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Preface 

This book is an exploration of projective geometric algebra that emerged from more than a decade 
of personal research that can be described as a quest for a complete picture of the underlying math
ematics. While that quest has been successful in many ways, the subject has also proven itself to 
be an unending source of new knowledge and understanding that can never be fully conquered. 
What's written in the chapters that follow is a detailed description of the author's understanding at 
the present time, and it is sure to be exceeded by new discoveries in the future. 

The term geometric algebra is used more broadly in this book compared to most other publi
cations, and it includes the exterior algebra first developed by Hermann Grassmann. The word 
projective in the name of the subject means that the vector spaces on which our algebras are based 
have more dimensions than the ordinary Euclidean spaces that they model. For example, the pro
jective exterior algebra that models geometric objects in three-dimensional Euclidean space has 
four dimensions. That increases to five dimensions in the conformal algebra. 

The methods through which geometric algebra is developed in this book differ from those of 
its predecessors. The theoretical foundations of the subject are rebuilt in a new way that occasion
ally diverges from established practices. This is not done with reckless abandon but with careful 
consideration and lucid recognition of superior results. There are many concepts presented in this 
book that cannot currently be found elsewhere, and new terminology comes with them. However, 
one of our goals is to uphold the established meanings of conventional terminology as much as 
possible and to maintain bridges to familiar concepts in linear algebra. 

In general, this book focuses on accessibility and intuitive understanding. It is not intended to 
be excessively theoretical, and it does not follow a definition-theorem-proof format. The primary 
aim is to provide the information necessary to put the subject of projective geometric algebra to 
practical use in the best way possible. Employing geometric algebra is not always a win, though, 
and we certainly don't want to suggest that it should be regarded as a wholesale replacement for 
more conventional applications of linear algebra. When geometric algebra methods come with a 
step down in performance, for example, we are sure to point that out. 

There are several full-page comparison charts throughout the book that show solutions to a 
specific problem in a side-by-side layout. One solution uses conventional methods and the other 
uses techniques from geometric algebra. Sometimes, geometric algebra will demonstrate a clear 
advantage, but in other cases, conventional mathematics may appear more attractive. It is not our 
intention to assert that one solution is superior to the other, but to give the reader enough infor
mation to make up their own mind. 

Definitions and equations of key importance are boxed and often identified by annotations in 
the left margin. There is a color coding scheme that applies here that we also use in table headings. 
The color green indicates that a boxed equation, left-margin annotation, or table pertains in a gen
eral manner, meaning that it's valid in spaces of all dimensionalities. The color blue indicates that 
the information pertains specifically to three-dimensional space and is not valid elsewhere. And 
finally, the color red indicates that the information pertains specifically to two-dimensional space. 

vii 



viii Preface 

Website 

The official website for Projective Geometric Algebra Illuminated can be found at the following 
address: 

projectivegeometricalgebra.org 

The website contains reference materials, exercises that accompany this book, source code for the 
math library, and additional resources. 

Prerequisites 

This book assumes a working knowledge of basic linear algebra, including vectors, matrices, dot 
products, cross products, and linear transformations. Some knowledge of group theory may be use
ful but is not required. 

The accompanying math library is written in C++, but there is no code in the book itself. 

Appendices 

There are three appendices that provide useful information. 

■ Appendix A contains multiplication tables for the geometric product and anti product in confor
mal algebras that are too large to include in the main text. 

■ Appendix B contains tables of geometric properties for the various objects that arise in three
dimensional and two-dimensional rigid and conformal algebras. 

■ Appendix C is a notation reference that includes the page numbers where each specific type of 
notation is defined. 

Notation 

Any notation specific to geometric algebra or unique to this book is explained when it is first used, 
and these cases are also indexed in Appendix C. The general notational conventions for scalars, 
vectors, and matrices are as follows. 

■ Scalars are written in italics. 
■ Vectors and matrices are written in bold, but components of a vector and entries of a matrix are 

written in italics. For example, v = ( vx, vy, v, ). 
■ For a vector v having more than four components, the notation v .ryz means the 3D vector con

sisting of only the x, y, and z components. 
• The notation M[jJ refers to the j-th column of the matrix M. (This matches the meaning of the 

bracket operator in the math library.) 
■ MT means the transpose of the matrix M. 
■ Vectors are treated as column matrices and thus appear on the right in a matrix-vector product 

such asMv. 
■ For a vector v, the notation v2 means the dot product v · v. 

Math Library 

An extensive C++ math library accompanies this book, and it implements classes for conventional 
linear algebra as well as geometric algebra. Notes about the math library appear in the following 
format throughout the book to describe code that pertains to the preceding topics. The example here 
describes the basic vector and matrix capabilities of the library. 



Preface 

Math Library Notes 

• The Vector3D class represents a generic 30 vector, and it stores three floating-point values named x, y, 
and z. The Vector2D class represents a generic 20 vector, and it stores only x and y components. Over
loaded operators for addition, subtraction, and scalar multiplication are provided. 

• The dot product and cross product are implemented by the Dot() and Cross() functions . The* operator 
is overloaded for vectors, but it performs a componentwise multiplication to be consistent with shading 
languages. 

• The vector classes support swizzling, so it's possible to use syntax like . yzx to reorder the components 
or . xy to access only a subset of the components. 

• The Matrix3D class represents a generic 3 x 3 matrix, and it stores nine floating-point values as an array 
of column vectors. The Matrix2D class represents a generic 2 x 2 matrix, and it stores only four entries. 
Overloaded operators for addition, subtraction, and scalar multiplication are provided. The * operator 
can be used to multiply matrices by other matrices or by vectors. 

• The [] operator is overloaded for matrices, and U] returns the column of a matrix specified by the zero
based index j as a reference to the vector object at the address where the column storage begins. 

• The () operator is overloaded for matrices, and (i,j) returns the entry in row i and column}. 

• The determinant, inverse, and ad jugate of a matrix are calculated by the Determinant () , Inverse () , 
and Ad jugate() functions . 
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Chapter 1 
Conventional Mathematics 

We begin with a short survey of several mathematical concepts that were developed and put to 
practical use without any knowledge of geometric algebra. These topics were chosen specifically 
because each one is really a puzzle piece containing a small part of geometric algebra expressed in 
its own independent form. These pieces often come with unusual quirks that can have somewhat 
unsatisfying explanations without the benefit of being able to see the complete picture. Assembling 
the rest of the puzzle in the chapters that follow will reveal a fundamental order to things and 
establish connections among concepts discussed here that may currently seem like they are isolated 
from one another. Presenting the topics of this chapter in a conventional setting will allow us to 
maintain bridges back to islands of familiarity as we expand our understanding. 

1.1 The Cross Product 

The cross product was established as a common mathematical tool in the late 19th century and is 
now ubiquitous in virtually all three-dimensional settings involving vector quantities. In a right
handed coordinate system, the cross product between vectors a= ( ax, ay, a2) and b = ( bx, by, b2) 
generates a new quantity with three components given by 

(1.1) 

This can also be expressed as a matrix product by first defining the 3 x 3 matrix [ a L by 

(1.2) 

and then computing the matrix-vector product [ a Lb, which yields the same result. If we interpret 
the quantity produced by the cross product as another vector, then we find that it is perpendicular 
to both a and b, and its magnitude is equal to the area of a parallelogram whose sides are parallel 
to a and b with the same lengths as a and b. 

Any triplet of numbers can be considered a "vector" to the extent that it is an element of a 
generic three-dimensional vector space, but not all meaningful quantities having three components 
behave in the same way. Long known to physicists, there are two different types of vectors called 
polar vectors and axial vectors that require different calculations in order to be transformed from 
one coordinate system to another. A polar vector is an ordinary direction and magnitude such as a 
tangent or linear velocity that can often be derived from the difference between two positions. An 
axial vector is a quantity such as angular velocity or torque that is derived from a cross product 
between two polar vectors. 

1 



2 Chapter 1 Conventional Mathematics 

The difference in transformation properties is well demonstrated by considering vectors that 
represent surface normals. These vectors must remain perpendicular to the surface to which they 
are normal after a transformation is applied or else they would lose this inherent property that makes 
them the type of vector that they are. For triangulated surfaces, face normals are often generated by 
calculating the cross product between two sides of each triangle, as shown in Figure 1.1. Let p0, p 1, 

and p2 be the vertices of a triangle wound in the counterclockwise direction. An outward-facing 
normal vector n is then given by 

(1.3) 

Any permutation of the subscripts that keeps them in the same cyclic order produces the same 
normal vector. It doesn 't matter which vertex is chosen to be subtracted from the other two as long 
as the first factor in the cross product involves the next vertex in the counterclockwise order. If the 
order is reversed, then the calculated normal vector still lies along the same line, but it points in the 
opposite direction. 

When a polygonal model is transformed by a 3 x 3 matrix M in order to alter its geometry, every 
point p belonging to the original model becomes a point Mp in the transformed model, where p is 
treated as a 3 x 1 column matrix. Since a tangent vector t can be approximated by the difference of 
points p and q on a surface, or is often exactly equal to such a difference, it is transformed in the 
same way as a point to become Mt because the difference between the new points Mp and Mq is 
tangent to the new surface. Problems arise, however, if we attempt to apply the same transformation 
to normal vectors. 

Consider the shape shown in Figure 1.2 that has a normal vector n on its slanted side. Let M 
be the transformation matrix that scales by a factor of two in the horizontal direction but does not 
scale in the vertical direction. When we align the x axis with the horizontal direction and the y axis 
with the vertical direction, M is given by 

r
2 0 01 

M = 0 1 0. 

0 0 1 

(1.4) 

If the matrix M is multiplied by n, then the resulting vector Mn is stretched horizontally and, as 
clearly visible in the figure, is no longer perpendicular to the surface. This indicates that something 

Figure 1.1. The normal vector n for a triangular face having vertices p0, pi, and p2 is given by the cross 
product between vectors corresponding to two edges of the triangle. 



1.1 The Cross Product 

Normal vector 
transformation 

nadj(M) 

n Mn 

M 
b b 

a 2a 

Figure 1.2. A shape is transformed by a matrix M that scales by a factor of two only in the horizontal direc
tion. The normal vector n is perpendicular to the original surface, but if it is treated as a column vector and 
transformed by the matrix M , then it is not perpendicular to the transformed surface. The normal vector is 
correctly transformed by treating it as a row vector and multiplying by adj ( M ). (The original normal vector 
is shown in light gray on the transformed surface.) 

is inherently different about normal vectors, and if we want to preserve perpendicularity, then we 
must find another way to transform them that produces the correct results. 

Suppose that the matrix M transforms ordinary polar vectors from coordinate system A to co
ordinate system B. Let DA represent the normal vector in coordinate system A, and let Ds represent 
the same normal vector after it has been transformed into coordinate system B. If the normal vector 
D A is calculated as the cross products x t between two tangent vectors sand t, then the transformed 
normal vector D 8 should be equal to the cross product between the transformed tangent vectors. 
This means it must be true that Ds = (Ms ) x (Mt), but we need to be able to calculate Ds without 
any knowledge of the vectors s and t. Expanding the matrix-vector products Ms and Mt by col
umns, we can write 

(1.5) 

where we are using the notation Mui to mean column} of the matrix M (matching the meaning of 
the [] operator in the math library's matrix classes). After distributing the cross product to all of 
these terms and simplifying, we arrive at 

Ds =(sy lz -s2 ty )(M[Ii xM(2i) 

+(sz lx -Sxlz )(M(2] x M(oi) 

+ ( Sxly -sy lx) (M[o] x Mp]). (1.6) 

The cross product D A = s x tis clearly visible here, but it may be a little less obvious that the three 
cross products of the matrix columns form the three rows of the ad jugate of M . (To see why, recall 
that the product adj( M) M is the diagonal matrix with all diagonal entries equal to det ( M ), and 
consider the scalar triple products ( M[;J x Mui) · M [kJ for O ~ k ~ 2. If k-:;:. i and k-:;:. } , then we get 
det (M) . If k = i or k = }, then we get zero.) We conclude that a normal vector calculated with a 
cross product is correctly transformed according to 

I D 8 =DA adj(M), I (1.7) 

where we are now treating DA and n8 as 1 x 3 row matrices. 
Equation (1.7) tells us not only how normal vectors transform, but how any vector resulting 

from a cross product transforms. This happens because the cross product between two vectors 
doesn't actually produce another vector in the strict meaning of the term. Normal vectors are axial 

3 



4 Chapter 1 Conventional Mathematics 

vectors, which are quantities having a different fundamental type. Through an unfortunate coinci
dence in the nature of the universe that arises only in three dimensions, both polar vectors and the 
quantities resulting from a cross product have the same number of components, so they appear to 
be the same kind of mathematical object. The proper generalization of the cross product to other 
numbers of dimensions generates objects that have a different number of components, making it 
obvious that they have a different type. As discussed at great length in Chapter 2, this generalization 
is called the wedge product, and the quantity produced when two vectors are multiplied together is 
a new kind of object called a bivector. 

Since normal vectors are almost always rescaled to unit length after they're calculated, the 
implicit factor of <let ( M) in the ad jugate matrix is inconsequential and often ignored in practice. 
However, there is one situation in which <let ( M) may have an impact, and that is the case when 
the transform performed by M contains a reflection. When the vertices of a triangle are reflected in 
a mirror, their winding orientation is reversed, and this causes a normal vector calculated with the 
cross product of the triangle's edges to reverse direction as well. This is exactly the effect that a 
negative determinant ofM would have on a normal vector that is transformed by Equation (1.7). 

Returning to the example in Figure 1.2, we can take the normal vector before the transformation 
to be DA = [ b a O]. Applying Equation (1.7) gives us a new normal vector De= [ b 2a O], which 
is perpendicular to the transformed surface. Had we transformed the normal vector in the same way 
as an ordinary vector by treating it as a column matrix and calculating De= MDA, then we would 
have obtained De = ( 2b, a, 0 ). As noted earlier, this is an incorrect result that is not perpendicular 
to the transformed surface. There is a situation in which it is safe to transform a normal vector like 
a polar vector, however, and that's when the matrix M is orthogonal. In that case, we have 
M-1 = MT and <let (M) = ±1, so the transformed normal vector as a row matrix is given by 
De= ±DAMT. But this is equivalent to calculating De= ±MDA if we treat the normal vector as a 
column matrix, and only need to worry about the minus sign if M could contain a reflection. If 
we're working only with rotation matrices, then the difference in transformation properties between 
polar vectors and axial vectors disappears. This contributes to the frequency with which the distinc
tion between the two types of vectors is overlooked. 

1.2 Homogeneous Coordinates 

An n-dimensional vector represents nothing more than a magnitude and direction. The invertible 
n x n matrices that operate on a vector all perform some kind of transformation that simply replaces 
one set of basis directions with another. We can rotate, scale, and skew our vectors, but they always 
represent a relative change of some kind. Even a position vector represents only a relative off set 
from some chosen origin, and it cannot be distinguished from the difference between two positions 
elsewhere in space. If we wanted to translate our coordinate system in order to move the origin to 
a new location, we would have no way of knowing whether a vector corresponds to a positional 
quantity that should be affected by the translation or whether it's a directional quantity that should 
not be affected. This ambiguity is eliminated by using a higher-dimensional representation called 
homogeneous coordinates. Homogeneous coordinates are a staple of 3D computer graphics and 
other practical disciplines, and they give us our first taste of a projective vector space. We limit our 
discussion here to three dimensions, but it should be understood that homogeneous coordinates can 
be applied to any number of dimensions. 

In homogeneous coordinates over a three-dimensional vector space, we append a fourth num
ber called thew coordinate to every vector so that an arbitrary vector vis written as ( v x , Vy , v2 , v w ). 

A point in 3D space is associated with each 4D vector v by considering a line of infinite extent that 
passes through the origin in 4D space and is parallel to v. The 3D point corresponding to vis given 
by the x, y, and z coordinates at the unique location where a point on the associated line has aw 
coordinate equal to one. Because all scalar multiples of v correspond to off sets from the origin to 



1.2 Homogeneous Coordinates 

w 

w=l C.. 

y 
X 

Figure 1.3. A homogeneous vector v is projected into 3D space by dividing by its w coordinate to determine 
the point where it intersects the subspace where w = 1. Tue z axis is omitted from the figure due to the diffi
culties inherent in drawing a four-dimensional diagram on a two-dimensional page, but it should be under
stood that the subspace for which w = I is three-dimensional and extends in the z direction as well as the x 
and y directions. 

points on the line parallel to v, we can simply divide all of the components of v by the coordinate 
Vw to find the location where the line intersects the subspace where w = 1, as shown in Figure 1.3 . 
Homogeneous coordinates are so named because any nonzero scalar multiple of a 4D vector v 
produces the same 3D point after dividing by the w coordinate. This is a projection of an intrinsi
cally one-dimensional object, a line, to an intrinsically zero-dimensional object, a point, accom
plished by viewing only one 3D slice of the larger 4D space. 

If v w = 0, we clearly cannot divide by the w coordinate ofv to produce a 3D point. A line run
ning in the direction of the vector ( x, y , z , 0) is parallel to the subspace where w = 1, so there is no 
intersection at any finite location. Thus, the vector ( x, y, z , 0 ), having a w coordinate of zero, is 
considered to be the point at infinity in the direction ( x, y , z) when projected into 3D space. In 
graphical applications, such a point is sometimes used to describe the location of an object like the 
sun that can be treated as being infinitely far away within all practical limits. In these cases, we are 
describing the location of the object not by providing its absolute position, but by providing the 
direction that points toward the object. 

Generally, 4D homogeneous vectors fall into two classes determined by whether the w coordi
nate is zero or nonzero. This lets us make an important distinction between 3D vectors that are 
intended to represent directions and 3D vectors that are intended to represent positions. It is often 
unnecessary to carry around a fourth coordinate in memory when computing with either type of 
vector because we can design our data structures in such a way that the value of the w coordinate 
is implied. We continue using 3D vectors for both directions and positions, but we establish a rule 
for converting each type to a 4D homogeneous vector wherever it 's necessary. A 3D vector vis 
converted to a 4D vector by appending a w coordinate equal to zero, and a 3D point p is converted 
to a 4D vector by appending aw coordinate equal to one, as in the example shown by 

V = ( Vx, Vy , V z , 0) 

P = (P.n P.v , Pz, 1 ). (1.8) 

One of the main advantages to using homogeneous coordinates is the ability to incorporate 
translations into coordinate transformations by using 4 x 4 matrices. A general affine transformation 
from coordinate system A to coordinate system B is given by 

(1.9) 

where M is a 3 x 3 transformation matrix and t is a 3D translation vector. These can be combined 
into a single 4 x 4 transformation matrix H having the form 

5 



6 Chapter 1 Conventional Mathematics 

Moo Mo1 Mo2 ; Ix 
! 

H=[~ :] = 
M10 M11 M 12 ; l y 

' (1.10) 
M20 M21 M 22 ; l z 
-- - · - · -· - · - · - · -· - · - · - · - · -· - 1 - · --

0 0 0 ! 1 
! 

When we multiply the matrix H by the 3D point PA having an implicit w coordinate of one, the 
product is a 3D point p8 that has been transformed in exactly the same way as in Equation (1.9). 
The result still has a w coordinate of one because the fourth row of the matrix H is [ 0 0 0 1 ], 
which preserves the w coordinate of any 4D vector that it multiplies. 

When the matrix H is used to transform a direction vector v having an implicit w coordinate of 
zero, the translation in the fourth column of H has no effect because those entries are always mul
tiplied by the fourth coordinate of v. A direction vector carries no information about position and 
is not altered by a translation of the coordinate system. Only the upper-left 3 x 3 portion of H con
taining the matrix M participates in the transformation of a direction vector. 

We can accumulate transforms by multiplying as many matrices like H together as we want, 
and we will always have a matrix with a fourth row equal to [ 0 0 0 1]. Matrices of the form 
shown in Equation ( 1.10) belong to a multiplicatively closed subset of the entire set of 4 x 4 matri
ces. It is this type of matrix that is used by applications dealing with 3D space to represent a general 
linear transformation from one coordinate space to another. Each object in the world typically has 
such a transform associated with it that describes how the object's local coordinate system is em
bedded within some higher space in a model hierarchy or within the global coordinate system. The 
first three columns of the 4 x 4 matrix correspond to the directions in which the object's local x, y, 
and z axes point in the higher coordinate system, and the fourth column of the 4 x 4 matrix corre
sponds to the position of the object's local origin in the higher coordinate system. 

We would expect that the matrix H could be inverted as long as the matrix M occupying the 
upper-left 3 x 3 portion of H represented some kind of invertible transform because the translation 
in the fourth column ofH is something that can always be reversed. Ifwe calculate the determinant 
of H in Equation ( 1. 10) by expanding minors along the fourth row, then it becomes apparent that 
it's the same as the determinant of the matrix M. This makes sense because solving Equation (1.9) 
for p A gives us 

(1.11) 

which requires only that we can invert M. Using this equation for transforming in the reverse di
rection from coordinate system B back into coordinate system A, the inverse of the 4 x 4 matrix H 
should be given by 

(1.12) 

and this is easily verified to be correct. 

Math Library Notes 

■ In order to support two types of three-component vectors with different transformation properties, the 
math library includes a second class to complement the Vector3D class. The Vector3D class represents 
a direction vector, and it possesses an implicit w coordinate of zero when necessary. A class named 
Point3D represents a position vector, and it possesses an implicit w coordinate of one. The Point3D 

class a subclass of the Vector3D class so it inherits the same data members and so an object of type 
Point3D can be accepted anywhere that an object of type Vector3D is expected. 



1.3 Lines and Planes 

• Overloaded addition and subtraction operators implement the relationship between direction vectors 
and position vectors. When a direction vector v of type Vector3D is added to a position vector p of type 
Point3D, it yields a new point in space that you would arrive at if you started at the point p and travelled 
along the direction and length of v. If we consider the result of adding p and v as 4D vectors with w 

coordinates of one and zero, respectively, then the sum has a w coordinate of one, indicating that it is a 
position vector of type Point3D. Conversely, ifwe subtract a position vector b from a position vector 
a, then the difference has aw coordinate of zero, and the result has type Vector 30. This indicates that 
the result is a direction vector, and this can be understood as the direction and distance that you would 
need to travel to go from the point a to the point b. 

• The Transform3D class represents a4 x 4 matrix having the form shown in Equation (1.10). This class 
is a subclass of the Matrix4D data structure so that it can be used wherever a general 4 x 4 matrix is 
expected, but its fourth row is always assumed to be equal to f O O O I l whenever calculations are 
performed with it. The constructors for the Transform3D class take data only for the first three rows and 
always set the fourth row to f O O O 11- The first three columns are treated as 3D direction vectors due 
to the fact that each column has a zero in its fourth entry. Likewise, the fourth column is treated as a 3D 
position vector due to the fact that it has a one in its fourth entry. This behavior is implemented by the 
overridden bracket operators and the GetTranslation () and SetTranslation () member functions . 

