted three-body problem, 
given the Lagrangian ( 1 . 1 50) . Identify the Coriolis and centrifugal force 
terms in your equations of motion. 

1 . 8 . 5  Noether 's Theorem 

We have seen that if a system has a symmetry and a coordinate 
system can be chosen so that the Lagrangian does not depend 
on the coordinate associated with that symmetry, then there is 
a conserved quantity associated with the symmetry. However , 
there are more general symmetries that no coordinate system can 
fully express . For example , motion in a central potential is spher
ically symmetric (the dynamical system is invariant under rota
tions about any axis) , but the expression of the Lagrangian for 
the system in spherical coordinates exhibits symmetry around 
only one axis. More generally, a Lagrangian has a symmetry if 
there is a coordinate transformation that leaves the Lagrangian 
unchanged . A continuous symmetry is a parametric family of 
symmetries . Noether proved that for any continuous symmetry 
there is a conserved quantity. 

Consider a parametric coordinate transformation F with pa
rameter s :  

x = F(s ) (t ,  x' ) .  ( 1 . 1 53) 

To this parametric coordinate tra�sformation there corresponds a 
parametric state transformation C: 

(t , x , v) = C(s) (t , x' , v' ) .  ( 1 . 1 54) 

We require that the transformation F(O) be the identity coordi
nate transformation x' = F(O) (t ,  x' ) , and as a consequence C(O) 
is the identity state transformation (t , x' , v') = C(O) (t , x' , v't The 
Lagrangian L has a continuous symmetry corresponding to F if it 
is invariant under the transformations 

L(s) = L o C(s) = L ( 1 . 155) 

for any s . The Lagrangian L is the same function as the trans
formed Lagrangian L ( s ) .  
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That £(s) = L for any s implies D£(s) = O .  Explicitly, £(s) is 

£(s) (t ,  x' , Vi ) = L(t ,  F(s) (t ,  x' ) ,  Dt (F(s) ) (t , x' , Vi ) ) , ( 1 . 1 56) 

where we have rewritten the velocity compone� of O(s) in terms 
of the total time derivative . The derivative of L is zero : 

0 =  D£(s) (t , x' , v' ) 
= EhL (t ,  x , v) (DF) (s) (t ,  x' ) + fhL (t ,  x , v) Dt (DF(s) ) (t , x' ) ,  

( 1 . 1 57) 

where we have used the fact that87 

Dt (DF(s) )  = DG(s) with G(s) = Dt (F (s) ) .  ( 1 . 1 58) 

On a realizable path q we can use the Lagrange equations to 
rewrite the first term of equation ( 1 . 1 57) : 

0 =  (DtEhL 0 r [q] ) ( (DF) (s) 0 r [q/] )  
+ (fhL 0 r [q] ) (Dt (DF(s) )  0 r [q/] ) .  ( 1 . 1 59) 

For s = 0 the paths q and q/ are the same, because F(O) is the 
identity, so r [q] = r [q/] and this equation becomes 

0 =  ( (DtEhL) ( (DF) (O) )  + (EhL) (Dt (DF(O) ) ) )  0 r [q] 
= Dt ( (EhL) (DF(O) ) )  0 r [q] . 

Thus the state function I, 

I = (EhL) (DF(O) ) ,  

( 1 . 1 60) 

( 1 . 1 6 1 ) 

is conserved along solution trajectories . This conserved quantity 
is called Noether 's integral. It is the product of the momentum 
and a vector associated with the symmetry. 

87The total time derivative is like a derivative with respect to a real-number 
argument in that it does not generate structure , so it can commute with 
derivatives that generate structure. Be careful, though: it may not commute 
with some derivatives for other reasons. For example , Dt81 (F(s ) )  is the same 
as 81 Dt CF(s ) ), but Dt82(F(s ) )  is not the same as 82Dt(F(s ) ). The reason is 
that F(s ) does not depend on the velocity, but Dt(F(s ) )  does. 
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Illustration: mot ion in a cent ral potent ial 

For example , consider the central-potential Lagrangian in rectan
gular coordinates : 

L(t ; x , y , z ; vx .vy , vz ) 
= �m (v; + v; + v; ) - U ( J X2 + y2 + Z2) , 

and a parametric rotation Rz (s) about the z axis 

( X ) ( x' ) ( x' cos s - y' sin s ) ; = Rz (s) ;: = x/ sin s ;, yl cos s . 

The rotation is an orthogonal transformation so 

Differentiating along a path,  we get 

( 1 . 162) 

( 1 . 163) 

( 1 . 1 64) 

( 1 . 165) 

so the velocities also transform by an orthogonal transformation , 
and v2 + v2 + v2 = (v' ) 2 + (v' ) 2 + (v' ) 2 Thus x y z x y z ' 

L' ( I I I I I ' ) t ; x , y  , z ; vx , vy , vz 
= �m ( (v� ) 2 + (v� ) 2 + (v� ) 2 ) 

- U ( J(xl ) 2 + (yl ) 2 + (ZI ) 2) , ( 1 . 166) 

and we see that L' is precisely the same function as L.  
The momenta are 

( 1 . 167) 

and 

DF(O) (t ;  x , y, z) = DRz (O) (x , y, z) = (y , -x , 0) . ( 1 . 168) 

So the Noether integral is 

I(t; x , y ,  Z ; vx , vy , vz ) = ( (chL) (DF(O) ) ) (t ;  x , y ,  Z ; vx , vy , vz ) 
= m(yvx - xVy ) ,  ( 1 . 169 ) 
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which we recognize as minus the z component of the angular mo
mentum: i x (mv) . Since the Lagrangian is preserved by any 
continuous rotational symmetry, all components of the vector an
gular momenta are conserved for the central-potential problem. 

The procedure calls « Rx angle-x)  q) , « Ry angle-y)  q) , and 
« Rz angle - z )  q) rotate the rectangular tuple q about the in
dicated axis by the indicated angle .88 We use these to make a 
parametric coordinate transformation f-t i lde : 

( def ine (F-t ilde angle-x angle-y angle-z)  
( c ompose (Rx angle-x) (Ry angle-y) (Rz angle-z)  coordinat e »  

A Lagrangian for motion in a central potential is 

( def ine « L-central-re ctangular m U) stat e )  
( let « q  ( coordinat e stat e »  

(v (velocity stat e » ) 
( - ( *  1 / 2  m ( square v»  

(U ( sqrt ( square q» » »  

The Noether integral is then 

( def ine the-Noether- int egral 
( let « L  (L-central-re ctangular 

' m  ( l it eral-funct ion ' U» » 
( *  « part ial 2 )  L) « D  F-tilde )  0 0 0 » » 

(the-Noether- int egral 
(up ' t  

(up ' x  ' y  ' z ) 
(up ' vx ' vy ' vz » ) 

(down (+ ( * m vy z )  ( * - 1 m vz y) ) 

(+ ( * m vz x) ( * - 1 m vx z ) ) 

(+ ( * m vx y) ( * -1 m vy x) ) )  

We get all three components of the angular momentum. 

88The definition of the procedure Rx is 

(define ( (Rx angle) q) 
(let ((ca (cos angle» (sa (sin angle») 

(let ( (x (ref q 0» (y (ref q 1» (z (ref q 2») 
(up x 

(- (* ca y) (* sa z» 
(+ (* sa y) (* ca z»»» 

The definitions of Ry and Rz are similar. See footnote 69. 
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Exercise 1 .36:  Noether integral 

Consider motion on an ellipsoidal surface. The surface is specified by: 

Formulate a Lagrangian for frictionless motion on this surface. As
sume that two of the axes of the ellipsoid are equal : b = c. 

U sing angular coordinates (e , ¢) ,  where e is colatitude from the 
i-axis, and ¢ is longitude measured from the x-axis , formulate a La
grangian that captures the symmetry of this ellipsoid : rotational sym
metry around the x-axis . Formulate a parametric transformation that 
represents this symmetry and show that the Lagrangian you formulated 
is invariant under this transformation. Compute the Noether integral 
associated with this symmetry. 

Note that the choice of coordinates does not build in this symmetry. 

1.9 Abstraction of Path Functions 

An essential step in the derivation of the local-tuple transforma
tion function C from the coordinate transformation F was the 
deduction of the relationship between the velocities in the two 
coordinate systems . We did this by inserting coordinate paths 
into the coordinate transformation function F, differentiating , and 
then generalizing the results on the path to arbitrary velocities at 
a moment . The last step is an example of a more general problem 
of abstracting a local-tuple function from a path function . Given a 
function 1 of a local tuple , a corresponding path-dependent func
tion J[q] is J[q] = 1 0 r [q] . Given J, how can we reconstitute 17 
The local-tuple function 1 depends on only a finite number of 
components of the local tuple , and J depends only on the corre
sponding local components of the path.  So J has the same value 
for all paths that have that number of components of the local 
tuple in common. Given J we can reconstitute 1 by taking the 
argument of 1, which is a finite initial segment of a local tuple , 
constructing a path that has this local description , and finding 
the value of J for this path.  

Two paths that have the same local description up to the nth 
derivative are said to osculate with order n contact. For example , 
a path and the truncated power series representation of the path 
up to order n have order n contact ; if fewer than n derivatives 
are needed by a local-tuple function , the path and the truncated 
power series representation are equivalent . Let 0 be a function 
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that generates an osculating path with the given local-tuple com
ponents .  So O(t, q , v , . . .  ) (t) = q , D (O (t, q , v , . . .  ) ) (t) = v , and in 
general 

(t , q , v , . . .  ) = nO(t, q , v , . . .  ) ] (t) . ( 1 . 1 70) 

The number of components of the local tuple that are required is 
finite, but unspecified . One way of constructing 0 is through the 
truncated power series 

O(t, q , v , a, . . .  ) (t' ) = q + v (t' - t) + �a (t' - t) 2 + . . .  , ( 1 . 17 1 )  

where the number of  terms i s  the same as the number of  compo
nents of the local tuple that are specified . 

Given the path function ! we reconstitute the j function as 
follows . We take the argument of j and construct an osculating 
path with this local description . Then the value of j is the value 
of ! for this osculating path:  

j (t , q , v , . . .  ) = (j o nO(t, q , v , . . .  ) ] ) (t) 
= J[O (t, q , v , . . .  ) ] (t) . ( 1 . 1 72) 

Let f be the function that takes a path function and returns 
the corresponding local-tuple function :89 

j = f(f) .  ( 1 . 1 73) 

From equation ( 1 . 1 72 ) we see that 

f(f) (t , q , v , . . .  ) = J[O (t, q , v , . . .  ) ] (t) . ( 1 . 1 74) 

The procedure Gamma-bar implements the function f that re
constitutes a path-dependent function into a local-tuple function : 

( def ine « Gamma-bar f -bar )  local) 
« f -bar ( o s culat ing-path local» (t ime local» ) 

89The local-tuple function f is the same as the local-tuple function f(J )  where 
J[q] = f 0 r [q] . On the other hand, the path function J[q] and the path 
function f(J )or [q] are not necessarily the same because J[q] may require more 
components of the local tuple than are provided by default. For example , the 
Lagrange equations involve accelerations , as well as time, coordinates , and 
velocities. If r [q] is extended to the appropriate number of components then 
the two are equivalent. (See footnote 90.) 
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The procedure o s culat ing-path takes a number of local compo
nents and returns a path with these components ;  it is implemented 
as a power series . 

We can use Gamma-bar to construct the procedure F->C that 
takes a coordinate transformation F and generates the procedure 
that transforms local tuples . The procedure F->C constructs a 
path-dependent procedure f -bar that takes a coordinate path in 
the primed system and returns the local tuple of the corresponding 
path in the un primed coordinate system. It then uses Gamma-bar 

to abstract f -bar to arbitrary local tuples in the primed coordi
nate system.90 

( def ine (F->C F )  
( def ine ( C  local) 

C )  

( let « n  (vector-length local» ) 
( def ine ( f -bar q-prime ) 

( def ine q 
( c ompose F (Gamma q-prime » ) 

(Gamma q n» 
« Gamma-bar f -bar )  local» ) 

( show-expre s s ion 
«F->C p->r) 

(up ' t  (up ' r  ' theta) (up ' rdot ' thet adot » » 

t 

( r cos (B) ) 

r sin (B) 
( -�e sin (B) + r cos (B) ) 

rB cos (B) + r sin (B) 

90This F->C is more general than the code introduced on page 46 in that it 
allows computation of transformations of higher derivatives of the local tuple , 
if required. 

To make this work, Gamma is also extended to generate more elements of the 
local tuple than are needed for Lagrangians that depend on time, coordinates, 
and velocities. Here Gamma is given one more argument than it usually has. 
This optional argument gives the length of the initial segment of the local 
tuple needed. The default length is 3, giving components of the local tuple up 
to and including the velocities. 
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Notice that in this definition of F->C we do not explicitly calculate 
any derivatives . The calculation that led up to the state transfor
mation ( 1 . 77) is not needed . 

We can also use f' to make an elegant formula for computing 
the total time derivative DtF of the function F :  

with G[q] = D (F 0 r [q] ) .  

The total time derivative can b e  expressed as a program: 

( def ine (Ot F )  
( def ine (OtF stat e )  

( let « n  (vector-length stat e » ) 
( def ine (OF-on-path q) 

(0 ( c ompose F (Gamma q ( - n 1 » » )  
« Gamma-bar OF-on-path) stat e » ) 

OtF) 

( 1 . 1 75) 

Given a procedure F implementing a local-tuple function and a 
path q, we construct a new procedure ( c ompo s e  F (Gamma q) ) .  

The procedure DF-on-path implements the derivative of this func
tion of time. We then abstract this off the path with Gamma-bar 

to give the total time derivative . 

Exercise 1 .37: Velocity transformation 

Use the procedure Gamma-bar to construct a procedure that transforms 
velocities given a coordinate transformation. Apply this procedure to 
the procedure p->r to deduce (again) equation ( 1 .67) on page 42 .  

Lagrange equat ions at a moment 

Given a Lagrangian , the Lagrange equations test paths to de
termine whether they are realizable paths of the system. The 
Lagrange equations relate the path and its derivatives . The fact 
that the Lagrange equations must be satisfied at each moment 
suggests that we can abstract the Lagrange equations off the path 
and write them as relations among the local-tuple components of 
realizable paths. 

Let E [L] be the path-dependent function that produces the 
residuals of the Lagrange equations ( 1 . 1 2 )  for the Lagrangian L: 

E [L] [q] = D ([hL 0 r [q] ) - [hL 0 r [q] . ( 1 . 1 76) 
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Realizable paths q satisfy the Lagrange equations 

E [L] [q] = O .  ( 1 . 1 77) 

The path-dependent Lagrange equations can be converted to local 
Lagrange equations using f :  

E [L] = f(E [L] ) .  ( 1 . 1 78) 

The operator E is called the Euler-Lagrange operator. In terms of 
this operator the Lagrange equations are 

E [L] 0 nq] = O .  ( 1 . 1 79) 

The Euler-Lagrange operator is explicitly 

( 1 . 1 80) 

The procedure Euler-Lagrange-operator implements E : 

( def ine (Euler-Lagrange -operator L )  
( - ( D t  « part ial 2 )  L »  « part ial 1 )  L » ) . 

For example , applied to the Lagrangian for the harmonic oscil
lator , we have 

« Euler-Lagrange -operator 
( L-harmoni c 'm ' k» 

(up ' t  ' x  ' v ' a» 

(+ (* a m) (* k x) )  

Notice that the components of the local tuple are individually 
specified . Using equation ( 1 . 1 79 ) , the Lagrange equations for the 
harmonic oscillator are 

« compose 
(Euler-Lagrange -operator ( L-harmoni c 'm ' k» 
(Gamma ( l it eral-funct ion ' x) 4»  

' t )  

(+ ( * k (x t ) ) ( *  m ( ( (expt D 2) x) t ) ) )  

Exercise 1 .38:  Properties of E 

Let F and G be two Lagrangian-like functions of a local tuple, C be a 
local-tuple transformation function, and c a constant . Demonstrate the 
following properties : 

a. E [F + G] = E [F] + E [G] 
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h. E [cF] = cE [F] 
c. E [FG] = E [F] G + FE [G] + (DtF)fhG + fhF(DtG) 
d.  E [F 0 C] = Dt (DF 0 C)82C + DF 0 CE [C] 

1.10 Constrained Motion 

An advantage of the Lagrangian approach is that coordinates can 
often be chosen that exactly describe the freedom of the system, 
automatically incorporating any constraints .  We may also use co
ordinates that have more freedom than the system actually has 
and consider explicit constraints among the coordinates . For ex
ample , the planar pendulum has a one-dimensional configuration 
space . We have formulated this problem using the angle from the 
vertical as the configuration coordinate. Alternatively, we may 
choose to represent the pendulum as a body moving in the plane , 
constrained to be on the circle of the correct radius around the 
pivot . We would like to have valid descriptions for both choices 
and show they are equivalent . In this section we develop tools to 
handle problems with explicit constraints .  The constraints con
sidered here are more general than those used in the demonstra
tion that the Lagrangian for systems with rigid constraints can 
be written as the difference of kinetic and potential energies (see 
section 1 .6 .2 ) . 

Suppose the configuration of a system with n degrees of freedom 
is specified by n + 1 coordinates and that configuration paths q 
are constrained to satisfy some relation of the form 

'P(t , q (t) , Dq (t) ) = O .  ( 1 . 1 8 1 )  

How do  we formulate the equations of  motion? One approach 
would be to use the constraint equation to eliminate one of the 
coordinates in favor of the rest ; then the evolution of the reduced 
set of generalized coordinates would be described by the usual 
Lagrange equations . The equations governing the evolution of 
coordinates that are not fully independent should be equivalent . 

We can address the problem of formulating equations of mo
tion for systems with redundant coordinates by returning to the 
action principle . Realizable paths are distinguished from other 
paths by having stationary action . Stationary refers to the fact 
that the action does not change with certain small variations of the 
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path. What variations should be considered? We have seen that 
velocity-independent rigid constraints can be used to eliminate 
redundant coordinates . In the irredundant coordinates we distin
guished realizable paths by using variations that by construction 
satisfy the constraints .  Thus in the case where constraints can be 
used to eliminate redundant coordinates we can restrict the varia
tions in the path to those that are consistent with the constraints .  

So how does the restriction of the possible variations affect the 
argument that led to Lagrange's equations (refer to section 1 . 5 ) ?  
Actually most of  the calculation i s  unaffected . The condition that 
the action is stationary still reduces to the conditions ( 1 . 1 7) or 
( 1 . 34) : 

lt2 
0 =  { (fhL  0 r [q] ) - D (fhL 0 r [q] ) } 17 · tl ( 1 . 1 82) 

At this point we argued that because the variations 17 are arbitrary 
(except for conditions at the endpoints) , the only way for the 
integral to be zero is for the integrand to be zero . Furthermore , 
the freedom in our choice of 17 allowed us to deduce that the factor 
multiplying 17 in the integrand must be identically zero , thereby 
deriving Lagrange's equations . 

Now the choice of 17 is not completely free . We can still deduce 
from the arbitrariness of 17 that the integrand must be zero ,9 1 
but we can no longer deduce that the factor multiplying 17 is zero 
(only that the projection of this factor onto acceptable variations 
is zero) . So we have 

{ (fhL 0 r [q] ) - D (fhL 0 r [q] ) } 17 = 0, ( 1 . 1 83) 

with 17 subject to the constraints .  
A path q satisfies the constraint if tp [q] = rp 0 r [q] = O .  The 

constraint must be satisfied even for the varied path,  so we allow 
only variations 17 for which the variation of the constraint is zero : 

( 1 . 1 84) 

91Given any acceptable variation , we may make another acceptable variation 
by multiplying the given one by a bump function that emphasizes any partic
ular time interval. 
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We can say that the variation must be "tangent" to the constraint 
surface . Expanding this with the chain rule , a variation TJ is tan
gent to the constraint surface cp if 

( 1 . 1 85) 

Note that these are functions of time ; the variation at a given time 
is tangent to the constraint at that time. 

1 . 1 0 . 1  C oordinate Constraints 

Consider constraints that do not depend on velocities : 

In this case the variation is tangent to the constraint surface if 

( 1 . 1 86) 

Together , equations ( 1 . 183)  and ( 1 . 186)  should determine the mo
tion , but how do we eliminate TJ? The residual of the Lagrange 
equations is orthogonal92 to any TJ that is orthogonal to the nor
mal to the constraint surface . A vector that is orthogonal to all 
vectors orthogonal to a given vector is parallel to the given vec
tor . Thus , the residual of Lagrange's equations is parallel to the 
normal to the constraint surface ; the two must be proportional : 

( 1 . 1 87) 

That the two vectors are parallel everywhere along the path does 
not guarantee that the proportionality factor is the same at each 
moment along the path,  so the proportionality factor A is some 
function of time, which may depend on the path under consider
ation . These equations , with the constraint equation cp 0 r [q] = 0 ,  
are the governing equations . These equations are sufficient to de
termine the path q and to eliminate the unknown function A .  

92We take two tuple-valued functions o f  time to  be orthogonal i f  at each instant 
the dot product of the tuples is zero. Similarly, tuple-valued functions are 
considered parallel if at each moment one of the tuples is a scalar multiple of 
the other. The scalar multiplier is in general a function of time. 
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Now watch t his 

Suppose we form an augmented Lagrangian by treating A as one 
of the coordinates : 

L' (t ; q, A ;  q ,  5.. ) = L(t ,  q, q) + Aip (t , q, q) . ( 1 . 1 88) 

The Lagrange equations associated with the coordinates q are just 
the modified Lagrange equations ( 1 . 1 87) , and the Lagrange equa
tion associated with A is just the constraint equation . (Note that 
5.. does not appear in the augmented Lagrangian . )  So the La
grange equations for this augmented Lagrangian fully encapsulate 
the modification to the Lagrange equations that is imposed by the 
addition of an explicit coordinate constraint , at the expense of in
troducing extra degrees of freedom. Notice that this Lagrangian is 
of the same form as the Lagrangian (equation 1 .93) that we used 
in the derivation of L = T - V for rigid systems (section 1 .6 . 2 ) . 

Alternat ively 

How do we know that we have enough information to eliminate 
the unknown function A from equations ( 1 . 1 87) , or that the ex
tra degree of freedom introduced in Lagrangian ( 1 . 188)  is purely 
formal? 

If A can be written as a composition of a state-dependent func
tion with the path:  A = A 0 nq] then it is redundant as a degree 
of freedom. Consider the Lagrangian 

L" = L + Aip. ( 1 . 1 89) 

This new Lagrangian has no extra degrees of freedom. The La
grange equations for L" are the Lagrange equations for L with ad
ditional terms arising from the product Aip. Applying the Euler
Lagrange operator E (see section 1 .9)  to this Lagrangian gives93 

E [L"] = E [L] + E [Aip] 
= E [L] + A E [ip] + E [A] ip + DtA chip + [hA Dtip. ( 1 . 1 90) 

Composition of E [L"] with nq] gives the Lagrange equations for 
the path q .  Using the fact that the constraint is satisfied on the 
path ip 0 nq] = 0 and consequently Dtip 0 nq] = 0, we have 

93Recall that the Euler-Lagrange operator E has the property 
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E [L"] 0 r [q] 
= E [L] 0 r [q] + '\ ( E ['P] 0 r [q] ) + D'\(Eh'P 0 r [q] ) ,  ( 1 . 1 9 1 )  

where we have used .\ = A 0 r [q] . I f  we now use the fact that we 
are dealing only with coordinate constraints ,  Eh'P = 0 ,  then 

E [L"] 0 r [q] = E [L] 0 r [q] + '\ ( E ['P] 0 r [q] ) .  ( 1 . 1 92) 

The Lagrange equations are the same as those derived from the 
augmented Lagrangian L' . The difference is that now we see that 
.\ = A 0 r [q] is determined by the unaugmented state. This is the 
same as saying that .\ can be eliminated . 

Considering only the formal validity of the Lagrange equations 
for the augmented Lagrangian , we could not deduce that .\ could 
be written as the composition of a state-dependent function A with 
r [q] . The explicit Lagrange equations derived from the augmented 
Lagrangian depend on the accelerations D2q as well as .\, so we 
cannot deduce separately that either is the composition of a state
dependent function and r [q] . However , now we see that .\ is such 
a composition . This allows us to deduce that D2q is also a state
dependent function composed with the path.  The evolution of the 
system is determined from the dynamical state. 

The pendulum using constraints 

The pendulum can be formulated as the motion of a massive par
ticle in a vertical plane subject to the constraint that the distance 
to the pivot is constant (see figure 1 .8) . 

In this formulation , the kinetic and potential energies in the 
Lagrangian are those of an unconstrained particle in a uniform 
gravitational acceleration . A Lagrangian for the unconstrained 
particle is 

( 1 . 1 93) 

The constraint that the pendulum moves in a circle of radius l 
about the pivot is94 

( 1 . 1 94) 

94This constraint has the same form as those used in the demonstration that 
L = T - V can be used for rigid systems. Here it is a particular example of a 
more general set of constraints. 



1 04 Chapter 1 Lagrangian Mechanics 

The augmented Lagrangian is 

The Lagrange equations for the augmented Lagrangian are 

mD2x - 2AX = 0 
mD2y + mg - 2AY = 0 

X2 + y2 _ 1 2 = o .  

( 1 . 1 96) 
( 1 . 1 97) 
( 1 . 1 98) 

These equations are sufficient to solve for the motion of the pen
dulum. 

It should not be surprising that these equations simplify if we 
switch to "polar" coordinates 

x = r sin B y = -r cos B . ( 1 . 1 99) 

Substituting this into the constraint equation , we determine that 
r = I ,  a constant . Forming the derivatives and substituting into 
the other two equations , we find 

m/ (cos BD2B - sin B (DB) 2 ) - 2A sin B = 0 
m/ (sin BD2B + cos B (DB) 2 ) + mg + 2A cos B = o .  

( 1 . 200) 
( 1 . 20 1 )  

Multiplying the first by cos B and the second by sin B and adding, 
we find 

mlD2B + mg sin B = 0, ( 1 . 202) 

which we recognize as the correct equation for the pendulum. This 
is the same as the Lagrange equation for the pendulum using the 
unconstrained generalized coordinate B . For completeness, we can 
find A in terms of the other variables : 

mD2x 1 2 A = � = - 2/ (mg cos B + m/ (DB) ) . ( 1 . 203) 

This confirms that A is really the composition of a function of the 
state with the state path.  Notice that 2lA is a force-it is the 
sum of the outward component of the gravitational force and the 
centrifugal force . Using this interpretation in the two coordinate 
equations of motion , we see that the terms involving A are the 
forces that must be applied to the unconstrained particle to make 
it move on the circle required by the constraints .  Equivalently, we 
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Figure 1 . 8  We can formulate the behavior of a pendulum as motion 
in the plane, constrained to a circle about the pivot . 

may think of 2Z).. as the tension in the pendulum rod that holds 
the mass.95 

B uilding systems from parts 

The method of using augmented Lagrangians to enforce con
straints on dynamical systems provides a way to analyze a com
pound system by combining the results of the analysis of the parts 
of the system and the coupling between them. 

Consider the compound spring-mass system shown at the top of 
figure 1 .9 .  We could analyze this as a monolithic system with two 
configuration coordinates Xl and X2 , representing the extensions 
of the springs from their equilibrium lengths Xl and X2 . 

An alternative procedure is to break the system into several 
parts .  In our spring-mass system we can choose two parts :  one is 
a spring and mass attached to the wall, and the other is a spring 
and mass with its attachment point at an additional configuration 
coordinate �. We can formulate a Lagrangian for each part sepa
rately. We can then choose a Lagrangian for the composite system 
as the sum of the two component Lagrangians with a constraint 
� = Xl + Xl to accomplish the coupling. 

95Indeed, if we had scaled the constraint equations as we did in the discussion 
of Newtonian constraint forces , we could have identified A with the the magni
tude of the constraint force F. However, though A will in general be related to 
the constraint forces it will not be one of them. We chose to leave the scaling 
as it naturally appeared rather than make things turn out artificially pretty. 
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Let 's see how this works . The Lagrangian for the subsystem 
attached to the wall is 

( 1 .204) 

and the Lagrangian for the subsystem that attaches to it is 

( 1 . 205) 

We construct a Lagrangian for the system composed from these 
parts as a sum of the Lagrangians for each of the separate parts ,  
with a coupling term to enforce the constraint : 

L(t ;  Xl ,  X2 , � , A ;  Xl ,  X2 , � , ,\) 
= Ll (t, x l , X l )  + L2 (t ; � , X2 ; � , X2 ) 

+ A (� - (Xl + Xl ) ) .  ( 1 . 206) 

Thus we can write Lagrange's equations for the four configuration 
coordinates , in order , as follows : 

mlD2xl = -klXl  - A 
m2 (D2� + D2x2 ) = -k2X2 
m2 (D2� + D2x2 ) = A 

o = � - (Xl + xd · 

( 1 . 207) 
( 1 . 208) 
( 1 . 209) 
( 1 . 2 10) 

Notice that in this system A is the force of constraint holding the 
system together . We can now eliminate the "glue" coordinates 
� and A to obtain the equations of motion in the coordinates Xl 
and X2 : 

mlD2xl + m2 (D2xl + D2x2 ) + klX l  = 0 
m2 (D2xl + D2x2 ) + k2X2 = o .  

( 1 . 2 1 1 )  
( 1 . 212 )  

This strategy can be generalized . We can make a library of 
primitive components .  Each component may be characterized by 
a Lagrangian with additional degrees of freedom for the terminals 
where that component may be attached to others. We then can 
construct composite Lagrangians by combining components ,  using 
constraints to glue together the terminals . 
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Figure 1 . 9  A compound spring-mass system is decomposed into two 
subsystems. We have two springs coupling two masses that can move 
horizontally. The equilibrium positions of the springs are Xl and X2 . 
The systems are coupled by the coordinate constraint � = Xl + X l . 

Exercise 1 .39 :  Combining Lagrangians 

a. Make another primitive component , compatible with the spring-mass 
structures described in this section. For example, make a pendulum that 
can attach to the spring-mass system. Build a combination and derive 
the equations of motion. Be careful, the algebra is horrible if you choose 
bad coordinates . 

b. For a nice little project , construct a family of compatible mechanical 
parts ,  characterized by appropriate Lagrangians , that can be combined 
in a variety of ways to make interesting mechanisms . Remember that in 
a good language the result of combining pieces should be a piece of the 
same kind that can be further combined with other pieces . 
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Exercise 1 .40: Bead on a triaxial surface 

Consider again the motion of a bead constrained to move on a triaxial 
surface (exercise 1 . 1 8) .  Reformulate this using rectangular coordinates 
as the generalized coordinates with an explicit constraint that the bead 
must stay on the surface. Find a Lagrangian and show that the Lagrange 
equations are equivalent to those found in exercise 1 . 18 .  

Exercise 1 .41 :  Motion of a tiny golf ball 

Consider the motion of a golf ball idealized as a point mass constrained 
to a frictionless smooth surface of varying height h (x , y) in a uniform 
gravitational field with acceleration g .  

a .  Find an augmented Lagrangian for this system, and derive the equa
tions governing the motion of the point mass in x and y .  

b.  Under what conditions i s  this approximated by a potential function 
V(x, y) = mgh(x , y) ? 
c. Assume that h (x , y) is axisymmetric about x = y = O .  Can you find 
such an h that yields motions with closed orbits? 

1 . 1 0 . 2  Derivative Const raints 

Here we investigate velocity-dependent constraints that are "to
tal time derivatives" of velocity-independent constraints .  The 
methods presented so far do not apply because the constraint is 
velocity-dependent . 

Consider a velocity-dependent constraint 1jJ = O .  That 1jJ is a to
tal time derivative means that there exists a velocity-independent 
function cp such that 

1jJ 0 r [q] = D(  cp 0 r [q] ) .  ( 1 . 213 )  

That cp i s  velocity-independent means (hcp = O .  As state functions 
the relationship between 1jJ and cp is 

( 1 . 2 14) 

Given a 1jJ we can find cp by solving this linear partial differential 
equation . The solution is determined up to a constant , so 1jJ = 0 
implies cp = K for some constant K .  On the other hand , if we 
knew cp = K then 1jJ = 0 follows . Thus the velocity-dependent 
constraint 1jJ = 0 is equivalent to the velocity-independent con
straint cp = K, and we know how to find Lagrange equations for 
such systems . 
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If L is a Lagrangian for the unconstrained problem, the La
grange equations with the constraint <p = K are 

E [L] 0 nq] + A ( E [<p] 0 nq] ) = 0, ( 1 . 2 15) 

where A is a function of time that will be eliminated during the 
solution process. The constant K does not affect the Lagrange 
equations . The function <p is independent of velocity, Eh<p = 0, so 
the Lagrange equations become 

E [L] 0 nq] - A(al <p 0 nq] ) = 0 .  ( 1 . 216 )  

From equation ( 1 . 2 14)  we see that 

( 1 . 2 17) 

so the Lagrange equations with the constraint 'I/J = ° are 

E [L] 0 nq] = A(a2 'I/J 0 nq] ) .  ( 1 . 2 18) 

The important feature is that we can write the Lagrange equations 
directly in terms of 'I/J without having to produce <po But the 
validity of these Lagrange equations depends on the existence of <p o 

It turns out that the augmented Lagrangian trick also works 
here . These Lagrange equations are given if we augment the La
grangian with the constraint 'I/J multiplied by a function of time X :  

L' = L + A''I/J . ( 1 . 219 )  

The Lagrange equations for L' turn out to be 

E [L] 0 nq] = -DA' (a2 'I/J 0 nq] ) ,  ( 1 . 220) 

which , with the identification A = -D X, are the same as Lagrange 
equations ( 1 . 2 18 ) . 

Sometimes a problem can be naturally formulated in terms of 
velocity-dependent constraints .  The formalism we have developed 
will handle any velocity-dependent constraint that can be written 
in terms of the derivative of a coordinate constraint . Such a con
straint is called an integrable constraint. Any system for which 
the constraints can be put in the form of a coordinate constraint , 
or are already in that form, is called a holonomic system. 
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Figure 1 . 10 
dined plane. 

A massive hoop rolling, without slipping, down an in-

Exercise 1 .42: Augmented Lagrangian 

Show that the augmented Lagrangian ( 1 . 2 1 9) does lead to the Lagrange 
equations ( 1 . 220) , taking into account the fact that 'IjJ is a total time 
derivative of cp o  

Goldstein's hoop 

Here we consider a problem for which the constraint can be rep
resented as a time derivative of a coordinate constraint : a hoop 
of mass M and radius R rolling, without slipping, down a (one
dimensional) inclined plane (see figure 1 . 10) . 96 

We will formulate this problem in terms of the two coordi
nates (), the rotation of an arbitrary point on the hoop from an 
arbitrary reference direction , and x, the linear progress down the 
inclined plane . The constraint is that the hoop does not slip . Thus 
a change in () is exactly reflected in a change in X; the constraint 
function is 

1j; (t ;  x, () ; x, B) = RB - x .  ( 1 .221 ) 

This constraint is phrased as a relation among generalized veloci
ties , but it could be integrated to get x = R() + c .  We may form 
our augmented Lagrangian with either the integrated constraint 
or its derivative . 

96This example appears in [20] , pp. 49-51 ,  
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The kinetic energy has two parts ,  the energy of rotation of the 
hoop and the energy of the motion of its center of mass.97 The 
potential energy of the hoop decreases as the height decreases . 
Thus we may write the augmented Lagrangian : 

L (t ; x , B , A ; X , B , �) 
= �MR2B2 + �Mx2 + Mgx sin cp + A (RB - x) . 

Lagrange's equations are 

MD2x - DA = Mg sin cp 
MR2D2B + R DA = 0 

R DB - Dx = O .  

( 1 .222) 

( 1 .223) 
( 1 .224) 
( 1 .225) 

And by differentiation of the third Lagrange equation we obtain 

( 1 .226) 

By combining these equations we can solve for the dynamical 
quantities of interest . For this case of a rolling hoop the linear 
acceleration 

( 1 . 227) 

is just half of what it would have been if the mass had just slid 
down a frictionless plane without rotating. Note that for this hoop 
D2x is independent of both M and R. We see from the Lagrange 
equations that D A can be interpreted as the friction force involved 
in enforcing the constraint . The frictional force of constraint is 

DA = �Mg sin cp 

and the angular acceleration is 

2 1 9 . 
D B = - - sm cp. 

2 R  

( 1 .228) 

( 1 .229) 

97We will see in chapter 2 how to compute the kinetic energy of rotation , but 
for now the answer is � M R2 iP . 
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1 . 1 0 . 3  Nonholonomic Systems 

Systems with constraints that are not integrable are termed non
holonomic systems. A constraint is not integrable if it cannot be 
written in terms of an equivalent coordinate constraint . An exam
ple of a nonholonomic system is a ball rolling without slipping in 
a bowl . As the ball rolls it must turn so that its surface does not 
move relative to the bowl at the point of contact . This looks as if 
it might establish a relation between the location of the ball in the 
bowl and the orientation of the ball , but it doesn 't .  The ball may 
return to the same place in the bowl with different orientations 
depending on the intervening path it has taken . As a consequence , 
the constraints cannot be used to eliminate any coordinates . 

What are the equations of motion governing nonholonomic sys
tems? For the restricted set of systems with nonholonomic con
straints that are linear in the velocities , it is widely reported98 
that the equations of motion are as follows . Let 'I/J have the form 

( 1 .230) 

a state function that is linear in the velocities . We assume 'I/J is not 
a total time derivative . If L is a Lagrangian for the unconstrained 
system, then the equations of motion are asserted to be 

E [L] 0 nq] = .\ (G1 0 nq] ) = '\ (Eh'I/J 0 nq] ) · ( 1 . 23 1 )  

With the constraint 'I/J = 0 ,  the system i s  completely specified 
and the evolution of the system is determined . Note that these 
equations are identical to the Lagrange equations ( 1 . 2 18 )  for the 
case that 'I/J is a total time derivative , but here the derivation of 
those equations is no longer valid . 

An essential step in the derivation of the Lagrange equations 
for coordinate constraints c.p = 0 with Ehc.p = 0 was to note that 
two conditions must be satisfied : 

( E [L] 0 nq] )1] = 0, ( 1 .232) 

and 

( 1 .233) 

98For some treatments of nonholonomic systems see , for example , Whit
taker [46] , Goldstein [20] , Gantmakher [19] ,  or Arnold et al. [6]. 
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Because E [L] ° r [q] i s  orthogonal t o  TJ and TJ i s  constrained to  be 
orthogonal to chtp o r [q] , the two must be parallel at each moment : 

E [L] o r [q] = A (Oltp O r [q] ) .  ( 1 .234) 

The Lagrange equations for derivative constraints were derived 
from this . 

This derivation does not go through if the constraint function 
depends on velocity. In this case , for a variation TJ to be consistent 
with the velocity-dependent constraint function 'IjJ it must satisfy 
(see equation 1 . 185)  

( 1 .235) 

We may no longer eliminate TJ by the same argument , because TJ 
is no longer orthogonal to 01'IjJ ° r [q] , and we cannot rewrite the 
constraint as a coordinate constraint because 'IjJ is ,  by assumption , 
not integrable . 

The following is the derivation of the nonholonomic equations 
from Arnold et al . [6] , translated into our notation . Define a 
"virtual velocity" � to be any velocity satisfying 

( 1 .236) 

The "principle of d '  Alembert-Lagrange ,"  according to Arnold , 
states that 

( E [L] ° r [q] )� = 0 , ( 1 . 237) 

for any virtual velocity ( Because � is arbitrary except that it is 
required to be orthogonal to 02'IjJOr [q] and any such � is orthogonal 
to E [L] ° r [q] , then 02'IjJ ° r [q] must be parallel to E [L] ° r [q] . So 

( 1 . 238) 

which are the nonholonomic equations . 
To convert the stationary action equations to the equations of 

Arnold we must do the following. To get from equation ( 1 .232) to 
equation ( 1 .237) , we must replace TJ by ( However , to get from 
equation ( 1 .235) to equation ( 1 .236 ) , we must set TJ = 0 and re
place DTJ by � .  All "derivations" of the nonholonomic equations 
have similar identifications . It comes down to this : the nonholo
nomic equations do not follow from the action principle . They 
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are something else . Whether they are correct or not depends on 
whether or not they agree with experiment . 

For systems with either coordinate constraints or derivative con
straints ,  we have found that the Lagrange equations can be de
rived from a Lagrangian that is augmented with the constraint . 
However , if the constraints are not integrable the Lagrange equa
tions for the augmented Lagrangian are not the same as the non
holonomic system (equations 1 . 231 ) . 99 Let L' be an augmented 
Lagrangian with non-integrable constraint 'IjJ : 

L' (t ; q , ).. ; q , ).. ) = L(t , q , q) + )..'IjJ (t , q , q) ;  ( 1 .239) 

then the Lagrange equations associated with the coordinates are 

o = E [L] 0 r [q] 
+ D).. ([h'IjJ 0 r [q] ) + )..D ([h'IjJ 0 r [q] ) - ).. ([h 'IjJ 0 r [q] ) .  ( 1 . 240) 

The Lagrange equation associated with ).. is just the constraint 
equation 

'IjJ 0 r [q] = O .  ( 1 .241 ) 

An interesting feature of these equations is that they involve both 
).. and D)". Thus the usual state variables q and Dq, with the 
constraint , are not sufficient to determine a full set of initial con
ditions for the derived Lagrange equations ; we need to specify an 
initial value for ).. as well. 

In general , for any particular physical system, equations ( 1 . 23 1 )  
and ( 1 .240 ) are not the same, and i n  fact they have different so
lutions. It is not apparent that either set of equations accurately 
models the physical system. The first approach to nonholonomic 
systems is not justified by extension of the arguments for the holo
nomic case and the other is not fully determined . Perhaps this in
dicates that the models are inadequate, that more details of how 
the constraints are maintained need to be specified . 

99 Arnold et al. [6] call the variational mechanics with the constraints added 
to the Lagrangian Vakonomic mechanics. 
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1.11 Summary 

To analyze a mechanical system we construct an action function 
that gives us a way to distinguish realizable motions from other 
conceivable motions of the system. The action function is con
structed so as to be stationary only on paths describing realizable 
motions , with respect to variations of the path.  This is the prin
ciple of stationary action. The principle of stationary action is a 
coordinate-independent specification of the realizable paths. For 
systems with or without constraints we may choose any system 
of coordinates that uniquely determines the configuration of the 
system. 

An action is an integral of a function , the Lagrangian, along 
the path.  For many systems an appropriate Lagrangian is the 
difference of the kinetic energy and the potential energy of the 
system. The choice of a Lagrangian for a system is not unique . 

For any system for which we have a Lagrangian action we can 
formulate a system of ordinary differential equations , the Lagrange 
equations , that is satisfied by any realizable path.  The method of 
deriving the Lagrange equations from the Lagrangian is indepen
dent of the coordinate system used to formulate the Lagrangian . 
One freedom we have in formulation is that the addition of a to
tal time derivative to a Lagrangian for a system yields another 
Lagrangian that has the same Lagrange equations . 

The Lagrange equations are a set of ordinary differential equa
tions : there is a finite state that summarizes the history of the 
system and is sufficient to determine the future. There is an ef
fective procedure for evolving the motion of the system from a 
state at an instant . For many systems the state is determined by 
the coordinates and the rate of change of the coordinates at an 
instant . 

If there are continuous symmetries in a physical system there 
are conserved quantities associated with them. If the system can 
be formulated in such a way that the symmetries are manifest in 
missing coordinates in the Lagrangian , then there are conserved 
momenta conjugate to those coordinates . If the Lagrangian IS 

independent of time then there is a conserved energy. 
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1.12 Projects 

Exercise 1 .43: A numerical investigation 

Consider a pendulum: a mass m supported on a massless rod of length l 
in a uniform gravitational field . A Lagrangian for the pendulum is 

L (t , B, iJ) = ; ( liJ) 2 + mgl cos B . 

For the pendulum, the period of the motion depends on the amplitude. 
We wish to find trajectories of the pendulum with a given frequency. 
Three methods of doing this present themselves: ( 1 )  solution by the 
principle of least action, (2 )  numerical integration of Lagrange's equa
tion, and (3) analytic solution (which requires some exposure to elliptic 
functions) . We will carry out all three and compare the solution trajec
tories . 

Consider the parameters m = 1 kg, l = 1 m, g = 9 . 8  m s-2 . The 
frequency of small-amplitude oscillations is Wo = v91l. Let 's find the 
nontrivial solution that has the frequency WI = tWo . 
a. The angle is periodic in time, so a Fourier series representation is 
appropriate. We can choose the origin of time so that a zero crossing 
of the angle is at time zero . Since the potential is even in the angle , 
the angle is an odd function of time. Thus we need only a sine series . 
Since the angle returns to zero after one-half period,  the angle is an odd 
function of time about the midpoint . Thus only odd terms of the series 
are present : 

m 
B (t ) = L An sin( (2n - l )WI t) . 

n= 1 
The amplitude of the trajectory is A = Bmax = L�=I ( - 1  )n+ 1 An . 

Find approximations to the first few coefficients An by minimizing 
the action. You will have to write a program similar to the f ind-path 
procedure in section 1 .4 .  Watch out : there is more than one trajectory 
that minimizes the action. 

h. Write a program to numerically integrate Lagrange's equations for 
the trajectories of the pendulum. The trouble with using numerical 
integration to solve this problem is that we do not know how the fre
quency of the motion depends on the initial conditions . So we have to 
guess, and then gradually improve our guess. Define a function n (iJ) 
that numerically computes the frequency of the motion as a function of 
the initial angular velocity (with B = 0) . Find the trajectory by solving 
n( iJ) = W for the initial angular velocity of the desired trajectory. Meth
ods of solving this equation include successive bisection, minimizing the 
squared residual , etc .-choose one. 
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c .  Now let 's  formulate the analytic solution for the frequency as a func
tion of amplitude. The period of the motion is simply 

T = 4 rT/4 dt = 4 rA �d8 . 
io io 8 

Using the energy, solve for 8 in terms of the amplitude A and 8 to write 
the required integral explicitly. This integral can be written in terms 
of elliptic functions , but in a sense this does not solve the problem-we 
still have to compute the elliptic functions . Let 's  avoid this excursion 
into elliptic functions and just do the integral numerically using the 
procedure def init e - int egral . We still have the problem that we can 
specify the amplitude A and get the frequency; to solve our problem we 
need to solve the inverse problem, but that can be done as in part b.  

Exercise 1 .44: Double pendulum behavior 

Consider the ideal double pendulum shown in figure 1 . 1 1 .  

a .  Formulate a Lagrangian t o  describe the dynamics . Derive the equa
tions of motion in terms of the given angles 81 and 82 . Put the equations 
into a form appropriate for numerical integration. Assume the following 
system parameters : 

9 = 9 . 8 m s-2 

h = LO rn 
12 = 0 .9 m 

m1 = 1 .0 kg 
m2 = 3 .0 kg 

b. Prepare graphs showing the behavior of each angle as a function of 
time when the system is started with the following initial conditions : 

81 (0) = 1f /2 rad 
82 (0) = 1f rad 

81 (0) = O rad s- 1 

82 (0) = O rad s- 1 

Make the graphs extend to 50 seconds. 

c .  Make a graph of the behavior of the energy of your system as a 
function of time. The energy should be conserved. How good is the 
conservation you obtained? 

d. Make a new Lagrangian, for two identical uncoupled double pen
dulums . (Both pendulums should have the same masses and lengths . )  
Your new Lagrangian should have four degrees of  freedom. Give initial 
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Figure 1 . 1 1  The double pendulum is pinned in two joints so that its 
members are free to move in a plane. 

conditions for one pendulum to be the same as in the experiment of 
part b and give initial conditions for the other pendulum with the m2 
bob 10- 10 m higher than before. The motions of the two pendulums will 
diverge as time progresses. Plot the logarithm of the absolute value of 
the difference of the positions of the m2 bobs in your two pendulums 
against the time. What do you see? 

e. Repeat the previous comparison, but this time use the base initial 
conditions: 

81 (0) = 1f /2 rad 
82 (0) = 0 rad 

81 (0) = O rad s- 1 

82 (0) = O rad s- 1 

What do you see here? 



2
Rigid Bodies

The polhode rolls without slipping on the
herpolhode lying in the invariable plane.

Herbert Goldstein, Classical Mechanics [20],
footnote, p. 207.

The motion of rigid bodies presents many surprising phenomena.
Consider the motion of a top. A top is usually thought of as

an axisymmetric body, subject to gravity, with a point on the
axis of symmetry that is fixed in space. The top is spun and in
general executes some complicated motion. We observe that the
top usually settles down into an unusual motion in which the axis
of the top slowly precesses about the vertical, apparently moving
perpendicular to the direction in which gravity is attempting to
accelerate it.

Consider the motion of a book thrown into the air.1 Books have
three main axes. If we idealize a book as a brick with rectangular
faces, the three axes are the lines through the centers of opposite
faces. Try spinning the book about each axis. The motion of
the book spun about the longest and the shortest axis is a simple
regular rotation, perhaps with a little wobble depending on how
carefully it is thrown. The motion of the book spun about the
intermediate axis is qualitatively different: however carefully the
book is spun about the intermediate axis, it tumbles.

The rotation of the Moon is peculiar in that the Moon always
presents the same face to the Earth, indicating that the rotational
period and the orbit period are the same. Considering that the
orbit of the Moon is constantly changing because of interactions
with the Sun and other planets, and therefore its orbital period
is constantly undergoing small variations, we might expect that
the face of the Moon that we see would slowly change, but it does
not. What is special about the face that is presented to us?

1We put a rubber band or string around the book so that it does not open.
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A rigid body may be thought of as a large number of constituent
particles with rigid constraints among them. Thus the dynamical
principles governing the motion of rigid bodies are the same as
those governing the motion of any other system of particles with
rigid constraints. What is new here is that the number of con-
stituent particles is very large and we need to develop new tools
to handle them effectively.

We have found that a Lagrangian for a system with rigid con-
straints can be written as the difference of the kinetic and po-
tential energies. The kinetic and potential energies are naturally
expressed in terms of the positions and velocities of the constituent
particles. To write the Lagrangian in terms of the generalized co-
ordinates and velocities we must specify functions that relate the
generalized coordinates to the positions of the constituent parti-
cles. In the systems with rigid constraints considered up to now
these functions were explicitly given for each of the constituent
particles and individually included in the derivation of the La-
grangian. For a rigid body, however, there are too many con-
situent particles to handle each one of them in this way. We need
to find means of expressing the kinetic and potential energies of
rigid bodies in terms of the generalized coordinates and velocities,
without going through the particle-by-particle details.

The strategy is to first rewrite the kinetic and potential energies
in terms of quantities that characterize essential aspects of the
distribution of mass in the body and the state of motion of the
body. Only later do we introduce generalized coordinates. For
the kinetic energy, it turns out a small number of parameters
completely specify the state of motion and the relevant aspects
of the distribution of mass in the body. For the potential energy,
we find that for some specific problems the potential energy can
be represented with a small number of parameters, but in general
we have to make approximations to obtain a representation with
a manageable number of parameters.

2.1 Rotational Kinetic Energy

We consider a rigid body to be made up of a large number of
constituent particles with mass mα, position �xα, and velocities
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�̇xα, with rigid positional constraints among them. The kinetic
energy is∑
α

1
2mα�̇xα · �̇xα. (2.1)

It turns out that the kinetic energy of a rigid body can be sepa-
rated into two pieces: a kinetic energy of translation and a kinetic
energy of rotation. Let’s see how this comes about.

The configuration of a rigid body is fully specified given the
location of any point in the body and the orientation of the body.
This suggests that it would be useful to decompose the position
vectors for the constituent particles as the sum of the vector �X
to some reference position in the body and the vector �ξα from
the reference position to the particular constituent element with
index α:

�xα = �X + �ξα. (2.2)

Along paths, the velocities are related by

�̇xα = �̇X + �̇ξα. (2.3)

So in terms of �̇X and �̇ξα the kinetic energy is∑
α

1
2mα

(
�̇X + �̇ξα

)
·
(
�̇X + �̇ξα

)
=

∑
α

1
2mα

(
�̇X · �̇X + 2 �̇X · �̇ξα + �̇ξα · �̇ξα

)
. (2.4)

If we select the reference position in the body to be its center of

mass,

�X =
1

M

∑
α

mα�xα, (2.5)

where M =
∑

αmα is the total mass of the body, then∑
α

mα
�ξα =

∑
α

mα(�xα − �X) = 0. (2.6)
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So along paths the relative velocities satisfy∑
α

mα
�̇ξα = 0. (2.7)

The kinetic energy is then∑
α

1
2mα

�̇X · �̇X +
∑

α
1
2mα

�̇ξα · �̇ξα. (2.8)

The kinetic energy is the sum of the kinetic energy of the motion
of the total mass at the center of mass

1
2M

�̇X · �̇X, (2.9)

and the kinetic energy of rotation about the center of mass∑
α

1
2mα

�̇ξα · �̇ξα. (2.10)

Written in terms of appropriate generalized coordinates, the ki-
netic energy is a Lagrangian for a free rigid body. If we choose
generalized coordinates so that the center of mass position is en-
tirely specified by some of them and the orientation is entirely
specified by others, then the Lagrange equations for a free rigid
body will decouple into two groups of equations, one concerned
with the motion of the center of mass and one concerned with the
orientation.

Such a separation might occur in other problems, such as a
rigid body moving in a uniform gravitational field, but in general,
potential energies cannot be separated as the kinetic energy sep-
arates. So the motion of the center of mass and the rotational
motion are usually coupled through the potential. Even in these
cases, it is usually an advantage to choose generalized coordinates
that separately specify the position of the center of mass and the
orientation.

2.2 Kinematics of Rotation

The motion of a rigid body about a center of rotation, a reference
position that is fixed with respect to the body, is characterized
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at each moment by a rotation axis and a rate of rotation. Let’s
elaborate.

We can get from any orientation of a body to any other orien-
tation of the body by a rotation of the body. That this is true is
called Euler’s theorem on rotations about a point.2 We know that
rotations have the property that they do not commute: the com-
position of successive rotations in general depends on the order
of operation. Rotating a book about the x̂ axis and then about
the ẑ axis puts the book in a different orientation than rotating
the book about the ẑ axis and then about the x̂ axis. Never-
theless, Euler’s theorem states that however many rotations have
been composed to reach a given orientation, the orientation could
have been reached with a single rotation. Try it! We take a book,
rotate it this way, then that, and then some other way—then find
the rotation that does the job in one step. So a rotation can be
specified by an axis of rotation and the angular amount of the
rotation.

We can specify the orientation of a body by specifying the ro-
tation that takes the body to its actual orientation from some
reference orientation. As the body moves, the rotation that does
this changes.

Let q be the coordinate path that we will use to describe the
motion of the body. Let M(q(t)) be the rotation that takes the
body from the reference orientation to the orientation specified by
q(t) (see figure 2.1). Let �ξα(t) be the vector to some constituent
particle with the body in the orientation specified by q(t), and

let �ξ′α be the vector to the same constituent with the body in the
reference orientation. Then

�ξα(t) = M(q(t))�ξ′α. (2.11)

The constituent vectors �ξ′α do not depend on the configuration,
because they are the vectors to the positions of the constituents
with the body in a fixed reference orientation.

To compute the kinetic energy we will accumulate the contri-
butions from all of the constituent mass elements. So we need

2For an elementary geometric proof see Whittaker [46], p. 2.
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the velocities of the constituents. The positions of the constituent
particles, at a given time t, are

�ξα(t) = M(q(t))�ξ ′α = M(t)�ξ ′α, (2.12)

where M = M ◦ q. The velocity is the time derivative

D�ξα(t) = DM(t)�ξ ′α. (2.13)

Using equation (2.12), we can write

D�ξα(t) = DM(t)(M(t))−1�ξα(t). (2.14)

So we have a time-varying linear differential equation that de-
scribes the motion of the constituents. Let’s look at the multiplier
DM(t)(M(t))−1. Since M(t) is a rotation its matrix representa-
tion is an orthogonal matrix M(t), with the property (M(t))−1 =
(M(t))T. Because M(t)(M(t))T = I, its derivative is:

0 = D(MMT) = DMMT +MDMT. (2.15)

So

DMMT = − (DMMT)
T
. (2.16)

We can conclude that DMMT is antisymmetric.
Let u have components (x, y, z). Every 3 × 3 antisymmetric

matrix is of the following form:

A(u) =

⎧⎪⎪⎪⎪⎩ 0 −z y
z 0 −x
−y x 0

⎫⎪⎪⎪⎪⎭ . (2.17)

Multiplication by this matrix can be interpreted as the operation
of cross product with the vector �u. The vector �u has a matrix
representation u.

The inverse of the function A can be applied to any skew-
symmetric matrix: we can use A−1 to extract the components
of u.

We can interpret multiplication by DMMT as a cross product
with a vector that we call �ω, the angular velocity vector with
components ω. So we can write

ω = A−1(DMMT). (2.18)
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b̂(t)

ẑ

ŷ ŷ

â(t)

ẑ

ĉ′

b̂′

x̂ĉ(t) x̂

M(q(t))

â′

ξα(t) ξ′α

Figure 2.1 The rotation M(q(t)) rotates the body from a reference
orientation to its orientation at time t. Vectors attached to the body,
such as ξ′α are rotated with the body to the position ξα(t). Axes attached

to the body, labeled by â′, b̂′, and ĉ′, specify a right-handed orthonormal
coordinate system. In the reference orientation the body axes are aligned
with the spatial axes, labeled by x̂, ŷ, and ẑ. At time t the body axes

are rotated to â(t), b̂(t), and ĉ(t).

In terms of the angular velocity vector, the differential equations
for the motion of the constituents (see equation 2.14) are

D�ξα(t) = �ω(t)× �ξα(t). (2.19)

If the angular velocity vector for a body is �ω then the velocities
of the constituent particles are perpendicular to the vectors to
the constituent particles and proportional to the rate of rotation
of the body and the distance of the constituent particle from the
instantaneous rotation axis:

�̇ξα = �ω × �ξα. (2.20)

The components ω′ of the angular velocity vector on the body
axes are ω

′ = MT
ω, so

ω
′ = MTA−1(DMMT). (2.21)

The relationship of the angular velocity vector to the path is
a kinematic relationship; it is valid for any path. Thus we can
abstract it to obtain the components of the angular velocity at a
moment given the configuration and velocity at that moment.
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Implementation of angular velocity functions

The following procedure gives the components of the angular ve-
locity as a function of time along the path:

(define (((M-of-q->omega-of-t M-of-q) q) t)
(define M-on-path (compose M-of-q q))
(define (omega-cross t)
(* ((D M-on-path) t)

(transpose (M-on-path t))))
(antisymmetric->column-matrix (omega-cross t)))

The procedure omega-cross produces the matrix representation of
�ω×. The procedure antisymmetric->column-matrix, which cor-
responds to the function A−1, is used to extract the components of
the angular velocity vector from the skew-symmetric �ω× matrix.

The components of the angular velocity vector on a basis fixed
in the body, as a function of time, along the path are

(define (((M-of-q->omega-body-of-t M-of-q) q) t)
(* (transpose (M-of-q (q t)))

(((M-of-q->omega-of-t M-of-q) q) t)))

We can get the procedures of local state that give the angu-
lar velocity components by abstracting these procedures along ar-
bitrary paths that have given coordinates and velocities. The
abstraction of a procedure of a path to a procedure of state is
accomplished by Gamma-bar (see section 1.9):

(define (M->omega M-of-q)
(Gamma-bar
(M-of-q->omega-of-t M-of-q)))

(define (M->omega-body M-of-q)
(Gamma-bar
(M-of-q->omega-body-of-t M-of-q)))

These procedures give the angular velocities as a function of state.
We will see them in action after we get some M-of-q’s to work with,
starting in section 2.7.

2.3 Moments of Inertia

The rotational kinetic energy is the sum of the kinetic energy of
each of the constituents of the rigid body. We can rewrite the
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rotational kinetic energy in terms of the angular velocity vector
and certain aggregate quantities determined by the distribution
of mass in the rigid body.

Substituting our representation of the relative velocity vectors
into the rotational kinetic energy, we obtain∑
α

1
2mα

�̇ξα · �̇ξα =
∑

α
1
2mα

(
�ω × �ξα

) · (�ω × �ξα
)
. (2.22)

We introduce an arbitrary spatially fixed rectangular coordinate
system with origin at the center of rotation and with basis vec-
tors ê0, ê1, and ê2, with the property that ê0 × ê1 = ê2. The
components of �ω on this coordinate system are ω0, ω1, and ω2.
Rewriting �ω in terms of its components, the rotational kinetic
energy becomes∑
α

1
2mα

(
(
∑

i êiω
i)× �ξα

) · ((∑j êjω
j
)× �ξα

)
= 1

2

∑
ij ω

iωj
∑

α mα

(
êi × �ξα

) · (êj × �ξα
)

= 1
2

∑
ij ω

iωjIij , (2.23)

with

Iij =
∑
α

mα

(
êi × �ξα

) · (êj × �ξα
)
. (2.24)

The nine time-dependent quantities Iij are the components of the
inertia tensor with respect to the chosen coordinate system.

Note what a remarkable form the kinetic energy has taken. All
we have done is interchange the order of summations, but now
the kinetic energy is written as a sum of products of components
of the angular velocity vector, which completely specify how the
orientation of the body is changing, and the quantity Iij, which
depends solely on the distribution of mass in the body relative to
the chosen coordinate system.

We will deduce a number of properties of the inertia tensor.
First, we find a somewhat simpler expression for it. The compo-
nents of the vector �ξα are (ξ0α, ξ

1
α, ξ

2
α). If we rewrite �ξα as a sum

over its components and simplify the elementary vector products
of basis vectors, we can obtain the components of the inertia ten-
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sor. We can arrange the components of the inertia tensor to form
the inertia matrix:

I =

⎧⎪⎪⎪⎪⎩ I00 I01 I02
I10 I11 I12
I20 I21 I22

⎫⎪⎪⎪⎪⎭ , (2.25)

where

I00 =
∑
α

mα((ξ
1
α)

2 + (ξ2α)
2)

I11 =
∑
α

mα((ξ
0
α)

2 + (ξ2α)
2)

I22 =
∑
α

mα((ξ
0
α)

2 + (ξ1α)
2)

Iij = −
∑
α

mαξ
i
αξ

j
α for i �= j (2.26)

Note that the inertia tensor has real components and is symmetric:
Ijk = Ikj.

We define the moment of inertia about a line by∑
α

mα(ξ
⊥
α )

2, (2.27)

where ξ⊥α is the perpendicular distance from the line to the con-
stituent with index α. The diagonal components of the inertia
tensor Iii are recognized as the moments of inertia about the lines
coinciding with the coordinate axes êi. The off-diagonal compo-
nents of the inertia tensor are called products of inertia.

The rotational kinetic energy of a body depends on the distri-
bution of mass of the body solely through the inertia tensor. Re-
markably, the inertia tensor involves only second-order moments
of the mass distribution with respect to the center of mass. We
might have expected the kinetic energy to depend in a complicated
way on all the moments of the mass distribution, interwoven in
some complicated way with the components of the angular ve-
locity vector, but this is not the case. This fact has a remarkable
consequence: for the motion of a free rigid body the detailed shape
of the body does not matter. If a book and a banana have the
same inertia tensor, that is, the same second-order mass moments,
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then if they are thrown in the same way the subsequent motion
will be the same, however complicated that motion is. The facts
that the book has corners and the banana has a stem do not affect
the motion except for their contributions to the inertia tensor. In
general, the potential energy of an extended body is not so simple
and does indeed depend on all moments of the mass distribution,
but for the kinetic energy the second moments are all that matter!

Exercise 2.1: Rotational kinetic energy

Show that the rotational kinetic energy can also be written

TR = 1
2Iω

2, (2.28)

where I is the moment of inertia about the line through the center of
mass with direction ω̂, and ω is the instantaneous rate of rotation.

Exercise 2.2: Steiner’s theorem

Let I be the moment of inertia of a body with respect to some given line
through the center of mass. Show that the moment of inertia I ′ with
respect to a second line parallel to the first is

I ′ = I +MR2 (2.29)

where M is the total mass of the body and R is the distance between
the lines.

Exercise 2.3: Some useful moments of inertia

Show that the moments of inertia of the following objects are as given:

a. The moment of inertia of a sphere of uniform density with mass M
and radius R about any line through the center is 2

5MR2.

b. The moment of inertia of a spherical shell with mass M and radius
R about any line through the center is 2

3MR2.

c. The moment of inertia of a cylinder of uniform density with mass M
and radius R about the axis of the cylinder is 1

2MR2.

d. The moment of inertia of a thin rod of uniform density per unit
length with mass M and length L about an axis perpendicular to the
rod through the center of mass is 1

12ML2.

Exercise 2.4: Jupiter

a. The density of a planet increases toward the center. Provide an
argument that the moment of inertia of a planet is less than that of a
sphere of uniform density of the same mass and radius.
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b. The density as a function of radius inside Jupiter is well approxi-
mated by

ρ(r) =
M

R3

sin(πr/R)

4r/R
,

where M is the mass and R is the radius of Jupiter. Find the moment
of inertia of Jupiter in terms of M and R.

2.4 Inertia Tensor

The representation of the rotational kinetic energy in terms of the
inertia tensor was derived with the help of a rectangular coordi-
nate system with basis vectors êi. There was nothing special about
this particular rectangular basis. So, the kinetic energy must have
the same form in any rectangular coordinate system. We can use
this fact to derive how the inertia tensor changes if the body or
the coordinate system is rotated.

Let’s talk a bit about active and passive rotations. The rotation
of the vector �x by the rotation R produces a new vector �x ′ = R�x.
We may write �x in terms of its components with respect to some
arbitrary rectangular coordinate system with orthonormal basis
vectors êi: �x = x0ê0 + x1ê1 + x2ê2. Let x indicate the column
matrix of components x0, x1, and x2 of �x, and R be the matrix
representation of R with respect to the same basis. In these terms
the rotation can be written x′ = Rx. The rotation matrix R is
a real orthogonal matrix.3 A rotation that carries vectors to new
vectors is called an active rotation.

Alternatively, we can rotate the coordinate system by rotating
the basis vectors, but leave other vectors that might be represented
in terms of them unchanged. If a vector is unchanged but the
basis vectors are rotated, then the components of the vector on
the rotated basis vectors are not the same as the components
on the original basis vectors. Denote the rotated basis vectors by
ê′i = Rêi. The component of a vector along a basis vector is the dot
product of the vector with the basis vector. So the components of

3Remember, an orthogonal matrix R satisfies R
T = R

−1 and detR = 1.



2.4 Inertia Tensor 131

the vector �x along the rotated basis ê′i are (x
′)i = �x·ê′i = �x·(Rêi) =

(R−1�x)·êi.4 Thus the components with respect to the rotated basis
elements are the same as the components of the rotated vector
R−1�x with respect to the original basis. In terms of components,
if the vector �x has components x with respect to the original basis
vectors êi, then the components x′ of the same vector with respect
to the rotated basis vectors ê′i are x

′ = R−1x, or equivalently x =
Rx′. A rotation that actively rotates the basis vectors, leaving
other vectors unchanged, is called a passive rotation. For a passive
rotation the components of a fixed vector change as if the vector
were actively rotated by the inverse rotation.

With respect to the rectangular basis êi the rotational kinetic
energy is written

1
2

∑
ij ω

iωjIij . (2.30)

In terms of matrix representations, the kinetic energy is

1
2ω

TIω, (2.31)

where ω is the column of components representing �ω.5 If we rotate
the coordinate system by the passive rotation R about the center
of rotation, the new basis vectors are ê′i = Rêi. The components
ω
′ of the vector �ω with respect to the rotated coordinate system

satisfy

ω = Rω
′, (2.32)

where R is the matrix representation of R. The kinetic energy is

1
2(ω

′)TRTIRω
′. (2.33)

However, if we had started with the basis ê′i, we would have written
the kinetic energy directly as

1
2(ω

′)TI′ω′, (2.34)

4The last equality follows from the fact that the rotation of two vectors pre-
serves the dot product: �x · �y = (R�x) · (R�y), or (R−1�x) · �y = �x · (R�y).

5We take a 1-by-1 matrix as a number.
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where the components are taken with respect to the ê′i basis. Com-
paring the two expressions, we see that

I′ = RTIR. (2.35)

Thus the inertia matrix transforms by a similarity transforma-
tion.6

2.5 Principal Moments of Inertia

We can use the transformation properties of the inertia ten-
sor (2.35) to show that there are special rectangular coordinate
systems for which the inertia tensor I ′ is diagonal, that is, I ′ij = 0

for i �= j. Let’s assume that I′ is diagonal and solve for the rota-
tion matrix R that does the job. Multiplying both sides of (2.35)
on the left by R, we have

RI′ = IR. (2.36)

We can examine pieces of this matrix equation by multiplying on
the right by a trivial column vector that picks out a particular
column. So we multiply on the right by the column matrix rep-
resentation ei of each of the coordinate unit vectors êi. These
column matrices have a one in the ith row and zeros otherwise.
Using e′i = Rei, we find

RI′ei = IRei = Ie′i. (2.37)

On the other hand, the matrix I′ is diagonal, so

RI′ei = ReiI
′
ii = I ′iie

′
i. (2.38)

So, from equations (2.37) and (2.38), we have

Ie′i = I ′iie
′
i, (2.39)

which we recognize as an equation for the eigenvalue I ′ii and e′i,
the column matrix of components of the associated eigenvector.

6That the inertia tensor transforms in this manner could have been deduced
from its definition (2.24). However, it seems that the argument based on the
coordinate-system independence of the kinetic energy provides insight.
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From e′i = Rei, we see that the e′i are the columns of the
rotation matrix R. Now, rotation matrices are orthogonal, so
RTR = 1; thus the columns of the rotation matrix must be
orthonormal—that is, (e′i)

Te′j = δij , where δij is one if i = j
and zero otherwise. But the eigenvectors that are solutions of
equation (2.39) are not necessarily even orthogonal. So we are
not done yet.

If a matrix is real and symmetric then the eigenvalues are real.
Furthermore, if the eigenvalues are distinct then the eigenvectors
are orthogonal. However, if the eigenvalues are not distinct then
the directions of the eigenvectors for the degenerate eigenvalues
are not uniquely determined—we have the freedom to choose par-
ticular e′i that are orthogonal.7 The linearity of equation (2.39)
implies that the e′i can be normalized. Thus whether or not the
eigenvalues are distinct we can obtain an orthonormal set of e′i.
This is enough to reconstruct a rotation matrix R that does the
job we asked of it: to rotate the coordinate system to a configura-
tion such that the inertia tensor is diagonal. If the eigenvalues are
not distinct, the rotation matrix R is not uniquely defined—there
is more than one rotation matrix R that does the job.

The eigenvectors and eigenvalues are determined by the require-
ment that the inertia tensor be diagonal with respect to the ro-
tated coordinate system. Thus the rotated coordinate system has
a special orientation with respect to the body. The basis vec-
tors ê′i therefore actually point along particular directions in the
body. We define the axes in the body through the center of mass
with these directions to be the principal axes. With respect to
the coordinate system defined by ê′i, the inertia tensor is diagonal,
by construction, with the eigenvalues I ′ii on the diagonal. Thus
the moments of inertia about the principal axes are the eigenval-
ues I ′ii. We call the moments of inertia about the principal axes
the principal moments of inertia.

For convenience, we often label the principal moments of inertia
according to their size: A ≤ B ≤ C, with principal axis unit vec-
tors â, b̂, ĉ, respectively. The positive direction along the principal
axes can be chosen so that â, b̂, ĉ form a right-handed rectangular
coordinate basis.

7If two eigenvalues are not distinct then linear combinations of the associ-
ated eigenvectors are eigenvectors. This gives us the freedom to find linear
combinations of the eigenvectors that are orthonormal.
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Let x represent the matrix of components of a vector �x with
respect to the basis vectors êi. Recall that the components x′ of a
vector �x with respect to the principal axis unit vectors ê′i satisfy

x′ = RTx. (2.40)

The components of a vector on the principal axis basis are some-
times called the body components of the vector.

If we choose the reference orientation of the body so that the
principal axes are aligned with the spatial axes x̂, ŷ, ẑ, then the
rotation R that diagonalizes the inertia matrix becomes the rota-
tion M shown in figure 2.1. The axes â′, b̂′, ĉ′ then become the
principal axes. The rotation matrix M multiplies the column of
components of a vector on the principal axes to make a column of
components of the vector in space.

Now let’s rewrite the kinetic energy in terms of the principal mo-
ments of inertia. If we choose our rectangular coordinate system
so that it coincides with the principal axes then the calculation
is simple. Let the components of the angular velocity vector on
the principal axes be (ωa, ωb, ωc). Then, keeping in mind that the
inertia tensor is diagonal with respect to the principal axis basis,
the kinetic energy is just

TR = 1
2 [A(ω

a)2 +B(ωb)2 + C(ωc)2] . (2.41)

Or as a program:

(define ((T-body A B C) omega-body)
(* 1/2

(+ (* A (square (ref omega-body 0)))
(* B (square (ref omega-body 1)))
(* C (square (ref omega-body 2))))))

Exercise 2.5: A constraint on the moments of inertia

Show that the sum of any two of the moments of inertia is greater than
or equal to the third moment of inertia. You may assume the moments
of inertia are with respect to orthogonal axes.

Exercise 2.6: Principal moments of inertia

For each of the configurations described below find the principal mo-
ments of inertia with respect to the center of mass, and find the corre-
sponding principal axes.

a. A regular tetrahedron consisting of four equal point masses tied to-
gether with rigid massless wire.
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b. A cube of uniform density.

c. Five equal point masses rigidly connected by massless stuff. The
point masses are at the rectangular coordinates

(−1, 0, 0), (1, 0, 0), (1, 1, 0), (0, 0, 0), (0, 0, 1).

Exercise 2.7: This book

Measure this book. You will admit that it is pretty dense. Don’t worry,
you will get to throw it later. Show that the principal axes are the lines
connecting the centers of opposite faces of the idealized brick approx-
imating the book. Compute the corresponding principal moments of
inertia.

2.6 Vector Angular Momentum

The vector angular momentum of a particle is the cross product
of its position vector and its linear momentum vector. For a rigid
body the vector angular momentum is the sum of the vector an-
gular momentum of each of the constituents. Here we find an
expression for the vector angular momentum of a rigid body in
terms of the inertia tensor and the angular velocity vector.

The vector angular momentum of a rigid body is∑
α

�xα × (mα�̇xα), (2.42)

where �xα, �̇xα, and mα are the positions, velocities, and masses
of the constituent particles. It turns out that the vector angular
momentum decomposes into the sum of the angular momentum
of the center of mass and the rotational angular momentum about
the center of mass, just as the kinetic energy separates into the
kinetic energy of the center of mass and the kinetic energy of
rotation. As in the kinetic energy demonstration (section 2.1),

decompose the position into the vector to the center of mass �X
and the vectors from the center of mass to the constituent mass
elements �ξα:

�xα = �X + �ξα, (2.43)

with velocities

�̇xα = �̇X + �̇ξα. (2.44)
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Substituting, the angular momentum is∑
α

mα( �X + �ξα)× ( �̇X + �̇ξα). (2.45)

Multiplying out the product, and using the fact that �X is the
center of mass and M =

∑
α mα is the total mass of the body, the

angular momentum is

�X × (M �̇X) +
∑
α

�ξα × (mα
�̇ξα). (2.46)

The angular momentum of the center of mass is

�X × (M �̇X), (2.47)

and the rotational angular momentum is∑
α

�ξα × (mα
�̇ξα). (2.48)

Using �̇ξα = �ω × �ξα, we get the rotational angular momentum
vector

�L =
∑
α

mα
�ξα × (�ω × �ξα). (2.49)

We can also reexpress the rotational angular momentum in
terms of the angular velocity vector and the inertia tensor, as we
did for the kinetic energy. In terms of components with respect
to the basis {ê0, ê1, ê2}, this is

Lj =
∑
k

Ijkω
k, (2.50)

where Ijk are the components of the inertia tensor (2.24). The
angular momentum and the kinetic energy are expressed in terms
of the same inertia tensor.

With respect to the principal-axis basis, the components of the
angular momentum have a particularly simple form:

La = Aωa

Lb = Bωb

Lc = Cωc (2.51)
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Since the angular momenta are the partial derivatives of TR (see
equation 2.41) with respect to the angular velocities, they must
be grouped as a down tuple (in matrix language, a row matrix):
L′ = [La, Lb, Lc]. As a program:

(define ((L-body A B C) omega-body)
(down (* A (ref omega-body 0))

(* B (ref omega-body 1))
(* C (ref omega-body 2))))

If M is the matrix representation of the rotation that takes an
angular-velocity vector �ω′ to a rotated vector �ω, the components
transform as ω = Mω

′.
When working with matrices it is more convenient to work with

a column matrix of the angular momentum components, so we
introduce L = LT. Using ω = Mω

′ and equation (2.35) with R

replaced by M we derive an expression for the angular momentum

L = Iω = MI′ω′ = ML
′
. (2.52)

Transposing this result, we see that the angular momentum com-
ponents must transform as L = L′MT:

(define (((L-space M) A B C) omega-body)
(* ((L-body A B C) omega-body)

(transpose M)))

Exercise 2.8: Rotational angular momentum

Verify that expression (2.50) for the components of the rotational angu-
lar momentum (2.49) in terms of the inertia tensor is correct.

2.7 Euler Angles

To go further we must finally specify a set of generalized coordi-
nates. We first do this using the traditional Euler angles. Later,
we find other ways of describing the orientation of a rigid body.

We are using an intermediate representation of the orientation
in terms of the functionM of the generalized coordinates that gives
the rotation that takes the body from some reference orientation
and rotates it to the orientation specified by the generalized coor-
dinates. Here we take the reference orientation so that principal-
axis unit vectors â, b̂, ĉ are coincident with the basis vectors êi,
labeled here by x̂, ŷ, ẑ.
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We define the Euler angles in terms of simple rotations about
the coordinate axes. Let Rx(ψ) be a right-handed rotation about
the x̂ axis by the angle ψ, and let Rz(ψ) be a right-handed rotation
about the ẑ axis by the angle ψ. The function M for Euler angles
is written as a composition of three of these simple coordinate axis
rotations:

M(θ, ϕ, ψ) = Rz(ϕ) ◦Rx(θ) ◦Rz(ψ), (2.53)

for the Euler angles θ, ϕ, ψ.
The Euler angles can specify any orientation of the body, but

the orientation does not always correspond to a unique set of Eu-
ler angles. In particular, if θ = 0 then the orientation is dependent
only on the sum ϕ + ψ, so the orientation does not uniquely de-
termine either ϕ or ψ.

Exercise 2.9: Euler angles

It is not immediately obvious that all orientations can be represented in
terms of the Euler angles. To show that the Euler angles are adequate to
represent all orientations, solve for the Euler angles that give an arbitrary
rotation R. Keep in mind that some orientations do not correspond to
a unique representation in terms of Euler angles.

Though the Euler angles allow us to specify all orientations and
thus can be used as generalized coordinates, the definition of Euler
angles is pretty arbitrary. In fact no reasoning has led us to them.
This is reflected in our presentation of them by just saying “here
they are.” Euler angles are well suited for some problems, but
cumbersome for others.

There are other ways of defining similar sets of angles. For
instance, we could also take our generalized coordinates to satisfy

M′(θ, ϕ, ψ) = Rx(ϕ) ◦Ry(θ) ◦Rz(ψ). (2.54)

Such alternatives to the Euler angles sometimes come in handy.
Each of the fundamental rotations can be represented as a ma-

trix. The rotation matrix representing a right-handed rotation
about the ẑ axis by the angle ψ is

Rz(ψ) =

⎧⎪⎪⎪⎪⎩ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎫⎪⎪⎪⎪⎭ (2.55)
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and a right-handed rotation about the x axis by the angle ψ is
represented by the matrix

Rx(ψ) =

⎧⎪⎪⎪⎪⎩ 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

⎫⎪⎪⎪⎪⎭ . (2.56)

The matrix that represents the rotation that carries the body from
its reference orientation to the actual orientation is

M(θ, ϕ, ψ) = Rz(ϕ)Rx(θ)Rz(ψ). (2.57)

The rotation matrices and their product can be constructed by
simple programs:

(define (Rz-matrix angle)
(matrix-by-rows
(list (cos angle) (- (sin angle)) 0)
(list (sin angle) (cos angle) 0)
(list 0 0 1)))

(define (Rx-matrix angle)
(matrix-by-rows
(list 1 0 0)
(list 0 (cos angle) (- (sin angle)))
(list 0 (sin angle) (cos angle))))

(define (Euler->M angles)
(let ((theta (ref angles 0))

(phi (ref angles 1))
(psi (ref angles 2)))

(* (Rz-matrix phi)
(Rx-matrix theta)
(Rz-matrix psi))))

Now that we have a procedure that implements a sample M,
we can find the components of the angular velocity vector and the
body components of the angular velocity vector using the proce-
dures M-of-q->omega-of-t and M-of-q->omega-body-of-t from
section 2.2. For example,
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(show-expression
(((M-of-q->omega-body-of-t Euler->M)

(up (literal-function ’theta)
(literal-function ’phi)
(literal-function ’psi)))

’t)) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Dϕ (t) sin (θ (t)) sin (ψ (t)) + cos (ψ (t))Dθ (t)

Dϕ (t) sin (θ (t)) cos (ψ (t))− sin (ψ (t))Dθ (t)

cos (θ (t))Dϕ (t) +Dψ (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
To construct the kinetic energy we need the procedure of state

that gives the body components of the angular velocity vector:

(show-expression
((M->omega-body Euler->M)
(up ’t

(up ’theta ’phi ’psi)
(up ’thetadot ’phidot ’psidot))))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ϕ̇ sin (ψ) sin (θ) + θ̇ cos (ψ)

ϕ̇ sin (θ) cos (ψ)− θ̇ sin (ψ)

ϕ̇ cos (θ) + ψ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We capture this result as a procedure:

(define (Euler-state->omega-body local)
(let ((q (coordinate local)) (qdot (velocity local)))
(let ((theta (ref q 0))

(psi (ref q 2))
(thetadot (ref qdot 0))
(phidot (ref qdot 1))
(psidot (ref qdot 2)))

(let ((omega-a (+ (* thetadot (cos psi))
(* phidot (sin theta) (sin psi))))

(omega-b (+ (* -1 thetadot (sin psi))
(* phidot (sin theta) (cos psi))))

(omega-c (+ (* phidot (cos theta)) psidot)))
(up omega-a omega-b omega-c)))))
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The kinetic energy can now be written:

(define ((T-body-Euler A B C) local)
((T-body A B C)
(Euler-state->omega-body local)))

We can define procedures to calculate the components of the
angular momentum on the principal axes:

(define ((L-body-Euler A B C) local)
((L-body A B C)
(Euler-state->omega-body local)))

We then transform the components of the angular momentum on
the principal axes to the components on the fixed basis êi:

(define ((L-space-Euler A B C) local)
(let ((angles (coordinate local)))
(* ((L-body-Euler A B C) local)

(transpose (Euler->M angles)))))

These procedures are local state functions, like Lagrangians.

2.8 Motion of a Free Rigid Body

The kinetic energy, expressed in terms of a suitable set of gen-
eralized coordinates, is a Lagrangian for a free rigid body. In
section 2.1 we found that the kinetic energy of a rigid body can
be written as the sum of the rotational kinetic energy and the
translational kinetic energy. If we choose one set of coordinates to
specify the position and another set to specify the orientation, the
Lagrangian becomes a sum of a translational Lagrangian and a
rotational Lagrangian. The Lagrange equations for translational
motion are not coupled to the Lagrange equations for the rota-
tional motion. For a free rigid body the translational motion is
just that of a free particle: uniform motion. Here we concentrate
on the rotational motion of the free rigid body. We can adopt the
Euler angles as the coordinates that specify the orientation; the
rotational kinetic energy was expressed in terms of Euler angles
in the previous section.
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Conserved quantities

The Lagrangian for a free rigid body has no explicit time depen-
dence, so we can deduce that the energy, which is just the kinetic
energy, is conserved by the motion.

The Lagrangian does not depend on the Euler angle ϕ, so we
can deduce that the momentum conjugate to this coordinate is
conserved. An explicit expression for the momentum conjugate to
ϕ is

(define Euler-state
(up ’t

(up ’theta ’phi ’psi)
(up ’thetadot ’phidot ’psidot)))

(show-expression
(ref (((partial 2) (T-body-Euler ’A ’B ’C)) Euler-state)

1))

Aϕ̇ (sin (θ))2 (sin (ψ))2 +Aθ̇ cos (ψ) sin (θ) sin (ψ)

+Bϕ̇ (cos (ψ))2 (sin (θ))2 −Bθ̇ cos (ψ) sin (θ) sin (ψ)

+ Cϕ̇ (cos (θ))2 + Cψ̇ cos (θ)

We know that this complicated quantity is conserved by the mo-
tion of the rigid body because of the symmetries of the Lagrangian.

If there are no external torques, then we expect that the vector
angular momentum will be conserved. We can verify this using
the Lagrangian formulation of the problem. First, we note that
Lz is the same as pϕ. We can check this by direct calculation:

(- (ref ((L-space-Euler ’A ’B ’C) Euler-state)
2)

(ref (((partial 2) (T-body-Euler ’A ’B ’C)) Euler-state)
1))

0

We know that pϕ is conserved because the Lagrangian for the free
rigid body did not mention ϕ, so now we know that Lz is con-
served. Since the orientation of the coordinate axes is arbitrary,
we know that if any rectangular component is conserved then all
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of them are. So the vector angular momentum is conserved for
the free rigid body.

We could have seen this with the help of Noether’s theorem
(see section 1.8.5). There is a continuous family of rotations that
can transform any orientation into any other orientation. The
orientation of the coordinate axes we used to define the Euler
angles is arbitrary, and the kinetic energy (the Lagrangian) is the
same for any choice of coordinate system. Thus the situation
meets the requirements of Noether’s theorem, which tells us that
there is a conserved quantity. In particular, the family of rotations
around each coordinate axis gives us conservation of the angular
momentum component on that axis. We construct the vector
angular momentum by combining these contributions.

Exercise 2.10: Uniformly accelerated rigid body

Show that a rigid body subject to a uniform acceleration rotates as a
free rigid body, while the center of mass has a parabolic trajectory.

Exercise 2.11: Conservation of angular momentum

Fill in the details of the argument that Noether’s theorem implies that
vector angular momentum is conserved by the motion of the free rigid
body.

2.8.1 Computing the Motion of Free Rigid Bodies

Lagrange’s equations for the motion of a free rigid body in terms
of Euler angles are quite disgusting, so we will not show them
here. However, we will use the Lagrange equations to explore the
motion of the free rigid body.

Before doing this it is worth noting that the equations of motion
in Euler angles are singular for some configurations, because for
these configurations the Euler angles are not uniquely defined. If
we set θ = 0 then an orientation does not correspond to a unique
value of ϕ and ψ; only their sum determines the orientation.

The singularity arises in the explicit Lagrange equations when
we attempt to solve for the second derivative of the generalized
coordinates in terms of the generalized coordinates and the gen-
eralized velocities (see section 1.7). The isolation of the second
derivative requires multiplying by the inverse of ∂2∂2L. The de-
terminant of this quantity becomes zero when the Euler angle θ
is zero:
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(show-expression
(determinant
(((square (partial 2)) (T-body-Euler ’A ’B ’C))
Euler-state)))

ABC (sin (θ))2

So when θ is zero, we cannot solve for the second derivatives.
When θ is small, the Euler angles can move very rapidly, and thus
may be difficult to compute reliably. Of course, the motion of the
rigid body is perfectly well behaved for any orientation. This is a
problem of the representation of that motion in Euler angles; it is
a “coordinate singularity.”

One solution to this problem is to use another set of Euler-like
coordinates for which Lagrange’s equations have singularities for
different orientations, such as those defined in equation (2.54). So
if as the calculation proceeds the trajectory comes close to a singu-
larity in one set of coordinates, we can switch coordinate systems
and use another set for a while until the trajectory encounters an-
other singularity. This solves the problem, but it is cumbersome.
For the moment we will ignore this problem and compute some
trajectories, being careful to limit our attention to trajectories
that avoid the singularities.

We will compute some trajectories by numerical integration and
check our integration process by seeing how well energy and an-
gular momentum are conserved. Then, we will investigate the
evolution of the components of angular momentum on the prin-
cipal axis basis. We will discover that we can learn quite a bit
about the qualitative behavior of rigid bodies by combining the
information we get from the energy and angular momentum.

