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Chapter 1

INTRODUCTION: ALTERNATIVE LOGICS
AND CLASSICAL CONCERNS

Johan van Benthem
University of Amsterdam/ILLC

johan@csli.stanford.edu, johan@science.uva.nl

Modern logic shows a wide variety of perspectives, application areas, and
formal systems, which often go under the heading of ‘alternative logics’. The
lively PILM conference held in Nancy during September 2002 on which the
present volume is based was intended as an encounter between modern work on
alternative logics and classical issues in the foundations of mathematics and the
philosophy of logic. This book contains a substantial sample of what happened
in the process, but it can also be read independently as a report on the state of
the art.

Actually, terms like ‘alternative’ or ‘non-classical’ logic can easily be mis-
understood. Our aim with the conference and this book is not a simplistic
endorsement of mass-production and ‘anything goes’ in logic. In particular, we
do not aim for ‘alternative’ pop-art versions of the grand issues that initiated
20th century logic, whose praises used to be sung in the measured classical
strains of Bach and Beethoven - or perhaps Wagnerian doom in times of foun-
dational crisis. There is no need to replace these by versions in modern logics
that sound of jazz, rock, or (as some critics would probably have it) punk, disco,
or rap. To us, the diversity of logical systems today rather signals a natural and
respectable process of growth of the discipline, not of replacement or compe-
tition. In terms of our musical metaphor, this development transforms rigid
classical partitions into a more open playground for improvisation.

Some of the forces driving this process of growth are external. Over time,
and throughout the last century, logic has been confronted with a growing set

1
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2 Johan van Benthem

of congenial developments in neighbouring disciplines, including mathematics
and philosophy, but also physics, computer science, economics, or linguistics.
The result has been an influx of new ideas, concerns, and logical systems re-
flecting a great variety of reasoning tasks. For instance, modern epistemic
and dynamic logics have received their major impetus from studies of infor-
mation, computation, and action beyond classical foundational concerns, para-
consistent logics arise from taking actual human argumentation seriously, while,
say, non-monotonic logics reflect basic features of common sense reasoning in
artificial intelligence. In tandem with these external influences, there has also
been an internal dynamics of the field of logic, with its own intriguing shifts in
the agenda and the way one views classical issues and results. To see such trends,
one needs to step back and consider the flow of ideas over several decades. For
instance, consider ‘constructivism’ and intuitionistic logic, the only ‘alternative
logic’ that has been accorded somewhat of a respectable status within the clas-
sical tradition, if only as a well-encapsulated former rebel. Intuitionistic logic
is about the computational content of mathematical proofs, and the epistemic
status of mathematical statements. But over time, this topic has merged into the
more general algorithmic study of proof and type structure, e.g. via the Curry-
Howard isomorphism, and eventually into the most general ‘dynamic logic’ of
all, viz. category theory - perhaps the most powerful alternative foundational
paradigm to-day. The continued vitality of this way of thinking shows in linear
logic, whose fresh look at proof structure found surprising new structure lev-
els of computation and interaction underneath classical and intuitionistic logic.
Likewise, on the epistemic side, intuitionistic logic may now be viewed as part
of much more general study of arbitrary information-based assertions, which
takes us again to epistemic logic, and logics for update or revision actions that
add or modify information. Moreover, the two aspects: dynamic and epistemic,
still come together naturally in many settings beyond the original foundations
of mathematics. A prime example of this are games. Games involve a tight
interplay of what agents know and how they act, and the rise of this paradigm
inside logic is unmistakable. But note again that this development also involves
a major extension of a classical viewpoint. Game are typically an interactive
process involving several agents, and indeed, many issues in logic to-day are no
longer about zero-agent notions like truth, or single-agent notions like proof,
but rather about processes of verification, argumentation, communication, or
general interaction.

Of course, what may - and sometimes does - happen is that the broader
canvas of growth in logical issues, notions, and formal systems also changes
our perspective of the traditional logical core. For instance, we understand first-
order logic much better today precisely because of the emergence of variations
and alternatives. Some would even argue that we are now in a position to
rethink historical decisions made around 1900, and redesign predicate logic in
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a more powerful ‘independence-friendly’ style. And there are similar claims
about redesigning traditional set theory as a foundation for mathematics, given
the wealth of experience with category-theoretic alternatives.

Against this background of growth and reflection, we have grouped our
various chapters under the following five systematic headings, with individual
contributions ordered alphabetically by author. Across all these chapters, the
reader will see a great variety of sources of inspiration at work, both external
and internal in the above sense.

Our first group of papers falls under the heading of Proof, Knowledge and
Computation. For a start, Cozic discusses the vexed problem of omniscience
in epistemic logic, i.e., the unrealistic feature of the usual formal systems that
agents automatically know all logical consequences of what they know. He pro-
poses putting epistemic inference on a more discriminating base in substructural
logics, with intuitionistic logic eventually serving as a reasonable compromise
between classical and linear proof systems. Peregrin formally demonstrates
another role of inference, viz. its potential for generating and justifying a se-
mantics for connectives - as has been suggested more informally by modern
evidentialist philosophers like Brandom. He also extends this to packages of
abstract substructural rules for dynamic inference. Turning to computation,
Shapiro discusses reasons that led to the historical emergence of the logical
interest in computability in the 1930s - including its not wholly straightforward
relationship with Hilbert’s program and the incompleteness theorems. In the
end, he argues against the extensionalist turn of Church’s Thesis, preferring the
historically prior ‘intensional’ conception of computation, which seems to call
for a mixture of classical and constructive mathematics, as evidenced in his
own work on ‘epistemic mathematics’. Going back to the same classical pe-
riod, Vidal-Rosset discusses the current status of Gödel’s theorems, the famous
limiting results on computability and provability, comparing various stances
in the most recent literature on what these theorems really say. He concludes
that there are only two ‘stable’ interpretations. One is the Platonist stance,
reading the theorems as saying that truth transcends proof, the other is the De-
flationist stance, which denies any transcendent realm of truth against which
formal proof systems fall short: the only reality are proof systems of increasing
strength. Finally, Visser looks at proof and computation in the very practical
setting of mathematical problem solving, in a style which mixes contexts of
discovery and justification in fresh ways. He uses a new method for solving
concrete mathematical problems, such as organizing a tournament, showing
the interplay of numerical and sometimes quite surprising geometrical repre-
sentations in finding optimal solutions. This leads to some new issues about
finite geometries, which have already inspired some new computational work.
Such ‘transpositions’ in representations of a given problem seem essential to
understanding the real workings of mathematical reasoning.
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The second group of papers illustrates another perennial topic, viz. Truth
Values Beyond Bivalence. Starting from a critique of possible worlds semantics
for modal logic, Béziau revives many-valued models for intensional languages.
In particular, he shows how these can sometimes replace possible-worlds mod-
els, while they can also co-exist quite well with them in richer settings. Da
Costa and Krause give a new twist to the usual development of para-consistent
logics allowing contradictions, by bringing in motivations from the founda-
tions of physics. Their main concern here is the proper logic of reasoning
about complementarity in quantum mechanics. Following a lucid discussion of
major philosophers of science on the latter topic, they define complementarity
more formally, and then propose para-consistent systems that capture styles of
inference in line with Bohr’s thinking. Indeed, many-valued logics of various
sorts are making a come-back theses days across a broad range of applications,
including pure mathematics, e.g., in recent work by Hajek and Mundici. Libert
shows how set theory can be developed consistently in fascinating new ways
based on the well-known Lukasiewicz logic with continuum many values, while
keeping unrestricted comprehension axioms valid. This line of research was
initiated by Skolem, and it also turns out to link up eventually with other major
developments in alternative, such as Scott models and category theory.

This brings us to another pervasive theme in many of our papers, viz. Cate-
gory-Theoretic Structures. A lucid introduction to the connection between
category theory and higher order logic in its ‘general models’ guise is given by
Awodey, who also explains how category theory replaces the standard notion
of set by a mode dynamic notion of ‘continuously variable set’. Interestingly,
famous category-theoretic results like De Ligne’s Theorem acquire deep logical
import. The major claim is that higher-order logic indeed is the logic of contin-
uous variation. But Hellman is critical of any foundationalist claims of category
theory. He discusses two versions of these, one casting category theory in the
Fregean mode of being about some genuine universe of objects (the category of
categories), others more Hilbertian, casting category theory as a methodologi-
cal recipe for deduction according to some useful primitive notions and axioms.
Both seem to presuppose sets at some level. Hellman’s own proposal is to merge
both stances, providing an anchoring for mathematics in a more abstract ‘theory
of large domains’ based on part-whole relationships and plural quantification. In
this ongoing discussion of the true foundational role of category theory, our re-
maining two authors introduce refinements. Landry finds the usual discussions
between faithful and critics like Feferman in terms of the privileged underlying
mathematical objects misguided. category theory does not intend to provide
a foundation in this sense, but it is rather a scheme for bringing out shared
structure of families of abstract mathematical systems. More philosophically,
she argues for an ‘in re’ view of structuralism, informed by a similar Aristote-
lean notion and close to Carnap’s use of conceptual ‘frameworks’, that would
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be tenable against criticisms of the Hellman-Feferman type. Finally, Marquis,
too, denies that categories necessarily presuppose some informal conception
of set. Instead, he emphasizes a new mathematical universe based on a new
hierarchy of categories, emerging in the work of Makkai, with sets just forming
the base level. He claims that the usual epistemic or methodological objections
to category theory evaporate on this new conception, while admitting that many
technicalities remain to be explored, as this is certainly not ‘business as usual’,
even for died-in-the-wool category theorists.

Our last two groups of papers have to do with the game-theoretic perspective
on logical and mathematical activity, as involving interactions between various
players with different ‘logical roles’.

The part on Independence, Evaluation Games, and Imperfect Information
is mainly devoted to current game-theoretical semantics for quantifiers and
connectives that spring the bounds of the linear dependence format of classi-
cal systems. First, Hintikka explains the main features and guiding motiva-
tions of his ‘IF-logic’, showing how replacing classical first-order logic by an
‘information-friendly’ version leads to more delicate accounts of quantification,
negation and truth, with repercussions in linguistics, computation, and indeed
the foundations of mathematics. Independence in the IF sense can be explained
in game-theoretic terms, using a feature different from all usual ‘logic games’,
viz. imperfect information: players need not know all precise moves played
previously by their opponents. The result is a much richer pattern of dependence
and independence between variables in formal reasoning than that provided by
classical logic. For a precise statement of Hintikka’s current views on the sta-
tus of IF-logic, and the extent of its ‘gaminess’, we refer to his chapter. Next,
Janssen and Dechesne show that the game-theoretic account of IF logics is not
as perspicuous as it might appear at first sight. In particular, the phenomenon
of ‘signalling’ in games, i.e., passing information to oneself in indirect ways,
seems to play havoc with many intuitive claims that have been made about IF
logic, and it even invalidates published technical statements about it by Caicedo
& Krynicki. The most startling claim in the paper is that IF logic, on Janssen &
Dechesne’s way of taking it, is not conservative over classical first-order logic...
Continuing with issues of information flow in games, Pietarinen takes the logic-
game theory interface even further than players’ being ignorant of each other’s
precise moves. Notably, he considers logical effects of other forms of imperfect
information, viz. when players do not know exactly which game they are in.
This quite plausible extension considerably extends the set of shared concerns
between logic and the general study of planned human behaviour in economics
or artificial intelligence. Finally, Rebuschi connects IF logic with the earlier
topic of epistemic logic. He discusses the connection between global IF games,
where only winning strategies matters, and the fine-structure analysis of moves
in extensive game trees provided by the ‘epistemic action logic’ EAL proposed
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by van Benthem as a more classical analysis of IF logic. Rebuschi’s eventual
proposal is to use an IF version of EAL, without incurring the potential infinite
regress lurking in iterated strings of system building ‘IF(EAL(IF))’...

Another, and in some ways older, use of games in logic comes through the
Lorenzen program from the 1950s. In our final part on Dialogue and Pragmat-
ics, three authors provide modern views on this enterprise and its continued
potential. Heinzmann discusses how the dialogical pragmatic stance changes
our conceptions of epistemological and ontological issues in the philosophy of
mathematics. He provides a broad overview of various brands of nominalism
versus realism through the 20th century, finding most of them wanting. He even-
tually endorses four guiding desiderata stated by Gonseth for any analysis of the
mathematical activity, emphasizing broad features of ‘duality’, ‘revisability’,
‘technicity’, and ‘solidarity’. Modern alternative systems, like Hintikka’s game
logics, or the Feferman/Hellman view of sets, have the potential of doing better
in this respect by respecting the required pragmatic dynamics. Next, Lorenz,
one of the pioneers of dialogical logic, looks at semiotic aspects of language,
and shows how taking an speaker/interpreter game perspective helps under-
stand the duality between the representational and communicative function of
language. One of the noticeable outcomes is a rich theory of predication and
‘indication’. Finally, and more technically, Rahman demonstrates the flexibility
of the dialogical paradigm by providing a game-based modelling for derivations
in non-normal modal logics, which go beyond standard possible worlds seman-
tics in various ways. He also shows how to approach the expressive powers
of recent ‘hybrid languages’ raising the expressive power of the basic modal
language, thereby bringing dialogical logic in touch with state-of-the-art modal
logic.

This concludes our brief summary of the contents of this book. We hope that
the chapters testify to the liveliness of modern perspectives on the philosophy of
logic and mathematics. Naturally, other principles of division would have been
possible, e.g. by area of application. But the very fact that various groupings
make sense itself speaks to the coherence of the material presented here. The
field is not haphazard, but it is held together by a multi-dimensional network of
concerns.

A final aspect of bringing together all this material is the better view of
possible developments and desiderata for research. We conclude with a few
examples of this.

At the start, we dismissed the idea of looking at the grand classical concerns
with new-fangled, perhaps even light-weight, alternative tools. But of course,
there is nothing wrong with asking after all whether alternative logics dealing
with such issues as knowledge, non-monotonic reasoning, update and revision
dynamics, or general game-theoretic interaction, have direct concrete uses in the
analysis of mathematics and other areas in the logical heartland. Such analysis
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might serve to bring out features of mathematical proof that have been neglected
so far, while also showing the unity of human intelligence, or - in Clausewitz’s
immortal turn of phrase - that ‘mathematics is just common sense continued by
other means’.

Other conspicuous questions raised by our collection have to do with possible
unification of the various perspectives represented in this book. In particular, our
two main headings of games and categories suggest some tantalizing analogies.
Categories make the mathematical universe into a dynamic whole of primitive
objects and primitive functions, emphasizing transitions from one representa-
tion structure to another. This dynamic intuition seems close in spirit to modern
epistemic and dynamic logics that put logical activities at centre stage, e.g., in
games. For instance, categorical arrow composition seems close to successive
action composition, the engine of information update. In fact, it is known that
certain sorts of games form natural categories, e.g., in the semantics of linear
logic. But a unified picture still eludes us, as the various senses of dynamics
(proof-theoretic, modal) do not all seem to lie at the same conceptual level.

Finally, at the strategic distance provided by this book, we can see new trends
now, and natural new issues not normally raised in the standard agenda of the
philosophy of logic and mathematics. For instance, the multi-agent shift in the
game perspective also represents a major shift in conceptualizing the basic tasks
of logic. The usual paradigm of a logical task is that of an inference or a proof,
viewed either as a product, or as an activity by a single agent. But from a truly
interactive perspective, an irreducibly two-agent episode like asking a question
and giving an answer may be just as paradigmatic an example of a ‘logical’
activity! Thus, the set of defining concerns for our field may still undergo
major changes, as the effects of external and internal dynamics of logic keep
making themselves felt.

Of course, all these lively messages of current activity and future growth are
what inspired the PILM organizers and editors in undertaking this not unde-
manding job. We will be amply rewarded if some of this enthusiasm transfers
to our readers!



I

PROOF, KNOWLEDGE
AND COMPUTATION



Chapter 2

EPISTEMIC MODELS, LOGICAL
MONOTONY AND SUBSTRUCTURAL
LOGICS∗

Mikaël Cozic
Paris IV-Sorbonne/IHPST (CNRS)

mikael.cozic@paris4.sorbonne.fr

2.1 Introduction: logical omniscience and logical
monotony

Suppose that a modeller wants to represent the cognitive state (the set of
beliefs) of a given reasoner. If this modeller uses a common epistemic logic
(i.e., a normal modal logic), even in its weaker form (the so-called system
K), his or her model will necessarily ascribe to the reasoner a set of beliefs
closed under the consequence relation of classical logic. In the literature, this
phenomenon is called the problem of logical omniscience (PLO). It is worth
noting that this is not an isolated phenomenon: beyond epistemic logic, a vast
range of “epistemic models” (that is, formal models of knowledge and belief )
like probability theory or belief revision exhibits an analogous form of closure:1

A → B

BiA → BiB

(Rule of Epistemic Monotony)

∗This paper is based on an essay written for the DEA of Cognitive Science 2001 (Paris). I am grateful to
the supervisors and referees of this essay: D. Andler, J. Dubucs, J-P. Dupuy and B. Walliser. I especially
would like to thank D. Bonnay, P. Egré and P. Gochet for their comments and criticisms and C. Hill for help
in translation. I am also grateful to the participants of the groups “Philosophie formelle” (IHPST, Paris),
“Economie Cognitive” (CNRS, Paris) and the colloquiums “Logique et rationalité” (Paris, March 2002) and,
of course, PILM (Nancy, October 2002).
1In the standard formalisms, BiA means that the reasoner i believes that A, Lα

i A means that the proposition
expressed by A has at least probability α for i and A ∈ Ki means that the proposition expressed by A is in
the belief set of i.

11
J. van Benthem, G. Heinzmann, M. Rebuschi and H. Visser (eds.), The Age of Alternative Logics:
Assessing Philosophy of Logic and Mathematics Today, 11–23.
c© 2006 Springer.
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A → B

Lα
i A → Lα

i B

(Rule of Probabilistic Monotony)

If ⊢CL A → B then if A ∈ Ki, B ∈ Ki

(Monotony of Revision Property)

All these inference rules are valid in the corresponding epistemic models.
All express a form of closure that might be called “logical monotony” and all
are, therefore, uneliminable assumptions of such models. Logical omniscience
is then the particular instance of logical monotony in the case of epistemic logic,
and its importance comes first from the fact that it is a simple and representative
instance of logical monotony. Since the seminal work of [J. Hintikka 1962],
lots of solutions have been defended to solve the (PLO),2 but there is little
consensus as to which are the best; there is even more little consensus as to
what would be a good solution to (PLO).

The aim of this paper is, following [J. Dubucs 1991] and [J. Dubucs 2002],
to defend a family of proof-oriented solutions to the (PLO) starting from a
conceptual analysis of the solutions’ space, that is, the aim of the paper is to
characterize what would be a good solution to (PLO) and then to propose some
logics as solutions to (PLO).

The remainder of the paper proceeds as follows. Section 2 puts some con-
straints on the solutions’ space. This results in a criterion of cognitive realism
called the Principle of Epistemic Preservation (PEP). In Section 3, I shall claim
that two proposals are more adequate to (PEP) than classical epistemic logic
(CEL). Those proposals will be discussed in Section 4. I conclude in Section 5.

2.2 Looking for a better epistemic logic: preliminary steps

2.2.1 The core of (PLO)

There exists today a huge family of alternative epistemic logics that have
been devised in order to solve the (PLO). They are characterized by the failure
of closure under the classical consequence relation. Among them, the two main
proposals are the logic of awareness (AEL) and the logic of impossible worlds
(IWEL). In the first case, a set of formulas A(s) is associated to each world s of
the state space S and a formula BiA is true in s iff in every world s′ accessible
from s A is true and A ∈ A(s). In the second case, a set of “impossible
worlds” is added. In those worlds, there are no constraints on the valuation of
formulas (e.g. in the same impossible world, it is possible that A and ¬A are

2See [R. Fagin et al. 1995], chap. 9.
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true, A ∧ B is true but B ∧ A false, etc.) The point is that there cannot exist
more powerful solutions to (PLO) because epistemic logics where the deductive
ability is weaker cannot exist. With (IWEL) or (AEL), one might represent the
beliefs of reasoners who believe in a set Γ of formulas, but who do not believe
any logical consequence of Γ.3 Hence, the difficulty with (PLO) is not to find
powerful enough alternative logics, but to find good alternative logics. In this
section, my purpose is to define what is a good (or a at least a better) epistemic
logic compared to the classical one. Many reasons can bring a reasoner not
to believe a consequence A of a set of beliefs Γ. At one extreme, it might be
that A is a trivial consequence of Γ, but that the reasoner reasons very poorly
or does not pay attention; at the other extreme, it might be that there does not
exist any systematic procedure to go from Γ to A. Clearly, the second is a more
essential reason, whereas the first is more contingent (a Chomskyan linguist
would perhaps say an “error of performance”). My first claim is that the aim of
a solution to (PLO) is to capture the latter kind of reasons and to abstract from
the former one. This point has several consequences.

First of all, an adequate epistemic logic should not only be deductively weaker
than (CEL) but should exhibit such a weakening for essential reasons. (AEL)
and (IWEL) do not fit this requirement. In (AEL), a reasoner does not believe
in a consequence A of Γ only if the formula A is not a formula of which he is
aware; in (IWEL), an agent does not believe in a consequence A of Γ only if A
is false in some accessible impossible world. And A is false in some accessible
impossible world only if the meaning of some logical connective changes with
respect to the “true” possible worlds. Hence (AEL) and (IWEL) are not good
solutions to (PLO) because neither morphological availability (a formula is
morphologically available if the reasoner is aware of its existence) nor the
changing nature of connectives are likely to be the essential reasons of bounded
deductive ability. On the contrary, it seems to me reasonable to assume that
reasoners have a minimally correct understanding of logical connectives. This
last requirement, admittedly vague for the moment, can be called the Minimal
Rationality Requirement (MRR). To sum up, a good solution to (PLO) has
to deal with the core of (PLO), that is, it has to concern the ability to draw
inferences. A second consequence is that a “good” epistemic logic will still
involve a large measure of idealization with respect to the reasoners’ actual
deductive behaviors. This is not a bad point because the constitutive assumption
of epistemic logic is arguably the fact that cognition often fit the logical standard.
Hence, the idea of a base logic, that is a logic with respect to which an agent
is omniscient, should not be rejected, but it is unreasonable to assume that this
base logic is, as in (CEL), classical logic.

3See [H. Wansing 1990].
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2.2.2 The Principle of Epistemic Preservation

How is one to go beyond this diagnosis ? The syntactic format of usual epis-
temic logics is the axiomatic or “Hilbert-style” format. It is probably heuris-
tically inadequate because the focusing on information processing leads us to
see logic as a set of rules of reasoning more than as a body of abstract truth.
The first thing to do is then to move from this format to a “rule-based” format
like Natural Deduction (ND) or Sequent Calculus (SC). However, at this stage,
one might imagine two distinct approaches: a quantitative one and a qualitative
one. In the quantitative approach, one keeps the classical rules, but one restricts
the cognitive complexity (e.g. the size) of the possible proofs based on them.
A brutal way of implementing this approach could be the following one: given
a set of beliefs Γ, only the formulas deducible using proof of size smaller than
k are ascribed to the agent. This is not the approach that this paper will defend.
In the qualitative approach, one scrutinizes the rules themselves. It is precisely
this qualitative approach that I would like to investigate here.

The rules are the basic components of the modeller’s predictions concern-
ing the reasoners’ cognitive behaviour in the sense that given a rule (r∗):
A1, ..., An ⊢ B of the base logic, if the modeller ascribes A1, ..., An to a rea-
soner, he or she will necessarily ascribe B too. Thus one way to proceed would
be to test the cognitive realism of rules separately. The cognitive realism of a
rule (r∗) is naturally defined by the fact that if a reasoner believes A1, ..., An,
he’s likely to believe B. Hence cognitive realism is defined by a form of epis-
temic preservation. The leading principle of the qualitative approach is then the

Principle of Epistemic Preservation (PEP). A rule (r∗) : A1, ..., An ⊢ B
satisfies (PEP) iff when reasoners have justifications for A1, ..., An, they have
a justification for B.

(PEP) is very strong, but one can, at least, retain the minimal requirement
that follows from (PEP), namely the

Preservability Requirement (PR). A rule (r∗): A1, ..., An ⊢ B satisfies
(PR) iff when reasoners have justifications for A1, ..., An, it is possible for them
to have a justification for B.

Are there base logics that would fit those principles better than (CEL)? The
next sections attempts to answer this question in the affirmative.

2.3 Two proposals of weak epistemic logics epistemic logic

The aim of this section is to sketch some arguments in order to show that
two proposals, intuitionistic epistemic logic (IEL) and linear epistemic logic
(LEL), satisfy (PEP) and (PR) - or, at least, that they satisfy (PEP) and (PR)
better than (CEL).
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2.3.1 First proposal: an intuitionistic epistemic logic
(IEL)

The first proposal made to satisfy (PEP) and (PR) is an intuitionistic epistemic
logic (IEL), that is an epistemic logic where intuitionistic logic (IL) is the
base logic. The main conceptual motivation for this proposal comes from the
BHK-interpretation4 of logical constants: following this interpretation, one may
associate an elementary construction to every logical constant. For example, to
the conjunction ∧ is associated the operation of pairing because a justification
for A∧B is constructed by pairing a justification for A and a justification for B.
Let us say that an inference rule passes the BHK-test if an elementary operation
of this kind can be associated to it; the conceptual motivation to adopt an (IEL)
comes from the fact that one can see the BHK-test as a first approximation
of the Preservability Requirement (PR) since it guarantees the existence of a
construction corresponding to every inference rule.

What is the result of this test? A well-known fact is that not every rule of
(NK)5 passes this BHK-test, since classical absurdity rule (ar):

Γ,¬A ⊢ ⊥

Γ ⊢ A
(ar)

is rejected. In epistemic terms, the absurdity rule is rejected because no epis-
temic preservation is guaranteed. It is not because someone has a justification
for the fact that ¬A implies ⊥ that he or she has a justification for the fact
that A. Hence, if one eliminates (ar) from (NK), one obtains a logic which
is cognitively more “realistic” than (NK). (NJ) is such a logic, thus (NJ) could
be a first approximation of (PR). Therefore, one would obtain a more realist
epistemic logic by replacing the classical base logic by an intuitionistic one.
And the result would be an intuitionistic epistemic logic (IEL).

2.3.2 Second proposal: a linear epistemic logic (LEL)

It is impossible to deny that there is still lots of idealization in the first
proposal, for real agents are not omniscient with respect to (IL). Can we do
better? Can we find a logic which would be a better approximation than (IEL)?
Following [J. Dubucs 1991] and [J. Dubucs 2002], the claim of my second
proposal is that a substructural logic like linear logic would be a good candidate.

When one looks for a better approximation of logical competence, the trouble
is that in the (ND)-format, it is hard to see how to weaken the base logic without
changing the inference rules associated with the connectives, that is, it is hard
to see how to weaken the base logic without violating the Minimal Rationality

4For Brouwer-Heyting-Kolmogorov, see e.g. [A. Troelstra and D. van Dalen 1988] p. 9.
5The usual set of inference rules for (CPL) in (ND).
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Requirement of Section 2. But the move to (SC)-format provides an interesting
perspective because it permits one to distinguish between different categories
of inference rules. More precisely, one can distinguish, on one hand, rules that
govern the behavior of logical constants or “logical rules”, and, on the other
hand, rules that govern the management of the sequent or “structural rules”.
As [K. Dosen 1993] says, “a very important discovery in Gentzen’s thesis
[1935] is that in logic there are rules of inference that don’t involve any logical
constant.” What is critical from our point of view is that with such a distinction,
by eliminating (or controlling) the structural rules, it is in principle possible to
reach a higher level of weakening while keeping the rules for connectives fixed.
The main question is then to know whether there are good reasons to think that
such rules conflict with (PEP) or (PR).

Among usual structural rules, the most debatable are probably the contraction
rule (cr) and the weakening rule (wr). Here are their left-version in (LJ), the
Sequent Calculus for (IL):

Γ, A, A ⊢ B

Γ, A ⊢ B
(cr)

Γ ⊢ B

Γ, A ⊢ B
(wr)

To evaluate these rules, it is necessary to give an epistemic interpretation of
them.

Epistemic Interpretation of (cr). One may infer from the fact that the
reasoners have a justification for B on the basis of several justifications for A
(and other premises) that they have a justification for B on the basis of only one
justification for A (and other premises).

Epistemic Interpretation of (wr). One may infer from the fact that rea-
soners have a justification for B on the basis of some premises that they still
have a justification for B on the basis on these premises and a new premise A.

Historically, (wr) has been the most challenged of these two rules because
it allows a conceptual gap between the premises and the conclusion of a chain
of reasoning. The so-called “relevant logics” are designed to correct this point.
But if one is focused on the epistemic interpretation of the structural rules, it
seems to me that (cr) is the most debatable,6 and I shall now argue against
this rule.

The following argument is a conceptual argument based on the motivation
often given for a well-known logic among those that challenge the (unrestricted

6This does not exclude the possibility that a rejection of (wr) could be relevant too for (PLO).
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use of) contraction rule, namely linear logic (LL). The basic idea is to suggest
an intuitive interpretation of logical constants and inference rules in terms of
resources and resource-consumption. In this interpretation,

- a formula A is interpreted as a type of resource;

- an occurrence of a formula A in a sequent is a resource of type A; and

- a sequent is interpreted as a relation of resource-consumption.

For example, in [M. Okada 1999], the right rule for the tensor ⊗:

Γ ⊢ A ∆ ⊢ B

Γ, ∆ ⊢ A ⊗ B
(tr)

is interpreted as meaning that “if A can be generated by using resource Γ and if
B can be generated by using resource ∆, then A⊗B (A and B in parallel) can
be generated by using resource Γ and ∆”. This interpretation was introduced
by [J-Y. Girard 1987] and is systematically developed by [M. Okada 1999].
For this reason, let us call it the “GO-interpretation” to stress the parallelism
with the BHK-interpretation mentioned above. And from this interpretation,
one can extract a GO-test for inference rules similar to the BHK-test described
above. The first intermediate step of this argument is that (cr) does not pass the
GO-test: if one needs two resources of a given type to do some task, nothing
guarantees that, with only one token of this resource, one is able to fulfill a book
with two times 10 euros, one cannot infer that this person can buy the same
book with only 10 euros; or to take the chemical example of [J-Y. Girard 1995],
two molecules of H2O can be generated by two molecules of H2 (and one of
O2), but not by one molecule of H2 (and one of O2). Generally speaking, (cr)
is not valid for a consumption relation.

An important intermediate step is still missing, however, namely: What is
the relationship between this GO-test and the epistemic interpretation of (cr)?
Looking at these examples from chemistry or book buying, one may note that
they focus on an objective kind of resource-sensitivity. The question is whether
logic can faithfully represent such (objective) processes as book buying or
chemical reactions which imply, as noted by [J-Y. Girard 1995], that temporality
and especially updating are being taken into account. It is worth noting that this
objective resource-sensitivity has in itself nothing to do with a computational
resource-sensitivity. It is only a matter of making our language and our logic
more faithful to an intended interpretation. But, for this reason, this is hardly
what we are looking for. We want a more accurate representation of reasoners
whose deductive resources (especially their computational power) are limited.
Hence we are looking for a cognitive kind of resource-sensitivity, as expressed
in the epistemic interpretation of (cr). We did not face such a problem with the
BHK-test because the BHK-interpretation is arguably intrinsically epistemic
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whereas the GO-interpretation is not. Consequently, the question is: Does the
GO-interpretation make sense in an epistemic context?

I do not have a conclusive answer to this question, but I think the following
suggestion is plausible: to fill the gap, we have to see

- a justification for a formula as resource in a reasoning process, and

- a reasoning process as a consumption-relation.

Now I shall develop an (admittedly highly speculative) argument in support of
this view. Suppose a reasoner holds the belief that A. This belief has inferential
power in the sense that a reasoner who believes that A is able to make this belief
interact with other beliefs in some reasoning processes. So one can see a reason
to believe A as a resource for reasoning processes. But clearly, this inferential
power is bounded - otherwise, we would be logically omniscient. Therefore,
the inferential power of a belief is a scarce resource. And, precisely, seeing
the reasoning process as a consumption-relation permits us to represent this
scarcity of inferential power. One can give a more psychological flavour to the
rejection of (cr): reasons have a psychological strength and sometimes people
would not hold something to be true were they to have fewer reasons for this
belief than they actually have. But it seems to me that the fundamental idea is
not different. One can speak of “strength” or of “resources”. The main point, in
both cases, is that a kind of causal power in reasoning is associated to reasons.

2.4 Discussion

This section attempts to answer the main questions and objections raised by
the two proposals.

2.4.1 Question 1: Are (IEL) and (LEL) technically
possible?

The answer is yes. At the syntactic level, the matter is easy: one has to
substitute intuitionistic logic (or linear logic) for classical logic. At the seman-
tic level, things are more complex. In the intuitionistic case, one might take
advantage of the well-known Kripke-style semantics for intuitionistic logic. In
this semantics, the accessibility relation I is reflexive and transitive and the
valuation satisfies a Persistence Property: for every atomic proposition p and
every state s ∈ [[p]],7 ∀s′ s.t. sIs′, s′ ∈ [[p]]. The basic problem is to keep
the Persistence Property when one adds the epistemic modalities. It can be
solved either by putting some constraints on I and R8 (see [M. Bozic and

7[[p]] denotes the set of states where p holds.
8R denotes the epistemic accessibility relation.
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K. Dosen, 1983]) or by changing the satisfaction clause of the modalities. In
both cases, the result is a Kripke-style semantics with two accessibility rela-
tions. Such a semantics is investigated by a growing literature on intuitionistic
modal logic.9

In the linear case, a supplementary difficulty comes from the fact that the
usual semantics of linear logic is algebraic, and not relational (in the Kripke-
style). In order to design a semantics for (LEL), one can therefore either give
an algebraic semantics of modal logic or give a relational semantics of linear
logic. For example, [M. D’Agostino et al. 1997] build a linear modal logic
for a simple fragment (implication and modality) by taking the latter approach.
Such a semantics is based on a constrained set of states, but the constraints are
considerably stronger than they can be in the intuitionistic case. Indeed, the
set of spaces has to be a special complete lattice enriched by a binary operator,
usually called quantale.10

2.4.2 Question 2: Are there concrete failures of logical
omniscience that could be modelled by (IEL)
or (LEL)?

In the previous section, I have defended (IEL) and (LEL) from an abstract
point of view. The underlying claim was that choosing a set of beliefs closed
by intuitionistic or linear logic is more realistic than choosing a set of beliefs
closed by classical logic. But it would be nice to exhibit concrete types of
failures of logical omniscience that could be modelled by (IEL) or (LEL). In
the intuitionistic case at least, the answer is, not surprisingly, that we can.

Suppose that a reasoner i has a proof that ¬A implies a contradiction, e.g. he
or she has a proof that if a continuous function f : C × C on a n-dimensional
simplex C has a fixed point, a contradiction follows. One can then ascribe to
him or her the belief Bi¬¬A. By (ar), it follows that in (CEL), BiA holds. This
will not necessarily be the case in (IEL) since (ar) is not a valid rule. Hence, we
will be able to model the common situation where the value x∗ s.t. f(x∗) = x∗

is not available to the reasoner. That is, the situation where BiA does not hold.
This power of (IEL) can find several applications: in general, it permits one to
represent a kind of mathematical ignorance (which is forbidden to (CEL)); in
particular, it can be used to model boundedly rational agents (reasoners who
have to act on the basis of their beliefs) who know that there is a best choice
among a given set of possible actions but who do not know how to determine
its value.

9See e.g. [F. Wolter et al. 1999].
10On those general semantics, cf. [H. Ono 1993].
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2.4.3 Question 3: In shifting from (CEL) to (IEL)
or (LEL), are we not shifting from one kind
of omniscience to another one?

This question raises what can be called “the Big Objection”. It is indeed the
most common objection made to the kind of approach advocated in this paper,
that of proposing a replacement for the base logic. Some remarks have already
been made in Section 2. Nevertheless, I now should like to give an extended
answer to the Big Objection.

1. Strictly speaking, it is of course correct to say that one is shifting from
one sort of omniscience (with respect to classical logic) to another sort of
omniscience, but, I repeat, this alone cannot be considered as a sound objection.
Why? Because all depends on the consequence relation with respect to which
the reasoner will be supposed to be omniscient. If the consequence relation of
the new base logic is more realistic than the consequence relation of classical
logic, progress has been made. Furthermore, as noted above, with (AEL) or
(IWEL), one already knows how to weaken epistemic logic as much as possible;
what is important is to find deductively significant weakening of (CEL). Hence,
I agree with [R. Fagin et al. 1995]: “It may not be so unreasonable for an
agent’s knowledge to be closed under logical implication if we have a weaker
notion of logical implication.”

2. However, the previous point is not the core of the Big Objection. Its
very core is the following point: is intuitionistic (or linear) omniscience more
realistic than classical omniscience? My arguments for an affirmative answer
were given in Section 3. But one has to recognize that this is debatable. For
example, from a computational point of view, the consequence problem is co-
NP-complete in the (propositional) classical case, but PSPACE-complete in the
intuitionistic one.11 Therefore, it seems that (IL) or (LL) are not necessarily
more realistic as base logics.

Suppose first that this computational point of view with respect to the base
logics is relevant. It is not an obvious assumption because while it is clearly rel-
evant concerning the deductive problems that the reasoner faces (e.g., as above,
the search for a fixed point of a function), the base logic is above all a model of
the reasoner’s competence when facing these problems. Then, it is worth noting
that the computational point of view is not “univocal” concerning our question:
e.g., at the first-order level, the fragment (MALL)12 of linear logic is decidable
and at most NEXPTIME-hard. Hence, proof-oriented weakening does not nec-
essarily increase computational difficulty. What we can conclude is that there
is not necessarily a convergence between different criteria of cognitive realism.

11Cf. [R. Statman 1979].
12Multiplicative Additive Linear Logic: the linear modalities ! and ? do not appear in this fragment.
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This is a phenomenon that one can meet elsewhere in the modelling of bounded
deductive ability, and even between different kinds measurements of compu-
tational complexity, e.g. in the theory of Repeated Games, [C. Papadimitriou
1992] has proved that in the Repeated Prisoner’s dilemma, when one limits
the space of possible strategies using an upper bound on the size of automata
implementing them, the computational complexity of finding a best-response
becomes NP-complete.13

But is the computational point of view with respect to the base logics really
relevant? My answer would be less conclusive on this point, but my claim is
that it is not really relevant. The reason is this: The main proposal of the paper
is not that the agents are reasoning in the base logic, but that base logics like
(IL) or (LL) promise to fit the reasoners’ deductive competence better because
they eliminate rules that were unrealistic when interpreted epistemically (that
is, interpreted as predictions about the reasoners’ justifications, cf. Section 2),
e.g. it is not reasonable to suppose that if a reasoner has a justification for
¬¬A, he or she has a justification for A. The computational point of view with
respect to the base logic seems, therefore, to confuse the reasoners’ level and
that of the modeller. Moreover, only an epistemic logic like (IEL) can model
computational difficulty, e.g. the fact that reasoners may not be able to find a
solution to an instance of the Travelling Salesman Problem whereas they know
that such a solution does exist.

To sum up, my answer to the core of the Big Objection is twofold: first, in
general, there is no guarantee that the different criteria of cognitive realism are
convergent, and it is a difficult challenge to satisfy several of them; second,
concerning the computational complexity of the base logic, it is not clear that
it is itself a relevant criterion of cognitive realism.

2.5 Conclusion

There are of course many more questions raised by the two proposals made in
this paper than those discussed in the previous section. For example, it is well-
known that, in the absence of certain structural rules, a phenomenon of splitting
appears among logical constants. It is important to note that this phenomenon
does not in itself violate the Minimal Rationality Requirement since in a (LEL)
the logical rules are fixed and well-defined. But, if one uses the expressive
power of linear logic (even with additive and multiplicative constants only),
one introduces a gap between our ordinary and intuitive grasp of the meaning
of logical constants and the logical constants of epistemic logic. On topics like
the previous one, the discussion isn’t closed. But I would like to conclude by
making a more general point.

13It is polynomial when the space of strategies is unbounded.
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The central Principle of Epistemic Preservation opens the way to a wide spec-
trum of weak epistemic logics, that is epistemic logics where the consequence
relation is weakened.

First, concerning the whole spectrum of weak epistemic logics, this “quali-
tative approach” has its limits because it does not permit a step-by-step control
of inferences processes like, e.g. the proposal of [H. N. Duc 2001], more akin
to what I labelled earlier the “quantitative approach”, but it has comparative
advantages too, e.g. the fact that a true semantics for belief is still possible.

Second, concerning the different logics in the spectrum, it is worth noting that
the weaker that one makes the base logic, the less the formal implementation of
the corresponding epistemic logic is manageable. The semantics of (CEL) is
simpler than the semantics of (IEL), which in turn is simpler than the semantics
of (LEL). I do not think that there is any paradox to be found in this fact. One can
observe a quite similar phenomenon in decision theory in case of uncertainty
where, for reasons of descriptive realism, the (simple) model of Subjective
Expected Utility is generalized by non-additive probabilities (in general, much
less simple ones), but a loss of simplicity is often considered as the price to
be paid for this descriptive gain. From this point of view, (IEL) could, in the
short term at least, be a good trade-off between the simplicity of (CEL) and the
accuracy of (LEL).
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3.1 There is more to semantics than inference. . .

We may say that logic is the study of consequence; and the pioneers of
modern formal logic (especially Hilbert, but also, e.g., the early Carnap) hoped
to be able to theoretically reconstruct consequence in terms of the relation
of derivability (and, consequently, necessary truth in terms of provability or
theoremhood – derivability from an empty set of premises). The idea was that
the general logical machinery will yield us derivability as the facsimile of the
relation of consequence, and once we are able to formulate appropriate axioms
of a scientific discipline, the class of resulting theorems will be the facsimile of
the class of truths of the discipline.

These hopes were largely shattered by the incompleteness proof of [Gödel
1931]: this result appeared to indicate that there was no hope for fine-tuning
our axiom systems so that theoremhood would come to align with truth. [Tarski
1936] then indicated that there are also relatively independent reasons to doubt
that we might ever be able to align derivability with consequence: he argued
that whereas intuitively every natural number has the property P follows from
the set:

{n has the property P for all n = 1, . . . ,∞},

it can never be made derivable from it (unless, of course, we stretch the concept
of derivability as to allow for infinite derivations).
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These results reinforced the picture, present in the back of many logicians’
minds anyway, of logic as trying to capture, using our parochial and fatally
imperfect means, truth and consequence that are somewhere ‘out there’, wholly
independent of us. And as whether a sentence is (necessarily) true2 and what
follows from it is a matter of its meaning, it also appeared to indicate that there
must be much more to meaning than can be captured by inference rules. In
particular, there must be more to the meanings of logical and mathematical
constants than is captured by the inference rules we are able to construct as
governing them.

Symptomatic of this state of mind is Arthur Prior’s famous denial (see [Prior
1960] and [Prior 1964]) of the possibility of assigning a logical constant its
meaning by means of inferential rules:

It is one thing to define ‘conjunction-forming sign’, and quite another to define
‘and’. We may say, for example, that a conjunction-forming sign is any sign
which, when placed between any pair of sentences P and Q, forms a sentence
which may be inferred from P and Q together, and from which we may infer P
and infer Q. Or we may say that it is a sign which is true when both P and Q are
true, and otherwise false. Each of these tells us something that could be meant
by saying that ‘and’, for instance, or ‘&’, is a conjunction−forming sign. But
neither of them tells us what is meant by ‘and’ or by ‘&’ itself. Moreover, each of
the above definitions implies that the sentence formed by placing a conjunction-
forming sign between two other sentences already has a meaning. For only what
already has a meaning can be true or false (. . . ), and only what already has a
meaning can be inferred from anything, or have anything inferred from it (Prior
1964, p.191).

3.2 . . . but there cannot be more!

Some of the most outstanding philosophers of language of the XX. century,
on the other hand, arrived at the conclusion that there could be hardly any way
of furnishing our words with meanings save by subordinating them to certain
rules – the rules, as [Wittgenstein 1953] famously put it, of our language games.

The point of departure of Wittgenstein’s later philosophy was the recognition
that seeing language, as he himself did earlier in the Tractatus, as a complex
set of names is plainly unwarranted. Most of our words are not names in
any reasonable sense of the word name, and hence if they have meaning, they
must have acquired it in a way other than by having been used to christen an
object. And Wittgenstein concluded that the only possible way this could have
happened is that the words have come to be governed by various kinds of rules.
Thus, in his conversation with the members of the Vienna Circle he claims in
[Waisman 1984], p. 105:

2In this paper we will have nothing to say about empirical statements and hence about other than necessary
truths.
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For Frege, the choice was as follows: either we are dealing with ink marks on
paper or else these marks are signs of something, and what they represent is their
meaning. That these alternatives are wrongly conceived is shown by the game of
chess: here we are not dealing with the wooden pieces, and yet these pieces do
not represent anything – in Frege’s sense they have no meaning. There is still a
third possibility; the signs can be used as in a game.

This indicates that for Wittgenstein, Prior’s claim “only what already has
a meaning can be inferred from anything, or have anything inferred from it”
would be no more plausible than the claim that only what is already a pawn, a
knight etc. can be subordinated to the rules of chess: just like we make a piece
of wood (or of something else) into a pawn or a knight by choosing to treat it
according to the rules of chess,3 we make a sound- or an inscription-type into
a meaningful word by subordinating it to the rules of language.

As another famous proponent of the ‘rule-basedness’ of semantics, Wilfrid
Sellars puts it, there are essentially three kinds of rules governing our words
(see [Sellars 1974]):

language entry transitions, or rules of the world-language type
intralinguistic moves, or rules of the language-language type
language departure transitions, or rules of the language-world type

Whereas the first and the last type is restricted to empirical words, nonempirical
words are left with being furnished with meaning by means of the middle one,
which are essentially inferential rules. Meaning of such a word thus comes to
be identified with its inferential role.4

In some cases, this view appears to be markedly plausible (pace Prior5).
How could “and” come to mean what it does? By being attached, as a label,
to the standard truth function? But surely we were in possession of “and” long
before we came to possess an explicit concept of function – hence how could
we have agreed on calling it “and”? The Sellarsian answer is that by accepting
the inference pattern

A and B ⇒ A
A and B ⇒ B

A, B ⇒ A and B

3Note that though the shape of the piece is usually indicative of its role, having a certain shape is neither
necessary, nor sufficient to be, say, a pawn.
4Inferentialism in Wittgenstein’s later philosophy is discussed by (Medina 2001); for an account of Sellars’
semantics see [Marras 1978].
5What Prior did show was that not every kind of inferential pattern can be reasonably taken as furnishing a
sign with a meaning. (His famous example is the ‘vicious’ pattern A⇒(A tonk B); (A tonk B)⇒ B). But it
is hard to see why it should follow that the meaning of ‘and’ is not determined by the obvious pattern: is not
what one learns, when one learns the meaning of ‘and’, precisely that A and B is true (or correctly assertible)
just in case both A and B are? See (Peregrin, 2001, Chapter 8).
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(which need not have been, and surely was not, a matter of accepting an explicit
convention, but rather of handling the signs involved in a certain way).

In other cases it is perhaps less straightforwardly plausible, but still urged
by many theoreticians. How could numerals come to mean what they do? By
being attached, as labels, to numbers? But how could we achieve this? Even
if we submit that numbers quite unproblematically exist (within a Platonist
heaven), we surely cannot point at them, so how could we have agreed on
which particular number would be denoted by, say, the numeral “87634”? The
inferentialist has an answer: numbers are secondary to the rules of arithmetic,
such as those articulated by means of Peano axioms; and hence 87634 is simply
a ‘node’ within the structure articulated by the axioms, namely the node which
is at a particular distance from zero. Its very identity is a matter of this distance;
hence there is no need to identify it in any other way. As [Quine 1969], p. 45
puts it: “There is no saying absolutely what the numbers are, there is only
arithmetic.”

All of this appears to suggest that there cannot be more to the meanings
of logical & mathematical constants than is captured by the inference rules
governing them. Hence we appear to face the following question: Can the
standard meanings of logical and mathematical constants be seen (pace Tarski
& comp.) as creatures of entirely inferential rules?

3.3 Disjunction

An inferentialist has an easy time while grappling with “and”; but troubles
begin as soon as he turns his attention to the (classical) “or”. There seems to
be no set of inferential rules pinning down the meaning of “or” to the standard
truth-function. Indeed, “or” can be plausibly seen as governed by

A ⇒ A or B;
B ⇒ A or B,

but then we would need to stipulate that A or B is not true unless either A or B
is. Of course we might have

not A, not B ⇒ not (A or B),

but this presupposes the (classical) not, and hence only shifts the burden of
inferential delimitation from or to not, which is surely no easier.

In fact as long as we construe inference as amounting to truth preservation,
there can be no way to inferentially express that a sentence is, under some
conditions, not true. (And it is well-known that the axioms of the classical
propositional calculus admit theories with true disjunctions of false disjuncts6).

6It is usually assumed that the proofs of soundness and completeness of the propositional calculus establish
that its axiomatics and its truth-functional semantics are two sides of the same coin. But this is not true in
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Perhaps the way out of this could be to part company with classical logic
(and subscribe to, presumably, intuitionism) – but how, then, could the classical
“or” have come into being?

I envisage two kinds of answers to this question:

(1) It did not exist prior to our having an explicit idea of function and was
only later procured from the pre-classical “or” by means of an explicit
rectification.

(2) There is a stronger (and still reasonable) concept of inferential pattern
such that there is an inferential pattern able to grant “or” its classical
semantics.

In this paper I aim to explore the second alternative. The proposal I will
make is that an inferential pattern should be read not simply as giving a list of
(schematic) instances of inference, but rather as giving a list which is purported
to be exhaustive. Why should it be read in this way? Because that is what
we standardly mean when we make lists or enumerate. If I say “My children
are Tom and Jerry”, then what is normally taken for granted is that these are
all my children. This has been noted by [McCarthy 1980], whom it led to the
model-theoretic concept of circumscription; and indeed our proposal is parallel
to McCarthy’s (see also [Hintikka 1988] for an elaboration).

To say that we should construe inferential patterns in this way is to say that
we should read them as containing, as it were, an implicit ... and nothing else:
hence

A ⇒ A or B
B ⇒ A or B

should be read as “A or B is true if either A is true, or B is true – and in no other
case”. It is clear that by this reading, the correct classical semantics for “or” is
secured.

Conjunction can be treated in an analogous way (though in its case this is
not necessary). The point is that we can say “A is true and B is true if A and B
is true – and in no other case”. Thus, while the disjunction of A and B is the
maximal statement which satisfies the above pattern, conjunction is the minimal
one which satisfies

A and B ⇒ A
A and B ⇒ B

Also negation can be approached analogously; it can be seen as the minimal
statement fulfilling

the sense that the axiomatics would pin down the meanings of the connectives to the usual truth-functions.
It fixes their meanings in the sense that if the meanings are truth-functions, then they are the usual ones, but
it is compatible also with certain non-truth functional interpretations.

https://www.researchgate.net/publication/222437972_Circumscription-A_Form_of_Non-Mon-otonic_Reasoning?el=1_x_8&enrichId=rgreq-e908110ed975ae8325b3e3dfc1a8963d-XXX&enrichSource=Y292ZXJQYWdlOzIyNzIzMDgwNztBUzo5OTI1OTQ3NTAzODIwOEAxNDAwNjc2NzExMzA4
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A, not A ⇒ B.

However, it is easy to see that this does not yield classical, but rather intuitionistic
negation. To make it classical we have to require also

not not A ⇒ A,

which partly spoils the picture of logical operators as extremalities of inferential
patterns and which also indicates why it is intuitionistic logic which should be
seen as the logic of inference. It is nevertheless the case that even the classi-
cal operators can be seen as definable in terms of inferences and ‘extremality
conditions’.7

3.4 Standard properties of inference

Let us make our conceptual framework a bit more explicit. What we call in-
ference is a relation between sequences of sentences and sentences – we assume
that languages come with their relations of inference (which is constitutive of
their semantics). An inference is called standard if it has the following prop-
erties (where A, B, C stand for sentences and X , Y , Z for sequences thereof):

Ref [‘reflexivity’]: A ⇒ A
Cut [‘transitivity’]: if X ⇒ A and YAZ ⇒ B, then YXZ ⇒ B
Con [‘contractibility’]: if XAYAZ ⇒ B, then XYAZ ⇒ B and XAYZ ⇒ B
Ext [‘extendability’]: if XY ⇒ B, then XAY ⇒ B

Note that Con and Ext together entail

Perm [‘permutability’]: if XABY ⇒ C, then XBAY ⇒ C

Indeed, if XABY ⇒ C, then, by Ext, XABAY ⇒ C, and hence, by Con, XBAY
⇒ C.

An inferential structure is a set of sentences with an inference relation.
A standard inferential structure is an inferential structure whose inference
obeys Ref, Cut, Con and Ext. It is clear that within a standard inferential
structure, inference can be construed as a relation between sets of sentences
and sentences.

We will also consider ‘more global’ properties of inferential structures. In
an inferential structure each sentence can have a negation, each pair of sen-
tences can have a conjunction, disjunction etc. Using ‘extremality conditions’
discussed in the previous section, we can characterize (the basic, intuitionistic
versions of) the logical operators as follows, cf. [Koslow 1992]:8

7I gave a detailed discussion of inferential specifiability of classical operators elsewhere, see [Peregrin 2003].
8Note that here ‘conjunction’ does not refer to a specific sign (and similarly for the other connectives).
‘Conjunction of A and B’ is a sentence with certain inferential properties, and not necessarily of a certain
syntactic structure (such as A and B joined by a conjunction-sign). ‘Conjunction’ can then be seen as a
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Conj: A∧B ⇒ A; A∧B ⇒ B; if C ⇒ A and C ⇒ B, then C ⇒ A∧B
Disj: A ⇒ A∨B; B ⇒ A∨B; if A ⇒ C and B ⇒ C, then A∨B ⇒ C
Neg: A ¬A ⇒ B; if A C ⇒ B (for every B), then C ⇒¬A

If we assume exhaustivity in the sense of the previous section, there is no
need to spell out the extremality conditions explicitly: A ⇒ A∨B and B ⇒ A∨B
together come to mean that the disjunction is true if one of the disjuncts is, and
the exhaustivity assumption yields that it is true in no other case – hence that it
is false for both disjuncts being false. Hence, given this, we can abbreviate the
definitions to

Conj: A∧B ⇒ A; A∧B ⇒ B
Disj: A ⇒ A∨B; B ⇒ A∨B
Neg: A ¬A ⇒ B

A standard inferential structure will be called explicit if it has conjunctions,
disjunctions and negations. It will be called classical if, moreover, ¬¬A ⇒ A
for every A.

3.5 From inferential roles to possible worlds

By the (inferential) role of A we will understand the specification of what A
is inferable from and what can be inferred from it together with other sentences.
Hence the role of A can be represented as <A+, A−>, where

A+ = {X | X ⇒ A} A− = {<X1,X2,Y> | <X1AX2 ⇒ Y>}.

If the inference obeys Cut and Ref, then A+ = B+ iff A⇔B iff A− = B−.
Indeed: (1) If A+ = B+, then as A∈A+ (in force of Ref), A∈B+, and so A ⇒ B.
By parity of reasoning, B ⇒ A, and hence A ⇔ B. (2) If A ⇔ B, then if X∈A+

and hence X ⇒ A, it follows (by Cut) that X ⇒ B and hence X∈B+. This
means that A+⊆B+. Conversely, B+⊆A+ and hence A+=B+. (3) If A−=B−,
then as <<>,<>, A>∈A− (in force of Ref), <<>,<>, A>∈B− (where <>
denotes the empty sequence) and so B ⇒ A. By parity of reasoning, A ⇒ B,
and hence A ⇔ B. (4) If A ⇔ B, then if <X1,X2, Y>∈A−, and hence X1AX2

⇒ Y , it follows (by Cut) that X1BX2 ⇒ Y and hence <X1, X2, Y>∈B−. This
means that A−⊆B−. Conversely, B−⊆A−, and hence A−=B−.

It follows that in this sense we can reduce the inferential role of A to whichever
of its halves, in particular to A+. Moreover, if we write Y1⊕...⊕Yn for the set
of n-tuples of strings of formulas X1...Xn such that X1∈Y1, ..., Xn∈Yn, it is the
case that

A1...An ⇒ A iff A1
+⊕...⊕An

+ ⊆ A+,

relation between pairs of sentences and sentences (not generally a function, for we may have more than one
different – though logically equivalent – conjunction of A and B).
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and if inference obeys also Con and Ext (hence if the inferential structure is
standard), then

A1...An ⇒ A iff A1
+∩...∩An

+ ⊆ A+.

Indeed: (1) If A1...An ⇒A and X∈A1
+∩...∩An

+, then, due to Cut, X ...X⇒A,
which, in force of Con, reduces to X ⇒ A and hence to X∈A+. (2) On the other
hand, it follows by Ref that Ai∈Ai

+ for i=1,...,n, and it then follows by Ext that
A1...An∈Ai

+ for i=1,...,n; hence if A1
+∩...∩An

+ ⊆ A+, then A1...An∈A+ and
hence A1...An ⇒ A. (See [Van Benthem 1977, Chapter 7] for a more extensive
exposition.)

Logical equivalence, ⇔, is a congruence w.r.t. conjunctions, disjunctions,
negations and implications. This means that if A ⇔ A′, B ⇔ B′, C is a con-
junction of A and B, and C′ is a conjunction of A′ and B′, then C ⇔ C′ (and
similarly for the other connectives). Indeed: If C is a conjunction of A and B,
then C ⇒ A and C ⇒ B, and hence, in force of the fact that A ⇒ A′ and B ⇒
B′, C ⇒ A′ and C ⇒ B′. But as for every D such that D ⇒ A′ and D ⇒ B′ it
is the case that then C′ ⇒ D, it follows that C′ ⇒ C. By parity of reasoning, C
⇒ C′; and hence C ⇔ C′.

This means that we can pass from an explicit standard inferential structure
to what in algebra is called its quotient, i.e. a structure consisting of the equiva-
lence classes (modulo⇔) of sentences with conjunctions etc. adjusted to act on
them (which we know can be done precisely because ⇔ is a congruence). This
can be observed as passing from sentences to propositions, and from senten-
tial operators to propositional operators.9 The quotient structure is obviously
what is known as the Lindenbaum algebra; and if the language is classical, this
algebra is clearly Boolean (with the adjusted operations of conjunction, disjunc-
tion and negation playing the role of join, meet and complement, respectively).
Then, in force of Stone’s representation theorem,10 it can be represented as an
algebra of sets of its own ultrafilters. And as its ultrafilters correspond to just
the maximal consistent theories, each sentence A can be, from the viewpoint
of its ‘inferential potential’, characterized in terms of the set of those maximal
consistent theories to which it belongs.

Now these theories can be seen as descriptive of ‘possible worlds’ repre-
sentable by the language. Moreover, if the language in question has the usual
structure of that of the predicate calculus, then the theories can be used to

9In fact, the inferential roles as defined here (which I called the primary roles elsewhere – see [Peregrin
2003]) are reasonably taken to explicate propositions only in case of inferential structures which are at most
intensional (i.e., for which logical equivalence entails intersubstitutivity w.r.t. logical equivalence, in the
sense that for every A, B and C, A ⇔ B entails C ⇔ C[A/B]). For hyperintensional languages we should
consider secondary inferential roles, which are not only a matter of what A itself is inferable from and what
can be inferred from it, but also of what the sentences containing A are inferable from and what can be
inferred from them.
10See, e.g., [Bell & Machover 1977, Chapter 4].
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directly produce the ‘worlds’ – i.e. models – by means of the well-known con-
struction of [Henkin 1950]. This means that the usual possible-worlds-variety
of semantics can be seen as a means of representing a certain (usual) kind of
inferential structure.

3.6 Representing non-standard inferential structures

If we have a negation, and consequently a structure that is not classical, the
quotient algebra is no longer Boolean (it is rather a Heyting algebra). Hence
here the Stone’s theorem cannot be applied so straightforwardly. But as Kripke
showed, there is still a way to go over to a kind of possible-world semantics.
The same is the case with the modal algebras which result from modal logics.

Non-standard inferential structures yield us, in this way, non-standard vari-
eties of semantic representation. If we withdraw Con and Ext (which is sug-
gested, e.g., by considering the anaphoric structure of natural language, which
appears to violate Perm), then the inferential structure ceases to be Boolean
and does not yield the standard possible world semantics.

The closest analogue of conjunction within such a setting is what is usually
called fusion (Restall, 2000):

Fusion: if X ⇒ A and Y ⇒ B, then XY ⇒ A◦B;
if X ⇒ A◦B and YABZ ⇒ C, then YXZ ⇒ C

Assuming Cut and Ref, we can prove the associativity of ◦: The definition
yields us, via Ref,

(i) AB ⇒ A◦B; and

(ii) if YABZ ⇒ C, then Y (A◦B)Z ⇒ C.

These can then be used to prove, with the employment of Cut, that A◦(B◦C)
⇔ ABC ⇔ (A◦B)◦C. Moreover, under such assumptions we can show that if
C is such that <> ⇒ C (i.e. it is a theorem), then B◦C ⇔ B ⇔ C◦B: for (i)
yields A ⇒ A◦C and A ⇒ C◦A, whereas (ii) yields the converse.

This means that if the structure has fusions and there exists a C of this kind
(which is certainly the case if we assume some suitable ‘proto-classical’ ver-
sions of disjunction, implication and negation), the corresponding propositional
structure (i.e. the quotient structure modulo ⇔) is a monoid.11 In this case, the
most natural thing appears to be to represent the propositions as some kinds of
functions. And indeed it turns out that the inferential potentials of the sentences
A can be now represented as

A∗ = {<X, XY > | Y ⇒ A}.

11That dynamic semantic is “monoidal semantics” is urged by [Visser 1997].
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In this case, it follows from the results of [Van Benthem 1977, Chapter 7] that
(where • represents functional composition)

A1...An ⇒ A iff A1
∗•...•An

∗ ⊆ A∗

Indeed: (1) If A1...An ⇒ A, then if <X , XY>∈A1
∗•...•An

∗, then Y = Y1...Yn,
where Yi ⇒Ai, and hence (due to Cut) Y1...Yn ⇒A; hence <X , XY1...Yn>∈A∗.
(2) If, on the other hand A1

∗•...•An
∗ ⊆A∗, then, due to Ref, <X , XA1...An>∈A∗

for every X , which means that A1...An ⇒ A.
Thus, in this way inferential roles yield one of the common varieties of

dynamic semantics based on the so-called updates.12

3.7 Consequence via inference

All of this apparently suggests that we can construe the common creatures
of formal semantics, such as intensions or updates, as ‘encapsulated inferential
roles’. However it seems that this yields us straightforwardly always only the
Henkin semantics, not the standard one – and hence also never the Tarskian
‘second-order’ consequence. (Thus, the inferential structure of Peano arith-
metic yields us more than one ‘possible world’ [= model], which blocks every
natural number has the property P being the consequence of {n has P}n=1,...,∞).
However, if we admit that ‘enumerative’ inferential patterns, such as those gov-
erning the expressions of Peano arithmetic, incorporate implicit exhaustivity
assumptions (in the very way inferential patterns characterizing logical opera-
tors do) and hence involve extremality (in the sense of [Hintikka 1989]), we can
see inferential roles as yielding even the standard semantics and ‘second-order’
consequence.

Indeed: look at the Peano axioms as a means of enumeration of natural
numbers (and there is little doubt that this was their original aim). What they
say is that zero (or one, which was their original starting point) is a number,
and the successor of a number is always again a number. This yields us the
standard natural numbers, but cannot block the occurrence of the non-standard
ones after them. However, if we add and nothing else is a number, we cut the
number sequence down to size: only those numbers which are needed to do
justice to the Peano axioms are admitted; the rest are discharged.

To avoid misunderstanding, I do not think that the exhaustivity assumption
can be somehow directly incorporated into logic to yield us a miraculous system
which would be both complete and have the standard semantics – this, of course,
would be a sheer daydream. If we admit that our inferential patterns do contain
the implicit exhaustivity assumption, we must condone the fact that therefore

12[Van Benthem 1977, Chapter 7] also discusses other varieties of dynamic semantics corresponding to other
‘subclassical’ sets of assumptions about inference.

https://www.researchgate.net/publication/266000551_Informational_Independence_as_a_Semantical_Phenomenon?el=1_x_8&enrichId=rgreq-e908110ed975ae8325b3e3dfc1a8963d-XXX&enrichSource=Y292ZXJQYWdlOzIyNzIzMDgwNztBUzo5OTI1OTQ3NTAzODIwOEAxNDAwNjc2NzExMzA4


Semantics as Based on Inference 35

the patterns cease to be directly turnable into proof-procedures. My point here
was that we can get semantics, even the ‘most semantical one’, out of something
which can still reasonably be seen as inferential patterns; and thus we vindicate
the Wittgensteino-Sellarsian claim that what our words mean cannot ultimately
rest solely on the rules we subordinate them to.
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A function f is computable if there is an algorithm, or mechanical procedure,
A that computes f . For every m in the domain of f , if A were given m as
input, it would produce fm as output. Put this way, computability applies to
functions on things that can be processed by algorithms or machines: marks on
paper, electronic charges, and the like. In mathematics, of course, we do not
usually deal with things that are that concrete. Idealizing a little, the field of
computability consists of functions on strings, finite sequences of characters on a
fixed alphabet. Since strings are structurally equivalent to natural numbers, it is
common to think of computability as applying to number-theoretic functions,
via some standard notation (see Corcoran, Frank, and Maloney [1974], and
Shapiro [1982]).

In [1936], Alonzo Church proposed that computability be “defined” as recur-
siveness. This equation became known as Church’s thesis. In the same paper,
it was shown that recursiveness is coextensive with λ-definability. The same
year, Alan Turing [1936] published his own characterization of computabil-
ity, presenting the celebrated notion of Turing machine. Turing’s work was
independent of that of Church, but on learning of the latter, Turing showed
that his own brand of computability is also coextensive with recursiveness and
λ-definability. Emil Post [1936] also published a characterization of com-
putability remarkably similar to that of Turing. Post’s work was independent
of Turing’s, but not of the activity of Church and his students at Princeton. It
was a very good year.

There are three connected themes that I would like to raise in this article.
First, what led to the development of computability in the 1930’s? Algorithms
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have been known since antiquity, and computation was occasionally discussed
in the history of mathematics and philosophy, but as far as I know, the period un-
der study here produced the first attempts at a characterization of computability
per se. Second, what convinced the major players – Church, Church’s students,
Turing, Kurt Gödel, and Post – of Church’s thesis (or its equivalent)? What led
each of them to believe that the characterizations at hand are successful? Finally,
the pre-formal notion of effectiveness is pragmatic, or epistemic. It relates to
the ability of humans to accomplish tasks in a certain manner. As such, effec-
tiveness is intensional. Whether a given task is effective may depend on how it
is described. By contrast, computability, and its formal counterparts of recur-
siveness, λ-definability, and Turing computability, are extensional properties
of functions. What is the relation between the extensional and the pragmatic,
intensional notions of effectiveness?

These are large topics, but my presentation will be brief. I will include a few
questions, thus reversing the usual relationship between author and reader.

My first question is whether the work in the 1930’s was in fact the first attempt
at characterizing computability. It seems safe to say that we have before us
the first successful characterization of computability, but perhaps there were
previous, aborted attempts.

Q1. Were there any attempts to capture a general notion of computability
before, say, 1930, perhaps less comprehensive and less precise than recursive-
ness?

Robin Gandy’s excellent article “The confluence of ideas in 1936” ([1988])
contains a description of Charles Babbage’s design of a computing device.
Gandy shows that suitably idealized, and suitably programmed, a Babbage
machine can compute any recursive function. But it does not seem that Bab-
bage was interested in the limits of computability, nor did he make a claim
like Church’s thesis. He did assert that his work shows that “the whole of the
development and operations of analysis are . . . capable of being executed by
machinery”. But this is not the issue here. A statement that a certain area is
capable of mechanization is not a statement on the overall limits of compu-
tation. Gandy suggests that had Babbage come to speculate on the limits of
mechanization, he would surely have proposed a version of Church’s thesis.
But presumably, he did not come to speculate. Who did, and why?

Another possible precursor is Leibniz’ aborted Universal Character, an at-
tempt to reduce all of mathematics, science, and philosophy to algorithms.
Leibniz is quite explicit concerning the goals of his program of Universal Char-
acteristic, a forerunner of mathematical logic:

What must be achieved is in fact this: That every paralogism be recognized
as an error of calculation, and that every sophism when expressed in this new
kind of notation . . . be corrected easily by the laws of this philosophical grammar
. . . Once this is done, then when a controversy arises, disputation will no more
be needed between two philosophers than between two computers. It will suffice
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that, pen in hand, they sit down and say to each other “let us calculate”. (Leibniz
[1686, XIV])

Here, Leibniz expresses interest in the nature and extent of all of philosophy,
but not with the extent of computation (see Schrecker [1947]).

Nowadays, there is a consensus that a function is an arbitrary correspondence
between collections of mathematical objects. For a given function f , there need
be no rule, or even an independent description that specifies for each x in the do-
main of f , its value fx. In the set-theoretic foundation, a function is defined to
be a set of ordered pairs, no two of which have the same first element. And a set
is an arbitrary collection of objects (that is not too big). From this perspective,
it is natural to speculate that some functions may not be computable. Indeed,
the existence of non-computable functions follows from simple cardinality con-
siderations, and a premise that there is a single language, based on countable
alphabet, in which every algorithm can be expressed. There are uncountably
many number-theoretic functions, but a language on a finite or countable alpha-
bet has only countably many strings, each of which (presumably) expresses at
most one algorithm in the given language, and each algorithm computes at most
one function. Of course, prior to the work in the 1930’s, it was not obvious that
there is a single language capable of expressing every algorithm. In a sense,
the discovery of such a language was the major achievement of the pioneering
work on computability. Gödel [1946] once remarked that with computability,

. . . one has for the first time succeeded in giving an absolute definition of
an interesting epistemological notion, i.e., one not depending on the formalism
chosen. In all other cases treated previously, . . . one has been able to define them
only relative to a given language, and for each individual language it is clear that
the one thus obtained is not the one looked for.

The cardinality argument also involves Cantor’s theorem theorem and an
ability to treat a language as a formal object, as a collection of strings.

Q2. Was the cardinality argument for the existence of non-computable func-
tions offered by anyone before Church’s thesis was formulated?

One reason for the relatively late development of computability is that the
“classical” notion of function as an arbitrary correspondence, and, with this, the
very possibility of a non-computable function, had only recently emerged. In a
perceptive article, Howard Stein [1988] shows that what is today called “clas-
sical mathematics” is scarcely a century old. Until recently, there was no clear
consensus of such notions as function and set. This point is well illustrated
in the early debates over the axiom of choice (for which, see Moore, G. H.,
[1982]). Many opponents of the axiom, notably Baire, Borel, and Lebesgue,
raised doubts about the very intelligibility of functions and sets that are not
uniquely specifiable. It is not a big step from this to question the very intelligi-
bility of non-computable functions of natural numbers. To this day, intuitionists
and constructivists make this step.
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From the classical perspective, once the notion of an arbitrary function or set
is available, then perhaps it becomes natural to ask for an algorithm to compute
a particular function or to decide membership in a particular set. That is, once
the notion of a potentially non-computable function or undecidable set is on the
table, then one can ask about the computation-status of particular functions and
sets. And such problems were formulated and pursued early in the twentieth
century. For example, some of Hilbert’s “Mathematical Problems”, proposed
in [1900], are decision problems. Consider the once elusive tenth:

Determination of the Solvability of Diophantine Equations. Given any dio-
phantine equation with any number of unknown quantities and with rational inte-
ger coefficients: to devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in rational integers.

Clearly, the best way to provide a positive solution to a decision problem
is to give an algorithm and show that it does the required task. There rarely
is a question concerning whether a purported algorithm really is an algorithm
(although the subsequent debate over Church’s thesis produced a number of
exceptions to this seeming truism). On the other hand, a negative solution to
a decision problem amounts to a theorem that no algorithm accomplishes the
task at hand. To prove such a theorem, one must first identify a property shared
by all algorithms, or all computable functions. The straightforward way to do
this would be a precise characterization of computability. Thus, I propose that
unsolved algorithm problems were a major motivation behind the development
of computability. It became important to make coherent and useful statements
about all algorithms, or all computable functions, in order to show that a certain
function is not computable or that a certain set is not algorithmically decidable.

If this is correct, then in a sense, Hilbert himself foreshadowed the devel-
opment of computability. In the aforementioned “Mathematical Problems”
lecture, he recognized the possibility of negative solutions to some of his prob-
lems: “Occasionally it happens that we seek the solution. . . and do not succeed.
The problem then arises: to show the impossibility of the solution. . . ” Hilbert
illustrates this with historical instances of problems which eventually found
“fully satisfactory and rigorous solutions, although in another sense than orig-
inally intended”. He mentions the problems of squaring the circle and proving
the axiom of parallels. The solutions of these problems involved the develop-
ment of new theory to provide mathematical characterizations of pre-formal
notions. It is curious that although many unsolved algorithm problems origi-
nated from Hilbert’s thinking, the development of computability did not come
from that school.

A central goal of the Hilbert program is to justify at least apparent “ref-
erence” to infinite sets while sidestepping thorny metaphysical and epistemic
issues. Hilbert proposed that proofs themselves be studied as formal, linguistic
entities. That is, the program called for the discourse of each branch of mathe-
matics to be cast in axiomatic deductive systems which, in turn, are to be studied
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syntactically. For this “meta-mathematics”, only “finitary” methods are to be
employed. The usefulness of recursively defined functions for this purpose had
been established in Thoralf Skolem’s [1923] paper developing the “recursive
mode of thought” in an attempt to avoid reference to infinite sets in arithmetic.
The subsequent research on recursion and meta-mathematics culminated in
Gödel’s [1931] paper on the incompleteness of arithmetic. The main result of
this, of course, is that the axiomatization of Principia Mathematica (Whitehead
and Russell [1910]) does not meet Hilbert’s criterion of completeness. There
is a formula in the relevant language which is neither provable nor refutable
in the deductive system. Gödel’s methods at least appear to be general. They
do not depend on any idiosyncratic feature of Principia Mathematica. At least
with hindsight, the obvious generalization is that no suitable axiomatization of
arithmetic is complete. In order to clarify and, perhaps, prove this generaliza-
tion, the concept of “suitable axiomatization”, vis-à-vis the Hilbert’s program,
had to be developed, explicated, and studied.

If we deploy the contemporary notion of a set as an arbitrary collection, then
it is clear that not every set of sentences of a given language is a suitable axiom-
atization. The resources to establish the existence of complete sets of sentences
of Principia Mathematica are at hand. Notice that the Henkin-Lindenbaum
version of the completeness theorem produces such sets, now routinely. Why
not just take the set of arithmetic truths to be the axioms? Clearly, this is not a
suitable axiomatization, in the sense of the Hilbert’s program.

In the clarification of “suitable axiomatization”, considerations of effective-
ness, and computability arise. Axiomatic deductive systems are to represent or
codify actual mathematical discourse, one purpose of which is to communicate
proofs. This suggests that in a suitable axiomatization, one should be able to
determine, “using only finite means”, whether an arbitrary string of characters
is a formula and whether an arbitrary sequence of formulas is a proof. In short,
the syntax of a suitable axiomatization should be effective. This fails for the
aforementioned system in which each truth is taken to be an axiom. The pro-
posed generalization of Gödel’s 1931 result is this: There is no ω-consistent,
effective axiomatization of arithmetic in which every sentence is either provable
or refutable. Here we have a conjecture of a negative theorem about algorithms:
No algorithm decides the syntax of and consistent, complete axiomatization of
arithmetic.

Gödel’s [1934] lecture notes contain an elaboration and extension of the in-
completeness result. The paper opens with an explicit statement that the syntax
of an axiomatic deductive system must be effective. The notes also contain a
theorem, similar to one in [1931], that every primitive recursive axiomatiza-
tion of arithmetic is either ω-inconsistent or incomplete. Gödel states that the
condition of primitive recursiveness “in practice suffices as a substitute for the
imprecise requirement” of effectiveness. It does not follow, however, that no
suitable axiomatization is complete because, as was known at the time, there
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are computable functions that are not primitive recursive. After mentioning
that the primitive recursive functions are all computable, Gödel adds a footnote
that “the converse seems to be true, if . . . recursions of other forms . . . are
admitted”. The lecture notes close with the formulation of a generalization
of primitive recursion, attributed to Herbrand. The defined property of func-
tions, now known as Herbrand-Gödel computability, is coextensive with Turing
computability and λ-definability. All told, then, it appears that the lecture notes
contain a precursor of Church’s thesis. I shall return to this presently. In any
case, this work motivated Kleene’s [1935] detailed study of Herbrand-Gödel
computability and this was followed, in short order, with Church’s and Post’s
characterizations of computability. As noted, Turing’s work appeared almost
simultaneously.

I do not claim, of course, that this line of thought is the whole story behind
the development of computability. Of the 1936 papers, only Post explicitly
acknowledges that it is a contribution to the discussion of the completeness
theorem. Turing merely mentions that his results are superficially similar to
Gödel’s, and this was almost certainly an afterthought. Church’s paper contains
a treatment of Herbrand-Gödel computability, with reference to the lecture notes
and Kleene’s 1935 study. Church also states that the possibility of a relationship
between computability and recursiveness was raised by Gödel in conversation,
but the paper does not directly indicate that the treatment of computability was
motivated by the incompleteness theorem.