• The Inverse() function that operates on a Transform3D object is a simplified version of a full 4 x 4 
inversion that accounts for the constant values in the fourth row of the matrix. The matrix-matrix mul
tiplication operator for Transform3D objects also takes advantage of the known values in the fourth 
row. Functions that multiply a Transform3D object by Vector3D and Point3D objects account for the 
w coordinates implied by each type of vector. 

1.3 Lines and Planes 

It is extremely common for 3D applications to make use oflines and planes, which we can describe 
as one-dimensional and two-dimensional flat surfaces having infinite extent. Both of these types of 
geometries have parametric representations that are often adequate for particular tasks, especially 
when lines are used as unidirectional rays. They also have implicit forms composed of different 
kinds of homogeneous coordinates, linking them in a way to the points and directions discussed in 
the previous section. Here, we present the mathematics in a conventional setting where some im
portant relationships will not be apparent. An elegant unification of point, line, and plane represen
tations that explains how they arise from a single concept is a central topic in Chapter 2. 

1.3.1 Parametric Forms 

To express a line parametrically, we can begin by considering two points p1 and p2 contained by 
the line and define the function 

(1.13) 

This function produces all points on the line passing through p1 and p2 in terms of a single param
eter t that ranges over all real numbers. When O ~ t ~ 1, the points fall inside the segment connecting 
p1 and p2. Otherwise, the points fall elsewhere on the line extending to infinity in both directions. 

The function I ( t) can be rewritten as 

(1.14) 

which is equivalent to Equation (1.13) but makes it clear that a line can be expressed in terms of a 
point and a direction. We can now express lines with the parametric function 
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l(t)=p+tv 
V 

Figure 1.4. A parametric line is defined by a point p on the line and a direction vector v parallel to the line. 

l(t)=p+tv, (1.15) 

where p is a point on the line, and v is a direction parallel to the line, as shown in Figure 1.4. It is 
often the case that v is normalized to unit length so that the parameter t corresponds to the actual 
distance from the starting point p. 

Because a function of one parameter can describe the intrinsically one-dimensional geometry 
of a line, it is logical to expect that a function of two parameters can describe the intrinsically two
dimensional geometry of a plane. Indeed, given three points p1, p2, and p3 that lie in a plane and 
are not collinear, the function 

(1.16) 

produces all of the points in the entire plane as the parameters s and t each range over all real 
numbers. As with lines, we can replace the differences between points with two direction vectors u 
and v, and that gives us the parametric form of a plane 

g (s ,t) =p + su +tv. (1.17) 

However, a function of this type is not typically used in practice to represent planes. The implicit 
form described below provides a superior alternative and is the preferred representation in virtually 
all applications. 

There is another way to express a plane parametrically that involves the use of a vector param
eter instead of a scalar parameter. Given a point p lying in the plane and a vector n normal to the 
plane, the function 

g(v)=p+v x n (1.18) 

is also a point in the plane because the direction v x n must be perpendicular to n, as shown in 
Figure 1.5. All of the points in the plane are produced as v ranges over all possible 3D vectors. Of 
course, this is highly redundant since any point in the plane is produced by many different choices 
of the vector v. Nevertheless, Equation ( 1.18) corresponds to the natural generalization of paramet
ric functions to higher-dimensional objects, which is a topic discussed further in Section 2.13.4. 

1.3.2 Implicit Forms 

The parametric form of a line requires that we know a specific point lying on the line, and the 
parametric form of a plane requires that we know a specific point lying in the plane. These points 
can be arbitrary, and that means that the actual coordinates used to represent a parametric line or 
plane are also arbitrary. We can normalize the vectors that the parameters multiply, but there are 
still an infinite number of choices for the anchor point contained in the geometry. What we would 
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Implicit plane 

n 

V 

Figure 1.5. A plane is determined by a single point p and a normal vector n. Points in the plane are produced 
parametrically by adding v x n top as the parameter v ranges over all 3D vectors. 

like to do is come up with a standard representation that removes this choice by replacing the point 
with some implicit quantity that is independent of the points from which a line or plane is con
structed. This is a bit easier to accomplish for planes, so we tackle them first. 

A plane's normal vector n is perpendicular to the difference between any two distinct points p 
and q lying in the plane. This means we can write the equation 

n·(p-q)=O (1.19) 

to describe a constraint that all pairs of points in the plane must satisfy. With a small adjustment, 
this equation becomes n • p = n • q, which tells us that the dot product between n and any point p in 
the plane has the same value as the dot product between n and any other point q in the plane. This 
constant dot product is an implicit property of the plane that allows us to throw away knowledge 
of any particular point and rewrite Equation ( 1.19) as 

n ·p+d = O, (1.20) 

where d = -n • q can be calculated from any point q known to lie in the plane. This equation must 
be satisfied by every point p that the plane contains. 

A plane is implicitly described by the four numbers nx, ny, n,, and d constituting the compo
nents of a four-dimensional row vector g = [ nx ny nz d], which we write using the shorthand 
notation [ n Id]. With this, Equation (1.20) becomes the more compact 

I g·p=O, I ( 1.21) 

where we extend the point p to four dimensions by using its implicit w coordinate of one. All points 
p satisfying this equation lie in the plane g = [ n Id]. 

As with normal vectors earlier in this chapter, we have defined g as a row vector. Since p is a 
column vector, the matrix product gp actually gives us the left side of Equation (1.21), but the dot 
is still included by convention to make it clear that we are calculating g xPx + g yp y + g 2 p 2 + g wPw 
(and we are setting Pw = 1). In Chapter 2, we will replace the dot with a different symbol when the 
algebraic nature of planes is discussed more thoroughly. 

Multiplying both sides of Equation ( 1.21) by a nonzero scalar quantity s has no effect on the 
set of points that satisfy the equation. The implicit form of a plane is homogeneous such that 
g = [ n Id] and sg = [ sn I sd] both represent the same geometric plane in space. This motivates us 
ask whether there is a value of s that gives the representation any appealing qualities. The answer 
is yes, and it is the values= 1/llnll- In this case, the plane sg is said to be normalized because its 
normal vector has unit length. However, it's important to realize that this is not the same meaning 
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of the word "normalized" as it would apply to a generic 4D vector because the value of d for the 
plane can still be any size. To normalize a plane, we multiply all four components by 1/[[n //, but it's 
only the three-component normal vector that ends up having unit length. 

The advantage to having a normalized plane g is that the dot product g • p is equal to the signed 
perpendicular distance between the plane and the point p. When n has unit length, the dot product 
n · p is equal to the length of the projection of p onto n. The value of -d = n • q is equal to the length 
of the projection of any point q in the plane onto n. As illustrated in Figure 1.6, the value of g • p is 
the difference between these lengths, equal to n • p + d, and it corresponds to the number of times 
the normal vector can be stacked on the plane before reaching the point p. The value of dis some
times called the distance to the origin because it's what you get when you evaluate the dot product 
g · o for the origin o. 

The sign of the distance given by g • p depends on which side of the plane p lies. If the normal 
vector n were to be drawn so that its arrow starts on the plane, then it points away from the front 
side of the plane. This is also called the positive side of the plane because for any points lying on 
this side, g · p is a positive value. Naturally, the other side of the plane is called the back side or 
negative side of the plane, and for points lying on that side, g · p is a negative value. The meaning 
of front and back can be reversed by simply negating the plane g because -g represents the same 
set of points, but with a reversed normal vector. 

As with planes, is it possible to describe a line in three dimensions using an implicit form that 
requires no knowledge of any particular point it contains. The components for this form of a line 
are called Plucker coordinates. Despite lines having lower dimensionality than planes, the implicit 
form for a line in 3D space is more complicated and utilizes six components instead of four. The 
reason for this is that a line has one more degree of freedom when it comes to its position and 
attitude in space. 

The six Plucker coordinates for a line can be grouped as two 3D vectors. Given a line that 
passes through the distinct points p 1 and p 2, one of those 3D vectors is the difference v = p 2 - pi, 

which is simply the direction parallel to the line. Once v has been calculated, it no longer contains 
any information about specific points on the line. The difference between any two points on the line 
separated by the same distance produces the same value of v. 

o • 

Figure 1.6. The signed perpendicular distance between a point panda normalized plane g = [ n Id] is given 
by the dot product g · p. This can be understood as the difference between the distances measured perpendic
ular to the plane from p to the origin o and from a point q in the plane to the origin. The perpendicular 
distances are calculated by projecting onto the normal vector so that the difference becomes n • p - n • q = 
n · p + d. As illustrated, the value of g · p corresponds to the number of normal vectors that fit between the 
plane and the point p, and the value of -d is the number of normal vectors needed to reach the plane itself. 
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Implicit line 

To determine the second 3D vector, we make the observation that the cross product between v 
and the difference between any two points on the line must be zero. For arbitrary points p and q on 
the line, this means we can write a constraint as 

v x (p-q)=O, ( 1.22) 

and this is analogous to Equation ( 1.19) for planes. Because v x p = v x q, we similarly conclude 
that the cross product between v and any point on the line is an implicit constant vector quantity. 
We can now write the implicit form of a line as 

I v x p+m =0, I ( 1.23) 

which is the analog of Equation ( 1.21 ). Toe quantity m = -v x q, calculated with any point q known 
to be on the line, is called the moment of the line. We can plug either of the two points that partici
pated in the calculation of v into the value of q, and doing so with q = p1 reveals 

(1.24) 

So a line is implicitly described by a direction vector v = p2 -p1 and a moment vector m = p1 x p2, 

both of which discard information that would allow recovery of the specific points p1 and p2. 

Toe direction v and moment m, calculated with the same pair of points p1 and p2, constitute the 
six Plucker coordinates for a line, and we write this using the notation { v I m}. A line specified with 
Plucker coordinates is homogeneous, again meaning that any nonzero scalar multiple of the com
ponents, applied to both v and m, represents the same line. Multiplying by a scalar is equivalent to 
moving the points p1 and p2 on the line closer together or farther apart. A line is considered nor
malized when its direction v has unit length, which is accomplished by dividing all six components 
of the line by llvll-

Toe moment vector m of a line is always perpendicular to its direction vector v, and it's trivial 
to verify that v • m = 0. As illustrated in Figure 1. 7, the direction in which the moment vector points 
is determined by a right-hand rule. When the fingers of the right hand point in the direction vector 
v, and the palm faces the origin, the right thumb points in the direction of the moment vector m. 
For a normalized line, the magnitude of mis equal to the distance between the origin and the closest 
point on the line. This means that for any line { v Im}, normalized or not, the perpendicular distance 
to the origin is ll mll/llvll-

m 

V 

V 

Figure 1. 7. Toe moment vector m of a line { v I m} is perpendicular to the direction vector v, and the direction 
in which it points is determined by a right-hand rule. Toe moment vector is the same for any line tangent to 
the circle in this example. When the fingers of the right hand point in the direction vector v, and the palm 
faces the origin o, the right thumb points in the direction of the moment vector m. Toe perpendicular distance 
between the origin and the line is equal to llmll/llvll-
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Math Library Notes 

• The Plane3D class represents a plane in 3D space. It has floating-point members named x, y, z, and w 
that can be accessed directly, and they reflect the fact that a plane can be treated as a generic 4D row 
vector. The first three components correspond to the normal vector n, and the w component corresponds 
to the value of d. The normal vector can be retrieved as a Vector3D object by accessing the special xyz 
member. 

• The Line3D class represents a line in 3D space using Plucker coordinates. The direction vector is stored 
as a Vector3D member v, and the moment is stored as Bivector3D member m. (The Bivector3D type 
is introduced in Chapter 2.) These members can be accessed directly. 

• Overloaded operators for performing operations with Plane3D and Line3D objects with the wedge and 
antiwedge products are discussed in Chapter 2. 

1.3.3 Distance Between a Point and a Line 

Suppose that we want to find the distance d between a point q and the nearest point on the line 
given by I ( t) = p + tv . As shown in Figure 1.8, we can set up a right triangle in which one side is 
parallel to the line's direction v, and the length of the hypotenuse is the distance between p and q. 
The distance d that we want to find is the length of the third side, which is perpendicular to the line. 
For convenience, we define u = q -p. The length of the side parallel to the line 's direction is the 
magnitude of the projection of u onto the line, which is given by lu • vi/ v2

. This means that we can 
express d as 

d= 
2 ( U . V )2 

u --'-----'-
v 2 

If v is known to have unit length, then the division by v2 can be omitted. 

( 1.25) 

When the points p and q are far apart, which doesn 't necessarily mean that q is far from the 
line, the sizes of ll u ll and u · v can become very large. Squaring these quantities makes them even 
larger, and subtracting two large floating-point numbers as we have done in Equation ( 1.25) results 
in a loss of precision that can be quite severe. Fortunately, this problem can be mitigated to a degree 
by using an alternative method to calculate the distance. The magnitude of u x v is equal to the area 
of the shaded parallelogram in Figure 1.8. Dividing this by the magnitude of v, which corresponds 

q 

llull 

d 

p 
_ __________ _____ .........,,.__ ___ _. p + tv 

(u•v)v 

Figure 1.8. The distanced from a point q to the line p + tv can be calculated by constructing a right triangle 
in which one side is parallel to the line and the hypotenuse has length llull, where u = q - p. The length of the 
side parallel to the line is the magnitude of the projection ofu onto v. The shaded parallelogram has an area 
equal to ll u x vii, sod is also given by this area divided by the length ofv. 
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to the base of the parallelogram, gives us the value of d, which corresponds to the height of the 
parallelogram. Thus, we can also express the distance from a point to a line as 

d= ✓(u x v) 2 

2 ' V 
(1.26) 

and as before, the division by v2 can be avoided if we know that llvll = 1. In the case that u has a 
large magnitude, there is still a subtraction of two large numbers happening inside the cross product, 
but we are not squaring them first, so they are much smaller in size than the numbers arising in 
Equation (1.25). 

1.3.4 Intersection of a Line and a Plane 

Let g = [ o Id] be the plane shown in Figure 1.9, and let I ( t) = p + tv be a line such that o · v t:. 0, 
meaning that the line is not parallel to the plane. We can find the point q at which the line intersects 
the plane by solving for the value oft that satisfies g • / ( t) = 0. A little algebra gives us 

g·p 
!=---

' 
(1.27) 

O · V 

where it should be understood that the numerator is calculated using a 4D dot product in which p "' 
is implicitly one, but the denominator is calculated using a 3D dot product. Plugging this value of 
t back into I ( t) tells us that the point of intersection q is given by 

(1.28) 

n 

I (t) =p+tv 

Figure 1.9. The point q at which a line I ( t) = p + t v intersects a plane g = [ n I d] is found by solving for the 
value oft such that g · (p + tv) = 0. 

1.3.5 Intersection of Multiple Planes 

Let [ o1 I d1 ], [ o2 I d2 ], and [ o3 I d3] be planes. As long as the normal vectors o1, n2, and o3 are line
arly independent, the planes intersect at a single point pin space, as illustrated in Figure 1.10. Since 
this point lies in all three planes, we know that [ o; Id;] · p = 0 for i = 1, 2, 3, and this can be expressed 
as the linear system 
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Intersection of 
three planes 

in which the normal vectors compose the rows of a 3 x 3 matrix. Solving for p is a simple matter of 
multiplying both sides by the inverse of this matrix on the left. Because ( o 1 x o 2 ) • o3 is the deter
minant of the matrix in Equation (1.29), its inverse must be given by 

(1.30) 

Multiplying by the constant vector ( -d1, -d2 , -d3 ) yields the intersection point 

( 1.31) 

where the order of the factors in each cross product has been reversed to cancel the minus signs. 

Figure 1.10. (Left) Three planes with linearly independent normal vectors 01, n2, and n3 intersect at a single 
point p given by Equation (1.31 ). (Center and right) If the normal vectors are not linearly independent, either 
at least two of the planes are parallel, or no planes are parallel, but they all intersect at parallel lines. 

In the case that the three normal vectors o 1, o 2, and o3 are not linearly independent, the deter
minant ( o 1 x o 2 ) -o 3 in Equation (1.31) is zero, and the planes do not intersect at a single point. As 
shown in Figure 1.10, this could mean that at least two of the planes are parallel to each other. There 
is also the possibility that no two planes are parallel, but the intersections of each pair of planes 
occur along parallel lines. 

Two nonparallel planes [ n1 I d1] and [ o2 I d2] intersect at a line that must be contained in both 
planes. To express this line in the parametric form I ( t) = p + tv, we need to find any starting point 
p on the line and the direction v in which the line runs. The direction v is easily calculated as 

V=D1 X 0 2 (1.32) 

because it must be perpendicular to both normal vectors. The point p can be calculated by intro
ducing a third plane [ v I O] containing the origin o, as shown in Figure 1.11 , and then solving the 
problem of a three-plane intersection. In this case, Equation (1.29) becomes 
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( 1.33) 

and the solution for p given by Equation ( 1.31) is 

(1.34) 

p+tv 

Figure 1.11. Two planes with nonparallel normal vectors n1 and n2 intersect at a line p + tv for which v = 
n1 x n2. A point p can be found by calculating the point where the two planes intersect the third plane [ v IO] . 

1.3.6 Reflection Across a Plane 

When a point p is reflected across a plane, the new point p' lies at the same distance from the plane 
but on the opposite side. The line segment connecting the original point and the new point is parallel 
to the plane 's normal vector. Let g = [ n Id] be a plane such that n has unit length, and let q be the 
point in the plane that is nearest to p. As shown in Figure 1.12, the difference between p and q is 
equal to ( g · p) n because the scalar quantity g · p is the perpendicular distance between the plane g 
and the point p. When this vector is subtracted from p, the result is the point q in the plane. Sub
tracting this vector a second time produces the reflected point p' that's just as far away from the 
plane as the original point p but on the opposite side. Thus, a formula for calculating p' is given by 

p'=p-2(g·p)n. (1.35) 

1.3.7 Homogeneous Formulas 

Table 1.1 contains many formulas that can be used to calculate interesting quantities involving 
points, lines, and planes. We continue using the notation [ n Id] for a plane and the notation { v Im} 
for a line. We also introduce the similar notation (p I w) for a 4D vector composed of a 3D vector 
panda scalar w. It's important to realize that all three of these representations of geometric entities 
are homogeneous. Multiplying any of them by a nonzero scalar, and in particular negating any of 
them, has no effect on their geometric meaning. As they appear in the table, the signs of the formulas 
have been chosen to be consistent whenever there is a relationship among multiple formulas. For 
example, the planes given by rows P and Q are oriented so that the origin is on the positive side. 

Several of the formulas in Table 1.1 show instances in which specific values are plugged into 
more general expressions in order to explicitly highlight some common cases. Rows B and C give 
special formulas for a line when w = 1 and w = 0 are plugged into the general formula given by row 
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g 

(g ·p) n 
....... -t----.. p 
q 

Figure 1.12. A point p is reflected through a normalized plane g = [ n Id] by subtracting the vector (g · p) n 
twice. The first subtraction yields the point q in the plane that is nearest to p. 

A, and row D states the precise case in which ( p 2 I w2) = ( 0 J l ). Likewise, rows F, G, and H contain 
special cases of the general formula given by row E. In the distance formulas at the bottom of the 
table, rows U and W are special cases of rows T and V when the point p is taken to be the origin. 

There are a few pairs of rows in Table 1.1 containing formulas that are related through a concept 
known as duality. Two lines { v

1 

I m
1

} and { v
2 

I m
2

} are said to be dual to each other when their 
direction vectors and moment vectors are swapped so that v 2 = m I and m 2 = v 1. A point ( p I w) and 
a plane [ n Id) are dual to each other when the four components belonging to one are simply rein
terpreted as the four components of the other so that p = n and w = d. These relationships are ex
emplified by rows A and I, where the line in row A passes through two points, but when we swap 
its direction and moment, the line in row I represents the intersection between two planes having 
the same components as the two points. Another example of duality is demonstrated by the formulas 
in rows E and J, which both involve a line { v Im}. Toe formula in row J gives the point at which 
the line intersects a plane [ n Id], and the formula in row E gives the dual plane containing the line 
and a point having the same components as the plane in row J. Toe two formulas are exactly the 
same after swapping the meanings of v and m for the line. 

Toe geometric symmetry of the duality between points and planes is perhaps best exhibited by 
the pair ofrows N and P and the pair ofrows O and Q. Toe first pair shows the relationship between 
the point closest to the origin on a line { v I m } and the plane farthest from the origin containing the 
same line. Toe formulas are the same except for the fact that v and m are swapped. Toe second pair 
shows that the point closest to the origin on a plane is related to the plane farthest from the origin 
containing a point by the simple reinterpretation of the four components making up each element. 

Keep in mind that geometric entities calculated with the formulas in Table 1.1 are not generally 
normalized, and we extend this term to include homogeneous points, which would usually end up 
not having a w coordinate of one. To put each type of element into normalized form, which may 
simplify later calculations, a point (p I w ) needs to be divided by its w coordinate, a plane [ n Id] 
needs to be divided by llnll, and a line { v Im} needs to be divided by llvll-

In the case of a degeneracy, each formula in Table 1.1 produces a geometric element that cannot 
be normalized. Toe simplest example is attempting to construct a line from two points that are 
exactly the same, in which case the formula in row A produces { 0 I O}. In the more complex case 
arising in row F, if the point p lies on the line { v I m }, then there is not enough information to 
construct a plane, and the result is [ 0 IO ]. Something a little different happens in row J if we attempt 
to find the intersection of a plane [ n Id] and a line { v Im} that is parallel to the plane. In this case, 
there can be no intersection, but the formula in row J produces the point ( m x n + dv IO) with a zero 
in the w coordinate. This can be interpreted as a point at infinity in the direction that the line runs. 
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Formula Description 

A {w1P2 -W2P1 IP1 xp2} Line through two homogeneous points (p1 I w1) and (p2 I w2) . 

B {p2-P1 IP1XP2} Line through two points p1 and p2. 

C {v lp x v} Line through point p with direction v. 

D {p IO} Line through point p and the origin. 

E [ v x p + wm I-p • m] Plane containing line { v Im} and homogeneous point (p I w ) . 

F [ v x p + m I-p • m] Plane containing line { v I m} and point p. 

G [v x u 1- u -m] Plane containing line { v Im}, parallel to direction u. 

H [m IO] Plane containing line { v I m} and the origin. 

I {n1 x n2 I d1n2 - d2n1} Line where two planes [ n1 I d1] and [ n2 I d2] intersect. 

J (m x n+dv l-n -v) Homogeneous point where line { v Im} intersects plane [ n Id] . 

K { wn I p x n} Line through homogeneous point ( p I w), perpendicular to plane [ n I d] . 

L [ v x n 1-n ·m] Plane containing line { v Im}, perpendicular to plane [ n Id]. 

M [ WV 1-p · V] Plane containing homogeneous point ( p I w ) , perpendicular to line { v I m}. 

N ( v x m I v2
) Homogeneous point closest to the origin on line { v I m}. 