To develop a trajectory from initial conditions we integrate the
Lagrange equations, as we did in chapter 1. The system derivative
is obtained from the Lagrangian:

(define (rigid-sysder A B C)
(Lagrangian->state-derivative (T-body-Euler A B C)))

The following program monitors the errors in the energy and in
the components of the angular momentum:
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(define ((monitor-errors win A B C L0 E0) state)
(let ((t (time state))

(L ((L-space-Euler A B C) state))
(E ((T-body-Euler A B C) state)))

(plot-point win t (relative-error (ref L 0) (ref L0 0)))
(plot-point win t (relative-error (ref L 1) (ref L0 1)))
(plot-point win t (relative-error (ref L 2) (ref L0 2)))
(plot-point win t (relative-error E E0))))

(define (relative-error value reference-value)
(if (zero? reference-value)

(error "Zero reference value -- RELATIVE-ERROR")
(/ (- value reference-value) reference-value)))

We make a plot window to display the errors:

(define win (frame 0.0 100.0 -1.0e-12 1.0e-12))

The default integration method used by the system is Bulirsch–
Stoer (bulirsch-stoer), but here we set the integration method
to be quality-controlled Runge–Kutta (qcrk4), because the error
plot is more interesting:

(set-ode-integration-method! ’qcrk4)

We use evolve to investigate the evolution:

(let ((A 1.0) (B (sqrt 2.0)) (C 2.0) ; moments of inertia
(state0 (up 0.0 ; initial state

(up 1.0 0.0 0.0)
(up 0.1 0.1 0.1))))

(let ((L0 ((L-space-Euler A B C) state0))
(E0 ((T-body-Euler A B C) state0)))

((evolve rigid-sysder A B C)
state0
(monitor-errors win A B C L0 E0)
0.1 ; step between plotted points
100.0 ; final time
1.0e-12))) ; max local truncation error

The plot that is developed of the relative errors in the components
of the angular momenta and the energy (see figure 2.2) shows that
we have been successful in controlling the error in the conserved
quantities. This should give us some confidence in the trajectory
that is evolved.
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Figure 2.2 The relative error in energy and in the three spatial com-
ponents of the angular momentum versus time. It is interesting to note
that the energy error is one of the three falling curves.

2.8.2 Qualitative Features of Free Rigid Body Motion

The evolution of the components of the angular momentum on
the principal axes has a remarkable property. For almost every
initial condition the body components of the angular momentum
periodically trace a simple closed curve.

We can see this by investigating a number of trajectories and
plotting the components of angular momentum of the body on the
principal axes (see figure 2.3). To make this figure a number of tra-
jectories of equal energy were computed. The three-dimensional
space of body components is projected onto a two-dimensional
plane for display. Points on the back of this projection of the
ellipsoid of constant energy are plotted with lower density than
points on the front of the ellipsoid. For most initial conditions we
find a one-dimensional simple closed curve. Some trajectories on
the front side appear to cross trajectories on the back side, but
this is an artifact of projection. There is also a family of trajec-
tories that appear to intersect in two points, one on the front side
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Figure 2.3 Trajectories of the components of the angular momentum
vector on the principal axes, projected onto a plane. Each closed curve,
except for the separatrix, is a different trajectory. All the trajectories
shown here have the same energy.

and one on the back side. The curve that is the union of these
trajectories is called a separatrix; it separates different types of
motion.

What is going on? The state space for a free rigid body is six-
dimensional: the three Euler angles and their time derivatives.
We know four constants of the motion—the three spatial com-
ponents of the angular momentum, Lx, Ly, and Lz, and the en-
ergy, E. Thus, the motion is restricted to a two-dimensional region
of the state space.8 Our experiment shows that the components of
the angular momentum trace one-dimensional closed curves in the
angular-momentum subspace, so there is something more going on
here.

The total angular momentum is conserved if all of the compo-
nents are, so we also have the constant

L2 = L2
x + L2

y + L2
z. (2.58)

8We expect that for each constant of the motion we reduce by one the di-
mension of the region of the state space explored by a trajectory. This is
because a constant of the motion can be used locally to solve for one of the
state variables in terms of the others.
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The spatial components of the angular momentum do not change,
but of course the projections of the angular momentum onto the
principal axes do change because the axes move as the body moves.
However, the magnitude of the angular momentum vector is the
same whether it is computed from components on the fixed basis
or components on the principal axis basis. So, the combination

L2 = L2
a + L2

b + L2
c , (2.59)

is conserved.
Using the expressions (2.51) for the components of the angu-

lar momentum in terms of the components of the angular veloc-
ity vector on the principal axes, the kinetic energy (2.41) can be
rewritten in terms of the angular momentum components on the
principal axes:

E =
1

2

(
L2
a

A
+

L2
b

B
+

L2
c

C

)
. (2.60)

The two conserved quantities (2.59 and 2.60) provide con-
straints on how the components of the angular momentum vector
on the principal axes can change. We recognize the conservation of
angular momentum constraint (2.59) as the equation of a sphere,
and the conservation of kinetic energy constraint (2.60) as the
equation for a triaxial ellipsoid. For every trajectory both con-
straints are satisfied, so the components of the angular momentum
move on the intersection of these two surfaces, the energy ellip-
soid and the angular momentum sphere. The intersection of an
ellipsoid and a sphere with the same center is typically two closed
curves, so an orbit is confined to one of these curves. This sheds
light on the puzzle posed at the beginning of this section.

Because of our ordering A ≤ B ≤ C, the longest axis of this
triaxial ellipsoid coincides with the ĉ direction (all the angular
momentum is along the axis of largest principal moment of inertia)
and the shortest axis of the energy ellipsoid coincides with the â
axis (all the angular momentum is along the smallest moment
of inertia). Without actually solving the Lagrange equations, we
have found strong constraints on the evolution of the components
of the angular momentum on the principal axes.

To determine how the system evolves along these intersection
curves we have to use the equations of motion. We observe that
the evolution of the components of the angular momentum on
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the principal axes depends only on the components of the angu-
lar momentum on the principal axes, even though the values of
these components are not enough to completely specify the dy-
namical state. Apparently the dynamics of these components is
self-contained, and we will see that it can be described in terms of
a set of differential equations whose only dynamical variables are
the components of the angular momentum on the principal axes
(see section 2.9).

We note that there are two axes for which the intersection
curves shrink to a point if we hold the energy constant and vary
the magnitude of the angular momentum. If the angular momen-
tum starts at these points, the conserved quantities constrain the
angular momentum to stay there. These points are equilibrium

points for the body components of the angular momentum. How-
ever, they are not equilibrium points for the system as a whole.
At these points the body is still rotating even though the body
components of the angular momentum are not changing. This
kind of equilibrium is called a relative equilibrium. We can also
see that if the angular momentum is initially slightly displaced
from one of these relative equilibria, then the angular momentum
is constrained to stay near it on one of the intersection curves.
The angular momentum vector is fixed in space, so the principal
axis of the equilibrium point of the body rotates stably about the
angular momentum vector.

At the principal axis with intermediate moment of inertia, the
b̂ axis, the intersection curves appear to cross. As we observed,
the dynamics of the components of the angular momentum on the
principal axes forms a self-contained dynamical system. Trajec-
tories of a dynamical system cannot cross,9 so the most that can
happen is that if the equations of motion carry the system along
the intersection curve then the system can approach the cross-
ing point only asymptotically. So without solving any equations
we can deduce that the point of crossing is another relative equi-
librium. If the angular momentum is initially aligned with the
intermediate axis, then it stays aligned. If the system is slightly
displaced from the intermediate axis, then the evolution along the
intersection curve will take the system far from the relative equi-
librium. So rotation about the axis of intermediate moment of
inertia is unstable—initial displacements of the angular momen-

9Systems of ODEs that satisfy a Lipschitz condition have unique solutions.
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tum, however small initially, become large. Again, the angular
momentum vector is fixed in space, but now the principal axis
with the intermediate principal moment does not stay close to the
angular momentum, so the body executes a complicated tumbling
motion.

This gives some insight into the mystery of the thrown book
mentioned at the beginning of the chapter. If one throws a book
so that it is initially rotating about either the axis with the largest
moment of inertia or the axis with the smallest moment of inertia
(the shortest and longest physical axes, respectively), the book
rotates regularly about that axis. However, if the book is thrown
so that it is initially rotating about the axis of intermediate mo-
ment of inertia (the intermediate physical axis), then it tumbles,
however carefully it is thrown. You can try it with this book (but
put a rubber band or string around it first).

Before moving on, we can make some further physical deduc-
tions. Suppose a freely rotating body is subject to some sort of
internal friction that dissipates energy but conserves the angular
momentum. For example, real bodies flex as they spin. If the
spin axis moves with respect to the body then the flexing changes
with time, and this changing distortion converts kinetic energy
of rotation into heat. Internal processes do not change the total
angular momentum of the system. If we hold the magnitude of
the angular momentum fixed but gradually decrease the energy,
then the curve of intersection on which the system moves gradu-
ally deforms. For a given angular momentum there is a lower limit
on the energy: the energy cannot be so low that there are no in-
tersections. For this lowest energy the intersection of the angular
momentum sphere and the energy ellipsoid is a pair of points on
the axis of maximum moment of inertia. With energy dissipation,
a freely rotating physical body eventually ends up with the lowest
energy consistent with the given angular momentum, which is ro-
tation about the principal axis with the largest moment of inertia
(typically the shortest physical axis).

Thus, we expect that given enough time all freely rotating phys-
ical bodies will end up rotating about the axis of largest moment of
inertia. You can demonstrate this to your satisfaction by twirling
a small bottle containing some viscous fluid, such as correction
fluid. What you will find is that, whatever spin you try to put
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on the bottle, it will reorient itself so that the axis of the largest
moment of inertia is aligned with the spin axis. Remarkably, this
is very nearly true of almost every body in the solar system for
which there is enough information to decide. The deviations from
principal axis rotation for the Earth are tiny: the angle between
the angular momentum vector and the ĉ axis for the Earth is less
than one arc-second.10 In fact, the evidence is that all of the plan-
ets, the Moon and all the other natural satellites, and almost all
of the asteroids rotate very nearly about the largest moment of
inertia. We have deduced that this is to be expected using an
elementary argument. There are exceptions. Comets typically do
not rotate about the largest moment. As they are heated by the
sun, material spews out from localized jets, and the back reaction
from these jets changes the rotation state. Among the natural
satellites, the only known exception is Saturn’s satellite Hyper-
ion, which is tumbling chaotically. Hyperion is especially out of
round and subject to strong gravitational torques from Saturn.

2.9 Euler’s Equations

For a free rigid body we have seen that the components of the
angular momentum on the principal axes comprise a self-contained
dynamical system: the variation of the principal axis components
depends only on the principal axis components. Here we derive
equations that govern the evolution of these components.

The starting point for the derivation is the conservation of the
vector angular momentum. The components of the angular mo-
mentum on the principal axes are11

L
′
= I′ω′, (2.61)

where ω
′ is composed of the components of the angular velocity

vector on the principal axes and I′ is the matrix representation of
the inertia tensor with respect to the principal axis basis:

10The deviation of the angular momentum from the principal axis may be due
to a number of effects: earthquakes, atmospheric tides, ... .

11Here we are using the column-matrix version of the components of the an-
gular momentum, as in equation (2.52).
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I′ =

⎧⎪⎪⎪⎪⎩A 0 0
0 B 0
0 0 C

⎫⎪⎪⎪⎪⎭ . (2.62)

The body components of the angular momentum L′ are related to
the components L on the fixed rectangular basis êi by

L = ML
′
, (2.63)

where M is the matrix representation of the rotation that carries
the body and all vectors attached to the body from the reference
orientation of the body to the actual orientation.

The vector angular momentum is conserved for free rigid-body
motion, and so are its components on a fixed rectangular basis.
So, along solution paths,

0 = DL = DML
′
+MDL

′
. (2.64)

Solving, we find

DL
′
= −MTDML

′
. (2.65)

In terms of ω′ this is

I′Dω
′ = −MTDMI′ω′

= −MT A(Mω
′)MI′ω′, (2.66)

where we have used equation (2.21) to write DM in terms of A.
The function A has the property12

RT A(Rv)R = A(v) (2.67)

for any vector with components v and any rotation with matrix
representation R. Using this property of A, we find Euler’s equa-

tions:

I′Dω
′ = −A(ω′) I′ω′. (2.68)

Euler’s equations give the time derivative of the body components
of the angular velocity vector entirely in terms of the angular

12Rotating the cross product of two vectors gives the same vector as is obtained
by taking the cross product of two rotated vectors: R(�u× �v) = (R�u)× (R�v).
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velocity components and the principal moments of inertia. Let ωa,
ωb, and ωc denote the components of the angular velocity vector
on the principal axes. Then Euler’s equations can be written as
the component equations

ADωa = (B − C)ωbωc

BDωb = (C −A)ωcωa

C Dωc = (A−B)ωaωb. (2.69)

Alternatively, we can rewrite Euler’s equations in terms of the
components of the angular momentum on the principal axes

DLa =
( 1

C
− 1

B

)
LbLc

DLb =
( 1

A
− 1

C

)
LaLc

DLa =
( 1

B
− 1

A

)
LaLb. (2.70)

These equations confirm that the time derivatives of the com-
ponents of the angular momentum on the principal axes depend
only on the components of the angular momentum on the principal
axes.

Euler’s equations are very simple, but they do not completely
determine the evolution of a rigid body—they do not give the spa-
tial orientation of the body. However, equation (2.21) and prop-
erty (2.67) can be used to relate the derivative of the orientation
matrix to the body components of the angular velocity vector:

DM = MA(ω′). (2.71)

A straightforward method of using these equations is to integrate
them componentwise as a set of nine first-order ordinary differ-
ential equations, with initial conditions determining the initial
configuration matrix. Together with Euler’s equations, which de-
scribe how the body components of the angular velocity vector
change with time, this system of equations governing the motion
of a rigid body is complete. However, the reader will no doubt
have noticed that this approach is rather wasteful. The fact that
the orientation matrix can be specified with only three parameters
has not been taken into account. We should be integrating three
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equations for the orientation, given ω
′, not nine. To accomplish

this we once again need to parameterize the configuration matrix.
For example, we can use Euler angles to parameterize the ori-

entation:

M(θ, ϕ, ψ) = Rz(ϕ)Rx(θ)Rz(ψ). (2.72)

We formM by composingM with an Euler coordinate path. Equa-
tion (2.71) can then be used to solve for Dθ, Dϕ, and Dψ. We
find⎧⎪⎪⎪⎪⎩ Dθ

Dϕ
Dψ

⎫⎪⎪⎪⎪⎭ =
1

sin θ

⎧⎪⎪⎪⎪⎩ cosψ sin θ − sinψ sin θ 0
sinψ cosψ 0

− sinψ cos θ − cosψ cos θ sin θ

⎫⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎩ωa

ωb

ωc

⎫⎪⎪⎪⎪⎭ .

(2.73)

This gives us the desired equation for the orientation. Note that
it is singular for θ = 0, as are Lagrange’s equations. So Euler’s
equations using Euler angles for the configuration have the same
problem as did the Lagrange equations using Euler angles. Again,
this is a manifestation of the fact that for θ = 0 the orientation
depends only on ϕ+ψ. The singularity in the equations of motion
for θ = 0 does not correspond to anything funny in the motion of
the rigid body. A practical solution to the singularity problem is
to choose another set of Euler-like angles that have a singularity
in a different place, and switch from one to the other when the
going gets tough.

Exercise 2.12:

Fill in the details of the derivation of equation (2.73). You may want to
use the computer to help with the algebra.

Euler’s equations for forced rigid bodies

Euler’s equations were derived for a free rigid body. In general,
we must be able to deal with external forcing. How do we do
this? First, we derive expressions for the vector torque. Then we
include the vector torque in the Euler equations.

We derive the vector torque in a manner analogous to the
derivation of the vector angular momentum. That is, we derive
one component and then argue that since the coordinate system
is arbitrary, all components have the same form.



2.9 Euler’s Equations 155

Suppose we have a rigid body subject to some potential energy
that depends only on time and the configuration. A Lagrangian is
L = T − V . If we use the Euler angles as generalized coordinates,
the last of the three active Euler rotations that define the orienta-
tion is a rotation about the ẑ axis by the angle ϕ. The Lagrange
equation for ϕ gives13

Dpϕ(t) = −∂1,1V (t; θ(t), ϕ(t), ψ(t)). (2.74)

If we define Tz, the component of the torque about the z axis, to
be minus the derivative of the potential energy with respect to the
angle of rotation of the body about the z axis,

Tz(t) = −∂1,1V (t; θ(t), ϕ(t), ψ(t)), (2.75)

then we see that

Dpϕ(t) = Tz(t). (2.76)

We have already identified the momentum conjugate to ϕ as one
component, Lz, of the vector angular momentum �L (see sec-
tion 2.8), so

DLz(t) = Tz. (2.77)

Since the orientation of the reference rectangular basis vectors is
arbitrary, we may choose them any way that we please. Thus if
we want any component of the vector torque, we may choose the
z-axis so that we can compute it in this way. We can conclude that
the vector torque gives the rate of change of the vector angular
momentum

D�L = �T . (2.78)

Having obtained a general prescription for the vector torque, we
address how the vector torque may be included in Euler’s equa-
tions. Euler’s equations expressed the fact that the vector angular

13In this equation we have a partial derivative with respect to a component of
the coordinate argument of the potential energy function. The first subscript
on the ∂ symbol indicates the coordinate argument. The second one selects
the ϕ component.
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momentum is conserved. Let’s return to that calculation, but now
include a torque with components T arranged as a column matrix:

DL = T = DML
′
+MDL

′
. (2.79)

Carrying out the same steps as before, we find

Ta = DLa −
( 1

C
− 1

B

)
LbLc

Tb = DLb −
( 1

A
− 1

C

)
LaLc

Tc = DLa −
( 1

B
− 1

A

)
LaLb, (2.80)

where the components of the torque on the principal axes are

T
′
= M−1T. (2.81)

In terms of ω′ this is

I′Dω
′ + A(ω′) I′ω′ = T

′
; (2.82)

in components,

ADωa − (B − C)ωbωc = Ta

BDωb − (C −A)ωcωa = Tb

C Dωc − (A−B)ωaωb = Tc. (2.83)

Note that the torque entered only the equations for the body
angular momentum and for the body angular velocity vector. The
equations that relate the derivative of the orientation to the an-
gular velocity vector are not modified by the torque. In a sense,
Euler’s equations contain the dynamics, and the equations govern-
ing the orientation are kinematic. Of course, Lagrange’s equations
must be modified by the potential that gives rise to the torques; in
this sense Lagrange’s equations contain both dynamics and kine-
matics.

Exercise 2.13: Bicycle wheel

a. Imagine that you are holding a bicycle wheel by the axle (in both
hands) and the wheel is spinning so that the top edge is going away
from your face. If you torque the wheel by pushing down with your
right hand and pulling up with your left hand the wheel will precess.
Which way does it try to turn?
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b. A free bicycle wheel rolls on a horizontal surface. If it starts to tilt,
the torque from gravity will cause the wheel to turn. Which way will it
turn? The reasoning that applied to part a does not directly apply to
the rolling bicycle wheel, which is not a holonomic system. However, it
is interesting to think about whether the behavior of the two systems is
related.

2.10 Axisymmetric Tops

We have all played with a top at one time or another. For the
purposes of analysis we will consider an idealized top that does
not wander around. Thus, an ideal top is a rotating rigid body,
one point of which is fixed in space. Furthermore, the center of
mass of the top is not at the fixed point, which is the center of
rotation, and there is a uniform gravitational acceleration.

For our top we can take the Lagrangian to be the difference
of the kinetic energy and the potential energy. We already know
how to write the kinetic energy—what is new here is that we
must express the potential energy in terms of the configuration.
In the case of a body in a uniform gravitational field this is easy.
The potential energy is the sum of “mgh” for all the constituent
particles:∑
α

mαghα, (2.84)

where g is the gravitational acceleration, hα = �xα · ẑ, and the unit
vector ẑ indicates which way is up. Rewriting the vector to the
constituents in terms of the vector �X to the center of mass, the
potential energy is∑
α

mαg
(
�X + �ξα

) · ẑ
= gM �X · ẑ + g

(∑
α

mα
�ξα

)
· ẑ

= gM �X · ẑ, (2.85)

where the last sum is zero because the center of mass is the origin
of �ξα. So the potential energy of a body in a gravitational field
with uniform acceleration is very simple: it is just Mgh, where M
is the total mass and h = �X · ẑ is the height of the center of mass.
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Figure 2.4 An axisymmetric top is a symmetrical rigid body in a
uniform gravitational field with one point of the body fixed in space.
The Euler angles used to specify the configuration are indicated.

Here we consider an axisymmetric top (see figure 2.4). Such
a top has an axis of symmetry of the mass distribution, so the
center of mass is on the symmetry axis and the fixed point is also
on the axis of symmetry.

In order to write the Lagrangian we need to choose a set of
generalized coordinates. If we choose them well we can take ad-
vantage of the symmetries of the problem. If the Lagrangian does
not depend on a particular coordinate, the conjugate momentum
is conserved, and the complexity of the system is reduced.

The axisymmetric top has two apparent symmetries. The fact
that the mass distribution is axisymmetric implies that neither
the kinetic nor the potential energy is sensitive to the orientation
of the top about that symmetry axis. Additionally, the kinetic
and potential energy are insensitive to a rotation of the physical
system about the vertical axis, because the gravitational field is
uniform.

We can take advantage of these symmetries by choosing ap-
propriate coordinates, and we already have a coordinate system
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that does the job—the Euler angles.14 We choose the reference
orientation so that the symmetry axis is vertical. The first Euler
angle, ψ, expresses a rotation about the symmetry axis. The next
Euler angle, θ, is the tilt of the symmetry axis of the top from the
vertical. The third Euler angle, ϕ, expresses a rotation of the top
about the ẑ axis. The symmetries of the problem imply that the
first and third Euler angles do not appear in the Lagrangian. As a
consequence the momenta conjugate to these angles are conserved
quantities. Let’s work out the details.

First, we develop the Lagrangian explicitly. The general form
of the kinetic energy about a fixed point is given by equation 2.41.
The top is constrained so that it pivots about a fixed point that is
not at the center of mass. So the moments of inertia that enter the
kinetic energy are the moments of inertia of the top with respect
to the pivot point, not with respect to the center of mass. If
we know the moments of inertia about the center of mass we can
write the moments of inertia about the pivot in terms of them (see
exercise 2.2 on Steiner’s theorem). So let’s assume the principal
moments of inertia of the top about the pivot are A, B, and C,
and A = B because of the symmetry.15 We can use the computer
to help us figure out the Lagrangian for this special case:

(show-expression
((T-body-Euler ’A ’A ’C)

(up ’t
(up ’theta ’phi ’psi)
(up ’thetadot ’phidot ’psidot))))

1

2
(sin (θ))2Aϕ̇2 + cos (θ)

(1
2
cos (θ)Cϕ̇2 + Cϕ̇ψ̇

)
+

1

2
Aθ̇2 +

1

2
Cψ̇2

We can rearrange this a bit to get

T (t; θ, ϕ, ψ; θ̇, ϕ̇, ψ̇)

= 1
2A

(
θ̇2 + ϕ̇2 sin2 θ

)
+ 1

2C
(
ψ̇ + ϕ̇ cos θ

)2
. (2.86)

14That the axisymmetric top can be solved in Euler angles is, no doubt, the
reason for the traditional choice of the definition of these. For other problems,
the Euler angles may offer no particular advantage.

15Here, we do not require that C be larger than A = B, because they are not
measured with respect to the center of mass.
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In terms of Euler angles, the potential energy is

V (t; θ, ϕ, ψ; θ̇, ϕ̇, ψ̇) = MgR cos θ, (2.87)

where R is the distance of the center of mass from the pivot. The
Lagrangian is L = T − V . We see that the Lagrangian is indeed
independent of ψ and ϕ, as expected.

There is no particular reason to look at the Lagrange equations.
We can assign that job to the computer when needed. However, we
have already seen that it may be useful to examine the conserved
quantities associated with the symmetries.

The energy is conserved, because the Lagrangian has no ex-
plicit time dependence. Also, the energy is the sum of the kinetic
and potential energy E = T + V , because the kinetic energy is
a homogeneous quadratic form in the generalized velocities. The
energy is

E = 1
2A

(
θ̇2 + ϕ̇2 sin2 θ

)
+ 1

2C
(
ψ̇ + ϕ̇ cos θ

)2
+MgR cos θ. (2.88)

Two of the generalized coordinates do not appear in the La-
grangian, so there are two conserved momenta. The momentum
conjugate to ϕ is

pϕ =
(
A(sin θ)2 + C(cos θ)2

)
ϕ̇+ Cψ̇ cos θ. (2.89)

The momentum conjugate to ψ is

pψ = C(ψ̇ + ϕ̇ cos θ). (2.90)

The state of the system at a moment is specified by the tuple(
t; θ, ϕ, ψ; θ̇, ϕ̇, ψ̇

)
. Because the two coordinates ϕ and ψ do not

appear in the Lagrangian, they do not appear in the Lagrange
equations or the conserved momenta. So the evolution of the
remaining four state variables, θ, θ̇, ϕ̇, and ψ̇, depends only on
those remaining state variables. This subsystem for the top has a
four-dimensional state space. The variables that did not appear in
the Lagrangian can be determined by integrating the derivatives
of these variables, which are determined separately by solving the
independent subsystem.
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The evolution of the top is described by a four-dimensional
subsystem and two auxiliary quadratures.16 This subdivision is a
consequence of choosing generalized coordinates that incorporate
the symmetries. However, the choice of generalized coordinates
that incorporate the symmetries also gives conserved momenta.
We can make use of these momenta to simplify the formulation
of the problem further. Each conserved quantity can be used to
locally eliminate one dimension of the subsystem. In this case
the subsystem has four dimensions and there are three conserved
quantities, so the system can be completely reduced to quadra-
tures. For the top, this can be done analytically, but we think it
is a waste of time to do so. Rather, we are interested in extracting
interesting features of the motion. We concentrate on the energy
and use the two conserved momenta to eliminate ϕ̇ and ψ̇. After
a bit of algebra we find:

E =
1

2
Aθ̇2 +

(pϕ − pψ cos θ)2

2A(sin θ)2
+

p2ψ
2C

+MgR cos θ. (2.91)

Along a path θ, where Dθ(t) is substituted for θ̇, this is an ordi-
nary differential equation for θ. This differential equation involves
various constants, some of which are set by the initial conditions
of the other state variables. The solution of the differential equa-
tion for θ involves no more than ordinary integrals. So the top is
essentially solved. We could continue this argument to obtain the
qualitative behavior of θ: Using the energy (2.91), we can plot the
trajectories in the plane of θ̇ versus θ and see that the motion of
θ is simply periodic. However, we will defer this until chapter 3,
when we have developed more tools for analysis.

Let’s get real. Let’s make a top out of an aluminum disk with a
steel rod through the center to make the pivot. Measuring the top
very carefully, we find that the moment of inertia of the top about
the symmetry axis is about 1.32 × 10−4 kgm2, and the moment of
inertia about the pivot point is about 6.96 × 10−4 kgm2. The com-
bination gMR is about 0.112kgm2 s−2. We spin the top up with
an initial angular velocity of ψ̇ = 200 rad s−1 (about 1910 rpm).

16Traditionally, evaluating a definite integral is known as performing a quadra-
ture.
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Figure 2.5 The tilt angle π− θ of the top versus time. The tilt of the
top varies periodically. This motion is called nutation.
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Figure 2.6 The precession angle ϕ of the top versus time. The top
precesses nonuniformly—the rate of precession varies as the tilt varies.
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Figure 2.7 The rate of rotation ψ̇ of the top versus time. The rate of
rotation of the top changes periodically, as the tilt of the top varies.

The top initially has θ̇ = ϕ = ψ = 0 and is initially tilted with
θ = 0.4 rad. We then kick it so that ϕ̇ = −10 rad s−1. Figures
2.5–2.8 display aspects of the evolution of the top for 2 seconds.
The tilt of the top (measured by θ) varies in a periodic manner.
The orientation about the vertical is measured by ϕ: we see that
the top also precesses, and the rate of precession varies with θ.
We also see that as the top bobs up and down the rate of rotation
of the top oscillates—the top spins faster when it is more vertical.
The plot of tilt versus precession angle shows that in this case the
top executes a looping motion. If we do not kick it but just let it
drop, then the loop disappears, leaving just a cusp. If we kick it in
the other direction, then there is no cusp nor any looping motion.

Exercise 2.14: Kinetic energy of the top

The rotational kinetic energy of the top can be written in terms of
the principal moments of inertia with respect to the pivot point and
the angular velocity vector of rotation with respect to the pivot point.
Show that this formulation of the kinetic energy yields the same value
that one would obtain by computing the sum of the rotational kinetic
energy about its center of mass and the kinetic energy of the motion of
the center of mass.



164 Chapter 2 Rigid Bodies
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Figure 2.8 An idea of the actual motion of the top is obtained by
plotting the tilt angle π − θ versus the precession angle ϕ. This is a
“latitude-longitude” map showing the path of the center of mass of the
top. We see that, though the top has a net precession, it executes a
looping motion as it precesses.

Exercise 2.15: Nutation of the top

a. Carry out the algebra to obtain the energy (2.91) in terms of θ and θ̇.

b. Numerically integrate the Lagrange equations for the top to obtain
figure 2.5, θ versus time.

c. Note that the energy is a differential equation for θ̇ in terms of θ, with
conserved quantities pϕ, pψ, and E determined by initial conditions.
Can we use this differential equation to obtain θ as a function of time?
Explain.

Exercise 2.16: Precession of the top

Consider a top that is rotating so that θ is constant.

a. Using conservation of angular momentum, compute the rate of pre-
cession ϕ̇ as a function of the conserved angular momenta and the equi-
librium value of θ.

b. For θ to be at an equilibrium the acceleration D2θ must be zero.
Use the Lagrange equation for θ to find the rate of precession ϕ̇ at the
equilibrium in terms of the equilibrium θ and ψ̇.
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c. Find an approximate expression for the precession rate in the limit
that ψ̇ is large.

d. The Newtonian rule is that the rate of change of the angular momen-
tum is the torque. Assume the top is spinning so fast that the angular
momentum is nearly the same as the angular momentum of rotation
about the symmetry axis. By equating the rate of change of this vector
angular momentum to the gravitational torque on the center of mass
develop an approximate formula for the precession rate.

e. Numerically integrate the top to check your deductions.

2.11 Spin-Orbit Coupling

The rotation of planets and natural satellites is affected by the
gravitational forces from other celestial bodies. As an extended
application of the Lagrangian method for forced rigid bodies, we
consider the rotation of celestial objects subject to gravitational
forces.

We first develop the form of the potential energy for the grav-
itational interaction of an extended body with an external point
mass. With this potential energy and the usual rigid-body kinetic
energy we can form Lagrangians that model a number of systems.
We will take an initial look at the rotation of the Moon and Mer-
cury; later, after we have developed more tools, we will return to
study these systems.

2.11.1 Development of the Potential Energy

The first task is to develop convenient expressions for the gravi-
tational potential energy of the interaction of a rigid body with
a distant point mass. A rigid body can be thought of as made
of a large number of mass elements, subject to rigid coordinate
constraints. We have seen that the kinetic energy of a rigid body
is conveniently expressed in terms of the moments of inertia of
the body and the angular velocity vector, which in turn can be
represented in terms of a suitable set of generalized coordinates.
The potential energy can be developed in a similar manner. We
first represent the potential energy in terms of moments of the
mass distribution and later introduce generalized coordinates as
particular parameters of the potential energy.
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Figure 2.9 The gravitational potential energy of a point mass and a
rigid body is the sum of the gravitational potential energy of the point
mass with each constituent mass element of the rigid body.

The gravitational potential energy of a point mass and a rigid
body (see figure 2.9) is the sum of the potential energy of the point
mass with each mass element of the body:

−
∑
α

GM ′mα

rα
, (2.92)

whereM ′ is the mass of the external point mass, rα is the distance
between the point mass and the constituent mass element with
index α, mα is the mass of this constituent element, and G is
the gravitational constant. Let R be the distance of the center of
mass of the rigid body from the point mass. The distance from the
center of mass to the constituent with index α is ξα. The distance
rα is then given by the law of cosines as r2α = R2+ξ2α−2ξαR cos θα,
where θα is the angle between the lines from the center of mass to
the constituent and to the point mass.

Because this is a three-dimensional body the distance ξα and
angle θα do not completely specify the position of the constituent
mass element; to do that one must also specify the angle of rota-
tion about the line between the center of mass and the external
point mass. But the potential energy does not depend on this
angle.

The potential energy is then

−GM ′
∑
α

mα

(R2 + ξ2α − 2ξαR cos θα)
1/2

. (2.93)
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This is complete, but we need to find a representation that does
not mention each constituent.

Typically, the size of celestial bodies is small compared to the
distance between them. We can make use of this to find a more
compact representation of the potential energy. If we expand the
potential energy in the small ratio ξα/R we find

−GM ′
∑
α

mα
1

R

∑
l

ξlα
Rl

Pl(cos θα), (2.94)

where Pl is the lth Legendre polynomial.17 Interchanging the
order of the summations yields:

−GM ′

R

∑
l

∑
α

mα
ξlα
Rl

Pl(cos θα). (2.95)

Successive terms in this expansion of the potential energy typically
decrease very rapidly because celestial bodies are small compared
to the distance between them. We can compute an upper bound
to the size of these terms by replacing each factor in the sum
over α by an upper bound. The Legendre polynomials all have
magnitudes less than one for arguments in the range −1 to 1.
The distances ξα are all less than some maximum extent of the
body ξmax. The sum over mα times these upper bounds is just
the total mass M times the upper bounds. Thus∣∣∣∣∣∑

α

mα
ξlα
Rl

Pl(cos θα)

∣∣∣∣∣ ≤M
ξlmax

Rl
. (2.96)

We see that the upper bound on successive terms decreases by a
factor ξmax/R. Successive terms may be smaller still. For large
bodies the gravitational force is strong enough to overcome the

17The Legendre polynomials Pl may be obtained by expanding the expression
(1 + y2 − 2yx)−1/2 as a power series in y. The coefficient of yl is Pl(x). The
first few Legendre polynomials are: P0(x) = 1, P1(x) = x, P2(x) =

3
2
x2 − 1

2
,

and so on. The rest satisfy the recurrence relation

lPl(x) = (2l − 1)xPl−1(x)− (l − 1)Pl−2(x).
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internal material strength of the body, so the body, over time,
becomes nearly spherical. Successive terms in the expansion of
the potential are measures of the deviation of the mass distribu-
tion from a spherical mass distribution. Thus for large bodies
the higher-order terms are small because the bodies are nearly
spherical.

Consider the first few terms in l. For l = 0 the sum over α just
gives the total mass M of the rigid body. For l = 1 the sum over
α is zero, as a consequence of choosing the origin of the �ξα to be
the center of mass. For l = 2 we have to do a little more work.
The sum involves second moments of the mass distribution, and
can be written in terms of moments of inertia of the rigid body:∑
α

mαξ
2
αP2(cos θα) =

∑
α

mαξ
2
α

(3
2
(cos θα)

2 − 1

2

)
=

∑
α

mαξ
2
α

(
1− 3

2
(sin θα)

2
)

=
1

2
(A+B + C − 3I) , (2.97)

where A, B, and C are the principal moments of inertia, and I
is the moment of inertia of the rigid body about the line between
the center of mass of the body and the external point mass. The
moment I depends on the orientation of the rigid body relative to
the line between the bodies. The contributions to the potential
energy up to l = 2 are then18

−GMM ′

R
− GM ′

2R3
(A+B + C − 3I). (2.98)

Let ca = cos θa, cb = cos θb, and cc = cos θc be the direction cosines
of the angles θa, θb and θc between the principal axes â, b̂, and ĉ
and the line between the center of mass and the point mass. (See
figure 2.10.) A little algebra shows that I = c2aA + c2bB + c2cC.
The potential energy is then

−GMM ′

R
− GM ′

2R3
[(1− 3c2a)A+ (1− 3c2b)B + (1− 3c2c)C]. (2.99)

18This approximate representation of the potential energy is sometimes called
MacCullagh’s formula.
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Figure 2.10 The orientation of the rigid body is specified by the three
angles from the line between the centers and the principal axes.

This is a good first approximation to the potential energy of in-
teraction for most situations in the solar system; if we intended to
land on the Moon we probably would want to take into account
higher-order terms in the expansion.

Exercise 2.17:

a. Fill in the details that show that the sum over constituents in equa-
tion (2.97) can be expressed as written in terms of moments of inertia.
In particular, show that∑
α

mαξα cos θα = 0,

2
∑
α

mαξ
2
α = A+B + C,

and that∑
α

mαξ
2
α(sin θα)

2 = I.

b. Show that if the principal moments of inertia of a rigid body are A,
B, and C, then the moment of inertia about an axis that goes through
the center of mass of the body with angles θa, θb, and θc to the principal
axes is

I = (cos θa)
2A+ (cos θb)

2B + (cos θc)
2C.



170 Chapter 2 Rigid Bodies

2.11.2 Rotation of the Moon and Hyperion

The approximation to the potential energy that we have derived
can be used for a number of different problems. It can be used to
investigate the effect of oblateness on the motion of an artificial
satellite about the Earth, or to incorporate the effect of planetary
oblateness on the evolution of the orbits of natural satellites, such
as the Moon or the Galilean satellites of Jupiter. However, as
the principal application here, we will use it to investigate the
rotational dynamics of natural satellites and planets.

The potential energy depends on the position of the point mass
relative to the rigid body and on the orientation of the rigid body.
Thus the changing orientation is coupled to the orbital evolution;
each affects the other. However, in many situations the effect of
the orientation of the body on the evolution of the orbit may be
ignored. One way to see this is to look at the relative magnitudes
of the two terms in the potential energy (2.99). We already know
that the second term is guaranteed to be smaller than the first by
a factor of (ξmax/R)2, but often it is much smaller still because the
body involved is nearly spherical. For example, the radius of the
Moon is about a third the radius of the Earth and the distance to
the Moon is about 60 Earth-radii. So the second term is smaller
than the first by a factor of order 10−4 due to the size factors. In
addition, the Moon is roughly spherical and for any orientation
the combination A+B+C−3I is of order 10−4C. Now C is itself
of order 2

5MR2, because the density of the Moon does not vary
strongly with radius. So for the Moon the second term is of order
10−8 relative to the first. Even radical changes in the orientation
of the Moon would have little dynamical effect on its orbit.

We can learn some important qualitative aspects of the orien-
tation dynamics by studying a simplified model problem. First,
we assume that the body is rotating about its largest moment of
inertia. This is a natural assumption. Remember that for a free
rigid body the loss of energy while conserving angular momentum
leads to rotation about the largest moment of inertia. This is
observed for most bodies in the solar system. Next, we assume
that the spin axis is perpendicular to the orbital motion. This is a
good approximation for the rotation of natural satellites, and is a
natural consequence of tidal friction—dissipative solid-body tides
raised on the satellite by the gravitational interaction with the
planet. Finally, for simplicity we take the rigid body to be mov-
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Figure 2.11 The spin-orbit model problem in which the spin axis is
constrained to be perpendicular to the orbit plane has a single degree
of freedom, the orientation of the body in the orbit plane. Here the
orientation is specified by the generalized coordinate θ.

ing on a fixed elliptic orbit. This may approximate the motion of
some physical systems, provided the time scale of the evolution
of the orbit is large compared to any time scale associated with
the rotational dynamics we are investigating. So we have a nice
toy problem, one that has been used to investigate the rotational
dynamics of Mercury, the Moon, and other natural satellites. It
makes specific predictions concerning the rotation of Phobos, a
satellite of Mars, that can be compared with observations. It pro-
vides a basic explanation of the fact that Mercury rotates precisely
three times for every two orbits it completes, and is the starting
point for understanding the chaotic tumbling of Saturn’s satellite
Hyperion.

We are assuming that the orbit does not change or precess. The
orbit is an ellipse with the point mass at a focus of the ellipse. The
angle f (see figure 2.11) measures the position of the rigid body
in its orbit relative to the point in the orbit at which the two
bodies are closest.19 We assume the orbit is a fixed ellipse, so the

19Traditionally, the point in the orbit at which the two bodies are closest is
called the pericenter and the angle f is called the true anomaly.
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angle f and the distance R are periodic functions of time, with
period equal to the orbit period. With the spin axis constrained
to be perpendicular to the orbit plane, the orientation of the rigid
body is specified by a single degree of freedom: the orientation of
the body about the spin axis. We specify this orientation by the
generalized coordinate θ that measures the angle to the â principal
axis from the same line from which we measure f , the line through
the point of closest approach.

Having specified the coordinate system, we can work out the
details of the kinetic and potential energies, and thus find the
Lagrangian. The kinetic energy is

T (t, θ, θ̇) = 1
2Cθ̇2, (2.100)

where C is the moment of inertia about the spin axis and the
angular velocity of the body about the ĉ axis is θ̇. There is no
component of angular velocity on the other principal axes.

To get an explicit expression for the potential energy, write
the direction cosines in terms of θ and f : cos θa = − cos(θ − f),
cos θb = sin(θ − f), and cos θc = 0 because the ĉ axis is perpen-
dicular to the orbit plane. The potential energy is then

−GMM ′

R

− 1

2

GM ′

R3

[
(1− 3 cos2(θ − f))A+ (1− 3 sin2(θ − f))B + C

]
.

Since we are assuming that the orbit is given, we need keep only
terms that depend on θ. Expanding the squares of the cosine and
the sine in terms of the double angles and dropping all the terms
that do not depend on θ, we find the potential energy for the
orientation20

V (t, θ, θ̇) = −3

4

GM ′

R3(t)
(B −A) cos 2(θ − f(t)). (2.101)

20The given potential energy differs from the actual potential energy in that
non-constant terms that do not depend on θ and consequently do not affect
the evolution of θ have been dropped.
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A Lagrangian for the model spin-orbit coupling problem is then
L = T − V :

L(t, θ, θ̇) =
1

2
Cθ̇2 +

3

4

GM ′

R3(t)
(B −A) cos 2(θ − f(t)). (2.102)

We introduce the dimensionless “out-of-roundness” parameter

ε =

√
3(B −A)

C
, (2.103)

and use the fact that the orbital frequency n and the semimajor
axis a satisfy Kepler’s third law, n2a3 = G(M + M ′), which is
approximately n2a3 = GM ′ for a small body in orbit around a
much more massive one (M 	 M ′). In terms of ε and n the
spin-orbit Lagrangian is

L(t, θ, θ̇) =
1

2
Cθ̇2 +

n2ε2C

4

a3

R3(t)
cos 2(θ − f(t)). (2.104)

This is a problem with one degree of freedom with terms that vary
periodically with time.

The Lagrange equations are derived in the usual manner:

CD2θ(t) = −n2ε2C

2

a3

R3(t)
sin 2(θ(t)− f(t)). (2.105)

The equation of motion is very similar to that of the periodically
driven pendulum. The main difference here is that not only is the
strength of the acceleration changing periodically, but in the spin-
orbit problem the center of attraction is also varying periodically.

We can give a physical interpretation of this equation of motion.
It states that the rate of change of the angular momentum is equal
to the applied torque. The torque on the body arises because the
body is out of round and the gravitational force varies as the
inverse square of the distance. Thus the force per unit mass on
the near side of the body is a little more than the acceleration
of the body as a whole, and the force per unit mass on the far
side of the body is a little less than the acceleration of the body
as a whole. Thus, relative to the acceleration of the body as a
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whole, the far side is forced outward while the inner part of the
body is forced inward. The net effect is a torque on the body
that tries to align the long axis of the body with the line to the
external point mass. If θ is a bit larger than f then there is a
negative torque, and if θ is a bit smaller than f then there is
a positive torque, both of which would align the long axis with
the point mass if given a fair chance. The torque arises because
of the difference of the inverse R2 force across the body, so the
torque is proportional to R−3. There is a torque only if the body
is out of round, for otherwise there is no handle to pull on. This
is reflected in the factor B − A in the expression for the torque.
The potential depends on the mass distribution as described by
the moments of inertia, and thus the body has the same dynamics
if it is rotated by 180◦. The factor of 2 in the argument of sine
reflects this symmetry. This torque is called the “gravity gradient
torque.”

To compute the evolution requires a lot of detailed prepara-
tion similar to what has been done for other problems. There are
many interesting phenomena to explore. We can take parame-
ters appropriate for the Moon and find that Mr. Moon does not
steadily point the same face to the Earth, but instead constantly
shakes his head in dismay at what goes on here. If we nudge the
Moon a bit, say by hitting it with an asteroid, we find that the
long axis oscillates back and forth with respect to the direction
that points to the Earth. For the Moon, the orbital eccentricity is
currently about 0.05, and the out-of-roundness parameter is about
ε = 0.026. Figure 2.12 shows the angle θ− f as a function of time
for two different values of the “lunar” eccentricity. The plot spans
50 lunar orbits, or a little under four years. This Moon has been
kicked by a large asteroid and has initial rotational angular veloc-
ity θ̇ equal to 1.01 times the orbit frequency. The initial orienta-
tion is θ = 0. The smooth trace shows the evolution if the orbital
eccentricity is set to zero. We see an oscillation with a period
of about 40 lunar orbits or about three years. The more wiggly
trace shows the evolution of θ − f with an orbital eccentricity of
0.05, near the current lunar eccentricity. The lunar eccentricity
superimposes an apparent shaking of the face of the Moon back
and forth with the period of the lunar orbit. Though the Moon
does slightly change its rate of rotation during the course of its
orbit, most of this shaking is due to the nonuniform motion of the
Moon in its elliptical orbit. This oscillation, called the “optical
libration of the Moon,” allows us to see a bit more than half of
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Figure 2.12 The angle θ − f versus time for 50 orbit periods. The
ordinate scale is ±1 radian. The Moon has been kicked so that the initial
rotational angular velocity is 1.01 times the orbital frequency. The trace
with fewer wiggles was computed with zero lunar orbital eccentricity;
the other trace was computed with lunar orbital eccentricity of 0.05.
The period of the rapid oscillations is the lunar orbit period. These
oscillations are due mostly to the nonuniform motion of f .

the Moon’s surface. The longer-period oscillation induced by the
kick is called the “free libration of the Moon.” It is “free” because
we are free to excite it by choosing appropriate initial conditions.
The mismatch of the orientation of the Moon caused by the optical
libration actually produces a periodic torque on the Moon, which
slightly speeds it up and slows it down during every orbit. The
resulting oscillation is called the “forced libration of the Moon,”
but it is too small to see in this plot.

The oscillation period of the free libration is easily calculated.
We see that the eccentricity of the orbit does not substantially
affect the period, so we consider the special case of zero eccentric-
ity. In this case R = a, a constant, and f(t) = nt, where n is the
orbital frequency.21 The equation of motion becomes

D2θ(t) = −n2ε2

2
sin 2(θ(t)− nt). (2.106)

21Traditionally, the orbital angular frequency is called the mean motion.
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Let ϕ(t) = θ(t) − nt, and consequently Dϕ(t) = Dθ(t) − n, and
D2ϕ = D2θ. Substituting these, the equation governing the evo-
lution of ϕ is

D2ϕ = −n2ε2

2
sin 2ϕ. (2.107)

For small deviations from synchronous rotation (small ϕ) this is

D2ϕ = −n2ε2ϕ, (2.108)

so we see that the small-amplitude oscillation frequency of ϕ is nε.
For the Moon, ε is about 0.026, so the period is about 1/0.026
orbit periods or about 40 lunar orbit periods, which is what we
observed.

It is perhaps more fun to see what happens if the out-of-
roundness parameter is large. After our experience with the driven
pendulum it is no surprise that we find abundant chaos in the spin-
orbit problem when the system is strongly driven by having large
ε and significant orbital eccentricity e. There is indeed one body
in the solar system that exhibits chaotic rotation—Hyperion, a
small satellite of Saturn. Though our toy model is not adequate
for a complete account of Hyperion, we can show that it exhibits
chaotic behavior for parameters appropriate for Hyperion. We
take ε = 0.89 and e = 0.1. Figure 2.13 shows θ − f for 50 orbits,
starting with θ = 0 and θ̇ = 1.05. We see that sometimes one
face of the body oscillates facing the planet, sometimes the other
face oscillates facing the planet, and sometimes the body rotates
relative to the planet in either direction.

If we relax our restriction that the spin axis be fixed perpen-
dicular to the orbit, then we find that the Moon maintains this
orientation of the spin axis even if nudged a bit, but for Hyperion
the spin axis almost immediately falls away from this configura-
tion. The state in which Hyperion on average points one face to
Saturn is dynamically unstable to chaotic tumbling. Observations
of Hyperion are consistent with the deduction that it is chaotically
tumbling.

Exercise 2.18: Precession of the equinox

The Earth spins very nearly about the largest moment of inertia, and the
spin axis is tilted by about 23◦ to the orbit normal. There is a gravity-
gradient torque on the Earth from the Sun that causes the spin axis of
the Earth to precess. Investigate this precession in the approximation
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Figure 2.13 The angle θ − f versus time for 50 orbit periods. The
ordinate scale is ±π radian. The out-of-roundness parameter is large
ε = 0.89, with an orbital eccentricity of e = 0.1. The system is strongly
driven. The rotation is apparently chaotic.

that the orbit of the Earth is circular and the Earth is axisymmetric.
Determine the rate of precession in terms of the moments of inertia of
the Earth.

2.11.3 Spin-Orbit Resonances

Consider the motion of the Moon in synchronous rotation. We
have seen that if we give the Moon a kick so that it is not exactly
pointing one face to the Earth, then the face will oscillate back
and forth relative to the direction to the Earth. If we give it a
really big kick, then instead of oscillating it will spin relative to
the direction to the Earth. How do we understand this?

Let’s look again at the equations of motion for the rotation of
the Moon when the orbit is circular (equation 2.106):

CD2θ(t) = −C

2
n2ε2 sin 2(θ(t)− n)t). (2.109)

Changing variables to ϕ(t) = θ(t)− nt this equation becomes

CD2ϕ(t) = −C

2
n2ε2 sin 2ϕ(t). (2.110)
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φ

φ̇

ππ/20−π/2−π

Δφ̇

0

−Δφ̇

Figure 2.14 Trajectories of ϕ and ϕ̇ in the spin-orbit problem when
the orbital eccentricity is zero.

This equation can be solved; it has an “energy-like” conserved
quantity

E(ϕ, ϕ̇) =
C

2
ϕ̇2 − C

4
n2ε2 cos(2ϕ). (2.111)

The solutions are just contours of this conserved quantity (see
figure 2.14). There are two centers of oscillation corresponding
to the two different faces of the Moon that could point towards
Earth. There are also trajectories that rotate relative to the Earth.
And there are separating trajectories that divided the oscillating
trajectories from the circulating trajectories. Where these sepa-
rating trajectories appear to cross, the system is at an unstable
equilibrium. The separating trajectories are asymptotic to the
unstable equilibria (a system on that trajectory takes an infinite
time to get to the equilibrium point). These asymptotic trajecto-
ries are analogous to the trajectories of the simple pendulum that
are asymptotic to the vertical.
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The extent of the oscillation region can be evaluated with the
help of the conserved quantity E. Let’s evaluate it on the sepa-
rating trajectory:

E(π/2, 0) =
C

4
n2ε2,

E(0,Δϕ̇) =
C

2
Δϕ̇2 − C

4
n2ε2. (2.112)

Equating these and solving, we find the maximum extent of the
oscillating region:

Δϕ̇ = nε. (2.113)

So we see that the out-of-roundness parameter ε not only gives
the frequency of small-amplitude oscillations, but also gives the
extent of the oscillation region.

Mercury rotates exactly three times for every two times it goes
around the Sun, as discovered by Pettengill and Dyce in 1965,
using Arecibo radar. We can understand this spin-orbit resonance
using our simple spin-orbit model problem.

Let’s first use qualitative reasoning to understand how the res-
onance comes about. The spin-orbit equation of motion, equa-
tion (2.105), equates the rate of change of the angular momentum
to the gravity gradient torque. The torque is proportional to the
inverse cube of the distance, so it is largest when the distance is
smallest, at pericenter. For the purpose of qualitative reasoning,
consider the torque only at pericenter. Suppose Mercury is rotat-
ing exactly three times for every two orbits. Then if the long axis
of Mercury is pointed at the Sun at one pericenter, it will point
the other end of this long axis the next time it passes pericenter
(it will have rotated one and a half times). Now, suppose Mer-
cury is rotating a little faster. Then if the long axis is aligned at
one pericenter passage, on the next pericenter passage it will have
rotated a little too much and the long axis will no longer point to
the Sun. In this case θ − f will be positive and there will be a
negative torque, slowing down the rotation a bit. Over many or-
bits the rotation of Mercury is reduced. A similar argument shows
that if Mercury is rotating slower than three times for every two
orbits, then the torques at succesive pericenter passages will tend
to increase the rotation rate. An oscillation ensues.
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We can also understand this spin-orbit resonance analytically.
The right-hand side of the equation of motion (equation 2.105)
has factors that vary periodically with the orbit period:

CD2θ(t) = −C

2
n2ε2

(
a

R(t)

)3

sin 2(θ(t)− f(t)), (2.114)

where both f(t) and R(t) are periodic with period 2π/n. We can
expand this as a Fourier series:

CD2θ(t) = −C

2
n2ε2

∞∑
m=−∞

Am(e) sin(2θ(t)−mnt), (2.115)

where the coefficients Am(e) are functions of the orbital eccentric-
ity e. The coefficients are proportional to e|m−2| and so for small
eccentricity we need to consider only a few of them.22 We have

A1(e) = −e

2
+ o(e3)

A2(e) = 1− 5e2

2
+ o(e4)

A3(e) =
7e

2
+ o(e3). (2.116)

All other terms are of higher order in e. With just the terms of
order e or less, the equation of motion becomes

CD2θ(t) = −C

2
n2ε2 [sin(2θ(t)− 2nt)

+
7e

2
sin(2θ(t)− 3nt)

− e

2
sin(2θ(t)− nt)

+ · · ·] . (2.117)

Suppose we are close to the 3:2 Mercury resonance. Then θ̇
is close to (3/2)n. So the combination θ(t) − (3/2)nt is slowly
varying compared to the other two arguments: θ(t)−nt and θ(t)−
(1/2)nt. The rapidly varying torques due to these other terms

22Deriving the coefficients is a matter of celestial mechanics; Am(e) =

X−3,2
2 (e) where Xi,j

k (e) are called Hansen functions. They are written as
power series in eccentricity.
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tend to average out, leaving a slowly varying torque that controls
the motion.23 The averaged equation of motion for motion near
the 3:2 resonance is then

CD2θ(t) = −C

2
n2ε2

(7e
2

)
sin(2θ(t)− 3nt). (2.118)

We can solve this by changing variables to

ϕ(t) = θ(t)− (3/2)nt. (2.119)

The equation of motion becomes

CD2ϕ(t) =
C

2
n2ε2

(7e
2

)
sin(2ϕ(t)). (2.120)

This has the “energy-like” conserved quantity

E(ϕ, ϕ̇) =
C

2
ϕ̇2 − C

4
n2ε2

(7e
2

)
cos(2ϕ), (2.121)

which is very similar to the conserved quantity we found for the
zero-eccentricity synchronous rotation case considered earlier; see
equation (2.111). Indeed the trajectories are contours of the con-
served quantity and look just like those in figure 2.14. Using anal-
ogous reasoning we can determine the extent of the oscillation
region and find

Δϕ̇ = nε

√
7e

2
. (2.122)

This gives the approximate range of rotation rate over which Mer-
cury can oscillate stably in the 3:2 resonance.

2.12 Nonsingular Coordinates and Quaternions

The Euler angles provide a convenient way to parameterize the
orientation of a rigid body. However, the equations of motion
derived for them have singularities. Though we can avoid the
singularities by using other Euler-like combinations with different

23This method of averaging is rather vague; we will justify it later when we
study perturbation theory.
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singularities, this kludge is not very satisfying. Let’s brainstorm
a bit and see if we can come up with something better.

What does it take to specify an orientation? Perhaps we can
take a hint from Euler’s theorem. Recall that Euler’s theorem
states that any orientation can be reached with a single rotation.
So one idea to specify the orientation of a body is to parameterize
this single rotation that does the job. To specify this rotation we
need to specify the rotation axis and the amount of rotation. We
contrast this with the Euler angles, which specify three successive
rotations. These three rotations need not have any relation to
the single composite rotation that gives the orientation. Isn’t it
curious that the Euler angles make no use of Euler’s theorem?

We can think of several ways of specifying a rotation. One
way would be to specify the rotation axis by the latitude and
the longitude at which the rotation axis pierces a sphere. The
amount of rotation needed to take the body from the reference
position could be specified by one more angle. We can predict,
though, that this choice of coordinates will have similar problems
to those of the Euler angles: if the amount of rotation is zero,
then the latitude and longitude of the rotation axis are undefined.
So the Lagrange equations for these angles are probably singular.
Another idea, without this defect, is to represent the rotation by
the rectangular components of an orientation vector �o; we take
the direction of the orientation vector to be the same as the axis
of rotation that takes the body from the reference orientation to
the present orientation, and the length of the orientation vector
to be the angle by which the body must be rotated, in a right-
hand sense, about the orientation vector. With this choice of
coordinates, if the angle of rotation is zero then the length of
the vector is zero and has no unwanted direction. This choice
looks promising, but there is another problem: a rotation by 2π is
equivalent to no rotation at all, so it will not have a well-defined
rotation vector. This can be fixed by making the length of the
orientation vector be the sine of half of the angle of rotation rather
than the angle of rotation. With this choice a rotation by zero
angle will have the same orientation vector as a rotation by 2π.
But there is still another problem: rotations by θ and 2π − θ are
not distinguished. We can solve this by keeping track of the cosine
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of half the angle of rotation. (Actually we need to know only the
sign of the cosine, but the cosine is convenient.) Wrapping this
all up into 4-tuples gives us Hamilton’s quaternions.

Let θ be the angle of rotation about the axis n̂. The components
of a quaternion representing this rotation are:

(cos(θ/2), sin(θ/2) n̂x, sin(θ/2) n̂y, sin(θ/2) n̂z) , (2.123)

where (n̂x, n̂y, n̂z) are rectangular components of n̂. The sum of
the squares of the components of this quaternion is 1: it is a unit

quaternion. So there is a unit quaternion associated with every
rotation.

We can invert this: given a quaternion we can compute the an-
gle and the axis. Let (r, x, y, z) be the components of a quaternion
q. We separate the first component (called the real part) and the
tuple v = (x, y, z) (called the 3-vector) of the remaining compo-
nents. The Euclidean norm of the tuple ‖v‖ = | sin(θ/2)|. The
first component r = cos(θ/2). So the angle θ = 2arctan(‖v‖, r)
and the axis is v/‖v‖. This process is independent of the scale of
the quaternion.

By taking the absolute value of sin(θ/2) we have lost informa-
tion about the quadrant, but this is not a real problem because the
rotation represented by a quaternion is not changed by reversing
the sign of all its components: changing the sign of v reverses the
axis but does not change the angle; changing the sign of the first
component changes the angle θ to 2π − θ, so the actual rotation
is unchanged.

Given the four elements of a quaternion, we need to find the
corresponding rotation matrix. We can get the angle and axis
given a quaternion. We can get a rotation matrix given the angle
θ and the axis given by a unit vector n̂. We rotate by θ around
the ẑ axis, and then transform this rotation to the axis specified
by colatitude ϕ and longitude λ:

R(θ, n̂) = Rz(λ)Ry(ϕ)Rz(θ)(Ry(ϕ))
T(Rz(λ))

T, (2.124)

where ϕ = arccos(n̂z) and λ = arctan(n̂y, n̂x).
A procedure for making the rotation matrix is:
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(define (angle-axis->rotation-matrix theta n)
(let ((nx (ref n 0)) (ny (ref n 1)) (nz (ref n 2)))
(let ((colatitude (acos nz)) (longitude (atan ny nx)))

(* (Rz-matrix longitude)
(Ry-matrix colatitude)
(Rz-matrix theta)
(transpose (Ry-matrix colatitude))
(transpose (Rz-matrix longitude))))))

And a procedure for obtaining the angle and axis of a quaternion
is

(define (quaternion->angle-axis q)
(let* ((v (quaternion->3vector q))

(theta (* 2 (atan (euclidean-norm v)
(quaternion->real-part q))))

(axis (/ v (euclidean-norm v))))
(list theta axis)))

Combining these, we can compute the rotation matrix associated
with a quaternion:

(define (quaternion->RM q)
(let ((aa (quaternion->angle-axis q)))
(let ((theta (ref aa 0)) (n (ref aa 1)))

(angle-axis->rotation-matrix theta n))))

The resulting matrix has the square of the magnitude of the
quaternion dividing each term. For a unit quaternion this de-
nominator has no effect, but the expression looks simpler if we
multiply through:

(show-expression
(let ((v (up ’q 0 ’q 1 ’q 2 ’q 3)))
(let ((m^2 (dot-product v v)))

(* m^2 (quaternion->RM (make-quaternion v))))))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
q20 + q21 − q22 − q23 −2q0q3 + 2q1q2 2q0q2 + 2q1q3

2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3

−2q0q2 + 2q1q3 2q0q1 + 2q2q3 q20 − q21 − q22 + q23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We then capture this result as a useful procedure (dividing through
by the square of the magnitude). The resulting matrix is homoge-
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neous of degree zero in the quaternion components, so the result
is insensitive to the scale.

(define (quaternion->rotation-matrix q)
(let ((q0 (quaternion-ref q 0)) (q1 (quaternion-ref q 1))

(q2 (quaternion-ref q 2)) (q3 (quaternion-ref q 3)))
(let ((m^2

(+ (expt q0 2) (expt q1 2)
(expt q2 2) (expt q3 2))))

(/ (matrix-by-rows
(list (- (+ (expt q0 2) (expt q1 2))

(+ (expt q2 2) (expt q3 2)))
(* 2 (- (* q1 q2) (* q0 q3)))
(* 2 (+ (* q1 q3) (* q0 q2))))

(list (* 2 (+ (* q1 q2) (* q0 q3)))
(- (+ (expt q0 2) (expt q2 2))

(+ (expt q1 2) (expt q3 2)))
(* 2 (- (* q2 q3) (* q0 q1))))

(list (* 2 (- (* q1 q3) (* q0 q2)))
(* 2 (+ (* q2 q3) (* q0 q1)))
(- (+ (expt q0 2) (expt q3 2))

(+ (expt q1 2) (expt q2 2)))))
m^2))))

Next we determine the components of the angular velocity on
the body using this result and the M->omega-body of section 2.2:

(show-expression
((M->omega-body
(compose quaternion->rotation-matrix make-quaternion))
(up ’t

(up ’q 0 ’q 1 ’q 2 ’q 3)
(up ’qdot 0 ’qdot 1 ’qdot 2 ’qdot 3))))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2q0q̇1 − 2q1q̇0 − 2q2q̇3 + 2q3q̇2
q20 + q21 + q22 + q23

2q0q̇2 + 2q1q̇3 − 2q2q̇0 − 2q3q̇1
q20 + q21 + q22 + q23

2q0q̇3 − 2q1q̇2 + 2q2q̇1 − 2q3q̇0
q20 + q21 + q22 + q23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The result is simple (ignoring the denominators, which have value
1 for unit quaternions). Note that this result is not, on the sur-
face, independent of the scale of the quaternion. But since the
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quaternion is representing the orientation of a rotating body it
is a function of time. So the time derivative of the quaternion
must scale as the quaternion scales: in this sense the formula is
independent of scale.

But we can write this in an even simpler way. Notice that
the numerators are linear in both the q̇i and qj. We can invent
matrices that perform the relevant combinations. Introduce

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 +1 0 0
−1 0 0 0
0 0 0 −1
0 0 +1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0 +1
0 0 −1 0
0 +1 0 0
−1 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (2.125)

In terms of these matrices, we can write the angular velocity on
the body more simply, given a unit quaternion

ωa = 2qT i q̇/‖q‖2
ωb = 2qT j q̇/‖q‖2
ωc = 2qT k q̇/‖q‖2, (2.126)

where q is a column matrix of the components of q. As a program:

(define (quaternion-state->omega-body s)
(let ((q (coordinates s)) (qdot (velocities s)))
(let ((m^2 (dot-product q q)))

(let ((omega^a
(/ (* 2 (dot-product q (* q:i qdot))) m^2))

(omega^b
(/ (* 2 (dot-product q (* q:j qdot))) m^2))

(omega^c
(/ (* 2 (dot-product q (* q:k qdot))) m^2)))

(up omega^a omega^b omega^c)))))

where q:i, q:j, and q:k implement i, j, and k.
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The antisymmetric matrices i, j, and k have interesting alge-
braic properties:

i2 = j2 = k2 = ijk = −1, (2.127)

where 1 is the 4× 4 unit matrix.
If we forget that these are matrices, and just use the algebraic

properties of i, j, and k we get the “imaginary number” represen-
tation invented by Hamilton.

Composition of rotations

What is the quaternion that represents the composition of two
rotations?

(let ((q (quaternion ’q 0 ’q 1 ’q 2 ’q 3))
(p (quaternion ’p 0 ’p 1 ’p 2 ’p 3)))

(let ((Mq (quaternion->rotation-matrix q))
(Mp (quaternion->rotation-matrix p)))

(rotation-matrix->quaternion (* Mq Mp))))

Unfortunately, the result is messy because each component is
scaled by a factor of ‖q‖‖p‖, which is 1 for unit quaternions. For
each rotation matrix there are many quaternions that can rep-
resent it. Indeed, a quaternion scaled by any nonzero number
represents the same rotation matrix. So the process of choosing
a quaternion to represent that matrix picks a unit quaternion.
Here are the components of the chosen quaternion, eliminating
the normalizing factor ‖q‖‖p‖:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 − p2q3 + p3q2
p0q2 + p1q3 + p2q0 − p3q1
p0q3 − p1q2 + p2q1 + p3q0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (2.128)

The first component, the real part of the resulting quaternion, can
be interpreted as

r0 = q0p0 − vq · vp, (2.129)

where vp = (p1, p2, p3) and vq = (q1, q2, q3) are the 3-vector parts
of the quaternions p and q. The remaining three components can
be interpreted as:

vr = q0vp + p0vq + vq × vp. (2.130)
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We take this to specify the product of two quaternions, whether
or not they are unit quaternions. This extension of multiplicaton
to non-unit quaternions works because we did not include the
normalization factors.

Each quaternion has a matrix representation in terms of the
matrices i, j, k, and 1, the quaternion units:

q = q01+ q1i+ q2j+ q3k. (2.131)

We can use this representation to write our result as a matrix
product:

r = qp. (2.132)

The elements of the top row of the matrix r are the components
of the quaternion r.

It turns out that the rotation matrix corresponding to a unit
quaternion can also be written in terms of i, j, and k. Let M

be a rotation matrix corresponding to the unit quaternion p. A
vector with component 3-tuple w can be rotated by multiplication
by M on the left. We can perform the same operation using the
quaternion units. Let qw be the quaternion whose real part is 0 and
whose 3-vector part is w, then the product pqwp

∗ is a quaternion
whose 3-vector part is the rotated vector and whose real part is
zero. The conjugate p∗ is obtained from p by reversing the sign of
the 3-vector part. As an equation: Mw = vpqwp∗.

Exercise 2.19: Quaternions

Verify equations (2.129) and (2.130) using only the algebraic properties
given in equation (2.127).

2.12.1 Motion in Terms of Quaternions

Quaternions give us nice coordinates that do not suffer from the
singularities of Euler angles. So we can make use of them to
compute motions of a rigid body without needing to worry about
the singularities.

We have computed the body components of the angular veloci-
ties from a state consisting of quaternion components and the rates
of change of those components (see equation 2.126). We can invert
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these to find the rates of change of the quaternion components in
terms of the angular velocities and the quaternion components.
The result of this inversion is:

q̇ = −1
2(ω

ai+ ωbj+ ωck)q. (2.133)

This set of differential equations is driven by Euler’s equations for
the motion of the body components of the angular velocity (see
equations 2.69 on page 153).24

We construct a system derivative for the free rigid body with
mixed coordinates. The configuration is represented by a quater-
nion that specifies the rotation that takes the body from the ref-
erence orientation to the actual orientation. The rate of change
of the configuration is specified by the components of the angular
velocities on the body.

(define (qw-sysder A B C)
(let ((B-C/A (/ (- B C) A))

(C-A/B (/ (- C A) B))
(A-B/C (/ (- A B) C)))

(define (the-deriv qw-state)
(let ((t (time qw-state))

(q (coordinates qw-state))
(omega-body (ref qw-state 2)))

(let ((omega^a (ref omega-body 0))
(omega^b (ref omega-body 1))
(omega^c (ref omega-body 2)))

(let ((tdot 1)
(qdot ;driven quaternion
(* -1/2

(+ (* omega^a q:i)
(* omega^b q:j)
(* omega^c q:k))

q))
(omegadot ;Euler’s equations
(up (* B-C/A omega^b omega^c)

(* C-A/B omega^c omega^a)
(* A-B/C omega^a omega^b))))

(up tdot qdot omegadot)))))
the-deriv))

24We could incorporate external torques by using the augmented Euler’s equa-
tions (2.83).
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Note that this system derivative is not constructed by an auto-
matic process: this was not derived from a Lagrangian. This is
part of the price we pay for using redundant coordinates (the four
quaternion components) to represent the configuration of a system
with only three degrees of freedom. By using Euler’s equations we
avoid having to eliminate the constraint. However, the computa-
tions with quaternions are easier than the ones using Euler angles,
because they do not involve evaluating transcendental functions
or avoiding the singularities.

Since we will monitor the errors in the conserved quantities, an-
gular momentum and energy, we need to compute these quantites
from the state. The kinetic energy and the angular momentum
components on the body are exactly the same as we used before,
because they depend on only the components of the angular veloc-
ities on the body. However, to get the components of the angular
momentum on spatial axes we need the rotation computed from
the quaternion coordinates:

(define ((qw-state->L-space A B C) qw-state)
(let ((q (coordinates qw-state)))
(let ((Lbody ((L-body A B C) (ref qw-state 2)))

(M (quaternion->rotation-matrix
(make-quaternion q))))

(* Lbody (transpose M)))))

From the initial angular momentum and energy we can compute
the relative error of these quantities, as we did in section 2.8.1:

(define ((monitor-errors win A B C L0 E0) qw-state)
(let ((t (time qw-state))

(L ((qw-state->L-space A B C) qw-state))
(E ((T-body A B C) (ref qw-state 2))))

(plot-point win t (relative-error (ref L 0) (ref L0 0)))
(plot-point win t (relative-error (ref L 1) (ref L0 1)))
(plot-point win t (relative-error (ref L 2) (ref L0 2)))
(plot-point win t (relative-error E E0))
qw-state))

Below we set up the initial conditions and use monitor-errors

to plot the errors. We use the same initial conditions that we did
for Euler angles. We get the rotation matrix M that transforms
the reference position to the initial Euler state and use that to
construct the equivalent quaternion state for this evolution.
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(define win (frame 0.0 100.0 -1.0e-13 1.0e-13))

(let* ((A 1.0) (B (sqrt 2.0)) (C 2.0) ; moments of inertia
(Euler-state (up 0.0 ; initial state

(up 1.0 0.0 0.0)
(up 0.1 0.1 0.1)))

(M (Euler->M (coordinates Euler-state)))
(q (quaternion->vector (rotation-matrix->quaternion M)))
(qw-state0
(up (time Euler-state)

q
(Euler-state->omega-body Euler-state))))

(let ((L0 ((qw-state->L-space A B C) qw-state0))
(E0 ((T-body A B C) (ref qw-state0 2))))

((evolve qw-sysder A B C)
qw-state0
(monitor-errors win A B C L0 E0)
0.1 ; step between plotted points
100.0 ; final time
1.0e-12)))

Figure 2.15 shows the relative errors in the energy and the spatial
components of the angular momentum that arise in this integra-
tion. It is interesting to note that the errors incurred by integrat-
ing using Euler angles and quaternions are about a factor of ten
smaller than the ones that appear when the coordinates are Euler
angles.

2.13 Summary

A rigid body is an example of a mechanical system with con-
straints. Thus, in a sense this chapter on rigid bodies was nothing
but an extended example of the application of the ideas developed
in the first chapter. The equations of motion are just the Lagrange
equations.

The kinetic energy for a rigid body separates into a transla-
tional kinetic energy and a rotational kinetic energy. The center
of mass plays a special role in this separation. The rotational ki-
netic energy is simply expressed in terms of the inertia tensor and
the angular velocity vector. We developed the expressions for the
kinetic energy that take into account the body constraints, and we
expressed the remaining degrees of freedom in terms of suitable
generalized coordinates.
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Figure 2.15 The relative errors in energy and in the three spatial
components of the angular momentum versus time. The equations were
integrated with quality-controlled 4th-order Runge–Kutta.

The vector angular momentum is conserved if there are no ex-
ternal torques. The time derivative of the body components of the
angular momentum can be written entirely in terms of the body
components of the angular momentum, and the three principal
moments of inertia. The body components of angular momentum
form a self-contained dynamical subsystem.

One choice for generalized coordinates is the Euler angles. They
form suitable generalized coordinates, but are otherwise not spe-
cial or well motivated. The Lagrange equations for the Euler an-
gles are singular for some Euler angles. Other choices of gen-
eralized coordinates like the Euler angles have similar problems.
Equations of motion using quaternions are nonsingular.

In general the potential energy depends on the details of the
mass distribution, and does not separate as the kinetic energy
separated into center of mass and relative contributions.

For an axisymmetric top with uniform gravitational accelera-
tion, the potential energy is exactly the potential energy due to
elevation of the center of mass. Aspects of the motion of the top
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are deduced from the conserved quantities. Euler angles are just
the right thing for this problem.

For other problems, such as the rotational motion of an out-of-
round satellite near a planet, the potential energy cannot be writ-
ten in finite terms, and judicious approximations must be made.
The essential character of such diverse systems as the rotation of
the Moon, Hyperion, and Mercury are captured by a simple model
problem.

2.14 Projects

Exercise 2.20: Free rigid body

Write and demonstrate a program that reproduces diagrams like fig-
ure 2.3 (section 2.8.2). Can you find trajectories that are asymptotic to
the unstable relative equilibrium on the intermediate principal axis?

Exercise 2.21: Rotation of Mercury

In the ’60s it was discovered that Mercury has a rotation period that is
precisely 2/3 times its orbital period. We can see this resonant behavior
in the spin-orbit model problem, and we can also play with nudging
Mercury a bit to see how far off the rotation rate can be and still be
trapped in this spin-orbit resonance. If the mismatch in angular velocity
is too great, Mercury’s rotation is no longer resonantly locked to its orbit.
Set ε = 0.026 and e = 0.2.

a. Write a program for the spin-orbit problem so this resonance dynam-
ics can be investigated numerically. You will need to know (or, better,
show!) that f satisfies the equation

Df(t) = n(1− e2)1/2
(

a

R(t)

)2

, (2.134)

with

a

R(t)
=

1 + e cos f(t)

1− e2
. (2.135)

Notice that n disappears from the equations if they are written in terms
of a new independent variable τ = nt. Also notice that a and R(t)
appear only in the combination a/R(t).

b. Show that the 3:2 resonance is stable by numerically integrating the
system when the rotation is not exactly in resonance and observing that
the angle θ − 3

2nt oscillates.

c. Find the range of initial θ̇ for which this resonance angle oscillates.
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Hamiltonian Mechanics

Numerical experiments are just what their name
implies: experiments. In describing and evaluating
them, one should enter the state of mind of the
experimental physicist, rather than that of the
mathematician. Numerical experiments cannot be
used to prove theorems; but, from the physicist’s
point of view, they do often provide convincing
evidence for the existence of a phenomenon. We
will therefore follow an informal, descriptive and
non-rigorous approach. Briefly stated, our aim will
be to understand the fundamental properties of
dynamical systems rather than to prove them.

Michel Hénon, “Numerical Exploration of
Hamiltonian Systems,” in Chaotic Behavior of
Deterministic Systems [21], p. 57.

The formulation of mechanics with generalized coordinates and
momenta as dynamical state variables is called the Hamiltonian
formulation. The Hamiltonian formulation of mechanics is equiva-
lent to the Lagrangian formulation; however, each presents a useful
point of view. The Lagrangian formulation is especially useful in
the initial formulation of a system. The Hamiltonian formulation
is especially useful in understanding the evolution of a system,
especially when there are symmetries and conserved quantities.

For each continuous symmetry of a mechanical system there
is a conserved quantity. If the generalized coordinates can be
chosen to reflect a symmetry, then, by the Lagrange equations,
the momenta conjugate to the cyclic coordinates are conserved.
We have seen that such conserved quantities allow us to deduce
important properties of the motion. For instance, consideration
of the energy and angular momentum allowed us to deduce that
rotation of a free rigid body about the axis of intermediate moment
of inertia is unstable, and that rotation about the other principal
axes is stable. For the axisymmetric top, we used two conserved
momenta to reexpress the equations governing the evolution of the
tilt angle so that they involve only the tilt angle and its derivative.
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The evolution of the tilt angle can be determined independently
and has simply periodic solutions. Consideration of the conserved
momenta has provided key insight. The Hamiltonian formulation
is motivated by the desire to focus attention on the momenta.

In the Lagrangian formulation the momenta are, in a sense, sec-
ondary quantities: the momenta are functions of the state space
variables, but the evolution of the state space variables depends
on the state space variables and not on the momenta. To make
use of any conserved momenta requires fooling around with the
specific equations. The momenta can be rewritten in terms of the
coordinates and the velocities, so, locally, we can solve for the
velocities in terms of the coordinates and momenta. For a given
mechanical system, and a Lagrangian describing its dynamics in
a given coordinate system, the momenta and the velocities can
be deduced from each other. Thus we can represent the dynami-
cal state of the system in terms of the coordinates and momenta
just as well as with the coordinates and the velocities. If we use
the coordinates and momenta to represent the state and write the
associated state derivative in terms of the coordinates and mo-
menta, then we have a self-contained system. This formulation of
the equations governing the evolution of the system has the ad-
vantage that if some of the momenta are conserved, the remaining
equations are immediately simplified.

The Lagrangian formulation of mechanics has provided the
means to investigate the motion of complicated mechanical sys-
tems. We have found that dynamical systems exhibit a bewilder-
ing variety of possible motions. The motion is sometimes rather
simple and sometimes very complicated. Sometimes the evolution
is very sensitive to the initial conditions, and sometimes it is not.
And sometimes there are orbits that maintain resonance relation-
ships with a drive. Consider the periodically driven pendulum:
it can behave more or less as an undriven pendulum with extra
wiggles, it can move in a strongly chaotic manner, or it can move
in resonance with the drive, oscillating once for every two cycles of
the drive or looping around once per drive cycle. Or consider the
Moon. The Moon rotates synchronously with its orbital motion,
always pointing roughly the same face to the Earth. However,
Mercury rotates three times every two times it circles the Sun,
and Hyperion rotates chaotically.

How can we make sense of this? How do we put the possible
motions of these systems in relation to one another? What other
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motions are possible? The Hamiltonian formulation of dynamics
provides a convenient framework in which the possible motions
may be placed and understood. We will be able to see the range
of stable resonance motions and the range of states reached by
chaotic trajectories, and discover other unsuspected possible mo-
tions. So the Hamiltonian formulation gives us much more than
the stated goal of expressing the system derivative in terms of
potentially conserved quantities.

3.1 Hamilton’s Equations

The momenta are given by momentum state functions of the time,
the coordinates, and the velocities.1 Locally, we can find inverse
functions that give the velocities in terms of the time, the co-
ordinates, and the momenta. We can use this inverse function
to represent the state in terms of the coordinates and momenta
rather than the coordinates and velocities. The equations of mo-
tion when recast in terms of coordinates and momenta are called
Hamilton’s canonical equations.

We present three derivations of Hamilton’s equations. The first
derivation is guided by the strategy outlined above and uses noth-
ing more complicated than implicit functions and the chain rule.
The second derivation (section 3.1.1) first abstracts a key part of
the first derivation and then applies the more abstract machinery
to derive Hamilton’s equations. The third (section 3.1.2) uses the
action principle.

Lagrange’s equations give us the time derivative of the momen-
tum p on a path q:

Dp(t) = ∂1L(t, q(t),Dq(t)), (3.1)

where

p(t) = ∂2L(t, q(t),Dq(t)). (3.2)

To eliminate Dq we need to solve equation (3.2) for Dq in terms
of p.

1Here we restrict our attention to Lagrangians that depend only on the time,
the coordinates, and the velocities.



198 Chapter 3 Hamiltonian Mechanics

Let V be the function that gives the velocities in terms of the
time, coordinates, and momenta. Defining V is a problem of func-
tional inverses. To prevent confusion we use names for the vari-
ables that have no mnemonic significance. Let

a = ∂2L(b, c, d); (3.3)

then V satisfies

d = V(b, c, a). (3.4)

So V and ∂2L are inverses on the third argument position:

d = V(b, c, ∂2L(b, c, d)) (3.5)

a = ∂2L(b, c,V(b, c, a)). (3.6)

The Lagrange equation (3.1) can be rewritten in terms of p
using V:
Dp(t) = ∂1L(t, q(t),V(t, q(t), p(t))). (3.7)

We can also use V to rewrite equation (3.2) as an equation for Dq
in terms of t, q and p:

Dq(t) = V(t, q(t), p(t)). (3.8)

Equations (3.7) and (3.8) give the rate of change of q and p along
realizable paths as functions of t, q, and p along the paths.

Though these equations fulfill our goal of expressing the equa-
tions of motion entirely in terms of coordinates and momenta, we
can find a better representation. Define the function

L̃(t, q, p) = L(t, q,V(t, q, p)), (3.9)

which is the Lagrangian reexpressed as a function of time, coordi-
nates, and momenta.2 For the equations of motion we need ∂1L
evaluated with the appropriate arguments. Consider

2Here we are using mnemonic names t, q, p for formal parameters of the func-
tion being defined. We could have used names like a, b, c as above, but this
would have made the argument harder to read.
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∂1L̃(t, q, p) = ∂1L(t, q,V(t, q, p)) + ∂2L(t, q,V(t, q, p))∂1V(t, q, p)
= ∂1L(t, q,V(t, q, p)) + p∂1V(t, q, p), (3.10)

where we used the chain rule in the first step and the inverse
property (3.6) of V in the second step. Introducing the momentum
selector3 P (t, q, p) = p, and using the property ∂1P = 0, we have

∂1L(t, q,V(t, q, p)) = ∂1L̃(t, q, p)− P (t, q, p)∂1V(t, q, p)
= ∂1(L̃− PV)(t, q, p)
= −∂1H(t, q, p), (3.11)

where the Hamiltonian H is defined by4

H = PV − L̃. (3.12)

Using the algebraic result (3.11), the Lagrange equation (3.7) for
Dp becomes

Dp(t) = −∂1H(t, q(t), p(t)). (3.13)

The equation forDq can also be written in terms ofH. Consider

∂2H(t, q, p) = ∂2(PV − L̃)(t, q, p)

= V(t, q, p) + p∂2V(t, q, p) − ∂2L̃(t, q, p). (3.14)

To carry out the derivative of L̃ we write it out in terms of L:

∂2L̃(t, q, p) = ∂2L(t, q,V(t, q, p))∂2V(t, q, p) = p∂2V(t, q, p), (3.15)

again using the inverse property (3.6) of V. So, putting equations
(3.14) and (3.15) together, we obtain

∂2H(t, q, p) = V(t, q, p). (3.16)

Using the algebraic result (3.16), equation (3.8) for Dq becomes

Dq(t) = ∂2H(t, q(t), p(t)). (3.17)

3P = I2. See equations (9.7) in the appendix on notation.

4The overall minus sign in the definition of the Hamiltonian is traditional.
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Equations (3.13) and (3.17) give the derivatives of the coor-
dinate and momentum path functions at each time in terms of
the time, and the coordinates and momenta at that time. These
equations are known as Hamilton’s equations:5

Dq(t) = ∂2H(t, q(t), p(t))

Dp(t) = −∂1H(t, q(t), p(t)). (3.18)

The first equation is just a restatement of the relationship of the
momenta to the velocities in terms of the Hamiltonian and holds
for any path, whether or not it is a realizable path. The second
equation holds only for realizable paths.

Hamilton’s equations have an especially simple and symmet-
rical form. Just as Lagrange’s equations are constructed from
a real-valued function, the Lagrangian, Hamilton’s equations are
constructed from a real-valued function, the Hamiltonian. The
Hamiltonian function is6

H(t, q, p) = pV(t, q, p)− L(t, q,V(t, q, p)). (3.19)

The Hamiltonian has the same value as the energy function E (see
equation 1.142), except that the velocities are expressed in terms
of time, coordinates, and momenta by V:
H(t, q, p) = E(t, q,V(t, q, p)). (3.20)

Illustration

Let’s try something simple: the motion of a particle of mass m
with potential energy V (x, y). A Lagrangian is

L(t;x, y; vx, vy) =
1
2m(v2x + v2y)− V (x, y). (3.21)

5In traditional notation, Hamilton’s equations are written as a separate equa-
tion for each component:

dqi

dt
=

∂H

∂pi
and

dpi
dt

= −
∂H

∂qi
.

6Traditionally, the Hamiltonian is written

H = pq̇ − L.

This way of writing the Hamiltonian confuses the values of functions with the
functions that generate them: both q̇ and L must be reexpressed as functions
of time, coordinates, and momenta.
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To form the Hamiltonian we find the momenta p = ∂2L(t, q, v):
px = mvx and py = mvy. Solving for the velocities in terms of
the momenta is easy here: vx = px/m and vy = py/m. The
Hamiltonian is H(t, q, p) = pv − L(t, q, v), with v reexpressed in
terms of (t, q, p):

H(t;x, y; px, py) =
p2x + p2y
2m

+ V (x, y). (3.22)

The kinetic energy is a homogeneous quadratic form in the veloc-
ities, so the energy is T + V and the Hamiltonian is the energy
expressed in terms of momenta rather than velocities. Hamilton’s
equations for Dq are

Dx(t) = px(t)/m

Dy(t) = py(t)/m. (3.23)

Note that these equations merely restate the relation between the
momenta and the velocities. Hamilton’s equations for Dp are

Dpx(t) = −∂0V (x(t), y(t))

Dpy(t) = −∂1V (x(t), y(t)). (3.24)

The rate of change of the linear momentum is minus the gradient
of the potential energy.

Exercise 3.1: Deriving Hamilton’s equations

For each of the following Lagrangians derive the Hamiltonian and Hamil-
ton’s equations. These problems are simple enough to do by hand.

a. A Lagrangian for a planar pendulum: L(t, θ, θ̇) = 1
2ml2θ̇2+mgl cos θ.

b. A Lagrangian for a particle of mass m with a two-dimensional po-
tential energy V (x, y) = (x2 + y2)/2 + x2y − y3/3 is L(t;x, y; ẋ, ẏ) =
1
2m(ẋ2 + ẏ2)− V (x, y).

c. A Lagrangian for a particle of mass m constrained to move on a
sphere of radius R: L(t; θ, ϕ; θ̇, ϕ̇) = 1

2mR2(θ̇2 + (ϕ̇ sin θ)2), where θ is
the colatitude and ϕ is the longitude on the sphere.

Exercise 3.2: Sliding pendulum

For the pendulum with a sliding support (see exercise 1.20), derive a
Hamiltonian and Hamilton’s equations.



202 Chapter 3 Hamiltonian Mechanics

Hamiltonian state

Given a coordinate path q and a Lagrangian L, the corresponding
momentum path p is given by equation (3.2). Equation (3.17) ex-
presses the same relationship in terms of the corresponding Hamil-
tonian H. That these relations are valid for any path, whether
or not it is a realizable path, allows us to abstract to arbitrary
velocity and momentum at a moment. At a moment, the mo-
mentum p for the state tuple (t, q, v) is p = ∂2L(t, q, v). We also
have v = ∂2H(t, q, p). In the Lagrangian formulation the state
of the system at a moment can be specified by the local state
tuple (t, q, v) of time, generalized coordinates, and generalized
velocities. Lagrange’s equations determine a unique path ema-
nating from this state. In the Hamiltonian formulation the state
can be specified by the tuple (t, q, p) of time, generalized coordi-
nates, and generalized momenta. Hamilton’s equations determine
a unique path emanating from this state. The Lagrangian state
tuple (t, q, v) encodes exactly the same information as the Hamil-
tonian state tuple (t, q, p); we need a Lagrangian or a Hamiltonian
to relate them. The two formulations are equivalent in that the
same coordinate path emanates from them for equivalent initial
states.