In a recent note, “Reflections on Church’s thesis,” Kleene [1987] argues
that the connection between Church’s work and Gödel’s is overrated. The
development and study of λ-definability was independent of the incompleteness
theorem, and would have continued under its own momentum. This is surely
correct, but one can still wonder whether the connection with computability
would have been made and, if it was, what would have motivated it. Kleene’s
“Reflections” include the discussion of a number of fascinating counterfactuals
in the form: What would X be like had Y not occurred first.

Before leaving this topic, let me note that Turing and Church seem to have
been interested in another aspect of the Hilbert’s program. One of the desider-
ata was that for each axiomatization, there should be an algorithm that enables
one to decide, of any formula, whether it is derivable in the deductive system
thereof. This is a decision problem, not unlike Hilbert’s tenth problem. Also,
the Entscheidungsproblem is the task of giving an algorithm to decide whether a
given sentence is a logical truth. If attention is restricted to first-order languages,
the Gödel completeness theorem shows that the Entscheidungsproblem is, in
fact, the decision problem for the first-order predicate calculus. Hilbert charac-
terized it as the fundamental problem of mathematical logic. The Entscheidung-
sproblem remained open despite the best efforts of many great mathematical
minds. Some may have conjectured that it does not have a positive solution.
Again, such a conjecture could lead to a characterization of computability.
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Turing and Church both show how their characterizations result in a negative
solution to the Entscheidungsproblem for first-order languages. This is now
known as “Church’s theorem”. Turing calls in an “application” of the studies
of computability.

Q3. Is there any further evidence that Turing and Church felt that they were
contributing to a discussion of various aspects of the Hilbert’s program or the
generalization of Gödel’s incompleteness theorem?

Q4. Prior to 1936, did anyone conjecture in print that a decision problem, or
an instance of the Entscheidungsproblem, might have a negative solution?

I turn now to the acceptance of Church’s thesis. It is clear that every λ-
definable function is computable, since a λ-definition suggests an algorithm.
The same goes for recursive functions and, especially Turing computable func-
tions. The converses of these statements are another story. In a number of
places, Kleene provided first-hand recollections of the events that led him and
Church to hold that every computable function is λ-definable (e.g., Kleene
[1979], [1981]). Church and his students began investigating individual func-
tions, to determine whether they are λ-definable. The goal of this activity was
to explore the extent of the newly defined property of λ-definability, not the
extent of computability. Every computable function that was “tested” in this
way was shown to be λ-definable, some more easily than others. A major
breakthrough was Kleene’s proof that the predecessor function is λ-definable
(accomplished “one day late in January or early in February 1932, while in
the dentist’s office”). This result surprised Church, who had come to speculate
that the predecessor function might not be λ-definable. When Church finally
proposed the connection between computability and λ-definability, Kleene

. . . sat down to disprove it by diagonalizing out of the class of λ-definable
functions. But quickly realizing that the diagonalization cannot be done effec-
tively, I [Kleene] became overnight a supporter of the thesis.

In Church [1936], the identification of computability with recursiveness is
proposed as a “definition”. Of course, he did not intend to introduce a new
word with the equation. Computability is a vague concept from ordinary lan-
guage. Starting with the word “compute”, we modalize to obtain “computable”,
and then nominalize to “computability”. Church’s proposal was that recursive-
ness (or λ-definability) be substituted for this imprecise notion. Notice that
if Church’s thesis is construed this way, there is no question of an attempted
“proof” of it. How does one establish that a vague notion is coextensive with
a precise mathematical one? Indeed, from this perspective, Church’s thesis
does not have a truth value. It is a pragmatic matter, depending on how useful
the identification is, for whatever purpose is at hand. One can, of course, de-
mand that the precise notion correspond more-or-less with the vague, pre-formal
counterpart; and this much was amply confirmed by the extensive study of ex-
amples. The usefulness of the definition was also bolstered with the discovery
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that different formulations of computability, different “definitions” come to the
same thing. Such results show that independently motivated attempts to char-
acterize the same notion converge on a single class; a good indication that all
of them are on target.

It seems that some of the other main players did not share this attitude toward
Church’s thesis. We have seen that Gödel suggested that there may be a connec-
tion between recursiveness and computability. In fact, he proposed the identifi-
cation of the two as a “heuristic”. But at the time, Gödel remained skeptical, to
say the least. Kleene reports that in a letter of November 1935, Gödel regarded
Church’s proposed “definition” as “thoroughly unsatisfactory”. Church “ . . .
replied that if [Gödel] would propose any definition of effective calculability
[Church] would undertake to prove that it was included in λ-definability.” This,
of course, would be more of the same kind of evidence that Church relied on.
But there was already plenty of that, and Gödel was not convinced by it.

I do not think that this is a matter of Gödel being more stubborn than Church.
Rather, Gödel saw the thesis differently. He preferred the rigor of conceptual
analysis to the wealth of examples and the impressive convergence of various
efforts. Presumably, one would attempt to formulate basic premises, or axioms,
about algorithms or computation, and derive Church’s thesis from those. This
would be an instance of what Kreisel [1967] calls “informal rigor”, the cutting
edge of the interaction between mathematics and science, or philosophy. Per-
haps, for Church, the informal rigor is not needed or not possible. One cannot
precisely analyze a vague concept from ordinary language. One can only pro-
pose that a precise one be substituted for it. For more detail on this see Davis’
“Why Gödel didn’t have Church’s thesis”[1982].

It was not long before Gödel was convinced of Church’s thesis, and it was
Turing’s work that did it. Turing [1936] carefully considered the possible
actions of a human following a previously specified algorithm, and he shows
that every such action can be carried out by a Turing machine. This section of
Turing’s paper is an impressive piece of informal rigor. Gandy [1988] calls it a
proof of Church’s thesis (see also Sieg [1994]).

It seems that Post also rejected the idea that Church’s thesis be accepted as
a “definition”. Moreover, in an early article not published until Davis [1965],
he wrote, “Establishing [the thesis] is not a matter of mathematical proof but of
psychological analysis of the mental processes involved in combinatory math-
ematical processes” (Post [1941]). I presume that Turing’s work would satisfy
this demand as well, or at least contribute to it. Later writings indicate that Post
did accept Church’s thesis. In fact, Post [1944] proposed that the identification
of computability with recursiveness go beyond heuristic, and be used to develop
a full fledged theory of computability, perhaps along the lines of Hartly Rogers’
Theory of recursive functions and effective computability [1967]. The idea that
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Church’s thesis is somehow connected with psychology was also suggested by
John Myhill [1952].

This leads to my third theme, intensionality. Notice first that the pre-formal
notion of effectiveness is pragmatic, or epistemic. It is not a property of sets
or functions themselves, independent of the way they are presented. To focus
on an example, let HT be a function on strings whose value at any solvable
diophantine equation is “yes” and whose value at any unsolvable diophantine
equation is “no”. The name “HT” abbreviates “Hilbert’s tenth”. To engage
in counter-logical fantasy, suppose that there was a non-constructive proof that
HT is recursive, one which did not specify a recursive derivation for it. It would
then be known that there is such a derivation (and a Turing machine, etc.), but
no one would know of one. This would not count as a solution to Hilbert’s
tenth problem, as originally stated. It would still be the case that no one has
devised “a process according to which it can be determined by a finite number
of operations whether [a given diophantine] equation is solvable in rational
integers”. The non-constructive proof would assure us that there is, in fact,
such a process, but the envisioned development would not even assure us that a
positive solution could be found. For all we would know, there might be some
sort of epistemic barrier preventing us from knowing of a particular Turing
machine that it computes HT.

Consider also the aforementioned requirement that the syntax of a deductive
system be effective. As articulated in Church’s Introduction to mathematical
logic [1956], the reason is that for a system to be useful for communication, one
needs a method to determine whether a given string is a well-formed formula
and whether a given sequence of formulas is a proof. Suppose that someone
proposed a system in which it is known that, say, the set of proofs is recursive,
but no decision procedure for this set is known. The recursiveness of the set
of proofs might be established with a non-constructive argument. Actually,
systems much like this have been studied by Solomon Feferman [1960] and
others in connection with Gödel’s second incompleteness theorem (see also
Detlefsen [1980]). Again, it seems to me that in these circumstances, the
requirement of effectiveness has not been met. Even though the syntax is
recursive, there is no method that is known to determine whether a sequence
is a proof and, because of this, the system cannot be used to communicate
mathematics.

The upshot of these considerations is that the pre-formal notion of effective-
ness is an intensional concept. It is not a property of sets or functions them-
selves. Perhaps effectiveness can be thought of as a property of presentations,
interpreted linguistic entities that denote sets and functions. A presentation Φ
is effective if there is an algorithm A such that it is known (or at least knowable)
that A computes Φ. The above examples indicate that if Φ is effective and Γ
denotes the same function as Φ, it does not follow that Γ is effective.
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On the other hand, the notion of computability, as defined above, is an ex-
tensional property of functions. If f is computable and g is the same function
as f , then g is computable. Clearly, effectiveness and computability are closely
connected. A function is computable if and only if there is an effective pre-
sentation that denotes it. But functions are not the same as presentations of
functions. Some of the later, philosophical literature on Church’s thesis suffers
from confusing these concepts.

I suggest that the intensional notion is the more basic of the two, in an epis-
temic sense. In particular, judgements that a function is computable typically
involve judgments concerning the effectiveness of a presentation. Ideally, to
show that a function f is computable, one gives an effective presentation Φ and
shows that Φ denotes f . In more non-constructive cases, one shows that f is
denoted by one of a fixed set of effective presentations.

Of course, the extensional notion of computability has received the vast ma-
jority of attention. This is an instance of a more general phenomenon in which
pre-formal, pragmatic notions lead to the formulation and study of precise,
extensional counterparts. Consider such adjectives as measurable, countable,
coverable, separable, and provable. The preference for extensional notions is
a major theme in the writings of W. V. O. Quine. This dates back at least to
his [1941] criticism of the higher-order logic of Principia Mathematica. Quine
argues that Russell and Whitehead’s “attributes” are unacceptable, because they
are intensional. Sets should be used instead. Notice, incidentally, that the defi-
nition of effectiveness that I gave just above violates a closely related Quinean
dictum. To indulge in jargon, the definition “quantifies in”. There is a variable
A (ranging over algorithms) within the scope of an epistemic operator “it is
known that” which is itself in the scope of a quantifier binding A.

As above, a primary motivation of the development of computability was to
establish negative theorems about computation. The extensional notion serves
this purpose well. Given Church’s thesis, the fact that the function HT is not
recursive settles Hilbert’s tenth problem in a decisive manner. It entails that there
is no effective presentation of the function, nor can there be. One cannot devise
a means to determine, in a finite number of steps, whether a given diophantine
equation is solvable.

Nevertheless, it seems to me that the pragmatic, epistemic notion of effec-
tiveness is useful and ought to be developed. And it will not do to simply
cast recursive function theory within intuitionistic, or constructive mathemat-
ics. That would be too restrictive. Suppose, for example, that one gives a
particular algorithm A and shows non-constructively that A computes the func-
tion denoted by Φ. This would establish that Φ is effective, at least to a classical
mathematician. Many of results involving priority arguments, such as the so-
lution to Post’s problem, fit this mold. One gives a particular algorithm and
shows, non-constructively, that the function computed by this algorithm has a
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particular property. Thus, the development of effectiveness seems to involve
a mixture of classical and constructive notions in one and the same context.
A good foundation for this is the work on intensional mathematics, some of
which is in the Shapiro [1985] anthology.
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DOES GÖDEL’S INCOMPLETENESS
THEOREM PROVE THAT TRUTH
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5.1 Introduction

Since their appearance in 1931, Gödel’s incompleteness theorems have been
the subject of intense philosophical examination. Though the demonstrations
of the famous theorems are rather complex, but nevertheless clear, their philo-
sophical implications are far from transparent. Contemporary philosophical
logicians disagree on the philosophical significance of the incompleteness the-
orems, as did Carnap and Gödel themselves, and I believe that the state of the
discussion has not changed a lot since the original Carnap-Gödel debate. It is
hard to overestimate the difficulty of assessing the debate on this topic, knowing
that Gödel himself refused to publish his paper “Is Mathematics Syntax of Lan-
guage”,2 after six versions of this paper. Though believing Carnap’s view of
his theorems in The Logical Syntax of Language mistaken,3 he was not satisfied
by his own argument that his theorems supported mathematical realism rather
than the formalism favored by Carnap.4

Gödel’s incompleteness theorem shows the existence of a statement (called
“Gödel sentence”, or “G sentence”) true but undecidable in Peano arithmetic.

∗The first draft of this paper was written for the PILM Conference Nancy University - France (September
30th - October 4th 2002). I am very thankful to Neil Tennant, Jeffrey Ketland and Torkel Franzen for their
helpful discussion on this topic and to their friendly help improving this paper. Last, I am very thankful to
my colleagues and friends, Scott Walter who corrected the English of this paper, and Manuel Rebuschi who
gave to me very useful suggestions and precious corrections. Obviously, remaining errors are mine.
2[Gödel, 1995].
3[Carnap, 1937].
4Gödel was convinced that Mathematics is not purely syntactic, but he felt unable to give a positive reply to
the question “what is Mathematics?”. [Dubucs 1991], pp. 53–68.

51
J. van Benthem, G. Heinzmann, M. Rebuschi and H. Visser (eds.), The Age of Alternative Logics:
Assessing Philosophy of Logic and Mathematics Today, 51–73.
c© 2006 Springer.



52 Joseph Vidal-Rosset

Thus, at least in formal systems, “somehow truth transcends proof”. But tran-
scendence of truth is difficult to pin down philosophically. In Gödel’s opinion,
the incompleteness theorem gives a picture of independent, unlimited, and al-
ways new mathematical facts which are irreducible to conventions based on
axioms; at the opposite, Carnap denies that mathematics are independent from
language, the incompleteness being only the expression of formal hierarchy of
mathematical systems.5 Obviously the philosophical question of the meaning
of the truth in mathematics is behind the question of the reading of the incom-
pleteness theorem, and the broader opposition between realism and anti-realism
is standing further. According to Tennant (in The Taming of the True), the de-
bate about realism concerns the tenability of a realist view of language, thought
and the world. He begins his book by citing Russell:

On what my be called the realist view of truth, there are ‘facts’, and there are
sentences related to these facts in ways which makes the sentences true or false,
quite independently of any way of deciding the alternative. The difficulty is to
define the relation which constitutes truth if this view is adopted.6

This realist view of the truth expressed by Russell is the first basic assertion
of any realism (from Plato’s to Quine’s) and Gödel’s incompleteness theorems
seem to give strong reasons to believe that this philosophical standpoint is
the right one. In this discussion about the significance of Gödel’s proof, the
realist holds that the burden of the proof is on the anti-realist who must show
that any truth-predicate independent of proof is involved in the incompleteness
theorems. semantic anti-realism claims that “any thing worthy of the name true
in mathematics or natural science is in principle knowable” and consequently
denies that, absolutely, truth transcends proof. That is why Tennant aims to
show in his paper that a deflationist reading of Gödel’s theorems is licit and that
the “non conservativeness argument” is not logically apt to throw it overboard.
If philosophical interpretations of Gödel’s incompleteness theorems have not
changed from the Carnap-Gödel debate, logicians have recently shed more light
on the problem: the point is to know if the “non-conservativeness argument”
can be removed.

It is well known that Hilbert’s program of giving finitist proofs of the consis-
tency of mathematics collapsed when Gödel proved the impossibility of such a
project in arithmetic. But my goal in this paper is not to develop this historical
point but to clarify the contemporary terms of this debate on Gödel’s proof and
to try to explain why, from a logical and philosophical point of view, there is
no scientific refutation of the deflationary theories of truth via Gödel’s proof.

In the first part of this paper I show briefly the logical argument involved in
Gödel’s incompleteness theorems. I will explain in a second step the relations

5[Carnap, 1937], § 60d., p. 222.
6[Russell, 1940] quoted by Tennant, [Tennant, 1997], p. 1.
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between the deflationist account of the truth and the conservativeness in the one
hand, and the “non-conservativeness argument” about Gödel’s theorems on the
other hand. I will try to show that the question about deflationism and the Gödel
phenomena is polemical from a philosophical point of view but not really from
a logical point of view. I will compare in conclusion contemporary realist and
anti-realist interpretations of Gödel’s incompleteness theorems, and wondering
about their respective stability I will plead on the latter. More precisely, I
point out to contemporary realist that if he is free to reject a deflationary-anti-
realist account of Gödel’s proof, he is in trouble to avoid the genuine Platonist
philosophy of Mathematics and not to betray a sort of discrepancy between his
realist ontology and his empiricist epistemology.

5.2 The logic of Gödel’s incompleteness theorem

5.2.1 Quine’s informal explanation

Maybe the easiest and the more elegant way of exposing Gödel’s incomplete-
ness theorem is Quine’s. But Quine’s way of explaining Gödel’s result is not
only interesting for its pedagogical virtue, but also for Quine’s philosophical
conclusions.The reminder of the famous Epimenides paradox of the “I’m lying”
in its Quinean version is necessary to understand Quine’s account of Gödel’s
proof:

“Yields a falsehood when appended to its own quotation” yields a falsehood when
appended to its own quotation.

In Quine’s opinion, Gödel’s proof is akin to Epimenides paradox, at least on
first sight:

Gödel’s proof may conveniently be related to the Epimenides paradox or the
pseudomenon in the ‘yields a falsehood’ version. For ‘falsehood’ read ‘non-
theorem’ thus: ‘ “Yields a non-theorem when appended to its own quotation”
yields an non-theorem when appended to its own quotation.’

This statement no longer presents any antinomy, because it no longer says of
itself that it is false. What it does say of itself is that it is not a theorem (of some
deductive theory that I have not yet specified). If it is true, here is one truth that
that deductive theory, whatever it is, fails to include as a theorem. If the statement
is false, it is a theorem, in which event that deductive theory has a false theorem
and so is discredited.

[. . . ] [ Gödel] shows how the sort of the talk that occurs in the above statement -
talk of non-theoremhood and of appending things to quotation - can be mirrored
systematically in arithmetical talk of integers. In this way, with much ingenuity,
he gets a sentence purely in the arithmetical vocabulary of number theory that
inherits that crucial property of being true if and only if it is not a theorem of
number theory. And Gödel’s trick works for any deductive system we may choose
as defining ‘theorem of number theory’.7

7[Quine, 1966], p. 17.



54 Joseph Vidal-Rosset

The analogy between Epimenides paradox and the Gödel’s sentence G can
be confusing. The self-referentiality of the Liar’s sentence cannot give the
exact structure of Gödel’s theorem which, contrarily to the Liar paradox, avoids
carefully every flaw in the logical reasoning. Let us sketch more formally how
the proof works in “arithmetic talk of integers”.

5.2.2 Formal sketch of Gödel’s proof

Gödel’s proof shows an uncontroversial logico-mathematical truth. It is
based on the coding of the syntax of formal system of arithmetic S and on the
representability theorem asserting that it is always possible to represent in the
arithmetical object language every metamathematical expressions denoted by
an arithmetic formula in S. Thanks to the coding, every arithmetical formula
ϕ can be associated with its Gödelian expression ϕ. One calls “recursive” such
a reasonable base theory where every formula can be expressed by its Gödel’s
number. Thus every logical relation between metamathematical sentences is,
thanks to the coding, perfectly “internalized” by the corresponding arithmeti-
cal expressions. In the proof, S is assumed recursively axiomatizable, which
implies that the provability predicate of S can be defined so that (1) and (2)
below hold. So, if S is a system expressed in first order language and its in-
tended interpretation is over the set of natural number, then we can define the
provability predicate for S via the coding:

If n is a proof in S of m, then S ⊢ ProofS(n, m) (5.1)

If n is not a proof in S of m, then S ⊢ ¬ProofS(n, m) (5.2)

where n and m are the respective names of n and m, the Gödel numbers
identifying proofs and sentences. Now, thanks to the representability theorem
(“every (total) recursive function is representable”), it is possible to define via
the coding, in the set of primitive recursive functions of S, the scheme of a
crucial formula:

S ⊢ G ⇔ ¬∃y ProofS(y, G) (5.3)

which represents an arithmetical sentence G which says of itself, in the meta-
mathematical language, that it is not provable in S. To get Gödel’s proof one
needs to understand that G and ¬∃y ProofS(y, G) are in S inter-deductible
via the coding and that this inter-deductibility is proved on the base of the rep-
resentability theorem. G is a fixed point for the negation of the S-provability
predicate. (The fixpoint theorem says that for any given formula ϕ(x), with
one free variable, there is a sentence α such that the biconditional α ↔ ϕ(α)
is provable in S, where α is α’s Gödel number.) So (5.3) is constructed with
thinking of G as a sentence x that, referring to itself via its Gödel number, is
saying of itself that it has the property ϕ which is expressed by the formula
¬∃y ProofS(y, x).
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Now the question is “is G a S-theorem?” the reply is “no” and Gödel’s proof
of first incompleteness theorem runs as follows:

Consistency and ω-consistency. If we can prove in a system S both
∃xFx and ∀x¬Fx, then S is inconsistent. S is said to be ω-inconsistent if
both ∃x¬ψx and ψ0, ψ1, ..., ψn, ... are provable in S. A system can be
ω-inconsistent without being inconsistent. A ω-consistent system is a system
which is not ω-inconsistent. Gödel’s original proof is “ if Peano arithmetic is
ω-consistent, then it is incomplete”.

If S is consistent, there is no S-proof of G. Suppose that any m codes a
proof of G in S, then by (5.3) one gets:

S ⊢ G ⇔ ¬ProofS(m, G) (5.4)

But the surprise lies in the fact that m coding a proof of G codes ¬ProofS

(m, G) but that contradicts (5.1) from which one can infer ProofS(m, G) and
violates the consistency of S.

IfS isω-consistent, there is no S-refutation ofG. IfG isS-refutable, then
¬G is S-provable, and then, by the defining property of G (saying of itself not
being provable), ∃y ProofS(y, G) is provable, so at least one m coding a refu-
tation of G in S exists: ProofS(m, G). But we have just proved that G is not
S-provable, if S is consistent. That means for every y , ¬ProofS(y, G), con-
sequently ¬ProofS(0, G) is true, ¬ProofS(1, G) is true, . . . , ¬ProofS(k, G)
is true, etc. But there if ¬G is S-provable, then ∃y ProofS(y, G) is provable,
and consequently S is ω-inconsistent.

Conclusion. Gödel’s original first theorem of incompleteness shows that if
S is a formal system of arithmetic, there is an S-undecidable statement G in S,
if S is ω-consistent.8

The second theorem of incompleteness proves that if the assertion of the
existence of of a S-proof of the S-consistency is substituted for G, one gets,
provided that S is consistent:

�S Con(S) (5.5)

It means that no consistent formal system of arithmetic can prove its own con-
sistency, and the proof can be sketched as follows. The following formula says

8Rosser [Rosser, 1936] has proved that it is possible to get the incompleteness theorem with the weaker
hypothesis of S-consistency. But it requires the construction of a more sophisticated formula R, formalizing
“if this sentence has a proof, then there is a smaller proof of its negation”. See [Smullyan, 1992] chap. 6,
§ 4.



56 Joseph Vidal-Rosset

that it there is no S-proof of the S inconsistency:

¬∃y ProofS(y,¬Cons(S)) (5.6)

If one takes now the following formula as an instance of:

¬∃yProofS(y,¬(0 = 0)) (5.7)

It is intuitively clear that (5.7) expresses via the coding the consistency of
S: no consistent system of arithmetic can prove that (0 �= 0) and to say via the
coding, that there is no proof of “(0 �= 0)” is S is also to assert the consistency
of S.

That there is no proof of (5.7) is proved like the first incompleteness theorem.
So every formal system of arithmetic cannot derive the assertion of its own
consistency, provided that it is consistent:

Con(S) → ¬∃y ProofS(y,¬Con(S)) (5.8)

If �S Con(S) then there are there are models of S where Con(S) is satisfied,
as the set of natural numbers, and there are models of S where ¬ Con(S) is also
satisfied (non standard models). That explains why the Gödel sentence must
be true but unprovable. The formal system S being defined with an intended
interpretation over the universe of natural numbers, the Gödel sentence has to
be satisfied but not proved in the intended models of arithmetic, provided the
consistency of S, and that explains why one asserts that Gödel’s incompleteness
theorem has demonstrated that there are arithmetical sentences, not being logical
consequences of a reasonable base theory of numbers, are true but not analytic.

Why do G and the consistency of S have to be asserted? The most impor-
tant point of that demonstration is that G as well as the consistency of S cannot
be asserted in the formal system S but from a stronger system of which S is a
proper subset, say S*. Maybe the more intuitive manner to present this fact is
to deal with the condition of ω-consistency used by Gödel’s original proof.

At this stage, it is helpful to base the argument on the second incompleteness
theorem, and we remind that it can be done thanks to a formula like (5.7). That
does not exist a numeral coding the proof of an inconsistency in the arithmetic
seems obvious. Following the natural progression of integers, the instantiations
in (5.7) prove:

⊢ (0 = 0),⊢ (1 = 1),⊢ (2 = 2), . . . (5.9)

and (by soundness):

(0 = 0) : true, (1 = 1) : true, (2 = 2) : true, . . . (5.10)
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At one level above S, say S*, one is justified to tell that ∀y ¬ProofS(y, 0 �=
0) is true, but it is impossible to infer it from S and it is precisely what Gödel’s
theorem proves. The explanation is that each standard integer satisfies in S the
sentence¬∃y ProofS(y,¬(0 = 0)) but it does not entail that such a sentence is
a theorem of S for all integers. The sentence¬∃y ProofS(y,¬(0 = 0)) asserts
its own unprovability and we know from the first incompleteness theorem that
if S is ω-consistent, G is undecidable. Suppose that we could get an ω-proof of
G showing recursively that ¬∃y ProofS(y, ω �= ω), it would also disprove the
assertion of its unprovability, so S would be ω-inconsistent and we could prove
¬G. Last, if ¬G could be proved, S would be ω-inconsistent because it would
involve to accept, at the ω-level, the existence of a Gödel number which codes
the proof of a contradiction. But this possibility of ω-inconsistency of S is not to
be confused with inconsistency: a formal system can be ω-inconsistent without
being inconsistent. That explains why the condition of ω-consistency can only
be done above S, from S*, where, given the axiom scheme of mathematical
induction and a primitive truth predicate, we can rightly infer that, if S is
consistent, then G is true.

At the end of this section, we are now able to understand what is at stake
in the Gödel phenomena: to wonder if it is possible to grasp the meaning
of the incompleteness without a notion of truth transcending the base theory
S. Shapiro and Ketland have replied “no” to that question and have found in
the incompleteness a logical argument against a contemporary theory of truth
called “deflationism”. Field and Tennant have differently replied to that anti-
deflationist argument, on behalf of deflationism. I am going to analyze now
how these logical arguments are philosophically motivated.

5.3 Realism against deflationary theories: the argument
of non-conservativeness

Quine’s account of Gödel’s incompleteness theorem is useful for understand-
ing its main logical point and its logical consequences; but the question of the
certainty of Quine’s philosophical conclusions about Gödel’s proof remains
open:

Gödel’s discovery is not an antinomy but a veridical paradox. That there can be
no sound and complete deductive systematization of elementary number theory,
much less of pure mathematics generally, is true. It is decidedly paradoxical, in
the sense that it upsets crucial preconceptions. We used to think that mathematical
truth consisted in provability.

That mathematical truth does not consist in provability is to be understood
in Quine’s analysis of Gödel’s incompleteness theorem. Gödel’s negative theo-
rems prove that no mathematical axiomatic system can include every mathemat-
ical truth. Consequently, in realist Quine’s opinion, because truth is a relation
of sentence to facts, undecided mathematical sentences do express our lack of
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knowledge of mathematical facts existing independently of proof systems. For
example, Wiles has proved that Fermat was right in his conjecture because Fer-
mat supposed a property of integers which is independent of knowledge: “if
n ≥ 3 there is no positive integer x, y, z such as xn + yn = zn.”

Gödel’s incompleteness theorem proves, from the non conservativeness
argument that there are truth sentences in every mathematical theory which
cannot be known as true without a notion of truth which is transcendent with
respect to the base theory. Such an argument is obviously seducing for realist
philosophers and it is presented as a logical refutation of deflationary theories
of truth. It is now necessary to show clearly the relation between disquotation,
deflationism, and conservativeness.

Disquotation is, after Tarski’s work, commonly used to define truth. The
disquotation scheme is:

The sentence “p” is true if and only if p.

The canonical example given by Tarski is well known: “snow is white” is true
if and only if snow is white. Truth is disquotation.

Deflationism is a philosophical interpretation of truth which is often based on
the disquotation scheme: truth predicate is nothing else than a logical device for
“disquoting” expressions and for expressing in finite sentences a infinite list of
true sentences (“God knows every truth”). Both Ketland and Tennant recognize
that it is not easy to give a unambiguous definition of deflationism: Ketland
says that “deflationism about truth is a pot-pourri” and Tennant describes it as
“a broad church”.9 They themselves illustrate the ambiguity of deflationism:
reading their respective papers, it is possible to give at least two versions of
deflationism, both being expressed on the base of the disquotational theory of
Truth. The first one can be called the “strong deflationism”. Ketland describes
it perfectly:

the concept of truth [. . . ] is redundant and “dispensable”: [. . . ] we need to “de-
flate” the correspondence notion that truth expresses a substantial or theoretically
significant language-world relation.10

In my opinion, Tennant adopts a weaker version of deflationism, or more
precisely, a version of deflationism akin to his semantic anti-realism. The
following quotation makes that point quite clear:

Deflationism has its roots in Ramsey’s contention that to assert that φ is true is to
do no more than assert φ, unadorned. Truth is not a substantial property whose
metaphysical essence could be laid bare. It has no essence; it is as variegated as
the grammatical declaratives that would be its bearers. There would therefore
appear to be no gap, on the deflationist’s view, between claims that are true and

9[Ketland, 1999], p. 69; and [Tennant, 1997], p. 558.
10[Ketland, 1999].
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assertions that are warranted; or, generally, between truth on the one hand, and,
on the other hand, grounds for assertion, or proof.11

We can notice that in Tennant’s version of deflationism truth is not, strictly
speaking, dispensable, and that it is not the language-world relation that we
need to “deflate”, but the idea of substantial existence of truth, as if truth could
be more than the label that we put on all sentences that we can check. If truth is
always knowable (i.e. checkable) in principle, then to disquote “p” must mean
that ‘“p” is a justified belief and that the truth of “p” is the verified relation
between the sentence “p” and the fact x denoted by p.’

To wonder if truth is substantial or non substantial seems maybe obscure and
needs to be clarify. The semantic anti-realism advocated by Tennant does not
claim that truth is neither substantial nor objective, but that truth does not lie as
a substantial property in absolute unprovable sentences: the only licit notion of
truth is always epistemologically constrained.12 Relations between truth and
proof and the role of Bivalence are on this point crucial to get the difference
between the realist and the semantic anti-realist. Suppose truth as indepen-
dent from proof, then truth can be imagined as a substantial property of some
sentences which are true even though nobody is apt to verify them. Bivalence
universally assumed, by definition every declarative sentence is determinately
true of false, independently of our means of coming to know whether it is true,
or false, and then it would be odd to claim that truth is not a substantial property
of sentences. For example, thanks to Bivalence, the Megarians philosophers
had constructed a system of Logical Fatalism: if every affirmation or negation
about a future is true or false it is necessary or it will be impossible for the
corresponding state of affairs to have to exist: the sentence “Jacques Chirac
will resign in September, 1st, 2005” has already in itself a truth value before the
mentioned date. My point is not to develop the philosophical subtleties which
have been made to solve such a puzzle,13 but to make clear that deflationism
à la Tennant tries to dissolve the truth property in verification process: the
universality of Bivalence must be rejected.

It is now possible to understand why Tennant tries to find in his paper a
strategy to save a deflationary reading of Gödel’s theorem. From the seman-
tic anti-realism point of view every mathematical truth must be in principle
provable. But a widespread view about Gödel’s incompleteness theorem leads
to assume, as Quine does, that mathematical truth is not provability, because
Gödel has succeeded to show in the syntax of number theory a sentence G
which, under the hypothesis of the consistency of the number theory, must be
true and unprovable in the number theory. Of course such a demonstration does

11[Tennant, 2002], p. 552, emphasis in original.
12[Tennant, 1997], p. 15.
13See [Vuillemin, 1996].
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not affect the general equivalence between mathematical truth and provability
in principle, because a proof of G can be done in a meta-theory including the
number theory. In other words, Gödel’s incompleteness does not affect the
tenet of the semantic anti-realism. But an argument about the conservativeness
of deflationary theories of truth seems to show that they collapse because of
Gödel’s result. My point is to show that deflationism in Ketland’s meaning ef-
fectively collapses, but it is not the case if deflationism is intended in Tennant’s
meaning.

Ketland has given some important technical results about the conservative-
ness theories of truth.14 The main point can be understood without logical
formula, and, in order to avoid technical developments, I refer only to the Dis-
quotational Theory (DT ) described by Ketland and to the result he has proved:
DT added to any (non-semantical) theory S is conservative over S. Intuitively
it means only that the truth predicate of DT adds nothing new to true sentences
of S, or that any model of S may be expanded to a model of S ∪ DT , or that
(S ⊢ ϕ) ⇔ (S ∪ DT ⊢ ϕ). Thus DT holds a metaphysically “thin” notion of
truth, to repeat Shapiro’s word.15

The goal of Ketland’s demonstration is to show that because of the property of
conservativeness, the union of any deflationary theory of truth to the Arithmetic
of Peano (PA) is unable to show that G is true. On the contrary, it is the union
of PA with a Satisfaction theory of truth which is able to prove that G is true:
PA(S) ⊢ G. That theory S is Tarski’s inductive definition of truth expressed
by this list of four axioms:

1 (TAt)(t = u) is true if and only if the value of t = the value of u.

2 (T¬)¬ϕ is true if and only if ϕ is not true.

3 (T∧)(ϕ ∧ ψ) is true if and only if ϕ is true and ψ is true.

4 (T∀)(∀ϕ) is true if and only if, for each n, ϕ(n) is true.

S added to PA, PA(S) is a “truth-theoretic” non-conservative extension of
PA. From that union of PA and S, the most important results are that PA(S)
proves that anything provable in PA is true, proves also that PA is consistent,
and proves that the Gödel sentence G constructed in the syntax of PA is both
true and not provable in PA. Thus, the non conservativeness argument about
Gödel’s proof could be called “The Master Argument of non-conservativeness”
against deflationism. I let Ketland sum up the argument:

Stewart Shapiro and I have introduced an innovation in relation to understanding
the notion of deflationism about truth. We have proposed that we define “sub-
stantial” (for a theory of truth) to mean “non-conservative” (over base theories).

14[Ketland, 1999], p. 74-79.
15[Shapiro, 1998].
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We proved that disquotation is conservative, and Tarski’s inductive definition is
sometimes non-conservative.16

It means, to speak very generally, that in order to recognize the truth of G
sentence constructed via the coding in a theory S, a non conservative theory of
truth over S is required. This fact leads, in Shapiro’s and Ketland’s opinion, to
a “thick” or a “substantial” notion of truth. That is why, invoking a full Tarskian
theory of truth (i.e. a non conservative theory of truth) Ketland writes:

If I am right, our ability to recognize the truth of Gödel sentences involves a theory
of truth (Tarski’s) which significantly transcends the deflationary theories.17

Last but not least, Ketland is convinced that this objection from non-conserva-
tiveness is a logico-mathematical refutation of deflationism: because every
deflationary theory of truth is conservative (by definition) and because the de-
flationary philosophy of truth pretends that a theory of truth adds “no content”
to a non-truth theoretic base theory, Ketland concludes that, because it is proved
that a non-conservative truth-theoretic extension of PA is necessary to show that
all theorems of PA are true, that PA is consistent and that every Gödel sentence
in PA is true, then “deflationism is false”.18

Ketland’s conclusion is not only interesting from a logico-philosophical point
of view; it is also an interesting attitude from what one could call a “meta-
philosophical” point of view. Assuming that the non-conservativeness objec-
tion is a refutation of deflationism, Ketland presupposes that philosophy can
be refuted by science. But even if deflationism is not a philosophical system
but only a philosophical opinion about the nature of truth, it is undoubtful that
deflationism can be attractive for every anti-Platonist (or anti-realist) philoso-
pher. That is why Ketland uses the non-conservativeness of Tarski’s theory of
truth as a polemical argument against deflationary view of Field’s nominalism
for example. Ketland concludes his paper in making an analogy between the
indispensability of mathematics for the knowledge of the physical world, and
the indispensability of a full Tarskian theory of truth to prove some important
sentences.

Believing in nominalism, Field replied to Shapiro that non-conservativeness
lies with the notion of natural number and with the notion of mathematical
induction, not with the notion of truth:

[. . . ] this point about the extension of schemas has nothing to do with truth: we
are committed in advance to extending our schemas to all new predicates, not
just “true”.19

16Private correspondence.
17[Ketland, 1999], emphasis in original; quoted also by Tennant, [Tennant, 2002], p. 566.
18[Ketland, 1999], p. 92.
19[Field, 1999].
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We will find again later on Field’s remark. But we can notice how much un-
easy the strict nominalist position becomes with respect to Gödel’s theorems.
The proper extension of Peano arithmetic involved in the assertion of its consis-
tency as well as the convenient set-theoretic point of view appear as very strong
realist arguments. But it is the deflationist theory of truth which is the topic of
that discussion. Let see how Tennant has tried to show that deflationism can
give a licit reading of Gödel’s theorems.

5.4 Tennant’s deflationist solution

5.4.1 The deflationist use of reflection principles

To justify his philosophical position from a logical point of view, Tennant
uses Feferman’s reflection principles, proposing a uniform reflection principle
compatible with Gödel’s proof and anti-realist goals. Feferman’s reflection
principles are “axiom schemata [. . . ] which express, insofar as is possible
without use of the formal notion of truth, that whatever is provable in S is true”.20

The soundness of S for primitive recursive sentences could be expressed by the
following reflection principle:

(pa)21 If ϕ is a primitive recursive sentence and ϕ is provable-in-S, then ϕ.

Tennant’s principle of “uniform primitive recursive reflection” is:

(URp.r.) Add to S all sentences of the form ∀n (ProvS(ψ(n)) → ∀m ψ(m)
where ψ is primitive recursive.22

Tennant insists on the point that, producing the consistency extension, (URp.r)
has exactly the logical strength to formalize faithfully the reasoning in Gödel’s
semantical argument, and that is why, thanks to this reflection principle, Tennant
is able to give meta-proofs, in S*, without mention of truth predicate (even in
S) that there is neither S-proof nor S-refutation of the G sentence asserting
“there is no S-proof of the inconsistency of S”. Such meta-proofs explicitly
appeal in S* to the consistency of S, to the S-provability of assertable primitive
recursive statements, and to the representability of S-proof. It aims at showing
that Gödel’s proof can be done in “truth-predicate-free” theories.

To Shapiro’s demand that the deflationist do justice to the soundness of S,
Tennant suggests that he would express the soundness of S by being prepared
to assert, in the extending system S*, every instance of the reflection schema:

ProvS(ϕ) → ϕ (5.11)

20[Feferman, 1991].
21pa is used to abbreviate ‘provable then assertable’.
22[Tennant, 2002], p. 573. I add the emphasis.
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So, Tennant , as every logician, recognizes the logical necessity of an ex-
tended system to express the soundness of S, but he denies that it is necessary to
mention a truth predicate as he denies that Gödel’s proof leads to a substantial
notion of truth:

One can agree with Shapiro that the ‘deflationist cannot say that all of the theorems
of [S] are true’. But the deflationist can instead express (inS*) his willingness, via
the soundness principle, to assert any theorem of S. The anti-deflationist desires
to go one step further and embroider upon the same willingness by explicitly
using a truth-predicate.23

The sentence “all theorems of S are true” is called “the adequacy condition”.
And it is an important point is that the adequacy condition cannot be asserted
in the base theory itself:

Löb’s Theorem ensures that this soundness principle (ProvS(ϕ) → ϕ) could not
be derived in S without making S inconsistent. But here we are contemplating
adopting the soundness principle in the extension S* of S; and this adverts that
danger of inconsistency.24

When Tennant suggests that the deflationist, instead of saying that all S-
theorems are true could be prepared to accept, in S*, every theorem of S, he
finds again the Wittgensteinian distinction between “to say” and “to show”:

When the deflationist adopts the soundness principle above, he is allowing that
it may have infinitely many instances.25

I have put aside technical details of Tennant’s demonstration in order to stress
on the main logical-philosophical issues of the “ Gödel phenomena”. One
could believe that Tennant’s work on Gödel’s proof consists only in switching
the truth-predicate for the proof-predicate, and that such a trick cannot be a
refutation of the realist interpretation of Gödel’s incompleteness theorems. But
such a feeling, in my opinion, betrays a misunderstanding of the philosophical
disagreement between Tennant and Ketland and, especially, a misunderstanding
of the philosophical meaning of Tennant’s defense of deflationism. I will show
at the end of this paper that the difference between Ketland and Tennant is not
scientific but a strict difference of philosophy.

5.4.2 Ketland’s reply: reflection principles are
truth-theoretically justified

Ketland has written a reply to Tennant’s paper.26 The first important step of
his reply is the definition of what he calls a “conditional epistemic obligation”:

23[Tennant, 2002], p. 574.
24[Tennant, 2002], p. 574.
25[Tennant, 2002], p. 575.
26Unpublished paper.



64 Joseph Vidal-Rosset

Conditional epistemic obligation: If one accepts a mathematical base theory S,
then one is committed to accepting a number of further statements in the language
of the base theory (and one of these is the Gödel sentence G.)27

The “further statements” mentioned by Ketland are those which are not prov-
able by the theory S, but which are nevertheless proved as true thanks to a
non-conservative extension of S, like the extension produced by the Tarskian
theory of satisfaction. Ketland insists on the idea that it is using the notion of
truth that we can explain the conditional epistemic obligation. His claim is that
the objection of non-conservativeness made against the deflationary theories of
truth is in fact a “Reflection Argument”: informally we can say that by the use
of the notion of truth we can arrive at statements as “all sentences proved in S
are true”, “G expressed in S is non provable in S and true”, “all theorems of S
are true”, etc. The crucial point of Ketland’s argument is that the conditional
epistemic obligation can be explained by a non-conservative (or substantial)
use of the notion of truth leading the deflationist to the following dilemma:

1 Either abandon the conservative constraint [i.e. the deflationist gives up
his claim that truth is conservative or dispensable], thereby becoming some
sort of substantialist about truth;

2 Or abandon the adequacy condition [expressed by the sentence “all the-
orems of S are true”]. And furthermore, offer some non-truth-theoretic
analysis of the conditional epistemic obligation.28

After a quick and superficial reading of Ketland’s and Tennant’s paper, it
could be surprising to see that, in his reply to Tennant, Ketland uses and mentions
Feferman’s reflection principles as his own anti-deflationist argument. One can
sum up his argument in saying that it is true that G is a theorem of the union
of PA with the principle of uniform primitive recursive reflection proposed
by Tennant. But he argues against Tennant’s deflationist position that the use
of Feferman’s reflection principles can only being truth-theoretically justified:
that is only the use of the notion of truth, or a theory of truth as a Tarskian theory
of truth, which can explain and justify the reflection principles. The superiority
of the anti-deflationist or the substantialist theory of truth, in Ketland’s opinion,
is even that it is able to prove the principles of reflection when the deflationist
is only able to assume them, without justification, as Tennant seems to do. And
then Ketland shows that philosophy is essentially polemical when he writes:

Part of the point of the articles by Feferman, Shapiro and myself was to show how
to prove reflection principles, which, “ought to be accepted if one has accepted
the basic notions and schematic principles of that theory” (Feferman, 1991, p.
44). On Tennant’s proposal, instead of proving the reflection principles in the

27[Ketland, 2005], an unpublished Reply to Tennant.
28ibid.
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manner proposed by Fefeferman, Shapiro and myself, the deflationist may sim-
ply assume the reflection schemes. As far as I can see, in the absence of the sort
of truth-theoretic justification given by Feferman, Shapiro and myself, Tennant’s
idea is that deflationist may assume these principles without argument. No rea-
son, argument or explanation for adopting the reflection principles is given by
Tennant . If we avoid explaining why acceptance of mathematical theory S ra-
tionally obliges further acceptance of reflection principles, then this is apparently
“philosophically modest”. I find this curious. It is rather like saying that if we
avoid explaining a phenomenon, we achieve “philosophical modesty”. Presum-
ably, the ideal way to achieve such “modesty” in the scientific arena would be to
abandon scientific explanation altogether.29

I aim at showing with modest means - I mean non technically sophisticated
from a logico-mathematical point of view - that Ketland is wrong to believe in a
scientific difference between his substantialist explanation of Gödel’s theorem
and Tennant’s deflationist reading. In reality, they are twins from a scientific
point of view but these twins do not have the same philosophical beliefs, and
even if their philosophical beliefs are about science, I am convinced that there
is no scientific proof that one is wrong and the other is right. Ketland thinks
that a deflationary theory of truth cannot be a good theory of truth because,
being logically conservative, it is inadequate to explain why the Gödel phe-
nomena in a theory S requires a non-conservative theory of truth over S (if S
is a reasonable base theory). Tennant considers the conservativeness constraint
of deflationary theories of truth as a reasonable base for a philosophical under-
standing of truth and he has consequently to propose a strategy to accommodate
the proper extension involved by the truth of the independent sentence G and
the conservativeness requirement for deflationism.

The only way I see to understand the philosophical difference between two
logicians discussing about the same uncontroversial theorem is to suggest that
they do not interpret in the same way the logical hierarchy of object language
and metalanguage involved in Gödel’s theorem. We have to keep in mind that
the topic of their discussion is to wonder if a deflationist reading of Gödel’s the-
orem is licit or not, provided that deflationism is defined by the conservativeness
constraint. My position is on behalf of Field and Tennant: deflationism is not
at all disproved by the non-conservativeness argument. My position is based
on two types of arguments. The first one is logical. I want to stress on the fact
that the non-conservativeness argument is based on some hierarchy of formal
systems and that involves what Quine called a “semantic ascent” in which we
can find truth-predicates among other predicates (to join Field’s remark). In my
opinion, every reasonable deflationism must respect that semantic ascent and
consequently the objection from non-conservativeness is pointless. The sec-
ond type of argument concerns the philosophical meaning of the deflationary

29ibid.
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theories of truth (especially the disquotational theory of truth) which Ketland
depreciates for philosophical reasons. I will sketch in conclusion my under-
standing of relations between science and philosophy, trying to show also the
specific difficulties of the contemporary mathematical realism inspiring the ar-
gument of non-conservativeness.

5.5 The non-conservativeness of truth or the semantic
ascent

I am going to develop in this section a deflationist reply to the non-con-
servativeness objection. My first point is that it is possible, quoting Field, to
“deflate” the argument of non-conservativeness from the Tarskian solution of
the Liar paradox: when the Liar say, “I am lying”, does his sentence involves
a non-conservative theory of true? The anti-deflationist would reply “yes”
without hesitation, but the deflationist would be certainly more cautious. We
have seen Quine making an analogy between the Liar paradox and Gödel’s
proof, so, I will just develop that analogy going back to the solution of the
former.

It is well known that the solution of the Liar paradox is in the distinction
between object language and metalanguage. If the Liar says that he is lying
about some other sentence uttered five seconds ago, the paradox vanishes as
it does in common language: when one confesses lying one does not mean
that the confession itself is false, but the confession is normally understood as a
true1 sentence speaking about false0 sentences that one asserted as true0. Quine
comments the Tarskian solution and suggests a finely-shaded opinion about the
non-conservativeness of the truth theory involved in the Liar paradox:

For the ith level, for each i, the variables ‘xi’, ‘yi’, etc. range over that levels
and lower ones; thus ’x0’, ‘y0’, etc. range only over sets. Predicates ‘true0’,‘
true1’, and so on are then all forthcoming by direct definition. For each i, ‘truei’
is dependably disquotational in application to sentences containing no bound
variables beyond level i. We get a self-contained language with a hierarchy of
better and better truth predicates but no best. Truth0 is already good enough for
most purposes, including classical mathematics.30

Quine’s opinion seems here in agreement with the anti-deflationist position
about truth. As Ketland Quine could assume the idea that the substantiality of
truth in a language L is related to the undefinability of truth in L. Ketland has
pointed out that it would be misleading to describe Quine as a deflationist.31

But I would now suggest an explanation of how deflationism works inside to
the Tarskian hierarchy in order to see how deflationism can avoid the non-
conservativeness objection.

30[Quine, 1992], p. 89.
31[Ketland, 1999], p. 70, n.1.
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In my opinion, the anti-deflationist reflection argument in unfair with the
deflationary (disquotational) theory of truth: the latter has never claimed one and
only one level for every truth. On the Foundations of Mathematics electronic
list of discussion,32 Ketland and Franzen have challenged Tennant to give a non-
truth-theoretic explanation of the use of the principle of reflection producing the
consistency proper extension of PA. But I believe that this challenge is based
on a misunderstanding of what means a reasonable version of deflationism.
A reasonable deflationary theory of truth, as Tennant seems to advocate, does
not claim that we can really throw overboard the notion of truth. Following
Quine’s lesson we can say that the disquotational theory of truth teaches us
only that for every sentences ϕ with no bound variables of level higher than i
we are allowed to disquote them when we say that they are truei.

But what is the relevance of my remark on the semantic ascent with Gödel’s
proof showing that in every consistent arithmetical base theory without predicate
we can construct true but unprovable sentences? I mean only that Gödel’s proof
of S-incompleteness is finally significant from the point of view of a theory S*
of higher order than S. The anti-deflationist replies that here is precisely his
argument against deflationism: that we can get thanks to the Tarskian theory
of truth “a hierarchy of better and better truth predicates but no best.” But the
deflationist replies that we have to take care of what sort of axioms we need
and not precisely to truth-predicates which can be correctly deleted thanks to
recursive definitions.

The anti-deflationist reflection argument seems consequently a metaphysical
use of logical principles which does not only deal with truth: principles of
reflections are logical means to construct different hierarchies of theories and
to compare their respective strength. So, when Tennant proposes the principle
of uniform primitive recursive reflection to give a meta-proof that G has neither
S-proof nor S-refutation, he describes exactly the logical strength, no more,
that is needed for the theorem of incompleteness, and, contrarily to Ketland’s
claim, he has not to prove that principle, because, if I am not mistaken, he would
need a stronger one for such a job.

Finally, I remain convinced that the anti-deflationist argument about our
ability to “recognize the truth of Gödel sentences” does not pay attention to
levels of “truth”. It is nevertheless easy to imagine the following situation: being
“inside” PA it is impossible to “see” its consistency and so it is impossible to
conclude that G is true. On the contrary, every formula ϕ which is a theorem or
the negation of a theorem of the arithmetic can be checked thanks to an effective
algorithm. One concludes usually that G is a truth of PA but not provable in
PA, hence the realist and widespread view about the distinction between truth

32http://www.cs.nyu.edu/mailman/listinfo/fom/.
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and proof (the former transcending the latter.) But G being equivalent, modulo
PA, to PA consistency statement, it seems obvious that the assertion of G, or
the assertion of PA consistency, needs more strength from axioms than PA’s and
if one want to adorn that assertion of a truth-predicate that one needs an index
higher than PA-theorems. The deflationary theory of truth can be understood
as the philosophical expression of the attention that one must pay to the level of
our truth predicates. Using of truth predicate without index is to be in danger
of collapsing in contradiction.

In a very stimulating private correspondence Ketland has replied to me that
considerations on a hierarchy of truth-predicates are irrelevant vis-à-vis his
argument: PA is a base theory without truth-predicate, and PA(S) proves the-
orems which are not provable in PA. But I reply that it means also that there
are theorems which are proved in PA and consequently these proofs are “truth-
theoretically explained”, to speak in Ketland’s language, by a truth-predicate
with a level which is lower than theorems proved by PA(S) only. I persist in
seeing an interesting analogy (deserving clarification) between that necessary
semantic ascent involved in Gödel’s proof and the hierarchy of truth-predicates
solving the Liar paradox. Nevertheless it seems to me clear that disquota-
tional process is irrespective of types or orders and, consequently, that the
non-conservativeness argument collapses.

5.6 Philosophical developments

I said in the introduction of this paper that the philosophical debate about
the meaning of Gödel’s incompleteness theorem had not changed a lot from
the controversy between Carnap and Gödel himself. Vuillemin has pointed
out that this discussion was purely philosophical and not strictly scientific (i.e.
logico-mathematical) and I agree with him. I see the debate about deflationism
and the objection of non-conservativeness as a motivated philosophically one
and nobody can prove to be right, nobody can disprove the rejected thesis. The
deflationist theory of truth in its disquotational version is in fact a philosophical
anti-metaphysical position wearing logical clothes ample enough to avoid the
bullet from the non-conservativeness objection. It is more surprising, but no
irrational, that such a bullet has been shot by logicians who have learned the
lessons of Logical Positivism. The argument of non-conservativeness against
deflationism is motivated by mathematical realism. The undefinability of truth
seems to stand for transcendence in Ketland’s philosophy of mathematics. But
the undefinability of truth could be also calculability’s (via Church’s conjecture),
or specifiability’s (via set theory), and so one could doubt about the metaphysical
significance of the former.

One of the merits of Tennant’s position in his paper, is that it does not pre-
tend to “disprove” the anti-deflationist interpretation of Gödel’s incomplete-
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ness theorem, but only to show that a deflationary account of these famous
theorems is licit. This point of his paper seems to involve a pluralist theory of
meta-philosophy: there could be several licit philosophical reading of a same
scientific result. Such a meta-philosophical pluralism could mean giving up the
confusion of philosophy with science.

I believe that the use of reflection principles is philosophically meaningful
from Tennant’s anti-realist point of view, which denies that truth is significant
if truth is not checkable at least in principle. In other words, Tennant holds
explicitly an intuitionist notion of truth according to which truth is always
epistemically constrained: it makes no sense to say that p is true if we do
not have at hand a method of checking the truth value of p. This intuitionist
conception of truth is an old and respectable notion of truth adopted by Epicurus,
Descartes and Kant, before Brouwer and other logicians.33

Now one can wonder if the claim that truth is always epistemically con-
strained is consistent with deflationism: if deflationism is expressed by the
disquotational theory of truth, an intuitionist theory of truth says more than
“truth is disquotation”, but insists on the idea that disquotation in itself is not
enough without at least a way of proving the truth. On the contrary, a disquo-
tational theory of truth can also fit with realism and with the thesis that truth
is the property of true sentences expressing what is the case, independently of
any way of checking the so-called correspondence.34

The only way to reply to this aporia, is to remind that the disquotational theory
is philosophically neutral, and that the discussion is on the conservativeness or
the non-conservativeness of the truth theory. Shapiro and Ketland hold that
the non-conservativeness of truth involved in Gödel’s proof implies that truth
is transcendent to proof, which is uncontroversial if truth and proof are related
to a formal system S. But the question if truth remains meaningful when it
is absolutely transcendent to proof is a philosophical question where Gödel’s
incompleteness theorem has finally little authority. The philosophical debate
opposing truth as warranted truth and truth as determined by the universality of
Bivalence will remain open and every logician-philosopher can make a free but
rational philosophical choice to decide his position. Tennant’s solution needs
to give up the universality of the principle of Bivalence. From an anti-realist
point of view, Bivalence holds only in decidable theories.35 From a realist
point of view like Quine’s, to give up Bivalence would complicate uselessly the
logic.36

33[Vuillemin, 1981].
34In this respect, Tennant’s reference to the prosentential theory of truth could be criticized, if the prosentential
theory accepts that truth can be recognition-transcendent.
35[Tennant, 1997], p. 173-176.
36[Quine, 1995], p. 56-57.
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5.7 Conclusion: towards a positive and philosophically
stable interpretation of Gödel’s proof

A philosophical system is “stable” if it is not only consistent, but if any of
its theses does not create insuperable difficulties vis-à-vis other theses of the
system. Quinean realism is, in my opinion, a nice example of an unstable
philosophical system: on the one hand empiricism and physicalism stand as
dogmas, on the other hand, mathematical entities or mathematical facts belong
to our universe, even when the higher parts of set theory have no obvious
links with the empirical world. But Gödel shows a philosophical problem
starting at the bottom of the mathematical hierarchy, in elementary number
theory, where undecidable statements will be always out of reach. There is
no strict contradiction between empiricism and mathematical realism, because
the former is an epistemological claim and the latter is an ontological one.
Nevertheless, even if this distinction between epistemology and ontology leaves
a way out, undecidable mathematical statements cause embarrassment: because
of the universal application of Bivalence, their truth value is depending on
facts which are definitely beyond empirical evidence. The instability of the
comes from its effort to both naturalize mathematical knowledge (hence to deny
transcendence), and to assume Bivalence and Gödel’s proof that mathematics
does not consist in provability but in relation to mathematical facts.37 The only
way for the Quinean of not to feel uneasy in front of this twofold goal is to
believe naïvely that Plato had only religious motivations to reject empiricism.

At the end of this analysis, I believe that the Gödel phenomena shows that
there are only two stable philosophical interpretations of incompleteness the-
orems. The first is the orthodox realist position, i.e. the genuine Platonism in
philosophy of Mathematics which claims that truth is bivalent and transcendent.
In order to get stability, the Platonist has to deny empiricism, even if empiri-
cism is not inconsistent with his ontology. Assuming willingly the transcendent
existence of a pure intelligible world incompletely described by mathematical
theories and various conjectures, the Platonist gives up knowledge for faith and
accepts in his philosophy Faith and Mysticism. The unfathomable mystery lies
in the impossibility to give a satisfactory answer to the epistemological ques-
tion: if mathematical objects are really transcendent to our knowledge, and if
they are defined only negatively, being neither spatial, nor temporal, etc., then
it is very difficult to explain a causal relation to mathematical objects to our
brains. That is also why contemporary realism (Quinean realism for example) is

37This difficulty is akin to Gödelian Optimism which denies transcendence but accept bivalence. From
Gödelian Optimist’s point of view, there is no mathematical proof which is forever beyond proof. But the
difficulty is, in such a philosophical system, to interpret Gödel’s proof into a bivalent theory and to deny
transcendence, because even if it is logically possible, it is very uneasy. On this topic, see [Tennant, 1997],
pp. 159-244.
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not Platonist in the genuine meaning of this term. But, once mystery accepted,
the genuine Platonist claims that the burden of the proof is on the anti-realist
as well as on the formalist or even on the unauthentic realist (i.e. the Quinean
philosopher) who all have to explain what is mathematical content an have to
give a plausible explanation of the history of mathematics. Vuillemin, who has
finally held the genuine Platonism at the end of his philosophical development,
challenged the logical positivism like that.38

The anti-realism à la Tennant brings an interpretation of Gödel’s incomplete-
ness consistent with the spirit of logical empiricism but without the instability
of this latter. Contrarily to Quine’s contention, Tennant holds that mathematical
truth, and truth in general, consists in provability and he succeeds in showing
that it is logically possible to explain Gödel’s proof without assuming the sub-
stantialist notion of truth but a deflationary-anti-realist account of truth. Then it
is possible to explain the history of mathematics as being the history of systems
of proofs, without claiming the existence of a transcendent intelligible world
that every mathematician brain strives to discover.

To conclude on this point, a sketch of philosophical analysis of Wiles’ demon-
stration of Fermat’s conjecture will shed more light on the anti-realist way out.
There are differences and analogy between Fermat conjecture and G-sentences.
First, Fermat’s conjecture is intuitively clear and simple, when the Gödel sen-
tence is weird. Even if Gödel’s theorem is an exploit and appears as one of the
most important theorems of Mathematical Logic, it is obviously shorter and less
difficult from a technical point of view than Wiles’ proof which is developed
in two hundred pages and can be checked by very few mathematicians in the
world. But the main point is that Wiles has proved that there is no solution
to the equation xn + yn = zn when n ≥ 3, that there is no associated curve
to this diophantine equation, basing his demonstration on the contemporary
Taniyama’s conjecture — which is broader than Fermat’s — and other math-
ematical theories taking place later than Fermat. Wiles has turned Fermat’s
conjecture into a true mathematical statement. There is no need of great math-
ematical knowledge to see that Gödel’s theorem proves abstractly the existence
of undecidable statements in number theory, when Wiles has proved generally
the non-existence of solution for a defined equation. But an analogy with the
lesson of Gödel’s theorems can be made: the truth of G can be justified only
beyond S, from a S* theory to which S belongs, and, maybe in similar way, the
proof of Fermat’s conjecture is given from another broader conjecture to which
the former appears to be a particular case.

The Platonist is convinced that Wiles’ demonstration belongs to the history
of mathematical discoveries, and Gödel’s proof shows in abstracto the neces-

38[Vuillemin, 1997].
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sity of this historical development, because it shows that Mathematics cannot
be conceived as pure syntax, but has content. The indefinite development of
History of Mathematics shows concretely that new mathematical truths can
always be reached, and Gödel has logically proved that such a development
has no end because there are always, in every mathematical axiomatic system,
undecidable statements.

The anti-realist philosopher can concede that Carnap was wrong in believing
that Mathematics is only purely syntactic, and can concede that Gödel’s proof,
showing the distinction between logical and mathematical axioms, leads one
to acknowledge also that there is mathematical content. But he denies tran-
scendence to mathematical content, which is ‘reduced’ to proof systems: every
mathematical truth is asserted inside some theory and gets its meaning there-
from. There are no mathematical facts that are really independent of proof. So,
from the anti-realist point of view, Wiles’ demonstration is based on relations
of mathematical proof systems, and Gödel’s proof shows formal properties of
every mathematical proof system in which elementary number theory can be
expressed.

If I agree with Vuillemin’s thesis that philosophy has its origin in a free
but rational choice, I disagree with his last Platonism and I throw overboard
Myth, Mysticism, and Faith, to hold only positive and rational explanations in
philosophy of knowledge. That is why, to all philosophers who are reluctant
to adopt the genuine Platonism, the anti-realist-deflationary account of Gödel’s
incompleteness theorems should seem to be apt to get the last word on this so
fascinating and so difficult logical-philosophical topic.
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6.1 Introduction

Philosophical discussions on ‘the nature of mathematical entities’ are only
relevant if the adopted points of view influence the way in which mathematicians
are actually reasoning (Heyting). But what do practicing mathematicians them-
selves think of the question what mathematics is about? They do not subscribe
to the (ironical) view that ‘mathematics may be defined as the subject in which
we never know what we are talking about, nor whether what we are saying is
true’ (Russell). Neither do they hold that mathematical entities ‘participate’ in
a ‘sphere’ called ‘logical reality’ (Beth). Mathematicians simply do not pursue
the question so deeply; their ‘objects’ are numbers, points, functions, groups,
etc. However, there is a kind of relativity involved: a mathematical theory is
not per se about, say, points or ‘geometrical objects’, for it may happen that a
certain problem, allegedly about such things, can be better solved by imagin-
ing that it is about other things such as numbers or ‘arithmetical’ objects, and
conversely.

It will be argued that such ‘transpositions’ can have an important heuristic
value. Switching from one ‘domain’ to another, more perspicuous ‘field of
activity’, may facilitate the mathematical problem solving process, accordingly
as either the mathematician’s ‘intuitive’ skills, or the computer’s ‘digital’ powers
can be better exploited in it. This will be demonstrated by solutions to the
problem of finding models for finite (affine and projective) geometries.

The argument supports the view that the ‘nature of the mathematical objects’
may indeed be relevant to the way in which mathematicians are actually rea-
soning, though in a mundane interpretation which is totally different from its
philosophical meaning.
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6.2 Transpositions for combinatorial problems

Suppose we want to determine a competition scheme for an even number of
players in such a way that every two players encounter each other in exactly
one round, in which all players participate. This problem can easily be solved
for 6 players by a standard search procedure (with lexicographical ordering and
depth first search). The solution below shows the notation, and if necessary also
the structure, of a ‘tournament’ consisting of ‘rounds’, and ‘rounds’ consisting
of ‘games’ (Figure 1).

However, human beings are not proficient in this procedure for larger num-
bers, and even computer programs may fail for more than 200 players. Yet there
is a simple solution, accomplished by a transposition. Kraitchik gave it, and it
will henceforth be called ‘Kraitchik’s solution’. The idea can be demonstrated
for 6 players as follows. Replace or represent each number by a point in such
a way that 1 is represented by the center of a circle, and the other numbers by
points, regularly distributed on the circle. Then the first round is read off from
the figure by taking the line 12 and its perpendiculars 36 and 45, the second
round by 13 and its perpendiculars 42 and 56, and so on (Figure 2).

It is immediately clear that this method can be applied to every even number
of players. Though this is important in itself, we are more interested in the

12 34 56

13 25 46

14 26 35

15 24 36

16 23 45

Fig. 1.

6

1

3

2

4

5

Fig. 2
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conditions that make this transposition possible. It is a fact that two ‘simple’
elements – in this case the players – or the numbers – determine exactly one
‘complex’ element, in this case the games – or the pairs of numbers. This
suggests that a similar transposition will also be successful in the task of finding
arithmetical models of elementary geometrical axiomatic systems about points
and lines in which the condition holds that two distinct points determine a
straight line, or, in other words, that for any two points there is exactly one
(straight) line containing them both. Let me explain.

6.3 Transpositions in finite geometry

Suppose we have simple geometrical theories A(n) in which the following
axioms hold:

1 For every two distinct points, there is exactly one line containing them
both.

2 Through a point not on a given line there is exactly one line that does not
meet the given line.

3 Not all points are on the same line.

4 There exists at least one line.

5 Every line contains exactly n points.

As soon as we give the variable n in the fifth axiom a certain value, say 3, we
can try to draw points and lines in such a way that these axioms are satisfied, but
it is also clear that it is more feasible to regard this as a combinatorial problem.
Then the task is facilitated if we apply a transposition by taking numbers for
points, and arrays of numbers for lines. This was once done by John Wesley
Young, who solved the combinatorial problem for n = 3 by a certain reasoning
process, with the following result (Figure 3).

This result can also be achieved by a brute force method, using the lexico-
graphical ordering and depth first search. It is easily verified that the condition
that every two numbers or ‘points’ determine exactly one array or ‘line’, is
satisfied. So far there is nothing special about this task. However, things are
different for human beings, as soon as larger values for n are taken. Therefore
we take advantage of the presence of the above-mentioned condition and try the

123   246   349   478   569
145   258   357
167   279   368
189

Fig. 3
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126   349   578
137   452   689
148   563   792
159   674   823

Fig. 5

hypothesis that solutions can also and more easily be found after a transposi-
tion into a domain consisting of a circle with center 1 and containing the other
eight points at equal distances from each other. That the answer is positive for
n = 3 can be seen from the following perspicuous representation, in which
three ‘lines’ are pictured, whereas the other nine ‘lines’ are found by rotations
(Figure 4).

Apparently the resulting ‘arithmetical’ solution is as follows (Figure 5).
That is to say, as soon as the ‘geometrical’ solution has been found, the

rotations are not carried out, but the successive lines are determined by cyclical
permutations. In any case, we have found a model of the axiom system A(3),
and it is clear that we want to find a similar picture as Figure 4 for axiom system
A(4), in which axiom 5 says that every line contains exactly 4 points.

As a matter of fact, Figure 6 shows two ‘lines’, and it is easily seen that
the third and fourth ‘lines’ are found by rotations of the second ‘line’ over 120
degrees. Then the usual cyclical permutations finish the job. All this results in
the following ‘arithmetical’ model of the axiom system A(4) (Fig. 7 below).

This is not the end of the story. One would also like to find a model for
the axiom system A(5), but before tackling this problem, I can pretend that the
reader has had enough of the geometrical theories A(n) for the time being. The
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1 2 7 12 3 4 6 10 8 9 11 15 13 14 16 5

1 3 8 13 4 5 7 11 9 10 12 16 14 15 2 6

1 4 9 14 5 6 8 12 10 11 13 2 15 16 3 7

1 5 10 15 6 7 9 13 11 12 14 3 16 2 4 8

1 6 11 16 7 8 10 14 12 13 15 4 2 3 5 9

Fig. 7

real reason is that the above solution does not give sufficient indications about
how to find a solution for the problem of A(5) in a systematic way. Therefore I
switch over to the even simpler geometrical theories P(n), in which the following
axioms hold:

1 For every two distinct points, there is exactly one line containing them
both.

2 For every two distinct lines, there is exactly one point contained by both.

3 Not all points are on the same line.

4 There exists at least one line.

5 Every line contains exactly n points.

Again we can find an arithmetical model for P(3) – the case in which every
line contains exactly three points – standard brute force procedure leads to
Figure 8.

The similarity with the foregoing cases suggests that here also a transposition
is possible, or, more precisely, that a perspicuous representation can be found
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in the form of a circle, so that rotations can do the work. It appears that we
succeed as soon as we place all points on a circle, and choose a triangle in such
a way that it has exactly one point in common with each of its rotations around
the center of the circle (cf. Fig. 9). Similarly, a model for P(4) was found with
a suitable quadrangle (cf. Fig. 10).

Obviously, the corresponding numerical model begins with 1 2 4 10, followed
by 2 3 5 11, and so on, until 13 1 3 9 has been reached. But now the question
can be asked what is so special about the division of the points on the circle,
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that every two of these quadrangles have exactly one point in common. The
answer is that the successive distances of the vertices of the quadrangle are,
respectively, 1, 2, 6 and 4, and this implies that the sums of adjacent distances
on the circle are all different. In arithmetical terms: 13 = 1 + 2 + 6 + 4
is such that each number under 13 appears just once as a partial sum in this
equation, in the sense that 1 = 1, 2 = 2, 3 = 1 + 2, 4 = 4, 5 = 4 + 1, 6 =
6, 7 = 4 + 1 + 2, 8 = 2 + 6, 9 = 1 + 2 + 6, 10 = 6 + 4, 11 = 6 + 4 + 1 and
12 = 2 + 6 + 4. As soon as this is seen, the construction of models for P(5)
and P(6) is easy. Without much effort, the partitions 21 = 1 + 3 + 10 + 2 + 5
and 31 = 1 + 14 + 4 + 2 + 3 + 7 can be found. This is a remarkable result, and
the hypothesis can be formulated that the problem of finding models for the
axiom systems A(n) can also be solved by a transposition to the arithmetical
domain in which suitable partitions are found.

As a matter of fact, inspection of the geometrical model of Figure 4 for A(3)
yields the equation 8 = 1+5+2, in which all numbers under 8 except 4 occur
as a partial sum. Similarly, Figure 6 for A(4) gives 15 = 1+2+4+8. But now
we know how to proceed in the as yet unsolved case of A(5), if the search for a
suitable pentagon would get stuck: by a transposition! Although I still found a
solution by means of the geometrical representation, resulting in Figure 10, the
‘modern’ way of finding a model-forming partition is leaving the tedious work
to the computer.

So after I had found the above solutions, I asked the computer scientist Jeroen
Donkers for help. He wrote two computer programs, one for the partition
problem that resulted after the three (!) transpositions of the problem of finding
a model for axiom systems A(n), and another for the same problem for axiom
systems P(n). It appeared that the partition problem for A(5) has two different
solutions. The first is given by the equation 24 = 1 + 2 + 8 + 9 + 4, which
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can already be read from Figure 10, and the second by the equation 24 = 1 +
3 + 5 + 2 + 13. However, the partition problem for A(6) appeared to have no
solution at all, and this means that this axiom system has no models. On the
other hand, the partition problem for A(7) has four different solutions, and the
one for A(8) has three.

Similar results were found for axiom systems P(n). Donkers’ program
showed that the partition problem has two different solutions for P(4), for P(5)
only one, for P(6) five, but for P(7) none. It follows that the axiom system for
P(7) has no models. There is no need to pursue this subject further, since it may
be assumed that such results are corollaries of theorems in affine or projective
geometry. My purpose was to show how productive problem solving could arise
from a series of transpositions, from geometrical representations to arithmeti-
cal representations, from these arithmetical representations to other geometrical
representations, and from these geometrical representations to other arithmeti-
cal representations. Human beings and computers can help each other in finding
solutions to problems, depending on the types of representation each of them
can manage best.

We have seen that the choice of a particular geometrical representation for a
certain problem can be guided by the success that was achieved with it in the case
of a similar problem. But the choice of another medium is one thing, and the
selection of certain representations in a chosen medium another. In Kraitchik’s
solution of the competition problem, a circle plus center was selected instead
of only a circle. Then a particular representation, consisting of a diameter with
perpendiculars, gave the key to the general solution.

It is easily seen that the choice of a circle without center would have yielded
simple solutions for the competition problem with 6, 8, and 10 players. One has
only to find suitable combinations of sides and diagonals of (regular) polygons,
but their different structures already show that this is not the right road to a
general solution.

The question remains how a generalizable representation could be found.
To answer this question, I return to the numerical solution of Figure 1. We
can transpose each of the rounds to the figure of a circle with center 1 and
the other numbers regularly divided over the circle, and then conclude that the
third round, 14 26 35, leads to a configuration that leaves nothing to be desired
(cf. Fig. 12).

That Figure 12 contains, in a sense, a complete solution of the composition
problem for six players, if not for every even number of players, is clear to
any well-trained mathematician. Nevertheless it does not require a great effort
to find this figure, at least if the above procedure is followed: as soon as the
right transpositions are carried out, the solution of the problem is ready to
hand. The same holds for the preceding examples. But we have also seen that
the choice of promising transpositions was guided by the idea that they were
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effective under similar conditions. Thus there are two psychologically relevant
aspects of the procedure of transposition: first, the idea that another medium
might further the solution, second, the insight that the solution is contained in
a particular representation. But there is also a philosophically relevant aspect
of transposition, because mathematicians have a certain ‘freedom’ in choosing
the medium of their liking.

6.4 The philosophical relevance of transpositions

The given geometrical figures show, in a sense, how models of finite geome-
tries can arise, but they are themselves not complete models. It seems that
performing the rotations would result in pictures that are not perspicuous any-
more, as this is the case for A(2) (cf. Fig. 13) and P(2) (cf. Fig. 14).

This is, of course, nothing new. At most we may notice that the complete
model of A(2), as pictured in Figure 16, can be seen as a three-dimensional
figure that is in principle not different from the well-known tetraeder model
below (cf. Fig. 15).

But now there is a remarkable difference between the last picture that shows
the model of P(3), and Fano’s famous ‘projective plane’ (Fig. 18).
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Yet there is a possibility to depict complete models of A(3) and P(3) too, if
one allows that every point gets two ‘locations’. The results are sketched in
Fig. 16 and Fig. 17.

Figure 17 shows the cyclical structure of the model, whereas the form of
Figure 18 suggests something quite different.

It is also possible to construct rotation symmetrical representations of models
for A(4) and P(4), provided that every point is given three locations. In order
to do this in an easy way for P(4), we start with the line containing the points
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1, 5, 6 and 8 and continue with the line containing the points 3, 7, 8 and 10 as
follows (Fig. 19).

Then we rotate this figure in such a way that the first line 1, 5, 6, 8 coincides
with the second line and the second line produces a third line with the points 5,
9, 10 and 12. By repeating this procedure, we successively get the other lines
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7, 11, 12, 1; 9, 13, 1, 3; 11, 2, 3, 5; 13, 4, 5, 7; 2, 6, 7, 9; 4, 8, 9, 11; 6, 10, 11,
13; 8, 12, 13, 2; 10, 1, 2, 4 and 12, 3, 4, 6. This results in a figure that is similar
to Figure 17 and also has a nice rotational symmetry.

There is no need to pursue the subject further. Only the fact that points can
get more ‘locations’ might disturb some ‘naïve’ mathematicians. Yet it shows
that it makes no sense to speak of ‘points’ as if the ‘nature’ of such mathematical
objects is ‘fixed’, let alone ‘predetermined’: it is the creative mathematician
who decides how to represent mathematical objects. He is free to depict them
in the medium of his liking, and when he wants to represent one and the same
point by more than one ‘dot’, he may do this and describe it according to his
preference. He is not interested in the nature of mathematical entities, but only
in the nature of representations of mathematical entities, as long as they are
subservient to his aim, that is, solving mathematical problems and requiring
insight into the obtained solutions.
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7.1 Introduction

Many-valued and Kripke semantics are generalizations of classical seman-
tics in two different “opposite” ways. Many-valued semantics keep the idea
of homomorphisms between the structure of the language and an algebra of
truth-functions, but the domain of the algebra may have more than two values.
Kripke semantics keep only two values but a relation between bivaluations is
introduced.

Many-valued semantics were proposed by different people among whom
Peirce, �Lukasiewicz, Post, Bernays. In fact all these people are also considered
as founders of the semantics of classical zero-order logic (propositional logic).
And from their work it appears that the creation of many-valued semantics is
almost simultaneous to the creation of the bivalent two-valued semantics. From
this point of view we cannot say that many-valued semantics are an abstract
meaningless generalization developed “après coup”, as suggested by Quine in
([Quine 1973], p. 84). However it is true that the meaning of the “many” values
is not clear. As Quine and other people have noticed, the division between
distinguished and non distinguished values in the domain of the algebra of
truth-functions of many-valued semantics is clearly a bivalent feature. So, in
some sense many-valued semantics are bivalent, in fact they can be reduced,
as shown for example by Suszko, to bivalent (non truth-functional) semantics.
Suszko was also against the terminology “logical values” for these many values.

∗Work supported by the Swiss Science Foundation.
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He thought that �Lukasiewicz was seriously mistaken to consider the third value
of his logic as possibility (see [Suszko 1977] and also [da Costa, et al. 1996],
[Tsuji 1998]). I don’t share Suszko’s criticism on this point. It seems to me that
the many values can be conceived as degrees of truth and degrees of falsity and
that we can consider a four-valued semantics in which the two distinguished
values can be called “possibly true” and “necessary true”, and the two non
distinguished values can be called “possibly false” and ”necessary false”. With
this intuition we can develop a four-valued modal logic [Dugundji 1940]. The
use of many-valued semantics for the development of modal logic has been
completely left out. This can be explained by two reasons: on the one hand the
negative results proved by Dugundji showing that S5 and other standard modal
logics cannot be characterized by finite matrices [Dugundji 1940], on the other
hand the rise of popularity of Kripke semantics.