0 ( - dn ln2) Homogeneous point closest to the origin on plane [ n Id ]. 

p [m x v lm2] Plane farthest from the origin containing line { v I m}. 

Q [ -wp I P2] Plane farthest from the origin containing point (p I w). 

R 
llw1P2 - W2P1 II 

Distance between two homogeneous points (p1 I w1) and (p2 I w2 ). 
lw1 w2 I 

s lv1 •m2+V2· m1I 
Distance between two lines { v 1 I m 1 } and { v 2 I m 2 } . 

llv1 x V2 II 

T 
Jlv xp + mll 

Distance from line { v I m} to point p. 
llv ll 

u Ell Distance from line { v I m} to the origin. 
llv ll 

V 
ln ·p +dl 

Distance from plane [ n Id ] to point p. 
11 ° 11 

w M Distance from plane [ n I d] to the origin. 
11 ° 11 

Table 1.1. This table contains various formulas involving homogeneous points, planes, and lines described 
by Pliicker coordinates. The notation (p I w) represents a homogeneous point with p = ( x, y, z ), the notation 
[ n Id ] represents a plane with normal direction n and distance to origin d, and the notation { v Im} represents 
a line with direction v and moment m. 
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The distance between two skew lines { v
1 
I mi} and { v

2 

I m i}, stated in row S of the table, can 
be derived by considering the distance between parallel planes constructed to contain each line and 
the direction v of the other line, as shown in Figure 1.13. Using row G in Table 1.1, these two planes 
are given by [ v

1 

x v
2 

I - v
2 

• m
1

] and [ v
1 

x v
2 

I v
1 

• m
2 

], where the second plane has been negated so 
that the normal vectors point in the same direction. These planes are both normalized by dividing 
by II v I x v 2 11, after which their fourth coordinates correspond to the perpendicular distances between 
the planes and the origin. Subtracting these gives us 

d= lv1 ·m 2 +v2 · m 1I 

ll v 1 x v 2II 
(1.36) 

as the distance d between the planes, which is also the distance between the original lines. If this 
distance is zero, then the lines are coplanar and intersect at a point. 

1.3.8 Plane Transformation 

Determining the correct way to transform a plane from one coordinate system to another requires 
a little care. Let g A = [DA I d A ] be a plane that contains the point p A in coordinate system A, and let 
H be a 4 x 4 matrix having the form 

(1.37) 

where M is an invertible 3 x 3 matrix and t is a 3D translation vector, that performs an affine trans
formation of points from coordinate system A to coordinate system B. Our goal is to find the correct 
method for transforming g A into g8 = [ D 8 Id 8 ] using the matrix H. We know that the normal vector 
must transform as n8 = D A adj (M) according to Equation (1.7), so the only question is what to do 
with d A to transform it into d 8 . 

Because the original plane contains PA, we know that d A =-D A· PA· For the transformed plane, 
we must have d 8 = - D 8 • p 8 , where p 8 is the transformed point. We can transform each part of this 
dot product independently to get 

d8 =-DA adj(M)( Mp A + t ) 

=-DA det(M) p A - DA det(M)M- 1t 

= det (M) ( d A - DAM - 1t). (1.38) 

Except for the extra factor of det (M), this is exactly the value produced by multiplying the plane 
g A by the fourth column of H - 1

, which is given by Equation (1.12). Using the fact that det (H) = 
det ( M) due to the specific form of H, we come to the conclusion that a plane is transformed as 

(1.39) 

and this is the four-dimensional analog of Equation (1.7). As with normal vectors, the determinant 
in the adjugate matrix is usually ignored because planes are typically normalized so that the first 
three coordinates (gx, gy, g2) have unit length as a whole. Normal vectors in three dimensions and 
planes in four dimensions both transform in the above manner because they are each an example 
of a mathematical element called an antivector, which is an important topic in Chapter 2. 
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Line 
transformation 

Figure 1.13. The distanced between two lines { v
1 

I m
1

} and { v
2 

I m
2

} can be calculated by considering the 
parallel planes containing each line and the direction of the other. 

1.3.9 Line Transformation 

Because Plucker coordinates contain both a difference of two points and the cross product between 
two points, the transformation of a line from one coordinate system to another can be somewhat 
tricky. Again, let H be a 4 x 4 matrix representing an affine transformation from coordinate system 
A to coordinate system B consisting of a 3 x 3 invertible matrix M and a 3D translation vector t. 
Suppose { v A I m A} is a line in coordinate system A with v A =p2 -p 1 and m A = p1 x p2. Clearly, the 
transformed direction vector is simply given by v 8 = Mv A, but the transformed moment vector 
requires a closer look. Applying the matrix H to each of the points p1 and p2, the transformed points 
are equal to Mp 1 + t and Mp2 + t. The moment of the transformed line must be the cross product 
between these, so we have 

m B =(Mp1 +t) x (Mp2 +t) 

= (Mp1 )x (Mp2 )+ t x (Mp2 )-t x (Mp1 ). (1.40) 

The cross product (Mp1) x (Mp2) transforms under a 3 x 3 matrix M according to Equation (1.7), 
and the cross products involving the translation t can be combined into one cross product that op
erates on v A· This lets us write 

(1.41) 

where we are treating m A and m 8 as row vectors. The complete affine transformation of a line from 
coordinate system A to coordinate system B is thus given by 

(1.42) 

As usual , the calculation of the ad jugate of M can be avoided if we know that Mis special orthog
onal, in which case we can treat m A and m 8 as column vectors and replace m A adj (M) with Mm A. 
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1.4 Quaternions 

Quaternion 

The preceding sections dealt with the geometric manipulation of points, lines, and planes, but we 
continued to employ conventional matrix-vector products to transform from one coordinate system 
to another. The implicit forms of the geometries and all of the operations listed in Table 1.1 belong 
to the general exterior algebra discussed in Chapter 2. What we turn to now, first with a discussion 
of quaternions and then with a short presentation of dual quaternions, is our first glimpse of the 
geometric algebra covered in Chapter 3. These topics involve the transformation of geometric 
objects and provide an alternative to matrix multiplication in some cases. 

1.4.1 Quaternion Fundamentals 

The set of quaternions is formed by adjoining the three imaginary units i, j , and k, to the set ofreal 
numbers. A typical quaternion q has four components that can be written as 

I q = xi + yj + zk + w, I (1.43) 

where x, y , z , and ware real numbers. It doesn 't matter what order these components are written in 
because multiplication by i,j, and k provide all the necessary identification for the imaginary terms. 
Many textbooks write the real w component first, but we choose to write it last to be consistent with 
the general convention used throughout computing that places the w coordinate last in a 4D vector 
( x , y, z, w ) . This is particularly useful for avoiding confusion when a quaternion is stored in a var
iable having a generic vector type. 

Although quaternions are sometimes treated as if they were 4D vectors, and they are even writ
ten in bold to reflect their multicomponent nature, it is important to realize that they are not actually 
4D vectors. A quaternion is more properly understood as the sum of a scalar and a 3D vector. It is 
often convenient to write a quaternion in the form q = v + s, where v, called the vector part of the 
quaternion, corresponds to the imaginary triplet ( x , y, z) in Equation (1.43), ands, called the scalar 
part, corresponds to the real component w. Note, however, that calling v a vector still isn 't quite 
correct, but this terminology will suffice until we reach the more precise discussion of quaternions 
within the larger context of geometric algebra in Chapter 3. 

As with ordinary vectors and complex numbers, quaternion addition is performed compo
nentwise. Multiplication, however, follows the rules given by 

.2 .2 k 2 l l = j = =-

ij = -Ji= k 

jk = -kj = i 

ki = -ik = j. 
(1.44) 

This summarization provides an immediate guide for multiplication between any two of the imag
inary units i, j , and k. Equation (1.44) also illustrates the fact that quaternions do not possess the 
commutative property. Reversing the order in which any two imaginary units are multiplied negates 
their product. 

By following the rules given above, we can calculate the general product of two quaternions 
q 1 = x ,i + y 1j + z, k + w1 and q 2 = x2i + y 2j + z2k + w2 to obtain 

q1q2 = ( X1W2 + Y1Z2 -Z1Y2 + W1X2 ) i 

+( y 1w2 + z ,x2 +W1Y2 - x1 z2 )J 

+ ( z1w2 + w1z2 + X1Y2 - Y1 X2) k 

+(w1w2 - x1x2 - Y1Y2 - z1z2 )- (1.45) 
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Quaternion 
product 

Quaternion 
magnitude 

Quaternion 
inverse 

If we represent the quaternions by q 1 = v 1 + s1 and q2 = v 2 + s2 instead, then the product can be 
written more compactly as 

(1.46) 

Toe first three terms form the vector part of the product, and the last two terms form the scalar part. 
Toe only noncommutative piece appearing in Equation (I .46) is the cross product, a fact from which 
we can quickly deduce that reversing the order of the factors in quaternion multiplication changes 
the product by twice the cross product between the vector parts, as stated by 

(1.47) 

This exposes the fact that two quaternions commute only if their vector parts are parallel because 
when that is the case, the cross product v1 x v2 is zero. 

A quaternion q has a conjugate denoted by q* that is similar to the complex conjugate except 
that we are now negating three imaginary components instead of just one. That is, the conjugate of 
a quaternion q = v + s is given by 

q* =-v+ s . (1.48) 

Toe product of a quaternion and its conjugate gives us 

• • 2 2 qq = q q = V +s , ( 1.49) 

which is a real number that we identify with the squared magnitude of the quaternion. We denote 
the magnitude of a quaternion using two vertical bars, as with ordinary vectors, and define it as 

(1.50) 

As with vectors, multiplying a quaternion q by a scalar value t has the effect of multiplying the 
magnitude of q by ltl. Quaternions also have the property that the magnitude of the product of two 
quaternions q1 and q2 is equal to the product of their individual magnitudes, which we can state as 

Toe real numbers form a subset of the entire set of quaternions, and it consists of all the qua
ternions having the vector part ( 0, 0, 0 ). In particular, the number one is a quaternion, and it con
tinues to fill the role of the multiplicative identity element as it does in the sets ofreal numbers and 
complex numbers. For any quaternion q = v + s that bas a nonzero magnitude, we can divide the 
product shown in Equation ( 1.49) by the squared magnitude of q to obtain the identity element, and 
this means that q has a multiplicative inverse given by 

- 1 q* -v+s q ---
- qq* - v 2 +s2. 

(1.52) 

Toe basic properties of quaternion addition and multiplication are listed in Table 1.2. They are 
all easy to verify, and none of them should come as any surprise. Due to the noncommutativity of 
quaternion multiplication, the last two properties listed in the table show that the conjugate or in
verse of a product of quaternions is equal to the conjugate or inverse of each factor multiplied in 
reverse order. This is similar to how the transpose and inverse of matrix products work. 
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Property Description 

( qi +q2 )+ q 3= q1+( q 2+q3) Associative law for quaternion addition. 

q1 +qz =qz + q 1 Commutative law for quaternion addition. 

(st)q=s(tq) Associative law for scalar-quaternion multiplication. 

tq = qt Commutative law for scalar-quaternion multiplication. 

t ( q1 +qz ) = tq 1 +tq2 
Distributive laws for scalar-quaternion multiplication. 

(s+t)q =sq+tq 

q1 ( q zq 3) = ( q1q2) q 3 Associative law for quaternion multiplication. 

qi ( q z +q3) = qlq2 +q1 q3 
Distributive laws for quaternion multiplication. 

(q1 + q 2)q3 =q1q3 + q 2q 3 

(tq1)q2 =q1 (tq2)=t(q1q 2) Scalar factorization for quaternions. 

( ). . . 
q 1q 2 = q zq1 Product rule for quaternion conjugate. 

( )-1 -1 -1 q 1q2 = q z q1 Product rule for quaternion inverse. 

Table 1.2. These are the basic properties of quaternion addition and multiplication. Each letter q, with or 
without a subscript, represents a quaternion, and the letters s and t represent scalar values. 

Math Library Notes 

• The Quaternion class holds four floating-point components x, y, z, and w representing the vector and 
scalar parts of a quaternion, and they can be accessed directly. 

• The class has a default constructor that performs no initialization and two additional constructors that 
take either all four components separately or a Vector3D object and a scalar. 

• The * operator is overloaded so it calculates the product between two quaternions. Overloaded operators 
for addition, subtraction, and multiplication by scalar values are also implemented. 

1.4.2 Rotations With Quaternions 

Quaternions appear in practice because they can be used to represent rotations in a way that has 
several advantages over 3 x 3 matrices. In this section, we present a conventional description of how 
a quaternion corresponding to a particular rotation through any angle about any axis is constructed 
and how such a quaternion transforms an ordinary vector. Like 3 x 3 matrices, quaternions are only 
able to rotate about axes passing through the origin and cannot be used to encode translations. These 
limitations are overcome by the dual quaternions introduced in the next section. We'll be able to 
provide greater insight into the reasons why quaternions and dual quaternions work the way they 
do in Chapter 3. 

Given a quaternion q =xi+ yj + zk +wand a vector v = ( Vx, vy, Vz ), a rotation is performed by 
recasting the vector to be the quaternion vxi + vy} + vzk and calculating a new vector v' with the 
product 

(1.53) 
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To be clear, each of the products in this equation is a quaternion multiplied by a quaternion. This is 
sometimes called the sandwich product because the quaternion v is sandwiched between the qua
ternion q and its inverse. Toe quaternion v is known as a pure quaternion, which is any quaternion 
that has a zero scalar component and is thus made up of only imaginary terms. When v is a pure 
quaternion, the sandwich product qvq- 1 always yields another pure quaternion. By considering vec
tors and pure quaternions to be equivalent, we can say that the sandwich product transforms a vector 
v into another vector v'. 

Toe magnitude of q in Equation (1.53) doesn 't matter, as long as it's nonzero, because if 
II q II = m, then m can be factored out of q, and 1/ m can be factored out of q-1. These cancel each other 
out and leave quaternions with magnitudes of one behind. A quaternion q having a magnitude of 
one is called a unit quaternion, and it bas the special property that its inverse is simply equal to its 
conjugate because qq* = 1. In the case that q is a unit quaternion, Equation (1.53) simplifies to 

I v' =qvq •. 1 (1.54) 

Toe set of unit quaternions forms a multiplicatively closed subset of all quaternions because the 
product of any two unit quaternions is another unit quaternion. For this reason and the fact that 
vector transformations become simpler, only unit quaternions are typically used to represent rota
tions in practice. 

An optimal implementation of Equation (1.54) requires some clever simplification. We can 
write q = b + c and expand the quaternion products using Equation ( 1.46), keeping in mind that the 
scalar part of vis zero. Toe product qv is given by 

qv = (b + c ) v = b x v+ cv-b · v. ( 1.55) 

When we multiply this by q • = -b + c, we get 

qvq• =(b x v+ cv-b ·v)( - b+ c ) 

=-b x v x b + 2c (b x v) + (b • v) b + c2v. (1.56) 

Since q is a unit quaternion, we know that llqf = b2 + c2 = 1, so we can substitute c2 = 1-b2 in the 
final term of this equation. We can then apply the vector triple product identity 

-b x v x b=(b·v)b-b2v (1.57) 

to the last two terms to obtain 

qvq • =2b x (bxv)+2c(b x v) + v. ( 1.58) 

An implementation of this formula should take advantage of the fact that 2b x v can be calculated 
once and used in two places. Toe actual computational cost is 18 combined multiply-add operations 
(or 15 multiplies and 15 separate adds). By comparison, multiplying a vector v by a 3 x 3 rotation 
matrix requires only 9 combined multiply-add operations (or 9 multiplies and 6 separate adds). If 
many vectors v are going to be transformed by the same quaternion q, it is much better to convert 
the quaternion to a matrix first, and the process for that is described below. 

To see how the sandwich product qvq • performs a rotation, we first consider the rotation of a 
vector v about an arbitrary axis represented by the unit vector a. When the vector v is rotated into 
its new orientation v', the component of v parallel to the axis a remains the same, and only the 
component of v perpendicular to the axis a actually gets modified. Thus, it makes sense for us to 
consider the separate components ofv with respect to the axis a, as illustrated in Figure 1.14. 
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a 

V 

u=v-(v·a)a axv 

Figure 1.14. A vector v is rotated through an angle¢ about an arbitrary axis a. This is achieved by decom
posing v into components that are parallel to and perpendicular to a and rotating only the perpendicular 
component. 

The projection of v onto the axis a is given by ( v ·a) a, and that means the remaining compo
nent perpendicular to the axis a must be v -( v ·a) a, which we will call the vector u. The length of 
u is equal to llvll sin a, where a is the angle between the vectors a and v, because it forms the side 
opposite the angle a in the right triangle shown in the figure. It 's this component that we need to 
rotate in the plane perpendicular to the axis a. We can perform this rotation by expressing the result 
as a linear combination of u and another vector in the plane that is the 90-degree counterclockwise 
rotation of u. Fortunately, this second vector is easily obtained as a x v, and it just happens to have 
the same length, llv ll sin a, as u does. This means that we can express the rotated vector v' as 

v' = ( v ·a) a+ [ v -( v ·a) a] cos¢+ (a x v) sin¢, 

where ¢ is the angle of rotation about the axis a. This can be reorganized a little bit to obtain 

v' = v cos¢+ ( v •a) a (I -cos¢)+ (a x v) sin¢. 

(1.59) 

(1.60) 

We now make some modifications to Equation ( 1.56) so we can compare it directly to Equation 
(1.60) and learn something about what's happening. This time, we apply the vector triple product 
identity-b x v x b = (b · v) b - b2v to the first term, and that gives us 

If we set b = sa, wheres= llbll and a is a unit vector, then we can write this as 

qvq• = ( c 2 
- s 2

) v + 2s2 
( v ·a) a+ 2cs (a x v ). 

(1.61) 

(1.62) 

The right side of this equation has the same three terms that appear in the formula for rotation about 
an arbitrary axis a given by Equation ( 1.60) except that the scalar coefficients are written in a dif
ferent way. In order for Equation ( 1.62) to perform a rotation through an angle¢, the values of c 
ands must satisfy the equalities c 2 

- s 2 =cos¢, 2s 2 = 1- cos¢, and 2cs = sin¢. All three of these 
requirements are satisfied when we choose c = cos ( ¢/2) ands= sin ( ¢ / 2) because these values 
produce valid trigonometric identities. (This reveals why the letters c ands were selected for this 
derivation.) We conclude that the quaternion 

(1.63) 
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represents a rotation through the angle¢ about the unit-length axis a that can be applied to a vector 
v using the sandwich product qvq*. A rotation through a positive angle is counterclockwise when 
the axis points toward the viewer. 

The resemblance between Equation (1 .63) and Euler's formula e ¢i =cos¢+ i sin¢ is not a co
incidence. Indeed, the square of any unit-length axis a under the quaternion product yields -1, so it 
behaves just like the imaginary number i. This means that it's possible to express a quaternion as 
the exponential 

q = exp (¢a) = cos ¢ + a sin ¢, (1.64) 

which is easily verified by expanding the power series for exp (¢a). We just need to be careful to 
remember that the resulting quaternion rotates through twice the angle¢ appearing in the exponent. 
We' 11 return to this form of a quaternion in the discussion of interpolation below. 

We saw earlier that rotating a vector v with the sandwich product qvq* is slower than the equiv
alent matrix-vector multiplication, but there are operations involving quaternions that are faster as 
well. In particular, multiple quaternion rotations can be quickly composed. To first rotate a vector 
v using a quaternion q1 and then rotate the result using another quaternion q2, we calculate the 
sandwich product of a sandwich product as in 

(1 .65) 

By reassociating the factors, this can be written as 

(1.66) 

showing that the two successive rotations are equivalent to a single rotation using the quaternion 
given by the product q2q1. As is evident in Equation (1.45), the product of two quaternions can be 
calculated with 16 combined multiply-add operations (or 16 multiplies and 12 separate adds). This 
bas a significantly lower cost than the 27 combined multiply-add operations ( or 27 multiplies and 
18 separate adds) that would be required to calculate the product of two 3 x 3 matrices. 

A quaternion bas the obvious advantage of requiring much less storage since it's made up of 
only four floating-point numbers compared to the nine floating-point entries needed by an equiva
lent 3 x 3 rotation matrix. It is often the case, however, that a quaternion needs to be converted to a 
matrix at some point, either because it will be used to transform many vectors or it needs to be 
combined with another transformation that is not a rotation. To convert a unit quaternion to a matrix, 
we can examine each of the terms of the sandwich product qvq* in Equation (1.61), where q = b + c, 
and express their effects on v as 3 x 3 matrices to obtain 

(1.67) 

where I is the identity matrix. Since q is a unit quaternion, we can rewrite c2 
- b2 as 1- 2b 2 because 

c2 + b2 = 1. This allows us to simplify the diagonal entries a little when we combine the three ma
trices because, as exemplified by the upper-left entry, we can make the replacement 

c2 -b2 +2b; =l-2b; -2b;. (1.68) 

For a general unit quaternion q =xi+ y j + zk + w, where we equate b = ( x, y , z ) and c = w , a single 
3 x 3 matrix Mro1 ( q) corresponding to the sandwich product qvq* is thus given by 
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2(zx+wy ) j 
2(yz-wx) . 

l-2x2 -2y2 
(1.69) 

If we take a close look at Equation (1.61), we notice that negating both b and c has no effect 
on the transformation of v. There would be two negations in each term that cancel each other out. 
The same property is also apparent in the formula for Mro1 ( q) if we were to negate all four compo
nents x, y, z, and w. This demonstrates that for any unit quaternion q, the quaternion -q represents 
exactly the same rotation. Further insight can be gained by considering the number -1 itself as a 
quaternion and matching it to Equation (1.63). In this case, we must have cos ( ¢ / 2) = -1 and 
sin ( ¢ / 2) = 0, which are conditions satisfied when¢= 2n, so the quaternion q = -1 corresponds to 
a full revolution about any axis. 

The fact that q and - q represent the same rotation can be used to reduce the amount of storage 
space needed by a unit quaternion to just three floating-point values. Once the components of a 
quaternion q = b + c have been calculated for a particular angle and axis, we can choose whether to 
keep q or change it to - q based on whether the scalar part c is nonnegative. If we know that c ~ 0, 
then it can be calculated from the vector part b as 

C = 11-b2 -b2 -b2 
'\J X y Z (1.70) 

because the magnitude of q must be one. Thus, if storage space is important, then a quaternion can 
be negated if necessary so that the scalar part is not negative and stored as only the three compo
nents of the vector part. A short calculation is able to reconstitute the scalar part when it is needed. 