The Lagrangian state derivative is constructed from the La-
grange equations by solving for the highest-order derivative and
abstracting to arbitrary positions and velocities at a moment.7

The Lagrangian state path is generated by integration of the La-
grangian state derivative given an initial Lagrangian state (t, q, v).
Similarly, the Hamiltonian state derivative can be constructed
from Hamilton’s equations by abstracting to arbitrary positions
and momenta at a moment. Hamilton’s equations are a set of
first-order differential equations in explicit form. The Hamilto-
nian state derivative can be directly written in terms of them. The
Hamiltonian state path is generated by integration of the Hamilto-
nian state derivative given an initial Hamiltonian state (t, q, p). If
these state paths are obtained by integrating the state derivatives
with equivalent initial states, then the coordinate path compo-
nents of these state paths are the same and satisfy the Lagrange

7In the construction of the Lagrangian state derivative from the Lagrange
equations we must solve for the highest-order derivative. The solution process
requires the inversion of ∂2∂2L. In the construction of Hamilton’s equations,
the construction of V from the momentum state function ∂2L requires the
inverse of the same structure. If the Lagrangian formulation has singularities,
they cannot be avoided by going to the Hamiltonian formulation.
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equations. The coordinate path and the momentum path compo-
nents of the Hamiltonian state path satisfy Hamilton’s equations.
The Hamiltonian formulation and the Lagrangian formulation are
equivalent.

Given a path q, the Lagrangian state path and the Hamiltonian
state paths can be deduced from it. The Lagrangian state path
Γ[q] can be constructed from a path q simply by taking derivatives.
The Lagrangian state path satisfies:

Γ[q](t) = (t, q(t),Dq(t)) . (3.25)

The Lagrangian state path is uniquely determined by the path q.
The Hamiltonian state path ΠL[q] can also be constructed from
the path q but the construction requires a Lagrangian. The Hamil-
tonian state path satisfies

ΠL[q](t) = (t, q(t), ∂2L(t, q(t),Dq(t))) = (t, q(t), p(t)) . (3.26)

The Hamiltonian state tuple is not uniquely determined by the
path q because it depends upon our choice of Lagrangian, which
is not unique.

The 2n-dimensional space whose elements are labeled by the
n generalized coordinates qi and the n generalized momenta pi is
called the phase space. The components of the generalized coor-
dinates and momenta are collectively called the phase-space com-

ponents.8 The dynamical state of the system is completely speci-
fied by the phase-space state tuple (t, q, p), given a Lagrangian or
Hamiltonian to provide the map between velocities and momenta.

Computing Hamilton’s equations

Hamilton’s equations are a system of first-order ordinary differen-
tial equations. A procedural formulation of Lagrange’s equations
as a first-order system was presented in section 1.7. The following
formulation of Hamilton’s equations is analogous:

(define ((Hamilton-equations Hamiltonian) q p)
(let ((state-path (qp->H-state-path q p)))
(- (D state-path)

(compose (Hamiltonian->state-derivative Hamiltonian)
state-path))))

8The term phase space was introduced by Josiah Willard Gibbs in his for-
mulation of statistical mechanics. The Hamiltonian plays a fundamental role
in the Boltzmann–Gibbs formulation of statistical mechanics and in both the
Heisenberg and Schrödinger approaches to quantum mechanics.
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The Hamiltonian state derivative is computed as follows:

(define ((Hamiltonian->state-derivative Hamiltonian) H-state)
(up 1

(((partial 2) Hamiltonian) H-state)
(- (((partial 1) Hamiltonian) H-state))))

The state in the Hamiltonian formulation is composed of the time,
the coordinates, and the momenta. We call this an H-state, to dis-
tinguish it from the state in the Lagrangian formulation. We can
select the components of the Hamiltonian state with the selectors
time, coordinate, momentum. We construct Hamiltonian states
from their components with up. The first component of the state
is time, so the first component of the state derivative is one, the
time rate of change of time. Given procedures q and p implement-
ing coordinate and momentum path functions, the Hamiltonian
state path can be constructed with the following procedure:

(define ((qp->H-state-path q p) t)
(up t (q t) (p t)))

The Hamilton-equations procedure returns the residuals of Ham-
ilton’s equations for the given paths.

For example, a procedure implementing the Hamiltonian for a
point mass with potential energy V (x, y) is

(define ((H-rectangular m V) state)
(let ((q (coordinate state))

(p (momentum state)))
(+ (/ (square p) (* 2 m))

(V (ref q 0) (ref q 1)))))

Hamilton’s equations are

(show-expression
(let ((V (literal-function ’V (-> (X Real Real) Real)))

(q (up (literal-function ’x)
(literal-function ’y)))

(p (down (literal-function ’p x)
(literal-function ’p y))))

(((Hamilton-equations (H-rectangular ’m V)) q p) ’t)))
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0⎛⎜⎜⎝Dx (t)− px (t)

m

Dy (t)− py (t)

m

⎞⎟⎟⎠
[Dpx (t) + ∂0V (x (t) , y (t))

Dpy (t) + ∂1V (x (t) , y (t))

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The zero in the first element of the structure of Hamilton’s equa-
tion residuals is just the tautology that time advances uniformly:
the time function is just the identity, so its derivative is one and
the residual is zero. The equations in the second element of the
structure relate the coordinate paths and the momentum paths.
The equations in the third element give the rate of change of the
momenta in terms of the applied forces.

Exercise 3.3: Computing Hamilton’s equations

Check your answers to exercise 3.1 with the Hamilton-equations pro-
cedure.

3.1.1 The Legendre Transformation

The Legendre transformation abstracts a key part of the process
of transforming from the Lagrangian to the Hamiltonian formula-
tion of mechanics—the replacement of functional dependence on
generalized velocities with functional dependence on generalized
momenta. The momentum state function is defined as a partial
derivative of the Lagrangian, a real-valued function of time, co-
ordinates, and velocities. The Legendre transformation provides
an inverse that gives the velocities in terms of the momenta: we
are able to write the velocities as a partial derivative of a different
real-valued function of time, coordinates, and momenta.9

Given a real-valued function F , if we can find a real-valued
function G such that DF = (DG)−1, then we say that F and G
are related by a Legendre transform.

9The Legendre transformation is more general than its use in mechanics in
that it captures the relationship between conjugate variables in systems as
diverse as thermodynamics, circuits, and field theory.
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Locally, we can define the inverse function10 V of DF so that
DF ◦ V = I, where I is the identity function I(w) = w. Consider

the composite function F̃ = F ◦ V. The derivative of F̃ is

DF̃ = (DF ◦ V)DV = IDV. (3.27)

Since

D(IV) = V + IDV, (3.28)

we have

DF̃ = D(IV)− V, (3.29)

or

V = D(IV)−DF̃ = D(IV − F̃ ). (3.30)

The integral is determined up to a constant of integration. If we
define

G = IV − F̃ , (3.31)

then we have

V = DG. (3.32)

The function G has the desired property that DG is the inverse
function V of DF . The derivation just given applies equally well
if the arguments of F and G have multiple components.11

Given a relation w = DF (v) for some given function F , then
v = DG(w) for G = IV − F ◦ V, where V is the inverse function
of DF , provided it exists.

A picture may help (see figure 3.1). The curve is the graph
of the function DF . Turned sideways, it is also the graph of the
function DG, because DG is the inverse function of DF . The
integral of DF from v0 to v is F (v)−F (v0); this is the area below
the curve from v0 to v. Likewise, the integral of DG from w0 to

10This can be done so long as the derivative is not zero.

11Equation (3.28) looks like an application of the product rule for derivatives,
D(IV) = DI V + IDV. Although this works for real-valued functions, it
is inadequate for functions with structured outputs. The result D(IV) =
V + IDV is correct, but to verify it the computation must be done after the
structures are multiplied out. See page 522.
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v0

w

w0

v

G(w)−G(w0)

DF

DG

F (v)− F (v0)

Figure 3.1 The Legendre transform can be interpreted in terms of
geometric areas. The curve is the graph of DF , and viewed sideways is
the graph of DG = (DF )−1. This figure should remind you of the geo-
metric interpretation of the product rule for derivatives, or alternatively
integration by parts.

w is G(w) −G(w0); this is the area to the left of the curve from
w0 to w. The union of these two regions has area wv − w0v0. So

wv − w0v0 = F (v) − F (v0) +G(w) −G(w0), (3.33)

which is the same as

wv − F (v)−G(w) = w0v0 −G(w0)− F (v0). (3.34)

The left-hand side depends only on the point labeled by w and
v and the right-hand side depends only on the point labeled by
w0 and v0, so these must be constant, independent of the variable
endpoints. So as the point is changed the combination G(w) +
F (v)− wv is invariant. Thus

G(w) = wv − F (v) + C, (3.35)

with constant C. The requirement for G depends only on DG so
we can choose to define G with C = 0.
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Legendre transformations with passive arguments

Let F be a real-valued function of two arguments and

w = ∂1F (x, v). (3.36)

If we can find a real-valued function G such that

v = ∂1G(x,w) (3.37)

we say that F and G are related by a Legendre transformation,
that the second argument in each function is active, and that the
first argument is passive in the transformation.

If the function ∂1F can be locally inverted with respect to the
second argument we can define

v = V(x,w), (3.38)

giving

w = ∂1F (x,V(x,w)) = W (x,w), (3.39)

where W = I1 is the selector function for the second argument.
For the active arguments the derivation goes through as before.

The first argument to F and G is just along for the ride—it is a
passive argument. Let

F̃ (x,w) = F (x,V(x,w)), (3.40)

then define

G = WV − F̃ . (3.41)

We can check that G has the property V = ∂1G by carrying out
the derivative:

∂1G = ∂1(WV − F̃ )

= V +W∂1V − ∂1F̃ , (3.42)

but

∂1F̃ (x,w) = ∂1F (x,V(x,w))∂1V(x,w)
= W (x,w)∂1V(x,w), (3.43)

or

∂1F̃ = W∂1V. (3.44)
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So, from equation (3.42),

∂1G = V, (3.45)

as required. The active argument may have many components.
The partial derivatives with respect to the passive arguments

are related in a remarkably simple way. Let’s calculate the deriva-
tive ∂0G in pieces. First,

∂0(WV) = W∂0V (3.46)

because ∂0W = 0. We calculate ∂0F̃ :

∂0F̃ (x,w) = ∂0F (x,V(x,w)) + ∂1F (x,V(x,w))∂0V(x,w)
= ∂0F (x,V(x,w)) +W (x,w)∂0V(x,w). (3.47)

Putting these together, we find

∂0G(x,w) = −∂0F (x,V(x,w)) = −∂0F (x, v). (3.48)

The calculation is unchanged if the passive argument has many
components.

We can write the Legendre transformation more symmetrically:

w = ∂1F (x, v)

wv = F (x, v) +G(x,w)

v = ∂1G(x,w)

0 = ∂0F (x, v) + ∂0G(x,w). (3.49)

The last relation is not as trivial as it looks, because x enters the
equations connecting w and v. With this symmetrical form, we
see that the Legendre transform is its own inverse.

Exercise 3.4: Simple Legendre transforms

For each of the following functions, find the function that is related to
the given function by the Legendre transform on the indicated active
argument. Show that the Legendre transform relations hold for your
solution, including the relations among passive arguments, if any.

a. F (x) = ax+ bx2, with no passive arguments.

b. F (x, y) = a sinx cos y, with x active.

c. F (x, y, ẋ, ẏ) = xẋ2 + 3ẋẏ + yẏ2, with ẋ and ẏ active.
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Hamilton’s equations from the Legendre transformation

We can use the Legendre transformation with the Lagrangian
playing the role of F and with the generalized velocity slot playing
the role of the active argument. The Hamiltonian plays the role
of G with the momentum slot active. The coordinate and time
slots are passive arguments.

The Lagrangian L and the Hamiltonian H are related by a
Legendre transformation:

e = (∂2L)(a, b, c) (3.50)

ec = L(a, b, c) +H(a, b, e) (3.51)

and

c = (∂2H)(a, b, e), (3.52)

with passive equations

0 = ∂0L(a, b, c) + ∂0H(a, b, e), (3.53)

0 = ∂1L(a, b, c) + ∂1H(a, b, e). (3.54)

Presuming it exists, we can define the inverse of ∂2L with respect
to the last argument:

c = V(a, b, e), (3.55)

and write the Hamiltonian

H(a, b, c) = cV(a, b, c) − L(a, b,V(a, b, c)). (3.56)

These relations are purely algebraic in nature.
On a path q we have the momentum p:

p(t) = ∂2L(t, q(t),Dq(t)), (3.57)

and from the definition of V we find

Dq(t) = V(t, q(t), p(t)). (3.58)
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The Legendre transform gives

Dq(t) = ∂2H(t, q(t), p(t)). (3.59)

This relation is purely algebraic and is valid for any path. The
passive equation (3.54) gives

∂1L(t, q(t),Dq(t)) = −∂1H(t, q(t), p(t)), (3.60)

but the left-hand side can be rewritten using the Lagrange equa-
tions, so

Dp(t) = −∂1H(t, q(t), p(t)). (3.61)

This equation is valid only for realizable paths, because we used
the Lagrange equations to derive it. Equations (3.59) and (3.61)
are Hamilton’s equations.

The remaining passive equation is

∂0L(t, q(t),Dq(t)) = −∂0H(t, q(t), p(t)). (3.62)

This passive equation says that the Lagrangian has no explicit
time dependence (∂0L = 0) if and only if the Hamiltonian has
no explicit time dependence (∂0H = 0). We have found that if
the Lagrangian has no explicit time dependence, then energy is
conserved. So if the Hamiltonian has no explicit time dependence
then it is a conserved quantity.

Exercise 3.5: Conservation of the Hamiltonian

Using Hamilton’s equations, show directly that the Hamiltonian is a
conserved quantity if it has no explicit time dependence.

Legendre transforms of quadratic functions

We cannot implement the Legendre transform in general because
it involves finding the functional inverse of an arbitrary function.
However, many physical systems can be described by Lagrangians
that are quadratic forms in the generalized velocities. For such
functions the generalized momenta are linear functions of the gen-
eralized velocities, and thus explicitly invertible.
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More generally, we can compute a Legendre transformation for
polynomial functions where the leading term is a quadratic form:

F (v) =
1

2
vTMv + bv + c. (3.63)

Because the first term is a quadratic form only the symmetric part
of M contributes to the result, so we can assume M is symmet-
ric.12 Let w = DF (v), then

w = DF (v) = Mv + b. (3.64)

So if M is invertible we can solve for v in terms of w. Thus we
may define a function V such that

v = V(w) = M−1(w − b) (3.65)

and we can use this to compute the value of the function G:

G(w) = wV(w) − F (V(w)). (3.66)

Computing Hamiltonians

We implement the Legendre transform for quadratic functions by
the procedure13

(define (Legendre-transform F)
(let ((w-of-v (D F)))
(define (G w)

(let ((zero (compatible-zero w)))
(let ((M ((D w-of-v) zero))

(b (w-of-v zero)))
(let ((v (solve-linear-left M (- w b))))
(- (* w v) (F v))))))

G))

The procedure Legendre-transform takes a procedure of one ar-
gument and returns the procedure that is associated with it by
the Legendre transform. If w = DF (v), wv = F (v) + G(w), and
v = DG(w) specifies a one-argument Legendre transformation,
then G is the function associated with F by the Legendre trans-
form: G = IV − F ◦ V, where V is the functional inverse of DF .

We can use the Legendre-transform procedure to compute a
Hamiltonian from a Lagrangian:

12If M is the matrix representation of M , then M = M
T.

13The procedure solve-linear-left was introduced in footnote 75 on page 71.
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(define ((Lagrangian->Hamiltonian Lagrangian) H-state)
(let ((t (time H-state))

(q (coordinate H-state))
(p (momentum H-state)))

(define (L qdot)
(Lagrangian (up t q qdot)))

((Legendre-transform L) p)))

Notice that the one-argument Legendre-transform procedure is
sufficient. The passive variables are given no special attention,
they are just passed around.

The Lagrangian may be obtained from the Hamiltonian by the
procedure:

(define ((Hamiltonian->Lagrangian Hamiltonian) L-state)
(let ((t (time L-state))

(q (coordinate L-state))
(qdot (velocity L-state)))

(define (H p)
(Hamiltonian (up t q p)))

((Legendre-transform H) qdot)))

Notice that the two procedures Hamiltonian->Lagrangian and
Lagrangian->Hamiltonian are identical, except for the names.

For example, the Hamiltonian for the motion of the point mass
with the potential energy V (x, y) may be computed from the La-
grangian:

(define ((L-rectangular m V) local)
(let ((q (coordinate local))

(qdot (velocity local)))
(- (* 1/2 m (square qdot))

(V (ref q 0) (ref q 1)))))

And the Hamiltonian is, as we saw in equation (3.22):

(show-expression
((Lagrangian->Hamiltonian

(L-rectangular
’m
(literal-function ’V (-> (X Real Real) Real))))

(up ’t (up ’x ’y) (down ’p x ’p y))))

V (x, y) +
1
2p

2
x

m
+

1
2p

2
y

m
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m

Figure 3.2 A point mass on a helical track.

Exercise 3.6: On a helical track

A uniform cylinder of mass M , radius R, and height h is mounted so as
to rotate freely on a vertical axis. A point mass of mass m is constrained
to move on a uniform frictionless helical track of pitch β (measured in
radians per meter of drop along the cylinder) mounted on the surface
of the cylinder (see figure 3.2). The mass is acted upon by standard
gravity (g = 9.8 ms−2).

a. What are the degrees of freedom of this system? Pick and describe
a convenient set of generalized coordinates for this problem. Write a
Lagrangian to describe the dynamical behavior. It may help to know
that the moment of inertia of a cylinder around its axis is 1

2MR2. You
may find it easier to do the algebra if various constants are combined
and represented as single symbols.

b. Make a Hamiltonian for the system. Write Hamilton’s equations for
the system. Are there any conserved quantities?

c. If we release the point mass at time t = 0 at the top of the track
with zero initial speed and let it slide down, what is the motion of the
system?

Exercise 3.7: An ellipsoidal bowl

Consider a point particle of mass m constrained to move in a bowl
and acted upon by a uniform gravitational acceleration g. The bowl
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is ellipsoidal, with height z = ax2 + by2. Make a Hamiltonian for this
system. Can you make any immediate deductions about this system?

3.1.2 Hamilton’s Equations from the Action Principle

The previous two derivations of Hamilton’s equations made use of
the Lagrange equations. Hamilton’s equations can also be derived
directly from the action principle.

The action is the integral of the Lagrangian along a path:

S[q](t1, t2) =

∫ t2

t1

L ◦ Γ[q]. (3.67)

The action is stationary with respect to variations of a realizable
path that preserve the configuration at the endpoints (for La-
grangians that are functions of time, coordinates, and velocities).

We can rewrite the integrand in terms of the Hamiltonian

L(t, q(t), p(t)) = p(t)Dq(t)−H(t, q(t), p(t)), (3.68)

with p(t) = ∂2L(t, q(t),Dq(t)). The Legendre transformation con-
struction gives

Dq(t) = ∂2H(t, q(t), p(t)), (3.69)

which is one of Hamilton’s equations, the one that does not depend
on the path being a realizable path.

In order to vary the action we should make the dependences on
the path explicit. We introduce

p̃[q](t) = ∂2L(t, q(t),Dq(t)), (3.70)

and14

Π[q](t) = (t, q(t), p̃[q](t)) = (t, q(t), p(t)) . (3.71)

The integrand of the action integral is then

L ◦ Γ[q] = p̃[q]Dq −H ◦ Π[q]. (3.72)

14The function Π[q] is the same as ΠL[q] introduced on page 203. Indeed, the
Lagrangian is needed to define momentum in every case, but we are suppress-
ing the dependency here because it does not matter in this argument.
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Using the shorthand δp for δp̃[q],15 and noting that p = p̃[q],
the variation of the action is

δS[q](t1, t2)

=

∫ t2

t1

(δp Dq + p δDq − (DH ◦ Π[q])δΠ[q])

=

∫ t2

t1

{δp Dq + p Dδq (3.73)

−(∂1H ◦ Π[q])δq − (∂2H ◦ Π[q])δp} .
Integrating the second term by parts, using D(pδq) = Dpδq +

pDδq, we get

δS[q](t1, t2) = pδq|t2t1
+

∫ t2

t1

{δp Dq −Dp δq

−(∂1H ◦Π[q])δq − (∂2H ◦ Π[q])δp} . (3.74)

The variations are constrained so that δq(t1) = δq(t2) = 0, so the
integrated part vanishes. Rearranging terms, the variation of the
action is

δS[q](t1, t2) (3.75)

=

∫ t2

t1

((Dq − ∂2H ◦ Π[q]) δp − (Dp+ ∂1H ◦Π[q]) δq) .

As a consequence of equation (3.69), the factor multiplying δp is
zero. We are left with

δS[q](t1, t2) = −
∫ t2

t1

(Dp+ ∂1H ◦Π[q]) δq. (3.76)

For the variation of the action to be zero for arbitrary variations,
except for the endpoint conditions, we must have

Dp = −∂1H ◦ Π[q], (3.77)

15The variation of the momentum δp̃[q] need not be further expanded in this
argument because it turns out that the factor multiplying it is zero. However,
it is handy to see how it is related to the variations in the coordinate path δq:

δp = δp̃[q](t) = ∂1∂2L(t, q(t), Dq(t))δq(t) + ∂2∂2L(t, q(t), Dq(t))Dδq(t).
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or

Dp = −∂1H(t, q(t), p(t)), (3.78)

which is the “dynamical” Hamilton equation.16

3.1.3 A Wiring Diagram

Figure 3.3 shows a summary of the functional relationship between
the Lagrangian and the Hamiltonian descriptions of a dynami-
cal system. The diagram shows a “circuit” interconnecting some
“devices” with “wires.” The devices represent the mathemati-
cal functions that relate the quantities on their terminals. The
wires represent identifications of the quantities on the terminals
that they connect. For example, there is a box that represents
the Lagrangian function. Given values t, q, and q̇, the value of
the Lagrangian L(t, q, q̇) is on the terminal labeled L, which is
wired to an addend terminal of an adder. Other terminals of the
Lagrangian carry the values of the partial derivatives of the La-
grangian function.

The upper part of the diagram summarizes the relationship of
the Hamiltonian to the Lagrangian. For example, the sum of the
values on the terminals L of the Lagrangian and H of the Hamilto-
nian is the product of the value on the q̇ terminal of the Lagrangian
and the value on the p terminal of the Hamiltonian. This is the
active part of the Legendre transform. The passive variables are
related by the corresponding partial derivatives being negations
of each other. In the lower part of the diagram the equations of
motion are indicated by the presence of the integrators, relating
the dynamical quantities to their time derivatives.

One can use this diagram to help understand the underlying
unity of the Lagrangian and Hamiltonian formulations of mechan-
ics. Lagrange’s equations are just the connection of the ṗ wire to
the ∂1L terminal of the Lagrangian device. One of Hamilton’s
equations is just the connection of the ṗ wire (through the nega-

16It is sometimes asserted that the momenta have a different status in the
Lagrangian and Hamiltonian formulations: that in the Hamiltonian framework
the momenta are “independent” of the coordinates. From this it is argued that
the variations δq and δp are arbitrary and independent, therefore implying
that the factor multiplying each of them in the action integral (3.75) must
independently be zero, apparently deriving both of Hamilton’s equations. The
argument is fallacious: we can write δp in terms of δq (see footnote 15).
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tion device) to the ∂1H terminal of the Hamiltonian device. The
other is just the connection of the q̇ wire to the ∂2H terminal of
the Hamiltonian device. We see that the two formulations are
consistent. One does not have to abandon any part of the La-
grangian formulation to use the Hamiltonian formulation: there
are deductions that can be made using both simultaneously.

3.2 Poisson Brackets

Here we introduce the Poisson bracket, in terms of which Hamil-
ton’s equations have an elegant and symmetric expression. Con-
sider a function F of time, coordinates, and momenta. The
value of F along the path σ(t) = (t, q(t), p(t)) is (F ◦ σ)(t) =
F (t, q(t), p(t)). The time derivative of F ◦ σ is

D(F ◦ σ) = (DF ◦ σ)Dσ

= ∂0F ◦ σ + (∂1F ◦ σ)Dq + (∂2F ◦ σ)Dp. (3.79)

If the phase-space path is a realizable path for a system with
Hamiltonian H, then Dq and Dp can be reexpressed using Hamil-
ton’s equations:

D(F ◦ σ) = ∂0F ◦ σ + (∂1F ◦ σ)(∂2H ◦ σ)− (∂2F ◦ σ)(∂1H ◦ σ)
= ∂0F ◦ σ + (∂1F∂2H − ∂2F∂1H) ◦ σ
= ∂0F ◦ σ + {F,H} ◦ σ (3.80)

where the Poisson bracket {F,H} of F and H is defined by17

{F,H} = ∂1F∂2H − ∂2F∂1H. (3.81)

Note that the Poisson bracket of two functions on the phase-state
space is also a function on the phase-state space.

17In traditional notation the Poisson bracket is written

{F,H} =
∑
i

(
∂F

∂qi
∂H

∂pi
−

∂F

∂pi

∂H

∂qi

)
.
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∂2H
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Figure 3.3 A “wiring diagram” describing the relationships among
the dynamical quantities occurring in Lagrangian and Hamiltonian me-
chanics.
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The coordinate selector Q = I1 is an example of a function on
phase-state space: Q(t, q, p) = q. According to equation (3.80),

Dq = D(Q ◦ σ) = {Q,H} ◦ σ = ∂2H ◦ σ, (3.82)

but this is the same as Hamilton’s equation

Dq(t) = ∂2H(t, q(t), p(t)). (3.83)

Similarly, the momentum selector P = I2 is a function on phase-
state space: P (t, q, p) = p. We have

Dp = D(P ◦ σ) = {P,H} ◦ σ = −∂1H ◦ σ, (3.84)

which is the same as Hamilton’s other equation

Dp(t) = −∂1H(t, q(t), p(t)). (3.85)

So the Poisson bracket provides a uniform way of writing Hamil-
ton’s equations:

D(Q ◦ σ) = {Q,H} ◦ σ
D(P ◦ σ) = {P,H} ◦ σ. (3.86)

The Poisson bracket of any function with itself is zero, so we
recover the conservation of energy for a system that has no explicit
time dependence:

DE = D(H ◦ σ) = (∂0H + {H,H}) ◦ σ = ∂0H ◦ σ. (3.87)

Properties of the Poisson bracket

Let F , G, and H be functions of time, position, and momentum,
and let c be independent of position and momentum.

The Poisson bracket is antisymmetric:

{F,G} = −{G,F} . (3.88)

It is bilinear (linear in each argument):

{F,G+H} = {F,G}+ {F,H} (3.89)

{F, cG} = c {F,G} (3.90)

{F +G,H} = {F,H}+ {G,H} (3.91)

{cF,G} = c {F,G} . (3.92)
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The Poisson bracket satisfies Jacobi’s identity:

0 = {F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} . (3.93)

All but the last of (3.88–3.93) can immediately be verified from
the definition. Jacobi’s identity requires a little more effort to
verify. We can use the computer to avoid some work. Define some
literal phase-space functions of Hamiltonian type:

(define F
(literal-function ’F
(-> (UP Real (UP Real Real) (DOWN Real Real)) Real)))

(define G
(literal-function ’G
(-> (UP Real (UP Real Real) (DOWN Real Real)) Real)))

(define H
(literal-function ’H
(-> (UP Real (UP Real Real) (DOWN Real Real)) Real)))

Then we check the Jacobi identity:

((+ (Poisson-bracket F (Poisson-bracket G H))
(Poisson-bracket G (Poisson-bracket H F))
(Poisson-bracket H (Poisson-bracket F G)))

(up ’t (up ’x ’y) (down ’px ’py)))
0

The residual is zero, so the Jacobi identity is satisfied for any three
phase-space state functions with two degrees of freedom.

Poisson brackets of conserved quantities

The Poisson bracket of conserved quantities is conserved. Let F
and G be time-independent phase-space state functions: ∂0F =
∂0G = 0. If F and G are conserved by the evolution under H then

0 = D(F ◦ σ) = {F,H} ◦ σ
0 = D(G ◦ σ) = {G,H} ◦ σ. (3.94)

So the Poisson brackets of F and G with H are zero: {F,H} =
{G,H} = 0. The Jacobi identity then implies

{{F,G},H} = 0, (3.95)
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and thus

D({F,G} ◦ σ) = 0, (3.96)

so {F,G} is a conserved quantity. The Poisson bracket of two
conserved quantities is also a conserved quantity.

3.3 One Degree of Freedom

The solutions of time-independent systems with one degree of free-
dom can be found by quadrature. Such systems conserve the
Hamiltonian: the Hamiltonian has a constant value on each re-
alizable trajectory. We can use this constraint to eliminate the
momentum in favor of the coordinate, obtaining the single equa-
tion Dq(t) = f(q(t)).18

A geometric view reveals more structure. Time-independent
systems with one degree of freedom have a two-dimensional phase
space. Energy is conserved, so all orbits are level curves of the
Hamiltonian. The possible orbit types are restricted to curves
that are contours of a real-valued function. The possible orbits
are paths of constant altitude in the mountain range on the phase
plane described by the Hamiltonian.

Only a few characteristic features are possible. There are points
that are stable equilibria of the dynamical system. These are the
peaks and pits of the Hamiltonian mountain range. These equilib-
ria are stable in the sense that neighboring trajectories on nearby
contours stay close to the equilibrium point. There are orbits
that trace simple closed curves on contours that surround a peak
or pit, or perhaps several peaks. There are also trajectories ly-
ing on contours that cross at a saddle point. The crossing point
is an unstable equilibrium, unstable in the sense that neighbor-
ing trajectories leave the vicinity of the equilibrium point. Such
contours that cross at saddle points are called separatrices (singu-
lar: separatrix), contours that “separate” two regions of distinct
behavior.

18For systems with kinetic energy that is quadratic in velocity, this equation
does not satisfy the Lipschitz condition at isolated points where the velocity
is zero. However the solution for q can be extracted using a definite integral.
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At every point Hamilton’s equations give a unique rate of evolu-
tion and direct the system to move perpendicular to the gradient
of the Hamiltonian. At the peaks, pits, and saddle points, the
gradient of the Hamiltonian is zero, so according to Hamilton’s
equations these are equilibria. At other points, the gradient of
the Hamiltonian is nonzero, so according to Hamilton’s equations
the rate of evolution is nonzero. Trajectories evolve along the con-
tours of the Hamiltonian. Trajectories on simple closed contours
periodically trace the contour. At a saddle point, contours cross.
The gradient of the Hamiltonian is zero at the saddle point, so
a system started at the saddle point does not leave the saddle
point. On the separatrix away from the saddle point the gradient
of the Hamiltonian is not zero, so trajectories evolve along the
contour. Trajectories on the separatrix are asymptotic forward or
backward in time to a saddle point. Going forward or backward in
time, such trajectories forever approach an unstable equilibrium
but never reach it. If the phase space is bounded, asymptotic tra-
jectories that lie on contours of a smooth Hamiltonian are always
asymptotic to unstable equilibria at both ends (but they may be
different equilibria).

These orbit types are all illustrated by the prototypical phase
plane of the pendulum (see figure 3.4). The solutions lie on con-
tours of the Hamiltonian. There are three regions of the phase
plane; in each the motion is qualitatively different. In the cen-
tral region the pendulum oscillates; above this there is a region
in which the pendulum circulates in one direction; below the os-
cillation region the pendulum circulates in the other direction. In
the center of the oscillation region there is a stable equilibrium, at
which the pendulum is hanging motionless. At the boundaries be-
tween these regions, the pendulum is asymptotic to the unstable
equilibrium, at which the pendulum is standing upright.19 There
are two asymptotic trajectories, corresponding to the two ways the
equilibrium can be approached. Each of these is also asymptotic
to the unstable equilibrium going backward in time.

19The pendulum has only one unstable equilibrium. Remember that the co-
ordinate is an angle.
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3.4 Phase Space Reduction

Our motivation for the development of Hamilton’s equations was
to focus attention on the quantities that can be conserved—the
momenta and the energy. In the Hamiltonian formulation the
generalized configuration coordinates and the conjugate momenta
comprise the state of the system at a given time. We know from
the Lagrangian formulation that if the Lagrangian does not de-
pend on some coordinate then the conjugate momentum is con-
served. This is also true in the Hamiltonian formulation, but there
is a distinct advantage to the Hamiltonian formulation. In the La-
grangian formulation the knowledge of the conserved momentum
does not lead immediately to any simplification of the problem,
but in the Hamiltonian formulation the fact that momenta are
conserved gives an immediate reduction in the dimension of the
system to be solved. In fact, if a coordinate does not appear in the
Hamiltonian then the dimension of the system of coupled equa-
tions that remain to be solved is reduced by two—the coordinate
does not appear and the conjugate momentum is constant.

Let H(t, q, p) be a Hamiltonian for some problem with an n-
dimensional configuration space and 2n-dimensional phase space.
Suppose the Hamiltonian does not depend upon the ith coordinate
qi: (∂1H)i = 0.20 According to Hamilton’s equations, the conju-
gate momentum pi is conserved. Hamilton’s equations of motion
for the remaining 2n − 2 phase-space variables do not involve qi

(because it does not appear in the Hamiltonian), and pi is a con-
stant. Thus the dimension of the difficult part of the problem,
the part that involves the solution of coupled ordinary differential
equations, is reduced by two. The remaining equation governing
the evolution of qi in general depends on all the other variables,
but once the reduced problem has been solved, the equation of
motion for qi can be written so as to give Dqi explicitly as a func-
tion of time. We can then find qi as a definite integral of this
function.21

20If a Lagrangian does not depend on a particular coordinate then neither does
the corresponding Hamiltonian, because the coordinate is a passive variable
in the Legendre transform. Such a Hamiltonian is said to be cyclic in that
coordinate.

21Traditionally, when a problem has been reduced to the evaluation of a def-
inite integral it is said to be reduced to a “quadrature.” Thus, the determi-
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Figure 3.4 Contours of the Hamiltonian for the undriven pendulum
on the phase plane. The horizontal axis is the angle θ and the vertical
axis is the conjugate angular momentum pθ. All realizable trajectories
lie on contours of the Hamiltonian. There are three regions in this
contour graph, displaying two distinct kinds of behavior. For small
energy the pendulum oscillates, producing trajectories that are ovoid
curves around the stable equilibrium point at the center. For larger
energy the pendulum circulates, producing wavy tracks outside the eye-
shaped region of oscillation. The oscillation region is separated from the
circulation regions by the separatrix, which emanates from the unstable
equilibrium at (±π, 0). The pendulum has length 1m and a bob of mass
1kg. The acceleration of gravity is 9.8ms−2.

Contrast this result with analogous results for more general
systems of differential equations. There are two independent sit-
uations. One situation is that we know a constant of the motion.
In general, constants of the motion can be used to reduce by one
the dimension of the unsolved part of the problem. To see this,
let the system of equations be

Dzi(t) = F i(z0(t), z1(t), . . . , zm−1(t)), (3.97)

nation of the evolution of a cyclic coordinate qi is reduced to a problem of
quadrature.
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where m is the dimension of the system. Assume we know some
constant of the motion

C(z0(t), z1(t), . . . , zm−1(t)) = 0. (3.98)

At least locally, we expect that we can use this equation to solve
for zm−1(t) in terms of all the other variables, and use this solution
to eliminate the dependence on zm−1(t). The first m−1 equations
then depend only upon the first m − 1 variables. The dimension
of the system of equations to be solved is reduced by one. After
the solution for the other variables has been found, zm−1(t) can
be found using the constant of the motion.

The second situation is that one of the variables, say zi, does
not appear in the equations of motion (but there is an equation
for Dzi). In this case the equations for the other variables form an
independent set of equations of one dimension less than the orig-
inal system. After these are solved, then the remaining equation
for zi can be solved by definite integration.

In both situations the dimension of the system of coupled equa-
tions is reduced by one. Hamilton’s equations are different in that
these two situations come together. If a Hamiltonian for a system
does not depend on a particular coordinate, then the equations of
motion for the other coordinates and momenta do not depend on
that coordinate. Furthermore, the momentum conjugate to that
coordinate is a constant of the motion. An added benefit is that
the use of this constant of the motion to reduce the dimension of
the remaining equations is automatic in the Hamiltonian formu-
lation. The conserved momentum is a state variable and just a
parameter in the remaining equations.

So if there is a continuous symmetry it will probably be to our
advantage to choose a coordinate system that explicitly incorpo-
rates the symmetry, making the Hamiltonian independent of a
coordinate. Then the dimension of the phase space of the coupled
system will be reduced by two for every coordinate that does not
appear in the Hamiltonian.22

22It is not always possible to choose a set of generalized coordinates in which
all symmetries are simultaneously manifest. For these systems, the reduction
of the phase space is more complicated. We have already encountered such
a problem: the motion of a free rigid body. The system is invariant under
rotation about any axis, yet no single coordinate system can reflect this sym-
metry. Nevertheless, we have already found that the dynamics is described by
a system of lower dimension than the full phase space: the Euler equations.
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Motion in a central potential

Consider the motion of a particle of mass m in a central poten-
tial. A natural choice for generalized coordinates that reflects the
symmetry is polar coordinates. A Lagrangian is (equation 1.69):

L(t; r, ϕ; ṙ, ϕ̇) = 1
2m(ṙ2 + r2ϕ̇2)− V (r). (3.99)

The momenta are pr = mṙ and pϕ = mr2ϕ̇. The kinetic en-
ergy is a homogeneous quadratic form in the velocities, so the
Hamiltonian is T +V with the velocities rewritten in terms of the
momenta:

H(t; r, ϕ; pr , pϕ) =
p2r
2m

+
p2ϕ

2mr2
+ V (r). (3.100)

Hamilton’s equations are

Dr(t) =
pr(t)

m

Dϕ(t) =
pϕ(t)

m(r(t))2

Dpr(t) =
(pϕ(t))

2

m(r(t))3
−DV (r(t))

Dpϕ(t) = 0. (3.101)

The potential energy depends on the distance from the origin, r,
as does the kinetic energy in polar coordinates, but neither the
potential energy nor the kinetic energy depends on the polar an-
gle ϕ. The angle ϕ does not appear in the Lagrangian so we know
that pϕ, the momentum conjugate to ϕ, is conserved along real-
izable trajectories. The fact that pϕ is constant along realizable
paths is expressed by one of Hamilton’s equations. That pϕ has a
constant value is immediately made use of in the other Hamilton’s
equations: the remaining equations are a self-contained subsystem
with constant pϕ. To make a lower-dimensional subsystem in the
Lagrangian formulation we have to use each conserved momen-
tum to eliminate one of the other state variables, as we did for the
axisymmetric top (see section 2.10).

We can check our derivations with the computer. A procedure
implementing the Lagrangian has already been introduced (below
equation 1.69). We can use this to get the Hamiltonian:
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(show-expression
((Lagrangian->Hamiltonian

(L-central-polar ’m (literal-function ’V)))
(up ’t (up ’r ’phi) (down ’p r ’p phi))))

V (r) +
1
2p

2
ϕ

mr2
+

1
2p

2
r

m

and to develop Hamilton’s equations:

(show-expression
(((Hamilton-equations

(Lagrangian->Hamiltonian
(L-central-polar ’m (literal-function ’V))))

(up (literal-function ’r)
(literal-function ’phi))

(down (literal-function ’p r)
(literal-function ’p phi)))

’t)) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0⎛⎜⎜⎝ Dr (t)− pr (t)

m

Dϕ (t)− pϕ (t)

m (r (t))2

⎞⎟⎟⎠
⎡⎢⎣Dpr (t) +DV (r (t))− (pϕ (t))

2

m (r (t))3

Dpϕ (t)

⎤⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Axisymmetric top

We reconsider the axisymmetric top (see section 2.10) from the
Hamiltonian point of view. Recall that a top is a rotating rigid
body, one point of which is fixed in space. The center of mass is not
at the fixed point, and there is a uniform gravitational field. An
axisymmetric top is a top with an axis of symmetry. We consider
here an axisymmetric top with the fixed point on the symmetry
axis.

The axisymmetric top has two continuous symmetries we would
like to exploit. It has the symmetry that neither the kinetic nor
potential energy is sensitive to the orientation of the top about
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the symmetry axis. The kinetic and potential energy are also in-
sensitive to a rotation of the physical system about the vertical
axis, because the gravitational field is uniform. We take advan-
tage of these symmetries by choosing coordinates that naturally
express them. We already have an appropriate coordinate system
that does the job—the Euler angles. We choose the reference ori-
entation of the top so that the symmetry axis is vertical. The first
Euler angle, ψ, expresses a rotation about the symmetry axis. The
next Euler angle, θ, is the tilt of the symmetry axis of the top from
the vertical. The third Euler angle, ϕ, expresses a rotation of the
top about the fixed ẑ axis. The symmetries of the problem imply
that the first and third Euler angles do not appear in the Hamil-
tonian. As a consequence the momenta conjugate to these angles
are conserved quantities. The problem of determining the motion
of the axisymmetric top is reduced to the problem of determining
the evolution of θ and pθ. Let’s work out the details.

In terms of Euler angles, a Lagrangian for the axisymmetric top
is (see section 2.10):

(define ((L-axisymmetric-top A C gMR) local)
(let ((q (coordinate local))

(qdot (velocity local)))
(let ((theta (ref q 0))

(thetadot (ref qdot 0))
(phidot (ref qdot 1))
(psidot (ref qdot 2)))

(+ (* 1/2 A
(+ (square thetadot)

(square (* phidot (sin theta)))))
(* 1/2 C

(square (+ psidot (* phidot (cos theta)))))
(* -1 gMR (cos theta))))))

where gMR is the product of the gravitational acceleration, the
mass of the top, and the distance from the point of support to the
center of mass. The Hamiltonian is nicer than we have a right to
expect:

(show-expression
((Lagrangian->Hamiltonian (L-axisymmetric-top ’A ’C ’gMR))
(up ’t

(up ’theta ’phi ’psi)
(down ’p theta ’p phi ’p psi))))
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1
2p

2
ψ

C
+

1
2p

2
ψ (cos (θ))2

A (sin (θ))2
+

1
2p

2
θ

A
− pϕpψ cos (θ)

A (sin (θ))2
+

1
2p

2
ϕ

A (sin (θ))2

+ gMR cos (θ)

Note that the angles ϕ and ψ do not appear in the Hamiltonian,
as expected. Thus the momenta pϕ and pψ are constants of the
motion.

For given values of pϕ and pψ we must determine the evolution
of θ and pθ. The effective Hamiltonian for θ and pθ has one degree
of freedom, and does not involve the time. Thus the value of
the Hamiltonian is conserved along realizable trajectories. So the
trajectories of θ and pθ trace contours of the effective Hamiltonian.
This gives us a big picture of the possible types of motion and their
relationship, for given values of pϕ and pψ.

If the top is standing vertically then pϕ = pψ. Let’s concentrate
on the case that pϕ = pψ, and define p = pψ = pϕ. The effective
Hamiltonian becomes (after a little trigonometric simplification)

Hp(t, θ, pθ) =
p2θ
2A

+
p2

2C
+

p2

2A
tan2

θ

2
+ gMR cos θ. (3.102)

Defining the effective potential energy

Vp(θ) =
p2

2C
+

p2

2A
tan2

θ

2
+ gMR cos θ, (3.103)

which parametrically depends on p, the effective Hamiltonian is

Hp(t, θ, pθ) =
p2θ
2A

+ Vp(θ). (3.104)

If p is large, Vp has a single minimum at θ = 0, as seen in
figure 3.5 (top curve). For small p (bottom curve) there is a mini-
mum for finite positive θ and a symmetrical minimum for negative
θ; there is a local maximum at θ = 0. There is a critical value
of p at which θ = 0 changes from a minimum to a local maxi-
mum. Denote the critical value by pc. A simple calculation shows
pc =

√
4gMRA. For θ = 0 we have p = Cω, where ω is the

rotation rate. Thus to pc there corresponds a critical rotation
rate

ωc =
√
4gMRA/C. (3.105)
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Figure 3.5 The effective potential energy Vp of the axisymmetric top
as a function of the angle θ. The top curve is for an axial angular
momentum p > pc. For this value the top is stable standing vertically.
The bottom curve is for p < pc. Here the top is not stable standing
vertically. The middle curve is for p at the critical angular momentum.
We see the bifurcation of the stable equilibrium of the sleeping top into
three equilibrium points, one of them unstable.

For ω > ωc the top can stand vertically; for ω < ωc the top falls if
slightly displaced from the vertical. A top that stands vertically is
called a “sleeping” top. For a more realistic top, friction gradually
slows the rotation; the rotation rate eventually falls below the
critical rotation rate and the top “wakes up.”

We get additional insight into the sleeping top and the awake
top by looking at the trajectories in the θ, pθ phase plane. The
trajectories in this plane are simply contours of the Hamiltonian,
because the Hamiltonian is conserved. Figure 3.6 shows a phase
portrait for ω > ωc. All of the trajectories are loops around the
vertical (θ = 0). Displacing the top slightly from the vertical
simply places the top on a nearby loop, so the top stays nearly
vertical. Figure 3.7 shows the phase portrait for ω < ωc. Here
the vertical position is an unstable equilibrium. The trajectories
that approach the vertical are asymptotic—they take an infinite
amount of time to reach it, just as a pendulum with just the right
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Figure 3.6 Trajectories of the axisymmetric top plotted on the (θ, pθ)

phase plane with pϕ = pψ and ω = 145 rad s−1. The parameters are

A = 0.000696 kgm2, C = 0.000132 kgm2, gMR = 0.112 kgm2 s−2. For
these parameters the critical frequency ωc is about 133.8 rad s−1.

initial conditions can approach the vertical but never reach it. If
the top is displaced slightly from the vertical then the trajectories
loop around another center with nonzero θ. A top started at the
center point of the loop stays there, and one started near this
equilibrium point loops stably around it. Thus we see that when
the top “wakes up” the vertical is unstable, but the top does not
fall to the ground. Rather, it oscillates around a new equilibrium.

It is also interesting to consider the axisymmetric top when
pϕ �= pψ. Consider the case pϕ > pψ. Some trajectories in the θ,
pθ plane are shown in figure 3.8. Note that in this case trajectories
do not go through θ = 0. The phase portrait for pϕ < pψ is similar
and is not shown.

We have reduced the motion of the axisymmetric top to quadra-
tures by choosing coordinates that express the symmetries. It
turns out that the resulting integrals can be expressed in terms
of elliptic functions. Thus, the axisymmetric top can be solved
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Figure 3.7 Trajectories of the axisymmetric top plotted on the (θ, pθ)

phase plane with pϕ = pψ and ω = 120 rad s−1. The other parameters
are as before.

analytically. We do not dwell on this solution because it is not
very illuminating: since most problems cannot be solved analyt-
ically, there is little profit in dwelling on the analytic solution of
one of the rare problems that is analytically solvable. Rather, we
have focused on the geometry of the solutions in the phase space
and the use of conserved quantities to reduce the dimension of
the problem. With the phase-space portrait we have found some
interesting qualitative features of the motion of the top.

Exercise 3.8: Sleeping top

Verify that the critical angular velocity above which an axisymmetric
top can sleep is given by equation (3.105).

3.4.1 Lagrangian Reduction

Suppose there are cyclic coordinates. In the Hamiltonian formula-
tion, the equations of motion for the coordinates and momenta for
the other degrees of freedom form a self-contained subsystem in
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Figure 3.8 Trajectories of the axisymmetric top plotted on the (θ, pθ)
phase plane with pϕ > pψ. Most of the parameters are as in figure 3.6,

but here pϕ = 0.0145 kgm2 s−1 and pψ = 0.0119 kgm2 s−1.

which the momenta conjugate to the cyclic coordinates are param-
eters. We can form a Lagrangian for this subsystem by performing
a Legendre transform of the reduced Hamiltonian. Alternatively,
we can start with the full Lagrangian and perform a Legendre
transform for only those coordinates that are cyclic. The equa-
tions of motion are Hamilton’s equations for those variables that
are transformed and Lagrange’s equations for the others. The
momenta conjugate to the cyclic coordinates are conserved and
can be treated as parameters in the Lagrangian for the remaining
coordinates.

Divide the tuple q of coordinates into two subtuples q = (x, y).
Assume L(t;x, y; vx, vy) is a Lagrangian for the system. Define
the Routhian R as the Legendre transform of L with respect to
the vy slot:
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py = ∂2,1L(t;x, y; vx, vy) (3.106)

pyvy = R(t;x, y; vx, py) + L(t;x, y; vx, vy) (3.107)

vy = ∂2,1R(t;x, y; vx, py) (3.108)

0 = ∂0R(t;x, y; vx, py) + ∂0L(t;x, y; vx, vy) (3.109)

0 = ∂1R(t;x, y; vx, py) + ∂1L(t;x, y; vx, vy) (3.110)

0 = ∂2,0R(t;x, y; vx, py) + ∂2,0L(t;x, y; vx, vy). (3.111)

To define the function R we must solve equation (3.106) for vy
in terms of the other variables, and substitute this into equa-
tion (3.107).

Define the state path Ξ:

Ξ(t) = (t;x(t), y(t);Dx(t), py(t)), (3.112)

where

py(t) = ∂2,1L(t;x(t), y(t);Dx(t),Dy(t)). (3.113)

Realizable paths satisfy the equations of motion (see exercise 3.9)

D(∂2,0R ◦ Ξ)(t) = ∂1,0R ◦ Ξ(t) (3.114)

Dy(t) = ∂2,1R ◦ Ξ(t) (3.115)

Dpy(t) = −∂1,1R ◦ Ξ(t), (3.116)

which are Lagrange’s equations for x and Hamilton’s equations
for y and py.

Now suppose that the Lagrangian is cyclic in y. Then ∂1,1L =
∂1,1R = 0, and py(t) is a constant c on any realizable path. Equa-
tion (3.114) does not depend on y, by assumption, and we can
replace py by its constant value c. So equation (3.114) forms a
closed subsystem for the path x. The Lagrangian Lc

Lc(t, x, vx) = −R(t;x, •; vx, c) (3.117)

describes the motion of the subsystem (the minus sign is intro-
duced for convenience, and • indicates that the function’s value
is independent of this argument). The path y can be found by
integrating equation (3.115) using the independently determined
path x.
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Define the action

S′c[x](t1, t2) =

∫ t2

t1

Lc ◦ Γ[x]. (3.118)

The realizable paths x satisfy the Lagrange equations with the
Lagrangian Lc, so the action S′c is stationary with respect to vari-
ations ξ of x that are zero at the end times:

δξS
′
c(t1, t2) = 0. (3.119)

For realizable paths q the action S[q](t1, t2) is stationary with
respect to variations η of q that are zero at the end times. Along
these paths the momentum py(t) has the constant value c. For
these same paths the action S′c[x](t1, t2) is stationary with respect
to variations ξ of x that are zero at the end times. The dimension
of ξ is smaller than the dimension of η.

The values of the actions S′c[x](t1, t2) and S[q](t1, t2) are related:

S[q](t1, t2) = S′c[x]−
∫ t2

t1

cvy

= S′c[x]− c(y(t2)− y(t1)). (3.120)

Exercise 3.9: Routhian equations of motion

Verify that the equations of motion are given by equations (3.114–3.116).

3.5 Phase Space Evolution

Most problems do not have enough symmetries to be reducible
to quadrature. It is natural to turn to numerical integration to
learn more about the evolution of such systems. The evolution in
phase space may be found by numerical integration of Hamilton’s
equations.

As an illustration, consider again the periodically driven pen-
dulum (see page 74). The Hamiltonian is

(show-expression
((Lagrangian->Hamiltonian

(L-periodically-driven-pendulum ’m ’l ’g ’a ’omega))
(up ’t ’theta ’p theta)))
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Figure 3.9 A trajectory of the periodically driven pendulum on the
(θ, pθ) phase plane. The trajectory starts in the oscillation region at
(1, 0). It oscillates for a while, but then escapes into circulation, only
later to be recaptured into oscillation.
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Hamilton’s equations for the periodically driven pendulum are un-
revealing, so we will not show them. We build a system derivative
from the Hamiltonian:

(define (H-pend-sysder m l g a omega)
(Hamiltonian->state-derivative
(Lagrangian->Hamiltonian

(L-periodically-driven-pendulum m l g a omega))))

Now we integrate this system, with the same initial conditions as
in section 1.7 (see figure 1.7), but display the trajectory in phase
space (figure 3.9), using a monitor procedure:
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(define window (frame :-pi :pi -10.0 10.0))

(define ((monitor-p-theta win) state)
(let ((q ((principal-value :pi) (coordinate state)))

(p (momentum state)))
(plot-point win q p)))

We use evolve to explore the evolution of the system:

(let ((m 1.0) ;m=1kg
(l 1.0) ;l=1m
(g 9.8) ;g=9.8m/s2

(A 0.1) ;A=1/10 m
(omega (* 2 (sqrt 9.8))))

((evolve H-pend-sysder m l g A omega)
(up 0.0 ;t0=0

1.0 ;theta0=1 rad
0.0) ;p0=0 kg m2/s

(monitor-p-theta window)
0.01 ;plot interval
100.0 ;final time
1.0e-12))

The trajectory sometimes oscillates and sometimes circulates. The
patterns in the phase plane are reminiscent of the trajectories in
the phase plane of the undriven pendulum shown in figure 3.4 on
page 225.

3.5.1 Phase-Space Description Is Not Unique

We are familiar with the fact that a given motion of a system is
expressed differently in different coordinate systems: the functions
that express a motion in rectangular coordinates are different from
the functions that express the same motion in polar coordinates.
However, in a given coordinate system the evolution of the local
state tuple for particular initial conditions is unique. The general-
ized velocity path function is the derivative of the generalized co-
ordinate path function. On the other hand, the coordinate system
alone does not uniquely specify the phase-space description. The
relationship of the momentum to the coordinates and the veloci-
ties depends on the Lagrangian, and many different Lagrangians
may be used to describe the behavior of the same physical system.
When two Lagrangians for the same physical system are different,
the phase-space descriptions of a dynamical state are different.
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We have already seen two different Lagrangians for the driven
pendulum (see section 1.6.4): one was found using L = T −V and
the other was found by inspection of the equations of motion. The
two Lagrangians differ by a total time derivative. The momen-
tum pθ conjugate to θ depends on which Lagrangian we choose to
work with, and the description of the evolution in the correspond-
ing phase space also depends on the choice of Lagrangian, even
though the behavior of the system is independent of the method
used to describe it. The momentum conjugate to θ, using the
L = T − V Lagrangian for the periodically driven pendulum, is

pθ = ml2θ̇ − almω sin θ sinωt, (3.121)

but with the alternative Lagrangian, it is

pθ = ml2θ̇. (3.122)

The two momenta differ by an additive distortion that varies peri-
odically in time and depends on θ. That the phase-space descrip-
tions are different is illustrated in figure 3.10. The evolution of
the system is the same for each.

3.6 Surfaces of Section

Computing the evolution of mechanical systems is just the begin-
ning of understanding the dynamics. Typically, we want to know
much more than the phase space evolution of some particular tra-
jectory. We want to obtain a qualitative understanding of the
motion. We want to know what sorts of motion are possible, and
how one type relates to others. We want to abstract the essen-
tial dynamics from the myriad particular evolutions that we can
calculate. Paradoxically, it turns out that by throwing away most
of the calculated information about a trajectory we gain essen-
tial new information about the character of the trajectory and its
relation to other trajectories.

A remarkable tool that extracts the essence by throwing away
information is a technique called the surface of section or Poincaré
section.23 A surface of section is generated by looking at successive

23The surface of section technique was introduced by Poincaré in his Méthodes
Nouvelles de la Mécanique Céleste [35]. Poincaré proved remarkable results
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Figure 3.10 A trajectory of the periodically driven pendulum on the
(θ, pθ) phase plane. In the upper plot the trajectory is derived using
the Lagrangian L = T − V (see equation 1.88 on page 51. In the lower
plot the trajectory is derived using the alternative Lagrangian of equa-
tion (1.120) on page 66. The evolution is the same, but the phase-space
representations are not.
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intersections of a trajectory or a set of trajectories with a plane in
the phase space. Typically, the plane is spanned by a coordinate
axis and the canonically conjugate momentum axis. We will see
that surfaces of section made in this way have nice properties.

The surface of section technique was put to spectacular use in
the 1964 landmark paper [22] by astronomers Michel Hénon and
Carl Heiles. In their numerical investigations they found that
some trajectories are chaotic, whereas other trajectories are reg-
ular. An essential characteristic of the chaotic motions is that
initially nearby trajectories separate exponentially with time; the
separation of regular trajectories is linear.24 They found that these
two types of trajectories are typically clustered in the phase space
into regions of regular motion and regions of chaotic motion.

3.6.1 Periodically Driven Systems

For a periodically driven system the surface of section is a stro-
boscopic view of the evolution; we consider only the state of the
system at the strobe times, with the period of the strobe equal to
the drive period. We generate a surface of section for a periodically
driven system by computing a number of trajectories and accumu-
lating the phase-space coordinates of each trajectory whenever the
drive passes through some particular phase. Let T be the period
of the drive; then, for each trajectory, the surface of section ac-
cumulates the phase-space points (q(t), p(t)), (q(t+ T ), p(t+ T )),
(q(t+ 2T ), p(t + 2T )), and so on (see figure 3.11). For a system
with a single degree of freedom we can plot the sequence of phase-
space points on a q, p surface.

In the case of the stroboscopic section for the periodically driven
system, the phase of the drive is the same for all section points;

about dynamical systems using the surface of section technique, and we shall
return to some of these later. The surface of section technique is a key tool
in the modern study of dynamical systems, for both analytical and numerical
investigations.

24That solutions of ordinary differential equations can show exponential sensi-
tivity to initial conditions was independently discovered by Edward Lorenz [31]
in the context of a simplified model of convection in the Earth’s atmosphere.
Lorenz coined the picturesque term “butterfly effect” to describe this sensi-
tivity: his weather system model is so sensitive to initial conditions that “the
flapping of a butterfly’s wings in Brazil can change the course of a typhoon in
Japan.”
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Figure 3.11 Stroboscopic surface of section for a periodically driven
system. For each trajectory the surface of section accumulates the set
of phase-space points after each full cycle of the drive.

thus each phase-space point in the section, with the known phase
of the drive, may be considered as an initial condition for the
rest of the trajectory. The absolute time of the particular section
point does not affect the subsequent evolution; all that matters is
that the phase of the drive have the value specified for the section.
Thus we can think of the dynamical evolution as generating a map
that takes a point in the phase space and generates a new point
in the phase space after evolving the system for one drive period.
This map of the phase space onto itself is called the Poincaré map.

Figure 3.12 shows an example Poincaré section for the driven
pendulum. We plot the section points for a number of different
initial conditions. We are immediately presented with a new facet
of dynamical systems. For some initial conditions, the subsequent
section points appear to fill out a set of curves in the section.
For other initial conditions this is not the case: rather, the set
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Figure 3.12 A surface of section for the driven pendulum on the
(θ, pθ) phase plane. The samples are taken at the peaks of the drive.
For this section the parameters are: m = 1kg, l = 1m, g = 9.8m s−2,
A = 0.05m, and ω = 4.2ω0, with ω0 =

√
g/l.

of section points appear scattered over a region of the section. In
fact, all of the scattered points in figure 3.12 were generated from a
single initial condition. The surface of section suggests that there
are qualitatively different classes of trajectories distinguished by
the dimension of the subspace of the section that they explore.

Trajectories that fill out curves on the surface of section are
called regular or quasiperiodic trajectories. The curves that are
filled out by the regular trajectories are invariant curves. They
are invariant in that if any section point for a trajectory falls on
an invariant curve, all subsequent points fall on the same invariant
curve. Otherwise stated, the Poincaré map maps every point on
an invariant curve onto the invariant curve.

The trajectories that appear to fill areas are called chaotic tra-
jectories. For these points the distance in phase space between ini-
tially nearby points grows, on average, exponentially with time.25

25We saw an example of this extreme sensitivity to initial conditions in fig-
ure 1.7 (section 1.7) and also in the double-pendulum project (exercise 1.44).
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In contrast, for the regular trajectories, the distance in phase space
between initially nearby points grows, on average, linearly with
time.

The phase space seems to be grossly clumped into different re-
gions. Initial conditions in some regions appear to predominantly
yield regular trajectories, and other regions appear to predomi-
nantly yield chaotic trajectories. This gross division of the phase
space into qualitatively different types of trajectories is called the
divided phase space. We will see later that there is much more
structure here than is apparent at this scale, and that upon mag-
nification there is a complicated interweaving of chaotic and reg-
ular regions on finer and finer scales. Indeed, we shall see that
many trajectories that appear to generate curves on the surface
of section are, upon magnification, actually chaotic and fill a tiny
area. We shall also find that there are trajectories that lie on one-
dimensional curves on the surface of section, but only explore a
subset of this curve formed by cutting out an infinite number of
holes.26

The features seen on the surface of section of the driven pen-
dulum are quite general. The same phenomena are seen in most
dynamical systems. In general, there are both regular and chaotic
trajectories, and there is the clumping characteristic of the divided
phase space. The specific details depend upon the system, but the
basic phenomena are generic. Of course, we are interested in both
aspects: the phenomena that are common to all systems, and the
specific details for particular systems of interest.

The surface of section for the periodically driven pendulum has
specific features that give us qualitative information about how
this system behaves. The central island in figure 3.12 is the rem-
nant of the oscillation region for the unforced pendulum (see fig-
ure 3.4 in section 3.3). There is a sizable region of regular trajec-
tories here that are, in a sense, similar to the trajectories of the
unforced pendulum. In this region, the pendulum oscillates back
and forth, much as the undriven pendulum does, but the drive
makes it wiggle as it does so. The section points are all collected
at the same phase of the drive so we do not see these wiggles on
the section.

26One-dimensional invariant sets with an infinite number of holes were discov-
ered by John Mather. They are sometimes called cantori (singular cantorus),
by analogy to the Cantor sets, but it really doesn’t Mather.
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The central island is surrounded by a large chaotic zone. Thus
the region of phase space with regular trajectories similar to the
unforced trajectories has finite extent. On the section, the bound-
ary of this “stable” region is apparently rather well defined—there
is a sudden transition from smooth regular invariant curves to
chaotic motion that can take the system far from this region of
regular motion.

There are two other sizeable regions of regular behavior with fi-
nite angular extent. The trajectories in these regions are resonant
with the drive, on average executing one full rotation per cycle of
the drive. The two islands differ in the direction of the rotation. In
these regions the pendulum is making complete rotations, but the
rotation is locked to the drive so that points on the section appear
only in the islands. The fact that points for particular trajecto-
ries loop around the islands means that the pendulum sometimes
completes a cycle faster than the drive and sometimes slower than
the drive, but never loses lock.

Each regular region has finite extent. So from the surface of
section we can see directly the range of initial conditions that
remain in resonance with the drive. Outside of the regular region
initial conditions lead to chaotic trajectories that evolve far from
the resonant regions.

Various higher-order resonance islands are also visible, as are
nonresonant regular circulating orbits. So, the surface of section
has provided us with an overview of the main types of motion that
are possible and their interrelationship.

Changing the parameters shows other interesting phenomena.
Figure 3.13 shows the surface of section when the drive frequency
is twice the natural small-amplitude oscillation frequency of the
undriven pendulum. The section has a large chaotic zone, with an
interesting set of islands. The central equilibrium has undergone
an instability and instead of a central island we find two off-center
islands. These islands are alternately visited one after the other.
As the support goes up and down the pendulum alternately tips
to one side and then the other. It takes two periods of the drive
before the pendulum visits the same island. Thus, the system
has “period-doubled.” An island has been replaced by a period-
doubled pair of islands. Note that other islands still exist. The
islands in the top and bottom of the chaotic zone are the resonant
islands, in which the pendulum loops on average a full turn for
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Figure 3.13 Another surface of section for the driven pendulum on
the (θ, pθ) phase plane. Here we see a period-doubled central island. For
this section the frequency of the drive is resonant with the frequency of
small-amplitude oscillations of the undriven pendulum. The angular
momentum scale is −10 to 10kgm2 s−1. For this section the parameters
are: m = 1 kg, l = 1m, g = 9.8m s−2, A = 0.1m, ω = 2ω0.

every cycle of the drive. Note that, as before, if the pendulum is
rapidly circulating, the motion is regular.

It is a surprising fact that if we shake the support of a pen-
dulum fast enough then the pendulum can stand upright. This
phenomenon can be visualized with the surface of section. Fig-
ure 3.14 shows a surface of section when the drive frequency is
large compared to the natural frequency. That the pendulum can
stand upright is indicated by the existence of a regular island at
the inverted equilibrium. The surface of section shows that the
pendulum can remain upright for a range of initial displacements
from the vertical.

3.6.2 Computing Stroboscopic Surfaces of Section

We already have the system derivative for the driven pendulum,
and we can use it to make a parametric map for constructing
Poincaré sections:
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Figure 3.14 A surface of section for the rapidly driven pendulum
on the (θ, pθ) phase plane. Here we see the emergence of a vertical
equilibrium. The angular momentum scale is −20 to 20 kgm2 s−1. For
this section the parameters are: m = 1kg, l = 1m, g = 9.8m s−2,
A = 0.2m, ω = 10.1ω0.

(define (driven-pendulum-map m l g A omega)
(let ((advance (state-advancer H-pend-sysder m l g A omega))

(map-period (/ :2pi omega)))
(lambda (theta ptheta return fail)

(let ((ns (advance
(up 0 theta ptheta) ; initial state
map-period))) ; integration interval

(return ((principal-value :pi) (coordinate ns))
(momentum ns))))))

A map procedure takes the two section coordinates (here theta

and ptheta) and two “continuation” procedures. If the section
coordinates given are in the domain of the map, it produces two
new section coordinates and passes them to the return contin-
uation, otherwise the map procedure calls the fail continuation
procedure with no arguments.27

27In the particular case of the driven pendulum there is no reason to call fail.
This contingency is reserved for systems where orbits escape or cease to satisfy
some constraint.
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The trajectories of a map can be explored with an interactive
interface. The procedure explore-map lets us use a pointing de-
vice to choose initial conditions for trajectories. For example, the
surface of section in figure 3.12 was generated by plotting a num-
ber of trajectories, using a pointer to choose initial conditions,
with the following program:

(define win (frame :-pi :pi -20 20))

(let ((m 1.0) ;m=1kg
(l 1.0) ;l=1m
(g 9.8) ;g=9.8m/s2

(A 0.05)) ;A=1/20m
(let ((omega0 (sqrt (/ g l))))
(let ((omega (* 4.2 omega0)))

(explore-map
win
(driven-pendulum-map m l g A omega)
1000)))) ;1000 points for each initial condition

Exercise 3.10: Fun with phase portraits

Choose some one-degree-of-freedom dynamical system that you are cu-
rious about and that can be driven with a periodic drive. Construct a
map of the sort we made for the driven pendulum and do some explor-
ing. Are there chaotic regions? Are all of the chaotic regions connected
together?

3.6.3 Autonomous Systems

We illustrated the use of Poincaré sections to visualize qualitative
features of the phase space for a one-degree-of-freedom system
with periodic drive, but the idea is more general. Here we show
how Hénon and Heiles [22] used the surface of section to elucidate
the properties of an autonomous system.

Hénon–Heiles background

In the early ’60s astronomers were up against a wall. Careful mea-
surements of the motion of nearby stars in the galaxy had allowed
particular statistical averages of the observed motions to be de-
termined, and the averages were not at all what was expected. In
particular, what was calculated was the velocity dispersion: the
root mean square deviation of the velocity from the average. We
use angle brackets to denote an average over nearby stars: < w >
is the average value of some quantity w for the stars in the en-
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semble. The average velocity is < �̇x >. The components of the
velocity dispersion are

σx = < (ẋ − < ẋ >)2 >1/2 (3.123)

σy = < (ẏ − < ẏ >)2 >1/2 (3.124)

σz = < (ż − < ż >)2 >1/2 . (3.125)

If we use cylindrical polar coordinates (r, θ, z) and align the axes
with the galaxy so that z is perpendicular to the galactic plane
and r increases with the distance to the center of the galaxy, then
two particular components of the velocity dispersion are

σz = < (ż − < ż >)2 >1/2 (3.126)

σr = < (ṙ − < ṙ >)2 >1/2 . (3.127)

It was expected at the time that these two components of the
velocity dispersion should be equal. In fact they were found to
differ by about a factor of 2: σr ≈ 2σz. What was the prob-
lem? In the literature at the time there was considerable discus-
sion of what could be wrong. Was the problem some observa-
tional selection effect? Were the velocities measured incorrectly?
Were the assumptions used in the derivation of the expected ratio
not adequately satisfied? For example, the derivation assumed
that the galaxy was approximately axisymmetric. Perhaps non-
axisymmetric components of the galactic potential were at fault.
It turned out that the problem was much deeper. The under-
standing of motion was wrong.

Let’s review the derivation of the expected relation among the
components of the velocity dispersion. We wish to give a statis-
tical description of the distribution of stars in the galaxy. We in-
troduce the phase-space distribution function f(�x, �p), which gives
the probability density of finding a star at position �x with mo-
mentum �p.28 Integrating this density over some finite volume of
phase space gives the probability of finding a star in that phase-
space volume (in that region of space within a specified region of

28We will see that it is convenient to look at distribution functions in the phase-
space coordinates because the consequences of conserved momenta are more
apparent, and also because volume in phase space is conserved by evolution
(see section 3.8).
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momenta). We assume the probability density is normalized so
that the integral over all of phase space gives unit probability; the
star is somewhere and has some momentum with certainty. In
terms of f , the statistical average of any dynamical quantity w
over some volume of phase space V is just

< w >V=

∫
V
fw (3.128)

where the integral extends over the phase-space volume V . In
computing the velocity dispersion at some point �x, we would com-
pute the averages by integrating over all momenta.

Individual stars move in the gravitational potential of the rest
of the galaxy. It is not unreasonable to assume that the overall
distribution of stars in the galaxy does not change much with
time, or changes only very slowly. The density of stars in the
galaxy is actually very small and close encounters of stars are
very rare. Thus, we can model the gravitational potential of the
galaxy as a fixed external potential in which individual stars move.
The galaxy is approximately axisymmetric. We assume that the
deviation from exact axisymmetry is not a significant effect and
thus we take the model potential to be exactly axisymmetric.

Consider the motion of a point mass (a star) in an axisymmet-
ric potential (of the galaxy). In cylindrical polar coordinates the
Hamiltonian is

T + V =
1

2m

[
p2r +

p2θ
r2

+ p2z

]
+ V (r, z), (3.129)

where V does not depend on θ. Since θ does not appear, we know
that the conjugate momentum pθ is constant. For the motion of
any particular star we can treat pθ as a parameter. Thus the
effective Hamiltonian has two degrees of freedom:

1

2m

[
p2r + p2z

]
+ U(r, z) (3.130)

where

U(r, z) = V (r, z) +
p2θ

2mr2
. (3.131)
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The value E of the Hamiltonian is constant since there is no ex-
plicit time dependence in the Hamiltonian. Thus, we have con-
stants of the motion E and pθ.

Jeans’s “theorem” asserts that the distribution function f de-
pends only on the values of the conserved quantities, also known
as integrals of motion. That is, we can introduce a different distri-
bution function f ′ that represents the same physical distribution:

f ′(E, pθ) = f(�x, �p). (3.132)

At the time, there was good reason to believe that this might be
correct. First, it is clear that the distribution function surely de-
pends at least on E and pθ. The problem is, “Given an energy E
and angular momentum pθ, what motion is allowed?” The con-
served quantities clearly confine the evolution. Does the evolution
carry the system everywhere in the phase space subject to these
known constraints? In the early part of the 20th century this
appeared plausible. Statistical mechanics was successful, and sta-
tistical mechanics made exactly this assumption. Perhaps there
are other conserved quantities of the motion that exist, but that
we have not yet discovered?

Poincaré proved an important theorem with regard to conserved
quantities. Poincaré proved that most of the conserved quantities
of a dynamical system typically do not persist upon perturbation
of the system. That is, if a small perturbation is added to a prob-
lem, then most of the conserved quantities of the original problem
do not have analogs in the perturbed problem. The conserved
quantities are destroyed. However, conserved quantities that re-
sult from symmetries of the problem continue to be preserved if
the perturbed system has the same symmetries. Thus angular
momentum continues to be preserved upon application of any ax-
isymmetric perturbation. Poincaré’s theorem is correct, but what
came next was not.

As a corollary to Poincaré’s theorem, in 1920 Fermi published a
proof of a theorem stating that typically the motion of perturbed
problems is ergodic29 subject to the constraints imposed by the
conserved quantities resulting from symmetries. Loosely speaking,

29A system is ergodic if time averages along trajectories are the same as phase-
space averages over the region explored by the trajectories.
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this means that trajectories go everywhere they are allowed to go
by the conservation constraints. Fermi’s theorem was later shown
to be incorrect, but on the basis of this theorem we could expect
that typically systems fully explore the phase space, subject only
to the constraints imposed by the conserved quantities resulting
from symmetries. Suppose then that the evolution of stars in the
galactic potential is subject only to the constraints of conserving
E and pθ. We shall see that this is not true, but if it were we
could then conclude that the distribution function for stars in the
galaxy can also depend only on E and pθ.

Given this form of the distribution function, we can deduce the
stated ratios of the velocity dispersions. We note that pz and pr
appear in the same way in the energy. Thus the average of any
function of pz computed with the distribution function must equal
the average of the same function of pr. In particular, the velocity
dispersions in the z and r directions must be equal:

σz = σr. (3.133)

But this is not what was observed, which was

σr ≈ 2σz. (3.134)

Hénon and Heiles [22] approached this problem differently from
others at the time. Rather than improving the models for the
motion of stars in the galaxy, they concentrated on what turned
out to be the central issue: What is the qualitative nature of
motion? The problem had nothing to do with galactic dynamics
in particular, but with the problem of motion. They abstracted
the dynamical problem from the particulars of galactic dynamics.

The system of Hénon and Heiles

We have seen that the study of the motion of a point with mass
m and an axisymmetric potential energy reduces to the study of a
reduced two-degree-of-freedom problem in r and z with potential
energy U(r, z). Hénon and Heiles chose to study the motion in a
two-degree-of-freedom system with a particularly simple potential
energy so that the dynamics would be clear and the calculation
uncluttered. The Hénon–Heiles Hamiltonian is

H(t;x, y; px, py) =
1

2

(
p2x + p2y

)
+ V (x, y) (3.135)
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Figure 3.15 Contours of the Hénon–Heiles potential energy on the
(x, y) plane. The contours shown, from the inside out, are for potential
energies 1/100, 1/40, 1/20, 1/12, 1/8, and 1/6.

with potential energy

V (x, y) =
1

2

(
x2 + y2

)
+ x2y − 1

3
y3. (3.136)

The potential energy is shaped like a distorted bowl. It has tri-
angular symmetry, as is evident when it is rewritten in polar co-
ordinates:

1

2
r2 +

1

3
r3 sin 3θ. (3.137)

Contours of the potential energy are shown in figure 3.15. At small
values of the potential energy the contours are approximately cir-
cular; as the value of the potential energy approaches 1/6 the
contours become triangular, and at larger potential energies the
contours open to infinity.
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The Hamiltonian is independent of time, so energy is conserved.
In this case this is the only known conserved quantity. We first
determine the restrictions that conservation of energy imposes on
the evolution. We have

E =
1

2

(
p2x + p2y

)
+ V (x, y) ≥ V (x, y), (3.138)

so the motion is confined to the region inside the contour V = E
because the sum of the squares of the momenta cannot be negative.

Let’s compute some sample trajectories. For definiteness, we
investigate trajectories with energy E = 1/8. There is a large
variety of trajectories. There are trajectories that circulate in
a regular way around the bowl, and there are trajectories that
oscillate back and forth (figure 3.16). There are also trajectories
that appear more irregular (figure 3.17). There is no end to the
trajectories that could be computed, but let’s face it, surely there
is more to life than looking at trajectories.

The problem facing Hénon and Heiles was the issue of conserved
quantities. Are there other conserved quantities besides the obvi-
ous ones? They investigated this issue with the surface of section
technique. The surface of section is generated by looking at suc-
cessive passages of trajectories through a plane in phase space.

Specifically, the surface of section is generated by recording and
plotting py versus y whenever x = 0, as shown in figure 3.18.
Given the value of the energy E and a point (y, py) on the section
x = 0, we can recover px, up to a sign. If we restrict attention
to intersections with the section plane that cross with, say, posi-
tive px, then there is a one-to-one relation between section points
and trajectories. A section point thus corresponds to a unique
trajectory.

How does this address the issue of the number of conserved
quantities? A priori, there appear to be two possibilities: either
there are hidden conserved quantities or there are not. Suppose
there is no other conserved quantity besides the energy. Then
the expectation was that successive intersections of the trajectory
with the section plane would eventually explore all of the section
plane that is consistent with conservation of energy. On the other
hand, if there is a hidden conserved quantity then the successive
intersections would be constrained to fall on a curve.
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Figure 3.16 Two trajectories of the Hénon–Heiles Hamiltonian pro-
jected on the (x, y) plane. The energy is E = 1/8.
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Figure 3.17 Another trajectory of the Hénon–Heiles Hamiltonian
projected on the (x, y) plane. The energy is E = 1/8.

Interpretation

On the section, the energy is

E = H(t; 0, y; px, py) =
1

2

(
p2x + p2y

)
+ V (0, y). (3.139)

Because p2x is positive, the trajectory is confined to regions of the
section such that

E ≥ 1

2
p2y + V (x = 0, y). (3.140)

So, if there is no other conserved quantity, we might expect the
points on the section eventually to fill the area enclosed by this
bounding curve.

On the other hand, suppose there is a hidden extra conserved
quantity I(x, y; px, py) = 0. Then this conserved quantity would
provide further constraints on the trajectories and their intersec-
tions with the section plane. An extra conserved quantity I pro-
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Figure 3.18 The surface of section for the Hénon–Heiles problem is
generated by recording and plotting the successive crossings of the x = 0
plane in the direction of increasing x.

vides a constraint among the four phase-space variables x, y, px,
and py. We can use E to solve for px, so for a given E, I gives
a relation among x, y, and py. Using the fact that on the section
x = 0, the I gives a relation between y and py on the section for a
given E. So we expect that if there is another conserved quantity
the successive intersections of a trajectory with the section plane
will fall on a curve.

If there is no extra conserved quantity we expect the section
points to fill an area; if there is an extra conserved quantity we ex-
pect the section points to be restricted to a curve. What actually
happens? Figure 3.19 shows a surface of section for E = 1/12;
the section points for several representative trajectories are dis-
played. By and large, the points appear to be restricted to curves,
so there appears to be evidence for an extra conserved quantity.
Look closely though. Where the “curves” cross, the lines are a
little fuzzy. Hmmm.

Let’s try a little larger energy, E = 1/8. The appearance of the
section changes qualitatively (figure 3.20). For some trajectories
there still appear to be extra constraints on the motion. But other
trajectories appear to fill an area of the section plane, pretty much
as we expected of trajectories if there was no extra conserved
quantity. In particular, all of the scattered points on this section
were generated by a single trajectory. Thus, some trajectories
behave as if there is an extra conserved quantity, and others don’t.
Wow!
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Figure 3.19 Surface of section for the Hénon–Heiles problem with
energy E = 1/12.

Let’s go on to a higher energy, E = 1/6, just at the escape
energy. A section for this energy is shown in figure 3.21. Now, a
single trajectory explores most of the region of the section plane
allowed by energy conservation, but not entirely. There are still
trajectories that appear to be subject to extra constraints.

We seem to have all possible worlds. At low energy, the system
by and large behaves as if there is an extra conserved quantity, but
not entirely. At intermediate energy, the phase space is divided:
some trajectories explore areas whereas others are constrained. At
high energy, trajectories explore most of the energy surface; few
trajectories show extra constraints. We have just witnessed our
first transition to chaos.

Two qualitatively different types of motion are revealed by this
surface of section, just as we saw in the Poincaré sections for the
driven pendulum. There are trajectories that seem to be con-
strained as if by an extra conserved quantity. And there are tra-
jectories that explore an area on the section as though there were
no extra conserved quantitiess. Regular trajectories appear to be
constrained by an extra conserved quantity to a one-dimensional
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Figure 3.20 Surface of section for the Hénon–Heiles problem with
energy E = 1/8.

set on the section; chaotic trajectories are not constrained in this
way and explore an area.30

The surface of section not only reveals the existence of qualita-
tively different types of motion, but also provides an overview of
the different types of trajectories. Take the surface of section for
E = 1/8 (figure 3.20). There are four main islands, engulfed in
a chaotic sea. The particular trajectories displayed above provide
examples from different parts of the section. The trajectory that
loops around the bowl (figure 3.16) belongs to the large island on
the left side of the section. Similar trajectories that loop around
the bowl in the other direction belong to the large island on the
right side of the section. The trajectories that oscillate back and

30As before, upon close examination we may find that trajectories that appear
to be confined to a curve on the section are chaotic trajectories that explore
a highly confined region. It is known, however, that some trajectories really
are confined to curves on the section. Trajectories that start on these curves
remain on these curves forever, and they fill these curves densely. These
invariant curves are preserved by the dynamical evolution. There are also
invariant subsets of curves with an infinite number of holes.
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Figure 3.21 Surface of section for the Hénon–Heiles problem with
energy E = 1/6. The section is clipped on the right.

forth across the bowl belong to the two islands above and below
the center of the section. (By symmetry there should be three such
islands. The third island is snugly wrapped against the bound-
ary of the section.) Each of the main islands is surrounded by a
chain of secondary islands. We will see that the types of orbits are
inexhaustible, if we look closely enough. The chaotic trajectory
(figure 3.17) lives in the chaotic sea. Thus the section provides
a summary of the types of motion possible and how they are re-
lated to one another. It is much more useful than plots of a zillion
trajectories.

The section for a particular energy summarizes the dynamics
at that energy. A sequence of sections for various energies shows
how the major features change with the energy. We have already
noticed that at low energy the section is dominated by regular
orbits, at intermediate energy the section is divided more or less
equally into regular and chaotic regions, and at high energies the
section is dominated by a single chaotic zone. We will see that such
transitions from regular to chaotic behavior are quite common;
similar phenomena occur in widely different systems, though the
details depend on the system under study.



3.6.4 Computing Hénon–Heiles Surfaces of Section 261

3.6.4 Computing Hénon–Heiles Surfaces of Section

The following procedures implement the Poincaré map for the
Hénon–Heiles system:

(define (HHmap E dt sec-eps int-eps)
(define ((make-advance advancer eps) s dt)
(advancer s dt eps))

(let ((adv
(make-advance (state-advancer HHsysder) int-eps)))

(lambda (y py cont fail)
(let ((initial-state (section->state E y py)))
(if (not initial-state)

(fail)
(find-next-crossing initial-state adv dt sec-eps

(lambda (crossing-state running-state)
(cont (ref (coordinate crossing-state)

1)
(ref (momentum crossing-state)

1)))))))))

Besides supplying the energy E of the section we must also supply a
time step for the integrator to achieve, a tolerance for a point to be
on the section sec-eps, and a local truncation error specification
for the integrator int-eps.

For each initial point (y, py) on the surface of section, the map
first finds the initial state that has the specified energy, if one
exists. The procedure section->state handles this task:

(define (section->state E y py)
(let ((d (- E (+ (HHpotential (up 0 (up 0 y)))

(* 1/2 (square py))))))
(if (>= d 0.0)

(let ((px (sqrt (* 2 d))))
(up 0 (up 0 y) (down px py)))

#f)))

The procedure section->state returns #f (false) if there is no
state consistent with the specified energy.

The Hamiltonian procedure for the Hénon–Heiles problem is

(define (HHHam s)
(+ (* 1/2 (square (momentum s)))

(HHpotential s)))

with the potential energy
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(define (HHpotential s)
(let ((x (ref (coordinate s) 0))

(y (ref (coordinate s) 1)))
(+ (* 1/2 (+ (square x) (square y)))

(- (* (square x) y) (* 1/3 (cube y))))))

The system derivative is computed directly from the Hamilto-
nian.

(define (HHsysder)
(Hamiltonian->state-derivative HHHam))

The procedure find-next-crossing advances the initial state
until successive states are on opposite sides of the section plane.

(define (find-next-crossing state advance dt sec-eps cont)
(let lp ((s state))
(let ((next-state (advance s dt)))

(if (and (> (ref (coordinate next-state) 0) 0)
(< (ref (coordinate s) 0) 0))

(let ((crossing-state
(refine-crossing sec-eps advance s)))

(cont crossing-state next-state))
(lp next-state)))))

After finding states that straddle the section plane the crossing is
refined by Newton’s method, as implemented by the procedure
refine-crossing. The procedure find-next-crossing returns
both the crossing point and the next state produced by the in-
tegrator. The next state is not used in this problem but it is
needed for other cases.

(define (refine-crossing sec-eps advance state)
(let lp ((state state))
(let ((x (ref (coordinate state) 0))

(xd (ref (momentum state) 0)))
(let ((zstate (advance state (- (/ x xd)))))
(if (< (abs (ref (coordinate zstate) 0))

sec-eps)
zstate
(lp zstate))))))

To explore the Hénon–Heiles map we use explore-map as before.
The following exploration generated figure 3.20:

(define win (frame -0.5 0.7 -0.6 0.6))
(explore-map win (HHmap 0.125 0.1 1.0e-10 1.0e-12) 500)
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3.6.5 Non-Axisymmetric Top

We have seen that the motion of an axisymmetric top can be es-
sentially solved. A plot of the rate of change of the tilt angle
versus the tilt angle is a simple closed curve. The evolution of
the other angles describing the configuration can be obtained by
quadrature once the tilting motion has been solved. Now let’s
consider a non-axisymmetric top. A non-axisymmetric top is a
top with three unequal moments of inertia. The pivot is not at
the center of mass, so uniform gravity exerts a torque. We as-
sume the line between the pivot and the center of mass is one of
the principal axes, which we take to be ĉ. There are no torques
about the vertical axis, so the vertical component of the angular
momentum is conserved. If we write the Hamiltonian in terms of
the Euler angles, the angle ϕ, which corresponds to rotation about
the vertical, does not appear. Thus the momentum conjugate to
this angle is conserved. The nontrivial degrees of freedom are θ
and ψ, with their conjugate momenta.

We can make a surface of section (see figure 3.22) for this prob-
lem by displaying pθ versus θ when ψ = 0. There are in general
two values of pψ possible for given values of energy and pϕ. We
plot points only if the value of pψ at the crossing is the larger of the
two possibilities. This makes the points of the section correspond
uniquely to a trajectory.

In this section there is a large quasiperiodic island surrounding
a fixed point that corresponds to the tilted equilibrium point of
the awake axisymmetric top (see figure 3.7 in section 3.4). Sur-
rounding this is a large chaotic zone that extends from θ = 0 to
angles near π. If this top is placed initially near the vertical, it
exhibits chaotic motion that carries it to large tilt angles. If the
top is started within the quasiperiodic island, the tilt is stable.

3.7 Exponential Divergence

Hénon and Heiles discovered that the chaotic trajectories had
remarkable sensitivity to small changes in initial conditions—
initially nearby chaotic trajectories separate roughly exponen-
tially with time. On the other hand, regular trajectories do not
exhibit this sensitivity—initially nearby regular trajectories sepa-
rate roughly linearly with time.
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Figure 3.22 A surface of section for the non-axisymmetric top. The
parameters are A = 0.0003 kgm2, B = 0.00025 kgm2, C = 0.0001 kgm2,
gMR = 0.0456 kgm2 s−2. The energy and pϕ are those of the top ini-
tially standing vertically with rotation frequency 30 rad s−1. The angle
θ is on the abscissa, and the momentum pθ is on the ordinate.

Consider the evolution of two initially nearby trajectories for
the Hénon–Heiles problem, with energy E = 1/8. Let d(t) be the
usual Euclidean distance in the x, y, px, py space between the two
trajectories at time t. Figure 3.23 shows the common logarithm
of d(t)/d(0) as a function of time t. We see that the divergence is
well described as exponential.

On the other hand, the distance between two initially nearby
regular trajectories grows much more slowly. Figure 3.24 shows
the distance between two regular trajectories as a function of time.
The distance grows linearly with time.