Today many people identify Kripke semantics with modal logic. Typically a
book called “modal logic” nowadays is a book about Kripke semantics (cf. e.g.
the recent book by [Blackburn et al. 2001]). But modal logic can be developed
using other kinds of semantics and Kripke semantics can be used to deal with
many different logics and it is totally absurd to call all of these logics “modal
logics”. Kripke semantics are also often called “possible worlds semantics”,
however this is quite misleading because the crucial feature of these semantics
is not the concept of possible world but the relation of accessibility. Possible
worlds can easily be eliminated from the definition of Kripke semantics and then
the accessibility relation is defined directly between the bivaluations. For this
reason it seems better to use the terminology “relational semantics”. Of course,
if we want, we can call these bivaluations “possible worlds”, this metaphor
can be useful, but then why using this metaphor only in the case of relational
semantics? In fact in the Tractatus Wittgenstein used the expression “truth-
possibilities” for the classical bivaluations. Other concepts of the semantics of
classical zero-order logic were expressed by him using a modal terminology: he
said that a formula is necessary if it holds for all truth-possibilities, impossible if
it holds for none, and possible if it holds for some. But Wittgenstein was against
the introduction of modal concepts inside the language as modal operators.

Many-valued and Kripke semantics may be philosophically controversial,
anyway they are very useful and powerful technical tools which can be fruitfully
used to give a mathematical account of basic philosophical notions, such as
modalities. It seems to me that instead of focusing on the one hand on some little
philosophical problems and on the other hand on some developments limited to
one technique, one should promote a better interaction between philosophy and
logic developing a wide range of techniques, as for example the combination of
Kripke semantics (extended as to include the semantics Jaskowski) and Many-
valued semantics (extended as to include non truth-functional many-valued



Many-Valued and Kripke Semantics 91

semantics). My aim is this paper is to give a hint of how these techniques can
be developed by presenting various examples.

7.2 Many-valuedness and modalities

Many people have nowadays forgotten that the first formal semantics for
modal logic was based on many-valuedness. This was first proposed by �Lukasie-
wicz in 1918 and published in [�Lukasiewicz 1920]. Moreover many-valued
logic was developed by �Lukasiewicz in view of modalities, he introduced a
third value which was supposed to represent possibility. Although there is no
operator of possibility in the standard version of �Lukasiewicz’s three-valued
logic �L3, at first there was one, eliminated after Tarski showed that it was
definable in terms of other non modal connectives.

�Lukasiewicz’s logic was dismissed as a modal logic by many people, since
it has strange features like the validity of the formulas: ⋄a ∧ ⋄b → ⋄(a ∧ b).
Later on, in 1940, the negative result of Dugundji showing that some of the
famous Lewis’s modal systems like S4 and S5 cannot be characterized by finite
matrices was another drawback for the many-valued approach to modal logic.
Nevertheless �Lukasiewicz insisted in this direction and in 1953 he presented a
four-valued system of modal logic [�Lukasiewicz 1953]. This system is also full
of strange features and was never taken seriously by modal logicians. At the
end of the 1950s the rise of Kripke semantics put a final colon to the love story
between many-valuedness and modalities. Nowadays the many-valuedness
approach to modal logic is considered as prehistory.

However I think it is still possible to develop in a coherent and intuitive way
many-valued systems of modal logic. A possible idea is to consider a set of four-
values, two non distinguished values, 0− and 0+, and two distinguished values,
1− and 1+. These values are ordered by the following linear order: 0− ≺ 0+ ≺
1− ≺ 1+. A possible interpretation is to say that 0− means necessary false, 0+

possibly false, 1− means possibly true and 1+ means necessary true.
The basic laws for modalities are the following:

a ⊢ a a ⊢ ⋄a
a �⊢ a ⋄a �⊢ a

a ⊢ ⋄a ⋄a �⊢ a

In order for these laws to be valid the tables defining possibility and necessity
must obey the conditions given by the following table:

a a ⋄a
0− 0 0

0+ 0 1

1− 0 1

1+ 1 1

Table 1.
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In this table 0 means 0− or 0+ and 1 means 1− or 1+.
We have many possibility Nevertheless all systems obeying the conditions

given by Table 1 obey the involution laws:

a ⊣⊢ a

⋄a ⊣⊢ ⋄ ⋄ a

the De Morgan laws for modalities:

a ∧ b ⊣⊢ (a ∧ b)

⋄a ∨ ⋄b ⊣⊢ ⋄(a ∨ b)

as well as Kripke law, considering that implication is defined classically as
¬a ∨ b and that disjunction is standardly defined with the operator min:

(¬a ∨ b) ⊢ ¬ a ∨ b.

One possibility for the minus/plus choice is to reduce the four values to two
values 0− and 1+. We get then the following table:

a a ⋄a
0− 0− 0−

0+ 0− 1+

1− 0− 1+

1+ 1+ 1+

Table 2. M4-Red
With this idea we get the collapse of compound modalities:

⋄a ⊣⊢ ⋄ a

⋄ a ⊣⊢ a

We are getting therefore very close to S5, although we know, due to Dugundji’s
theorem that this table cannot define S5. So what are the laws of S5 which are
not valid in M4-Red? It depends on the way that we define the non modal
connectives. We can reduce the four values to two values 0− and 1+ for these
connectives or not.

If we do not operate the reduction, we have the standard definitions for
conjunction and disjunction with the operators min and max defined on the
linear order, and we define the negation in the following logical way:

a ¬a

0− 1+

0+ 1−

1− 0+

1+ 0−

Table 3.
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In this case the rule of necessitation

if ⊢ a then ⊢ a

is not valid, as shown by the following table:

p ¬p p ∨ ¬p (p ∨ ¬p)

0− 1+ 1+ 1+

0+ 1− 1− 0−

1− 0+ 1− 0−

1+ 0− 1+ 1+

Table 4.

The fact that the rule of necessitation is not valid can be seen as a serious
defect. However, �Lukasiewicz has argued at length against the validity of such
rule (see [�Lukasiewicz 1954]).

Another possibility is to operate a reduction of two values for all molecular
formulas. In this case, we get a logic in which the law of necessitation is valid
but in which self-extensionality

if a ⊣⊢ b then a ⊣⊢ b

if a ⊣⊢ b then ⋄a ⊣⊢ ⋄b

does not hold.

7.3 Possible worlds semantics without possible worlds

It seems that possible worlds are, as stressed by the name, essential in possible
worlds semantics.

In possible worlds semantics we have possible worlds and this would be
the difference with classical semantics or many-valued semantics. So an ex-
pression like “possible worlds semantics without possible worlds” sounds a bit
paradoxical like “orange juice without orange”, etc. But in fact, as we will see,
possible worlds can easily be eliminated from the standard definition leading
to a definition which is equivalent in the sense that it defines the same logics.

There are several presentations of possible worlds semantics, let us take a
standard one, close to the one given by Johan van Benthem (cf. [van Benthem
1983]).

We consider a Kripke structure K =< W, R, V >, as a set W of objects
called possible worlds, a binary relation R between these worlds called acces-
sibility relation, and a function V assigning a set of possible worlds to each
atomic formula. Then we give the following definition:
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DEFINITION PWS.
(0) |=w p iff w ∈ V (p)

(1) |=w ¬a iff �|=w a

(2) |=w a ∧ b iff |=w a and |=w b

(3) |=w a ∨ b iff |=w a or |=w b

(4) |=w a → b iff �|=w a or |=w b

(5) |=w a iff for every w′ ∈ W such that wRw′, |=w′ a

(6) |=w ⋄a iff for some w′ ∈ W such that wRw′, |=w′ a

What does mean this definition? What does this definition define? It defines
a binary relation between the worlds of W of K and formulas, badly expressed
by the notation |=w a. This can be read as “the formula a is true in the world
w”. From this definition, we then define what it means for a formula a to be
true in the Kripke structure K: a is true in K iff it is true in every world w of K.

As we see, in these definitions, the nature of the worlds is never used, they
can be anything. Why then calling them worlds? What is used is the relation
of accessibility: different properties of this relation lead to different logics.

The second important point is that the definition defines a binary relation
between the worlds of W of K and formulas by simultaneous recursion: in
clauses (4) and (5), to define the relation between a world w and a formula, we
use the relation defined between another world w′ and formulas. In classical
semantics and many-valued semantics, we only use simple recursion.

Let us now transform this definition into a worldless definition Instead of
considering a Kripke structure, we consider a Ipke structure

I =< D, R >

as a set D of functions called distributions of truth-values assigning to every
atomic formula a the values 0 (false) or 1 (true), and a binary relation R between
these distributions called accessibility relation.

We now extend these distributions into bivaluations, i.e. function assigning
to every formula (atomic or molecular) the values 0 (false) or 1 (true).

DEFINITION PWS-W.
(0) βδ(p) = 1 iff δ(p) = 1

(1) βδ¬(a) = 1 iff βδ(a) = 0

(2) βδ(a ∧ b) = 1 iff βδ(a) = 1 and βδ(b) = 1

(3) βδ(a ∨ b) = 1 iff βδ(a) = 1 or βδ(b) = 1

(4) βδ(a → b) = 1 iff βδ(a) = 0 or βδ(b) = 1

(5) βδ( a) = 1 iff for every β′
δ′ such that δRδ′, β′

δ′(a) = 1

(6) βδ(⋄a) = 1 iff for some β′
δ′ such that δRδ′, β′

δ′(a) = 1
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Using the above definition, we can then define, what it means to be true in
the Ipke structure I: a formula a is true iff it is true for every bivaluation.

EQUIVALENCE OF THE TWO DEFINITIONS. It is the same to be
true in a Kripke structure or to be true in an Ipke structure.

This claim means more precisely that given a Kripke structure, we can con-
struct an Ipke structure which leads to the same notion of truth and vice-versa.
The construction is very simple. Given a Kripke structure, we transform a
possible world w into a distribution δw by putting δw(p) = 1 iff w ∈ V (p).
Given an Ipke structure, we transform a distribution δ into a possible world wδ

obeying the condition: w ∈ V (p) iff δ(p) = 1. This condition in fact defines
the function V .

In both cases the accessibility relation is transposed from worlds to distrib-
utions and vice-versa.

Someone may claim that possible worlds are nice tools, they help imagination,
they are heuristical. But we may call bivaluations in DEFINITION PWS-
W, possible worlds. We still get the heuristics, but keep a low ontological
cost. In fact some people even call possible worlds, the bivaluations of the
standard semantics of classical propositional logic, following the first idea of
Wittgenstein.
In some recents advances in possible worlds semantics (Dutch trend), possible
worlds may be useful, but they are totally useless for the standard semantics of
S5, etc. On the other hand to work without possible worlds can simplify further
constructions as the ones presented in the next sections.

7.4 Combining many-valued and Kripke semantics

If we consider possible worlds semantics without possible worlds, i.e., given
by DEFINITION PWS-W, it is easy to combine them with many-valued seman-
tics: instead of considering bivaluations, we consider functions into a finite set
of values divided into two sets, the sets of distinguished values and the set of
non-distinguished values. We will call such combined semantics Many-valued
Kripke semantics.

Sometimes people talk about impossible worlds or incomplete worlds (see
e.g. the volume 38 (1997) of Notre Dame Journal of Formal Logic). An im-
possible world is a world in which a formula and its negation can both be true,
an incomplete world is a world in which a formula and its negation can both
be false. These impossible worlds (or incomplete worlds) semantics can be
described more efficiently by Many-valued Kripke semantics.

Let us give an example of many-valued relational semantics, we consider a
many-valued Ipke structure MI =< D, R >, where D is a set of distributions
assigning to every atomic formula a, the values 0, 1

2 or 1 and where R is
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a binary relation of accessibility between these distributions. We now extend
these distributions into three valuations, i.e. function assigning to every formula
(atomic or molecular) the values 0, 1

2 or 1.

DEFINITION MI.
(0) θδ(p) = δ(p)

(1) θδ¬(a) = 1 iff θδ(a) = 0

(2) θδ(a ∧ b) = min(θδ(a), θδ(b))

(3) θδ(a ∨ b) = max(θδ(a), θδ(b))

(4) θδ(a → b) is distinguished iff θδ(a) is non distinguished or θδ(b) is distin-
guished.

(5) θδ( a) = 1 is distinguished iff for every θ′δ′ ∈ W such that δRδ′, θ′δ′(a) is
distinguished.

(6) θδ(⋄a) = 1 is distinguished iff for some θ′δ′ ∈ W such that δRδ′, θ′δ′(a) is
distinguished.

At first this definition seems quite the same as DEFINITION PWS-W of the
preceding section, but since we have a third value, things change. From clause
(1), we deduce that

(2’) θδ¬(a) = 1
2 iff θδ(a) = 1

2 .

If we consider that 1 is distinguished and the values 0 and 1
2 are non-

distinguished, then the principle of contradiction expressed by the formula
¬(p ∧ ¬p) is not true in MI , provided we standardly define “true in MI”
by “distinguished for every three-valuations”: we have some three-valuations
in which both values of p and ¬p are 1

2 , and therefore in which the value of
¬(p ∧ ¬p) is 1

2 , i.e. non-distinguished. This is nothing very knew and this is
what happens in �Lukasiewicz three-valued logic �L3, where we have:

�⊢ ¬(a ∧ ¬a)

We are just combining different semantics. What happens here is that, at the
level of modalities, we don’t either have the principle of non contradiction:

�⊢ ¬( a ∧ ¬ a) �⊢ ¬(⋄a ∧ ¬ ⋄ a)

If we take 1
2 and 1 as distinguished and only 0 as non-distinguished and provided

we define the consequence relation in the usual way, then the formulas above
are valid but the formulas below expressing the ex-falso sequitur quod libet



Many-Valued and Kripke Semantics 97

which are valid with only 1 as distinguished are not valid anymore:

�⊢ (p ∧ ¬p) → q p,¬p �⊢ q
�⊢ ( p ∧ ¬ p) → q p,¬ p �⊢ q
�⊢ (⋄p ∧ ¬ ⋄ p) → q ⋄p,¬ ⋄ p �⊢ q

ll

These two possible Many-valued Kripke semantics show that the principle
of contradiction is independent of the ex-falso sequitur quod libet in its two
forms, consequential or implicational.

7.5 JKL semantics

Following some ideas of Jaskowski, we can change the definition of truth in
a Kripke structure K, by saying that a formula a is true in K iff it is true at some
world, i.e. there is some valuation in which it is true. In case we are working
with Many-valued Kripke semantics, this means: there is some valuation for
which the value of this formula is distinguished.

We will call many-valued with this definition of truth, “JKL-semantics”.
Such Semantics were introduced in [Béziau 2001].

If we consider the JKL Semantics corresponding to the Semantics MI of the
preceding section, with only 1 as distinguished, we have:

a,¬a �⊢ b a,¬ a �⊢ b ⋄a,¬ ⋄ a �⊢ b

but

⊢ (a ∧ ¬a) → b ⊢ ( a ∧ ¬ a) → b ⊢ (⋄a ∧ ¬ ⋄ a) → b

and

�⊢ ¬(a ∧ ¬a) �⊢ ¬( a ∧ ¬ a) �⊢ ¬(⋄a ∧ ¬ ⋄ a).

Something that would be interesting is a logic in which the principle of con-
tradiction and the ex-falso sequitur quod libet in its two forms are not valid
only for modalities. This fits well for example for a logic of beliefs, where
someone may have contradictory beliefs without “exploding”, but where con-
tradictions explode at the factual level. For this, we need a more sophisticated
construction.

7.6 Non truth-functional Kripke semantics

Many-valued semantics are generally truth-functional, that means that they
are matrices (see [Béziau 1997] for a detailed account on this question). But it is
also possible to introduce non truth-functional many-valued semantics. I have
introduced these kind of Semantics in [Béziau 1990] and developed furthermore
the subject in [Béziau 2002].
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To understand what it means, let us first explain the difference between
truth-functional semantics and non truth-functional semantics at the level of
bivalent semantics. The set of bivaluations of the semantics of propositional
classical logic is the set of homomorphisms from the algebra of formulas and
the matrix of truth-functions defined on {0, 1}. Since the algebra of formulas
is an absolutely free algebra, this set can be generated by the set of distri-
butions, i.e. functions assigning 0 or 1 to atomic formulas. A non truth-
functional bivalent semantics is a semantics where the bivaluations cannot be
reduced to homomorphisms between the algebra of formula and an algebra of
truth-functions defined on {0, 1}.

The semantics of classical logic can be presented in two different ways which
are equivalent: the usual way with the distributions and the matrix, or by
defining directly a set of bivaluations (functions from the whole set of formulas
into {0, 1} obeying the following conditions:

(1) β¬(a) = 1 iff β(a) = 0

(2) β(a ∧ b) = 1 iff β(a) = 1 and β(b) = 1

(3) β(a → b) = 0 iff β(a) = 1 and β(b) = 0

We have a fairly simple example of non truth-functional bivalent semantics,
if we replace the condition (1) by the conditions (1’):

(1’) if β¬(a) = 1 then β(a) = 0

In this logic, we may have β¬(a) = β(a) = 0. The logic generated by
this condition has been studied in [Béziau 1999a]. Another example of non
truth-functional bivalent semantics can be found in [Béziau 1990b]. A general
study of logics from the viewpoint of bivalent semantics (truth-functional or
non truth-functional) has been developed in [da Costa, et al. 1994].

The definition of non truth-functional many-valued semantics is a straight-
forward generalization: A non truth-functional many-valued semantics is a
semantics where the valuations cannot be reduced to homomorphisms between
the algebra of formula and an algebra of truth-functions defined on a given set
of values.

A very simple is the following: we replace �Lukasiewicz’s condition for
negation by the following:

(1’) if β¬(a) = 1
2 then β(a) = 1

2

Now we will construct a non truth-functional many-valued semantics. As
in the case of the bivalent semantics for classical propositional logic, truth-

In general this is presented in a rather informal way, where the matrix does not really appear but is described
indirectly by means of truth-tables, see [Béziau 2000].
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functional bivalent (or many-valued) semantics can be presented in two dif-
ferent way. For example, instead of DEFINITION PWS-W, we can consider
an Ipke structure I = < B, R > as a set B of bivaluations assigning to every
formula (atomic or molecular) 0 or 1 and a relation R of accessibility between
bivaluations.

Then we stipulate that these bivaluations should obey the following conditions:

DEFINITION PWS-W GLOBALIZED
(1) β¬(a) = 1 iff β(a) = 0
(2) β(a ∧ b) = 1 iff β(a) = 1 and β(b) = 1
(3) β(a ∨ b) = 1 iff β(a) = 1 or β(b) = 1
(4) β(a → b) = 1 iff β(a) = 0 or β(b) = 1
(5) β( a) = 1 iff for every β′ ∈ B such that βRβ′, β′(a) = 1
(6) β( a) = 1 iff for every β′ ∈ B such that βRβ′, β′(a) = 1

Now we replace condition (1) by the following set of conditions:
(1.1.1.) if β(a) = 0 then β¬(a) = 1
(1.2.2.) if β¬¬(a) = 1 then β¬(a) = 0
(1.2.3.) if β¬(a ∧ b) = 1 then β(a ∧ b) = 0
(1.2.4.) if β¬(a ∨ b) = 1 then β(a ∨ b) = 0
(1.2.5.) if β¬(a → b) = 1 then β(a → b) = 0

This semantics is non truth-functional. In the logic defined by this semantics,
we have:

�⊢ ¬( a ∧ ¬ a) �⊢ ¬(⋄a ∧ ¬ ⋄ a)
a,¬ a �⊢ b a,¬ a �⊢ b

�⊢ ( a ∧ ¬ a) → b �⊢ (⋄a ∧ ¬ ⋄ a) → b.

but

⊢ ¬(a ∧ ¬a) a,¬a ⊢ b ⊢ (a ∧ ¬a) → b

provided there are no modalities in a.

7.7 Conclusion: Many possibilities

We have presented different way to generalize and to combine many-valued
and Kripke semantics, and in fact there are still some other possibilities like the
semantics developed by Buchsbaum and Pequenos (see e.g. [Buchsbaum et al.
2004]) or like the semantics of possible translations developed by Carnielli and
Marcos (see e.g. [Carnielli, et al. 2002]).

All these tools may be very useful both from an abstract viewpoint of a general
theory of logics (see e.g. [Béziau 1994]) and from applications to philosophical
problems. For example they can be used, as we have shown, to construct models
showing the independency of some properties of negation relatively to some
other ones. This is very useful in the field of paraconsistent logic.
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“We must, in general, be prepared to accept the fact that a complete elucidation of

one and the same object may require diverse points of view which defy a unique

description.”

—Niels Bohr, 1929

8.1 Introduction

J. Kalckar, the editor of volume 6 of Bohr’s Collected Works [Bohr, 1985]
pp. 26-27, suggested that the first reference to the notion of complementarity is
to be found in a manuscript written by Bohr on July 10, 1927, where we read
that “. . . the theory exhibited a duality when one considered on one hand the
superposition principle and on the other hand the conservation of energy and mo-
mentum (. . .) Complementary aspects of experience that cannot be unified into
a space-time picture on the classical theories” (cf. ibid., pp. 26-27). Roughly
speaking, the idea involves something like this: complementarity means the
possibility of unifying aspects which cannot be put together from a ‘classical’
perspective. Kalckar also keeps off the view claimed by some writers who
have sustained that Bohr was motivated by sources outside physics, like the
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readings of Kierkegaard or of the Danish philosopher H. Høffding. Accord-
ing to Kalckar, the very origins of such an idea came from physics itself and,
to reinforce his claim, he recalls L. Rosenfeld’s words, which interest us also
here: “Bohr’s conception of complementarity in quantum mechanics is not the
expression of a ‘specific philosophical position’, but an inherent part of the
theory which has the same validity as its formal aspect and is inseparable from
it.” (apud ibid., p. 28, italics ours).

It should be remarked that it seems to exist a discrepancy between Rosen-
feld and Bohr in what concerns the way of understanding complementarity.
This difference may justify Bohr’s refuse to accept that von Weizsäcker had
described ‘the logic of complementarity’, as we shall see below. Apparently,
Bohr envisaged his ideas on complementarity as forming part of a general epis-
temological principle, which could guide us not only in physics (from which the
ideas really came), but in any other field of science as well; as he said, “. . . the
lessons taught us by recent developments in physics regarding the necessity of
a constant extension of the frame of concepts appropriate for the classification
of new experiences leads us to a general epistemological attitude which might
help us to avoid apparent conceptual difficulties in other fields of science as
well” ([Bohr, 1937]). In other words, we might say that, according to Bohr,
complementarity may be viewed as a kind of a general regulative methodolog-
ical principle. On the other hand, there are positions sustained by people like
Rosenfeld (and von Weizsäcker), who see such ideas as making part of the
(physical) theory itself. What is the difference?

The difference lies in what we consider as a meta-theoretical principle of
science and what is to be considered as a strict principle of a particular (say,
axiomatized) scientific theory. The former may be viewed as a meta-principle,
while the latter is something to be ‘internalized’ within the object language of
the theory itself. In what follows, we shall try to push this distinction a little bit
in relation to the concept of complementarity. This is of particular importance
for, as we shall see below, the very idea of complementarity resembles that of the
existence of contradictions; keeping it as a meaning principle, it seems easier to
understand how it may help us in accepting that “[t]he apparently incompatible
sorts of information about the behavior of the object under examination which
we get by different experimental arrangements can clearly not be brought into
connection with each other in the usual way, but may, as equally essential for an
exhaustive account of all experience, be regarded as ‘complementary’ to each
other” [Bohr, 1937].

In this paper, we shall consider how ‘complementary ideas’ can be seen from
both perspectives, that is, as standing both for a general regulative meaning
principle and also as a law that can be internalized in the language of the theory
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proper. As we shall see, although resembling contradictions (but see a way of
better specifying them below), the concept of complementary propositions can
be put within a certain object language (so keeping it as an ‘inherent part of the
theory’ as Rosenfeld has claimed) without risk of trivializing the whole theory.
This will enable us to discuss also the role played by logic in the context of the
physical sciences.

We begin firstly by describing the main features connected with the idea of
complementarity. We note that there is no general agreement among histori-
ans and philosophers (and even among physicists) about the precise meaning
of Bohr’s Principle of Complementarity (henceforth, PC), what makes the his-
torical analysis quite problematic [Beller, 1992], [Jammer, 1966], [Jammer,
1974]. Even so, after revising some of the main references made by Bohr
himself and by various of his commentators on complementarity, we arrive at
a characterization of ‘complementary propositions’ from a strict logical point
of view (that is, as defined in a suitable formal language). Then, we shall
sketch the main norms of the logic of such propositions, by evidencing that
it is a kind of paraconsistent logic, termed paraclassical logic (see [da Costa
and Vernengo, 1999], [Souza, 2000]). Nonetheless, complementarity, for us,
also encompasses meta-theoretical meaning principles imposing some limita-
tions on theories; in addition, it sanctions the use of incompatible approaches
in physics. Complementarity, as a meaning principle, plays the role of a kind
of normative rule.

Secondly, we insist that the relevance of this kind of study is neither merely
historical nor an exercise of logic. In addition to the necessity of a philosophical
distinction between meaning principles and strict physical laws, we believe that
this discussion has a profound philosophical significance also in showing some
of the relationships that there exist between certain non-classical logics and the
empirical sciences, in particular to physics. Of course, although in this paper we
neither have pursued the historical details on complementarity in deep, though
we have mentioned some of the main references one finds in the literature,
nor have investigated the logical system we propose in all its formal aspects
(a task we hope to accomplish in the near future), we hope to make clear the
general underlying idea of the paper. It was and continue partially motivated by
Bohr’s own way of accepting both the particle and the wave pictures of reality.
We believe that the understanding of a wide field of knowledge, like quantum
physics, may gain in much if we accept a pluralistic view according to which
there are several and eventually non equivalent ways of looking at it (perhaps
some of them based on non-classical logics), each one being adequate from
its particular perspective, and showing details which cannot be seen from the
other points of view, analogously to the different drawings of an engineer in
descriptive geometry, à la Monge, of a given object.
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8.2 Complementarity

The concept of ‘complementarity’ was introduced in quantum mechanics by
Niels Bohr in his famous ‘Como Lecture’, in 1927, although the basic ideas
go back to 1925 [Bohr, 1927], [Bohr, 1985]. The consequences of his view
were fundamental, particularly for the development of the Copenhagen inter-
pretation of quantum mechanics and constitutes, as it is largely recognized in
the literature, one of the most fundamental contributions to the development of
quantum theory (see also [Beller, 1992], [Jammer, 1966; Jammer, 1974]).

In this section we make clear in what sense we understand the word
‘complementarity’. The quotations taken from Bohr and from other important
commentators aim at to reinforce our view, although we are of course aware
that a few isolated quotations cannot provide evidence for the full understanding
of concepts, especially regarding the present (and difficult) case. Even so, we
hope we can convince the reader that complementarity can be interpreted as a
more general principle related to ‘incompatibility’ in some sense (the ‘sense’
being explained in the next sections) than to some kind of impossibility of
‘simultaneously measuring’.

In what concerns this point, we remark that we find Bohr speaking about
complementary concepts which cannot be used at the same time (as we see in
several of his papers listed in our references [Bohr, 1985, p. 369]). Though this
way of talking should be viewed as a way of speaking, for it stands for situations
which, according to Bohr himself, demand specific analysis; as he says, “[o]ne
must be very careful, therefore, in analyzing which concepts actually underly
limitations” (ibid., p. 370). Really, there are several ways of looking at comple-
mentarity. Pauli, for instance, claimed that “[if] the use of a classical concept
excludes of another, we call both concepts (. . .) complementary (to each other),
following Bohr” ([Pauli, 1980, p. 7], quoted in [Cushing, 1994, p. 33]). By the
way, J. Cushing also stressed his own view, in saying that “[w]hatever histori-
cal route, Bohr did arrive at a doctrine of mutually exclusive, incompatible, but
necessary classical pictures in which any given application emphasizing one
class of concepts must exclude the other” (op. cit., pp. 34-5).

This idea of complementary propositions as ‘excluding’ each other (what
appears to mean something like ‘incompatibility’) is reinforced by Bohr himself
in several passages, as the following ones:

“The existence of different aspects of the description of a physical system, seem-
ingly incompatible but both needed for a complete description of the system. In
particular, the wave-particle duality.” (apud [French and Kennedy, 1985, p. 370])

“The phenomenon by which, in the atomic domain, objects exhibit the properties
of both particle and waves, which in classical, macroscopic physics are mutually
exclusive categories.” (ibid., pp. 371–372.)

“The very nature of the quantum theory thus forces us to regard the space-time
co-ordination and the claim of causality, the union of which characterizes the
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classical theories, as complementary but exclusive features of the description,
symbolizing the idealization of observation and definition respectively.” [Bohr,
1927, p. 566.]

“The apparently incompatible sorts of information about the behavior of the
object under examination which we get by different experimental arrangements
can clearly not be brought into connection with each other in the usual way, but
may, as equally essential for an exhaustive account of all experience, be regarded
as ‘complementary’ to each other.” ([Bohr, 1937, p. 291]; [Scheibe, 1973, p. 31.])

“Information regarding the behaviour of an atomic object obtained under definite
experimental conditions may, however, according to a terminology often used
in atomic physics, be adequately characterized as complementary to any infor-
mation about the same object obtained by some other experimental arrangement
excluding the fulfillment of the first conditions. Although such kinds of infor-
mation cannot be combined into a single picture by means of ordinary concepts,
they represent indeed equally essential aspects of any knowledge of the object
in question which can be obtained in this domain.” ([Bohr, 1938, p. 26], apud
[Scheibe, 1973, p. 31], second italic ours.)

E. Scheibe also says that

“. . . which is here said to be ‘complementary’, is also said to be ‘apparently
incompatible’, the reference can scarcely be to those classical concepts, quantities
or aspects whose combination was previously asserted to be characteristic of the
classical theories. For ‘apparently incompatible’ surely means incompatible on
classical considerations alone.” [Scheibe, 1973, p. 31.]

In other words, it is perfectly reasonable to regard complementary aspects as
incompatible, in the sense that their combination into a single description may
lead to difficulties. But in a theory grounded on standard logic, the conjunction
of two theses is also a thesis; in other words, if α and β are both theses or
theorems of a theory (founded on classical logic), then α∧β is also a thesis (or
a theorem) of that theory. This is what we intuitively mean when we say that,
on the grounds of classical logic, a ‘true’ proposition cannot ‘exclude’ another
‘true’ proposition. In this sense, the quantum world is rather distinct from
the ‘classical’, for although complementary propositions are to be regarded as
acceptable, their conjunction seems to be not.

This corresponds to the fact that, in classical logic, if α is a consequence of
a set ∆ of statements and β is also a consequence of ∆, then α ∧ β (α and β)
is also a consequence of ∆. If β is the negation of α (or vice-versa), then this
rule implies that from the set of formulas ∆ we deduce a contradiction α∧¬α
(or ¬β ∧ β). In addition, when α and β are in some sense incompatible, α ∧ β
constitutes an impossibility.

Therefore, as we shall show below, part of a natural procedure to surmount
the problem is to restrict the rule in question. But before that, let us make some
few additional remarks on complementarity.
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8.3 Recent results

As it is well known, Bohr and others like P. Jordan and F. Gonseth have
suggested that complementarity could be useful not only in physics but in other
areas as well, in particular in biology and in the study of primitive cultures
(see [Jammer, 1974, pp. 87ff], where still other fields of application, like psy-
chology, are mentioned). Although these applications may be interesting, they
are outside the scope of this paper. Keeping within physics, it should be re-
called that in 1994 Englert et al. argued that complementarity is not simply
a consequence of the uncertainty relations, as advocated by those who believe
that “two complementary variables, such as position and momentum, cannot
simultaneously be measured to less than a fundamental limit of accuracy”, but
that

“(. . .) uncertainty is not the only enforce of complementarity. We devised and an-
alyzed both real and thought experiments that bypass the uncertainty relation, in
effect to ‘trick’ the quantum objects under study. Nevertheless, the results always
reveal that nature safeguards itself against such intrusions –complementarity re-
mains intact even when the uncertainty relation plays no role. We conclude that
complementarity is deeper than has been appreciated: it is more general and more
fundamental to quantum mechanics than is the uncertainty rule.” [Englert et al.]

If Englert et al. are right, then it seems that the paraclassical logic we shall
describe below may in fact be useful.

Recently (1998), some experiments developed in the Weizmann Institute in
Israel indicated that the Principle of Complementarity has been verified also for
fermions (electrons) [Buch et al., 1998]. Through nano-technology devices cre-
ated in low-temperature scales, the scientists developed measuring techniques
which have enabled them to show that in a certain two-slit experiment, the
wave-like behaviour occurs when the possible paths a particle can take remain
indiscernible, and that a particle-like behaviour occurs when a ‘which-path’
detector is introduced, determining the actual path taken by the electron. These
recent experiments show that the ancient intuitions and some Gedankenexper-
imente performed by Bohr and others were in the right direction, so sustaining
Bohr’s position that complementarity is in fact a characteristic trait of matter.
So, to accommodate this idea within a formal description of physics is in fact
an important task.

A still more recent (2001) ‘experimental proof’ of Bohr’s principle came
from Austria, where O. Nairz and others have reported that Heisenberg uncer-
tainty principle, which is closely related to complementarity, was demonstrated
for a massive object, namely, the fullerene molecule C70 at a temperature of
900 K. In justifying their work, they said that “[t]here are good reasons to
believe that complementarity and the uncertainty relation will hold for a suf-
ficiently well isolated object of the physical world and that these quantum
properties are generally only hidden by technical noise for large objects. It is
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therefore interesting to see how far this quantum mechanical phenomenon can
be experimentally extended to the macroscopic domain” [Nairz, 2001].

This apparently opens the road for the acceptance of the validity of com-
plementarity also in the macroscopic world. The analysis of these applications
should interest not only physicists and other scientists, but philosophers as well.
We believe that Bohr’s intuitions that complementarity is a general phenom-
enon in the world deserves careful examination in the near future. But let us go
back to logic.

8.4 Logics of complementarity

The expression ‘logic of complementarity’ has been used elsewhere to des-
ignate different logical systems, or even informal conceptions, which intended
to provide a description of Bohr’s ideas of complementarity from a ‘logical’
point of view.

As a historical remark, we recall that some authors like C. von Weizsäcker, M.
Strauss and P. Février have already tried to elucidate Bohr’s principle from such
a logical point of view (cf. [Février, 1951], [Jammer, 1974, pp. 377ff], [Strauss,
1973]). Jammer mentions Bohr’s negative answer to von Weizsäcker’s attempt
of interpreting his principle, and observes that this should be taken as a warning
for analyzing the subject (ibid. p. 90). As shown by Jammer, Bohr explained
that his rejection was due to his conception that “[t]he complementary mode of
description (. . .) is ultimately based on the communication of experience, [quot-
ing Bohr] ‘which has to use the language adapted to our usual orientation in daily
life’ ”; Jammer continues by recalling that, to Bohr, “objective description of
experience must always be formulated in [quoting Bohr again] ‘plain language
which serves the needs for practical life and social intercourse’ ” ([Jammer,
1974, p. 379]). These points reinforce our emphasis that Bohr ascribed to
complementarity the role of a meaning principle. So, maybe Bohr’s rejection
of accepting a ‘logic of complementarity’ could be due to the discrepancies (or
‘divergent conceptions’) related to the way of understanding complementarity.
In his 1966 book, Jammer also suggested something analogous [Jammer, 1966,
p. 356].

Another tentative of building a ‘logic of complementarity’ was P. Février’s.
She began by considering Heisenberg uncertainty relations not simply as some-
thing which can be derived in the formalism of quantum theory, but attributed
to them a distinctive fundamental role as being the very basic principle on
which quantum theory should be built on. She distinguished (yet not explic-
itly) between propositions which can and which cannot be composed. The
last are to stand for complementary propositions; in her logic, a third value
is used for the conjunction of complementary propositions to mean that their
conjunction is ‘absolutely false’. Other connectives are presented by the matrix
method, so that a ‘logic of complementarity’ is proposed, yet not detailed in full
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([Février, 1951]; for further details on her system, see [da Costa and Krause,
to appear]).

Strauss’ logic is based on his conception that the complementarity principle
“excludes simultaneously decidability of incompatible propositions” [Jammer,
1974, p. 356]; then, he proposed a different theory in which conjunctions and
disjunctions of complementary propositions were to be excluded. So, in a
certain sense, although described in probabilistic terms, we may say that his
intention was to develop a logic in which two propositions, say α and β (which
stand for complementary propositions) may be both accepted, but not their
conjunction α ∧ β (op. cit., p. 335). It is interesting to remark that Carnap
declared that Strauss’ logic was ‘inadvisable’ [Carnap, 1995, p. 289]. Today,
by using another kind of paraconsistent logic, termed Jaskowski logic, we think
that perhaps Strauss’ position can be sustained.

Leaving these historical details aside, we shall proceed as follows. After
introducing the concept of a theory which admits a Complementarity Inter-
pretation (to use Jammer’s words – see below), we shall argue that under a
plausible definition of complementarity, the underlying logic of such a theory
is paraclassical logic. In the sequel we shall sketch the main features of this
logic.

8.5 Complementarity theories

Bohr’s view provides the grounds for defining a very general class of the-
ories, which we have elsewhere termed ‘complementarity’ (C-theories; see
[da Costa and Krause, to appear]). Here, we generalize the concept of a
C-theory, by defining ‘complementarity theories with meaning principles’
(termed Cmp-theories), more or less paraphrasing Carnap (but without any com-
promise with his stance), in which some meta-rules are considered in order we
know about the possibility of accepting (or not accepting) certain propositions.
Before characterizing these theories, let us see how some authors read comple-
mentarity; this will guide our definition of Cmp-theories.

To begin with, let us quote Max Jammer:

“Although it is not easy, as we see, to define Bohr’s notion of complementarity,
the notion of complementarity interpretation seems to raise fewer definitory dif-
ficulties. The following definition of this notion suggests itself. A given theory T
admits a complementarity interpretation if the following conditions are satisfied:
(1) T contains (at least) two descriptions D1 and D2 of its substance-matter;
(2) D1 and D2 refer to the same universe of discourse U (in Bohr’s case, mi-
crophysics); (3) neither D1 nor D2, if taken alone, accounts exhaustively for all
phenomena of U ; (4) D1 and D2 are mutually exclusive in the sense that their
combination into a single description would lead to logical contradictions.”

“That these conditions characterize a complementarity interpretation as under-
stood by the Copenhagen school can easily be documented. According to
Léon Rosenfeld, (. . .) one of the principal spokesmen of this school,



The Logic of Complementarity 111

complementarity is the answer to the following question: What are we to do when
we are confronted with such situation, in which we have to use two concepts that
are mutually exclusive, and yet both of them necessary for a complete descrip-
tion of the phenomena? “Complementarity denotes the logical relation, of quite
a new type, between concepts which are mutually exclusive, and which therefore
cannot be considered at the same time – that would lead to logical mistakes – but
which nevertheless must both be used in order to give a complete description of
the situation.” Or to quote Bohr himself concerning condition (4): “In quantum
physics evidence about atomic objects by different experimental arrangements
(. . .) appears contradictory when combination into a single picture is attempted.”
(. . .) In fact, Bohr’s Como lecture with its emphasis on the mutual exclusive but
simultaneous necessity of the causal (D1) and the space-time description (D2),
that is, Bohr’s first pronouncement of his complementarity interpretation, forms
an example which fully conforms with the preceding definition. Bohr’s discovery
of complementarity, it is often said, constitutes his greatest contribution to the
philosophy of modern science.” [Jammer, 1974, pp. 104-5.]

Jammer’s quotation is interpreted as follows. We take for granted that both
D1 and D2 are sentences formulated in the language of a complementary theory
T , so that items (1) and (2) are considered only implicitly. Item (3) is understood
as entailing that both D1 and D2 are, from the point of view of T , necessary for
the full comprehension of the relevant aspects of the objects of the domain; so,
item (3) is asserted on the grounds of a certain meaning principle; so, we take
both D1 and D2 as ‘true’ sentences, that is, T ⊢ D1 and T ⊢ D2. Important to
remark that here the concept of truth is taken in a syntactical way: a sentence
is true in T if it is a theorem of T , and false if its negation is a theorem of T . If
neither the sentence nor its negation are theorems of T , then the sentence (so
as its negation) is said to be independent.

Item (4) deserves further attention. Jammer (loc. cit.) says that ‘mutually
exclusive’ means that the “combination of D1 and D2 into a single descrip-
tion would lead to logical contradictions”, and this is reinforced by Rosenfeld’s
words that the involved concepts “cannot be considered at the same time”,
since this would entail a “logical mistake”. Then, we informally say that mu-
tually exclusive, conjugate propositions, or complementary propositions, are
sentences which lead (by classical deduction) to a contradiction; in particular,
their conjunction yields a contradiction.

So, following Jammer and Rosenfeld, we shall say that a theory T admits
complementarity interpretation, or that T is a C-theory, if T encompasses ‘true’
formulasα andβ (which may stand for Jammer’sD1 andD2 respectively) which
are ‘mutually exclusive’ in the above sense, for instance, that their conjunction
yields to a strict contradiction if classical logic is applied. In other words, if ⊢ is
the symbol of deduction of classical logic, then, α and β being complementary,
we have α, β ⊢ γ∧¬γ for some γ of the language of T (see [Mendelson, 1997,
pp. 34-5]).
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The problem with this characterization of complementarity is that if the un-
derlying logic of T is classical logic, then T , involving complementary propo-
sitions in the above sense, is contradictory or inconsistent. Apparently, this
is precisely what Rosenfeld claimed in the above quotation. Obviously, if we
intend to maintain the idea of complementary propositions as forming part of
the theory and being expressed in the object language without trivialization, one
solution (perhaps the only one) is to employ as the underlying logic of T a logic
such that the admission of both α and β would not entail a strict contradiction
(i.e., a formula of the form γ ∧¬γ). One way to do so is to modify the classical
concept of deduction, obtaining a new kind of logic, called paraclassical logic,
as we shall do in what follows.

That kind of logic is the underlying logic of what we have termed comple-
mentary theories; here we call complementary theory or Cmp-theory, a C-theory
with meaning principles. For instance, as we have seen, Heinsenberg uncer-
tainty relations were taken by Février as the starting point for quantum physics.
According to her, these relations should not be a simple result obtained within
the formalism of quantum theory, but should be the base of quantum mechanics.
Meaning principles, as we have said before, are here understood as assump-
tions which sanction either some restrictions of ‘classical’ procedures or the
utilization of certain ‘classical’ incompatible schemes in the domain of scien-
tific theories. The word ‘classical’ refers to classical physics (Bohr strongly
believed that all the discourse involving quantum phenomena should be done
in the language of classical physics).

8.6 The underlying logic of Cmp-theories

We shall restrict our explanation to the propositional level, although it is not
difficult to extend our system to encompass quantifiers (and set theory) as it
would be necessary if we intend to construct a possible logical basis for physi-
cal theories. Let us call C an axiomatized system for the classical propositional
calculus. The concept of deduction in C is taken to be the standard one; we use
the symbol ⊢ to represent deductions in C (see [Mendelson, 1997]). Further-
more, the formulas of C are denoted by Greek lowercase letters, while Greek
uppercase letters stand for sets of formulas. The symbols ¬, →, ∧, ∨ and ↔
have their usual meanings, and standard conventions in writing formulas will
be also assumed without further comments.

Definition 1. Let Γ be a set of formulas of C and let α be a formula (of the
language of C). Then we say that α is a (syntactical) P-consequence of Γ, and
write Γ ⊢P α, if and only if

For a derivation of Heisenberg relations within the Hilbert space formalism, see [Redhead, 1992, pp. 59ff].
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(P1) α ∈ Γ, or

(P2) α is a classical tautology, or

(P3) There exists a consistent (according to classical logic) subset ∆ ⊆ Γ such
that ∆ ⊢ α (in classical logic).

We call ⊢P the relation of P-consequence.

Definition 2. P is the logic whose language is that of C and whose rela-
tion of consequence is that of P-consequence. Such a logic will be called
paraclassical.

It is immediate that, among others, the following results can be proved:

Theorem 1.

1. If α is a theorem of the classical propositional calculus C and if Γ is a
set of formulas, then Γ ⊢P α; in particular, ⊢P α.

2. If Γ is consistent (according to C), then Γ ⊢ α (in C) iff Γ ⊢P α (in P).

3. If Γ ⊢P α and if Γ ⊆ ∆, then ∆ ⊢P α (The defined notion of
P-consequence is monotonic.)

4. The notion of P-consequence is recursive.

5. Since the theses of P (valid formulas of P) are those of C, P is decidable.

Definition 3. A set of formulas Γ is P-trivial iff Γ ⊢P α for every formula
α. Otherwise, Γ is P-non-trivial. (Similarly we define the concept of a set of
formulas being trivial in C).

Definition 4. A set of formulas Γ is P-inconsistent if there exists a formula α
such that Γ ⊢P α and Γ ⊢P ¬α. Otherwise, Γ is P-consistent.

Theorem 2.

1. If α is an atomic formula, then Γ = {α,¬α} is P-inconsistent, but
P-non-trivial.

2. If the set of formulas Γ is P-trivial, then it is trivial (according to classical
logic). If Γ is non-trivial, then it is P-nontrivial.

3. If Γ is P-inconsistent, then it is inconsistent according to classical logic.
If Γ is consistent according to classical logic, then Γ is P-consistent.
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A semantical analysis of P, for instance a completeness theorem, can be
obtained without difficulty [da Costa and Vernengo, 1999]. We remark that
the set {α ∧ ¬α}, where α is a propositional variable, is trivial according to
classical logic, but it is not P-trivial. Notwithstanding, we are not suggesting
that complementary propositions should be understood necessarily as pairs of
contradictory sentences. This is made clear by the following definition:

Definition 5 (Complementarity Theories or Cmp-theories). A C-theory is a
set of formulas T of the language of C (the classical propositional calculus)
closed by the relation of P-consequence, that is, α ∈ T for any α such that
T ⊢P α. In other words, T is a theory whose underlying logic is P. ACmp-theory
is a C-theory subjected to meaning principles.

Of course the definition of a Cmp-theory is a little bit vague. However,
for instance in the case of a meaning principle that introduces restrictions in
the acceptable statements of the theory, the hypothesis and axioms used in
deductions have to satisfy such restrictive conditions. For instance, if a meaning
principle of a theory T is formulated as Heisenberg Uncertainty Principle, this
circumstance will impose obvious restrictions to certain statements of T .

Theorem 3. There exist C-theories and Cmp-theories that are inconsistent,
although are P-non-trivial.

Proof: Immediate consequence of Theorem 2.

Finally, we state a result (Theorem 4), whose proof is an immediate con-
sequence of the definition of P-consequence. However, before stating the
theorem, let us introduce a definition:

Definition 6 (Complementary Propositions). Let T be a Cmp-theory (in par-
ticular, a C-theory) and let α and β be formulas of the language of T . We say
that α and β are T -complementary (or simply complementary) if there exists
a formula γ of the language of T such that:

1. T ⊢P α and T ⊢P β

2. T, α ⊢P γ and T, β ⊢P ¬γ (in particular, α ⊢P γ and β ⊢P ¬γ).

Theorem 4. If α and β are complementary theorems of a Cmp-theory T and
α ⊢P γ and β ⊢P ¬γ, then in general γ ∧ ¬γ is not a theorem of T .

Proof: Immediate, as a consequence of Theorem 2.

In other words, T is inconsistent from the point of view of classical logic,
but it is P-non-trivial.
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It should be emphasized that our way of characterizing complementarity
does not mean that complementary propositions are always contradictory, for
α and β above are not necessarily one the negation of the other. However, as
complementary propositions, we may derive from them (in classical logic) a
contradiction; to exemplify, we remark that ‘x is a particle’ is not the direct
negation of ‘x is a wave’, but ‘x is a particle’ entails that x is not a wave. This
reading of complementarity as not indicating strict contradiction, as we have
already made clear, is in accordance with Bohr himself; let us quote him once
more to reinforce this idea. Bohr says:

“In considering the well-known paradoxes which are encountered in the applica-
tion of the quantum theory to atomic structure, it is essential to remember, in this
connection, that the properties of atoms are always obtained by observing their
reactions under collisions or under the influence of radiation, and that the (. . .)
limitation on the possibilities of measurement is directly related to the apparent
contradictions which have been revealed in the discussion of the nature of light
and of the material particles. In order to emphasize that we are not concerned
here with real contradictions, the author [Bohr himself] suggested in an earlier
article the term ‘complementarity’.” [Bohr, 1929b, p. 95] (italics ours).

Let us give a simple example of a situation involving a Cmp-theory. Suppose
that our theory T is a fragment of quantum mechanics admitting Heisenberg
relations as a meaning principle and having as its underlying logic paraclassical
logic. If α and β are two incompatible propositions according to Heisenberg’s
principle, we can interpret this principle as implying that α entails ¬β (or that
β entails ¬α). So, even if we add α and β to T , we will be unable to derive, in
T , α ∧ β. Analogously, Pauli’s Exclusion Principle has also an interpretation
as that of Heisenberg’s.

As we said before, the basic characteristic of Cmp-theories is that, in making
P-inferences, we suppose that some sets of statements we handle are consistent.
In other words, Cmp-theories are closer to those theories scientists actually
use in their everyday activity than those theories with the classical concept of
deduction. In other words, paraclassical logic (and paraconsistent logics in
general) seems to fit more accurately the way scientists reason when stating
their theories.

8.7 The paralogic associated to a logic

As we noted in [da Costa and Krause, to appear], the technique used above
to define the paraclassical logic associated to classical logic can be generalized
to other logics L (including logics having no negation symbol, but we will
not deal with this case here), as well as the concept of a Cmp-theory. More
precisely, starting with a logic L, which can be seen as a pair L = 〈F ,⊢〉,
where F is an abstract set called the set of formulas of L and ⊢⊆ P(F)×F is
the deduction relation of L (which is subjected to certain postulates depending
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on the particular logic L) [Béziau, 1994], we can define the PL-logic associated
to L (the ‘paralogic’ associated to L) as follows.

Let L be a logic, which may be classical logic, intuitionistic logic, some
paraconsistent logic or, in principle, any other logical system. By simplicity,
we suppose that the language of L has a symbol for negation, ¬. Then,

Definition 7. A theory based on L (an L-theory) is a set of formulas Γ of the
language of L closed under ⊢L (the symbol of deduction in L). In other words,
α ∈ Γ for every formula α such that Γ ⊢L α.

Definition 8. An L-theory Γ is L-inconsistent if there exists a formula α of the
language of L such that Γ ⊢L α and Γ ⊢L ¬α, where ¬α is the negation of α.
Otherwise, Γ is L-consistent.

Definition 9. An L-theory Γ is L-trivial if Γ ⊢L α for any formula α of the
language of L. Otherwise, Γ is L-non-trivial.

Then, we define the PL-logic associated with L whose language and syn-
tactical concepts are those of L, except the concept of deduction, which is
introduced as follows: we say that α is a PL-syntactical consequence of a set
Γ of formulas, and write Γ ⊢PL

α if and only if:

(1) α ∈ Γ, or

(2) α is a provable formula of L (that is, ⊢L α), or

(3) There exists ∆ ⊆ Γ such that ∆ is L-non-trivial, and ∆ ⊢L α.

For instance, we may consider the paraconsistent calculus C1 [da Costa, 1974]
as our logic L. Then the paralogic associated with C1 is a kind of ‘para-
paraconsistent’ logic.

It seems worthwhile to note the following in connection with the paraclassical
treatment of theories. Sometimes, when one has a paraclassical theory T such
that T ⊢P α and T ⊢P ¬α, there exist appropriate propositions β and γ such
that T can be replaced by a classical consistent theory T ′ in which β → α and
γ → ¬α are theorems. If this happens, the logical difficulty is in principle
eliminable and classical logic maintained.

8.8 Logic and physics

When we hear something about the relationships between logic and quan-
tum physics, we usually tend to relate the subject with the so called ‘quantum
logics’, a field that has its ‘official’ birth in Birkhoff and von Neumann’s well
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known paper from 1936 (see [Dalla Chiara and Giuntini, 2001]). This is com-
pletely justified, for their fundamental work caused the development of a wide
field of research in logic. Today there are various ‘quantum logical systems’,
although they have been studied specially as pure mathematical systems, far
from applications to the axiomatization of the microphysical world and also far
from the insights of the forerunners of quantum mechanics (for a general and
updated account on this field, see [Dalla Chiara and Giuntini, 2001]).

Of course an axiomatization of a given empirical theory is not always totally
determinate, and the need for a logic distinct from the classical as the underlying
logic of quantum theory is still open to discussion. In fact, the axiomatic basis
of a scientific theory depends on the several aspects of the theory, explicitly
or implicitly, appropriate to take into account its structure. So, for example,
(Ludwig, 1990) studies an axiomatization of quantum mechanics based on
classical logic. All the stances, that of employing a logic like paraclassical
logic (or other kind of system as one of those mentioned above), and that of
Ludwig, are in principle acceptable, since they treat different perspectives of the
same domain of discourse, and different ‘perspectives’ of a domain of science
may demand for distinct logical apparatuses; this is a philosophical point of
view radically different from the classical. As we said in another work (see [da
Costa and Krause, to appear]), the possibility of using non-standard systems
in the foundations of physics (and in general of science) does not necessarily
entail that classical logic is wrong, or that (in particular) quantum theory needs
another logic. Physicists probably will continue to use classical (informal) logic
in the near future. But we should realize that other forms of logic may help us
in the better understanding of certain features of the quantum world as well, not
easily treated by classical devices, such as complementarity. Only the future of
physics will perhaps decide what is the better solution, a decision that involves
even pragmatic factors.

To summarize, we believe that there is no just one ‘true logic’, and distinct
logical (so as mathematical and perhaps even physical) systems, like para-
classical logic, may be useful to approach different aspects of a wide field of
knowledge like quantum theory. The important point is to be open to the justi-
fiable revision of concepts, a point very lucidly emphasized by Niels Bohr, who
wrote:

“For describing our mental activity, we require, on one hand, an objectively given
content to be placed in opposition to a perceiving subject, while, on the other hand,
as is already implied in such an assertion, no sharp separation between object and
subject can be maintained, since the perceiving subject also belongs to our mental
content. From these circumstances follows not only the relative meaning of every
concept, or rather of every word, the meaning depending upon our arbitrary
choice of view point, but also we must, in general, be prepared to accept the
fact that a complete elucidation of one and the same object may require diverse
points of view which defy a unique description. Indeed, strictly speaking, the
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conscious analysis of any concept stands in a relation of exclusion to its immediate
application. The necessity of taking recourse to a complementarity, or reciprocal,
mode of description is perhaps most familiar to us from psychological problems.
In opposition to this, the feature which characterizes the so-called exact sciences
is, in general, the attempt to attain to uniqueness by avoiding all reference to
the perceiving subject. This endeavour is found most consciously, perhaps, in
the mathematical symbolism which sets up for our contemplation an ideal of
objectivity to the attainment of which scarcely any limits are set, so long as we
remain within a self-contained field of applied logic. In the natural sciences
proper, however, there can be no question of a strictly self-contained field of
application of the logical principles, since we must continually count on the
appearance of new facts, the inclusion of which within the compass of our earlier
experience may require a revision of our fundamental concepts.” [Bohr, 1929a,
pp. 212-213].
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Introduction

It must be admitted that mathematical investigations in providing alterna-
tive semantics have carried innovative ideas, and if all have not led to further
developments and applications, they have often led to a better understanding
of the topic considered. Even within a well-established framework, the use of
alternative semantics has proved its fruitfulness. As an example, for indepen-
dence results in ZF , one may quote the Boolean-valued version of forcing due
to Scott and Solovay, in which a set is conceived of as a function which takes its
values into a given complete Boolean algebra, no more into the 2-valued one.
This concerns classical logic and perhaps this would remind the reader of the
primal use of many-valued semantics for proving the independence of axioms
in propositional logic. Note that there is no need to be interested in a possible
meaning of the additional “truth values” to do that, we would rather say that
the understanding is in the application.

That said, one may legitimately ask whether the use of many-valued seman-
tics could not also benefit our understanding of the set-theoretical paradoxes
themselves. In any case, to know which logic(s) can support the full compre-
hension scheme, or some maximal fragments of it, is an interesting question
in itself, at least not devoid of mathematical curiosity. So we shall review
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some attempts in that direction, giving an historical account on the subject in
connection with Skolem’s pioneering work in �Lukasiewicz’s logics. On the
way we will also point out and distinguish two ways of formalizing set theory,
namely comprehension and abstraction, which have been considered by several
authors.

Our purpose is to stress the use of fixed-point arguments in semantical con-
sistency proofs and thus the role of continuity in avoiding the paradoxes. Then
it will become apparent how these investigations were actually close to other
contemporary ones, namely Kripke’s work on the liar paradox and Scott’s on
models for the untyped λ-calculus.

To make the links between our different sources clearer, we have included in
the appendix on page 134 a diagram of some selected references. Throughout
the paper, such references are conveniently marked with the symbol ‘∗’.

9.1 Moh Shaw-Kwei’s paradox

The existence of the Russell set is prohibited in classical logic. By tampering
with the negation some alternative logics have proved more tolerant. Never-
theless, there exist other sets that can affect such non-classical systems. This
was illustrated in 1954 by Moh Shaw-Kwei [20]∗ who presented an extended
version of Curry’s paradox. Here it is.

Let → be the official implication connective of the logic considered. Pre-
cisely, in order that → be referred to as an implication connective, it is assumed
that modus ponens holds, namely

MP : p , p → q ⊢ q

where ⊢ is the consequence relation associated with the logic. To express
Moh’s paradox, we define the n-derivative →n of the implication inductively
as follows:

p →0 q :≡ q and p →n+1 q :≡ p → (p →n q) (n ∈ N)

Then the implication connective is said to be n-absorptive if it satisfies the
absorption rule of order n, that is,

An : p →n+1 q ⊢ p →n q

Now, assuming that the implication is n-absorptive for some n > 0, it is shown
that any formula can be derived from the existence of the set Cn := {x | x ∈
x →n⊥}, where ⊥ is a “falsum” constant defined in such a way that ⊥ ⊢ ϕ, for
any ϕ.
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Proof.

Comp ⊢ ∀x (x ∈ Cn ↔ (x ∈ x →n⊥) ) [Comprehension] (1)
⊢ Cn ∈ Cn ↔ (Cn ∈ Cn →

n⊥) [Univ. Quant. Elimin.] (2)
⊢ Cn ∈ Cn →

n⊥ [(2)
→

, An] (3)
⊢ Cn ∈ Cn [(2)

←
, (3), MP ] (4)

⊢ ⊥ [(3), (4), MP (n times)] (5)

Thus any formula can be derived and the theory is meaningless.

As a particular case we have C1 = {x| x ∈ x → ⊥}, which might be called
the Curry set, and then we recover the Russell set R = {x| x /∈ x} if ¬ϕ is
defined by ϕ → ⊥, as it is the case in classical logic. Note incidentally that
C0 = Ø, but this later is not problematic.

9.2 The �Lukasiewicz logics

A nice illustration is supplied by the most popular many-valued logics,
the �Lukasiewicz ones. We shall content ourselves here with recalling the truth-
functional characterization of the connectives and quantifiers of these logics.

The set of truth values for the infinite-valued �Lukasiewicz logic �L∞ is taken
to be the real unit interval I := [0, 1] ⊆ R with its natural ordering, which will
be referred to as the truth ordering and denoted by �T . The only designated
value is the maximum 1. Here are the truth functions of the logical operators
(note we are using the same notation for the operators and their truth functions):

◦ negation is defined by ¬x := 1 − x, for any x ∈ I;

◦ conjunction and disjunction are respectively minimum and maximum
with respect to the truth ordering, i.e., x∧y := min�

T
{x, y} and x∨y :=

max�
T
{x, y}, for any x, y ∈ I;

◦ quantifiers are thought of as generalized conjunction and disjunction, i.e.,
for any A⊆I , ∀A := inf�

T
A and ∃A := sup�

T
A;

◦ last but not least, the truth function of the implication is specifically
defined by x → y := min�

T
{1, 1 − x + y}. Observe that this is not

¬x ∨ y, we only have ¬x ∨ y �T x → y. It is also interesting to note
that x → y = 1 iff x �T y, so that → is in some sense a characteristic
function of the truth ordering. Accordingly, a very particular property of
the biconditional is that x ↔ y = 1 iff x = y.

For our purposes, it is to be noticed that if we equip I with the usual topology of
the real line, then each of the truth functions of the connectives is continuous.
The truth functions of the quantifiers are continuous as well with respect to a
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reasonable topology on the set of subsets of I . That non-logical property of
these operators will be of interest to us.

The n-valued �Lukasiewicz logic �Ln (n � 2) is obtained by restricting the
set of truth values to In := {0, 1

n−1 , 2
n−1 , . . . , 1}. Particular cases are then the

2-valued logic �L2, which is nothing but classical logic, and the 3-valued one �L3,
which historically was the first many-valued logic introduced by �Lukasiewicz.

It was observed by Moh Shaw-Kwei that the implication is (n−1)-absorptive
in �Ln, whereas it is not n-absorptive in �L∞, for any value of n, whereupon the
author asked whether one could develop the naive theory of sets from �L∞.

9.3 Skolem’s conjecture

This observation was the starting point in the late fifties of a course of papers
initiated by Skolem, who conjectured and tried to prove in [21]∗ the consis-
tency of the full comprehension scheme in �L∞.1 On his road Skolem had also
considered and investigated the consistency problem of some fragments of that
scheme in �L3 and �L2 (see [23; 22; 24]∗), on which we are going to dwell later.

Skolem’s conjecture was partially confirmed by Skolem himself in [21]∗

and by Chang and Fenstad in different papers [5; 9]∗. For instance, Skolem
only showed the consistency of the comprehension scheme restricted to formu-
lae containing no quantifiers, while Chang had quantifiers but no parameters,
or parameters but then some restrictions on quantifiers. Anyhow, from the
technical point of view, what should be said is that all these first attempts are
semantical and that their proofs are based on the original method of Skolem, us-
ing at some stage a fixed-point theorem, namely Brouwer’s fixed-point theorem
for the space Im, m ∈ N (or even for IN), stating that any continuous function
on Im (or IN) has a fixed point. We will see that another famous fixed-point
theorem was also used, but rather implicitly, in Skolem’s papers [23; 22]∗.

To understand how a fixed-point argument can be involved in a semantical
consistency proof of fragments of the comprehension scheme in many-valued
logics, let us see what a model of such fragments could be.

9.4 Comprehension

A structure M :≡ 〈M ;∈M〉 for set theory in a given many-valued logic, of
which T is the set of truth values (and throughout the paper T shall only be
reserved for I or any of the In’s), is formally defined by a non-empty set M
together with a function ∈M : M × M −→ T : (x, y) �−→ ∈M‘(x, y) := |x ∈
y|M , where this later is to be understood as the truth value of x ∈ y in M . More
generally, and relatively to such a structure M, |ϕ|M will be denoting the truth

1As just mentioned, this suggestion was made by Moh Shaw-Kwei in [20]∗. It should be remarked however
that Skolem does not cite that work, and so he might have arrived at his conclusions independently.
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value of any closed formula ϕ interpreted in M, which is defined inductively
in the usual manner.

In this many-valued setting, we shall say that a structure is a model for some
set theory if it fulfils some fragment of the comprehension scheme:

Comp[Σ] :≡ for any ϕ(x, ȳ) in Σ,
∀ p̄ ∃y ∀x(x ∈ y ↔ ϕ(x, p̄))

where Σ is any given fragment of the language of set theory. We usually denote
such a y given by the ϕ-instance of that scheme by ‘{x|ϕ(x, p̄)}’.

Now it is easily seen how a fixed-point argument can come into play. Indeed,
let ϕ(x) := f(x ∈ x), where f(·) is any propositional function in one variable,
and then let τ := ‘{x|ϕ(x)}’. If the existence of τ was guaranteed in a
structure M, we would have |τ ∈ τ |M = |f(τ ∈ τ)|M = |f |(|τ ∈ τ |M), where
|f | is denoting the truth function of f , showing that this latter should have a fixed
point. It is then not surprising that Brouwer’s fixed-point theorem was involved
in the first attempts in �L∞, as it precisely ensures that any truth function on I
defined by means of the �Lukasiewicz connectives and quantifiers is continuous
and so has a fixed point. More generally, this would suggest that continuity, in a
very broad sense as we shall see, might be regarded as a kind of safety property
against the set-theoretical paradoxes.

Thus far nothing guarantees the uniqueness of ‘{x|ϕ(x, p̄)}’, so such set
abstracts may not be properly handled in the theory. As usual, this would
require some form of extensionality and/or the explicit use of an abstraction
operator ‘{·|−}’ in the language, on which we are going to elaborate hereafter.

9.5 Extensionality

The extensionality principle asserts that two sets having the same members
are in some way indistinguishable. Depending on whether it is considered as a
rule or as an axiom, different versions are conceivable. To formulate them, let
us adopt the following abbreviations:

x=. y :≡ ∀z(z ∈ x ↔ z ∈ y) x
.
= y :≡ ∀z(x ∈ z ↔ y ∈ z)

Thus, candidates for expressing the extensionality principle are

♭Ext : x=. y ⊢ x
.
= y ♭Ext♯ : ⊢ ∀x∀y(x=. y → x

.
= y).

And if the equality symbol = was available in the language, these should rather
appear as

Ext : x=. y ⊢ x = y Ext♯ : ⊢ ∀x∀y(x=. y → x = y)
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Of course, in order that = deserve the status of equality, it is to be required at
least that it be so interpreted in any structure as to guarantee the principle of
substitutivity (as a rule or as an axiom scheme). This can be met by simply
defining the truth function of = on a structureM by =M‘(x, y) := 1 if x = y
in M , and =M‘(x, y) := 0 if x �= y in M . It was however observed in [5]∗

that this strict interpretation of = never yields a model of Comp + Ext♯. Note
that a more reasonable definition of the equality relation on a structure might
be anyone such that =M‘(x, y) = 1 if and only if x = y in M . In any case this
would suffice to ensure that = has the substitutivity property (but as a rule, not
as an axiom scheme actually). Such a structure will be said to be normal.

In any normal structure M, Ext amounts to identifying each set y with
its characteristic function [y]M : M −→ T : x �−→ |x ∈ y|M , so that the
“bracket” function thus defined, [·]M : M −→ TM where TM is the set of
all functions from M into T , is injective. Accordingly, the universe M of an
extensional normal structure may be identified with a subset of TM , namely
the range of [·]M , which is denoted here by [M → T ]:

M ≃ [M → T ] � TM (♦)

Of course, because of Cantor’s theorem, not every function from M into T can
represent a set in the model. In other words, not every truth function can be
involved in formulae defining sets. Which ones could? As was observed, sets
defined by means of truth functions having fixed points are most welcome. Now,
by providing T and M with some suitable topological structure, and then by
taking [M → T ] to be a certain class of continuous functions, so as to guarantee
the existence of fixed points, there could be some M not only in bijection but
homeomorphic with [M → T ]. The whole universe of an extensional normal
structure might then itself be regarded as a fixed point of, say, some functor
F(·) := [ · → T ] acting on a suitable category of topological spaces. That is
indeed a promising way of looking at set-theoretic models.

9.6 Abstraction

One may consider the use of set abstracts in the language itself with the help
of an abstraction operator ‘{· | −}’. Then we shall rather speak of abstraction
instead of comprehension to stress that set abstracts may already appear as terms
in the formula ϕ involved in the corresponding instance of that scheme:

Abst[Σ̂] :≡ for any ϕ(x, ȳ) in Σ̂,

∀ p̄ ∀x(x ∈{x|ϕ(x, p̄)} ↔ ϕ(x, p̄))
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where Σ̂ stands for any given fragment of the language of set theory extended
by an abstraction operator.

A characteristic feature of such a language is that it allows abstraction and
quantification over variables occurring free in set abstracts, as certified for
instance by the formation of the term ‘{x | {u | x ∈ x} ∈ x}’.

It was precisely by using an abstraction operator, and by a proof-theoretic
method in fact, that Skolem’s conjecture was finally established much later by
White in 1979 (see [25]∗). So what he actually proved is the consistency of
the full abstraction scheme in �L∞, without equality in the language. It was
noticed by the author himself that his system is actually too weak in order to
be able to develop classical mathematics inside (even just classical first-order
number theory). He also showed that ♭Ext♯ cannot be consistently added, but
we ignore whether ♭Ext could be. We do not know either whether extensional
normal models of the full comprehension scheme could be built.2 Note that
such models would give rise to a full universe of fuzzy sets.

We shall now leave the consistency problem of the full comprehension
scheme in �L∞ to consider the one of some logical fragments of it in �L3 and �L2,
as initiated by Skolem (see [23; 22; 24]∗). We will see that, though the use
of set abstracts in the language has been salutary too in order to prove their
consistency, it can also be fatal to extensionality in the presence of equality in
formulae defining sets.

9.7 Extensionality and abstraction with equality

To illustrate this, we begin by showing that, assuming Ext, the Russell set
can be defined in �L2 without negations or implications, simply by using set
abstracts and equality in the language:

Proof. Assume Abst & Ext and define R := {x | {y | x ∈ x} = {y | ⊥}}.
Thus we have :

Abst ⊢ R ∈ R ↔ {y | R ∈ R} = {y | ⊥}
↔ ∀y(R ∈ R ↔ ⊥) (using Ext)
↔ R /∈ R

This sort of paradoxes appeared in Gilmore’s work on partial set theory
[13]∗.3 Note that Russell’s set is no longer contradictory in Gilmore’s set

2So far we have only obtained partial results, comparable to those of [5; 9]∗, by using techniques described
in [AME/RUT:89].
3It should be said that Gilmore’s work was first publicized in 1967, but the inconsistency of extensionality
only appeared in 1974.
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theory. What Gilmore showed is that, within an extensional universe, a sub-
stitute for it can be defined by using set abstracts and equality in the language.
Although his motivations were elsewhere, that work by Gilmore could have
equally been expressed within the 3-valued �Lukasiewicz logic. Besides, Brady
in [3]∗ directly adapted Gilmore’s technique to �L3 to much strengthen Skolem’s
initial result, showing the consistency of an abstraction scheme in that logic, but
without equality in the language (as in Skolem). By this mere fact, a significant
departure in Brady’s paper is that the author succeeded in proving that his model
is extensional and so, though he was not aware of that, he actually proved a
complementary result of Gilmore’s, namely that one can recover extensionality
by dropping equality out of formulae defining sets.

To clearly express those results of Gilmore and Brady, let Π3 denote the set
of formulae containing no occurrences of → in the language of set theory.4

Adding = as subscript means that we may officially use it in formulae defining
sets.

Theorem ([13]∗). Abst[Π̂3
=] is consistent in �L3, but inconsistent together with

Ext.

Theorem ([3]∗). Abst[Π̂3] + ♭Ext is consistent in �L3.

It should be mentioned that similar results apply as well to the paraconsistent
counterpart of �L3, the quasi-relevant logic RM3 (see [4; 18]∗).

Previously, Skolem had only built extensional models of a comprehension
scheme in �L3 restricted to formulae not containing any occurrence of →, but
not any quantifier either (and without equality in the language). Actually his
technique of proof in [23; 22]∗ cannot be extended in order to handle quantifiers.
Skolem however shows in [22]∗ that it can be adapted to �L2, initiating by the
way, as far as we know, the consistency problem for positive comprehension
principles. Even better, in [22]∗ and [24]∗, he presents different techniques of
which one finally leads him to show the consistency of Comp(Π2) + Ext (see
[24]∗, Theorem 1), where Π2 is like Π3 but without ¬ (classical logic!). It is
the reason why such formulae are commonly said to be positive.

Surprisingly, and without any references to Skolem, the consistency problem
for positive comprehension principles has been reinvestigated and invigorated
much later in the eighties, where it would rather seem to have his source in
Gilmore’s work on partial set theory (see [11; 14]∗). It is then not so surprising
that similar results to those stated for �L3 have been proved for �L2:

Theorem ([14]∗). Abst[Π̂2
=] is consistent in �L2, but inconsistent together with

Ext.

4Notice that this restriction is meaningful in view of Moh Shaw-Kwei’s paradox.
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Theorem ([16]∗). Abst[Π̂2] + ♭Ext is consistent in �L2.

Here much more interesting extensional models were actually discovered in
order to recover equality in formulae defining sets, and so by giving up the use
of set abstracts.

Theorem ([11]∗). Comp[Π2
=] + Ext is consistent in �L2.

Subsequently, the technique used to construct them was adapted by Hinnion
in [15]∗ to the partial and the paraconsistent cases with different success (see
also [18]∗ for the paraconsistent version).

The rest of this talk is in a sense devoted to showing how such models can
be obtained. To do that, we first have to point out the guiding idea which was
already subjacent in the original work by Skolem.

9.8 Monotonicity: a particular case of continuity

The key step in Skolem’s proofs of the consistency of a comprehension
scheme in �L3 and �L2 (see [23]∗ and [22]∗) is again the observation that the
truth functions of formulae defining sets have the fixed-point property. Of
course, as the set of truth degrees is discrete, it is no longer possible to invoke
Brouwer’s theorem to see that. As a matter of fact, Skolem contents himself in
[23]∗ with observing that there are exactly eleven propositional truth functions
in one variable constructible in �L3 without using→, and that each of them really
has a fixed point. In [22]∗, a similar remark for positive formulae is applied
to �L2. Although this was not noticed by Skolem, it is another famous fixed-point
theorem that is hidden behind these observations, namely the Knaster-Tarski
theorem for ordered sets.

To proceed we would remind the reader that a particular case of continuity is
monotonicity. Indeed, it is well-known that if any ordered set is equipped with
the topology for which the closed subsets are nothing but the lower sets, i.e.,
A is closed if and only if x � a ∈A ⇒ x ∈A, then the continuous maps are
exactly the monotonic ones. Now it has been shown that the ordered sets on
which any monotonic/continuous function has a fixed point are characterizable,
these are the dcpo’s: we say that a partially ordered set D is directed complete,
or is a dcpo, if any directed subset in D has a least upper bound; where A ⊆ D
is said to be directed if A �= ∅ and for all a, b ∈A, there exists c ∈A with
a, b �D c.

Theorem (Knaster-Tarski). Let D be a dcpo and f : D −→ D be monotonic.
Then f has a fixed point, i.e., there exists (a least) x in D such x = f(x).

And we mention that this theorem has a converse, which is much harder
to prove by far: a partially ordered set (with a least element) on which any
monotonic function has a fixed point is necessarily a dcpo.
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Note that any finite chain or any complete infinite one is a dcpo. Thus, any of
the In’s or I with the truth ordering �T is a dcpo. It is then easily seen that all
the connectives and quantifiers except negation and implication are monotonic,
whereas we would remind the reader that all were continuous with respect to the
usual topology on I . Of course, if both negation and implication are rejected,
there is absolutely no need to add some imaginary truth-values, so this would
only make sense for I2, which incidentally is the strongest logic in the family.

In the case of �L3, however, the set of truth degrees is naturally endowed with
another ordering, the so-called knowledge/information ordering �K , which
comes directly from the various attempts at explanation for the middle value 1

2 as
“unknown”, “undefined”, “undetermined”, “possible”, or whatever expressing
in some sense a lack of truth value.

0 = {false} {true} = 1
� �

1
2 = { }

The partially ordered set ‘�� ’ thus defined is actually the smallest example
of a dcpo that is not a chain. With respect to this ordering it is readily seen
that all connectives and quantifiers except implication only are monotonic. By
the fixed-point theorem above, any set that is not defined by means of → is
acceptable. So we trace back the embryonic use of this theorem in semantical
consistency proofs to Skolem’s papers.

9.9 Kripke-style models

Interestingly, it is the same theorem that is implicitly invoked again, but at
another level, in Gilmore and Brady’s work in providing their terms models.
Roughly, the universe of these models is fixed in advance and made of set ab-
stracts, regarded as syntactical expressions of the form {x|ϕ(x)}, for suitable
formulae ϕ (e.g., Π̂2

(=), Π̂3
(=)), and then, by a fixed-point argument, the mem-

bership relation is determined inductively in such a way that {x|ϕ(x)} be a
solution to the ϕ-instance of the abstraction scheme under consideration. This
so called inductive method was later popularized by Kripke [17]∗ in his semi-
nal work on the liar paradox. For a comprehensive description and analysis of
the connection between these works, the reader is referred to Feferman’s paper
[8]∗.

Since Section 7 showed us the limit of abstraction, we are not going to dwell
on that way of building models. We would rather prefer to sing the praises of
another useful technique which has its source in Scott’s work on λ-calculus.
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9.10 Scott-style models

In providing models for the untyped λ-calculus, Scott discovered that the
Knaster-Tarski theorem is reflected within suitable subcategories of dcpo’s.
Roughly, it was proved that for a wide variety of functors F(·) acting on those
categories the reflective equation X ≃ F(X) has a solution (obtained by in-
verse limit). Such fixed points have naturally proposed themselves as semantic
domains of programming languages, so the mathematical branch in theoretic
computer science that investigates this is called domain theory.

Now, in view of (♦) on page 126 (Section 9.5), when T ≡ 〈I2 ; �T 〉 or
T ≡〈I3 ; �K 〉, which are both dcpo’s, it might be tempting by using techniques
of domain theory to try to solve a reflexive equation of the form X ≃ [X →
T ] ⊆ 〈X → T 〉, where 〈X → T 〉 is the set of all monotonic functions from X
into T . Thus, a fixed-point solution M to such an equation, which should be
equipped with its own information ordering �M , would give rise to a universe
of sets that are thought of as particular monotonic functions from M into T .
Therefore, by virtue of the monotonicity of the connectives and quantifiers,
it might be conceivable that M would yield an extensional normal model of
Comp[Π2] or Comp[Π3].