Given a 3 x 3 matrix M that we know represents a rotation (because it is special orthogonal), 
we can go the other direction and convert to a quaternion q =xi+ yj + zk + w by assuming that the 
entries of the matrix have the form shown in Equation ( 1.69) and solving for the individual com
ponents. We start by making an observation about the sum of the diagonal entries of M, which is 

(1.71) 

By requiring q to be a unit quaternion, we can replace x 2 + y 2 + z2 with 1- w2 and solve for w to 
get 

(1.72) 

where we are free to choose whether w is positive or negative. (The value under the radical is never 
negative because x 2 + y 2 + z2 

:::; 1.) Once we have calculated the value of w, we can use it to find 
the values of x, y, and z using the relationships 

M 21 - M 12 = 4wx 

Mo2 -M20 =4wy 

M10 -M01 =4wz, 

each of which simply requires a division by 4w. 

(1.73) 

Unfortunately, in cases when w is very small, dividing by it can cause floating-point precision 
problems, so we need alternative methods that calculate the largest of x, y, or z first and then solve 
for the other components. If M 00 +M11 + M 22 > 0, then JwJ is guaranteed to be larger than 1/2, and 
we can safely use Equations (1.72) and (1.73) to calculate q. Otherwise, we make use of three more 
relationships involving the diagonal entries of M, given by 



1.4 Quaternions 

M oo -M11 -M22 +1=4x2 

-Moo +M11 -M22 + 1=4y 2 

-Moo -M11 +M22 + 1 =4z2
• (1.74) 

At first, it might seem like we can use these in conjunction with Equation (1.72) to calculate all 
four components of q, but we do not have enough information to select the correct signs. We are 
able to arbitrarily choose the sign of one component, but making that choice determines the signs 
of the other components when they are subsequently calculated using off-diagonal entries ofM. To 
determine which of x, y, and z is largest, we can manipulate Equation (1.74) by replacing the ne
gated entries of M with the values shown in Equation (1.69) to obtain 

2x2 =Moo -2w2 +l 

2y 2 =M11 -2w2 +l 

2z 2 =M22 -2w2 +l, (1.75) 

where we have used the fact that w2 = 1- x

2 
- y

2 
- z2

. These equations show that the sizes of x, y, 

and z are directly related to the sizes of M 00 , M 11, and M 22. Once the largest diagonal entry has been 
identified, we calculate the corresponding component of q using one of the relationships in Equa
tion (1 . 74) and then calculate the remaining two imaginary components of q using the relationships 

M 21 +M12 =4yz 

M o2 +M20 =4zx 

M10 +Mo1 =4xy. (1.76) 

The w component is always calculated using one of the relationships shown in Equation (1 .73). 
Making an example of the case in which M 00 is the largest diagonal entry, we calculate x with the 
formula 

The y, z, and w components are then given by 

Math Library Notes 

M 10 +Mo1 
y= 

4x 
M o2 +M20 z=----

4x 
M 21-M12 

w=----
4x 

(1.77) 

(1.78) 

• There is a Transform() function that takes a Vector3D object and a Quaternion object as parameters. 
It performs the transformation given by Equation (1.58) and returns the Vector3D result. 

• The Quaternion class has a GetRotationMatrix () member function that calculates a 3 x 3 matrix with 
Equation (1.69) and returns it as a Matrix3D object. 

• The Quaternion class has a SetRotationMatrix() member function that accepts either a Matrix3D or 
Transform3D object as its parameter. It converts the matrix to a quaternion using the method described 
in this section. The code assumes that the input is a true rotation matrix, meaning that it is orthogonal 
and has a determinant of+ 1. When a Transform3D object is converted to a quaternion, any translation 
stored in the fourth column is ignored. 
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1.4.3 Interpolating Quaternions 

Quaternions are well suited for smoothly interpolating between arbitrary spatial orientations. If we 
had two unit quaternions 4 1 and 4 2, then we could calculate an intermediate unit quaternion 4 ( t) 
as a renormalized linear interpolation of 4 1 and 4 2 using the formula 

(1.79) 

This actually produces acceptable results in cases that don 't require high accuracy. If we were to 
try doing the same thing with two rotation matrices M 1 and M 2 by interpolating entrywise, the re
sults would be completely unusable because ( 1- t) M 1 + tM 2 can be very nonorthogonal and may 
even become singular. 

The only problem with Equation (1.79) is that it does not interpolate from 41 to 42 at a constant 
rate as measured by the angle between 4 ( t) and either 4 1 or 4 2 if we treat them all as ordinary 4D 
vectors. The rate is slower near the endpoints where t = 0 and t = 1, and it's fastest in the middle 
where t = 1/2. We can correct this problem by using a method called spherical linear interpolation, 
or just slerp for short. Slerp applies to ordinary vectors v1 and v2 of any dimension, and it provides 
a way of generating intermediate vectors v ( t) that sweep through the arc between v I and v 2 at a 
constant angular rate as t changes linearly. 

To derive a formula for slerp, first let v1 and v2 be unit-length vectors, and let¢ be the angle 
between them in the two-dimensional subspace that they span. Now suppose that the function v ( t) 
produces unit-length vectors that interpolate from v1 to v2 at a constant angular rate. This assertion 
requires that the angle between v I and v ( t) is equal to t<f> and that the angle between v 2 and v ( t) 
is equal to (1- t) ¢, as shown in Figure 1. 15. We can write v ( t) as 

(1.80) 

where d1 ( t) and d2 ( t) are the lengths of the components of v ( t) lying along the directions v I and 
v 2. We can determine formulas for d1 ( t) and d2 ( t) by constructing similar triangles, as shown by 
the highlighted green lines in the figure. Keeping in mind that II v 111 = 1 and II v ( t )II= 1, basic trigo
nometry tells us that the perpendicular distances from v I and v ( t) to the line connecting the origin 
to v 2 are equal to sin¢ and sin ( ( 1- t) ¢> ), respectively. Using the similar triangles shown on the 
left side of the figure, we obtain the ratio 

di ( t) sin ( (_1- t) ¢>) . 
sm ¢ 

The same procedure is used to find the formula for d2 ( t ). This time, we look at the distances from 
v2 and v(t) to the line connecting the origin to v 1. The similar triangles shown on the right side of 
the figure give us the ratio 

d
2 

(t) sin_(t¢) _ 
sm ¢ 

(1.82) 

Plugging these functions into Equation (1.80) produces the complete formula for spherical linear 
interpolation, which is given by 

V ( t ) = sin ( ( ~ - t ) </> ) V I + si~ ( t </> ) V 
2 

. 

sin¢ sin¢ 
(1.83) 
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d1 (t) = sin ((_I-t)¢) 
sm¢ 

Figure 1.15. Similar triangles can be used to determine the lengths d1 ( t) and d2 ( t ) needed to calculate the 
spherical linear interpolation of the vectors v1 and v2. 

Spherical linear interpolation between two unit quaternions Qi and Q2 is calculated with Equa
tion (1.83) by simply treating them as four-dimensional vectors. The angle¢ between the quaterni
ons is determined by evaluating the dot product Qi • Q2 to obtain cos¢ and then inverting the cosine 
to get 

( 1.84) 

To avoid calculating sin¢ directly, we can apply the identity sin 2 ¢ + cos2 ¢ = 1 to instead calculate 

sin</J= ✓l-(Q 1 •Q2 )
2

. (1 .85) 

Since the quaternions Q and -Q correspond to the same rotation, it is common practice to flip the 
sign of either Qi or Q2 as necessary so that Qi • Q2 ~ 0. This also ensures that the interpolation from 
Qi to Q2 follows the shortest arc between them and doesn 't end up taking the long way around. 

It's important to realize that the angle¢ in (1.83) is the angle between two quaternions and not 
the angle through which either quaternion actually rotates. As interpolation progresses, the axis of 
rotation and the angle of rotation are both changing, and it can be difficult to tell what's going on. 
This can be cleared up by multiplying everything by Q ~ so that the interpolation formula becomes 

( ) 
sin [ (1- t) ¢] sin ( t</)) 

Q t - --=--'--------'--=- + Q 
- • /4 0 • /4 ' 

sm 'f' sm 'f' 
(1.86) 

where Qo = Q2Q~- This essentially realigns the coordinate axes to the directions to which they are 
rotated by Q 1. After calculating a value of Q ( t) to interpolate between the identity and Qo, we mul
tiply by Q, to return to the original coordinate system. The quaternion Qo can be expressed as 

Qo =a0 sin¢+cos¢, (1.87) 

which rotates by the angle 2¢ about the axis a0. In this case, the dot product between the identity 
( 0, 0, 0, 1) and Qo is just the scalar term cos¢, so the angle between the quaternions being interpo
lated is half the angle by which Qo rotates. This means that the angle¢ has the same interpretation 
in both Equations (1.86) and (1.87), and the expression for Qo given by Equation (1.87) can be 
directly substituted into Equation (1.86) to get 

( ) sin [ ( 1 - t) ¢] ( cos ¢ ) . ( /4) Q t =-~- -~+ a0 +-- sm t'f' . 
sin¢ sin¢ 

(1.88) 
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We can simplify this by writing the numerator in the first term as sin ( ¢ - t</)) and applying the angle 
difference identity 

sin ( a - /3) = sin a cos f3 - cos a sin /J . (1.89) 

The result is 

Q ( t) = a0 sin ( t</)) + cos ( t</)) = exp ( t¢a0 ), (1.90) 

which demonstrates that we are rotating about the axis a0 at a constant rate from O to 2¢ as t varies 
from Oto 1. 

1.4.4 Dual Quaternions 

Quaternions can only perform rotations about the origin. Because they are incapable of performing 
translations, it's common practice to combine a quaternion Q with 3D vector t to form a complete 
rigid motion in space. A point p is then transformed according to 

p'= QpQ · +t, (1.91) 

which is very similar to Equation (1.9) in Section 1.2. In our earlier discussion of homogeneous 
coordinates, we incorporated a translation into a transformation matrix by adding a fourth column 
containing a translation vector and a fourth row that is always [ 0 0 0 1]. This required 12 num
bers in order to describe a rotation about an arbitrary axis followed by a translation, but the combi
nation of a quaternion and vector requires only 7 numbers, and this can be reduced to 6 if we're 
willing to reconstitute the scalar part of a quaternion with Equation (1.70). 

Equation ( 1.91) can be somewhat clunky when it comes to composing or interpolating trans
formations , and it does not distinguish between direction vectors and position vectors. There is a 
quaternion-based analog of homogeneous coordinates that makes a similar leap from 3D space to 
4D space and bas all the nice properties that we would like. It works through the combination of 
quaternions and something called dual numbers, and it thus bas the name dual quaternions. We 
introduce the concept of dual quaternions here, but our discussion is kept very brief because they 
are limited and difficult to understand in the conventional setting, and they have been entirely sup
planted by the motion operators that are the main topic of Chapter 3. 

A dual number is a quantity of the form a+ be, where a and bare real numbers, and the special 
nonzero value e bas the property that e2 = 0. Multiplication of two dual numbers can easily be 
worked out to arrive at 

( a + be ) ( c + de ) = ac + ( ad + be ) e. (1.92) 

A dual quaternion is defined as Q = Qr + Qde, where Qr is a quaternion called the real part or rota
tional part, and Qd is another quaternion called the dual part. A dual quaternion contains a mixture 
of the imaginary units i, j , and k that each square to - 1 and the special unit e that squares to zero. 
We can write out all eight components of a dual quaternion Q as 

(1.93) 

The products ie, }e, and ke between a quaternion's imaginary units and the value e do not simplify. 
They can be thought of as new basis vectors that make up part of the eight-dimensional vector space 
of dual quaternions. The value e does commute with each of i, j , and k, however, so all three of 
these basis vectors square to zero, as expressed by 

(1.94) 
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Dual quaternions operate on an object x through the sandwich product 

(1.95) 

which is similar to that used by ordinary quaternions, but it's not exactly the same because there is 
a subtraction in the rightmost factor. When the dual part Qd is zero, a dual quaternion just performs 
the rotation represented by the real part q,. . To get a translation by the vector t, we need to construct 
the dual quaternion 

Ix . t y . 12 Q =- u: +- ]£+-la:+ l. 
2 2 2 

(1.96) 

Products of dual quaternions corresponding to rotations and translations then give us the full range 
of rigid motions. 

In order to transform a point p with Equation (1.95), we have to cast pinto the form 

(1.97) 

When we plug this in for x and perform the multiplication with the rules for quaternions and dual 
numbers, we get back another quantity having this form, and the components of the transformed 
point are given by the coefficients of its ic, Jc, and /a; terms. If we want to transform a direction 
vector v instead of a position vector, then we simply leave off the scalar term in Equation (1.97) so 
that v is encoded as 

(1.98) 

This direction is affected only by the rotational part q,. of a dual quaternion, so we could just calcu
late q,. vq; and avoid spending time on other terms that sum to zero. 

If the above formulation of dual quaternion transformations feels like a messy hack, then your 
intuition is correct. We do not bother going any further in this direction because the whole thing 
has been superseded by the much clearer and more elegant development of motion operators in 
geometric algebra. In Chapter 3, we will see that a dual quaternion is really an encoding of a line 
in 3D space, a rotation angle about that line, and a displacement along that line. This covers all 
possible rigid transformations, and we will be able to use it to transform not only direction and 
position vectors, but also lines and planes with the same formula. This will be extended to include 
round objects like circles and spheres in Chapter 5. 
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Historical Remarks 

In the mid-nineteenth century, the Irish scientist William 
Rowan Hamilton was studying the nature of multiplication 
and division in the complex numbers. He attempted to extend 
similar algebraic principles to a three-dimensional space of 
real numbers, but after considerable effort, he failed to find a 
logically sound method for multiplication. (This would later 
be proven by others to be an impossible feat.) So he turned his 
attention to four-dimensional numbers . One morning in 1843, 
while contemplating four-dimensional multiplication as he 
walked to a meeting of the Royal Irish Academy with bis wife, 
and he had an epiphany. He had discovered a consistent rule 
for multiplying "quaternions", and he excitedly etched 

i2 = j2 = k 2 = ijk = -1 

into the stones of a nearby bridge over the Royal Canal. Today, 
Hamilton's original carving is no longer visible, but a stone 
plaque adorns the Broome bridge in Dublin to mark the 

William Rowan Hamilton 
(1805-1865) 

location where his "flash of genius" took place. Hamilton spent much of the rest of bi s life studying 
and writing about quaternions [Hami1844]. Today, the set of quaternions is denoted by the 
blackboard bold letter ]H[ in honor of Hamilton's discovery, and we continue to use the tenns scalar 
and vector that Hamilton coined for the separate parts of a quaternion. 

As discussed in Chapter 3, we now understand that the quaternions arise as part of the geometric 
algebra in three-dimensional space and form a rotation group. The dual quaternions are part of the 
projective geometric algebra over three-dimensional space, and they form the Euclidean group of 
all proper isometries, which includes rotations and translations. In two-dimensional space, the 
complex numbers correspond to rotations, and the quaternions are the natural analog in one 
dimension higher. 

Julius Plucker 
(1801- 1868) 

Julius Plucker was a German mathematician and physicist 
who was known for his work in analytic geometry. In late 
1864, be wrote an article entitled "On a New Geometry of 
Space" [Plucl 865] that contained the first description of a six
component homogeneous representation of a line in three
dimensional space. His discovery provided a new way of 
uniquely identifying a line by its direction and moment 
independently of any specific points contained by the line. The 
six components became known as the Plucker coordinates of 
a line. 

We now understand that Plucker coordinates arise as the 
six components of a constrained bivector in the projective 
geometric algebra over three-dimensional space. As discussed 
in Chapter 2, such a bivector belongs to a set of flat geometry 
types covering all possible dimensionalities in which vectors 
represent homogeneous points, bivectors represent homo
geneous lines, and trivectors represent homogeneous planes. 



Chapter 2 
Flat Projective Geometry 

The previous chapter reviewed cross product transformations, homogeneous coordinates, implicit 
lines and planes, and quaternions in the context of conventional mathematics that are widely 
known. However, for each one of these topics, the conventional approach either doesn't tell the 
whole story or causes us to misinterpret subtle concepts that could be understood in a more intuitive 
way if they were derived from the right foundations . From this point onward, our goal is to remedy 
this situation by revealing a complete picture that includes everything discussed in Chapter l and 
much more under the unified theories of exterior algebra and geometric algebra. Though the origins 
of these theories extend back to the mid 19th century, they were lost to obscurity for much of their 
existence, and the details weren't hammered out until well into the 20th century (and not always 
correctly). It has been only very recently, in the 21st century, that many aspects of projective exte
rior algebra and geometric algebra have been well understood, and those are the subjects on which 
this book focuses. The material will likely require some significant mental adjustments on the part 
of readers who have no prior familiarity with it, but the reward will be an understanding of a natural 
and elegant mathematical structure. 

This chapter introduces projective exterior algebra and applies it to flat geometries in three
dimensional space (which are points, lines, and planes) followed by flat geometries in two-dimen
sional space (which are just points and lines). Exterior algebra can be thought of as an extension to 
linear algebra that completes the total structure of a vector space. Given n linearly independent 
direction vectors spanning an n-dimensional space, there are 2n ways to combine any number of 
those directions to create a mathematical structure much richer than what arises from only a set of 
scalars and n basis vectors. In addition to its direct geometric significance, projective exterior alge
bra possesses intrinsic symmetries that lead to a recurring theme of duality. Nearly all concepts in 
exterior algebra come in pairs that have similar but opposite properties, and these are highlighted 
throughout this chapter both in the text and in special duality graphics that appear at the end of 
many sections. 

2.1 Algebraic Structure 

At the heart of exterior algebra is an operation called the exterior product that provides a geomet
rically meaningful way to multiply any two quantities together. The exterior product between a and 
b is denoted by a/\ b, with an upward pointing wedge symbol, and we read it as "a wedge b". Just 
like the conventional dot product and cross product get their names from the symbol used to repre
sent them, the exterior product is often called the syllabically simpler wedge product, and that 's 
what we prefer in this book. An n-dimensional exterior algebra is constructed from a vector space 
by starting with ordinary scalars and n basis vectors and then defining how they are multiplied 
together using the wedge product. This ultimately leads to a larger space with 2" basis elements 
arranged in a stratified formation. 
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2.1.1 The Wedge Product 

For any product involving a scalar, which includes scalar times scalar and scalar times vector, the 
wedge product is no different from the scalar multiplication that we are familiar with from conven
tional mathematics. Beyond that, things get a little different, but the entire algebra is derived from 
one simple rule: any vector multiplied by itself using the wedge product is zero. That is, for any 
vector v, we always have 

I Vt\V=O. , (2.1) 

This rule has an important consequence that reveals itself when we consider the sum of two vectors 
a and b. The wedge product of a+ b with itself gives us 

( a + b ) A ( a + b ) = a A a + a Ab + b A a+ b Ab = 0. 

The products a A a and b A b must both be zero, and that leaves us with 

a t\ b + b Aa=O, 

from which we conclude that 

a A b = - b A a. 

(2.2) 

(2.3) 

(2.4) 

This establishes the property that multiplication of vectors with the wedge product is anticommu
tative. Reversing the order of the two factors negates the product. We should stress that we have 
only shown this to be true for vectors at this point, and it does not hold in general. In particular, the 
wedge product between scalars, being ordinary multiplication, is commutative. These facts and a 
few additional properties of the wedge product, when used to multiply scalars and vectors, are 
summarized in Table 2.1. 

Math Library Notes 

• Toe wedge product is implemented by the Wedge () function . The wedge product can also be calculated 
by using the " symbol as an infix operator. 

• The " operator has a very low evaluation precedence among operators in C and C++, even lower than 
the relational operators, so it is rather ill-suited in this respect for the role of infix multiplication. It is 
often necessary to surround each wedge product with parentheses to prevent operations from occurring 
in the wrong order. For example, the expression a " b < c " d would be interpreted by the compiler as 
a " ( b < c) " d, so it would have to be written as ( a " b) < ( c " d) to get the correct result. 

2.1.2 Bivectors 

The wedge product a A b between two vectors a and b cannot be expressed in terms of scalars and 
vectors. It forms a new type of mathematical element called a bivector. Whereas a vector can be 
thought of as a combination of a direction and a magnitude, a bi vector can be thought of as a com
bination of an oriented area and a magnitude. A bi vector a A b can be visualized as a parallelogram 
whose sides are parallel to the vectors a and b, as shown in Figure 2.1. The parallelogram has an 
intrinsic winding direction that reflects the order in which the vectors a and b appear in the wedge 
product, and this direction can be determined by following the perimeter of the parallelogram first 
along the direction of a and then along the direction of b. If the order of the vectors is reversed, 
negating the result, then the winding direction is also reversed, exchanging clockwise and counter
clockwise directions around the perimeter. 
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Property Description 

(aA b )Ac=aA(bAc) Associative law for the wedge product. 

aA( b +c)=aAb + a/\c 

(a+b)Ac=aAc+ b Ac 
Distributive laws for the wedge product. 

(sa)A b = aA(sb) = s (aA b ) Scalar factorization for the wedge product. 

s At= t I\ s = st Wedge product between scalars. 

s A a = a/\ s = sa Wedge product between a scalar and a vector. 

a/\ b = - b A a Anticornrnutativity of the wedge product for vectors. 

Table 2.1. These are the basic properties of the wedge product. The letters a, b, and c represent vectors, and 
the letters s and t represent scalar values. 

a 
b b 

____-; 
Figure 2.1 . The bivector a Ab can be visualized as a parallelogram whose sides are parallel to the vectors a 
and b. The intrinsic winding direction follows the perimeter along the first vector in the wedge product and 
then along the second vector. Reversing the order of the vectors in the product also reverses the winding 
direction. 

In order to give some quantitative substance to a bivector, we can examine the effect the wedge 
product has on vectors that have been decomposed into components over an orthonormal basis. 
We' ll be working in three dimensions for now, but keep in mind that a similar analysis is valid in 
any number of dimensions. Let e1, e2, and e3 represent three mutually orthogonal unit vectors in 
three-dimensional space. These generic labels are intended to avoid being tied to any particular 
coordinate system, but we will equate them to a typical right-handed configuration of the x, y, and 
z axes . We can write an arbitrary vector v = ( vx, vy , v, ) in terms of the three basis vectors as 

Doing this for two vectors a and b allows us to write the bivector a/\ b as 

a /\ b = (axe,+ aye2 + a, e3) /\ ( bxe, +bye2 + b, e3) 

= axby (e, /\ e2) + axb, (e, /\ e3) + aybx (e2 /\ e,) 

+ ayb, ( e2 /\ e3) + a,bx ( e3 /\ e,) + a,by ( e3 /\ e2 ), 

(2.5) 

(2.6) 

where each term containing the wedge product of a basis vector with itself has been dropped be
cause it is zero. Every term in this expression contains a wedge product whose factors appear in the 
reverse order of the wedge product in another term, so we can negate one half of the terms and 
collect over common bivectors to arrive at 
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Here, we have arranged terms in the order by which a basis vector does not appear in the wedge 
product, so the term missing e1 comes first, the term missing e2 comes second, and the term missing 
e3 comes third. This expression can be simplified no further, and it demonstrates that an arbitrary 
bivector in 3D space has three components over a bivector basis consisting of e

2 

t\ e
3

, e
3 

t\ e
1

, and 
e1 t\ e2. 