It is remarkable that Hamiltonian systems have such radically
different types of trajectories. On the surface of section the chaotic
and regular trajectories differ in the dimension of the space that
they explore. It is interesting that along with this dimensional dif-
ference there is a drastic difference in the way chaotic and regular
trajectories separate. For higher-dimensional systems the surface
of section technique is not as useful, but trajectories are still distin-
guished by the way neighboring trajectories diverge: some diverge
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Figure 3.23 The common logarithm of the phase-space distance be-
tween two chaotic trajectories divided by the initial phase-space distance
as a function of time. The initial distance was 10−10. The logarithm of
the distance grows approximately linearly; the distance grows exponen-
tially. The two-trajectory method saturates when the distance between
trajectories becomes comparable to that allowed by conservation of en-
ergy. Also displayed is the distance between trajectories calculated by
integrating the linearized variational equations. This method does not
saturate.

exponentially whereas others diverge approximately linearly. Ex-
ponential divergence is the hallmark of chaotic behavior.

The rate of exponential divergence is quantified by the slope
of the graph of log(d(t)/d(0)). We can estimate the rate of ex-
ponential divergence of trajectories from a particular phase-space
trajectory σ by choosing a nearby trajectory σ′ and computing

γ(t) =
log(d(t)/d(t0))

t− t0
, (3.141)

where d(t) = ‖σ′(t)−σ(t)‖. A problem with this “two-trajectory”
method is illustrated in figure 3.23. For strongly chaotic trajec-
tories two initially nearby trajectories soon find themselves as far
apart as they can get. Once this happens the distance no longer
grows. The estimate of the rate of divergence of trajectories is
limited by this saturation.
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Figure 3.24 The phase-space distance between two regular trajecto-
ries divided by the initial phase-space distance as a function of time.
The initial distance was 10−10. The distance grows linearly.

We can improve on this method by studying a variational sys-
tem of equations. Let

Dz(t) = F (t, z(t)) (3.142)

be the system of equations governing the evolution of the system.
A nearby trajectory z′ satisfies

Dz′(t) = F (t, z′(t)). (3.143)

The difference ζ = z′ − z between these trajectories satisfies

Dζ(t) = F (t, z′(t))− F (t, z(t))

= F (t, z(t) + ζ(t))− F (t, z(t)). (3.144)

If ζ is small we can approximate the right-hand side by a derivative

Dζ(t) = ∂1F (t, z(t))ζ(t). (3.145)

This set of ordinary differential equations is called the variational

equations for the system. It is linear in ζ and driven by z.
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Let d(t) = ‖ζ(t)‖; then the rate of divergence can be estimated
as before. The advantage of this “variational method” is that
ζ(t) can become arbitrarily large and its growth still measures the
divergence of nearby trajectories. We can see in figure 3.23 that
the variational method gives nearly the same result as the two-
trajectory method up to the point at which the two-trajectory
method saturates.31

The Lyapunov exponent is defined to be the infinite time limit of
γ(t), defined by equation (3.141), in which the distance d is com-
puted by the variational method. Actually, for each trajectory
there are many Lyapunov exponents, depending on the initial di-
rection of the variation ζ. For an N -dimensional system, there are
N Lyapunov exponents. For a randomly chosen ζ(t0), the subse-
quent growth of ζ(t) has components that grow with each of the
Lyapunov exponents. In general, however, the growth of ζ(t) will
be dominated by the largest exponent. The largest Lyapunov ex-
ponent thus can be interpreted as the typical rate of exponential
divergence of nearby trajectories. The sum of the largest two Lya-
punov exponents can be interpreted as the typical rate of growth
of the area of two-dimensional elements. This interpretation can
be extended to higher-dimensional elements: the rate of growth
of volume elements is the sum of all the Lyapunov exponents.

In Hamiltonian systems, the Lyapunov exponents must satisfy
the following constraints. Lyapunov exponents come in pairs; for
every Lyapunov exponent λ, its negation −λ is also an exponent.
For every conserved quantity, one of the Lyapunov exponents is
zero, as is its negation. So the Lyapunov exponents can be used
to check for the existence of conserved quantities. The sum of the
Lyapunov exponents for a Hamiltonian system is zero, so volume
elements do not grow exponentially. We will see in the next section
that phase-space volume is actually conserved for Hamiltonian
systems.

31In strongly chaotic systems ζ(t) may become so large that the computer can
no longer represent it. To prevent this we can replace ζ by ζ/c whenever ζ(t)
becomes uncomfortably large. The equation governing ζ is linear, so except
for the scale change, the evolution is unchanged. Of course we have to keep
track of these scale changes when computing the average growth rate. This
process is called “renormalization” to make it sound impressive.
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3.8 Liouville’s Theorem

If an ensemble of states occupies a particular volume of phase
space at one moment, then the subsequent evolution of that vol-
ume by the flow described by Hamilton’s equations may distort
the ensemble but does not change the volume the ensemble occu-
pies. The fact that phase-space volume is preserved by the phase
flow is called Liouville’s theorem.

We will first illustrate the preservation of phase-space volume
with a simple example and then prove it in general.

The phase flow for the pendulum

Consider an undriven pendulum described by the Hamiltonian

H(t, θ, pθ) =
p2θ

2l2m
+ glm cos θ. (3.146)

In figure 3.25 we see the evolution of an elliptic region around a
point on the θ-axis, in the oscillation region of the pendulum.
Three later positions of the region are shown. The region is
stretched and sheared by the flow, but the area is preserved. After
many cycles, the starting region will be stretched to be a thin layer
distributed in the phase angle of the pendulum. Figure 3.26 shows
a similar evolution (for smaller time intervals) of a region strad-
dling the separatrix32 near the unstable equilibrium point. The
phase-space region rapidly stretches along the separatrix, while
preserving the area. The initial conditions that start in the oscil-
lation region (inside of the separatrix) will continue to spread into
a thin ring-shaped region, while the initial conditions that start
outside of the separatrix will spread into a thin region of rotation
on the outside of the separatrix.

Proof of Liouville’s theorem

Consider a set of ordinary differential equations of the form

Dz(t) = F (t, z(t)), (3.147)

32The separatrix is the curve that separates the oscillating motion from the
circulating motion. It is made up of several trajectories that are asymptotic
to the unstable equilibrium.
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Figure 3.25 A swarm of initial points outlining an area in the phase
space of the pendulum deforms as it evolves, but the area contained
in the contour remains constant. The horizontal axis is the angle θ of
the pendulum from the vertical; the vertical axis is the angular momen-
tum pθ. The initial contour is the “ellipse” on the horizontal axis. The
pendulum has length 1m in standard gravity (9.8m s−2), so its period is
approximately 2 seconds. The flow proceeds clockwise and the deformed
areas are shown at .9 seconds, 1.8 seconds, and 2.7 seconds. The suc-
cessive positions exhibit “shearing” of the region because the pendulum
is not isochronous.

where z is a tuple of N state variables. Let R(t1) be a region of
the state space at time t1. Each element of this region is an initial
condition at time t1 for the system, and evolves to an element at
time t2 according to the differential equations. The set of these
elements at time t2 is the region R(t2). Regions evolve to regions.

The evolution of the system for a time interval Δt defines a
map gt,Δt from the state space to itself:

gt,Δt(z(t)) = z(t+Δt). (3.148)

Regions map to regions by mapping each element in the region:

gt,Δt(R(t)) = R(t+Δt). (3.149)
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Figure 3.26 The pendulum here is the same as in the previous figure,
but now the swarm of initial points surrounds the unstable equilibrium
point for the pendulum in phase space, where θ = π and pθ = 0. The
swarm is stretched out along the separatrix. The time interval between
successively plotted contours is 0.3 seconds.

The volume V (t) of a region R(t) is
∫
R(t) 1̂, where 1̂ is the

function whose value is one for every input. The volume of the
evolved region R(t+Δt) is

V (t+Δt) =

∫
R(t+Δt)

1̂

=

∫
gt,Δt(R(t))

1̂

=

∫
R(t)

Jac(gt,Δt), (3.150)

where Jac(gt,Δt) is the Jacobian of the mapping gt,Δt. The Jaco-
bian is the determinant of the derivative of the mapping.

For small Δt

gt,Δt(z(t)) = z(t) + ΔtF (t, z(t)) + o(Δt2), (3.151)
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and thus

Dgt,Δt(z(t)) = DI(z(t)) + Δt∂1F (t, z(t)) + o(Δt2), (3.152)

where I is the identity function, so DI(z(t)) is a unit multiplier.
We can use the fact that if A is an N ×N square matrix then

det(1+ εA) = 1 + ε trace A+ o(ε2) (3.153)

to show that

Jac(gt,Δt)(z) = 1 + ΔtGt(z) + o(Δt2), (3.154)

where

Gt(z) = trace(∂1F (t, z)). (3.155)

Thus

V (t+Δt) =

∫
R(t)

[
1̂ + ΔtGt + o(Δt2)

]
= V (t) + Δt

∫
R(t)

Gt + o(Δt2). (3.156)

So the rate of change of the volume at time t is

DV (t) =

∫
R(t)

Gt. (3.157)

Now we computeGt for a system described by a Hamiltonian H.
The components of z are the components of the coordinates and
the momenta: zk = qk and zk+n = pk for k = 0, . . . , n − 1. The
components of F are

F k(t, z) = (∂2H)k(t, q, p)

F k+n(t, z) = −(∂1H)k(t, q, p), (3.158)

for k = 0, . . . , n − 1. The diagonal components of the derivative
∂1F are

(∂1)kF
k(t, z) = (∂1)k(∂2)

kH(t, q, p)

(∂1)k+nF
k+n(t, z) = −(∂2)k(∂1)kH(t, q, p). (3.159)
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The component partial derivatives commute, so the diagonal com-
ponents with index k and index k+n are equal and opposite. We
see that the trace, which is the sum of these diagonal components,
is zero. Thus the integral of Gt over the region R(t) is zero, so the
derivative of the volume at time t is zero. Because t is arbitrary,
the volume does not change. This proves Liouville’s theorem: the
phase-space flow conserves phase-space volume.

Notice that the proof of Liouville’s theorem does not depend
upon whether or not the Hamiltonian has explicit time depen-
dence. Liouville’s theorem holds for systems with time-dependent
Hamiltonians.

We may think of the ensemble of all possible states as a fluid
flowing around under the control of the dynamics. Liouville’s theo-
rem says that this fluid is incompressible for Hamiltonian systems.

Exercise 3.11: Determinants and traces

Show that equation (3.153) is correct.

Area preservation of stroboscopic surfaces of section

Surfaces of section for periodically driven Hamiltonian systems
are area preserving if the section coordinates are the phase-space
coordinate and momentum. This is an important feature of sur-
faces of section. It is a consequence of Liouville’s theorem for
one-degree-of-freedom problems.

It is also the case that surfaces of section such as those we have
used for the Hénon–Heiles problem are area preserving, but we
are not ready to prove this yet!

Poincaré recurrence

The Poincaré recurrence theorem is a remarkable theorem that
is a trivial consequence of Liouville’s theorem. Loosely, the theo-
rem states that almost all trajectories eventually return arbitrarily
close to where they started. This is true regardless of whether the
trajectories are chaotic or regular.

More precisely, consider a Hamiltonian dynamical system for
which the phase space is a bounded domain D. We identify some
initial point in the phase space, say z0. Then, for any finite neigh-
borhood U of z0 we choose, there are trajectories that emanate
from initial points in that neighborhood and eventually return to
the neighborhood.
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We can prove this by considering the successive images of U
under the time evolution. For simplicity, we restrict consideration
to time evolution for a time interval Δ. The map of the phase
space onto itself generated by time evolution for an interval Δ
we call C. Subsequent applications of the map generate a discrete
time evolution. Sets of points in phase space transform by evolving
all the points in the set; the image of the set U is denoted C(U).
Now consider the trajectory of the set U , that is, the sets Cn(U)
where Cn indicates the n-times composition of C. Now there are
two possibilities: either the successive images Ci(U) intersect or
they do not. If they do not intersect, then with each iteration, a
volume of D equal to the volume of U gets “used up” and cannot
belong to the further image. But the volume of D is finite, so
we cannot fit an infinite number of non-intersecting finite volumes
into it. Therefore, after some number of iterations the images
intersect. Suppose Ci(U) intersects with Cj(U), with j < i, for
definiteness. Then the pre-image of each must also intersect, since
the pre-image of a point in the intersection belongs to both sets.
Thus Ci−1(U) intersects Cj−1(U). This can be continued until
finally we have that Ci−j(U) intersects U . So we have proven
that after i − j iterations of the map C there are a set of points
initially in U that return to the neighborhood U .

So for every neighborhood of every point in the phase space
there is a subneighborhood such that the trajectories emanating
from all of the points in that subneighborhood return to that sub-
neighborhood. Thus almost every trajectory returns arbitrarily
close to where it started.

The gas in the corner of the room

Suppose we have a collection of N classical atoms in a perfectly
sealed room. The phase-space dimension of this system is 6N . A
point in this phase space is denoted z. Suppose that initially all
the atoms are, say, within one centimeter of one corner, with ar-
bitrarily chosen finite velocities. This corresponds to some initial
point z0 in the phase space. The phase space of the system is
limited in space by the room and in momentum by energy conser-
vation; the phase space is bounded. The recurrence theorem then
says that in the neighborhood of z0 there is an initial condition
of the system that returns to the neighborhood of z0 after some
time. For the individual atoms this means that after some time
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all of the atoms will be found in the corner of the room again,
and again, and again. Makes one wonder about the second law of
thermodynamics, doesn’t it?33

Nonexistence of attractors in Hamiltonian systems

Some systems have attractors. An attractor is a region of phase
space that gobbles volumes of trajectories. For an attractor there
is some larger region, the basin of attraction, such that sets of tra-
jectories with nonzero volume eventually end up in the attractor
and never leave it. The recurrence theorem shows that Hamilto-
nian systems with bounded phase space do not have attractors.
Consider some candidate volume in the proposed basin of attrac-
tion. The recurrence theorem guarantees that some trajectories in
the candidate volume return to the volume repeatedly. Therefore,
the volume is not in a basin of attraction. Attractors do not exist
in Hamiltonian systems with bounded phase space.

This does not mean that every trajectory always returns. A
simple example is the pendulum. Suppose we take a blob of tra-
jectories that spans the separatrix, the trajectory that asymp-
totically approaches the unstable equilibrium with the pendulum
pointed up. Trajectories with more energy than the separatrix
make a full loop around and return to their initial point; trajecto-
ries with lower energy than the separatrix oscillate once across and
back to their initial position; but the separatrix trajectory itself
leaves the initial region permanently, and continually approaches
the unstable point.

Conservation of phase volume in a dissipative system

The definition of a dissipative system is not so clear. For some,
“dissipative” implies that phase-space volume is not conserved,
which is the same as saying the evolution of the system is not gov-
erned by Hamilton’s equations. For others, “dissipative” implies
that friction is present, representing loss of energy to unmodeled
degrees of freedom. Here is a curious example. The damped har-
monic oscillator is the paradigm of a dissipative system. Here we
show that the damped harmonic oscillator can be described by
Hamilton’s equations and that phase-space volume is conserved.

33It is reported that when Boltzmann was confronted with this problem he
responded, “You should wait that long!”
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The damped harmonic oscillator is governed by the ordinary
differential equation

mD2x+ αDx+ kx = 0 (3.160)

where α is a coefficient of damping. We can formulate this system
with the Lagrangian34

L(t, x, ẋ) = (
m

2
ẋ2 − k

2
x2)e

α

m
t. (3.161)

The Lagrange equation for this Lagrangian is

(mD2x(t) + αDx(t) + kx(t))e
α

m
t = 0. (3.162)

Since the exponential is never zero this equation has the same
trajectories as equation (3.160) above.

The momentum conjugate to x is

p = mẋe
α

m
t, (3.163)

and the Hamiltonian is

H(t, x, p) = (
1

2m
p2)e−

α

m
t + (

k

2
x2)e

α

m
t. (3.164)

For this system, the Hamiltonian is not the sum of the kinetic
energy of the motion of the mass and the potential energy stored
in the spring. The value of the Hamiltonian is not conserved
(∂0H �= 0). Hamilton’s equations are

Dx(t) =
p(t)

m
e−

α

m
t

Dp(t) = −kx(t)e α

m
t. (3.165)

Let’s consider a numerical case. Let m = 5, k = 1/4, α = 3.
Here the characteristic roots of the linear constant-coefficient or-
dinary differential equation (3.160) are s = −1/10,−1/2. Thus
the solutions are⎧⎩x(t)

p(t)

⎫⎭ =

⎧⎪⎩ e−
1

10
t e−

1

2
t

−1
2e

+ 1

2
t −5

2e
+ 1

10
t

⎫⎪⎭⎧⎩A1

A2

⎫⎭ , (3.166)

34This is just the product of the Lagrangian for the undamped harmonic
oscillator with an increasing exponential of time.
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for A1 and A2 determined by the initial conditions⎧⎩x(0)
p(0)

⎫⎭ =
⎧⎩ 1 1
−1

2 −5
2

⎫⎭⎧⎩A1

A2

⎫⎭ . (3.167)

Thus we can form the transformation from the initial state to the
final state:⎧⎩x(t)

p(t)

⎫⎭ =

⎧⎪⎩ e−
1

10
t e−

1

2
t

−1
2e

+ 1

2
t −5

2e
+ 1

10
t

⎫⎪⎭⎧⎩ 1 1
−1

2 −5
2

⎫⎭−1 ⎧⎩x(0)
p(0)

⎫⎭ .

(3.168)

The transformation is linear, so the area is transformed by the
determinant, which is 1 in this case. Thus, contrary to intu-
ition, the phase-space volume is conserved. So why is this not
a contradiction with the statement that there are no attractors
in Hamiltonian systems? The answer is that the Poincaré recur-
rence argument is true only for bounded phase spaces. Here, the
momentum expands exponentially with time (as the coordinate
contracts), so it is unbounded.

We shouldn’t really be too surprised by the way the theory
protects itself from an apparent paradox—that the phase volume
is conserved even though all trajectories decay to zero velocity
and coordinates. The proof of Liouville’s theorem allows time-
dependent Hamiltonians. In this case we are able to model the
dissipation by just such a time-dependent Hamiltonian.

Exercise 3.12: Time-dependent systems

To make the fact that Liouville’s theorem holds for time-dependent sys-
tems even more concrete, extend the results of section 3.8 to show how
a swarm of initial points outlining an area in the phase space of the
driven pendulum deforms as it evolves. Construct pictures analogous
to figures 3.25 and 3.26 for one of the interesting cases where we have
surfaces of section. Does the distortion look different in different parts
of the phase space? How?

Distribution functions

We know the state of a system only approximately. It is reasonable
to model our state of knowledge by a probability density function
on the set of possible states. Given such incomplete knowledge,
what are the probable consequences? As the system evolves, the
density function also evolves. Liouville’s theorem gives us a handle
on this kind of problem.
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Let f(t, q, p) be a probability density function on the phase
space at time t. For this to be a good probability density function
we require that the integral of f over all coordinates and momenta
be 1—it is certain that the system is somewhere.

There is a set of trajectories that pass through any particular
region of phase space at a particular time. These trajectories are
neither created nor destroyed, and they proceed as a bundle to
another region of phase space at a later time. Liouville’s theo-
rem tells us that the volume of the source region is the same as
the volume of the target region, so the density must remain con-
stant. Thus D(f ◦ σ) = 0. If we have a system described by the
Hamiltonian H then

D(f ◦ σ) = ∂0f ◦ σ + {f,H} ◦ σ, (3.169)

so we may conclude that

∂0f ◦ σ + {f,H} ◦ σ = 0, (3.170)

or

(∂0f + {f,H}) ◦ σ = 0. (3.171)

Since this must be true at each moment and since there is a solu-
tion trajectory that emanates from every point in phase space, we
may abstract from solution paths and deduce a constraint on f :

∂0f + {f,H} = 0. (3.172)

This linear partial differential equation governs the evolution of
the density function, and thus shows how our state of knowledge
evolves.

3.9 Standard Map

We have seen that the surfaces of section for a number of different
problems are qualitatively very similar. They all show two qual-
itatively different types of motion: regular motion and chaotic
motion. They show that these types of orbits are clustered: there
are regions of the surface of section that have mostly regular tra-
jectories and other regions dominated by chaotic behavior. We
have also seen a transition to large-scale chaotic behavior as some
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parameter is varied. Now we have learned that the map that takes
points on a two-dimensional surface of section to new points on the
surface of section is area preserving. The sole property that these
maps of the section onto itself have in common (that we know of
at this point) is that they preserve area. Otherwise they are quite
distinct. Suppose we consider an abstract map of the section onto
itself that is area preserving, without regard for whether the map
is generated by some dynamical system. Do area-preserving maps
typically show similar phenomena, or is the dynamical origin of
the map crucial to the phenomena we have found?35

Consider a map of the phase plane onto itself defined in terms
of the dynamical variables θ and its “conjugate momentum” I.
The map is

I ′ = (I +K sin θ) mod 2π (3.173)

θ′ = (θ + I ′) mod 2π. (3.174)

This map is known as the “standard map.”36 A curious feature of
the standard map is that the momentum variable I is treated as
an angular quantity. The derivative of the map has determinant
one, implying the map is area preserving.

We can implement the standard map:

(define ((standard-map K) theta I return failure)
(let ((nI (+ I (* K (sin theta)))))
(return ((principal-value :2pi) (+ theta nI))

((principal-value :2pi) nI))))

We use the explore-map procedure introduced earlier to use a
pointing device to interactively explore the surface of section. For
example, to explore the surface of section for parameter K = 0.6
we use:

35This question was also addressed in the remarkable paper by Hénon and
Heiles, but with a different map from what we use here.

36The standard map has been extensively studied. Early investigations were
by Chirikov [12] and by Taylor [44], so the map is sometimes called the
Chirikov–Taylor map. Chirikov coined the term “standard map,” which we
adopt.
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2ππ0

2π

π

0

Figure 3.27 Surface of section for the standard map forK = 0.6. The
section shows mostly regular trajectories, with a few dominant islands,
but also a number of small chaotic zones.

(define window (frame 0.0 :2pi 0.0 :2pi))
(explore-map window (standard-map 0.6) 2000)

The resulting surface of section, for a variety of orbits chosen
with the pointer, is shown in figure 3.27. The surface of section
does indeed look qualitatively similar to the surfaces of section
generated by dynamical systems.

The surface of section for K = 1.4 (as shown in figure 3.28) is
dominated by a large chaotic zone. The standard map exhibits a
transition to large-scale chaos near K = 1. So this abstract area-
preserving map of the phase plane onto itself shows behavior that
is similar to behavior in the sections generated by a Hamiltonian
dynamical system. Evidently, the area-preservation property of
the dynamics in the phase space plays a determining role for many
interesting properties of trajectories of mechanical systems.
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2ππ0

2π

π

0

Figure 3.28 Surface of section for the standard map for K = 1.4.
The dominant feature is a large chaotic zone. There are also some large
islands of regular behavior. In this case there are also some interesting
secondary islands—islands around islands.

Exercise 3.13: Fun with Hénon’s quadratic map

Consider the map of the plane defined by the equations:

x′ = x cosα− (y − x2) sinα

y′ = x sinα+ (y − x2) cosα

a. Show that the map preserves area.

b. Implement the map as a procedure. The interesting range of x and y
is (−1, 1). There will be orbits that escape. You should check for values
of x and y that escape from this range and call the failure continuation
when this occurs.

c. Explore the phase portrait of this map for a few values of the param-
eter α. The map is particularly interesting for α = 1.32 and α = 1.2.
What happens in between?
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3.10 Summary

Lagrange’s equations are a system of n second-order ordinary dif-
ferential equations in the time, the generalized coordinates, the
generalized velocities, and the generalized accelerations. Trajec-
tories are determined by the coordinates and the velocities at a
moment.

Hamilton’s equations specify the dynamics as a system of first-
order ordinary differential equations in the time, the generalized
coordinates, and the conjugate momenta. Phase-space trajectories
are determined by an initial point in phase space at a moment.

The Hamiltonian formulation and the Lagrangian formulation
are equivalent in that equivalent initial conditions produce the
same configuration path.

If there is a symmetry of the problem that is naturally expressed
as a cyclic coordinate, then the conjugate momentum is conserved.
In the Hamiltonian formulation, such a symmetry naturally results
in the reduction of the dimension of the phase space of the difficult
part of the problem. If there are enough symmetries, then the
problem of determining the time evolution may be reduced to
evaluation of definite integrals (reduced to quadratures).

Systems without enough symmetries to be reducible to quadra-
tures may be effectively studied with the surface of section tech-
nique. This is particularly advantageous in systems for which the
reduced problem has two degrees of freedom or has one degree of
freedom with explicit periodic time dependence.

Surfaces of section reveal tremendous structure in the phase
space. There are chaotic zones and islands of regular behavior.
There are interesting transitions as parameters are varied between
mostly regular motion and mostly chaotic motion.

Chaotic trajectories exhibit sensitive dependence on initial con-
ditions, separating exponentially from nearby trajectories. Reg-
ular trajectories do not show such sensitivity. Curiously, chaotic
trajectories are distinguished both by the dimension of the space
they explore and by their exponential divergence.

The time evolution of a 2n-dimensional region in phase space
preserves the volume. Hamiltonian flow is “incompressible” flow
of the “phase fluid.”
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Surfaces of section for two-degree-of-freedom systems and for
periodically driven one-degree-of-freedom systems are area pre-
serving. Abstract area-preserving maps of a phase plane onto itself
show the same division of the phase space into chaotic and regular
regions as surfaces of section generated by dynamical systems.
They also show transitions to large-scale chaos.

3.11 Projects

Exercise 3.14: Periodically driven pendulum

Explore the dynamics of the driven pendulum, using the surface of sec-
tion method. We are interested in exploring the regions of parameter
space over which various phenomena occur. Consider a pendulum of
length 9.8 m, mass 1 kg, and acceleration of gravity g = 9.8m s−2, giv-
ing ω0 = 1 rad s−1. Explore the parameter plane of the amplitude A and
frequency ω of the periodic drive.

Examples of the phenomena to be investigated:

a. Inverted equilibrium. Show the region of parameter space (A,ω) in
which the inverted equilibrium is stable. If the inverted equilibrium is
stable there is some range of stability, i.e., there is a maximum angle
of displacement from the equilibrium that stable oscillations reach. If
you have enough time, plot contours in the parameter space for different
amplitudes of the stable region.

b. Period doubling of the normal equilibrium. For this case, plot the
angular momenta of the stable and unstable equilibria as functions of
the frequency for some given amplitude.

c. Transition to large-scale chaos. Show the region of parameter space
(A,ω) for which the chaotic zones around the three principal resonance
islands are linked.

Exercise 3.15: Spin-orbit surfaces of section

Write a program to compute surfaces of section for the spin-orbit prob-
lem, with the section points being recorded at pericenter. Investigate
the following:

a. Give a Hamiltonian formulation of the spin-orbit problem introduced
in section 2.11.2.

b. For out-of-roundness parameter ε = 0.1 and eccentricity e = 0.1,
measure the widths, in momentum, of the regular islands associated
with the 1:1, 3:2, and 1:2 resonances.

c. Explore the surfaces of section for a range of ε for fixed e = 0.1.
Estimate the critical value of ε above which the main chaotic zones
around the 3:2 and the 1:1 resonance islands are merged.
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d. For a fixed eccentricity e = 0.1 trace the location on the surface of
section of the stable and unstable fixed points associated with the 1:1
resonance as a function of the out-of-roundness ε.

Exercise 3.16: Restricted three-body problem

Investigate the dynamics of the restricted three-body problem for the
equal mass case where M0 = M1.

a. Derive the Hamiltonian for the restricted three-body problem, start-
ing with Lagrangian (1.150).

b. The Jacobi constant, equation (1.151), is the sum of a positive defi-
nite quadratic term in the velocities and a potential energy term, equa-
tion (1.152), so the boundaries of the allowed motion are contours of the
potential energy function. Write a program to display these boundaries
for a given value of the Jacobi constant. Where is motion allowed rela-
tive to these contours? (Note that for some values of the Jacobi constant
there is more than one allowed region of motion.)

c. Evolve some trajectories for a Jacobi constant of E = −1.75 (CJ =
3.5). Display the trajectories on the same plot as the boundaries of
allowed motion.

d. Write a program to compute surfaces of section for the restricted
three-body problem. This program is similar to the Hénon-Heiles pro-
gram starting on page 261. Plot section points when the trajectory
crosses the yr = 0 axis with ẏr positive; plot ẋr versus xr . Note that
px = mẋr −mΩyr, but on this section yr = 0, so the velocity is propor-
tional to the momentum, and thus the section is area preserving. Plot
the boundaries of the allowed motion on the surface of section for the
Jacobi constant suggested above. Explore the section and plot typical
orbits for each major region in the section.



4 
Phase Space Structure 

When we try to represent the figure formed by 
these two curves and their intersections in a finite 
number, each of which corresponds to a doubly 
asymptotic solution, these intersections form a 
type of trellis , tissue, or grid with infinitely 
serrated mesh. Neither of these two curves must 
ever cut across itself again, but it must bend back 
upon itself in a very complex manner in order to 
cut across all of the meshes in the grid an infinite 
number of times . The complexity of this figure will 
be striking, and I shall not even try to draw it . 

Henri Poincare, New Methods of Celestial 
Mechanics, volume III [35] , chapter XXXIII ,  
section 397 

We have seen rather complicated features appear as part of the 
Poincare sections of a variety of systems. We have seen fixed 
points, invariant curves, resonance islands, and chaotic zones in 
systems as diverse as the driven pendulum, the non-axisymmetric 
top, the Henon-Heiles system, and the spin-orbit coupling of a 
satellite . Indeed, even in the standard map, where there is no 
continuous process sampled by the surface of section, the phase 
space shows similar features. 

The motion of other systems is simpler . For some systems con
served quantities can be used to reduce the solution to the eval
uation of definite integrals . Such a system is traditionally called 
integrable. An example is the axisymmetric top. Two symmetries 
imply the existence of two conserved momenta, and time inde
pendence of the Hamiltonian implies energy conservation. With 
these conserved quantities, determining the motion is reduced to 
the evaluation of definite integrals of the periodic motion of the 
tilt angle as a function of time. Such systems do not exhibit 
chaotic behavior; on a surface of section the conserved quantities 
constrain the points to fall on curves. If points on a surface of 
section do not apparently fall on curves then we may take this as 
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evidence that not enough conserved quantities exist to reduce the 
solution to quadratures. 

We have seen a number of instances in which the behavior of 
a system changes qualitatively with the inclusion of additional 
effects. The free rigid body can be reduced to quadratures, but 
the addition of gravity-gradient torques in the spin-orbit system 
yields the familiar mixture of regular and chaotic motions. The 
motion of an axisymmetric top is also reducible to quadratures, 
but if the top is made non-axisymmetric then the divided phase 
space appears. The system studied by Henon and Heiles, with 
the classic divided phase space, can be thought of as a solvable 
pair of harmonic oscillators with nonlinear coupling terms. The 
pendulum is solvable, but the driven pendulum has the divided 
phase space. 

We observe that as additional effects are turned on, qualita
tive changes occur in the phase space. Resonance islands appear, 
chaotic zones appear, some invariant curves disappear, but oth
ers persist . Why do resonance islands appear? How does chaotic 
behavior arise? When do invariant curves persist? Can we draw 
any general conclusions? 

4.1 Emergence of the Divided Phase Space 

We can get some insight into these qualitative changes of behavior 
by considering systems in which the additional effects are turned 
on by varying a parameter. For some value of the parameter 
the system has enough conserved quantities to be reducible to 
quadratures; as we vary the parameter away from this value we can 
study how the divided phase space appears . The driven pendulum 
offers an archetypal example of such a system. If the amplitude 
of the drive is zero, then solutions of the driven pendulum are the 
same as the solutions of the un driven pendulum. We have seen 
surfaces of section for the strongly driven pendulum, illustrating 
the divided phase space . Here we crank up the drive slowly and 
study how the phase portrait changes. 

The motion of the driven pendulum with zero-amplitude drive 
is the same as that of an undriven pendulum, as described in sec
tion 3.3. Energy is conserved, so all orbits are level curves of the 
Hamiltonian in the phase plane (see figure 4. 1 ) .  There are three 
regions of the phase plane that have qualitatively different types 
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Figure 4.1 The phase plane of the undriven pendulum has three re
gions displaying two distinct kinds of behavior. Trajectories lie on the 
contours of the Hamiltonian. Trajectories may oscillate, making ovoid 
curves around the equilibrium point , or they may circulate, producing 
wavy tracks outside the eye-shaped region. The eye-shaped region is 
delimited by the separatrix. This pendulum has length 1 m and a bob 
of mass 1 kg, and the acceleration of gravity is 9 .8  m s-2. 

of motion: the region in which the pendulum oscillates, the region 
in which the pendulum circulates in one direction, and the region 
of circulation in the other direction. In the center of the oscilla
tion region there is a stable equilibrium, at which the pendulum 
is hanging motionless. At the boundaries between these regions 
the pendulum is asymptotic to the unstable equilibrium, at which 
the pendulum is standing upright. There are two asymptotic tra
jectories, corresponding to the two ways the equilibrium can be 
approached. Each of these is also asymptotic to the unstable equi
librium going backward in time. 

Driven pendulum sections with zero-amplitude drive 

Now consider the periodically driven pendulum, but with zero
amplitude drive. The state of the driven pendulum is specified by 
an angle coordinate, its conjugate momentum, and the phase of 
the periodic drive. With zero-amplitude drive the evolution of the 
"driven" pendulum is the same as the undriven pendulum. The 
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Figure 4.2 A surface of section for the driven pendulum, with zero
amplitude drive . The effect is to sample the trajectories of the undriven 
pendulum, which lie on the contours of the Hamiltonian. Only a small 
number of points are plotted for each trajectory to illustrate the fact that 
for zero-amplitude drive the surface of section samples the continuous 
trajectories of the undriven pendulum. 

phase of the drive does not affect the evolution, but we consider 
the phase of the drive as part of the state so we can give a uniform 
description that allows us to include the zero-amplitude drive case 
with the nonzero-amplitude case. 

For the driven pendulum we make stroboscopic surfaces of sec
tion by sampling the state at the drive period and plotting the 
angular momentum versus the angle (see figure 4 .2) . For zero
amplitude drive, the section points are confined to the curves 
traced by trajectories of the un driven pendulum. For each kind 
of orbit that we saw for the undriven pendulum, there are orbits 
of the driven pendulum that generate a corresponding pattern of 
points on the section. 

The two stationary orbits at the equilibrium points of the pen
dulum appear as points on the surface of section. Equilibrium 
points are fixed points of the Poincare map. 

Section points for the oscillating orbits of the pendulum fall on 
the corresponding contour of the Hamiltonian. Section points for 
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the circulating orbits of the pendulum are likewise confined to the 
corresponding contour of the Hamiltonian. We notice that the 
pattern of the points generated by orbits varies from contour to 
contour. Typically, if we collected more points on the surface of 
section the points would eventually fill in the contours. However, 
there are actually two possibilities . Remember that the period of 
the pendulum is different for different trajectories . If the period 
of the pendulum is commensurate with the period of the drive, 
then only a finite number of points will appear on the section. 
Two periods are commensurate if one is a rational multiple of the 
other. If the two periods are incommensurate then the section 
points never repeat. In fact , the points fill the contour densely, 
coming arbitrarily close to every point on the contour. 

Section points for the asymptotic trajectories of the pendulum 
fall on the contour of the Hamiltonian containing the saddle point . 
Each asymptotic orbit generates a sequence of isolated points that 
accumulate near the fixed point . No individual orbit fills the sep
aratrix on the section. 

Driven pendulum sections for small drive 

Now consider the surface of section for small-amplitude drive (see 
figure 4.3) . The amplitude of the drive is A = 0.001 m; the drive 
frequency is 4 .2  Wo, where Wo = J91i. The overall appearance of 
the surface of section is similar to the section with zero-amplitude 
drive. Many orbits appear to lie on invariant curves similar to the 
invariant curves of the zero-drive case. However, there are several 
new features. 

There are now resonance regions that correspond to the pen
dulum rotating in lock with the drive. These features are found 
in the upper and lower circulating region of the surface of section. 
Each island has a fixed point for which the pendulum rotates ex
actly once per cycle of the drive. In general, fixed points on the 
surface of section correspond to periodic motions of the system 
in the full phase space. The fixed point is at ±7r, indicating that 
the pendulum is vertical at the section phase of the drive. For or
bits in the resonance region away from the fixed point the points 
on the section apparently generate curves that surround the fixed 
point . 1 For these orbits the pendulum rotates on average once per 

1 Keep in mind that the abscissa is an angle . 
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drive, but the phase of the pendulum is sometimes ahead of the 
drive and sometimes behind it . 

There are other islands that appear with nonzero-amplitude 
drive. In the central oscillation region there is a sixfold chain 
of secondary islands. For this orbit the pendulum is oscillating, 
and the period of the oscillation is commensurate with the drive. 
The six islands are all generated by a single orbit . In fact , the 
islands are visited successively in a clockwise direction. After six 
cycles of the drive the section point returns to the same island 
but falls at a different point on the island curve, accumulating the 
island curve after many iterations. The motion of the pendulum 
is not periodic, but is locked in a resonance so that on average it 
oscillates once for every six cycles of the drive. 

Another feature that appears is a narrow chaotic region near 
where the separatrix was in the zero-amplitude drive pendulum. 
We find that chaotic behavior typically makes its most prominent 
appearance near separatrices. This is not surprising because the 
difference in velocities that distinguish whether the pendulum ro
tates or oscillates is small for orbits near the separatrix. As the 
pendulum approaches the top, whether it receives the extra nudge 
it needs to go over the top depends on the phase of the drive. 

Actually, the apparent separatrices of the resonance islands for 
which the pendulum period is equal to the drive period are each 
generated by a chaotic orbit . To see that this orbit appears to 
occupy an area one would have to magnify the picture by about 
a factor of 104. 

As the drive amplitude is increased the main qualitative changes 
are the appearance of resonance islands and chaotic zones. Some 
qualitative characteristics of the zero-amplitude case remain. For 
instance, many orbits appear to lie on invariant curves. This be
havior is not peculiar to the driven pendulum; similar features 
quite generally arise as additional effects are added to problems 
that are reducible to quadratures. This chapter is devoted to un
derstanding in greater detail how these generic features arise. 

4.2 Linear Stability 

Qualitative changes are associated with fixed points of the surface 
of section. As the drive is turned on, chaotic zones appear at fixed 
points on separatrices of the undriven system, and we observe the 
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Figure 4.3 A surface of section for the driven pendulum, with nonzero 
drive amplitude A = 0 .001 m and drive frequency 4 . 2wo .  Many trajecto
ries apparently generate invariant curves, as in the zero-amplitude drive 
case . Here , in addition, some orbits belong to island chains and others 
are chaotic. The most apparent chaotic orbit is near the separatrix of 
the undriven pendulum. 

appearance of new fixed points and periodic points associated with 
resonance islands . Here we investigate the behavior of systems 
near fixed points. We can distinguish two types of fixed points 
on a surface of section: there are fixed points that correspond to 
equilibria of the system and there are fixed points that correspond 
to periodic orbits of the system. We first consider the stability 
of equilibria of systems governed by differential equations, then 
discuss the stability of fixed points of maps. 

4.2.1 Equilibria of Differential Equations 

Consider first the case of an equilibrium of a system of differen
tial equations. If a system is initially at an equilibrium point , 
the system remains there. What can we say about the evolution 
of the system for points near such an equilibrium point? This is 
actually a very difficult question, which has not been completely 
answered. We can, however, understand quite a lot about the mo-
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tion of systems near equilibrium. The first step is to investigate 
the evolution of a linear approximation to the differential equa
tions near the equilibrium. This part is easy, and is the subject 
of linear stability analysis . Later , we will address what the linear 
analysis implies for the actual problem. 

Consider a system of ordinary differential equations 

Dz(t) = F(t, z(t)) ( 4 . 1 )  

with components 

(4 .2)  

where n is the dimension. An equilibrium point of this system of 
equations is a point Ze for which the state derivative is zero: 

0= F(t, ze). (4 .3) 

That this is zero at all moments for the equilibrium solution im
plies ooF(t, ze) = O.  

Next consider a path z' that passes near the equilibrium point . 
The path displacement ( is defined so that at time t 

Z' ( t) = Ze + (( t ) . ( 4.4) 

We have 

D((t) = Dz'(t) = F(t,ze + ((t)). (4 .5) 

If ( is small we can write the right-hand side as a Taylor series 
in ( : 

D((t) = F(t, ze) + olF(t, ze)((t) + ... , (4.6 ) 

but the first term is zero because Ze is an equilibrium point , so 

D((t) = olF(t, ze)((t) + .... (4.7) 

If ( is small the evolution is approximated by the linear terms. 
Linear stability analysis investigates the evolution of the approx
imate equation 

D((t) = olF(t, ze)((t). (4.8) 
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These are the variational equations (3. 145) with the equilibrium 
solution substituted for the reference trajectory. The relationship 
of the solutions of this linearized system to the full system is a 
difficult mathematical problem, which has not been fully resolved. 

If we restrict attention to autonomous systems (ooF = 0) , then 
the variational equations at an equilibrium are a linear system of 
ordinary differential equations with constant coefficients. 2 Such 
systems can be solved analytically. To simplify the notation, let 
M = 01F(t, ze ) , so 

D((t) = M((t). (4 .9) 

We seek a solution of the form 

(4 . 10) 

where a is a structured constant with the same number of com
ponents as (, and A is a complex number called a characteristic 
exponent. Substituting, we find 

( 4. 1 1 )  

The exponential factor is not zero, so we find 

Ma = Aa, (4 . 1 2 ) 

which is an equation for the eigenvalue A and (normalized) eigen
vector a. In general , there are n eigenvalues and n eigenvectors, so 
we must add a subscript to both a and A indicating the particular 
solution. The general solution is an arbitrary linear combination 
of these individual solutions. The eigenvalues are solutions of the 
characteristic equation 

0= det(M - AI) (4 . 13) 

where M is the matrix representation of M, and I is the identity 
matrix of the same dimension. The elements of M are real , so we 
know that the eigenvalues A either are real or come in complex
conjugate pairs. We assume the eigenvalues are all distinct .3 

2 Actually, all we need is ooolF(t, Ze) = O. 
3 If the eigenvalues are not distinct then the form of the solution is modified . 
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If the eigenvalue is real then the solution is exponential , as 
assumed. If the eigenvalue A > 0 then the solution expands expo
nentially along the direction 0:; if A < 0 then the solution contracts 
exponentially along the direction 0:. 

If the eigenvalue is complex we can form real solutions by com
bining the two solutions for the complex-conjugate pair of eigen
values. Let A = a + ib, with real a and b, be one such complex 
eigenvalue. Let 0: = U + iv, where u and v are real , be the eigen
vector corresponding to it . So there is a complex solution of the 
form 

(c(t) = (u + iv)e(a+ib)t 
= (u + iv)eat(cos bt + i sin bt) 
= eat ( u cos bt - v sin bt) + ieat ( u sin bt + v cos bt) . ( 4. 14) 

The complex conjugate of this solution is also a solution, because 
the ordinary differential equation is linear with real linear coef
ficients. This complex-conjugate solution is associated with the 
eigenvalue that is the complex conjugate of the original complex 
eigenvalue. So the real and imaginary parts of (c are real solutions: 

(a ( t) = eat ( u cos bt - v sin bt) 
(b(t) = eat(usinbt + v cos bt). (4 . 15) 

These two solutions reside in the plane containing the vectors u 
and v. If a is positive both solutions spiral outwards exponentially, 
and if a is negative they both spiral inwards. If a is zero, both 
solutions trace the same ellipse, but with different phases. 

Again, the general solution is an arbitrary linear combination 
of the particular real solutions corresponding to the various eigen
values. So if we denote the kth real eigensolution (k(t), then the 
general solution is 

((t) = L Ak(k(t), (4 . 16)  
k 

where Ak may be determined by the initial conditions (the state 
at a given time) . 

Exercise 4.1 : Pendulum 

Carry out the details of finding the eigensolutions for the two equilibria 
of the pendulum (e = 0 and e = 'iT, both with Po = 0) . How is the 
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small-amplitude oscillation frequency related to the eigenvalues? How 
are the eigendirections related to the contours of the Hamiltonian? 

4.2.2 Fixed Points of Maps 

Fixed points on a surface of section correspond either to equilib
rium points of the system or to a periodic motion of the system. 
Linear stability analysis of fixed points of maps is similar to the 
linear stability analysis for equilibrium points of systems governed 
by differential equations. 

Let T be a map of the state space onto itself, as might be gener
ated by a surface of section. A trajectory sequence is generated by 
successive iteration of the map T. Let x( n) be the nth point of the 
sequence. The map carries one point of the trajectory sequence to 
the next : x(n + 1 )  = T(x(n)). We can represent successive itera
tions of the map by a superscript, so that Ti indicates T composed 
i times. For example, T2(x) = T(T(x)). Thus x(n) = Tn(x(0)).4 

A fixed point Xo of the map T satisfies 

Xo = T(xo). ( 4. 17) 

A periodic point of the map T is a point that is visited every k 
iterations of T. Thus it is a fixed point of the map Tk. So the 
behavior near a periodic point can be ascertained by looking at 
the behavior near an associated fixed point of Tk. 

Let x be some trajectory initially near the fixed point Xo of T, 
and � be the deviation from Xo: x(n) = Xo + �(n). The trajectory 
satisfies 

Xo + �(n + 1 )  = T(xo + �(n)). (4 . 18) 

Expanding the right-hand side as a Taylor series, we obtain 

Xo + �(n + 1 )  = T(xo) + DT(xo)�(n) + ... , (4 . 19) 

but Xo = T(xo) so 

�(n + 1 )  = DT(xo)�(n) + .... ( 4.20) 

4 The map T is being used as an operator: multiplication is interpreted as 
composi tion . 
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Linear stability analysis considers the evolution of the system 
truncated to the linear terms 

�(n + 1 )  = DT(xo)�(n). ( 4 .21 )  

This is a system of linear difference equations, with constant co
efficients DT(xo). 

We assume there are solutions of the form 

( 4.22) 

where p is some (complex) number, called a characteristic mul
tiplier.5 Substituting this solution into the linearized evolution 
equation, we find 

po: = DT(xo)o:, ( 4.23) 

or 

(DT(xo) - pI)o: = 0, ( 4 .24) 

where I is the identity multiplier . We see that p is an eigenvalue 
of the linear transformation DT(xo) and 0: is the associated (nor
malized) eigenvector. Let M = DT(xo), and M be its matrix 
representation. The eigenvalues are determined by 

det(M - pI) = 0. ( 4 .25) 

The elements of M are real , so the eigenvalues p are either real or 
come in complex-conjugate pairs.6 

For the real eigenvalues the solutions are just exponential ex
pansion or contraction along the associated eigenvector 0:: 

( 4 .26) 

The solution is expanding if Ipl > 1 and contracting if Ipl < l. 
If the eigenvalues are complex, then the solution is complex, 

but the complex solutions corresponding to the complex-conjugate 
pair of eigenvalues can be combined to form two real solutions, as 
was done for the equilibrium solutions. Let p = eA+iB with real 

5 A characteristic multiplier is also sometimes called a Floquet multiplier . 

6We assume for now that the eigenvalues are distinct . 
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A and B, and 0: = U + iv. A calculation similar to that for the 
equilibrium case shows that there are two real solutions 

�a(n) = eAn (ucos Bn - vsinBn) 
�b(n) = eAn (usin Bn + v cos Bn) . ( 4.27) 

We see that if A > ° then the solution exponentially expands, 
and if A < ° the solution exponentially contracts. Exponential 
expansion, A > 0, corresponds to Ipi > 1; exponential contraction, 
A < 0, corresponds to Ipi < 1 .  If A = ° then the two real solutions 
trace an ellipse and any linear combination of them traces an 
ellipse. 

The general solution is an arbitrary linear combination of the 
eigensolutions. Let �k be the kth real eigensolution. The general 
solution is 

�(n) = L Ak�k(n), 
k 

where Ak may be determined by the initial conditions. 

Exercise 4.2: Elliptical oscillation 

( 4 .28) 

Show that the arbitrary linear combination of �a and �b traces an ellipse 
for A = O. 

Exercise 4.3: Standard map 

The standard map (see section 3 .9 )  has fixed points at I = 0 for e = 0 
and e = 7r. Find the full eigensolutions for these two fixed points .  For 
what ranges of the parameter K are the fixed points linearly stable or 
unstable? 

4.2.3 Relations Among Exponents 

For maps that are generated by stroboscopic sampling of the evo
lution of a system of autonomous differential equations, equilib
rium points are fixed points of the map. The eigensolutions of the 
equilibrium of the flow and the eigensolutions of the map at the 
fixed point are then related. Let T be the sampling period. Then 
Pi = eAiT• 

The Lyapunov exponent is a measure of the rate of exponential 
divergence of nearby trajectories from a reference trajectory. If 
the reference trajectory is an equilibrium of a flow, then the Lya
punov exponents are the real parts of the linearized characteristic 
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exponents Ai. If the reference trajectory is a fixed point of a map 
generated by a flow (either a periodic orbit or an equilibrium) ,  
then the Lyapunov exponents are real parts of the logarithm of 
the characteristic multipliers, divided by the period of the map. 
So if the characteristic multiplier is p = eA+iB and the period of 
the map is T, then the Lyapunov exponent is A/T. A positive 
Lyapunov exponent of a fixed point indicates linear instability of 
the fixed point . 

The Lyapunov exponent has less information than the charac
teristic multipliers or exponents because the imaginary part is lost . 
However, the Lyapunov exponent is more generally applicable in 
that it is well defined even for reference trajectories that are not 
periodic. 

In the linear analysis of the fixed point , each characteristic mul
tiplier corresponds to a subspace of possible linear solutions. For 
instance, for a real characteristic multiplier there is a correspond
ing eigendirection, and for any initial displacement along this di
rection successive iterates are also along this direction. Complex
conjugate pairs of multipliers correspond to a plane of solutions. 
For a displacement initially on this plane, successive iterates are 
also on this plane. 

It turns out that something like this is also the case for the lin
earized solutions near a reference trajectory that is not at a fixed 
point . For each nonzero Lyapunov exponent there is a twisting 
subspace, so that for an initial displacement in this subspace suc
cessive iterates also belong to the subspace. At different points 
along the reference trajectory the unit displacement vector that 
characterizes the direction of this subspace is different. 

Hamiltonian specialization 

For Hamiltonian systems there are additional constraints among 
the eigenvalues. 

Consider first the case of two-dimensional surfaces of section. 
We have seen that Hamiltonian surfaces of section preserve area. 
As we saw in the proof of Liouville's theorem, area preservation 
implies that the determinant of the derivative of the transforma
tion is 1 .  At a fixed point Xo the linearized map is �(n + 1 )  = 
DT(xo)�(n). So M = DT(xo) has unit determinant. The de
terminant is the product of the eigenvalues, so for a fixed point 
on a Hamiltonian surface of section the two eigenvalues must be 
inverses of each other. We also have the constraint that if an eigen-
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Figure 4.4 The eigenvalues for fixed points of a two-dimensional 
Hamiltonian map . The eigenvalues either are real or are complex
conjugate pairs that lie on the unit circle. For each eigenvalue the inverse 
is also an eigenvalue . 

value is complex then the complex conjugate of the eigenvalue is 
also an eigenvalue. These two conditions imply that the eigen
values must either be real and inverses, or be complex-conjugate 
pairs on the unit circle (see figure 4.4) . 

Fixed points for which the characteristic multipliers all lie on 
the unit circle are called elliptic fixed points. The solutions of 
the linearized variational equations trace ellipses around the fixed 
point . Elliptic fixed points are linearly stable. 

Fixed points with positive real characteristic multipliers are 
called hyperbolic fixed points. For two-dimensional maps, there 
is an exponentially expanding subspace and an exponentially con
tracting subspace. The general solution is a linear combination 
of these. Fixed points for which the characteristic multipliers are 
negative are called hyperbolic with reflection. 

The edge case of a double root of the characteristic equation is 
called parabolic. In this case the general solution grows linearly. 
This happens at points of bifurcation where elliptic points become 
hyperbolic points or vice versa. 
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Figure 4.5 If there is more than one degree of freedom the eigenvalues 
for fixed points of a Hamiltonian map may lie in a quartet , with two 
complex-conjugate pairs . The magnitudes of the pairs must be inverses . 
This enforces the constraint that the expansion produced by the roots 
with magnitude greater than one is counterbalanced by the contraction 
produced by the roots with magnitude smaller than one. 

For two-dimensional Hamiltonian maps these are the only pos
sibilities. For higher-dimensional Hamiltonian maps, we can get 
combinations of these: some characteristic multipliers can be real 
and others complex-conjugate pairs. We might imagine that in 
addition there would be many other types of fixed points that 
occur in higher dimensions. In fact , there is only one additional 
type, shown in figure 4.5. For Hamiltonian systems of arbitrary 
dimensions it is still the case that for each eigenvalue the complex 
conjugate and the inverse are also eigenvalues. We can prove this 
starting from a result in chapter 5. Consider the map T(3 of the 
phase space onto itself that is generated by time evolution of a 
Hamiltonian system by time increment (3. Let z = (q,p); then the 
map T(3 satisfies z(t + (3) = T(3(z(t)) for solutions z of Hamilton's 
equations. We will show in chapter 5 that the derivative of the 
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map T(3 is symplectic , whether or not the starting point is at a 
fixed point . A 2n x 2n matrix M is symplectic if it satisfies 

MJMT = J, 
where J is the 2n-dimensional symplectic unit : 

J = ( Onxn 
-lnxn 

Inxn ) 
Onxn ' 

( 4 .29) 

( 4 .30) 

with the n x n unit matrix Inxn and the n x n zero matrix Onxn. 
Using the symplectic property, we can show that in general for 

each eigenvalue its inverse is also an eigenvalue. Assume p is an 
eigenvalue, so that p satisfies det (M - pI) = O .  This equation 
is unchanged if M is replaced by its transpose, so p is also an 
eigenvalue of MT: 

From this we can see that 

Now, from the symplectic property we have 

So 

MJa' = J(MT)-la' = �Ja', 
p 

( 4 . 3 1 )  

( 4 .32) 

( 4 .33) 

( 4 .34) 

and we can conclude that 1/ p is an eigenvalue of M with the 
eigenvector J a'. From the fact that for every eigenvalue its in
verse is also an eigenvalue we deduce that the determinant of the 
transformation M, which is the product of the eigenvalues, is one. 

Thus the constraints that the eigenvalues must be associated 
with inverses and complex conjugates yields exactly one new pat
tern of eigenvalues in higher dimensions. Figure 4 .5  shows the 
only new pattern that is possible. 

We have seen that the Lyapunov exponents for fixed points 
are related to the characteristic multipliers for the fixed points, 
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so the Hamiltonian constraints on the multipliers correspond to 
Hamiltonian constraints for Lyapunov exponents at fixed points. 
For each characteristic multiplier , the inverse is also a character
istic multiplier . This means that at fixed points, for each positive 
Lyapunov exponent there is a corresponding negative Lyapunov 
exponent with the same magnitude. It turns out that this is also 
true if the reference trajectory is not at a fixed point . For Hamil
tonian systems, for each positive Lyapunov exponent there is a 
corresponding negative exponent of equal magnitude. 

Exercise 4.4: Quartet 

Describe (perhaps by drawing cross sections) the orbits that are possible 
with quartets .  

Linear and nonlinear stability 

A fixed point that is linearly unstable indicates that the full sys
tem is unstable at that point . This means that trajectories start
ing near the fixed point diverge from the fixed point . On the other 
hand, linear stability of a fixed point does not generally guarantee 
that the full system is stable at that point . For a two-degree
of-freedom Hamiltonian system, the Kolmogorov-Arnold-Moser 
theorem proves under certain conditions that linear stability im
plies nonlinear stability. In higher dimensions, though, it is not 
known whether linear stability implies nonlinear stability. 

4.3 Homoclinic Tangle 

For the driven pendulum we observe that as the amplitude of 
the drive is increased the separatrix of the un driven pendulum is 
where the most prominent chaotic zone appears. Here we examine 
in great detail the motion in the vicinity of the separatrix. What 
emerges is a remarkably complicated picture, first discovered by 
Henri Poincare. Indeed, Poincare stated (see the epigraph to this 
chapter) that the picture that emerged was so complicated that 
he was not even going to attempt to draw it . We will review 
the argument leading to the picture, and compute enough of it to 
convince ourselves of its reality. 

The separatrix of the un driven pendulum is made up of two 
trajectories that are asymptotic to the unstable equilibrium. In 
the driven pendulum with zero drive, an infinite number of distinct 
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Figure 4.6 The stable and unstable manifolds of the unstable fixed 
point for the pendulum are compared to the stable and unstable mani
folds of the linearized variational system in the vicinity of the fixed point . 
The axes are centered at the fixed point (±7f, 0) . The linear stable and 
unstable manifolds are labeled by VS and VU respectively; the nonlinear 
stable and unstable manifolds are labeled by WS and WU• 

orbits lie on the separatrix; they are distinguished by the phase of 
the drive. These orbits are asymptotic to the unstable fixed point 
both forward and backward in time. 

Notice that close to the unstable fixed point the sets of points 
that are asymptotic to the unstable equilibrium must be tangent 
to the linear variational eigenvectors at the fixed point . (See fig
ure 4 .6 . )  In a sense, the sets of orbits that are asymptotic to the 
fixed point are extensions to the nonlinear problem of the sets 
of orbits that are asymptotic to the fixed point in the linearized 
problem. 

The set of points that are asymptotic to an unstable fixed point 
forward in time is called the stable manifold of the fixed point . 
The set of points that are asymptotic to an unstable fixed point 
backward in time is called the unstable manifold. For the driven 
pendulum with zero-amplitude drive, all points on the separatrix 
are asymptotic both forward and backward in time to the unstable 
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fixed point . So in this case the stable and unstable manifolds 
coincide. 

If the drive amplitude is nonzero then there are still one
dimensional sets of points that are asymptotic to the unstable 
fixed point forward and backward in time: there are still stable 
and unstable manifolds. Why? The behavior near the fixed point 
is described by the linearized variational system. For the linear 
variational system, points in the space spanned by the unstable 
eigenvector, when mapped backwards in time, are asymptotic to 
the fixed point . Points slightly off this curve may initially ap
proach the unstable equilibrium, but eventually will fall away to 
one side or the other. For the driven system with small drive, 
there must still be a curve that separates the points that fall away 
to one side from the points that fall away to the other side. Points 
on the dividing curve must be asymptotic to the unstable equi
librium. The dividing set cannot have positive area because the 
map is area preserving. 

For the zero-amplitude drive case, the stable and unstable man
ifolds are contours of the conserved Hamiltonian. For nonzero 
amplitude the Hamiltonian is no longer conserved, and the sta
ble manifolds and unstable manifolds no longer coincide. This 
is generally true for non-integrable systems: stable and unstable 
manifolds do not coincide. 

If the stable and unstable manifolds no longer coincide, where 
do they go? A stable manifold cannot cross another stable mani
fold, and an unstable manifold cannot cross another unstable man
ifold, because the crossing point would be asymptotic to two dif
ferent fixed points. A stable manifold or unstable manifold may 
not cross itself, as shown below . However, a stable and an unstable 
manifold may cross one another. 

Actually, the stable and unstable manifolds must cross at some 
point . The only other possibilities are that they run off to infinity 
or spiral around. We will see that in general there are barriers 
to running away. Area preservation excludes the existence of at
tractors, and this can be used to exclude the spiraling case. A 
finite region of initial conditions between two successive arms of 
the spiral will eventually run out of area as the spiral progresses. 

So the only possibility is that the stable and unstable manifolds 
cross, as is illustrated in figure 4 .7 .  The point of crossing of a 
stable and unstable manifold is called a homoclinic intersection 
if the stable and unstable manifolds belong to the same unstable 
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Figure 4.7 For nonzero drive the stable and unstable manifolds no 
longer coincide and in general cross. The dashed circle indicates the 
central intersection. Forward and backward images of this intersection 
are themselves intersections. Because the orbits are asymptotic to the 
fixed point there is an infinity of such intersections . 

fixed point . It is called a heteroclinic intersection if the stable and 
unstable manifolds belong to different fixed points. 

If the stable and unstable manifolds cross once then there is an 
infinite number of other crossings. The intersection point belongs 
to both the stable and unstable manifolds. That it is on the 
unstable manifold means that all images forward and backward in 
time also belong to the unstable manifold, and likewise for points 
on the stable manifold. Thus all images of the intersection belong 
to both the stable and unstable manifolds. So these images must 
be additional crossings of the two manifolds. 

We can deduce that there are still more intersections of the 
stable and unstable manifolds. The maps we are considering not 
only preserve area but also orientation. In the proof of Liouville's 
theorem we showed that the determinant of the transformation 
is one, not just magnitude one. If we consider little segments of 
the stable and unstable manifolds near the intersection point , then 
these segments must map near the image of the intersection point . 
That the map preserves orientation implies that the manifolds are 
crossing one another in the same sense as at the previous intersec
tion. Therefore there must have been at least one more crossing 
of the stable and unstable manifolds in between these two. This 
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Figure 4.8 Orientation preservation implies that between an inter
section of the stable and unstable manifolds and the image of this in
tersection there is another intersection. Thus there are two alternating 
families of intersections. The central intersection and its pre-images and 
post-images are labeled Ai. Another family is labeled Bi. 

is illustrated in figure 4 .8 .  Of course, all forward and backward 
images of these intermediate intersections are also intersections. 

As the picture gets more complicated, keep in mind that the 
stable manifold cannot cross itself and the unstable manifold can
not cross itself. Suppose one did, say by making a little loop. The 
image of this loop under the map must also be a loop. So if there 
were a loop there would have to be an infinite number of loops. 
That would be okay, but what happens as the loop gets close to 
the fixed point? There would still have to be loops, but then the 
stable and unstable manifolds would not have the right behavior: 
the stable and unstable manifolds of the linearized map do not 
have loops. Therefore, the stable and unstable manifolds cannot 
cross themselves. 7 

We are not done yet! The lobes that are defined by successive 
crossings of the stable and unstable manifolds enclose a certain 
area. The map is area preserving so all images of these lobes 
must have the same area. As the lobes approach the fixed point , 
we get an infinite number of lobes with a base of exponentially 
shrinking length. The stable and unstable manifolds cannot cross 

7Sometimes it is argued that the stable and unstable manifolds cannot cross 
themselves on the basis of the uniqueness of solutions of differential equa
tions . This argument is incorrect . The stable and unstable manifolds are not 
themselves solutions of a differential equation , they are sets of points whose 
solutions are asymptotic to the unstable fixed points.  
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themselves, so to pack these lobes together on the plane the lobes 
must stretch out to preserve area. We see that the length of the 
lobe must grow roughly exponentially (it may not be uniform in 
width so it need not be exactly exponential) .  This exponential 
lengthening of the lobes no doubt bears some responsibility for the 
exponential divergence of nearby trajectories of chaotic orbits, but 
does not prove it . It does, however, suggest a connection between 
the fact that chaotic orbits appear to occupy an area on the section 
and the fact that nearby chaotic orbits diverge exponentially. 

Actually, the situation is even more complicated. As the lobes 
stretch, they form tendrils that wrap around the separatrix region. 
The tendrils of the unstable manifold can cross the tendrils of the 
stable manifold. Each point of crossing is a new homo clinic inter
section, and so each pre- and post-image of this point belongs to 
both the stable and unstable manifolds, indicating another cross
ing of these curves. We could go on and on. No wonder Poincare 
refused to draw this mess. 

Exercise 4.5: Homoclinic paradox 

How do we fit an infinite number of copies of a finite area in a finite re
gion, without allowing the stable and unstable manifolds to cross them
selves? Resolve this apparent paradox. 

4.3.1 Computation of Stable and Unstable Manifolds 

The homo clinic tangle is not just a bad dream. We can actually 
compute it . 

Very close to an unstable fixed point the stable and unstable 
manifolds become indistinguishable from the rays along the eigen
vectors of the linearized system. So one way to compute the un
stable manifold is to take a line of initial conditions close to the 
fixed point along the unstable manifold of the linearized system 
and evolve them forward in time. Similarly, the stable manifold 
can be constructed by taking a line of initial conditions along the 
stable manifold of the linearized system and evolving them back
ward in time. 

We can do better than this by choosing a parameter (like arc 
length) along the manifold and for each value of the parameter 
deciding how many iterations of the map would be required to take 
the point back to within some small region of the fixed point . We 
then choose an initial condition along the linearized eigenvectors 
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and iterate the point back with the map. This idea is implemented 
in the following program:8 

( def ine « unstable -manifold T xe ye dx dy rho eps )  param) 
( let « n  (floor->exact (/ ( log (/ param eps »  ( log rho » » )  

« it erat ed-map T n) (+ xe (* dx ( /  param ( expt rho n» » 
(+ ye (* dy ( /  param ( expt rho n» » 
make-po int 
(lambda 0 ( error "Failed " » » )  

where T is the map, xe and ye are the coordinates of the fixed 
point , dx and dy are components of the linearized eigenvector, 
rho is the characteristic multiplier , eps is a scale within which the 
linearized map is a good enough approximation to T, and param 
is a continuous parameter along the manifold. The procedure 
make -point, supplied as the success continuation for the iterated 
map, packages two numbers. They can be split with abs c i s s a  
and ordinate. 

The program assumes that there is a basic exponential diver
gence along the manifold-that is why we take the logarithm of 
param to get initial conditions in the linear regime. This assump
tion is not exactly true, but it is good enough for now . 

The curve is generated by a call to plot-parametri c-fill, 
which recursively subdivides intervals of the parameter until there 
are enough points to get a smooth curve. 

( def ine (plot -parametric-fill win f a b near ? )  
( let loop « a  a) ( x a  ( f  a »  (b b )  (xb ( f  b » ) 

( if (not ( close -enuf ? a b (* 1 0  *machine -epsilon*» ) 
( let « m  ( /  (+ a b) 2 » ) 

( let « xm (f m» ) 
(plot -po int win ( ab s c i s s a  xm) ( ordinat e xm» 
( if (not (near? xa xm» 

( loop a xa m xm» 
( if (not (near? xb xm» 

( loop m xm b xb » » » )  

The ne ar? argument is a test for whether two points are within 
a given distance of each other in the graph. Because some co
ordinates are angle variables, this may involve a principal value 
comparison. For example, for the driven pendulum section, the 

8The procedure iterated-map takes a map and an integer n. It returns a new 
map that is the result of iterating the given map n times . 
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horizontal axis is an angle but the vertical axis is not , so the pic
ture is on a cylinder: 

( def ine ( cyl inder-near? eps )  
( let « eps2 ( square eps » ) 

(lambda (po int 1 point 2 )  
« (+ ( square « princ ipal-value p i )  

( - ( ab s c i s s a  pOint 1 )  ( ab s c i s s a  pOint 2 » » 
( square ( - ( ordinat e point 1 )  ( ordinat e point 2 » » 

eps2» » 

Figure 4 .9 shows a computation of the homoclinic tangle for the 
driven pendulum. The parameters are m = 1 kg , 9 = 9 .8 m s-2, 
I = 1 m, W = 4 .2J9!l , and amplitude A = 0.05 m. For reference, 
figure 4 .9 shows a surface of section for these parameters on the 
same scale. 

Exercise 4.6: Computing homo clinic tangles 

a. Compute stable and unstable manifolds for the standard map . 

h. Identify the features on the homo clinic tangle that entered the argu
ment about its existence, such as the central crossing of the stable and 
unstable manifolds , etc .  

c .  Investigate the errors in the process . Are the computed manifolds 
really correct or a figment of wishful thinking? One could imagine that 
the errors are exponential and the computed manifolds have nothing to 
do with the actual manifolds . 

d. How much actual space is taken up by the homo clinic tangle? Con
sider a value of the coupling constant K = O.S. Does the homo clinic 
tangle actually fill out the apparent chaotic zone? 

4.4 Integrable Systems 

Islands appear near commensurabilities, and commensurabilities 
are present even in integrable systems.9 In integrable systems an 
infinite number of periodic orbits are associated with each com
mensurability, but upon perturbation only a finite number of pe
riodic orbits survive. How does this happen? First we have to 
learn more about integrable systems. 

9 A commensurability occurs when the frequencies involved are not linearly 
independent over the integers. We will define this carefully on page 312. 
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Figure 4.9 The computed homoclinic tangle for the driven pendulum 
exhibits the features described in the text . Notice how the excursions 
of the stable and unstable manifolds become longer and thinner as they 
approach the unstable fixed point . A surface of section with the same 
parameters is also shown. 
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If an n-degree-of-freedom system has n independent conserved 
quantities then the solution of the problem can be reduced to 
quadratures. Such a system is called integrable. Typically, the 
phase space of integrable systems is divided into regions of qual
itatively different behavior. For example , the motion of a pen
dulum is reducible to quadratures and has three distinct types of 
solutions: the oscillating solutions and the clockwise and coun
terclockwise circulating solutions. The different regions of the 
pendulum phase space are separated by the trajectories that are 
asymptotic to the unstable equilibrium. It turns out that for any 
system that is reducible to quadratures, a set of phase-space coor
dinates can be chosen for each region of the phase space so that the 
Hamiltonian describing the motion in that region depends only on 
the momenta. Furthermore, if the phase space is bounded then 
the generalized coordinates can be chosen to be angles (that are 
27r-periodic) .  The configuration space described by n angles is 
an n-torus. The momenta conjugate to these angles are called 
actions. Such phase-space coordinates are called action-angle co
ordinates. We will see later how to reformulate systems in this 
way. Here we explore the consequences of such a formulation; this 
formulation is especially useful for finding out what happens as 
additional effects are added to integrable problems. 

Orbit types in integrable systems 

Suppose we have a time-independent n-degree-of-freedom system 
that is reducible to quadratures. For each region of phase space 
there is a local formulation of the system so that the evolution 
of the system is described by a time-independent Hamiltonian 
that depends only on the momenta. Suppose further that the 
coordinates are all angles. Let B be the tuple of angles and J be 
the tuple of conjugate momenta. The Hamiltonian is 

H(t, B, J) = j(J). 

Hamilton's equations are simply 

DJ(t) = -[hH(t, B(t), J(t)) = 0 

DB(t) = (hH(t, B(t), J(t)) = w(J(t)), 

( 4.35) 

( 4.36) 

where w(J) = Dj(J) is a tuple of frequencies with a component 
for each degree of freedom. The momenta are all constant because 



31 2 Chapter 4 Phase Space Structure 

the Hamiltonian does not depend on any of the coordinates. The 
motion of the coordinate angles is uniform; the rates of change 
of the angles are the frequencies w ,  which depend only on the 
constant momenta. Given initial values e (to) and J(to ) at time 
to , the solutions are simple: 

J(t) = J(to ) 
e (t) = w(J(to ) ) (t - to) + e (to) . ( 4 .37) 

Though the solutions are simple, there are two distinct orbit 
types: periodic orbits and quasiperiodic orbits, depending on the 
frequency ratios. 

A solution is periodic if all the coordinates (and momenta) of 
the system return to their initial values at some later time. Each 
coordinate ei with nonzero frequency wi (J(to ) )  is periodic with a 
period Ti = 27rjwi (J(to ) ) .  The period of the system must there
fore be an integer multiple ki of each of the individual coordinate 
periods Ti . If the system is periodic with some set of integer mul
tiples, then it is also periodic with any common factors divided 
out. Thus the period of the system is T = (kdd)Ti where d is the 
greatest common divisor of the integers ki . 

For a system with two degrees of freedom, a solution is periodic 
if there exists a pair of relatively prime integers k and j such 
that kw° (J(to ) )  = jw1 (J(to ) ) . The period of the system is T = 
27rjjw° (J(to ) )  = 27rkjw1 (J(to ) ) ; the frequency is w° (J(to ) ) /j = 
w1 (J(to ) ) jk .  A periodic motion on the 2-torus is illustrated in 
figure 4 . 10 . 

If the frequencies wi (J  (to ) )  satisfy an integer-coefficient relation 
Li niwi (J(to ) )  = 0, we say that the frequencies satisfy a commen
surability. If there is no commensurability for any nonzero integer 
coefficients, we say that the frequencies are linearly independent 
(with respect to the integers) and the solution is quasiperiodic. 
One can prove that for n incommensurate frequencies all solu
tions come arbitrarily close to every point in the configuration 
space. 10 

For a system with two degrees of freedom the solutions in a 
region described by a particular set of action-angle variables are 

lO Motion with n incommensurate frequencies is dense on the n-torus . Further
more , such motion is ergodic on the n-torus . This means that time averages of 
time-independent phase-space functions computed along trajectories are equal 
to the phase-space average of the same function over the torus . 
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Figure 4.1 0 The solid and dotted lines show two periodic trajectories 
on the configuration coordinate plane. For commensurate frequencies 
the configuration motion is periodic , independent of the initial angles. 
In this illustration the frequencies satisfy 2wo ( J  (to ) )  = 3w 1 ( J  (to ) ) .  The 
orbits close after three cycles of eO and two cycles of e1 , for any initial 
eO and e1 . 

either periodic or quasiperiodic . l l  For systems with more than 
two degrees of freedom there are trajectories that are neither pe
riodic nor quasiperiodic with n frequencies. These are quasiperi
odic with fewer frequencies and dense over a corresponding lower
dimensional torus. 

Surfaces of section for integrable systems 

As we have seen, in action-angle coordinates the angles move 
with constant angular frequencies, and the momenta are constant. 
Thus surfaces of section in action-angle coordinates are particu
larly simple. We can make surfaces of section for time-independent 
two-degree-of-freedom systems or one-degree-of-freedom systems 

1 1  For time-independent systems with two degrees of freedom the boundary 
between regions described by different action-angle coordinates has asymptotic 
solutions and unstable periodic orbits or equilibrium points.  The solutions on 
the boundary are not described by the action-angle Hamiltonian . 
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Figure 4.11 On surfaces of section for systems in action-angle coor
dinates a trajectory generates points on a horizontal line . Trajectories 
with frequencies that are commensurate with the sampling frequency 
produce a finite number of points ,  independent of the initial angle . Here 
we use different symbols to indicate section points for distinct trajecto
ries with the same momentum Jo . Trajectories with frequencies that are 
incommensurate with the sampling frequency fill out a horizontal line 
densely. 

with periodic drive. In the latter case, one of the angles in the 
action-angle system is the phase of the drive. We make surfaces 
of section by accumulating points in one pair of canonical coordi
nates as the other coordinate goes through some particular value, 
such as zero. If we plot the section points with the angle coordi
nate on the abscissa and the conjugate momentum on the ordinate 
then the section points for all trajectories lie on horizontal lines, 
as illustrated in figure 4 . 1 1 .  

For definiteness, let the plane of the surface of section be the 
(eO , Jo ) plane, and the section condition be e1 = O .  The other 
momentum J1 is chosen so that all the trajectories have the same 
energy. The momenta are all constant, so for a given trajectory all 
points that are generated are constrained to a line of constant Jo . 
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The time between section points is the period of 0 1 : b.t = 
27r j wI  (J  (to ) )  because a section point is generated for every cy
cle of 0 1 . The angle between successive points on the section 
is w° (J(to ) )b.t = w° (J(  to ) ) 27r jw1 (J(  to ) )  = 27r1/ (  J( to ) ) ,  where 
1/ (  J) = wO (J) j wI  (J) is called the rotation number of the tra
jectory. Let iJ ( i) and J( i) be the ith point (i is an integer) in a 
sequence of points on the surface of section generated by a solution 
trajectory : 

iJ(i ) = OO (ib.t + to ) 

J(i) = Jo (ib.t + to ) ,  ( 4 .38) 

where the system is assumed to be on the section at t = to . Along 
a trajectory, the map from one section point (iJ(i ) , J(i ) ) to the 
next (iJ(i + 1 ) ,  J(i + 1 ) )  is of the form: 12 

( �(i + 1 ) )  = T ( �(i ) ) = ( iJ(i) + �7rl)(J(i) ) ) .  
J(i + 1 ) J(i) J(i) 

( 4 .39) 

As a function of the action on the section, the rotation number is 
v (J (O) )  = I/(J(O) , J1 (to ) ) ,  where J1 (to ) has the value required to 
be on the section, as for example by giving the correct energy. If 
the rotation number function v is strictly monotonic in the action 
coordinate on the section then the map is called a twist map . 13 

On a surface of section the different types of orbits generate 
different patterns. If the two frequencies are commensurate, then 
the trajectory is periodic and only a finite number of points are 
generated on the surface of section. Each of the periodic solu
tions illustrated in figure 4 . 10 generates two points on the surface 
of section defined by 0 1 = O .  If the frequencies are commensu
rate they satisfy a relation of the form kw° (J(to ) )  = jw1 (J(to ) ) ,  
where J(to ) = (1(0), J1 (to ) )  is the initial and constant value of 
the momentum tuple. The motion is periodic with frequency 
w° (J(to ) ) /j = w1 (J(to ) ) jk ,  so the period is 27rjjw° (J(to ) )  = 
27rkjw1 (J(to ) ) .  Thus this periodic orbit generates k points on this 

1 2 The coordinate B( i) is an angle . It can be brought to a standard interval 
such as 0 to 27r. 
13 For a map to be a twist map we require that there is a positive number K 
such that I Dv (J) 1 > K > 0 over some interval of J. 
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surface of section. For trajectories with commensurate frequencies 
the rotation number is rational : v(J(O) ) = v(J(O) , Ji (to ) )  = j/k .  
The coordinate ei makes k cycles while the coordinate eO makes 
j cycles (figure 4 . 10 shows a system with a rotation number of 
3/2) . The frequencies depend on the momenta but not on the 
coordinates, so the motion is periodic with the same period and 
rotation number for all initial angles given these momenta. Thus 
there is a continuous family of periodic orbits with different initial 
angles. 

If the two frequencies are incommensurate, then the 2-torus 
is filled densely. Thus the line on which the section points are 
generated is filled densely. Again, this is the case for any initial 
coordinates, because the frequencies depend only on the momenta. 
There are infinitely many such orbits that are distinct for a given 
set of frequencies. 14 

4 .5  Poincare-Birkhoff Theorem 

How does this picture change if we add additional effects? 
One peculiar feature of the orbits in integrable systems is that 

there are continuous families of periodic orbits. The initial an
gles do not matter; the frequencies depend only on the actions. 
Contrast this with our earlier experience with surfaces of section 
in which periodic points are isolated, and associated with island 
chains. Henri Poincare and George Birkhoff investigated peri
odic orbits of near-integrable systems, and found that typically 
for each rational rotation number there are a finite number of pe
riodic points, half of which are linearly stable and half linearly 
unstable. Here we show how to construct the Poincare-Birkhoff 
periodic points. 

Consider an integrable system described in action-angle coordi
nates by the Hamiltonian Ho (t , e ,  J) = J (J) .  We add some small 
additional effect described by the term Hi in the Hamiltonian 

( 4 .40) 

An example of such a system is the periodically driven pendulum 
with small-amplitude drive. For zero-amplitude drive the driven 

14 The section points for any particular orbit are countable and dense , but they 
have zero measure on the line . 
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pendulum is integrable, but not for small drive. Unfortunately, 
we do not yet have the tools to develop action-angle coordinates 
for the pendulum. A simpler problem that is already in action
angle form is the driven rotor, which is just the driven pendulum 
with gravity turned off. We can implement this by turning our 
driven pendulum on its side, making the plane of the pendulum 
horizontal . A Hamiltonian for the driven rotor is 

p2 
H(t , e , po ) = 

2r:l2 
+ mlAw2 cos wt cos e ,  ( 4.41 )  

where A is the amplitude of the drive with frequency w ,  m is 
the mass of the bob, and l is the length of the rotor. For zero 
amplitude, the Hamiltonian is already in action-angle form in that 
it depends only on the momentum Po and the coordinate is an 
angle. 

For an integrable system, the map generated on the surface 
of section is of the twist map form (4.39 ) . With the addition of 
a small perturbation to the Hamiltonian, small corrections are 
added to the map 

( �(i + 1 ) ) = T  ( �(i) ) 
J(i + 1 )  E J(i) 

= ( iJ (i ) + �7rv(J(i) ) f Ef (iJ(i ) , J(i) ) ) . J(i ) + Eg (e (i) , J(i) ) ( 4.42) 

Both the map T and the perturbed map TE are area preserving 
because the maps are generated as surfaces of section for Hamil
tonian systems. 

Suppose we are interested in determining whether periodic or
bits of a particular rational rotation number v( J(O) ) = j /k exist in 
some interval of the action ex < J(O) < (3. If the rotation number 
is strictly monotonic in this interval and orbits with the rotation 
number v(J(O) ) occur in this interval for the unperturbed map T, 
then by a simple construction we can show that periodic orbits 
with this rotation number also exist for TE for sufficiently small E . 

If a point is periodic for rational rotation number v(1(O) ) = 
j /k ,  with relatively prime j and k ,  we expect k distinct images 
of the point to appear on the section. So if we consider the kth 
iterate of the map then the point is a fixed point of the map. For 
rational rotation number j / k the map Tk has a fixed point for 
every initial angle. 
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Figure 4.12 The map Tk has a line of fixed points if the rotation 
number is the rational j / k. Points above this line map to larger eO ; 
points below this line map to smaller eO . 

Jo 
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Figure 4.13 The map TE
k is slightly different from Tk , but above the 

central region points still map to larger eO and below the central region 
they map to smaller eO . By continuity there are points between for 
which eO does not change. 

The rotation number of the map T is strictly monotonic . Sup
pose for definiteness we assume the rotation number 0(1(0) ) in
creases with j(O) . For some j* such that ex < j* < f3 the rotation 
number is j / k ,  and (e* , j* ) is a fixed point of Tk for any initial e* . 
For j* the rotation number of Tk is zero. The rotation number 
of the map T is monotonically increasing so for j (0) > j* the 
rotation number of Tk is positive, and for j(O) < j* the rotation 
number of Tk is negative, as long as j(O) is not too far from j* . 
See figure 4 . 1 2 .  
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Figure 4.1 4 The solid curve Co consists of points that map to the 
same eO under TE

k . The image C1 of Co under TE
k is the dotted curve, 

Area preservation implies that these curves cross. 

Now consider the map TEk. In general , for small E ,  points map 
to slightly different points under TE than they do under T, but not 
too different, So we can expect that there is still some interval in 
j(O) near j* such that for j(O) in the upper end of the interval , 
TEk maps points to larger eO , and for points in the lower end of 
the interval , TEk maps points to smaller eO . If this is the case then 
for every 8 (0) there is a point somewhere in the interval , some 
j+ (8(0) ) ,  for which eO does not change, by continuity, These are 
not fixed points because the momentum Jo generally changes. See 
figure 4 , 13 . 

The map is continuous, so we can expect that j+ is a continuous 
function of the eO . The twist-map condition (see footnote 1 3) 
ensures that j+ is periodic, so j+ (O) = j+ (27r) , The twist-map 
condition also guarantees that for sufficiently small perturbations 
there cannot be more than one radially-mapping point for any 
angle, So the set of points that do not change eO under TEk form 
some periodic function of eO , Call this curve Co ' See figure 4 , 14 ,  

The map TEk takes the curve Co to another curve C1 that , like 
Co , is continuous and periodic. The two curves Co and C1 must 
cross each other, as a consequence of area preservation. How do we 
see this? Typically, there is a lower boundary or upper boundary 
in Jo for the evolution. In some situations, we have such a lower 
boundary because Jo cannot be negative. For example, in action
angle variables for motion near an elliptic fixed point we will see 
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Figure 4.15 The fixed point on the left is linearly unstable . The one 
on the right is linearly stable . 

that the action is the area enclosed on the phase plane, which 
cannot be negative. For other situations, we might use the fact 
that there are invariant curves for large positive or negative 10 . In 
any case, suppose there is such a barrier B. Then the area of the 
region between the barrier and Co must be equal to the area of 
the image of this region, which is the region between the barrier 
and C1 . So if Co and C1 are not the same curve they must cross to 
contain the same area. In fact , they must cross an even number of 
times: they are both periodic, so if they cross once they must cross 
again to get back to the same side they started on. The points 
at which the curves Co and C1 cross are fixed points because the 
angle does not change (that is what it means to be on Co) and the 
action does not change (that is what it means for Co and C1 to be 
the same at this point) . So we have deduced that there must be 
an even number of fixed points of TEk. For each fixed point of TEk 
there are k images of this fixed point generated on the surface of 
section for the map TE • Each of these image points is a periodic 
point of the map TE • 

We can deduce the stability of these fixed points of TEk just from 
the construction. The fixed points come in two types, elliptic and 
hyperbolic . An elliptic (stable) fixed point appears where the 
steps from Co to C1 join with the flow of the background twist 
map to encircle the fixed point . A hyperbolic (unstable) fixed 
point appears where the steps from Co to C1 join with the flow 
of the background twist map to move away from the fixed point . 
So just from the way the arrows connect we can determine the 
character of the fixed point . See figure 4 . 1 5 .  

As we develop a Poincare section, we find that some orbits leave 
traces that circulate around the stable fixed points, resulting in the 
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Poincare-Birkhoff islands. If we look at a particular island we see 
that orbits in the island circulate around the fixed point at a rate 
that is monotonically dependent upon the distance from the fixed 
point . In the vicinity of the fixed point the evolution is governed 
by a twist map. So the entire Poincare-Birkhoff construction can 
be carried out again. We expect that there will be concentric fam
ilies of stable periodic points surrounded by islands and separated 
by separatrices emanating from unstable periodic points. Around 
each of these stable periodic orbits, the construction is repeated. 
So the Poincare-Birkhoff construction is recursive, leading to the 
development of an infinite hierarchy of structure. 

4.5.1 Computing the Poincare-Birkhoff Construction 

There are so many conditions in our construction of the fixed 
points that one might be suspicious. We can make the construc
tion more convincing by actually computing the various pieces 
for a specific problem. Consider the periodically driven rotor, 
with Hamiltonian (4 .41 ) .  We set m = 1 kg , I = 1 m, A = O . l m, 
w = 4 .2V9.8 rad s-l . 

We call points that map to the same angle "radially mapping 
points." We find them with a simple bisection search: 

( def ine (radially-mapping-point s  Trnap Jrnin Jrnax phi eps )  
(bisect 

(lambda ( J )  
« princ ipal-value p i )  

(Trnap phi J 

(lambda (phip Jp ) ( - phi phip» 

(lambda 0 ( error " should not get here " » » )  
Jrnin Jrnax eps »  

The procedure Tmap implements some map, which may be an iter
ate of some more primitive map. We give the procedure an angle 
phi to study, a range of actions Jmin to Jmax to search, and a 
tolerance eps for the solution. 

In figure 4 . 1 6  we show the Poincare-Birkhoff construction of 
the fixed points for the driven rotor. These particular curves are 
constructed for the two 1 : 1  commensurabilities between the rota
tion and the drive. One set of fixed points is constructed for each 
sense of rotation. The corresponding section is in figure 4 . 17 .  We 
see that the section shows the existence of fixed points exactly 
where the Poincare-Birkhoff construction shows the crossing of 
the curves Co and C1 . Indeed, the nature of the fixed point is 
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clearly reflected in the relative configuration of the Co and C1 
curves. 

In figure 4 . 1 8  we show the result for a rotation number of 1/3 . 
The curves are the radially mapping points for the third iterate 
of the section map (solid) and the images of these points (dot
ted) . These curves are distorted by their proximity to the 1 : 1  
islands shown in figure 4 . 17 .  The corresponding section is shown 
in figure 4 . 1 9 .  

Exercise 4.7: Computing the Poincare-Birkhoff construction 

Consider figure 3 .27 .  Find the fixed points for the three major island 
chains , using the Poincare-Birkhoff construction. 

4 .6  Invariant Curves 

We started with an integrable system, where there are invariant 
curves. Do any invariant curves survive if a perturbation is added? 

The Poincare-Birkhoff construction for twist maps shows that 
invariant curves with rational rotation number typically do not 
survive perturbation. Upon perturbation the invariant curves 
with rational rotation numbers are replaced by an alternating se
quence of stable and unstable periodic orbits. So if there are in
variant curves that survive perturbation they must have irrational 
rotation numbers. 

The perturbed system has chains of alternating stable and un
stable fixed points for every rational rotation number. Each stable 
fixed point is surrounded by an island that occupies some region of 
the section. Each irrational is arbitrarily close to a rational , so it 
is not obvious that any invariant curve can survive an arbitrarily 
small perturbation. 