Such an attempt is largely explored in [2] for the 3-valued case. However
attractive this idea is, it does not enable one to recover equality in formulae
defining sets. This is because the equality is not monotonic on a normal struc-
ture. Let us illustrate this with T ≡ 〈I2 ; �T 〉, for in that case the equality
on a normal M must be strict, i.e., =M‘(x, y) = 1 if x = y in M , = 0 oth-
erwise. But then, as soon as there exist x, y in M with x <M y, we have
=M‘(x, x) = 1 �T =M‘(x, y) = 0, showing that =M is not monotonic. Con-
cerning the 2-valued case, it is proved in [19] that a solution to X ≃ [X → I2]
in the category of dcpo’s yields a model of positive abstraction, a model that is
thus not a pure term model.

Still, we are on the right track and the issue actually lies in a previous note.
Again we shall only focus on I2, though the same move can be made for I3 (see
[18]∗ for the paraconsistent version).

9.11 The issue

As mentioned earlier, monotonicity is a particular case of continuity. Ap-
plying that to I2 = {0, 1} with �T , the dual of the truth ordering, for which
the closed subsets are ∅, {1}, {0, 1}, it is obvious to see that f : M −→ I2 is
continuous/monotone if and only if f−1{1} is closed. We would now remind
the reader that in any extensional normal structure M such a function f is
the characteristic function [x]M of the set x it represents, which may thus be
identified with a closed subset of M .
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The next step is then to look at sets as closed parts of the universe, but
closed in a broader topological sense, not only in connection with any given
ordering. Notice that demanding that =M : M × M −→ I2 be continuous
amounts to requiring that M be Hausdorff, seeing that =M

−1{1}=∆M , where
∆M := {(x, y) ∈M ×M |x = y}, and it is well known that a topological
space M is Hausdorff if and only if ∆M is closed. This is a singular departure
from the preceding attempts, for the order-topology is never Hausdorff (unless
<M = ∅). Thus, let us consider the following “functor” acting on Hausdorff
topological spaces:

F(X) := {A ⊆ X | A closed}

A solution to the reflexive equation X ≃ F(X) can be found by using
techniques described in [AME/RUT:89], where it is shown that another famous
fixed-point theorem involving continuous functions is reflected within a suitable
category. This theorem is Banach’s for contracting functions on complete met-
ric spaces, which too have been successfully used in modelling programming
processes.5

Actually what we get is a compact complete metric space M such that M ≃
F(M), compactness being an essential ingredient in order to show that M yields
an extensional normal model of Comp[Π2

=], as expected. Hereby the equality
relation makes its entrance in formulae defining sets within an extensional
universe. Note that in �L2 the introduction of = coincides with the one of =. ,
and this is certified by the fact that these models actually fulfil an extended
comprehension scheme involving restricted quantifications of the form ∀x (x ∈
y → · · · ). But a very characteristic property that comes directly from their
definition is the following:

∣∣∣∣
for any predicate P (x), there exists a smallest set a in M such that
M |= ∀x(P (x) → x ∈ a).

Indeed, it is nothing but the unique a in M such that [a]
−1

M
{1} = A, where

A = {x ∈ M | M |= P (x)}. Accordingly, the Russell class is not closed so
that Russell’s paradox is blocked.

The properties of these models give rise to an interesting first-order topo-
logical set theory which was axiomatized and investigated by Esser in [6; 7],
where he showed in particular that it can interpret ZF .6 On this point, it should

5Recently, the framework of so-called “continuity spaces”, a common refinement of partially ordered sets
and metric spaces, has been proposed to develop a general theory of semantics domains; the interested reader
is referred to [10].
6For historical reasons, Esser called his theory “GPK+

∞” . Needless to say that anything else more fetching
would have been luckier.
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be remarked that a pertinent formulation of the axiom of infinity is actually
required in order to recover it in ZF . Besides, originally in [11]∗, it was shown
that with a large cardinal assumption, namely the existence of an uncountable
weakly compact cardinal, the construction of such structures can be so carried
out as to fulfil such a relevant axiom of infinity. These structures, subsequently
called Hyperuniverses, were further studied by Forti, Honsell, Lenisa in several
papers, e.g. in [12] where they even proposed hyperuniverses as an universal
framework for investigating the semantics of programming languages. . .

We have thus shown that an alternative and yet expressive way of avoiding
the set-theoretic paradoxes in classical logic originates in the use of so-called
“deviant logics”.
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APPENDIX
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Chapter 10

CONTINUITY AND LOGICAL
COMPLETENESS: AN APPLICATION
OF SHEAF THEORY AND TOPOI

Steve Awodey
Carnegie Mellon University

awodey@cmu.edu

The main argument of this paper is as follows:

1 The distinction between the Particular and the Abstract General is present
in that between the Constant and the Continuously Variable. More spe-
cially, continuous variation is a form of abstraction.

2 Higher-order logic (HOL) can be presented algebraically. As a conse-
quence of this fact, it has continuously variable models.

3 Variable models are classical mathematical objects; namely, sheaves.

4 HOL is complete with respect to such continuously variable models.
Standard semantics appears thereby as the constant case of “no variation.”
In this sense, HOL is the logic of continuous variation.

The argument will be developed in four sections: (i) the algebraic formulation
of HOL is given; (ii) rings of real-valued functions are considered as an example
of variable structure; (iii) the idea of continuously variable sets is then discussed;
and finally, (iv) it is explained how HOL is the logic of continuous variation.

10.1 Algebraic logic

Categorical logic can be seen as the successful completion of the program
of “algebraicizing” logic begun in the 19-century. Everyone is familiar with

139
J. van Benthem, G. Heinzmann, M. Rebuschi and H. Visser (eds.), The Age of Alternative Logics:
Assessing Philosophy of Logic and Mathematics Today, 139–149.
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⊥ ⊢ ϕ ϕ ⊢ ⊤

ϕ ⊢ ϑ and ψ ⊢ ϑ ϑ ⊢ ϕ and ϑ ⊢ ψ
ϕ ∨ ψ ⊢ ϑ ϑ ⊢ ϕ ∧ ψ

ϑ ∧ ϕ ⊢ ψ
ϑ ⊢ ϕ ⇒ ψ

ϕ(x) ⊢ ϑ ϑ ⊢ ϕ(x)

∃x.ϕ(x) ⊢ ϑ ϑ ⊢ ∀x.ϕ(x)

Fig. 1. Adjoint rules for FOL

the boolean algebra approach to propositional logic, but the treatment of quan-
tification in particular has posed a serious obstacle to extending the algebraic
treatment. The categorical treatment of quantifiers as adjoint functors — due
to F.W. Lawvere in the 1960s — solved this problem, although it has been
little appreciated until very recently. Category theory is of course a branch of
abstract algebra, but the sense in which the categorical treatment of logic is “al-
gebraic” is deeper than just that. Rather, it is the recognition of the quantifiers
— and indeed all of the logical operations — as adjoint functors that makes
logic algebraic. For it is a general fact about adjoints that they always admit
an algebraic description, in a definite, technical sense. This is the same fact
that makes possible the equational description of e.g. cartesian products and
pairing. Figure 1 (page 140) shows the (two-way) rules of inference for the
first-order logical operations expressed as adjoints. 1

HOL also includes quantification over “higher types” of relations, functions,
properties of functions, and so on. Figure 2 indicates the basic ingredients of
algebraic HOL, as it results from the adjoint analysis of these operations. The
axioms consist of a handful of equations of the sort indicated, and the rules
of inference are essentially substitution of equals for equals, as in elementary
algebra.

It may be noted that these are all of the logical operations required; the first-
order operations are definable from these, as suggested in Figure 3 (which also
indicates how even fewer would still suffice). The adjoint rules of Figure 1 on
page 140 can then be proven.

In categorical logic we extend the treatment of propositional logic as a
boolean algebra to HOL, by introducing the new notion of a topos. A topos is
a certain kind of algebraic object (a category equipped with a certain adjoint
structure) that bears the same relation to HOL as does a boolean algebra to

1The quantifier rules require the variable x not occur freely in ϑ. For a full statement see [J. Lambek and
P. J. Scott 1986; S. Awodey and C. Butz 2000].
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Types: X × Y, Y X , P(X), P
Terms: 〈s, t〉, π1t, π2t, λx.t, t(s), {x
STHV ϕ}
Formulas: s = t, s ∈ t
Axioms: equations such as:

π1〈s, t〉 = s

λx.t(x) = t

x ∈ {x

STHV ϕ} = ϕ

Rules: substitution of equals for equals.

Fig. 2. Algebraic formulation of HOL

⊤ =df {x | x = x} = {x | x = x}

ϕ ∧ ψ =df 〈ϕ, ψ〉 = 〈⊤,⊤〉

∀x. ϕ(x) =df {x | ϕ(x)} = {x | ⊤}

Y X =df {f ∈ P(X × Y ) | ∀x∃y.〈x, y〉 ∈ f}

P(X) =df PX

Fig. 3. Logical operations defined

propositional logic:

propositional logic

boolean algebra
=

higher-order logic

topos

It should be emphasized that this reformulation is still equivalent to standard
deductive HOL with respect to the logical formulas and consequences. We
do not change the “logical theorems” but only the presentation of the logical
system, replacing the machinery of formal deductive systems with elementary
algebraic manipulations. It also should be noted that we are making no use of
either what the logician calls standard or Henkin semantics. Instead, from a
logical point of view, we are going to specify a new kind of semantics. Indeed,
the algebraic formulation just given admits continuously variable models, re-
sulting in so-called topological semantics. This possibility results from general
facts about algebraic objects and continuous variation; so it may be useful to
briefly recall how it works in the familiar case of rings, before considering the
new one of algebraic logic.
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10.2 Rings of R-valued functions

The real numbers R form a topological space, an abelian group, a commuta-
tive ring, a complete ordered field, and much more. We shall consider just the
properties expressed in the language of rings

0, 1, a + b, a · b,−a

and first-order logic. For example, R is a field:

R |= ∀x(x = 0 ∨ ∃y. x · y = 1)

Now consider the product ring R × R, with elements of the form:

r = (r1, r2)

and the product operations:

0 = (0, 0)

1 = (1, 1)

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2)

−(x1, x2) = (−x1,−x2)

Since these operations are still associative, commutative, and distributive,
R × R is still a ring. But the element (1, 0) �= 0 cannot have an inverse, since
(1, 0)−1 would have to be (1−1, 0−1). Therefore R × R is not a field. In a
similar way, one can form the more general product rings R × . . . × R = Rn,
or RI for any index-set I . Elements have the form:

r = (ri)i∈I

the pointwise operations are defined by:

0 = (0)i

1 = (1)i

(xi) + (yi) = (xi + yi)

(xi) · (yi) = (xi · yi)

−(xi) = (−xi)

RI is again a ring, but with still fewer properties of R. Product rings RI are,
however, always (von Neumann) regular:

RI |= ∀x∃y. x · y · x = x.
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For, given x, we can take y = (yi) with:

yi =

{
x−1

i , if xi �= 0

0, if xi = 0

Then:

(x · y · x)i = xi · yi · xi =

{
xi · x

−1
i · xi = xi, if xi �= 0

0 · 0 · 0 = xi, if xi = 0

The main point of these examples is that one can produce rings that violate
even more properties of R by passing to “continuously varying reals”. But what
is a “continuously varying real number”? Let X be a topological space. A “real
number rx varying continuously over X” is just a continuous function:

r : X → R

We equip these functions with the pointwise operations, as before:

(f + g)(x) = f(x) + g(x), etc.

The set C(X) of all such functions then forms a subring of the product ring
over the index set of points |X|:

C(X) ⊆ R|X|

But unlike the product ring, C(X) is in general not regular:

C(X) � ∀f∃g. f · g · f = f

For take e.g. X = R and f(x) = x2, then we must have:

g(x) =
1

x2
, if x �= 0

but of course:

g(0) = lim
x→0

g(x) = lim
x→0

1

x2
= ∞

so there can be no continuous g satisfying f ·g ·f = f . Summarizing the lesson
of these examples, we’ve seen that the “continuously varying reals” C(X) have
even fewer properties of the field of “constant” reals R than do the product rings
RI . In that sense, they are closer to a general notion of “quantity”. Passing from
constants to continuous variation therefore “abstracts away” some properties of
the constants. We note by the way that it does so without introducing any new
“abstract entities”.
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10.3 Continuously variable sets

Now let us take stock: we have an algebraic presentation of HOL, and we
have seen how continuously varying algebraic structures like rings can violate
some properties of the constant ones. We now proceed according to the analogy
indicated in Figure 4, comparing real numbers to sets. The similarity rests on
regarding reals as linear magnitudes, while sets are extensive magnitudes.
The condition∀f ∈ AB∃g ∈ BA. f◦g◦f = f on (non-empty) sets correspond-
ing to regularity is actually a form of the axiom of choice (see [F.W. Lawvere
1964]). The notion of a “continuously variable set” that we seek will turn out
to be that of a sheaf. First, observe that the (algebraically specified) logical
operations can be interpreted in other “universes” of sets, e.g. in the universe
of “pairs of sets”:

Sets × Sets

The elements have the form:

A = (A1, A2)

and the operations are defined componentwise:

(A1, A2) × (B1, B2) = (A1 × B1, A2 × B2)

P(A1, A2) = (P(A1),P(A2))

(a1, a2) ∈ (A1, A2) ⇔ a1 ∈ A1 and a2 ∈ A2

etc.

Real numbers Sets

Algebraic operations Algebraic operations
x + y, x · y, x−1, 0, 1 X × Y, Y X ,P(X), ∅

Algebraic condition Algebraic condition
(formula in ring operations) (formula in HOL operations)

∀x∃y. x · y · x = x ∀f ∈ AB∃g ∈ BA. f ◦ g ◦ f = f

Variable real number Variable set
(continuous R-valued function) (sheaf)

Fig. 4. Analogy
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This interpretation models HOL, but it doesn’t satisfy all the properties of
Sets. For example:

Sets |= A ∼= 0 ∨ ∃x. x ∈ A

But in Sets × Sets we can take (1, 0) ≇ 0 as A, and then a ∈ (1, 0) means
a = (a1, a2) with a1 ∈ 1 and a2 ∈ 0, which is impossible. Next, just as in the
case of rings, we can generalize to Sets× . . .×Sets = Setsn, and indeed to
SetsI for any index set I , to get the “universe” of I-indexed families of sets:

A = (Ai)i∈I

(Ai) × (Bi) = (Ai × Bi)

etc.

These families again model HOL, but they have still fewer properties ofSets.
However, all such “product universes” do satisfy e.g. the axiom of choice. To
find even more general “universes” that violate it, we can consider even more
general families of sets:

(Fx)x∈X

varying continuously over an arbitrary space X . (This generalizes the case
where the set I in the previous example is regarded as a discrete space.) But
what should a “continuously varying set” be? The problem is that we cannot
simply take a “continuous set-valued function”:

F : X → Sets

as we did for rings of real-valued functions, since Sets is not a topological
space! Of course, there are people who already know how to do this sort of
thing, so let us look at what the topologists and algebraists do when they need
continuously varying structures. A “continuously varying space” (Yx)x∈X over
a space X is called a fiber bundle. It consists of a space Y =

∑
x∈X Yx and a

continuous “indexing” projection π : Y → X , with π−1{x} = Yx, as indicated
below.

Y Yx=

X

x∈X

Σ

π
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A “continuously varying group” (Ax)x∈X is a sheaf of groups. It consists
essentially of a fiber bundle π : A → X as indicated below,

A Ax=

X

x∈X

Σ

π

satisfying the additional requirements:

1 π is a local homeomorphism (see below),

2 each Ax is a group,

3 the operations in the fibers Ax “fit together continuously”.

Now, what should a “continuously varying set” be? Clearly, it should be a sheaf
of sets: an indexed family (Fx)x∈X as indicated below,

F Fx=

X

x∈X

Σ

π

such that each fiber Fx = π−1(x) is discrete, and moreover π is a local home-
omorphism: each point y ∈ F has some neighborhood U on which π is a
homeomorphism U

∼
−→ π(U). This ensures that the variation over the space is

continuous. Some of the logical operations on sheaves can be defined pointwise:

(F × G)x
∼= (Fx × Gx)

Others, however, cannot. The exponential GF of sheaves F, G is the “sheaf-
valued hom” hom(F, G), defined in terms of germs of continuous maps F → G:

(GF )x
∼= hom(F, G)x (germs of maps F → G)

≇ GFx
x

The “universe” Sh(X) of all sheaves on a space X models HOL,
but in general it violates the axiom of choice:

Sh(X) � AC
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Indeed, one can find sheaf models of HOL that violate many other properties
of sets. Example: germs of continuous R-valued functions Sheaf R on space
X with stalks:

Rx = {[f, U ] | x ∈ U, f : U → R}

where
[f, U ] = [g, V ] ⇔ ∃Wx ⊆ U ∩ V. f |W = g|W

i.e. f(w) = g(w) on some sufficiently small neighborhood W ∋ x. R is a
sheaf of rings. Define a ring structure on R:

[f, U ] + [g, V ] = [f + g, U ∩ V ]

[f, U ] · [g, V ] = [f · g, U ∩ V ]

−[f, U ] = [−f, U ]

0R = [0, X]

1R = [1, X]

The ring of continuous functions C(X) is embedded in R:

C(X) → R

f �→ [f, X]x ∈ Rx, for each x ∈ X

R = “continuously-varying ring” of “continuously-varying reals”

= “sheaf of reals”

Thus, we’ve seen that HOL can be modeled in various “universes” other than
Sets. In particular, the “universe” of all sets varying continuously over a space
models HOL, where the notion of a continuously varying set is reasonably taken
as that of a sheaf. Moreover, sheaves violate some properties of sets.

10.4 The logic of continuous variation

It’s time to be more precise about the notion of a “universe”. We’ve seen
that only a few constructions are required to model HOL:

0, A × B, P(A), a ∈ A, . . .

A topos is defined as a category equipped with adjoint structure corresponding
to these operations (see [S. Mac Lane and I. Moerdijk 1992]). In this sense, a
topos is a “universe of abstract sets”. It’s worth noting the following theorem,
which just says that we have the definition right.
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Theorem. (topos completeness of HOL)
A sentence of HOL is provable iff it is true in every topos model.

Given the foregoing discussion, it should come as no surprise to learn that
the categories Sets, Sets × Sets, SetsI are toposes. Moreover, the cate-
gory Sh(X) of all sheaves of sets on a space X is also a topos. The topos
Sh(X) of sheaves consists of sets Fx varying continuously in a parameter
x ∈ X . The logic of the constant sets is quite strong; the logic of variable
sets is much weaker. Fewer things are true of variable sets in general than are
true of constant ones (think of the difference between the field of real num-
bers and the ring of real-valued functions). What is the logic of continuously
varying sets? That is, which formulas of HOL are true in all sheaf models?
The answer is given by the following theorem from [S. Awodey and C. Butz
2000]:

Theorem. Logic of sheaves = classical deductive HOL.

The proof of this fact uses recent, non-trivial results in topos theory.2 the-
ory The sheaf-theory on which it rests [C. Butz and I. Moerdijk 1999] is
rooted in geometry, not logic. It is worth emphasizing that, unlike the pre-
ceding theorem, there is no obvious reason why this one needs to be true.
Sheaves are classical mathematical objects, and their logical properties depend
on continuous variation, not deduction. HOL is a classical deductive system
going back to Frege and Russell and having nothing to do with continuity.
That these things should coincide is remarkable. Note that the Gödel incom-
pleteness of deductive higher-order logic can be easily understood in these
terms:

Gödel’s “true but unprovable”
involves only “true of all constant sets”
but not “true of all variable sets”

A “true but unprovable” Gödel sentence is therefore true only of constant sets,
not of all variable ones. Thus, summing up, we see that fewer things are true of
all continuously varying sets than of all constant ones. HOL captures just those
statements that are “variably true”. Precisely: HOL is deductively complete
with respect to topological semantics, which is the real statement of the second
theorem mentioned above.3

2The treatment of classical logic (with the law of excluded middle) is also somewhat delicate, requiring a
different interpretation than the usual one in topos.
3The author thanks the organizers of PILM 2002 for a stimulating and pleasant meeting.
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Chapter 11

WHAT IS CATEGORICAL
STRUCTURALISM?

Geoffrey Hellman∗
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In a recent paper Hellman [2003], we examined to what extent category
theory (“CT”) provides an autonomous framework for mathematical structural-
ism. The upshot of that investigation was that, as it stands, while CT provides
many valuable insights into mathematical structure — specific structures and
structure in general —, it does not sufficiently address certain key questions
of logic and ontology that, in our view, any structuralist framework needs to
address. On the positive side, however, a theory of large domains was sketched
as a way of supplying answers to those key questions, answers intended to be
friendly to CT both in demonstrating its autonomy vis-à-vis set theory and in
preserving its “arrows only” methods of describing and interrelating structures
and the insights that those methods provide. The “large domains”, hypothesized
as logico-mathematical possibilities, are intended as suitably rich background
universes of discourse relative to which both category-and-topos theory and set
theory can be developed side by side, without either emerging as “prior to” the
other. Although those domains, as described, resemble natural models of set
theory (on an iterative conception) or toposes suitably enriched with an equiv-
alent of the Replacement Axiom, they are defined without set-membership as a
primitive, and also without ‘function’ or ‘category’ or ‘functor’ as primitives;
all that is required is a combination of ‘part/whole’ and plural quantification (in
effect, the resources of monadic second-order logic). This background logic
(including suitable comprehension axioms for wholes and “pluralities”) suf-
fices; and ontological commitments are limited to claims of the possibility of
indefinitely large domains, any one extendable to a more encompassing one,
without end.
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Two interesting responses to this have already emerged on behalf of CT
proponents, one by Colin McLarty [2004] and the other by Steve Awodey
[2004]. Here we take the opportunity to come to terms with these and to assess
their bearing on our original assessment and proposal. We will begin with a
brief review of the main critical points of Hellman [2003]; then we will take
up the responses of McLarty and Awodey in turn; and finally, we’ll try to draw
appropriate conclusions.

11.1 “Category Theory” and structuralist frameworks

The first point to stress is that the very term “category theory” is ambiguous,
and the ambiguity follows closely on the heels of another, more basic one, that
of “axiom” itself. On the one hand, axioms traditionally are conceived as basic
truths simpliciter, as in the traditional conception of Euclidean geometry, or the
axioms of arithmetic, or the axioms of, say, Zermelo-Fraenkel set theory. Call
this the “Fregean conception” of axioms. In the geometric case, primitive terms
such as ‘point’, ‘line’, ‘plane’, ‘coincident’, ‘between’, ‘congruent’ are taken
as determinate in meaning, so that axioms employing them have a determinate
truth-value. For number theory, ‘successor’, ‘plus’, ‘times’, ‘zero’, etc. have
definite meanings leading to true axioms (say the Dedekind-Peano axioms); and
for set theory, of course, ‘membership’ is taken as understood, and the axioms
framed in its terms true (or true of the real world of sets). In contrast, there
are algebraic-structural axioms for groups, modules, rings, fields, etc., where
now they are not even assertions, but rather defining conditions on types of
structures of interest. The primitive terms are not thought of as already deter-
minate in meaning but only as schematically playing certain roles as required
by the “axioms”. Call this the “Hilbertian conception”. Any objects whatever
interrelated in the ways required by the defining axioms constitute a structure
of the relevant type, say, a group, or a module, . . . , or a category. In the lat-
ter case, primitive terms such as ‘object’, ‘morphism’, ‘domain’, ‘codomain’,
and ‘composition’ are not definite in meaning, but acquire meaning only in the
context of a particular interpretation which satisfies the axioms.

Thus, “morphisms” need not be functions, and (so) “composition” need not
be the usual composition of functions, etc.1 A large part of the debate between
Frege and Hilbert on foundations turned on their respective, very different
understandings of “axioms” along precisely these lines.

It is worth noting, incidentally, that Dedekind [1888] presented his “axioms”
for arithmetic explicitly as defining conditions, i.e. axioms in the Hilbertian
sense, as part of his definition of a “simply infinite system”, and not as assertions.

1Thus, “mophisms” may be realized as homotopy classes of maps (between topological spaces), as formal
deductions of formulas in a logical system, as directed line segments in a diagram, etc.
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One may, oversimplifying a bit, say that the tendency of modern mathematics
toward a structuralist conception has been marked by the rise and proliferation of
Hilbertian axiom systems (practically necessitated by the rise of non-Euclidean
geometries), with relegation of Fregean axioms to a set-theoretic background
usually only mentioned in passing in introductory remarks. Category theory
surely has contributed to this trend; we now even have explorations of “Zermelo-
Fraenkel algebras” (Joyal and Moerdijk [1995]).

This ambiguity over “axioms” is, of course, passed on to “theories” of alge-
braic structures, as in “group theory”, “field theory”, . . . , and, indeed, “category
theory” and (with some qualifications to be discussed below) “topos theory” as
well. On the one hand, there is the first-order theory (definition) of groups, or
of categories or toposes; but, on the other, there is a body of substantive theoriz-
ing about such structures, which, while constantly appealing to the first-order
definitional axioms, is intended as assertory, and takes place in an informal
background whose primitive notions and assumptions usually require logical
analysis and reconstruction to be identified. Standard practice refers (in pass-
ing) to a background set theory, as it is well known that that suffices for most
purposes. But of course that cannot serve in the context of “categorical foun-
dations” where autonomy from set theory is the name of the game.

So what is the background theory? It is not clear. And so we find our-
selves uncertain when it comes to comparing categorical structuralism with
other frameworks that have been proposed. Here are five fundamental ques-
tions that we would submit any such framework should address:

(1) What is the background logic? Is it classical? Is it modal? Is it higher
order logic? If so, what is the status of relations as objects?

(2) What are the extra-logical primitives and what axioms–presumably asser-
tory–govern them? Are ‘collection’, ‘operation’, ‘category’, ‘functor’,
for example, on the list? Especially, what axioms of mathematical exis-
tence are assumed?

(3) Is indefinite extendability of mathematical structures recognized or is
there commitment to absolutely maximal structures, e.g. of absolutely
all sets, all groups, etc.?

(4) Are structures eliminated as objects, and, if not, what is their nature?

(5) What account, if any, is given of our reference and epistemic access to
structures?

In the case of set-theoretic structuralism, it is fairly clear how to answer at
least (1) - (4); similarly, in the case of Shapiro’s [1997] ante rem structuralism,
and he takes a stab at (5) as well. In the case of modal-structuralism, answers
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to (1) - (4) are also forthcoming. (As an eliminativist structuralism, questions
of reference are replaced with questions of knowledge of possibilities, related
to, but even more difficult than, questions of knowledge of consistency, for in
central cases we are interested in standard structures.)2 But when it comes to
categorical structuralism, it isn’t clear what to say even with regard to (1) - (4).
At most, bearing on (3), one finds widespread opposition to the view that a fixed
background of sets is the privileged arena of mathematics.3

11.2 McLarty’s “Fregean” response

In a nutshell, McLarty claims that, while the algebraic-structuralist reading of
CT axioms and general topos axioms is correct, nevertheless specific axioms for
certain particular categories and toposes are intended as assertory. In particular,
he singles out ETCS, the elementary theory of the category of sets, CCAF, the
category of categories as a foundation, and SDG, synthetic differential geometry
as a theory of the category of smooth spaces. The axioms of these systems are
not to be read merely as defining types of structures but rather as assertions,
true of existing parts of mathematical reality, much as the axioms of ZFC are
normally understood. Indeed, in the case of ETCS, this could be understood as
describing the very same subject matter as ZFC, although with the characteristic
arrows machinery rather than a primitive set-membership relation.

It appears to me that CCAF, or, better, McLarty’s own approach [1991] to
axiomatizing a category of categories, is actually the most promising in relation
to the above questions. Let us return to consider this below. First, let us take
up the other two examples, ETCS and SDG.

Now, I would not wish to deny that ETCS provides an important part of a
structuralist analysis of sets. Through its “arrows only” formulations and gen-
eralizations, it abstracts from a fixed set-membership relation and analyzes sets
in their functional roles, “up to isomorphism”, which is all that really matters for
mathematics. What remains problematic, however, regarding McLarty’s read-
ing of ETCS (which he attributes to Mac Lane), is its apparent commitment to a
fixed, presumably maximal, real-world universe of sets, “the category of sets”.
This just strikes me as a convenient fiction. First, there is the question of mul-
tiplicity of conceptions of sets, e.g. non-well-founded as well as well-founded,
possibly choice-less as well as with choice, with or without Replacement, the
various large cardinal extensions, and so forth. Presumably, all of these concep-
tions are mathematically legitimate, and it would be arbitrary to treat just one
as ontologically privileged. But even if suitable qualifications of the “intended
universe” are added to the (meta) description, the problem of indefinite extend-
ability still looms. Whatever domain of sets we recognize can be transcended

2For detailed comparisons of these varieties of structuralism, see Hellman [2001].
3For further details, see Hellman [2003].
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by the very operations that set theory seeks to codify, collecting, collecting
everything “already collected”, passing to collections of subcollections, iterat-
ing along available ordinals, etc. (This, incidentally, is entirely in accord with
Mac Lane’s expressed views [1986] on the open-endedness of Mathematics.)
Set theoretic structuralism can be faulted precisely for failing to apply to set
theory itself, especially in regard to the very multiplicity of universes of sets
that it naturally engenders. Categorical structuralism promises to do better, but
it is hard put to keep that promise if it falls back on a maximal universe of sets
or, more generally, on an absolute notion of “large category”.

When it comes to a realist interpretation of SDG, the problems are quite
different but equally challenging. This is a non-classical theory of continua
which can be developed independently of category theory, known as “smooth
infinitesimal analysis” (“SIA”). (Topos theory has proved useful in providing
models of SIA, but the essential analytic ideas do not depend on the topos
machinery.) This is a theory intended as an alternative to classical, “punctiform”
analysis; it introduces nilsquare (and nilpotent) infinitesimals, while at the same
time limiting the class of functions of reals to continuous ones. A central axiom,
the Kock-Lawvere axiom, stipulates that any function on the infinitesimals about
0 obeys the equation of a straight line. (The axiom is also called the “Principle
of Microaffineness”.)

This actually implies the restriction to continuous functions. And the con-
stant slope of the “linelet” given by the axiom serves to define the derivative
of a function. (The “linelet” can be translated and rotated, but not “bent”.)
To accommodate nilsquares, certain restrictions apply to the classical ordered
field axioms for the reals: nil-squares do not have multiplicative inverses, nor
are they ordered with respect to one another or with respect to 0. Indeed, one
proves that “not every x is either = 0 or not = 0”. Not only does SIA refrain
from using the Law of Excluded Middle (LEM), it derives results that are for-
mally inconsistent with it (similar in this respect to Brouwerian intuitionism but
contrasting with Bishop constructivism, which, with LEM added, gives back
classical analysis). But SIA, consisting of the (restricted) ordered field axioms,
the KL axiom, and a certain “constancy principle”, suffices for a remarkable
development of calculus in which limit computations are replaced with fairly
straightforward algebra, placing on an alternative, consistent and rigorous foot-
ing early pre-limit geometric methods in analysis and mechanics. (Cf. Bell
[1998] for a nice survey of such results.)

Why is there a problem with thinking of this theory as an objective descrip-
tion of continuous functions or phenomena? After all, the charge by Russell
and fellow classicists that infinitesimals lead to inconsistencies, while true of
some naïve, informal practice, is demonstrably not true here, at least relative to
the consistency of classical analysis. One simply must renounce LEM and, as
already said, tolerate things like negations of generalizations of it, as just noted.
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The difficulty comes when we attempt to explain why LEM fails, even though
(under the realistic hypothesis we are entertaining) there really are nilsquares
making up the “glue” of actual continua, the points of classical analysis now
regarded as a useful but fictitious formal artifact of analytic methods. If there
really are such “things”, doesn’t logical identity apply to them just as to every-
thing else, regardless of our abilities to discriminate them from one another or
from 0? The situation is really very different from that posed by intuitionistic
analysis. There constructive meanings of the logical operators, disjunction,
negation, the conditional, both existential and universal quantifiers, obviously
do not sustain the formal LEM or related classically valid principles, e.g. quan-
tifier conversions such as “not for every x φ(x)” to “there exists x such that
not φ(x)”. Apparent conflicts with classical analysis are only apparent due to
these radically different meanings. But none of this is applicable in interpreting
SIA, for constructive meanings do not seem appropriate to the subject. Nil-
squares, for example, are not constructed at all; indeed, their existence cannot
be asserted any more than it can be denied, on pain of contradiction. Rather one
must settle for the double negation of existence. While this in itself might seem
compatible with a constructive reading, the KL axiom itself seems, if anything,
more dubious on such a reading. (What method do we have for finding the
slopes of the linelets from a given constructive function on the nilsquares? In-
deed, in what sense are we ever presented with such a function?) Lawvere and
others have taken failure of LEM for nilsquares to express “non-discreteness”,
perhaps in analogy with familiar kinds of vagueness. But, once we are speaking
of objects at all, however invisible or intangible, how can the predicate ‘ = 0’
itself be vague? Though from a setting he never contemplated, one harks back
to Quine: “No entity without identity!”

Indeed, with the tendency to speak of �= as “distinguishable” (Bell [1998]),
it is natural to seek an interpretation of ‘=’ in SIA as an equivalence relation
broader than true identity, and this suggests trying to recover SIA in a classical
interpretation. Such an interpretation has actually been carried out in detail
(Giordano [2001]). Certain differences emerge: the class of functions treated
is narrower than all continuous ones (a Lipschitz condition is invoked), but
the KL axiom and much of the theory are recovered on a fully classical basis.
Whether proponents of SIA and SDG will plead “change of subject” remains
to be seen.

Turning to “category of categories”, efforts towards axiomatization are at
least grabbing the bull by the horns, laying down explicit assertory axioms on
the mathematical existence of categories and providing a unified framework
for a large body of informal work on categories and toposes (hence mathemat-
ics, generally). Three questions demand our attention: (1) What concepts are
presupposed in such an axiomatization? (2) Are these such as to sustain the
autonomy of CT vis-à-vis set theory or related background, or do they reveal a
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(possibly hidden) dependence thereon? (3) What is the scope of such a (meta)
theory, in particular, what are the prospects for self-applicability and the idea
of “the category of (absolutely) all categories”?

On (1) and (2), it is clear that these axioms (as in McLarty [1991]) are
not employing the CT primitives (‘object’, ‘morphism’,‘domain’, ‘codomain’,
‘composition’) schematically, as in the algebraic defining conditions, but with
intended meanings presumably supporting at least plausible truth of the axioms.
The objects are categories, the morphisms are functors between categories, etc.
Commenting on this, Bell and I recently wrote: “Primitives such as ‘category’
and ‘functor’ must be taken as having definite, understood meanings, yet they
are in practice treated algebraically or structurally, which leads one to consider
interpretations of such axiom systems, i.e. their semantics. But such seman-
tics, as of first-order theories generally, rests on the set concept: a model of a
first-order theory is, after all, a set. The foundational status of first-order axiom-
atizations of the [better: a] metacategory of categories is thus still somewhat
unclear.” (Hellman and Bell [forthcoming])

In other words, when we speak of the “objects” and “arrows” of a meta-
category of categories as categories and functors, respectively, what we really
mean is “structures (or at least “interrelated things”) satisfying the algebraic
axioms of CT”, i.e. we are using “satisfaction” which is normally understood
set-theoretically. That is not to say that there are no alternative ways of under-
standing “satisfaction”; second-order logic or a surrogate such as the combina-
tion of mereology and (monadic) plural quantification of modal-structuralism
would also suffice. But clearly there is some dependence on a background that
explicates satisfaction of sentences by structures, and this background is not
“category theory” itself, either as a schematic system of definitions or as a sub-
stantive theory of a metacategory of categories. But this need for a background
theory explicating satisfaction was precisely the conclusion we came to in our
[2003] paper, reinforcing the well-known critique of Feferman from [1977],
which exposed a reliance on general notions of “collection” and “operation”.
It was precisely to demonstrate that this in itself does not leave CT structural-
ism dependent on a background set theory that I proffered a membership-free
theory of large domains as an alternative. Although the reaction, “Thanks, but
no thanks!”, frankly did not entirely surprise me, it will also not be surprising
if a perception of dependence on a background set theory persists.

As to the third question of scope, I think it is salutary that McLarty calls
his system “a (meta) category of categories”, rather than “the category of cate-
gories”, which flies in the face of general extendability. No structuralist frame-
work should pretend to “all-embracing completeness”, in Zermelo’s [1930] apt
phrase. And we certainly had better avoid such things as “the category of ex-
actly the non-self-applicable categories”! But it is, I believe, an open question
just what instances of impredicative separation should be allowed.
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To conclude this section, it seems a fair assessment to say that, while axioms
for a (meta) category of categories do make some progress toward providing
answers to some of our five questions put to the various versions of mathematical
structuralism, we are left still well short of satisfactory, full answers, even to
the first four.

11.3 Awodey’s “Hilbertian” response

In contrast to the foregoing, this response takes as its point of departure an
“anti-foundationalist” stance: mathematics should not be seen as based on a
fixed universe of special objects, the elements of domains of structures, the
relata of structural relations, as on the set-theoretic view. Instead, mathemat-
ics has a schematic character, which seems to mean two things: any theorem
includes hypothetical conditions, which govern just what aspects of structure
are relevant; and, in any case, the particular nature of individual objects is
irrelevant. Moreover, whereas modal structuralism tries to get at this by open-
ended modal quantification (which is not to be interpreted as ordinary quan-
tification over a fixed background domain of possibilia, as Awodey seems to
recognize), category theory itself provides a more direct expression, stand-
ing on its own without need of any further (assertory) background principles.4

The central, general but flexible primitive notion is “morphism”, capable of
grounding talk of relations, operations, etc. (A summary list of relevant “ar-
rows only” categorical concepts illustrates this.) A “top-down” metaphor, as
opposed to “bottom-up”, is used; it seems that it is sufficient simply to describe
whatever ambient background structure we deem relevant to the mathemati-
cal purpose at hand, without needing to worry about any absolute claims of
existence. (Clearly, this is reminiscent of Hilbert’s view that sought to elimi-
nate metaphysics from mathematics by, in effect, replacing absolute claims of
existence with a combination of proofs from formal axioms, as defining con-
ditions, together with a proof of formal consistency of the relevant axioms,
although presumably, since we are in a post-Gödelian era, the latter demand is
omitted.)

I see a dilemma in understanding all this. Either mathematics is adequately
understood as just a complex network of deductive and conceptual interconnec-
tions, or it is not. On the first horn, what we are really presented with is a kind
of formalism, in which theorems in conditional form, together with definitions,
are all there is to mathematics, that is, we just give up on the notion of math-
ematical truth as anything beyond deductive logical validity. In this case, we

4It should be clear that modal-structuralism, although it does provide such background principles, is also
quite explicitly “non-foundationalist” in Awodey’s sense. To avoid confusion, I have preferred to speak of
“structuralism frameworks” rather than “foundations”, but I would certainly plead guilty to “foundational
concerns”, much in the spirit of Shapiro’s Foundations without Foundationalism. Clearly, this is reflected in
the questions (1) - (5) we have been putting to the various versions of structuralism.
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really need not worry about primitives with meanings supporting basic axioms
in the Fregean sense. Questions of truth (beyond first-order logical truth of
conditionals) would arise only in certain limited cases, typically in applications
of mathematics where we might be in a position to assert that the antecedent
conditions are indeed fulfilled (e.g. that certain finite structures, say, are ac-
tually instantiated, or that even certain infinite ones are, say space or time or
space-time as continua). Whether this is intended and is viable, after all (i.e.
after all the criticisms that have been levelled against deductivism), remain to
be determined.5

On the other horn of the dilemma, we take seriously the idea that ‘morphism’
is a primitive with definite, if multifaceted, meaning, giving genuine content
to mathematics beyond mere inferential relations. But what is that meaning?
And what is the content beyond inferential relations? Awodey himself [1996]
has stressed the algebraic-structural character of the CT axioms, and, unlike
McLarty, he does not appeal to any special topos axioms as assertions, nor
does he appeal to a special category of categories. It seems clear, then, that
the notion of morphism — which, unlike the notion of ‘part/whole’ employed
in modal-structuralism and also exhibiting a kind of “schematic character”, is
a mathematical term of art, not a familiar one in ordinary English — depends
on the context, viz. on the category or categories presupposed or in which
one is working. As indicated at the outset, arrows (i.e. morphisms) need not
be ordinary functions. They need only satisfy the conditions on “arrows” of
the CT axioms or extensions thereof. Surely, this is what should be said in
explaining “what morphisms are”. Moreover, functors do more that ordinary
functions, and they are centrally involved in “the usual language and methods
of category theory” (Awodey [2004], p. 62). But then what we really have
as primitives are “satisfaction of axioms” and “functor between categories”;
i.e. we are presupposing “category” as a primitive as well. But this brings us
right up against the same problem that confronted the previous view, namely
that we are falling back on prima facie set-theoretic notions after all. The
main difference seems to be that, whereas on the McLarty view we were at
least being given axioms asserting the mathematical existence of various cat-
egories, here we are not even being given that. In any case, the CT “arrows
only” explications of “relations”, “operations”, and so forth, are of no avail
until we first understand “morphism” (i.e. “arrow”), “functor” and “category”,
i.e. until we already understand satisfaction or equivalent (second- or higher-
order) notions. It would be plainly circular to appeal to “morphisms” to explain
this!

5I have been taking as a ground rule for articulating structuralism that it should not collapse to formalism or
deductivism. If CT structuralism is playing by different rules, that certainly should be made explicit.
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11.4 Conclusion

The contrast between Fregean and Hilbertian axioms seems to present us
with a stark choice. But really, unless we go back to formalism, mathematics
requires both. For all the axiom systems of ordinary mathematics, for number
theory, analysis, algebra, pure geometry, topology, and surely much of category
and topos theory, i.e. for all commonly studied structures and spaces, not
only is the Hilbertian conception appropriate, it is part and parcel of standard
modern practice. But when we step back and contemplate fundamental and
foundational issues — when we ask questions about what principles govern
the mathematical existence of structures generally, or when we consider the
closely related “unfinished business” of Hilbert’s own program (as Shapiro
puts it), the place of metamathematics, questions of absolute and relative formal
consistency, questions of (informal) higher-order “consistency” or “coherence”,
relative interpretability, independence, etc.— then we are in the realm of outright
claims, not mere hypotheticals as to what holds or would hold in any “structures”
satisfying putative algebraic (meta) axioms of metamathematics. Rather we
are seeking assertory axioms in the Fregean sense.6 Thus, in connection with
category theory, the advice of Berra [1998], “When you come to a fork in the
road, take it!”,7 is quite apt, and the theory of large domains I sketched in
my [2003] was one way of taking the advice (and the fork!). The alternative
responses considered here, categories of categories (Fregean) or category theory
as schematic mathematics (Hilbertian), lead us straight back to prima facie
set-theoretic notions, only slightly beneath the surface, and so do not sustain
category theory as providing an autonomous structuralist framework adequate
to the needs of both mathematics and metamathematics.
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The aim of this paper is to present category theory as a framework for an in re
interpretation of mathematical structuralism. The use of the term ‘framework’ is
significant. On the one hand, it is used in distinction from the term ‘foundation’.
As such, what I propose is that we consider category theory as a philosophical
tool that allows us to organize what we say about the shared structure of abstract
kinds of mathematical systems.1 On the other hand, the term ‘framework’ is
used in the sense of Carnap [1956]. That is, category theory is taken as a
language2 used to frame what we say about the shared structure of abstract
kinds of mathematical systems, as opposed to being a “background theory”
which constitutes what a structure is.3

12.1 Foundation versus Framework

In this section, I consider what it means to say that category theory is a
framework for mathematical structuralism, though not a foundation for math-
ematics. I will show, contra Feferman [1977] and Mayberry [1994], that the

1This in contrast to viewing category theory as a mathematical foundation that provides us with the “atoms”
(of meaning or reference) of mathematics itself, e.g., that it tells us what, or whether, a structure is.
2See Landry [1999; 2001] for further elaboration of what is meant by taking category theory as a language.
3In this sense, the use of a category-theoretic linguistic frame is in contrast, to, for example, Shapiro’s [1997]
ontological, ante rem, reading of the concept of structure which uses “structure theory” to frame the claim
that mathematical structures exist both over and above systems that exemplify them and independently of
language.
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reason category theory cannot provide a foundation for mathematics is not that
it depends on set theory as either an ontological or conceptual base. Rather
it is that category theory cannot be construed as being about either objects or
structures qua (actually or possibly) existing things. Relying on the work of
Lawvere [1966] and McLarty [1990], we will see the Feferman’s criticisms
miss their mark, and, moreover, we will see that category theory satisfies May-
berry’s criterion of being a “foundational sea” to the same degree that set theory
does. Yet, while category theory cannot provide a foundation for mathematics,
it remains, as Bell [1981] notes, “foundationally significant”.

12.1.1 Categories as “Structures”

Since Lawvere’s work with the category of categories has provided much
grist for the foundational mill, let us consider what he says of his aims in this
regard:

[i]n the mathematical development of recent decades one sees clearly the rise
of the conviction that the relevant properties of mathematical objects are those
which can be stated in terms of abstract structure rather than in terms of the
elements which objects were thought to be made of. The question naturally
arises whether we can give a foundation for mathematics which expresses whole-
heartedly this conviction concerning what mathematics is about and in particular
in which classes and membership in classes do not play any role. . . (Lawvere
quoted in Feferman, [1977], pp. 149-150).

It is as an answer to this challenge, then, that Lawvere [1966] “formulated a
(first-order) theory whose objects are conceived to be arbitrary categories and
functors between them”. (Feferman, [1977], p. 150). It is held, by Feferman
(and Bell [1981]), that the problem with such an account is that when it comes
to accounting for categories as themselves abstract “structures” and/or using
categories to account for abstract kinds of “structures”, one must appeal to
notions which fall outside the range of category theory.4 As Feferman explains:

when explaining the general notion of structure and of particular kinds of struc-
tures such as groups, rings, categories, etc., we implicitly presume as understood
the ideas of operation and collection; e.g., we say that a group consists of a
collection of objects together with a binary operation satisfying such conditions
. . . when explaining the notion . . . of functor for categories, etc., we must again
understand the concept of operation . . . (Feferman, [1977], p. 150).

4Specifically, Feferman claims that in either case, “[t]he logical and psychological priority if not primacy of
the notion of operation and collection is . . . evident” (Feferman, [1977], p. 150). And from this concludes
that “[i]t is evidently begging the question to treat collections (and the operations between them) as a category
which is supposed to be one of the objects of the universe of the theory to be formulated”. (Feferman, [1977],
p. 150.) Feferman’s claim can be understood as follows: if we assume that mathematics is the study of
abstract structure, then, insofar are categories themselves are structured (and, presumably, structured in terms
of operation and collection), we need a general account of the very notion of structure itself.
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That is, even if category theory can give a more general account of abstract kinds
of structure than can set-theory,5 we are still in need of a (meta) theory which
makes “use of the unstructured notions of operation and collection to explain
the structural notions to be studied”. (Feferman, [1977], p. 150). To this end
he provides a non-extensional type-free theory of operations and collections
wherein “much of ‘naïve’ or ‘unrestricted’ category theory can be given an
account. . . ” (Feferman, [1977], p. 149).6

Now, if one had stopped one’s inquiry here, one might be convinced, but as
Feferman goes on to note, the schemes offer by Grothendieck Universes and
the Gödel-Bernays theory of classes, readily offer the needed (meta) theory for
category theory (though not in terms of operation and collection).7 That is,
Feferman himself concedes that

there is no urgent or compelling reason to pursue foundations of unrestricted cat-
egory theory, since the schemes. . . serve to secure all practical purposes. . . The
aim in seeking a new foundation is mainly as a problem of logical interest mo-
tivated largely by aesthetic considerations (or rather by the inaesthetic character
of the present solutions). (Feferman, [1977], p. 155)

To make his reasons compelling, then, Feferman needs to have demonstrated
that the notions of operation and collection themselves are, in some sense,
constitutive of the notion of structure, and he has not. Independently of Fe-
ferman offering-up these reasons, there are two possible, though not unrelated,
responses to his claim that we yet need, to account for mathematics as the
study of abstract structures, a non-extensional type-free theory of unstructured
operations and collections. One that structuree’ is not strictly a mathematical
notion, and hence, such problems need not be resolved by providing a foun-
dation for mathematics, but rather are best addressed by offering a philosophy
for mathematics (see § 12.3). The second, though not unrelated, response is
that a category qua a structured system is to be “algebraically” considered (see
§ 12.2). In either case, we note that category theory itself, i.e., without the

5Of the inadequacies of set theory as a foundation, Feferman says: “Since neither the realist (extensional)
or the constructivist (intensional) point of view encompasses the other, there cannot be any present claim to
universal foundation for mathematics. . . ” (Feferman, [1977], p. 151.)
6While Feferman agrees with Mac Lane that work in elementary topos theory (ETS) shows the “formal”
equivalence between ETS(Z) and ETS(ZF) and the theories of Z and ZF, respectively, he claims his point
stands; because the “use of ‘logical priority’ refers not to the relative strength of formal theories but to the
order of the definition of the concepts”. . . and “that the general concepts of operation and collection have
logical priority with respect to structural notions (such as ‘group’, ‘category’, etc) because the latter are
defined in terms of the former but are not conversely”. (Feferman, [1977], p. 152.)
7Another scheme, offer by Bell [1986;1988], is to characterize (up to categorical equivalence) topoi as
models of a higher-order, intuitionistically based, type theory; thus, allowing us to re-capture the sense in
which set-theory and category theory are “formally” equivalent, i.e., by allowing for the specification of
topoi as “local set theories”.
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background schemes, cannot provide a foundation any more than set theory: it
cannot tell us what, or whether, structure is.8

12.1.2 The category of categories as a “Foundational Sea”

I now turn to consider Mayberry’s claim that, because sets and their mor-
phology are constitutive of the notion of structure, only set theory can provide a
foundation for mathematics. My aim is to show that, while it can be agreed that
“when we employ the axiomatic method we are dealing with structures”,9 it
simply does not follow that “when we are dealing with mathematical structures,
we are engaged in set theory”. (Mayberry, [1990], p. 19) In particular, I will
argue that there is no reason to hold that “each structure consists of a set or sets
equipped with a morphology”. (Mayberry, [1990], p. 19.)

Mayberry acknowledges that there are problems with his version of struc-
turalism founded on an ‘intuitive’ set theory, viz., that it cannot be used to talk
about the large categories,10 for example, the category of all (small) groups.
He further recognizes that

to consider such categories seems a quite natural extension of ordinary structural-
ism, it appears to request the next level up in generality in which the notion under
investigation is the notion of structure itself. (Mayberry, [1990], p. 35.)

His solution to this problem, however, is far from satisfying: it is to dismiss
talk of such structures by simply denying that they are structures. He says

[i]n fact, there can be no such structures, for the very notion of set is that of an
extensional plurality limited in size, and the notion of set is constitutive of our
notion of structure. (Mayberry, [1990], p. 35.)

The claim that the notion of set is that of an extensional plurality limited in size
is both ad hoc and misleading: the only justification that Mayberry’s privileg-
ing of ‘intuitive’ set theory has is that, given his claim that set is constitutive
of our notion of structure, it makes his conclusion, that ‘intuitive’ set theory
provides a foundation, follow. Consider, if, instead of defining a set intu-
itively as “an extensional plurality of determinate size, composed of definite

8Given set theory’s inability to form the category of all structures of a given kind (groups, topological spaces,
categories) and to form the category of all functors of any given category it cannot be used to ‘foundationalize’
category theory, and given category theory’s inability to refer to all categories as ‘objects’ in the categories
of categories, without making use of either Grothendieck Universes or a Gödel-Bernays theory of sets and
classes, it cannot be seen as providing a foundation in and of itself. (See Feferman, [1977], pp. 154–155 for
a brief but informative discussion of these issues.)
9That is, while it can be agreed that the aim of a structuralist foundation (or, more accurately, a structuralist
philosophy) is to capture the belief that the subject matter of mathematics is structured systems and their
morphology.
10Note, however, that it is not because it is large that the category of categories cannot be taken as a foundation.
For a discussion of the various interpretations of large categories, (see McLarty, [1995], pp. 105–110).
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property-distinguished objects” (Mayberry, [1990], p. 32) we define a cate-
gory ‘intuitively’ as an object of indeterminate size,11 composed of definite,
functorially-distinguished objects. Then, following Lawvere, we could con-
clude that category theory provides a foundation for mathematics.12

While it seems clear, then, that neither set theory nor category theory can be
a foundation in the sense of providing a theory which captures the idea that the
subject matter of mathematics is structures and their morphology, it should also
be clear that neither can it provide a foundation in the sense of providing “a sea
in which structures swim”.13 Thus, while it is right to conclude that, on Fefer-
man and Mayberry’s “structuralist” criterion, category theory cannot provide
a foundation for mathematics, this is not because it requires a prior notion of
either operation or collection or ‘intuitive’ set theory. It is because, if it is to be
counted as an “object language” for our talk of structures, it requires some prior,
meta-theoretical, notion of structure that category theory itself cannot provide.14

12.2 Structures and structured systems

If we accept, then, that mathematics is the study of abstract structure, we must
explain in what sense category theory provides the philosophical tool for orga-
nizing what we say about the shared structure of abstract kinds of mathematical
systems. I begin first with Corry’s [1996] historical investigation of the devel-
opment of the ‘algebraic’ notion of structure. The aim here is to distinguish the
set-theoretic path of the Bourbaki notion of structure from the algebraic path of
the category-theoretic notion. Given this distinction, two observations can be
made. The first, that the Bourbaki notion implicitly assumes an ontology out
of which structures are made, i.e., assumes that types of structures are kinds of
set-structured systems. The second, that this assumption leads to a reification
of structure, i.e., leads to interpreting structures themselves as independently

11By ‘indeterminate size’ it is meant that we can define a category as large, either in the Gödel-Bernays
sense, or in terms of Grothendieck Universes. That is, we do not have to restrict the size of a category by
characterizing its objects and morphisms in terms of sets.
12To see this, in the following quote by Mayberry, simply replace ‘set’ with ‘category’ and ‘universe of sets’
with ‘category of categories’. “The fons et origo of all confusion here is the view that set theory is just
another axiomatic theory and that the universe of sets is just another mathematical structure . . . The universe
of sets is not a structure; it is the world that all mathematical structures inhabit, the sea in which they all
swim.” (Mayberry, [1990], p. 35.)
13And this fact cannot be altered by claiming that either stands along the shore of these issues since it is
needed to provide a semantics for mathematics. As McLarty notes, “Mayberry . . . has simply confused
his own head with Lawvere’s. [By claiming that “the idea of denying intuitive set theory its function in
the semantics of the axiomatic method never entered Lawvere’s head in his treatment of the categories of
categories”. (Mayberry, [1977]).] Lawvere believes ‘intuitive’ categories, and spaces, and other structures
are just as real (or, more accurately, just as ideal) as ‘intuitive’ sets.” (McLarty, [1990], p. 364.)
14For example, even though the category of categories can be used to talk about the shared structure of
categories qua kinds of structured systems, it cannot be used to axiomatically define (all) categories qua
structures.
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existing things. In contrast to such set-theoretic and/or ontological readings
of what structure is, I will use this history to point to a category-theoretic,
schematic15 interpretation of types of structured systems.

12.2.1 What kind structures number systems?

In the development of Abstract Algebra,16 the use of kinds of “structures”, as
tool and/or unifying concepts, is evident. This development has its beginning
in the various attempts at answering the question: “What structures number
systems?”. For Dedekind, the subject matter of “algebra”17 may be considered
in two different ways. On the one hand, we may consider the properties of
number systems qua collections, wherein we overlook the nature of the elements
involved. The tools which Dedekind used to talk about the algebraic structure of
number systems, considered as such, were groups, ideals and modules. On the
other hand, we may consider the properties of the elements of number systems
and the interrelations among ‘rational domains’ contained in it. For Dedekind,
the unifying concept for such an analysis was thought to be that of a field.18

Hilbert, continuing this “algebraic” analysis of number systems, maintained
the distinction between properties of numbers systems (though not qua collec-
tions) and properties of the elements of number systems and their interrelations:
he used invariants, ideas, rings, groups and fields as tools to talk about the lat-
ter. To talk about properties of number systems, he took a geometric turn, and
considered them qua postulational systems. The unifying concepts for talking
about number systems as such were the ‘logical’ (or meta-mathematical) prop-
erties of axiom systems themselves, namely, independence and consistency.
In addition to this “algebraic” investigation was Hilbert’s meta-mathematical
analysis, which took axiom systems and their properties as objects of study in
their own right. Thus, while we had, with Dedekind, that, in some sense, num-
ber systems themselves were the basis for algebraic analysis, the question at
hand was “Could in his [Hilbert’s] view the conceptual order be turned around

15I use the term ‘schematic’ in the sense of Goldfarb [2001].
16The reader is strongly encouraged to read Corry’s [1996] insightful and informative account of this. While
I stop short of fully accepting his account of the category theory’s ‘significance’, I note here a debt to, and
reliance on, his presentation of the ‘facts’ of the development of the notions of kinds and types of algebraic
and mathematics structures.
17The term ‘algebra’ is placed in quotes since at the time this was not a well defined field. It may be
characterized as the “theory of solving equations” (see Hasse, [1954], p. 11.)
18As Dedekind, himself, explains: “. . . I have attempted to introduce the reader to a higher domain, in which
algebra and the theory of numbers interconnect in the most intimate matter . . . I got convinced that studying
the algebraic relationship of number is most conveniently based on a concept that is directly connected with
the simplest arithmetic principles. I have originally used the term “rational domains”. Which I later changed
to “field”. (Werke, p. 400). . . The term [field] should denote here, in a similar fashion as in the natural
sciences, in geometry, and in the social life of men, a system possessing a certain completeness, perfection
and comprehensiveness, by mean of which it appears as a natural unity”. (Dedekind, [1894], p. 452.)
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so that the system of real numbers be dependent on the results of [the axiomatic
analysis of] algebra rather than being the basis for it?” (Corry, [1996], p. 172)19.

Appreciating the “foundational value” of the axiomatic method, Noether ap-
plied this shift in conceptual priority to Dedekind’s subject matters. That is, to
the properties of number systems qua collections (again, overlooking the nature
of the elements) she proposed ideals, modules, groups and rings as tools for
talking about their algebraic structure. Such tools, in light of Hilbert, where
themselves now considered qua axiom systems. In a similar vein, for systems
of abstract elements of any axiom system, the unifying concept was thought to
be abstract rings, or the axiomatic presentation of rings themselves. Whereas
Dedekind had considered properties of concrete elements of number systems
and the field-theoretic interrelations between them as unifying, Noether con-
sidered the properties of abstract elements of abstract rings qua axiom systems
as unifying. In this manner the unifying power is taken out of concrete number
systems and put into an abstract kind of axiomatically presented structured
system. As Corry explains:

Noether’s abstractly conceived concepts provide a natural framework in which
conceptual priority may be given to the axiomatic definitions [of concepts] over
the numerical systems considered as concrete mathematical entities. With Noether,
then, the balance between the genetic and the axiomatic point of view begins to
shift more consciously in favour of the latter. (Corry, [1996], p. 250)

These developments in the analysis of the algebraic structure of number
systems gave rise to the independent branch of study of Abstract Algebra,
wherein the focus of analysis was now the shared structure of the abstract
kinds of algebraic systems (e.g., groups, rings fields) considered in themselves
(typically considered qua axiom systems).20 That is, those very tools and/or
concepts that were once useful or unifying when talking about the algebraic
structure of concrete, number, systems are now seen as systems of study in
there own right.21

19Hilbert responded to such a query by distinguishing between the genetic and the axiomatic method, and,
at least as regards the ‘foundations’ of mathematics, he held a preference for the latter: he says, “In spite
of the high pedagogic value of the genetic method, the axiomatic method has the advantage of providing
a conclusive exposition and full logical confidence to the contents of our knowledge.” (Hilbert, [1900], p.
184) and “When we are engaged in investigating the foundations of a science, we must set up a system of
axioms which contains an exact and complete description of the relations subsisting between the elementary
ideas of the science. The axioms so set up are at the same time the definition of those elementary ideas, and
no statement within the realm of the science whose foundation we are testing is held to be correct unless it
can be derived from those axioms by means of a finite number of logical steps.” (Hilbert, [1902], p. 447.)
20Exemplifying this shift is van der Waerden’s Modern Algebra, in which “. . . different mathematical do-
mains are considered as individual instances of algebraic structures, and therefore undergo similar treatments;
they are abstractly defined, they are investigated by recurrently using a well-defined collection of key con-
cepts, and a series of questions and standard techniques is applied to all of them.” (Corry, [1996], p. 252.)
21As Hasse witnesses: “It is characteristic of the modern development of algebra that the tools specified
about [i.e., groups and fields] have given rise to far-reaching autonomous theories which are more and more
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12.2.2 What type structures abstract kinds of
mathematical systems

Given this structural approach to abstract algebraic systems, the next question
that arose was: What is the tool and/or unifying concept that allows us to talk
about such abstract kinds of systems as instances of the same mathematical
type? I begin first with Ore for whom the type which structures the various
kinds of algebraic systems is the lattice. More specifically, what “structures”
kinds of algebraic systems are the (union and cross-cut) properties of the lattice
of certain subsystems of any given system. Here, then, is where we note both
Hilbert’s axiomatic influence and Noether’s “set-theoretic”22 influence. What
is new, however, is that, in addition to overlooking the nature of the elements,
we overlook too their existence. As Ore explains:

In the discussion of the structure of algebraic domains, one is not primarily inter-
ested in the elements of these domains but in the relations of certain distinguished
sub-domains. . . For all these systems there are defined two operations of union
and cross-cut satisfying the ordinary axioms. This leads naturally to the introduc-
tion of new systems, which we shall call structures, having these two operations.
The elements of the structure correspond isomorphically with respect to union
and cross-cut to the distinguished subdomains of the original sub-domain while
the elements of the original domain are completely eliminated in the structure.
(Ore, [1935], p. 406.)

It is in this sense that the lattice-theoretic properties were taken as the unifying
concepts for algebra; lattice theory, itself, was taken by Ore as the formal tool
for providing a general structural account of the various kinds of algebraic
systems, and, quite possibly, as having “foundational significance” insofar as it
may further provide a structural account of the various kinds of mathematical
systems as well.23

In contrast to Ore, for Bourbaki a type of structure is a system of elements
that has a set-structure, that is, one overlooks the specific nature of the elements
in favour of their algebraic, order or topological structure. As Shapiro notes:

replacing the basic problem of classical algebra . . . Thus in the modern interpretation algebra is no longer
merely the theory of solving equations, but the theory of formal calculating domains, as fields, groups, etc.:
and its basic problem has now become that of obtaining an insight into the structure of such domains. . . ”
(Hasse, [1954], p. 11.)
22To explain the reading I give to Noether’s use of the term ‘set-theoretic’, I point to Corry’s telling remark
that: “[t]he expression “purely set-theoretic considerations”, in Noether’s usage, does not refer to concepts
nowadays related to the theory of sets (membership, power, etc.). It denotes arguments for proof in algebra,
which do not rely on the properties of the operation defining the [system] under inspection, but rather
properties of the inclusions and intersections of sub-[systems] of it. (Corry, [1996], p. 244) . . . Such an
approach would certainly correspond to the problem, mentioned by Alexandrov, of “axiomatizing the notion
of a group from its partition into cosets as the fundamental concept” (Corry, [1996], p. 248.)
23As Corry notes: “At that opportunity [the 1936 International Congress of Mathematicians at Oslo] Ore
claimed that the guidelines of his program, although originating with algebra, should not be limited to that
domain alone, and he envisioned that they would be applied in additional fields of mathematics as well.”
(Corry, [1996], p. 276.)
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According to Bourbaki, there are three great types of structures, or “mother
structures”: algebraic structures, such as group, ring, field; order structures,
such as partial order, linear order, and well order; and topological structures
[which provides a formalization of the concepts of limit, neighbourhood and
continuity]. . . (Shapiro, [1997], p. 176.)

Yet, as types of set-structured systems, one does not overlook the existence
of elements: what structures the elements of kinds of mathematical systems into
their respective types are the relations that hold between such systems qua set-
theoretically presented axiom systems. Like Hilbert and Noether, Bourbaki’s
attention was focused on the axiomatic method. Unlike Hilbert, who focused on
the logical properties of axiom systems, or Noether and Ore who focused on the
properties of the inclusions and intersections of subsystems, Bourbaki used
various set-theoretic types of structures qua axiom systems to unify what could
be said of the various kinds of mathematically structured systems.

What remains open for discussion is whether, and in what sense, Bourbaki
intended the theory of sets to be constitutive of the concept of structure,
i.e., intended it as an answer to the question: “What is structure?”. Whatever
their intention might have been, the tension between the account of set theory
as a formal language and the heuristic role of the formally, though implicitly,
defined concept of structure was pulling at the seams of their ‘algebraic’ struc-
turalism.24 In any case, whether set-theory was intended to be used founda-
tionally or heuristically, what appears to be true is that the efforts of Bourbaki
were interpreted, both mathematically and philosophically, as providing a set-
theoretically constitutive account of what structure is and, in so doing, shifted
from the algebraic tradition’s attempts to overlook the nature of the elements
of kinds of mathematical systems in favour of abstractly characterizing their
shared structure. As Bell explains:

With the rise of abstract algebra. . . the attitude gradually emerged that the cru-
cial characteristic of mathematical structure is not their internal constitution as
set-theoretical entities but rather the relationship among them as embodied in the
network of morphisms. . . However, although the account of mathematics they
[Bourbaki] gave in their Eléments was manifestly structuralist in intention, actu-
ally they still defined structures as sets of a certain kind, thereby failing to make
them truly independent of their ‘internal constitution’. (Bell, [1981], p. 351.)

For the Bourbaki structuralist what unifies kinds of mathematical systems
are types, and, more significantly, what appears to make these types “powerful
tools” for unification, is the constitutive character of set theory.25 In this manner,

24As they, themselves, note: “[t]he reader may have observed that the indications given here [of the concept
of structure] are left rather vague; they are not intended to be other than heuristic, and indeed it seems scarcely
possible to state general and precise definitions for structure outside the framework of formal mathematics”.
(Bourbaki, [1968], p. 347, footnote.), (Corry, [1996], p. 326.)
25Speaking to this “constitutive” reading, we note the following quotes of Bourbaki: “Each structure carries
with it its own language, freighted with special intuitive references derived from the theories which the
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types, or “structures”, as set-structured systems are turn into “things”. In con-
trast, the category-theoretic structuralist holds that what unifies kinds are types
as cat-structured systems, yet, what makes these types tools for unification, is
the schematic use of categories, in particular, and the organizational role of cat-
egory theory, in general. Wherein, then, lies this distinction? It is that, nothing,
in particular, is constitutive of what a category is. As Mac Lane explains:

[i]n this description of a category, one can regard “object”, “morphism”, “do-
main”, “codomain”, and “composites” as undefined terms or predicates. (Mac
Lane, [1968], p. 287, italics added.)

Like Bourbaki, we thus characterize the shared structure of abstract kinds of
mathematical systems qua a type of structured system.26 Yet unlike Bourbaki
we need not take set, or, indeed, any particular kind of set, to be constitutive of
what these types are themselves types of (though, of course, we might). Again,
as Mac Lane explains:

Bourbaki’s concepts defined “mathematical structures” by taking an abstract set
and appending to it an additional construct, in category theory there is no subordi-
nation of “mathematical structures” to sets, and this is the source of the supremacy
of this theory over Bourbaki. (Mac Lane, [1980], p. 382.)

Moreover, in the spirit of Lawvere [1966], we can use Cat (or CAT) as the
type used to talk about what structures these kinds of cat-structured systems,
again, without having to appeal to set as constitutive of what this type is a type of.
What we must note, however, is that, contra Lawvere, we, like our set-theoretic
cousins, cannot use category theory as a formal language, or foundation. That
is, we cannot use it to answer the question: “What is a mathematical structure
qua a either a kind or type of category?”. As Corry explains,

[i]n no sense, however, has category theory provided, to this day, a definite, or
even a provisionally satisfactory answer to the question of what is a “mathematical
structure” . . . . Neither does category theory provide ultimate foundations for
mathematics. (Corry, [1996], p. 389, italics added.)

axiomatic analysis . . . has derived the structure. . . Mathematics has less than ever been reduced to a purely
mechanical game of isolated formulas; more than ever does the intuition dominate the genesis of discoveries.
But henceforth, it possesses the powerful tools furnished by the theory of the great type of structures; in a
single view, it sweeps over immense domains, now unified by the axiomatic method . . . ” (Bourbaki, [1950],
pp. 227–228) and further that “. . . whereas in the past it was thought that every branch of mathematics
depended on its own particular intuitions which provided its concepts and primary truths, nowadays it is
known to be possible, logically speaking, to derive practically the whole of mathematics from a single source,
the theory of sets.” (Bourbaki, [1968], p. 9.)
26For example, Set, Top, Group are types, i.e., kinds of cat-structured systems, that allow us to talk about
the shared structure of abstract kinds of mathematical systems in terms of their being instances of the same
type.
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12.3 A schematic in re interpretation of mathematical
structuralism

The final section of this paper brings together the above investigations to
present a category-theoretically framed in re interpretation of philosophically
positioned mathematical structuralism. The objective of this section is to show
that it is in following the Bourbaki tradition too closely and, thereby, not appre-
ciating the algebraic alternative, that philosophically interpreted mathematical
structuralism has most failed us. Seen in this light, my aim is to first argue
that category-theoretic analysis ought to be best seen as answering “What are
the types that “structure” abstract kinds of structured systems?” (as opposed
to speaking to the foundational/ontological claim that “structures” are) and,
second, to separate these analyses from those which end with claims that types
of structured systems, or “structures”, are set-structured (or place-structured)
“things”.

12.3.1 Levels, interpretations and varieties of
mathematical structuralism

Mathematical structuralism can be construed as the philosophical position
that the subject matter of mathematics is structured systems and their morphol-
ogy,27 so that mathematical objects are nothing but “positions in structured
systems” and mathematical theories aim to describe such objects and systems
via their shared structure. At the level at which we consider concrete kinds
of structured systems, i.e., the level where ‘system’ means ‘model’, we have
objects as positions in models and can use either isomorphisms or embeddings
to talk about the shared structure of such kinds. For example, the theory of
natural numbers aims to describe concrete systems of the natural-number struc-
ture, as characterized by the Peano axioms, so that its objects may be seen as
von Neumann ordinals, Zermelo numerals, or any other object which shares
the same structure, or morphology. If all systems that share this structure are
isomorphic, we say that the natural-number structure and its morphology de-
termine its objects up to isomorphism. Analogous, then, to the shift in levels
that one finds in the mathematical history of the development of the notion
of algebraic structure, at the next level of philosophical analysis one finds the
question: “What structures abstract kinds of structured systems”? In answer
to this question, in the philosophical literature, one finds two interpretations of

27Note here that I have changed the slogan of structuralism from “mathematics is about structures and their
morphology” to “mathematics is about structured systems and their morphology”. This shift is intentional,
it means to indicate that the aim of the structuralist is to account for the shared structure of mathematical
systems in terms of kinds or types, as opposed to answering the question: “What is a structure?”, or “What
are the kinds or types that are constitutive of what a structure is?” This shift is further discussed in § (12.3.2).
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mathematical structuralism: ante rem and in re. The latter is aligned with a
realist view of structures insofar as it holds that “structures exist as legitimate
objects of study in their own right. According to this view, a given structure
exists independently of any system that exemplifies it . . . ” (Shapiro, [1996],
pp. 149-150). In re structuralism, in contrast, is aligned with a nominalist
view of structures insofar as it eliminates talk about structures in favour of talk
about systems: “it does not countenance mathematical objects, or structures for
that matter, as bona fide objects . . . Talk of structure generally is convenient
shorthand for talk about systems of objects”. (Shapiro, [1996], p. 150.)

To further inform this debate, I rely on Aristotle’s distinction between prior
in place and prior in definition.28 Against the ante rem structuralist, a category-
theoretically framed in re interpretation of mathematical structuralism implies
that there are no “structures”, qua “things”, over and above kinds of structured
systems. As such, structures are not prior in place. Against the in re structuralist,
categories qua schema are prior in definition insofar as they are needed, as an
organizational tool (see Mac Lane [1992]), to talk about the shared structure of
abstract kinds of structured systems as instances of the same type. Category
theory, then, defines what a type of structured system is, but remains silent as
to the claim that structure is.

Failing to heed Resnik’s counsel (see Resnik, [1996], p. 96) that structuralism
is not committed to asserting the existence of structures, yet, in response to this
worry, three varieties of mathematical structuralism have been proposed, these
are: the set-theoretic, the sui generic, and the modal.29 In essence, these are
suggested as “background theories” that allow us to talk about “structures”
as either actually or possibly existing “things”: they allow us to answer that
either set-theory, structure-theory, or modal logic, provide the conditions for
the actuality (or possibility) of a system being a “structure” of the appropriate
kind.

12.3.2 The Bourbaki versus the “Algebraic” tradition

I now turn to my claim is that it is in following the Bourbaki tradition (which
takes structures as set-structured “things”) too closely and, thereby, not appre-
ciating the algebraic alternative of mathematical structuralism that philosoph-
ically interpreted mathematical structuralism has most failed us. Witnessing
this is Dummett’s remark that:

28See the last two books, viz., M, N, of the Metaphysics (1076a5 – 1093b30), where Aristotle discusses
mathematical objects and Ideas, and the manner in which these are prior in definition yet not, contra the
Platonist, prior in place. See also Metaphysics Book V (1018b9–1019a14) where he discusses the various
ways in which something can be correctly called prior to another.
29See (Hellman [2001]) for an excellent overview of these varieties and the problems associated with each.
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There is an unfortunate ambiguity in the standard use of the word ‘structure’,
which is often applied to an algebraic or relational system - a set with certain
operations or relations defined on it, perhaps with some designated elements;
that is to say, a model considered independently of any theory which it satisfies.
This terminology hinders a more abstract use of the word ‘structure’; if, instead
we use ‘system’ for the forgoing purpose, we may speak of two systems as having
an identical structure, in this more abstract sense, just in case they are isomorphic.
The dictum that mathematics is the study of structure is ambiguous between these
two senses of ‘structure’. If it is meant in the less abstract sense, the dictum is
hardly disputable, since any model of a mathematical theory will be a structure in
this sense. It is probably usually intended in accordance with the more abstract
sense of ‘structure’; in this case, it expresses a philosophical doctrine that may
be labelled ‘structuralism’. (Dummett, [1991], p. 295.)

While Dummett’s analysis is, in some sense, helpful, it conflates two things:
algebraic and set-theoretic accounts of types of structured systems, and concrete
and abstract accounts of kinds of structured systems. Systems qua models can be
used to account for the shared structure of a concrete kind of structured system,
i.e., for the shared structure of the elements and/or properties of natural numbers
qua set-structured systems. However, as we will see, algebraically read systems
qua schematic types, as opposed to Bourbaki read “structures” qua set-theoretic
types, may also be used to account for the shared structure of abstract kinds
of structured systems. Instead, then, on focusing on the clarification of, and
providing background theories for, the notion of structure as a “thing”, I will
focus on clarification of, and providing a framework for, the notion of a system
as a schema. Thus, my aim as an algebraic structuralist is not the analysis of
the constitutive character or modal status of “structures”, but the analysis of the
shared structure of abstract kinds of structured systems.30

I begin, then, with an abstract notion of a system, since, as we will see, this is
where we find our corresponding notion of a cat-structured system. In its most
general sense, a cat-structured system, then, has ‘objects’ and ‘morphisms’ as
its abstract kinds which are structured by the category-theoretic axioms. So
that, the schema for a type of structured system, i.e., for a kind of mathematical
system qua a category is

. . . anything satisfying these axioms. The objects need not have ‘elements’, nor
need the morphisms be ‘functions’. . . We do not really care what non-categorical

30We note, however, that Hellman [2002], does appreciate the distinction between the algebraic-schematic
use of categories (what he calls the ‘algebraico-structuralist perspective’, p. 9), but his suggestion that the
“problem of the ‘home address’ remains” (p. 8, p. 15), clearly indicates that he is stilling thinking of
“structures” (be they categories of toposes) as ‘things’ requiring ‘conditions for the possibility of existence’.
In fact, however, if, on the algebraic approach, the aim of structuralism is to account for the shared structure
of kinds of mathematical systems in term of schematic types, as opposed to answering “What is (or where is!)
a structure?” then why should we be troubled by the fact that “[b]y themselves they [the category-theoretic
axioms] assert nothing. They merely tell us what it is to be a structure of a certain kind” (p. 7) and thus are
“unlike the axioms of set theory, [in that] its axioms are not assertory.” (p. 7.)
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properties the objects and morphisms of a given category may have; that is to say,
we view it ‘abstractly’ by restricting to the language of objects and morphisms,
domains and codomains, composition, and identity morphisms. (Awodey [1996],
p. 213.)