The three coefficients in Equation (2.7) should have a familiar ring to them. They are exactly 
the same values that are calculated by the cross product, which is something usually defined without 
much explanation as to where the values come from. Now, these numbers appear as a result that 
was derived from a fundamental property of the wedge product. The fact that bi vectors have three 
components is unique to three dimensions, and this similarity makes a bi vector look like an ordinary 
vector, but it is indeed something different. Failing to make a distinction leads to an incomplete and 
inelegant picture of the mathematics. An important thing to understand is that the wedge product is 
defined in a manner similar to Equation (2. 7) in any number of dimensions, while the cross product 
is confined to only three dimensions, limiting its usefulness. 

Once the three coefficients in Equation (2.7) have been calculated, the resulting bivector no 
longer contains any information about the two vectors multiplied together to create it. The only 
information carried by a bivector is its orientation in space and its area. Even though we have drawn 
a bivector as a parallelogram in Figure 2.1, it doesn't actually possess any particular shape. In fact, 
there are infinitely many pairs of vectors that could be multiplied together to produce any given 
bivector, and they could all be drawn as different parallelograms that have the same area and lie in 
the same plane but don't have the same angles. There is no specific parallelogram whose shape is a 
fixed property of the bi vector. 

Math Library Notes 

• The Bi vector3D class stores the three coordinates of a 3D bi vector. It has floating-point members 
named x, y, and z, and they correspond to the basis bi vectors e2 /\ e3, e3 /\ e1, and e1 /\ e2, respectively. 

• When two Vector3D objects are multiplied together with either the Wedge() function or the" operator, 
the result is a Bi vector3D object. 

2.1.3 Trivectors 

We now have an algebraic system that includes scalars, vectors, and bivectors, but this is not the 
end of the road, at least not in three dimensions. Let's consider the wedge product among three 
vectors a, b, and c given by 

at\bt\c=(axe1 +ay e 2 +az e 3 )A(bx e1 +by e 2 +bz e3)t\( cx e1 +cy e2 + cz e3). (2.8) 

When multiplying all of this out, remember that any term containing a repeated factor is zero, and 
the only parts that remain are the terms containing all three of e1, e2, and e3 in the six possible orders 
in which they can be multiplied. Fully written out, these six terms are 

3 t\ b t\ C = a xbyCz ( e1 t\ e2 t\ e3) + a ybzCx ( e2 t\ e3 t\ e1) 

+ GzbxCy ( e3 t\ e1 t\ e2) + a zbyCx ( e3 t\ e2 t\ e1) 

+ a ybxCz ( e2 t\ e1 t\ e3) + a xbzCy ( e1 t\ e3 t\ e2 ). (2.9) 

We can swap the order of adjacent factors one or more times in each of the triple wedge products 
to make all of them equal to e

1 

t\ e
2 

t\ e
3 

as long as we negate the scalar coefficient each time we 
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do it. For example, e1 /\ e 3 /\ e 2 = - ( e1 /\ e2 /\ e3 ) because it requires a single swap of the last two 
factors, and e

3 
/\ e1 /\ e

2 
= + ( e

1 
/\ e

2 

/\ e
3

) because it requires two swaps. After adjusting all of the 
terms, we can write the complete product as 

(2.10) 

This is yet another new mathematical element called a trivector, which is distinct from a scalar, 
vector, and bivector. Notice that in three dimensions, the trivector has only one component, and it 
is associated with the basis trivector e1 /\ e2 /\ e3. A trivector combines an oriented volume and a 
magnitude, but the only choice we have about the orientation is whether the volume is positive or 
negative. 

You may recognize the scalar coefficient in Equation (2.10) as the determinant of a 3 x 3 matrix 
whose columns or rows are the vectors a, b, and c. Or you may recognize it as the scalar triple 
product [ a, b, c] = (ax b) · c, which has the same value. Just as the wedge product a/\ b of two vec
tors has a magnitude equal to the area of the parallelogram spanned by a and b, the wedge product 
a/\ b /\ c of three vectors has a magnitude equal to the volume of the parallelepiped spanned by a, 
b, and c. In contrast to the scalar triple product, however, the triple wedge product possesses a 
pleasing symmetry among its factors. In higher dimensions, this can be continued to hypervolumes 
with greater numbers of sides by simply appending more vectors to the product. The wedge product 
builds higher-dimensional geometry by combining the dimensionalities of the elements on which 
it operates. 

When three vectors a, b, and c are multiplied together with the wedge product, the absolute 
value of the coefficient in Equation (2.10) is always the same, but its sign depends on the order in 
which the vectors are multiplied. If an odd number of swaps are made to change the order from 
a /\ b /\ c, then the result is negated, but if an even number of swaps are made, then nothing happens. 
The six possible orderings are illustrated in Figure 2.2. The three products in the top row have one 

C 

• b,.c 

C 

Figure 2.2. These are the six ways in which three vectors can be multiplied together with the wedge product 
to construct a trivector. The three trivectors in the top row are equal to each other, and the three trivectors in 
the bottom row are negated relative to the top row. In the top row, the third vector in the product satisfies the 
right-hand rule by pointing out of an area that is wound counterclockwise due to the order of the first two 
vectors in the product. The trivectors in the bottom row have the opposite sign because their third vectors 
point out of areas that are instead wound clockwise. 
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sign, whichever is given by Equation (2.10) for any given inputs, and the three products in the 
bottom row have the opposite sign. In this figure, the vectors have a right-handed configuration so 
that the volumes in the top row are positive and the volumes in the bottom row are negative, but 
reversing any one of the vectors so that it points in the opposite direction would cause these signs 
to be flipped . In general, when the third vector in the product follows the right-hand rule, meaning 
that the right thumb points in the direction of the third vector when the fingers of the right hand 
curl in the winding direction of the first two vectors, the volume is positive, and otherwise, the 
volume is negative. The universe doesn't actually have a preference for the right-hand rule over a 
similar left-hand rule, however, and the sign of our calculation depends on the fact that we are 
choosing e1 /\ e2 /\ e3 as our trivector basis element (as opposed to some other ordering of those 
vectors) and that e1, e2 , and e3 form the axes of a right-handed coordinate system. 

2.1.4 Basis Elements 

In three dimensions, trivectors are the limit for new mathematical types. We cannot multiply by a 
fourth vector to create a quadrivector because the product a /\ b /\ c /\ d for any vectors a, b, c, and 
d must be zero. When we expand the product, we find that every term contains a repeated factor 
because it's impossible to have four linearly independent vectors in three-dimensional space. This 
means that the complete exterior algebra in three dimensions consists of elements that are scalars, 
vectors having three components, bivectors having three components, and trivectors having one 
component. 

There is a combinatorial reason why it works out this way, and it has to do with how basis 
vectors from the set S = { e1, e2 , e3 } are used by each type of element. Components of a vector each 
use one member of the set S, and there are three ways to choose one member, so vectors have three 
components. Components of a bivector each use two members of the set S, and there are three ways 
to choose two members, so bivectors also have three components. Finally, the single component of 
a trivector uses all three members of the set S, and because there is only one way to choose all three, 
trivectors have only one component. Along the same line of reasoning, we can say that scalars use 
no members of the set S, and there is only one way to choose nothing, so scalars also have only one 
component. 

The number of basis vectors multiplied together to produce some element u of higher dimen
sionality is called the grade of u. An ordinary vector has grade one, a bivector has grade two, a 
trivector has grade three, and so on. Scalar values have a grade of zero. Any scalar multiple of a 
grade-k element also has grade k, and any sum of grade-k elements has the same grade k as its 
individual components. If a quantity is the sum of components having different grades, then we 
cannot assign a grade to its total value, and we simply say it has mixed grade. 

The term k-vector is also used to refer to a quantity that has grade k. Instead of the terms vector, 
bivector, trivector, etc., we can say 1-vector, 2-vector, 3-vector, etc. In three dimensions or fewer, 
it is always the case that a k-vector can be expressed as the wedge product of k vectors of grade 
one. In higher numbers of dimensions, four or more, this is not always true. Quantities of grade k 
for which it is possible to factor into k distinct vectors are called simple k-vectors, and the term 
k-blade is often used to mean the same thing. An example of a quantity that is not simple (not a 
blade) is the bivector e1 /\ e2 + e3 /\ e4 in four dimensions. There are no two vectors that can be 
multiplied together to produce this quantity. 

In the n-dimensional exterior algebra, the maximum number of components making up a quan
tity of grade k is given by the binomial coefficient 

( : ) - k!(:~k)! 
(2.11) 

because this gives the number of ways to choose k items from a set of n items. The binomial coef
ficients produce Pascal 's triangle, as shown in Figure 2.3 , where the row corresponding to three 
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OD 

=========:::-=---_-_-_-:_ 
2D 

3D 

4D 

5D 

Figure 2.3. The number of components making up a quantity of grade kin then-dimensional exterior algebra 
is given by the binomial coefficient(;), which produces Pascal 's triangle. Each row corresponds to a partic
ular number of dimensions, and the numbers in each row tell how many independent basis elements exist for 
each grade. There is always one scalar basis element and n vector basis elements. The number of bivector 
basis elements is given by the third number in each row, the number oftrivector basis elements is given by 
the fourth number, and so on. 

dimensions reads 1, 3, 3, 1. The complete n-dimensional exterior algebra is constructed by choosing 
basis vectors from the set { e1, e2 , . .. , en } in every possible quantity and combining them in every 
possible way. For any given element in the algebra, a particular basis vector e; is either included or 
excluded, so we can think of the inclusion status of the entire set of basis vectors as an n-bit quantity 
for which all 2" values are allowed. This is reflected in the fact that each row of Pascal 's triangle 
sums to the power of two corresponding to the number of dimensions. 

Table 2.2 lists the basis elements of each grade belonging to the exterior algebras in dimensions 
numbering zero through four. In the table, we have adopted the simplified notation e06 ... in which 
multiple subscripts indicate the wedge product among multiple basis vectors so that, for example, 
e12 = e1 /\ e2 and e423 = e4 /\ e2 /\ e3. The zero-dimensional exterior algebra is nothing more than the 
set of real numbers because it has no basis vectors. The one-dimensional exterior algebra has a 
single basis vector e1, and every element of the entire algebra can be written as a+ b e1, where a and 
b are real numbers. The two-dimensional exterior algebra contains two basis vectors e1 and e2 that 
correspond to the x and y axes, and it contains a single basis bi vector e12 that corresponds to the 
only planar orientation possible, that of the whole 2D coordinate system. The wedge product be
tween two 2D vectors a and b is 

(2.12) 

and the value of this bi vector is equal to the signed area of a parallelogram whose sides are given 
by a and b. (This is sometimes called the 2D cross product.) The area is positive when a and bare 
wound counterclockwise about the origin and negative otherwise. The signed area of a triangle 
having sides given by a and bis half the value given by Equation (2.12). 

In each of the exterior algebras listed in Table 2.2, the order of vector multiplication for the 
basis elements of grade two and higher contains an arbitrary choice. For example, the value e23 is 
listed as one of the basis bivectors for the 3D and 4D algebras, but we could have instead decided 
to use e32, which involves the same two vectors e2 and e3 multiplied in the opposite order. There are 
logical reasons why we have chosen the multiplication orders that are shown in the table, and these 
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40 Chapter 2 Flat Projective Geometry 

Dimension Type Count Basis Elements 

OD Scalar 1 1 

Scalar 1 1 
1D 

Vector 1 e, 

Scalar 1 1 

2D Vector 2 e, , e 2 

Bivector 1 e, 2 

Scalar 1 1 

Vector 3 e, , e 2, e3 
3D 

Bivector 3 e 23, e 31, e, 2 

Tri vector 1 e 123 

Scalar 1 1 

Vector 4 e, , e 2, e 3, e 4 

4D Bivector 6 e 41, e 42 , e 43 , e 23, e 31, e, 2 

Tri vector 4 e 423, e 43 1, e41 2, e 32 1 

Quadrivector 1 e,234 

Table 2.2. This table lists the basis elements of each grade in then-dimensional exterior algebras for O ~ n ~ 4. 
The total number of basis elements is always equal to 2n, and the number of basis elements of a particular 
grade k is given by ( ; ). 

are highlighted below as they arise. In general, once we have made the decision as to which way 
we are multiplying vectors for each of the basis elements, we stick with it in all of our expressions 
and avoid mixing the two possibilities that exist for everything of grade two or higher. The only 
effect that making one choice over the other for any particular basis element has is that every term 
involving that basis element gets negated without any change to the geometric interpretation. 

Every exterior algebra has a basis element denoted by 1, the number one written in a bold style, 
that represents the embedding of the set of scalars inside the algebra. For every scalar values, the 
corresponding member of the exterior algebra is technically given by sl, but we won't always write 
the 1 explicitly because it will be obvious what we mean when we just write s by itself. The basis 
element 1 is the multiplicative identity of the wedge product such that u /\ 1 = 1 /\ u = u for any 
value u of any grade. 

Every n-dimensional exterior algebra with n ~ I also contains exactly one basis element of 
grade n given by the wedge product of all n basis vectors. This highest-grade basis element is called 
the unit volume element, and it is denoted by the special symbol 11, the number one written in a 
blackboard bold style. The unit volume element is defined as 

I ll=±e,2---n =±(e, /\e 2 /\···/\en) , 1 (2.13) 

and it corresponds to an n-dimensional volume of magnitude one. The undetermined sign in this 
definition represents a choice that we can make about the orientation of the volume element. For 
example, in three dimensions, we can define 11. = e123 or 11. = - e123 = e32 1, where any other ordering of 
the basis vectors must be equal to one of those two possibilities. The orientation that we choose 
establishes a relationship between dual concepts in exterior algebra that arise due to the pronounced 
symmetry visible in Figure 2.3. 
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Because the volume element has only one component, it is the basis for a second embedding 
of the set of scalars inside an exterior algebra. We call the set of all values tll., where t is a real 
number, the set of antiscalars. 1 The prefix anti- is intended to convey that scalars and antiscalars 
are symmetric opposites of each other and that they are both equally functional and equally 
important within the exterior algebra. This is the first of many examples that we wi 11 see in which 
a concept in exterior algebra appears as a pair of symmetric objects or symmetric operations. 

Scalars 

s1 
• Embedding of scalar field on grade-0 

basis element 1. 

■ Corresponds to empty space involving no 
basis vectors. 

Antiscalars 
DUALITY 

tll 

■ Embedding of scalar field on grade-n 
basis element ]_. 

■ Corresponds to fu ll space involving all 
basis vectors. 

The elements of then-dimensional exterior algebra can be generalized so that the components 
of every grade are mixed into a single quantity called a multivector. For example, a multivector 
belonging to the three-dimensional exterior algebra is written as 

(2.14) 

It would be possible to design a computational system in which all eight components of the 3D 
multivector in Equation (2.14) were always stored in memory and operations were always per
formed between two complete multivectors. However, this would be rather impractical and quite 
wasteful because many of the components would often be zero. This is especially true in higher 
dimensions due to the exponential increase in the number of components . It will always be the case 
in this chapter that geometric objects are represented by quantities having one specific grade. In the 
next chapter, quantities representing transformations will be composed of components having dif
ferent grades, but those grades will always be either all even or all odd, so the maximum number 
of components in a single quantity will never be greater than r -1 in an n-dimensional algebra. In 
the math library, we define different types that allow us to store geometric objects and transfor
mations using the smallest number of components possible. 

Most of this chapter deals with the four-dimensional exterior algebra because it completes the 
vector space where the homogeneous coordinates described in Chapter 1 represent points in three 
dimensions. It is a projective exterior algebra because, as discussed in greater detail later, we project 
into a three-dimensional subspace in order to interpret a 4D object as a 3D geometry. Since this 
particular exterior algebra will be our main focus, it is valuable to spend a moment taking a closer 
look at its basis elements. 

In four dimensions, the exterior algebra has 16 basis elements across five different grades, as 
shown in Table 2.3. As with all exterior algebras, there is a scalar basis element 1, and any real 
numbers is mapped into the algebra as s1. Since the algebra is four-dimensional, there are four 

1 Conventionally, a bold I has denoted the unit volume element, and multiples of I have been called pseudosca/ars. 
However, the symbol I conflicts with the symbol commonly used to denote an identity matrix, and we use I for that 
purpose in contexts where the volume element also appears. The symbol 11 that we use for the volume element strongly 
reflects the symmetry with 1, and it fits consistently into a larger system of notation developed throughout this chapter. 
The prefix anti- is also conceptually consistent with the many examples of duality that appear in this book. We eschew 
the prefix pseudo- because its meaning of"false" suggests that antiscalars are somehow less important or less meaningful 
than scalars, but that is not true. 
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42 Chapter 2 Flat Projective Geometry 

Type Grade / Antigrade Values 

Scalar 0 / 4 DODD 1 

1000 e1 

Vectors 1 / 3 
DIDO e 2 

0010 e 3 

DODI e 4 

IDOi e 41 = e 4 /\e1 

DIDI e 42 = e 4 /\ e 2 

Bi vectors 2 / 2 
ODIi e 43 = e 4 /\ e 3 

0110 e 23 = e 2 /\e3 

1010 e 31 = e 3 /\ e1 

1100 e 12 = e1 /\e2 

DIii e 423 = e 4 /\ e 2 /\ e 3 

Trivectors I Antivectors 3 /1 
1011 e 43 1 = e 4 /\ e 3 /\ e 1 

1101 e 412 = e 4 /\ e 1 /\ e 2 

1110 e 321 = e 3 /\ e 2 /\ e1 

Quadrivector / Antiscalar 4 / 0 1111 11 = e1 /\ e 2 /\ e 3 /\ e 4 

Table 2.3. These are the 16 basis elements of the 4D projective exterior algebra. 

vector basis elements named e1, e2, e3, and e4 . A general vector v = ( x, y, z, w) has the form 

(2.15) 

There are six bivector basis elements named e41 , e42 , e43 , e23 , e31, and e12, where we have purposely 
chosen the orders in which the subscripts appear so the components have the specific geometric 
meaning described in Section 2.4.2 below. Whenever a wedge product would result in basis vectors 
being multiplied in the opposite order, the term is negated so that basis elements can always be 
written exactly as they appear in the table. Next, there are four trivector basis elements named e423 , 

e431 , e4 12, and e321 , where we have again purposely chosen those specific orders for the subscripts. 
These basis elements will always be written exactly as shown in the table, and negation will be 
applied for any odd permutation of the vector multiplication order. Finally, there is a single 
quadrivector basis element e1234 , and this is the unit volume element 11. The full multiplication table 
for the wedge product with these 16 basis elements is shown in Table 2.4. 

As shown by the solid and hollow bars in Table 2.3 , each of the basis elements can be identified 
by which specific multiplicative combination of the four available dimensions it represents. This is 
essentially a four-bit code in which solid bars correspond to the dimensions that are present or full, 
and hollow bars correspond to the dimensions that are absent or empty. The grade of a basis element 
is the number of solid bars it bas, which is the same as the number of vector basis elements in its 
factorization. A new term called the antigrade of a basis element corresponds to the number of 
hollow bars that is has, which is the same as the number of vector basis elements that do not par
ticipate in its factorization. For any element u that does not have mixed grade, we define the func
tion gr ( u) to be the grade of u and the function ag ( u) to be the antigrade of u. Of course, it is 
always the case that 
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gr ( u ) + ag ( u ) = n, (2 .16) 

where n is the total number of dimensions in the algebra. Using the grade function, we can write 
things like 

I gr (a/\ b) = gr (a)+ gr (b ) , I (2.17) 

which states that the grade of the wedge product between two quantities a and b is the sum of the 
grades of a and b. In order to handle the special case that gr (a) > 0 and gr ( b) > 0, but a/\ b = 0, 
which happens when a and b are parallel, we leave gr ( 0) undefined and add the condition that 
Equation (2.17) only holds when a /\ b -::;:. 0. 

We mentioned earlier that anticommutativity applied to vectors under the wedge product, but 
not generally to other kinds of elements in the algebra. The grade and antigrade functions usually 
appear in the exponent of a factor of -1 in order to express how sign changes occur. For example, 
we can succinctly express the condition under which two quantities a and b commute as 

a /\ b = (-l t r(a)gr(b) b /\ a. (2 .18) 

This means that if either gr (a) or gr ( b ) is even, then a and b commute under the wedge product. 
Otherwise, when both grades are odd, they anticornmute. Toe case in which a and b commute can 
be understood by considering the factor with an even grade as the wedge product of an even number 
of basis vectors . The other factor can be moved from one side of the product to the other by making 
an even number of transpositions and multiplying by - 1 for each one, resulting in no overall change 
m sign. 

Wedge Product a/\ b 

~ 1 e 1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e 12 e 423 e 431 e 412 e m 11 

1 1 e 1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e 12 e 423 e 43 1 e 412 e m 11 

e 1 e 1 0 e 12 -e31 -e41 0 -e412 e431 -em 0 0 11 0 0 0 0 

e 2 e 2 -e12 0 e 23 - e 42 e 412 0 - e423 0 -em 0 0 11 0 0 0 

e 3 e 3 e 31 - e 23 0 -e43 - e 431 e 423 0 0 0 - e 321 0 0 11 0 0 

e 4 e 4 e◄ 1 e 42 e 43 0 0 0 0 e 423 e 431 e 412 0 0 0 11 0 

e 41 e◄ 1 0 e 412 -e◄31 0 0 0 0 -11 0 0 0 0 0 0 0 

e 42 e42 -e412 0 e423 0 0 0 0 0 -11 0 0 0 0 0 0 

e 43 e 43 e 431 - e 423 0 0 0 0 0 0 0 - 11 0 0 0 0 0 

e 23 e 23 - e m 0 0 e 423 - 11 0 0 0 0 0 0 0 0 0 0 

e 31 e 31 0 -em 0 e 431 0 -11 0 0 0 0 0 0 0 0 0 

e12 e1 2 0 0 -em e4 12 0 0 -11 0 0 0 0 0 0 0 0 

e 423 e423 -11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 431 e431 0 - 11 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 412 e 412 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 0 

e m e m 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 

11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 2.4. This is the multiplication table for the wedge product between the 16 basis elements in 
the 4D projective exterior algebra representing 3D Euclidean space. 
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44 Chapter 2 Flat Projective Geometry 

For a thorough understanding of the algebraic structure and the geometric interpretations we 
can make, it is critically important to recognize that there is a fundamental symmetry at work. We 
have assigned a dimensionality to each basis element according to the number of full dimensions 
it occupies, but it is equally valid to assign a dimensionality according to the number of empty 
dimensions each one does not occupy. Vectors, bivectors, and trivectors have dimensions one, two, 
and three when we count the solid bars in Table 2.3. However, from the opposite perspective, vec
tors, bivectors, and trivectors have dimensions three, two, and one if we count the hollow bars 
instead. Both of these interpretations are simultaneously correct, and this pair of perspectives can 
be regarded as the source of the duality that is always present in an exterior algebra. Duality can be 
found not only in the elements of the algebra but also in the operations that act on those elements. 