Nevertheless, the Kolmogorov-Arnold-Moser (KAM) theorem 
proves that invariant curves do exist if the perturbation is small 
enough that the perturbed problem is "close enough" to an inte
grable problem, and if the rotation number is "irrational enough." 
We will not prove this theorem here. Instead we will develop meth
ods for finding particular invariant curves. 

Stable periodic orbits have a stable island surrounding them on 
the surface of section. The largest islands are associated with ra
tionals with small denominators. In general , the size of the island 
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Figure 4.16 The curves Co (solid) and C1 (dotted) for the 1 : 1  com
mensurability. 
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-7r o 

Figure 4.17 A surface of section displaying the 1 : 1  commensurability. 
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5 . 5  ,...---------....-----------, 

4 . 5  

3 . 5  L...-_______ -'-_______ ---I - 7r o 

Figure 4.18 The curves Co (solid) and C1 (dotted) for the 1 : 3  com
mensurability. The angle runs from -7r to 7r. The momentum runs from 
3 . 5  to 4 .5  in appropriate units .  

5.5 ,...------r---...---....-----.----.-------, 

4 . 5  

3 . 5  L...-_"""----__ ----''--_-'-_----''---__ .......:::.._---I 
-7r o 

Figure 4.19 A surface of section displaying the 1 : 3  commensurability. 
The angle runs from -7r to 7r. The momentum runs from 3 . 5  to 4 .5  in 
appropriate units .  
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is limited to a size that decreases as the denominator increases. 
These islands are a local indication of the effect of the perturba
tion. Similarly, the chaotic zones appear near unstable periodic 
orbits and their homo clinic tangles. The homoclinic tangle is a 
continuous curve so it cannot cross an invariant curve, which is 
also continuous. If we are looking for invariant curves that persist 
upon perturbation, we would be wise to avoid regions of phase 
space where the islands or homo clinic tangles are major features. 

The Poincare-Birkhoff islands are ordered by rotation number. 
Because of the twist condition, the rotation number is monotonic 
in the momentum of the unperturbed problem. If there is an 
invariant curve with a given rotation number, it is sandwiched 
between island chains associated with rational rotation numbers. 
The rotation number of the invariant curve must be between the 
rotation numbers of the island chains on either side of it . 

The fact that the size of the islands decreases with the size of the 
denominator suggests that invariant curves with rotation numbers 
for which nearby rationals require large denominators are the most 
likely to exist . So we will begin our search for invariant curves by 
examining rotation numbers that are not near rationals with small 
denominators. 

Any irrational can be approximated by a sequence of rationals , 
and for each of these rationals we expect there to be stable and 
unstable periodic orbits with stable islands and homo clinic tan
gles. An invariant curve for a given rotation number has the best 
chance of surviving if the size of the islands associated with each 
rational approximation to the rotation number is smaller than the 
separation of the islands from that invariant curve. 

For any particular size denominator, the best rational approxi
mation to an irrational number is given by an initial segment of a 
simple continued fraction. If the approximating continued fraction 
converges slowly to the irrational number, then that number is not 
near rationals with small denominators. Thus, we will look for in
variant curves with rotation numbers that have slowly converging 
continued-fraction approximations. The continued fractions that 
converge most slowly have tails that are all one. Such a number 
is called a golden number. For example, the golden ratio, 

( 4 .43) 

is just such a number. 
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4.6.1 Finding Invariant Curves 

Invariant curves, if there are any, are characterized by a particular 
rotation number. Points on the invariant curve map to points 
on the invariant curve. Neighboring points map to neighboring 
points, preserving the order. 

On the section for the unperturbed integrable system, the angle 
between successive section points is constant: t1B = 27rv(  J) for 
rotation number v (  J) . This map of the circle onto itself with 
constant angular step we call a uniform circle map. 

For a given rotation number, points on the section are laid 
down in a particular order characteristic of the rotation number 
only. As a perturbation is turned on, the invariant curve with a 
particular rotation number will be distorted and the angle between 
successive points will no longer be constant. All that is required 
to have a particular rotation number is that the average change 
in angle be t1B. Nevertheless, the ordering of the points on the 
surface of section is preserved, and is characteristic of the rotation 
number. 

The fact that the sequence of points on the surface of section 
for an invariant curve with a given rotation number must have 
a particular order can be used to find the invariant curve. At a 
specified angle we perform a bisection search for the momentum 
that lies on the invariant curve. We can tell whether the initial 
point is on the desired invariant curve or which side of the invariant 
curve it is on by evolving a candidate initial point with both the 
perturbed map and the uniform circle map and comparing the 
ordering of the sequences of points that are generated. 

A program to implement this plan of attack is15 

( def ine ( f ind- invariant - curve the -map rn thet aO Jmin Jmax eps )  
(bisect (lambda ( J )  (whi ch-way? r n  thet aO J the -map » 

Jmin Jmax eps »  

Since ordering inconsistencies are found near the initial angle we 
do not need to keep the whole list of angles. Instead, we can keep 
track of a small list of angles near the initial angle. In fact , keeping 

15 This method depends on the assumptions that Jrnin and Jrnax bracket the 
actual momentum, and that the rotation number is sufficiently continuous in 
momentum in that region . 
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track of the nearest angle on either side of the initial angle works 
well . 

The procedure whi ch-way? is implemented as a simple loop with 
state variables for the two orbits and the endpoints of the intervals. 
The z variables keep track of the angle of the uniform circle map; 
the x variables keep track of the angle of the map under study. 
The y variable is the momentum for the map under study. On 
each iteration we determine if the angle of the uniform circle map 
is in the interval of interest below or above the initial angle. If it 
is in neither interval then the map is further iterated. However, if 
it is in the region of interest then we check to see if the angle of 
the other map is in the corresponding interval . If so, the intervals 
for the uniform circle map and the other map are narrowed and 
the iteration proceeds. If the angle is not in the required interval , 
a discrepancy is noted and the sign of the discrepancy is reported. 
For this process to make sense the differences between the angles 
for successive iterations of both maps must be less than Jr .  

( def ine (whi ch-way? rotat ion-number x O  y O  the -map ) 
( let « pv (princ ipal-value (+ xO p i » » 

( let lp « z  xO) ( zmin ( - xO : 2p i »  ( zmax (+ xO : 2p i »  
(x xO) (xmin ( - x O  : 2pi »  (xmax (+ x O  : 2pi »  
(y yO» 

( let « nz (pv (+ z (* : 2pi rotat ion-number» » )  
(the -map x y 

(lambda (nx ny) 
( let « nx (pv nx» ) 

( c ond « <  xO z zmax) 

(lambda 0 

( if « xO x xmax) 
( lp nz zmin z nx xmin x ny) 
( if (> x xmax) 1 - 1 » ) 

« < zmin z xO) 
( if « xmin x xO) 

(else  

( lp nz  z zmax nx x xmax ny) 
( if « x xmin) - 1  1 » ) 

( lp nz zmin zmax nx xmin xmax ny» » )  

( error " Map failed" x y» » » )  

With this method of comparing rotation numbers we can find the 
initial momentum (for a given initial angle) for an invariant curve 
with a given rotation number to high precision. 
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Figure 4.20 A surface of section displaying the invariant curve at 
rotation number 1 - I/¢ for the standard map with K = . 95 .  The 
invariant curve is in context : there is a chaotic region that almost eats 
the curve. The angle and momentum run from 0 to 21f. 

We search the standard map for an invariant curve with a golden 
rotation number: 16 

( f ind- invariant - curve ( st andard-map 0 . 95 )  
( - 1 ( /  1 golden-rat i o »  
0 . 0  
2 . 0  
2 . 2  
1 e - 1 6 )  

; Value : 2 . 1 1 44605494391 726 

Using initial conditions computed in this way, we can produce 
the invariant curve (see figure 4.20) . If we expand the putative 

16 There is no invariant curve in the standard map that has rotation number 
¢ = 1.618 . . . .  However, 1 - 1/¢ has the same continued-fraction tail as ¢ and 
this rotation number appears in the standard map . 
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Figure 4.21 Here is a small portion of the invariant curve shown in 
figure 4 .20 ,  magnified by 27r x 107 .  We see that even at this magnifica
tion the points appear to lie on a line . We also see that the visitation 
frequency of points is highly nonuniform. 

invariant curve it should remain a curve for all magnifications-it 
should show no sign of chaotic fuzziness (see figure 4 .21 ) .  

Exercise 4.8: Invariant curves in the standard map 

Find an invariant curve of the standard map with a different golden 
rotation number. Expand it to show that it retains the features of a 
curve at high magnification. 

4.6.2 Dissolution of Invariant Curves 

As can be seen in figure 4 .21 , the points on an invariant curve are 
not uniformly visited, unlike the picture we would get plotting 
the angles for the uniform circle map. This is because an interval 
may be expanded or compressed when mapped. We can compute 
the relative probability density for visitation of each angle on the 
invariant curve. A crude way to obtain this result is to count the 
number of points that fall into equal incremental angle bins. It is 
more effective to use the linear variational map constructed from 
the map being investigated to compute the change in incremental 
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angle from one point to its successor. Since all of the points in a 
small interval around the source point are mapped to points (in 
the same order) in a small interval around the target point , the 
relative probability density at a point is inversely proportional to 
the size of the incremental interval around that point . In order 
to get this started we need a good estimate of the initial slope 
for the invariant curve. We can estimate the slope by a difference 
quotient of the momentum and angle increments for the interval 
that we used to refine the momentum of the invariant curve with 
a given rotation number. 

Figures 4 .22 and 4 .23 show the relative probability density of 
visitation as a function of angle for the invariant curve of golden 
rotation number in the standard map for three different values 
of the parameter K .  As K increases, certain angles become less 
likely. Near K = 0.971635406 some angles are never visited. But 
the invariant curve must be continuous. Thus it appears that for 
larger K the invariant curve with this rotation number will not 
exist . Indeed, if the invariant set persists with the given rotation 
number it will have an infinite number of holes (because it has 
an irrational rotation number) . Such a set is sometimes called a 
cantorus (plural cantori) . 

4 . 7  Summary 

Surfaces of section of a typical Hamiltonian system exhibit a 
menagerie of features including fixed points, invariant curves, 
resonance islands, and chaotic zones. Integrable systems have 
much simpler surfaces of section. By adding small effects to inte
grable systems we get insight into how this complicated behavior 
emerges. 

Surfaces of section for integrable systems display only certain 
characteristic orbit types. There are fixed points, which corre
spond to equilibria or periodic orbits. A fixed point may be stable 
or unstable, depending on the stability of the corresponding equi
librium or orbit . There are sets of points on the section that are 
asymptotic forward and backward in time to the unstable fixed 
point . And there are sets of trajectories that fall on invariant 
curves. If the rotation number of the invariant curve is irrational , 
each of these trajectories densely covers the invariant curve; if 
the rotation number is rational , then each trajectory visits only a 
finite number of points on the invariant curve. 
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Figure 4.22 The relative probability density of visitation as a func
tion of angle for the invariant curve of golden rotation number in the 
standard map with K = 0 .95  (above) and K = 0 .97  (below) . As K in
creases , the function becomes more complex and certain angles become 
less likely to be visited . 
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·1· • 

Figure 4.23 The relative probability density of visitation as a func
tion of angle for the invariant curve of golden rotation number in the 
standard map with K = 0 .971635406. Here the function is very complex 
and appears self-similar . The valleys appear to reach to zero , so there 
are discrete angles that are never visited . 

Linear stability analysis addresses the nature of the motion near 
the fixed points on the section. These points correspond to either 
equilibrium points or periodic orbits. There are characteristic 
frequencies of the motion, each with an associated characteris
tic direction. For Hamiltonian systems only certain patterns of 
characteristic frequencies are possible. On two-dimensional area
preserving surfaces of section, as generated by Hamiltonian sys
tems, fixed points are linearly stable (elliptic fixed points) or lin
early unstable (hyperbolic fixed points) . 

With the addition of small effects, the surface of section changes 
in certain typical ways. One characteristic change occurs near the 
unstable fixed points. The stable and unstable manifolds, those 
curves consisting of the sets of points that are asymptotic to the 
unstable fixed points forward and backward in time, no longer join 
smoothly, but instead cross. A first crossing implies that there are 
an infinite number of other crossings, and the stable and unstable 
manifolds develop an extremely complicated tangle. 
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The Poincare-Birkhoff construction shows how the infinite num
ber of periodic orbits on an invariant curve with rational rotation 
number that is characteristic of an integrable system degener
ates into a finite number of alternating stable and unstable fixed 
points when the system becomes nonintegrable. This phenomenon 
is recursive, so we find that it develops an infinite hierarchy of 
structure: The region around every stable fixed point is itself 
filled with commensurabilities with alternating stable and unsta
ble fixed points. 

Some invariant curves survive the addition of small effects to 
an integrable system. The Kolmogorov-Arnold-Moser theorem 
proves that some invariant curves persist upon perturbation. We 
can find invariant curves of particular rotation numbers by com
paring the pattern of points generated for a candidate initial point 
on the invariant curve to the expected pattern of points for the 
invariant curve being sought. As the additional effect is made 
stronger, the invariant curves that survive longest are those with 
the most irrational rotation number. At the point of breakup, the 
probability of visitation of various points on the invariant curve 
develops a self-similar appearance. For larger perturbations, the 
invariant curve disappears, leaving an invariant set with an infinite 
number of holes. 

4 .8  Projects 

Exercise 4.9: Secondary islands 

In figure 4 .3  (section 4 . 1 )  we see a chain of six secondary islands in 
the oscillation region. Carry out the Poincare-Birkhoff construction to 
obtain the alternating sequence of stable and unstable fixed points for 
this island chain. 

Exercise 4.1 0: Invariant curves of the standard map 

a. Make programs that reproduce figures 4 .22  and 4 .23 .  You will need 
to develop an effective method of estimating the probability of visitation. 
There is one suggestion of how to do that in the text , but you may find 
a better way. 

h. As the parameter K is increased beyond the critical value, the golden 
invariant curve ceases to exist . Investigate how the method for finding 
invariant curves fails beyond the critical value of K .  



5
Canonical Transformations

We have done considerable mountain climbing.
Now we are in the rarefied atmosphere of theories
of excessive beauty and we are nearing a high
plateau on which geometry, optics, mechanics, and
wave mechanics meet on common ground. Only
concentrated thinking, and a considerable amount
of re–creation, will reveal the beauty of our subject
in which the last word has not been spoken.

Cornelius Lanczos, The Variational Principles of
Mechanics [29], p. 229

One way to simplify the analysis of a problem is to express it in
a form in which the solution has a simple representation. How-
ever, it may not be easy to formulate the problem in such a way
initially. It is often useful to start by formulating the problem in
one way, and then transform it. For example, the formulation of
the problem of the motion of a number of gravitating bodies is
simple in rectangular coordinates, but it is easier to understand
aspects of the motion in terms of orbital elements, such as the
semimajor axes, eccentricities, and inclinations of the orbits. The
semimajor axis and eccentricity of an orbit depend on both the
configuration and the velocity of the body. Such transformations
are more general than those that express changes in configuration
coordinates. Here we investigate transformations of phase-space
coordinates that involve both the generalized coordinates and the
generalized momenta.

Suppose we have two different Hamiltonian systems, and sup-
pose the trajectories of the two systems are in one-to-one corre-
spondence. In this case both Hamiltonian systems can be math-
ematical models of the same physical system. Some questions
about the physical system may be easier to answer by reference
to one model and others may be easier to answer in the other
model. For example, it may be easier to formulate the physical
system in one model and to discover a conserved quantity in the
other. Canonical transformations are maps between Hamiltonian
systems that preserve the dynamics.
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A canonical transformation is a phase-space coordinate trans-
formation and an associated transformation of the Hamiltonian
such that the dynamics given by Hamilton’s equations in the two
representations describe the same evolution of the system.

5.1 Point Transformations

A point transformation is a canonical transformation that ex-
tends a possibly time-dependent transformation of the configu-
ration coordinates to a phase-space transformation. For example,
one might want to reexpress motion in terms of polar coordinates,
given a description in terms of rectangular coordinates. In or-
der to extend a transformation of the configuration coordinates to
a phase-space transformation we must specify how the momenta
and Hamiltonian are transformed.

We have already seen how coordinate transformations can be
carried out in the Lagrangian formulation (see section 1.6.1). In
that case, we found that if the Lagrangian transforms by com-
position with the coordinate transformation, then the Lagrange
equations are equivalent.

Lagrangians that differ by the addition of a total time deriva-
tive have the same Lagrange equations, but may have different
momenta conjugate to the generalized coordinates. So there is
more than one way to make a canonical extension of a coordinate
transformation.

Here, we find the particular canonical extension of a coordinate
transformation for which the Lagrangians transform by composi-
tion with the transformation, with no extra total time derivative
terms added to the Lagrangian.

Let L be a Lagrangian for a system. Consider the coordinate
transformation q = F (t, q′). The velocities transform by

v = ∂0F (t, q′) + ∂1F (t, q′)v′. (5.1)

We obtain a Lagrangian L′ in the transformed coordinates by
composition of L with the coordinate transformation. We require
that L′(t, q′, v′) = L(t, q, v), so:

L′(t, q′, v′) = L(t, F (t, q′), ∂0F (t, q′) + ∂1F (t, q′)v′). (5.2)
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The momentum conjugate to q′ is

p′ = ∂2L
′(t, q′, v′)

= ∂2L(t, F (t, q′), ∂0F (t, q′) + ∂1F (t, q′)v′) ∂1F (t, q′)

= p∂1F (t, q′), (5.3)

where we have used

p = ∂2L(t, q, v)

= ∂2L(t, F (t, q′), ∂0F (t, q′) + ∂1F (t, q′)v′). (5.4)

So, from equation (5.3),1

p = p′(∂1F (t, q′))−1. (5.5)

We can collect these results to define a canonical phase-space
transformation CH:

2

(t, q, p) = CH(t, q
′, p′)

= (t, F (t, q′), p′(∂1F (t, q′))−1). (5.6)

The Hamiltonian is obtained by the Legendre transform

H ′(t, q′, p′)

= p′v′ − L′(t, q′, v′)

= (p∂1F (t, q′)) ((∂1F (t, q′)−1(v − ∂0F (t, q′)))) − L(t, q, v)

= pv − L(t, q, v) − p∂0F (t, q′)

= H(t, q, p)− p∂0F (t, q′), (5.7)

using relations (5.1) and (5.3) in the second step. Fully expressed
in terms of the transformed coordinates and momenta, the trans-

1 Solving for p in terms of p′ involves multiplying equation (5.3) on the right by
(∂1F (t, q′))−1. This inverse is the structure that when multiplying ∂1F (t, q′)
on the right gives an identity structure. Structures representing linear trans-
formations may be represented in terms of matrices. In this case, the matrix
representation of the inverse structure is the inverse of the matrix representing
the given structure.

2In chapter 1 the transformation C takes a local tuple in one coordinate system
and gives a local tuple in another coordinate system. In this chapter CH is a
phase-space transformation.
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formed Hamiltonian is

H ′(t, q′, p′) = H(t, F (t, q′), p′(∂1F (t, q′))−1)

− (p′(∂1F (t, q′))−1)∂0F (t, q′). (5.8)

The Hamiltonians H ′ and H are equivalent because L and L′ have
the same value for a given dynamical state and so have the same
paths of stationary action. In general H and H ′ do not have the
same values for a given dynamical state, but differ by a term that
depends on the coordinate transformation.

For time-independent transformations, ∂0F = 0, there are a
number of simplifications. The relationship of the velocities (5.1)
becomes

v = ∂1F (t, q′)v′. (5.9)

Comparing this to the relation (5.5) between the momenta, we
see that in this case the momenta transform “oppositely” to the
velocities3

pv = p′(∂1F (t, q′))−1∂1F (t, q′)v′ = p′v′, (5.10)

so the product of the momenta and the velocities is not changed
by the transformation. This, combined with the fact that by con-
struction L(t, q, v) = L′(t, q′, v′), shows that

H(t, q, p) = pv − L(t, q, v)

= p′v′ − L′(t, q′, v′)

= H ′(t, q′, p′). (5.11)

For time-independent coordinate transformations the Hamiltonian
transforms by composition with the associated phase-space trans-
formation. We can also see this from the general relationship (5.7)
between the Hamiltonians.

3The velocities and the momenta are dual geometric objects with respect to
time-independent point transformations. The velocities are coordinates of a
vector field on the configuration manifold, and the momenta are coordinates
of a covector field on the configuration manifold. The invariance of the inner
product pv under time-independent point transformations provides a moti-
vation for our use of superscripts for velocity components and subscripts for
momentum components.
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Implementing point transformations

The procedure F->CH takes a procedure F implementing a trans-
formation of configuration coordinates and returns a procedure
implementing a transformation of phase-space coordinates:4

(define ((F->CH F) state)
(up (time state)

(F state)
(solve-linear-right (momentum state)

(((partial 1) F) state))))

Consider a particle moving in a central field. In rectangular
coordinates a Hamiltonian is

(define ((H-central m V) state)
(let ((x (coordinate state))

(p (momentum state)))
(+ (/ (square p) (* 2 m))

(V (sqrt (square x))))))

Let’s look at this Hamiltonian in polar coordinates. The phase-
space transformation is obtained by applying F->CH to the pro-
cedure p->r that takes a time and a polar tuple and returns a
tuple of rectangular coordinates (see section 1.6.1). The trans-
formation is time independent so the Hamiltonian transforms by
composition. In polar coordinates the Hamiltonian is

(show-expression
((compose (H-central ’m (literal-function ’V))

(F->CH p->r))
(up ’t (up ’r ’phi) (down ’p r ’p phi))))

V (r) +
1
2p

2
r

m
+

1
2p

2
ϕ

mr2

There are three terms. There is the potential energy, which de-
pends on the radius, there is the kinetic energy due to radial mo-
tion, and there is the kinetic energy due to tangential motion. As
expected, the angle ϕ does not appear and thus the angular mo-

4The procedure solve-linear-right multiplies its first argument by the in-
verse of its second argument on the right. So, if u = vM then v = uM−1;
(solve-linear-right u M) produces v.
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mentum is a conserved quantity. By going to polar coordinates we
have decoupled one of the two degrees of freedom in the problem.

If the transformation is time varying the Hamiltonian must be
adjusted by adding a correction to the composition of the Hamil-
tonian and the transformation (see equation 5.8):

H ′ = H ◦ CH +K (5.12)

The correction is computed by

(define ((F->K F) state)
(- (* (solve-linear-right (momentum state)

(((partial 1) F) state))
(((partial 0) F) state))))

For example, consider a transformation to coordinates translat-
ing with velocity v:

(define ((translating v) state)
(+ (coordinates state) (* v (time state))))

We compute the additive adjustment required for the Hamilto-
nian:

((F->K (translating (up ’v^x ’v^y ’v^z)))
(up ’t (up ’x ’y ’z) (down ’p x ’p y ’p z)))
(+ (* -1 p x vˆx) (* -1 p y vˆy) (* -1 p z vˆz))

Notice that this is the negation of the inner product of the mo-
mentum and the velocity of the coordinate system.

Let’s see how a simple free-particle Hamiltonian is transformed:

(define ((H-free m) s)
(/ (square (momentum s)) (* 2 m)))

The transformed Hamiltonian is:

(define H-prime
(+ (compose (H-free ’m)

(F->CH (translating (up ’v^x ’v^y ’v^z))))
(F->K (translating (up ’v^x ’v^y ’v^z)))))
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(H-prime
(up ’t

(up ’xprime ’yprime ’zprime)
(down ’pprime x ’pprime y ’pprime z)))

(+ (* -1 pprime x vˆx)
(* -1 pprime y vˆy)
(* -1 pprime z vˆz)
(/ (* 1/2 (expt pprime x 2)) m)
(/ (* 1/2 (expt pprime y 2)) m)
(/ (* 1/2 (expt pprime z 2)) m))

Exercise 5.1: Galilean invariance

Is this result what you expected? Let’s investigate.
Recall that in exercise 1.29 we showed that if the kinetic energy is

1
2mv2 then the translation to a uniformly moving coordinate system
introduces extra terms that can be identified as a total time derivative.
Since these terms do not affect the Lagrange equations, we can take the
kinetic energy in the transformed coordinates to also be 1

2m(v′)2.
LetCH be the phase space extension of the translation transformation,

and C be the local tuple extension. The transformed Hamiltonian is
H ′ = H ◦ CH +K; the transformed Lagrangian is L′ = L ◦ C.

a. Derive the relationship between p and p′ both from CH and from the
Lagrangians. Are they the same? Derive the relationship between v
and v′ by taking the derivative of the Hamiltonians with respect to the
momenta (Hamilton’s equation). Show that the Legendre transform of
L′ gives the same H ′.

b. We have shown that L and L′ differ by a total time derivative. So for
any uniformly moving coordinate system we can write the Lagrangian
as 1

2mv2. Similarly, we would expect to always be able to write the

Hamiltonian as p2/(2m). Show that this differs from H ′ by a total time
derivative in the corresponding Lagrangians.

Exercise 5.2: Rotations

Let q and q′ be rectangular coordinates that are related by a rotation
R: q = Rq′. The Lagrangian for the system is L(t, q, v) = 1

2mv2− V (q).
Find the corresponding phase-space transformation CH. Compare the
transformation equations for the rectangular components of the mo-
menta to those for the rectangular components of the velocities. Are
you surprised, considering equation (5.10)?
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5.2 General Canonical Transformations

Although we have shown how to extend any coordinate transfor-
mation of the configuration space to a canonical transformation,
there are other ways to construct canonical transformations. How
do we know if we have a canonical transformation? To test if a
transformation is canonical we may use the fact that if the trans-
formation is canonical, then Hamilton’s equations of motion for
the transformed system and the original system will be equivalent.

Consider a HamiltonianH and a phase-space transformation CH.
Let Ds be the function that takes a Hamiltonian and gives the
Hamiltonian state-space derivative:5

DsH(t, q, p) = (1, ∂2H(t, q, p),−∂1H(t, q, p)) . (5.13)

Hamilton’s equations are

Dσ = DsH ◦ σ, (5.14)

for any realizable phase-space path σ.
The transformation CH transforms the phase-space path σ′(t) =

(t, q′(t), p′(t)) into σ(t) = (t, q(t), p(t)):

σ = CH ◦ σ′. (5.15)

The rates of change of the phase-space coordinates are trans-
formed by the derivative of the transformation

Dσ = D(CH ◦ σ′) = (DCH ◦ σ′) Dσ′. (5.16)

The transformation is canonical if the equations of motion ob-
tained from the new Hamiltonian are the same as those that could
be obtained by transforming the equations of motion derived from
the original Hamiltonian to the new coordinates:

Dσ = (DCH ◦ σ′) Dσ′ = (DCH ◦ σ′) (DsH
′ ◦ σ′). (5.17)

Using equation (5.14), we see that

DsH ◦ σ = (DCH ◦ σ′) (DsH
′ ◦ σ′). (5.18)

5Ds is not a derivative operator. It is not linear because the time component
is a nonzero constant.



5.2 General Canonical Transformations 343

D

DsH

DCH

H ′DsH
′

H
R

R
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1, q̇′, ṗ′

1, q̇, ṗ

t, q′, p′

t, q, p

CH

Figure 5.1 A canonical transformation CH relates the descriptions of
a dynamical system in two phase-space coordinate systems. The trans-
formation shows how Hamilton’s equations in one coordinate systemmay
be derived from Hamilton’s equations in the other coordinate system.

With σ = CH ◦ σ′, we find

DsH ◦ CH ◦ σ′ = (DCH ◦ σ′) (DsH
′ ◦ σ′). (5.19)

This condition must hold for any realizable phase-space path σ′.
Certainly this is true if the following condition holds for every
phase-space point:6

DsH ◦ CH = DCH ·DsH
′. (5.20)

Any transformation that satisfies equation (5.20) is a canonical
transformation among phase-space representations of a dynamical
system. In one phase-space representation the system’s dynamics
is characterized by the Hamiltonian H ′ and in the other by H.
The idea behind this equation is illustrated in figure 5.1.

6Sometimes we use a center dot to indicate multiplication, to avoid the ambi-
guity of the use of juxtaposition to indicate both multiplication and function
application. This is not to be interpreted as a vector dot product.
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We can formalize this test as a program:

(define (canonical? C H Hprime)
(- (compose (Hamiltonian->state-derivative H) C)

(* (D C) (Hamiltonian->state-derivative Hprime))))

where Hamiltonian->state-derivative, which was introduced in
chapter 3, implementsDs. The transformation is canonical if these
residuals are zero.

For time-independent point transformations an appropriate
Hamiltonian can be formed by composition with the corresponding
phase-space transformation. For more general canonical trans-
formations, we will see that if a transformation is independent
of time, a suitable Hamiltonian for the transformed system can
be obtained by composing the Hamiltonian with the phase-space
transformation. In this case we obtain a more specific formula:

DsH ◦ CH = DCH ·Ds(H ◦ CH). (5.21)

Polar-canonical transformation

The analysis of the harmonic oscillator illustrates the use of a
general canonical transformation in the solution of a problem. The
harmonic oscillator is a mathematical model of a simple spring-
mass system. A Hamiltonian for a spring-mass system with mass
m and spring constant k is

H(t, x, px) =
p2x
2m

+
1

2
kx2. (5.22)

Hamilton’s equations of motion are

Dx = px/m

Dpx = −kx, (5.23)

giving the second-order system

mD2x+ kx = 0. (5.24)

The solution is

x(t) = A sin(ωt+ ϕ), (5.25)
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where

ω =
√
k/m (5.26)

and where A and ϕ are determined by initial conditions.
We use the polar-canonical transformation:

(t, x, px) = Cα (t, θ, I) (5.27)

where

x =

√
2I

α
sin θ (5.28)

px =
√
2αI cos θ. (5.29)

Here α is an arbitrary parameter. We define:

(define ((polar-canonical alpha) state)
(let ((t (time state))

(theta (coordinate state))
(I (momentum state)))

(let ((x (* (sqrt (/ (* 2 I) alpha)) (sin theta)))
(p x (* (sqrt (* 2 alpha I)) (cos theta))))

(up t x p x))))

And now we just run our test:

(define ((H-harmonic m k) s)
(+ (/ (square (momentum s)) (* 2 m))

(* 1/2 k (square (coordinate s)))))

((canonical? (polar-canonical ’alpha)
(H-harmonic ’m ’k)
(compose (H-harmonic ’m ’k)

(polar-canonical ’alpha)))
(up ’t ’theta ’I))

(up 0 0 0)

So the transformation is canonical for the harmonic oscillator.7

7Actually, for I = 0 the transform is not well defined and so it is not canonical
for that value. This transformation is “locally canonical” in that it is canonical
for nonzero values of I . We will ignore this essentially topological problem.
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Let’s use our polar-canonical transformation Cα to help us solve
the harmonic oscillator. We substitute expressions (5.28) and
(5.29) for x and px in the Hamiltonian, getting our new Hamilto-
nian:

H ′(t, θ, I) =
αI

m
(cos θ)2 +

kI

α
(sin θ)2. (5.30)

If we choose α =
√
km then we obtain

H ′(t, θ, I) =

√
k

m
I = ωI, (5.31)

and the new Hamiltonian no longer depends on the coordinate.
Hamilton’s equation for I is

DI(t) = −∂1H ′(t, θ(t), I(t)) = 0, (5.32)

so I is constant. The equation for θ is

Dθ(t) = ∂2H
′(t, θ(t), I(t)) = ω, (5.33)

so

θ(t) = ωt+ ϕ. (5.34)

In the original variables,

x(t) =
√
2I(t)/α sin θ(t)

= A sin(ωt+ ϕ), (5.35)

with the constant A =
√
2I(t)/α. So we have found the solu-

tion to the problem by making a canonical transformation to new
phase-space variables for which the solution is easy and then trans-
forming the solutions back to the original variables.

Exercise 5.3: Trouble in Lagrangian world

Is there a Lagrangian L′ that corresponds to the harmonic oscillator
Hamiltonian H ′(t, θ, I) = ωI? What could this possibly mean?

Exercise 5.4: Group properties

If we say that CH is canonical with respect to Hamiltonians H and H ′

if and only if DsH ◦ CH = DCH ·DsH
′, then:

a. Show that the composition of canonical transformations is canonical.

b. Show that composition of canonical transformations is associative.
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c. Show that the identity transformation is canonical.

d. Show that there is an inverse for a canonical transformation and the
inverse is canonical.

5.2.1 Time-Dependent Transformations

We have seen that for time-dependent point transformations the
Hamiltonian appropriate for the transformed system is the original
Hamiltonian composed with the transformation and augmented
with an additive correction. Here we find a similar decomposition
for general time-dependent canonical transformations.

The key to this decomposition is to separate the time part and
the phase-space part of the Hamiltonian state derivative:8

DsH(s) = (1,+∂2H(s),−∂1H(s))

= T (s) +DH(s) (5.36)

where

T (s) = (1, 0, 0), (5.37)

DH(s) = (0,+∂2H(s),−∂1H(s)), (5.38)

as code:9

(define (T-func s)
(up 1

(zero-like (coordinates s))
(zero-like (momenta s))))

(define ((D-phase-space H) s)
(up 0 (((partial 2) H) s) (- (((partial 1) H) s))))

If we assume that H ′ = H ◦CH +K, then the canonical condi-
tion (5.20) becomes

DsH ◦ CH = DCH ·Ds(H ◦ CH +K). (5.39)

Expanding the state derivative, the canonical condition is

(T +DH) ◦ CH = DCH · (T +D(H ◦ CH +K)). (5.40)

8Unlike Ds, D is linear and can be a derivative operator.

9The procedure zero-like produces a structure of zeros with the shape of its
argument.
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Equation (5.40) is satisfied if the following conditions are met:

DH ◦ CH = DCH · D(H ◦ CH) (5.41)

T ◦ CH = DCH · (T +DK). (5.42)

The value of T ◦CH does not depend on CH, so this term is really
very simple. Notice that equation (5.41) does not depend upon K
and that equation (5.42) does not depend upon H.

These can be implemented as follows:

(define (canonical-H? C H)
(- (compose (D-phase-space H) C)

(* (D C)
(D-phase-space (compose H C)))))

(define (canonical-K? C K)
(- (compose T-func C)

(* (D C)
(+ T-func (D-phase-space K)))))

Rotating coordinates

Consider a time-dependent transformation to uniformly rotating
coordinates:10

q = R(Ω)(t, q′), (5.43)

with components

x = x′ cos(Ωt)− y′ sin(Ωt)

y = x′ sin(Ωt) + y′ cos(Ωt). (5.44)

As a program this is

(define ((rotating Omega) state)
(let ((t (time state)) (qp (coordinate state)))
(let ((xp (ref qp 0)) (yp (ref qp 1)) (zp (ref qp 2)))

(up (- (* (cos (* Omega t)) xp)
(* (sin (* Omega t)) yp))

(+ (* (sin (* Omega t)) xp)
(* (cos (* Omega t)) yp))

zp))))

The extension of this transformation to a phase-space transforma-
tion is

10This is just a rearrangement of the arguments of Rz: R(Ω)(t, q′) =
Rz(Ωt)(q

′).
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(define (C-rotating Omega) (F->CH (rotating Omega)))

We first verify that this time-dependent transformation satisfies
equation (5.41). We will try it for an arbitrary Hamiltonian with
three degrees of freedom:

(define H-arbitrary
(literal-function ’H
(-> (UP Real (UP Real Real Real) (DOWN Real Real Real))

Real)))

((canonical-H? (C-rotating ’Omega) H-arbitrary)
(up ’t (up ’xp ’yp ’zp) (down ’pp x ’pp y ’pp z)))

(up 0 (up 0 0 0) (down 0 0 0))

And it works. Note that this result did not depend on any details
of the Hamiltonian, suggesting that we might be able to make a
test that does not require a Hamiltonian. We will see that shortly.

Since we have a point transformation, we can compute the re-
quired adjustment to the Hamiltonian:

((F->K (rotating ’Omega))
(up ’t (up ’xp ’yp ’zp) (down ’pp x ’pp y ’pp z)))
(+ (* Omega pp x yp) (* -1 Omega pp y xp))

So, for this transformation an appropriate correction to the Hamil-
tonian is

K(Ω)(t;x′, y′, z′; p′x, p
′
y, p

′
z) = −Ω(x′p′y − y′p′x), (5.45)

which is minus the rate of rotation of the coordinate system multi-
plied by the angular momentum. We implement K as a procedure

(define ((K Omega) s)
(let ((qp (coordinate s)) (pp (momentum s)))
(let ((xp (ref qp 0)) (yp (ref qp 1))

(ppx (ref pp 0)) (ppy (ref pp 1)))
(* -1 Omega (- (* xp ppy) (* yp ppx))))))

and apply the test. We find:

((canonical-K? (C-rotating ’Omega) (K ’Omega))
(up ’t (up ’xp ’yp ’zp) (down ’pp x ’pp y ’pp z)))
(up 0 (up 0 0 0) (down 0 0 0))

The residuals are zero so this K correctly completes the canonical
transformation.
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5.2.2 Abstracting the Canonical Condition

We just saw that for the case of rotating coordinates the truth of
equation (5.41) did not depend on the details of the Hamiltonian.
If CH satisfies equation (5.41) for any H then we can derive a
condition on CH that is independent of H.

Let’s start with an expanded version of equation (5.41):

DH ◦ CH = DCH · ((DH ◦ CH) ·DCH), (5.46)

using the chain rule.
We introduce a shuffle function:

J̃([a, b, c]) = (0, c,−b) . (5.47)

The argument to J̃ is a down tuple of components of the deriva-
tive of a Hamiltonian-like function. The shuffle function is linear.
Using J̃ we can write DH = J̃ ◦DH.

Let J be the multiplier corresponding to the constant linear
function J̃ :

J = (DJ̃)(s), (5.48)

where s is an arbitrary argument, shaped like DH(s), that is
compatible for multiplication with s. The value of s is irrele-
vant because DJ̃ is a constant function. Then we can rewrite
equation (5.46) as

J ·DH(CH(s
′)) = DCH(s

′) · J · (DH(CH(s
′)) ·DCH(s

′)). (5.49)

We can move the DCH(s
′) to the left of DH(CH(s

′)) by taking its
transpose:11

J ·DH(CH(s
′))

= DCH(s
′) · J · ((DCH(s

′))T ·DH(CH(s
′))). (5.50)

11For each linear transformation T : A → A of incremental phase-space states
there is a unique linear transformation T T : A� → A� of the dual space, called
the transpose of T , such that for every real-valued linear function g : A → R

of incremental phase-space states, and for every a ∈ A we have (T T(g))(a) =
g(T (a)). As linear multipliers (DT (a))T ·Dg(a) · a = Dg(a) ·DT (a) · a. But
for arbitrary a this is (DT (a))T ·Dg(a) = Dg(a) ·DT (a). In our application,
DT (a) is DCH(s

′), and Dg(a) is DH(CH(s
′)).
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Since (DCH(s
′))T is a linear transformation and multiplication is

associative for the multipliers of linear transformations, we can
write

J ·DH(CH(s
′)) = DCH(s

′) · J · (DCH(s
′))T ·DH(CH(s

′)). (5.51)

This is true for any H if

J = DCH(s
′) · J · (DCH(s

′))T. (5.52)

As a program, this is12,13

(define (J-func DHs)
(up 0 (ref DHs 2) (- (ref DHs 1))))

(define ((canonical-transform? C) s)
(let ((J ((D J-func) (compatible-shape s)))

(DCs ((D C) s)))
(- J (* DCs J (transpose DCs s)))))

This condition, equation (5.52), on CH, called the canonical

condition, does not depend on the details of H. This is a re-
markable result: we can decide whether a phase-space transfor-
mation preserves the dynamics of Hamilton’s equations without
further reference to the details of the dynamical system. If the
transformation is time dependent we can add a correction to the
Hamiltonian to make it canonical.

Examples

The polar-canonical transformation satisfies the canonical condi-
tion:

((canonical-transform? (polar-canonical ’alpha))
(up ’t ’theta ’I))
(up (up 0 0 0) (up 0 0 0) (up 0 0 0))

12The procedure compatible-shape takes any structure and produces another
structure that is guaranteed to multiply with the given structure to produce
a numerical quantity. For example, the shape of DH(s) is a compatible shape
to the shape of s: if they are multiplied the result is a numerical quantity.
This is the s� that appears in equation (5.48).

13The procedure transpose is simply defined for traditional matrices, but be-
cause structures that specify linear transformations may have arbitrary sub-
structure, the procedure needs to be supplied with a template that specifies
this structure. So the procedure transpose takes two arguments: (transpose
ms rs), where ms is the structure to be transposed and the template rs is a
structure that is appropriate for multiplication with ms on the right.
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But not every transformation we might try satisfies the canon-
ical condition. For example, we might try x = p sin θ and px =
p cos θ. The implementation is

(define (a-non-canonical-transform state)
(let ((t (time state))

(theta (coordinate state))
(p (momentum state)))

(let ((x (* p (sin theta)))
(p x (* p (cos theta))))

(up t x p x))))

((canonical-transform? a-non-canonical-transform)
(up ’t ’theta ’p))
(up (up 0 0 0) (up 0 0 (+ -1 p)) (up 0 (+ 1 (* -1 p)) 0))

So this transformation does not satisfy the canonical condition.

Canonical condition and Poisson brackets

The canonical condition can be written simply in terms of Poisson
brackets.

The Poisson bracket can be written in terms of J̃ :

{f, g} = (Df) · (J̃ ◦ (Dg)) = (Df) · J · (Dg), (5.53)

as can be seen by writing out the components.
We break the transformation CH into position and momentum

parts:

q = A(t, q′, p′) (5.54)

p = B(t, q′, p′). (5.55)

In terms of the individual component functions, the canonical con-
dition (5.52) is

δij = {Ai, Bj}
0 = {Ai, Aj}
0 = {Bi, Bj} (5.56)

where δij is 1 if i = j and 0 otherwise. These equations are called
the fundamental Poisson brackets. If a transformation satisfies
these Poisson bracket relations then it satisfies the canonical con-
dition.
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We have found that a transformation is canonical if its position-
momentum part satisfies the canonical condition, but for a time-
dependent transformation we may have to modify the Hamiltonian
by the addition of a suitable K. We can rewrite these conditions
in terms of Poisson brackets. If the Hamiltonian is

H ′(t, q′, p′) = H(t, A(t, q′, p′), B(t, q′, p′)) +K(t, q′, p′), (5.57)

the transformation will be canonical if the coordinate-momentum
transformation satisfies the fundamental Poisson brackets, and K
satisfies:{
Ai,K

}
+ ∂0A

i = 0

{Bj ,K}+ ∂0Bj = 0. (5.58)

Exercise 5.5: Poisson bracket conditions

Fill in the details to show that the canonical condition (5.52) is equiva-
lent to the fundamental Poisson brackets (5.56) and that the condition
on K (5.42) is equivalent to the Poisson bracket condition on K (5.58).

Symplectic matrices

It is convenient to reformulate the canonical condition in terms of
matrices. We can obtain a matrix representation of a structure
with the utility s->m that takes a structure that represents a mul-
tiplier of a linear transformation and returns a matrix representa-
tion of the multiplier. The procedure s->m takes three arguments:
(s->m ls A rs). The ls and rs specify the shapes of objects that
multiply A on the left and right to give a numerical value. These
specify the basis. So, the matrix representation of the multiplier
corresponding to J̃ is

(let* ((s (up ’t (up ’x ’y) (down ’px ’py)))
(s* (compatible-shape s))
(J ((D J-func) s*)))

(s->m s* J s*))
(matrix-by-rows (list 0 0 0 0 0)

(list 0 0 0 1 0)
(list 0 0 0 0 1)
(list 0 -1 0 0 0)
(list 0 0 -1 0 0))

This matrix, J, is useful, so we supply a procedure J-matrix so
that (J-matrix n) gives this matrix for an n degree-of-freedom
system.
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We can now reexpress the canonical condition (5.52) as a matrix
equation:

J = DCH(s
′) · J · (DCH(s

′))T. (5.59)

There is a further simplification available. The elements of the
first row and the first column of the matrix representation of J̃ are
all zeros. This has simplifying consequences. Consider a general
transformation of phase-space states (for two degrees of freedom):

(define C-general
(literal-function ’C
(-> (UP Real (UP Real Real) (DOWN Real Real))

(UP Real (UP Real Real) (DOWN Real Real)))))

Consider transformations for which the time does not depend on
the coordinates or momenta14

(define (C-simple-time s)
(let ((cs (C-general s)))
(up ((literal-function ’tau) (time s))

(coordinates cs)
(momenta cs))))

For this kind of transformation the first row and the first column
of the residuals of the canonical-transform? test are identically
zero:

(let* ((s (up ’t (up ’x ’y) (down ’p x ’p y)))
(s* (compatible-shape s)))

(m:nth-row
(s->m s* ((canonical-transform? C-simple-time) s) s*)
0))

(up 0 0 0 0 0)

(let ((s (up ’t (up ’x ’y) (down ’p x ’p y)))
(s* (compatible-shape s)))

(m:nth-col
(s->m s* ((canonical-transform? C-simple-time) s) s*)
0))

(up 0 0 0 0 0)

14Actually, this is more interesting: we allow transformations that arbitrarily
distort time, as tau is an arbitrary literal function. The canonical condition
is concerned only with the possibly time-dependent transformation of coordi-
nates and momenta.
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But for C-general these are not zero. Since the transformations
we are considering at most shift time, we need to consider only
the submatrix associated with the coordinates and the momenta.

The qp submatrix15 of dimension 2n × 2n of the matrix J is
called the symplectic unit for n degrees of freedom:

Jn =
⎧⎩ 0n×n 1n×n
−1n×n 0n×n

⎫⎭ . (5.60)

The matrix Jn satisfies the following identities:

JT
n = J−1n = −Jn. (5.61)

A 2n × 2n matrix A that satisfies the relation

Jn = AJnA
T (5.62)

is called a symplectic matrix. We can determine whether a matrix
is symplectic:

(define (symplectic-matrix? M)
(let ((2n (m:dimension M)))
(let ((J (symplectic-unit (quotient 2n 2))))

(- J (* M J (transpose M))))))

An appropriate symplectic unit matrix of a given size is produced
by the procedure symplectic-unit.

If the matrix representation of the derivative of a transforma-
tion is a symplectic matrix the transformation is a symplectic

transformation. Here is a test for whether a transformation is
symplectic:16

(define ((symplectic-transform? C) s)
(symplectic-matrix? (qp-submatrix ((D-as-matrix C) s))))

15The qp submatrix of a square matrix of dimension 2n + 1 is the 2n-
dimensional matrix obtained by deleting the first row and the first column
of the given matrix. This can be computed by:

(define (qp-submatrix m)
(m:submatrix m 1 (m:num-rows m) 1 (m:num-cols m)))

16The procedure D-as-matrix is defined as:

(define ((D-as-matrix F) s)
(s->m (compatible-shape (F s)) ((D F) s) s)))
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The procedure symplectic-transform? returns a zero matrix if
and only if the transformation being tested passes the symplectic
matrix test.

For example, the point transformations are symplectic. We
can show this for a general possibly time-dependent two-degree-
of-freedom point transformation:

(define (F s)
((literal-function ’F

(-> (X Real (UP Real Real)) (UP Real Real)))
(time s) (coordinates s)))

((symplectic-transform? (F->CH F))
(up ’t (up ’x ’y) (down ’px ’py)))

(matrix-by-rows (list 0 0 0 0)
(list 0 0 0 0)
(list 0 0 0 0)
(list 0 0 0 0))

More generally, the phase-space part of the canonical condi-
tion is equivalent to the symplectic condition (for two degrees of
freedom) even in the case of an unrestricted phase-space transfor-
mation.

(let* ((s (up ’t (up ’x ’y) (down ’p x ’p y)))
(s* (compatible-shape s)))

(- (qp-submatrix
(s->m s* ((canonical-transform? C-general) s) s*))

((symplectic-transform? C-general) s)))
(matrix-by-rows (list 0 0 0 0)

(list 0 0 0 0)
(list 0 0 0 0)
(list 0 0 0 0))

Exercise 5.6: Symplectic matrices

Let A be a symplectic matrix: Jn = AJnA
T. Show that AT and A−1

are symplectic.

Exercise 5.7: Polar-canonical transformations

Let x, p and θ, I be two sets of canonically conjugate variables. Consider
transformations of the form x = βIα sin θ and p = βIα cos θ. Determine
all α and β for which this transformation is symplectic.
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Exercise 5.8: Standard map

Is the standard map a symplectic transformation? Recall that the stan-
dard map is: I ′ = I +K sin θ, with θ′ = θ + I ′, both modulo 2π.

Exercise 5.9: Whittaker transform

Shew that the transformation q = log ((sin p′)/q′) with p = q′ cot p′ is
symplectic.

5.3 Invariants of Canonical Transformations

Canonical transformations allow us to change the phase-space co-
ordinate system that we use to express a problem, preserving the
form of Hamilton’s equations. If we solve Hamilton’s equations in
one phase-space coordinate system we can use the transformation
to carry the solution to the other coordinate system. What other
properties are preserved by a canonical transformation?

Noninvariance of pv

We noted in equation (5.10) that point transformations that are
canonical extensions of time-independent coordinate transforma-
tions preserve the value of pv. This does not hold for more general
canonical transformations. We can illustrate this with the polar-
canonical transformation. Along corresponding paths x, px and
θ, I

x(t) =

√
2I(t)

α
sin θ(t)

px(t) =
√
2I(t)α cos θ(t), (5.63)

and so Dx is

Dx(t) = Dθ(t)

√
2I(t)

α
cos θ(t) +DI(t)

1√
2I(t)α

sin θ(t). (5.64)

The difference of pv and the transformed p′v′ is

px(t)Dx(t)− I(t)Dθ(t)

= I(t)Dθ(t)
(
2 cos2 θ(t)− 1

)
+DI(t) sin θ(t) cos θ(t). (5.65)

In general this is not zero. So the product pv is not necessarily
invariant under general canonical transformations.
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Invariance of Poisson brackets

Here is a remarkable fact: the composition of the Poisson bracket
of two phase-space state functions with a canonical transforma-
tion is the same as the Poisson bracket of each of the two functions
composed with the transformation separately. Loosely speaking,
the Poisson bracket is invariant under canonical phase-space trans-
formations.

Let f and g be two phase-space state functions. Using the J̃
representation of the Poisson bracket (see section 5.2.2), we deduce

{f ◦ CH, g ◦ CH}
= (D(f ◦ CH)) · (J̃ ◦D(g ◦ CH))

= (Df ◦ CH) ·DCH · (J̃ ◦ ((Dg ◦ CH) ·DCH))

= (Df ◦ CH) · (J̃ ◦Dg ◦ CH)

= (Df · (J̃ ◦Dg)) ◦ CH

= {f, g} ◦ CH, (5.66)

where the fact that CH satisfies equation (5.41) was used in the
middle. This is

{f ◦ CH, g ◦ CH} = {f, g} ◦ CH. (5.67)

Volume preservation

Consider a canonical transformation CH. Let Ĉt be a function with
parameter t such that (q, p) = Ĉt(q

′, p′) if (t, q, p) = CH(t, q
′, p′).

The function Ĉt maps phase-space coordinates to alternate phase-
space coordinates at a given time. Consider regions R in (q, p) and

R′ in (q′, p′) such that R = Ĉt(R
′). The volume of region R′ is

V (R) =

∫
R
1̂ =

∫
R′

det(DĈt), (5.68)

where 1̂ is the function whose value is one for every input. Now
if CH is symplectic then the determinant of DĈt is one (see sec-
tion 4.2.3), so

V (R) = V (R′). (5.69)

Thus, phase-space volume is preserved by symplectic transforma-
tions.
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Liouville’s theorem shows that time evolution preserves phase-
space volume. Here we see that canonical transformations also
preserve phase volumes. Later, we will find that time evolution
actually generates a canonical transformation.

The symplectic 2-form

Define

ω(ζ1, ζ2) = P (ζ2)Q(ζ1)− P (ζ1)Q(ζ2), (5.70)

where Q = I1 and P = I2 are the coordinate and momentum
selectors, respectively. The arguments ζ1 and ζ2 are incremental
phase-space states with zero time components.

The ω form can also be written as a sum over degrees of freedom:

ω(ζ1, ζ2) =
∑
i

(
Pi(ζ2)Q

i(ζ1)− Pi(ζ1)Q
i(ζ2)

)
. (5.71)

Notice that the contributions for each i do not mix components
from different degrees of freedom.

This bilinear form is closely related to the symplectic 2-form of
differential geometry. It differs in that the symplectic 2-form is
formally a function of the phase-space point as well as the incre-
mental vectors.

Under a canonical transformation s = CH(s
′), incremental

states transform with the derivative

ζi = DCH(s
′)ζ ′i. (5.72)

We will show that the 2-form is invariant under this transforma-
tion

ω(ζ1, ζ2) = ω(ζ ′1, ζ
′
2), (5.73)

if the time components of the ζ ′i are both zero.
We have shown that condition (5.41) does not depend on the

details of the Hamiltonian H. So if a transformation satisfies the
canonical condition we can use condition (5.41) with H replaced
by an arbitrary function f of phase-space states:

Df(CH(s
′)) = (DCH(s

′)) · (D(f ◦ CH)(s
′)). (5.74)
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In terms of ω, the Poisson bracket is

{f, g}(s) = ω(Df(s),Dg(s)) (5.75)

as can be seen by writing out the components. We use the fact that
Poisson brackets are invariant under canonical transformations:

({f, g} ◦ CH)(s
′) = {f ◦ CH, g ◦ CH}(s′). (5.76)

Using the relation (5.74) to expand the left-hand side of equa-
tion (5.76) we obtain:

({f, g} ◦ CH)(s
′)

= ω((Df ◦ CH)(s
′), (Dg ◦ CH)(s

′))

= ω((DCH(s
′)) · (D(f ◦ CH)(s

′)),

(DCH(s
′)) · (D(g ◦ CH)(s

′))). (5.77)

The right-hand side of equation (5.76) is

{f ◦ CH, g ◦ CH}(s′) = ω(D(f ◦ CH)(s
′),D(g ◦ CH)(s

′)). (5.78)

Now the left-hand side must equal the right-hand side for any f
and g, so the equation must also be true for arbitrary ζ ′i of the
form

ζ ′1 = D(f ◦ CH)(s
′)

ζ ′2 = D(g ◦ CH)(s
′). (5.79)

So the ζ ′i are arbitrary incremental states with zero time compo-
nents.

We have proven that

ω(ζ ′1, ζ
′
2) = ω(DCH(s

′) · ζ ′1, DCH(s
′) · ζ ′2). (5.80)

for canonical CH and incremental states ζ ′i with zero time compo-
nents. Using equation (5.72), we have

ω(ζ ′1, ζ
′
2) = ω(ζ1, ζ2). (5.81)

Thus the bilinear antisymmetric function ω is invariant under even
time-varying canonical transformations if the increments are re-
stricted to have zero time component.
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As a program, ω is

(define (omega zeta1 zeta2)
(- (* (momentum zeta2) (coordinate zeta1))

(* (momentum zeta1) (coordinate zeta2))))

On page 356 we showed that point transformations are sym-
plectic. Here we can see that the 2-form is preserved under these
transformations for two degrees of freedom:

(define (F s)
((literal-function ’F

(-> (X Real (UP Real Real)) (UP Real Real)))
(time s)
(coordinates s)))

(let ((s (up ’t (up ’x ’y) (down ’p x ’p y)))
(zeta1 (up 0 (up ’dx1 ’dy1) (down ’dp1 x ’dp1 y)))
(zeta2 (up 0 (up ’dx2 ’dy2) (down ’dp2 x ’dp2 y))))

(let ((DCs ((D (F->CH F)) s)))
(- (omega zeta1 zeta2)

(omega (* DCs zeta1) (* DCs zeta2)))))
0

Alternatively, let z1 and z2 be the matrix representations of the
qp parts of ζ1 and ζ2. The matrix representation of ω is

ω(ζ1, ζ2) = zT1 · Jn · z2. (5.82)

Let A be the matrix representation of the qp part of DCH(s′)
Then the invariance of ω is equivalent to

zT1 ·AT · Jn ·A · z2 = zT1 · Jn · z2. (5.83)

But this is true if

AT · Jn ·A = Jn, (5.84)

which is equivalent to the condition that A is symplectic. (If a
matrix is symplectic then its transpose is symplectic. See exer-
cise 5.6).

The symplectic condition is symmetrical in that if A is symplec-
tic then AT is symplectic, because the symplectic unit is invertible.
The canonical condition

J = DCH(s
′) · J · (DCH(s

′))T, (5.85)
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is satisfied by time-varying canonical transformations, and time-
varying canonical transformations are symplectic. But if the
transformation is time varying then

J = (DCH(s
′))T · J ·DCH(s

′), (5.86)

is not satisfied because J is not invertible. Equation (5.86) is
satisfied, however, for time-independent transformations.

Poincaré integral invariant

The invariance of the symplectic 2-form under canonical transfor-
mations has a simple interpretation. Consider how the area of an
incremental parallelogram in phase space transforms under canon-
ical transformation. Let (Δq,Δp) and (δq, δp) be small increments
in phase space, originating at (q, p). Consider the incremental par-
allelogram with vertex at (q, p) with these two phase-space incre-
ments as edges. The sum of the areas of the canonical projections
of this incremental parallelogram can be written∑
i

ΔAi =
∑
i

(Δqiδpi −Δpiδq
i). (5.87)

The right-hand side is the sum of the areas on the canonical
planes;17 for each i the area of a parallelogram is computed from
the components of the vectors defining its adjacent sides. Let
ζ1 = (0,Δq,Δp) and ζ2 = (0, δq, δp); then the sum of the areas of
the incremental parallelograms is just∑
i

ΔAi = ω(ζ1, ζ2), (5.88)

where ω is the bilinear antisymmetric function introduced in equa-
tion (5.70). The function ω is invariant under canonical transfor-
mations, so the sum of the areas of the incremental parallelograms
is invariant under canonical transformations.

There is an integral version of this differential relation. Consider
the oriented area of a region R′ in phase space (see figure 5.2).
Suppose we make a canonical transformation from coordinates

17The qi, pi plane is the ith canonical plane in these phase-space variables.
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CH

R

R1

R2

R′

R′2

R′1

p2

p1 p′1q2 q′2

q1 q′1

p′2

Figure 5.2 A region R′ in phase space is mapped by a canonical
transformation CH to a region R. The projections of region R onto the
planes formed by canonical basis pairs qj , pj are Rj . The projections of
R′ are R′

j . In general, the areas of the regions R and R′ are not the
same, but the sums of the areas of the canonical plane projections are
the same.

(q′, p′) to (q, p) taking region R′ to region R. The boundary of the
region in the transformed coordinates is just the image under the
canonical transformation of the original boundary. Let Rqi,pi

be
the projection of the region R onto the qi, pi plane of coordinate
qi and conjugate momentum pi, and let Ai be its area. Similarly,
let R′q′i,p′

i
be the projection of R′ onto the q′i, p′i plane, and let A′i

be its area.
The area of an arbitrary region is just the limit of the sum of the

areas of incremental parallelograms that cover the region, so the
sum of oriented areas is preserved by canonical transformations:∑
i

Ai =
∑
i

A′i. (5.89)

That is, the sum of the projected areas on the canonical planes is
preserved by canonical transformations. Another way to say this
is∑
i

∫
Rqi,pi

dqidpi =
∑
i

∫
R′

q′i,p′
i

dq′idp′i. (5.90)
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The equality-of-areas relation (5.90) can also be written as
an equality of line integrals using Stokes’s theorem, for simply-
connected regions Rqi,pi

and R′q′i,p′

i
:

∑
i

∮
∂Rqi,pi

pidq
i =

∑
i

∮
∂R′

q′i,p′
i

p′idq
′i. (5.91)

The canonical planes are disjoint except at the origin, so the pro-
jected areas intersect in at most one point. Thus we may inde-
pendently accumulate the line integrals around the boundaries of
the individual projections of the region onto the canonical planes
into a line integral around the unprojected region:∮
∂R

∑
i

pidq
i =

∮
∂R′

∑
i

p′idq
′i. (5.92)

Exercise 5.10: Watch out

Consider the canonical transformation CH:

(t, x, p) = CH(t, θ, J) = (t,
√
2(J + a) sin θ,

√
2(J + a) cos θ).

a. Show that the transformation is symplectic for any a.

b. Show that equation (5.92) is not generally satisfied for the region
enclosed by a curve of constant J .

5.4 Generating Functions

We have considered a number of properties of general canoni-
cal transformations without having a method for coming up with
them. Here we introduce the method of generating functions. The
generating function is a real-valued function that compactly spec-
ifies a canonical transformation through its partial derivatives, as
follows.

Consider a real-valued function F1(t, q, q
′) mapping configura-

tions expressed in two coordinate systems to the reals. We will use
F1 to construct a canonical transformation from one coordinate
system to the other. We will show that the following relations
among the coordinates, the momenta, and the Hamiltonians spec-
ify a canonical transformation:
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p = ∂1F1(t, q, q
′) (5.93)

p′ = −∂2F1(t, q, q
′) (5.94)

H ′(t, q′, p′)−H(t, q, p) = ∂0F1(t, q, q
′). (5.95)

The transformation will then be explicitly given by solving for
one set of variables in terms of the others: To obtain the primed
variables in terms of the unprimed ones, let A be the inverse of
∂1F1 with respect to the third argument,

q′ = A(t, q, ∂1F1(t, q, q
′)); (5.96)

then

q′ = A(t, q, p) (5.97)

p′ = −∂2F1(t, q, A(t, q, p)). (5.98)

Let B be the coordinate part of the phase-space transformation
q = B(t, q′, p′). This B is an inverse function of ∂2F1, satisfying

q = B(t, q′,−∂2F1(t, q, q
′)). (5.99)

Using B, we have

q = B(t, q′, p′) (5.100)

p = ∂1F1(t, B(t, q′, p′), q′). (5.101)

To put the transformation in explicit form requires that the inverse
functions A and B exist.

We can use the above relations to verify that some given trans-
formation from one set of phase-space coordinates (q, p) with
Hamiltonian function H(t, q, p) to another set (q′, p′) with Hamil-
tonian function H ′(t, q′, p′) is canonical by finding an F1(t, q, q

′)
such that the above relations are satisfied. We can also use ar-
bitrarily chosen generating functions of type F1 to generate new
canonical transformations.

The polar-canonical transformation

The polar-canonical transformation (5.27) from coordinate and
momentum (x, px) to new coordinate and new momentum (θ, I),

x =

√
2I

α
sin θ (5.102)

px =
√
2Iα cos θ, (5.103)
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introduced earlier, is canonical. This can also be demonstrated by
finding a suitable F1 generating function. The generating function
satisfies a set of partial differential equations, (5.93) and (5.94):

px = ∂1F1(t, x, θ) (5.104)

I = −∂2F1(t, x, θ). (5.105)

Using relations (5.102) and (5.103), which specify the transforma-
tion, equation (5.104) can be rewritten

px = xα cot θ = ∂1F1(t, x, θ), (5.106)

which is easily integrated to yield

F1(t, x, θ) =
α

2
x2 cot θ + ϕ(t, θ), (5.107)

where ϕ is some integration “constant” with respect to the first
integration. Substituting this form for F1 into the second partial
differential equation (5.105), we find

I = −∂2F1(t, x, θ) =
α

2

x2

(sin θ)2
− ∂1ϕ(t, θ), (5.108)

but if we set ϕ = 0 the desired relations are recovered. So the
generating function

F1(t, x, θ) =
α

2
x2 cot θ (5.109)

generates the polar-canonical transformation. This shows that
this transformation is canonical.

5.4.1 F1 Generates Canonical Transformations

We can prove directly that the transformation generated by an F1

is canonical by showing that if Hamilton’s equations are satisfied
in one set of coordinates then they will be satisfied in the other
set of coordinates. Let F1 take arguments (t, x, y). The relations
among the coordinates are

px = ∂1F1(t, x, y)

py = −∂2F1(t, x, y) (5.110)
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and the Hamiltonians are related by

H ′(t, y, py) = H(t, x, px) + ∂0F1(t, x, y). (5.111)

Substituting the generating function relations (5.110) into this
equation, we have

H ′(t, y,−∂2F1(t, x, y))

= H(t, x, ∂1F1(t, x, y)) + ∂0F1(t, x, y). (5.112)

Take the partial derivatives of this equality of expressions with
respect to the variables x and y:18

−(∂2H ′)j(∂1(∂2F1)j)i

= (∂1H)i + (∂2H)j(∂1(∂1F1)j)i + (∂1∂0F1)i

(∂1H
′)i − (∂2H

′)j(∂2(∂2F1)j)i

= (∂2H)j(∂2(∂1F1)j)i + (∂2∂0F1)i (5.113)

where the arguments are unambiguous and have been suppressed.
On solution paths we can use Hamilton’s equations for the (x, px)
system to replace the partial derivatives of H with derivatives of
x and px, obtaining

−(∂2H ′)j(∂1(∂2F1)j)i

= −(Dpx)i + (Dx)j(∂1(∂1F1)j)i + (∂1∂0F1)i

(∂1H
′)i − (∂2H

′)j(∂2(∂2F1)j)i

= (Dx)j(∂2(∂1F1)j)i + (∂2∂0F1)i. (5.114)

Now compute the derivatives of px and py, from equations (5.110),
along consistent paths:

18The structure ∂2∂1F1 is a down of downs, so it is compatible for contraction
with an up on either side. But it is not symmetrical, so the associations must
be specified. To solve this problem we use index notation (ugh!).

So we use indices to select particular components of structured objects.
If an index symbol appears both as a superscript and as a subscript in an
expression, the value of the expression is the sum over all possible values of the
index symbol of the designated components (Einstein summation convention).
Thus, for example, if q̇ and p are of dimension n then the indicated product
piq̇

i is to be interpreted as Σn−1
i=0 piq̇

i.
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(Dpx)i = (∂1(∂1F1)i)j(Dx)j + (∂2(∂1F1)i)j(Dy)j + ∂0(∂1F1)i

(Dpy)i = −(∂1(∂2F1)i)j(Dx)j − (∂2(∂2F1)i)j(Dy)j − ∂0(∂2F1)i.

(5.115)

Using the fact that elementary partials commute, (∂2(∂1F1)i)j =
(∂1(∂2F1)j)i, and substituting this expression for (Dpx)i into the
first of equations (5.114) yields

−(∂2H ′)j(∂1(∂2F1)j)i = −(∂1(∂2F1)j)i(Dy)j. (5.116)

Provided that ∂2∂1F1 is nonsingular,19 we have derived one of
Hamilton’s equations for the (y, py) system:

Dy(t) = ∂2H
′(t, y(t), py(t)). (5.117)

Hamilton’s other equation,

Dpy(t) = −∂1H ′(t, y(t), py(t)), (5.118)

can be derived in a similar way. So the generating function rela-
tions indeed specify a canonical transformation.

5.4.2 Generating Functions and Integral Invariants

Generating functions can be used to specify a canonical transfor-
mation by the prescription given above. Here we show how to get
a generating function from a canonical transformation, and derive
the generating function rules.

The generating function representation of canonical transfor-
mations can be derived from the Poincaré integral invariants, as
follows. We first show that, given a canonical transformation, the
integral invariants imply the existence of a function of phase-space
coordinates that can be written as a path-independent line inte-
gral. Then we show that partial derivatives of this function, repre-
sented in mixed coordinates, give the generating function relations
between the old and new coordinates. We need to do this only for
time-independent transformations because time-dependent trans-
formations become time independent in the extended phase space
(see section 5.5).

19A structure is nonsingular if the determinant of the matrix representation
of the structure is nonzero.
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Generating functions of type F1

Let C be a time-independent canonical transformation, and let Ct

be the qp-part of the transformation. The transformation Ct pre-
serves the integral invariant equation (5.90). One way to express
the equality of areas is as a line integral (5.92):∮
∂R

∑
i

pidq
i =

∮
∂R′

∑
i

p′idq
′i, (5.119)

where R′ is a two-dimensional region in (q′, p′) coordinates at
time t, R = Ct(R

′) is the corresponding region in (q, p) coordi-
nates, and ∂R indicates the boundary of the region R. This holds
for any region and its boundary. We will show that this implies
there is a function F (t, q′, p′) that can be defined in terms of line
integrals

F (t, q′, p′)− F (t, q′0, p
′
0)

=

∫
γ=Ct(γ′)

∑
i

pidq
i −

∫
γ′

∑
i

p′idq
′i, (5.120)

where γ′ is a curve in phase-space coordinates that begins at
γ′(0) = (q′0, p

′
0) and ends at γ′(1) = (q′, p′), and γ is its image

under Ct.
Let

Gt(γ
′) =

∫
γ=Ct(γ′)

∑
i

pidq
i −

∫
γ′

∑
i

p′idq
′i, (5.121)

and let γ′1 and γ′2 be two paths with the same endpoints. Then

Gt(γ
′
2)−Gt(γ

′
1) =

∮
∂R

∑
pidq

i −
∮
∂R′

∑
p′idq

′i

= 0. (5.122)

So the value of Gt(γ
′) depends only on the endpoints of γ′.

Let

Ḡt,q′0,p
′

0
(q′, p′) = Gt(γ

′), (5.123)

where γ′ is any path from q′0, p
′
0 to q′, p′. Changing the initial

point from q′0 p′0 to q′1 p′1 changes the value of Ḡ by a constant:

Ḡt,q′1,p
′

1
(q′, p′)− Ḡt,q′0,p

′

0
(q′, p′) = Ḡt,q′1,p

′

1
(q′0, p

′
0). (5.124)
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If we define F so that

F (t, q′, p′) = Ḡt,q′1,p
′

1
(q′, p′), (5.125)

then

F (t, q′, p′)− F (t, q′0, p
′
0) = Ḡt,q′0,p

′

0
(q′, p′), (5.126)

demonstrating equation (5.120).
The phase-space point (q, p) in unprimed variables corresponds

to (q′, p′) in primed variables, at an arbitrary time t. Both p and q
are determined given q′ and p′. In general, given any two of these
four quantities, we can solve for the other two. If we can solve for
the momenta in terms of the positions we get a particular class of
generating functions.20 We introduce the functions

p = fp(t, q, q
′)

p′ = fp′(t, q, q′) (5.127)

that solve the transformation equations (t, q, p) = C(t, q′, p′) for
the momenta in terms of the coordinates at a specified time. With
these we introduce a function F1(t, q, q

′) such that

F1(t, q, q
′) = F (t, q, fp(t, q, q

′)). (5.128)

The function F1 has the same value as F but has different argu-
ments. We will show that this F1 is in fact the generating function
for canonical transformations introduced in section 5.4. Let’s be
explicit about the definition of F1 in terms of a line integral:

F1(t, q, q
′)− F1(t, q0, q

′
0)

=

∫ q,q′

q0,q′0

(fp(t, q, q
′)dq − fp′(t, q, q′)dq′) . (5.129)

The two line integrals can be combined into this one because they
are both expressed as integrals along a curve in (q, q′).

20Point transformations are not in this class: we cannot solve for the momenta
in terms of the positions for point transformations, because for a point trans-
formation the primed and unprimed coordinates can be deduced from each
other, so there is not enough information in the coordinates to deduce the
momenta.
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We can use the path independence of F1 to compute the par-
tial derivatives of F1 with respect to particular components and
consequently derive the generating function relations for the mo-
menta.21 So we conclude that

(∂1F1(t, q, q
′))i = fpi

(t, q, q′) (5.130)

(∂2F1(t, q, q
′))i = −fp′

i
(t, q, q′). (5.131)

These are just the configuration and momentum parts of the gen-
erating function relations for canonical transformation. So start-
ing with a canonical transformation, we can find a generating
function that gives the coordinate–momentum part of the trans-
formation through its derivatives.

Starting from a general canonical transformation, we have con-
structed an F1 generating function from which the canonical trans-
formation may be rederived. So we expect there is a generating
function for every canonical transformation.22

Generating functions of type F2

Point transformations were excluded from the previous argument
because we could not deduce the momenta from the coordinates.
However, a similar derivation allows us to make a generating func-
tion for this case. The integral invariants give us an equality of
area integrals. There are other ways of writing the equality-of-
areas relation (5.90) as a line integral. We can also write∮
∂R

∑
i

pidq
i = −

∮
∂R′

∑
i

q′idp
′i. (5.132)

The minus sign arises because by flipping the axes we are travers-
ing the area in the opposite sense. Repeating the argument just

21Let F be defined as the path-independent line integral

F (x) =

∫ x

x0

∑
i

fi(x)dx
i + F (x0);

then ∂iF (x) = fi(x).

22There may be some singular cases and topological problems that prevent
this from being rigorously true.
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given, we can define a function

F ′(t, q′, p′)− F ′(t, q′0, p
′
0)

=

∫
γ=C(t,γ′)

∑
i

pidq
i +

∫
γ′

∑
i

q′idp
′i (5.133)

that is independent of the path γ′. If we can solve for q′ and p in
terms of q and p′ we can define the functions

q′ = f ′q′(t, q, p
′)

p = f ′p(t, q, p
′) (5.134)

and define

F2(t, q, p
′) = F ′(t, f ′q′(t, q, p

′), p′). (5.135)

Then the canonical transformation is given as partial derivatives
of F2:

(∂1F2(t, q, p
′))i = f ′pi

(t, q, p′) (5.136)

and

(∂2F2(t, q, p
′))i = f ′q′i(t, q, p

′). (5.137)

Relationship between F1 and F2

For canonical transformations that can be described by both an F1

and an F2, there must be a relation between them. The alternative
line integral expressions for the area integral are related. Consider
the difference

(F ′(t, q′, p′)− F ′(t, q′0, p
′
0))− (F (t, q′, p′)− F (t, q′0, p

′
0))

=

∫
γ′

∑
i

p′idq
′i +

∫
γ′

∑
i

q′idp
′i

=

∫
γ′

∑
i

d(p′iq
′i)

=
∑
i

(p′)i(q
′)i −

∑
i

(p′0)i(q
′
0)

i. (5.138)

The functions F and F ′ are related by an integrated term

F ′(t, q′, p′)− F (t, q′, p′) = p′q′, (5.139)
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as are F1 and F2:

F2(t, q, p
′)− F1(t, q, q

′) = p′q′. (5.140)

The generating functions F1 and F2 are related by a Legendre
transform:

p′ = −∂2F1(t, q, q
′) (5.141)

p′q′ = −F1(t, q, q
′) + F2(t, q, p

′) (5.142)

q′ = ∂2F2(t, q, p
′). (5.143)

We have passive variables q and t:

−∂1F1(t, q, q
′) + ∂1F2(t, q, p

′) = 0 (5.144)

−∂0F1(t, q, q
′) + ∂0F2(t, q, p

′) = 0. (5.145)

But p = ∂1F1(t, q, q
′) from the first transformation, so

p = ∂1F2(t, q, p
′). (5.146)

Furthermore, since H ′(t, q′, p′) −H(t, q, p) = ∂0F1(t, q, q
′) we can

conclude that

H ′(t, q′, p′)−H(t, q, p) = ∂0F2(t, q, p
′). (5.147)

5.4.3 Types of Generating Functions

We have used generating functions of the form F1(t, q, q
′) to con-

struct canonical transformations:

p = ∂1F1(t, q, q
′) (5.148)

p′ = −∂2F1(t, q, q
′) (5.149)

H ′(t, q′, p′)−H(t, q, p) = ∂0F1(t, q, q
′). (5.150)

We can also construct canonical transformations with generating
functions of the form F2(t, q, p

′), where the third argument of F2

is the momentum in the primed system.23

23The various generating functions are traditionally known by the names F1,
F2, F3, and F4. Please don’t blame us.
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p = ∂1F2(t, q, p
′) (5.151)

q′ = ∂2F2(t, q, p
′) (5.152)

H ′(t, q′, p′)−H(t, q, p) = ∂0F2(t, q, p
′) (5.153)

As in the F1 case, to put the transformation in explicit form re-
quires that appropriate inverse functions be constructed to allow
the solution of the equations.

Similarly, we can construct two other forms for generating func-
tions, named mnemonically enough F3 and F4:

q = −∂1F3(t, p, q
′) (5.154)

p′ = −∂2F3(t, p, q
′) (5.155)

H ′(t, q′, p′)−H(t, q, p) = ∂0F3(t, p, q
′) (5.156)

and

q = −∂1F4(t, p, p
′) (5.157)

q′ = ∂2F4(t, p, p
′) (5.158)

H ′(t, q′, p′)−H(t, q, p) = ∂0F4(t, p, p
′) (5.159)

These four classes of generating functions are called mixed-

variable generating functions because the canonical transforma-
tions they generate give a mixture of old and new variables in
terms of a mixture of old and new variables.

In every case, if the generating function does not depend explic-
itly on time then the Hamiltonians are obtained from one another
purely by composition with the appropriate canonical transforma-
tion. If the generating function depends on time, then there are
additional terms.

The generating functions presented each treat the coordinates
and momenta collectively. One could define more complicated
generating functions for which the transformations of different de-
grees of freedom are specified by generating functions of different
types.
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5.4.4 Point Transformations

Point transformations can be represented in terms of a generating
function of type F2. Equations (5.6), which define a canonical
point transformation derived from a coordinate transformation
F , are

(t, q, p) = C (t, q′, p′) =
(
t, F (t, q′), p′(∂1F (t, q′))−1

)
. (5.160)

Let S be the inverse transformation of F with respect to the
second argument

q′ = S(t, q), (5.161)

so that q′ = S(t, F (t, q′)). The momentum transformation that
accompanies this coordinate transformation is

p′ = p(∂1S(t, q))
−1. (5.162)

We can find the generating function F2 that gives this transfor-
mation by integrating equation (5.152) to get

F2(t, q, p
′) = p′S(t, q) + ϕ(t, q). (5.163)

Substituting this into equation (5.151), we get

p = p′∂1S(t, q) + ∂1ϕ(t, q). (5.164)

We do not need the freedom provided by ϕ, so we can set it equal
to zero:

F2(t, q, p
′) = p′S(t, q), (5.165)

with

p = p′∂1S(t, q). (5.166)

So this F2 gives the canonical transformation of equations (5.161)
and (5.162).

The canonical transformation for the coordinate transformation
S is the inverse of the canonical transformation for F . By design
F and S are inverses on the coordinate arguments. The identity
function is q′ = I(q′) = S(t, F (t, q′)). Differentiating yields
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1 = ∂1S(t, F (t, q′))∂1F (t, q′), (5.167)

so

∂1F (t, q′) = (∂1S(t, F (t, q′)))−1. (5.168)

Using this, the relation between the momenta (5.166) is

p = p′(∂1F (t, q′))−1, (5.169)

showing that F2 gives a point transformation equivalent to the
point transformation (5.160). So from this other point of view the
point transformation is canonical.

The F1 that corresponds to the F2 for a point transformation is

F1(t, q, q
′) = F2(t, q, p

′)− p′q′

= p′S(t, q)− p′q′

= 0. (5.170)

This is why we could not use generating functions of type F1 to
construct point transformations.

Polar and rectangular coordinates

A commonly required point transformation is the transition be-
tween polar coordinates and rectangular coordinates:

x = r cos θ (5.171)

y = r sin θ.

Using the formula for the generating function of a point transfor-
mation just derived, we find:

F2(t; r, θ; px, py) = [ px py ]
(
r cos θ
r sin θ

)
. (5.172)

So the full transformation is derived:

(x, y) = ∂2F2(t; r, θ; px, py)

= (r cos θ, r sin θ)

[pr, pθ] = ∂1F2(t; r, θ; px, py)

= [px cos θ + py sin θ,−pxr sin θ + pyr cos θ] . (5.173)



5.4.4 Point Transformations 377

We can isolate the rectangular coordinates to one side of the trans-
formation and the polar coordinates to the other:

pr =
1

r
(pxx+ pyy)

pθ = −pxy + pyx. (5.174)

So, interpreted in terms of Newtonian vectors, pr = r̂ · �p is the
radial component of the linear momentum and pθ = ||�r×�p|| is the
magnitude of the angular momentum. The point transformation is
time independent, so the Hamiltonian transforms by composition.

Rotating coordinates

A useful time-dependent point transformation is the transition to
a rotating coordinate system. This is most easily accomplished in
polar coordinates. Here we have

r′ = r

θ′ = θ − Ωt, (5.175)

where Ω is the angular velocity of the rotating coordinate system.
The generating function is

F2(t; r, θ; p
′
r, p

′
θ) = [ p′r p′θ ]

(
r

θ − Ωt

)
. (5.176)

This yields the transformation equations

r′ = r

θ′ = θ − Ωt

pr = p′r
pθ = p′θ, (5.177)

which show that the momenta are the same in both coordinate
systems. However, here the Hamiltonian is not a simple composi-
tion:

H ′(t; r′, θ′; p′r, p
′
θ) = H(t; r′, θ′ +Ωt; p′r, p

′
θ)− p′θΩ. (5.178)

The Hamiltonians differ by the derivative of the generating func-
tion with respect to the time argument. In transforming to ro-
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tating coordinates, the values of the Hamiltonians differ by the
product of the angular momentum and the angular velocity of the
coordinate system. Notice that this addition to the Hamiltonian
is the same as was found earlier (5.45).

Reducing the two-body problem to the one-body problem

In this example we illustrate how canonical transformations can
be used to eliminate some of the degrees of freedom, leaving a
problem with fewer degrees of freedom.

Suppose that only certain combinations of the coordinates ap-
pear in the Hamiltonian. We make a canonical transformation to
a new set of phase-space coordinates such that these combinations
of the old phase-space coordinates are some of the new phase-space
coordinates. We choose other independent combinations of the co-
ordinates to complete the set. The advantage is that these other
independent coordinates do not appear in the new Hamiltonian,
so the momenta conjugate to them are conserved quantities.

Let’s see how this idea enables us to reduce the problem of two
gravitating bodies to the simpler problem of the relative motion
of the two bodies. In the process we will discover that the mo-
mentum of the center of mass is conserved. This simpler problem
is an instance of the Kepler problem. The Kepler problem is also
encountered in the formulation of the more general n-body prob-
lem.

Consider the motion of two masses m1 and m2, subject only to
a mutual gravitational attraction described by the potential V (r).
This problem has six degrees of freedom. The rectangular coor-
dinates of the particles are x1 and x2, with conjugate momenta
p1 and p2. Each of these is a structure of the three rectangular
components. The distance between the particles is r = ‖x1−x2‖.
The Hamiltonian for the two-body problem is

H(t;x1, x2; p1, p2) =
p21
2m1

+
p22
2m2

+ V (r). (5.179)

The gravitational potential energy depends only on the relative
positions of the two bodies. We do not need to specify V further
at this point.
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Since the only combination of coordinates that appears in the
Hamiltonian is x2 − x1, we choose new coordinates so that one of
the new coordinates is this combination:

x = x2 − x1. (5.180)

To complete the set of new coordinates we choose another to be
some independent linear combination

X = ax1 + bx2, (5.181)

where a and b are to be determined. We can use an F2-type
generating function

F2(t;x1, x2; p, P ) = (x2 − x1)p+ (ax1 + bx2)P, (5.182)

where p and P will be the new momenta conjugate to x and X,
respectively. We deduce

(x,X) = ∂2F2(t;x1, x2; p, P ) = (x2 − x1, ax1 + bx2)

[p1, p2] = ∂1F2(t;x1, x2; p, P ) = [−p+ aP, p+ bP ] . (5.183)

We can solve these for the new momenta:

P =
p1 + p2
a+ b

(5.184)

p =
ap2 − bp1
a+ b

. (5.185)

The generating function is not time dependent, so the new
Hamiltonian is the old Hamiltonian composed with the transfor-
mation:

H ′(t;x,X; p, P ) =
(−p+ aP )2

2m1
+

(p + bP )2

2m2
+ V (||x||)

=
p2

2m
+

P 2

2M
+ V (||x||)

+

(
b

m2
− a

m1

)
pP, (5.186)
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with the definitions

1

m
=

1

m1
+

1

m2
(5.187)

and

1

M
=

a2

m1
+

b2

m2
. (5.188)

We recognize m as the “reduced mass.”
Notice that if the term proportional to pP were not present

then the x and X degrees of freedom would not be coupled at all,
and furthermore, the X part of the Hamiltonian would be just
the Hamiltonian of a free particle, which is easy to solve. The
condition that the “cross terms” disappear is

b

m2
− a

m1
= 0, (5.189)

which is satisfied by

a = cm1

b = cm2 (5.190)

for any c. For a transformation to be defined, c must be nonzero.
So with this choice the Hamiltonian becomes

H ′(t;x,X; p, P ) = HX(t,X, P ) +Hx(t, x, p) (5.191)

with

Hx(t, x, p) =
p2

2m
+ V (r) (5.192)

and

HX(t,X, P ) =
P 2

2M
. (5.193)

The reduced mass is the same as before, and now

M =
1

c2(m1 +m2)
. (5.194)
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Notice that, without further specifying c, the problem has been
separated into the problem of determining the relative motion of
the two masses, and the problem of the other degrees of free-
dom. We did not need a priori knowledge that the center of
mass might be important; in fact, only for a particular choice
of c = (m1 +m2)

−1 does X become the center of mass.

Epicyclic motion

It is often useful to compose a sequence of canonical transforma-
tions to make up the transformation we need for any particular
mechanical problem. The transformations we have supplied are
especially useful as components in these computations.

We will illustrate the use of canonical transformations to learn
about planar motion in a central field. The strategy will be to
consider perturbations of circular motion in the central field. The
analysis will proceed by transforming to a rotating coordinate sys-
tem that rides on a circular reference orbit, and then making ap-
proximations that restrict the analysis to orbits that differ from
the circular orbit only slightly.

In rectangular coordinates we can easily write a Hamiltonian
for the motion of a particle of mass m in a field defined by a
potential energy that is a function only of the distance from the
origin as follows:

H(t;x, y; px, py) =
p2x + p2y
2m

+ V (
√
x2 + y2). (5.195)

In this coordinate system Hamilton’s equations are easy, and they
are exactly what is needed to develop trajectories by numerical
integration, but the expressions are not very illuminating:

Dx =
px
m

(5.196)

Dy =
py
m

(5.197)

Dpx = −DV (
√
x2 + y2)

x√
x2 + y2

(5.198)

Dpy = −DV (
√
x2 + y2)

y√
x2 + y2

. (5.199)
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We can learn more by converting to polar coordinates centered
on the source of our field:

x = r cosϕ (5.200)

y = r sinϕ. (5.201)

This coordinate system explicitly incorporates the geometrical
symmetry of the potential energy. Extending this coordinate
transformation to a point transformation, we can write the new
Hamiltonian as:

H ′(t; r, ϕ; pr , pϕ) =
p2r
2m

+
p2ϕ

2mr2
+ V (r). (5.202)

We can now write Hamilton’s equations in these new coordinates,
and they are much more illuminating than the equations expressed
in rectangular coordinates:

Dr =
pr
m

(5.203)

Dϕ =
pϕ
mr2

(5.204)

Dpr =
p2ϕ
mr3

−DV (r) (5.205)

Dpϕ = 0. (5.206)

The angular momentum pϕ is conserved, and we are free to
choose its constant value, so Dϕ depends only on r. We also see
that we can establish a circular orbit at any radius R0: we choose
pϕ = pϕ0

so that p2ϕ0/(mR3
0)−DV (R0) = 0. This will ensure that

Dpr = 0, and thus Dr = 0. The square of the angular velocity of
this circular orbit is

Ω2 =
DV (R0)

mR0
. (5.207)

It is instructive to consider how orbits that are close to the
circular orbit differ from the circular orbit. This is best done in
rotating coordinates in which a body moving in the circular orbit
is a stationary point at the origin. We can do this by converting to
coordinates that are rotating with the circular orbit and centered
on the orbiting body. We proceed in three stages. First we will
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transform to a polar coordinate system that is rotating at angular
velocity Ω. Then we will return to rectangular coordinates, and
finally, we will shift the coordinates so that the origin is on the
reference circular orbit.

We start by examining the system in rotating polar coordinates.
This is a time-dependent coordinate transformation:

r′ = r (5.208)

ϕ′ = ϕ− Ωt (5.209)

p′r = pr (5.210)

p′ϕ = pϕ. (5.211)

Using equation (5.178), we can write the new Hamiltonian di-
rectly:

H ′′(t; r′, ϕ′; p′r, p
′
ϕ) =

p′2r
2m

+
p′2ϕ

2mr′2
+ V (r′)− p′ϕΩ. (5.212)

H ′′ is not time dependent, and therefore it is conserved. It is not
the sum of the potential energy and the kinetic energy. Energy
is not conserved in the moving coordinate system, but what is
conserved here is a new quantity, the Jacobi constant, that com-
bines the energy with the product of the angular momentum of
the particle in the new coordinate and the angular velocity of the
coordinate system. We will want to keep track of this term.