At once we see important differences: on the category-theoretic view, not
only are there are no “objects” as either sets-with-structure (see Dummett,
[1991], p. 295) or places-with-structure (see Shapiro, [1997, pgs. 73, 93]),
there are no “structures” as either (equivalence types of) systems-with-structure
or “the abstract form of a system, highlighting the interrelationships among
the objects. . . ” (Shapiro [1997], p. 74.) What this means is that the Bour-
baki conception of a system (of a system whose “objects” are “positions in a
set-structure”,31 or “places in a structure”32) is to be considered as a kind of
structured system: it is not the archetype of either the concept ‘system’ or the
concept ‘structure’. A category, too, neither constitutes a privileged system
or structure: it is a schematic type. It functions as a philosophical tool used
to organize what we can say about the shared structure of the various abstract
kinds of mathematically structured systems. The value, then, of this schematic
notion of a cat-structured system is that it can be used to capture the shared
structure of abstract kinds of structured systems, independently of its specific
set-structure (independently of what its kinds are).33

We have shown, then, that if category theory is taken as the framework for
what we say about the shared structure of abstract kinds of mathematical sys-
tems, then, we can account for a schematic in re interpretation of mathematical
structuralism.34 Against the ante rem structuralist, this category-theoretically
framed in re interpretation of mathematical structuralism implies that there
are no “structures‘”, qua “things” over and above kinds of structured systems.

31We can, however, present the underlying structure of a Bourbaki system, or equivalently present the kind
of any set-structured system as a kind of cat-structured, by taking our objects to be sets and our morphisms
to be functions. The result is the type of structured system called Set. But this does not mean that objects
are sets and morphisms are functions, it means in this type of system propositions that talk about objects
and morphisms can be interpreted as being about kinds of sets and functions.
32Shapiro’s structure-theory itself is framed by ZF+ Coherence axiom.
33For example, in the kind of category called Top, we present the topological-structure by taking objects as
kinds of topological spaces and morphisms as kinds of continuous mappings, independently of what those
kinds are kinds of. As Awodey explains: “. . . suppose we have somehow specified a particular kind of
structure in terms of objects and morphisms . . . Then that category characterizes that kind of mathematical
structure, independently of the initial means of specification. For example, the topology of a given space is
determined by its continuous mappings to and from the other spaces, regardless of whether it was initially
specified in terms of open sets, limit points, a closure operator, or whatever. The category Top thus serves
the purpose of characterizing the notion of ‘topological structure’.” (Awodey [1996], p. 213.)
34Simply put, to talk about the shared structure of abstract kinds of mathematical systems in terms of kinds
of cat-structured systems, there is no need for either set theory or structure theory or modal logic over and
above category theory: a category acts as a schematic type that can be used to frame what we say about the
shared structure of abstract kinds of mathematical systems, (in terms of types of cat-structured systems like
Set, Group, or Top), and for kinds of cat-structured systems, (in terms of the types Cat or CAT). And, more
significantly, it does so without our having to specify what these kinds are kinds of.
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As such, categories as structures are not prior in place. Against the typical in
re structuralist, however, categories as schema are prior in definition insofar
as they are needed, as an organizational tool (Mac Lane [1992]), to talk about
the shared structure of abstract kinds of structured systems as instances of the
same type. Herein, then, lies the “foundational significance” (Bell, [1981]) of
using category theory to frame an in re structuralist philosophy of mathematics:
while the notion of a cat-structured system is privileged as a schema (is prior
in definition) it is not reified as a constituting a structure (is not prior in place).
Category theory, then, can act as the other theoretical language (see Carnap
[1956]) because it permits us to talk about abstract kinds of structured systems
qua cat-structured systems without our having to claim that category theory is
either a “thing language” or that Cat (or CAT) is a “thing world”. Thus, to be
an algebraic in re structuralist about abstract kinds of mathematical systems,
we need not provide a “background theory”, that provides the conditions for
the actuality (or possibility) of what, or whether, a category qua a structure is.
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13.1 Our claim

It is claimed that category theory cannot provide an adequate foundation for
mathematics. The main reasons seems to be the following:

1 Category theory cannot provide an adequate foundation for mathemat-
ics for epistemological reasons, i.e. it presupposes other, more simple,
concepts for its understanding;

2 Category theory, perhaps useful in certain areas of mathematics, for
instance in algebraic topology, homological algebra, algebraic geome-
try, homotopical algebra, K-theory, theoretical computer science or even
mathematical physics, cannot provide a comparable picture of mathemat-
ics as set theory does. First, there is an informal set theory that provides
a framework for mathematics. What this informal set theory amounts
to is not entirely clear, but it seems to play an important role. Second,
there is a well-known and well-understood universe, namely the cumu-
lative hierarchy, and a well-known and well-understood theory written
in a well-known and well-understood formal language, namely ZF (of
NBG) written in first-order logic. Thus, the objection goes, category the-
ory does not fulfill some obvious philosophical and metamathematical
requirements one might expect or ask from a foundational framework.

In this paper, we want to address these issues in the following manner. I want
to argue that:
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1 Category theory, as it already is, is based on a conception of mathemati-
cal object which is, from an ontological point of view, radically different
from the conception underlying set theory; this fact has numerous con-
sequences, one of which is that the epistemological argument against
category theory is ill-founded and therefore can be discarded;

2 Although many category theorists believe that category theory is fine as
it is, even for foundational purposes1 — a view that I will not examine
here, for it would take us away from our main concern — an alternative
picture is being developed, mostly by the logician Michael Makkai at
McGill and upon which I will rely heavily, a picture that comprises a
universe of mathematics based on a different conception of sets, radically
different from the cumulative hierarchy, although there is a hierarchy of a
different nature, and a formal language in which a theory of that universe
can be presented and developed. In a nutshell, the universe, technically
the universe of weak ω-categories, is highly heterogeneous in the sense
that there are various kinds of entities and the variety of these kinds
is reflected by the variety of criteria of identity for them. The formal
language is an extension of first-order logic, namely it is first-order logic
with dependent sorts, FOLDS, which in this context takes the form of
a diagrammatic language. We should add immediately that this picture
extends radically the nature of mathematical objects presented in the first
step of the argument. When we get to this stage of the presentation,
I submit that, not only do we have answers to the main objections to a
categorical framework, but we can see clearly that the views involved
are based on radically different conceptions of mathematical objects.
At that point, we can evaluate the situation both from a technical point
of view, i.e. what are the technical benefits and the drawbacks of each
view, from a philosophical point of view, i.e. which view, if any, is
philosophically justified, in particular, which view represents best the
way mathematicians work and think about mathematical objects.

13.2 The nature of mathematical entities

Let us start with the nature of mathematical entities in general and with a
rough and classical distinction that will simply set the stage for the picture we
want to develop. We essentially follow Lowe 1998 for the basic distinctions. We
need to distinguish between abstract and concrete entities, on the one hand, and
universals and particulars on the other hand. For our purpose, it is not necessary
to specify a criterion of demarcation between abstract and concrete entities. We

1Probably one of the best illustration of that position can be found in Taylor’s fascinating book. See Taylor
1999.
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simply assume that such a distinction can be made, e.g. concrete entities can
change whereas abstract entities cannot. We assume that a universal is an entity
that can be instantiated by entities which themselves are not instantiable, the
latter being of course particulars. Given these distinctions, an entity can be a
concrete particular, a concrete universal, an abstract particular or an abstract
universal.

Our focus here is between the last two possibilities. For we claim that the
current conception of sets makes them abstract particulars whereas for objects
defined within categories, mathematical entities are abstract universals.2 This,
we claim, is true of category theory as it is.

Sets, as they are generally conceived and as they are represented in ZFC or
NBG, are indisputably abstract particulars. We assume that they are abstract.
The fact that they are particulars is established by looking at the criterion of
identity for sets in these theories, namely the axiom of extensionality. As is
well known, a set is completely determined by its elements and two sets are
identical if and only if they have the same elements. Thus a specific set cannot
be instantiated by another entity and is therefore a particular. It could be claim
that sets are particulars because there is a unique criterion of identity for them.
A theory in which some entities are universal in the previous sense has to have
at least two different criteria of identity: one for the universals themselves and
one for the particulars that instantiate these universals. In category theory as
it is, we find many different criteria of identity. Three are well-known and
common to standard category theory. Others arise in more complex situations.
In the universe of categories, there is a whole spectrum of criteria of identity: at
one end of the spectrum, we have criteria of identity for particulars, and at the
other end, we have a hierarchy of criteria of identity for universals, all related
to one another in a systematic manner. What is philosophically interesting, is
that the traditional distinction between universal and particular is in some ways
inadequate.

13.3 Criteria of identity in a categorical context

A brief look at the axioms of a category should be enough to convince anyone
that there is an implicit criterion of identity at work for morphisms. Indeed,

2Our choice of terminology is radically different from Ellerman 1987 where a similar proposal is made.
However, Ellerman argues that category theory is a theory of concrete universals whereas set theory is a
theory of abstract universals. Needless to say, the difference lies in the way the abstract/concrete distinction
is articulated. Thus, whereas Ellerman argues that both concepts of category theory and set theory are
universals and that the difference lies in the fact that the former is concrete whereas the latter is abstract, we
believe that both are abstract and the former are universals and the latter are particulars. See Marquis 2000 for
some critical remarks on Ellerman 1987. We should point out, however, that the terminology is not clarified
in Marquis 2000. We should also point out that our terminology is different from the one found in Makkai
1998 and 1999 where Makkai argues that the concept of collection implicit in a categorical framework is
abstract. Once more, the terminology is justified if it is made in a certain way. However, our overall point
of view owes a great deal to Makkai’s technical work.
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we have that, for instance, f(gh) = (fg)h, the associativity for morphisms, is an
identity. Morphisms are treated as particulars from the very beginning. Recall
that a morphism f: X → Y is an isomorphism if there is a morphism g: Y → X
such that fg = 1Y and gf = 1X . Two objects X and Y are said to be isomorphic
if there is an isomorphism between them (at least one). Thus a specific pair
of maps is used to identify objects as being isomorphic. One could of course
immediately stop at this point and reflect on the necessity that these morphisms
be particulars. It seems reasonable to ask for a certain type of morphisms that
should satisfy certain conditions, as is clear already in the case of a homotopy
category. We will come back to this point in due course.

A second criterion of identity appears when we consider how objects are
defined in a category. Consider the simple and well-known case of the definition
of a product for two objects X and Y in a category C. A product for X and Y in
a category C is an object P of C together with morphisms πX : P → X and πY :
P → Y such that for any object Q of C together with morphisms f : Q → X and
g : Q → Y, there is a unique morphism h : Q → P such that πXh = f and πY h =
g. The important point here is that this definition characterizes P up to a unique
isomorphism. This means that for any object Q isomorphic to P in C, if P is a
product of X and Y, then Q is a product of X and Y and, moreover, if Q and P
are both products of X and Y, then they are isomorphic. Thus, this definition
does not give us a particular object as a product, nor does it characterize P by
stipulating what its elements should be. It specifies under what conditions an
object is an instance of the universal product, when a given object is a token of
the product type. The criterion of identity in this case is given by the unique
isomorphism existing between two tokens of the product of two objects of the
category. From a global point of view, the criterion of identity is given by the
underlying groupoid of the category C.

This is typical of the way objects are defined in category theory. Mathemati-
cal entities and their properties in a category C are only given up to isomorphism.
It is also true of other entities, e.g. adjoint functors. Category theory speci-
fies what are the abstract universals of mathematics and to know the abstract
universals of a domain is to know the fundamental features of that domain.
For instance, once one has shown that a given category C has finite products,
more generally finite limits, then one knows about various constructions and
results that hold in C. A more important example is provided by the notion
of abelian category, given by the existence of certain limits (and colimits) and
what are called “exactness conditions” (the terminology comes from homolog-
ical algebra). Another example is provided by the categorical definition of the
natural numbers: they too are presented as abstract universals.3 There is no

3Lowe 1998 also argues, but on different grounds, that the natural numbers are abstract universals. For a
categorical analysis of the natural numbers, see for instance McLarty 1993.
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doubt that the use of category theory in certain contexts, e.g. algebraic topol-
ogy, homological algebra or algebraic geometry, reveals what is fundamental
in these domains.

Now, collections or sets are a special kind of mathematical entities. Can
they be thought of as entities like any other entity in a category? Already in
the mid-seventies, Lawvere had suggested a way to think of sets in this context.
Unfortunately for us, he called them “abstract sets”, using the term “abstract” in
the different sense from what we have assumed here.4 Here is how he describes
these “abstract sets”:

An abstract set X has elements each of which has no internal structure what-
soever; X has no internal structure except for equality and inequality of pairs of
elements, and has no external properties save its cardinality. (Lawvere, 1976,
119.)

The first sentence could be reformulated by saying that the elements of an
abstract set are “atoms” or faceless points.5 Nonetheless, there is an internal cri-
terion of identity for the elements of each sets: we can tell, given two elements
of a given set whether they are the same or they are different. Thus, a set in this
sense comes equipped with a criterion of identity for its elements. There is no
global criterion of identity for elements: one cannot ask, given two arbitrary
objects (“elements”), whether they are the same or not. The criterion of identity
is always relative to a given abstract set. Furthermore, there is no global relation
of elementhood: one cannot ask, for any object x and any set A, whether x is an
element of A or not. Finally, one cannot ask, given two sets X and Y, whether
X = Y or not. Sets in the above sense are isomorphic or not. This is what the
last sentence of the quote means: their only external property is their cardinality,
i.e. two sets are “identical” when they are isomorphic. However, as Lawvere
remarks, these sets are “more refined (less abstract) than a cardinal number in
that it does have elements while a cardinal number does not.” (Lawvere, 1976,
119.) It is as if such a set would be a representative of a cardinal number, or
I would like to say a token of a cardinal number, but seen as a token of that cardi-
nal number, i.e. with any specific property erased. Notice that this is in general
how we look at tokens as tokens of a type: we ignore all specific properties of

4We are using “abstract” in an ontological sense, whereas Lawvere clearly has an epistemological notion in
mind, something which is not uncommon among mathematicians. In the paper we are referring to, Lawvere
says that his notion of sets is “less abstract” than the notion of cardinality. Clearly, one entity cannot be
more (or less) abstract than another entity in the ontological sense. However, in the epistemological sense,
one can have different levels of abstraction, assuredly a common phenomenon within mathematics. This is
an issue we will explore elsewhere. See Marquis 2002.
5It could certainly be argued that Cantor was developing a conception of sets along these lines. For the
process of double abstraction underling Cantor’s conception yields a “form”, not a particular entity. This is
especially clear when one looks at order-types. Ordinals are tokens of a type for Cantor, they are not abstract
particulars à la Von Neumann. Lawvere has himself recently developed this idea along a different line by
looking at abstract sets as Kardinalen. See Lawvere 1994.
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the token and see only the properties that exemplify the type. In Aristotelian
terminology, one would say that such a set is a collection qua collection.

Should these sets be treated as particulars or as universals? Since we do
not have the standard axiom of extensionality — we cannot compare elements
that belong to different sets, it seems that we cannot treat them as particulars.
One could argue, though, as follows: since these sets can be the domain or the
codomain of morphisms, in particular, they are the domain and the codomain of
their own identity morphism. Since the latter are assumed to be particulars, the
sets have to be particulars too. But this argument fails for two reasons. First, it
fails because the criterion of identity for sets is given by isomorphisms. Thus,
in particular, any automorphism is acceptable, i.e. a set can be identical with
itself in more than one way. This might sound odd, but we are perfectly at ease
with this idea for geometrical objects. Second, it fails because in the universe
we will be considering, even morphisms won’t be treated as particulars. The
identities are replaced by isomorphisms systematically.

I suggest that we call these sets “transcendental sets” since they are purely
the form of sets.6 Another possibility would be to call them “perfect sets”
or again, following a suggestion also made by Lawvere, “pure sets”, but I
favor the previous terminology. We have already underlined the fact that the
totality of these transcendental sets cannot constitute a set. (For there is no set-
theoretical criterion of identity for them.) As Lawvere has already observed,
these transcendental sets can support mappings, the latter notion being taken
as a primitive notion. Composition of mappings can be defined and it clearly
satisfies the usual axioms of a category. Thus, the totality of transcendental sets
constitute a category. It is a different kind of entity. As Lawvere has argued
in his paper, it is reasonable to say that the universe of these transcendental
sets form a topos. In fact, in a topos, any object can be considered to be a
transcendental set.

The first conclusion we can immediately draw is that a coherent conception
of sets can be developed in a categorical context; this conception is different
from the conception inherent to traditional set theory; thus, at the very least we
can say that there are various conceptions of sets (of course, there is also the
naïve conception, but to claim that, say ZFC, with the cumulative hierarchy, is
the correct formalization of that conception is a problematic claim).

We could stop here and start arguing for the foundational relevance of cat-
egory theory as it is. We could give various technical results obtained within
toposes or about toposes and expose their foundational significance and im-
portance. We could also articulate a view in which mathematics is done in
toposes. The main claim, I guess, would be the following: given any piece

6I am using the term “transcendental” based on an analogy with Kant’s usage. It has nothing to do with the
expression “transcendental numbers”.
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of mathematics M, it is possible to find a topos E in which the concepts and
theorems of M can be defined and proved. This in itself is an interesting po-
sition that deserves to be examined carefully. But we will rather move on to
a different, emerging, position, a position that has an intrinsic beauty and that
can be presented as an alternative to the set theoretical picture.

13.4 Systems of categories

Let us come back to categories. Given the importance of isomorphisms in
categories, one would expect that the notion of isomorphism would provide the
criterion of identity for categories. However, this is not the case.7 A criterion
of identity for categories is given by the notion of equivalence of categories:
two categories C and D are equivalent if there are functors F: C → D and G:
D → C such that the composite FG is isomorphic to 1D and GF is isomorphic
to 1C . Notice that the identity between the composites FG and GF and the
respective identity functors are replaced by isomorphisms. We can immediately
conclude two important facts from this situation: a category of categories, no
matter what it turns out to be, cannot simply be a category. For, as we have
seen, in a category, the criterion of identity is given by the isomorphisms and
since categories are not individuated by isomorphisms, a category of categories
will have to be something else. Second, transcendental sets and categories have
different criteria of identity; for transcendental sets, it is given by isomorphisms,
for categories it is (at least at this level) given by equivalences; hence, categories
cannot be said to be structured sets, in the same sense, say, that one can say
that groups are structured sets. This is now crucial: categories in our universe
cannot be said to be (structured) sets.

Before we move on to the universe as a whole, let us briefly consider how
the criteria of identity build up in a categorical context.

Often in category theory, the objects of investigation are functors F: C → D,
G: A → B. One has to determine the correct criterion of identity for such
functors. It turns out that the right notion can be presented as follows: two
functors F: C → D and G: A → B are equivalent if there are equivalence of
categories E1: C → A and E2: D → B and an isomorphism η: GE1 → E2F.
This situation can be represented by the following diagram:

C
F

−→ D

E1 ↓ η ր ↓E2

A −→
G

B

7As far as I can tell, this was first discovered, or at the very least emphasized, by Grothendieck in his Tohoku
paper, published in 1957. However, it might have been discovered by Yoneda some times before. This is an
open problem.
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We see that this is more involved: we use the notion of equivalence of categories
together with the notion of isomorphism of parallel functors.

We could go on like this and introduce the criterion of identity for fibrations,
bicategories, etc. In each case, the criterion of identity would be more involved.
The thrust should however be clear: the identity of objects in a categorical
context is derived from that context, i.e. the underlying category in each case.
Furthermore, there is a hierarchy of criteria of identity that seems to be endless.
This is the first sense in which the categorical universe is heterogeneous: the
criterion of identity for objects in a category is not the same as the criterion
of identity for categories, which in turn, is not the same as the criterion of
identity for functors, which in turn, is not the same as the criterion of identity
for fibrations, etc. We cannot refrain at this moment to quote from Lowe:

The idea that one can “introduce” a kind of objects simply by laying down
an identity criterion for them really inverts the proper order of explanation. As
Locke clearly understood, one must first have a clear conception of what kind
of objects one is dealing with in order to extract a criterion of identity for them
from that conception. (. . . ) So, rather than “abstract” a kind of objects from a
criterion of identity, one must in general “extract” a criterion of identity from a
metaphysically defensible conception of a given kind of objects. (Lowe, 1995,
517.)

In categorical practice, the kind of objects one has to deal with are very often
clear from the context. One then determines the proper criterion of identity for
the objects of that kind.8 This is strikingly different from the prevalent situation
in set theory. A general theory of identity reflecting the order of presentation we
have just given has been proposed by Michael Makkai in the form of FOLDS. It
is the very purpose of that formal framework to be able to formulate in a precise
and rigorous fashion, for various kinds of mathematical entities, corresponding
criteria of identity. We will come back to FOLDS later.

This informal hierarchy of criteria of identity already indicate the heterogene-
ity of the universe. At the bottom of the universe, we find the transcendental
sets with their criterion of identity: isomorphisms. Thus, their totality does
not constitute a set. In fact, they form various categories. These categories, in
turn, can be collected into totalities: what are these totalities? They certainly
cannot be categories. There is more structure involved. They are at least what
are called strict 2-categories or 2-categories. Then again, 2-categories form
totalities and these totalities, to be described accurately, require more structure:
they form weak 3-categories. In order to see this more clearly, let us look at
equivalences more carefully.

8Indeed, in many textbooks, various notions are defined, examined and developed and the criterion of identity
for these objects is not even mentioned, e.g., fibrations. See for instance Borceux 1994, Jacobs 1999.
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An equivalence is given by a pair of functors F: C → D, G: D → C and
natural isomorphisms α : FG → 1D and β : GF → 1C . The fact that α and β
are isomorphisms means that the identitiesαα−1 = 11D andα−1α = 1FG hold.
In other words, we have reintroduced particulars at the last stage. To be entirely
consistent with the underlying conception of object we are assuming, these
identities should be replaced by isomorphisms (of the right type, i.e. satisfying
certain conditions.) A complete description of this situation is given by what
are called bicategories, or, more commonly nowadays, weak 2-categories. The
next step is provided by tricategories or weak 3-categories.9 The latter notion
takes six pages to be defined and 13 pages are required to present the various
conditions that have to be satisfied by the various levels. Fortunately, a general
and very compelling picture is emerging. I want to insist on the fact that it is
technically and philosophically compelling. The general picture of the resulting
universe is given by what are called “higher dimensional categories” or weak
ω-categories. (See Leinster 2002 for a review of different definitions.)

Here is an extremely simplistic sketch of the universe of weak n-categories.
0-categories are transcendental sets. One and the same set can be the same as
itself in various ways; i.e. it can have various automorphisms. More generally,
two sets can be the same in different ways. Each and every isomorphism be-
tween them stipulates how they are the same and we can keep track of these
various identities. Moreover, 0-categories, i.e. sets, are linked to one an-
other by morphisms and these morphisms compose in the obvious way. Let
us call morphisms between 0-categories 1-morphisms. There is a motivation
behind the terminology, for 0-categories can be represented as points and 1-
morphisms as directed lines between points. It would be tempting to say that
1-morphisms satisfy various identities, e.g. associativity, and that they form
a category. But as we have seen, that would amount as treating them as ab-
stract particulars. Hence, instead of having identities between 1-morphisms,
we require that isomorphisms exist between them (with extra conditions). This
implies that 2-morphisms between 1-morphisms have to be introduced and that
they provide a criterion of identity for 1-morphisms. When this is done, it can
be seen that the collection of 1-morphisms form a weak 2-category. How about
2-morphisms? Clearly, once more, we have to go up the ladder and introduce
3-morphisms. These will stipulate how 2-morphisms behave, how they com-
pose and under what conditions they are identical. The general pattern should
now be obvious: to connect and identify n-morphisms, (n+1)-morphisms are
required. Notice that it is possible to stop at any n and stipulate that at that

9It can be shown that any weak 2-category is equivalent, in a specific sense, to a strict 2-category. Thus, it
would appear that weak 2-categories, those we are describing here and that are relevant to this discussion, are
dispensable. However, this is no longer true for 3-categories. In the latter case, there are weak 3-categories
which cannot be replaced by strict 3-categories.
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point, equalities between n-morphisms exist but that for all j < n, identities are
given by (j+1)-morphisms.

The general picture is therefore this. The collection of 0-categories forms a
1-category. If we were to stop at this stage, it would mean that we take equalities
between 1-morphisms and that the latter are treated as abstract particulars. But
we can consider the collection of 1-categories and this is a 2-category. Again,
if we were to stop at this point, it would mean that we consider equalities be-
tween 2-morphisms but that 1-morphisms, that is 1-categories, are now treated
as abstract universals. Thus, for each n, there is an (n+1)-category of all n-
categories. Of course, one can consider the ω-category of n-categories for all n:
this amounts to defining n-categories for all n simultaneously. The ω-category
of weak n-categories is the alternative picture to the cumulative hierarchy of
sets.

The technical problems involved in the study of higher-dimensional category
theory are daunting. We have not even mentioned the simplest obstacle. We
refer the reader to the literature. (See Baez 1997, Baez & Dolan 1998a, Baez &
Dolan 1998b, Batanin 1998, Makkai 1998, Makkai 1999 and Leinster 2002.)
The point I wanted to make is purely conceptual. I am deliberately ignoring
the practical motivations underlying actual research into higher dimensional
categories, although they are probably more important than the conceptual ones
within the research community, for they go from computer science to topological
quantum field theory via homotopy theory. What I do want to emphasize are
the following points:

1 Although we have started with a simple opposition between universals
and particulars, the final picture forces us to think about this opposition
with care. In the original picture, we had abstract universals and abstract
particulars. Now, we seem to be forced to think about the realm of abstract
universals in a more elaborate way: within abstract universals, there is a
complex structure of relationships between kinds of universals. A simple
case of a similar hierarchy can be given: start with a specific metric space
X, given as a particular. Consider its group of automorphisms. As such,
the latter group is also a particular. However, as a group, it is a token of
a type: a group whose elements are unidentified but with an isomorphic
structure. In turn, this group can be seen as a one object category, that
is an object in the universe of categories. At this stage, we are back
in the foregoing picture. Now, the elements of the original groups are
automorphisms of the one object category and they can be related to one
another either by equalities, in which case we treat them as particulars,
or they can be related by morphisms of higher order logic, in which case
they are universals. There is a general ontological picture emerging from
this analysis that will force us to look more carefully at the nature of
universals.
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2 The argument against category theory usually rests on the way categories
are presented, i.e. as classes or sets with a certain structure. Thus, it
is assumed that category theory has to be presented or understood in a
set-theoretical framework. As we have seen in the foregoing section, this
misses the fundamental aspect of categories; if the nature of categories
is revealed by its criterion of identity, then we can say that categories are
not structured sets.

3 It might very well be that the concept of a collection as an abstract uni-
versal rests on our understanding of abstract particulars. One cannot but
think of representation theory of groups where interplay between an ab-
stract universal, e.g. an abstract group, and abstract particulars, e.g. its
representations, is crucial. However, it by no means implies that a coher-
ent conception of such collections cannot be developed and depends for
its development upon a specific choice of abstract particulars.

The requirements of a foundation for mathematics might vary, depending upon
one’s conception of the foundational enterprise.10 We do believe that category
theory is such that it can answer any requirement one might expect from a
foundational framework. But one has to look at it properly and see how and in
what sense it is universal. John Bell, in his paper on category theory and the
foundations of mathematics, claimed that “far from being in opposition to set
theory, [category theory] ultimately enables the set concept to achieve a new
universality.” (Bell, 1981, 358) Bell could not be closer to the point: sets are
not particulars in a categorical framework, they are universals and they are the
first universals in a complex and rich hierarchy that ought to be foundationally
appealing.

References

Baez, J., 1997, “An Introduction to n-Categories”, in 7th Conference on Cate-
gory Theory and Computer Science, E. Moggi & G. Rosolini (eds.), SNCS,
vol. 1290, Berlin: Springer-Verlag, 1–33.

Baez, J. & Dolan, J., 1998a, “Higher-Dimensional Algebra III. N-Categories
and the Algebra of Opetopes”, Advances in Mathematics, 135, 145–206.

Baez, J. & Dolan, J., 1998b, “Categorification”, in Higher Category Theory, E.
Getzer & M. Kapranov (eds.), Contemporary Mathematics, vol. 230, Provi-
dence: AMS, 1–36.

Batanin, M., 1998, “Monoidal Globular Categories as a Natural Environment
for the Theory of Weak n-Categories”, Advances in Mathematics, 136,
39–103.

10See, for instance, Mayberry 1994 and Marquis 1995.



192 Jean-Pierre Marquis

Bell, J., 1981, “Category Theory and the Foundations of Mathematics”, British
Journal for the Philosophy of Science, 32, 349–358.

Borceux, F., 1994, Handbook of Categorical Algebra 2: categories and struc-
tures, Cambridge University Press.

Ellerman, D. P., 1988, “Category Theory and Concrete Universals”, Erkenntnis,
28, 409-429.

Jacobs, B., 1999, Categorical Logic and Type Theory, New York: Elsevier.
Lawvere, W., 1976, “Variable quantities and variable structures in topoi”, Al-

gebra, topology, and category theory, New York, Academic Press, 101–131.
Lawvere, W., 1994, “Cohesive Toposes and Cantor’s ‘lauter Einsen’”, Philo-

sophia Mathematica, (3), vol. 2, 5–15.
Leinster, T., 2002, “A Survey of definitions of n-category”, Theory and Appli-

cations of Categories, vol. 10, 1–70.
Lowe, E.J.,1995, “The Metaphysics of Abstract Objects”, Journal of Philoso-

phy, 92(10), 509–524.
Lowe, E.J., 1998, The Possibility of Metaphysics, Oxford: Clarendon Press.
Makkai, M., 1998, “Towards a Categorical Foundation of Mathematics”, Logic

Colloquium ‘95(Haifa), LNL 11, Berlin: Springer, 153–190.
Makkai, M., 1999, “On Structuralism in Mathematics”, in Language, Logic, and

Concepts, Essays in Memory of John Macnamara, R. Jackendoff, P. Bloom,
K. Wynn, eds., Cambridge: MIT Press, 43–66.

Marquis, J.-P., 1995, “Category Theory and the Foundations of Mathematics :
Philosophical Excavations”, Synthese, 103, 3, 421–447.

Marquis, J.-P., 2000, “Three kinds of Universals in Mathematics?”, in Logi-
cal Consequence: Rival Approaches and New Studies in Exact Philosophy:
Logic, Mathematics and Science, Vol. II, B. Brown & J . Woods, eds., Oxford:
Hermes, 191–212.

Mayberry, J., 1994, “What is Required of a Foundation for Mathematics?”,
Philosophia Mathematica, (3), vol. 2, 16–35.

McLarty, C., 1993, “Numbers Can be Just What They Have to”, Noûs, 27,
487–498.



IV

INDEPENDENCE, EVALUATION GAMES
AND IMPERFECT INFORMATION



Chapter 14

TRUTH, NEGATION AND OTHER BASIC
NOTIONS OF LOGIC

Jaakko Hintikka
Boston University

hintikka@bu.edu

14.1 What is the logic of ordinary language?

According to a story, Albert Einstein was once asked how he had come
upon his strange revolutionary ideas. He replied: “By asking the questions that
children are discouraged to ask.” If we want to follow Einstein’s strategy in
the philosophy of logic, we are thus led to ask such questions as we ourselves
discourage our own introductory logic students to ask. But what are such ques-
tions? One of them might very well be: What is the logic of our ordinary
language? It is convenient to us logic teachers to pretend initially that it is the
logic we are teaching, in other words, that the notation of the usual first-order
logic is nothing but a streamlined version of ordinary English. In older text-
books this claim is sometimes made explicitly. If pressed, we might appeal to
Chomsky (e.g. 1986) whose Ersatz logical forms alias LFs differ only inessen-
tially from the logical forms of ordinary first-order formulas. Yet such appeals
should evoke pangs of intellectual conscience, for our actual Sprachlogik differs
in several disturbing ways from the received (“Frege-Russell”) first-order logic.
I have shown (in Hintikka 1997) that even one of the most general notions of
formal logic, the notion of scope, is not a primitive notion but one which can
be applied to natural language only indirect ways. It can also be shown that the
logic of natural-language conditional sentences can only be captured by going
way beyond ordinary first-order logic. But even apart from such theoretical
differences, there are lots of ordinary language sentences whose logic is not
captured by their prima facie translations into first-order logical notation. For
instance, consider the sentence
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(1) For this problem, there is a person such that if he or she can solve it, anyone
can.

This seems to have the logical form (if we look away from the initial demon-
strative identification of the problem)

(2) (∃x)(A[x] ⊃ (∀y)A[y]).

But (2) turns out to be a logical truth whereas (1) is not naturally taken to be
one. Likewise, C.S. Peirce already noted that the following pair of sentences
clearly have a different meaning even though our logic tells us that they do not
(Collected Papers 4.546):

(3) Someone is such that he will commit suicide if he fails in business.

(4) Someone is such that he will commit suicide if everyone fails in business.

Or, rather, Peirce noted that the following prima facie translations (5)–(6) of
(3)–(4) into the notation of first-order logic are logically equivalent, in spite of
the difference in meaning between (3)–(4):

(5) (∃x)(F [x] ⊃ S[x])

(6) (∃x)((∀y)F [y] ⊃ S[x])

Likewise, the reasoning that leads to some of the best-known paradoxes
seems to be impeccable reasoning, in spite of giving rise to paradoxical conclu-
sions. The sorites paradox is a case in point. If we abbreviate “a has n hairs”
as H(a,n), then the inductive inference leading to the paradox appears to be
unobjectionable. It could be taken to be of the form

(7) (H(a, 0) ⊃ B(a))&(∀x)((H(a, x) ⊃ B(a)) ⊃ (H(a, x + 1) ⊃ B(a))
ergo (∀x)((H(a, x) ⊃ B(a))

where B(a) says that a is bald. In a simpler form, the structure of (7) can be
taken to be

(8) S[0](∀x)(S[x] ⊃ S[x + 1]), ergo (∀x)S[x].

which looks like a perfectly valid instance of mathematical induction. Each of
these anomalies might look insignificant, but their cumulative impact ought to
be a clue that shows that the logic of our ordinary discourse is far from being
adequately understood.

14.2 What is truth?

Another Einsteinian question is surely what precisely is meant by truth in
first-order logic. We teach students all about truth-functions and truth-values,
but are not likely to give an adequate answer when a student inquires what
the mysterious notion of truth is. Maybe we tell our students to look up a
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Tarski-type truth-definition from an advanced text (or from Tarski 1935), trying
to suppress the guilty awareness of how a student will not find any real insight
into the notion of truth from Tarski-type conditions on valuations and on in-
finite sequences. A student’s puzzlement over such complications is part and
parcel of those philosophers’ dissatisfaction who claim that there is nothing in
Tarski-type truth definitions that show that they are definitions of truth. The
striking fact here nevertheless is that in the case of first-order logic (the logic of
quantification) there is an accurate general answer easily available (see Hintikka
1998 and 2001). What is more, this answer is nothing more and nothing less
than an explication of our natural pretheoretical notion of truth for quantifica-
tional sentences. In order to see what this answer is, consider a sentence of the
form

(9) (∀x)(∃y)F [x, y]

When is (9) true? Obviously if and only if for any given value of x it is in
principle possible to find a “witness individual” y depending on x such that
F [x, y]. And this colloquial location “it is possible to find, given x” is in
the eyes of a mathematician nothing but an euphemism for the existence of a
function f(x) which produces a suitable witness individual as its value for any
given argument x, in other words a function f such that the following is true:

(10) (∀x)F [x, f(x)]

The generalization of this observation is that a first-order sentence S is true
if and only if there exists a full array of its Skolem functions. But what are
the Skolem functions of S? In order to recognize them, let us assume that S
is in a negation normal form. What this means is that its propositional con-
stants are &, ∨ and ∼ and that all negation signs precede immediately atomic
formulas or identities. Then the Skolem form of S is obtained y1 by replac-
ing each existentially quantified subformula (∃x)F [x] of S by F [f(y1, y2, . . .)]
and prefixing the entire sentence with (∃f). Here f is a new function variable,
different for different existential subformulas, and (∀y1), (∀y2), . . . are all the
universal quantifiers in S on which the quantifier (∃x) depends on in S. The
truth-making choices of the values of the function variable f are the Skolem
functions of S. And what these functions do is to produce the witness indi-
viduals (usually dependent on other such individuals), which according to our
pretheoretical conception show the truth of S. Thus what we have here is a
straightforward generalization of the truth-condition for (9), identified above.
For some purposes, the notion of Skolem functions can - and must - be extended
to relate also to the propositional connectives of S. Assuming still that S is in
a negation normal form, this means replacing each disjunction (S1 ∨ S2) that
occurs as a subformula of S by

(11) (S1&g(y1, y2, . . .) = 0) ∨ (S2&g(y1, y2, . . .) �= 0).
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At the same time, the entire sentence is prefixed by (∃g). In (11), g is a new func-
tion variable, different form all the f ’s and different for different disjunctions
and (∀y1), (∀y2). . . are all the universal quantifiers on which the disjunction
in question depends on in S. Furthermore, 0 can be any designated member
of the domain. In the special case of a sentence of the form (∃x)F [x] its
sole Skolem function reduces to a constant individual. This individual serves
as the “witness individual” which according to our pretheoretical conception
vouchsafes the truth of the sentences in question. The general case becomes as
obvious as this paradigm case as soon as we realize that in general the requisite
witness individuals that show the truth of the sentence depend on other witness
individuals, in mathematicians’ jargon, are functions of them. These functions
are precisely the Skolem functions of S. Hence appropriate witness individuals
exist for S if and only if there exists an array of all the Skolem functions of
S. Then and only then is S true (see Hintikka 2001). Some philosophers have
played with the notion of a truth-maker. As far as quantificational languages
are concerned, there is only one kind of truth-makers, and they are Skolem
functions.

14.3 Compositionality and the meaning of quantifiers

This definition of truth is so perspicuous, and so obviously but an explication
of our very own notion of truth, that one could legitimately expect that is has
been acknowledged and exhaustively discussed by philosophers of our time.
It boggles one’s mind that this has not happened. Philosophers and logicians
have discussed Tarski-type truth-definitions ad nauseam, notwithstanding the
fact that a much simpler and much more natural truth-definition is readily avail-
able for them. Why this neglect? The reason is not that the truth definitions for
first-order sentences which turn on the existence of Skolem functions cannot
be formulated in the same language, for nor can a Tarski-type truth definition.
The real reasons are different. One of them is Tarski’s tacit insistence that truth
definition must be compositional. Tarski did not spell out this requirement,
but a closer examination reveals his commitment to it. (Such an examina-
tion is found in Hintikka and Sandu 1999.) In contrast, game-theoretical truth
definitions of the kind explained violate prima facie the requirement of compo-
sitionality. This is shown by the definition of the Skolem form of a first-order
sentence given above. In it, the selection of the arguments y1, y2, . . . of the new
function constant do not depend only on the subformula F [x], but also on which
the outside universal quantifiers are on which (∃x) depends in the sentence in
question. (As should be obvious, the principle of compositionality amounts
essentially to the assumption of semantical context-independence.) As a con-
sequence, the eminently natural game-theoretical definition of truth cannot be
implemented without violating compositionality. In view of the popularity of



Truth, Negation and Other Basic Notions of Logic 199

compositionality among linguists and logicians, it seems likely that in different
direct and indirect ways a commitment to compositionality is one of the main
factors that have conspired to suppress the Skolem-function definition of truth
from philosophers’ attention.

Commitment to compositionality is connected with another oversight of the
majority of contemporary philosophers. It is the belief that the semantics of
quantifiers is exhausted by the idea that quantifiers “range over” a certain class
of values. If so, the truth of a universally quantified sentence (∀x)F [x] re-
duces to the truth of all its substitution-instances F[b], where b is a member of
the domain; and likewise for existentially quantified sentences. From this idea
of quantificational truth it is only a short trip to Tarski-type truth definitions,
which are conditioned by Tarski’s requirement as to what an acceptable truth-
definition must be like. What is wrong with the exclusiveness of the “ranging
over” idea is that it does not address at all the other component of the semantics
of quantifiers. This other component is the representation of dependencies and
independencies between actual real life variables by means of the dependen-
cies and independencies of the quantifiers to which the variables in question
are bound. Such dependencies are expressed in so many words by Skolem
functions. Their role in the game-theoretical truth predicate shows how the
dependence relations between different variables are taken care of in the game-
theoretical characterization of truth. Only when these dependence relations are
looked away from will a truth-definition in terms of substitution-instances or,
for that matter, a Tarski-type truth-definition, appear natural.

Another important reason for neglect of Skolem-type truth definition that
logicians and philosophers have been suspicious of second-order logic and
tried to stick to the first-order level. Such a goal seems to be guiding already
Tarski. Now remaining on a first-order level might be a commendable aim,
but it has not been implemented in the right way. Instead of second-order
logic, philosophers have preferred to it set theory practiced on the first-order
level. We are all familiar with Quine’s misplaced quip about higher-order logic
being set theory in sheep’s clothing. It is turning out, Quine notwithstanding,
that it is axiomatic set theory, not higher-order logic, that is the big bad wolf
here. Outside philosophical fairy tales, the cold sober fact is that first-order
axiomatizations of set theory cannot do an adequate job in their foundational
role of capturing set-theoretical truths. Their failure is discussed in (Hintikka
2004(a)).

This failure of the only viable-looking rival means that there are no valid
objections to defining truth in terms of the existence of Skolem functions. Such
definitions may not be the last word on our concept of truth but they are an
eminently useful first word. Their plausibility can be further enhanced by
dramatizing the production of witness individuals by Skolem functions as steps
in certain explicitly definable search games. The definition of these games,
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known as semantical games, makes the role of Skolem functions eminently
intuitive. Full arrays of Skolem functions for a sentence S are precisely the
winning strategies for the verifier in the semantical game G(S) correlated with
S and starting with S. Thus the truth of S can be defined as the existence of a
winning strategy for the verifier in the game G(S).

In a critical philosophical perspective, however, such a use of game-theoreti-
cal concepts is nevertheless merely a dramatization of the basic insight into the
role of Skolem functions as implementing our natural notion of truth. I shall nev-
ertheless call the definition of truth for quantificational sentences in terms of the
existence of Skolem functions the game-theoretical truth definition. The game-
theoretical framework is in any case useful in several respects. For one thing, it
shows that the game-theoretical truth definition in not subject to criticism from
an intuitionistic or from a constructivistic viewpoint. If we want for some reason
or other to restrict ourselves to a constructivistic notion of truth, it can be done
simply by restricting the values of Skolem function quantifiers to constructive
functions (whatever they are or may be). Likewise, an intuitionistic notion of
truth can be captured by restricting Skolem functions to known ones. I think
that we can leave the question as to which functions are known for Brouwer
and his followers to decide. One major advantage of such game-theoretical
truth-definition was already noted. They allow variation in a way that cap-
tures different nonclassical conceptions of truth in a natural way. This makes
it possible to compare competing logics with each other in an informed way.

14.4 IF logic as the natural basic logic

Even more importantly, when we start thinking in game-theoretical terms, we
can at once see that there are lots of perfectly natural semantical games that do
not correspond to any sentences of the received first-order logic. In other words,
certain second-order sentences behave just like truth-conditions for nonexistent
first-order sentences in terms of perfectly well-defined semantical games. For
instance, the second-order sentence

(12) (∃f)(∃g)(∀x)(∀y)F [x, f(x), y, g(x, y)]

is the truth-condition of the sentence

(13) (∀x)(∃z)(∀y)(∃u)F [x, z, y, u].

In the correlated game, the verifier is searching for a truth-making value of z
on the basis of his or her (or its, if the player is a computer) knowledge of a
given value of x, and searching for a value of u on the basis of his, her or its
knowledge of the values of x and y. Likewise, the second-order sentence

(14) (∃f)(∃g)(∀x)(∀y)F [x, f(x), y, g(y)]

asserts the existence of a winning strategy in a similar game whose only novelty
is that the search for the second “witness individual” is carried out with the
verifier’s knowledge limited to the value of y. Such games are perfectly well
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defined, and the second-order (14) is related to them precisely the same way
as (12) is related to the semantical game played with (13). Once we see this,
we can see that we can formulate first-order sentences related to (14) in the
same way as (12) is related to (13), as soon as we relax our notation so as to
allow a quantifier (Q2y) to be independent of another quantifier, say (Q1x),
even though it occurs its syntactical scope. This can be done by writing it
(Q2y/Q1x). Then the first-order counterpart to (14) is expressible as

(15) (∀x)(∃z)(∀y)(∃u/∀x)F [x, z, y, u]

which is equivalent to

(16) (∀x)(∀y)(∃z/∀y)(∃u/∀x)F [x, z, y, u].

Then the semantical game correlated with (15) is such that (14) expresses the
existence of a winning strategy for the verifier in it.

This can obviously be generalized. The result is what has been called
independence-friendly (IF) logic. For its theory, the reader is referred to Hin-
tikka (2002(b)). IF logic is our natural basic logic. It is richer in its expressive
capacities than the received first-order logic, which can be thought of as the
slash-free fragment of IF first-order logic. (But cf. below.) In it, several crucial
notions can be expressed that were not expressible in the received old first-
order logic. For instance, the equicardinality of two sets, say α and β, can be
expressed on the first-order level as follows:

(17) (∀x)(∀z)(∃y/∀z)(∃u/∀x)
((x ∈ α ⊃ y ∈ β)&(z ∈ β ⊃ u ∈ α)&((y = z) ↔ (x = u)))

This may be compared with the second-order sentence serving the same pur-
pose:

(18) (∃f)(∃g)(∀x)(∀z)
((x ∈ α ⊃ f(x) ∈ β)&(z ∈⊃ g(z) ∈ α)&((f(x) = z) ↔ (x = g(z))))

The equivalence of (17) and (18) illustrates a most remarkable thing about
IF first-order logic: It is tantamount to the

∑1
1 (sigma one-one) fragment of

second-order logic. It is easily shown that each sentence of this fragment has
an equivalent IF first-order sentence. Conversely, each IF first-order sentence is
equivalent to its on game-theoretical truth condition, which is a

∑1
1-sentence. It

can also be seen that the truth conditions of different IF first-order sentences can
be integrated into a

∑1
1-truth predicate. (It is assumed here that we are dealing

with an IF first-order language strong enough to express its own syntax.) Since
that predicate has an equivalent in the corresponding IF first-order language,
which can admit of a truth predicate definable in the same language (see Hintikka
1998 and 2001). Thus the notion of truth and its definability are put to a radically
new light by the simple step of allowing quantifiers to be independent of each
other. In every other respects, we can preserve all the classical semantical rules,
as they must be formulated in game-theoretical terms.
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14.5 Two negations

But the notion of truth is not the only one which now has to be re-examined.
Another one is the notion of negation. With respect to it, we are in for an
intriguing surprise. The concept of negation that results from perfectly “classi-
cal” semantical rules where independence is allowed does not obey the law of
excluded middle. Is IF logic therefore “nonclassical”? The truth is that there
is no obvious definition of “classical” that we could appeal here to decide the
issue, unless we resort to the quaint old sense of the word as referring to what
is taught in classrooms. Since the negation ∼ used in IF logic obeys the most
classical semantical rules imaginable and yet violates tertium non datur, the
right conclusion to be drawn here that the law of excluded middle is not part
and parcel of “classical” logic.

This strong negation ∼ has to be distinguished from the familiar contradic-
tory negation ¬. The same distinctions must be extended to conditionals and
equivalences. A conditional “If A, then B” may have the logical force of either
(∼ A ∨ B) or (¬A ∨ B), and an equivalence can mean either (A&B) ∨
(∼ A& ∼ B) or (A&B) ∨ (¬A&¬B).

Here we are witnessing yet another apparently trivial question which never-
theless leads to surprising new perspectives. What has been found out is that
there is a strong (dual) negation implicit in all our use of the basic logical no-
tions. It is the negation that naturally goes together with the game-theoretical
concept of truth which was seen to be but an implementation of our pretheo-
retical notion of truth. Such a strong negation must thus be tacitly present also
in the logic of ordinary language. This strong negation is in a game-theoretical
perspective even more fundamental than contradictory negation. But if so, how
is the contradictory negation to be handled in our explicit logic? How come that
the negation that is present in natural language in the sense of having syntactical
markers for it is the contradictory one? How is the contradictory negation to
be interpreted semantically in GTS? And what is there to be said in the light of
the distinction about the conditionals of ordinary language?

Three possibilities can be investigated here separately. The first is suggested
by the naturalness of the game-theoretical truth condition also when applied to
natural language. It suggests that appearances notwithstanding it is the game-
theoretical semantics that governs also the semantics of natural language, in-
cluding the behavior of negation and conditionals in them. But how can this
make much difference? When no slashes are present, the difference between
∼ and ¬ should not make any difference. Indeed, the received first-order logic
can apparently be identified with the slash-free fragment of IF first-order logic.
So how can the distinction between ∼ and ¬ make any difference for slash-free
sentences like (1)–(6) or for inferences like (8)? An answer here is that the
distinction between ∼ and ¬ makes no difference for slash-free formulas only
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if it is assumed that atomic sentences obey the law of excluded middle. If they
do not, there is a difference after all. Among other things, the same sentences
are no longer logically true. And it is in fact easy to ascertain that then (2) is
no longer logically true, (5) and (6) no longer logically equivalent and (8) no
longer a valid inference. (The “then” here means of course taking (A ⊃ B) to
mean (∼ A ∨ B).)

Thus independence-friendly logic offers an interesting general perspective
on the different mini-paradoxes of first-order logic. They can be dissolved if
we assume that the conditionals of natural language are of the form (∼ A∨B)
rather than (¬A ∨ B), that is, that they are IF conditionals (as we will call
them) rather than traditional ones. This dissolution strongly suggests that the
logic of ordinary language is primarily independence-friendly logic rather than
Frege-Russell one. This result is especially interesting philosophically in the
case of (7)-(8), that is, in the case of sororities paradox. There exists a large and
inconclusive literature on this paradox and on its variants. It is often surmised
that the paradox should not arise in connection with predicates like “bald” which
are unsharp, that is, whose attribution to a particular case need not always be
either true or false. (This is sometimes expressed by speaking of “truth-value
gaps”.) However, no simple way of implementing this idea is found in the
literature. Now we can see that the failure of tertium non datur for the predicate
in question is after all that is needed to disarm the paradox, assuming that the
basic logic of natural language is IF first-order logic. This assumption is in fact
strengthened by its success in disarming the prima facie paradoxes of first-order
logic. This observation can be generalized. The IF first-order logic that has
been examined promises to be a far more natural logic of unsharp concepts than
the so-called fuzzy logic of Lofti Zadeh. (see e.g. Zadeh and Yager 1991.)
Of perhaps what can be said here is that the logic of natural language we are
in effect already using can serve as a “fuzzy logic” better than its trade name
variant without any additional assumptions or constructions.

Another well-known paradox is likewise disarmed by IF first-order logic. It
is the liar paradox. When we use IF logic in a theory of elementary arithmetic,
we can of course formulate a truth predicate W [x] for it in the same arithmetic.
Hence by means of the diagonal lemma we can formulate the Gödel-type sen-
tence

(19) ∼ W [g]

whose Gödel number is g and which says that the sentence with the Gödel
number g is false. (In (19) g is the numeral that represents g.) The sentence
(19) is true if false, and false if true. Hence it must be neither true nor false,
which is perfectly possible in IF logic. No contradiction is hence forthcoming.

But now it might at first seem that the extended IF first-order logic must run
afoul of the so-called strong liar paradox. In elementary arithmetic using IF
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logic we can formulate a truth predicate, that is a predicate W [x] that applies
to the Gödel number x = g(S) of an arithmetical sentence S if and only if
S is true. Why cannot we apply the diagonal argument to the contradictory
negation of W [x] so as to obtain a sentence that so to speak says “I am not
(i.e. contradictorily not) true”? The answer is that one cannot prefix ¬ to
an open formula like W [x], only to closed sentences. Hence the crucial liar
sentence (Gödel-type self-referential sentence) is in this case ill formed. Again,
no contradiction is in the offing.

Thus we have found an excellent first approximation to the logic of nat-
ural language. It is not the “ordinary” (i.e. received) first-order logic but the
slash-free part of IF first-order logic, with the tacit provision that the predicate
constants may be unsharp, that is, may fail to obey the law of excluded middle.
The only negation used in this logic is the dual negation ∼. This nevertheless
makes a difference only when the given predicate constants fail to conform to
the tertium non datur.

Thus we have found exceedingly simple solutions to some of the oldest and
most intriguing puzzles of the entire canon of logic. These solutions might at
first seem too good meaning too simple to be true. Now I firmly believe that these
solutions are definitive ones, but I also believe that further discussion is needed
to back them up and to put them into perspective. But in order not to trivialize
the issues that discussion must not pertain to the details of the paradoxes or to the
purported lines of reasoning that lead into them. The solutions I have explained
depend essentially on only one assumption. This assumption is that the natural,
preferred logic of ordinary language is IF logic. Hence the further discussion
that is needed here should pertain to the status of IF logic as compared with
alternatives to it, especially when it comes to the treatment of negation. The
rest of this paper is accordingly devoted to certain extensions of IF logic that
might seem to have a claim to be our genuine Sprachlogik.

Indeed, it is unmistakable that the contradictory negation is needed in the
semantics of natural languages. Hence we have to develop an explicit formal
logic that will involve ¬ and not only ∼. A minimal step in that direction is to
introduce ¬ by a fiat. The result is what has been called the extended IF logic.
Studying it is the second one of the three lines of thought mentioned above.
However, since there cannot be any game rules for ¬, the semantics of extended
IF logic will have to be introduced by the bland metalinguistic stipulation that
¬S is true if and only if S is not true. And here the italized not must itself be
a contradictory negation. Hence the semantics of ¬ can along these lines be
specified only by relying on the same notion in a metalanguage.

By the same token, the contradictory negation can in the extended IF logic
occur only sentence-initially. For if it occurred otherwise, its semantics would
presuppose a game rule for it. With proper care, it is possible to relax this
requirement somewhat, however, as long as does not occur within the syntactical
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scope of any quantifier. If we now assume that the logic of natural language is
like the extended IF logic, a number of phenomena in natural language become
explainable. Some of them are mentioned in Hintikka (2002(a)), especially the
fact that contradictory negation is in natural languages a barrier to anaphora.

The extended IF first-order logic is an interesting logic in its own right. It is
obviously equivalent to the (

∑1
1∪

∏1
1) fragment of second order logic. It might

at first sight seem rather similar to the unextended IF first-order logic. On a
closer examination, however, the differences are seen to be profound. Most of
the “nice” metatheorems that hold for IF first-order logic are no longer valid
in the extended IF logic, such as compactness, upwards Skolem-Löwenheim
theorem, and the separation theorem. We will return to this matter, but it can
already now be seen that the extension in question is important.

This is connected with the expressive richness of the extended IF first-order
logic. In order to see this richness, consider an attempt to reconstruct the entire
simple theory of types on the first-order level, construing it as a many-sorted
first-order logic with different sorts. The structure of types is easy to specify
on the first-order level. The only thing that cannot be expected by ordinary
first-order logic is the requirement that for each arbitrary class of n-tuples of
entities of a certain type there exists the embodiment of that class on the next
higher type (order) level. This requirement can obviously be implemented by
means of sentences of the extended IF first-order logic. This logic is therefore
in a sense as rich as the entire theory of all finite types, and hence capable of
codifying most traditional mathematics.

14.6 Extending IF logic with the help of tertium non datur

However, it seems clear that the extended IF logic cannot be the last word
here. On the one hand, it is unsatisfactory simply to introduce ¬ by a fiat,
without giving any account of the actual rules by means of which its semantics
is determined. On the other hand, it can easily be seen that the logic of natural
language is richer than even the extended IF first-order logic, in that what is
unmistakably a contradictory negation can occur within the scope of quantifiers.
The most obvious case in point is offered by negative quantifiers like no. If
someone says

(20) nobody has the winning lottery ticket

it does not mean that everybody has something else. It simply means that it is
not the case that someone has the winning ticket. Such a sentence therefore has
the logical form

(21) (∀x)¬W [x]

Since W[x] is allowed here to be an IF formula which is not necessarily true or
false for different substitution values for x, (21) is not necessarily equivalent to
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(22) ¬(∃x)W [x]

Now the semantics of (21) is not determined by the game-theoretical rules of
IF first-order logic. It was just seen that it is not determined by the semantics
of the extended IF first-order logic, either. How, then, can a natural semantics
be defined for sentences like (21)? An eminently natural answer is available
here. It can be approached from two different directions. The general question
concerns the interpretation of sentences S0 where ¬ is allowed to occur within
the scope of quantifiers. One way of doing so is by considering a hierarchy of
semantical games. The first begins with S0 and comes to an end either with an
atomic sentence or with a sentence (closed sentence) of the form ¬S1. (This
sentence usually is a substitution-instance of a subformula of S0.) The truth-
value of ¬S1 is either true or false, and it is determined by the facts of the
subordinate game G(S1) which can then be handled in the same way. In other
words, ¬S1 is deemed true for the purposes of G(S0) if and only if there exists
no winning strategy for the verifier in G(S1), otherwise false.

For instance, a play of the game with the sentence (21), i.e. of the game
G((∀x)¬W [x]), will stop after a choice of an individual (say b) by the falsifier.
This endpoint sentence is of the form ¬W [b]. It is true if and only if there exists
no winning strategy for the verifier in the game G(W [b]), otherwise false.

It is immediately seen that on this interpretation (21) is true if and only if
all the sentences of the form ¬W [b] are true, where b is a constant representing
some member of the domain. This assigns a meaning to (21) game-theoretically
if W [x] does not contain ¬, for in ¬W [b] the contradictory negation is then
sentence-initial (i.e. prefixed to a closed formula). Otherwise we are dealing
with a clause in a recursive truth-definition.

What all this amounts to is that the interpretation that extends our semantics
to nested contradictory negations is a kind of substitutional interpretation quanti-
fier. It will be called in the following the substitutional interpretation quantifier,
but without thereby prejudicing its precise relation to what has in the past been
called the substitutional interpretation quantifier of quantifiers. In the simplest
cases it does coincide with substitutional interpretations in the received sense.
In such cases, the truth of a universally quantified sentence is tantamount to the
truth of all its substitution-instance, and the truth of an existentially quantified
one with the truth of at least one of its substitution-instances. Restricting one’s
attention to such simple cases has led some philosophers to the conclusion that
there is no deep difference between substitutional and objectual interpretations
of quantifiers. (For this kind of view, see Kripke 1976.) This is nevertheless
a mistake belied by what is found in IF logic. Even in the absence of contra-
dictory negation, a strict inside-out (recursive) definition of truth in a substi-
tutional sense is impossible in the presence of irreducible independence. This
is especially blatant in the case of mutually dependent quantifiers. Their logic
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can be considered a strict counter-example to the substitutional interpretation
quantifier of quantifiers.

In any case, in the presence of independence and dependence indicators
there will have to become restrictions on the occurrence of ¬. The main such
restriction is that no quantifier outside the scope of a given occurrence of ¬ can
depend on a quantifier inside its scope. More generally, the scopes of different
occurrences of ¬ must be nested, that is, they must form a tree structure.

14.7 Elementary versus non elementary logics

The logic definable in this way will be called the fully extended IF first-order
logic. It calls for a number of explanations and comments.

First, it might be tempting to consider the fully extended first-order logic as
the natural logic of ordinary language. This temptation is perhaps strengthened
by the belief that something like the substitutional interpretation quantifier of
quantifiers constitutes their natural semantics. There is perhaps a true element
to this temptation. However, it is not the whole story. For one thing, the usual
substitutional interpretation quantifier of quantifiers relies on the assumption
that the semantics of quantifiers is exhausted by the “ranging over” idea. This
interpretation hence cannot do justice to the role of quantifiers as expressing
relations of dependence and independence between variables. It is therefore
only a part of the story. Indeed, it is a secondary part, for the solutions to the
mini-paradoxes of first-order logic outlined above strongly suggests that our
basic logic operates like the unextended IF logic and not like its full version.
The substitutional component in the truth definition for the full IF logic is thus
an additional ingredient over and above the game-theoretical conception of truth
codified by the existence of Skolem functions. The naturalness of this game-
theoretical truth definition is the best testimony against relying too much on the
“ranging over” idea alone. Indeed, we can now begin to appreciate the reasons
for the complexity of the semantics of natural languages. This semantics is a
mixture of different ingredients, where the basic game-theoretical conception
of truth is supplemented by essentially different substitutional ideas.

The specious plausibility of the substitutional interpretation quantifier of
quantifiers may perhaps be partly dispelled by asking what has to be known in
order to understand a quantificational sentence or such an interpretation. The
most important part of the answer is that the domain of individuals (aka the
universe of discourse) has to be known. This rules out all uses of quantifiers
where their range is open-ended. Such an open-endedness does not make it
impossible to play semantical games and to understand statements as to what
can or cannot happen in them. Accordingly, a quantificational language can be
understood and used even when the language users do not know precisely what
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the domain is. Hence game-theoretical semantics of quantifiers is more widely
applicable than a substitutional one.

If it strikes you as outlandish to apply a quantificational language without a
sharply defined universe of discourse, you can contemplate Aristotle’s syllogis-
tic logic. No idea of a sharply delineated range of quantifiers was presupposed
there, and existential force was not carried primarily by the particular “quanti-
fier” but by the predicate term. Or think of higher-order quantifiers in our own
logic. What precisely is their range? Believers in the standard interpretation
in Henkin’s sense will give you one answer, believers in nonstandard interpre-
tation another one. And in this case the idea of a quantifier “ranging over” its
values does not help us very much.

These remarks are not calculated to show that the substitutional interpretation
quantifier is not possible or that it is not interesting. However, they suggest
strongly that it is not the whole story of our pretheoretical understanding of
quantifiers.

This point can be elaborated further. In a sense semantical games are what
I shall call concrete processes. They are playable by actual humans. Indeed,
Charles S. Peirce already envisaged them as games between a human “propo-
nent” and an equally human “interpreter” (e.g. Collected Papers 3.479-482,
5.542, see Hilpinen 1982). (For most applications, it is nevertheless more nat-
ural to think of them as games between a human agent (“knower”) and nature
in the familiar game-theoretical sense of “games against nature”.) Each play
of these games which is connected with a finite sentence consists of a finite
number of concrete moves. The players need not be initially familiar with all
the members of the domain in which the game is played. One can in fact de-
velop an instructive fallibilist epistemology starting from the assumption that
the only information an inquirer receives about the world are the outcomes of
the semantical games the inquirer plays against nature with different strategies.
All this is possible even when the given domain is infinite. The crucial point is
that the domain never plays any role in these activities as a closed totality.

It need not be assumed that every member of the domain has a name. It
suffices to require that when a player of a semantical game chooses an individual
from the domain, the players can give it a name and amplify their language by
adjoining the newly coined name to it. Only a finite number of such extensions
is needed in any play of a semantical game. Admittedly, for a truth definition we
need the totality of the strategies that the inquirer has at his, her or its disposal.
But if one’s logical conscience is sensitive, one can restrict this strategy set to
strategies that are constructive, known, computable or otherwise in conformity
with one’s principles of logical morality. (Or should I say, one’s moral logic?)
Apart from that qualification, the basic features of IF logic should be acceptable
to everyone. That everyone includes Wittgenstein, for whom (as was pointed
out) basic semantical games must be humanly playable. In the spirit of virtual
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history, I cannot help wondering how much greater progress the philosophy
of logic would have experienced if Wittgenstein had realized that semantical
games are the true logical home of our basic logical concepts. (Wittgenstein
associated an importance to the activities of seeking and finding, but he related
them to the notion of object rather than to the nature of quantifiers. see Hintikka,
forthcoming (c).)

The game-theoretical truth definition and unextended IF logic should like-
wise be acceptable to intuitionists, at least if we allow them to restrict the
verifier’s strategies to known ones. No infinite operations are involved in play-
ing the semantical games that are the logical home of unextended IF first-order
logic.

In contrast, the substitutional interpretation quantifier (and its objectual coun-
terparts) involve the given domain as a complete totality. For instance, the
substitutional truth condition (21) requires that W [b] is true, for each and every
name b of a member of the domain. If different variables range over differ-
ent classes of values, all the totalities of such values have to be considered as
completed totalities. It has to be assumed, importantly, that all the individuals
(members of the domain) have names. Thus substitutional truth conditions are
infinitistic and nonconstructive in a way the game-theoretical truth predicate is
not. With a side-glance at Hilbert, it may be said that the classes of values of
the different first-order quantifiers are the only true “ideal objects” we need in
mathematics.

What has been found has major repercussions for the traditional philosophy
of mathematics. For one thing, it is seen that the main source of trouble is
not the infinity of the domain of numbers. Semantical games can be played
on infinite models and not only on finite ones. It makes sense to speak for
instance of seeking and finding a rational number of a certain kind. Conversely,
IF logic is one of the few rivals of the ordinary first-order logic that affects also
the theory of finite models for first-order formulas. For such reasons, I am not
calling the approach favored here finitistic. The infinity of the domain is not
the main issue.

However, in contrast Brouwer seems to have been right in blaming a large
part of the interpretational problems in the foundations on the unrestricted use
of the tertium non datur principle in mathematics. For the substitutional inter-
pretation quantifier with all its infinitistic burdens becomes unavoidable only
when we have to interpret contradictory negations occurring within the scope
of quantifiers.

This point must be pushed deeper, however. As I have argued elsewhere,
intuitionistic logic should be thought of, not as the logic of mathematical truths
per se, but as a logic of our knowledge of mathematical (and logical) entities.
Now the game-theoretical truth definition shows that the crucial entities in the
logic of mathematics are Skolem functions. Therefore we can hope to interpret
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sentences in a logical language intuitionistically only as long as their semantics
can be formulated by reference to Skolem functions. (Of course we may have
to restrict them to known functions.) Now it is precisely when we begin to use
contradictory negation in arbitrary positions that we cannot any longer interpret
our sentences by reference to Skolem functions.

However, Brouwer’s insights have not been implemented in an instructive
way in the earlier discussion. The best known way of attempting to do so has
been to set up an “intuitionistic logic” to replace ordinary first-order logic. (see
e.g. Heyting 1956.) But this is barking up the wrong logic. Of course ordinary
first-order logic has to be generalized so as to become a fragment of IF first-
order logic. But understood as such a fragment, there is nothing wrong with
ordinary first-order logic.

On the other hand, even when an explicit intuitionistic logic is formulated, it
does not do the job of IF first-order logic, either. It does not capture adequately
the epistemic element in Brouwer’s thinking, and more importantly it does
not deal any better than ordinary first-order logic with the representation of
dependence and independence relations between variables, either.

This failure is not automatically avoided by the introduction of the substi-
tutional interpretation quantifier of quantifiers, either. Even though the sub-
stitutional interpretation quantifier is objectionable to an intuitionist, it does not
make any difference in ordinary first-order logic. Hence Brouwer’s objections
to classical logic can be met by using a game-theoretical interpretation rather
than a substitutional one. It is only when independence indicators are present
that the two interpretations, the game-theoretical and the substitutional one, dif-
fer from each other. It is therefore only then that the tertium non datur principle
begins to depend on distinctly infinitistic element into the logic of classical
mathematics. It does so because the tertium non datur principle can only be
backed up by the substitutional interpretation quantifier. But this is a much
deeper issue than what can be handled by tinkering with the inference rules of
ordinary first-order logic. Hence the real target of intuitionistic criticism ought
to be the substitutional interpretation quantifier of quantifiers rather than the
inference rules of first-order logic.

This point is somewhat obscured by the fact that prima facie failures of
the law of excluded middle can also be caused by the epistemic element in
intuitionistic logic. A failure of the law of excluded middle is hence merely a
symptom of trouble. The need of a substitutional interpretation quantifier is the
trouble.

The infinitistic character of substitutional first-order logic also makes it a
poor candidate for the role of the true logic of ordinary language and ordinary
discourse. Here I can in fact appeal to many of the standard finitistic arguments
once one of the persisting mistakes in this area is eliminated. This mistake
confuses the infinity of the domain with the infinity of the operations we need to
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carry out to apply our logic and our languages to it . This mistake is undoubtedly
due to the more general mistake of assuming that the semantics of quantifiers
must be explained by reference to their “ranging over” all the members of the
domain. What matters is the question whether infinite operations are needed to
apply our logic, not what the cardinality of the domain is to which it is being
applied. As long as our logic is purely game-theoretical, its application can be
thought of as being implemented by plays of semantical games. Such plays
involve a finite number of moves that in principle can be carried out by human
players. Hence the possible infinity of the domain does not matter.

Thus there is no obstacle to thinking of IF logic as the natural logic of our
colloquial language. But the application of a substitutionally interpreted quan-
tificational language in an infinite domain presupposes infinite operations. If
so, it cannot very well be the logic of ordinary discourse for in our ordinary
thinking we cannot even in principle rely on the assumption that infinite oper-
ations actually are carried out. IF logic is the natural logic of natural language,
and thereby supports the solutions of the paradoxes discussed above.

14.8 Fully extended IF logic is equivalent to second-order
logic

We nevertheless have to take the substitutional interpretation quantifier seri-
ously in general logical theory. There are in fact interesting further insights to
be reached here concerning first-order logics that rely on substitutional inter-
pretation quantifier. We have defined a hierarchy of first-order sentences with
an increasingly complex structure of nested contradictory negations. How is
it related to the quantificational hierarchy (

∑1
n −

∏1
n hierarchy) of second-

order sentences? The surprising answer turns out to be: the two hierarchies are
equivalent.

The validity of this result is in fact fairly easy to see. It is well known that (and
how) a

∑1
1-sentence can be reduced to an IF first-order sentence. Furthermore,

a
∏1

1-sentence is equivalent to a sentence of the form ¬S, where S is an IF first-
order sentence without contradictory negations. By the same token, if each∑1

n-sentence S is equivalent to a sentence of the full IF first-order logic with
n − 1 layers of contradictory negations, then clearly each

∏1
n sentence has an

equivalent translation of the form ¬S.
Furthermore, consider a

∑1
n sentence. By definition, it has the form of

a string of existential second-order quantifiers followed by a
∏1

n−1 formula.
Now these second-order existential quantifiers can be replaced by first-order
independent quantifiers in the same way as in showing that each

∑1
1 sentence

is equivalent to an IF first-order sentence.
To illustrate this step, assume that the given

∑1
n sentence is

(23) (∃f)F [f ]
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where f is a zero-argument function variable and F [f ] is a
∏1

n−1 formula.
It is assumed that F [f ] is in the negation normal form. Then (23) is clearly
equivalent to the following sentence:

(24) (∀x)(∀y)(∃z/∀y)(∃u/∀x)((x = y) ⊃ (z = u)) &F ∗[x, y, z, u])

Here x, y, z, u are new variables not occurring in F [f ] and F ∗ is obtained from
F [f ] as follows:

(i) Every occurrence of a subformula of the form (f(w) = v) is replaced by
((x = w) ⊃ (z = v)) and likewise for subformulas of the forms

(v = f(w))

(f(w) = a) (a = f(w)), etc

(ii) Every occurrence of an atomic subformula of the form A(f(w)) is replaced
by ((x = w) ⊃ (A(z))), and likewise for other kinds of atomic subformulas
containing an argument of the form f(w) or f(a). Nested functions are
handled in the same way as in the

∑1
1 case. Predicates can be handled by

means of their characteristic functions.

Thus the entire second-order logic turns out to be equivalent to the substitutional
first-order logic. We shall call this result the negation reduction of second-
order logic to the first-order level. (An essentially equivalent result is proved
in Väänänen 2001.) It throws light on several questions in the foundations of
logic and mathematics. One of them is the relation of first-order logic to higher-
order logics. We may in fact think of this problem as one of the Einsteinian
questions mentioned in the beginning of this paper, that is, questions that are
so subtle that they appear trivial. The obvious-looking way of answering this
question by saying that what distinguishes the two is the ontological status of the
entities which our quantifiers range over in the two kinds of logic. In first-order
logic, they are particulars (individuals); in the second-order logic, the values of
quantified variables can also be sets or relations of particulars or functions from
particulars to particulars. What can be simpler that this? Admittedly, in first-
order axiomatic set theory sets are admitted as values of first-order variables.
However, such a set theory is turning out to be a disaster area when considered
as a foundational project. (see Hintikka, 2004(a).) Again, the peculiarities of
higher-order logic come to play only when a standard interpretation in Henkin’s
sense is imposed on ranges of higher-order variables. If that is not done, higher-
order logic can in effect be dealt with as if it were a many-sorted first-order logic.
Apart from such qualifications, the distinction between first-order logic and
higher-order logic seems to be exhaustively characterized by reference to the
categorical (ontological) status of the values of the variables of quantification.
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The result we have reached shows that the first-order vs. higher-order distinc-
tion is in reality more complicated than that. (This point has been emphasized
aptly by Jouko Väänänen (2001).) The reduction to the first-order level marks
a definite gain in conceptual clarity. Any philosophical nominalist will rejoice
at this reduction. Among other things, the reduction shows that foundation-
ally speaking we do not have to worry in second-order logic about the thorny
question of the existence or nonexistence of different kinds of higher-order en-
tities, such as sets. All we are trafficking in are different kinds of structures of
particular objects. This satisfies one of the major desiderata of Hilbert (1996,
p. 1121) who blamed the entire Grundlagenkrise on the use of higher-order
entities by Frege, Dedekind and Cantor.

Hilbert’s worry about mathematicians’ reliance on higher-order quantifica-
tion has not received the attention it deserves. Apparently the problem of the
existence of higher-order objects has been tacitly transformed to the technical-
looking question as to what existence assumptions to make in axiomatic set
theory. The reappearance of serious problems in the foundations of set theory
shows that this attempted transformation does not help us. The negation reduc-
tion shows that substitutional first-order logic satisfies Hilbert’s wishes, even
though it involves serious other problems.

In a different direction, the negation reduction vindicates the status of second-
order logic as genuine logic. Since the existence of higher-order entities like sets
plays no role in it, we do not need any set theory to back it up. This reinforces our
reversal of Quine’s quip. To deal with sets as if they were particular objects is
to admit dangerous higher-order conceptualizations in sheep’s clothing. (How
very dangerous they are is shown in Hintikka, 2004(a).) In contrast, the prima
facie dangerous second-order quantifiers turn out to be reducible in a sense to
the sheepish first-order level.

14.9 Logic and mathematical reasoning

In a foundational perspective results like the negation reduction aid and abet
mightily the cause of logicism. Admittedly, some of the earlier formulations of
the tenets of logicism are now inapplicable, including those that claim that all
the axioms we need in mathematics are theorems of a suitable axiomatization
of logic. There is no such thing as a complete axiomatization of even the (un-
extended) IF first-order logic. In other words, our basic logic is semantically
incomplete. Hence it makes no sense to speak of an axiomatic reduction of
mathematics to logic. The real question is whether all the different conceptu-
alizations and all the different modes of reasoning used in mathematics can be
reconstructed by means of logic.

It is usually thought and said that all modes of reasoning needed in mathe-
matics can be represented by means of second-order logic. If so, the negation
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reduction theorem shows that they can in at least one natural sense be reduced
to modes of logical reasoning, which is precisely what logicists are supposed
to claim.

This is perhaps not the last word on the subject, however. On the one hand,
the substitutional first-order logic which is the target of the reduction is not un-
problematic philosophically. On the other hand, it is not obvious that literally
all assumptions that can be considered in mathematics can in fact be captured
by means of second-order logic. For instance, it is not immediately clear that
maximality assumptions like Hilbert’s Axiom of Completeness (Hilbert 1903)
can be so formulated. However, even apart from such qualifications, the re-
sults reached here, especially when they are combined with the realization of
the failure of first-order axiomatic set theory to capture set-theoretical truths
(see Hintikka 2004(a)), show impressively the fundamental role of logic in
mathematical reasoning.

At the same time, the negation reduction raises our awareness of what sep-
arates concrete unproblematic reasoning from questionable one. What makes
the difference was seen not to be the finitude of the domain. Now it is seen
not to lie (Hilbert notwithstanding) in the first-order character of unproblem-
atic reasoning, either, for all second-order reasoning and hence virtually all
mathematical reasoning can in principle be conducted on first-order level. The
crucial step is to allow contradictory negations into the scopes of quantifiers or,
to use logicians’ jargon, to “quantify into” a context governed by a contradictory
negation.

The negation reduction theorem is of interest also from the vantage point of
hierarchy theory. (For it see Addison 1961, and forthcoming). In this theory,
different quantifier hierarchies are studied comparatively. Now by utilizing the
notion of informational independence (independence of a quantifier on another
one) it can be shown that certain important quantifier hierarchies are equivalent
to hierarchies of contradictory negation. This seems to open a possibility of
extending the scope of the entire hierarchy theory.

There has been in the literature some discussion of the question whether IF
first-order logic is perhaps “really” (part of) higher-order logic. The results
reached here show that the entire question is ill formulated. By the ontological
criterion, IF first-order logic is unproblematically first-order, for all values of
bound variables in its semantics are individuals (particular members of the
domain). But if we do not go by this criterion, the notions of “first-order” and
“second-order” have to be redefined. In the light of the results reached here,
it might be maintained with a greater plausibility that the entire second-order
logic is “in reality” but full IF first-order logic in a different notation. It seems
that those philosophers who claim that IF logic is “in reality” second-order
logic are tacitly requiring that the semantics of genuine first-order logic must
be compositional and must rely exclusively on the “ranging over” idea. If so,
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the upshot of the line of though carried out here is to show how hopelessly
restrictive such a conception of first-order is. Such a truncated first-order logic
will not cut much ice even as the supposed logic of ordinary discourse.

It has to be admitted, however, that the borderline between first-order logic
and second-order logic is much less sharp than first meets an untrained eye. This
interplay of the two logics is manifested in the role of Skolem functions in the
theory of first-order logic. It is also natural to generalize the rule of existential
instantiation so as to allow the introduction of new function constants and not
only new individual constants. (The instantiating “witness individuals” may
depend on other individuals.) Moreover, first-order formulas can entail second-
order formulas, even existential ones. This is exemplified by the fact that each
first-order sentence logically implies its own Skolem form, as (9) implies

(25) (∃f)(∀x)F [x, f(x)]

Similar crossings are not found where two parts of logic are truly separated.
For instance, no positive epistemic conclusion is implied by non-epistemic
premises, and similarly for other parts of logic.