We have already discussed the duality between scalars and antiscalars. It should be rather ob
vious that for each type of basis element with k full dimensions, there is another type of basis 
element with k empty dimensions. (In even numbers of dimensions n, these are the same when 
k = n/ 2.) We can say that scalars fill no dimensions of space, but anti scalars fill all dimensions of 
space. A similar pairing exists for basis elements of all grades, and we could introduce special terms 
for all of them, but we limit ourselves to just one more. Inn dimensions, we call an element having 
grade n -1 an anti vector. Whereas a vector occupies one dimension of space, an anti vector occupies 
all except one dimension of space. Vectors have grade one, and antivectors have antigrade one. 
They are opposites of each other and stand on equal ground with perfect symmetry. Because vectors 
and antivectors have the same numbers of components, a clear distinction between the two has not 
always been understood, historically speaking, and both types have been treated as the same kind 
of mathematical entity.2 However, it has not gone unnoticed that the two types of vectors have 
different properties. In particular, antivectors transform from one coordinate system to another in a 
manner different from vectors, and this is highlighted in Section 2.7. In Chapter 1, we saw that 3D 
normal vectors and 4D planes transform in a special way, and the reason is that they are actually 
antivectors in three and four dimensions. 

Grade 

gr (u) 

• The number of vector basis elements 
appearing in the factorization of any 
component of u. 

• The number of full dimensions that are 
occupied by u. 

2.2 Complements 

DUALITY 
Antigrade 

ag (u) 

• The number of vector basis elements not 
appearing in the factorization of any 
component of u. 

• The number of empty dimensions that are 
not occupied by u. 

The 2n basis elements in an n-dimensional exterior algebra correspond to all possible combinations 
of the n basis vectors. Each basis element u represents the wedge product of a unique subset S of 
the basis vectors { e1, e2 , ... , en}, and those are what the solid bars symbolize in Table 2.3 for the 
four-dimensional case. There is always another basis element that represents the wedge product of 
all the basis vectors that are not in Sand are thus not part of u. We call this a complement of u. The 

2 What we are now calling antivectors have been called by several different names in the past, and pseudovector is among 
them. As with pseudoscalars, we prefer the term antivector to highlight an equal symmetry with vectors and to be con
sistent with the entire body of terminology developed in this chapter. 



try 2.2 Complements 

Right 
complement 

Left 
complement 

binomial coefficients that make up Pascal 's triangle exhibit a natural symmetry because the number 
of ways that we can choose k items from the set Sis exactly equal to the number of ways that we 
can choose all except k items. When we take a complement, we are turning a k-dimensional element 
into an ( n - k )-dimensional element by essentially inverting the spatial dimensions that are in
volved. In Table 2.3 , this is equivalent to inverting the bars for any basis element so that solid 
becomes hollow and hollow becomes solid. 

We define a complement operation by exchanging full and empty dimensions and determining 
what sign the result should have by enforcing specific multiplication rules. There are two ways this 
can be done called the right complement and left complement. Toe right complement of a basis 
element u is denoted by ii, with a horizontal bar above it, and defined such that 

I u t\ ii = n. I (2.19) 

That is, the right complement of u must be the quantity the produces the volume element n when it 
appears as the right operand in a wedge product with u. Similarly, the left complement of a basis 
element u is denoted by !!, with a horizontal bar below it, and defined such that 

I !! t\ u = n. I (2.20) 

Toe left complement of u produces the volume element n when it appears as the left operand in a 
wedge product with u. 

Toe definitions of right and left complement depend on the orientation chosen for the volume 
element n. If the orientation of the volume element were to be flipped, then the sign of both the 
right and left complement of every basis element u except 1 and n would also flip. However, be
cause 1 An = n and n A 1 = n, both complements of 1 are always n, and both complements ofn are 
always 1. 

Toe complements of all 16 basis elements in the 4D exterior algebra used throughout this chap
ter are listed in Table 2.5 . Notice that the right and left complements differ in sign only for the basis 
elements having odd grade. This is due to the fact that u A ii = - ii A u only when both gr ( u ) and 
gr(ii) are odd according to Equation (2.18). In general, right and left complements have different 
signs when the dimensionality n of the whole space is even and the grade of u is odd. Otherwise, 
right and left complements are equal to each other. We can summarize this relationship with the 
equation 

!! = ( -l tr( u)ag( u) ii, (2 .21 ) 

where we have made use of the fact that gr ( ii ) = ag ( u ) . This equation gives us a way to raise or 
lower the horizontal bar in order to switch between the right and left complement whenever it would 
be convenient. For an element u having k vector factors , which means its complement ii has n -k 
vector factors , Equation (2.21) works because transforming u A ii into ii A u amounts to moving 
each of then - k factors of ii left through all k factors of u, so there are a total of k ( n - k) transpo
sitions that each negate the whole product. Those negations are undone by applying them to ii in 

u 1 e 1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e1 2 e 423 e 431 e 412 e m 11 

ii 11 e 423 e 431 e 412 e m -ei3 - e 31 - e 12 - e 41 - e 42 -e43 - e 1 - e 2 - e 3 - e◄ 1 

!! 11 - e 423 - e 431 - e◄ 1 2 - e 321 - e 23 - e 31 - e 12 -e41 -e42 - e 43 e 1 e 2 e 3 e 4 1 

Table 2.5. For each of the I 6 basis elements u in the 4D projective exterior algebra, this table lists the right 
complement ii and left complement !! with respect to the volume element 11 = e1234. 
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46 Chapter 2 Flat Projective Geometry 

order to obtain !!- When n is even, whether ii and!! differ in sign ultimately depends only on gr ( u) 
being even or odd. 

In odd numbers of dimensions, one of gr ( u ) or ag ( u) must be even for any basis element u, 
and Equation (2.21) tells us that there is no difference between right and left complements. In those 
cases, we simply call ii the "complement" of u without stating right or left. Throughout most of this 
chapter, the right and left complements are different because we are modeling 3D flat geometry in 
a 4D projective space that has an even number of dimensions. However, there is only one comple
ment later in Section 2.14 where we model flat 2D geometry in a 3D projective space. In Chapters 4 
and 5, we model round 3D geometry in a 5D doubly projective space, and there is only one com
plement in that setting as well . 

The right and left complement operations are inverses of each other, as expressed by 

U = U . (2.22) 

This is true for any basis element u of any grade in any number of dimensions, and it doesn't matter 
in which order the two complements are applied, so the notation is intentionally ambiguous about 
whether the right or left complement is taken first. This allows us to do things like take the right or 
left complement of both sides of Equation (2.21) in order to eliminate the complement operation 
on one side. When we do this, we find that 

U=~ =(-l?r(u)ag( u) U. (2.23) 

Values of u for which the right and left complements have different signs also have the property 
that they change sign when either complement is applied twice. 

So far, we have defined complements only for basis elements. We extend the complement op
eration to all elements of an exterior algebra by simply requiring that it is a linear operation. That 
is, for any scalars and basis elements a and b, we have 

sa =sa and a+ b =a+b. (2.24) 

For example, if we apply these rules to an arbitrary vector v = xe1 + y e2 + ze3 + we4 , then we can 
calculate its right complement as v = xe423 + ye431 + ze412 + we321 . We can think of this as a reinter
pretation of the original components of v in terms of the complementary basis elements, a notion 
that will be discussed further in Section 2.6. 

Math Library Notes 

■ The right complement and left complement operations are implemented by the RightComplement () 

and Lef tComplement () functions . 

2.3 Antiproducts 

The wedge product a/\ b combines the dimensions that are present in the factors a and b. Referring 
once again to Table 2.3, the wedge product between any two basis elements a and b that don't have 
any vector factors in common produces a result containing all of the factors from both a and b. The 
solid bars represent the vector factors that are present, so the set of solid bars corresponding to a/\ b 
is the union of the sets of solid bars contributed separately by a and b. It is possible to define a 
different operation called the antiwedge product that is dual to the wedge product and takes the 
union of the hollow bars representing the vector factors that are absent in exactly the same way. 
The antiwedge product is denoted by av b, with a downward pointing wedge, and we read it as "a 



2.3 Antiproducts 

Antiwedge 
product 

antiwedge b". Toe full multiplication table for the antiwedge product with the 16 basis elements of 
the 4D projective algebra is shown in Table 2.6. This is our first encounter with the general concept 
of an antiproduct, which can always be constructed by a simple procedure from a given product. 
Because the wedge product is also known as the exterior product, the antiwedge product is also 
known as the exterior antiproduct. 

Antiwedge Product av b 

~ 1 e1 e 2 e 3 e◄ e◄ 1 e◄2 e◄J e 23 e 3, e ,2 e◄2J e◄J1 e◄ 12 e m :n. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
e , 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 e1 

e 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 e 2 

e 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 e 3 

e◄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 e◄ 

e◄ 1 0 0 0 0 0 0 0 0 -1 0 0 -e◄ 0 0 e 1 e◄ 1 

e◄2 0 0 0 0 0 0 0 0 0 -1 0 0 -e◄ 0 e2 e◄2 

e◄J 0 0 0 0 0 0 0 0 0 0 -1 0 0 -e◄ e 3 e43 

e 23 0 0 0 0 0 -1 0 0 0 0 0 0 e3 -e2 0 e 23 

e 31 0 0 0 0 0 0 -1 0 0 0 0 -e3 0 e 1 0 e 31 

e 12 0 0 0 0 0 0 0 -1 0 0 0 e 2 -e, 0 0 e 12 

e◄2J 0 -1 0 0 0 -e◄ 0 0 0 -e3 e 2 0 -e◄J e◄2 e 23 e 423 

e431 0 0 -1 0 0 0 -e4 0 e 3 0 -e, e◄J 0 -e◄ 1 e31 e◄J1 

e 412 0 0 0 -1 0 0 0 -e◄ -e2 e , 0 -e◄2 e◄ 1 0 e 12 e 412 

e 321 0 0 0 0 -1 e1 e 2 e 3 0 0 0 -e23 -e3, -e,2 0 e m 

:n. 1 e1 e 2 e3 e◄ e◄ 1 e◄2 e43 e23 e 31 e 12 e423 e◄J1 e◄ 12 em :n. 

Table 2.6. This is the multiplication table for the antiwedge product in the 4D projective algebra 
representing 3D Euclidean space. 

Since the complement operations exchange the meanings of full and empty dimensions, we can 
use them to give an explicit definition of the anti wedge product in terms of the wedge product. To 
calculate the anti wedge product av b, we first take either the left or right complement of both a 
and b, then calculate the wedge product of those complements, and finally take the opposite com
plement of the result to undo the complements that were taken to begin with. If we choose to take 
the right complements of the operands, then this gives us the definition 

I aVb=ill - 1 (2.25) 

Toe result is the same if we instead take the left complements of the operands and then the right 
complement of the wedge product. Either definition is fine as long as the complement operations 
are opposites of each other. 

If we take the right complement of both sides of Equation (2.25) and similarly take the left 
complement of both sides in the case that we had instead chosen to take left complements of the 
operands a and b, then we can write both of the relationships 

av b = a Ab and av b = a A b. (2.26) 
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48 Chapter 2 Flat Projective Geometry 

These correspond to De Morgan's laws from logic and set theory.3 They also work in reverse when 
we exchange the wedge and antiwedge products to give us two more relationships 

a A b = a v b and a A b = a v b. -- - - (2.27) 

It 's a simple matter to transform Equations (2.26) and (2.27) into each other by replacing a and b 
by their left complements in the first relationship and by their right complements in the second 
relationship. 

Just as we have the shorthand notation e ab for the wedge product ea A eb between vectors, we 
can use a complement to make a shorthand notation for the antiwedge product between anti vectors. 
When we write e ab, the meaning is e a v e b, which is the anti wedge product between the right com
plements of ea and eh. Due to Equation (2 .27), we can also interpret e ab as the right complement of 
the wedge product ea A eb, and it has exactly the same meaning. The same is true for left comple
ments. The notation !=.ab means both the anti wedge product of left complements !=.a v !=.b and the left 
complement of the wedge product ea A eb. 

The antiwedge product operates on empty dimensions in exactly the same way that the wedge 
product operates on full dimensions. The wedge product and antiwedge product are analogous to 
the union and intersection of spatial dimensions, and this feature is put to practical use in Sec
tion 2.5 below. Compared to the wedge product, the roles of the scalar unit 1 and the anti scalar unit 
11 are reversed under the antiwedge product. In particular, 11 is the multiplicative identity for the 
antiwedge product such that u v 11 = 11 v u = u for any value u. Whereas the antiscalar unit 11 corre
sponds to the wedge product of all basis vectors, the scalar unit 1 corresponds to the antiwedge 
product of all basis antivectors. In the 4D exterior algebra, we can thus write 

(2.28) 

This highlights how the roles of scalars and antiscalars, vectors and antivectors, and every other 
pair of k-vectors and ( n - k )-vectors are reversed when we switch between the wedge product and 
antiwedge product. In general, for any specific manner in which the wedge product operates on 
elements of grades k and m, the antiwedge product operates on elements of antigrades k and m in a 
symmetric manner. In any case that the results are nonzero, the wedge product adds the grades of 
its operands, and the antiwedge product adds the antigrades of its operands. Thus, the antiwedge 
analog of Equation (2.17) is 

ag ( a v b ) = ag (a) + ag ( b ) . (2.29) 

To see what the effect on grades is, we can subtract each antigrade from the dimension n of the 
algebra and simplify to get 

gr ( a v b ) = gr (a) + gr ( b) - n. (2.30) 

Just as the wedge product is zero whenever the grade given by Equation (2.17) would be greater 
than n, the antiwedge product is zero whenever the antigrade given by Equation (2.29) would be 
greater than n. Equivalently, the antiwedge product is zero whenever the grade given by Equation 
(2.30) would be less than zero. 

In a manner symmetric to the wedge product between vectors, the antiwedge product between 
antivectors is anticommutative. For any antivectors a and b, this means that 

3 Unfortunately, the established meanings of the symbols A and v in exterior algebra are opposite to the meanings of the 
same symbols when used for the AND and OR operations in logic or the similar symbols n and U when used for inter
section and union operations in set theory. 
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av b =-b va, (2.31) 

and whenever an anti vector v is multiplied by itself, we must have v v v = 0. The general rule for 
the antiwedge product between any quantities a and b is 

a V b = (-l)ag( a)ag( b) b Va. (2.32) 

Comparing this to the rule for the wedge product given by Equation (2.18), we see that two elements 
commute under the antiwedge product precisely when their complements commute under the 
wedge product. Specifically, if either ag ( a ) or ag (b ) is even, then av b = b v a. 

The procedure that we used to construct the antiwedge product from the wedge product can be 
used to construct a dual operation from any operation, and this is not limited to binary operations. 
In general, if we have some function/that takes one or more inputs and generates a single output, 
then we can construct the corresponding dual function f* by taking either the right or left comple
ment of all the inputs, applying the original function/, and then taking the opposite complement of 
the output. That is, 

f* (a, b, c, .. . ) = f (a, b, c, .. . ) = f (!,Q,f , . .. ). (2.33) 

For whatever operation f performs, / 0 performs the corresponding anti-operation. Whenever we 
use the prefix anti- in the name of an operation, it means that it is related to the original operation, 
without the anti - prefix, in exactly the way stated by Equation (2 .33). This relationship is symmetric, 
meaning that Equation (2.33) still holds if we can exchange/ and/*, so it makes sense to say that 
two functions related by Equation (2.33) are anti -operations of each other. In addition to the wedge 
product and antiwedge product, we will encounter several more unary and binary pairs of opera
tions and anti-operations throughout this chapter and the next. 

Wedge Product 

aAb 
• Combines the dimensions that are present 

in a and b. 

• Result has grade gr (a)+ gr ( b ). 

• Result has anti grade ag (a )+ ag ( b) - n. 

2.4 3D Flat Geometry 

DUALITY 
Antiwedge Product 

avb 
• Combines the dimensions that are absent 

in a and b. 

• Result has grade gr (a ) + gr (b )- n. 

• Result has anti grade ag (a)+ ag ( b ). 

The utility of the 4D projective exterior algebra lies mainly in its ability to represent 3D points, 
lines, and planes in a consistent manner and to perform fundamental geometric operations among 
them. The concepts of homogeneous coordinates, Plucker coordinates, and implicit planes that were 
discussed with separate formulations in Chapter 1 are now subsumed by a single mathematical 
framework in which each type of geometry simply corresponds to a different grade in the exterior 
algebra. In the next section, we show how these geometries can all be combined by using the wedge 
and antiwedge products to perform operations similar to union and intersection. 
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Point (3D) 

Chapter 2 Flat Projective Geometry 

2.4.1 Points 

In Section 1.2, we introduced the concept of homogeneous coordinates and explained how a 4D 
vector conesponds to a 3D point by means of its projection into the subspace where w = 1. Points 
work exactly the same way here in the 4D exterior algebra. A general 3D point p is written as 

(2.34) 

Position Weight 

with the four coordinates Px, Py, p ,, and Pw assigned to the basis vectors e1, e2, e3, and e4. Toe first 
three coordinates conespond to the weighted position of the point, and the fourth coordinate is the 
point's weight. When we divide all four coordinates by Pw to make the weight one, we are project
ing the 4D vector p onto the 3D subspace where w = 1 as shown in Figure 2.4. As with conventional 
homogeneous coordinates, all nonzero scalar multiples of p conespond to the same 3D point, just 
with different weights. 

w 

w=l 

y 

X 

Figure 2.4. A 4D vector intersects the 3D subspace where w = 1 at the point p. (The z axis is omitted from the 
figure , and it should be understood that the subspace for which w = 1 is not planar, but also extends in the z 
direction.) 

If the Px, Py, and Pz coordinates are all zero, but Pw is still nonzero, then the vector p = Pwe4 

points straight up or down along thew axis in Figure 2.4, and it represents the weighted origin of 
3D space. This gives the basis vector e4 a special geometric interpretation as the point at the origin 
with unit weight. In general, when we talk about the "origin" in an n-dimensional projective algebra 
conesponding to ( n -1 )-dimensional space, we are referring to the point e,,. 

If the weight Pw is zero, but at least one of the coordinates Px, Py, and Pz is nonzero, then the 
vector p = p x e1 + p y e2 + Pz e3 is parallel to the subspace w = 1 and cannot intersect it at any finite 
distance from the origin. In this case, p can be interpreted as the point at infinity in the particular 
direction (Px, Py, Pz ). Because points are homogeneous and all nonzero scalar multiples of p are 
equivalent, it is always true that p and - p represent the same point in 3D space. This means that 
points at infinity in exactly opposite directions are equivalent as if space has a circular nature in 
every direction. 

A point with zero weight can also be interpreted as a direction vector with no position, just as 
such 4D vectors were interpreted in conventional homogeneous coordinates. The difference q - p 
between two points p and q with the same weight yields a direction vector pointing from p to q 
having a magnitude equal to the distance between p and q multiplied by their common weight. 
Adding a direction vector v to a point p yields a new point that has been offset from p by the 
magnitude of v divided by the weight of p. 

2.4 

Line 
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Line (3D) 

2.4.2 Lines 
The wedge product between two nonparallel 4D vectors p and q generates the 4D bivector shown 
in Figure 2.5. This bi vector is an oriented 2D span inside the 4D space, and it contains both of the 
4D direction vectors p and q. We projected a 4D vector into 3D space by finding its intersection 
with the subspace where w = 1, and we do exactly the same thing to a 4D bivector to obtain the 
meaning of its projection into 3D space. As illustrated in the figure, the intersection of the bi vector 
p /\ q with the subspace where w = 1 is a line that contains both of the points p and q. 

w 

w=l 

X 

Figure 2.5. Toe 4D bivector p /\ q intersects the 3D subspace where w = 1 at the line detem1ined by the ho
mogeneous points p and q. (The z axis is omitted from the figure, and it should be understood that the sub
space for which w = 1 is not planar, but also extends in the z direction.) 

The wedge product of two arbitrary points p = p _, e1 + p ye2 + p , e3 + p ,., e4 and q = qxe1 + qye2 

+ q, e 3 + qwe4 is given by 

P /\ Q = ( qxPw - Pxqw) e41 + ( qyPw - Pyqw) e 42 + ( qzPw - Pzqw) e 43 

+ ( pyq, - P:qy ) e23 + (p:qx - Pxq, ) e 31 + (Pxqy - pyqx ) e1 2 - (2 .35) 

When the weights Pw and qw are one, the six components of this bi vector are precisely the Plucker 
coordinates that were introduced as the implicit fonn of a line in Section 1.3.2, but now these com
ponents emerge from the fundamental multiplication rules of the exterior algebra. Tue e41 , e42, and 
e43 components correspond to the difference between p and q, but they have been generalized a bit 
to allow for points with any weight. The e23, e31, and e12 components contain the moment of the line 
given by the cross product between p and q without involving their weights at all. Recognizing that 
an arbitrary line / has two parts of three components each, we can write it as the bivector 

(2.36) 

Direction Moment 

Here, the line's direction has been labeled lvn Ivy, and lvz , where each two-letter subscript designates 
a specific coordinate. We sometimes use the notation Iv = ( lvx , Ivy , l.,2) to mean the direction of the 
line/ interpreted as a generic 3D vector. Likewise, the line's moment has been labeled l,,m l111y, and 
/ 1112 , and the notation lm = ( lmx, l111v, /1112 ) means the moment of the line / interpreted as a generic 3D 
vector. These labels assign meaning to the components of a bivector and allow us to continue 
regarding lines as having two three-dimensional parts that correspond to the { v I m} notation used 
in Sections 1.3.2 and 1.3.7. As with points, lines are homogeneous, so multiplying all six compo
nents by the same nonzero scalar value does not change the geometric meaning of the bi vector in 
Equation (2.36). 
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Line 
constraint 

Chapter 2 Flat Projective Geometry 

If one of the points p or q in Equation (2 .35) lies at infinity because its weight is zero, then we 
still get a valid line. Assuming that q lies at infinity with qw = 0, the line resulting from the wedge 
product p /\ q contains the point p and runs in the direction given by the x, y , and z components of 
q. It would also be correct to say that the line contains q, and that would be the point where the line 
intersects the set of all points at infinity. 

A line is always a simple bivector because it can be expressed as the wedge product of two 
vectors representing points p and q. In the 4D algebra, there are bivectors that are not simple, so 
not all bivectors correspond to valid lines in 3D space. Bivectors that do correspond to valid lines 
satisfy an internal constraint that becomes clear when we take a closer look at Equation (2.35). 
Interpreted as ordinary 3D vectors, the two parts Iv and I m of a line are given by Iv = P wQ xyz - qwp xyz 

and Im = p xyz x Qxyz• Both of the dot products p xyz • Im and Qxyz • I m must be zero, so it is always true 
that the equation 

(2.37) 

is satisfied, and the parts Iv and Im , regarded as ordinary vectors, are always orthogonal. All lines 
satisfy this constraint, which is a specific case of a more general property possessed by all geometric 
objects, as discussed further in Section 3.4.3 . 