Next, we return to rectangular coordinates, but they are rotat-
ing with the reference circular orbit:

x′ = r′ cosϕ′ (5.213)

y′ = r′ sinϕ′ (5.214)

p′x = p′r cosϕ
′ − p′ϕ

r′
sinϕ′ (5.215)

p′y = p′r sinϕ
′ +

p′ϕ
r′

cosϕ′. (5.216)

The Hamiltonian is

H ′′′(t;x′, y′; p′x, p
′
y)

=
p′2x + p′2y

2m
+Ω(y′p′x − x′p′y) + V (

√
x′2 + y′2). (5.217)
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With one more quick manipulation we shift the coordinate sys-
tem so that the origin is out on our circular orbit. We define
new rectangular coordinates ξ and η with the following simple
canonical transformation of coordinates and momenta:

ξ = x′ −R0 (5.218)

η = y′ (5.219)

pξ = p′x (5.220)

pη = p′y. (5.221)

In this final coordinate system the Hamiltonian is

H ′′′′(t; ξ, η; pξ , pη) =
p2ξ + p2η

2m
+Ω(ηpξ − (ξ +R0)pη)

+ V (
√
(ξ +R0)2 + η2), (5.222)

and Hamilton’s equations are uselessly complicated, but the next
step is to consider only trajectories for which the coordinates ξ
and η are small compared with R0. Under this assumption we
will be able to construct approximate equations of motion for
these trajectories that are linear in the coordinates, thus yield-
ing simple analyzable motion. To this point we have made no
approximations. The equations above are perfectly accurate for
any trajectories in a central field.

The idea is to expand the potential-energy term in the Hamilto-
nian as a series and to discard any term higher than second-order
in the coordinates, thus giving us first-order-accurate Hamilton’s
equations:

U(ξ, η) = V (
√
(ξ +R0)2 + η2) (5.223)

= V (R0 + ξ +
η2

2R0
+ · · ·) (5.224)

= V (R0) +DV (R0)(ξ +
η2

2R0
)

+D2V (R0)
ξ2

2
+ · · · . (5.225)

So the (negated) generalized forces are

∂0U(ξ, η) = DV (R0) +D2V (R0)ξ + · · · (5.226)

∂1U(ξ, η) = DV (R0)
η

R0
+ · · · . (5.227)



5.4.4 Point Transformations 385

With this expansion we obtain the linearized Hamilton’s equa-
tions:

Dξ =
pξ
m

+Ωη (5.228)

Dη =
pη
m
− Ω(ξ +R0) (5.229)

Dpξ = −DV (R0)−D2V (R0)ξ + · · · +Ωpη (5.230)

Dpη = −DV (R0)
η

R0
+ · · · − Ωpξ. (5.231)

Of course, once we have linear equations we know how to solve
them exactly. Because the linearized Hamiltonian is conserved
we cannot get exponential expansion or collapse, so the possible
solutions are quite limited. It is instructive to convert these equa-
tions into a second-order system. We use Ω2 = DV (R0)/(mR0),
equation (5.207), to eliminate the DV terms:

D2ξ − 2ΩDη = (Ω2 − D2V (R0)

m
)ξ (5.232)

D2η + 2ΩDξ = 0. (5.233)

Combining these, we find

D3ξ + ω2Dξ = 0, (5.234)

where

ω2 = 3Ω2 +
D2V (R0)

m
. (5.235)

Thus we have a simple harmonic oscillator with frequency ω as
one of the components of the solution. The general solution has
three parts:⎧⎩ ξ(t)

η(t)

⎫⎭ = η0

⎧⎩ 0
1

⎫⎭ (5.236)

+ ξ0

⎧⎩ 1
−2At

⎫⎭ (5.237)

+ C0

⎧⎩ sin(ωt+ ϕ0)
2Ω
ω cos(ωt+ ϕ0)

⎫⎭ (5.238)

where

A =
Ω2m−D2V (R0)

4Ωm
. (5.239)
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The constants η0, ξ0, C0, and ϕ0 are determined by the ini-
tial conditions. If C0 = 0, the particle of interest is on a circular
trajectory, but not necessarily the same one as the reference tra-
jectory. If C0 = 0 and ξ0 = 0, we have a “fellow traveler,” a
particle in the same circular orbit as the reference orbit but with
different phase. If C0 = 0 and η0 = 0, we have a particle in a
circular orbit that is interior or exterior to the reference orbit and
shearing away from the reference orbit. The shearing is due to the
fact that the angular velocity for a circular orbit varies with the
radius. The constant A gives the rate of shearing at each radius.
If both η0 = 0 and ξ0 = 0 but C0 �= 0, then we have “epicyclic
motion.” A particle in a nearly circular orbit may be seen to move
in an ellipse around the circular reference orbit. The ellipse will be
elongated in the direction of circular motion by the factor 2Ω/ω,
and it will rotate in the direction opposite to the direction of the
circular motion. The initial phase of the epicycle is ϕ0. Of course,
any combination of these solutions may exist.

The epicyclic frequency ω and the shearing rate A are deter-
mined by the force law (the radial derivative of the potential en-
ergy). For a force law proportional to a power of the radius,

F ∝ r1−n, (5.240)

the epicyclic frequency is related to the orbital frequency by

ω

Ω
= 2

√
1− n

4
(5.241)

and the shearing rate is

A

Ω
=

n

4
. (5.242)

For a few particular integer force laws we see:

n 0 1 2 3 4 5

A
Ω 0 1

4
1
2

3
4 1 5

4

ω
Ω 2

√
3

√
2 1 0 ±i

We can get some insight into the kinds of orbits produced by
the epicyclic approximation by looking at a few examples. For
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Figure 5.3 Epicyclic construction of an approximate orbit for F ∝
r−2. The large dotted circle is the reference circular orbit and the dot-
ted ellipses are the epicycles. The epicycles are twice as long as they
are wide. The solid ellipse is the approximate trajectory produced by a
particle moving on the epicycles. The sense of orbital motion is counter-
clockwise, and the epicycles are rotating clockwise. The arrows represent
the increment of velocity contributed by the epicycle to the circular ref-
erence orbit.

some force laws we have integer ratios of epicyclic frequency to
orbital frequency. In those cases we have closed orbits. For an
inverse-square force law (n = 3) we get elliptical orbits with the
center of the field at a focus of the ellipse. Figure 5.3 shows how
an approximation to such an orbit can be constructed by super-
position of the motion on an elliptical epicycle with the motion of
the same frequency on a circle. If the force is proportional to the
radius (n = 0) we get a two-dimensional harmonic oscillator. Here
the epicyclic frequency is twice the orbital frequency. Figure 5.4
shows how this yields elliptical orbits that are centered on the
source of the central force. An orbit is closed when ω/Ω is a ratio-
nal fraction. If the force is proportional to the −3/4 power of the
radius, the epicyclic frequency is 3/2 the orbital frequency. This
yields the three-lobed pattern seen in figure 5.5. For other force
laws the orbits predicted by this analysis are multi-lobed patterns
produced by precessing approximate ellipses. Most of the cases
have incommensurate epicyclic and orbital frequencies, leading to
orbits that do not close in finite time.
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Figure 5.4 Epicyclic construction of an approximate orbit for F ∝ r.
The large dotted circle is the reference circular orbit and the small dotted
circles are the epicycles. The solid ellipse is the approximate trajectory
produced by a particle moving on the epicycles. The sense of orbital
motion is counterclockwise, and the epicycles are rotating clockwise. The
arrows represent the increment of velocity contributed by the epicycle
to the circular reference orbit.

Figure 5.5 Epicyclic construction of an approximate orbit for F ∝
r−3/4. The large dotted circle is the reference circular orbit and the
dotted ellipses are the epicycles. The epicycles have a 4:3 ratio of length
to width. The solid trefoil is the approximate trajectory produced by a
particle moving on the epicycles. The sense of orbital motion is counter-
clockwise, and the epicycles are rotating clockwise. The arrows represent
the increment of velocity contributed by the epicycle to the circular ref-
erence orbit.
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Figure 5.6 The numerically integrated orbit of a particle with a force
law F ∝ r−2.3. For this law the ratio of the epicyclic frequency to the
orbital frequency is about .83666—close to 5/6, but not quite. This is
manifest in the nearly five-fold symmetry of the rosette-like shape and
the fact that one must cross approximately six orbits to get from the
inside to the outside of the rosette.

The epicyclic approximation gives a very good idea of what ac-
tual orbits look like. Figure 5.6, drawn by numerical integration
of the orbit produced by integrating the original rectangular equa-
tions of motion for a particle in the field, shows the rosette-type
picture characteristic of incommensurate epicyclic and orbital fre-
quencies for an F = −r−2.3 force law.

We can directly compare a numerically integrated system with
one of our epicyclic approximations. For example, the result of
numerically integrating our F ∝ r−3/4 system is very similar to
the picture we obtained by epicycles. (See figure 5.7 and compare
it with figure 5.5.)

Exercise 5.11: Collapsing orbits

What exactly happens as the force law becomes steeper? Investigate this
by sketching the contours of the Hamiltonian in r, pr space for various
values of the force-law exponent, n. For what values of n are there stable
circular orbits? In the case that there are no stable circular orbits, what
happens to circular and other noncircular orbits? How are these results
consistent with Liouville’s theorem and the nonexistence of attractors
in Hamiltonian systems?
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Figure 5.7 The numerically integrated orbit of a particle with a force
law F ∝ r−3/4. For this law the ratio of the epicyclic frequency to
the orbital frequency is exactly 3/2. This is manifest in the three-fold
symmetry of the rosette-like shape and the fact that one must cross two
orbits to get from the inside to the outside of the rosette.

5.4.5 Total Time Derivatives

The addition of a total time derivative to a Lagrangian leads to the
same Lagrange equations. However, the two Lagrangians have dif-
ferent momenta, and they lead to different Hamilton’s equations.
Here we find out how to represent the corresponding canonical
transformation with a generating function.

Let’s restate the result about total time derivatives and La-
grangians from the first chapter. Consider some function G(t, q)
of time and coordinates. We have shown that if L and L′ are
related by

L′(t, q, q̇) = L(t, q, q̇) + ∂0G(t, q) + ∂1G(t, q)q̇ (5.243)

then the Lagrange equations of motion are the same. The gener-
alized coordinates used in the two Lagrangians are the same, but
the momenta conjugate to the coordinates are different. In the
usual way, define

P(t, q, q̇) = ∂2L(t, q, q̇) (5.244)
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and

P ′(t, q, q̇) = ∂2L
′(t, q, q̇). (5.245)

So we have

P ′(t, q, q̇) = P(t, q, q̇) + ∂1G(t, q). (5.246)

Evaluated on a trajectory, we have

p′(t) = p(t) + ∂1G(t, q(t)). (5.247)

This transformation is a special case of an F2-type transformation.
Let

F2(t, q, p
′) = qp′ −G(t, q); (5.248)

then the associated transformation is

q′ = ∂2F2(t, q, p
′) = q (5.249)

p = ∂1F2(t, q, p
′) = p′ − ∂1G(t, q) (5.250)

H ′(t, q′, p′) = H(t, q, p) + ∂0F2(t, q, p
′)

= H(t, q, p)− ∂0G(t, q). (5.251)

Explicitly, the new Hamiltonian is

H ′(t, q′, p′) = H(t, q′, p′ − ∂1G(t, q′))− ∂0G(t, q′), (5.252)

where we have used the fact that q = q′. The transformation is
interesting in that the coordinate transformation is the identity
transformation, but the new and old momenta are not the same,
even in the case in which G has no explicit time dependence.
Suppose we have a Hamiltonian of the form

H(t, x, p) =
p2

2m
+ V (x); (5.253)

then the transformed Hamiltonian is

H ′(t, x′, p′) =
(p′ − ∂1G(t, x′))2

2m
+ V (x′)− ∂0G(t, x′). (5.254)

We see that this transformation may be used to modify terms in
the Hamiltonian that are linear in the momenta. Starting fromH,
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the transformation introduces linear momentum terms; starting
from H ′, the transformation eliminates the linear terms.

Driven pendulum

We illustrate the use of this transformation with the driven pen-
dulum. The Hamiltonian for the driven pendulum derived from
the T − V Lagrangian (see section 1.6.2) is

H(t, θ, pθ)

=
p2θ

2ml2
− glm cos θ

+ gmys(t)− pθ
l
sin θDys(t)− m

2
(cos θ)2(Dys(t))

2, (5.255)

where ys is the drive function. The Hamiltonian is rather messy,
and includes a term that is linear in the angular momentum with
a coefficient that depends on both the angular coordinate and the
time. Let’s see what happens if we apply our transformation to
the problem to eliminate the linear term. We can identify the
transformation function G by requiring that the linear term in
momentum be killed:

G(t, θ) = −ml cos θDys(t). (5.256)

The transformed momentum is

p′θ = pθ +ml sin θDys(t), (5.257)

and the transformed Hamiltonian is

H ′(t, θ, p′θ) =
(p′θ)

2

2ml2
−ml(g +D2ys) cos θ

+ gmys(t)− m

2
(ys(t))

2. (5.258)

Dropping the last two terms, which do not affect the equations of
motion, we find

H ′(t, θ, p′θ) =
(p′θ)

2

2ml2
−ml(g +D2ys) cos θ. (5.259)

So we have found, by a straightforward canonical transformation,
a Hamiltonian for the driven pendulum with the rather simple
form of a pendulum with gravitational acceleration that is modi-



5.4.5 Total Time Derivatives 393

fied by the acceleration of the pivot. It is, in fact, the Hamiltonian
that corresponds to the alternative form of the Lagrangian for the
driven pendulum that we found earlier by inspection (see equation
1.120). Here the derivation is by a simple canonical transforma-
tion, motivated by a desire to eliminate unwanted terms that are
linear in the momentum.

Exercise 5.12: Construction of generating functions

Suppose that canonical transformations

(t, q, p) = Ca(t, q
′, p′) and (t, q′, p′) = Cb(t, q

′′, p′′)

are generated by two F1-type generating functions, F1a(t, q, q
′) and

F1b(t, q
′, q′′).

a. Show that the generating function for the inverse transformation of
Ca is F1c(t, q

′, q) = −F1a(t, q, q
′).

b. Define a new kind of generating function,

Fx(t, q, q
′, q′′) = F1a(t, q, q

′) + F1b(t, q
′, q′′).

We see that

p = ∂1Fx(t, q, q
′, q′′) = ∂1F1a(t, q, q

′)

p′′ = −∂3Fx(t, q, q
′, q′′) = −∂2F1b(t, q

′, q′′)

Show that ∂2Fx = 0, allowing a solution to eliminate q′.

c. Using the formulas for p and p′′ above, and the result from part b,
Show that Fx is an appropriate generating function for the composition
transformation Ca ◦ Cb.

Exercise 5.13: Linear canonical transformations

We consider systems with two degrees of freedom and transformations
for which the Hamiltonian transforms by composition.

a. Consider the linear canonical transformations that are generated by

F2(t;x1, x2; p
′
1, p

′
2) = p′1ax1 + p′1bx2 + p′2cx1 + p′2dx2.

Show that these transformations are just the point transformations, and
that the corresponding F1 is zero.

b. Other linear canonical transformations can be generated by

F1(t;x1, x2;x
′
1, x

′
2) = x′

1ax1 + x′
1bx2 + x′

2cx1 + x′
2dx2.

Surely we can make even more generators by constructing F3- and F4-
type transformations analogously. Are all of the linear canonical trans-
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formations obtainable in this way? If not, show one that cannot be so
generated.

c. Can all linear canonical transformations be generated by composi-
tions of transformations generated by the functions shown in parts a
and b above?

d. How many independent parameters are necessary to specify all pos-
sible linear canonical transformations for systems with two degrees of
freedom?

Exercise 5.14: Integral invariants

Consider the linear canonical transformation for a system with two de-
grees of freedom generated by the function

F1(t;x1, x2;x
′
1, x

′
2) = x′

1ax1 + x′
1bx2 + x′

2cx1 + x′
2dx2,

and the general parallelogram with a vertex at the origin and with adja-
cent sides starting at the origin and extending to the phase-space points
(x1a, x2a, p1a, p2a) and (x1b, x2b, p1b, p2b).

a. Find the area of the given parallelogram and the area of the target
parallelogram under the canonical transformation. Notice that the area
of the parallelogram is not preserved.

b. Find the areas of the projections of the given parallelogram and the
areas of the projections of the target under canonical transformation.
Show that the sum of the areas of the projections on the action-like
planes is preserved.

Exercise 5.15: Standard-map generating function

Find a generating function for the standard map (see exercise 5.8 on
page 357).

5.5 Extended Phase Space

In this section we show that we can treat time as just another
coordinate if we wish. Systems described by a time-dependent
Hamiltonian may be recast in terms of a time-independent Hamil-
tonian with an extra degree of freedom. An advantage of this view
is that what was a time-dependent canonical transformation can
be treated as a time-independent transformation, where there are
no additional conditions for adjusting the Hamiltonian.

Suppose that we have some system characterized by a time-
dependent Hamiltonian, for example, a periodically driven pen-
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dulum. We may imagine that there is some extremely massive
oscillator, unperturbed by the motion of the relatively massless
pendulum, that produces the drive. Indeed, we may think of time
itself as the coordinate of an infinitely massive particle moving
uniformly and driving everything else. We often consider the ro-
tation of the Earth as exactly such a stable time reference when
performing short-time experiments in the laboratory.

More formally, consider a dynamical system with n degrees of
freedom, whose behavior is described by a possibly time-dependent
Lagrangian L with corresponding Hamiltonian H. We make a new
dynamical system with n+1 degrees of freedom by extending the
generalized coordinates to include time and introducing a new in-
dependent variable. We also extend the generalized velocities to
include a velocity for the time coordinate. In this new extended

state space the coordinates are redundant, so there is a constraint
relating the time coordinate to the new independent variable.

We relate the original dynamical system to the extended dy-
namical system as follows: Let q be a coordinate path. Let
(qe, t) : τ �→ (qe(τ), t(τ)) be a coordinate path in the extended
system where τ is the new independent variable. Then qe = q ◦ t,
or qe(τ) = q(t(τ)). Consequently, if v = Dq is the velocity along
a path then ve(τ) = Dqe(τ) = Dq(t(τ)) ·Dt(τ) = v(t(τ)) · vt(τ).

We can find a Lagrangian for the extended system by requiring
that the value of the action be unchanged. Introduce the extended
Lagrangian action

Se[qe, t](τ1, τ2) =

∫ τ2

τ1

(Le ◦ Γ[qe, t]), (5.260)

with

Le(τ ; qe, t; ve, vt) = L(t, qe, ve/vt)vt. (5.261)

We have

S[q](t(τ1), t(τ2)) = Se[q ◦ t, t](τ1, τ2). (5.262)

The extended system is subject to a constraint that relates the
time to the new independent variable. We assume the constraint
is of the form ϕ(τ ; qe, t; ve, vt) = t − f(τ) = 0. The constraint is
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a holonomic constraint involving the coordinates and time, so we
can incorporate this constraint by augmenting the Lagrangian:24

L′e(τ ; qe, t, λ; ve, vt, vλ)

= Le(τ ; qe, t; ve, vt) + vλ(vt −Df(τ))

= L(t, qe, ve/vt)vt + vλ(vt −Df(τ)). (5.263)

The Lagrange equations of L′e for qe are satisfied for the paths q◦t
where q is any path that satisfies the original Lagrange equations
of L.

The momenta conjugate to the coordinates are

Pe(τ ; qe, t, λ; ve, vt, vλ)

= ∂2,0L
′
e(τ ; qe, t, λ; ve, vt, vλ)

= ∂2L(t, qe, ve/vt)

= P(t, qe, ve/vt) (5.264)

Pt(τ ; qe, t, λ; ve, vt, vλ)

= ∂2,1L
′
e(τ ; qe, t, λ; ve, vt, vλ)

= L(t, qe, ve/vt)− ∂2L(t, qe, ve/vt)(ve/vt) + vλ

= −E(t, qe, ve/vt) + vλ (5.265)

Pλ(τ ; qe, t, λ; ve, vt, vλ)

= ∂2,2L
′
e(τ ; qe, t, λ; ve, vt, vλ)

= vt −Df(τ). (5.266)

So the extended momenta have the same values as the original
momenta at the corresponding states. The momentum conjugate
to the time coordinate is the negation of the energy plus vλ. The
momentum conjugate to λ is the constraint, which must be zero.

Next we carry out the transformation to the corresponding
Hamiltonian formulation. First, note that the Lagrangian Le is
a homogeneous form of degree one in the velocities. Thus, by
Euler’s theorem,

∂2Le(τ ; qe, t; ve, vt) · (ve, vt) = Le(τ ; qe, t; ve, vt). (5.267)

24We augment the Lagrangian with the total time derivative of the constraint
so that the Legendre transform will be well defined.
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The pq̇-part of the Legendre transform of L′e is

∂2L
′
e(τ ; qe, t, λ; ve, vt, vλ) · (ve, vt, vλ)
= ∂2Le(τ ; qe, t; ve, vt) · (ve, vt) + vλvt + (vt −Df(τ))vλ

= Le(τ ; qe, t; ve, vt) + vλvt + (vt −Df(τ))vλ. (5.268)

So the Hamiltonian H ′
e corresponding to L′e is

H ′
e(τ ; qe, t, λ; pe, pt, pλ) = vλvt

= (pt +H(t, qe, pe))(pλ +Df(τ)). (5.269)

We have used the fact that at corresponding states the momenta
have the same values, so on paths pe = p ◦ t, and
E(t, qe, ve/vt) = H(t, qe, pe). (5.270)

The Hamiltonian H ′
e does not depend on λ so we deduce that

pλ is constant. In fact, pλ must be given the value zero, because
it is the constraint. When there is a cyclic coordinate we can
form a reduced Hamiltonian for the remaining degrees of freedom
by substituting the constant value of conserved momentum conju-
gate to the cyclic coordinate into the Hamiltonian. The resulting
Hamiltonian is

He(τ ; qe, t; pe, pt) = (pt +H(t, qe, pe))Df(τ). (5.271)

This extended Hamiltonian governs the evolution of the extended
system, for arbitrary f .25

Hamilton’s equations reduce to

Dqe(τ) = ∂2H(t(τ), qe(τ), pe(τ))Df(τ)

Dt(τ) = Df(τ)

Dpe(τ) = −∂1H(t(τ), qe(τ), pe(τ))Df(τ)

Dpt(τ) = −∂0H(t(τ), qe(τ), pe(τ))Df(τ). (5.272)

25Once we have made this reduction, taking pλ to be zero, we can no longer
perform a Legendre transform back to the extended Lagrangian system; we
cannot solve for pt in terms of vt. However, the Legendre transform in the
extended system from H ′

e to L
′

e, with associated state variables, is well defined.
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The second equation gives the required relation between t and τ .
The first and third equations are equivalent to Hamilton’s equa-
tions in the original coordinates, as we can see by using qe = q ◦ t
to rewrite them:

Dq(t(τ))Dt(τ) = ∂2H(t(τ), q(t(τ)), p(t(τ)))Df(τ)

Dp(t(τ))Dt(τ) = −∂1H(t(τ), q(t(τ)), p(t(τ)))Df(τ). (5.273)

Using Dt(τ) = Df(τ) and dividing these factors out, we recover
Hamilton’s equations.26

Now consider the special case for which the time is the same
as the independent variable: f(τ) = τ , Df(τ) = 1. In this case
q = qe and p = pe. The extended Hamiltonian becomes

H ′
e(τ ; qe, t; pe, pt) = pt +H(t, qe, pe). (5.274)

Hamilton’s equation for t becomes Dt(τ) = 1, restating the con-
straint. Hamilton’s equations for Dqe and Dpe are directly Hamil-
ton’s equations:

Dq(τ) = ∂2H(τ, q(τ), p(τ))

Dp(τ) = −∂1H(τ, q(τ), p(τ)). (5.275)

The extended Hamiltonian (5.274) does not depend on the inde-
pendent variable, so it is a conserved quantity. Thus, up to an
additive constant pt is equal to minus the energy. The Hamilton’s
equation for Dpt relates the change of the energy to ∂0H. Note
that in the more general case, the momentum conjugate to the
time is not the negation of the energy. This choice, t(τ) = τ , is
useful for a number of applications.

The extension transformation is canonical in the sense that
the two sets of equations of motion describe equivalent dynamics.
However, the transformation is not symplectic; in fact, it does not
even have the same number of input and output variables.

Exercise 5.16: Homogeneous extended Lagrangian

Verify that Le is homogeneous of degree one in the velocities.

26If f is strictly increasing then Df is never zero.
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Exercise 5.17: Lagrange equations

a. Verify that the Lagrange equations for qe are satisfied for exactly the
same trajectories that satisfy the original Lagrange equations for q.

b. Verify that the Lagrange equation for t relates the rate of change of
energy to ∂0L.

Exercise 5.18: Lorentz transformations

Investigate Lorentz transformations as point transformations in the ex-
tended phase space.

Restricted three-body problem

An example that shows the utility of reformulating a problem in
the extended phase space is the restricted three-body problem:
the motion of a low-mass particle subject to the gravitational at-
traction of two other massive bodies that move in some fixed orbit.
The problem is an idealization of the situation where a body with
very small mass moves in the presence of two bodies with much
larger masses. Any effects of the smaller body on the larger bod-
ies are neglected. In the simplest version, the motion of all three
bodies is assumed to be in the same plane, and the orbits of the
two massive bodies are circular.

The motion of the bodies with larger masses is not influenced
by the small mass, so we model this situation as the small body
moving in a time-varying field of the larger bodies undergoing
a prescribed motion. This situation can be captured as a time-
dependent Hamiltonian:

H(t;x, y; px, py) =
p2x + p2y
2m

− Gmm1

r1(t)
− Gmm2

r2(t)
, (5.276)

where r1(t) and r2(t) are the distances of the small body to the
larger bodies, m is the mass of the small body, and m1 and m2

are the masses of the larger bodies. Note that r1(t) and r2(t) are
quantities that depend both on the position of the small particle
and the time-varying position of the massive particles.

The massive bodies are in circular orbits and maintain constant
distance from the center of mass. Let a1 and a2 be the distances
to the center of mass; then the distances satisfy m1a1 = m2a2.
The angular frequency is Ω =

√
G(m1 +m2)/a3 where a is the

distance between the masses.
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In polar coordinates, with the center of mass of the subsystem
of massive particles at the origin and with r and θ describing the
position of the low-mass particle, the positions of the two massive
bodies are a2 = m1a/(m1+m2) with θ2 = Ωt, a1 = m2a/(m1+m2)
with θ1 = Ωt+ π. The distances to the point masses are

(r2(t))
2 = r2 + a22 − 2a2r cos(θ − Ωt)

(r1(t))
2 = r2 + a21 − 2a1r cos(θ − Ωt− π). (5.277)

In polar coordinates, the Hamiltonian is

H(t; r, θ; pr, pθ) =
1

2m

(
p2r +

p2θ
r2

)
− Gmm1

r1(t)
− Gmm2

r2(t)
. (5.278)

The Hamiltonian can be written in terms of some function f such
that

H(t; r, θ; pr, pθ) = f(r, θ − Ωt, pr, pθ). (5.279)

The essential feature is that θ and t appear in the Hamiltonian
only in the combination θ − Ωt.

One way to get rid of the time dependence is to choose a new set
of variables with one coordinate equal to this combination θ−Ωt,
by making a point transformation to a rotating coordinate system.
We have shown that

r′ = r (5.280)

θ′ = θ − Ωt (5.281)

p′r = pr (5.282)

p′θ = pθ (5.283)

with

H ′(t; r′, θ′; p′r, p
′
θ) = H(t; r′, θ′ +Ωt; p′r, p

′
θ)− Ωp′θ

= f(r′, θ′, p′r, p
′
θ)− Ωp′θ (5.284)

is a canonical transformation. The new Hamiltonian, which is not
the energy, is conserved because there is no explicit time depen-
dence. It is a useful conserved quantity—the Jacobi constant.27

27Actually, the traditional Jacobi constant is C = −2H ′.
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We can also eliminate the dependence on the independent time-
like variable from the Hamiltonian for the restricted problem by
going to the extended phase space, choosing t = τ . The Hamil-
tonian

He(τ ; r, θ, t; pr , pθ, pt) = H(t; r, θ; pr, pθ) + pt

= f(r, θ − Ωt, pr, pθ) + pt (5.285)

is autonomous and is consequently a conserved quantity. Again,
we see that θ and t occur only in the combination θ − Ωt, which
suggests a point transformation to a new coordinate θ′ = θ − Ωt.
This point transformation is independent of the new independent
variable τ . The transformation is specified in equations (5.280–
5.283), augmented by relations specifying how the time coordinate
and its conjugate momentum are handled:

t = t′ (5.286)

pt = −Ωp′θ + p′t. (5.287)

The new Hamiltonian is obtained by composing the old Hamilto-
nian with the transformation:

H ′
e(τ ; r

′, θ′, t′; p′r, p
′
θ, p

′
t)

= He(τ ; r
′, θ′ +Ωt′, t′; p′r, p

′
θ, p

′
t − Ωp′θ)

= f(r′, θ′, p′r, p
′
θ) + p′t − Ωp′θ. (5.288)

We recognize that the new Hamiltonian in the extended phase
space, which has the same value as the original Hamiltonian in
the extended phase space, is just the Jacobi constant plus p′t. The
new Hamiltonian does not depend on t′, so p′t is a constant of the
motion. In fact, its value is irrelevant to the rest of the dynamical
evolution, so we may set the value of p′t to zero if we like. Thus,
we have found that the Hamiltonian in the extended phase space,
which is conserved, is just the Jacobi constant plus an additive
arbitrary constant. We have two routes to the Jacobi constant:
(1) transform the original system to a rotating coordinate system
to eliminate the time dependence, but in the process add extra
terms to the Hamiltonian, and (2) go to the extended phase space
and immediately get a conserved quantity, and by going to rotat-
ing coordinates recognize that this Hamiltonian is the same as the
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Jacobi constant. So sometimes the Hamiltonian in the extended
phase space is a useful conserved quantity.

Exercise 5.19: Transformations in the extended phase space

In section 5.2.1 we found that time-dependent transformations for which
the derivative of the coordinate–momentum part is symplectic are canon-
ical only if the Hamiltonian is modified by adding a function K subject
to certain constraints (equation 5.42). Show that the constraints on K
follow from the symplectic condition in the extended phase space, using
the choice t = τ .

5.5.1 Poincaré–Cartan Integral Invariant

The Poincaré invariant (section 5.3) is especially useful in the
extended phase space with t = τ . In the extended phase space
the extended Hamiltonian does not depend on the independent
variable. In the extended phase space canonical transformations
are symplectic and the Hamiltonian transforms by composition.

For the special choice of t = τ , equation (5.90) can be rephrased
in an interesting way. Let E be the value of the Hamiltonian in the
original unextended phase space. Using qn = t and pn = pt = −E,
we can write

n−1∑
i=0

∫
Ri

dqidpi −
∫
Rn

dtdE =
n−1∑
i=0

∫
R′

i

dq′idp′i −
∫
R′

n

dt′dE′ (5.289)

and∮
∂R

(
n−1∑
i=0

pidq
i −Edt) =

∮
∂R′

(
n−1∑
i=0

p′idq
′i − E′dt′). (5.290)

The relations (5.289) and (5.290) are two formulations of the
Poincaré–Cartan integral invariant.

5.6 Reduced Phase Space

Suppose we have a system with n+1 degrees of freedom described
by a time-independent Hamiltonian in a (2n + 2)-dimensional
phase space. Here we can play the converse game: we can choose
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any generalized coordinate to play the role of “time” and the nega-
tion of its conjugate momentum to play the role of a new n-degree-
of-freedom time-dependent Hamiltonian in a reduced phase space

of 2n dimensions.
More precisely, let

q =
(
q0, ..., qn

)
p = [p0, ..., pn] , (5.291)

and suppose we have a system described by a time-independent
Hamiltonian

H(t, q, p) = f(q, p) = E. (5.292)

For each solution path there is a conserved quantity E. Let’s
choose a coordinate qn to be the time in a reduced phase space. We
define the dynamical variables for the n-degree-of-freedom reduced
phase space:

qr =
(
q0r , ..., q

n−1
r

)
pr = [pr0, ..., p

r
n−1] . (5.293)

In the original phase space a coordinate such as qn maps time to a
coordinate. In the formulation of the reduced phase space we will
have to use the inverse function τ = (qn)−1 to map the coordinate
to the time, giving the new coordinates in terms of the new time

qir = qi ◦ τ
pri = pi ◦ τ, (5.294)

and thus

Dqir = D(qi ◦ τ) = (Dqi ◦ τ)(Dτ) = (Dqi ◦ τ)/(Dqn ◦ τ)
Dpri = D(pi ◦ τ) = (Dpi ◦ τ)(Dτ) = (Dpi ◦ τ)/(Dqn ◦ τ). (5.295)

We propose that a Hamiltonian in the reduced phase space
is the negative of the inverse of f(q0, ..., qn; p0, ..., pn) = E with
respect to the pn argument:

Hr(x, qr, p
r) = −(the px such that f(qr, x; p

r, px) = E). (5.296)
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Note that in the reduced phase space we will have indices for the
structured variables in the range 0 . . . n−1, whereas in the original
phase space the indices are in the range 0 . . . n. We will show that
Hr is an appropriate Hamiltonian for the given dynamical system
in the reduced phase space. To compute Hamilton’s equations we
must expand the implicit definition of Hr. We define an auxiliary
function

g(x, qr, p
r) = f(qr, x; p

r,−Hr(x, qr, p
r)). (5.297)

Note that by construction this function is identically a constant
g = E. Thus all of its partial derivatives are zero:

∂0g = (∂0f)
n − (∂1f)

n∂0Hr = 0

(∂1g)i = (∂0f)i − (∂1f)
n(∂1Hr)i = 0

(∂2g)
i = (∂1f)

i − (∂1f)
n(∂2Hr)

i = 0, (5.298)

where we have suppressed the arguments. Solving for partials of
Hr, we get

(∂1Hr)i = (∂0f)i / (∂1f)
n = (∂1H)i / (∂2H)n

(∂2Hr)
i = (∂1f)

i / (∂1f)
n = (∂2H)i / (∂2H)n . (5.299)

Using these relations, we can deduce the Hamilton’s equations
in the reduced phase space from the Hamilton’s equations in the
original phase space:

Dqir(x) =
Dqi(τ(x))

Dqn(τ(x))

=
(∂2H(τ(x), q(τ(x)), p(τ(x))))i

(∂2H(τ(x), q(τ(x)), p(τ(x))))n

= (∂2Hr(x, qr(x), p
r(x)))i (5.300)

Dpri (x) =
Dpi(τ(x))

Dqn(τ(x))

=
− (∂1H(τ(x), q(τ(x)), p(τ(x))))i
(∂2H(τ(x), q(τ(x)), p(τ(x))))n

= −(∂1Hr(x, qr(x), p
r(x)))i. (5.301)
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Orbits in a central field

Consider planar motion in a central field. We have already seen
this expressed in polar coordinates in equation (3.100):

H(t; r, ϕ; pr , pϕ) =
p2r
2m

+
p2ϕ

2mr2
+ V (r). (5.302)

There are two degrees of freedom and the Hamiltonian is time
independent. Thus the energy, the value of the Hamiltonian, is
conserved on realizable paths. Let’s forget about time and repa-
rameterize this system in terms of the orbital radius r.28 To do
this we solve

H(t; r, ϕ; pr , pϕ) = E (5.303)

for pr, obtaining

H ′(r, ϕ, pϕ) = −pr = −
(
2m(E − V (r))− p2ϕ

r2

) 1

2

, (5.304)

which is the Hamiltonian in the reduced phase space.
Hamilton’s equations are now quite simple:

dϕ

dr
=

∂H ′

∂pϕ
=

pϕ
r2

(
2m(E − V (r))− p2ϕ

r2

)− 1

2

(5.305)

dpϕ
dr

= −∂H ′

∂ϕ
= 0. (5.306)

The momentum pϕ is independent of r (as it was with t), so for any
particular orbit we may define a constant angular momentum L.
Thus our problem ends up as a simple quadrature:

ϕ(r) =

∫ r L

r2

(
2m(E − V (r))− L2

r2

)− 1

2

dr + ϕ0. (5.307)

28We could have chosen to reparameterize in terms of ϕ, but then both pr
and r would occur in the resulting time-independent Hamiltonian. The path
we have chosen takes advantage of the fact that ϕ does not appear in our
Hamiltonian, so pϕ is a constant of the motion. This structure suggests that
to solve this kind of problem we need to look ahead, as in playing chess.
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To see the utility of this procedure, we continue our example
with a definite potential energy—a gravitating point mass:

V (r) = −μ

r
. (5.308)

When we substitute this into equation (5.307) we obtain a mess
that can be simplified to

ϕ(r) = L

∫ r dr

r
√
2mEr2 + 2mμr − L2

+ ϕ0. (5.309)

Integrating this, we obtain another mess, which can be simplified
and rearranged to obtain the following:

1

r
=

mμ

L2

(
1−

√
1 +

2EL2

mμ2
sin(ϕ(r)− ϕ0)

)
. (5.310)

This can be recognized as the polar-coordinate form of the equa-
tion of a conic section with eccentricity e and parameter p:

1

r
=

1 + e cos θ

p
(5.311)

where

e =

√
1 +

2EL2

mμ2
, p =

L2

mμ
and θ = ϕ0 − ϕ(r)− π

2
. (5.312)

In fact, if the orbit is an ellipse with semimajor axis a, we have

p = a(1− e2) (5.313)

and so we can identify the role of energy and angular momentum
in shaping the ellipse:

E = − μ

2a
and L =

√
mμa(1− e2). (5.314)

What we get from analysis in the reduced phase space is the
geometry of the trajectory, but we lose the time-domain behavior.
The reduction is often worth the price.
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Although we have treated time in a special way so far, we have
found that time is not special. It can be included in the coordi-
nates to make a driven system autonomous. And it can be elimi-
nated from any autonomous system in favor of any other coordi-
nate. This leads to numerous strategies for simplifying problems,
by removing time variation and then performing canonical trans-
forms on the resulting conservative autonomous system to make a
nice coordinate that we can then dump back into the role of time.

Generating functions in extended phase space

We can represent canonical transformations with mixed-variable
generating functions. We can extend these to represent trans-
formations in the extended phase space. Let F2 be a generating
function with arguments (t, q, p′). Then, the corresponding F e

2 in
the extended phase space can be taken to be

F e
2 (τ ; q, t; p

′, p′t) = tp′t + F2(t, q, p). (5.315)

The relations between the coordinates and the momenta are the
same as before. We also have

pt = (∂1F
e
2 )n(τ ; q, t; p

′, p′t) = p′t + ∂0F2(t, q, p)

t′ = (∂2F
e
2 )

n(τ ; q, t; p′, p′t) = t. (5.316)

The first equation gives the relationship between the original
Hamiltonians:

H ′(t, q′, p′) = H(t, q, p) + ∂0F2(t, q, p), (5.317)

as required. Time-independent canonical transformations, where
H ′ = H ◦ CH, have symplectic qp part. The generating-function
representation of a time-dependent transformation does not de-
pend on the independent variable in the extended phase space.
So, in extended phase space the qp part of the transformation,
which includes the time and the momentum conjugate to time, is
symplectic.

Exercise 5.20: Rotating coordinates in extended phase space

In the extended phase space the time is one of the coordinates. Carry out
the transformation to rotating coordinates using an F2-type generating
function in the extended phase space. Compare Hamiltonian (5.178) to
the Hamiltonian obtained by composition with the transformation.
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5.7 Summary

Canonical transformations can be used to reformulate a problem
in coordinates that are easier to understand or that expose some
symmetry of a problem.

In this chapter we have investigated different representations
of a dynamical system. We have found that different representa-
tions will be equivalent if the coordinate–momentum part of the
transformation has a symplectic derivative, and if the Hamilto-
nian transforms in a specified way. If the phase-space transfor-
mation is time independent, then the Hamiltonian transforms by
composition with the phase-space transformation. The symplectic
condition can be equivalently expressed in terms of the fundamen-
tal Poisson brackets. The Poisson bracket and the ω function are
invariant under canonical transformations. The invariance of ω
implies that the sum of the areas of the projections onto funda-
mental coordinate–momentum planes is preserved (Poincaré inte-
gral invariant) by canonical transformations.

A generating function is a real-valued function of the phase-
space coordinates and time that represents a canonical transfor-
mation through its partial derivatives. We found that every canon-
ical transformation can be represented by a generating function.
The proof depends on the Poincaré integral invariant.

We can formulate an extended phase space in which time is
treated as another coordinate. Time-dependent transformations
are simple in the extended phase space. In the extended phase
space the Poincaré integral invariant is the Poincaré–Cartan inte-
gral invariant. We can also reformulate a time-independent prob-
lem as a time-dependent problem with fewer degrees of freedom,
with one of the original coordinates taking on the role of time;
this is the reduced phase space.

5.8 Projects

Exercise 5.21: Hierarchical Jacobi coordinates

A Hamiltonian for the n-body problem is

H = T + V (5.318)
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with

T (t;x0, x1, . . . , xn−1; p0, p1, . . . , pn−1) =
n−1∑
i=0

p2i
2mi

(5.319)

and

V (t;x0, x1, . . . , xn−1; p0, p1, . . . , pn−1) =
∑
i<j

fij(‖xi − xj‖), (5.320)

where xi is the tuple of rectangular coordinates for body i and pi is the
tuple of conjugate linear momenta for body i.

The potential energy of the system depends only on the relative po-
sitions of the bodies, so the relative motion decouples from the center
of mass motion. In this problem we explore canonical transformations
that achieve this decoupling.

a. Canonical heliocentric coordinates. The coordinates transform as
follows:

x′
0 = X, (5.321)

where X is the center of mass of the system, and

x′
i = xi − x0, (5.322)

for i > 0, the differences of the position of body i and the body with in-
dex 0 (which might be the Sun). Find the associated canonical momenta
using an F2-type generating function. Show that the potential energy
can be written solely in terms of the coordinates for i > 0. Show that
the kinetic energy is not in the form of a sum of squares of momenta
divided by mass constants.

b. Jacobi coordinates. The Jacobi coordinates isolate the center of mass
motion, without spoiling the usual diagonal quadratic form of the kinetic
energy. Define Xi to be the center of mass of the bodies with indices
less than or equal to i:

Xi =

∑i
j=0 mjxj∑i
j=0 mj

. (5.323)

The Jacobi coordinates are defined by

x′
i−1 = xi −Xi−1, (5.324)

for 0 < i < n, and

x′
n−1 = Xn−1. (5.325)
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The coordinates x′
i for 0 < i < n are the difference of the position of

body i − 1 and the center of mass of bodies with lower indices; the
coordinate x′

n−1 is the center of mass of the system. Complete the
canonical transformation by finding the conjugate momenta using an
F2-type generating function. Show that the kinetic energy can still be
written in the form

T (t;x′
0, x

′
1, . . . , x

′
n−1; p

′
0, p

′
1, . . . , p

′
n−1) =

n−1∑
i=0

p′i
2

2m′
i

, (5.326)

for some constants m′
i, and that the potential V can be written solely

in terms of the Jacobi coordinates x′
i with indices i > 0.

c. Hierarchical Jacobi coordinates. Define a “body” as a tuple of a
mass and a rectangular position tuple. An n-body “system” is a tuple
of n bodies: (b0, b1, . . . , bn−1). Define a “linking” transformation Ljk for
bodies j and k that takes an n-body system and returns a new linked
system:

(b′0, . . . , b
′
n−1) = Ljk(b0, . . . , bn−1). (5.327)

The bodies in the new system are the same as the bodies in the old
system bi

′ = bi except for bodies j and k:

(m′
j , x

′
j) = (mjmk/(mj +mk), xk − xj)

(m′
k, x

′
k) = (mj +mk, (mjxj +mkxk)/(mj +mk)). (5.328)

This is a transformation to relative coordinates and center of mass for
bodies j and k. Extend this transformation to phase space and show
that it preserves the form of the kinetic energy∑
i

(pi)
2

2mi
=

∑
i

(p′i)
2

2m′
i

. (5.329)

Show that the transformation to Jacobi coordinates of part b is gener-
ated by a composition of linking transformations:

Ln−2,n−1 ◦ · · · ◦ L1,2 ◦ L0,1. (5.330)

Interpret the coordinate transformation produced by such a succession
of linking transformations; why do we call this a “linking” transforma-
tion? What requirement has to be satisfied for a composition of linking
transformations to isolate the center of mass of the system (make it one
of the coordinates)? Taking this constraint into account, find hierar-
chical Jacobi coordinates for a system with six bodies, arranged as two
triple systems, each of which is a binary plus a third body. Verify that
one of the coordinates is the center of mass of the system, and that the
kinetic energy remains a sum of squares of the momenta divided by an
appropriate mass constant.
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Canonical Evolution

What, then, is time? I know well enough what it
is, provided that nobody asks me; but if I am
asked what it is and try to explain, I am baffled.
All the same I can confidently say that I know that
if nothing passed, there would be no past time; if
nothing were going to happen, there would be no
future time; and if nothing were there would be no
present time.

Augustine of Hippo, from Confessions, Book XI,
Section 14. Translation by R.S. Pine-Coffin, 1961.

Time evolution generates a canonical transformation: if we con-
sider all possible initial states of a Hamiltonian system and follow
all the trajectories for the same time interval, then the map from
the initial state to the final state of each trajectory is a canonical
transformation. Hamilton–Jacobi theory gives a mixed-variable
generating function that generates this time-evolution transfor-
mation. For the few integrable systems for which we can solve
the Hamilton–Jacobi equation this transformation gets us action-
angle coordinates, which form a starting point to study perturba-
tions.

6.1 Hamilton–Jacobi Equation

If we could find a canonical transformation so that the transformed
Hamiltonian was identically zero, then by Hamilton’s equations
the new coordinates and momenta would be constants. All of the
time variation of the solution would be captured in the canonical
transformation, and there would be nothing more to the solution.
A mixed-variable generating function that does this job satisfies
a partial differential equation called the Hamilton–Jacobi equa-
tion. In most cases, a Hamilton–Jacobi equation cannot be solved
explicitly. When it can be solved, however, a Hamilton–Jacobi
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equation provides a means of reducing a problem to a useful sim-
ple form.

Recall the relations satisfied by an F2-type generating function:

q′ = ∂2F2(t, q, p
′) (6.1)

p = ∂1F2(t, q, p
′) (6.2)

H ′(t, q′, p′) = H(t, q, p) + ∂0F2(t, q, p
′). (6.3)

If we require the new Hamiltonian to be zero, then F2 must satisfy
the equation

0 = H(t, q, ∂1F2(t, q, p
′)) + ∂0F2(t, q, p

′). (6.4)

So the solution of the problem is “reduced” to the problem of solv-
ing an n-dimensional partial differential equation for F2 with un-
specified new (constant) momenta p′. This is a Hamilton–Jacobi
equation, and in some cases we can solve it.

We can also attempt a somewhat less drastic method of solu-
tion. Rather than try to find an F2 that makes the new Hamil-
tonian identically zero, we can seek an F2-shaped function W that
gives a new Hamiltonian that is solely a function of the new mo-
menta. A system described by this form of Hamiltonian is also
easy to solve. So if we set

H ′′(t, q′′, p′′) = H(t, q, ∂1W (t, q, p′′)) + ∂0W (t, q, p′′)

= E(p′′) (6.5)

and are able to solve for W , then the problem is essentially solved.
In this case, the primed momenta are all constant and the primed
positions are linear in time. This is an alternate form of the
Hamilton–Jacobi equation.

These forms are related. Suppose that we have a W that satis-
fies the second form of the Hamilton–Jacobi equation (6.5). Then
the F2 constructed from W

F2(t, q, p
′) = W (t, q, p′)− E(p′)t (6.6)

satisfies the first form of the Hamilton–Jacobi equation (6.4). Fur-
thermore,

p = ∂1F2(t, q, p
′) = ∂1W (t, q, p′), (6.7)
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so the primed momenta are the same in the two formulations. But

q′ = ∂2F2(t, q, p
′)

= ∂2W (t, q, p′)−DE(p′)t

= q′′ −DE(p′)t, (6.8)

so we see that the primed coordinates differ by a term that is
linear in time—both p′(t) = p′0 and q′(t) = q′0 are constant. Thus
we can use either W or F2 as the generating function, depending
on the form of the new Hamiltonian we want.

Note that if H is time independent then we can often find a
time-independent W that does the job. For time-independent W
the Hamilton–Jacobi equation simplifies to

E(p′) = H(t, q, ∂1W (t, q, p′)). (6.9)

The corresponding F2 is then linear in time. Notice that an im-
plicit requirement is that the energy can be written as a function
of the new momenta alone. This excludes the possibility that the
transformed phase-space coordinates q′ and p′ are simply initial
conditions for q and p.

It turns out that there is flexibility in the choice of the func-
tion E. With an appropriate choice the phase-space coordinates
obtained through the transformation generated by W are action-
angle coordinates.

Exercise 6.1: Hamilton–Jacobi with F1

We have used an F2-type generating function to carry out the Hamilton–
Jacobi transformations. Carry out the equivalent transformations with
an F1-type generating function. Find the equations corresponding to
equations (6.4), (6.5), and (6.9).

6.1.1 Harmonic Oscillator

Consider the familiar time-independent Hamiltonian

H(t, x, p) =
p2

2m
+

kx2

2
. (6.10)

We form the Hamilton–Jacobi equation for this problem:

0 = H(t, x, ∂1F2(t, x, p
′)) + ∂0F2(t, x, p

′). (6.11)
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Using F2(t, x, p
′) = W (t, x, p′)− E(p′)t, we find

E(p′) = H(t, x, ∂1W (t, x, p′)). (6.12)

Writing this out explicitly yields

E(p′) =
(∂1W (t, x, p′))2

2m
+

kx2

2
, (6.13)

and solving for ∂1W gives

∂1W (t, x, p′) =

√
2m

(
E(p′)− kx2

2

)
. (6.14)

Integrating gives the desired W :

W (t, x, p′) =

∫ x
√
2m

(
E(p′)− kz2

2

)
dz. (6.15)

We can use either W or the corresponding F2 as the generating
function. First, take W to be the generating function. We obtain
the coordinate transformation by differentiating:

x′ = ∂2W (t, x, p′)

=

∫ x mDE(p′)√
2m

(
E(p′)− kz2

2

)dz (6.16)

and then integrating to get

x′ =

√
m

k
DE(p′) arcsin

(√
k

2E(p′)
x

)
+ C(p′), (6.17)

with some integration constant C(p′). Inverting this, we get the
unprimed coordinate in terms of the primed coordinate and mo-
mentum:

x =

√
2E(p′)

k
sin

[
1

DE(p′)

√
k

m
(x′ −C(p′))

]
. (6.18)

The new Hamiltonian H ′ depends only on the momentum:

H ′(t, x′, p′) = E(p′). (6.19)
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The equations of motion are just

Dx′(t) = ∂2H
′(t, x′(t), p′(t)) = DE(p′)

Dp′(t) = −∂1H ′(t, x′(t), p′(t)) = 0, (6.20)

with solution

x′(t) = DE(p′)t+ x′0
p′(t) = p′0 (6.21)

for initial conditions x′0 and p′0. If we plug these expressions for
x′(t) and p′(t) into equation (6.18) we find

x(t) =

√
2E(p′)

k
sin

[
1

DE(p′)

√
k

m
(DE(p′)t+ x′0 − C(p′))

]
=

√
2E(p′)

k
sin

[√
k

m
(t− t0)

]
= A sin (ωt+ ϕ) , (6.22)

where the angular frequency is ω =
√
k/m, the amplitude is A =√

2E(p′)/k, and the phase is ϕ = −ωt0 = ω(x′0 − C(p′))/DE(p′).
We can also use F2 = W − Et as the generating function. The

new Hamiltonian is zero, so both x′ and p′ are constant, but the
relationship between the old and new variables is

x′ = ∂2F2(t, x, p
′)

= ∂2W (t, x, p′)−DE(p′)t

=

∫ x mDE(p′)√
2m

(
E(p′)− kz2

2

) −DE(p′)t

=

√
m

k
DE(p′) arcsin

(√
k

2E(p′)
x

)
+ C(p′)−DE(p′)t. (6.23)

Plugging in the solution x′ = x′0 and p′ = p′0 and solving for x, we
find equation (6.22). So once again we see that the two approaches
are equivalent.

It is interesting to note that the solution depends upon the
constants E(p′) and DE(p′), but otherwise the motion is not de-
pendent in any essential way on what the function E actually is.
The momentum p′ is constant and the values of the constants are
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set by the initial conditions. Given a particular function E, the
initial conditions determine p′, but the solution can be obtained
without further specifying the E function.

If we choose particular functions E we can get particular canon-
ical transformations. For example, a convenient choice is simply

E(p′) = αp′, (6.24)

for some constant α that will be chosen later. We find

x =

√
2αp′

k
sin

ω

α
x′. (6.25)

So we see that a convenient choice is α = ω =
√
k/m, so

x =

√
2p′

β
sinx′, (6.26)

with β =
√
km. The new Hamiltonian is

H ′(t, x′, p′) = E(p′) = ωp′. (6.27)

The solution is just x′ = ωt + x′0 and p′ = p′0. Substituting the
expression for x in terms of x′ and p′ into H(t, x, p) = H ′(t, x′, p′),
we derive

p =

[
2m

(
p′α− k

2
x2

)]1/2
=

√
2p′β cos x′. (6.28)

The two transformation equations (6.26) and (6.28) are what we
have called the polar-canonical transformation (equation 5.29).
We have already shown that this transformation is canonical and
that it solves the harmonic oscillator, but it was not derived. Here
we have derived this transformation as a particular case of the
solution of the Hamilton–Jacobi equation.

We can also explore other choices for the E function. For ex-
ample, we could choose

E(p′) = 1
2αp

′2. (6.29)
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Following the same steps as before, we find

x =

√
αp′2

k
sin

ω

α

x′

p′
. (6.30)

So a convenient choice is again α = ω, leaving

x =
p′

β
sin

x′

p′

p = βp′ cos
x′

p′
, (6.31)

with β = (km)1/4. By construction, this transformation is also
canonical and also brings the harmonic oscillator problem into an
easily solvable form:

H ′(t, x′, p′) = 1
2ωp

′2. (6.32)

The harmonic oscillator Hamiltonian has been transformed to
what looks a lot like the Hamiltonian for a free particle. This
is very interesting. Notice that whereas Hamiltonian (6.27) does
not have a well defined Legendre transform to an equivalent La-
grangian, the “free particle” harmonic oscillator has a well defined
Legendre transform:

L′(t, x′, ẋ′) =
ẋ′2

2ω
. (6.33)

Of course, there may be additional properties that make one choice
more useful than others for particular applications.

Exercise 6.2: Pendulum

Formulate and solve a Hamilton–Jacobi equation for the pendulum; in-
vestigate both the circulating and oscillating regions of phase space.
(Note: This is a long story and requires some knowledge of elliptic func-
tions.)

6.1.2 Hamilton–Jacobi Solution of the Kepler Problem

We can use the Hamilton–Jacobi equation to find canonical coor-
dinates that solve the Kepler problem. This is an essential first
step in doing perturbation theory for orbital problems.
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In rectangular coordinates (x, y, z), the Kepler Hamiltonian is

Hr(t;x, y, z; px, py, pz) =
p2

2m
− μ

r
, (6.34)

where r2 = x2 + y2 + z2 and p2 = p2x + p2y + p2z.
We try a generating function of the form W (t;x, y, z; p′x, p

′
y, p

′
z).

The Hamilton–Jacobi equation is then1

E(p′) =
1

2m

[(
∂1,0W (t;x, y, z; p′x, p

′
y, p

′
z)

)2
+

(
∂1,1W (t;x, y, z; p′x, p

′
y, p

′
z)
)2

+
(
∂1,2W (t;x, y, z; p′x, p

′
y, p

′
z)

)2]− μ

r
. (6.35)

This is a partial differential equation in the three partial deriva-
tives of W . We stare at it a while and give up.

Next we try converting to spherical coordinates. This is mo-
tivated by the fact that the potential energy depends only on r.
The Hamiltonian in spherical coordinates (r, θ, ϕ), where θ is the
colatitude and ϕ is the longitude, is

Hs(t; r, θ, ϕ; pr , pθ, pϕ) =
1

2m

[
p2r +

p2θ
r2

+
p2ϕ

r2(sin θ)2

]
− μ

r
. (6.36)

The Hamilton–Jacobi equation is

E(p′0, p
′
1, p

′
2)

=
1

2m

[
(∂1,0W (t; r, θ, ϕ; p′0, p

′
1, p

′
2))

2

+
1

r2
(∂1,1W (t; r, θ, ϕ; p′0, p

′
1, p

′
2))

2

+
1

r2(sin θ)2
(∂1,2W (t; r, θ, ϕ; p′0, p

′
1, p

′
2))

2
]
− μ

r
. (6.37)

1Remember that ∂1,0 means the derivative with respect to the first coordinate
position.
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We can solve this Hamilton–Jacobi equation by successively
isolating the dependence on the various variables. Looking first
at the ϕ dependence, we see that, outside of W , ϕ appears only
in one partial derivative. If we write

W (t; r, θ, ϕ; p′0, p
′
1, p

′
2) = f(r, θ, p′0, p

′
1, p

′
2) + p′2 ϕ, (6.38)

then ∂1,2W (t; r, θ, ϕ; p′0, p
′
1, p

′
2) = p′2, and then ϕ does not appear

in the remaining equation for f :

E(p′0, p
′
1, p

′
2)

=
1

2m

{
(∂0f(r, θ, p

′
0, p

′
1, p

′
2))

2

+
1

r2

[
(∂1f(r, θ, p

′
0, p

′
1, p

′
2))

2
+

(p′2)
2

(sin θ)2

]}
− μ

r
. (6.39)

Any function of the p′i could have been used as the coefficient of
ϕ in the generating function. This particular choice has the nice
feature that p′2 is the z component of the angular momentum.

We can eliminate the θ dependence if we choose

f(r, θ, p′0, p
′
1, p

′
2) = R(r, p′0, p

′
1, p

′
2) + Θ(θ, p′0, p

′
1, p

′
2) (6.40)

and require that Θ be a solution to

(∂0Θ(θ, p′0, p
′
1, p

′
2))

2
+

(p′2)
2

(sin θ)2
= (p′1)

2. (6.41)

We are free to choose the right-hand side to be any function of
the new momenta. This choice reflects the fact that the left-hand
side is non-negative. It turns out that p′1 is the total angular
momentum. This equation for Θ can be solved by quadrature.

The remaining equation that determines R is

E(p′0, p
′
1, p

′
2) =

1

2m

[
(∂0R(r, p′0, p

′
1, p

′
2))

2
+

1

r2
(p′1)

2
]
− μ

r
, (6.42)

which also can be solved by quadrature.
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Altogether the solution of the Hamilton–Jacobi equation reads

W (r, θ, ϕ, p′0, p
′
1, p

′
2) =

∫ r (
2mE(p′0, p

′
1, p

′
2) +

2mμ

r
− (p′1)

2

r2

)1/2

dr

+

∫ θ (
(p′1)

2 − (p′2)
2

(sin θ)2

)1/2

dθ

+ p′2ϕ. (6.43)

It is interesting that our solution to the Hamilton–Jacobi partial
differential equation is of the form

W (t; r, θ, ϕ; p′0, p
′
1, p

′
2)

= R(r, p′0, p
′
1, p

′
2) + Θ(θ, p′0, p

′
1, p

′
2) + Φ(ϕ, p′0, p

′
1, p

′
2). (6.44)

Thus we have a separation-of-variables technique that involves
writing the solution as a sum of functions of the individual vari-
ables. This might be contrasted with the separation-of-variables
technique encountered in elementary quantummechanics and clas-
sical electrodynamics, which uses products of functions of individ-
ual variables.

The coordinates q′ = (q′0, q′1, q′2) conjugate to the momenta
p′ = [p′0, p

′
1, p

′
2] are

q′0 = ∂2,0W (t; r, θ, ϕ; p′0, p
′
1, p

′
2)

= m∂0E(p′)

∫ r (
2mE(p′) +

2mμ

r
− (p′1)

2

r2

)−1/2
dr

q′1 = ∂2,1W (t; r, θ, ϕ; p′0, p
′
1, p

′
2)

= p′1

∫ θ (
(p′1)

2 − (p′2)
2

(sin θ)2

)−1/2
dθ

+

∫ r (
m∂1E(p′)− p′1

r2

)(
2mE(p′) +

2mμ

r
− (p′1)

2

r2

)−1/2
dr

q′2 = ∂2,2W (t; r, θ, ϕ; p′0, p
′
1, p

′
2)

= ϕ− p′2
(sin θ)2

∫ θ (
(p′1)

2 − (p′2)
2

(sin θ)2

)−1/2
dθ

+m∂2E(p′)

∫ r (
2mE(p′) +

2mμ

r
− (p′1)

2

r2

)−1/2
dr.
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We are still free to choose the functional form of E. A conve-
nient (and conventional) choice is

E(p′0, p
′
1, p

′
2) = −

mμ2

2(p′0)
2
. (6.45)

With this choice the momentum p′0 has dimensions of angular
momentum, and the conjugate coordinate is an angle.

The Hamiltonian for the Kepler problem is reduced to

H ′(t, q′, p′) = E(p′) = − mμ2

2(p′0)
2
. (6.46)

Thus

q′0 = nt+ β0 (6.47)

q′1 = β1 (6.48)

q′2 = β2, (6.49)

where n = mμ2/(p′0)
3 and where β0, β1, and β2 are the initial

values of the components of q′. Only one of the new variables
changes with time.

The canonical phase-space coordinates can be written in terms
of the parameters that specify an orbit. We merely summarize the
results; for further explanation see [36] or [38].

Assume we have a bound orbit with semimajor axis a, ec-
centricity e, inclination i, longitude of ascending node Ω, argu-
ment of pericenter ω, and mean anomaly M . The three canon-
ical momenta are p′0 =

√
mμa, p′1 =

√
mμa(1− e2), and p′2 =√

mμa(1− e2) cos i. The first momentum is related to the en-
ergy, the second momentum is the total angular momentum, and
the third momentum is the component of the angular momen-
tum in the ẑ direction. The conjugate canonical coordinates are
(q′)0 = M , (q′)1 = ω, and (q′)2 = Ω.

6.1.3 F2 and the Lagrangian

The solution to the Hamilton–Jacobi equation, the mixed-variable
generating function that generates time evolution, is related to the
action used in the variational principle. In particular, the time
derivative of the generating function along realizable paths has
the same value as the Lagrangian.
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Let F̃2(t) = F2(t, q(t), p
′(t)) be the value of F2 along the paths

q and p′ at time t. The derivative of F̃2 is

DF̃2(t) = ∂0F2(t, q(t), p
′(t))

+ ∂1F2(t, q(t), p
′(t))Dq(t)

+ ∂2F2(t, q(t), p
′(t))Dp′(t). (6.50)

Using the Hamilton–Jacobi equation (6.4), this becomes

DF̃2(t) = −H(t, q(t), ∂1F2(t, q(t), p
′(t)))

+ ∂1F2(t, q(t), p
′(t))Dq(t)

+ ∂2F2(t, q(t), p
′(t))Dp′(t). (6.51)

Now, using equation (6.2), we get

DF̃2(t) = −H(t, q(t), p(t))

+ p(t)Dq(t)

+ ∂2F2(t, q(t), p
′(t))Dp′(t). (6.52)

But p(t)Dq(t)−H(t, q(t), p(t)) = L(t, q(t),Dq(t)), so

DF̃2(t) = L(t, q(t),Dq(t)) + ∂2F2(t, q(t), p
′(t))Dp′(t). (6.53)

On realizable paths we have Dp′(t) = 0, so along realizable
paths the time derivative of F2 is the same as the Lagrangian
along the path. The time integral of the Lagrangian along any
path is the action along that path. This means that, up to an
additive term that is constant on realizable paths but may be a
function of the transformed phase-space coordinates q′ and p′, the
F2 that solves the Hamilton–Jacobi equation has the same value
as the Lagrangian action for realizable paths.

The same conclusion follows for the Hamilton–Jacobi equation
formulated in terms of F1. Up to an additive term that is con-
stant on realizable paths but may be a function of the transformed
phase-space coordinates q′ and p′, the F1 that solves the corre-
sponding Hamilton–Jacobi equation has the same value as the
Lagrangian action for realizable paths.
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Recall that a transformation given by an F2-type generating
function is also given by an F1-type generating function related to
it by a Legendre transform (see equation 5.142):

F1(t, q, q
′) = F2(t, q, p

′)− q′p′, (6.54)

provided the transformations are nonsingular. In this case, both q′

and p′ are constant on realizable paths, so the additive constants
that make F1 and F2 equal to the Lagrangian action differ by q′p′.

Exercise 6.3: Harmonic oscillator

Let’s check this for the harmonic oscillator (of course).

a. Finish the integral (6.15):

W (t, x, p′) =

∫ x
√
2m

(
E(p′)− kz2

2

)
dz.

Write the result in terms of the amplitude A =
√
2E(p′)/k.

b. Check that this generating function gives the transformation

x′ = ∂2W (t, x, p′) =

√
m

k
DE(p′) arcsin

(
x√

2E(p′)/k

)
,

which is the same as equation (6.17) for a particular choice of the inte-
gration constant. The other part of the transformation is

p = ∂1W (t, x, p′) =
√
mk

√
A2 − x2,

with the same definition of A as before.

c. Compute the time derivative of the associated F2 along realizable
paths (Dp′(t) = 0), and compare it to the Lagrangian along realizable
paths.

6.1.4 The Action Generates Time Evolution

We define the function F̄ (t1, q1, t2, q2) to be the value of the action
for a realizable path q such that q(t1) = q1 and q(t2) = q2. So F̄
satisfies

F̄ (t1, q(t1), t2, q(t2)) = S[q](t1, t2) =

∫ t2

t1

L ◦ Γ[q]. (6.55)



424 Chapter 6 Canonical Evolution

For variations η that are not necessarily zero at the end times
and for realizable paths q, the variation of the action is

δηS[q](t1, t2) = (∂2L ◦ Γ[q])η|t2t1
= p(t2)η(t2)− p(t1)η(t1). (6.56)

Alternatively, the variation of S[q] in equation (6.55) gives

δηS[q](t1, t2) = ∂1F̄ (t1, q(t1), t2, q(t2))η(t1)

+ ∂3F̄ (t1, q(t1), t2, q(t2))η(t2). (6.57)

Comparing equations (6.56) and (6.57) and using the fact that the
variation η is arbitrary, we find

∂1F̄ (t1, q(t1), t2, q(t2)) = −p(t1)
∂3F̄ (t1, q(t1), t2, q(t2)) = p(t2). (6.58)

The partial derivatives of F̄ with respect to the coordinate argu-
ments give the momenta. Abstracting off paths, we have

∂1F̄ (t1, q1, t2, q2) = −p1
∂3F̄ (t1, q1, t2, q2) = p2. (6.59)

This looks a bit like the F1-type generating function relations, but
here there are two times. Solving equations (6.59) for q2 and p2
as functions of t2 and the initial state t1, q1, p1, we get the time
evolution of the system in terms of F̄ . The function F̄ generates
time evolution.

If we vary the lower limit of the action integral we get

∂0(S[q])(t1, t2) = −L(t1, q(t1),Dq(t1)). (6.60)

Using equation (6.55), and given a realizable path q such that
q(t1) = q1 and q(t2) = q2, we get the partial derivatives with
respect to the time slots:

∂0(S[q])(t1, t2) = ∂0F̄ (t1, q1, t2, q2) + ∂1F̄ (t1, q1, t2, q2)Dq(t1)

= ∂0F̄ (t1, q1, t2, q2)− p(t1)Dq(t1). (6.61)

Rearranging the terms of equation (6.61) and using equation (6.60)
we get
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∂0F̄ (t1, q1, t2, q2) = H(t1, q1, p1)

= H(t1, q1,−∂1F̄ (t1, q1, t2, q2)), (6.62)

and similarly

∂2F̄ (t1, q1, t2, q2) = −H(t2, q2, p2)

= −H(t2, q2, ∂3F̄ (t1, q1, t2, q2)). (6.63)

These are a pair of Hamilton–Jacobi equations, computed at the
endpoints of the path.

The function F̄ can be written in terms of an F1 that satisfies a
Hamilton–Jacobi equation for H. We can compute time evolution
by using the F1 solution of the Hamilton–Jacobi equation to ex-
press the state (t1, q1, p1) in terms of the constants q′ and p′. Using
the same solution we can then perform a subsequent transforma-
tion back from q′ p′ to the original state variables at a different
time t2, giving the state (t2, q2, p2). The composition of these two
canonical transformations is canonical (see exercise 5.12).

The generating function for the composition is the difference of
the generating functions for each step:

F̄x(t1, q1, q
′, t2, q2) = F1(t2, q2, q

′)− F1(t1, q1, q
′), (6.64)

with the condition

∂2F1(t2, q2, q
′)− ∂2F1(t1, q1, q

′) = 0, (6.65)

which allows us to eliminate q′ in terms of t1, q1, t2, and q2. So
we can write

F̄ (t1, q1, t2, q2) = F1(t2, q2, q
′)− F1(t1, q1, q

′). (6.66)

Exercise 6.4: Uniform acceleration

a. Compute the Lagrangian action, as a function of the endpoints and
times, for a uniformly accelerated particle. Use this to construct the
canonical transformation for time evolution from a given initial state.

b. Solve the Hamilton–Jacobi equation for the uniformly accelerated
particle, obtaining the F1 that makes the transformed Hamiltonian zero.
Show that the Lagrangian action can be expressed as a difference of two
applications of this F1.
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6.2 Time Evolution is Canonical

We use time evolution to generate a transformation

(t, q, p) = CΔ(t′, q′, p′) (6.67)

that is obtained in the following way. Let σ(t) = (t, q̄(t), p̄(t)) be a
solution of Hamilton’s equations. The transformation CΔ satisfies

CΔ(σ(t)) = σ(t+Δ), (6.68)

or, equivalently,

CΔ(t, q̄(t), p̄(t)) = (t+Δ, q̄(t+Δ), p̄(t+Δ)). (6.69)

Notice that CΔ changes the time component. This is the first
transformation of this kind that we have considered.2

Given a state (t′, q′, p′), we find the phase-space path σ ema-
nating from this state as an initial condition, satisfying

q′ = q̄(t′)

p′ = p̄(t′). (6.70)

The value (t, q, p) of CΔ(t′, q′, p′) is then (t′+Δ, q̄(t′+Δ), p̄(t′+Δ)).
Time evolution is canonical if the transformation CΔ is symplec-

tic and if the Hamiltonian transforms in an appropriate manner.
The transformation CΔ is symplectic if the bilinear antisymmet-
ric form ω is invariant (see equation 5.73) for a general pair of
linearized state variations with zero time component.

Let ζ ′ be an increment with zero time component of the state
(t′, q′, p′). The linearized increment in the value of CΔ(t′, q′, p′) is
ζ = DCΔ(t′, q′, p′)ζ ′: The image of the increment is obtained by
multiplying the increment by the derivative of the transformation.
On the other hand, the transformation is obtained by time evolu-
tion, so the image of the increment can also be found by the time
evolution of the linearized variational system. Let

ζ̄(t) = (0, ζ̄q(t), ζ̄p(t))

ζ̄ ′(t) = (0, ζ̄ ′q(t), ζ̄
′
p(t)) (6.71)

2Our theorems about which transformations are canonical are still valid, be-
cause a shift of time does not affect the symplectic condition. See footnote 14
in Chapter 5.
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be variations of the state path σ(t) = (t, q̄(t), p̄(t)); then

ζ̄(t+Δ) = DCΔ(t, q(t), p(t))ζ̄(t)
ζ̄ ′(t+Δ) = DCΔ(t, q(t), p(t))ζ̄ ′(t). (6.72)

The symplectic requirement is

ω(ζ̄(t), ζ̄ ′(t)) = ω(ζ̄(t+Δ), ζ̄ ′(t+Δ)). (6.73)

This must be true for arbitrary Δ, so it is satisfied if the following
quantity is constant:

A(t) = ω(ζ̄(t), ζ̄ ′(t))

= P (ζ̄ ′(t))Q(ζ̄(t))− P (ζ̄(t))Q(ζ̄ ′(t))

= ζ̄ ′p(t)ζ̄q(t)− ζ̄p(t)ζ̄
′
q(t). (6.74)

We compute the derivative:

DA(t) = Dζ̄ ′p(t)ζ̄q(t) + ζ̄ ′p(t)Dζ̄q(t)

−Dζ̄p(t)ζ̄
′
q(t)− ζ̄p(t)Dζ̄ ′q(t). (6.75)

With Hamilton’s equations, the variations satisfy

Dζ̄q(t) = ∂1∂2H(t, q̄(t), p̄(t))ζ̄q(t)

+ ∂2∂2H(t, q̄(t), p̄(t))ζ̄p(t),

Dζ̄p(t) = −∂1∂1H(t, q̄(t), p̄(t))ζ̄q(t)

− ∂2∂1H(t, q̄(t), p̄(t))ζ̄p(t). (6.76)

Substituting these into DA and collecting terms, we find3

DA(t) = 0. (6.77)

We conclude that time evolution generates a phase-space trans-
formation with symplectic derivative.

To make a canonical transformation we must specify how the
Hamiltonian transforms. The same Hamiltonian describes the
evolution of a state and a time-advanced state because the lat-
ter is just another state. Thus the transformed Hamiltonian is
the same as the original Hamiltonian.

3Partial derivatives of structured arguments do not generally commute, so this
deduction is not as simple as it may appear.
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Liouville’s theorem, again

We deduced that volumes in phase space are preserved by time
evolution by showing that the divergence of the phase flow is zero,
using the equations of motion (see section 3.8). We can also show
that volumes in phase space are preserved by the evolution using
the fact that time evolution is a canonical transformation.

We have shown that phase-space volume is preserved for sym-
plectic transformations. Now we have shown that the transforma-
tion generated by time evolution is a symplectic transformation.
Therefore, the transformation generated by time evolution pre-
serves phase-space volume. This is an alternate proof of Liouville’s
theorem.

Another time-evolution transformation

There is another canonical transformation that can be constructed
from time evolution. We define the transformation C′Δ such that

C′Δ = CΔ ◦ S−Δ, (6.78)

where SΔ(a, b, c) = (a + Δ, b, c) shifts the time of a phase-space
state.4 More explicitly, given a state (t, q′, p′), we evolve the state
that is obtained by subtracting Δ from t; that is, we take the
state (t −Δ, q′, p′) as an initial state for evolution by Hamilton’s
equations. The state path σ satisfies

σ(t−Δ) = (t−Δ, q̄(t−Δ), p̄(t−Δ))

= (t−Δ, q′, p′). (6.79)

The output of the transformation is the state

(t, q, p) = σ(t) = (t, q̄(t), p̄(t)). (6.80)

The transformation satisfies

(t, q̄(t), p̄(t)) = C′Δ(t, q̄(t−Δ), p̄(t−Δ)). (6.81)

The arguments of C′Δ are not a consistent phase-space state;
the time argument must be decremented by Δ to obtain a consis-

4The transformation SΔ is an identity on the qp components, so it is symplec-
tic. Although it adjusts the time, it is not a time-dependent transformation
in that the qp components do not depend upon the time. Thus, if we adjust
the Hamiltonian by composition with SΔ we have a canonical transformation.
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tent state. The transformation is completed by evolution of this
consistent state.

Why is this a good idea? Our usual canonical transforma-
tions do not change the time component. The CΔ transformation
changes the time component, but C′Δ does not. It is canonical and
in the usual form:

(t, q, p) = C′Δ(t, q′, p′). (6.82)

The C′Δ transformation requires an adjustment of the Hamil-
tonian. The Hamiltonian H ′

Δ that gives the correct Hamilton’s
equations at the transformed phase-space point is the original
Hamiltonian composed with a function that decrements the in-
dependent variable by Δ:

H ′
Δ(t, q, p) = H(t−Δ, q, p) (6.83)

or

H ′
Δ = H ◦ S−Δ. (6.84)

Notice that if H is time independent then H ′
Δ = H.

Assume we have a procedure C such that ((C delta-t) state)

implements a time-evolution transformation CΔ of the state state
with time interval delta-t; then the procedure Cp such that
((Cp delta-t) state) implements C′Δ of the same state and time
interval can be derived from the procedure C by using the proce-
dure

(define ((C->Cp C) delta-t)
(compose (C delta-t) (shift-t (- delta-t))))

where shift-t implements SΔ:

(define ((shift-t delta-t) state)
(up
(+ (time state) delta-t)
(coordinate state)
(momentum state)))

To complete the canonical transformation we have a procedure
that transforms the Hamiltonian:

(define ((H->Hp delta-t) H)
(compose H (shift-t (- delta-t))))
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So both C and C′ can be used to make canonical transformations
by specifying how the old and new Hamiltonians are related. For
CΔ the Hamiltonian is unchanged. For C′Δ the Hamiltonian is time
shifted.

Exercise 6.5: Verification

The condition (5.20) that Hamilton’s equations are preserved for CΔ is

DsH ◦ CΔ = DCΔ DsH
′
Δ,

and the condition that Hamilton’s equations are preserved for C′Δ is

DsH ◦ C′Δ = DC′Δ DsH
′
Δ.

Verify that these conditions are satisfied.

Exercise 6.6: Driven harmonic oscillator

We can use the simple driven harmonic oscillator to illustrate that time
evolution yields a symplectic transformation that can be extended to be
canonical in two ways. We use the driven harmonic oscillator because
its solution can be compactly expressed in explicit form.

Suppose that we have a harmonic oscillator with natural frequency
ω0 driven by a periodic sinusoidal drive of frequency ω and amplitude α.
The Hamiltonian we will consider is

H(t, q, p) = 1
2p

2 + 1
2ω

2
0q

2 − αq cosωt.

The general solution for a given initial state (t0, q0, p0) evolved for a time
Δ is⎧⎩ q(t0 +Δ)

p(t0 +Δ)/ω0

⎫⎭
=

⎧⎩ cosω0Δ sinω0Δ
− sinω0Δ cosω0Δ

⎫⎭⎧⎩ q0 − α′ cosωt0
(1/ω0)(p0 + α′ω sinωt0)

⎫⎭
+

⎧⎩ α′ cosω(t0 +Δ)
−α′(ω/ω0) sinω(t0 +Δ)

⎫⎭
where α′ = α/(ω2

0 − ω2).

a. Fill in the details of the procedure

(define (((C* alpha omega omega0) delta-t) state)
... )

that implements the time-evolution transformation of the driven har-
monic oscillator. Let C be (C* alpha omega omega0).

b. In terms of C*, the general solution emanating from a given state is

(define (((solution alpha omega omega0) state0) t)
(((C* alpha omega omega0) (- t (time state0))) state0))
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Check that the implementation of C* is correct by using it to construct
the solution and verifying that the solution satisfies Hamilton’s equa-
tions. Further check the solution by comparing to numerical integration.

c. We know that for any phase-space state function F the rate of change
of that function along a solution path σ is

D(F ◦ σ) = ∂0F ◦ σ + {F,H} ◦ σ.
Show, by writing a short program to test it, that this is true of the
function implemented by (C delta) for the driven oscillator. Why is
this interesting?

d. Use the procedure symplectic-transform? to show that both C and
Cp are symplectic.

e. Use the procedure canonical? to verify that both C and Cp are canon-
ical with the appropriate transformed Hamiltonian.

6.2.1 Another View of Time Evolution

We can also show that time evolution generates canonical trans-
formations using the Poincaré–Cartan integral invariant.

Consider a two-dimensional region of phase-space coordinates,
R′, at some particular time t′ (see figure 6.1). Let R be the image
of this region at time t under time evolution for a time interval
of Δ. The time evolution is governed by a Hamiltonian H. Let∑

iAi be the sum of the oriented areas of the projections of R
onto the fundamental canonical planes.5 Similarly, let

∑
i A

′
i be

the sum of oriented projected areas for R′. We will show that∑
iAi =

∑
iA

′
i, and thus the Poincaré integral invariant is pre-

served by time evolution. By showing that the Poincaré integral
invariant is preserved, we will have shown that the qp part of the
transformation generated by time evolution is symplectic. From
this we can construct canonical transformations from time evolu-
tion as before.

In the extended phase space we see that the evolution sweeps
out a cylindrical volume with endcaps R′ and R, each at a fixed
time. Let R′′ be the two-dimensional region swept out by the
trajectories that map the boundary of region R′ to the boundary of
region R. The regions R, R′, and R′′ together form the boundary
of a volume of phase-state space.

5By Stokes’s theorem we may compute the area of a region by a line integral
around the boundary of the region. We define the positive sense of the area
to be the area enclosed by a curve that is traversed in a counterclockwise
direction, when drawn on a plane with the coordinate on the abscissa and the
momentum on the ordinate.
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The Poincaré–Cartan integral invariant on the whole boundary
is zero.6 Thus

n∑
i=0

Ai −
n∑

i=0

A′i +
n∑

i=0

A′′i = 0, (6.85)

where the n index indicates the t, pt canonical plane. The second
term is negative, because in the extended phase space we take the
area to be positive if the normal to the surface is outward pointing.

We will show that the Poincaré–Cartan integral invariant for a
region of phase space that is generated by time evolution is zero:

n∑
i=0

A′′i = 0. (6.86)

This will allow us to conclude

n∑
i=0

Ai −
n∑

i=0

A′i = 0. (6.87)

The areas of the projection of R and R′ on the t, pt plane are zero
because R and R′ are at constant times, so for these regions the
Poincaré–Cartan integral invariant is the same as the Poincaré
integral invariant. Thus

n−1∑
i=0

Ai =
n−1∑
i=0

A′i. (6.88)

We are left with showing that the Poincaré–Cartan integral
invariant for the region R′′ is zero. This will be zero if the contri-
bution from any small piece of R′′ is zero. We will show this by
showing that the ω form (see equation 5.70) on a small parallel-
ogram in this region is zero. Let (0; q, t; p, pt) be a vertex of this
parallelogram. The parallelogram is specified by two edges ζ1 and
ζ2 emanating from this vertex. For edge ζ1 of the parallelogram,

6We can see this as follows. Let γ be any closed curve in the boundary. This
curve divides the boundary into two regions. By Stokes’s theorem the integral
invariant over both of these pieces can be written as a line integral along this
boundary, but they have opposite signs, because γ is traversed in opposite
directions to keep the surface on the left. So we conclude that the integral
invariant over the entire surface is zero.
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Time

R

R′′

R′

(t′, q′, p′)

(t, q, p)

Figure 6.1 All points in some two-dimensional region R′ in phase
space at time t′ are evolved for some time interval Δ. At the time t
the set of points define the two-dimensional region R. For example,
the state labeled by the phase-space coordinates (t′, q′, p′) evolves to the
state labeled by the coordinates (t, q, p).

we take a constant-time phase-space increment with length Δq
and Δp in the q and p directions. The first-order change in the
Hamiltonian that corresponds to these changes is

ΔH = ∂1H(t, q, p)Δq + ∂2H(t, q, p)Δp (6.89)

for constant time Δt = 0. The increment Δpt is the negative of
ΔH. So the extended phase-space increment is

ζ1 = (0;Δq, 0;Δp,−∂1H(t, q, p)Δq − ∂2H(t, q, p)Δp). (6.90)

The edge ζ2 is obtained by time evolution of the vertex for a time
interval Δt. Using Hamilton’s equations, we obtain

ζ2 = (0;Dq(t)Δt,Δt;Dp(t)Δt,Dpt(t)Δt) (6.91)

= (0; ∂2H(t, q, p)Δt,Δt;−∂1H(t, q, p)Δt,−∂0H(t, q, p)Δt).
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The ω form applied to these incremental states that form the edges
of this parallelogram gives the area of the parallelogram:

ω(ζ1, ζ2)

= Q(ζ1)P (ζ2)− P (ζ1)Q(ζ2)

= (Δq, 0)

· (−∂1H(t, q, p)Δt,−∂0H(t, q, p)Δt)

− (Δp,−∂1H(t, q, p)Δq − ∂2H(t, q, p)Δp)

· (∂2H(t, q, p)Δt,Δt)

= 0. (6.92)

So we may conclude that the integral of this expression over the
entire surface of the tube of trajectories is also zero. Thus the
Poincaré–Cartan integral invariant is zero for any region that is
generated by time evolution.

Having proven that the trajectory tube provides no contribu-
tion, we have shown that the Poincaré integral invariant of the two
endcaps is the same. This proves that time evolution generates a
symplectic qp transformation.

Area preservation of surfaces of section

We can use the Poincaré–Cartan invariant to prove that for au-
tonomous two-degree-of-freedom systems, surfaces of section (con-
structed appropriately) preserve area.

To show this we consider a surface of section for one coordinate
(say q2) equal to zero. We construct the section by accumulat-
ing the (q1, p1) pairs. We assume that all initial conditions have
the same energy. We compute the sum of the areas of canonical
projections in the extended phase space again. Because all initial
conditions have the same q2 = 0 there is no area on the q2, p2
plane, and because all the trajectories have the same value of the
Hamiltonian the area of the projection on the t, pt plane is also
zero. So the sum of areas of the projections is just the area of the
region on the surface of section. Now let each point on the surface
of section evolve to the next section crossing. For each point on
the section this may take a different amount of time. Compute the
sum of the areas again for the mapped region. Again, all points
of the mapped region have the same q2, so the area on the q2, p2
plane is zero, and they continue to have the same energy, so the
area on the t, pt plane is zero. So the area of the mapped region is
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again just the area on the surface of section, the q1, p1 plane. Time
evolution preserves the sum of areas, so the area on the surface of
section is the same as the mapped area.

Thus surfaces of section preserve area provided that the section
points are entirely on a canonical plane. For example, to make
the Hénon–Heiles surfaces of section (see section 3.6.3) we plotted
py versus y when x = 0 with px ≥ 0. So for all section points the
x coordinate has the fixed value 0, the trajectories all have the
same energy, and the points accumulated are entirely in the y, py
canonical plane. So the Hénon–Heiles surfaces of section preserve
area.

6.2.2 Yet Another View of Time Evolution

We can show directly from the action principle that time evolution
generates a symplectic transformation.

Recall that the Lagrangian action S is

S[q](t1, t2) =

∫ t2

t1

L ◦ Γ[q]. (6.93)

We computed the variation of the action in deriving the Lagrange
equations. The variation is (see equation 1.33)

δηS[q](t1, t2) = (∂2L ◦ Γ[q])η|t2t1 −
∫ t2

t1

(E [L] ◦ Γ[q])η, (6.94)

rewritten in terms of the Euler–Lagrange operator E. In the
derivation of the Lagrange equations we considered only variations
that preserved the endpoints of the path being tested. However,
equation (6.94) is true of arbitrary variations. Here we consider
variations that are not zero at the endpoints around a realizable
path q (one for which E [L] ◦ Γ[q] = 0). For these variations the
variation of the action is just the integrated term:

δηS[q](t1, t2) = (∂2L ◦ Γ[q])η|t2t1 = p(t2)η(t2)− p(t1)η(t1). (6.95)

Recall that p and η are structures, and the product implies a sum
of products of components.

Consider a continuous family of realizable paths; the path for
parameter s is q̃(s) and the coordinates of this path at time t are
q̃(s)(t). We define η̃(s) = Dq̃(s); the variation of the path along
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the family is the derivative of the parametric path with respect to
the parameter. Let

S̃(s) = S[q̃(s)](t1, t2) (6.96)

be the value of the action from t1 to t2 for path q̃(s). The deriva-
tive of the action along this parametric family of paths is7

DS̃(s) = δη̃(s)S[q̃(s)]

= (∂2L ◦ Γ[q̃(s)])η̃(s)|t2t1 −
∫ t2

t1

(E[L] ◦ Γ[q̃(s)])η̃(s). (6.97)

Because q̃(s) is a realizable path, E[L] ◦ Γ[q̃(s)] = 0. So

DS̃(s) = (∂2L ◦ Γ[q̃(s)])η̃(s)|t2t1
= p̃(s)(t2)η̃(s)(t2)− p̃(s)(t1)η̃(s)(t1), (6.98)

where p̃(s) is the momentum conjugate to q̃(s). The integral of

DS̃ is

S[q̃(s2)](t1, t2)− S[q̃(s1)](t1, t2) =

∫ s2

s1

(DS̃)

=

∫ s2

s1

(h(t2)− h(t1)), (6.99)

where

h(t)(s) = p̃(s)(t)η̃(s)(t) = p̃(s)(t)Dq̃(s)(t). (6.100)

In conventional notation the latter line integral is written∫
γ2

∑
i

pidq
i −

∫
γ1

∑
i

pidq
i, (6.101)

where γ1(s) = q̃(s)(t1) and γ2(s) = q̃(s)(t2).