14.10 A prescriptive postscript

But what do all these results have to do with the title notion of this volume,
the notion of alternative logic? The answer depends on what this singularly
ill-defined term is taken to mean. In its most superficial sense, an alternative
logic is any logic different from the received logic which is usually taken to
be the “classical” first-order logic. What has been found in this paper (and
in its predecessors) shows that in this sense the term “alternative logic” is an
oxymoron. This is shown once and for all by the independence-friendly (IF
logic) examined in this paper. IF logic is not an alternative to the received
first-order logic. Rather, IF logic replaces the received “classical” first-order
logic and accommodates it as a special case. The received first-order logic turns
out to be a result of logicians’ failure to acknowledge the important limitations
that restrict the expressive power of the “classical” first-order logic. These
limitations also show that the received first-order logic does not deserve this
honorific appellation, unless the term “classical” is taken in one of its earlier
senses as “what is taught in class-rooms”.

In a somewhat less insipid sense an alternative logic is often taken to be a logic
whose system of axioms and inference rules is different from the “classical”
one. But what is a valid rule of inference? It is in its usual sense a rule
that preserves truth. (It is already a symptom of an invidious confusion that
in the literature the preservation of truth is not always distinguished from the
preservation of logical truth.) Admittedly, in some cases what is to be preserved
is merely probable truth or truthlikeness. However, those variations do not make
an essential difference to the line of thought pursued here. If a putative rule
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of inference does not satisfy such a preservation requirement, it can scarcely
serve any realistic purpose in the applications of logic and hence should not be
called rule of inference. But if so, if truth-preservation is a condition sine qua
non of a rule of inference, the validity of rules of inference has to be studied in a
semantical theory of the language in which the inferences are couched, for the
notion of truth belongs to semantics (model theory). More fully expressed,
the study of inferences involving certain logical notions must turn on the role
these notions play in the way reality is represented in language. Now what is
in this perspective the semantical task of quantifiers, those central notions of
our basic logic? It is usually thought that the semantical function of quantifiers
is exhausted by their variables’ “ranging over” a class of values. This idea is
among other places epitomized by Frege’s unfortunate idea that quantifiers are
higher-order predicates whose task is to express whether lower-order predicates
are empty or not.

In reality, this “ranging over” is only a part of the real job description of
quantifiers. The other part of what quantifiers do is to express through their
formal dependence or independence of each other the real-life dependence or
independence of their respective variables. Once this is realized, it is easily
seen that the received Frege-Russell notation does not allow the representation
of all possible patterns of dependence and independence between variables. It
hence fails to do full justice to the meaning of quantifiers. What IF logic does is
to eliminate this shortcoming. Unlike the “classical” first-order logic, it fulfills
the whole task of quantifier logic and not only a part of it.

Since this is precisely the task that any general logic of quantifiers has to
accomplish, there cannot be any genuine alternatives to IF logic, either. What
look like such alternatives, principally intuitionistic logic and constructivistic
logic, can be construed as resulting from restricting the modes of dependence
between variables, perhaps to knowable ones or constructive ones. If this is
taken to be a sufficient reason to label them “alternative logics”, there is no need
to object, as long as their character as variants of IF logic is acknowledged.

Thus the verdict is clear as far as independence-friendly logic is concerned.
IF logic is not a logic of certain kinds of games. It is a study of Skolem functions
of quantifier sentences. These functions receive their significance from the fact
that they codify relations of dependence between different variables. Rightly
understood, IF logic is not alternative to any other logic, nor does it have any
genuine alternatives.

This leaves most of the so-called alternative logics still unexplained. It is
impossible to do justice to all of them here, but it might be in order to try to
indicate what is interesting about them. As an example, what is known as the
theory of circumscription will do. An inference from certain premises to a
conclusion by circumscription relies, over and above the information that the
premises convey, on a tacit assumption to the effect that the premises provide
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all the relevant information. This is a contingent assumption, not a logical or
even necessarily a common sense truth. As any puzzle fan knows, often the
solution of a puzzle requires precisely a violation of the sufficiency presump-
tion in that it requires the presence of a factor not foreshadowed in the given
information.

Now at first such inference might not seem to require any new principles
of reasoning. Indeed, reasoning from partly tacit premises is one of the oldest
topics of logical theory. It has an established name, viz. enthymemic rea-
soning. Why should circumscriptive reasoning nevertheless require a special
alternative logic? Perhaps it does not. What is peculiar and interesting about
it is that there does not seem to be any way of expressing the tacit sufficiency
premise in the language in which the circumscriptive inferences are carried
out.

The theory of circumscriptive inference is therefore an attempt to elicit in-
formation from a premise which is not only unspoken but unspeakable in the
language used, by introducing special rules of inference. This is an intriguing
enterprise, independently of whether it is deemed fully successful or not, but it
need not involve a logic alternative to our old ones. It is a branch of the theory
of enthymemic inference, viz. the branch which studies inferences in which
the tacit premise is not expressible in the language in which the reasoning is
carried out.

This can be generalized to several other highly interesting “logics”. Proba-
bilistic inductive logic depends on assumptions concerning the orderliness of
one’s universe of discourse. In the simplest case, such an assumption is codified
in the constant of Carnap’s λ-continuum. The choice of a value of λ codifies
such a regularity or irregularity assumption, even when it is not expressed in
the form of a proposition in the explicit language of inductive reasoning.

In mathematics, we find fascinating assumptions that are not expressible, or
at least not easily expressible, by means of the usual mathematical and log-
ical concepts in the mathematical notation itself. They are assumptions of
extremality (maximality and minimality). Hilbert’s struggles with his “Axiom
of Completeness” in geometry vividly illustrate this problem. Extremality as-
sumptions have not given rise to a new logic except perhaps in Hintikka (1993).
They can nevertheless play the same role as the tacit premises of circumscrip-
tive logic or inductive logic. What is common to all these “alternative logics”
is that they are methods of eliciting consequences of certain tacit assumptions.
They are not theories of inference in general; they are chapters of a theory of
enthymemic reasoning. It is not even clear that they involve in the last analysis
any peculiar modes of logical inference.

In the light of these observations, perhaps what you should do next time
when you are tempted to use the expression “alternative logic”, is to look for
an alternative locution.
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15.1 Introduction

IF logic is introduced by J. Hintikka and advocated in a number of publica-
tions; the main ones are [Hintikka, 1996] and [Hintikka and Sandu, 1997]. The
difference with predicate logic concerns the interdependency of quantifiers. In
predicate logic quantifiers may depend on the quantifiers in whose scope they
occur, e.g. in the quantifier sequence ∀x∃yψ the value chosen for y may depend
on x. So scope indicates possible dependencies. It is not possible in predicate
logic to express that a quantifier should be independent of another one. In IF
logic it is possible to express that an existential quantifier is independent of
a preceding universal quantifier (IF abbreviates ‘Independence Friendly’); the
issue of (in)dependence also applies to disjunctions.

In IF logic existential quantifiers (and disjunctions) are by definition indepen-
dent of other existential quantifiers. A natural generalization of IF would be that
these can at choice be dependent or independent of existential quantifiers. We
indicate this generalization by IFG (IF Generalized). The generalizations that
are investigated by [Hodges, 1997] and [Caicedo and Krynicki, 1999] go even
further and allow for independency with universal quantifiers and conjunctions.

221
J. van Benthem, G. Heinzmann, M. Rebuschi and H. Visser (eds.), The Age of Alternative Logics:
Assessing Philosophy of Logic and Mathematics Today, 221–241.
c© 2006 Springer.



222 Theo M.V. Janssen and Francien Dechesne

IF and IFG are logics with unexpected properties. [Hodges, 1997] has a
section called Deathtraps, and says (p. 546): ‘the idea “what a player is al-
lowed to know”, though it has strong intuitive content, can be very misleading’.
[Caicedo and Krynicki, 1999] state (p. 22): ‘One has to be careful about wrong
extrapolations from classical semantics.’ [Janssen, 2002] concludes (p. 375):
‘The examples given in the previous sections show that strategies are on several
points in conflict with intuitions on independence’.

The cause of the unexpected properties lies in a phenomenon which is
called ‘signalling’, and which will be explained in the next sections. Although
[Caicedo and Krynicki, 1999] have warned the reader, they fell in the trap of
wrong extrapolations. Several of their theorems are incorrect, and this is, in
our opinion, not due to some accidental oversight, but because the deathtraps
of signalling are not well known.

In this paper we will present several tricky examples of signalling. The
results of [Caicedo and Krynicki, 1999] and the fundamental claim by Hintikka
that IF is a conservative extension of predicate logic all are incorrect due to
signalling. Probably they can reformulated in a weaker sense ([Caicedo et al.,
to appear]).

15.2 What is signalling?

In the context of game theoretical semantics for IF, ‘signalling’ is the phe-
nomenon that the value of a variable one is supposed not to know, is available
through the value of another variable. Below we present the earliest exam-
ple of this phenomenon, but first we explain informally the game theoretical
interpretation of IF and IFG. Formal definitions will be given in section 15.5.

The interpretation of a formula proceeds by a game between two players;
∀belard and ∃loise. ∀belard aims to refute the formula, ∃loise to confirm it.
We suppose the formula to be in negation normal form. In that case ∀belard
makes the choices for ∀ and ∧, and ∃loise for ∃ and ∨. If a choice is to be made
independent of the values of certain variables, that is indicated by mentioning
those variables after a slash that is attached to the quantifier or connective. For
instance, in ∃x/y the x has to be chosen independent of y, and in ∨/x a disjunct
has to be chosen independent of x. Again, ∃loise has to make the choices in
these cases, and ∀belard for the other ones. A formula is defined to be true if
∃loise has a winning strategy (and false if ∀belard has a winning strategy, but
this will hardly play any role in the paper).

Time for an example. We start with a classical formula:

∀x∃y[x = y] (15.1)

The game proceeds as follows. First ∀belard chooses a value for x, and next
∃loise chooses one for y. If she chooses the same value as ∀belard she wins
this play. As a matter of fact, that method always is successful; it is a winning
strategy, and therefore the formula is true.
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An IFG formula that resembles (15.1) is:

∀x∃y/x[x = y] (15.2)

Here ∃loise has to make her choice independently of x. Maybe she by accident,
but she does not have a winning strategy for the game. Hence the formula is
not true. It is not false either, because also ∀belard has no winning strategy.

Consider now
∀x∃z ∃y/x[x = y] (15.3)

A vacuous quantifier is inserted, and in classical predicate logic that would
make no difference; its truth value remains unchanged. But in IFG it makes a
difference. The winning strategy for ∃loise is to choose z to be equal to x, which
is allowed because no independence restrictions are put on z. Next she chooses
y to be equal to z, which is allowed because she does not ask for the value
of x. The result is that x equals y. So by proceeding in this way, ∃loise has
a winning strategy. The strategy recognizes the value of z as a signal for the
value of x, and uses that signal to choose the value of y. For original IF logic
this example of signalling is not possible (because existential quantifiers are
there by definition independent of each other), but we will meet several other
examples concerning IF logic where signalling is used.

Example (15.1) was the first example of signalling that was discovered
[Hodges, 1997] p. 548. The example of a wrong extrapolation from classical
logic given by [Caicedo and Krynicki, 1999] p. 22 has a completely different
appearance, but in fact it is a reformulation of (15.1), so it is based upon sig-
nalling. [Janssen, 2002] gives many other examples of signalling, and so does
the present paper.

15.3 Signalling is needed

Before we consider cases where signalling causes a problem, it first will be
illustrated that signalling is an essential component of the semantics of IF and
IFG.

Consider (15.4), interpreted in a model with 2 elements: {0, 1}.

∀x[x = 1 ∨ x �= 1] (15.4)

This formula is classically true, and it is so in IF and IFG semantics: ∃loise can
make her choice based upon the value of x, and has as strategy: if x = 1 then
L else R.

A related example is:
∃u[u = 1 ∨ u �= 1] (15.5)

This formula is true in classical logic, and it is true in IF. But the winning strategy
is not, as you might expect, to choose for ∨ the left disjunct in case u = 1 and
the right disjunct otherwise. This is not allowed: the choices of ∃loise are in
IF by definition independent of her own earlier choices. This independence is
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analogous to the formation of the Skolem form for classical predicate logic: the
Skolem function for an existential quantifier has as arguments only variables
that are universally quantified. For example: ∀x∃y∃z[x < y < z] has Skolem
form ∃f∃g∀x[x < f(x) < g(x)] The fact that z ( = g(x)) is greater than
y ( = f(x)), is accounted for by first recalculating internally in g what f(x) is;
one might say g(x) = g′(x, f(x)).

As explained, when playing (15.5) it is not allowed to recalculate the value
of u for the decision on ∨. What can than be a winning strategy? The solution
is to use constant strategies: for ∃u the value 0, and for ∨ always choose R.

In IFG the same problem arises for (15.6) where it is made explicit that the
value of u may not be used for making a choice for the disjunction. In (15.6)
the same strategy is winning as for (15.5).

∃u[u = 1 ∨/u u �= 1] (15.6)

We return to IF, and make the example more complicated. Consider:

∀x∃u[u = x ∧ [u = 1 ∨ u �= 1]] (15.7)

This formula is classically true, but for IF semantics the situation seems difficult.
The constant strategies from the previous example will not work. ∃loise cannot
take a strategy that always yields the same value for u because it must satisfy
u = x, and the strategy for ∨ must vary with the value of u. The solution is to
use the value of x as signal for the value of u. ∃loise wins by choosing u equal
to x, and making for ∨ the choice L if x = 1 and R otherwise.

Example (15.7) is an important example because it illustrates the need for
signalling in IF. The language of IF logic is an extension of the language of
predicate logic, and it is claimed to be a conservative extension [Hintikka,
1996] p. 65. Without signalling ∃loise has no winning strategy in example
(15.7). Without signalling, (15.7) would be a formula without slashes that is
not true in IF, whereas classically it is true; it would be a counterexample to the
claim of conservative extension. This shows: signalling is needed.

This story can directly be transferred to IFG. The IF example (15.7) is refor-
mulated in IFG as (15.8), where of course the same strategy is winning.

∀x∃u[u = x ∧ [u = 1 ∨/u u �= 1]] (15.8)

When [Hodges, 1997] proposes to switch to IFG, he says (p. 22): ‘Obviously
this won’t diminish the expressive power of the language.’ But in order to allow
a reconstruction of IF in IFG, we must have the same possibilities for signalling
in IFG (for (15.8)) as in IF (for (15.7)).

So, signalling has effects that cannot easily be missed: giving it up would
cause considerable changes in the semantics. An alternative semantics, in which
signalling cannot occur, is given in [Janssen, 2002] but at the cost of loosing
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some of the expressive power. However, the argument given above for signalling
is not the end of the story: in sections 15.4.4 and 15.7.4 we will show that even
with signalling there are problems with the claim of conservative extension.

15.4 Counterexamples

In the literature one finds some theorems and claims which are incorrect
due to the fact that the possibilities of signalling are not well known. In this
section we present the counterexamples informally; in section 15.7 we will
prove the results in a more technical way. For instance, in this section we do
not quote the original versions of the theorems, and furthermore we will not
give complete proofs here. Although we will prove that certain formulas are
true, by providing winning strategies for ∃loise, we will not prove that certain
formulas are not true. The reason is that negative proofs are more difficult
to obtain: the collection of possible strategies is rather unwieldy. Instead we
will (following [Caicedo and Krynicki, 1999]) first define (in section 15.5) an
alternative for the game interpretation which they also use for formulating their
theorems: an interpretation which uses sets of valuations.

15.4.1 Renaming of bound variables

Claim 1. (cf. Lemma 3.1a [Caicedo and Krynicki, 1999] p. 26)
Let Qx be ∀x or ∃x where the quantifiers may be with or without a slash. If φ is
a sentence in which Qx[ψ(x)] occurs as subformula, and z does not occur (free
or bound) in ψ, then the subformula Qx[ψ(x)] may be replaced by Qz[ψ(z)]
without changing the truth value.

We will show that this claim is incorrect. A counterexample is given by the
following two formulas, where (15.10) is obtained from (15.9) by replacing s
by y. They are played on a model with 2 elements: {0, 1}, and it does not
matter whether you see them as IFG or IF formulas.

∀x∀y∀z[x �= y ∨ ∃s∃u/x[u = x ∧ s = z]] (15.9)

∀x∀y∀z[x �= y ∨ ∃y ∃u/x[u = x ∧ y = z]] (15.10)

In (15.9) the winning strategy is as follows. We let f∨ ≡ if x �= y then L else R;
f∃s ≡ s := z and f∃u/x

≡ u := y. This strategy is winning because y signals
the value of x to ∃u/x. In (15.10) the corresponding strategy is f∃y ≡ y := z.
That strategy is not winning because when it comes to the choice of u, y is
equal to z and not to x: the ∃y blocks the signal from ∀y.

We expect that a general version of the renaming theorem is not possible.
No matter how we restrict the choice of the new variable: there might always
be a context in which this new variable blocks a signal from outside. So we
always run the risk of changing the truth value in some context if we rename



226 Theo M.V. Janssen and Francien Dechesne

the variable. In order to obtain a kind of renaming theorem, we have to change
the notion of equivalence. Instead of the absolute notion ‘equivalent in all
contexts’, a stricter notion seems to be required.

15.4.2 Prenex normal form

In predicate logic the prenex normal form theorem describes how quantifiers
can be shifted to the front of a formula, e.g. ∀x[φ] ∨ ψ can be replaced by
∀x[φ ∨ ψ], under the condition that x does not occur free in ψ. In IF and
IFG these two formulas are not necessarily equivalent because quantifiers in ψ
become dependent on ∀x. Therefore [Caicedo and Krynicki, 1999] present a
rephrasing.

Claim 2. (cf. Lemma 3.1.c,d [Caicedo and Krynicki, 1999] p. 26)
Let Qx be ∀x or ∃x where the quantifiers may be with or without a slash and
let φ/x denote the result of adding to all quantifiers in φ the independence
condition /x. Then any subformula of the form [Qx[ψ]∨ θ] can be replaced by
Qx[ψ ∨ θ/x] without changing the truth value.

This quantifier extraction claim is incorrect because it may interfere with
signalling. There are two ways in which this can happen.

The first counterexample will show that in Qx[ψ ∨ θ/x] the x can be used
to send signals to θ/x. Indeed, the formulation of the claim given above, was
intended to prevent this, but as we have seen in section 15.3, also decisions on
disjunctions may depend on signals. The second counterexample is based upon
the possibility that in Qx[ψ∨θ/x] the quantifier may block signals from outside
to θ/x.

Counterexample 1
This first example is based upon a situation where a formula that is not true,

becomes true by quantifier extraction. It is an IFG example; the situation for
IF formulas still has to be investigated further. Consider:

∀z[∀x[x �= z] ∨ ∃u/z[u = z ∨/z u �= z]] (15.11)

It will be clear that no z satisfies the left disjunct. In the right disjunct there is
for f∃u/z

no argument available, so it is a constant strategy. Furthermore f∨/z

is not allowed to depend on z, but it may depend on u. Since f∃u/z
is constant,

this means that f∨/z
is constant: always L or always R. For at least one value

of z such a choice will not be winning, hence ∃loise has no winning strategy;
so, formula (15.11) is not true.

The result of the quantifier extraction transformation in (15.11) is:

∀z∀x[x �= z ∨ ∃u/z,x[u = z ∨/z u �= z]] (15.12)
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This formula is true as the following strategy shows. Let f∨ ≡ if x �= z then
L else R. So either the left disjunct is satisfied, or the right disjunct has to be
satisfied in a situation where x = z. For u we take an arbitrary (but fixed) value.
For ∨/z the value of x can be used as a signal: f∨/z

≡ if u = x then L else R.
So if the players arrive at the subformula u = z, this one is satisfied because
u = x and x = z, and if they arrive at the subformula u �= z, that one is satisfied
because u �= x and x = z. So these choice functions for the disjunctions form a
winning strategy for ∃loise.

Note that in variant (15.13) of (15.12) for f∨/z,x
no information about x can

be used. So (15.13) is not true, just as the sentence in which the quantifier
extraction has not yet taken place, viz. (15.11).

∀z∀x[x �= z ∨ ∃u/z,x[u = z ∨/z,x u �= z]] (15.13)

This counterexample suggests that in claim 2 not only the quantifiers, but also
the connectives have to be slashed.

Counterexample 2
This example, again an IFG example, shows that by giving ∀ wide scope a
signal can be blocked. The counterexample is obtained from:

∀y∃u[∀u[u �= u] ∨ ∃x/y[x = y]] (15.14)

For this formula the winning strategy is: f∃u ≡ u := y, f∨ ≡ R, and let
f∃x/y

≡ x := u. Since u = y it follows that x = y. Hence (15.14) is true in our
model.

Quantifier extraction changes formula (15.14) into

∀y∃u∀u[[u �= u] ∨ ∃x/y,u[x = y]] (15.15)

The strategy x := u given above for ∃x/y is not allowed for ∃x/y,u, and the
formula is not true. The quantifier ∀u blocks the signal u = y from outside to
∃x/y,u[x = y].

We think that a general version of the quantifier extraction lemma (as in
claim 2) is not possible. One can always construct a context in which a moved
quantifier blocks a signal. Therefore we suggest investigating the idea that the
normal form theorem has to be restricted to situations where this cannot arise.

15.4.3 Slashed disjunction elimination

It is claimed that slashed disjunction can be eliminated. In Hintikka’s work
this follows from his translation procedure from IF logic to second order logic
and back (cf. [Hintikka, 1996] p. 52 and p. 62–63). [Caicedo and Krynicki,
1999] give the result within IFG.

Claim 3. (cf. Lemma 3.2, [Caicedo and Krynicki, 1999] p. 25)
φ ∨/Y ψ ≡G ∃u/Y ∃s/Y,u[[[u = s ∧ φ] ∨ [u �= s ∧ ψ]] ∨ ∃!u[u =u ∧ [φ ∨ ψ]]]
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The last part of the formula in the claim deals with the situation that there is
one element in the model. In our counterexample we assume that the model
has at least three elements, so we may neglect that part.

Consider now:

∀y∀t[∃x/t[x = t] ∨/y ∃x/t[x = t]] (15.16)

The strategies for the two occurrences of ∃x/t may depend on y, but not on u.
∃loise may follow for the left occurrence of ∃x/t another strategy than for the
right one. Because ∀belard can choose from at least 3 different values for t,
there will always be one occurrence ∃x/t that ∃loise has to satisfy for two or
more different values of t. This she cannot do, so the sentence is not true.

The proposed elimination rule changes (15.16) into (15.17), where we omit-
ted the last part (since it is false in our model).

∀y∀t ∃u/y ∃s/u,y[[u = s ∧ ∃x/t x = t] ∨ [u �= s ∧ ∃x/t x = t]] (15.17)

∃loise has a winning strategy for this sentence: f∃u/y
≡ u := t, f∃s/y,u

≡ s :=
t, f∨ ≡ L, and f∃x/t

≡ x := s. This strategy never violates the independence
restrictions, and it guarantees ∃loise to win. Note that the y plays no essential
role in the strategies.

We conclude that also the rule for the elimination of slashed disjunctions has
to formulated in some restricted way.

15.4.4 Conservative extension

Claim 4. ([Hintikka, 1996] p. 65.) Technically speaking IF first-order logic is
a conservative extension of ordinary first-order logic

Also this claim is undermined by the tricky properties of signalling, as will
be explained below.

A variant of example (15.7) from section 15.3 is the IFG example:

∀x∃u[u = x ∧ [u = 1 ∨/u u �= 1]] (15.18)

This example is true: the x could be used as a signal for the value of u at the
disjunction. An extended version of (15.18) is:

∀x∀y∃u [u = x ∧ ∀s[s = y ∨ [u = 1 ∨/u u �= 1]]] (15.19)

This formula is again true: for the first ∨ choose R, and for the second ∨ use x
as a signal for the value of u. Next we replace s by x.

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]] (15.20)

Here the signal is blocked, and consequently the formula is not true.



Signalling in IF Games: A Tricky Business 229

Next we write (15.20) in the language of IF logic, what means that the
independence of ∨ from ∃u is not expressed. Then we get:

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨ u �= 1]]] (15.21)

Above we have argued that ∃loise has no winning strategy for (15.20), hence
not for (15.21); a proof will be given in Section 15.7.4. So, according to the IF
interpretation, (15.21) is not true. At the same time it is a formula from classical
predicate logic, and classically it is true. Hence IF-logic is not a conservative
extension of predicate logic.

15.5 Definitions

15.5.1 The language

Definition 5. The language of IFG-logic is defined as follows:

1. The language has variables. Typical examples are x, y, z, u, s, and t. In
general discussions variables range over a domain A of model A, but in the
examples the domain is {0, 1} or {0, 1, 2}.

2. The language has constants. In general discussions typical constants are
a and b. In the examples 0 and 1 are used.

3. A term is a variable or a constant We choose our fragment not to contain
any function symbols.

4. The relation symbols are R1, R2, . . .; each with a fixed arity. In the
examples the binary relation symbols =, �=, <, and ≤ are used.

5. If t1, . . . , tn are terms, and n is the arity of R, then R(t1, . . . , tn) and
¬R(t1, . . . , tn) are formulas.

6. If ψ and θ are formulas, z is a variable, and Y a set of variables, then also
the following expressions are formulas: ψ ∧ θ, ψ ∨ θ, ψ ∨/Y θ, ∀zψ, ∃zψ.
If z �∈ Y then ∃z/Y ψ is a formula.

After a slash we will omit brackets of set denotations, and write ∃y/x and
∃y/x,u.

Definition 6. FV (φ) is the set of free variables in φ. It consists of those
variables in φ which do not occur in φ bound. FV (φ) includes variables in
Y ’s occurring in ∨/Y and ∃x/Y as far as they are unbound in φ.

A comparison of our definition of the logic with the literature gives rise to
the following remarks:
1. We assume all formulas to be in negation normal form, as is done in almost

all publications of Hintikka and in [Väänänen, 2002]. In some other publi-
cations about variants of IF-logic negation may occur freely (e.g. [Hodges,
1997] and [Caicedo and Krynicki, 1999]). We do not need it, however, for
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our discussion of signalling. A happy consequence is that there is no role
switch between ∀belard and ∃loise, what makes the discussion easier to
understand.

2. In Hintikka’s version choices depend only on moves of the opponent, but
can be made independent of them by slashing those moves away. We allow
also (in)dependency between own choices. Therefore also existentially
quantified variables may arise after a slash.

3. We do not consider strategies for ∀belard, as they are not necessary to make
our points.

15.5.2 Playing

The main ingredient of a game is a formula from IFG logic. The aim of the
game is to determine the truth of the formula in a model A. The two players
have different aims: ∃loise tries to confirm the truth and ∀belard to refute it.
We are, however, not so much interested whether ∃loise accidently wins (or
looses), but whether she has a winning strategy for the game, because that is
the criterium whether the formula is true or not. Therefore we will describe
IFG on two levels: the level of actual playing the game, where the two players
move, and win or lose, and the level of a set of sets of plays where the players
may have a winning strategies.

We first describe how a game is played: which player has to move in a given
position, what are his/her possible moves, and what is the effect of the move.
In the course of the game the players will encounter subformulas like ψ ∨/Y θ
or ∃x/Y ψ. The subscript indicates that the choice of the move has to be made
independent of the variables in Y . This is a restriction on the motivation for
the choice, but not on the choice itself. Therefore in the description of playing
it makes no difference whether /Y occurs as subscript or not. Its role will be
defined when we consider strategies in section 15.5.3.

A valuation describes at least the values of the free variables in φ; an alterna-
tive name would be finite assignment. For valuations we mainly use v and w.

Definition 7. A valuation v for a formula φ in a model A is a function v ∈
dom(A)X where FV (φ) ⊆ X .

Definition 8. We use the following notations concerning valuations:

{x : a} the valuation that assigns a to x (a ∈ dom(A))
v ∗ {x : a} the valuation obtained from v by changing the value assigned

to x into a if v was defined for x, or by extending the domain
of v such that it now assigns a to x.

ǫ (the empty valuation) the valuation that is defined for no
variable at all
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v ∼Y w (v is an Y -variant of w) valuations v and w are defined for
the same variables, the values they assign may differ for the
variables in Y , but are the same outside Y

Definition 9. A play is a triple 〈A, φ, v〉where φ is a formula from IFG-logic,A
a model and v a valuation where FV (φ) ⊆ dom(v). A position is a pair 〈ψ, w〉,
where ψ is a subformula of φ and w a valuation where FV (φ) ⊆ dom(w).
A move is a transition from a position to a position. The possible moves are
determined by the form of φ. We distinguish the following cases:

1. 〈φ, v〉 ≡ 〈ψ ∧ θ, v〉
∀belard chooses L or R. If he chooses L, then the play is continued from
position 〈ψ, v〉, otherwise from position 〈θ, v〉.

2. 〈φ, v〉 ≡ 〈ψ ∨ θ, v〉 or 〈φ, v〉 ≡ 〈ψ ∨/Y θ, v〉
∃loise chooses L or R. If she chooses L, the play is continued from position
〈ψ, v〉 otherwise from position 〈θ, v〉. For the role of /Y see section (15.5.3)
below.

3. 〈φ, v〉 ≡ 〈∀xψ, v〉
∀belard chooses a value for x, say a, and the play proceeds from position
〈ψ, v ∗ {x : a}〉.

4. 〈φ, v〉 ≡ 〈∃xψ, v〉 or 〈φ, v〉 ≡ 〈∃x/Y ψ, v〉
∃loise chooses a value for x, say b. Then the play is continued from position
〈ψ, v ∗ {x : b}〉.

5. 〈φ, v〉 ≡ 〈R(t1, . . . , tn), v〉
Here the play ends. Let ai = v(ti) if ti is a variable, en ai = tAi if ti is a
constant. If (a1, . . . , an) ∈ RA then ∃loise has won the play, otherwise she
has lost.

6. 〈φ, v〉 ≡ 〈¬R(t1, . . . , tn), v〉
Here the pay ends. Letai be defined as in the previous clause. If (a1, . . . , an)
�∈ RA then ∃loise has won the instance of the game, otherwise she has lost.

15.5.3 The game

We now switch to the level where strategies can be defined. We consider a
game as set of plays ([Hodges, 1997] calls this level a ‘contest’).

Definition 10. A game is a triple 〈A, φ, V 〉, where A is a model with domain
A, φ a formula of IFG-logic and V a collection of valuations such that there is
a set X of variables with FV (φ) ⊆ X and V ⊆ AX .

A choice function fφ is a function that describes which choices ∃loise may
make, depending on the values previously chosen for the variables. The require-
ment that a choice does not depend on the variables in a set Y is formalized
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by requiring that fφ yields the same choice for different values assigned to the
variables in Y .

Definition 11. The possible choice functions fφ for ∃loise at position 〈φ, v〉
in a game 〈A, η, V 〉 are defined by the following cases:

φ ≡ ψ ∨ θ fψ∨θ : V → {L, R}
φ ≡ ψ ∨/Y θ fψ∨/Y θ : V → {L, R} such that from v1 ∼Y v2 follows that

fψ∨/Y θ(v1) = fψ∨/Y θ(v2).
φ ≡ ∃xψ f∃xψ : V → A, where A is the domain of A.
φ ≡ ∃x/Y ψ f∃x/Y ψ : V → A, where A is the domain of interpretation

and v1 ∼Y v2 implies f∃x/Y ψ(v1) = f∃x/Y ψ(v2).

We say that a choice function f is independent of Y on V if for all v, w ∈ V
from v ∼Y w follows f(v) = f(w).

Definition 12. A strategy Fφ for a game 〈A, φ, V 〉 is a collection choice func-
tions {fψ}ψ∈Sub(φ) which for each subformula ψ where ∃loise has to make a
choice, provides a choice function fψ. Different occurrences of ψ in φ have
their own choice function.

Definition 13. A strategy Fφ is called a winning strategy in game 〈A, φ, V 〉 if
playing in accordance with that strategy guarantees ∃loise to win in all possible
plays 〈A, φ, v〉, v ∈ V , of the game. Notation: A |=G φ[V, Fφ].

Definition 14. Sentence φ is called game-true, shortly ‘true’, if there exists a
winning strategy Fφ such that A |=G φ[{ǫ}, Fφ].

15.6 Valuations

In this section we will present an alternative definition for IFG that resembles
the classical definition of satisfiability using valuations. One of the reasons is
that several theorems from [Caicedo and Krynicki, 1999] are formulated with
such a definition. There is a difference however between the use of valuations
for IF (and IFG), and in the traditional approach to predicate logic. Whereas
classically a formula is interpreted with respect to a single valuation, for IF
and IFG this will be done with respect to a set of valuations. Therefore several
notions from definition 8 are lifted to the level of sets.

Definitions 15. The following notations concern sets of valuations:

{xy : aa, bb} (is an example of the explicit notation we use for a set of val-
uations) the set of valuations that assign to x and y identical
values from {a, b}

V ∗ {x : a} {v ∗ {x : a} | v ∈ V }

V ∗ {x : A} {v ∗ {x : a} | v ∈ V, a ∈ A}
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V ∼Y W (V is an Y -variant of W ) for each v ∈ V there is a w ∈ W
such that v ∼Y w and for each w ∈ W there is a v ∈ V such
that w ∼Y v.

In order to express a counterpart of independence in the realm of valuations,
we borrow the notion of Y -saturatedness from [Caicedo and Krynicki, 1999].
That a choice function is independent of Y will correspond with having a certain
partition of its domain into Y -saturated sets (see definition 20).

Definition 16. A subset W of V is called Y -saturated in V if for all w, v ∈ V
from w ∼Y v and w ∈ W follows that also v ∈ W .

Lemma 17. Let V1 and V2 be Y -saturated subsets of V . Then V1∪V2, V1∩V2,
and V1 \ V2 are Y -saturated subsets in V .

Lemma 18. The equivalence classes in V of the relation ∼Y are Y -saturated.

Definition 19. The partition V/∼Y of V into ∼Y equivalence classes is called
the Y -saturated partition of V .

We are now prepared for the definition of the interpretation in a model A of
a formula φ with respect to set a of valuations V ; notated as A |=V φ[V ]. Note
that the subscript V is fixed part of the notation, whereas for V any denotation
for a set of valuations can be used.

Definition 20. Let A be a model with domain A, φ a formula, X a set of
variables for which FV (φ) ⊆ X , and V ⊆ AX . Then φ is true under V in
A, notated A |=V φ[V ], iff:

1. For atomic φ
A |=V R(t1, . . . , tn)[V ] iff for all v ∈ V we have (a1, . . . , an) ∈ RA,
where ai = v(ti) if ti is a variable, and ai = tAi if ti is a constant.
A |=V ¬R(t1, . . . , tn)[V ] iff for no v ∈ V we have (a1, . . . , an) ∈ RA,
where ai as just defined.

2. A |=V [ψ ∧ θ][V ] iff A |=V ψ[V ] and A |=V θ[V ].

3. A |=V [ψ ∨ θ][V ] iff V = V1 ∪ V2 for some V1 and V2, such that A |=V

ψ[V1] and A |=V θ[V2].

4. A |=V [ψ ∨/Y θ][V ] iff V = V1 ∪ V2 for some V1 and V2, such that V1

and V2 are Y -saturated in V and A |=V ψ[V1] and A |=V θ[V2].

5. A |=V ∀xφ[V ] iff A |=V φ[V ∗ {x : A}].

6. A |=V ∃xψ[V ] iff there is a W ∼x (V ∗ {x : A}) such that A |=V ψ[W ]

7. A |=V ∃x/Y ψ[V ] iff V = ∪iVi, where each Vi is Y -saturated in V and
for each i there is an ai such that A |=V ψ[∪i(Vi ∗ {x : ai})].
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It might be helpful to compare the clause 7 with clause 4: the slashed ex-
istentional quantifier is seen as a slashed disjunction for the different values x
may take. Clause 6 could be expressed in an analogous way.

Note that if we let V = ∅, this inductive definition of satisfaction yields, for
any IFG-formula, A |=V φ[∅]. This might look anomalous, but it is actually
necessary for the situation with disjunction, where the empty sets of valuations
can occur if V is split into V and ∅. Be aware that this is different from saying
that formulas are always satisfied by the singleton set A∅ = {ǫ}: this is not the
case. In fact, satisfaction with respect to A∅ is only defined for formulas with
no free variables, i.e. sentences.

Definition 21. For φ a sentence, we say that φ is valuation true iff A |=V

φ[{ǫ}]. Notation: A |=V φ.

Definition 20 differs for clause ∃x/Y essentially from the definition in
[Caicedo and Krynicki, 1999]. Their definition has a typo that turns /Y into a
vacuous addition, and, after the obvious correction, gives rise to a difference be-
tween the game interpretation and the valuation interpretation in certain cases.
We will not go into details.

Next we establish the equivalence of the game interpretation and the valuation
interpretation.

Theorem 22. A sentence φ is game true iff φ is valuation true.

Proof.
We will show that for any formula φ and for all V ⊆ AX with FV (φ) ⊆ X
the statements (i) and (ii) are equivalent.
(i) A |=V φ[V ]

(ii) there is a winning strategy Fφ such that A |=G φ[V, Fφ]
In particular this shows for sentences φ: A |=V φ[{ǫ}] iff there is a winning
strategy Fφ such that A |=G φ[{ǫ}, Fφ], which proves the theorem.

Proof (⇒).
We only consider the clauses where a choice function for ∃loise has to be
designed.

3. A |=V ψ ∨ θ[V ]
By definition 20 there are V1 and V2 such thatA |=V ψ[V1] andA |=V θ[V2].
Then, by induction hypothesis, there are winning strategies Fψ and Fθ such
that A |=G ψ[V1, Fψ] and A |=G θ[V2, Fθ]. Define fψ∨θ(v) = L if v ∈ V1,
and R otherwise. Let Fφ = {fψ∨θ} ∪ Fψ ∪ Fθ. Then A |=G φ[V, Fφ].

4. A |=V ψ ∨/Y θ[V ]
Follow the construction from the previous case. Since V1 and V2 are
Y -saturated in V , so is V1 \ V2, hence fψ∨/Y θ indeed is independent of Y
on V .
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6. A |=V ∃xψ[V ]
According to clause 6 of definition 20 there is a W∼x(V ∗{x : A}) such that
A |=G ψ[W ]. By induction hypothesis there is a winning strategy Fψ such
that A |=G [W, Fψ]. For each v ∈ (V ∗ {x : A}) choose a wv ∈ W such
that wv ∼x v. Define f∃xψ(v) = wv(x). Then A |=G ∃xψ[V, {f∃xψ}∪Fψ]

7. A |=V ∃x/Y ψ[V ]
Let {Wj} be the Y -saturated partition of V (see def. 19). Let Vi and
ai be as in clause 7 of definition 20. For each Wj choose a Vi such that
Wj ⊆ Vi and define bj = ai. Since A |=V ψ[Vi ∗ {x : ai}] we have
A |=V ψ[Wj ∗ {x : bj}], and since the Wj are pairwise disjunct A |=V

ψ[∪j(Wj ∗ {x : bj})]. By induction hypothesis there is a winning strategy
Fψ such that A |=G ψ[∪j(Wj ∗ {x : bj}), Fψ]. Define f∃x/Y ψ(v) = bj if
v ∈ Wj . This defines a function because the sets Wj are pairwise disjunct,
and this function is independent of Y because the sets Wj are Y -saturated.
Hence A |=G ψ[V, {f∃x/Y ψ} ∪ Fψ].

Proof (⇐).
We consider only the cases where ∃loise applies her strategy.

3. A |=G (ψ ∨ θ) [V, Fψ∨θ].
Let V1 = f−1

ψ∨θ(L) and V2 = f−1
ψ∨θ(R), so V = V1 ∪ V2. Then for the

substrategy from Fφ for ψ, viz. Fψ, holds A |=G ψ[V1, Fψ]. Analogously
A |=G θ[V2, Fθ]. By induction hypothesis A |=V ψ[V1] and A |=V θ[V2].
Then V satisfies the conditions of clause 3 in definition 20, hence A |=V

(ψ ∨ θ)[V ].

4. A |=G (ψ ∨/Y θ) [V, Fψ∨/Y θ].
Define V1 and V2 as in clause 3 above. Since fψ∨/Y θ is independent of Y in
V , sets V1 and V2 are Y -saturated in V . So V1 and V2 satisfy the conditions
of clause 4 in definition 20, hence A |=V (ψ ∨/Y θ)[V ].

6. A |=G ∃xψ[V, F∃xψ]

Let B be the range of f∃xψ and define Vb = f−1
∃xψ(b) for each b ∈ B. Then

A |=G ψ[∪b(Vb ∗ {x : b}), Fψ]. By induction hypothesis we know that
A |=V ψ[∪b(Vb ∗ {x : b})]. So W = ∪(Vb ∗ {x : b}) satisfies clause 6 from
definition 20. Hence A |=V ∃xψ[V ].

7. A |=G ∃x/Y ψ[V, F∃x/Y ψ].
Let Vb be as in clause 6 above. Since f∃x/Y ψ is independent of Y in V , the
sets Vb are Y -saturated in V . So V = ∪bVb satisfies the conditions from
clause 7 in definition 20. Hence A |=V ∃x/Y ψ[V ]
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15.7 Proofs

15.7.1 Renaming bound variables

[Caicedo and Krynicki, 1999] p. 26, present a result that bound variables
under standard conditions can be renamed. They formulate a general version
for formulas with free variables, and therefore a general notion of equivalence
is needed. Their definition requires that the two expressions for all assignments
agree on truth (|=+

G
what is our |=G) and falsehood (|=−

G
). For completeness of

information we also quote the falsehood part, but in our discussion only truth
plays a role.

Quote 23. ([Caicedo and Krynicki, 1999] p. 24) Formulas φ and ψ are G-
equivalent, notated as φ ≡G ψ, if and only if for any set V of valuations on
a fixed domain including FV (φ) ∪ FV (ψ) in a structure A, we have A |=+

G

φ [V ] ⇐⇒ A |=+
G

ψ [V ], and A |=−
G

φ [V ] ⇐⇒ A |=−
G

ψ [V ].

The renaming theorem allows renaming by a fresh variable:

Quote 24. (Lemma 3.1a [Caicedo and Krynicki, 1999] p. 26) Let Q be ∃ or ∀.
Then: Qx/Y φ(x) ≡G Qz/Y φ(z), if z does not occur in Qx/Y φ(x).

Our counterexample is obtained from the two sentences which were used in
the discussion in section 15.4, viz (15.9) and (15.10). We consider here the
situation after ∀belard has made his choices for the universal quantifiers, and
∃loise has chosen the right disjunct.

Lemma 25. Let V = {xyz : 110, 111, 000,001}. Then:

A |=V ∃s∃u/x [u = x ∧ s = z] [V ], whereas (15.22)

A �|=V ∃y ∃u/x [u = x ∧ y = z] [V ] (15.23)

So renaming the bound variables may change the truth value of the formula.

Proof.
The winning strategy for (15.22) is f∃s ≡ s := z and f∃u/x

≡ u := y. The
negative result will be proved using the interpretation with valuations.

Assume that

A |=V ∃y ∃u/x [u = x ∧ y = z] [{xyz : 110, 111, 000, 001}] (15.24)

Then there must be a set W ∼y (V ∗ {y : A}) such that

A |=V ∃u/x [u = x ∧ y = z] [W ] (15.25)

The values of y and z will not change any further in the recursion to subformulas,
so we have to restrict here our choice to valuations for which y = z holds. So
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W consists of the y-variants for which y = z holds: W = {xyz : 100, 111,
000, 011}. Since (15.25) holds, there must be a collection Wi of in W x-
saturated subsets such that W = ∪iWi. The x-saturated subsets of W are W ,
W1 = {xyz : 100, 000} and W2 = {xyz : 111, 011} (and the empty set). Now
we have to find for each element of the collection a value for u such that the left
conjunct u = x becomes satisfied (the right conjunct is already satisfied by our
choice for W ). For none of the three candidates for the collection such a value
for u can be found. So there is no collection Wi that satisfies the requirements
for ∃u/x. So our initial assumption (15.24) is incorrect, which proves (15.23).

15.7.2 Prenex normal form

Caicedo and Krynicki present the following rephrase of the quantifier ex-
traction part of the prenex normal form theorem.

Quote 26. (Lemma 3.1.c,d [Caicedo and Krynicki, 1999] p. 26).
Let Q be ∃ or ∀. Let ψ/x denote the result of adding to all quantifiers in ψ the
independence condition /x. Then:

1. [Qx/Y φ ∨ ψ] ≡G Qx/Y [φ ∨ ψ/x]

2. [Qx/Y φ ∧ ψ] ≡G Qx/Y [φ ∧ ψ/x]

In section 15.4 we have presented two counterexamples. The first one showed
that new signalling possibilities emerge by quantifier extraction. We consider
that example after the first choice by ∀belard.

Lemma 27. Let V = {z : 1, 0}. Then:

A �|=V ∀x[x �= z] ∨ ∃u/z[u = z ∨/z u �= z] [V ] (15.26)

A |=V ∀x[x �= z ∨ ∃u/z,x[u = z ∨/z u �= z]] [V ] (15.27)

So quantifier extraction as quoted in (26), may change the interpretation of a
formula.

Proof.
The winning strategy for (15.27) is f∨ ≡ if x �= z then L else R, f∃u/z,x

≡ 0
and f∨z ≡ if x = 0 then L else R.

Next we prove the negative result using valuations. Assume that

A |=V ∀x[x �= z] ∨ ∃u/z[u = z ∨/z u �= z] [{z : 1, 0}] (15.28)

It will be clear that ∀x[x �= z] will not be satisfied for any nonempty subset of
{z : 1, 0}. Therefore

A |=V ∃u/z[u = z ∨/z u �= z][{z : 1, 0}] (15.29)
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must hold. Then we have consider the z-saturated subsets of {z : 1, 0}. That is
only the set itself. So there must be a value a such that

A |=V [u = z ∨/z u �= z][{zu : 1a, 0a}] (15.30)

Again, there is only one way to divide the valuations into z-saturated subsets,
the set itself and the empty set. But no matter what the value of a would be,
neither A |=V u = z [{zu : 1a, 0a}] nor A |=V u �= z [{zu : 1a, 0a}]. Hence
(15.28) cannot be true.

The second counterexample showed that signals from outside can be blocked
by quantifier extraction. We consider that example after the initial choices by
∀belard en ∃loise.

Lemma 28. Let V = {yt : 00, 11}. Then

A |=V ∀t [t �= t] ∨ ∃x/y[x = y] [V ]] (15.31)

A �|=V ∀t [t �= t ∨ ∃x/y,t[x = y]] [V ] (15.32)

So quantifier extraction as described in claim 26, may change the interpretation
of a formula.

Proof.
The winning strategy for (15.31) is given by f∨ ≡ R and f∃x/y

≡ x := t. We
show (15.32) using the interpretation with valuations. So, suppose:

A |=V ∀t [t �= t ∨ ∃x/y,t[x = y]] [{yt : 00, 11}]. (15.33)

Due to the meaning of ∀t (15.34) follows, so (15.35) holds:

A |=V [t �= t ∨ ∃x/y,t[x = y]] [{yt : 00, 01, 11, 10}]. (15.34)

A |=V ∃x/y,t[x = y] [{yt : 00, 01, 11, 10}] (15.35)

The set of valuations in (15.35) has only itself and the empty set as y-saturated
subset. So there must be a value a such that:

A |=V x = y [{xyt : a00, a01, a11, a10}] (15.36)

There is, however, no value which does so for all valuations in the set. Hence
(15.32) is proven.

15.7.3 Slashed disjunction elimination

Quote 29. (Lemma 3.2, [Caicedo and Krynicki, 1999] p. 25)
φ ∨/Y ψ ≡G ∃u/Y ∃s/Y,u[[[u = s ∧ φ] ∨ [u �= s ∧ ψ]] ∨ ∃!u[u =u ∧ [φ ∨ ψ]]]

Since the counterexample is in a domain with three elements, we omit the
part after ∃! (that disjunct is than false).
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Lemma 30. Let dom(A) = {0, 1, 2}. Then

A �|=V ∀y∀t[∃x/t[x = t] ∨/y ∃x/t[x = t]] (15.37)

Proof.
Let V = {0, 1, 2}{y,t}, and suppose that the formula mentioned in the lemma
was true in A. Then (15.38) must hold.

A |=V [∃x/t[x = t] ∨/y ∃x/t[x = t][V ] (15.38)

Then there must be sets V1 and V2, both y-saturated in V , such that each satisfies
one of the conjuncts. The three elementary candidates for these y-saturated sets
are Vi = {i}t × {0, 1, 2}y, where i ∈ {0, 1, 2}. The other candidates are the
union of two or three of these. Assume that V1 consists of one of the elementary
sets, then V2 must consist of the union of the other two. In that union two values
for t occur, hence there is no value for x which for all valuations satisfies x = t.
Analogously for the other combinations of y-saturated subsets.

Since we have already shown (section 15.4) that the rule for slashed dis-
junction elimination transforms (15.37) into a true formula, the proposed rule
cannot be correct.

15.7.4 Conservative extension

Quote 31. ([Hintikka, 1996] p. 65) Technically speaking IF first-order logic is
a conservative extension of ordinary first-order logic.

Lemma 32. The IFG sentence (15.39) is not true.

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]] (15.39)

Proof.
Let A be a model with two elements {0, 1}. Assume

A |=V ∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]][{ǫ}] (15.40)

By definition 20 the following must hold:

A |=V ∃u[u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]] [{xy : 11, 10, 01, 00}]
(15.41)

Since u must be equal to x, we take for the u-variant only those valuations
where x = u.

A |=V [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]] [{xyu : 111, 101, 010, 000}]
(15.42)
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The right conjunct has to be satisfied by the same set of valuations. The ∀x
adds all x-variants, so it must be the case that:

A |=V [x = y ∨ [u = 1 ∨/u u �= 1]] [{xyu : 111, 011, 101, 001, 010,

110, 000, 100}] (15.43)

Let V1 consist of all valuations for which x = y, then V1 satisfies the left disjunct.
Let V2 consist of the other valuations, so V2 = {xyu : 011, 101, 010, 100}.
Then it should be the case that:

A |=V [u = 1 ∨/u u �= 1] [V2] (15.44)

If we would have made another division, the V2 would have been larger, but
(15.44) still should hold. The u-saturated subsets of V2 are {xyu : 011, 010}
and {xyu : 101, 100}. None of these subsets satisfies u = 1, and none satisfies
u �= 1. So (15.44) cannot be the case. Hence (15.40) is not true, so there is no
winning strategy for (15.39).

Lemma 33. IF logic is not a conservative extension of ordinary predicate logic.

Proof.
Consider the IF formulation of sentence (15.39):

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨ u �= 1]]] (15.45)

The previous lemma proves that there is no winning strategy for (15.39), hence
not for (15.45), whereas classically (15.45) is valid.

15.8 Conclusions

Signalling is a tricky business. It disturbs several extrapolations from classi-
cal logic (change of bound variables, prenex normal form), and the interaction
of signalling and implicit independence causes that Hintikka’s IF is not a con-
servative extension of predicate logic.
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Chapter 16

INDEPENDENCE-FRIENDLY LOGIC AND
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16.1 Proem

Of late, studies on Independence-Friendly (if) logics have burgeoned. The
purpose of the present paper is to extend the core idea of ‘ifing’ different logics
to a new domain. Whereas sentences of if logics have thus far been associated
with semantic games of imperfect information to capture the idea of informa-
tional independence between quantifiers and connectives, I will suggest another
type of independence. The expressions of logic may, unlike in traditional if

logics in which the independence refers to hiding of information concerning the
actions of players, be associated with games in which the players have restricted
information concerning aspects of the formal structure of the game itself. Such
a situation is referred to in game theory by speaking of games of incomplete
information.

16.2 Independence-friendly logic and semantic games

Let us begin by reviewing the essentials of if first-order logic. Its language
LIF is derived from sentences ϕ of first-order logic L by replacing quantifiers
and connectives in ϕ with the following expressions (jn ∈ {l, r}):

(∃x/W ), (∀y/W ), (
∨

jn

/W ), (
∧

jn

/W ).
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The point is to remove the restrictions concerning the linear, asymmetric
and transitive dependence relations between quantifiers and connectives. The
sets W consist of variables in Var(ϕ) and indices ranging over finite integers
that have occurred in the syntactically superordinate context within which the
expressions slashed with W reside.1

For instance,

∀x(∃y/{x})Rxy ∈ LIF, ∃x∼∃y∼(∃z/{x})Rxy ∈ LIF

and

∀x∀y(
∨

j1 /{y})(
∨

j2 /{x}) (ψ)j1j2 ∈ LIF.

If W = ∅, the slashes may be omitted. In case the semantic games (to be
outlined below) are closed under reflexive information sets, it is further assumed
that for all (Qx/W ) (Q ∈ {∃,∀}), x /∈ W , and for all (Qjn/W ) (Q ∈ {

∨
,
∧
}),

jn /∈ W . This innocent-looking idea has many repercussions, some of them
documented in (Hintikka, 1996).

LIF-sentences ϕ are interpreted through strictly competitive, non-variable-
sum semantic games G(ϕ, M) of imperfect information on a model M , between
two teams of players, the team of Verifiers V and the team of Falsifiers F .2 The
games have imperfect information because the slashes indicate that the values
chosen for the elements in W on the right-hand side of the slash are not visible
to the player moving at the position signalled by the left-hand side of the slash.

The legitimate moves are determined by the following three game rules:

If ϕ = (
∧

jn
/W ) (ψ)jn (resp. ϕ = (

∨
jn

/W ) (ψ)jn), then V (resp. F )
chooses jn ∈ {l, r}, and depending on this choice, the game continues either as
G((ψ)l, M) or as G((ψ)r, M).

If ϕ = (∀x/W )ψ (resp. ϕ = (∃x/W )ψ), then V (resp. F ) chooses a from
the domain |M | of M , and the game continues as G(ψ[x/a], M).3

If ϕ = ∼ψ, then the current V becomes F and the current F becomes V ,
and the game continues as G(ψ, M).

For ψ atomic Rx1 . . . xn, if M |= Rx1 . . . xn in a given interpretation, then
the current V wins, and if M �|= Rx1 . . . xn in a given interpretation, then the
current F wins.

1The infix connectives of L may be rewritten in the prefix notation in terms of restricted quantifiers with
indices correlated with subformulas of ϕ.
2The reference to teams concerns the implementation of semantic games for cases in which there may be
imperfect recall, in other words players forget their own choices or information (Pietarinen, 2001b).
3Notation [x/a] means instantiating the value a for x.
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Let Ij be a partition of non-terminal histories h ∈ H \ Z of the extensive-
form representation of G(ϕ, M).4 A strategy sj for a player j ∈ {V, F} is a
function sj : I → |M | ∪ {l, r} that specifies a choice from the set of actions for
any information set I ∈ Ij in which j is to make a decision. Actions are objects
from the domain or from the set of two designated individuals. The terminal
histories h′ ∈ Z are labelled with the atomic formulas and are associated with
payoffs uj : Z → {1,−1}.

The extensive-form structure of semantic games is general enough to cap-
ture all independence and dependence patterns in if logic, even the mutual
dependencies.5

Truth and falsity are defined as the existence of a winning strategy for the
appropriate player. For |M | infinite and assuming the Axiom of Choice, ϕ is
true in M iff there exists a winning strategy for the player who started the game
as V , and ϕ is false in M iff there exists a winning strategy for the player who
started the game as F . The solution concept of the winning strategy is a vector
of Skolem functions.

I will assume a basic familiarity with if logic and the associated semantic
games. In the next section, I make a few observations concerning if logic.6

16.3 Independence-Friendly logic, imperfect information
and partiality

if logic aims at disposing of any unanalysed scope conventions. Its expres-
sions may be seen as forming networks or dependency graphs that channel
semantic information in ways not regimented prior to their interpretation. The
interpretation is in terms of games, which assign semantic attributes to the ex-
pressions while preserving the bindings and references between the values for
the variables.

Aside from if first-order logic, there are other if logics. Slashing is a
platform-independent method of relaxing the semantically linear dependency
relations between logical expressions. Beyond partially-ordered quantifiers
(Henkin quantifiers), this may involve non-transitive and cyclic dependencies.
Since non-linearity is operationalised via games, if logic is likely to arise when-
ever a coherent game-theoretic interpretation is arranged for expressions of a
given logic.

4For more details, cf. Pietarinen, 2001c, 2004a, Sandu, and Pietarinen, 2001, 2003.
5Alpern, 1991 and Selten & Wooders, 2001 have studied cycles in extensive games. Hintikka, 2002 provides
motivation for having symmetric dependence relations between quantifiers.
6Studies on if logic include: Bonnay, 2004, Hintikka, 1996, 2002, Hintikka & Sandu, 1989, 2004, Janssen,
2002, Pietarinen, 2004a, Rebuschi, 2004 and Väänänen, 2002.
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if versions exist for sentential, modal and epistemic logics.7 Moreover, if

logic appears useful for common and distributed knowledge (Pietarinen, 2002),
polyadic and generalised quantifiers, bounded quantification, and many-sorted
logics. For instance, bounded if quantification is likely to arise from standard
translations of certain if modal logics to the background language that is the if

counterpart of a suitable bounded fragment of first-order logic.
Non-logical (descriptive) constant may also enjoy independence. But how to

interpret such independence? What does it mean that a constant c is independent
of a variable x? This is derivative of the question of what the game rules for
non-logical constants are. Such rules would pertain to the interpretation of
language. They state that, when an atomic formula ψ of an LIF-sentence ϕ is
reached in G(ϕ, M), a low-level atomic game GAtom(ψ, M) is evoked. This
low-level rule is now simply that whenever a constant in encountered in ψ, a
value is assigned to it.

As soon as we have such rules at our disposal, further things may be attained
besides informational independence. For instance, low-level atomic games
enable us to reverse the usual winning conventions:

If V wins the play of GAtom(ψ, M), then ψ is associated with the payoff
1 in the parental game G(ϕ, M).

If F wins the play of GAtom(ψ, M), then ψ is associated with the payoff
−1 in the parental game G(ϕ, M).

Winning means that the assignment produces the right values as intended by the
predicates and other non-logical constants of the assertion in question. Con-
versely, losing means the unintended values or failure to produce a value at
all.

With such reverse conditions at hand, we can make game-theoretically
meaningful distinctions between partially and totally interpreted languages.
Partial interpretations arise if neither V nor F wins in GAtom(ϕ, M). This
is an objective fact of the indefinite determinations of the universe of dis-
course. The parental games will in that case exhibit payoff structures of
uV (h) = −1, uF (h) = −1, h ∈ Z.

Conversely, complete interpretations lack any such indefiniteness. A conse-
quence of these cases is that the law of excluded middle fails either at the level
of atomic formulas (partial interpretations) or at the level of complex formulas
(complete or partial interpretations).

Moreover, ‘non-standard’ partial logics may now arise, both at the level of
winning conventions and at the level of truth conditions:

7See Sandu & Pietarinen, 2001 and 2003 for sentential and Bradfield, 2000, Hintikka, 1996, Pietarinen,
2001a, 2002, 2003b, 2004c, and Tulenheimo, 2004 for modal formulations.
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Weak-Verifier-Winning: If V wins the play of GAtom(ψ, M), then ψ is not
false. If F wins the play of GAtom(ψ, M), then ψ is false.

Weak-Falsifier-Winning: If V wins the play of GAtom(ψ, M), then ψ is true.
If F wins the play of GAtom(ψ, M), then ψ is not true.

Weak-Verifier-Truth: LIF-sentence ϕ is not false in M iff there exists a win-
ning strategy for the player who started the game as V .

Weak-Falsifier-Truth: LIF-sentence ϕ is not true in M iff there exists a win-
ning strategy for the player who started the game as F .

The players are perhaps best seen here as playing the roles of the Non-Falsifier
and the Non-Verifier. Such non-standard clauses may be applied to sentences
of if as well as of non-if logic.8

16.4 The logic of Payoff Independence

The types of independence in the literature on if logics have concerned in-
formational independence, operationalised by games of imperfect information.
But also another type exists, not confined to informational independence. It
need not refer solely to players’ knowledge, information or ignorance con-
cerning the choices made in the game. Accordingly, it need not refer solely
to possible patterns of dependence and independence between quantifiers or
connectives. For other uncertainties may exist in the game that affect players’
strategic decisions. Most notably, players may lack information concerning the
mathematical structure of the game. In fact, such games are part and parcel of
game theory, known as incomplete information, or Bayesian, games.9

Lacking an off-the-peg term for such a logic, let us call it logic of payoff
independence (pi logic). The reason for referring to payoffs is historical, going
back to Harsanyi, 1967. What Harsanyi showed was that uncertainties concern-
ing the structure of the game, including players’ strategies, may be transformed
into uncertainties concerning the values of the players’ payoff functions.

What kinds of characteristics of incompleteness can we meaningfully have
in logic? Purely game-theoretically, before Harsanyi’s pioneering work it was
thought that incompleteness concerns players’ uncertainty about the rules of the
game and thus they cannot act strictly according to the rules. I do not mean rule
incompleteness. Players must follow the rules that define the legitimate moves,
simply because at each position of the game, the corresponding expression

8In changing the game conventions here one is reminded here of the ‘no-counterexample’ interpretations
proposed by Georg Kreisel in the early 1950s.
9Little hinges on the Bayesian paradigm in the present context, however, since the prior probabilities will
be very simple. Moreover, in the case non-partitional information sets (such as in propositional if logic, cf.
Pietarinen, 2004c), Bayesian reasoning will in any case break down.



248 Ahti-Veikko Pietarinen

in the sentence completely determines what the legitimate moves of a player
are. if logics do not change this fact. Correlated with games of imperfect
information, in if sentences imperfectness affects players’ strategies, not the
degree of familiarity with the game rules.

Some examples of incomplete information are:

Players of a semantic game may lack information about the strategies
used in the game. This may concern adversaries’ strategies as well as
players’ own strategies.

Players may only know the sorts of previous choices made in the game
but not the choices themselves.10

Players may be uncertain about various parameters attached to players,
including uncertainty about

– the number of agents there may be in the opponent team;

– the size of one’s own team.

Players may be uncertain about payoffs.

The uncertainties listed above provide examples of ignorance on the values of
payoffs. They are thus instances of the Harsanyi transformation. The Harsanyi
transformation asserts that games of incomplete information may be thought
of as games of complete but imperfect information with random moves by
Nature hidden from subsequent players. This is implemented so that Nature
chooses types of players but only reveals to the players their own types. Even
the assumption concerning awareness of one’s own types may be relaxed.

I will ignore here the uncertainty about the cardinality of teams and about
sorts. The former becomes relevant if the games of incomplete information —
after the Harsanyi transformation has been performed — exhibit imperfect in-
formation and imperfect recall. Imperfect recall is generated by an unrestricted
application of slashes, in which case uncertainties concerning the organisation
and structure of these associated teams of agents may materialise.11

As to the uncertainty concerning strategies, I will limit the discussion to a
simple incompleteness in which the (non-empty) type space is at most binary,
containing two types corresponding to the two roles that the players may have.
The reason for this limitation is that this type of uncertainty is reflected in a
natural extension of if logic to independent negations.

10This may happen in many-sorted logics. Take ∀X(∃y/X) RXx, for instance, in which V , in choosing
an individual for y is not informed about the set that was chosen for the universally quantified second-order
variable X .
11About the team-theoretic outlook on if logics. See (Pietarinen, 2001b, 2001c and 2004a).
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This extension applies slash indicators to strong (dual) negations.12 It is
assumed that strong negations may occur on either side of the slash.13 In
addition to variables and connectives, a finite sequence of negations may exist
on the right-hand side of the slash. These negations, as indeed all occurrences
of strong negations, are indexed to distinguish between different tokens in a
formula. The case is similar with hidden connective information (cf. Sandu
& Pietarinen, 2001 and 2003). In contrast to hidden connectives, however, in
negation independence we do not have restricted quantification at our disposal
that would accomplish informational independence of binary connectives in
terms of restricted quantifiers over indices.

More precisely, we take the language LPI to consist of if first-order logic
plus instances of the following expressions, in which ϕ is any formula of if

first-order logic:

(∼j /W )ϕ, W ⊆ A = {x1 . . . xn,∼1 · · · ∼m},∼j /∈ W, j ∈ ω.

(Qx/W )ϕ, Q ∈ {∃,∀}, W ⊆ A = {x1 . . . xn,∼1 · · · ∼m}, x /∈ W.

Elements in A are those that are already visited in the clauses syntactically
superordinate to the slashed expressions.

For example, ∼1∼2 (∼3 /{∼1})ϕ ∈ LPI, ∀x∼1 ∀y(∃z/{x,∼1})Rxyz ∈
LPI and ∃x∼1

∧
j1(

∨
j1 /{j1,∼1}) (ψ)j1j2 ∈ LPI.

The indexing schema may be taken to refer to all the distinct morphological
manifestations of negative words (n-words) in natural language.

Negation independence may further be applied to modal contexts, by adding
{ 1

1 . . . m
n } into the set of actions and extending LPI by the applications of

the clause

( i
j/W )ϕ, A ⊆ W, i

j /∈ W.

Likewise for the dual ⋄i
jϕ := ∼n

i
j ∼m ϕ.14 To save space, modalities are

omitted.

12Recall that in if logics, contradictory negation (¬) may only be introduced by using the meta-level rule
M |= ¬ϕ iff M �|= ϕ. The denial of a proposition asserts truth precisely in those circumstances in which
the proposition is false. It lacks the game-theoretic, processual notion of negation (∼), which — unlike
contradictory negation that reverses the polarities of the partitions denoted by the proposition — reverses
the polarities of the processes correlated with the propositions.
13A quantifier or an epistemic operator being independent of negation was suggested already in (Hintikka
& Sandu, 1989). The meaning that was assigned to such expressions was that the order of the quantifier or
the modal operator and the negation is reversed. However, troubles begin for this interpretation as soon as
there is more than one negation of which something is independent, or if the negation does not immediately
precede the slashed expression and there are some intermediate negations or other constituents on which the
slashed expression is dependent. In contrast, we want a general notion of negation independence.
14The subscripts refer to different agents, and so to different classes of accessibility relations, and the
superscripts to different tokens of operators in a sentence. These modalities may be interpreted as pertaining
to knowledge, belief, time, and so on. The associated semantic games leave some latitude as to what the
exact meaning of the independence with respect to modalities is (cf. Pietarinen, 2001a, 2003b and 2004c).
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The semantics for LPI is through games of imperfect and incomplete in-
formation. However, by the applications of the Harsanyi transformation, the
semantic games reduce to those of complete but imperfect information, with
hidden chance moves. We let the indices k, l range over a two-element set
T = {v, f}. At h, h′ ∈ Z, the payoffs uk

V (h) and ul
F (h′) for V k and F l will

depend not only on strategies sk
V and sl

F but also on the types of players.
Also, let R be the role function R : Φ × H → {↑, ↓} from a set of LPI-

formulas Φ and a set of histories H \Z of the associated extensive game to the
set of two values. The role function is merely a flip-flop register that changes
its state every time a negation is encountered in a sentence.

The semantic games G(ϕ, M) for LPI-sentences are like those of imperfect
information but interspersed with a type space T and three players instead of
two. The third player, Nature, is, effectively, a probability generator. Let ϕ be
an LPI-formula. The set of game rules are adjoined with the following three
rules:

If ϕ = (¬j/W )ψ and R(ϕ, h) = ↑, then:⎧
⎪⎪⎨

⎪⎪⎩

If for any i for which ∼i /∈ W, then R(ψ, h ⌢ ψ) = ↓ .
The game continues as G(ψ, M);
Else: Nature chooses from T = {v, f}.
The game continues as G(ϕ′, M), ϕ′ = (∼j /W \ {∼i})ψ.

If ϕ = (Qx/W )ψ, Q ∈ {∃,∀}, then:⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

If for any i for which ∼i /∈ W, then
the game continues as G((Qx/W )ψ, M);
Else: Nature chooses from T = {v, f}, and
the game continues as G(ϕ′, M), ϕ′ = (Qx/W \ {∼i})ψ.
Later choices for Qx are independent of Nature’s moves.

If ϕ = (Qjn/W )ψ, Q ∈ {
∨

,
∧
}, then:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

If for any i for which ∼i /∈ W, then
the game continues as G((Qjn/W )(ψ)jn , M);
Else: Nature chooses from T = {v, f}, and
the game continues as G(ϕ′, M), ϕ′ = (Qjn/W \ {∼i}) (ψ)jn .
Later choices for Qjn are independent of Nature’s moves.

The winning conventions are as before. The truth and the falsity of complex
formulas ϕ of LPI are now defined somewhat differently, however. By f and
v-branches we mean those subgames G′ of G the roots of which correlate with
Nature’s choices of the types f and v, respectively.

The formula ϕ is true in M iff in the subgame G′ of G(ϕ, M) that has no
f -branches, there exists a strategy profile S1 of pure optimal strategies
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{sk
1, s

1
2 . . . sm

2 } for the player who started the game G(ϕ, M) as playing
the role of V , and Nature chooses her type to be v.15

The formula ϕ is false in M iff in the subgame G′ of G(ϕ, M) that has
no v-branches, there exists a strategy profile S2 of pure optimal strategies
{s1

2 . . . sk
2, s

l
1} for the player who started the game G(ϕ, M) as playing

the role of F , and Nature chooses his type to be f .

Nature’s choices precede players’ assessment of expected values of payoffs and
the selection of optimal strategies. Because chance moves are concealed, and
unless Nature decides to choose the right types for the players, there is not
much a player can do to enforce a win, even if optimal strategies would exist.
The aggregate of optimal strategies plus Nature’s random choices comprise a
winning strategy that agrees with the truth and falsity of LPI-formulas in M .

It follows that given such chance moves, the law of excluded middle fails
even if there were no slashes in an LPI-formula ϕ. This holds irrespectively of
whether the underlying language is completely or partially interpreted.

By choosing types, Nature’s moves affect the strategy sets of players, their
information partitions, and payoffs. What Nature thus chooses is a state of
the world. The state may denote context, environment, time, mood, collateral
information or the common ground according to which the particular plays of
the game are to proceed. Such choices are not restricted to initial deals.

The law of double negation is valid for indexed negations in slashes to the
right. It suffices to check whether the parity of negations in W is even or odd.
Given the probabilistic nature of the system, the double negation∼1 (∼2 /{∼1})
ϕ reduces to ϕ with equal probability of reducing to ∼1∼2 ϕ. Likewise, the
prima facie contradictory formulas such as ∼1ϕ∧ ∼2(∼3/{∼1})ϕ are associ-
ated with a conditional probability distribution determined by Nature.

The type, or the state of the world, carries information about the values of
the payoff functions. Despite chance moves marking decisions between two
options, the notion of a type is not the same thing as the notion of a role of the
player. In general, we may think of roles consisting of finitely many types.

In extensive-form semantic games, four types of information may be dis-
cerned (Rasmusen, 1989).

1 Certain information: Nature does not move elsewhere than at the root of
the game. Otherwise the game is one of uncertain information.

2 Complete information: Nature does not move first, or her initial move
is observed by every player. Otherwise the game is one of incomplete
information.

15Subgames are defined, standardly, as subtrees of the given finite extensive-form tree.



252 Ahti-Veikko Pietarinen

3 Perfect information: information sets of both players are singletons. Oth-
erwise the game is one of imperfect information.

4 Symmetric information: both players get the same information in the
game. Otherwise the game is one of asymmetric information.

Certainty thus means initial, unhidden chance moves by Nature.
Examples are provided by the following LPI-formulas:

φ := ∼1 (∼2 /{∼1})ϕ (16.1)

φ := ∼1(∼2 /{∼1})
∨

jn

(ϕ)jn (16.2)

φ := ∼1∀x(∃y/{∼1})ϕ. (16.3)

The game G(φ, M) correlated with (16.1) is of perfect, complete but uncertain
information. G(φ, M) correlated with (16.2) is of imperfect, incomplete and
uncertain information. G(φ, M) correlated with (16.3) is likewise of imperfect,
incomplete and uncertain information. The third game shows the utility of the
role function R: the player in {V, F}, when choosing for the existentially
quantified variable y, may not possess the information that she was the Verifier
who in fact chose the value for the universally quantified variable x; however,
she might infer that she must have been located within the scope of an odd
number of unslashed negations.

On the other hand, all extensive semantic games that are not undetermined
and not correlated with formulas with mutual dependencies have asymmetric
information.

For instance, the sentence (16.1) reduces to ϕ with a chance move by Nature.
Likewise, (16.2) reduces to

∨
jn

(ϕ)jn with a chance move. The sundry effect
such reductions have is that they change the game of uncertain information into
one of certain information. Other properties of the information structure are
preserved.

16.5 Applications and amplifications

Let me suggest a few consequences of having incomplete information in
logic.

First, given ignorance concerning payoffs, comparisons of actions under un-
certainty vs. actions under risk become possible, since the rival player, although
optimal maximiser, can conceal the costs that his or her moves may incur.

In conversational settings, for instance in those provided by game-theoretic
formulations of Grice’s maxims (Hintikka, 1986, Parikh, 2001), certain moves
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are costly so as to be charged against the payoffs of the player. But if these
costs were concealed, strategic advantages to decision makers are inevitable.

Third, many heterogeneous and iconic systems of logic, including Peirce’s
existential graphs (Pietarinen, 2003a and 2004b), provide analogues to the
partially-overlapping scopes of negations of LPI in terms of non-partitional
graphs, in which some of the cuts (the closed lines of separation representing
negations) may overlap. In other words, given two cuts c1 and c2, the affirma-
tive area lies within the double cut area c1 ∩ c2, whereas the negative area is in
their union c1 ∪ c2.

Permitting overlaps is not as radical as it may seem. In semantic networks
and conceptual graphs related to existential graphs, partitioned networks have
provided some insight into knowledge representation (Hendrix, 1979). Similar
idea can be extended to non-partitioned cases. Furthermore, following the
recognition of the limitations of standard information structure of extensive
games, a growing body of research is emerging on non-partitioned structures
in imperfect-information games.16

In strict relation to the aforementioned point on heterogeneous systems, the
formulas of LPI are, indeed, more like semantic nets than syntactic construc-
tions, with the dependency relations given by directed graphs.

Linguistically, such nets may depict collections of semantic constraints for
possible interpretations of a sentence. They are thus connected with underdeter-
minacy of scope relations. The perspective of networks as semantic constraints
is also applicable to theories of discourse interpretation.

There is plenty of linguistic motivation for negation independence. Among
them is negation transportation (neg-transportation) in belief sentences (Sandu,
1993). neg-transportation entails expressions in which belief operator is inde-
pendent of negation. For instance, given a supply of modal belief operators Bi,
negation independence distinguishes not believing a proposition and believing
a negation of it:

John does not believe that ψ: BJohn∼j ψ.

John believes that not ψ: BJohn(∼j /BJohn)ψ.

For the negation has to be the same in all scenarios compatible with what John
believes.

Moreover, pi logic provides the logical counterpart to the distinction between
languages that have double negations (such as English) and languages that have
negative concord (such as most Romance languages). Negative concord means
that multiple occurrences of morphologically negative items compress into a
single negative expression.

16See e.g. Bacharach, 1985, Geanakoplos, 1989 and Morris, 1994.



254 Ahti-Veikko Pietarinen

To come clean on the history of intellectual ideas, this phenomenon was de-
scribed by Charles S. Peirce in 1905 as the distinction between logical languages
and quantitative languages:

There are some languages in which two negatives make an affirmative. Those are the logical
languages. [...] In other languages, probably the majority, a double negative remains a
negative. These are quantitative languages. We should expect the people who speak them
to be more humane and more highly philosophical. The quantitative view of negation
. . . does not really involve any bad reasoning (Peirce, 1967, manuscript 283: 120–1, The
Basis of Pragmaticism).

In a similar vein, Peirce noted in 1896: “Were ordinary speech of any authority
as to the forms of logic, in the overwhelming majority of human tongues two
negations intensify one another” (Peirce, 1931).

The subsequently established idea of drawing this division was in terms of
categorising the n-words of such languages. Alternatively, the basic division
has been drawn between single and multiple concord (Forget, et al., 1998).

Even intralingually, single concord languages such as English are not devoid
of negation independence. A case in point is ellipsis. In (16.4), the range of
negation appears to be the left conjunct ‘start crying’ only (the conjunction is
resultative):

I hope that the baby doesn’t start crying and the neighbours wake
up.

(16.4)

However, the game-theoretic interpretation of (16.4) is such that, if the an-
tecedent conjunct contains a negation, it is interpreted as ordinary static con-
junction, in other word F makes a move. An unmarked reading of this sentence
nevertheless is that the range of negation extends over the whole of conjunc-
tion, in other words also over the right conjunct the neighbours wake up. This
interpretation is produced by another, tacit token of verbal negation of the same
type in the latter conjunct, which is independent of the conjunction. Such a tacit
token is needed, because the first occurrence of negation negates the assertion
baby starts crying and as such has nothing to do with negating neighbours wake
up. This independent negation is omitted in (16.4) with resultative and, the lat-
ter conjunct of which being an elliptical or truncated subclausal expression of
the sentence (16.5):

∃x∃y((Bx ∧1 Ny) → (∼2 Cx ∧3 (∼3/∧3)Wy)) (16.5)

(In representing (16.4) by (16.5), the initial indexical and the volitional context
as well as the plural are omitted for simplicity, and the infix notation is used.
The abbreviations are self-explanatory.)