Even though all six components of a line are bi vector values, our interpretation of the 4D alge
bra in which the e4 direction is eliminated when we project into 3D space causes the parts Iv and Im 

to behave in different ways. The direction Iv behaves like a vector or length-like quantity, and the 
moment Im behaves like a bivector or area-like quantity. This becomes apparent when we apply 
certain transformations to a line such as the scale example in Section 2. 7 below. In general, any 
part of the representation of a geometric object behaves as if it has the dimensionality of its com
ponents after disregarding any factor of e4 . 

If the moment of a line is zero, meaning that l,nx = l111y = /1112 = 0, then the line passes through the 
origin. General distance to the origin is discussed in Section 2.10.3 , but for now, we can say that 
the magnitude of the moment is the distance between the origin and the closest point on the line, 
but it is multiplied by the magnitude of the line 's direction. This gives lines represented in the 
direction-moment form a practical advantage over the equivalent parametric form when it comes 
to precision. Whenever a line is subjected to one or more transformations, the three components 
making up the moment always have the same magnitude as the smallest magnitude possible for any 
particular point on the line. This can lead to better floating-point precision compared to the reference 
point in the parametric form because that point could end up being moved far from the origin even 
if the actual distance between the line and the origin remains small. 

If the weight of a line is zero, meaning that lvx = Ivy = lvz = 0, then the entire line lies at infinity 
in all directions perpendicular to Im , regarded as a vector, as shown in Figure 2.6. When the moment 
is regarded as a bi vector m = l,nx e23 + l111y e31 + /1112 e12, a line at infinity can be thought of as contain
ing points at infinity in all directions v parallel to the moment, which satisfy m /\ v = 0. If we con
struct a line by taking the wedge product between two direction vectors with zero weights, then 
that line lies at infinity in the two-dimensional subspace spanned by the two vectors. Despite the 
intuition that a line at infinity is round because it encircles a specific direction, its infinite size means 
that it is actually flat everywhere. 

2.4.3 Planes 

When projected into 3D space, we've seen that a grade-one vector in the 4D exterior algebra cor
responds to a zero-dimensional point, and we've seen that a grade-two bivector corresponds to a 
one-dimensional line. Continuing to the next higher grade of the exterior algebra, it should come 
as no surprise that a grade-three trivector corresponds to a two-dimensional plane. The triple wedge 

2.4 
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00 

00 

00 

Figure 2.6. A line at infinity consists of all points at infinity in directions perpendicular to the moment lm , 
regarded as a 3D vector. 

product among three 4D vectors p, q, and r, all pointing in different directions, generates the 4D 
trivector shown in Figure 2.7. As illustrated in the figure , the intersection of the trivector p /\ q /\ r 
with the subspace where w = 1 is a plane that contains all three of the points p, q, and r. Keep in 
mind that the subspace onto which we're projecting is three-dimensional despite being drawn as a 
two-dimensional slice, so the plane can have any arbitrary orientation in space. 

Writing the exact calculations for the four components of p /\ q /\ r gets a little messy. Things 
get much nicer when we realize that the first wedge product constructs a line, and the second wedge 
product multiplies that line by another point. This lets us express the calculations for a plane's 
components in terms of the components of a line I and point p, from which we obtain 

I I\ P = (/vyPz -1.,, p y + l,n, ) ei + (/vz Px -lvxP= + lmy ) e 2 

+(/vxPy -lvyPx +Im, )e3 -(/mxPx +lm_v Py +lm: Pz )e4. (2.38) 

We have expressed the components in tenns of the complements of the basis vectors to highlight 
the fact that a plane is a 4D anti vector, the significance of which is discussed further in Section 2.6. 
Because I bas an even grade, it commutes with everything under the wedge product according to 
Equation (2.18), so it is always true that I I\ p = p /\ / , and it doesn't matter in which order a line 
and point are multiplied together. 

w=l 

X 

Figure 2.7. The 4D trivector p /\ q /\ r intersects the 3D subspace where w = I at the plane determined by the 
homogeneous points p, q, and r. (The z axis is omitted from the figure, and it should be understood that the 
subspace for which w = 1 is not planar, but also extends in the z direction.) 

53 



54 

Plane (30) 

Chapter 2 Flat Projective Geometry 

A general 3D plane g is written as 

(2.39) 

Normal Position 

where the four coordinates gx, gy, g 2 , and gw are assigned to the basis trivectors e423 , e431 , e4 12 , and 
e321 . Toe order of the vector factors in each of these basis trivectors, in particular e32 1, were chosen 
because it consistently makes them the right complements of the basis vectors e1, e2 , e3, and e4 . This 
is necessary in order to match the meaning of the [ n I d] coordinates used in Sections 1.3 .2 and 1.3. 7 
as well as to retain the ability to interpret the rows of a 4 x 4 transformation matrix as planes at the 
same time that we interpret its columns as points. Toe first three coordinates correspond to the 
normal direction n of the plane, and the fourth coordinate corresponds to the plane's signed distance 
d to the origin, which tells us the plane's position in space. Just like everything else in the projective 
algebra, planes are homogeneous, so multiplying all four components by the same nonzero scalar 
value does not change the geometric meaning of the trivector in Equation (2.39). 

When the w coordinates of the points p, q, and r are all one, the normal direction and distance 
to origin for the plane containing all three points can be calculated with the formulas 

g xyz = n = p xyz /\ q ,yz + q xyz /\ rxyz + rxyz /\ p xyz 

gw = d = - p xyz A q xyz A rxyz, (2.40) 

where these wedge products occur in three dimensions, and the complement is taken with respect 
to the volume element e123 . Both pieces of Equation (2.40) possess an elegant three-way symmetry, 
but neither those nor the formula in Equation (2.38) represents the most computationally efficient 
way of constructing a plane if we are starting with three points. Toe conventional method in which 
the normal is calculated by first subtracting one point from the other two and then taking a cross 
product is still the best. In this case, the basic operations for calculating a plane containing the 
points p, q, and r are given by 

g xyz = n = ( qxyz - p xyz ) x ( r xyz - p xyz ) 

gw=d =- n · pxyz =-n ·qxyz =-n ·rxyz, (2.41) 

where any one of the three points may be used in the calculation of the distance d. 
Of course, if a plane's w coordinate is zero, then the plane passes through the origin because 

its distance to the origin is zero. If a plane's normal direction is zero, leaving only the component 
g we32 1, then it is given the special geometric interpretation of the plane lying at infinity in all direc
tions. This plane is called the weighted horizon of 3D space. It contains all points at infinity and, 
consequently, all lines at infinity. As with lines at infinity, the plane at infinity may seem intuitively 
round because it surrounds all space, but its infinite size means that it is actually flat everywhere. 
Toe basis anti vector e32 1 representing the 3D horizon is the right complement of the origin e4 , and 
these two entities are opposites of each other. In general, when we talk about the "horizon" in an 
n-dimensional projective algebra corresponding to ( n - l )-dimensional Euclidean space, we are re
ferring to the unit hyperplane at infinity represented by en . 

Math Library Notes 

• The Vector 3D and Point3D classes described in Section 1.2 both store only the x, y, and z coordinates 
of a homogeneous 4D vector. The w coordinate is implicitly zero for a Vec tor3D object, and it is im
plicitly one for a Point3D object. There is also a Flatpoint3D class that stores all four coordinates 
explicitly. 
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Join 

■ The Line3D class stores the six coordinates of a 4D bivector representing a flat line. There are two 
members that contain the direction and moment of the line. The direction is named v, and it has the type 
Vector3D. The moment is named m, and it has the type Bivector3D. 

■ Toe Plane3D class stores the four coordinates of a 4D trivector representing a flat plane, and they are 
named x, y, z, and w. 

Horizon Origin 

e 4 
D UAL I T Y 

■ The point with coordinates ( 0, 0, 0, l) contained 
by all planes passing through the origin. 

2.5 Join and Meet 

■ The plane with coordinates ( 0, 0, 0, l) 
containing all points at infinity. 

In the previous section, we built homogeneous representations of lines and planes in 3D space by 
taking wedge products of points that they contain. This ability to take lower-dimensional geometries 
and combine them into higher-dimensional geometries is an exquisitely straightforward and natural 
consequence of the way in which the wedge product combines the dimensions that are present in 
its operands. The way in which we could build geometries is similar to a union operation, but it's 
not quite the same because we must always obtain a result that bas higher grade. This excludes 
situations such as a line being multiplied by a point contained in the same line. There is not enough 
information to construct a unique plane containing the line, but we can't just keep the original line 
that would result from a true union, either. Instead, the wedge product detects a linear dependence 
and gives us zero in those cases. 

The operation of combining geometric objects a and b with the wedge product is called the join 
of a and b, and we write its definition as 

I join ( a, b) = a/\ b. (2.42) 

We have already encountered the two types of join operations that arise in 3D space, and they are 
summarized again with illustrations in Table 2.7 . First, the join p /\ q between two points repre
sented by 4D vectors is given by Equation (2.35), and it produces the line containing p and q. If 
the those points happen to be coincident, then no line can be determined, and all six components of 
the bi vector result are zero. Second, the join//\ p between a line and a point is given by Equation 
(2.38), and it produces the plane containing both / and p. If the point happens to be contained by 
the line, then no plane can be determined, and all four components of the trivector result are zero. 
This degeneracy includes attempts to construct a plane from three collinear points because one point 
will always lie on the line constructed with the other two. 

In a manner symmetric to the wedge product, the antiwedge product combines the dimensions 
that are absent in its operands. This causes the anti wedge product of two geometric objects a and b 
to retain in its result only the dimensions that are present in both a and b, so it is analogous to an 
intersection operation in the same way that the wedge product is analogous to a union operation. 
As with the wedge product, the antiwedge product does not perform an actual intersection because 
it must construct a geometric object of lower grade than one of its operands. If one object is con
tained in the other, then the antiwedge product gives us zero in cases where a true intersection 
would give us the larger object. 
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Chapter 2 Flat Projective Geometry 

The operation of combining geometric objects a and b with the antiwedge product is called the 
meet of a and b, and we write its definition as 

I meet ( a, b) = a v b. (2.43) 

There are two types of meet operations that arise in 3D space, and they are summarized in Table 2.7 
along with the join operations. First, we can calculate the meet of two planes g and h represented 
by 4D trivectors with the antiwedge product 

g V h = (g 2 hy - gyhz ) e 41 + (gxhz - g 2 hx) e42 + (gyhx - gxhy ) e 43 

+ (gxhw - g whx) e 23 + (gyhw - gwhy ) e 31 + (g 2 hw - g whz ) e 12- (2.44) 

This gives us the 4D bi vector representing the line where the two planes g and h intersect. If the 
two planes happen to be coincident, then there is no unique line where they meet, and all six com
ponents of the bi vector result are zero. However, if the two planes are parallel but not coincident, 

Join Operation 

Line containing points p and q. 

P /\ q = (pwqx - Pxqw) e 41 + (pyqz - p, qy ) e 23 

+(pwqy -pyqw)e42 +(p, qx -pxqz )e31 

+ (pwqz - p, qw) e 43 + (Pxq.v - P.vqx ) e1 2 

Plane containing line I and point p. 

I I\ p = (l v_v Pz -lvz P.v + lmxPw) e4z3 

+ (ivz Px -lvxPz + lmyPw) e 431 

+ ( lvxP_v -lvv Px + l,,IZ Pw) e41 2 

- (/,nx Px + lm_v P_v + lm, Pz ) e 321 

Meet Operation 

Line where planes g and h intersect. 

g V h = (g , hy - g _y hz ) e41 + (gxhw - g whx ) e 23 

+ (gxhz - g , hx ) e42 + (gyhw - g why ) e 31 

+(g_v hx -gxhy )e43 +(g, hw -gwh, )e12 

Point where plane g and line I intersect. 

g V f = (g , lmy - gylmz + g wfvx ) e1 

+ (gxlm, - g , l,nx + g wlv.v ) e z 

+ (g ylmx - gxlmy + gwlvz ) e 3 

-(gxlvx + gylvv + g, lvz ) e4 

Illustration 

~

q 

p/\q 

~

I J\ p 

.. 

Illustration 

Table 2.7. These are the join and meet operations among points, lines, and planes in three dimensions. 
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we still obtain a meaningful result. In this case, the intersection of the two planes is the line I at 
infinity in all directions parallel to the planes. Toe direction part of I is zero, but its moment part is 
a nonzero 3D bivector whose complement is a vector perpendicular to the planes. 

The second type of meet operation is the intersection of a plane g and a line I. The anti wedge 
product between these is given by 

g VI= (/myg z -lmzg y + lvxg w) e, + Umzg x -lmxg z + lvyg w) e 2 

+ Umxg y -lmyg x +lvz g w) e 3 -(lvxg x +lvyg y +lvz g z ) e 4, (2.45) 

and the resulting vector corresponds to the homogeneous point where the the line I passes through 
the plane g. It's generally not the case that the w coordinate of the point produced by the meet 
operation is one, so it's necessary to divide by w to obtain a projected 3D point. As with the wedge 
product between a point and a line, the anti wedge product between a plane and a line is commuta
tive (but this time because I has an even antigrade), so it is always true that Iv g = g v I , and it 
doesn 't matter in which order a plane and line are multiplied together. In the case that the line lies 
in the plane, there is no unique point of intersection, and all four components of the vector result 
are zero. However, if the line does not lie in the plane but is still parallel to the plane, a meaningful 
result arises just as it did for the meet of two parallel planes. In this case, the resulting intersection 
of the plane and line is the point at infinity in the direction of the line. Toe w coordinate of this point 
is zero, but its x, y and z coordinates point in the same direction as the direction part Iv of the line. 

A combination that is noticeably absent from Table 2.7 is the join or meet of two lines. Because 
lines have grade two, the wedge product between two lines must be an antiscalar, and the antiwedge 
product between two lines must be a scalar. In 3D space, two lines do not intersect unless they 
happen to lie in a common plane, though we will see that skew lines actually intersect at infinity in 
Chapter 4. Toe single number that we get from either the join or meet of any two lines contains 
information about the distance between the two lines, as discussed below in Section 2.11. For two 
lines that do happen to be coplanar, this number is zero, and for lines that are not coplanar, the sign 
of this number tells us something about their crossing orientation. 

The crossing orientation of two lines, illustrated in Figure 2.8, is a property of the spatial rela
tionship between the lines that expresses the direction in which one line passes by the other. It is 
determined by calculating the antiwedge product Iv k between two lines I and k, given by 

(2.46) 

which we could also write as the expression Iv k =-Iv· km -Im · kv consisting of two dot products. 
Toe wedge product I A k yields the same numerical value, but as an antiscalar instead of a scalar. 
As shown in the figure, if Iv k is positive, then the direction of each line is wound clockwise around 
the other. Conversely, if Iv k is negative, then the winding is counterclockwise. 

I I 
k 

/vk >0 /Vk<O 

Figure 2.8. The sign of the anti wedge product IV k corresponds to the crossing orientation of the lines / and 
k. The sign is positive when the lines are wound clockwise around each other, and it is negative when they 
are wound counterclockwise around each other. The order of multiplication does not matter. 
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A practical example in which this information is useful arises when we want to determine 
whether a given ray passes through the interior of a triangle defined by three vertices wound coun
terclockwise when viewed from the front side. After calculating the antiwedge products between 
the ray and three lines corresponding to each of the triangle's edges, we know that the ray hits the 
triangle if all three products are positive and misses if any one of the products is negative. The 
details are laid out in Comparison Chart # 1. 

Math Library Notes 

• The join and meet operations are implemented by the Wedge () and Antiwedge () functions. 

• Any of the join and meet operations shown in Table 2.7 can also be calculated by using the" symbol 
as an infix operator. The " symbol is used for both the wedge and antiwedge products because there is 
never an ambiguity as to which produces a nonzero result. 

2.6 Duality 

So far in this chapter, we have encountered several examples of a precise symmetry in projective 
exterior algebra known generally as duality. Every type of mathematical element in the algebra is 
associated with another type of element given by its complement that is naturally opposite. Lengths, 
areas, and volumes are built up and tom down by two opposing fundamental operations, the wedge 
product and anti wedge product. The source of this symmetry is the dichotomy between dimensions 
that are present and absent in any geometric object, symbolized by the solid and hollow bars asso
ciated with each basis element in Table 2.3 . If we abstract a little further and consider the notion 
that the dimensions regarded as present or absent depends on one of two possible perspectives, then 
we see that every quantity can actually be interpreted in two different ways, and every operation is 
actually doing two things at once. A complete understanding of geometric algebra requires that we 
acknowledge the equal importance of both parts of each such pair. 

The concept of duality can be understood geometrically in an n-dimensional projective setting 
by considering both the subspace that an object occupies and the complementary subspace that 
the object concurrently does not occupy. We call these two components the space and antispace 
associated with an object. The dimensionality of the space is the grade of the object, and the dimen
sionality of the antispace is the antigrade of the object, so all n dimensions are accounted for, and 
the dimensionalities of the two components always sum to n. The example shown in Figure 2.9 
demonstrates the duality between homogeneous points and planes in the 4D projective algebra. The 
quadruplet of coordinates ( Px, p y , p ,, Pw) can be interpreted as a vector pointing from the origin 
toward a specific location on the 3D projection subspace w = 1. This vector corresponds to the one
dimensional space of the point that it represents. The geometric dual of a point materializes when 
we consider all of the directions of space that are orthogonal to the single direction (Px, Py, p , , Pw ). 
As illustrated by the figure, these directions span a three-dimensional subspace that intersects the 
projection subspace at a plane. In this way, the coordinates ( Px, Py, p ,, Pw) can be interpreted as 
both a point and a plane simultaneously. Algebraically, they are complements of each other, but we 
have a choice as to which one is the point, the vector or the trivector, and which one is the plane. If 
we were to exchange the meanings of space and antispace and relabel all products and anti products 
with their opposites, then the result would be an algebra with the exact same structure, so there are 
always two ways to interpret the elements of the algebra geometrically. 

When we express the coordinates (Px, Py, p,, Pw) on the vector basis as Pxe1 + p ye2 + p , e3 + 
P we4, it explicitly states that we are working with a single spatial dimension representing a point, 
and the ambiguity is removed. Similarly, if we express the coordinates on the antivector basis as 
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Comparison Chart #1 

Line-Triangle Intersection 

Determine whether a line I intersects a triangle with vertices 
a, b, and c, and calculate the point of intersection q. 

a 

Conventional Methods 

Let/ ( t) = p + tv be a parametric line containing 
the point p and running parallel to the direction 
vector v. Assume the direction is normalized so 
that ll vll = 1. 

Translate the line so that p coincides with the 
origin. Translate the triangle by subtracting p 
from the vertices a, b, and c. 

Calculate the scalar triple products (a x b) · v, 
( b x c) • v, and ( c x a) • v. If any one of these 
products is positive, then the line does not 
intersect the triangle. Otherwise, we have a hit. 

Determine the plane containing the translated 
triangle by calculating n = ( b - a) x ( c - a) and 
d = -n -a . 

The point of intersection q is found by first 
solving the equation ( n · v) t + d = 0 fort, 
which gives us 

d n-a 
!=---=--. 

n-v n-v 

Plug this into the original line to get 

n-a 
q=p+-- v. 

n·V 

b 

Geometric Algebra 

Let I be a line as defined in Equation (2.36) with 
direction Iv and moment Im- Assume the line is 
unitized so that lllv II= l. 

Translate the vertex a to the origin, and subtract a 
from b and c. Translate the line by subtracting 
a x Iv from its moment lm . 

Lines representing the edges of the triangle are 
given by k

1 

= e
4 

/\ b, k
2 

= b /\ c, and k
3 

= c /\ e
4

. 

The moments ofk 1 and k 3 are zero because they 
contain the origin. Calculate Iv k 1, Iv k 2, and 
Iv k 3. If any one of these products is negative, 
then the line does not intersect the triangle. 
Otherwise, we have a hit. 

Determine the plane g containing the translated 
triangle by calculating g = e4 /\ b /\ c. This plane 
contains the origin, so g"' = 0. 

Applying the formula in Table 2.7 with g w = 0, 
the point r where g and I meet is given by 

r = g VI = ( g zlmy - g ylmz ) e1 + ( g xlmz - g zl,n, ) e 2 

+ (gyl,nx - gxlmy ) e3 -(gxyz ·Iv) e4. 

After unitizing this point, off set by a to get 

r 
q = xyz + a. 

rw 
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(Px, Py, p,, Pw) 

w 

y 

Chapter 2 Flat Projective Geometry 

homogeneous point 

(Px, Py, p,, Pw) 

1 .J 2 2 2 
r = IPwlPx +Py+ Pz 

Figure 2.9. lhe four coordinates ( p 0 P.v , p, , p .., ) can be interpreted as the one-dimensional span of a single 
vector representing a homogeneous point or as the three-dimensional span of all orthogonal vectors repre
senting a homogeneous plane. Geometrically, these two interpretations are dual to each other, and the dis
tances from the two geometric objects to the origin are reciprocals of each other. Algebraically, these two 
interpretations are represented by complements. (Toe z axis is omitted, but it should be understood that the 
w = I subspace is three-dimensional, and the disk of directions orthogonal to the point is really a 3D ball of 
vectors.) 

P x e 423 + P _v e431 + Pze412 + P we 321 , then we are working with the three orthogonal spatial dimen
sions representing a plane. In each case, the subscripts of the basis elements tell us wruch basis 
vectors are present in the representation, and this defines the space of the object. Toe subscripts also 
tell us which basis vectors are absent in the representation, and this defines the antispace of the 
object. It is possible to establish a convention in wruch the dimensions not listed in the subscripts 
correspond to the dimensions that are present in each geometry, but this introduces an unnecessary 
extra cognitive burden, and it throws away the clear geometric intuition in Figures 2.4, 2.5, and 2.7. 
Nevertheless, acknowledging the existence of both the space and the anti space of any object and 
assigning equal meaningfulness to them allows us to explore the nature of duality to its fullest. A 
vector Px e1 + P_v e2 + p 2 e3 + P we 4 is never only a point, but both a point and a plane simultaneously, 
where the point exists in space, and the plane exists in antispace. Likewise, an antivector Pxe423 
+ P _v e 431 + Pz e412 + P we 321 is never only a plane, but both a plane and a point simultaneously, where 
the plane exists in space, and the point exists in antispace. If we study only one spatial facet of 
these objects, then we are missing half of a bigger picture. 

Because each object is actually two geometries at the same time, any operations performed on 
them must be acting on both geometric interpretations simultaneously. Indeed, whenever we per
form an operation on the space of geometric objects, the associated anti -operation is implicitly 
perf01med on the antispace of the same objects. Toe two operations are inextricably linked, and it's 
not possible to do one without the other. Whenever we take the wedge product of two objects, it 
computes the join of their spaces by combining the dimensions that are present in each one. At the 
same time, it computes the meet of their antis paces by intersecting the dimensions that are absent, 
decreasing the antigrade by however much the join operation increased the grade. This is a natural 
consequence of the complementary relationship between the wedge and anti wedge products given 
by Equation (2 .25). 