7Let f be a path-dependent function, η̃(s) = Dq̃(s), and g(s) = f [q̃(s)]. The
variation of f at q̃(s) in the direction η̃(s) is δη̃(s)f [q̃(s)] = Dg(s).
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For a loop family of paths (such that q̃(s2) = q̃(s1)), the differ-
ence of actions at the endpoints vanishes, so we deduce∮
γ2

∑
i

pidq
i =

∮
γ1

∑
i

pidq
i, (6.102)

which is the line-integral version of the integral invariants.
In terms of area integrals, using Stokes’s theorem, this is∑

i

∫
Ri

2

dpidq
i =

∑
i

∫
Ri

1

dpidq
i, (6.103)

where Ri
j are the regions in the ith canonical plane. We have

found that the time evolution preserves the integral invariants,
and thus time evolution generates a symplectic transformation.

6.3 Lie Transforms

The evolution of a system under any Hamiltonian generates a con-
tinuous family of canonical transformations. To study the behav-
ior of some system governed by a Hamiltonian H, it is sometimes
appropriate to use a canonical transformation generated by evo-
lution governed by another Hamiltonian-like function W on the
same phase space. Such a canonical transformation is called a Lie

transform.
The functionsH andW are both Hamiltonian-shaped functions

defined on the same phase space. Time evolution for an interval
Δ governed by H is a canonical transformation CΔ,H . Evolution
by W for an interval ε is a canonical transformation C′ε,W :

(t, q, p) = C′ε,W (t, q′, p′). (6.104)

The independent variable in the H evolution is time, and the inde-
pendent variable in the W evolution is an arbitrary parameter of
the canonical transformation. We chose C′ for the W evolution so
that the canonical transformation induced by W does not change
the time in the system governed by H.
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C′ε,W
t, q′, p′

CΔ,H CΔ,H′

t0, q0, p0 t0, q
′
0, p

′
0

t, q, p

Figure 6.2 Time evolution of a trajectory started at the point
(t0, q0, p0), governed by the Hamiltonian H , is transformed by the Lie
transform governed by the generator W . The time evolution of the
transformed trajectory is governed by the Hamiltonian H ′.

Figure 6.2 shows how a Lie transform is used to transform a
trajectory. We can see from the diagram that the canonical trans-
formations obey the relation

C′ε,W ◦ CΔ,H′ = CΔ,H ◦ C′ε,W . (6.105)

For generators W that do not depend on the independent vari-
able, the resulting canonical transformation C′ε,W is time indepen-
dent and symplectic. A time-independent symplectic transforma-
tion is canonical if the Hamiltonian transforms by composition:8

8In general, the generator W could depend on its independent variable. If so,
it would be necessary to specify a rule that gives the initial value of the inde-
pendent variable for the W evolution. This rule may or may not depend upon
the time. If the specification of the independent variable for the W evolution
does not depend on time, then the resulting canonical transformation C′ε,W
is time independent and the Hamiltonians transform by composition. If the
generator W depends on its independent variable and the rule for specifying
its initial value depends on time, then the transformation C′ε,W is time depen-
dent. In this case there may need to be an adjustment to the relation between
the Hamiltonians H and H ′. In the extended phase space all these complica-
tions disappear: There is only one case. We can assume all generators W are
independent of the independent variable.
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H ′ = H ◦ C′ε,W . (6.106)

We will use only Lie transforms that have generators that do not
depend on the independent variable.

Lie transforms of functions

The value of a phase-space function F changes if its arguments
change. We define the function E′ε,W of a function F of phase-
space coordinates (t, q, p) by

E′ε,WF = F ◦ C′ε,W . (6.107)

We say that E′ε,WF is the Lie transform of the function F .
In particular, the Lie transform advances the coordinate and

momentum selector functions Q = I1 and P = I2:

(E′ε,WQ)(t, q′, p′) = (Q ◦ C′ε,W )(t, q′, p′) = Q(t, q, p) = q

(E′ε,WP )(t, q′, p′) = (P ◦ C′ε,W )(t, q′, p′) = P (t, q, p) = p. (6.108)

So we may restate equation (6.107) as

(E′ε,WF )(t, q′, p′)

= F (t, (E′ε,WQ)(t, q′, p′), (E′ε,WP )(t, q′, p′)). (6.109)

More generally, Lie transforms descend into compositions:

(E′ε,W (F ◦G)) = F ◦ (E′ε,WG) (6.110)

A corollary of the fact that Lie transforms descend into com-
positions is:

E′ε1,W1
E′ε2,W2

I = (E′ε1,W1
(E′ε2,W2

I)) ◦ I
= (E′ε2,W2

I) ◦ (E′ε1,W1
I), (6.111)

where I is the phase-space identity function: I(t, q, p) = (t, q, p).
So the order of application of the operators is reversed from the
order of composition of the functions that result from applying
the operators.

In terms of E′ε,W we have the canonical transformation

q = (E′ε,WQ)(t, q′, p′)

p = (E′ε,WP )(t, q′, p′)

H ′ = E′ε,WH. (6.112)
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We can also say

(t, q, p) = (E′ε,W I)(t, q′, p′). (6.113)

Note that E′ε,W has the property:9

E′ε1+ε2,W = E′ε1,W ◦E′ε2,W = E′ε2,W ◦ E′ε1,W . (6.114)

The identity I is

I = E′0,W . (6.115)

We can define the inverse function

(E′ε,W )−1 = E′−ε,W (6.116)

with the property

I = E′ε,W ◦ (E′ε,W )−1 = (E′ε,W )−1 ◦ E′ε,W . (6.117)

Simple Lie transforms

For example, suppose we are studying a system for which a rota-
tion would be a helpful transformation. To concoct such a trans-
formation we note that we intend a configuration coordinate to
increase uniformly with a given rate. In this case we want an
angle to be incremented. The Hamiltonian that consists solely
of the momentum conjugate to that configuration coordinate al-
ways does the job. So the angular momentum is an appropriate
generator for rotations.

The analysis is simple if we use polar coordinates r, θ with con-
jugate momenta pr, pθ. The generator W is just:

W (τ ; r, θ; pr, pθ) = pθ (6.118)

The family of transformations satisfies Hamilton’s equations:

Dr = 0

Dθ = 1

Dpr = 0

Dpθ = 0. (6.119)

9The set of transformations E′ε,W with the operation composition and with
parameter ε is a one-parameter Lie group.
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The only variable that appears in W is pθ, so θ is the only vari-
able that varies as ε is varied. In fact, the family of canonical
transformations is

r = r′

θ = θ′ + ε

pr = p′r
pθ = p′θ. (6.120)

So angular momentum is the generator of a canonical rotation.
The example is simple, but it illustrates one important feature

of Lie transformations—they give one set of variables entirely in
terms of the other set of variables. This should be contrasted with
the mixed-variable generating function transformations, which al-
ways give a mixture of old and new variables in terms of a mixture
of new and old variables, and thus require an inversion to get one
set of variables in terms of the other set of variables. This in-
verse can be written in closed form only for special cases. In
general, there is considerable advantage in using a transformation
rule that generates explicit transformations from the start. The
Lie transformations are always explicit in the sense that they give
one set of variables in terms of the other, but for there to be ex-
plicit expressions the evolution governed by the generator must
be solvable.

Let’s consider another example. This time consider a three-
degree-of-freedom problem in rectangular coordinates, and take
the generator of the transformation to be the z component of the
angular momentum:

W (τ ;x, y, z; px, py, pz) = xpy − ypx. (6.121)

The evolution equations are

Dx = −y
Dy = x

Dz = 0

Dpx = −py
Dpy = px

Dpz = 0. (6.122)
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We notice that z and pz are unchanged, and that the equations
governing the evolution of x and y decouple from those of px
and py. Each of these pairs of equations represents simple har-
monic motion, as can be seen by writing them as second-order
systems. The solutions are

x = x′ cos ε− y′ sin ε

y = x′ sin ε+ y′ cos ε

z = z′, (6.123)

px = p′x cos ε− p′y sin ε

py = p′x sin ε+ p′y cos ε

pz = p′z. (6.124)

So we see that again a component of the angular momentum gen-
erates a canonical rotation. There was nothing special about our
choice of axes, so we can deduce that the component of angular
momentum about any axis generates rotations about that axis.

Example

Suppose we have a system governed by the Hamiltonian

H(t;x, y; px, py) =
1
2(p

2
x + p2y) +

1
2a(x− y)2 + 1

2b(x+ y)2. (6.125)

Hamilton’s equations couple the motion of x and y:

Dx = px

Dy = py

Dpx = −a(x− y)− b(x+ y)

Dpy = a(x− y)− b(x+ y). (6.126)

We can decouple the system by performing a coordinate rota-
tion by π/4. This is generated by

W (τ ;x, y; px, py) = xpy − ypx, (6.127)

which is similar to the generator for the coordinate rotation above
but without the z degree of freedom. Evolving (τ ;x, y; px, py) by
W for an interval of π/4 gives a canonical rotation:

x = x′ cos π/4− y′ sinπ/4

y = x′ sinπ/4 + y′ cos π/4
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px = p′x cosπ/4 − p′y sinπ/4

py = p′x sinπ/4 + p′y cos π/4. (6.128)

Composing the Hamiltonian H with this time-independent trans-
formation gives the new Hamiltonian

H ′(t;x′, y′; p′x, p
′
y) = (12(p

′
x)

2 + b(x′)2) + (12 (p
′
y)

2 + a(y′)2), (6.129)

which is a Hamiltonian for two uncoupled harmonic oscillators.
So the original coupled problem has been transformed by a Lie
transform to a new form for which the solution is easy.

6.4 Lie Series

A convenient way to compute a Lie transform is to approximate
it with a series. We develop this technique by extending the idea
of a Taylor series.

Taylor’s theorem gives us a way of approximating the value of
a nice enough function at a point near to a point where the value
is known. If we know f and all of its derivatives at t then we can
get the value of f(t+ ε), for small enough ε, as follows:

f(t+ ε) = f(t) + εDf(t) +
1

2
ε2D2f(t) + · · ·+ 1

n!
εnDnf(t) + · · · .

(6.130)

We recall that the power series for the exponential function is

ex = 1 + x+
1

2
x2 + · · ·+ 1

n!
xn + · · · . (6.131)

This suggests that we can formally construct a Taylor-series op-
erator as the exponential of a differential operator10

eεD = I + εD +
1

2
(εD)2 + · · · + 1

n!
(εD)n + · · · (6.132)

and write

f(t+ ε) = (eεDf)(t). (6.133)

10We are playing fast and loose with differential operators here. In a formal
treatment it is essential to prove that these games are mathematically well
defined and have appropriate convergence properties.
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We have to be a bit careful here: (εD)2 = εDεD. We can turn
it into ε2D2 only because ε is a scalar constant, which commutes
with every differential operator. But with this caveat in mind we
can define the differential operator

(eεDf)(t) = f(t) + εDf(t) +
1

2
ε2D2f(t) + · · ·+ 1

n!
εnDnf(t) + · · ·

(6.134)

Before going on, it is interesting to compute with these a bit.
In the code transcripts that follow we develop the series by expo-
nentiation. We can examine the series incrementally by looking at
successive elements of the (infinite) sequence of terms of the series.
The procedure series:for-each is an incremental traverser that
applies its first argument to successive elements of the series given
as its second argument. The third argument (when given) speci-
fies the number of terms to be traversed. In each of the following
transcripts we print simplified expressions for the successive terms.

The first thing to look at is the general Taylor expansion for an
unknown literal function, expanded around t, with increment ε.
Understanding what we see in this simple problem will help us
understand more complex problems later.

(series:for-each print-expression
(((exp (* ’epsilon D))

(literal-function ’f))
’t)

6)

(f t)
(* ((D f) t) epsilon)
(* 1/2 (((expt D 2) f) t) (expt epsilon 2))
(* 1/6 (((expt D 3) f) t) (expt epsilon 3))
(* 1/24 (((expt D 4) f) t) (expt epsilon 4))
(* 1/120 (((expt D 5) f) t) (expt epsilon 5))
...

We can also look at the expansions of particular functions that
we recognize, such as the expansion of sin around 0.

(series:for-each print-expression
(((exp (* ’epsilon D)) sin) 0)
6)
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0
epsilon
0
(* -1/6 (expt epsilon 3))
0
(* 1/120 (expt epsilon 5))
...

It is often instructive to expand functions we usually don’t re-
member, such as f(x) =

√
1 + x.

(series:for-each print-expression
(((exp (* ’epsilon D))

(lambda (x) (sqrt (+ x 1))))
0)

6)

1
(* 1/2 epsilon)
(* -1/8 (expt epsilon 2))
(* 1/16 (expt epsilon 3))
(* -5/128 (expt epsilon 4))
(* 7/256 (expt epsilon 5))
...

Exercise 6.7: Binomial series

Develop the binomial expansion of (1 + x)n as a Taylor expansion. Of
course, it must be the case that for n a positive integer all of the coeffi-
cients except for the first n + 1 are zero. However, in the general case,
for symbolic n, the coefficients are rather complicated polynomials in n.
For example, you will find that the eighth term is

(+ (* 1/5040 (expt n 7))
(* -1/240 (expt n 6))
(* 5/144 (expt n 5))
(* -7/48 (expt n 4))
(* 29/90 (expt n 3))
(* -7/20 (expt n 2))
(* 1/7 n))

These terms must evaluate to the entries in Pascal’s triangle. In partic-
ular, this polynomial must be zero for n < 7. How is this arranged?

Dynamics

Now, to play this game with dynamical functions we want to pro-
vide a derivative-like operator that we can exponentiate, which
will give us the time-advance operator. The key idea is to write
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the derivative of the function in terms of the Poisson bracket.
Equation (3.80) shows how to do this in general:

D(F ◦ σ) = ({F,H} + ∂0F ) ◦ σ. (6.135)

We define the operator DH by

DHF = ∂0F + {F,H}, (6.136)

so

DHF ◦ σ = D(F ◦ σ), (6.137)

and iterates of this operator can be used to compute higher-order
derivatives:

Dn(F ◦ σ) = Dn
HF ◦ σ. (6.138)

We can express the advance of the path function f = F ◦ σ for
an interval ε with respect to H as a power series in the deriva-
tive operator DH applied to the phase-space function F and then
composed with the path:

f(t+ ε) = (eεDf)(t) = (eεDHF ) ◦ σ(t). (6.139)

Indeed, we can implement the time-advance operator Eε,H with
this series, when it converges.

Exercise 6.8: Iterated derivatives

Show that equation (6.138) is correct.

Exercise 6.9: Lagrangian analog

Compare DH with the total time derivative operator. Recall that

DtF ◦ Γ[q] = D(F ◦ Γ[q])
abstracts the derivative of a function of a path through state space to
a function of the derivatives of the path. Define another derivative
operator DL, analogous to DH , that would give the time derivative of
functions along Lagrangian state paths that are solutions of Lagrange’s
equations for a given Lagrangian. How might this be useful?

For time-independent Hamiltonian H and time-independent
state function F , we can simplify the computation of the advance
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of F . In this case we define the Lie derivative operator LH such
that

LHF = {F,H}, (6.140)

which reads “the Lie derivative of F with respect to H.”11 So

DH = ∂0 + LH (6.141)

and for time-independent F

D(F ◦ σ) = LHF ◦ σ. (6.142)

We can iterate this process to compute higher derivatives. So

L2
HF = {{F,H},H}, (6.143)

and successively higher-order Poisson brackets of F with H give
successively higher-order derivatives when evaluated on the tra-
jectory.

Let f = F ◦ σ. We have

Df = (LHF ) ◦ σ (6.144)

D2f = (L2
HF ) ◦ σ (6.145)

· · · .
Thus we can rewrite the advance of the path function f for an
interval ε with respect to H as a power series in the Lie derivative
operator applied to the phase-space function F and then composed
with the path:

f(t+ ε) = (eεDf)(t) = (eεLHF ) ◦ σ(t). (6.146)

We can implement the time-advance operator E′ε,H with the Lie

series eεLHF when this series converges:

E′ε,HF = eεLHF. (6.147)

11Our LH is a special case of what is referred to as a Lie derivative in differ-
ential geometry. The more general idea is that a vector field defines a flow.
The Lie derivative of an object with respect to a vector field gives the rate of
change of the object as it is dragged along with the flow. In our case the flow
is the evolution generated by Hamilton’s equations, with Hamiltonian H .
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We have shown that time evolution is canonical, so the series
above are formal representations of canonical transformations as
power series in the time. These series may not converge, even if
the evolution governed by the Hamiltonian H is well defined.

Computing Lie series

We can use the Lie transform as a computational tool to exam-
ine the local evolution of dynamical systems. We define the Lie
derivative of F as a derivative-like operator relative to the given
Hamiltonian function, H:12

(define ((Lie-derivative H) F)
(Poisson-bracket F H))

We also define a procedure to implement the Lie transform:13

(define (Lie-transform H t)
(exp (* t (Lie-derivative H))))

Let’s start by examining the beginning of the Lie series for the
position of a simple harmonic oscillator of mass m and spring
constant k. We can implement the Hamiltonian as

(define ((H-harmonic m k) state)
(+ (/ (square (momentum state)) (* 2 m))

(* 1/2 k (square (coordinate state)))))

We make the Lie transform (series) by passing the Lie-transform
operator an appropriate Hamiltonian function and an interval to
evolve for. The resulting operator is then given the coordinate

procedure, which selects the position coordinates from the phase-
space state. The Lie transform operator returns a procedure that,
when given a phase-space state composed of a dummy time, a

12Actually, we define the Lie derivative slightly differently, as follows:

(define ((Lie-derivative-procedure H) F)
(Poisson-bracket F H))

(define Lie-derivative
(make-operator Lie-derivative-procedure ’Lie-derivative))

The reason is that we want Lie-derivative to be an operator, which is just like
a function except that the product of operators is interpreted as composition,
whereas the product of functions is the function computing the product of
their values.

13The Lie-transform procedure here is also defined to be an operator, just
like Lie-derivative.
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position x0, and a momentum p0, returns the position resulting
from advancing that state by the interval dt.

(series:for-each print-expression
(((Lie-transform (H-harmonic ’m ’k) ’dt)

coordinate)
(up 0 ’x0 ’p0))

6)

x0
(/ (* dt p0) m)
(/ (* -1/2 (expt dt 2) k x0) m)
(/ (* -1/6 (expt dt 3) k p0) (expt m 2))
(/ (* 1/24 (expt dt 4) (expt k 2) x0) (expt m 2))
(/ (* 1/120 (expt dt 5) (expt k 2) p0) (expt m 3))
...

We should recognize the terms of this series. We start with the ini-
tial position x0. The first-order correction (p0/m)dt is due to the
initial velocity. Next we find an acceleration term (−kx0/2m)dt2

due to the restoring force of the spring at the initial position.
The Lie transform is just as appropriate for showing us how the

momentum evolves over the interval:

(series:for-each print-expression
(((Lie-transform (H-harmonic ’m ’k) ’dt)

momentum)
(up 0 ’x0 ’p0))

6)

p0
(* -1 dt k x0)
(/ (* -1/2 (expt dt 2) k p0) m)
(/ (* 1/6 (expt dt 3) (expt k 2) x0) m)
(/ (* 1/24 (expt dt 4) (expt k 2) p0) (expt m 2))
(/ (* -1/120 (expt dt 5) (expt k 3) x0) (expt m 2))
...

In this series we see how the initial momentum p0 is corrected by
the effect of the restoring force −kx0dt, etc.

What is a bit more fun is to see how a more complex phase-
space function is treated by the Lie series expansion. In the ex-
periment below we examine the Lie series developed by advancing
the harmonic-oscillator Hamiltonian, by means of the transform
generated by the same harmonic-oscillator Hamiltonian:
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(series:for-each print-expression
(((Lie-transform (H-harmonic ’m ’k) ’dt)

(H-harmonic ’m ’k))
(up 0 ’x0 ’p0))

6)

(/ (+ (* 1/2 k m (expt x0 2)) (* 1/2 (expt p0 2))) m)
0
0
0
0
0
...

As we would hope, the series shows us the original energy ex-
pression (k/2)x20 + (1/2m)p20 as the first term. Each subsequent
correction term turns out to be zero—because the energy is con-
served.

Of course, the Lie series can be used in situations where we
want to see the expansion of the motion of a system characterized
by a more complex Hamiltonian. The planar motion of a particle
in a general central field (see equation 3.100) is a simple problem
for which the Lie series is instructive. In the following transcript
we can see how rapidly the series becomes complicated. It is
worth one’s while to try to interpret the additive parts of the
third (acceleration) term shown below:

(series:for-each print-expression
(((Lie-transform

(H-central-polar ’m (literal-function ’U))
’dt)
coordinate)
(up 0

(up ’r 0 ’phi 0)
(down ’p r 0 ’p phi 0)))

4)

(up r 0 phi 0)
(up (/ (* dt p r 0) m)

(/ (* dt p phi 0) (* m (expt r 0 2))))
(up
(+ (/ (* -1/2 ((D U) r 0) (expt dt 2)) m)

(/ (* 1/2 (expt dt 2) (expt p phi 0 2))
(* (expt m 2) (expt r 0 3))))

(/ (* -1 (expt dt 2) p phi 0 p r 0)
(* (expt m 2) (expt r 0 3))))
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(up
(+ (/ (* -1/6 (((expt D 2) U) r 0) (expt dt 3) p r 0)

(expt m 2))
(/ (* -1/2 (expt dt 3) (expt p phi 0 2) p r 0)

(* (expt m 3) (expt r 0 4))))
(+ (/ (* 1/3 ((D U) r 0) (expt dt 3) p phi 0)

(* (expt m 2) (expt r 0 3)))
(/ (* -1/3 (expt dt 3) (expt p phi 0 3))

(* (expt m 3) (expt r 0 6)))
(/ (* (expt dt 3) p phi 0 (expt p r 0 2))

(* (expt m 3) (expt r 0 4)))))
...

Of course, if we know the closed-form Lie transform it is prob-
ably a good idea to take advantage of it, but when we do not
know the closed form the Lie series representation of it can come
in handy.

6.5 Exponential Identities

The composition of Lie transforms can be written as products of
exponentials of Lie derivative operators. In general, Lie deriva-
tive operators do not commute. If A and B are non-commuting
operators, then the exponents do not combine in the usual way:

eAeB �= eA+B. (6.148)

So it will be helpful to recall some results about exponentials of
non-commuting operators.

We introduce the commutator

[A,B] = AB −BA. (6.149)

The commutator is bilinear and satisfies the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (6.150)

which is true for all A, B, and C.
We introduce a notation ΔA for the commutator with respect

to the operator A:

ΔAB = [A,B]. (6.151)
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In terms of Δ the Jacobi identity is

[ΔA,ΔB ] = Δ[A,B]. (6.152)

An important identity is

eCAe−C = eΔCA

= A+ [C,A] +
1

2
[C, [C,A]] + · · · . (6.153)

We can check this term by term.
We see that

eCA2e−C = eCAe−CeCAe−C =
(
eCAe−C

)2
, (6.154)

using e−CeC = I, the identity operator. Using the same trick, we
find

eCAne−C =
(
eCAe−C

)n
. (6.155)

More generally, if f can be represented as a power series then

eCf(A,B, ...)e−C = f(eCAe−C , eCBe−C , ...). (6.156)

For instance, applying this to the exponential function yields

eCeAe−C = ee
CAe−C

. (6.157)

Using equation (6.153), we can rewrite this as

eΔCeA = ee
ΔCA. (6.158)

Exercise 6.10: Commutators of Lie derivatives

a. Let W and W ′ be two phase-space state functions. Use the Poisson-
bracket Jacobi identity (3.93) to show

[LW , LW ′ ] = −L{W,W ′}. (6.159)

b. Consider the phase-space state functions that give the components
of the angular momentum in terms of rectangular canonical coordinates

Jx(t;x, y, z; px, py, pz) = ypz − zpy

Jy(t;x, y, z; px, py, pz) = zpx − xpz

Jz(t;x, y, z; px, py, pz) = xpy − ypx.
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Show

[LJx
, LJy

] + LJz
= 0. (6.160)

c. Relate the Jacobi identity for operators to the Poisson-bracket Jacobi
identity.

Exercise 6.11: Baker–Campbell–Hausdorff

Derive the rule for combining exponentials of non-commuting operators:

eAeB = eA+B+ 1
2
[A,B]+···. (6.161)

6.6 Summary

The time evolution of any Hamiltonian system induces a canon-
ical transformation: if we consider all possible initial states of a
Hamiltonian system and follow all of the trajectories for the same
time interval, then the map from the initial state to the final state
of each trajectory is a canonical transformation. This is true for
any interval we choose, so time evolution generates a continuous
family of canonical transformations.

We generalized this idea to generate continuous canonical trans-
formations other than those generated by time evolution. Such
transformations will be especially useful in support of perturba-
tion theory.

In rare cases a canonical transformation can be made to a rep-
resentation in which the problem is easily solvable: when all co-
ordinates are cyclic and all the momenta are conserved. Here we
investigated the Hamilton–Jacobi method for finding such canoni-
cal transformations. For problems for which the Hamilton–Jacobi
method works, we find that the time evolution of the system is
given as a canonical transformation.

6.7 Projects

Exercise 6.12: Symplectic integration

Consider a system for which the Hamiltonian H can be split into two
parts,H0 andH1, each of which describes a system that can be efficiently
evolved:

H = H0 +H1. (6.162)
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Symplectic integrators construct approximate solutions for the Hamil-
tonian H from those of H0 and H1.

We construct a map of the phase space onto itself in the following
way (see [47, 48, 49]). Define δ2π(t) to be an infinite sum of Dirac delta
functions, with interval 2π,

δ2π(t) =
∞∑

n=−∞

δ(t− 2πn), (6.163)

with representation as a Fourier series

2πδ2π(t) =
∞∑

n=−∞

cos(nt). (6.164)

Recall that a δ function has the property that
∫ a

−a fδ = f(0) for any
positive a and continuous real-valued function f . It is fruitful to think
of the delta function as a limit of a function Δh that has the value
Δh(t) = 1/h in the interval −h/2 < t < h/2 and zero otherwise. Now
consider the mapping Hamiltonian

Hm(t, q, p) = H0(t, q, p) + 2πδ2π(Ωt)H1(t, q, p). (6.165)

The evolution of the system between the delta functions is governed
solely by H0. To understand how the system evolves across the delta
functions think of the delta functions in terms of Δh as h goes to zero.
Hamilton’s equations contain terms from H1 with the factor 1/h, which
is large, and terms from H0 that are independent of h. So as h goes to
zero, H0 makes a negligible contribution to the evolution. The evolution
across the delta functions is governed solely by H1. The evolution of
Hm is obtained by alternately evolving the system according to the
Hamiltonian H0 for an interval Δt = 2π/Ω and then evolving the system
according to the Hamiltonian H1 for the same time interval. The longer-
term evolution ofHm is obtained by iterating this map of the phase space
onto itself. Fill in the details to show this.

a. In terms of Lie series, the evolution of Hm for one delta function
cycle Δt is generated by

eΔt LHm I = (eΔt LH1 I) ◦ (eΔt LH0 I). (6.166)

The evolution of Hm approximates the evolution of H . Identify the
noncommuting operator A with LH0

and B with LH1
.

Use the Baker–Campbell–Hausdorff identity (equation 6.161) to de-
duce that the local truncation error (the error in the state after one step
Δt) is proportional to (Δt)2. This mapping is a first-order integrator.

b. By merely changing the phase of the delta functions, we can reduce
the truncation error of the map, and the map becomes a second-order
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integrator. Instead of making a map by alternating a full step Δt gov-
erned by H0 with a full step Δt governed by H1, we can make a map by
evolving the system for a half step Δt/2 governed by H0, then for a full
step Δt governed by H1, and then for another half step Δt/2 governed
by H0. In terms of Lie series the second-order map is generated by

eΔt LHm I = (e(Δt/2)LH0 I) ◦ (eΔt LH1 I) ◦ (e(Δt/2)LH0 I). (6.167)

Confirm that the Hamiltonian governing the evolution of this map
is the same as the one above but with the phase of the delta functions
shifted. Show that the truncation error of one step of this second-order
map is indeed proportional to (Δt)3.

c. Consider the Hénon–Heiles system. We can split the Hamiltonian
(equation 3.135 on page 252) into two solvable Hamiltonians in the fol-
lowing way:

H0(t;x, y; px, py) = (p2x + p2y)/2 + (x2 + y2)/2

H1(t;x, y; px, py) = x2y − y3/3. (6.168)

Hamiltonian H0 is the Hamiltonian of two uncoupled linear oscillators;
Hamiltonian H1 is a nonlinear coupling. The trajectories of the sys-
tems described by each of these Hamiltonians can be expressed in closed
form, so we do not need the Lie series for actually integrating each part.
The Lie series expansions are used only to determine the order of the
integrator.

Write programs that implement first-order and second-order maps for
the Hénon–Heiles problem. Note that these maps cannot be of the same
form as the Poincaré maps that we used to make surfaces of section,
because these maps must take and return the entire state. (Why?)
An appropriate template for such a map is (1st-order-map state dt).
This procedure must return a state.

d. Examine the evolution of the energy for both chaotic and quasiperi-
odic initial conditions. How does the magnitude of the energy error scale
with the step size? Is this consistent with the order of the integrator
deduced above? How does the energy error grow with time?

e. The generation of surfaces of section from these maps is complicated
by the fact that these maps have to maintain their state even though a
plotting point might be required between two samples. The maps you
made in part c regularly sample the state with the integrator timestep. If
we must plot a point between two steps we cannot restart the integrator
at the state of the plotted point, because that would lose the phase of
the integrator step. To make this work the map must plot points but
keep its rhythm, so we have to work around the fact that explore-map
restarts at each plotted point. Here is some code that can be used to
construct a Poincaré-type map that can be used with the explorer:



456 Chapter 6 Canonical Evolution

(define ((HH-collector win advance E dt sec-eps n) x y done fail)
(define (monitor last-crossing-state state)

(plot-point win
(ref (coordinate last-crossing-state) 1)
(ref (momentum last-crossing-state) 1)))

(define (pmap x y cont fail)
(find-next-crossing y advance dt sec-eps cont))

(define collector (default-collector monitor pmap n))
(cond ((and (up? x) (up? y)) ;passed states

(collector x y done fail))
((and (number? x) (number? y)) ;initialization
(let ((initial-state (section->state E x y)))

(if (not initial-state)
(fail)
(collector initial-state initial-state done fail))))

(else (error "bad input to HH-collector" x y))))

You will notice that the iteration of the map and the plotting of the
points is included in this collector, so the map that this produces must
replace these parts of the explorer. The #f argument to explore-map
allows us to replace the appropriate parts of the explorer with our com-
bination map iterator and plotter HH-collector.

(explore-map win
(HH-collector win 1st-order-map 0.125 0.1 1.e-10 1000)
#f)

Generate surfaces of section using the second-order map. Does the
map preserve the chaotic or quasiperiodic character of trajectories?
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Canonical Perturbation Theory

Having treated the motion of the moon about the
earth, and having obtained an elliptical orbit,
[Newton] considered the effect of the sun on the
moon’s orbit by taking into account the variations
of the latter. However, the calculations caused him
great difficulties ... Indeed, the problems he
encountered were such that [Newton] was
prompted to remark to the astronomer John
Machin that “... his head never ached but with his
studies on the moon.”

June Barrow-Green, Poincaré and the Three Body
Problem [7], p. 15

Closed-form solutions of dynamical systems can be found only
rarely. However, some systems differ from a solvable system by
the addition of a small effect. The goal of perturbation theory is
to relate aspects of the motion of the given system to those of the
nearby solvable system. We can try to find a way to transform the
exact solution of this approximate problem into an approximate
solution to the original problem. We can also use perturbation
theory to try to predict qualitative features of the solutions by
describing the characteristic ways in which solutions of the solv-
able system are distorted by the additional effects. For instance,
we might want to predict where the largest resonance regions are
located or the locations and sizes of the largest chaotic zones. Be-
ing able to predict such features can give insight into the behavior
of the particular system of interest.

Suppose, for example, we have a system characterized by a
Hamiltonian that breaks up into two parts as follows:

H = H0 + εH1, (7.1)

where H0 is solvable and ε is a small parameter. The difference
between our system and a solvable system is then a small additive
complication.
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There are a number of strategies for doing this. One strategy is
to seek a canonical transformation that eliminates from the Hamil-
tonian the terms of order ε that impede solution—this typically
introduces new terms of order ε2. Then one seeks another canoni-
cal transformation that eliminates the terms of order ε2 impeding
solution, leaving terms of order ε3. We can imagine repeating this
process until the part that impedes solution is of such high order
in ε that it can be neglected. Having reduced the problem to a
solvable problem, we can reverse the sequence of transformations
to find an approximate solution of the original problem. Does
this process converge? How do we know we can ever neglect the
remaining terms? Let’s follow this path and see where it goes.

7.1 Perturbation Theory with Lie Series

Given a system, we look for a decomposition of the Hamiltonian
in the form

H(t, q, p) = H0(t, q, p) + εH1(t, q, p), (7.2)

where H0 is solvable. We assume that the Hamiltonian has no
explicit time dependence; this can be ensured by going to the ex-
tended phase space if necessary. We also assume that a canonical
transformation has been made so that H0 depends solely on the
momenta:

∂1H0 = 0. (7.3)

We carry out a Lie transformation and find the conditions that
the Lie generator W must satisfy to eliminate the order ε terms
from the Hamiltonian.

The Lie transform and associated Lie series specify a canonical
transformation:

H ′ = E′ε,WH = eεLWH

q = (E′ε,WQ)(t, q′, p′) = (eεLWQ)(t, q′, p′)

p = (E′ε,WP )(t, q′, p′) = (eεLWP )(t, q′, p′)

(t, q, p) = (E′ε,W I)(t, q′, p′) = (eεLW I)(t, q′, p′), (7.4)
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where Q = I1 and P = I2 are the coordinate and momentum
selectors and I is the identity function. Recall the definitions

eεLWF = F + εLWF +
1

2
ε2L2

WF + · · ·

= F + ε{F,W}+ 1

2
ε2{{F,W},W} + · · · , (7.5)

with LWF = {F,W}.
Applying the Lie transformation to H gives us

H ′ = eεLWH

= H0 + εLWH0 +
1

2
ε2L2

WH0 + · · ·
+εH1 + ε2LWH1 + · · ·

= H0 + ε (LWH0 +H1) + ε2
(1
2
L2
WH0 + LWH1

)
+ · · · . (7.6)

The first-order term in ε is zero if W satisfies the condition

LWH0 +H1 = 0, (7.7)

which is a linear partial differential equation for W . The trans-
formed Hamiltonian is

H ′ = H0 + ε2
(1
2
L2
WH0 + LWH1

)
+ · · ·

= H0 +
1

2
ε2LWH1 + · · · , (7.8)

where we have used condition (7.7) to simplify the ε2 contribution.
This basic step of perturbation theory has eliminated terms of

a certain order (order ε) from the Hamiltonian, but in doing so
has generated new terms of higher order (here ε2 and higher).

At this point we can find an approximate solution by truncat-
ing Hamiltonian (7.8) to H0, which is solvable. The approximate
solution for given initial conditions s0 = (t0, q0, p0) is obtained by
finding the corresponding (t0, q

′
0, p

′
0) using the inverse of transfor-

mation (7.4). Then the system is evolved to time t using the solu-
tions of the truncated Hamiltonian H0, giving the state (t, q′, p′).
The phase-space coordinates of the evolved point are transformed
back to the original variables using the transformation (7.4) to
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state s = (t, q, p). The approximate solution is

s = ((E′ε,W I) ◦ (Et−t0,H0
I) ◦ (E′−ε,W I))(s0)

= (E′−ε,WEt−t0,H0
E′ε,W I)(s0)

= (e−εLW e(t−t0)DH0 eεLW I)(s0), (7.9)

using the identity (6.111). Notice that the time evolution of H0 is
expressed in terms of the evolution operator E rather than the Lie-
transform operator E′, because the time must also be advanced.
The power-series expansion for EΔt,H0

is expressed in terms ofDH0

rather than LH0
(see 6.136). If the Lie transform E′ε,W = eεLW

must be evaluated by summing the series, then we must specify
the order to which the sum extends.

Assuming everything goes okay, we can imagine repeating this
process to eliminate the order ε2 terms and so on, bringing the
transformed Hamiltonian as close as we like to H0. Unfortunately,
there are complications. We can understand some of these com-
plications and how to deal with them by considering some specific
applications.

7.2 Pendulum as a Perturbed Rotor

The pendulum is a simple one-degree-of-freedom system, for which
the solutions are known. If we consider the pendulum as a free
rotor with the added complication of gravity, then we can carry
out a perturbation step as just described to see how well it ap-
proximates the known motion of the pendulum.

The motion of a pendulum is described by the Hamiltonian

H(t, θ, p) =
p2

2α
− εβ cos(θ), (7.10)

with coordinate θ and conjugate angular momentum p, where
α = ml2 and β = mgl. The parameter ε allows us to scale the per-
turbation; it is 1 for the actual pendulum. We divide the Hamil-
tonian into the free-rotor Hamiltonian and the perturbation from
gravity:

H = H0 + εH1, (7.11)
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where

H0(t, θ, p) =
p2

2α
εH1(t, θ, p) = −εβ cos θ. (7.12)

The Lie generator W satisfies condition (7.7):

{H0,W}+H1 = 0, (7.13)

or

− p

α
∂1W (t, θ, p)− β cos θ = 0. (7.14)

So

W (t, θ, p) = −αβ sin θ

p
, (7.15)

where the arbitrary integration constant is ignored.
The transformed Hamiltonian is H ′ = H0 + o(ε2). If we can

ignore the ε2 contributions, then the transformed Hamiltonian is
simply

H ′(t, θ′, p′) =
(p′)2

2α
, (7.16)

with solutions

θ′ = θ′0 +
p′0
α
(t− t0)

p′ = p′0. (7.17)

To connect these solutions to the solutions of the original prob-
lem, we use the Lie series

θ = (eεLWQ)(t, θ′, p′)

= θ′ + ε{Q,W}(t, θ′, p′) + · · ·
= θ′ + ε∂2W (t, θ′, p′) + · · ·
= θ′ + ε

αβ sin θ′

(p′)2
+ · · · . (7.18)
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Similarly,

p = p′ + ε
αβ cos θ′

p′
+ · · · . (7.19)

Note that if the Lie series is truncated it is not exactly a canonical
transformation; only the infinite series is canonical.

The initial values θ′0 and p′0 are determined from the initial
values of θ and p by the inverse Lie transformation:

θ′ = (e−εLWQ)(t, θ, p)

= θ − ε
αβ sin θ

(p)2
+ · · · (7.20)

and

p′ = p− ε
αβ cos θ

p
+ · · · . (7.21)

Note that if we truncate the coordinate transformations after the
first-order terms in ε (or any finite order), then the inverse trans-
formation is not exactly the inverse of the transformation.

The approximate solution for given initial conditions (t0, θ0, p0)
is obtained by finding the corresponding (t0, θ

′
0, p

′
0) using the

transformation (7.20) and (7.21). Then the system is evolved
using the solutions (7.17). The phase-space coordinates of the
evolved point are transformed back to the original variables using
the transformation (7.18) and (7.19).

We define the two parts of the pendulum Hamiltonian:

(define ((H0 alpha) state)
(let ((p (momentum state)))
(/ (square p) (* 2 alpha))))

(define ((H1 beta) state)
(let ((theta (coordinate state)))
(* -1 beta (cos theta))))

The Hamiltonian for the pendulum can be expressed as a series
expansion in the parameter ε by

(define (H-pendulum-series alpha beta epsilon)
(series (H0 alpha) (* epsilon (H1 beta))))

where the series procedure is a constructor for a series whose first
terms are given and all further terms are zero. The Lie generator
that eliminates the order ε terms is
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(define ((W alpha beta) state)
(let ((theta (coordinate state))

(p (momentum state)))
(/ (* -1 alpha beta (sin theta)) p)))

We check that W satisfies condition (7.7):

((+ ((Lie-derivative (W ’alpha ’beta)) (H0 ’alpha))
(H1 ’beta))

(up ’t ’theta ’p))
0

and that it has the desired effect on the Hamiltonian:

(show-expression
(series:sum
(((exp (* ’epsilon (Lie-derivative (W ’alpha ’beta))))
(H-pendulum-series ’alpha ’beta ’epsilon))
(up ’t ’theta ’p))
2))

1
2p

2

α
+

1
2αβ

2ε2 (sin (θ))2

p2

Indeed, the order ε term has been removed and an order ε2 term
has been introduced.

Ignoring the ε2 terms in the new Hamiltonian, the solution is

(define (((solution0 alpha beta) t) state0)
(let ((t0 (time state0))

(theta0 (coordinate state0))
(p0 (momentum state0)))

(up t
(+ theta0 (/ (* (- t t0) p0) alpha))
p0)))

The transformation from primed to unprimed phase-space co-
ordinates is, including terms up to order,

(define ((C alpha beta epsilon order) state)
(series:sum
(((Lie-transform (W alpha beta) epsilon)
identity)
state)
order))
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To second order in ε the transformation generated by W is

(show-expression
((C ’alpha ’beta ’epsilon 2) (up ’t ’theta ’p)))

⎛⎜⎜⎜⎜⎜⎜⎝

t

−
1
2α

2β2ε2 cos (θ) sin (θ)

p4
+

αβε sin (θ)

p2
+ θ

−
1
2α

2β2ε2

p3
+

αβε cos (θ)

p
+ p

⎞⎟⎟⎟⎟⎟⎟⎠
The inverse transformation is

(define (C-inv alpha beta epsilon order)
(C alpha beta (- epsilon) order))

With these components, the perturbative solution (equation
7.9) is

(define (((solution epsilon order) alpha beta) delta-t)
(compose (C alpha beta epsilon order)

((solution0 alpha beta) delta-t)
(C-inv alpha beta epsilon order)))

The resulting procedure maps an initial state to the solution state
advanced by delta-t.

We can examine the behavior of the perturbative solution and
compare it to the true behavior of the pendulum. There are several
considerations. We have truncated the Lie series for the phase-
space transformation. Does the missing part matter? If the miss-
ing part does not matter, how well does this perturbation step
work?

Figure 7.1 shows that as we increase the number of terms in the
Lie series for the phase-space coordinate transformation the result
appears to converge. The lone trajectory includes only terms of
first order. The others, including terms of second, third, and
fourth order, are closely clustered. On the left edge of the graph
(at θ = −π), the order of the solution increases from the top to
the bottom of the graph. In the middle (at θ = 0), the fourth-
order curve is between the second-order curve and the third-order
curve. In addition to the error in phase-space path, there is also
an error in the period—the higher-order orbits have longer peri-
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Figure 7.1 The perturbative solution in the phase plane, including
terms of first, second, third, and fourth order in the phase-space coordi-
nate transformation. The solutions appear to converge.

ods than the first-order orbit. The parameters are α = 1.0 and
β = 0.1. We have set ε = 1. Each trajectory was started at θ = 0
with p = 0.7. Notice that the initial point on the solution varies
between trajectories. This is because the transformation is not
perfectly inverted by the truncated Lie series.

Figure 7.2 compares the perturbative solution (with terms up
to fourth order) with the actual trajectory of the pendulum. The
initial points coincide, to the precision of the graph, because the
terms to fourth order are sufficient. The trajectories deviate both
in the phase plane and in the period, but they are still quite close.

The trajectories of figures 7.1 and 7.2 are all for the same initial
state. As we vary the initial state we find that for trajectories in
the circulation region, far from the separatrix, the perturbative
solution does quite well. However, if we get close to the separa-
trix or if we enter the oscillation region, the perturbative solution
is nothing like the real solution, and it does not even seem to
converge. Figure 7.3 shows what happens when we try to use the
perturbative solution inside the oscillation region. Each trajectory
was started at θ = 0 with p = 0.55. The parameters are α = 1.0
and β = 0.1, as before.
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Figure 7.2 The perturbative solution in the phase plane, including
terms of fourth order in the phase-space coordinate transformation, is
compared with the actual trajectory. The actual trajectory is the lower
of the two curves. The parameters are the same as in figure 7.1.

This failure of the perturbation solution should not be surpris-
ing. We assumed that the real motion was a distorted version
of the motion of the free rotor. But in the oscillation region the
assumption is not true—the pendulum is not rotating at all. The
perturbative solutions can be valid (if they work at all!) only in
a region where the topology of the real orbits is the same as the
topology of the perturbative solutions.

We can make a crude estimate of the range of validity of the
perturbative solution by looking at the first correction term in the
phase-space transformation (7.18). The correction in θ is propor-
tional to εαβ/(p′)2. This is not a small perturbation if

|p′| <
√
εαβ. (7.22)

This sets the scale for the validity of the perturbative solution.
We can compare this scale to the size of the oscillation region

(see figure 7.4). We can obtain the width of the region of oscil-
lation of the pendulum1 by considering the separatrix. The value

1The “width” is measured as the range of momenta.
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π0−π
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-0.5

Figure 7.3 The perturbative solution does not converge in the os-
cillation region. As we include more terms in the Lie series for the
phase-space transformation, the resulting trajectory develops loops near
the hyperbolic fixed point that increase in size with the order.

of the Hamiltonian on the separatrix is the same as the value at
the unstable equilibrium: H(t, θ = π, p = 0) = βε. The separatrix
has maximum momentum psep at θ = 0:

H(t, 0, psep) = H(t, π, 0). (7.23)

Solving for psep, the half-width of the region of oscillation, we find

psep = 2
√
αβε. (7.24)

Comparing equations (7.22) and (7.24), we see that the require-
ment that the terms in the perturbation solution be small excludes
a region of the phase space with the same scale as the region of
oscillation of the pendulum.

What the perturbation theory is doing is deforming the phase-
space coordinate system so that the problem looks like the free-
rotor problem. This deformation is sensible only in the circulating
case. So, it is not surprising that the perturbation theory fails in
the oscillation region. What may be surprising is how well the
perturbation theory works just outside the oscillation region. The
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−π +π

2(αβε)
1

2

p

θ

Figure 7.4 The oscillation region of the pendulum is delimited by
the separatrix. The maximum momentum occurs at the zero-crossing
of the angle. Energy is conserved, so the energy is the same at the
point of maximum momentum and at the unstable fixed point. At the
unstable fixed point the energy is entirely potential energy, because the
momentum is zero. We use this to compute the maximum momentum
(where the potential energy is zero and all of the energy is kinetic).

range of p in which the perturbation theory is not valid scales
in the same way as the width of the oscillation region. This need
not have been the case—the perturbation theory could have failed
over a wider range.

Exercise 7.1: Symplectic residual

For the transformation (C alpha beta epsilon order), compute the
residuals in the symplectic test for various orders of truncation of the
Lie series.

7.2.1 Higher Order

We can improve the perturbative solution by carrying out addi-
tional perturbation steps. The overall plan is the same as before.
We perform a Lie transformation with a new generator that elim-
inates the desired terms from the Hamiltonian.

After the first step the Hamiltonian is, to second order in ε,
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H ′(t, θ′, p′) =
(p′)2

2α
+ ε2

αβ2

2(p′)2
(sin θ′)2 + · · ·

=
(p′)2

2α
+ ε2

αβ2

4(p′)2
(1− cos(2θ′)) + · · ·

= H0(p
′) + ε2H2(t, θ

′, p′) + · · · . (7.25)

Performing a Lie transformation with generator W ′ yields the
Hamiltonian

H ′′ = eε
2LW ′H ′

= H0 + ε2(LW ′H0 +H2) + · · · . (7.26)

So the condition on W ′ that the second-order terms are eliminated
is

LW ′H0 +H2 = 0. (7.27)

This is

−p′

α
∂1W

′(t, θ′, p′) +
αβ2

4(p′)2
(1− cos(2θ′)) = 0. (7.28)

A generator that satisfies this condition is

W ′(t, θ′, p′) =
α2β2

4(p′)3
θ′ +

α2β2

8(p′)3
sin(2θ′). (7.29)

There are two contributions to this generator, one proportional to
θ′ and the other involving a trigonometric function of θ′.

The phase-space coordinate transformation resulting from this
Lie transform is found as before. For given initial conditions, we
first carry out the inverse transformation corresponding to W ,
then that for W ′, solve for the evolution of the system using H0,
then transform back using W ′ and then W . For initial state
s0 = (t0, θ0, p0) and advanced state s = (t, θ, p), the approximate
solution is

s = (E′−ε,WE′−ε2,W ′E(t−t0),H0
E′ε2,W ′E′ε,W I)(s0)

= (e−εLW e−ε
2LW ′ e(t−t0)DH0 eε

2LW ′ eεLW I)(s0). (7.30)
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Figure 7.5 The solution using a second perturbation step, eliminating
ε2 terms from the Hamiltonian, is compared to the actual solution. The
initial agreement is especially good, but the error increases with time.

The solution obtained in this way is compared to the actual evo-
lution of the pendulum in figure 7.5. Terms in all Lie series up to
ε4 are included. The perturbative solution, including this second
perturbative step, is much closer to the actual solution in the ini-
tial segment than the first-order perturbative solution (figure 7.2).
The time interval spanned is 10. Over longer times the second-
order perturbative solution diverges dramatically from the actual
solution, as shown in figure 7.6. These solutions begin at θ = 0
with p = 0.7. The parameters are α = 1.0 and β = 0.1. The time
interval spanned is 100.

A problem with the perturbative solution is that there are terms
in W ′ and in the corresponding phase-space coordinate transfor-
mation that are proportional to θ′, and θ′ grows linearly with time.
So the solution can be valid only for small times; the interval of
validity depends on the frequency of the particular trajectory un-
der investigation and the size of the coefficients multiplying the
various terms. Such terms in a perturbative representation of the
solution that are proportional to time are called secular terms.
They limit the validity of the perturbation theory to small times.
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Figure 7.6 The two-step perturbative solution is shown over a longer
time. The actual solution is a closed curve in the phase plane; this
perturbative solution wanders all over the place and gets worse with
time.

7.2.2 Eliminating Secular Terms

A solution to the problem of secular terms was developed by Lind-
stedt and Poincaré. The goal of each perturbation step is to elim-
inate terms in the Hamiltonian that prevent solution. However,
the term in H ′ that led to the secular term in the generator W ′

does not actually impede solution. So a better procedure is to
leave that term in the Hamiltonian and find the generator W ′′

that eliminates only the term that is periodic in θ′. So W ′′ must
satisfy

−p′

α
∂1W

′′(t, θ′, p′)− αβ2

4(p′)2
cos(2θ′) = 0. (7.31)

The generator is

W ′′(t, θ′, p′) =
α2β2

8(p′)3
sin(2θ′). (7.32)
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After we perform a Lie transformation with this generator, the
new Hamiltonian is

H ′′(t, θ′′, p′′) =
(p′′)2

2α
+ ε2

αβ2

4(p′′)2
+ · · · . (7.33)

Including terms up to the ε2 term, the solution is

θ′′ = θ′′0 +

(
p′′0
α
− ε2

αβ2

2(p′′0)
3

)
(t− t0)

p′′ = p′′0 . (7.34)

We construct the solution for a given initial condition as before
by composing the transformations, the solution of the modified
Hamiltonian, and the inverse transformations. The approximate
solution is

(t, θ, p) = (E′−ε,WE′−ε2,W ′′E(t−t0),H′′E′ε2,W ′′E′ε,W I)(t0, θ0, p0)

= (e−εLW e−ε
2LW ′′ e(t−t0)DH′′ eε

2LW ′′ eεLW I)(t0, θ0, p0). (7.35)

The resulting phase-space evolution is shown in figure 7.7. Now
the perturbative solution is a closed curve in the phase plane and
is in pretty good agreement with the actual solution.

By modifying the solvable part of the Hamiltonian we are mod-
ifying the frequency of the solution. The secular terms appeared
because we were trying to approximate a solution with one fre-
quency as a Fourier series with the wrong frequency. As an anal-
ogy, consider

sin(ω +Δω)t = sinωt cosΔωt+ cosωt sinΔωt

= sinωt

(
1− (Δωt)2

2
+ · · ·

)
+ cosωt (Δωt+ · · ·) . (7.36)

The periodic terms are multiplied by terms that are polynomials in
the time. These polynomials are the initial segment of the power
series for periodic functions. The infinite series are convergent,
but if the series are truncated the error is large at large times.

Continuing the perturbative solution to higher orders is now a
straightforward repetition of the steps carried out so far. At each
step in the perturbation solution there will be new contributions to
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Figure 7.7 The two-step perturbative solution without secular terms
is compared to the actual solution. The perturbative solution is now a
closed curve and is very close to the actual solution.

the solvable part of the Hamiltonian that absorb potential secular
terms. The contribution is just the angle-independent part of
the Hamiltonian after the Hamiltonian is written as a Fourier
series. The constant part of the Fourier series is the same as the
average of the Hamiltonian over the angle. So at each step in the
perturbation theory, the average of the perturbation is included
with the solvable part of the Hamiltonian and the periodic part is
eliminated by a Lie transformation.

7.3 Many Degrees of Freedom

Other problems are encountered in applying perturbation theory
to systems with more than a single degree of freedom. Consider
an n degrees-of-freedom Hamiltonian of the form

H = H0 + εH1, (7.37)

where H0 depends only on the momenta and therefore is solvable.
We assume that the Hamiltonian has no explicit time dependence.
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We further assume that the coordinates are all angles and that H1

is a multiply periodic function of the coordinates.
Carrying out a Lie transformation with generator W produces

the Hamiltonian

H ′ = eεLWH

= H0 + ε (LWH0 +H1) + · · · , (7.38)

as before. The condition that the order ε terms are eliminated is

{H0,W}+H1 = 0, (7.39)

a linear partial differential equation. By assumption, the Hamil-
tonian H0 depends only on the momenta. We define

ω0(p) = ∂2H0(t, θ, p), (7.40)

where θ = (θ0, . . . , θn−1), and p = [p0, . . . , pn−1]. So ω0(p) is the
up tuple of frequencies of the unperturbed system. The condition
on W is

ω0(p)∂1W (t, θ, p) = H1(t, θ, p). (7.41)

As H1 is a multiply periodic function of the coordinates, we can
write it as a Poisson series:2

H1(t, θ, p) =
∑
k

Ak(p) cos(k · θ), (7.42)

where k = [k0, . . . , kn−1] ranges over all n-tuples of integers. Sim-
ilarly, we assume W can be written as a Poisson series:

W (t, θ, p) =
∑
k

Bk(p) sin(k · θ). (7.43)

Substituting these into the condition that order ε terms are elim-
inated, we find∑
k

Bk(p)(k · ω0(p)) cos(k · θ) =
∑
k

Ak(p) cos(k · θ). (7.44)

2In general, we need to include sine terms as well, but the cosine expansion is
enough for this illustration.
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The cosines are orthogonal so the coefficients of corresponding
cosine terms must be equal:

Bk(p) =
Ak(p)

k · ω0(p)
(7.45)

and that the required Lie generator is

W (t, θ, p) =
∑
k

Ak(p)

k · ω0(p)
sin(k · θ). (7.46)

There are a couple of problems. First, if A0,...,0 is nonzero then
the expression for B0,...,0 involves a division by zero. So the expres-
sion for B0,...,0 is not correct. The problem is that the correspond-
ing term in H1 does not involve θ. So the integration for B0,...,0

should introduce linear terms in θ. But this is the same situation
that led to the secular terms in the perturbation approximation
to the pendulum. Having learned our lesson there, we avoid the
secular terms by adjoining this term to the solvable Hamiltonian
and excluding k = [0, . . . , 0] from the sum for W . We have

H ′ = H0 + εA0,...,0 + · · · , (7.47)

and

W (t, θ, p) =
∑

k 	=[0,...,0]

Ak(p)

k · ω0(p)
sin(k · θ). (7.48)

Another problem is that there are many opportunities for small
denominators that would make the perturbation large and there-
fore not a perturbation. As we saw in the perturbation approxi-
mation for the pendulum in terms of the rotor, we must exclude
certain regions from the domain of applicability of the perturba-
tion approximation. These excluded regions are associated with
commensurabilities among the frequencies ω0(p). Consider the
phase-space transformation of the coordinates

θ =
(
eεLWQ

)
(t, θ′, p′)

= θ′ + ε∂2W (t, θ′, p′) + · · · (7.49)

= θ′ + ε
∑

k 	=[0,...,0]

(
DAk(p

′)

k · ω0(p′)
− Ak(p

′)(k ·Dω(p′))

(k · ω0(p′))2

)
sin(k · θ).
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We must exclude from the domain of applicability all regions for
which the coefficients are large. If the second term in the coeffi-
cient of sin dominates, the excluded regions satisfy

|(k ·Dω(p′))Ak(p)| > (k · ω0(p))
2. (7.50)

Considering the fact that for any tuple of frequencies ω0(p
′) we

can find a tuple of integers k such that k ·ω(p′) is arbitrarily small,
this problem of small divisors looks very serious.

However, the problem, though serious, is not as bad as it may
appear, for a couple of reasons. First, it may be that Ak �= 0 only
for certain k. In this case, only the regions for these terms are
excluded from the domain of applicability. Second, for analytic
functions the magnitude of Ak decreases strongly with the size of
k (see [4]):

|Ak(p
′)| ≤ Ce−β|k|+, (7.51)

for some positive β and C, and where |k|+ = |k0|+ |k1|+ · · ·. At
any stage of a perturbation approximation we can limit considera-
tion to just those terms that are larger than a specified magnitude.
The size of the excluded region corresponding to a term is of or-
der square root of |Ak(p

′)| and the inequality (7.51) shows that
|Ak(p

′)| decreases exponentially with the order of the term.

7.3.1 Driven Pendulum as a Perturbed Rotor

More concretely, consider the periodically driven pendulum. We
will develop approximate solutions for the driven pendulum as a
perturbed rotor.

We use the Hamiltonian

H(t, θ, p) =
p2

2ml2
− εml(g −Aω2 cos(ωt)) cos θ. (7.52)

For a real driven pendulum ε = 1; here it is used to help organize
the computation. We will see that it need not be small and can be
set to 1 at the end. We can remove the explicit time dependence
by going to the extended phase space. The Hamiltonian is
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H(τ ; θ, t; p, pt) (7.53)

= pt +
p2

2ml2
− εml(g −Aω2 cos(ωt)) cos θ

= pt +
p2

2α
− εβ cos(θ) + εγ cos(θ + ωt) + εγ cos(θ − ωt),

with the constants α = ml2, β = mlg, and γ = 1
2mlAω2.

With the intent to approximate the driven pendulum as a per-
turbed rotor, we choose

H0(τ ; θ, t; p, pt) = pt +
p2

2α
H1(τ ; θ, t; p, pt) = −β cos θ + γ cos(θ + ωt) + γ cos(θ − ωt). (7.54)

The perturbation H1 is particularly simple: it has only three
terms, and the coefficients are constants. Because H1 has only
three terms in its Poisson series, only three regions will be excluded
from the domain of applicability in the first perturbation step.

The Lie series generator that eliminates the terms in H1 to first
order in ε, satisfying

{H0,W}+H1 = 0, (7.55)

is

W (τ ; θ, t; p, pt) =− β

ωr(p)
sin θ

+
γ

ωr(p) + ω
sin(θ + ωt)

+
γ

ωr(p)− ω
sin(θ − ωt), (7.56)

where ωr(p) = ∂2,0H0(τ ; θ, t; p, pt) = p/α is the unperturbed rotor
frequency.

The resulting approximate solution has three regions in which
there are small denominators, and so three regions that are ex-
cluded from applicability of the perturbative solution. Regions of
phase space for which ωr(p) is near 0, ω, and −ω are excluded.
Away from these regions the perturbative solution works well,
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just as in the rotor approximation for the pendulum. Unfortu-
nately, some of the more interesting regions of the phase space of
the driven pendulum are excluded: the region in which we find
the remnant of the undriven pendulum is excluded, as are the
two resonance regions in which the rotation of the pendulum is
synchronous with the drive. We need to develop methods for ap-
proximating these regions.

7.4 Nonlinear Resonance

We can develop an approximation for an isolated resonance region
as follows. We again consider Hamiltonians of the form

H = H0 + εH1, (7.57)

where H0(t, q, p) = Ĥ0(p) depends only on the momenta and so
is solvable. We assume that the Hamiltonian has no explicit time
dependence. We further assume that the coordinates are all an-
gles, and that H1 is a multiply periodic function of the coordinates
that can be written

H1(t, θ, p) =
∑
k

Ak(p) cos(k · θ). (7.58)

Suppose we are interested in a region of phase space for which
n · ω0(p) is near zero, where n is a tuple of integers, one for each
degree of freedom. If we develop the perturbation theory as before
with the generator W that eliminates all terms of order ε, then
the transformed Hamiltonian is H0, which is analytically solvable,
but there would be terms with n · ω0(p) in the denominator. The
resulting solution is not applicable near this resonance.

Just as the problem of secular terms was solved by grouping
more terms with the solvable part of the Hamiltonian, we can
develop approximations that are valid in the resonance region by
eliminating fewer terms and grouping more terms in the solvable
part.

To develop a perturbative approximation in the resonance re-
gion for which n · ω0(p) is near zero, we take the generator W
to be

Wn(t, θ, p) =
∑

k 	=0,k 	=n

Ak(p)

k · ω0(p)
sin(k · θ), (7.59)
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excluding terms in W that lead to small denominators in this
region. The transformed Hamiltonian is

H ′
n(t, θ, p) = Ĥ0(p) + εA0(p) + εAn(p) cos(n · θ) + · · · , (7.60)

where the additional terms are higher-order in ε. Because the
term k = n is excluded from the sum in the generating function,
that term is left after the transformation.

The transformed Hamiltonian depends only on a single combi-
nation of angles, so a change of variables can be made so that the
new transformed Hamiltonian is cyclic in all but one coordinate,
which is this combination of angles. This transformed Hamilto-
nian is solvable (reducible to quadratures).

For example, suppose there are two degrees of freedom θ =
(θ1, θ2) and we are interested in a region of phase space in which
n · ω0 is near zero, with n = [n1, n2]. The combination of angles
n · θ is slowly varying in the resonance region. The transformed
Hamiltonian (7.60) is of the form

H ′
n(t; θ1, θ2; p1, p2) = Ĥ0(p1, p2) + εA0(p1, p2)

+ εAn(p1, p2) cos(n1θ1 + n2θ2). (7.61)

We can transform variables to σ = n1θ1+n2θ2, with second coor-
dinate, say, θ′ = θ2.

3 Using the F2-type generating function

F2(t; θ1, θ2; Σ,Θ
′) = (n1θ1 + n2θ2)Σ + θ2Θ

′, (7.62)

we find that the transformation is

p1 = n1Σ

p2 = n2Σ+Θ′

σ = n1θ1 + n2θ2

θ′ = θ2. (7.63)

In these variables the transformed resonance Hamiltonian H ′
n be-

comes

H ′′
n(t;σ, θ

′; Σ,Θ′) = Ĥ0(n1Σ, n2Σ+Θ′) + εA0(n1Σ, n2Σ+Θ′)

+ εAn(n1Σ, n2Σ+Θ′) cos(σ). (7.64)

3Any linearly independent combination will be acceptable here.
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This Hamiltonian is cyclic in θ′, so Θ′ is constant. With this con-
stant momentum, the Hamiltonian for the conjugate pair (σ,Σ)
has one degree of freedom. The solutions are level curves of the
Hamiltonian. These solutions, reexpressed in terms of the original
phase-space coordinates, give the evolution of H ′

n. An approxi-
mate solution in the resonance region is therefore

(t, θ, p) = (E′−ε,W ′

n
Et−t0,H′

n
E′ε,W ′

n
I)(t0, θ0, p0). (7.65)

If the resonance regions are sufficiently separated, then a global
solution can be constructed by splicing together such solutions for
each resonance region.

7.4.1 Pendulum Approximation

The resonance Hamiltonian (7.64) has a single degree of freedom
and is therefore solvable (reducible to quadratures). We can de-
velop an approximate analytic solution in the vicinity of the res-
onance by making use of the fact that the solution is valid there.
The resonance Hamiltonian can be approximated by a generalized
pendulum Hamiltonian.

Let

H ′′
n,0(t;σ, θ

′; Σ,Θ′)

= Ĥ0(n1Σ, n2Σ+Θ′) + εA0(n1Σ, n2Σ+Θ′) (7.66)

and

H ′′
n,1(t;σ, θ

′; Σ,Θ′) = An(n1Σ, n2Σ+Θ′) cos(σ); (7.67)

then the resonance Hamiltonian is

H ′′
n = H ′′

n,0 + εH ′′
n,1. (7.68)

Define the resonance center Σn by the requirement that the
resonance frequency be zero there:

∂2,0H
′′
n,0(t;σ, θ

′; Σn,Θ
′) = 0. (7.69)

Now expand both parts of the resonance Hamiltonian about the
resonance center:
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H ′′
n,0(t;σ, θ

′; Σ,Θ′) = H ′′
n,0(t;σ, θ

′; Σn,Θ
′)

+ ∂2,0H
′′
n,0(t;σ, θ

′; Σn,Θ
′) (Σ− Σn)

+
1

2
∂2
2,0H

′′
n,0(t;σ, θ

′; Σn,Θ
′) (Σ− Σn)

2

+ · · · , (7.70)

and

H ′′
n,1(t;σ, θ

′; Σ,Θ′) = H ′′
n,1(t;σ, θ

′; Σn,Θ
′) + · · · . (7.71)

The first term in the expansion of H ′′
n,0 is a constant and can be

ignored. The coefficient of the second term is zero, from the defi-
nition of Σn. The third term is the first significant term. We pre-
sume here that the first term of H ′′

n,1 is a nonzero constant. Now
the scale of the separatrix in Σ at resonance is typically propor-
tional to

√
ε. So the third term of H ′′

n,0 and the first term of H ′′
n,1

are both proportional to ε. Subsequent terms are higher-order
in ε. Keeping only the order ε terms, the approximate resonance
Hamiltonian is of the form

(Σ− Σn)
2

2α′
− εβ′ cos σ, (7.72)

which is the Hamiltonian for a pendulum with a shifted center in
momentum. This is analytically solvable. The constants are:

α′ = = 1/(∂2
2,0H

′′
n,0(t;σ, θ

′; Σn,Θ
′))

β′ = = H ′′
n,1(t;σ, θ

′; Σn,Θ
′). (7.73)

Driven pendulum resonances

Consider the behavior of the periodically driven pendulum in the
vicinity of the resonance ωr(p) = ω.

The Hamiltonian (7.54) for the driven pendulum has three res-
onance terms in H1. The full generator (7.56) has three terms
that are designed to eliminate the corresponding resonance terms
in the Hamiltonian. The resulting approximate solution has small
denominators close to each of the three resonances, ωr(p) = 0,
ωr(p) = ω, and ωr(p) = −ω.

To develop a resonance approximation near ωr(p) = ω, we do
not include the corresponding term in the generator, so that the
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corresponding term is left in the Hamiltonian. It is helpful to give
names to the various terms in the full generator (7.56):

W 0(τ ; θ, t; p, pt) = − β

ωr(p)
sin θ

W−(τ ; θ, t; p, pt) =
γ

ωr(p) + ω
sin(θ + ωt)

W+(τ ; θ, t; p, pt) =
γ

ωr(p)− ω
sin(θ − ωt). (7.74)

The full generator is W 0 +W− +W+.
To investigate the motion in the phase space near the resonance

ωr(p) = ω (the “+” resonance), we use the generator that excludes
the corresponding term

W+ = W 0 +W−. (7.75)

With this generator the transformed Hamiltonian is

H+(τ ; θ, t; p, pt) = pt +
p2

2α
+ εγ cos(θ − ωt) + · · · . (7.76)

After we exclude the higher-order terms, this Hamiltonian has
only a single combination of coordinates, and so can be trans-
formed into a Hamiltonian that is cyclic in all but one degree of
freedom. Define the transformation through the mixed-variable
generating function

F2(τ ; t, θ; Σ, p
′
t) = (θ − ωt)Σ + tp′t, (7.77)

giving the transformation

σ = θ − ωt

t = t′

p = Σ

pt = p′t − ωΣ. (7.78)

Expressed in these new coordinates, the resonance Hamiltonian is

H+
′(τ ;σ, t′; Σ, p′t) = p′t − ωΣ+

Σ2

2α
+ εγ cos σ

=
(Σ− αω)2

2α
+ εγ cos σ + p′t −

1

2
αω2. (7.79)
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Figure 7.8 Contours of the resonance Hamiltonian H+
′ give the mo-

tion in the (σ,Σ) plane. In this case the resonance Hamiltonian is a
generalized pendulum shifted in momentum and phase. The half-width
of the resonance oscillation zone is 2

√
αγε.

This Hamiltonian is cyclic in t′, so the solutions are level curves
of H+

′ in (σ,Σ). Actually, more can be said here because H+
′ is

already of the form of a pendulum shifted in the Σ direction by αω
and shifted by π in phase. The shift by π comes about because the
sign of the cosine term is positive, rather than negative as in the
usual pendulum. A sketch of the level curves is given in figure 7.8.

Exercise 7.2: Resonance width

Verify that the half-width of the resonance region is 2
√
αγε.

Exercise 7.3: With the computer

Verify, with the computer, that with the generator W+ the transformed
Hamiltonian is given by equation (7.76).

An approximate solution of the driven pendulum near the
ωr(p) = ω resonance is

(τ ; θ, t; p, pt) = (E′−ε,W+
Eτ−τ0,H+

′E′ε,W+
I)(τ0; θ0, t0; p0, (pt)0).(7.80)

To find out to what extent the approximate solution models the
actual driven pendulum, we make a surface of section using this
approximate solution and compare it to a surface of section for the
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Figure 7.9 Surface of section of the first-order perturbative solution
for the driven pendulum constructed for the region near the resonance
ωr(p) = ω. The parameters of the system are α = 1, β = 1, γ = 1/4,
and ω = 5. Only order ε terms were kept in the Lie series for the W
transformation. The perturbative solution captures the essential shape
and position of the resonant island it is designed to approximate.

actual driven pendulum. The surface of section for the approxi-
mate solution in the resonance region is shown in figure 7.9. A
surface of section for the actual driven pendulum is shown in the
lower part of figure 7.10. The correspondence is surprisingly good.
Note how the resonance island is not symmetrical about a line of
constant momentum. The resonance Hamiltonian is symmetrical
about Σ = αω, and by itself would give a symmetric resonance
island (see figure 7.8). The necessary distortion is introduced by
the W+ transformation that eliminates the other resonances. In-
deed, in the full section the distortion appears to be generated by
the nearby ωr(p) = 0 resonance “pushing away” nearby features
so that it has room to fit. However, some features of the actual
section are not represented in figure 7.9: for instance, the small
chaotic zone near the actual separatrix.

The distortion introduced by the transformation generated by
W+ is small because the terms that it introduces are proportional
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Figure 7.10 A composite surface of section (top) for the driven pen-
dulum is constructed by combining the first-order perturbative solution
for the region near the resonance ωr(p) = 0 and the solutions for the
regions near the resonances ωr(p) = ±ω. A corresponding surface of
section for the actual driven pendulum is shown below. The parameters
of the system are: α = 1, β = 1, γ = 1/4, and ω = 5.
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to the inverse of a combination of frequencies.4 Since this com-
bination is not small, dividing by it makes the correction small.
Thus the “order parameter” ε need not be small to make the cor-
rection terms small, and from now on we can set ε = 1.

The perturbation solution near the ωr(p) = 0 resonance merges
smoothly with the perturbation solutions for the ωr(p) = ω and
ωr(p) = −ω resonances. We can make a composite perturbative
solution by using the appropriate resonance solution for each re-
gion of phase space. A surface of section for the composite pertur-
bative solution is shown in the upper part of figure 7.10, above the
corresponding surface of section for the actual driven pendulum.
The perturbative solution captures many features seen on the ac-
tual section. The shapes of the resonance regions are distorted
by the transformations that eliminate the nearby resonances, so
the resulting pieces fit together consistently. The predicted width
of each resonance region agrees with the actual width: it is not
substantially changed by the distortion of the region introduced
by the elimination of the other resonance terms. But not all the
features of the actual section are reproduced in this composite of
first-order approximations. The first-order perturbative solution
does not capture the resonant islands between the two primary
resonances or the secondary island chains contained within a pri-
mary resonance region. Also, the first-order perturbative solution
does not show the chaotic zone near the separatrix apparent in
the surface of section for the actual driven pendulum.

For larger drives, the approximations derived by first-order per-
turbations are worse. In the lower part of figure 7.11, with drive
larger by a factor of five, we lose the invariant curves that sepa-
rate the resonance regions. The main resonance islands persist,
but the chaotic zones near the separatrices have merged into one
large chaotic sea.

The composite first-order perturbative solution for the more
strongly driven pendulum in the upper part of figure 7.11 still
approximates the centers of the main resonance islands reasonably
well, but it fails as we move out and encounter the secondary
islands that are visible in the resonance region for ωr(p) = ω.
Here the approximations for the two regions do not fit together so
well. The chaotic sea is found in the region where the perturbative
solutions do not match.

4For W+ see equations 7.74 and 7.75; for the general relationship between a
term in the generator and the coordinate transformation generated see equa-
tions 7.48 and 7.49.
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Figure 7.11 Composite surface of section (top) for the driven pendu-
lum constructed by combining the first-order perturbative solution for
the region near the resonance ωr(p) = 0 and the regions near the reso-
nances ωr(p) = ±ω. A corresponding surface of section for the actual
driven pendulum is shown below. The parameters of the system are the
same as in figure 7.10 except that γ = 5/4.
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7.4.2 Reading the Hamiltonian

The locations and widths of the primary resonance islands can
often be read straight off the Hamiltonian when expressed as a
Poisson series. For each term in the series for the perturbation
there is a corresponding resonance island. The width of the island
can often be simply computed from the coefficients in the Hamil-
tonian. So just by looking at the Hamiltonian we can get a good
idea of what sort of behavior we will see on the surface of section.
For instance, in the driven pendulum, the Hamiltonian (7.54) has
three terms. We could anticipate, just from looking at the Hamil-
tonian, that three main resonance islands are to be found on the
surface of section. We know that these islands will be located
where the resonant combination of angles is slow. So for the pe-
riodically driven pendulum the resonances occur near ωr(p) = ω,
ωr(p) = 0, and ωr(p) = −ω. The approximate widths of the
resonance islands can be computed with a simple calculation.

7.4.3 Resonance-Overlap Criterion

As the size of the drive increases, the chaotic zones near the sep-
aratrices get larger and then merge into a large chaotic sea. The
resonance-overlap criterion gives an analytic estimate of when this
occurs. The basic idea is to compare the sum of the widths of
neighboring resonances with their separation. If the sum of the
half-widths is greater than the separation, then the resonance-
overlap criterion predicts there will be large-scale chaotic behavior
near the overlapping resonances. In the case of the periodically
driven pendulum, the half-width of the ωr(p) = 0 resonance is
2
√
αβ and the half-width of the ωr(p) = ω resonance is 2

√
αγ (see

figure 7.12). The separation of the resonances is αω. So resonance
overlap occurs if

2
√
αβ + 2

√
αγ ≥ αω. (7.81)

The amplitude of the drive enters through γ. Solving, we find the
value of γ above which resonance overlap occurs. For the param-
eters α = β = 1, ω = 5 used in figures 7.9–7.11, the resonance
overlap value of γ is 9/4. We see that, in fact, the chaotic zones
have already merged for γ = 5/4. So in this case the resonance-
overlap criterion overestimates the strength of the resonances re-
quired to get large-scale chaotic behavior. This is typical of the
resonance-overlap criterion.
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Figure 7.12 Resonance overlap occurs when the sum of the half-
widths of adjacent resonances is larger than the spacing between them.

A way of thinking about why the resonance-overlap criterion
usually overestimates the strength required to get large-scale chaos
is that other effects must be taken into account. For instance,
as the drive is increased second-order resonances appear between
the primary resonances; these resonances take up space and so
resonance overlap occurs for smaller drive than would be expected
by considering the primary resonances alone. Also, the chaotic
zones at each separatrix have area that must be accounted for.

7.4.4 Higher-Order Perturbation Theory

As the drive is increased, a variety of new islands emerge, which
are not evident in the original Hamiltonian. To find approxima-
tions for motion in these regions we can use higher-order pertur-
bation theory. The basic plan is the same as before. At any stage
the Hamiltonian (which is perhaps a result of earlier stages of
perturbation theory) is expressed as a Poisson series (a multiple-
angle Fourier series). The terms that are not resonant in a region
of interest are eliminated by a Lie transformation. The remaining
resonance terms involve only a single combination of angle and are
thus solvable by making a canonical transformation to resonance
coordinates. We complete the solution and transform back to the
original coordinates.
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Let’s find a perturbative approximation for the second-order
islands visible in figure 7.10 between the ωr(p) = 0 resonance and
the ωr(p) = −ω resonance. The details are messy, so we will just
give a few intermediate results.

This resonance is not near the three primary resonances, so we
can use the full generator (7.56) to eliminate those three primary
resonance terms from the Hamiltonian. After this perturbation
step the Hamiltonian is too hairy to look at.

We expand the transformed Hamiltonian in Poisson form and
divide the terms into those that are resonant and those that are
not. The terms that are not resonant can be eliminated by a Lie
transform. This Lie transform leaves the resonant terms in the
Hamiltonian and introduces an additional distortion to the curves
on the surface of section. In this case this additional distortion
is small, but very messy to compute, so we will just not include
this effect. The resonance Hamiltonian is then (after considerable
algebra)

H2:1(τ ; θ, t; p, pt)

=
p2

2α
+ pt +

αβγ

4p2
α2ω2 + 2αωp+ 2p2

(αω + p)2
cos (2θ + ωt) . (7.82)

This is solvable because there is only a single combination of co-
ordinates.

We can get an analytic solution by making the pendulum ap-
proximation. The Hamiltonian is already quadratic in the mo-
mentum p, so all we need to do is evaluate the coefficient of the
potential terms at the resonance center p2:1 = αω/2. The reso-
nance Hamiltonian, in the pendulum approximation, is

H ′
2:1(τ ; θ, t; p, pt) =

p2

2α
+

2βγ

αω2
cos (2θ + ωt) . (7.83)

Carrying out the transformation to the resonance variable σ =
2θ−ωt reduces this to a pendulum Hamiltonian with a single de-
gree of freedom. Combining the analytic solution of this pendulum
Hamiltonian with the transformations generated by the fullW , we
get an approximate perturbative solution

(τ ; θ, t; p, pt) = (E′−ε,WEτ−τ0,H′′

2:1
E′ε,W I)(τ0; θ0, t0; p0, (pt)0). (7.84)
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Figure 7.13 Second-order perturbation theory gives an approxima-
tion to the second-order islands near the resonance 2ωr(p) + ω = 0.

A surface of section in the appropriate resonance region using this
solution is shown in figure 7.13. Comparing this to the actual sur-
face of section (figure 7.10), we see that the approximate solution
provides a good representation of this resonance motion.

7.4.5 Stability of the Inverted Vertical Equilibrium

As a second application, we use second-order perturbation theory
to investigate the inverted vertical equilibrium of the periodically
driven pendulum.

Here, the procedure parallels the one just followed, but we fo-
cus on a different set of resonance terms. The terms that are
slowly varying for the vertical equilibrium are those that involve
θ but do not involve t, such as cos(θ) and cos(2θ). So we want
to use the generator W+ + W− that eliminates the nonresonant
terms involving combinations of θ and ωt, while leaving the cen-
tral resonance. After the Lie transform of the Hamiltonian with
this generator, we write the transformed Hamiltonian as a Poisson
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series and collect the resonant terms. The transformed resonance
Hamiltonian is

H ′
V (τ ; θ, t; p, pt)

=
p2

2α
− β cos θ +

αγ2(α2ω2 + p2)

2(α2ω2 − p2)2
cos(2θ) + · · · . (7.85)

Figure 7.14 shows contours of this resonance Hamiltonian H ′
V

(top) and a surface of section for the actual driven pendulum
(bottom) for the same parameters. The behavior of the resonance
Hamiltonian is indistinguishable from that of the actual driven
pendulum. The theory does especially well here; there are no
nearby resonances because the drive frequency is high.

We can get an analytic estimate for the stability of the inverted
vertical equilibrium by carrying out a linear stability analysis of
the fixed point θ = π, p = 0 of the resonance Hamiltonian. The
algebra is somewhat simpler if we first make the pendulum approx-
imation about the resonance center. The resonance Hamiltonian
is then approximately

H ′′
V (τ ; θ, t; p, pt) =

p2

2α
− β cos θ +

γ2

2αω2
cos(2θ) + · · · . (7.86)

Linear stability analysis of the inverted vertical equilibrium indi-
cates stability for

γ2 > αβω2. (7.87)

In terms of the original physical parameters, the vertical equilib-
rium is linearly stable if

ω

ωs

A

l
>
√
2, (7.88)

where ωs =
√
g/l, the small-amplitude oscillation frequency. For

the vertical equilibrium to be stable, the scaled product of the
amplitude of the drive and the drive frequency must be sufficiently
large.

This analytic estimate is compared with the behavior of the
driven pendulum in figure 7.15. For any given assignment of
the parameters, the driven pendulum can be tested for the lin-
ear stability of the inverted vertical equilibrium by the methods
of chapter 4; this involves determining the roots of the charac-
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Figure 7.14 Contours of the resonance Hamiltonian H ′
V , which has

been developed to study the stability of the vertical equilibrium, are
shown in the upper plot. A corresponding surface of section for the
actual driven pendulum is shown in the lower plot. The parameters are
m = 1kg, l = 1m, g = 9.8m s−2, A = 0.03m, and ω = 100ωs, where
ωs =

√
g/l.
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Figure 7.15 Stability of the inverted vertical equilibrium over a range
of parameters. The full parameter space displayed was sampled over a
regular grid. The dots indicate parameters for which the actual driven
pendulum is linearly stable; nothing is plotted in the case of instability.
The diagonal line is the locus of points satisfying (ω/ωs)(A/l) =

√
2.

teristic polynomial for a reference orbit at the resonance center.
In the figure the stability of the inverted vertical equilibrium was
assessed at each point of a grid of assignments of the parameters.
A dot is shown for combinations of parameters that are linearly
stable. The diagonal line is the analytic boundary of the region
of stability of the inverted equilibrium: (ω/ωs)(A/l) =

√
2. We

see that the boundary of the region of stability is well approxi-
mated by the analytic estimate derived from perturbation theory.
Note that for very high drive amplitudes there is another region
of instability, which is not captured by this perturbation analysis.

7.5 Summary

The goal of perturbation theory is to relate aspects of the motions
of a given system to those of a nearby solvable system. Perturba-
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tion theory can be used to predict features such as the size and
location of the resonance islands and chaotic zones.

With perturbation analysis we obtain an approximation to the
evolution of a system by relating the evolution of the system to
that of a different system that, when approximated, can be exactly
solved. We can carry this exact solution of the approximate prob-
lem back to the original system to obtain an approximate solution
of our original problem. The strategy of canonical perturbation
theory is to make canonical transformations that eliminate terms
in the Hamiltonian that impede solution. Formulation of pertur-
bation theory in terms of Lie series is especially convenient.

We can use first-order perturbation theory to analyze the mo-
tion of the undriven pendulum as a free rotor to which gravity is
added. In this analysis we find that a small denominator in the
series limits the range of applicability of the perturbative solution
to regions that are away from the resonant oscillation region.

In higher-order perturbation theory for the pendulum we dis-
cover the problem of secular terms, terms that produce error that
grow with time. The appearance of secular terms can be avoided
by keeping track of how the frequencies change as perturbations
are included. In canonical perturbation theory secular terms can
be avoided by associating the average part of the perturbation
with the solvable part of the Hamiltonian.

In carrying out canonical perturbation theory in higher dimen-
sions we find that the problem of small denominators is more
serious. Small denominators arise near every commensurability,
and commensurabilities are common. Small denominators can be
locally avoided near particular commensurabilities by incorporat-
ing the offending terms into the solvable part of the Hamiltonian.
If the resonances are isolated, the resulting resonance Hamilto-
nian is still solvable. In many cases the resonance Hamiltonian
is well approximated by a pendulum-like Hamiltonian. A global
picture can be constructed by stitching together the solutions for
each resonance region constructed separately.

If two resonance regions overlap—that is, if the sum of the
half-widths of the resonance regions exceeds their separation—
then large-scale chaos ensues. The chaotic regions associated with
the separatrices of the overlapping resonances become connected.
When the resonances are well approximated by pendulum-like res-
onances a simple analytic criterion for the appearance of large-
scale chaos can be developed.
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Higher-order perturbative descriptions can be developed to de-
scribe islands that do not correspond to particular terms in the
Hamiltonian, secondary resonances, bifurcations, and so on. The
theory can be extended to describe as much detail as one wishes.

7.6 Projects

Exercise 7.4: Periodically driven pendulum

a. Work out the details of the perturbation theory for the primary driven
pendulum resonances, as displayed in figure 7.10.

b. Work out the details of the perturbation theory for the stability of
the inverted vertical equilibrium. Derive the resonance Hamiltonian and
plot its contours. Compare these contours to surfaces of section for a
variety of parameters.

c. Carry out the linear stability analysis leading to equation (7.88).
What is happening in the upper part of figure 7.15? Why is the system
unstable when criterion (7.88) predicts stability? Use surfaces of section
to investigate this parameter regime.

Exercise 7.5: Spin-orbit coupling

A Hamiltonian for the spin-orbit problem described in section 2.11.2 is

H(t, θ, pθ) =
p2θ
2C

− n2ε2C

4

a3

R3(t)
cos 2(θ − f(t))

=
p2θ
2C

− n2ε2C

4
(cos(2θ − 2nt) +

7e

2
cos(2θ − 3nt)

− e

2
cos(2θ − nt) + · · ·) (7.89)

where the ignored terms are higher order in eccentricity e. Note that
here ε is the out-of-roundness parameter.

a. Find the widths and centers of the three primary resonances. Com-
pare the predictions for the widths to the island widths seen on surfaces
of section. Write the criterion for resonance overlap and compare to
numerical experiments for the transition to large-scale chaos.

b. The fixed point of the synchronous island is offset from the average
rate of rotation. This is indicative of a “forced” oscillation of the ro-
tation of the Moon. Develop a perturbative theory for motion in the
synchronous island by using a Lie transform to eliminate the two non-
synchronous resonances. Predict the location of the fixed point at the
center of the synchronous resonance on the surface of section, and thus
predict the amplitude of the forced oscillation of the Moon.
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Appendix: Scheme

Programming languages should be designed not by
piling feature on top of feature, but by removing
the weaknesses and restrictions that make
additional features appear necessary. Scheme
demonstrates that a very small number of rules for
forming expressions, with no restrictions on how
they are composed, suffice to form a practical and
efficient programming language that is flexible
enough to support most of the major programming
paradigms in use today.

IEEE Standard for the Scheme Programming
Language [24], p. 3

Here we give an elementary introduction to Scheme.1 For a more
precise explanation of the language see the IEEE standard [24];
for a longer introduction see the textbook [1].

Scheme is a simple programming language based on expres-
sions. An expression names a value. For example, the numeral
3.14 names an approximation to a familiar number. There are
primitive expressions, such as numerals, that we directly recog-
nize, and there are compound expressions of several kinds.

Procedure calls

A procedure call is a kind of compound expression. A procedure
call is a sequence of expressions delimited by parentheses. The
first subexpression in a procedure call is taken to name a proce-
dure, and the rest of the subexpressions are taken to name the
arguments to that procedure. The value produced by the proce-
dure when applied to the given arguments is the value named by
the procedure call. For example,

1Many of the statements here are valid only assuming that no assignments are
used.
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(+ 1 2.14)
3.14

(+ 1 (* 2 1.07))
3.14

are both compound expressions that name the same number as
the numeral 3.14.2 In these cases the symbols + and * name
procedures that add and multiply, respectively. If we replace any
subexpression of any expression with an expression that names
the same thing as the original subexpression, the thing named by
the overall expression remains unchanged. In general, a procedure
call is written

( operator operand-1 ... operand-n )

where operator names a procedure and operand-i names the ith
argument.3

Lambda expressions

Just as we use numerals to name numbers, we use λ-expressions
to name procedures.4 For example, the procedure that squares its
input can be written:

(lambda (x) (* x x))

This expression can be read: “The procedure of one argument, x,
that multiplies x by x.” Of course, we can use this expression in
any context where a procedure is needed. For example,

((lambda (x) (* x x)) 4)
16

2In examples we show the value that would be printed by the Scheme system
using slanted characters following the input expression.