Similarly, let us compare (16.6) and (16.7):

He didn’t know that anything had happened and neither did she. (16.6)
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*He knew that nothing had happened and neither did she. (16.7)

How do we explain the difference that amounts to the latter being ill-formed?
My solution is that the same neither-tag which functions as a truncated reproduc-
tion of the antecedent (dynamic) conjunction in (16.7) yields an ungrammatical
sentence if the downwards-transported negation is independent of the initial
epistemic attitude. But if so, then — assuming that the same transportation
affects the right conjunct — there will inevitably be a difference in meaning
between the two neither-tags, namely with (16.6) and (16.7). Accordingly, we
represent (16.6) and (16.7) by (16.8) and (16.9), respectively:

Kh∀x ∼1Hx ∧ Ks∀y ∼2Hy (16.8)

Kh∀x(∼1/Kh)Hx ∧ Ks∀y ∼2Hy. (16.9)

We need no epistemic operators informationally independent of negation.
What we need is a negation that goes together with the universal quantifier,
viz. captures the negative expression nothing, and is also payoff independent
of the epistemic operator. If this independent expression is copied to the an-
tecedent neither-tag in (16.9), it remains dependent on the universal quantifier.
In contrast, in (16.8) the two occurrences of negation are independent both of
epistemic operators and of universally quantified variables.

In the semantic games for formulas of LPI (restricted to negation indepen-
dence and duplex type spaces), the players are uncertain about which of the
two possible subgames are being brought out by Nature. The distribution is
furthermore assumed to be fair, and there is an equal chance of playing either
of these games. This is reflected in the truth-conditions so that, in addition to
the existence of an optimal strategy and the expected values of payoffs, Nature
has to ‘side with’ the player in order for a game to verify (i.e., tagging Truth
to the sentence) or falsify (tagging Falsity to it) an LPI-sentence in M . The
sole reason as to why I have restricted the focus to the simplified case of payoff
independence is that it falls naturally from the outfit of if logic via negation
independence.

The assumption of common priors that the players have is also simple: the
prior probabilities are the same for all elements of the type space, in other
words just the probabilities of 0.5. We thus avoid the intricacies of Bayesian
reasoning and Bayesian extensions of equilibrium, apart from what was used
in the definition of the truth and falsity of formulas. Common priors being
common knowledge has for a long been the standard, albeit by no means in-
dispensable or the most realistic assumption in economics, since it looks away
from genuine asymmetric higher-order knowledge and belief concerning type
distributions.
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Moreover, we may even think of there being differently weighed occurrences
of dual negations, contributing to logical rules such as the law of double negation
with varying degrees.

Also notable is the commonality of common priors as common knowledge
with pragmatic theories of language and communication. Following H. Paul
Grice, many have assumed the key element in the creation of the common
ground being common knowledge among speakers and hearers. However, in
my case tables can be turned on Grice and his followers, as communicative sit-
uations may, alternatively, be modelled by applying the Harsanyi doctrine, thus
dispensing with any higher-order knowledge. Such communicative situations
are far from recondite for the sheer reason that there are strategic advantages
in hiding payoffs that are costly. Assuming common priors, Grice’s conversa-
tional maxims would follow from the rationality assumptions involved in the
Harsanyi doctrine. As far as I know, this possibility has not been pursued by
natural-language pragmatists.

Given the probabilistic and context-dependent character of LPI expressions,
a new complication apparently accompanies the advocates of compositional
semantics. Namely: how to extend the semantics that assigns — instead of
sequences of assignments — sets of sequences of assignments to subformulas
of a sentence of if first-order logic, into a compositional semantics for LPI-
formulas? This is a genuine complication, since also whether such sets or co-
sets go with V or with F (and whether such sets for an LPI-sentence ϕ in M are
co-sets for an LPI-sentence ∼ϕ in M ) are parts of imperfect information. This
is no mug’s game, either, since LPI is not a fabrication of yet another artificial
language, but a logical reflection of what goes on in very commonplace classes
of games pursued in game theory.

My approach should not be confounded with that of Blinov, 1994 who also
considered the possibility of introducing chance moves into game-theoretic
semantics. My approach is very different. Blinov does not use type spaces, and
his games are ones of complete information. He also restricts chance moves
to initial positions of the game, which may be interpreted as Nature’s deal of
values for free variables. Blinov considers no incomplete information, as his
goal is to find a game semantic correlate to that of supervaluations (van Fraassen,
1979).

16.6 Conclusions

Precisely the same ideas that have motivated the passage from traditional first-
order logic to its if extension motivate the move from traditional logics to their
payoff-independent extensions, including the recognition of the ambiguous and
restrictive notion of scope (Hintikka, 1997). Negations do have priority orders,
too, which may be studied via payoff independence.
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A key philosophical trait that needs to be re-tracked concerns our pre-
theoretical notion of truth. The received apparatus of semantic games asserts
that the existence of winning strategies agrees with the truth of assertions. But
as noted, winning strategies may be decomposed into several parts, one of the
components being the existence of probabilistic optimal strategies, which has
to go hand in hand with Nature’s random choices of states of the world. But
how can truth or falsity be probabilistic?

One reply could be that the games considered here are no longer strictly se-
mantic, and they codify some of the actual verificatory and falsificatory practices
linked with strategies. I do not think this is right; there is similar probabilistic
flavour already in customary imperfect-information games in terms of mixed
strategies. Surely these strategies are not that different from pure strategies so
as to introduce some entirely novel epistemic elements.

Furthermore, while certain applications of semantic games with chance
moves may suggest dialogic, discourse-theoretic or conversational analogues
to such games, the moderate aim of the present treatise is intended to lie firmly
within the realm of semantics, even though the characteristics of such games
may well take some unexpected turns.
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17.1 Introduction

In this paper I will explore several features of the interrelation between logic
and games, as they are conceived of according to two radically different frames:
Hintikka’s IF first-order logic (IF-FOL) and van Benthem’s Epistemic Action
Logic (EAL). EAL appears to be a young and serious challenger for IF-FOL
since it provides a very sharp account of imperfect-information games. One
of the goals of this paper is to show that both approaches should be taken
for complementary views likely to mutually enrich one another rather than as
irreducibly rival conceptions.

After a short presentation of both logics (Sections 17.2 and 17.3), we will deal
with the question whether IF-FOL is reducible to EAL in some sense, or not.
From an IF-FOL sentence ϕ, a model (or ‘game board’) M and an assignment
s, one can build the evaluation game of ϕ in the given model relative to s:
game(ϕ,M, s). Standard EAL then enables to describe the corresponding
game tree. Does EAL enable a description of every relevant property of the
game? Unfortunately, it is in general not the case.

Fact 1. Standard EAL cannot express that there is a uniform winning strategy
for the verifier in game(ϕ,M, s).

An example is provided where standard EAL can express that there is a
winning strategy at the beginning of the game, but cannot define that there

∗I am greatly indebted to Johan van Benthem’s critical comments and constructive ideas, without which this
paper could not have been written down. I also wish to thank Tero Tulenheimo for his very useful comments.
All errors remain mine, though.
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is no uniform winning strategy. In the game-theoretical frame, this is an im-
portant fact: the existence of a uniform winning strategy for the verifier in
game(ϕ,M, s) indeed constitutes the truth-condition for ϕ.

Using Hintikka’s idea that IF-FOL has a truth definition inside IF, but not
inside standard FOL, I will propose to translate it to EAL and to consider an IF
extension of EAL (Section 17.4). In this new logic one can assert that there is
a uniform winning strategy for the verifier in game(ϕ, M, s). Let’s denote by
uws(game(ϕ, M, s)) this formula. What is expected is that uws(game(ϕ, M, s))
is true at the root of game(ϕ, M, s) iff ϕ is true at M, s:

game(ϕ, M, s), root � uws(game(ϕ, M, s)) ⇔ M, s � ϕ (17.1)

Of course, there is no standard way to evaluate IF-EAL formulas but there
is a natural resort to games for IF languages in general. I will thus propose to
use new evaluation games. Now there is an interesting fact about the evaluation
game of uws(game(ϕ, M, s)):

Fact 2. At the root of G = game(ϕ,M, s), the evaluation game of uws(G) is
isomorphic to the original game G:

game(uws(G), G, root) ∼= G. (17.2)

Were both games only bisimilar, the conclusion to be drawn would have been
that they (their roots) would share the same standard EAL formulas; as they
are isomorphic, they also share IF-EAL formulas. As a consequence, uws(G)
is true at the roots of both games, not only of the original one G; uws(G) is thus
true at the root of its own evaluation game:

Fact 3. G = game(ϕ,M, s) is enough – i.e. in order to see whether the
verifier has a uniform winning strategy in game(uws(G), G, root), no more
‘meta game’ is needed.

Hence IF-EAL can put an end to some fearsome infinite regression between
IF and EAL. This is just the translation of Hintikka’s idea that truth for an IF
language can be defined within the very same language.

Besides this result, a few issues connected to IF-EAL will be discussed in
Section 17.5. Thanks to IF-EAL we will obtain a kind of ‘equivalence’ between
an IF-FOL sentence ϕ and a corresponding IF-FOEL (IF first-order epistemic
logic) formula, egof(ϕ, M, s), stating that in the evaluation game game(ϕ, M, s)
the verifier knows which strategy is a winning strategy for herself. If one takes
games and players at face value, this equivalence appears to be a very natural one
since it corresponds to the truth-definition for IF formulas, viz. the existence
of a uniform winning strategy for the verifier, formulated in the frame of EAL.
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17.2 IF First-Order Logic in a Nutshell

IF First-Order Logic (IF-FOL) was created by Hintikka and developed by
Hintikka and Sandu in the 1990s as an extension of standard first-order logic
(FOL). It is a quite natural extension when connected to Game-Theoretical Se-
mantics (GTS). According to GTS, each FOL-formula ϕ is interpreted relatively
to some model M through a specific game, game(ϕ, M), played between two
abstract players, the initial verifier and the initial falsifier, s.t. the first player
(resp. the second one) has a uniform winning strategy iff the formula is true
(resp. false) in M. (A more fine-grained definition would add an assignment s
and consider game(ϕ, M, s), but it is not essential here.) Such evaluation games
are played according to the following rules:

(R.At). If A is a true atomic sentence (or identity), the verifier wins
game(A, M) and the falsifier loses it. If A is a false atomic sentence (or
identity), vice versa.

(R.∨). In game(ϕ1∨ϕ2, M) the verifier picks out an index i ∈ {1, 2}.
The rest of the game is as in game(ϕi, M).

(R.∧). game(ϕ1∧ϕ2, M) is likewise, except that the choice is made by
the falsifier.

(R.∃). game((∃x) ϕ[x], M) begins with the choice by the verifier of a
member of do(M) and of a name b; the rest of the game is as in
game(ϕ[b], M).

(R.∀). game((∀x) ϕ[x], M) is likewise, except that the falsifier makes the
choice.

(R.∼). game(∼ϕ, M) is like game(ϕ, M), except that the roles of the
two players (as defined by these rules) are interchanged.

Games corresponding to standard FOL formulas are of course determined,
so that the principle of excluded middle holds. Moreover, these are perfect-
information games: both players know or remember what all the previous
moves of the play are. The “natural extension” of FOL consists in considering
imperfect-information games, i.e. games where the players lack some infor-
mation about the actual play. Hintikka suggested considering the case where
the initial verifier has to make (some of) her moves (i.e. according to (R.∨)
or (R.∃)) while ignoring some prior moves of her opponent. Such informa-
tionally independent moves in the semantic interpretation are expressed by the
slash-notation at the level of the language. For instance, while playing the game
associated with ∀x (∃y/∀x) ϕ[x, y], the initial verifier will have to choose a value
for y independently from that (chosen by the falsifier) of x. Similarly, in the
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game correlated to ∀x (ϕ1 (∨/∀x) ϕ2), the verifier will choose a disjunct ϕi not
knowing the value of x.

The introduction of the slash-notation at the syntactic level leads to a new
logic, IF-FOL, which enables to tackle new patterns of mutual (in)dependence
between quantifiers. A paradigmatic example is provided by the Henkin or
branching quantifiers, such as:

∀x∃y
∀z∃uϕ[x, y, z, u] (17.3)

Into IF-FOL this formula is rendered e.g. by ∀x∃y∀z(∃u/∀x)ϕ[x, y, z, u],
whereas it is not expressible in standard FOL. The new patterns can be made
visible in the Skolem normal forms of first-order formulas, where existential
quantifiers are replaced by function symbols whose variables are taken among
the preceding universally quantified ones: an existential quantifier independent
from some universal quantifiers will thus be replaced by a function without
the corresponding variable. For example, whereas the Skolem normal form of
∀x∃y∀z∃uϕ[x, y, z, u], (where ϕ is quantifier-free) will be ∀x ∀z ϕ[x, f(x), z,
g(x, z)], that of the IF formula ∀x ∃y ∀z (∃u/∀x) ϕ[x, y, z, u] will be ∀x ∀z
ϕ[x, f(x), z, h(z)], i.e. the function replacing the independent quantifier is made
independent from x.

Skolem functions and their analogues for disjunctions play a special role in
IF-FOL, since they are natural candidates to encode the initial verifier’s winning
strategies. Now the GTS truth-conditions of IF or standard first-order formulas
are straightforwardly expressible using Skolem normal forms by prefixing them
with second-order existential quantifiers of the Skolem (or strategy) functions.
For instance, the IF formula ∀x ∃y ∀z (∃u/∀x) ϕ[x, y, z, u] is GTS-true in some
model M iff there is a winning strategy for the initial verifier in the correlated
game, which is expressed by the second-order and in fact Σ1

1 sentence: ∃f ∃h
∀x ∀z ϕ[x, f(x), z, h(z)].

Let’s add a few comments. Besides what can be called the model-denotation
of a FOL formula ϕ, (i.e. its standard model-theoretic semantic value: the set of
models where ϕ is true), Hintikka’s semantics thus provides a more fine-grained
denotation, the game-denotation of ϕ which is the set of games associated
with ϕ where the initial verifier has a uniform winning strategy. The latter
notion is more fine-grained than the former one because two logically equivalent
formulas will lead to two different classes of games. Furthermore, both kinds
of denotations can be restrictively defined relative to a given model M: the
model-denotation is thus a set of denotations, whereas the game-denotation is
a restricted set of games.

To put it in a reversed perspective: given a model M, true FOL formulas
describe it in the usual way but can hardly be said to ‘describe’ their evaluation
games. However, the second-order formula uws(game(ϕ, M, s)), which states
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that there is a uniform winning strategy for the verifier in game(ϕ, M, s), can
be said to describe this game. The distinction between the two meanings of
‘denotation’ is very clear for standard FOL formulas. But in IF-FOL, the
situation appears to be different. Indeed, IF-FOL is an extension of standard
FOL which exactly coincides with the Σ1

1 fragment of second-order logic. As
a consequence, game-theoretical truth-conditions uws(game(ϕ, M, s)) of first-
order sentences ϕ can be translated into IF-FOL, and in particular IF formulas
describe their own (GTS) truth-conditions. It means that if ϕ is IF, it is identical
with uws(game(ϕ, M, s)).

An IF-FOL formula ϕ can thus be considered for itself – with two denota-
tions – or as a (second-order) assertion about its game-denotation. It does not
mean that model- and game-denotations of IF formulas coincide, for model-
denotations are classes of usual models whereas game-denotations are classes
of games. However, relatively to a model M an IF formula ϕ is simultane-
ously an assertion about M (via its model-denotation) and an assertion about
the class of games game(ϕ,M, s). Of course, this combination is not the case
for standard FOL formulas. (I will go back to this reflexive aspect of IF-FOL
in Section 17.5 below.)

17.3 Epistemic Action Logic in a Nutshell

Van Benthem’s EAL is a competing frame to deal with imperfect-informa-
tion games. More precisely: Whereas standard (i.e. game-theoretical) semantic
interpretation associates imperfect-information games to IF-formulas, EAL is
a dynamic epistemic language specially designed to describe the properties of
those games. In fact, the starting point is different and the whole perspective
is reversed: IF-FOL uses (evaluation) games as good tools for semantic in-
terpretation whilst EAL considers games for themselves and aims to provide
interesting insights on their properties.

Syntax. Like Propositional Dynamic Logic, EAL is a dual language made
of ‘formulas’ and ‘actions’ with mutual combination. The vocabulary of EAL
will partly depend on the model on which the games described by the language
are played. Hence relatively to some model M of domain do(M), formulas and
actions can have the following syntactic forms:

Atoms: At = {winV, turnV, winF, turnF}
(the verifier V is winning, it is the verifier’s turn, and the same for the
falsifier F)

Basic actions: B = {x := a, x := b, . . . , y := a, y := b, . . . , L, R}
(object picking – where a, b. . . are non-logical individual constants
designating elements of do(M) –, going left, going right)
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Actions: A ::= B | A∪A | A ; A
(basic actions, choice, composition1)

Wffs: F ::= At | ⊥ | ¬F | F ∨ F | 〈A〉 F | Ki F
(atoms, contradiction, negation, disjunction, action modality, epistemic
modality)

Let’s add a few comments:

π1∪π2 is the (complex and) non-deterministic action consisting of the
execution of π1 or of π2.

π1 ; π2 is the action consisting of the execution of π1, then of π2.

Ki ϕ should be read as “i knows that ϕ”, where i ∈ {V, F}.

〈π〉ϕ should be read as “some execution of π from the current node leads
to a node where ϕ is true.”

We can define its dual, [π]ϕ := ¬〈π〉¬ϕ, and read it as “every execution
of π from the current node leads to a node where ϕ is true.”

There are as many object-picking basic actions in B as elements in the
domain do(M); consequently, when the model is infinite, so is the set of
(basic) modalities.

Models. Games in extensive form provide (regular) Kripke models for EAL:

G = (W, {Rπ}π∈A, {∼V, ∼F},V)

where: W is a set of states (nodes); Rπ is the binary accessibility relation encod-
ing the transition for action of type π (with Rπ1∪π2 = Rπ1∪ Rπ2 and Rπ1;π2 =
Rπ1◦ Rπ2); ∼V and ∼F are equivalence ‘uncertainty’ relations encoding the
information sets for each player; V is a valuation function for the atoms.

Semantics. Truth of formulas and successful executions of actions must be
defined simultaneously. The truth of an EAL-formula ϕ at a node s of a game
G is denoted by: G, s � ϕ. The fact that a successful execution of the action π
in a game G corresponds to a transition from s to t is denoted by:

G, s, t � π

1Kleene iteration ‘π*’, and tests for formulas ‘(ϕ)?’ are other kinds of actions. (Adding the ‘demonic’
duality-operation ‘πd’ would yield a kind of Game Logic, see Pauly and Parikh 2003.) Here I consider a
simplified version of EAL without these operations, which is sufficient for the purpose of this paper.
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Formulas:

G, s 	 ⊥
G, s � p iff s ∈V(p) for p ∈ At
G, s � ¬ϕ iff G, s 	 ϕ
G, s � ϕ1 ∨ ϕ2 iff G, s � ϕ1 or G, s � ϕ2

G, s � 〈π〉ϕ iff there exists a node t s.t. G, s, t � π
and G, t � ϕ

G, s � Kiϕ iff G, t � ϕ for all node t s.t. s ∼i t,
where i ∈ {V,F}.

Actions:

G, s, t � π iff (s, t) ∈ Rπ

G, s, t � π1 ∪ π2 iff G, s, t � π1 or G, s, t � π2

G, s, t � π1; π2 iff there exists a node u s.t. G, s, u � π1

and G, u, t � π2

The following equivalences are obtained in a straightforward manner:

〈π1 ∪ π2〉ϕ ⇔ 〈π1〉ϕ ∨ 〈π2〉ϕ
[π1 ∪ π2] ϕ ⇔ [π1] ϕ ∧ [π2] ϕ

Example 1. Let’s consider the (GTS) evaluation game G of the standard first-
order formula

∀x∃y (x �= y) (17.4)

on a two-element model, in extensive form (see the figure on page 268.)
In this example, one can easily check the following assertion:

G,1 � [x := a ∪ x := b] turnV (17.5)

It means that whatever move is initially made by the falsifier, it will be the
verifier’s turn. Similarly, at Node 2 (i.e. after the choice of a by the falsifier),
the verifier is not ensured to win whatever value she chooses:

G,2 	 [y := a ∪ y := b] winV (17.6)

but she can choose one value and win:

G,2 � 〈y := a ∪ y := b〉winV (17.7)

Moreover, one can express that there is a winning strategy for the verifier:

G,1 � [x := a ∪ x := b]〈y := a ∪ y := b〉winV (17.8)
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This can be generalized to more complex games, with more complex strate-
gies: the existence of a winning strategy is thus expressed with more complex
sequences of action diamonds and boxes.

Example 2. Now, if we introduce games of imperfect information, we can
complete the illustration of EAL in a natural way. Consider the evaluation
game G’ of the IF-sentence:

∀x(∃y/x)(x �= y) (17.9)

The dotted line indicates the ‘information set’ for player V: it relates two
states that are indistinguishable from the verifier’s viewpoint. Information sets
provide natural candidates for the accessibility relation of the epistemic operator
KV.2 As van Benthem explains, one can thus see that at Node 2 the verifier
knows ‘de dicto’ that she has some winning strategy:

G′,2 � KV(〈y := a〉winV ∨ 〈y := b〉winV) (17.10)

because in every epistemic alternative to 2, namely 2 and 3, she has one:

G′,2 � 〈y := a〉winV ∨ 〈y := b〉winV

G′,3 � 〈y := a〉winV ∨ 〈y := b〉winV

(17.11)

2In fact, one has to consider the complete equivalence relation linking nodes undistinguishable for player V
as the required accessibility (or ‘alternativeness’) relation, i.e. loops would have to be added at each node.
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whereas she doesn’t know ‘de re’ which strategy is the winning one:

G′,2 � ¬KV〈y := a〉winV ∧ ¬KV〈y := b〉winV (17.12)

The contrast between the two kinds of knowledge for the verifier can hence
be accounted for within EAL. Should we stop here and consider that one can
get rid of IF languages thanks to this dynamic epistemic logic?

IF-FOL and EAL. As a competing frame, has EAL the same expressive power
as IF-FOL? As such, the question is meaningless since EAL describes local
properties of (evaluation-)games whereas IF-FOL (like standard FOL) describes
usual models. To put it in other words: the model-denotation of EAL formulas
correspond to the game-denotation of (IF-)FOL formulas. Hence lots of asser-
tions about game trees can be made in EAL that have no counterpart in standard
IF-FOL, such as the following:

Basic actions are deterministic (which is valid in EAL):
〈π〉 ϕ → [π] ϕ, for all π ∈ B.

Every turn of the falsifier is followed by one of the verifier:
turnF → [π] turnV, for all π ∈ B.
(or: turnF → [∪d∈dom(M) (x:=d)∪(L∪R)] turnV)

and so forth.

Another reason why EAL should not be directly compared to FOL or IF-FOL
is the fact that EAL depends on a previously chosen model M: basic action
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modalities such as object picking obviously depend on the domain do(M).3

EAL thus corresponds to an already interpreted language.
So it is interesting to compare the two languages not as wholes, but on specific

formulas. I will concentrate on the kind of assertion that play a crucial role in
GTS and IF logic, namely the assertion that there is a uniform winning strategy
for the initial verifier in game(ϕ, M, s). Let’s denote by uws(game(ϕ, M, s))
the corresponding EAL formula, when it exists. For instance, if M is a two-
element model with its domain do(M) = {a, b}, the existence of a uniform
winning strategy for the verifier in game((∃x) x = x, M, s) is defined by:
uws(game((∃x) x = x, M, s)) = 〈x:=a〉 winV.

Unfortunately this easy case does not generalize:

Fact 1. Standard EAL cannot express that there is a uniform winning strategy
for the verifier in game(ϕ,M, s).

It is not definable in EAL but in a modal fixed-point extension of EAL (see van
Benthem 2000a, 2000b). A demonstration of Fact 1 could consist in showing
that for some specific IF-FOL formula ϕ, the class of games game(ϕ,M, s)
where there is a uniform winning strategy for the verifier is not definable in
standard EAL. In the next section, I will only give an illustration of Fact 1

with the example of an IF formula such that the existence of a uniform win-
ning strategy for the verifier in the correlated game is directly definable in an
extension of EAL, but with no obvious counterpart in standard EAL.

17.4 IF modal logics and IF-EAL

In comparison with IF-FOL, EAL appears to give a new, more local and fine-
grained approach of imperfect-information games. On the other hand, IF-FOL
enables to express game-theoretical truth-conditions of FOL formulas, and this
cannot be grasped within EAL (see Fact 1). I will now propose a kind of
compromise: an extension of EAL which preserves the sharp insight of EAL
while increasing its expressive power.

‘Slashing’ some modal language, i.e. considering its IF version, is one
interesting way to extend it. Tulenheimo 2004 is the first systematic work on
this issue and it contains several important results. What I will consider here is
the ‘uniformity interpretation’ of the slash-notation for modal languages.4 This
interpretation is grounded in a game-theoretical semantics for modal logics in
the same manner as IF-FOL is based on GTS for standard FOL.

3The usual quantifiers can then be construed as abbreviations for action modalities (∀x =def

[∪d∈dom(M)x := d]; ∃x =def 〈∪d∈dom(M)x := d〉).
4Tulenheimo 2004 proposes two other interpretations, namely the Backwards-Looking Operations interpre-
tation (BLO) and the Algebraic one (ALG).
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Tulenheimo’s IF modal logic of k modality types (IFML[k]) is an extension of
basic modal logic ML[k] where modal operators are allowed to be independent
from specified other modal operators. In other words, formulas such as the
following are allowed:

[A]1 [A]2 (<C>/[A]2) ϕ, where ϕ is a standard ML[k]-formula

whereas others such as the following, where modalities are independent from
connectives, are not:

(<A>1/∧) ϕ1 ∧ (<B>2/∧) ϕ2

The latter is a formula of another logic developed by the same author, Ex-
tended IF modal logic of k modality types (EIFML[k]).

For the purpose of this paper, I will choose the ‘extended’ mode of slash-
ing modal logic instead of the restricted mode, since it appears to be easier to
handle according to our intuitions about the epistemic operators. However, Tu-
lenheimo demonstrated that IFML[k] is translatable into standard FOL, whereas
EIFML[k] is not – it is second-order. One interesting issue would be to check
whether the existence of a uniform winning strategy for the verifier is defin-
able in the restricted IF extension of EAL (let’s denote it by: IF*-EAL), and
more generally, what about imperfect-information games cannot be said with
IF*-EAL and requires the extended version, IF-EAL.

GTS for (IF-)EAL. EAL is a propositional (multi-)modal language: as such,
it can have a game-theoretical interpretation. For that purpose, one needs
to choose a model before playing. This model is in fact a game. A GTS-
interpretation of an EAL-formula leads thus to the construction of a meta-game,
a game ‘about’ the original game. Let’s recall that a model for EAL is a tuple:

M = (W, {Rπ}π∈A, {∼V, ∼F},V)

where W is a set of states, {Rπ}π∈A the set of accessibility relations correspond-
ing to actions, ∼i is the accessibility (equivalence) relation for the epistemic
operator Ki, and V a valuation function for atomic formulas. (Models for
IF-EAL will be the same.)

Now, we can give natural GTS rules for the (basic) action modalities:

(G.〈π〉). If the game is of the form game(〈π〉ϕ,M, s), then the verifier
picks out, if possible, a state t resulting from the execution of π (i.e.
Rπst); the rest of the game is as in game(ϕ,M, t); if she cannot choose
such a state, she loses and the falsifier wins.

(G.[π]). game([π]ϕ,M, s) is likewise, except that the falsifier makes
the choice.
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(G.KV). If the game is of the form game(KVϕ,M, s), then the falsifier
picks out an epistemic alternative of the current state for the verifier (i.e.
a state t s.t. s ∼V t); the rest of the game is as in game(ϕ,M, t).
(Remark: As it is assumed that the alternativeness relation is reflexive,
the falsifier can always pick out an alternate to the current state.)

We can also add rules for complex action modalities:

G(〈∪〉). game(〈π1 ∪ π2〉ϕ,M, s) starts with the choice of an index i ∈
{1, 2} by the verifier, and the rest of the game is as in game(〈πi〉ϕ,M, s);

G([∪]). game([π1 ∪ π2]ϕ,M, s) is likewise, except that the falsifier
makes the choice;

G(〈;〉). game(〈π1; π2〉ϕ,M, s) is like game(〈π1〉〈π2〉ϕ,M, s).

So we get, for any IF-EAL formula ϕ:

M, s �GTS ϕ ⇔ there is a winning strategy for the verifier in
game(ϕ,M, s).

IF-Epistemic Action Logic. Game-theoretically interpreted, EAL can be ex-
tended to cases of imperfect-information and lead to Independence-Friendly
Epistemic Action Logic (IF-EAL). The motivation for such an extension rests
on the ability of IF epistemic logic to account for the distinction between knowl-
edge de dicto and knowledge de re (knowing-that vs. knowing-what, who,
which . . . in Hintikka’s terminology). As we have already seen, in standard
EAL one can express the knowledge de dicto of the existence of a winning
strategy by means of a propositional disjunction

G′,2 � KV(〈y := a〉winV ∨ 〈y := b〉winV) (17.10)

or by means of some complex action modality involving the union symbol:

G′,2 � KV(〈y := a ∪ y := b〉winV) (17.13)

We can check the extensive game for (17.10) (see next figure):
Then the ignorance de re of the same winning strategy can be accounted for

in IF-EAL with the slash notation, applied either to the disjunction:

G′,2 	 KV(〈y := a〉winV(∨/KV)〈y := b〉winV) (17.14)

or to the union symbol:

G′,2 	 KV(〈y := a(∪/KV)y := b〉winV) (17.15)
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G9, 2    KV(〈y:=a〉 winV ∨ 〈y:=b〉 winV)=−

(As was announced before, these formulas clearly belong to the extended IF
version of EAL.) Both formulas (17.14) and (17.15) mean that the choice of
picking a or picking b is independent of the knowledge of the verifier. (Formula
(17.15) indicates a new kind of complex actions, whose status is not clear at
first glance!). In order to evaluate the IF-EAL sentences using GTS, we need
not introduce new rules: the rules for standard EAL can do the job.
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[2]
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y:=b
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turnV

y :=a y :=ay :=b y :=b

G9, 2    KV (〈y:=a〉 winV (∨/KV) 〈y:=b〉 winV)=−

−

Generally speaking, in order to obtain IF-EAL we have to allow several
patterns of independence between operators – and in fact, lots of them – together
with the correlated formula forms:
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(〈π2〉/[π1]), (〈π〉/KV). . .

(∨/[π]), (∨/KV), (∨/[π],KV)

and lots of new (complex action) modalities:

〈π1 (∪/[π]) π2〉, 〈π1 (∪/KV) π2〉, 〈π1 (∪/[π], KV) π2〉. . .

[π1(∪/[π]) π2], [π1(∪/〈π〉) π2], [π1(∪/KV) π2]. . .

IF-EAL thus seems to provide a good account of different kinds of verifier’s
knowledge through the game process. Now, as our main concern is evaluation
games we have to look at what comes about at the root, that is, at Node 1 of the
initial game.

At the root of game G’, there is no uniform winning strategy for the verifier:
this can be expressed with each of the following equivalent formulas:

G′,1 	GTS [x := a ∪ x := b](〈y := a ∪ y := b〉/[x := a ∪ x := b])winV

G′,1 	GTS [x := a ∪ x := b](〈y := a(∪/[x := a ∪ x := b])y := b〉winV

(17.16)

w :=2

winF winV winV winF

[1]

1

2 3

4 5 6 7

x:=bx:=a

y:=b

y:=by:=a y:=a

turnF

turnV turnV

w :=3

[2] [3]

G9:

EAL-G9

[4] [5] [6] [7]

G9, 1   GTS [x:=a ∪ x:=b] =−

−

(〈y:=a ∪ y:=b〉 / [x:=a ∪ x:=b]) winV)

But in fact, the following formula which states that there is a winning strategy
for the verifier in the corresponding perfect information game G, still holds
in G’:

G′,1 �GTS [x := a ∪ x := b]〈y := a ∪ y := b〉winV (17.17)

Indeed, there is still a winning strategy for the verifier in the imperfect in-
formation game (17.17), but it is not a uniform one (17.16). Or to put it in
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other words: the verifier still has a winning strategy, but it is no more avail-
able to her. The contrast between the EAL formula in (17.17) (“there is a win-
ning strategy”) and the IF-EAL formula in (17.16) (“there is no uniform winning
strategy”) constitutes an interesting illustration of fact 1: no obvious stan-
dard EAL formula appears that would do the job of the IF-EAL formula about
the uniform strategy.

17.5 Game comparison

Isomorphism. One can compare the evaluation game G′ of our original IF-
sentence (17.9):

∀x(∃y/x)(x �= y) (17.9)

in the model M, with the evaluation game EAL-G′ of the assertion of the
existence of some uniform winning strategy for the verifier in game G:

M �GTS ∀x(∃y/x)(x �= y) (17.18)
G′,1 	GTS [x := a ∪ x := b](〈y := a(∪/[x := a ∪ x := b])y := b〉winV

(17.16)

It’s worth noting the following: There is an obvious bisimulation between
G′ and EAL-G′ relating the roots. Consequently: The roots of the games G′

and EAL-G′ verify the same EAL formulas (van Benthem 2000b, 162).
But this result is still limited: the roots of the ‘object-game’ and of the ‘meta-

game’ verify the same standard EAL formulas, and of course this does not mean
that they share every IF-EAL formula. As IF multi-modal logic is strictly more
expressive than the corresponding standard fragment (see Tulenheimo 2004),
the bisimulation relating the roots of the two games is not enough to ensure that
the roots verify the same IF-EAL formulas, especially those stating that there’s
a winning strategy for the verifier in the evaluation of an IF first-order formula.
Therefore, in order to extend the equivalence of some first-order sentence with
its epistemic GTS-oriented form to IF first-order sentences, we need more than
bisimulation.

Fortunately we have here a higher, and in fact the highest degree of similarity
between the two games, namely isomorphism, and this can easily be generalized
to other (IF or standard) first-order sentences ϕ:

Fact 2. At the root of G = game(ϕ,M, s), the evaluation game of uws(G) is
isomorphic to the original game G:

game(uws(G), G, root) ∼= G. (17.2)
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Indeed, let’s consider such a formula ϕ in prenex normal form, and its trans-
formation uws(game(ϕ, M, s)) into a IF-EAL formula, stating that there is a
uniform winning strategy for the verifier in the game associated with ϕ:

(i) Replace the (independent) connectives by quantifiers, e.g.: ∀x (ψ1 (∨/∀x)
ψ2) will be transformed into: ∀x (∃i/∀x) ψ(i), where ψ(i) = ψi .

(ii) ϕ is now of the form Q0x0(Q1x1/W1)(Q2x2/W2). . . (Qnxn/Wn) ψ, where
Qi is a quantifier, Wi the set of quantifiers Qi is independent from (Wi ⊆
{Q0, . . . , Qi−1}), and ψ the matrix. Each quantifier Qixi can be translated
in the following way:

– if it is a universal quantifier (∀ixi), then replace it by the “box”:
[∪i d∈dom(M)(xi := d)],

– if it is an existential one (∃ixi), then replace it by the “diamond”:
〈∪i d∈dom(M)(xi := d)〉.

Such a translation is to be effected also for quantifiers in the sets Wi.

(iii) Replace the matrix ψ by winV.

For instance, from the first-order sentence: ∀0x0(∃1x1/∀0x0)ψ(x0, x1) on
a model with two elements (dom(M) = {a, b}), we will reach the IF-EAL
formula:

[(x0 := a)∪0 (x0 := b)](〈(x1 := a)∪1 (x1 := b)〉/[(x0 := a)∪0 (x0 := b)]) winV (17.19)

According to this transformation, the evaluation game of a first-order sen-
tence ϕ and that of the corresponding formula uws(game(ϕ, M, s)) are obvi-
ously isomorphic: this could be proved by a straightforward induction on the
complexity of (the prefix of) ϕ.

Stop the regression. As the evaluation game of ϕ, game(ϕ,M, s), and its
meta-game (i.e. the evaluation game of uws(game(ϕ,M, s))) are isomorphic,
their roots verify the same IF-EAL formulas. It leads to the following fact:

Fact 3. G = game(ϕ,M, s) is enough – i.e. in order to see whether the
verifier has a uniform winning strategy in game(uws(G), G, root), no more
‘meta game’ is needed.

This explains how to stop the headlong rush apparently threatening the whole
enterprise: While extending EAL (which was designed to escape from IF)
into an IF version, we are not led to build a new language to speak about the
new games. IF-EAL is enough: uws(game(ϕ,M, s)) does not only state
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that there is a winning strategy for the verifier in the evaluation game of ϕ,
uws(game(ϕ,M, s)) also states that there is a winning strategy for the verifier
in its own evaluation game.

17.6 Discussion

Some advantages of IF-EAL. Our IF extension of EAL is not superfluous, as
EAL is expected to account for the winning strategies of the evaluation games
(among other things). Thanks to informational independence, the enriched
version of EAL can account for imperfect information evaluation games in a
straightforward way.

1 IF-EAL enables to formulate the contrast between knowledge de dicto
and ignorance de re in a way which is more natural than standard EAL:
this can be seen with the EAL formula (17.12), that is literally rendered
by: “(At Node 2) the verifier doesn’t know whether choosing a is a
winning strategy, and she doesn’t know whether choosing b is a winning
strategy.” By contrast, formula (17.15) is directly read as: “(At Node
2) the verifier doesn’t know which choice is a winning strategy”. And
the gap between (17.10) and (17.12) – expressing the difference between
knowledge de dicto and knowledge de re – should similarly be compared
to the distinction between (17.10) and (17.14) (or between (17.13) and
(17.15)).

2 As was already mentioned, what formulas (17.16)-(17.17) reveal is that
the non-existence of uniform winning strategy for the verifier in the whole
game is not expressible in a direct way in standard EAL. And we will see
below that the knowledge of the verifier is of no help in such cases.

3 Some IF-EAL formulas cannot be translated into standard EAL formulas.
An example is provided by the following schema:

[ ]1KV[ ]2(〈 〉/KV)ϕ (17.20)

where the diamond is independent from the epistemic operator, but still
dependent from the boxes. One could meet such a schema in the evalu-
ation game of e.g.:

∀x∀y∃z(x + y = z) (17.21)

stating that whatever value is chosen for x by the falsifier, the verifier will
know de re what is her winning strategy – and this is certainly true!

Epistemic statements. Let’s go back to what happens with the epistemic
operator at the root of the games. Relatively to the alternativeness relation (∼V),
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evaluation games of IF first-order sentences start with a reflexive singleton –
because informational independence (namely, independent quantifiers) cannot
occur just at the beginning of a sentence, but only ‘inside’ it.

As a result, we have the following implication and equivalence for any for-
mula of IF-EAL:

G,1 �GTS ϕ ⇒ G,1 �GTS KVϕ (17.22)

G,1 �GTS KVϕ ⇔ G,1 �GTS KV(ϕ/KV) (17.23)

where (ϕ/KV) is the IF-EAL sentence resulting from ϕ by the replacement of
each action diamond (〈π〉/W) by the KV-liberated corresponding one, (〈π〉/W,
KV), and the same for each disjunction (∨/W). Moreover as the alternativeness
relation is reflexive, the knowledge property (KVϕ → ϕ) holds in our frame:
the implication (17.22) actually leads to an equivalence:

G,1 �GTS ϕ ⇔ G,1 �GTS KVϕ (17.24)

and, combined with (17.23), we obtain an interesting equivalence between any
IF-EAL formula and its ‘epistemic’ version:

G,1 �GTS ϕ ⇔ G,1 �GTS KV(ϕ/KV) (17.25)

Hence at the root, the epistemic operator cannot provide any new and inter-
esting description of the game. However we can raise an interesting question
with this result: In what sense can a first-order sentence ϕ be said equivalent
to what I shall call its epistemic game-oriented form, i.e. to the IF epistemic
formula asserting the knowledge de re of a winning strategy by the verifier
in the evaluation-game of the original sentence? Let’s denote by egof(ϕ) the
epistemic game-oriented form of ϕ: egof(ϕ) belongs to IF-FOEL (IF first-order
epistemic logic); it is like KV(ϕ/KV), where (ϕ/KV) is the IF sentence result-
ing from ϕ by the replacement of each existential quantifier (∃ixi/Wi) by the
KV-liberated corresponding one, (∃ixi/Wi, KV). For instance:

egof(∀x∃y(x �= y)) = KV∀x(∃y/KV)(x �= y) (17.26)

We can now compare the respective ‘translations’ of ϕ and egof(ϕ) into
IF-EAL, i.e., uws(game(ϕ, M, s)) and uws(game(egof(ϕ), M, s)) respectively,
stating that there is a uniform winning strategy for the verifier in the game asso-
ciated with ϕ, M, s, and the same with egof(ϕ). That uws(game(egof(ϕ), M, s))
= KV(uws(game(ϕ, M, s))/KV) in IF-EAL is readily verified. Consequently,
and according to (17.25), for every IF first-order formula ϕ (G being isomorphic
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to its evaluation game):

G,1 �GTS uws(game(ϕ,M, s))
⇔

G,1 �GTS uws(game(egof(ϕ),M, s))
(17.27)

This means that there is a uniform winning strategy for the verifier in the
game associated with a specific formula ϕ if and only if there is one in the
game associated with the ‘epistemic game-oriented form’ of ϕ. Now, the right
side of the equivalence, uws(game(egof(ϕ),M, s)) can be read in the fol-
lowing two ways: (i) it can mean that the verifier in game(ϕ,M, s) knows
(de re) which is the winning strategy for herself (this is the reason why it is
equivalent to uws(game(ϕ,M, s))); (ii) it can also be understood as meaning
that there is a winning strategy for the verifier of egof(ϕ) in the evaluation
game game(ϕ,M, s) of ϕ in M (which leads to the intended equivalence). So
(17.27) exactly states that ϕ is GTS-true iff egof(ϕ) is GTS-true: this is the
expected equivalence.

To sum up: any IF first-order formula ϕ is equivalent to a correlated formula
whose meaning is “The verifier (of the evaluation game of ϕ) knows de re which
strategy is a winning strategy for herself”. This reflexive feature of IF logic,
usually claimed in an informal way, can be established within the EAL frame
which – against Hintikka – takes evaluation games and their players’ knowledge
and powers at face value. However, this result is established thanks to the
application of two Hintikkian ideas to EAL: IF extension, and the epistemic
concept of knowing-wh.

Is it Genuine knowledge? The equivalence (17.23) given above implies that
there will be no more distinction between the verifier’s knowledge ‘de re’ of her
(uniform) winning strategy, and her corresponding knowledge ‘de dicto’. This
would threaten the whole construction of our epistemic logic, if it were to hold
in general, but here, of course, it is not the case (as can be seen e.g. at Node
2 in the preceding examples). In fact, this equivalence can be read in a more
‘positive’ way: (17.23) means that the verifier’s knowledge of the existence
of some winning strategy implies her knowledge of that strategy. If the frame
employed here is a suitable one, it means that the verifier in evaluation games
is a ‘perfect knower’ in some sense. This meets the requirement that players of
such games be ideal players. What is more: The equivalence (17.27) between
a sentence and its epistemic game-oriented form strongly reinforces the idea
that the truth of a sentence is a property of the ‘game-board’ rather than of the
game course.

However, we have reached an interesting phenomenon with IF-EAL. The
sentences designed to describe the evaluation game of (IF or standard) first-
order sentences describe their own evaluation games. This reflexive feature
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is in fact independent from any ‘epistemic’ property of the players: what we
needed to arrive at it is only dynamic logic, with no epistemic operator.

17.7 Conclusion

Dealing with imperfect-information games, we are usually faced with two
competing frames: IF-FOL and EAL. After having observed that the two logics
provide complementary views on games, I proposed to consider an extension of
EAL: IF-EAL, based on some game-theoretical semantics for dynamic logic.
Thanks to this new IF multi-modal, dynamic and epistemic language, we can
express for any IF-FOL formula ϕ the existence of a uniform winning strat-
egy for the verifier of some corresponding evaluation game with a formula
uws(game(ϕ, M, s)) which does not belong to standard EAL. In general, dif-
ferent epistemic assertions about the players appear to be more intuitive in the
extended version than in the original one.

Moreover, we showed that uws(game(ϕ, M, s)) constitutes its own truth-
conditions, since it coincides with the assertion of the existence of some win-
ning strategy in its own GTS evaluation game. This is an EAL-correlate of a
well-known ‘reflexive fact’ in IF-FOL, namely that the truth-conditions of a
formula can be formulated in the same language, using the very same formula.
Another correlate of the same equivalence was established in IF-FOEL, ϕ be-
ing equivalent to egof(ϕ), its epistemic game-oriented form. Finally, asserting
a formula and asserting that the initial verifier knows which is the winning
strategy in its evaluation game, are the same assertion.

The important fact about these equivalences which all reflect Hintikka’s idea
that IF languages can define their own truth predicate, is that it can stop the
indefinite regression IF/EAL/IF/EAL. . . Van Benthem indeed created EAL to
escape from IF logic. Taking evaluation games seriously, EAL gives a local
and precise perspective on features of games that were neglected from the
global viewpoint of FOL, IF or not. What is more: EAL reduces informational
independence to dynamic and epistemic features of players of evaluation games.
Then ‘slashing’ EAL seems going back to the prior situation.

However this procedure is not worthless. IF-EAL formulas asserting the
existence of a uniform winning strategy in a game G have the nice property that
their own evaluation game is G. They are simultaneously about G, and evaluated
by G. The hierarchy of games and meta-games thus stops with IF-EAL formulas.
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18.1 Naturalism and holism in the contemporary
discussion between nominalists and realists†

Since the seminal joint paper of Quine and Goodman about nominalism,
publications against object-platonism grew constantly, especially in the United
States. Very different from European anti-platonism, — if mentioned, only
Michael Dummett seems to be known — the guiding desideratum of anti-
platonism is to avoid revisionism in mathematics. Shunning at the same time
constructivism and instrumentalism, one of the current debates in the Founda-
tion of Mathematics is the discussion between nominalists (no quantification
over “abstract” objects) and new realists (structuralists) on the basis of a jointly
supported naturalistic thesis. Hartry Field’s book Science without numbers is
perhaps the most known title, but there are others: Charles Parsons, Charles
Chihara, Geoffrey Hellman, Penelope Maddy, Michael Resnik and Stewart
Shapiro, for example, who analysed semantic, ontic and epistemic questions (if
mathematical truth is independent of the mathematician’s mind or not, if objects
of a given kind exist or if it is only possible that these objects or objects with
their structures exist and how we know their existence, their logical possibility
or the truth of propositions).

According to the naturalists, the foundationalists share a common false pre-
supposition, that is the normative approach of epistemic questions. In fact,

† I would like to thank Manuel Rebuschi for his critics of a draft of this paper.
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formalists, constructivists and object-Platonists failed to found convincingly
mathematical truth on account of purely abstract semantical or empirical crite-
ria totally divorced from the science as practised. The rational reconstruction
program had to be given up with the indeterminacy thesis: there is no clear
synonymy-criterion concerning the relation between the concept to reconstruct
and the means used in reconstruction. It seems also consequent to suspect, with
Quine, not only the absolute distinction of analytic and synthetic, but also the
validity of the alternative “descriptive” or “normative”. Indeed, if on the one
hand, mathematics loses its pure analytical status, the concept of mathematical
progress will deserve attention, because knowledge would be vulnerable to de-
feat by future experience. No statement could be preserved from revision. The
cumulative view of mathematical progress could no longer be supported (cf.
Kitcher 1988, 519). On the other hand, what consequence should one draw from
Quine’s second suspicion? By excluding a normative “philosophy-first” posi-
tion, one has a choice between a “philosophy-in-between” standpoint (“Philos-
ophy and mathematics are intimately interrelated, with neither one dominating
the other” (cf. Shapiro 2000, 15), or the identification of epistemology with
cognitive psychology.

And in fact, Naturalism means different things:
(1a) Every theory of knowledge is an empirical theory of cognition (cf. Bieri

1994, 55). To reduce normative (de iure) questions to descriptive (de facto) ones
or to eliminate the former, leads to a causal explication of knowledge, not very
convincing for mathematics although it may exclude, trivially, epistemological
platonism which postulates a non-causal relation between subjects and abstract
entities.

(1b) The epistemic justification of opinions and statements has its source
in the practice of science. This signifies, as Maddy formulated it, that current
mathematical “practice need not be taken as gospel, but as a starting point
[...] subject to ordinary scientific critique [...] which differs from the ordinary
scientists’ method in perspective not in the evidential standard” (Maddy 1998,
278). To this, moreover, one should add that mathematical practice depends on
norms, influenced themselves from its development which gives the standards
of ontological, epistemological and semantic questions. A similar position was
already supported in the thirties by Jean Cavaillès, but largely ignored by the
scientific community.1

The further discussion of the double naturalistic thesis depends on the ques-
tion if one accepts or not a overall holistic position and its sister, the indispens-
ability thesis:

(2a) Holistic thesis: We cannot separate mathematics (and philosophy) from
the web of belief of scientific knowledge.

1Cf. Cavaillès 1962, where he speaks in this context of a dialectical concatenation of concepts.
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A particular mathematical system is trivially under-determinated relative to
experience. The procedure of abstraction whose results are the first mathemat-
ical theories, might well start with empirical observations and manipulations
of so called concrete entities, but to return to them requires coordinative defi-
nitions so that mathematics, on the one hand, can only be confirmed together
with physical hypotheses. But on the other hand, commode mathematics are
indispensable for science. For this reason one associated holism with an indis-
pensability principle so that mathematics took on a modal character:

(2b) Indispensability thesis: Mathematics is an indispensable part of scien-
tific practice. A mathematical theory is accepted on account of its relation to a
description of the empirical world.

Now, if one is willing to accept some form of thesis 1 and 2, scientific prac-
tice commits science to mathematical objects and truth and it seems clear “that
the standard account of mathematical truth forces us to believe in mathematical
entities” (cf. Field 1989, 53, underlined by myself ), that is to be a realist. Once
accepted that the distinction of abstract and concrete is one of kind and not
of degree, the new realists tried then to avoid the well-known difficulties with
abstract mathematical objects: how should one establish the reference to the
particular abstracta if one takes into account “that some universals cannot be
instantiated if others are, just as the existence of the arbitrary subsets of every
set precludes the universal set” (cf. Resnik 1997, 77)? Since Helmholtz and
Poincaré we are quite familiar with the thesis that relations are the only inter-
subjectively existing objects. With respect to mathematics, this thesis is in the
contemporary discussion reinforced and expressed by structuralism: mathe-
matical objects exist only as positions in structures. The existence of individual
mathematical objects as numbers or sets are then only relative to the existence
of a structure postulated by the structural-realist to exist in its own right.

As Resnik underlines (cf. Resnik 1997, 52), nominalists have then three
options to refute the point of view of realists: They could

(a) show that existence and/or truth can be understood in nominalistic terms;
(b) show that using mathematical formalism in science need not commit one

to mathematical objects and truth;
(c) show that the mathematical formalism is not necessary for doing science.
And in fact, Hellman showed that existence and truth could be understood

in a nominalistic modal structural interpretation and he developed “translation
patterns of mathematical theories into suitable modal theories — capable of
standing independently of set theory—and then [justified] these as equivalent
for mathematical purposes” (Hellman 1989, 8). By interpreting mathemat-
ics in anti-realistic terms, Chihara and Kitcher showed how we can reaffirm
the indispensability thesis and mathematized science without committing our-
selves to mathematical objects (cf. Resnik 1997, 59). In parrying the indis-
pensability thesis, Field combined the strategy of eliminating some branches of
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mathematics from science with showing how to use others (e.g. metamathemat-
ics) without presupposing mathematical objects. In other terms, Field showed
that “mathematics needn’t be true but only conservative” and that “nominalistic
resources are adequate to the statements of good scientific theories” (cf. Field
1989, 128).

18.2 Some difficulties

Without taking sides, we can verify that realists and nominalists are together
confronted with one or the other of the following difficulties, well known in the
literature. Now, there may be for all challenges a single answer. Indeed, in the
next paragraph, I will argue that all of them could be surrounded in the spirit of
a pragmatic approach.

P1 Indispensability thesis
“If our grounds for accepting mathematics are limited to those we have for

accepting our best scientific theories, then we might be justified in accepting
very little mathematics” (cf. Resnik 1998, 233): mathematical revisionism will
be set up in its rights.

P2 Holism
What about the relation between evidence and theory?
(a) There is the following dilemma: suppose our cognitive abilities were the

subject of empirical cognitive science. If evidence then means the sensory event
consisting in a sensory stimuli, how should such a happening be the reason of an
eventual conceptual accommodation? But if experience has itself a conceptual
character, then in order to be meaningful it should be part of semantic holism
(cf. Esfeld 2001, 205).

(b) There is a tension in holism between on the one hand confirmation con-
cerning a culturally shared knowledge, and on the other hand, confirmation
concerning statements held true by individuals (Esfeld 2001, 204).

(c) “A really good reason to consider a theory falsified will be given only if
a better theory is available which explains why the adherents of the old theory
were unsuccessful. In other words, an isolated theory should not be given up”
(cf. Müllhölzer 1995, 204), that is we should pursue holism at a higher level.

P3 Realistic structuralism
Thus what is characterized by the postulate of first-order axiom system is

generally not a determinate structure, but a species of structures. How should
one identify in a unique way a position in a such a species apart from accepting
from the beginning the inconvenience (semantical incompleteness) of a second
order language?

P4 Nominalistic structuralism

1 With respect to modal structuralism Resnik underlines that “it seems
[that] the difference between saying that something might be (or that it is
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consistently describable) and saying that it exists, [...] is reasonably clear
when it comes to possible concreta such as unicorns”, [once the distinc-
tion of abstract and concrete is accepted as a distinction of kind]. But
when it comes to sets or structures like the iterative hierarchy, which can-
not be concretely realized, the difference threatens to be merely verbal”
(cf. Resnik 1997, 77).

2 With respect to predicative foundations from a structuralist standpoint,
the natural-number-type-structure is predicative only if the notion of finite
set of individuals is assumed (cf. Parsons 1992, chap. I).

18.3 Dialogic pragmatics

Under pragmatism I understand an approach in the tradition of Charles
Sanders Peirce, Ferdinand Gonseth, Paul Bernays and Kuno Lorenz: I adopt
above all Lorenz’s insight that “pragmatics has became the modern heir of onto-
logy with semiotics being its counterpart as the heir of epistemology” (cf. Lorenz
1994, 103).

Such a position implies, firstly, that the distinction of concrete and abstract
objects is an unjustified myth; the distinction is only justified to a relative
degree. Every domain of objects must be introduced as a domain of abstract
objects if one will preserve a common access to meaning and the possibility of
identification. The myth of the abstract-concrete distinction and the myth of
the innocent view of a crude fact form a pair.

Secondly, we call “intuitive level” a level where language is used in a non-
reflexive manner. Such a common sense level is the starting-point of a schematic
abstraction procedure. It is its ontological engagement. In fact, Strawson gives
a strong argument against the opinion that there is a common sense theory which
is in disagreement with a scientific theory (cf. Strawson 1988). It goes in the
same direction as Russell’s distinction between knowledge of acquaintance and
knowledge by description without being identical to it: according to Russell,
we do not genuinely know common sense objects like tables and books, because
they are “inferred” in a certain sense from shape and colors with which we are
acquainted. Strawson supported the thesis that the common sense view cannot
be scientific knowledge and, more importantly, that the contrast between com-
mon sense and other knowledge cannot simply be that between scientific and
non-scientific knowledge. The common sense sentences that Wittgenstein con-
siders to be beyond justification are also and for that reason something which
cannot be said to be known: “I should like to say”, he writes in On Certainty,
§ 151, “Moore does not know what he asserts he knows, but it stands fast for
him, as also for me [. . . ]”. Commonsense sentences as 2 + 2 = 4 is a sort of
evidence in a life-situation, in a ‘Lebenswelt’ (Husserl), in a language-game in
the largest sense (Wittgenstein), in a ‘situation intuitive préalable’ (Gonseth)
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and I will call it the object-side for theory-building. But in fact, by means of
the Wittgenstein-Strawson argument we have seen that the very question does
not concern the distinction between the common sense theory (the theory about
geometrical phenomenal pictures and number-theoretic operations) and the sci-
entific theory but concerns the distinction between common sense and scientific
theory. In other words, there is not an elementary or evident first level theory on
figures and numbers, independent from all scientific activity, and which is only
afterwards substantiated and developed by mathematical explanation. Rather,
mathematical explanation already concerns the articulation and the expansion
of the common sense schema. More exactly, mathematical activity concerns not
only activities regarding knowledge by description (this is the realist’s stand-
point) but also activities regarding “knowledge” by acquaintance, called more
adequately by K. Lorenz object-competence, that is, in mathematics we are
trying to get acquainted with further objects. Whereas in a first common sense
perspective the sentence 2 + 2 = 4 could be understood in Quine’s sense as
a holophrastic association in a given situation (what seems impossible on the
same level for, say, 73 + 24 = 97), the same sentence is in the mathematical
retrospective understood word by word. Nevertheless, in the same way as the
work of mathematical abstraction progresses and as the theoretical framework
develops, new intuitive levels with new domains as their ontological engage-
ment emerge. The backward reference to an intuitive language use also has
nothing to do with last foundations; it only signifies that to arise a validity
claim presupposes a practice relative to which the question of validity does not
arise.

Thirdly, one accepts a scientific theory because its resulting consequences are
useful in a given context and well entrenched in Goodman’s sense. What about
the primacy of proof in mathematical knowledge? The context of justification is
pragmatically connected with the logical construction of the genesis because “to
understand” mathematics means: to learn their development. So, if S has a true
belief for p, justified by a formal proof, it does not follow that he understands
p. Justified belief may be equivalent to an abstract proof structure (cf. e.g.
Helman 1992) but not with mathematical knowledge. Genuine mathematical
knowledge is in general not the result proved by means of a series of analytical
deductions.

Or, formulated in other terms, understanding a proof cannot be reduced to
being able to checking a linguistic type, whose tokens may be printed in books
(cf. Kitcher 1984, 36), but requires the awareness of the acquisition of an action
schema. Indeed, when a mathematical proof has been shown to conform to the
explicitly formulated rules or principles of logical inference we usually consider
it valid. This precisely would constitute the problem the logicians are trying
to solve. But there may be something awry with the problem formulated by
the logicians : because what it means to follow correctly the defined rules as,
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for example, for the step-by-step process of substitution which makes up the
atomic elements of proof, is only determined “within the established practices
of working with” the substitution expression (Stenlund 1996, 469). We once
again find ourselves in the tradition of the philosophy of the later Wittgenstein,
where language has lost its role of being something available on the metalevel
with respect to the level of formalism. The awareness of a mastery of a schema
(=the execution of an action in a schematic perspective) is called intuitive and
cannot itself be formalised without committing a petitio principii. Stenlund
remarks rightly that “formalisation presupposes and applies the mathematical
calculus of finite sequences [. . . ] which we do not acquire until we learn
elementary mathematics, [. . . ] because the notion of a finite sequence is not
the same one as the everyday notion of a list of concrete individual signs”
(Stenlund 1996, 476). Suppose we have learned by intuition to follow the rules
of a formalism. This formalism may be considered justified either because
generating interesting problems within formalism or because it is considered to
clarify or to simplify informal reasoning. In the latter case, justification consists
in connecting a presupposed practical familiarity with informal reasoning with
its formal characterisation. We have to ascertain that the formal characterisation
is the translation, in the sense of precision, of the former. The trouble is that,
according to Wittgenstein and Quine, the problem is quite insoluble insofar as
there are simply two systems of rules without criterion to compare them. This
insight constitutes, so to speak, the “conception”-day of general proof theory:
the somewhat misleading metaphysical program of comparing ideal language
with ordinary language in hopes of explaining occult properties of the former
is replaced by the study of different formal languages with respect to their
deductive connections. Then, naturally, there exist proof-theoretic criteria of
comparison, for example, identity of normal form for identity of proofs (Martin-
Löf/Prawitz). Now, you can even give criteria for the passage by formalisation
from a body of mathematics M to a formal theory T. According to Feferman,
for example, every concept, argument and result of M has to be represented by
a concept, proof or theorem of T. But the Non-Standard models show that such
a formalisation of a body of mathematics M goes far beyond what is actually
needed to represent M (difficulty P3) (cf. Feferman 1992, 15). This confirms
Poincaré’s feeling that one has to be skeptical about logical consequences as
a sufficient guide to exhaust the domain of truth in mathematics at least as
complex as elementary arithmetic.

Poincaré holds that the varieties of formal logical theories don’t express
the proof-theoretical structure essential for understanding mathematics (Cf.
Poincaré 1908, 149 (159)). He insists on the non-invariance of mathemati-
cal reasoning with regards to its contents; he promotes, so to speak, a “lo-
cal” conception of mathematical reasoning according to which “a ‘gap’ is no
longer a logical gap but, rather, a gap in mathematical understanding. [. . . ]
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The elimination of gaps thus no longer calls for the exclusion of topic-specific
information in an inference” but for the inclusion of what Detlefsen calls a epis-
temic condenser “to fill what would otherwise be a mathematical gap between
the premises and the conclusion” (Detlefsen 1992, 366, 360). Indeed, what
does it mean exactly to seek for an element of condensation? I have given in
(cf. Heinzmann 1999) an example in topology where deduction enclosed the
non logical switch between different semiotic levels considered in part on the
same level of notation.

According to this line, one should take into account the relation between the
descriptive and the normative mode. In order to avoid the difficulty resulting,
since the time of Aristotle, from the requirement that the “criteria of justified
belief must be formulated on the basis of descriptive or naturalistic terms alone”
(cf. Kim 1997, 34), one should not describe but present the interrelation of
normative and descriptive modes. Mathematical symbols can be read with
respect to different contents. There are iconic diagrams in the Peircian sense.
The semiotic ambiguity involved cannot be checked on the level of notation
but requires the acquisition of a practice. Such procedures do not concern,
to be sure, mathematical reasoning in its totality. Nevertheless they may be
predominant in some fields and constitute then a lack of logical rigour.

Fourth, we accept with Ferdinand Gonseth (and Penelope Maddy) naturalism
in the second sense. In fact, the development in philosophy and mathematics
prove the insufficiency of both, naturalism in the first sense and the variants
of nominalistic positions. The first attaches too important a role to the psy-
chological relations of mental states, the second excludes them in favour of
logical relations between propositions. In confining mathematical activity, on
the one hand, to a causal constitution of mathematical objects in a holistic
framework and, on the other hand, to a description of a formalism of modali-
ties, both approaches neglect the relation between the determination of objects
and the guarantee of statements involving these objects. The feature of the
here defended dialogic pragmatism can be seen in the simultaneity of ob-
ject construction and object description, inserted in a process of socialization.
Its naturalistic characteristic consists in the fact that theoretical means always
depend on practical appropriateness.

From all this results a process of understanding and explication which Gon-
seth summarized very well in four principles:

• The principle of duality emphasizes a dialogical interplay between reason
and experience: the “horizon of experience” and the “horizon of theory” should
be always developed simultaneously. Theoretical terms are partially defined in
terms of observational vocabulary, and the vague understanding of observational
terms is only possible in view of sortal (theoretical) terms.

•The principle of revisability emphasizes that all scientific statements should
be open for revision, including statements of logic.
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• The principle of technicity serves to counterbalance that of revisability: it
imposes “a limit on what counts as a legitimate reason for starting a revision”,
that means the technical progress involved should be adequate. (cf. Esfeld
2001, 8.)

• The principle of solidarity (or integrality) is the expression of a methodical
holism concerning every level of reflection.

With these principles Gonseth pursued two epistemological goals: The com-
prehension of the development and the validity of mathematical propositions.
The interrelation of these aims is warranted by a dialectical process depending
on sociological parameters: it results in an action-process leading to syntheses
between empirical, theoretical and pragmatical aspects of different levels. The
criterion of mathematical progress may thereby consist in the successful modi-
fication of “the existing practice of mathematics so as to maximize the chances
of attaining the two goals” (cf. Kitcher 1988, 531).

Gonseth neither promotes the identification between conventional accepta-
tion and belief no separates them entirely (cf. Da Costa, 617). The pertinency
of the normativity of the principles has no idealistic touch, because the princi-
ples are, as actions and action-signs, at the same time tool and subject in the
dialogue. The only transcendental element is the dialogue itself.

Without a doubt, the principle of duality is the expression of an anti-dualistic
position in theory of knowledge. It implicates namely the thesis that spontaneity
and receptivity are quite inseparable. Comprehension is a capacity and not the
result of a theory about factual data.

Furthermore, the juxtaposition of the principles of duality and revisability
leads to a pragmatic transformation of the epistemological terms in question:
on the one hand, the empirical (in its revisited signification) is no longer
opposite to the rational in general, but to systematisation; and on the other
hand, the rational (in its revisited signification) is not opposite to the empir-
ical, but to the capacity to conceive contentual impressions, that means to
conceive a domain of subjects (cf. Bernays 1937, 289). Hence the possi-
bility to speak of mental experience (cf. Bernays 1952, 131) with regard to
mathematics. The Kantian opposition between concept and intuition is replaced
with form and content, which are conceived to stand, as in the neo-Kantian
tradition, in a functional relation (cf. Cassirer 1990, 343). The invariability
founding the analogy between experience and mental experience consists in
the fact that both are conceived as contents standing in a functional opposition
to forms.

These remarks should be sufficient in order to see how the principle of duality
solves difficulty 2b and how the principle of solidarity solves difficulty 2c.
Furthermore, difficulty 2a resembles the circle that psychologism introduced in
the theory of knowledge. Indeed, I think it is possible to avoid it by choosing
a pragmatic position which abrogates the rigid hierarchy of justification: the
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solution of point 2a consists in the fact, that it would be an illusion if one wanted
to return to a non-conceptual basis. There is no pure information so that all
objects and the relations between them are always schematic constructions or, in
other words “des horizons de réalités”, open to experience. Structures don’t yet
exist in their own right: they are always constructed “post rem” in a language
in which the objects and relations under consideration have names; on this level
the axiomatic aspect consists in sharpening this language. However, to consider
structures “in their own right” means to abstract from their genesis so that the
original objects and relations do not occur independently, but only as links
“in an overall structure — they occur merely in their grammatical role, as it
were — and the axiomatic system makes assertions about this overall structure”
(cf. Bernays 1970, 182). On the contrary, we have idealized and not postulated
structures. This pragmatic solution of point P3 has much more in common
with the tradition of continental structuralism (Cavaillès, Gonseth, Bernays)
than with is Anglo-Saxon sister.

What remains are difficulties P1 and P4.
Concerning the former, let us remember that nominalists and new realists

often support the thesis affirming that it is hopeless to look for a relation be-
tween mathematics and experience because this relation has been broken. I
would like to reply that what was in fact broken was only the relation between
mathematics and a first tangible reality, for example, the Euclidean one. To
introduce an absolute cut between mathematics and experience would signify
that one disregards the problem of foundation by neglecting the history and the
evolution of mathematical thinking.

There is, doubtlessly, not only evolution of mathematical content but even,
at the same time, evolution of the means of knowledge which made it possible
to invent new syntheses with regard to which the cut is inexistent: the intuitive
reference is not necessarily an initial reference. In this manner, one should for
example interpret the extension of the concept of space or the geometrisation of
contents. We should apply mathematics to mathematics. So we could perhaps
solve problem P1: fictive mathematics should be applied to well confirmed
mathematics. Nevertheless, the existence of a completely autonomous domain
of mathematics would constitute a counter-argument. But, personally, I’m not
acquainted with such a domain.

Concerning difficulty 4a, the principle of duality emphasized that the dif-
ference of concrete and abstract is one of degree. In fact, the knowledge of
concreta always has, considered from outside, a modal character, because the
concrete object is only identifiable as an abstract schema whose actualisations
or references are only incompletely specified. One can also agree plainly with
Felix Müllhölzer’s dictum that “as soon as one uses the word ‘theory’ in the
manner of the practising scientist, the relation between theory and experience
no longer appears as an affair which can be described by a short formula like
‘logical implication of observation categoricals’ ” (cf. Müllhölzer 1995, 204).
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Now, one can find an analogues situation in pure mathematics. It consists
in the fact that mathematical symbols can be read with respect to different
mathematical contents without the possibility of checking this ambiguity on
the level of the given notation. Here we have a typical case of partial informa-
tion. Poincaré suggests that this difficult situation including semantic ambiguity
should be overcome by the introduction of aesthetic feeling in mathematics. The
mastering of simultaneous reasoning about different contents, provoked by the
lack of perfect information in one field, requires the acquisition of a practice.
So, it seems to me that it would well coincide with Gonseth’s idea to determine
a criterion of admissibility of sentences by substituting truth-functional logic
by one of the logics of vagueness and to introduce on a certain level a degree
of clarity. Indeed, this approach, just as modal ones, can only made explicit by
model-theoretic means, but this would be for our philosophical interests circu-
lar: all model theory depends on truth definitions. As long as these definitions
can only be given on second order level or in set theory, then model theory
depends on second order logic or set theory (Hintikka 1996, VIII).

Now, if Hintikka’s IF-Logic is really a first order logic which performs that
it promises, i.e. that does “model theory” in first order logic, it will be a formal
way out. Then the most interesting research program concerns the study of
modal logic in IF-Logic. On the other hand, the situation with mathematical
theories is not so different from the situation concerning scientific theories in
general: even mathematical “theories in the scientists’ sense reveal [. . . ] to be
very flexible entities, [starting often with different contradictory hypotheses so
that there are] not sharply defined sentence-buildings, and the answer to the
question of whether a certain [. . .] outcome contradicts a theory depends on
the skill with which [mathematicians] make use of the theory” (cf. Müllhölzer
1995, 204). From this point of view, the application of paraconsistent logic in
mathematics itself should have some success in the future. Now, we have seen
it during this symposium, all the mentioned non-classical approaches find their
natural frame in dialogic or game theoretic logics which have philosophical
pragmatism as their background.

Finally, to favour predicative analysis (4b) because it supplies enough mathe-
matics for applications in physics, seemed first to have been a technical trick be-
cause Feferman’s constructions presuppose the impredicative domain of natural
numbers (Kreisel). But in the new Feferman/Hellman system (cf. Feferman/
Hellman 2000) the initial assumption of the finite set is not assumed to have the
usual properties of a finite set but can be afterwards defined within the structure.
In this point their system agrees very well with a pragmatic evolution.
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Chapter 19

LOGIC AS A TOOL OF SCIENCE VERSUS
LOGIC AS A SCIENTIFIC SUBJECT

Kuno Lorenz∗

University of Saarland

klorenz@rz.uni-saarland.de

There is nothing spectacular in turning activities into objects of investigation
such that the procedures of investigation show up as certain second order ob-
jects, and climbing up in this way, the semantic ascent, may well be continued,
if thought to be necessary for some purposes. The working scientist is doing
this regularly. But what about the converse of dissolving an object into activities
such that perspectives of the object will take the place of the object? In this case
we are concerned with the substitution of an object by its properties, i.e., a set
of second order objects. Again a familiar procedure, so it seems. But, usually,
it is not realized, or taken for granted, that properties of an object – relational
ones included – relate in a systematic fashion to the internal structure of the
object, i.e., its being a whole out of parts. This implies that something which
can only be said – by using predicates – matches in a rarely scrutinized way
something which can only be shown – by using rules of action. Semiotics and
pragmatics – hence, being an object and being a tool – are intimately bound to-
gether. For example, the property of being even, in the case of natural numbers,
is equivalent to the number two being a (multiplicative) part of the respective
natural number, though such an equivalence is stated without trying to relate
the (multiplicative) part-whole-relation between numbers which is an external
relation where numbers remain >indivisible< units, that is, >individuals<, to

∗Part of this contribution overlaps with material contained in the author’s paper ‘Pragmatic and Semiotic
Prerequisites for Predication’ in: D. Vanderveken (ed.), Logic, Thought and Action, Dordrecht: Springer
2005, 343-357.
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the internal structure of natural numbers as composites out of units. The well-
established (minimal) logical structure of elementary propositions – a general
term or, rather, a propositional function, is applied to (particular) objects repre-
sented by singular terms – is considered to be a kind of rock bottom on which
to build theories without further attempts, neither by linguists nor by logicians,
to give a foundation to such a bifurcation of terms. After Frege had used the
mathematical terminology of function and argument for giving a functional ac-
count of (elementary) propositions that eventually allowed to read the sequence
>singular term<, copula, general term’ equally well as the expression of a set-
theoretic membership relation by turning the general term into a singular term
denoting a logically second order particular, it seemed to be superfluous to
question the Fregean account. It had been – and still is – neglected that there is
no chance in this way to get rid of the peculiar internal relation between partic-
ulars and what is said about them as established in a proposition. Furthermore,
whoever attempts to eliminate the copula that articulates the internal relation
in question, will lose the opportunity to explicate how the copula is mirrored
by an internal part-whole-relation, as well. Wittgenstein’s challenge to Frege’s
treatment of propositions as names (cf. T 3.143) that is a fatal blow also to a
referential theory of truth, has never been widely accepted, certainly not among
the majority of mathematicians. Whoever was convinced of the necessity of
treating propositions in a pragmatic context and not in a semiotic one, did this by
embedding propositions in speech acts, e.g., assertions, and not by considering
a pragmatic approach to propositions themselves.

I would like to turn your attention, now, to the interplay of pragmatic and
semiotic features in setting up propositions, both elementary and logically com-
pound ones. You will notice that instead of ‘activity of investigation’ and ‘object
of investigation’ I prefer to use the terms ‘pragmatic’ and ‘semiotic’ with respect
to activities in general. I do this, because they are more appropriate to the gen-
eral claim connected with the approach I want to sketch. In this approach I am
concerned with conceptual clarifications beneath logic proper rather than with
new scientific results. My starting point is derived from Peircean and Wittgen-
steinean ideas: A dialogue-situation conceptualized as a two-person-game be-
ing a generalized Wittgensteinean language-game without explicit linguistic
activity in the beginning, will serve to model the acquisition procedure of an
action-competence. Dialogical constructions will lead from modelling simple
activity to modelling the growth of more complex activities up to elementary
verbal utterances and eventually to logically compound propositions.

At first some general remarks: In accordance with C. S. Peirce, I consider
pragmatics to have become the modern heir of ontology with semiotics being
its counterpart as the modern heir of epistemology. Yet, in this context both dis-
ciplines should not be understood as two newly established empirical sciences,
but as ways of investigation where empirical procedures are combined with



Logic as a Tool of Science Versus Logic as a Scientific Subject 301

reflexive procedures. Using such a broader perspective both actions and sign-
actions are not only treated as objects of research and representation, as, e.g., in
Ch. Morris’ and U. Eco’s approach, but also as a means or tool of research and
representation. You not only observe and describe these entities according to
certain standards, but you also produce them in a perspicuous fashion in order
to arrive at some kind of approximating reconstruction of what you take to be
available, already.

Hence, the constructions serve cognitive purposes in the sense of delineating
the very areas of (particular) objects one proceeds afterwards to investigate
in the more usual way. Language-games as well as the generalized ones of
acquiring simple action competences exhibit a semiotic function if understood
as icons in the sense of Peirce. An area of internally structured objects is found
by inventing a prototype.

Thus, even the distinction of action and sign-action which still is prevalent
in Wittgensteinian language-games where simple action competence is presup-
posed, has to be relativized in view of a purely functional account of both what
it means to be an object and what it means to be a sign (of an object).

The two Aristotelian categories, πoιει̂ν and πάσχειν, doing and suffer-
ing, will enjoy a lively comeback – they did this in Dewey, already – as the
two sides we are concerned with when doing something: you do it yourself
(active) and you recognize others (including yourself!) doing the same (passive
[with respect to the content of recognition]). These two sides reoccur in the
model of an elementary dialogue-situation with two agents being engaged in
the process of acquiring an action-competence. At each given instant just one
of the agents is active – a >real< agent – and the other agent – the >potential<
agent or >patient< – is passive. The agent in active role is performing an
action, i.e., he is able to produce different tokens of the same type, while the
agent in passive role is recognizing an action, i.e., he sees different tokens as
belonging to the same type. One has learned an action, if one is able to play both
roles: While acting you know what you are doing, or, conversely, if you don’t
know what you are doing, you don’t act. Another way of saying this would be:
Each action appears in two perspectives, in the I-perspective by performing the
action (=producing an action token) – it should be called the pragmatic side of
an action, or its >natural< side – and in the You-perspective when recognizing
the action (= witnessing an action type) which should be called its semiotic or
>symbolic< side. We have come across the first step to execute the program
of >naturalizing language< and other symbol systems, and, at the same time,
of >symbolizing world<, in order to bridge the alleged gap between the two.

Peirce has sketched a way of deriving signs out of objects in more or less
the same manner as I just did and was looking for something which is a sign
of itself, that is, which combines object status and sign status, or better: which
functions both ways. The basic point of his pragmatic foundation of semiotics
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or, rather, of the interdependence of pragmatics and semiotics, was to give an
account of the process of separation between sign and its object within the
framework of his Pragmatic Maxim.1

Now, within the model of acquisition of an action-competence by an ele-
mentary dialogue-situation some further distinctions are obligatory. They are
based on the observation that producing an action-token and witnessing an
action-type, i.e., I-perspective and You-perspective of an action, are insepa-
rably bound together and cannot be treated in isolation from each other. The
model of acquisition of action-competence is a model of actions as a means
and not yet of actions as objects which, in order to be accessible, will in turn
be dependent on other actions as a means of dealing with objects. Dialogical
construction as a means of study asks for self-application such that the interde-
pendence of the status of being-a-means and the status of being-an-object, hence
of >epistemology< and >praxeology< on the one hand, and of >ontology<
on the other hand, is laid bare. Actions as a means are characterized by their
two sides as they arise from the two perspectives, from singular performance in
I-perspective and universal recognition in You-perspective. Yet, when perform-
ing is understood to be a case of producing (an action-token) and, analogously,
recognizing to be a case of witnessing (an action-type), the action in question
is treated as an object, in fact, sometimes even as two objects, the token as an
external or >corporeal< particular and the type as an internal or >mental<
particular. But, even if action particulars, i.e., individual acts, are treated uni-
formly without being split into external and internal entities, particularity is to
be kept strictly distinct from singularity and universality. Usually, in the termi-
nology of type and token, where types are treated logically as generated >by
abstraction< out of tokens, and where tokens originate >by concretion< from
types, both types and tokens are (individual) objects, yet of different logical
order, which are related in standard notation as sets to their elements. At the
lowest level, if there is one, the final universe of discourse is located, i.e., a world
of elementary individual objects, the particulars, to which everything else will
have to be reduced. Such an account, by neglecting the distinction between
particularity on the one hand and singularity as well as universality on the other
hand, violates the inseparability of (producing a) token and (witnessing a) type
in the context of actions as a means, or, rather, it exhibits an equivocation in the
use of ‘type’ and ‘token’. It is necessary to relinquish both the equivalence of
‘performing an action’ with ‘producing an action token’ and the equivalence of
‘recognizing an action’ with ‘witnessing an action type’.