3In Scheme every parenthesis is essential: you cannot add extra parentheses
or remove any.

4The logician Alonzo Church [13] invented λ-notation to allow the specification
of an anonymous function of a named parameter: λx[expression in x]. This
is read, “That function of one argument that is obtained by substituting the
argument for x in the indicated expression.”
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The general form of a λ-expression is

(lambda formal-parameters body)

where formal-parameters is a list of symbols that will be the names
of the arguments to the procedure and body is an expression that
may refer to the formal parameters. The value of a procedure
call is the value of the body of the procedure with the arguments
substituted for the formal parameters.

Definitions

We can use the define construct to give a name to any object.
For example, if we make the definitions5

(define pi 3.141592653589793)

(define square (lambda (x) (* x x)))

we can then use the symbols pi and square wherever the numeral
or the λ-expression could appear. For example, the area of the
surface of a sphere of radius 5 is

(* 4 pi (square 5))
314.1592653589793

Procedure definitions may be expressed more conveniently using
“syntactic sugar.” The squaring procedure may be defined

(define (square x) (* x x))

which we may read: “To square x multiply x by x.”
In Scheme, procedures may be passed as arguments and re-

turned as values. For example, it is possible to make a procedure
that implements the mathematical notion of the composition of
two functions:6

5The definition of square given here is not the definition of square in the
Scmutils system. In Scmutils, square is extended for tuples to mean the sum
of the squares of the components of the tuple. However, for arguments that
are not tuples the Scmutils square does multiply the argument by itself.

6The examples are indented to help with readability. Scheme does not care
about extra white space, so we may add as much as we please to make things
easier to read.
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(define compose
(lambda (f g)
(lambda (x)

(f (g x)))))

((compose square sin) 2)
.826821810431806

(square (sin 2))
.826821810431806

Using the syntactic sugar shown above, we can write the defini-
tion more conveniently. The following are both equivalent to the
definition above:

(define (compose f g)
(lambda (x)
(f (g x))))

(define ((compose f g) x)
(f (g x)))

Conditionals

Conditional expressions may be used to choose among several ex-
pressions to produce a value. For example, a procedure that im-
plements the absolute value function may be written:

(define (abs x)
(cond ((< x 0) (- x))

((= x 0) x)
((> x 0) x)))

The conditional cond takes a number of clauses. Each clause has
a predicate expression, which may be either true or false, and a
consequent expression. The value of the cond expression is the
value of the consequent expression of the first clause for which the
corresponding predicate expression is true. The general form of a
conditional expression is

(cond ( predicate-1 consequent-1)
· · ·
( predicate-n consequent-n))

For convenience there is a special predicate expression else that
can be used as the predicate in the last clause of a cond.
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The if construct provides another way to make a conditional
when there is only a binary choice to be made. For example,
because we have to do something special only when the argument
is negative, we could have defined abs as:

(define (abs x)
(if (< x 0)

(- x)
x))

The general form of an if expression is

(if predicate consequent alternative)

If the predicate is true the value of the if expression is the value
of the consequent, otherwise it is the value of the alternative.

Recursive procedures

Given conditionals and definitions, we can write recursive proce-
dures. For example, to compute the nth factorial number we may
write:

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(factorial 6)
720

(factorial 40)
815915283247897734345611269596115894272000000000

Local names

The let expression is used to give names to objects in a local
context. For example,

(define (f radius)
(let ((area (* 4 pi (square radius)))

(volume (* 4/3 pi (cube radius))))
(/ volume area)))

(f 3)
1
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The general form of a let expression is

(let (( variable-1 expression-1)
· · ·
( variable-n expression-n))

body)

The value of the let expression is the value of the body expression
in the context where the variables variable-i have the values of
the expressions expression-i. The expressions expression-i may
not refer to any of the variables variable-j given values in the let

expression.
A let* expression is the same as a let expression except that

an expression expression-i may refer to variables variable-j given
values earlier in the let* expression.

A slight variant of the let expression provides a convenient
way to express looping constructs. We can write a procedure that
implements an alternative algorithm for computing factorials as
follows:

(define (factorial n)
(let factlp ((count 1) (answer 1))
(if (> count n)

answer
(factlp (+ count 1) (* count answer)))))

(factorial 6)
720

Here, the symbol factlp following the let is locally defined to be
a procedure that has the variables count and answer as its formal
parameters. It is called the first time with the expressions 1 and 1,
initializing the loop. Whenever the procedure named factlp is
called later, these variables get new values that are the values of
the operand expressions (+ count 1) and (* count answer).

Compound data—lists and vectors

Data can be glued together to form compound data structures. A
list is a data structure in which the elements are linked sequen-
tially. A Scheme vector is a data structure in which the elements
are packed in a linear array. New elements can be added to lists,
but to access the nth element of a list takes computing time pro-
portional to n. By contrast a Scheme vector is of fixed length, and
its elements can be accessed in constant time. All data structures
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in this book are implemented as combinations of lists and Scheme
vectors. Compound data objects are constructed from compo-
nents by procedures called constructors and the components are
accessed by selectors.

The procedure list is the constructor for lists. The selector
list-ref gets an element of the list. All selectors in Scheme are
zero-based. For example,

(define a-list (list 6 946 8 356 12 620))

a-list
(6 946 8 356 12 620)

(list-ref a-list 3)
356

(list-ref a-list 0)
6

Lists are built from pairs. A pair is made using the constructor
cons. The selectors for the two components of the pair are car and
cdr (pronounced “could-er”).7 A list is a chain of pairs, such that
the car of each pair is the list element and the cdr of each pair is
the next pair, except for the last cdr, which is a distinguishable
value called the empty list and is written (). Thus,

(car a-list)
6

(cdr a-list)
(946 8 356 12 620)

(car (cdr a-list))
946

(define another-list
(cons 32 (cdr a-list)))

another-list
(32 946 8 356 12 620)

7These names are accidents of history. They stand for “Contents of the Ad-
dress part of Register” and “Contents of the Decrement part of Register” of
the IBM 704 computer, which was used for the first implementation of Lisp
in the late 1950s. Scheme is a dialect of Lisp.
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(car (cdr another-list))
946

Both a-list and another-list share the same tail (their cdr).
There is a predicate pair? that is true of pairs and false on all

other types of data.
Vectors are simpler than lists. There is a constructor vector

that can be used to make vectors and a selector vector-ref for
accessing the elements of a vector:

(define a-vector
(vector 37 63 49 21 88 56))

a-vector
#(37 63 49 21 88 56)

(vector-ref a-vector 3)
21

(vector-ref a-vector 0)
37

Notice that a vector is distinguished from a list on printout by the
character # appearing before the initial parenthesis.

There is a predicate vector? that is true of vectors and false
for all other types of data.

The elements of lists and vectors may be any kind of data,
including numbers, procedures, lists, and vectors. Numerous
other procedures for manipulating list-structured data and vector-
structured data can be found in the Scheme online documentation.

Symbols

Symbols are a very important kind of primitive data type that we
use to make programs and algebraic expressions. You probably
have noticed that Scheme programs look just like lists. In fact,
they are lists. Some of the elements of the lists that make up
programs are symbols, such as + and vector.8 If we are to make
programs that can manipulate programs, we need to be able to
write an expression that names such a symbol. This is accom-
plished by the mechanism of quotation. The name of the symbol

8Symbols may have any number of characters. A symbol may not contain
whitespace or a delimiter character, such as parentheses, brackets, quotation
marks, comma, or #.
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+ is the expression ’+, and in general the name of an expression
is the expression preceded by a single quote character. Thus the
name of the expression (+ 3 a) is ’(+ 3 a).

We can test if two symbols are identical by using the predicate
eq?. For example, we can write a program to determine if an
expression is a sum:

(define (sum? expression)
(and (pair? expression)

(eq? (car expression) ’+)))

(sum? ’(+ 3 a))
#t

(sum? ’(* 3 a))
#f

Here #t and #f are the printed representations of the boolean
values true and false.

Consider what would happen if we were to leave out the quote in
the expression (sum? ’(+ 3 a)). If the variable a had the value 4
we would be asking if 7 is a sum. But what we wanted to know
was whether the expression (+ 3 a) is a sum. That is why we
need the quote.

Effects

Sometimes it is necessary to perform some action, such as plot a
point or print a value, in the process of a computation. Such an
action is called an effect.9 For example, to see in more detail how
the factorial program computes its answer we can interpolate a
write-line statement in the body of the factlp internal proce-
dure. This will print out a list of the count and the answer for
each iteration:

(define (factorial n)
(let factlp ((count 1) (answer 1))
(write-line (list count answer))
(if (> count n)

answer
(factlp (+ count 1) (* count answer)))))

9This is computer-science jargon: An effect is a change to something. For
example, write-line changes the display by printing something to the display.
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When we execute the modified factorial procedure we can
watch the counter incrementing and the answer being built:

(factorial 6)
(1 1)
(2 1)
(3 2)
(4 6)
(5 24)
(6 120)
(7 720)
720

The body of every procedure or let, as well as the consequent
of every cond clause, allows statements that have effects to be
used. The effect statement generally has no useful value. The
final expression in the body or clause produces the value that is
returned. In this example the if expression produces the value of
the factorial.

Assignments

Effects like printing a value or plotting a point are pretty benign,
but there are more powerful (and thus dangerous) effects, called
assignments. An assignment changes the value of a variable or an
entry in a data structure. Almost everything we are computing
are mathematical functions: for a particular input they always
produce the same result. However, with assignment we can make
objects that change their behavior as they are used. For example,
we can make a device that counts every time we call it:

(define (make-counter)
(let ((count 0))
(lambda ()

(set! count (+ count 1))
count)))

Let’s make two counters:

(define c1 (make-counter))
(define c2 (make-counter))

These two counters have independent local state. Calling a
counter causes it to increment its local state variable, count, and
return its value.



Chapter 8 Appendix: Scheme 507

(c1)
1

(c1)
2

(c2)
1

(c1)
3

(c2)
2

Assignment to variables is sometimes useful. For example, it
may be useful to accumulate some objects into a list for further
analysis. Here is an elegant way to do this:

(define (make-collector)
(let ((lst ’()))
(cons (lambda (new)

(set! lst (cons new lst))
new)

(lambda () lst))))

This procedure makes a pair of two procedures. The car of the
pair is a procedure that adds to a list and the cdr of the pair is a
procedure that reports the list that has been collected.

Let’s make two collectors and play with them:

(define c3 (make-collector))
(define c4 (make-collector))

((car c3) 42)
42

((car c4) ’jerry)
jerry

((car c3) 28)
28

((car c3) 14)
14
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((car c4) ’jack)
jack

((cdr c3))
(14 28 42)

((cdr c4))
(jack jerry)

It is also possible to assign to the elements of a data structure,
such as a list or vector. This is unnecessary in our work so we
won’t tell you about how to do it! In general, it is good practice
to avoid assignments whenever possible, but if you need them they
are available.10

10The discipline of programming without assignments is called functional pro-
gramming. Functional programs are generally easier to understand, and have
fewer bugs than imperative programs.



9
Appendix: Our Notation

An adequate notation should be understood by at
least two people, one of whom may be the author.

Abdus Salam (1950).

We adopt a functional mathematical notation that is close to that
used by Spivak in his Calculus on Manifolds [40]. The use of func-
tional notation avoids many of the ambiguities of traditional math-
ematical notation; the ambiguities of traditional notation that can
impede clear reasoning in classical mechanics. Functional notation
carefully distinguishes the function from the value of the func-
tion when applied to particular arguments. In functional notation
mathematical expressions are unambiguous and self-contained.

We adopt a generic arithmetic in which the basic arithmetic
operations, such as addition and multiplication, are extended to
a wide variety of mathematical types. Thus, for example, the ad-
dition operator + can be applied to numbers, tuples of numbers,
matrices, functions, etc. Generic arithmetic formalizes the com-
mon informal practice used to manipulate mathematical objects.

We often want to manipulate aggregate quantities, such as the
collection of all of the rectangular coordinates of a collection of
particles, without explicitly manipulating the component parts.
Tensor arithmetic provides a traditional way of manipulating ag-
gregate objects: Indices label the parts; conventions, such as the
summation convention, are introduced to manipulate the indices.
We introduce a tuple arithmetic as an alternative way of manipu-
lating aggregate quantities that usually lets us avoid labeling the
parts with indices. Tuple arithmetic is inspired by tensor arith-
metic but it is more general: not all of the components of a tuple
need to be of the same size or type.

The mathematical notation is in one-to-one correspondence
with expressions of the computer language Scheme [24]. Scheme
is based on the λ-calculus [13] and directly supports the manip-
ulation of functions. We augment Scheme with symbolic, nu-
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merical, and generic features to support our applications. For a
simple introduction to Scheme, see the Scheme appendix. The
correspondence between the mathematical notation and Scheme
requires that mathematical expressions be unambiguous and self-
contained. Scheme provides immediate feedback in verification
of mathematical deductions and facilitates the exploration of the
behavior of systems.

Functions

The value of the function f , given the argument x, is written f(x).
The expression f(x) denotes the value of the function at the given
argument; when we wish to denote the function we write just f .
Functions may take several arguments. For example, we may have
the function that gives the Euclidean distance between two points
in the plane given by their rectangular coordinates:

d(x1, y1, x2, y2) =
√
(x2 − x1)2 + (y2 − y1)2. (9.1)

In Scheme we can write this as:

(define (d x1 y1 x2 y2)
(sqrt (+ (square (- x2 x1)) (square (- y2 y1)))))

Functions may be composed if the range of one overlaps the
domain of the other. The composition of functions is constructed
by passing the output of one to the input of the other. We write
the composition of two functions using the ◦ operation:

(f ◦ g) : x �→ (f ◦ g)(x) = f(g(x)). (9.2)

A procedure h that computes the cube of the sine of its argument
may be defined by composing the procedures cube and sin:

(define h (compose cube sin))

(h 2)
.7518269446689928

which is the same as

(cube (sin 2))
.7518269446689928
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Arithmetic is extended to the manipulation of functions: the
usual mathematical operations may be applied to functions. Ex-
amples are addition and multiplication; we may add or multiply
two functions if they take the same kinds of arguments and if their
values can be added or multiplied:

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x). (9.3)

A procedure g that multiplies the cube of its argument by the sine
of its argument is

(define g (* cube sin))

(g 2)
7.274379414605454

(* (cube 2) (sin 2))
7.274379414605454

Symbolic values

As in usual mathematical notation, arithmetic is extended to al-
low the use of symbols that represent unknown or incompletely
specified mathematical objects. These symbols are manipulated
as if they had values of a known type. By default, a Scheme
symbol is assumed to represent a real number. So the expression
’a is a literal Scheme symbol that represents an unspecified real
number:

((compose cube sin) ’a)
(expt (sin a) 3)

The default printer simplifies the expression and displays it in a
readable form.1 We can use the simplifier to verify a trigonometric
identity:

((- (+ (square sin) (square cos)) 1) ’a)
0

1The procedure print-expression can be used in a program to print a sim-
plified version of an expression. The default printer in the user interface
incorporates the simplifier.
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Just as it is useful to be able to manipulate symbolic numbers,
it is useful to be able to manipulate symbolic functions. The
procedure literal-function makes a procedure that acts as a
function having no properties other than its name. By default, a
literal function is defined to take one real argument and produce
one real value. For example, we may want to work with a function
f : R→ R:

((literal-function ’f) ’x)
(f x)

((compose (literal-function ’f) (literal-function ’g)) ’x)
(f (g x))

We can also make literal functions of multiple, possibly struc-
tured arguments that return structured values. For example, to
denote a literal function named g that takes two real arguments
and returns a real value (g : R×R→ R) we may write:

(define g (literal-function ’g (-> (X Real Real) Real)))

(g ’x ’y)
(g x y)

We may use such a literal function anywhere that an explicit func-
tion of the same type may be used.

There is a whole language for describing the type of a literal
function in terms of the number of arguments, the types of the
arguments, and the types of the values. Here we describe a func-
tion that maps pairs of real numbers to real numbers with the
expression (-> (X Real Real) Real). Later we will introduce
structured arguments and values and show extensions of literal
functions to handle these.

Tuples

There are two kinds of tuples: up tuples and down tuples. We
write tuples as ordered lists of their components; a tuple is de-
limited by parentheses if it is an up tuple and by square brackets
if it is a down tuple. For example, the up tuple v of velocity
components v0, v1, and v2 is

v =
(
v0, v1, v2

)
. (9.4)

The down tuple p of momentum components p0, p1, and p2 is

p = [p0, p1, p2] . (9.5)
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A component of an up tuple is usually identified by a superscript.
A component of a down tuple is usually identified by a subscript.
We use zero-based indexing when referring to tuple elements. This
notation follows the usual convention in tensor arithmetic.

We make tuples with the constructors up and down:

(define v (up ’v^0 ’v^1 ’v^2))

v
(up vˆ0 vˆ1 vˆ2)

(define p (down ’p 0 ’p 1 ’p 2))

p
(down p 0 p 1 p 2)

Tuple arithmetic is different from the usual tensor arithmetic
in that the components of a tuple may also be tuples and different
components need not have the same structure. For example, a
tuple structure s of phase-space states is

s = (t, (x, y) , [px, py]) . (9.6)

It is an up tuple of the time, the coordinates, and the momenta.
The time t has no substructure. The coordinates are an up tuple
of the coordinate components x and y. The momentum is a down
tuple of the momentum components px and py. This is written:

(define s (up ’t (up ’x ’y) (down ’p x ’p y)))

In order to reference components of tuple structures there are
selector functions, for example:

I(s) = s

I0(s) = t

I1(s) = (x, y)

I2(s) = [px, py]

I1,0(s) = x

...

I2,1(s) = py. (9.7)

The sequence of integer subscripts on the selector describes the
access chain to the desired component.
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The procedure component is the general selector procedure that
implements the selector functions. For example, I0,1 is imple-
mented by (component 0 1):

((component 0 1) (up (up ’a ’b) (up ’c ’d)))
b

To access a component of a tuple we may also use the selector
procedure ref, which takes a tuple and an index and returns the
indicated element of the tuple:

(ref (up ’a ’b ’c) 1)
b

We use zero-based indexing everywhere. The procedure ref can
be used to access any substructure of a tree of tuples:

(ref (up (up ’a ’b) (up ’c ’d)) 0 1)
b

Two up tuples of the same length may be added or subtracted,
elementwise, to produce an up tuple, if the components are com-
patible for addition. Similarly, two down tuples of the same length
may be added or subtracted, elementwise, to produce a down tu-
ple, if the components are compatible for addition.

Any tuple may be multiplied by a number by multiplying each
component by the number. Numbers may, of course, be mul-
tiplied. Tuples that are compatible for addition form a vector
space.

For convenience we define the square of a tuple to be the sum
of the squares of the components of the tuple. Tuples can be
multiplied, as described below, but the square of a tuple is not
the product of the tuple with itself.

The meaning of multiplication of tuples depends on the struc-
ture of the tuples. Two tuples are compatible for contraction if
they are of opposite types, they are of the same length, and cor-
responding elements have the following property: either they are
both tuples and are compatible for contraction, or one of them
is not a tuple. If two tuples are compatible for contraction then
generic multiplication is interpreted as contraction: the result is
the sum of the products of corresponding components of the tu-
ples. For example, p and v introduced in equations (9.4) and (9.5)
above are compatible for contraction; the product is
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pv = p0v
0 + p1v

1 + p2v
2. (9.8)

So the product of tuples that are compatible for contraction is an
inner product. Using the tuples p and v defined above gives us

(* p v)
(+ (* p 0 vˆ0) (* p 1 vˆ1) (* p 2 vˆ2))

Contraction of tuples is commutative: pv = vp. Caution: Mul-
tiplication of tuples that are compatible for contraction is, in gen-
eral, not associative. For example, let u = (5, 2), v = (11, 13), and
g = [[3, 5] , [7, 9]]. Then u(gv) = 964, but (ug)v = 878. The ex-
pression ugv is ambiguous. An expression that has this ambiguity
does not occur in this book.

The rule for multiplying two structures that are not compati-
ble for contraction is simple. If A and B are not compatible for
contraction, the product AB is a tuple of type B whose compo-
nents are the products of A and the components of B. The same
rule is applied recursively in multiplying the components. So if
B = (B0, B1, B2), the product of A and B is

AB =
(
AB0, AB1, AB2

)
. (9.9)

IfA and C are not compatible for contraction and C = [C0, C1, C2],
the product is

AC = [AC0, AC1, AC2] . (9.10)

Tuple structures can be made to represent linear transforma-
tions. For example, the rotation commonly represented by the
matrix[
cos θ − sin θ
sin θ cos θ

]
(9.11)

can be represented as a tuple structure:2[ (
cos θ
sin θ

)(− sin θ
cos θ

) ]
. (9.12)

2To emphasize the relationship of simple tuple structures to matrix notation
we often format up tuples as vertical arrangements of components and down
tuples as horizontal arrangements of components. However, we could just as
well have written this tuple as [(cos θ, sin θ) , (− sin θ, cos θ)].
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Such a tuple is compatible for contraction with an up tuple that
represents a vector. So, for example:[ (

cos θ
sin θ

)(− sin θ
cos θ

) ] (
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
. (9.13)

Two tuples that represent linear transformations, though not com-
patible for contraction, may also be combined by multiplication.
In this case the product represents the composition of the linear
transformations. For example, the product of the tuples repre-
senting two rotations is[ (

cos θ
sin θ

)(− sin θ
cos θ

) ] [(
cosϕ
sinϕ

)(− sinϕ
cosϕ

) ]
=

[ (
cos(θ + ϕ)
sin(θ + ϕ)

)(− sin(θ + ϕ)
cos(θ + ϕ)

) ]
. (9.14)

Multiplication of tuples that represent linear transformations is as-
sociative but generally not commutative, just as the composition
of the transformations is associative but not generally commuta-
tive.

Derivatives

The derivative of a function f is a function, denoted by Df . Our
notational convention is that D is a high-precedence operator.
Thus D operates on the adjacent function before any other ap-
plication occurs: Df(x) is the same as (Df)(x). Higher-order
derivatives are described by exponentiating the derivative opera-
tor. Thus the nth derivative of a function f is notated as Dnf .

The procedure for producing the derivative of a function is
named D. The derivative of the sin procedure is a procedure that
computes cos:

(define derivative-of-sine (D sin))

(derivative-of-sine ’x)
(cos x)

The derivative of a function f is the function Df whose value
for a particular argument is something that can be multiplied by
an increment Δx in the argument to get a linear approximation
to the increment in the value of f :

f(x+Δx) ≈ f(x) +Df(x)Δx. (9.15)
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For example, let f be the function that cubes its argument
(f(x) = x3); then Df is the function that yields three times
the square of its argument (Df(y) = 3y2). So f(5) = 125 and
Df(5) = 75. The value of f with argument x+Δx is

f(x+Δx) = (x+Δx)3 = x3 + 3x2Δx+ 3xΔx2 +Δx3 (9.16)

and

Df(x)Δx = 3x2Δx. (9.17)

So Df(x) multiplied by Δx gives us the term in f(x+Δx) that is
linear in Δx, providing a good approximation to f(x+Δx)−f(x)
when Δx is small.

Derivatives of compositions obey the chain rule:

D(f ◦ g) = ((Df) ◦ g) ·Dg. (9.18)

So at x,

(D(f ◦ g))(x) = Df(g(x)) ·Dg(x). (9.19)

D is an example of an operator. An operator is like a function
except that multiplication of operators is interpreted as composi-
tion, whereas multiplication of functions is multiplication of the
values (see equation 9.3). If D were an ordinary function, then
the rule for multiplication would imply that D2f would just be
the product of Df with itself, which is not what is intended. A
product of a number and an operator scales the operator. So, for
example

(((* 5 D) cos) ’x)
(* -5 (sin x))

Arithmetic is extended to allow manipulation of operators. A
typical operator is (D+I)(D−I) = D2−I, where I is the identity
operator, which subtracts a function from its second derivative.
Such an operator can be constructed and used as follows:

(((* (+ D I) (- D I)) (literal-function ’f)) ’x)
(+ (((expt D 2) f) x) (* -1 (f x)))
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Derivatives of functions of multiple arguments

The derivative generalizes to functions that take multiple argu-
ments. The derivative of a real-valued function of multiple argu-
ments is an object whose contraction with the tuple of increments
in the arguments gives a linear approximation to the increment in
the function’s value.

A function of multiple arguments can be thought of as a func-
tion of an up tuple of those arguments. Thus an incremental ar-
gument tuple is an up tuple of components, one for each argument
position. The derivative of such a function is a down tuple of the
partial derivatives of the function with respect to each argument
position.

Suppose we have a real-valued function g of two real-valued
arguments, and we want to approximate the increment in the value
of g from its value at x, y. If the arguments are incremented by
the tuple (Δx,Δy) we compute:

Dg(x, y) · (Δx,Δy) = [∂0g(x, y), ∂1g(x, y)] · (Δx,Δy)

= ∂0g(x, y)Δx + ∂1g(x, y)Δy. (9.20)

Using the two-argument literal function g defined on page 512, we
have:

((D g) ’x ’y)
(down (((partial 0) g) x y) (((partial 1) g) x y))

In general, partial derivatives are just the components of the
derivative of a function that takes multiple arguments (or struc-
tured arguments or both; see below). So a partial derivative of a
function is a composition of a component selector and the deriva-
tive of that function.3 Indeed:

∂0g = I0 ◦Dg (9.21)

∂1g = I1 ◦Dg. (9.22)

Concretely, if

g(x, y) = x3y5 (9.23)

3Partial derivative operators such as (partial 2) are operators, so (expt
(partial 1) 2) is a second partial derivative.



Chapter 9 Appendix: Our Notation 519

then

Dg(x, y) =
[
3x2y5, 5x3y4

]
(9.24)

and the first-order approximation of the increment for changing
the arguments by Δx and Δy is

g(x+Δx, y +Δy)− g(x, y) ≈ [
3x2y5, 5x3y4

] · (Δx,Δy)

= 3x2y5Δx+ 5x3y4Δy. (9.25)

Partial derivatives of compositions also obey a chain rule:

∂i(f ◦ g) = ((Df) ◦ g) · ∂ig. (9.26)

So if x is a tuple of arguments, then

(∂i(f ◦ g))(x) = Df(g(x)) · ∂ig(x). (9.27)

Mathematical notation usually does not distinguish functions
of multiple arguments and functions of the tuple of arguments.
Let h((x, y)) = g(x, y). The function h, which takes a tuple of
arguments x and y, is not distinguished from the function g that
takes arguments x and y. We use both ways of defining functions
of multiple arguments. The derivatives of both kinds of functions
are compatible for contraction with a tuple of increments to the
arguments. Scheme comes in handy here:

(define (h s)
(g (ref s 0) (ref s 1)))

(h (up ’x ’y))
(g x y)

((D g) ’x ’y)
(down (((partial 0) g) x y) (((partial 1) g) x y))

((D h) (up ’x ’y))
(down (((partial 0) g) x y) (((partial 1) g) x y))

A phase-space state function is a function of time, coordinates,
and momenta. Let H be such a function. The value of H is
H(t, (x, y) , [px, py]) for time t, coordinates (x, y), and momenta
[px, py]. Let s be the phase-space state tuple as in (9.6):

s = (t, (x, y) , [px, py]) . (9.28)
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The value of H for argument tuple s is H(s). We use both ways
of writing the value of H.

We often show a function of multiple arguments that include
tuples by indicating the boundaries of the argument tuples with
semicolons and separating their components with commas. If H
is a function of phase-space states with arguments t, (x, y), and
[px, py], we may write H(t;x, y; px, py). This notation loses the
up/down distinction, but our semicolon-and-comma notation is
convenient and reasonably unambiguous.

The derivative of H is a function that produces an object that
can be contracted with an increment in the argument structure to
produce an increment in the function’s value. The derivative is a
down tuple of three partial derivatives. The first partial derivative
is the partial derivative with respect to the numerical argument.
The second partial derivative is a down tuple of partial derivatives
with respect to each component of the up-tuple argument. The
third partial derivative is an up tuple of partial derivatives with
respect to each component of the down-tuple argument:

DH(s) = [∂0H(s), ∂1H(s), ∂2H(s)] (9.29)

= [∂0H(s), [∂1,0H(s), ∂1,1H(s)] , (∂2,0H(s), ∂2,1H(s))] ,

where ∂1,0 indicates the partial derivative with respect to the first
component (index 0) of the second argument (index 1) of the func-
tion, and so on. Indeed, ∂zF = Iz ◦ DF for any function F and
access chain z. So, if we let Δs be an incremental phase-space
state tuple,

Δs = (Δt, (Δx,Δy) , [Δpx,Δpy]) , (9.30)

then

DH(s)Δs = ∂0H(s)Δt

+ ∂1,0H(s)Δx+ ∂1,1H(s)Δy

+ ∂2,0H(s)Δpx + ∂2,1H(s)Δpy. (9.31)

Caution: Partial derivative operators with respect to different
structured arguments generally do not commute.
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In Scheme we must make explicit choices. We usually assume
that phase-space state functions are functions of the tuple. For
example,

(define H
(literal-function ’H
(-> (UP Real (UP Real Real) (DOWN Real Real)) Real)))

(H s)
(H (up t (up x y) (down p x p y)))

((D H) s)
(down
(((partial 0) H) (up t (up x y) (down p x p y)))
(down (((partial 1 0) H) (up t (up x y) (down p x p y)))

(((partial 1 1) H) (up t (up x y) (down p x p y))))
(up (((partial 2 0) H) (up t (up x y) (down p x p y)))

(((partial 2 1) H) (up t (up x y) (down p x p y)))))

Structured results

Some functions produce structured outputs. A function whose
output is a tuple is equivalent to a tuple of component functions
each of which produces one component of the output tuple.

For example, a function that takes one numerical argument and
produces a structure of outputs may be used to describe a curve
through space. The following function describes a helical path
around the z-axis in three-dimensional space:

h(t) = (cos t, sin t, t) = (cos, sin, I)(t). (9.32)

The derivative is just the up tuple of the derivatives of each com-
ponent of the function:

Dh(t) = (− sin t, cos t, 1). (9.33)

We can write

(define (helix t)
(up (cos t) (sin t) t))

or just

(define helix (up cos sin identity))
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Its derivative is just the up tuple of the derivatives of each com-
ponent of the function:

((D helix) ’t)
(up (* -1 (sin t)) (cos t) 1)

In general, a function that produces structured outputs is just
treated as a structure of functions, one for each of the components.
The derivative of a function of structured inputs that produces
structured outputs is an object that when contracted with an in-
cremental input structure produces a linear approximation to the
incremental output. Thus, if we define function g by

g(x, y) = ((x+ y)2, (y − x)3, ex+y), (9.34)

then the derivative of g is

Dg(x, y) =

[(
2(x+ y)
−3(y − x)2

ex+y

)
,

(
2(x+ y)
3(y − x)2

ex+y

)]
. (9.35)

In Scheme:

(define (g x y)
(up (square (+ x y)) (cube (- y x)) (exp (+ x y))))

((D g) ’x ’y)
(down (up (+ (* 2 x) (* 2 y))

(+ (* -3 (expt x 2)) (* 6 x y) (* -3 (expt y 2)))
(* (exp y) (exp x)))

(up (+ (* 2 x) (* 2 y))
(+ (* 3 (expt x 2)) (* -6 x y) (* 3 (expt y 2)))
(* (exp y) (exp x))))

Caution must be exercised when taking the derivative of the
product of functions that each produce structured results. The
problem is that the usual product rule does not hold. Let f and
g be functions of x whose results are compatible for contraction
to a number. The increment of f for an increment Δx of x is
Df(x)Δx, and similarly for g. The increment of the product fg
is D(fg)(x)Δx, but expanded in terms of the derivative of f and
g the increment is (Df(x)Δx)g(x) + f(x)(Dg(x)Δx). It is not
((Df)(x)g(x) + f(x)(Dg(x)))Δx. The reason is that the shape of
the derivative of f is such that Df(x) should be multiplied by Δx
rather than g(x).
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Exercise 9.1: Chain rule

Let F (x, y) = x2y3, G(x, y) = (F (x, y), y), and H(x, y) = F (F (x, y), y),
so that H = F ◦G.

a. Compute ∂0F (x, y) and ∂1F (x, y).

b. Compute ∂0F (F (x, y), y) and ∂1F (F (x, y), y).

c. Compute ∂0G(x, y) and ∂1G(x, y).

d. Compute DF (a, b), DG(3, 5) and DH(3a2, 5b3).

Exercise 9.2: Computing derivatives

We can represent functions of multiple arguments as procedures in sev-
eral ways, depending upon how we wish to use them. The simplest idea
is to identify the procedure arguments with the function’s arguments.

For example, we could write implementations of the functions that
occur in exercise 9.1 as follows:

(define (f x y)
(* (square x) (cube y)))

(define (g x y)
(up (f x y) y))

(define (h x y)
(f (f x y) y))

With this choice it is awkward to compose a function that takes mul-
tiple arguments, such as f , with a function that produces a tuple of
those arguments, such as g. Alternatively, we can represent the function
arguments as slots of a tuple data structure, and then composition with
a function that produces such a data structure is easy. However, this
choice requires the procedures to build and take apart structures.

For example, we may define procedures that implement the functions
above as follows:

(define (f v)
(let ((x (ref v 0))

(y (ref v 1)))
(* (square x) (cube y))))

(define (g v)
(let ((x (ref v 0))

(y (ref v 1)))
(up (f v) y)))

(define h (compose f g))

Repeat exercise 9.1 using the computer. Explore both implementa-
tions of multiple-argument functions.
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[9] Constantin Carathéodory, Calculus of variations and partial differ-
ential equations of the first order, (translated by Robert B. Dean
and Julius J. Brandstatter), Holden-Day, 1965–67.
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Action (continued)
generating functions and,
421–425

Hamilton–Jacobi equation and,
421–425

Lagrangian, 12
minimizing, 18–23
parametric, 21
principles (see Principle of
stationary action)

S, 10
time evolution and, 423–425,
435–437

variation of, 28
Action-angle coordinates, 311
Hamiltonian in, 311
Hamilton–Jacobi equation and,
413

Hamilton’s equations in, 311
harmonic oscillator in, 346 (eq.
5.31)

perturbation of Hamiltonian,
316, 458

surfaces of section in, 313
Action principle. See Principle of

stationary action
Alphabet, insufficient size of, 15n
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Angles, Euler. See Euler angles
Angular momentum. See also

Vector angular momentum
conservation of, 43, 80, 86,
142–143

equilibrium points for, 149
Euler’s equations and, 151–153
in terms of principal moments
and angular velocity, 136

kinetic energy in terms of, 148
Lie commutation relations for,
452 (ex. 6.10)

as Lie generator of rotations,
440

of free rigid body, 146–150,
151–153

of rigid body, 135–137
sphere of, 148
z component of, 85

Angular velocity vector (�ω), 124,
139

Euler’s equations for, 151–153
kinetic energy in terms of, 131,
134

representation of, 123–126
Anomaly, true, 171n
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126
Antisymmetry of Poisson

bracket, 220
Area preservation
by maps, 278
Liouville’s theorem and, 272
Poincaré–Cartan integral
invariant and, 434–435

of surfaces of section, 272,
434–435

Arguments. See also Function(s);
Functional arguments

active vs. passive in Legendre
transformation, 208

in Scheme, 497
Arithmetic
generic, 16n, 509
on functions, 18n, 511
on operators, 34n, 517
on procedures, 19n
on symbolic values, 511
on tuples, 509, 513–516

Arnold, V. I., xiii, xvn, 113. See
also
Kolmogorov–Arnold–Moser
theorem

Assignment in Scheme, 506–508
Associativity and

non-associativity of tuple
multiplication, 515, 516

Asteroids, rotational alignment
of, 151

Astronomy. See Celestial objects
Asymptotic trajectories, 223,

287, 302
Atomic scale, 8 n
Attractor, 274
Autonomous systems, 82. See

also Extended phase space
surfaces of section for, 248–263

Awake top, 231
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Axes, principal, 133
of this dense book, 135 (ex.
2.7), 150

Axisymmetric potential of
galaxy, 250

Axisymmetric top
awake, 231
behavior of, 161–165, 231–232
conserved quantities for, 160
degrees of freedom of, 5 (ex.
1.1)

Euler angles for, 159
Hamiltonian treatment of,
228–233

kinetic energy of, 159
Lagrangian treatment of,
157–165

nutation of, 162 (fig. 2.5), 164
(ex. 2.15)

potential energy of, 160
precession of, 119, 162 (fig. 2.6),
164 (ex. 2.16)

rotation of, 119
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symmetries of, 228

Baker, Henry. See
Baker–Campbell–Hausdorff
formula

Baker–Campbell–Hausdorff
formula, 453 (ex. 6.11)

Banana. See Book
Barrow-Green, June, 457
Basin of attraction, 274
Bicycle wheel, 156 (ex. 2.13)
Birkhoff, George David. See

Poincaré–Birkhoff theorem
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326
Body components of vector, 134
Boltzmann, Ludwig, 12n, 203n,

274n
Book
banana-like behavior of, 128
rotation of, 119, 150

Brackets. See also Poisson
brackets

for down tuples, 512
for functional arguments, 10n

bulirsch-stoer, 145
Bulirsch–Stoer integration

method, 74n
Butterfly effect, 241n

C (local-tuple transformation),
44

CH (canonical phase-space
transformation), 337n

Campbell, John. See
Baker–Campbell–Hausdorff
formula

canonical?, 344
Canonical-H?, 348
Canonical-K?, 348
canonical-transform?, 351
Canonical condition, 342–352
Poisson brackets and, 352–353

Canonical equations. See
Hamilton’s equations

Canonical heliocentric
coordinates, 409 (ex. 5.21)

Canonical perturbation theory.
See Perturbation theory

Canonical plane, 362n
Canonical transformations,

335–336. See also Generating
functions; Symplectic
transformations

composition of, 346 (ex. 5.4),
381, 393 (ex. 5.12)

conditions for, 342–357
for driven pendulum, 392
general, 342–357
group properties of, 346 (ex.
5.4)
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bilinear form under, 359–362
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under, 358–359

invariance of Poisson brackets
under, 358

invariants of, 357–364 (see also
Integral invariants)

as Lie series, 448
Lie transforms (see Lie
transforms)
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Canonical transformations
(continued)

point transformations (see
Point transformations)

polar-canonical (see
Polar-canonical
transformation)

to rotating coordinates,
348–349, 377–378

time evolution as, 426–437
total time derivative and,
390–393

Cantorus, cantori, 244n, 330
car, 503
Cartan, Élie. See

Poincaré–Cartan integral
invariant

Cauchy, Augustin Louis, 39n
cdr, 503
Celestial objects. See also

Asteroids; Comets; Earth;
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Mercury; Moon; Phobos;
Planets

rotation of, 151, 165, 170–171
Center of mass, 121
in two-body problem, 381
Jacobi coordinates and, 409 (ex.
5.21)

kinetic energy and, 121
vector angular momentum and,
135

Central force
collapsing orbits, 389 (ex. 5.11)
epicyclic motion, 381–389
gravitational, 31
in 2 dimensions, 40, 227–228,
381–389

in 3 dimensions, 47 (ex. 1.16),
84

Lie series for motion in, 450
orbits, 78 (ex. 1.30)
reduced phase space for motion
in, 405–407

Central potential. See Central
force

Centrifugal force, 47, 49

Chain rule
for derivatives, 517, 523 (ex.
9.1)

for partial derivatives, 519, 523
(ex. 9.1)

for total time derivatives, 64
(ex. 1.26)

in traditional notation, xiv n
for variations, 27 (eq. 1.26)

Chaotic motion, 241. See also
Exponential divergence

homoclinic tangle and, 307
in Hénon–Heiles problem, 259
in restricted three-body
problem, 283 (ex. 3.16)

in spin-orbit coupling, 282 (ex.
3.15), 496 (ex. 7.5)

near separatrices, 290, 484, 486
of Hyperion, 151, 170–176
of non-axisymmetric top, 263
of periodically driven
pendulum, 76, 243

overlapping resonances and, 488
Characteristic exponent, 293
Characteristic multiplier, 296
Chirikov, Boris V., 278n
Chirikov–Taylor map, 278n
Church, Alonzo, 498n
Colon, names starting with, 21n
Comets, rotation of, 151
Comma in tuple, 520
Commensurability, 312. See also

Resonance
islands and, 309
of pendulum period with drive,
289, 290

periodic orbits and, 309, 316
rational rotation number and,
316

small denominators and, 475
Commutativity. See also

Non-commutativity
of some tuple multiplication,
515

of variation (δ) with
differentiation and integration,
27
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Commutator, 451
of angular-momentum Lie
operators, 452 (ex. 6.10)

Jacobi identity for, 451
of Lie derivative, 452 (ex. 6.10)
Poisson brackets and, 452 (ex.
6.10)

compatible-shape, 351n
Compatible shape, 351n
component, 15n, 514
compose, 500
Composition
of canonical transformations,
346 (ex. 5.4), 381, 393 (ex.
5.12)

of functions, 7 n, 510, 523 (ex.
9.2)

of Lie transforms, 451
of linear transformations, 516
of operators, 517
of rotations, 123, 187

Compound data in Scheme,
502–504

cond, 500
Conditionals in Scheme, 500–501
Configuration, 4
Configuration manifold, 7n
Configuration path. See Path
Configuration space, 4–5
Conjugate momentum, 79
non-uniqueness of, 239

cons, 503
Consequent in conditional, 500
Conserved quantities, 78, 195.

See also Hénon–Heiles
problem, integrals of motion

angular momentum, 43, 80, 86,
142–143

coordinate choice and, 79–81
cyclic coordinates and, 80
energy, 81–83, 142, 211
Jacobi constant, 89n, 383, 400
Lyapunov exponents and, 267
momentum, 79–81
Noether’s theorem, 90–91
phase space reduction and,
224–226

phase volume (see
Phase-volume conservation)

Poisson brackets of, 221
symmetry and, 79, 90
for top, 160

Constant of motion (integral of
motion), 78. See also
Conserved quantities;
Hénon–Heiles problem

Constraint(s)
augmented Lagrangian and,
102, 109

configuration space and, 4
as coordinate transformations,
59–63

explicit, 99–103
in extended bodies, 4
holonomic, 4 n, 109
integrable, 4n, 109
linear in velocities, 112
nonholonomic (non-integrable),
112

on coordinates, 101
rigid, 49–63
as subsystem couplers, 105
total time derivative and, 108
velocity-dependent, 108
velocity-independent, 101

Constraint force, 104
Constructors in Scheme, 503
Contact transformation. See

Canonical transformations
Continuation procedure, 247
Continued-fraction

approximation of irrational
number, 325

Contraction of tuples, 514
coordinate, 15n
Coordinate(s). See also

Generalized coordinates
action-angle (see Action-angle
coordinates)

conserved quantities and choice
of, 79–81

constraints on, 101
cyclic, 80, 224n
heliocentric, 409 (ex. 5.21)
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Coordinate(s) (continued)
ignorable (cyclic), 80
Jacobi, 409 (ex. 5.21)
polar (see Polar coordinates)
redundant, and initial
conditions, 69n

rotating (see Rotating
coordinates)

spherical, 84
Coordinate function (χ), 7
Coordinate-independence
of action, 17
of Lagrange equations, 30, 43
(ex. 1.14)

of variational formulation, 3, 39
Coordinate path (q), 7. See also

Local tuple
Coordinate selector (Q), 220
Coordinate singularity, 144
Coordinate transformations,

44–47
constraints as, 59–63

Coriolis force, 47, 49
Correction fluid, 150
Cotangent space, bundle, 203n
Coupling, spin-orbit. See

Spin-orbit coupling
Coupling systems, 105–106
Curves, invariant. See Invariant

curves
Cyclic coordinate, 80, 224n

D. See Derivative
D (Scheme procedure for

derivative), 16n, 516
D-as-matrix, 355 n
D-phase-space, 347
∂. See Partial derivative
Dt (total time derivative), 64
d’Alembert–Lagrange principle

(Jean leRond d’Alembert), 113
Damped harmonic oscillator, 274
define, 499
definite-integral, 17
Definite integral, 10n
Definitions in Scheme, 499–500
Degrees of freedom, 4–5
Delta function, 454 (ex. 6.12)

Derivative, 8n, 516–521. See also
Total time derivative

as operator, 517
as Poisson bracket, 446
chain rule, 517, 523 (ex. 9.1)
in Scheme programs: D, 16n,
516

notation: D, 8n, 516
of function of multiple
arguments, 29n, 518–521

of function with structured
arguments, 24n

of function with structured
inputs and outputs, 522

of state, 71
partial (see Partial derivative)
precedence of, 8 n, 516
with respect to a tuple, 29n

determinant, 144
Differentiable manifold, 7 n
Dimension of configuration space,

4–5
Dirac, Paul Adrien Maurice, 12n
Dissipation of energy
in free-body rotation, 150
tidal friction, 170

Dissipative system, phase-volume
conservation, 274

Dissolution of invariant curves,
329–330, 486

Distribution functions, 276
Divided phase space, 244, 258,

286–290
Dot notation, 32n
Double pendulum. See

Pendulum, double
down, 15n, 513
Down tuples, 512
Driven harmonic oscillator, 430

(ex. 6.6)
Driven pendulum. See Pendulum

(driven)
Driven rotor, 317, 321
Dt (total time derivative), 97
Dynamical state. See State

E (Euler–Lagrange operator), 98
E (energy state function), 82
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Earth
precession of, 176 (ex. 2.18)
rotational alignment of, 151

Effective Hamiltonian, 230
Effects in Scheme, 505–508
Eigenvalues and eigenvectors
for equilibria, 293
for fixed points, 296
for Hamiltonian systems, 298
of inertia tensor, 132
for unstable fixed point, 303

Einstein, Albert, 1
Einstein summation convention,

367n
else, 500
Empty list, 503
Energy, 81
as sum of kinetic and potential
energies, 82

conservation of, 81–83, 142, 211
dissipation of (see Dissipation
of energy)

Energy state function (E), 82
Hamiltonian and, 200

Epicyclic motion, 381–389
eq?, 505
Equilibria, 222–223, 291–295. See

also Fixed points
for angular momentum, 149
inverted, for pendulum, 246,
282 (ex. 3.14), 491–494, 496
(ex. 7.4)

linear stability of, 291–295
relative, 149
stable and unstable, 287

Equinox, precession of, 176 (ex.
2.18)

Ergodic motion, 312n
Ergodic theorem, 251
Euler, Leonhard, 13n
Euler->M, 139
Euler-state->omega-body, 140
Euler angles, 137–141
for axisymmetric top, 159
kinetic energy in terms of, 141
singularities and, 143, 154

Euler–Lagrange equations. See
Lagrange equations

Euler-Lagrange-operator (E),
98

Euler–Lagrange operator (E), 98
Euler’s equations, 151–157
singularities in, 154

Euler’s theorem on homogeneous
functions, 83n

Euler’s theorem on rotations, 123
Euler angles and, 182

Evolution. See Time evolution of
state

evolve, 75, 145, 238
explore-map, 248
Exponential(s)
of differential operator, 443
of Lie derivative, 447 (eq. 6.147)
of noncommuting operators,
451–453

Exponential divergence, 241, 243,
263–267. See also Chaotic
motion; Lyapunov exponent

homoclinic tangle and, 307
Expressions in Scheme, 497
Extended phase space, 394–402
generating functions in, 407

F1–F4. See also Generating
functions

F1(t, q, q
′), 373

F2(t, q, p
′), 373

F3(t, p, q
′), 374

F4(t, p, p
′), 374

F->C, 46 , 96
F->CH, 339
F->K, 340
Fermat, Pierre, 13 (ex. 1.3)
Fermat’s principle (optics), 13
(ex. 1.3), 13n

Fermi, Enrico, 251
Feynman, Richard P., 12n
find-path, 21
First amendment. See Degrees of

freedom
First integral, 78
Fixed points, 295. See also

Equilibria
elliptic, 299, 320
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Fixed points (continued)
equilibria or periodic motion
and, 290, 295

for Hamiltonian systems, 298
hyperbolic, 299, 320
linear stability of, 295–297
manifolds for, 303
parabolic, 299
Poincaré–Birkhoff fixed points,
320

Poincaré–Birkhoff theorem,
316–321

rational rotation number and,
316

Floating-point numbers in
Scheme, 18n

Floquet multiplier, 296n
Flow, defined by vector field,

447n
Force
central (see Central force)
exerted by constraint, 104

Forced libration of the Moon, 175
Forced rigid body. See Rigid

body, forced
Formal parameters
of a function, 14n
of a procedure, 499

Foucault pendulum, 62 (ex.
1.25), 78 (ex. 1.31)

frame, 76n
Free libration of the Moon, 175
Free particle
action, 14–20
Lagrange equations for, 33
Lagrangian for, 14–15

Free rigid body. See Rigid body
(free)

Freudenthal, Hans, xivn
Friction
internal, 150
tidal, 170

Function(s), 510–511
arithmetic operations on, 18n,
511

composition of, 7 n, 510, 523
(ex. 9.2)

homogeneous, 83n

operator vs., 448n, 517
orthogonal, tuple-valued, 101n
parallel, tuple-valued, 101n
selector (see Selector function)
tuple of, 7 n, 521
vs. value when applied, 509, 510
with multiple arguments, 518,
519, 523 (ex. 9.2)

with structured arguments,
24n, 519, 523 (ex. 9.2)

with structured output, 521,
523 (ex. 9.2)

Functional arguments, 10n
Functional mathematical

notation, xiv, 509
Function definition, 14n
Fundamental Poisson brackets,

352

Γ[q]
for local tuple, 11
Lagrangian state path, 203

Galaxy, 248–252
axisymmetric potential of, 250

Galilean invariance, 68 (ex. 1.29),
341 (ex. 5.1)

Gamma (Scheme procedure for Γ),
16

optional argument, 36 (ex. 1.13)
Gamma-bar, 95
Gas in corner of room, 273
Generalized coordinates, 6–8, 39.

See also Coordinate(s)
Euler angles as, 138 (see also
Euler angles)

Generalized momentum, 79
transformation of, 337 (eq. 5.5)

Generalized velocity, 8
transformation of, 45

Generating functions, 364–394
in extended phase space, 407
F1–F4, 373–374
F1, 364–368
F2, 371–373
F2 and point transformations,
375–376

F2 for polar coordinate
transformation, 376–377
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F2 for rotating coordinates,
377–378

integral invariants and, 368–373
Lagrangian action and, 421–425
Legendre transformation
between F1 and F2, 373

mixed-variable, 374
Generic arithmetic, 16n, 509
Gibbs, Josiah Willard, 12n,

203n
Golden number, 325
Golden ratio, a most irrational

number, 325
Golden rotation number, 328
Goldstein, Herbert, 119
Goldstein’s hoop, 110
Golf ball, tiny, 108 (ex. 1.41)
Grand Old Duke of York. See

neither up nor down
Graphing, 23 (ex. 1.5), 75, 248
Gravitational potential
central, 31
of galaxy, 250
multipole expansion of, 165–169
rigid-body, 166

Group properties
of canonical transformations,
346 (ex. 5.4)

of rotations, 187 (see also
Euler’s theorem on rotations)

H (Hamiltonian), 199
H-central, 339
H-harmonic, 448
H-pend-sysder, 237
Hamilton, Sir William Rowan,

39n, 183
Hamiltonian, 199
in action-angle coordinates, 311
computing (see H-...)
cyclic in coordinate, 224n
energy state function and, 200
for axisymmetric potential, 250
for central potential, 227, 339,
381, 382

for damped harmonic oscillator,
275

for driven pendulum, 392
for driven rotor, 317
for harmonic oscillator, 344
for harmonic oscillator, in
action-angle coordinates, 346
(eq. 5.31)

for Kepler problem, 418
for pendulum, 460
for periodically driven
pendulum, 236, 476

for restricted three-body
problem, 399, 400

for spin-orbit coupling, 496 (ex.
7.5)

for top, 230
for two-body problem, 378
Hénon–Heiles, 252, 455 (ex.
6.12)

Lagrangian and, 200 (eq. 3.19),
210

perturbation of action-angle,
316, 458

time-dependent, and
dissipation, 276

Hamiltonian->Lagrangian, 213
Hamiltonian->state-

derivative, 204
Hamiltonian flow, 447n
Hamiltonian formulation, 195
Lagrangian formulation and,
217

Hamiltonian state, 202–203
Hamiltonian state derivative,

202, 204
Hamiltonian state path ΠL[q],

203
Hamilton–Jacobi equation,

411–413
action-angle coordinates and,
413

action at endpoints and, 425
for harmonic oscillator, 413–417
for Kepler problem, 417–421
separation in spherical
coordinates, 418–421

time-independent, 413
Hamilton-equations, 203
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Hamilton’s equations, 197–200
in action-angle coordinates, 311
computation of, 203–205
dynamical, 217
for central potential, 227
for damped harmonic oscillator,
275

for harmonic oscillator, 344
from action principle, 215–217
from Legendre transformation,
210–211

numerical integration of, 236
Poisson bracket form, 220

Hamilton’s principle, 38
for systems with rigid
constraints, 49–50

Harmonic oscillator
coupled, 105
damped, 274
decoupling via Lie transform,
442

driven, 430 (ex. 6.6)
first-order equations for, 72
Hamiltonian for, 344
Hamiltonian in action-angle
coordinates, 346 (eq. 5.31)

Hamilton’s equations for, 344
Lagrange equations for, 30, 72
Lagrangian for, 21
Lie series for, 448
solution of, 34, 344
solution via canonical
transformation, 344

solution via Hamilton–Jacobi,
413–417

Hausdorff, Felix. See
Baker–Campbell–Hausdorff
formula

Heiles, Carl, 241, 248. See also
Hénon

Heisenberg, Werner, 12n, 203n
Heliocentric coordinates, 409 (ex.

5.21)
Hénon, Michel, 195, 241, 248
Hénon–Heiles problem, 248–263
computing surfaces of section,
261–263

Hamiltonian for, 252

history of, 248–252
integrals of motion, 251, 254,
256–260

interpretation of model,
256–260

model of, 252–254
potential energy, 253
surface of section, 254–263

Hénon’s quadratic map, 280 (ex.
3.13)

Heteroclinic intersection, 305
Higher-order perturbation

theory, 468–473, 489–494
History
Hénon–Heiles problem, 248–252
variational principles, 10n,
13n, 39n

Holonomic system, 4n, 109
Homoclinic intersection, 304
Homoclinic tangle, 302–309
chaotic regions and, 307
computing, 307–309
exponential divergence and, 307

Homogeneous function, Euler’s
theorem, 83n

Huygens, Christiaan, 10n
Hyperion, chaotic tumbling of,

151, 170–176

I (identity operator), 517
I with subscript (selector), 64n,

513
if, 501
Ignorable coordinate. See Cyclic

coordinate
Indexing, zero-based. See

Zero-based indexing
Inertia, moments of. See

Moment(s) of inertia
Inertia matrix, 128. See also

Inertia tensor
Inertia tensor, 127
diagonalization of, 132–133
kinetic energy in terms of, 131
principal axes of, 133
transformation of, 130–132

Initial conditions. See Sensitivity
to initial conditions; State
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Inner product of tuples, 515
Instability. See also Equilibria;

Linear stability
free-body rotation, 149–151

Integers in Scheme, 18n
Integrable constraints, 4n, 109
Integrable systems, 285, 309–316
periodic orbits of
near-integrable systems, 316

perturbation of, 316, 322, 457
reduction to quadrature and,
311 (see also Quadrature)

surfaces of section for, 313–316
Integral, definite, 10n
Integral invariant
generating functions and,
368–373

Poincaré, 362–364
Poincaré–Cartan, 402, 431–434

Integral of motion, 78. See also
Conserved quantities;
Hénon–Heiles problem

Integration. See Numerical
integration

Invariant curves, 243, 322–330
dissolution of, 329–330, 486
finding (computing), 326–329
finding (strategy), 322–325
irrational rotation number and,
322

Kolmogorov–Arnold–Moser
theorem, 322

Invariants of canonical
transformations, 357–364. See
also Integral invariants

Irrational number,
continued-fraction
approximation, 325

Islands in surfaces of section. See
also Resonance

for Hénon–Heiles problem, 259
for periodically driven
pendulum, 244–246, 289–290,
483–486

for standard map, 279
perturbative vs. actual, 483–486
in Poincaré–Birkhoff
construction, 321

Poisson series and, 488
secondary, 260, 290
size of, 322, 488
small denominators and, 322,
488

iterated-map, 308n
Iteration in Scheme, 502

J̃ (shuffle function), 350
J, Jn (symplectic unit), 301, 355
J-func, 351
J-matrix, 353
Jac (Jacobian of map), 270
Jacobi, Carl Gustav Jacob, 39n.

See also Hamilton–Jacobi
equation

Jacobian, 270
Jacobi constant, 89n, 383, 400
Jacobi coordinates, 409 (ex. 5.21)
Jacobi identity
for commutators, 451
for Poisson brackets, 221

Jeans, Sir James, “theorem” of,
251

Jupiter, 129 (ex. 2.4)

KAM theorem. See
Kolmogorov–Arnold–Moser
theorem

Kepler, Johannes. See Kepler...
Kepler problem, 31, 35 (ex. 1.11)
in reduced phase space, 406
reduction to, 378–381
solution via Hamilton–Jacobi
equation, 417–421

Kepler’s third law, 35 (ex. 1.11),
173

Kinematics of rotation, 122–126
Kinetic energy
ellipsoid of, 148
in Lagrangian, 38–39
as Lagrangian for free body,
122, 141

as Lagrangian for free particle,
14

of axisymmetric top, 159
of free rigid body, 148–150
of rigid body, 120–122 (see also
Rigid body, kinetic energy...)



542 Index

Fixed points (continued)
rotational and translational, 122
in spherical coordinates, 84

Knuth, Donald E., 531
Kolmogorov, A. N.. See

Kolmogorov–Arnold–Moser
theorem

Kolmogorov–Arnold–Moser
theorem, 302, 322

L (Lagrangian), 11
L (Lie derivative), 447
L-axisymmetric-top, 229
L-body, 137
L-body-Euler, 141
L-central-polar, 43 , 47
L-central-rectangular, 41
L-free-particle, 14
L-harmonic, 22
L-pend, 52
L-periodically-driven-

pendulum, 74
L-rectangular, 213
L-space, 137
L-space-Euler, 141
L-uniform-acceleration, 40 , 61
Lagrange, Joseph Louis, 13n,

39n
Lagrange-equations, 33
Lagrange equations, 23–25
at a moment, 97
computing, 33–36
coordinate-independence of, 30,
43 (ex. 1.14)

derivation of, 25–30
as first-order system, 72
for central potential (polar), 43
for central potential
(rectangular), 41

for damped harmonic oscillator,
275

for driven pendulum, 52
for free particle, 33
for free rigid body, 141
for gravitational potential, 32
for harmonic oscillator, 30, 72
for periodically driven
pendulum, 74

for spin-orbit coupling, 173
from Newton’s equations,
36–38, 54–58

vs. Newton’s equations, 39
numerical integration of, 73
off the beaten path, 97
singularities in, 143
traditional notation for, xiv, 24
uniqueness of solution, 69

Lagrange-interpolation-
function, 20n

Lagrange interpolation
polynomial, 20

Lagrange multiplier. See
Lagrangian, augmented

Lagrangian, 12
adding total time derivatives to,
65

augmented, 102, 109
computing, 14–15 (see also
L-...)

coordinate transformations of,
44

cyclic in coordinate, 80
energy and, 12
for axisymmetric top, 159
for central potential (polar),
42–43, 227

for central potential
(rectangular), 41

for central potential (spherical),
84

for constant acceleration, 40
for damped harmonic oscillator,
275

for driven pendulum, 51, 66
for free particle, 14–15
for free rigid body, 122, 141
for gravitational potential, 31
for harmonic oscillator, 21
for spin-orbit coupling, 173
for systems with rigid
constraints, 49

generating functions and,
421–423

Hamiltonian and, 200 (eq.
3.19), 210

kinetic energy as, 14, 122, 141
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kinetic minus potential energy
as, 38–39 (see also Hamilton’s
principle)

non-uniqueness of, 63–66
parameter names in, 14n
rotational and translational, 141
symmetry of, 90

Lagrangian-action, 17
Lagrangian->energy, 82
Lagrangian->Hamiltonian, 213
Lagrangian->state-derivative,

71
Lagrangian action, 12
Lagrangian formulation, 195
Hamiltonian formulation and,
217

Lagrangian reduction, 233–236
Lagrangian state. See State tuple
Lagrangian state derivative, 71
Lagrangian state path Γ[q], 203
lambda, 498
Lambda calculus, 509
Lambda expression, 498–499
Lanczos, Cornelius, 335
Least action, principle of. See

Principle of stationary action
Legendre, Adrien Marie. See

Legendre...
Legendre polynomials, 167
Legendre-transform, 212
Legendre transformation,

205–212
active arguments in, 208
passive arguments in, 208–209
of quadratic functions, 211

Leibniz, Gottfried, 10n
let, 501
let*, 502
Libration of the Moon, 174, 175
Lie, Sophus. See Lie...
Lie-derivative, 448 , 448 n
Lie derivative, 447n
commutator for, 452 (ex. 6.10)
Lie transform and, 447 (eq.
6.147)

operator LH , 447
Lie series, 443–451
computing, 448–451
for central field, 450

for harmonic oscillator, 448
in perturbation theory, 458–460

Lie-transform, 448
Lie transforms, 437–443
advantage of, 441
composition of, 451
computing, 448
exponential identities, 451–453
for finding normal modes, 442
Lie derivative and, 447 (eq.
6.147)

in perturbation theory, 458
Lindstedt, A., 471
linear-interpolants, 20n
Linear momentum, 80
Linear separation of regular

trajectories, 263
Linear stability, 290
equilibria and fixed points,
297–302

nonlinear stability and, 302
of equilibria, 291–295
of fixed points, 295–297
of inverted equilibrium of
pendulum, 492, 496 (ex. 7.4)

Linear transformations
as tuples, 515
composition of, 516

Liouville, Joseph. See Liouville...
Liouville equation, 276
Liouville’s theorem, 268–272
from canonical transformation,
428

Lipschitz condition (Rudolf
Lipschitz), 69n

Lisp, 503n
list, 503
list-ref, 503
Lists in Scheme, 502–504
literal-function, 15, 512, 521
Literal symbol in Scheme,

504–505
Local names in Scheme, 501–502
Local state tuple, 71
Local tuple, 11
component names, 14n
functions of, 14n
in Scheme programs, 15n
transformation of (C), 44
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Log, falling off, 84 (ex. 1.33)
Loops in Scheme, 502
Lorentz, Hendrik Antoon. See

Lorentz transformations
Lorentz transformations as point

transformations, 399 (ex. 5.18)
Lorenz, Edward, 241n
Lyapunov, Alexey M.. See

Lyapunov exponent
Lyapunov exponent, 267. See

also Chaotic motion
conserved quantities and, 267
exponential divergence and, 267
Hamiltonian constraints, 302
linear stability and, 297

M-of-q->omega-body-of-t, 126
M-of-q->omega-of-t, 126
M->omega, 126
M->omega-body, 126 , 185
MacCullagh’s formula, 168n
make-path, 20, 20 n
Manifold
differentiable, 7 n
stable and unstable, 303–309

Map
area-preserving, 278
Chirikov–Taylor, 278n
fixed points of, 295–297 (see
also Fixed points)

Hénon’s quadratic, 280 (ex.
3.13)

Poincaré, 242
representation in programs, 247
standard, 277–280
symplectic, 301
twist, 315

Mars. See Phobos
Mass point. See Point mass
Mathematical notation. See

Notation
Mather, John N. (discoverer of

sets named cantori by Ian
Percival), 244n

Matrix
inertia, 128 (see also Inertia
tensor)

orthogonal, 124, 130n
symplectic, 301, 355, 356 (ex.
5.6)

as tuple, 515
Maupertuis, Pierre-Louis Moreau

de, 13n
Mean motion, 175n
Mechanics, 1–496
Newtonian vs. variational
formulation, 3, 39

Mercury, resonant rotation of,
171, 193 (ex. 2.21)

Minimization
of action, 18–23
in Scmutils, 19n, 21n

minimize, 19n
Mixed-variable generating

functions, 374
Moment(s) of inertia, 126–130
about a line, 128
about a pivot point, 159
principal, 132–135
of top, 159

Momentum. See also Angular
momentum

conjugate to coordinate (see
Conjugate momentum)

conservation of, 79–81
generalized (see Generalized
momentum)

variation of, 216n
momentum, 204
Momentum path, 80
Momentum selector (P ), 199, 220
Momentum state function (P),

79
Moon
head-shaking, 174
history of, 9n
libration of, 174, 175
rotation of, 119, 151, 170–176,
496 (ex. 7.5)

Moser, Jürgen. See
Kolmogorov–Arnold–Moser
theorem

Motion
atomic-scale, 8n
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chaotic (see Chaotic motion)
constrained, 99–103 (see also
Constraint(s))

dense, on torus, 312n
deterministic, 9
epicyclic, 381–389
ergodic, 312n
periodic (see Periodic motion)
quasiperiodic, 243, 312
realizable vs. conceivable, 2
regular vs. chaotic, 241 (see
also Regular motion)

smoothness of, 8
tumbling (see Chaotic motion,
of Hyperion; Rotation(s),
(in)stability of)

multidimensional-minimize, 21,
21n

Multiplication of operators as
composition, 517

Multiplication of tuples, 514–516
as composition, 516
as contraction, 514

Multiply periodic functions,
Poisson series for, 474

Multipole expansion of potential
energy, 165–169

n-body problem, 408 (ex. 5.21).
See also Three-body problem,
restricted; Two-body problem

Nelder–Mead minimization
method, 21n

Newton, Sir Isaac, 3
Newtonian formulation of

mechanics, 3, 39
Newton’s equations
as Lagrange equations, 36–38,
54–58

vs. Lagrange equations, 39
Noether, Emmy, 81n
Noether’s integral, 91
Noether’s theorem, 90–91
angular momentum and, 143

Non-associativity and
associativity of tuple
multiplication, 515, 516

Non-axisymmetric top, 263
Non-commutativity. See also

Commutativity
exponential(s) of noncommuting
operators, 451–453

of some partial derivatives,
427n, 520

of some tuple multiplication,
516

Nonholonomic system, 112
Nonsingular structure, 368n
Notation, 509–523. See also

Subscripts; Superscripts;
Tuples
{ } for Poisson brackets, 218
( ) for up tuples, 512
[ ] for down tuples, 512
[ ] for functional arguments,
10n

ambiguous, xiv–xv
composition of functions, 7 n
definite integral, 10n
derivative, partial: ∂, xv, 24,
520

derivative: D, 8 n, 516
functional, xiv, 509
functional arguments, 10n
function of local tuple, 14n
selector function: I with
subscript, 64n, 513

total time derivative: Dt, 64
traditional, xiv–xv, 24, 200n,
218n, 509

Numbers in Scheme, 18n
Numerical integration
of Hamilton’s equations, 236
of Lagrange equations, 73
in Scmutils, 17n, 74n, 145
symplectic, 453 (ex. 6.12)

Numerical minimization in
Scmutils, 19n, 21n

Nutation of top, 162 (fig. 2.5),
164 (ex. 2.15)

Oblateness, 170
omega (symplectic 2-form), 361
omega-cross, 126
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Operator, 517
arithmetic operations on, 34n,
517

composition of, 517
exponential identities, 451–453
function vs., 448n, 517
generic, 16n

Operators
derivative (D) (see Derivative)
Euler–Lagrange (E), 98
Lie derivative (LH), 447
Lie transform (E′

ε,W ), 439

partial derivative (∂) (see
Partial derivative)

variation (δη), 26
Optical libration of the Moon,

174
Optics
Fermat, 13 (ex. 1.3)
Snell’s law, 13n

Orbit. See Orbital motion;
Phase-space trajectory

Orbital elements, 421
Orbital motion. See also

Epicyclic motion; Kepler
problem

in a central potential, 78 (ex.
1.30)

Lagrange equations for, 31–32
retrodiction of, 9 n

Orientation. See also Rotation(s)
Euler’s equations and, 153–154
nonsingular coordinates for,
181–191

specified by Euler angles, 138
specified by rotations, 123

Orientation vector, 182
Orthogonal matrix, 124, 130n
Orthogonal transformation. See

Orthogonal matrix
Orthogonal tuple-valued

functions, 101n
Oscillator. See Harmonic

oscillator
osculating-path, 96
Osculation of paths, 94
Ostrogradsky, M. V., 39n
Out-of-roundness parameter, 173

P (momentum selector), 199, 220
P (momentum state function), 79
p->r (polar-to-rectangular), 46
pair?, 504
Pairs in Scheme, 503
Parallel tuple-valued functions,

101n
Parameters, formal. See Formal

parameters
Parametric path, 20
parametric-path-action, 21
with graph, 23 (ex. 1.5)

Parentheses
in Scheme, 497, 498n
for up tuples, 512

partial, 33n
Partial derivative, 24, 518–519,

520
chain rule, 519, 523 (ex. 9.1)
notation: ∂, xv, 24, 520

Particle, free. See Free particle
Path, 2
coordinate path (q), 7 (see also
Local tuple)

finding, 20–23
momentum path, 80
osculation of, 94
parametric, 20
realizable (see Realizable path)
variation of, 12, 18, 26

Path-distinguishing function, 2,
8. See also Action

Path functions, abstraction of, 94
Peak, 222
Pendulum. See also Pendulum

(driven); Periodically driven
pendulum

behavior of, 223, 286–287
constraints and, 103
degrees of freedom of, 5 (ex.
1.1)

double (planar), 6, 117 (ex.
1.44)

double (spherical), 5 (ex. 1.1)
equilibria, stable and unstable,
287

Foucault, 62 (ex. 1.25), 78 (ex.
1.31)
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Hamiltonian for, 460
Lagrangian for, 32 (ex. 1.9)
periodically driven pendulum
vs., 244

as perturbed rotor, 460–473
phase plane of, 223, 286
phase-volume conservation for,
268

spherical, 5 (ex. 1.1), 86 (ex.
1.34)

width of oscillation region, 466
Pendulum (driven), 50–52. See

also Pendulum; Periodically
driven pendulum

drive as modification of gravity,
66

Hamiltonian for, 392
Lagrange equations for, 52
Lagrangian for, 51, 66

Pericenter, 171n
Period doubling, 245
Periodically driven pendulum.

See also Pendulum (driven);
Pendulum

behavior of, 196, 244–246
chaotic behavior of, 76, 243
emergence of divided phase
space, 286–290

Hamiltonian for, 236, 476
inverted equilibrium, 246, 282
(ex. 3.14), 491–494, 496 (ex.
7.4)

islands in sections for, 244–246,
289–290, 483–486

Lagrange equations for, 74
linear stability analysis, 492,
496 (ex. 7.4)

as perturbed rotor, 476–478
phase-space descriptions for,
239

phase space evolution of, 236
resonances for, 481–491
spin-orbit coupling and, 173
surface of section for, 242–248,
282 (ex. 3.14), 287–290,
483–494

undriven pendulum vs., 244

with zero-amplitude drive,
286–289

Periodically driven systems,
surfaces of section, 241–248

Periodic motion, 312
fixed points and, 295
integrable systems and, 309, 316

Periodic points, 295
Poincaré–Birkhoff theorem,
316–321

rational rotation number and,
316

resonance islands and, 290
Perturbation of action-angle

Hamiltonian, 316, 458
Perturbation theory, 457
for many degrees of freedom,
473–478

for pendulum, 466–468
for periodically driven
pendulum, 491–494

for spin-orbit coupling, 496 (ex.
7.5)

higher-order, 468–473, 489–494
Lie series in, 458–460
nonlinear resonance, 478–494
secular-term elimination,
471–473

secular terms in, 470
small denominators in, 475, 476

Phase portrait, 231, 248 (ex.
3.10)

Phase space, 203. See also
Surface of section

chaotic regions, 241
divided, 244, 258, 286–290
evolution in, 236–238 (see also
Time evolution of state)

extended, 394–402
non-uniqueness, 238–239
of pendulum, 223, 286
qualitative features, 242–246,
258–260, 285–286

reduced, 402–407
regular regions, 241
two-dimensional, 222
volume (see Phase-volume
conservation)



548 Index

Phase space reduction, 224–226
conserved quantities and,
224–226

Lagrangian, 233–236
Phase-space state function, 519
in Scheme, 521

Phase-space trajectory (orbit)
asymptotic, 223, 287, 302
chaotic, 243, 259
periodic, 309, 312, 316
quasiperiodic, 243, 312
regular, 243, 258
regular vs. chaotic, 241

Phase-volume conservation, 268,
428

for damped harmonic oscillator,
274

for pendulum, 268
under canonical
transformations, 358–359

Phobos, rotation of, 171
Pit, 222
Planets. See also Earth; Jupiter;

Mercury
moment of inertia of, 129 (ex.
2.4)

rotational alignment of, 151
rotation of, 165

plot-parametric-fill, 308
plot-point, 76n
Plotting, 23 (ex. 1.5), 75, 248
Poe, Edgar Allan. See Pit;

Pendulum
Poincaré, Henri, 239n, 251, 285,

302, 471
Poincaré–Birkhoff theorem,

316–321
computing fixed points, 321–322
recursive nature of, 321

Poincaré–Cartan integral
invariant, 402

time evolution and, 431–434
Poincaré integral invariant,

362–364
generating functions and,
368–373

Poincaré map, 242
Poincaré recurrence, 272

Poincaré section. See Surface of
section

Point mass, 4 n. See also Golf
ball, tiny

Point transformations, 336–341.
See also Canonical
transformations

computing, 339–341
general canonical
transformations vs., 357

generating functions for,
375–376

polar-rectangular conversion,
339, 376–377

to rotating coordinates,
348–349, 377–378

time-independent, 338
Poisson, Siméon Denis, 33 (ex.

1.10)
Poisson brackets, 218–222
canonical condition and,
352–353

commutator and, 452 (ex. 6.10)
of conserved quantities, 221
as derivations, 446
fundamental, 352
Hamilton’s equations in terms
of, 220

in terms of J̃ , 352
in terms of symplectic 2-form,
ω, 360

invariance under canonical
transformations, 358

Jacobi identity for, 221
Lie derivative and, 447

Poisson series
for multiply periodic function,
474

resonance islands and, 488
polar-canonical, 345
Polar-canonical transformation,

344
generating function for, 365
harmonic oscillator and, 346

Polar coordinates
Lagrangian in, 42–43
point transformation to
rectangular, 339, 376–377
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transformation to rectangular,
46

Potential. See Central force;
Gravitational potential

Potential energy
of axisymmetric top, 160
Hénon–Heiles, 253
in Lagrangian, 38–39
multipole expansion of, 165–169

Precession
of equinox, 176 (ex. 2.18)
of top, 119, 162 (fig. 2.6), 164
(ex. 2.16)

Predicate in conditional, 500
Predicting the past, 9n
principal-value, 76n
Principal axes, 133
of this dense book, 135 (ex.
2.7), 150

Principal moments of inertia,
132–135

kinetic energy in terms of, 134,
141, 148

Principle of
d’Alembert–Lagrange, 113

Principle of least action. See
Principle of stationary action

Principle of stationary action
(action principle), 8–13

Hamilton’s equations and,
215–217

principle of least action, 10n,
13n, 39n

statement of, 12
used to find paths, 20

print-expression, 444, 511n
Probability density in phase

space, 276
Procedure calls, 497–498
Procedures
arithmetic operations on, 19n
generic, 16n

Products of inertia, 128

Q (coordinate selector), 220

Q̇ (velocity selector), 64
q (coordinate path), 7

qcrk4 (quality-controlled
Runge–Kutta), 145

Quadratic functions, Legendre
transformation of, 211

Quadrature, 161n, 222. See also
Integrable systems

integrable systems and, 311
reduction to, 224n

Quartet, 300 (fig. 4.5)
Quasiperiodic motion, 243, 312
quaternion->angle-axis, 184
quaternion->RM, 184
quaternion->rotation-matrix,

185
quaternion-state->omega-body,

186
Quaternions, 181–191
Hamilton’s discovery of, 39n
quaternion units, 188

Quotation in Scheme, 504–505
qw-state->L-space, 190
qw-sysder, 189

Radial momentum, 80
Reaction force. See Constraint

force
Realizable path, 9
conserved quantities and, 78
as solution of Hamilton’s
equations, 202

as solution of Lagrange
equations, 23

stationary action and, 9–13
uniqueness, 12

Recurrence theorem of Poincaré,
272

Recursive procedures, 501
Reduced mass, 35 (ex. 1.11), 380
Reduced phase space, 402–407
Reduction
Lagrangian, 233–236
of phase space (see Phase space
reduction)

to quadrature, 224n
ref, 15n, 514
Regular motion, 241, 243, 258
linear separation of trajectories,
263
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Renormalization, 267n
Resonance. See also

Commensurability
center, 480
islands (see Islands in surfaces
of section)

nonlinear, 478–494
of Mercury’s rotation, 171, 193
(ex. 2.21)

overlap criterion, 488–489, 496
(ex. 7.5)

for periodically driven
pendulum, 481–491

spin-orbit, 177–181
width, 483 (ex. 7.2), 488

Restricted three-body problem.
See Three-body problem,
restricted

Rigid body, 120
forced, 154–157 (see also
Spin-orbit coupling; Top)

free (see Rigid body (free))
kinetic energy, 120–122
kinetic energy in terms of
inertia tensor and angular
velocity, 126–129, 131

kinetic energy in terms of
principal moments and
angular momentum, 148

kinetic energy in terms of
principal moments and
angular velocity, 134

kinetic energy in terms of
principal moments and Euler
angles, 141

vector angular momentum,
135–137

Rigid body (free), 141
angular momentum, 151–153
angular momentum and kinetic
energy, 146–150

computing motion of, 143–145
Euler’s equations and, 151–154
(in)stability, 149–151
orientation, 153–154

Rigid constraints, 49–63
as coordinate transformations,
59–63

Rotating coordinates
in extended phase space,
400–402

generating function for, 377–378
point transformation for,
348–349, 377–378

Rotation(s). See also Orientation
active, 130
composition of, 123, 187
computing, 93
group property of, 187
(in)stability of, 149–151
kinematics of, 122–126
kinetic energy of (see Rigid
body, kinetic energy...)

Lie generator for, 440
matrices for, 138
of celestial objects, 151, 165,
170–171

of Hyperion, 170–176
of Mercury, 171, 193 (ex. 2.21)
of Moon, 119, 151, 170–176, 496
(ex. 7.5)

of Phobos, 171
of top, book, and Moon, 119
orientation as, 123
orientation vector and, 182
passive, 130
as tuples, 515

Rotation number, 315
golden, 328
irrational, and invariant curves,
322

rational, and commensurability,
316

rational, and fixed and periodic
points, 316

Rotor
driven, 317, 321
pendulum as perturbation of,
460–473

periodically driven pendulum as
perturbation of, 476–478

Routh, Edward John
Routhian, 234
Routhian equations, 236 (ex.
3.9)
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Runge–Kutta integration
method, 74n

qcrk4, 145
Rx, 63 (ex. 1.25), 93 n
Rx-matrix, 139
Ry, 63 (ex. 1.25), 93 n
Rz, 63 (ex. 1.25), 93 n
Rz-matrix, 139

S (action), 10
Lagrangian, 12

s->m (structure to matrix), 353
s->r (spherical-to-rectangular),

85
Saddle point, 222
Salam, Abdus, 509
Saturn. See Hyperion
Scheme, xvi, 497–508, 509. See

also Scmutils
for Gnu/Linux, where to get it,
xvi

Schrödinger, Erwin, 12n, 203n
Scmutils, xvi, 509–523. See also

Scheme
generic arithmetic, 16n, 509
minimization, 19n, 21n
numerical integration, 17n,
74n, 145

operations on operators, 34n
simplification of expressions,
511

where to get it, xvi
Second law of thermodynamics,

274
Section, surface of. See Surface

of section
Secular terms in perturbation

theory, 470
elimination of, 471–473

Selector function, 64n, 513
coordinate selector (Q), 220
momentum selector (P ), 199,
220

velocity selector (Q̇), 64
Selectors in Scheme, 503
Semicolon in tuple, 31n, 520
Sensitivity to initial conditions,

241n, 243, 263. See also
Chaotic motion

Separatrix, 147, 222. See also
Asymptotic trajectories

chaos near, 290, 484, 486
motion near, 302

series, 462
series:for-each, 444
series:sum, 463
set-ode-integration-method!,

145
show-expression, 16, 46n

Shuffle function J̃ , 350
Simplification of expressions, 511
Singularities, 202n
Euler angles and, 143, 154
in Euler’s equations, 154
quaternions, 181–191

Sleeping top, 231
Small denominators
for periodically driven
pendulum, 477

in perturbation theory, 475, 476
resonance islands and, 322, 488

Small divisors. See Small
denominators

Snell’s law, 13n
Solvable systems. See Integrable

systems
solve-linear-left, 71n
solve-linear-right, 339n
Spherical coordinates
kinetic energy in, 84
Lagrangian in, 84

Spin-orbit coupling, 165–181
chaotic motion, 282 (ex. 3.15),
496 (ex. 7.5)

Hamiltonian for, 496 (ex. 7.5)
Lagrange equations for, 173
Lagrangian for, 173
periodically driven pendulum
and, 173

perturbation theory for, 496
(ex. 7.5)

resonances, 177–181
surface of section for, 282 (ex.
3.15)

Spivak, Michael, xivn, 509
Spring–mass system. See

Harmonic oscillator
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square, 21n, 499
for tuples, 40n, 499n

Stability. See Equilibria;
Instability; Linear stability

Stable manifold, 303–309
computing, 307–309

standard-map, 278
Standard map, 277–280
Stars. See Galaxy
State, 68–71
evolution of (see Time evolution
of state)

Hamiltonian vs. Lagrangian,
202–203

in terms of coordinates and
momenta (Hamiltonian), 196

in terms of coordinates and
velocities (Lagrangian), 69

state-advancer, 74
State derivative
Hamiltonian, 204
Hamiltonian vs. Lagrangian,
202

Lagrangian, 71
State path
Hamiltonian, 203
Lagrangian, 203

State tuple, 71
Stationarity condition, 28
Stationary action. See Principle

of stationary action
Stationary point, 2 n
Steiner’s theorem, 129 (ex. 2.2)
String theory, 119n, 150. See

also Quartet
Stroboscopic surface of section,

241–248. See also Surface of
section

computing, 246
Subscripts
down and, 15n
for down-tuple components, 513
for momentum components,
79n, 338n

for selectors, 513
Summation convention, 367n
Superscripts
for coordinate components, 7 n,
15n, 79n

for up-tuple components, 513
for velocity components, 15n,
338n

up and, 15n
Surface of section, 239–248
in action-angle coordinates, 313
area preservation of, 272,
434–435

computing (Hénon–Heiles),
261–263

computing (stroboscopic), 246
fixed points (see Fixed points)
for autonomous systems,
248–263

for Hénon–Heiles problem,
254–263

for integrable system, 313–316
for non-axisymmetric top, 263
for periodically driven
pendulum, 242–248, 282 (ex.
3.14), 287–290, 483–494

for restricted three-body
problem, 283 (ex. 3.16)

for spin-orbit coupling, 282 (ex.
3.15)

for standard map, 277–280
invariant curves (see Invariant
curves)

islands (see Islands in surfaces
of section)

stroboscopic, 241–248
Symbolic values, 511–512
Symbols in Scheme, 504–505
Symmetry
conserved quantities and, 79, 90
continuous, 195
of Lagrangian, 90
of top, 228

symplectic-matrix?, 355
symplectic-transform?, 355
symplectic-unit, 355
Symplectic bilinear form

(2-form), 359–362
invariance under canonical
transformations, 359

Symplectic condition. See
Symplectic transformations

Symplectic integration, 453 (ex.
6.12)



Index 553

Symplectic map, 301
Symplectic matrix, 301, 356 (ex.

5.6), 353–357
Symplectic transformations, 355.

See also Canonical
transformations

antisymmetric bilinear form
and, 359–362

Symplectic unit J, Jn, 301, 355
Syntactic sugar, 499
System derivative. See State

derivative

T-body, 134
T-body-Euler, 141
T-func, 347
Taylor, J. B. , 278n
Tensor. See Inertia tensor
Tensor arithmetic
notation and, 79n, 338n
summation convention, 367n
tuple arithmetic vs., 509, 513

Theology and principle of least
action, 13n

Thermodynamics, second law,
274

Three-body problem, restricted,
86–90, 283 (ex. 3.16), 399–402

chaotic motion, 283 (ex. 3.16)
surface of section for, 283 (ex.
3.16)

Tidal friction, 170
time, 15n
Time-dependent transformations,

347–349
Time evolution of state, 68–78
action and, 423–425, 435–437
as canonical transformation,
426–437

in phase space, 236–238
Poincaré–Cartan integral
invariant and, 431–434

Time-independence. See also
Extended phase space

energy conservation and, 81
Top
axisymmetric (see
Axisymmetric top)

non-axisymmetric, 263

Top banana. See
Non-axisymmetric top

Torque, 165 (ex. 2.16)
in Euler’s equations, 154
in spin-orbit coupling, 173

Total time derivative, 63–65
adding to Lagrangians, 65
affecting conjugate momentum,
239

canonical transformation and,
390–393

commutativity of, 91n
computing, 97
constraints and, 108
identifying, 68 (ex. 1.28)
notation: Dt, 64
properties, 67

Trajectory. See Path;
Phase-space trajectory

Transformation
canonical (see Canonical
transformations)

coordinate (see Coordinate
transformations)

Legendre (see Legendre
transformation)

Lie (see Lie transforms)
orthogonal (see Orthogonal
matrix)

point (see Point
transformations)

symplectic (see Symplectic
transformations)

time-dependent, 347–349
Transpose, 351n
transpose, 126, 351n
True anomaly, 171n
Tumbling. See Chaotic motion,

of Hyperion; Rotation(s),
(in)stability of

Tuples, 512–516
arithmetic on, 509, 513–516
commas and semicolons in, 520
component selector: I with
subscript, 64n, 513

composition and, 516
contraction, 514
of coordinates, 7
down and up, 512
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Tuples (continued)
of functions, 7 n, 521
inner product, 515
linear transformations as, 515
local (see Local tuple)
matrices as, 515
multiplication of, 514–516
rotations as, 515
semicolons and commas in, 520
squaring, 499n, 514
state tuple, 71
up and down, 512

Twist map, 315
Two-body problem, 378–381
Two-trajectory method, 265

Undriven pendulum. See
Pendulum

Uniform circle map, 326
Uniqueness
of Lagrangian—not!, 63–66
of phase-space
description—not!, 238–239

of realizable path, 12
of solution to Lagrange
equations, 69

unstable-manifold, 308
Unstable manifold, 303–309
computing, 307–309

up, 15n, 513
Up tuples, 512

Vakonomic mechanics, 114n
Variation
chain rule, 27 (eq. 1.26)
of action, 28
of a function, 26
of a path, 12, 18, 26
operator: δη, 26

Variational equations, 266
Variational formulation of

mechanics, 2–3, 39
Variational principle. See

Principle of stationary action
Vector
body components of, 134
in Scheme, 502–504
square of, 18n, 21n

vector, 504
vector?, 504
vector-ref, 504
Vector angular momentum,

135–137. See also Angular
momentum

center-of-mass decomposition,
135

in terms of angular velocity and
inertia tensor, 136

in terms of principal moments
and Euler angles, 141

Vector space of tuples, 514
Vector torque. See Torque
Velocity. See Angular velocity

vector; Generalized velocity
velocity, 15n
Velocity dispersion in galaxy, 248
Velocity selector (Q̇), 64

Web site for this book, xvi
Wheel, 156 (ex. 2.13)
Whittaker transform (Sir

Edmund Whittaker), 357 (ex.
5.9)

Width of oscillation region, 466n
write-line, 505n

Zero-amplitude drive for
pendulum, 286–289

Zero-based indexing, 7n, 15n,
503, 513, 514, 531
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