Instead, performance is performance of something singular and recognition
is recognition of something universal, whereas producing (a token) together

1Cf. B. M. Scherer, Prolegomena zu einer einheitlichen Zeichentheorie: Ch. S. Peirces Einbettung der
Semiotik in die Pragmatik, Tübingen: Stauffenburg Verlag 1984.
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with its twin activity of witnessing (a type) occur with respect to something
particular. Now, if tokens and types are not construed as particulars that are
produced or witnessed, respectively, they should be identified, in tune with
action as a means, with universal features and singular ingredients of particulars
that are exhibited by actions which deal with them. Particulars together with
the situations (of acting) of which they occupy the foreground are appropriated
by performing an action which deals with them, and they are objectified by
recognizing such an action. It should be noted that neither universal features
nor singular ingredients have object status by themselves; they remain means
with respect to (particular) objects. Universals cannot be appropriated and
singulars cannot be objectified.

Hence, in performances of an action that is dealing with a particular you
(pragmatically) present one of the (singular) token ingredients of this particu-
lar, whereas in recognitions of an action that is dealing with a particular you
(semiotically) represent one of its (universal) type features. Switching from the
language of means – pragmatic means are singular, semiotic means are univer-
sal – to the language of objects (= particulars) you may say that it is individual
acts that provide both services, of presentation with respect to its performance
perspective and of representation with respect to its recognition perspective.
In appropriation as well as in objectivation of particulars of arbitrary category,
like individual acts, individual things or events, groups of individuals or other
non-individual particulars, etc., the actions of dealing with particulars are used
as a means, of presentation (of singular tokens – the way a particular is present)
in the case of appropriation, and of representation (of universal types – the way
a particular is identified) in the case of objectivation.

Particulars may be said to act as appearances of >substances<, i.e., some
part of the whole out of like singular tokens is a part of the particular, and as
carriers of >properties<, i.e., the particular is an instance of a universal type.2

Therefore, in order to avoid misunderstandings, instead of ‘perform’ we will,
henceforth, say ‘actualize’, and we say ‘schematize’ instead of ‘recognize’.

Within the model of an elementary dialogue-situation where two agents are
engaged in the process of acquiring an action-competence, the activities of
actualizing and schematizing should not be understood as performances of
two separate actions; it is one action the competence of which is acquired by
learning to play both the active and the passive role. Active actualization makes
the action appear in I-perspective, passive schematization lets it appear in You-
perspective. Any action as a means is characterized by its pragmatic and its

2A particular wooden chair, for example, acts as a carrier of all the properties conceptualized by ‘wooden’,
and as an appearance of the substance >wood<, inasmuch as a part of >the whole wood< may be considered
to be a part of the particular wooden chair; cf. the entry ‘Teil und Ganzes’ in: Enzyklopädie Philosophie
und Wissenschaftstheorie IV, J. Mittelstraß (ed.), Stuttgart-Weimar: Metzler 1996, 225-228.



304 Kuno Lorenz

semiotic side, and it doesn’t make sense as yet to speak of the action as an
>independent< object(-type) split into particulars, i.e., some set of individual
acts. In order to achieve the switch from action as a means to action as object, it
is essential to iterate the process of acquiring an action-competence by turning
the two sides of an action into proper actions by themselves, i.e., into actions
of dealing with the original action under its two perspectives such that the
(secondary) action-competences additionally required will have to be modelled
in turn by means of (now non-elementary) dialogue-situations. Such a further
step may be looked at as an application of the principle of self-similarity.

What has to be done is to schematize and to actualize the elementary dialogue-
situation, i.e., to create a He/She-perspective towards the I / You-situation such
that, on the one hand, He/She becomes a (secondary) You-perspective with
respect to I/You as I, and, on the other hand, He/She becomes a (secondary) I-
perspective with respect to I/You as You. In the first case you gain an >exterior
view< of the original action by acquiring a second level action (with respect to
the original action) which functions as one of the indefinitely many aspects of
the original action: The You-perspective is turned into the schema of a second
level action out of an indefinite series of second level actions. In the second
case you gain an >interior view< of the original action by acquiring a second
order action (with respect to the original action) which functions as one of the
indefinitely many phases of the original action: The I-perspective is turned into
an actualization of a second order action out of an indefinite series of second
order actions. The semiotic side of an action is split into a multiplicity of aspects
or (secondary) You-perspectives, and the pragmatic side of an action likewise
into a multiplicity of phases or (secondary) I-perspectives.

By (dialogical) construction, it is in its active role that an aspect-action is I-
You-invariant and, in this sense, >objective<, whereas a phase-action is I-You-
invariant in passive role, only. Hence, by applying the principle of self-similarity
once again to aspects and to phases, the pragmatic side of an aspect-action
is split into a multiplicity of objective articulations or sign-actions, while the
semiotic side of a phase-action is split into a multiplicity of objective mediations
or partial actions. Any one of the sign-actions is a means to designate the
original action, and any one of the partial actions is a means to partake of the
original action, where designating and partaking function with the proviso that
the original action itself is turned from a means into an object. In fact, an action
as object – things, events, and other categories of entities are included among
actions by identifying an entity[-type] with the action[-type] of dealing with
the entity – is constituted, on the one hand >formally<, by identification of
the schemata of the aspect-actions, i.e., of their >subjective< semiotic side,
and, on the other hand >materially<, by summation of the actualizations of
the phase-actions, i.e., of their >subjective< pragmatic side. On the one side,
through identification, an action as object is a semiotic (abstract) invariant of
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which one partakes by means of a partial action, and on the other side, through
summation, it is a pragmatic (concrete) whole which one designates by means of
a sign-action. With respect to the additional dialogue-situations modelling the
acquisition of second-order-action-competences as well as second-level-action-
competences the original action as object occurs within a situation which, in
fact, is responsible for individuating the original action as object.

The move of objectivation from action as a means to action as object is
accompanied by a split of the action into (action-)particulars such that the
respective invariants may be treated as kernels (=form) of the schemata of
aspects (=universalia), and the respective wholes correspondingly as closures
(=matter) of the actualizations of phases (=singularia).

Dialogical construction of particulars being dependent on the identification
of schemata of aspects and on the summation of actualizations of phases, im-
plies the establishment of mutual independence between objectival foreground
and situational background. In order to achieve this, a specially chosen articu-
lation has to act as a substitute for arbitrary aspects with respect to some partial
action – such a function of substitution may be articulated by rules of translation
among aspects – and will be called symbolic articulation. Constant foreground
and variable background will thus become independent of each other. Anal-
ogously, any mediation will have to acquire the function of having the phase
to which it belongs extended by arbitrary other phases with respect to some
sign-action – such a function of extension may be articulated by rules of con-
struction for phases – and will be called comprehensive mediation. In this case,
constant background and variable foreground are made independent of each
other. The two constructions together guarantee that particulars contrast with
their surroundings.3 By symbolic articulation that is a symbolic sign-action, you
arrive at a semiotically determined particular in actualized situations, i.e., the
particular is symbolically represented, whereas by comprehensive mediation
that is a comprehensive partial action, you arrive at pragmatically determined
particulars in a schematized situation, i.e., the particulars are symptomatically
present.

The semiotic side of partial actions (>what you do<) and the pragmatic side
of sign-actions (>how you speak<), together they make up the ways of life (of
the agents). Correspondingly, the pragmatic side of partial actions (>how you
act<) and the semiotic side of sign-actions (>what you say<), together they
make up the world views (of the agents).

Articulation, on the semiotic side and not as a mere activity, is signified
canonically by the result of a sign-action, an articulator, that has to be taken

3For an explicit dialogical construction of both identification and summation, cf. my ‘Rede zwischen Aktion
und Kognition’, in: A. Burri (ed.), Sprache und Denken. Language and Thought, Berlin-New York: de
Gruyter 1997, 139-156, p 145ff.
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as a (verbal) type, in a speech situation. And if it is treated as functionally
equivalent with any other way of articulation, including non-verbal ones, it acts
as a symbolic articulator. Again semiotically, i.e., as a sign(-action), it shows
its two sides, a pragmatic one and a semiotic one. The pragmatic one is to be
called communication, or the side with respect to persons, and the semiotic one
is to be called signification, or the side with respect to (particular) objects. By
iteration, communication splits into (content of ) predication on the semiotic
side, and mood (of predication) on the pragmatic side, whereas signification
splits into (intent of ) ostension on the pragmatic side, and mode of being given
on the semiotic side. Any predication can take place only by using a mood, and
any ostension is effected only by using a mode of being given. We have strictly
to distinguish: content and mood of predication, intent and mode of ostension.
The moods of predication are, of course, speech acts, and only with respect to
a mood a predication contains a claim, e.g., a truth claim.

Without second order articulation of mood and mode, we have arrived at one-
word sentences ‘P ’ (pragmatically in a mood and semiotically using a mode of
being given) by uttering the articulator ‘P’. They combine predication within
communication and ostension within signification by just one utterance (in a
speech-situation).

With the next step we introduce the separation of significative and com-
municative function, two functions that coincide with showing and saying in
the terminology of Wittgenstein’s Tractatus. Separation may be executed in
two ways by using operators for neutralizing one of the two functions: (1)
with respect to predication, i.e., the semiotic side of communicative function;
separation leads to: δPεP (this P [=something done] is P[-schematized]), or,
alternatively, to σPπP (the universal P [= something imagined] is P-actualized),
(2) with respect to ostension, i.e., the pragmatic side of significative function;
here, separation leads to: δPζP (this P belonging to P), or κPξP (the whole P
[=something intuited] being P-exemplified).

The operators: demonstrator ‘δ’ and attributor ‘ε’ (=copula), respectively,
neutralize the communicative function and the significative one; hence, ‘δ’
keeps the significative function and ‘ε’ keeps the communicative one, with the
result that ‘δP’ plays a singular role and ‘εP’ a universal one. In the terminology
of logic or semiotics, ‘δP’, which is used to >ostend< P, is an index of an
actualization of the action articulated by ‘P’, whereas ‘εP’, which is used to
>predicate< P, is a predicator serving as a symbol of the schema of action P.

Predication εP and ostension δP with its respective associates: form of a
proposition ‘ εP’ and form of an indication ‘δP ’ , are the modern equivalents
of the traditional >forms of thinking< and >forms of intuition<. It wood
have been possible to proceed dually by using two operators, univeralisator
‘σ’ and presentator ‘π’, with switched roles as already mentioned – there is
no time to discuss this, too. In the second case of separation with respect to
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ostension which invokes the pragmatic distinction ‘active-passive’ and not the
semiotic distinction ‘singular-universal’, either demonstrator ‘δ’ and partitor
‘ζ’, or, dually, totalisator ‘κ’ and exemplificator ‘ξ’, serve the same purpose:
‘δ’ and ‘κ’ keep the significative function in active and passive role, respectively;
vice versa with the other two.

What is not yet available up to now and what would not even make sense,
are >propositions< like δPεQ and >indications< like δQζP. The reason why
these expressions don’t make sense, is simply the following: ‘δP’ is not the
kind of expression to occupy the empty place in a propositional form ‘ εQ’
with Q�=P, and ‘ζP’ is not the kind of expression to occupy the empty space in
an indicational form ‘δQ ’ with Q�=P. Instead, we introduce individuators ‘ιP’
in order to refer to particulars, i.e., the situation-dependent units of the action
articulated by ‘P’; >things< as well as objects of other categories, any one
(type) of them being identified with the action(-type) of arbitrary dealings with
an object(-type), hence, any of the so-called >natural kinds<, are, of course,
included among the P.

Particulars, be they individual things or events, individual acts or processes,
are composed out of kernels of schemata of aspects: σ(ιP) (=invariants), to-
gether with closures of actualizations of phases: κ(ιP) (=wholes). Hence,
particulars may be considered to be half thought and half action. Using indi-
viduators we, now, may write down eigen-popositions ιPεP as well as eigen-
indications δPιP (short for: δPζιP), and it is possible to render these versions
of saying and showing in the following traditional way:

1. In the case of saying (ιPεP): the universal σP is predicated of a P-particular
by means of ‘εP’ (or: within the proposition ιPεP, the individuator is a sign of
an indication, and, hence, functions as a nominator of a P-particular, i.e., within
the proposition ιPεP, nomination by ‘ιP’ is shown) , and

2. In the case of showing (δPιP): ostending the whole κP at a P-particular
by means of ‘δP’ (or: within the indication δPιP, the individuator is a sign of
a proposition, and, hence, functions to say that participation at a P-particular
holds, i.e., within the indication δPιP, participation at ιP is said).

Hence, reference to particulars ιP includes both nomination of κ(ιP), i.e., of
the matter of ιP, and participation at σ(ιP), i.e., at the form of ιP. As a remark,
it may be added that nominating is the articulation of designating by symbolic
articulation, and, analogously, participating is the articulation of partaking by
comprehensive mediation.

The composition of P, e.g., wood, and Q, e.g., chair, is a result of separating
speech-situation and situation-talked-about. It can be realized by analyzing and
reconstructing what happens when, e.g., in a Q-situation you are uttering ‘P’.
In the foreground of the situation-talked-about which is articulated by ‘P’, there
are two particulars to be welded. It may come about in either of two possible
ways:
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1 An aspect (with its schema being) out of σ (ιP) coincides with a phase
(actualizations of which being) out of κ(ιQ), e.g., sitting on a wooden
chair as a phase-action with respect to chair is simultaneously an aspect-
action >sitting on the wood of the chair< with respect to wood;

2 A phase out of κ(ιP) coincides with an aspect out of σ(ιQ).

In the first case you may articulate the coincidence predicatively by εPQ (=
is a wood of [a] chair), in the second case ostensively by δ(QP) (=this wood
with the form of [a] chair). Instead of δPQεPQ we may write ιQεP (= ιQ is P,
or: this [particular] chair is wooden), and likewise, instead of δ(QP)ζ (QP), it
is possible to write δPιQ (short for: δPζιQ) (= δP at ιQ, or: this dealing with
wood belonging to this [particular] chair). Hence, ‘εP’ acts as a symbol for
the result of schematizing ιQ, whereas ‘δP’ acts as an index for the result of
actualizing ιQ.

The introduction of compound articulation Q*P such that ε(Q*P) = εPQ and
δ(Q*P) = δ(PQ) – these two ways of specialization are relativization of ‘P’ by
‘Q’, yielding ‘PQ’ [i.e., P of Q] and modification of ‘Q’ by ‘P’, yielding ‘PQ’
– is achieved by again using dialogical construction, and it is successful in case
such specializations (wood of [a] chair and wooden chair, respectively) >make
sense<; the details of this procedure I have to skip here, unfortunately.4

An indication δPιQ shows that the substance κP is ostended at ιQ by means
of ‘δP’; a proposition ιQεP says that the property σP is predicated of ιQ by
means of ‘εP’. In short: ιQ consists both of phases such that the closure of their
actualisations is κ(ιQ), and of aspects such that the kernel of their schemata is
σ (ιQ), i.e., of form and matter in traditional terminology.

As a further historical remark, it may be added that the two sides of a particular
ιQ, the concrete whole κ(ιQ) and the abstract invariant σ(ιQ), correspond neatly
to >body< or >phenomenon< and >soul< or >fundament< of a monad as it
is conceived in the Monadologie of Leibniz.5 It may also be useful to observe
that the identification of δPQεPQ with ιQεP, i.e., the introduction of (one-place)
elementary propositions, is closely related to Reichenbach’s transition from a
thing-language to an event-language articulated with the help of an asterisk-
operator which moves the predicative ingredients of a subject term of an (one-
place) elementary proposition into its predicate term, e.g., from ‘this man is
smoking’ you arrive at ‘smoking of [this particular] man’, or: (ιQεP)* = PQ.

We have reached the usual account of (one-place) predication where
>general terms< ‘P’ or, rather, propositional functions ‘εP’ in the sense of

4Cf. K. Lorenz, Sinnbestimmung und Geltungssicherung. Ein Beitrag zur Sprachlogik, in: G.-L. Lueken
(ed.), Formen der Argumentation, Leipzig: Leipziger Universitätsverlag 2000, 87-106.
5Cf. for further corroboration various essays in: Leibniz and Adam, M. Dascal/E. Yakira (eds.), Tel Aviv:
University Publishing Projects 1993.
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Frege, serve to attribute properties to particulars of an independently given
domain of Q-objects, in the simplest case referred to by deictic descriptions
‘ιQ’ that are special cases of >singular terms< [another use of ‘singular’!].
The meaning of such an elementary proposition ιQεP will of course be defined
with respect to the significative function of PQ under its mode of being given,
provided the compound articulation works, whereas the validity of ιQεP is tan-
tamount to the existence of a particular ι(PQ) such that the kind of existence
is defined by the mood of the elementary proposition. In the assertive mood
we speak of real existence and equate validity with truth. Now, the strategy
to introduce compound propositions, especially logical composition, follows
the procedure for introducing compound articulators, because neither move,
the one of reducing propositions to primary constituents of the set-theoretic
type α ∈ β, or, alternatively, as in constructivism, to derivability propositions
⊢K α with respect to some calculus K, is going to work outside special areas.
What has to be done is to guarantee that compound articulations of whatever
kind will in fact be articulations again, i.e., will have both a significative and a
communicative function.

The special case of logical composition of propositions has been successfully
handled by dialogical logic, and as the details are well known I may restrict my-
self to a few final remarks: The significative function of a logically compound
proposition A being equal with the significative function of the compound artic-
ulator A* (δA*εA* ⇌ A), is given by the rules of an open finitary two-person
zero-sum game, i.e., a dialogical game with A in initial position, whereas the
communicative function, again of A*, with respect to the assertive mood of A is
a (material) truth claim which may be fulfilled by presenting a winning strategy
for A. You will be aware that in case of, e.g., logically compound arithmetical
propositions – its basis in constructive arithmetic is the >arithmetical< cal-
culus for deriving sequences of strokes or another primitive figure – a theory
of winning strategies will need a theory of (constructive) ordinals to handle it.
At this point we reach present day research, especially in proof theory, that is
beyond my concern today.
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At the end of the 19th century Hugh MacColl (1837-1909), the father of
pluralism in formal logic, attempted in the north of France (Boulogne sur mer)
to formulate a modal logic which would challenge the semantics of material
implication of the post-Boolean wave. It seems that in some of his various
attempts MacColl suggested some systems where the rule of necessitation fails.1

Moreover, the idea that no logical necessity has universal scope – or that no logic
could be applied to any argumentative context – seems to be akin and perhaps
even central to his pluralistic philosophy of logic.2 Some years later Clarence
Irwin Lewis furnished the axiomatics for several of these logics and since then
the critics on the material implication have shown an increasing interest in these
modal logics called “non-normal”. When Saul Kripke studied their semantics of
“impossible worlds” as a way to distinguish between “necessity” and “validity”
these logics reached a status of some respectability.3 As is well known, around
the 70s non-normal logics were associated with the problem of omniscience
in the epistemic interpretation of modal logic, specially in the work of Jaakko
Hintikka and Veikko Rantala.4 Actually impossible worlds received a intensive
study and development too in the context of relevant and paraconsistent logics
– specially within the “Saint-Andrews-Australasian connection” in the work

1Unfortunately he does not seem to have succeeded. Read 1998, differs from Storrs MacCall’s (1963 and
1967) argues that the reconstruction of MacColl’s modal logic yields T and not one of the non-normal logics.
2Cf. Grattan-Guinness 1998, Rahman 1997, 1997, 1998, 2000, Read 1998 and Wolenski 1998.
3Cf. Kripke 1965.
4Cf. Hintikka 1975 and Rantala 1975. See too Cresswell 1972 and Girle 1973.
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of such people as Graham Priest, Stephen Read, Greg Restall and Richard
Routley-Sylvan. Nowadays, though the association with omniscience seems
to have faded out, the study of non-normal logics has received a new impulse
motivated through the study of counterlogicals. The aim of the paper is to offer
a dialogical interpretation of non-normal modal dialogics which will suggest
some explorations beyond the concept of non-normality. This interpretation
will be connected to the discussion of two issues, namely:

1 Counterlogicals as a minimalist defense of logical pluralism (pluralism
for a monist) following the path prefigured by MacColl and

2 The difficulties involved in the application of the so-called Hintikka strat-
egy and hybrid languages while constructing tableau systems for non-
normal modal logics.

20.1 Pluralism for a Monist and the case
of the counterlogical

Convincitur ergo etiam insipiens esse vel in intellectu . . .
Anselm of Canterbury,

Proslogion, capitulum II, Ps 13, 1, 52, 1
(Thus, even he who knows no better will be convinced that at least it is in the intellect. . . )

20.1.1 Would the real logic please stand up?

Conceiving situations in which not every mathematical or logical truth holds
is a usual argumentation practice within formal sciences. However, to formulate
the precise conditions which could render an adequate theory of logical argu-
ments with counterpossibles in formal sciences is a challenging issue. Hartry
Field has felt the need to tackle this challenge in the context of mathematics.
Field writes:

It is doubtless true that nothing sensible can be said about how things would
be different if there were no number 17; that is largely because the antecedent of
this counterfactual gives us no hints as to what alternative mathematics is to be
regarded as true in the counterfactual situation in question. If one changes the
example to “nothing sensible can be said about how things would be different if
the axiom of choice were false”, it seems wrong : if the axiom of choice were false,
the cardinals wouldn’t be linearly ordered, the Banach-Tarski theorem would fail
and so forth. (Field 1989, 237)

These lines actually express the central motivation for a theory of counter-
possibles in formal sciences. Namely, the construction of an alternative system
where e.g. the inter-dependence of some axioms of a given formal system could
be studied. If we were able to conceive not only a counterpossible situation
where some axioms fail to be true but also even an alternative system without
the axioms in question, then a lot of information could be won concerning the
original “real” system. By the study of the logical properties of the alternative



Non-Normal Dialogics for a Wonderful World and More 313

system we could e.g. learn which theorems of our “real system” are dependent
on axioms missing in the alternative one.5 Moreover, I would like to add that
a brief survey of the history of mathematics would testify that this usage of
counterpossibles seems to be a common practice in formal sciences.

The case of the study of counterpossibles in logic called counterlogicals
is an exact analogue of the case of mathematics and motivates the study of
alternative systems in the very same way. We learned a lot of intuitionistic
logics, even the insipiens classical logical monist learned about his system while
discussing with the antirealist. This seems to be a generally accepted fact, but
why should we stop there? From free logics we learned about the ontological
commitment of quantifiers, from paraconsistent logic ways of distinguishing
between triviality and inconsistency;6 from connexive logics the possibility of
expressing in the object language that a given atomic proposition is contingently
true; from relevance logics that it is not always wise to distinguish between
metalogical and logical “if, then”; from IF and epistemic dynamic logic we
learned about arguments where various types of flow of information are at
stake, for linear how to reason with limited resources, and so forth.

Are these alternative logics “real” or even the “true” logic? Well actually to
motivate its study the mere mental construction of them is enough, the mere
being in intellectu, provided such a construction is fruitful. I would even be
prepared to defend that as a start it is enough if they teach us something about
the logic we take to be the “real” one. The construction of alternative logics,
which in the latter case is conceived as resulting from changes in the original
“real” logic, can be thought of as following a substructural strategy: changes
of logic are structural changes concerning logical consequence.

In the next chapter I will offer a dialogical interpretation of non-normal logics
which should offer the first steps towards such a minimalist defense of logical
pluralism. In this interpretation the pair standard–non-standard will be added
to the pair “normal”–“non-normal”. Furthermore, the adjectives standard and
non-standard will qualify the noun logic rather than world, e.g. I will write
“the standard logic Lk in the argumentative context m”. Normal will qualify
those contexts, which do not allow the choice of a logic other than the standard
one. Non-normal contexts do allow the choice of a new logic underlying the
modalities of the chosen context. Before we go into the details let us distinguish
between the following different kinds of counterlogical arguments:

1 Assume an intuitionist logician who puts forward the following condi-
tional: If tertium non-datur were valid in my logic, then the two sides of
de Morgan Laws would hold (in my logic) too.

5See too Read 1994, 90–91 and Priest 1998, 482.
6Already Aristoteles used counterlogical arguments while studying the principle of non-contradiction, which
he saw as the principal axiom of logic.
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2 We take here once more our intuitionist: If tertium non-datur were valid
in the non-standard logic Lk, then the two sides of de Morgan Laws would
hold in Lk too.

In the first case the alternative logic here classical logic might be thought of
as a conservative extension of the standard one here intuitionistic logic i.e. any
valid formula of the standard logic will be valid too in the non-standard logic.
In the second case this seems to be less plausible: Lk could be a logic which is
a combination of classical logic with some other properties very different from
the intuitionistic ones. The situation is similar in the following cases where it is
assumed that the standard logic is a classical one and the alternative logic can
be a restriction:

3 If tertium non-datur were not valid in my logic, then one side of de Morgan
Laws would fail (in my logic).

4 If tertium non-datur were not valid in the non standard logic Lj , then one
side of de Morgan Laws would fail (in Lj).

Because of this fact it seems reasonable to implement the change of logics
by means of a substructural strategy (akin to the concept of dialogics) – i.e. a
strategy where the change of logics involves a change of the structural proper-
ties.7 Now in these examples the precise delimitation of a logic is assumed as a
local condition. However the conditional involved in the counterlogical seems
to follow another logic which would work as a kind of a metalogic that tracks
the changes of the local assumption of a given logic while building arguments
with such conditionals. The point here is that in this type of study classical logic
has no privileged status. Classical logic might be “the metalogic” in many cases
but certainly not here.

20.1.2 Non-normal dialogics

Motivation. Let us call non-standard such argumentation contexts (or
“worlds”) where a different logic holds relative to the logic defined as standard.
Thus, in this interpretation of non-normal modal logic the fact that the law of
necessitation does not hold is understood as implementing the idea that no
logically valid argument could be proven in such systems to be unconditionally
necessary (or true in any context and logic). Logicians have invented several
logics capable of handling logically arguments that are aware of such a situation.

7This strategy, as developed in Rahman/Keiff 2003, could be implemented either implicitly or explicitly.
The implicit formulation presupposes that the structural rules are expressed at a different level than the
level of the rules for the logical constants which are part of the object language. The explicit formulation
renders a propositionalisation of the structural rules using either the language of the linear logicians or hybrid
languages in the way of Blackburn 2001.
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The main idea of their strategy is simple: logical validity is about standard logics
and not about the imagined construction of non-standard ones; we only have to
restrict our arguments to the notion of validity involved in the standard logic.
Actually there is a less conservative strategy: namely, one in which a formula is
said to be valid if it is true in all contexts whether they are ruled by a standard or
a non-standard logic. The result is notoriously pluralistic: no logical argument
could be proven in such systems to be unconditionally necessary.

Anyway if we have a set of contexts, how are we to recognize those underly-
ing a standard logic? The answer is clear in modal dialogics if we assume that
the players can not only choose contexts but also the (non-modal)logic which
is assumed to underlie the chosen context. In this interpretation the Proponent
fixes the standards, i.e. determines which is the (non-modal) standard logic un-
derlying the modalities of a given context. However under given circumstances
the Opponent might choose a context where he assumes that a (non-modal)
logic different from the standard one is at work. Now, there are some natural
restrictions on the Opponent choices. Assume that in a given context O has
explicitly conceded that P fixes the standards. In other words, the Opponent
concedes that the corresponding formulae are assumed to hold under those
structural conditions which define the standard logic chosen by the Proponent:
we call these contexts normal. Thus, O has conceded that the context is normal
or rather, that the conditions in the context are normal. In this case O cannot
choose the logic: it is P who decides which logic should be used to evaluate
the formulae in question, and as already mentioned, P will always choose the
logic he has fixed as the standard one. That is what the concession means:
P has the choice. c which is assumed to underlie the chosen context. In this
interpretation the Proponent fixes the standards, i.e. determines which is the
(non-modal) standard logic underlying the modalities of a given context. How-
ever under given circumstances the Opponent might choose a context where he
assumes that a (non-modal) logic different from the standard one is at work.
Now, there are some natural restrictions on the Opponent choices. Assume that
in a given context O has explicitly conceded that P fixes the standards. In other
words, the Opponent concedes that the corresponding formulae are assumed to
hold under those structural conditions which define the standard logic chosen
by the Proponent: we call these contexts normal. Thus, O has conceded that the
context is normal or rather, that the conditions in the context are normal. In this
case O cannot choose the logic: it is P who decides which logic should be used
to evaluate the formulae in question, and as already mentioned, P will always
choose the logic he has fixed as the standard one. That is what the concession
means: P has the choice. Notice once more that “standard” logic does not really
simply stand for “normal”: normality, in the usual understanding of non-normal
modal logic, is reconstructed here as a condition which when a context m is
being chosen restricts the choice of the logic underlying the modalities of m.
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Dialogics for S0.5, S.2 and S3. The major issue here is to determine dy-
namically – i.e., during the process of a dialogue – in which of the contexts may
the Opponent not have to conceded that it is a non-normal one and allowing
him thus to choose a non-modal propositional logic different from the standard
one. This must be a part of the dialogue’s structural rules (unless we are not
dealing with dialogues where the dialogical contexts with their respective un-
derlying propositional logics are supposed to have been given and classified
from the start). I will first discuss the informal implicit version of the corre-
sponding structural rules and in the following chapter we will show how to build
tableaux which implement these rules while formulating the notion of validity
for the non-normal dialogics. Let us formulate a general rule implementing the
required dynamics but some definitions first:

Definitions:

• Normality as condition:
We will say that a given context m is normal iff it does not allow to choose
a (propositional) logic underlying the modalities of m other than the standard
one. Dually a context is non-normal iff it does allow the choice of a new logic.

• Standard logic:
P fixes the standards, i.e. P fixes the (propositional) logic which should be
considered as the standard logic underlying modalities and relative to which
alternatives might be chosen.

• Closing dialogues:
No dialogue can be closed with the moves (P)a and (O)a if these moves corre-
spond to games with different logics.

• Particle rules for non-normal dialogics:
The players may choose not only contexts they may also choose the proposi-
tional logic underlying the modalities in the chosen contexts:

�, ♦ Attack Defence
�A m ?�/nLj

m ALj
n

(�A is stated in context m (in the context m
underlying a logic Lk) the challenger attacks by

choosing an accessible
context n and logic Lj)

♦A m ?♦ m ALj
n

(♦A is stated in context m (the defender chooses
underlying a logic Lk) the accessible context n

and the logic Lj)

Or in the more formal notation of state of game (see appendix):
• �-particle rule: From �A follows < R, σ, A, λA/Lj ,n >, responding to

the attack ?�/nLj
stated by the challenger at m (underlying the logic Lk) and
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where λA/Lj ,n is the assignation of context n (with logic Lj) to the formula A,
and n and Lj are chosen by the challenger.

• ♦-particle rule: From ♦A follows < R, σ, A, λA/Lj ,n >, responding to
the attack ?♦ stated by the challenger at m (underlying the logic Lk) and where
λA/Lj ,n is the assignation of context n (with logic Lj) to the formula A, and n
and Lj are chosen by the defender.

The accessibility relation is defined by appropriate structural rules fixing the
global semantics (see appendix). To produce non-normal modal dialogic we
proceed by adding the following (structural) rule:
(SR-ST10.05) (S0.5-rule):

O may choose a non-standard logic underlying the modalities while
choosing a (new) context n with an attack on a Proponent’s formula
of the form �A or with a defense of a formula of the form ♦A stated in
m if and only if m is non-normal.

P chooses when the context is normal and he will always choose the stan-
dard logic but he may not change the logic of a given context (generated
by the Opponent). Furthermore, P may not choose a context where the
logic is non-standard.

The logic underlying the modalities of the initial context is assumed to
be the standard logic.

Three further assumptions will complete this rule:
S0.5 assumptions:

(i) The dialogue’s initial context has been assumed to be normal.

(ii) The standard logic chosen by P is classical logic Lc.

(iii) No other context than the initial one will be considered as being normal.

The dialogic resulting from these rules – combined with the rules for T – is a
dialogical reconstruction of logic is known in the literature as S0.5. In this logic
validity is defined relative to the standard logic and has the constraint that any
newly introduced context could be used by O to change the standards. Certainly
�(a ∨ ¬a) will be valid. Indeed, the newly generated context, which has been
introduced by the challenger while attacking the thesis, has been generated from
the normal starting context and thus will underlie the classical structural rule
SR-ST2C (see appendix). The formula ��(a ∨ ¬a) on the contrary will not
be valid. P will lose if O chooses in the second context, e.g., the intuitionistic
structural rule SR-ST2I:
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Contexts O P Contexts
��(a ∨ ¬a) 0 1{Lc}

1{Lc} 1 <?�/1.1 > 0 �(a ∨ ¬a) 2 1.1{Lc}

1.1{Lc} 3 <?�/1.1.1Li
> 2 a ∨ ¬a 4 1.1.1{Li}

1.1.1{Li} 5 <?∨ > 4 ¬a 6 1.1.1{Li}

1.1.1{Li} a 6 − 1.1.1{Li}

The Proponent loses playing with intuitionistic rules. O wins by playing in 3 the structural
rule, which changes the standard logic into an intuitionistic logic.

Let us produce a dialogical reconstruction of another logic, known as S2, where
we assume not only that the logic of the first context is normal and in general
SR-ST10.05, but also:
(SR-ST10.2) (S2-rule):

If O has stated in a context m a formula of the form �A (or if P has stated
in m a formula of the form ♦A), then the context m can be assumed to
be normal. Let us call (O)�A and (P)♦A normality formulae.

P will not change the logic of a given context (and he may not choose
a context where the logic is non-standard) but he might induce O to
withdraw a choice of a non-standard logic by forcing him to concede that
the context at stake is a normal one.

A normal context can only be generated from a(nother) normal context.

The first two points establish that a formula like �B could be stated by P
under the condition that another formula, say �A, holds. In this case O will
be forced to concede that the context is normal and this normality will justify
the proof of B within the standard logic. The third point of the rule should
prevent this process of justification from becoming trivial: formulae such as
(P)�♦A m, and (O)♦�A m should not yield normality if m is not normal: the
normality of m should be “outside” the scope of (P)� . . . m and (O)♦ . . . m.

This is, for our purpose, a more appealing logic than S0.5 because it makes of
the status of the contexts at stake a question to be answered within the dynamics
of the dialogue. One can even obtain certain iterations such as �(�(a → b) →
(�a → �b)) which is not valid in S0.5, but is in S2: the first context underlies
the standard classical logic by the second S0.5 assumption, the second context
too because O will concede �a there. Now, because the second context has
been Lc-conceded by O, he cannot choose a logic different from the classical
one, and P will thus win. Adding transitivity to S2 renders S3.

Dialogics for E0.5, E2 and E3. The point of the logics presented in the
preceding section was not to ignore the non-standard logics, but only to take
into consideration the standard one while deciding about the validity of a given
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argument. We will motivate here a less conservative concept, namely, one in
which a formula is said to be valid if it is true in all contexts whether they are
ruled by a standard or a non-standard logic. These logics are known as E. In
no E system will �A be valid for any formula A.

Suppose one modifies S0.5 in such a way that no context is assumed to be
normal and thus every modality will induce a change of logic. This logic, called
E0.5, is unfortunately not of great interest: a formula will be valid in E0.5 iff it
is valid in non-modal logics (think of �(a → b) → (�a → �b), which in this
logic cannot be proven to be valid). Modality seems not be of interest there,
and this logic can be thought of as a kind of a modal lower limit.

Now the elimination of the assumption that the first context is normal in
S2 that is, take SR-ST10.05 and SR-ST10.2 but drop the first and third S0.5
assumptions yields an interesting dialogic for our purposes. �(a → b) →
(�a → �b) is valid there, signalizing a more minimal structural condition for
the validity of this formula than K (for it does not even assume, as K does,
that validity concerns only contexts with the same kind of logic). Similarly one
could produce D versions, etc. Indeed E2 seems to be the appropriate language
where the logical pluralist might explore the way to formulate statements of
logical validity which do not assume a universal scope.

In fact, up to this point, this interpretation only offers a way to explore the
scope of the validity of some arguments when confronted with counterlogical
situations, where no middle term is to be conceived between what is to be
considered standard and what not. Moreover, that a central aim of this dialogic
is to explore fruitful counterlogicals seems not to have been implemented yet.
In the next chapter I would like to suggest some further possible distinctions in
order to perform this implementation.

Beyond non-normality. Let us take once more the following example,
where the standard logic is classical logic:

If tertium non-datur were not valid in my logic, then one sense of double negation
would fail (in my logic).

One possible formalisation consists of translating not-valid by “non-neces-
sary”. Now the problem with this example is that, if P does not change the
logic he can win the (negative) conditional in, say, S2 in a trivial way. Indeed,
O will attack the conditional conceding the protasis, P will answer with the
apodosis and after the mutual attacks on the negation P will win defending
tertium non-datur in classical logic. But then the argument seems not to be ter-
ribly interesting. This follows from the fact that in the interpretation displayed
above P may not change the standard logic once it has been fixed. In general
this is sensible because validity should be defined relative to one standard and
we cannot leave it just open to just any change. Moreover, though there is some
irrelevance there this irrelevance concerns only the formula conceded at the
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object language: in our case double negation. But what is relevant and is used
is the concession that the standard logic is the one where the classical structural
rule applies. Finally why should P change the logic if he can easily win in the
one he defined as standard?

However, in order to implement the dialogic of counterlogicals, one could
leave some degree of freedom while changing the logical standard without
too much complexity and inducing a more overall relevant approach: a given
standard logic may change into a restriction of this logic. In other words, the
standard logic may be changed to a weaker logic where any of its valid formulae
are also valid in the stronger one P first defined as standard. True, the problem
remains that it does not seem plausible that P will do it on principle: on principle
he wishes to win, and if the proof is trivial all the better for him. There are two
possibilities:

One is to build a dialogue under conditions determining from the start which
contexts are played under the standard logic and which are the ones where the
restriction of the standard logic hold (fix a model).

The other is to leave O to choose a conservative restriction of the logic P
first defined as standard.
(SR-ST10.2*):

If O has stated in a context m a formula of the form �A (or if P has stated
in m a formula of the form ♦A), then the context m can be assumed to be
normal. In these cases O might choose once a restriction of the standard
logic and P must follow in his choices the restrictions on the standard
logic produced by O.

A normal context can only be generated from a(nother) normal context.

In our example O will choose intuitionistic logic and there P will need the
concession of double negation if he wants to prove tertium non-datur. One way
to see this point is that O actually tests if in the substructural rules defining the
standard logic there are not some redundancies. Perhaps a sublogic might be
enough.

For the example of this chapter this seems enough but one could even allow
such restrictions in the case of the initial context in S0.5. Moreover one could
even drop the second S0.5 assumption and let P choose an arbitrary standard
logic. Take for example the case

If transitivity were not holding in my logic, then � a → �� a would fail too (in
my logic).

Suppose the standard logic is S4. We should use a notation to differentiate
the modality which defines the standard logic and which is normal from the
modalities which are used within the corresponding non-normal logic. Let
us use “∆” (resp. “∇”) for necessity (resp. possibility) in the standard logic.
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Furthermore let us use Blackburn’s hybrid language to “propositionalise” the
properties of the accessibility relation. We could thus write

¬�(∇∇νi → ∇νi) (transitivity) (in my S4 logic) → ¬�(∆a → ∆∆a) (in my
S4 logic).

If SR-ST10.2* applies then the Opponent will choose, say, the logic K and
the Proponent will win. In these types of dialogue the Opponent functions more
constructively than in the sole role of a destructive challenger. In fact, the Op-
ponent is engaged in finding the minimal conditions to render the counterlogical
conditional. Actually there has already been some work done concerning the
dialogic adequate for seeking the minimal structural conditions for modal logic.
These dialogues are called structure seeking dialogues (SSD) and have been
formulated in Rahman/Keiff 2003. In these dialogues, the “constructive” role
of the Opponent is put into work explicitly.8

Here is another kind of example:

If the principle of non-contradiction were not valid in my logic, then one sense
of double negation would fail (in my logic).

One other way to formalize this would be to put the negation inside the scope
of the necessity operator:

If it were necessary that the principle of non-contradiction does not hold, then it
would be necessary that one sense of double negation will fail.

If we assume here too that SR-ST10.2* applies then the Opponent will
choose some sort of paraconsistent logic (such as Sette’s P1). Certainly, the
Opponent will lose, anyway but other choices would lead to a trivial winning
strategy of the Proponent.

If, instead of using SR-ST10.2* we leave the choice of the standard logic
open, P might choose any logic as standard and then it would seem that almost
anything goes. It is perhaps not the duty of the logician to prevent this but the
application of SR-ST10.2* and the corresponding SSD can help there, leaving
the Opponent to search for the “right” the structural conditions under which the
formula should be tested.

The point may be put in a different way. In the dialogues of the preceding
chapters the role of the Opponent is to test if the thesis assumes surreptitiously

8In the context of the SSD with the thesis, say, A, the Proponent claims that he assumes that a determined
element δi (of a given set ∆ of structural rules) is the minimal structural condition for the validity of A.
Informally, the idea is that structural statements can be attacked by the challenger in two distinct ways. First,
by conceding the condition δi, claimed by the player X to be minimal, and asking X to prove the thesis.
Second, by (counter)claiming that the thesis could be won with a (subset of) condition(s) of lesser rank in
∆. In that case, the game proceeds in a subdialogue, started by the challenger who now will claim that
the formula in question can be won under the hypothesis δj , where δj is different from δi and has a lesser
rank as δi. Since the challenger (Y ) starts the subdialogue he now has to play formally. See details in
Rahman/Keiff 2003.



322 Shahid Rahman

that its validity holds beyond the limits of the standard logic. In this role the
Opponent may choose any arbitrary logic without any constraints. Let us now
assume, that the Opponent, still in the role already mentioned, comes to the
conclusion that the thesis of the Proponent holds as it is. The Opponent can then
play a slightly different role and explore the possibilities of another strategy:
he might try to check if the standard logic chosen is not too strong concerning
the thesis at stake. The latter is the aim of the structure seeking dialogues.

The preceding considerations hardly settle the matter of the ways the change
of logics can be studied dialogically. There are many other possible varia-
tions one could for example think that the SSD would be activated when some
problematic assumption of the standard logic arises which might not actually
concern the thesis. This will do for the present though.

20.2 Tableaux

The aim is to discuss the failure of the so-called Hintikka strategy concern-
ing the implementation of the accessibility relation while constructing tableau
systems for non-normal modal logics. This problematic seems to apply too to
the “propositionalisation” techniques of frame conditions such as practised in
hybrid languages.

Let us first present the tableaux which result from our dialogic.

20.2.1 Dialogical tableaux for non-normal modal logics

As discussed in the appendix, the strategy for dialogical games introduced
above furnishes the elements for building a tableau-notion of validity where
every branch of the tableau is a dialogue. Following the seminal idea at base
of dialogic, this notion is attained via the game-theoretic notion of winning
strategy. X is said to have a winning strategy if there is a function, which, for
any possible Y-move, gives the correct X-move to ensure the winning of the
game.

Indeed, it is a well known fact that the usual semantic tableaux in the tree-
shaped structure due to Raymond Smullyan are directly connected with the
tableaux for strategies generated by dialogue games, played to test validity in
the sense defined by these logics. E.g.

O-cases P-cases
Σ, (O)A → B Σ, (P)A → B
—————————— ——————————
Σ, (P)A, . . . |Σ, < (P)A > (O)B Σ, (O)A,

Σ, (P)B

The vertical bar ”|” indicates alternative choices for O; P must have defense
strategies for the two possibilities (dialogues).
Σ is a set of dialogically signed expressions.
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Matching pairs of “<” and “>” enclose formulae which could not be attacked.

The elimination of expressions like < (PA) > and the substitution of F(alse)
for P and T(rue) for O yield signed standard tableau for the conditional.

However, strictly speaking, as discussed in Rahman/Keiff 2003, the resulting
tableaux are not quite the same. A special feature of dialogue games is the
notorious formal rule SR-ST4 which is responsible for many of the difficulties
of the proof of the equivalence between the dialogical notion and the truth-
functional notion of validity. The role of the formal rule, in this context, is
to induce dialogue games which will generate a tree displaying the (possibly)
winning strategy of P, the branches of which do not contain redundancies. Thus
the formal rule actually works as a filter for redundancies, producing a tableau
system with some flavour of natural deduction. This role can be generalised
for all types of tableau generated by the various dialogics. Once this has been
made explicit, the connection between the dialogical and the truth-functional
notion of validity becomes transparent.

Let us see first the dialogical tableaux for normal logic as presented in Rah-
man/Rückert 1999 and improved in Blackburn 2001, though the notation there
diverges slightly from the present one:

O-cases P-cases
(O)�A m (P)�A m

—————————– —————————–
<(P)?�/n♯>(O)A n <(O)?�/n>(P)A n
the context n need the context n is new

not to be new

(O)♦A m (P)♦A m
—————————– —————————–

<(P)?♦>(O)A n <(O)?♦>(P)A n♯
the context n is new the context n need

not to be new

“m” and “n” stand for contexts; “♯” restricts the choices of P according to the
properties of the accessibility relation defining the corresponding normal modal
logics. Dialogical contexts always constitute a set of moves. These contexts
may have a finite number, or a countable infinity of elements, semi-ordered by a
relation of succession, obeying the very well known rules which define a tree. The
thesis is assumed to have been stated at a dialogical context which constitutes the
origin of the tree. The initial dialogical context is numbered 1. Its n immediate
successors are numbered 1.i (for i = 1 . . . n) and so on. An immediate successor
of a context m.n is said to be of rank +1, the immediate predecessor m of m.n
is said to be of rank −1, and so on for arbitrarily higher (lower) degree ranks.

I will leave the discussion of how to specify ‘♯’ for the next section to present
first the tableaux for non-normal dialogics:
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O-cases P-cases
(O)�A m (P)�A m

—————————– —————————–
<(P)?�/n♯Ls

>(O)ALs n <(O)?�/nLi
>(P)ALi

n

the context n need the context n is new;
not to be new; the logic Li is different

the logic at m is the from the standard one Ls

standard one Ls iff m is non-normal

(O)♦A m (P)♦A m
—————————– —————————–

<(P)?♦>(O)ALi
n <(O)?♦>(P)ALs n♯

the context n is new; the context n need
the logic Li is different not to be new;
from the standard Ls the logic at m is the
iff m is non-normal standard logic Ls

We need the following rule concerning closure:
• Closing branches: No branch can be closed with the moves (P)a and (O)a if
these moves correspond to games with different logics.

To produce S0.5 add to the adequate implementation of the accessibility
relations the following:

S0.5 normality conditions:

1 The dialogue’s initial context has been assumed to be normal. No other
context than the initial one will be considered as being normal.

2 The standard logic chosen by P is classical logic Lc.

3 The Proponent may not:

• choose a context where the logic is different from the standard one;

• change the logic of a given context m if m has been generated from
a non-normal context.

To produce S2, add to the S0.5-rule the following:

(S2–normality conditions):

If O has stated in a context m a formula of the form �A (or if P has stated
in m a formula of the form ♦A), then the context m can be assumed to
be normal.

A normal context can only be generated from a(nother) normal context.

The construction of the other tableaux is straightforward.
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20.2.2 On how not to implement the accessibility relations

In dialogics, the properties of the accessibility relation could be implemented
in the following way:

(SR-ST9.2K) (K): P may choose a (given) dialogical context of rank +1
relative to the context he is playing in.

(SR-ST9.2T) (T): P may choose either the same dialogical context where
he is playing or he may choose a (given) dialogical context of rank +1
relative to the context he is playing in.

(SR-ST9.2B) (B): P may choose a (given) dialogical context of rank −1
(+1) relative to the context he is playing in, or stay in the same context.

(SR-ST9.2S4) (S4): P may choose a (given) dialogical context of rank
>+1 relative to the context he is playing in, or stay in the same context.

(SR-ST9.2S5) (S5): P may choose any (given) dialogical context.

Moreover we could for example build the transitivity part of the rule for S4
in the tableau rule in the following way:

(O)�A m
n = m + 1

——————————
<(P)?�/n>(O)ALs n

Actually, there is another technique to implement this and which is con-
nected with the idea of finding in the object language formulae which express
frame conditions: the idea has been used by Hintikka for the construction of
tableaux and is thus known today as Hintikka’s strategy. The idea is a bold
one and captures the spirit of the axiomatic approaches. Let us formulate
the rule in Hintikka’s style leaving aside for the moment the choice of the
logic:

(O)�A m
n = m > +1

——————————
<(P)?�/n>(O) �A n

That is, if �A holds at m then it should also hold at the context n provided n
is accessible from m. The rule stems from the idea that transitivity is associated
with the validity of the formula: �A → ��A.

The “up-wards” transitivity of S5 can be formulated similarly. Actually, the
only device one needs is the one concerning K. Then, as soon as context has
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been “generated” the rules defining the other modal logics tells what formulae
can be used to fill the opened context - Hintikka speaks of “filling rules. The
simplicity and conceptual elegance of this strategy had made it very popular9

and it is connected with a more radical formalisation strategy such as that of
hybrid languages.10 In the latter, the point is to fully translate the properties
of accessibility relations into the object language of propositional modal logic,
which has been extended with a device to “name contexts” such as “@m”. The
idea behind the @ operator is to distinguish the assertion that a given formula A
can be defended in the dialogical context m from the dialogical context n where
the assertion has been uttered – which could be different from m. Properties
of the accessibility relation can in this case be formulated as propositions. One
problem for the general application of Hintikka’s strategy is that there are some
frame conditions like irreflexivity, asymmetry, anti-symmetry, intransitivity and
trichotomy which are not definable in orthodox modal languages. The aim of
hybrid languages is to close this gap by enriching the modal language and apply
then Hintikka’s strategy.

The hybrid strategy seems at first sight, very appealing to our interpretation of
non-normal modal logic where the concession of normality actually amounts
to the concession of a rule defining the corresponding standard logic. If the
standard logic is a modal one, then the concession, when formulated in the
style of hybrid languages, amounts to add a premise. Now, if it is indeed a
premise (stating frame conditions) then it seems a good idea to have this premise
expressed in the same language as the other premises. For example in the
following way:

(O)�A @m
♦♦n → ♦n @m

—————————–
<(P)?�/n>(O)A @n

However, the application of both the Hintikka and the hybrid strategy in the
context of non-normal logic should be done very carefully. If not we might, say
in the S3, convert a non-normal context into a normal one by the assumption
that the accessibility relation is transitive.11 Moreover, we would come to the
result that every non-normal logic with transitivity collapses into normality.
But normality is a condition qualifying worlds and not about accessibility. In
fact the point of logic as S3 is that we could have transitivity without having
necessitation. Certainly, defenders of Hintikka’s and hybrid strategies might
fight back introducing the proviso that their rules apply under the condition that

9See for example Fitting 1983, 37; Fitting/Mendelsohn 1998, 52; Girle 2000, 32–34.
10Cf. Blackburn 2001 and Blackburn/de RijkeVenema 2002.
11Cf. Girle 2000, 187 where the exercise 3.3.1. 2(a) shows how such a mistake slipped into his system.
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the contexts in question are normal. In fact, Fitting uses such a strategy in his
book of 1983 (274).

Anyway, this loss of generality awakes, at least to the author of the paper,
a strange feeling. A feeling of being cheated: Transitivity talks about accessi-
bility between contexts and not about necessitation in normal contexts. Hybrid
languages seem to be the consequent and thorough development of a notion akin
to Hintikka’s strategy and perhaps pay the same price. Indeed, in the language
of dialogics we would say that the propositionalisation of frame conditions
amounts to producing a new (extension of a) logic without really changing
either the local or the global semantics. It is analogue to the idea of produc-
ing classical from intuitionistic dialogic just by adding tertium non datur as a
concession (or axiom) determined by the particular circumstances of a given
context. Indeed, with this technique we can produce classical theorems within
the intuitionistic local and global (or structural) semantics. Assume now that
we are in the modal dialogic K and that in a given (dialogical) context the
Opponent has attacked a necessary formula a ∨ b of the Proponent. Assume
further that the Proponent has at his disposal a filling rule which allows him
to “fill” this very context with a necessary formula of the Opponent, say, b.12

Then obviously, P will win and strictly speaking, from the dialogical point
of view, he always remains in K. One other way to see this is to realize that,
what the “filling rules” do, is to allow appropriate “axioms” to be added to
some contexts specified by these rules in order to extend the set of theorems
of K without changing its semantics. As already acknowledged, the idea is
elegant and perspicuous but it simply does not work so straightforwardly if
non-normal contexts are to be included. Perhaps we should even learn from all
this exercise that converting frame conditions into propositions drives us to a
notion of the relation of accessibility which does not yet seem to have been fully
understood.13
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Appendix

A.1 A brief survey of dialogic
The aim here is to introduce very briefly the conceptual kernel of dialogic in the context of

the dialogical reconstruction of first-order propositional calculus, in its classical and intuitionist
versions.14

Let our language L be composed of the standard components of first-order logic (with four
connectives ∨, ∧, →, ¬, and two quantifiers ∀, ∃), with small letters (a, b, c, . . .) for prime
formulæ, capital italic letters (A, B, C, . . . ) for formulæ that may be complex, capital italic bold
letters (A, B, C, . . . ) for predicators. Constants are noted τi, where i ∈ N, and variables with
the usual notation (x, y, z, . . .). We will also need some special force symbols: ?. . . , and !. . . ,
where the dots stand for indices, filled with some adequate information that will be specified
by appropriate rules. An expression of L is either a term, a formula or a special force symbol.
P and O are two other special symbols of L, standing for the players of the games. Every
expression e of our language can be augmented with labels P or O (written P−e or O−e, called
(dialogically) signed expressions), meaning in a game that the expression has been played by P
or O (respectively). We use X and Y as variables for P, O, always assuming X �= Y . Other
more specific labels will be introduced where needed.

An argumentation form or particle rule is an abstract description of the way a formula,
according to its principal logical constant, can be criticised, and how to answer the criticisms. It
is abstract in the sense that this description can be carried out without reference to a determined
context. In dialogic we say that these rules state the local semantics, for they show how the
game runs locally, in the sense that what is at stake is only the critic and the answer to a given
formula with one logical constant rather than the whole (logical) context where this formula is
embedded. Hence, the particle rules fix the dialogical semantics of the logical constants of L in
the following way:

∧ ∨ →
assertion X−A ∧ B X−A ∨ B X−A → B
attack Y−?L, or Y−?R Y−?∨ Y−A
defense X−A or X−B (resp.) X−A, or X−B X−B

∀ ∃ ¬
assertion X−∀xA X−∃xA X−¬A
attack Y−?∀/τ Y−?∃ Y−A

for any τ chosen by Y. for any τ X may choose,
defense X−A(x/τ) X−A(x/τ) –

(i.e. no defense)

(Where A and B are formulæ, and A(x/τ) is the result of the substitution of τ for every
occurrence of the variable x in A.)

One more formal way to stress the locality of the semantics fixed by the particle rules is to
see these rules as defining a state of a (structurally not yet determined) game. Namely:

Definition (state of the game): A state of the game is an ordered triple < ρ, σ, A > where:

14Cf. Lorenzen 1958 and Lorenzen/Lorenz 1978. The present more modern version stems from
Rahman/Keiff 2003.
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– ρ stands for a role assignment either R, from players X, Y to only one element of the
set ?(attack), !(defense) determining which player happens to occupy the challenger and
which the defender role, or R′, inverting the role assignment R of both players (e.g. if
R(X) =? and R(Y ) =!, then R′(X) =! and R′(Y ) =?). The players perform their
assigned role as challengers (defenders) by stating an attack (or asserting a defense) fixed
by the corresponding rule.

– σ stands for an assignment function, substituting as usual individuals to variables.

– A stands for a dialogically labelled subformula A with respect to which the game will
proceed.

Particle rules are seen here as determining which state of the game S’ follows from a given
state S without yet laying down the (structural) rules which describe the passage from S to S’.
What state follows of S =< R, σ, F > for the X-labelled formula F?

Negation particle rule: If F is of the form ¬A then
S′ =< R′, σ, A >, i.e. Y will have the role of defending A and X the role of (counter)-
attacking A.

Conjunction particle rule: If F is of the form A ∧ B then
S′ =< R, σ, A > or S′′ =< R, σ, B >, according to the choice of challenger
R(Y ) =? between the attacks ?L and ?R.

Disjunction particle rule: If F is of the form A ∨ B then
S′ =< R, σ, A > or S′ =< R, σ, B >, according to the choice of defender R(X) =!,
reacting to the attack ?∨ of the challenger R(Y ) =?.

Subjunction particle rule: If F is of the form A → B, then
S′ =< R, σ, A > and the game might proceed to the state S′ =< R′′, σ, B >, or
even the other way round according to the choice of the defender and reacting to the
attack A of the challenger R(X) =?.

universal quantifier particle rule: IfF is of the form∀xAx thenS′ =< R, σ(x/τ), A >
for any constant τ chosen by the challenger R(Y ) =? while stating the attack ?∀/τ .

existential quantifier particle rule: IfF is of the form∃xAx thenS′ =< R, σ(x/τ), A >
for any constant chosen by the defender R(X) =! reacting to the attack ?∃ of the chal-
lenger R(Y ) =?.

A dialogue can be seen as a sequence of labelled expressions, the labels carrying information
on the game significance of these expressions. Dialogues are processes, so they are dynamically
defined by the evolution of a game, which binds together all the labels mentioned. In other words,
the set of expressions which is a complete dialogue can be dynamically determined by the rules
of a game, specifying how the set can be extended from the original thesis formula. Particle rules
are part of the definition of such a game, but we need to set the general organisation of the game,
and this is the task of the structural rules. Actually structural rules can, while implementing
the local semantics of the logical particles, determine a kind of game for a context where e.g.
the aim is persuasion rather than logical validity. In these cases dialogic extends to a study of
argumentation in a broader sense than the logical one. But when the issue at stake is indeed
testing validity, i.e. when P can succeed with the use of the appropriate rules in defending the
thesis against all possible allowed criticism by O, games should be thought of as furnishing the
branches of a tree which displays the games relevant for testing the validity of the thesis. As a
consequence of this definition of validity, each split of such a tree into two branches (dialogue
games) should be considered as the outcome of a propositional choice of O. In other words
when O defends a disjunction, he reacts to the attack against a conditional, and when he attacks
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a conjunction, he chooses to generate a new branch (dialogue). Dually P will not choose to
change the dialogue (branch). In fact, from the point of view of games as actual (subjective)
procedures (acts), it could happen that the subject playing as O (P) is not clever enough to see
that his best strategy is to open (not to open) a new dialogue game (branch) anytime he can, but
in this context where the issue is an inter-subjective concept of validity, which should lead to a
straightforward construction of a system of tableaux, we simply assume that O makes the best
possible move.

(SR-ST0) (starting rule): Expressions are numbered and alternately uttered by P and O. The
thesis is uttered by P. All even-numbered expressions including the thesis are P-labelled, all
odd-numbered expressions are O moves. Every move below the thesis is a reaction to an earlier
move with another player label and performed according to the particle and the other structural
rules.

(SR-ST1) (winning rule): A dialogue is closed iff it contains two copies of the same prime
formula, one stated by X and the other one by Y, and neither of these copies occur within the
brackets “<” and “>” (where any expression which has been bracketed between these signs
in a dialogue either cannot be counterattacked in this dialogue, or it has been chosen in this
dialogue not to be counterattacked). Otherwise it is open. The player who stated the thesis wins
the dialogue iff the dialogue is closed. A dialogue is finished if it is closed or if no other move
is allowed by the (other) structural and particle rules of the game. The player who started the
dialogue as a challenger wins if the dialogue is finished and open.

(SR-ST2I) (intuitionist ROUND closing rule): In any move, each player may attack a (complex)
formula asserted by his partner or he may defend himself against the last not already defended
attack. Defences may be postponed as long as attacks can be performed. Only the latest open
attack may be answered: if it is X’s turn at position n and there are two open attacks m, l such
that m < l < n, then X may not at position n defend himself against m.

(SR-ST2C) (classical ROUND closing rule): In any move, each player may attack a (complex)
formula asserted by his partner or he may defend himself against any attack (including those
which have already been defended).

(SR-ST3/SY) (strategy branching rule): At every propositional choice (i.e. when X defends a
disjunction, reacts to the attack against a conditional or attacks a conjunction), X may motivate
the generation of two dialogues differentiated only by the expressions produced by this choice.
X might move into a second dialogue iff he loses the first chosen one. No other move will
generate new dialogues.

(SR-ST4) (formal use of prime formulæ): P cannot introduce prime formulæ: any prime
formula must be stated by O first. Prime formulæ can not be attacked.

(SR-ST5) (no delaying tactics rule):

While playing with the classical structural rule P may perform once a new defense
(attack) of an existential (universal) quantifier using a different constant (but not new) iff
the first defense (attack) compelled P to introduce a new constant. No other repetitions
are allowed.

While playing with the intuitionistic structural rule, P may perform a repetition of an
attack if and only if O has introduced a new prime formula which can now be used by P.

Definition (Validity): A tableau for (P)A (i.e. starting with (P)A) proves the validity of A iff
the corresponding tableau is closed. That is, iff every dialogue generated by (P)A is closed.
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Examples. In Fig. 1 the outer columns indicate the numerical label of the move, the inner
columns state the number of a move targeted by an attack. Expressions are not listed following
the order of the moves, but writing the defense on the same line as the corresponding attack,
thus showing when a round is closed. Recall, from the particle rules, that the sign “–” signalises
that there is no defense against the attack on a negation. In this example P wins because, after
the O’s last attack in move 3, P, according to the (classical) rule ST2C, is allowed to defend
himself (once more) from the attack in move 1 (in the same dialogue. P states his defense in
move 4 though, actually, O did not repeat his attack - this fact has been signalised by inscribing
the unrepeated attack between square brackets.

O P
a ∨ ¬a 0

1 ?∨ 0 ¬a 2

3 a 2 -
[1] [?∨] [0] ¬a 4

Fig. 1. SDC rules. P wins.

O P
a ∨ ¬a 0

1 ?∨ 0 ¬a 2

3 a 2 -

Fig. 2. SDI rules. O wins.

In the game of Fig. 2, O wins because, after the challenger’s last attack in move 3, P, according
to the intuitionistic rule SR-I, is not allowed to defend himself (once more) from the attack in
move 1.

Philosophical remarks: game as propositions. Particle rules determine dynam-
ically how to extend a set of expressions from an initial assertion. In the game perspective, one
of the more important features of these rules is that they determine, whenever there is a choice to
be made, who will choose. This is what can be called the pragmatic dimension of the dialogical
semantics for the logical constants. Indeed, the particle rules can be seen as a proto-semantics,
i.e. a game scheme for a not yet determined game which when completed with the appropriate
structural rules will render the game semantics, which in turn will build the notion of validity.

Actually by means of the particle rules games have been assigned to sentences (that is, to
formulæ). But sentences are not games, so what is the nature of that assignment? The games
associated to sentences are meant to be propositions (i.e. the constructions grasped by the
(logical) language speakers). What is connected by logical connectives are not sentences but
propositions. Moreover, in the dialogic, logical operators do not form sentences from simpler
sentences, but games from simpler games. To explain a complex game, given the explanation
of the simpler games (out) of which it is formed, is to add a rule which tells how to form new
games from games already known: if we have the games A and B, the conjunction rule shows
how we can form the game A B in order to assert this conjunction.

Now, particle rules have another important function: they not only set the basis of the seman-
tics, and signalise how it could be related to the world of games - which is an outdoor world if the
games are assigned to prime formulæ, but they also show how to perform the relation between
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sentences and propositions. Sentences are related to propositions by means of assertions, the
content of which are propositions. Assertions are propositions endowed with a theory of force,
which places logic in the realm of linguistic actions. The forces performing this connection
between sentences and propositions are precisely the attack (?) and the defense (!). An attack is
a demand for an assertion to be uttered. A defense is a response (to an attack) by acting so that
you may utter the assertion (e.g. that A). Actually the assertion force is also assumed: utter the
assertion that A only if you know how to win the game A.

Certainly the “know” introduces an epistemic moment, typical of assertions made by means
of judgements. But it does not presuppose in principle the quality of knowledge required. The
constructivist moment is only required if the epistemic notion is connected to a tight conception
of what means that the player X knows that there exists a winning game or strategy for A.

A.2 Soundness and completeness of the tableaux systems
The tableau systems for non-normal logics presented above are essentially those of Fitting

1983, Girle 2000 and Priest 2001 without the use of Hintikka’s strategy for the accessibility
relation of the first two authors. I will not rewrite the proofs here and rely on the proofs of
Fitting 1983 and Priest 2001. What I will do is to show how to transform the dialogical tableaux
into the ones of the authors mentioned above. To see this notice that if the Opponent (=T in
the signed non dialogical version of the tableau) is clever enough, on any occasion where he
may choose logic he will choose one, where he assumes that the Proponent (=F in the signed
non dialogical version of the tableau) will lose. In fact, if the tableau systems are thought as
reconstructing the usual notion of validity of non-normal modal logic we must assume that it will
be always the case that if O chooses a logic then P will lose however, notice that dialogically
we must not assume this: O might lack some information and choose the wrong logic. One
way to implement the assumption of the cleverness of the Opponent slightly more directly is to
forbid P to answer to an attack on a necessary formula (or to attack a possible formula of the
Opponent) stated at a context m unless this context is normal. Moreover, if we are interested in
freeing ourselves from the interpretation of the contexts as representing situations where logic
could be different, or more generally from any interpretation concerning the “structural inside”
of non-normal contexts, the rules will amount to the following simplified formulation:

(O = T)-cases (P = F)-cases
(O = T)♦A m (P = F)�A m

—————————– —————————–
<(P)?♦>(O = T)A n <(O)?�/n>(P = F)A n
the context n is new the context n is new
the rule is activated the rule is activated

iff m is normal iff m is normal

Furthermore, deleting from the tableau the expressions <(P)?♦> and <(O)?�/n>, which have
only a dialogical motivation, yields the usual tableau systems mentioned above.
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LOUIS JOLY AS A PLATONIST PAINTER

Roger Pouivet
University of Nancy 2/Archives Poincaré (CNRS)

Roger.pouivet@univ-nancy2.fr

Gerhard Heinzmann and the staff of Archives Poincaré thought that the par-
ticipants of this conference would be interested in some of the works of Louis
Joly: those that belong to his “mathematical” period. Drawing attention to this
painter merely because his family lived in Toul, near Nancy, would be a bit
misguided; for Joly himself did not live in Toul but in Paris, where he was an
engineer at the National Cartographic Institute. He worked there profession-
ally on all sorts of maps in search of techniques by which to relate real and
topographic spaces. From the perspective of this conference, what is of special
interest is the mathematical and pictorial project which preoccupied him during
the fifties and the sixties.

About this project, he said: “I strive to achieve a geometrical experimentation
related to an axiomatic horizon”. In itself, this sentence seems rather obscure,
or at least enigmatic. But by situating Joly within the recent history of art, we
will perhaps be able to understand more clearly what he was up to.

Joly was fascinated by the works of a Parisian group which was active in
the thirties, the so-called “Abstraction-Création” Group. Its leader was the
Belgian painter, George Vantongerloo, who was himself a former participant in
the Dutch De Stijl Group, of which Mondrian is the best-known artist. In the
fifties, Joly belonged to a group of French artists who took the name “Groupe
Mesure” and who had a common interest in geometry. The leading figure in this
group was François Morellet. While it is important to consider Joly’s historical
situation in the twentieth century, we must not overlook the very old tradition
to which he belongs: the tradition which comes from the ancient speculations
on the “golden ratio” and continues through the development of geometrical
perspective in the Renaissance.
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The fundamental idea in all of these sources is that mathematics and painting
are not opposed, as many of the Romantics seem to have thought, but are strongly
interrelated. Joly thought of his work as an intellectual effort, controlled by
mathematics, and not at all as a sentimental effusion. Some other painters in this
“mathematical” movement seem to consider the relation between mathematics
and painting as that of analogy: an external metaphorical relation. I think
that François Morellet—far better known than Joly—adopted this metaphorical
stance in his mathematical paintings. Not Joly. He thought that a painter
could really create works of art out of mathematical constructions, for example,
those associated with mathematical algorithms developed by Pascal, Cayley and
Plücker.

Given this, are we to consider as Joly fundamentally (and perhaps naively)
Platonist? Beauty for him seems have been not a property of sensible things
in the material world, but of abstract mathematical objects in an ideal world.
His efforts seem to be directed at providing phenomenal access to this formal
beauty. But such a project seems contradictory. The harder one works on a
sensible equivalent of the ideal model, the further away one is taken from real,
abstract beauty. On the other hand, if one is too abstract, one simply ceases
to be a painter, being in the end unable to create a sensible object with truly
aesthetic properties. Surely, Joly faced this problem. He worked for days and
weeks with very complicated mathematical calculi before taking up his brushes;
but the act of painting was perhaps always too material to capture his ambition,
even if we think that, from an aesthetic point of view, his painting is neither
sufficiently careful nor particularly attractive.

I take no position here as to whether the idea of truly Platonist painting is or is
not contradictory in itself. It is closer to my present purpose to ask whether Joly
was really a Platonist. Perhaps is there another way—a non-Platonist way—to
understand his project.

You may be familiar with the notion of exemplification proposed by Nel-
son Goodman in Languages of Art.0 Roughly, A exemplifies B if and only
if B denotes A and A instantiates B. Suppose that B is a mathematical algo-
rithm and that A is one of Joly’s “mathematical” paintings. Then, we could
interpret his works as exemplifications of certain geometrical functions. Good-
man distinguishes further between literal and metaphorical exemplification. If
B metaphorically denotes A, A may also metaphorically exemplify B. In the
spirit of this conference, we could say that metaphorical exemplification is a
sub-relation of the converse of denotation! The advantage of such an interpre-
tation is that Joly’s project would then cease to appear contradictory, in the way
that it did given the Platonist interpretation. Joly may be understood not as

0Nelson Goodman, Languages of Art, 2nd ed, Indianapolis : Hackett, 1976.
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trying to instantiate abstract mathematical realities in the aesthetic world, but
as attempting to exemplify the mathematical algorithms expressed in certain
formulas.

But if this non-Platonist interpretation permits us to avoid the attribution of
contradiction to Joly’s project, it leads to another query. What is the difference
between mathematical and aesthetic exemplification? More simply: are Joly’s
paintings paintings or rather mathematical figures, which present themselves
as paintings but are finally something else? Is Joly, in the end, a painter, an
artist? Or is he rather a geometer?

I think that the Goodmanian interpretation gives more reason than the Pla-
tonist one to see Joly as a painter and an artist. Why? Because, as Goodman
says, metaphorical exemplification, even if it is not a criterion of the aesthetic,
can be considered as a symptom of the aesthetic. Of course, someone might ask
whether Joly’s paintings are not in fact literal exemplifications of mathematical
algorithms, and therefore geometrical figures, rather than artistic images. But
I think that the answer is that they are absolutely non-literal. What supports
this view? The answer is simple: Joly offers his paintings as paintings! He
exhibits them as paintings. The stance that renders them metaphorical is sim-
ply the artistic one. Does this mean that Joly shares with Marcel Duchamp the
now completely hackneyed idea of the ready-made? In a sense, yes. Marcel
Duchamp offered us ready-made, material artefacts. Joly was far more subver-
sive when he proposed to offer us ready-made, mathematical algorithms. With
Joly’s work, the metaphor lay in the transition from the mathematical realm to
the artistic one, exactly as the Duchampian transfer consisted in moving from
industrial objects to artistic ones.

It seems to me that we have here discovered the reason why Joly did not
attempt to “aestheticize” his works. He did not try to be aesthetically impressive
by adding visual effects to the simple figuration of mathematical functions. He
did not try to give a pleasant, and simply allusive, representation of mathematical
functions, but meant to present them as mathematical ready-mades, with the
fewest possible artistic embellishments. But to what end?

In a paper on Virgina Woolf and our knowledge of the external world, Jaakko
Hintikka point out a strong, but unexplored, relationship between the literary
works of the Bloomsbury Group, especially Virginia Woolf, and the philosophy
of Moore and Russell. Hintikka describes certain parts of Woolf’s novels as
“fictionalised epistemology”.1 It is not, he explains, that philosophical ideas
are the topic of her novels but that the ideas are included in the texture of those
works. This seems to me very close to what Joly had in mind. In speaking of
the metaphorical exemplification of mathematical functions in Joly’s painting,

1I used the French edition of this text : “Virginia Woolf et notre connaissance du monde extérieur”, in Jaakko
Hintikka, La vérité est-elle ineffable ?, Paris : Vrin, 1994.
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I meant to emphasize that Joly was not trying to illustrate mathematics. In
literature, one encounters the kind of novel in which each character illustrates a
philosophical position. Even very great novelists—Thomas Mann, for example,
in the Magic Mountain—give the impression that their characters are creatures
of philosophy courses. In painting, there is the same risk. In facing it, Joly
cleaves more closely to Woolf’s method than to that of Thomas Mann. He
is not making an allusion to mathematical functions, but is really trying to
manifest their aesthetic character. By analogy with the expression “fictionalised
epistemology”, used by Hintikka about Woolf, one could speak, in the case of
Joly, about “painted mathematics”.

As I explained earlier, metaphorical exemplification is a kind of reference
in which something instantiates a predicate that denotes it. Allusion involves
another kind of reference. A alludes to B in both cases where it denotes some-
thing C that exemplifies B or exemplifies something C that denotes B. In both
cases, the reference is indirect and can be completely external. For example,
if you characterize a philosopher by saying that he is an Hegelian, meaning
that his works exemplify the predicate “enormous in scope and depth”, then the
term “Hegelian” denotes those works of Hegel that exemplify this predicate;
but this does not mean that the philosopher whose thought you characterize is
himself a follower of Hegel. Indeed, we might say, in this sense, that Russell is
Hegelian. An example of the second case is one in which a football team, say
the French team, is called the roosters, on the grounds that roosters exemplify
some predicate that denotes the French football team (I hesitate here between
“proud” and “arrogant”). Joly’s paintings do not allude to mathematical func-
tions. Joly has the remarkable ambition of realizing a far more direct relation
between his paintings and mathematics: the relation captured by Goodman’s
notion of metaphorical exemplification.

Even if my interpretation were to be accepted, it could still be objected
that Joly’s mathematical paintings are not chefs-d’oeuvre; and it might even
be maintained that they are completely lacking in aesthetic merit. How might
such a criticism be answered? I could try to side-step this issue by reminding
you that I am not an art critic, but merely a modest philosopher, completely
unable to evaluate the aesthetic merit Joly’s works. But even if I think, with
Goodman, that aestheticians tend to overvalue questions of aesthetic merit, I
know also that these questions cannot be avoided in the end, for we humans are
not only rational animals but also axiological animals. So let me make a stab
at answering this charge.

I have here taken for granted that Joly’s paintings lack the quality of being
easy on the eye. His painting is perhaps too much intellectual for its aesthetic
merit to be assessed in the usual ways. But compared to the paintings of
Magritte, or even Francis Bacon, for example (and I apologize to those who
like them)—that is, paintings saturated by what I take to be a crude philosophical
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symbolism—it seems to me that Joly’s works are not lacking in aesthetic merit.
Rather, their merit is of a rather special kind. Joly does not pretend to deliver
any speculative, post-metaphysical message about the inner psyche, the status
of images, or the condition of post-modern man. He simply takes seriously
the requirement that he should know why the lines he traces on planks must
lie precisely where he traces them. Joly is not preoccupied with the human
condition, individual or collective, but is interested in something that he believed
to be more real and robust.

Now, even if, using the nominalistic semiotics of Goodman, I defended a
non-Platonist interpretation of Joly’s paintings, Joly was perhaps a Platonist in
another—and far more interesting—sense. His paintings are intended not as
romantic expressions of subjectivity, but as the products of objective research.
Finally, Joly’s stance amounts to a kind of scientific asceticism. Painting does
not aim at creating things which are easy on the eye, as in vulgar impressionism.
Painting is a more serious thing. Joly chose what he conceived as the difficult
path of mathematical painting, not the easy path of pleasant painting. If we
respect this approach, aesthetic merit must be seen to lie in the creative effort as
much as in its results. The strenuous task that Joly imposes on himself—to find
an artistic way to exemplify mathematical functions—his asceticism, and his
seriousness in this research project, all possess the kind of value Plato attributes
to the intellectual formation of character. The formal requirements that Joly set
for painting amount really to moral constraints. This is what is truly Platonist
in Joly’s work.

Like Vantongerloo especially, Joly was not interested in phenomenal appear-
ances or, more generally, in mimesis. Nor was he interested, like some Cubists,
in other, less mimetic, approaches to the representation of reality. He was not
interested at all in imitation. The forms that appear in his paintings had to be
justified by something which escapes all contingency. And it seems to me that
this requirement was something like an austere and Platonic moral in painting.
I leave it to you to judge whether or not this Platonic morality is, in the end,
much too austere.
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