As an example, suppose that the objects on which we perform an operation are points p and q 
in the 4D algebra. The wedge product p /\ q computes the line containing p and q. Toe complements 
p and ij are planes, and the complement of the wedge product is p v ij . This anti wedge product 
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computes the line where those two planes intersect, and that meet operation is what's happening in 
antispace when we compute the join p /\ q in regular space. In this case, both operations produce a 
line, but the two results are complements of each other. In the 4D algebra, a bi vector represents two 
lines at once in which the meanings of direction and moment are exchanged. 

The innate duality of geometric algebra will show itself many more times throughout this book. 
The word "dual" has taken on a large number of meanings across many mathematical fields , but we 
will provide a specific definition of what "dual" means in geometric algebra below in Section 2.12. 
Under that definition, geometries like those shown in Figure 2.9 are not actually duals of each other, 
but they are complements of each other, and we will use the word "complement" to express that 
relationship. We will continue using the term "duality" to describe any pair of opposing concepts 
that are related by the complement operation such as vector and antivector or wedge product and 
antiwedge product. 

2.7 Exomorphisms 

The matrices at the heart of linear algebra perform transformations that move vectors from one 
coordinate system to another. In n dimensions, the columns of an n x n transformation matrix m are 
exactly the images of the n basis vectors e1, e2 , ... , en after the transformation has been applied 
through the product me;. What we would like to do is extend the matrix m to a larger matrix in such 
a way that it properly transforms not only the basis vectors having grade one but all 2n basis ele
ments over all grades in the n-dimensional exterior algebra. We accomplish this by requiring that 
our extension of m behaves as a homomorphism with respect to the wedge product. That is, given 
the way in which the grade-one vectors transform, the structure of the rest of the exterior algebra 
must be the same before and after the extended transformation is applied. Such an extended trans
formation is called the exomorphism of the linear transformation m, where the prefix exo- comes 
from its relationship to the exterior product.4 

We use a capital M to denote the exomorphism matrix, which is the extension of the matrix m 
to the larger matrix needed to transform quantities of any grade. The matrix M has 2" columns and 
211 rows corresponding to the in basis elements in then-dimensional exterior algebra. The generic 
vectors transformed by Mare column matrices with 211 components, one for each basis element of 
a complete multivector inn dimensions. For example, in three dimensions, a complete eight-com
ponent multivector u can be written as 

(2.47) 

and its matrix representation is the column of entries s, Vx, v y , Vz, b x, b y , b z, and tin that order from 
top to bottom. It is sufficient to ensure that M is a homomorphism over the basis elements of the 
algebra because that property would then extend to all multi vectors by the linearity of matrix mul
tiplication. For M to be an exomorphism, we must have 

M ( a /\ b) = (Ma) /\ (Mb) (2.48) 

for all basis elements a and b. That is, the image of a /\ b under the transformation performed by M 
must be the wedge product of the images of a and b. This rule allows us to build the full 2n x 2n 
matrix M solely from the information contained in the original n x n matrix m. We already know 

4 Early texts on geometric algebra [Hestl 984] and later publications derived from them use the term outer product syn
onymously with the term exterior product, and that has led to the term outermorphism being used where we now write 
exomorphism. They are the same th ing. However, the outer product has a different established meaning in linear algebra 
(specifically, the outer product between two n-dimensional vectors u and v is then x n matrix uv r), so we avoid the 
ambiguity in this book. 
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the image of each basis vector e; because it is given by ID[;J, the ith column of m, extended with 
zeros in the positions for basis elements having grade other than one. For any basis bivector eij, 
Equation (2.48) requires that 

(2.49) 

but the right side of this equation is just the wedge product of ID [i] and m[J]- We calculate this wedge 
product by treating the column ID [i ] with entries m ;1, m ;2 , m ;3 , ... from top to bottom as the vector 
mn e1 + m;2 e2 + mi3 e3 + ···.When applied to all basis bivectors, Equation (2.49) produces( ; ) new 
columns in the matrix M , each containing the image of a single basis bivector. The entries in each 
column corresponding to other grades are zero, so we obtain a new (;) x (;) submatrix of M that 
tells us specifically how to transform any arbitrary bi vector quantity. 

Continuing this process for trivectors and higher grades by multiplying three or more columns 
of m together with the wedge product fills out the rest of the exomorphism matrix M . The submatrix 
that transforms quantities of grade k has size ( Z) x ( Z ), so M has the form of a block diagonal matrix 
with n + l submatrices corresponding to the n + I possible grades as k ranges from O to n. The sub
matrix corresponding to grade k is known as the kth compound matrix of m, denoted by Ck ( m ). 

We define the grade-zero submatrix C0 ( m) that transforms scalars to be the 1 x 1 identity ma
trix, so the upper-left entry of M is always the number one. The entry in the bottom-right comer 
represents the 1 x 1 sub matrix C n ( m) containing the image of the volume element 11, and it tells us 
how antiscalars are transformed. Since the volume element is equal to the wedge product of all n 
basis vectors e1 through en, it must be transformed by multiplying it by the wedge product of all 
columns of m, which is equal to its determinant. Thus, the entry in the bottom-right comer of M is 
always equal to det m . 

The submatrix C,,_1 ( m) in the penultimate position along the diagonal has size n x n, and it 
transforms antivectors. This submatrix is always the ad jugate transpose of the matrix m because 
each of its columns is constructed from the wedge product of all but one column of m. 

The 3D Euclidean exterior algebra is simple enough that it enables a fully written out example 
of the above process. Here, the eight basis elements are 1, e1, e2, e3, e23 , e31, e12, and 11 = e123 , where 
it's important that we keep a consistent order. The exomorphism matrix M has eight rows and eight 
columns that correspond to the basis elements in the same order, and a multivector is expressed as 
an eight-component column matrix whose entries are the coefficients of the basis elements in the 
same order. Now suppose that we have a 3 x 3 matrix m that transforms the grade-one vectors from 
one coordinate system to another. We label the columns of m as the 3D vectors a, b, and c so that 
m can be written as 

(2.50) 

The vectors a, b, and care the images of the basis elements ei, e2, and e3, respectively, when trans
formed by the matrix m. 

The second compound matrix of m transforms bivectors, and it consists of all possible wedge 
products between pairs of columns of m. We just have to be careful about the order in which we 
multiply the columns of m and the order in which we write the components of the results. The first 
column of C2 ( m) is given by the wedge product b /\ c because the first bi vector basis element in 
the order we have imposed is e23. When we calculate b /\ c, we get 

(2.51) 

where we have written the terms in the order imposed on the basis elements. The three coefficients 
on the right side are the three entries in the first column of C2 ( m ). The entries of the other two 
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columns are similarly given by c /\ a, corresponding to the e 31 basis element, and a/\ b, correspond
ing to the e 12 basis element. Altogether, these nine coefficients constitute the entire matrix C2 ( m ), 

which we can now write as 

r

b y Cz -bzCy CyGz -CzGy 

C2 ( m) = b zCx -bxCz CzGx - CxGz 

b xCy -by Cx Cxa y -cy a x 

a y b z -azb y 1 
a zb x -ax b z . 

a x b y -ay b x 

(2.52) 

The entries of this matrix are the same values appearing in Equation (1.6) that arose in the transfor
mation of quantities generated by the cross product. The cross product is really a wedge product in 
disguise, and it produces bivector quantities that must transform in this manner. 

The exomorphism matrix M is the 8 x 8 block diagonal matrix whose submatrices are C0 ( m ), 
C1 ( m ), C2 ( m ), and C3 ( m ), as illustrated in Figure 2.10. C0 ( m) is always the 1 x 1 identity matrix 
having a single entry filled with the number one. C1 ( m) is just the matrix m itself. C2 ( m) was 
derived from m, and its entries are given by Equation (2.52). Finally, C3 ( m) is the 1 x 1 matrix 
whose single entry is the determinant of m. With these submatrices arranged along the diagonal, 
the exomorphism matrix M correctly transforms any 3D multi vector of the form shown in Equation 
(2.47) given that grade-one vectors are transformed by the matrix m and with the requirement that 
transformation by M is a homomorphism under the wedge product. 

Since we have modeled homogeneous points, lines, and planes in a 4D projective space, we 
are interested in how 4D quantities transform from one coordinate system to another. The process 
for constructing the exomorphism matrix M is exactly the same as in the 3D case except that we 
now have a total of 16 basis elements, and we begin with a 4 x 4 matrix m that transforms grade
one vectors. The result is the block diagonal matrix M shown in Figure 2.11 containing five sub
matrices corresponding to the five different grades that exist in the 4D algebra. 

Instead of calculating the compound matrices C2 ( m) and C3 ( m) for an arbitrary matrix m, 
which becomes very tedious even if we can assume the fourth row is [ 0 0 0 1 ], we look at some 

j j 
I ~ scalar 

m ~ vector 

M= 

C2 (m) ~ bivector 

1 antiscalar 

detm 

Figure 2.10. The exomorphism matrix M is an 8 x 8 block diagonal matrix that transforms eight-component 
3D multi vectors from one coordinate system to another. The 3 x 3 matrix mis a given transformation of grade
one vectors, and the rest of the matrix M is derived from it. Each submatrix along the diagonal is a kth 
compound matrix of m, where O :s; k :s; 3. Each column of M corresponds to the image of the basis element 
shown at the top under the transformation that M performs. Entries in unshaded areas are zero. 
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specific examples. First, suppose that m is the matrix that performs a translation by the vector t and 
thus has the form 

1

1 0 0 fx I 
0 1 0 fy 

m = . 
0 0 1 !2 

0 0 0 1 

(2.53) 

This matrix directly translates any homogeneous point ( x, y, z, w ). To translate a bivector repre
senting a line, we need to calculate the 6 x 6 matrix C2 ( m) by taking wedge products of the col
umns ofm in the appropriate order. Using the order of components appearing in the definition of a 
line given by Equation (2.36), we have 

1 0 0 0 0 0 

0 1 0 0 0 0 

Ci( m )= 
0 0 1 0 0 0 

0 -fz fy 1 0 0 ' 
(2.54) 

t z 0 -fx 0 1 0 

-fy fx 0 0 0 1 

and this transforms a line with coordinates Uvx, Ivy, lvz, lmx, lmy, lmz ). Toe effect of C2 ( ID ) matches 
the transformation of Plucker coordinates given by Equation ( 1.42) for a pure translation where the 
cross product between t and the line's direction is added to the line 's moment. Next, to translate a 
trivector representing a plane, we calculate the 4 x 4 matrix C3 ( m) and obtain 

0 0 

1 0 

0 1 
(2 .55) 

-fy - 12 

which transforms a plane with coordinates ( g x, g Y, g z , g w ). Toe effect of C3 ( m) matches the trans
formation of the d coordinate of a plane in Equation (1.38) for a pure translation where the dot 
product between t and the plane's normal is subtracted from the plane's distance from the origin. 

For another example, suppose that m is the matrix that performs a nonuniform scale along the 
x, y, and z axes and thus has the form 

[

S x O O 01 
0 S y O 0 

m = . 
0 0 S2 0 

0 0 0 1 

(2.56) 

This is the submatrix shaded green in Figure 2.11. Toe second and third compound matrices of m 
that transform lines (bivectors) and planes (trivectors) are given by 

0 
C2 (m) = O 

0 

0 

0 

0 

0 0 

0 0 

S2 0 

0 S y S z 

0 0 

0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(2.57) 
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These are the submatrices shaded blue and purple in Figure 2.11 . By examining the entries of 
C2 ( m ), we can see that the direction of a line scales just like a vector, and this is due to the direction 
being a length-like quantity. The moment of a line is an area-like quantity, and its scaling transfor
mation therefore involves two factors. The normal of a plane is also an area-like quantity, and the 
entries of C3 ( m) demonstrate that it scales with two factors as well. The w coordinate of a plane is 
the only component that scales like a volume, as shown by the product s xs ys 2 in the bottom-right 
corner of C3 ( m ). 

The construction of the exomorphism matrix M allows us to correctly transform any kind of 
object in an n-dimensional exterior algebra as long as we know how to transform grade-one vectors 
with then x n matrix m. The generality of the matrix M can sometimes have its advantages, but it 
also makes things like parameterization and interpolation difficult. In Chapter 3, we will find that 
some important subsets of all possible linear transformations can be applied with products native 
to the projective algebra without the need for matrix multiplication. 

j j j j j j 

scalar 

m vector 

M= bivector 

trivector 

- antiscalar 

det m 

Figure 2.11. Toe exomorphism matrix M is a 16 x 16 block diagonal matrix that transforms multi vectors be
longing to the 4D projective space. Toe matrix m is a given transformation of grade-one vectors, and each 
submatrix along the diagonal is a kth compound matrix of m, where O :s; k :s; 4. Each column ofM corresponds 
to the image of the basis element shown at the top under the transformation that M performs. Entries in 
unshaded areas are zero. 
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2.8 Metric Transformations 

The wedge and antiwedge products have allowed us to combine points, lines, and planes in various 
ways, but those operations do not provide methods for measuring meaningful magnitudes, distances 
between objects, or angles between objects. In ordinary Euclidean space, the dot product supplies 
essentially all we need to calculate these quantities. The squared magnitude of a vector v is given 
by v • v, the distance between two points is given by the magnitude of their difference, and the 
cosine of the angle between two unit-length directions a and b is given by a· b. In order to obtain 
these kinds of measurements in the homogeneous projective space that we have been using, it is 
necessary to make some generalizations. 

2.8.1 The Metric 

In any vector space, the foundation upon which the definitions of distance and angle are built is a 
mathematical entity called the metric tensor, or just the metric. The metric specifies how basis vec
tors are multiplied together under the dot product, and it is a configurable parameter that determines 
the overall structure of an algebra. As discussed further at the end of this chapter in Section 2.15, 
we choose the exact form of the metric and the orientation of the volume element, and then every
thing else about the resulting algebra is strictly derived from those choices. 

For an n-dimensional vector space with basis vectors denoted v1 through v n, the metric is an 
n x n matrix g in which the ( i, j) entry defines the dot product between the ith and }th grade-one 
basis vectors. That is, 

(2.58) 

We require the dot product to be commutative, which means that the matrix g is symmetric because 
it must be the case that 9u = 9Ji· In ordinary Euclidean space, the metric is simply the identity matrix 
because the dot product between any basis vector and itself is one, and the dot product between any 
two distinct basis vectors is zero. In geometric algebras, the metric is usually a diagonal matrix for 
which each entry along the diagonal is + 1, -1, or 0, meaning that the square of each basis vector v; 

under the dot product is defined as vf = + 1, vf = -1, or vf = 0. However, it will be convenient in 
Chapter 4 to introduce special basis vectors that transform the metric in such a way that it is no 
longer diagonal. 

In the 4D projective space, our basis vectors are e1, e2, e3, and e4, and we define their squares 
under the dot product to be 

(2.59) 

The first three basis vectors square to one just as they do in 3D Euclidean space, but the fourth basis 
vector is different. By defining the square of e4 to be zero, we are saying that it has no physical 
measure and that the e4 component of any arbitrary vector makes no direct contribution to its mag
nitude. The full story of e4 is a little more complicated than that, but the general notion that e4 has 
no size will suffice for the moment. Using the definitions given by Equation (2.59) and continuing 
to require that the dot product between distinct basis vectors is zero, we can write the metric g as 

(2.60) 



2.8 Metric Transformations 

Just like any other n x n matrix, the metric g performs a transformation on an n-dimensional 
vector v through the matrix-vector product gv. If g is diagonal and none of the basis vectors square 
to zero, then this transformation is a one-to-one mapping of the vector space to itself, and it is 
invertible. Since one of our basis vectors in the projective space does square to zero, however, the 
metric g given by Equation (2.60) is not invertible. When a metric is not invertible, is it called 
degenerate because it transforms some nontrivial subset of the vector space onto the zero vector. 
In the case of the 4D projective space, the product gv erases any e4 component of v to leave only 
the e1, e2 , and e3 components behind. Any vector having only an e4 component is therefore mapped 
to zero. We will have more to say about this specific transformation below in Section 2.8.3 . 

The exterior algebra arising from a set of n basis vectors can be regarded as a larger vector 
space having 211 basis elements. In order to extend the dot product and other operations to arbitrary 
multivectors in the exterior algebra, we construct the 211 

x 211 exomorphism matrix G from the met
ric g using the method described for general linear transformations in the previous section. This 
means that we must define 1-1 = + 1 for scalars and then require that G ( a /\ b) = (Ga)/\ ( Gb) for 
any multivectors a and b. Applying this rule to the 4 x 4 matrix g given by Equation (2 .60) produces 
the 16 x 16 exomorphism matrix 

1 

I 0 0 0 
0 I 0 0 
0 0 I 0 
0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

G = 
0 0 0 0 0 0 
0 0 0 I 0 0 

(2 .61) 

0 0 0 0 I 0 
0 0 0 0 0 I 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 I 

0 -
The matrix G is called the metric exomorphism, but we will often shorten that to simply "the metric" 
even in contexts where multi vectors are involved. 

In Equation (2 .61 ), the columns are put in the same order as shown in Figure 2.11 , and the 
entries in each column also correspond to the basis elements in the same order. 1his exomorphism 
of the metric transforms a 16-component multivector u of coefficients, again listed in the same 
order, into another multivector of coefficients given by Gu. The blocks shown along the diagonal 
correspond to the submatrices of G that transform the parts of u having different grades. The top
left entry transforms the scalar component, the 4 x 4 submatrix following it along the diagonal is 
the original metric g that transforms the grade-one vector components, the 6 x 6 submatrix in the 
center is the second compound matrix C2 ( g) that transforms the bi vector components, the 4 x 4 
submatrix that comes next is the third compound matrix C3 ( g) that transforms the trivector com
ponents, and the bottom-right entry transforms the antiscalar component. 

Whereas the original metric g given by Equation (2.60) eliminates the single e4 component of 
a grade-one vector v = xe1 + ye2 + ze3 + we4 , the exomorphism G given by Equation (2.61) elimi
nates fully half the components of a complete 16-component multi vector 
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U =sl+ P x el + p y e 2 + P z e 3 + P we 4 +lvx e41 +/~ e 42 +/.,, e 43 +l,nxe 23 +lmy e 31 +lmz e1 2 

+ g x e 423 + g y e 431 + g z e 412 + g ,v e 321 + tn (2.62) 

because that's how many components contain a factor of e4 . This corresponds to the fact that there 
are eight zeros along the diagonal of G. 

2.8.2 The Antimetric 

We can regard the transformation Gu as a unary operation that does something to the generic mul
tivector u. That being the case, we can construct the corresponding anti-operation by first taking the 
complement of u, then multiplying by the matrix G, and finally talcing the inverse complement of 
the result. This produces a new unary operation (Gu defined by 

(2.63) 

where the matrix G, which we write in a blackboard bold typeface, is another 2n x 2n matrix called 
the metric antiexomorphism. This term will usually be shortened to simply "the antimetric". It 
should come as no surprise that the defining property of an antiexomorphism (G is the requirement 
that (G (av b ) = (Ga) v ( (Gb ) for any multivectors a and b, where the wedge product has been re
placed by the antiwedge product. The 16 x 16 antimetric (G corresponding to the metric G shown in 
Equation (2.61) is given by 

0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 

1 0 0 0 
0 1 0 0 0 0 

(G = 0 0 1 0 0 0 
(2.64) 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 0 

1 

Toe entries of the antimetric (Gare nothing more than a rearrangement of the entries of the met
ric G. If we define a function f ( k) that maps the index k of a basis element to the index of its 
complement, ignoring sign, then the (i,j) entry of(G is equal to the (J(i) ,J(J)) entry of G. 
When we list the basis elements in the order shown in Figure 2.11 , the difference between G and (G 
is that the order of the submatrices along the diagonal is reversed, and the entries of the center 
submatrix (shaded blue) are mirrored across the diagonal running from the lower-left comer to the 
upper-right comer. This relationship is visible when comparing Equations (2.61) and (2.64). 

Toe part of the metric G that transforms antivectors is the adjugate transpose of the part that 
transforms vectors. Since these parts are exchanged in the antimetric, it must be the case that 



2.8 Metric Transformations 

Bulk 

Weight 

l G<G = det ( g ) I l (2.65) 

because the ad jugate transpose of a matrix m differs from the inverse of m by a factor of the deter
minant. In the case that g is degenerate, like it is in the projective exterior algebra, we have G<G = 0. 
Otherwise, when all of the basis vectors square under the dot product to ±1, we have G<G = ±1, 
where the sign is determined by whether an even or odd number of basis vectors square to - 1. 

Metric 

G 

• Is an exomorphism such that 
G (a Ab)= Ga AG b. 

2.8.3 Bulk and Weight 

I Anti metric 
DUALITY 

• Is an antiexomorphism such that 
G ( a v b)= Ga vGb. 

Notice that the locations where ones appear along the diagonal of the matrix CG are exactly the lo
cations where zeros appear along the diagonal of the matrix G. This is, of course, necessary because 
complements invert the condition of whether a basis element contains a factor of e4. The practical 
effect is that the operations Gu and <G u divide the components of u into two disjoint parts, those 
that do not have a factor that squares to zero and those that do have a factor that squares to zero. 
We call these two parts the bulk of u and the weight of u. 

The bulk of an object u is denoted by ue with a solid black circle written as a subscript, and it 
is defined as 

I u. =Gu. I (2.66) 

The weight of an object u is denoted by u0 with an empty white circle written as a subscript, and it 
is defined as 

I u0 = Gu. I (2.67) 

In the 4D projective space representing geometries of 3D Euclidean space, the bulk of an object 
consists of all the components that do not have a factor of e4, and the weight of an object consists 
of all the components that do have a factor of e4. This divides each of our representations of points, 
lines, and planes into the two parts shown in Table 2.8. 

When either the bulk or weight of an object is zero, it can be interpreted in a special way. An 
object with zero bulk always contains the origin. The origin itself bas only an e4 component, a line 

Type Bulk Weight 

Point p P• = P x e l + P y e 2 + P z e 3 Po = P w e 4 

Line/ l e = l mx e 23 +lmy e 31 +l111: e1 2 lo = l vx C41 +lvv c 42 +lvz C43 

Plane g g. = g w e 321 go = g x e 423 + g y e 431 + g z C412 

Table 2.8. These are the bulks and weights of geometric objects in the 40 projective space. 
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70 Chapter 2 Flat Projective Geometry 

passing through the origin has a zero moment, and a plane containing the origin has no e321 com
ponent. Symmetrically, an object with zero weight is always contained by the horizon. A point with 
no e4 component is a point at infinity, a line with a zero direction also lies at infinity, and a plane 
with a zero normal is the horizon itself. 

Since the bulk and weight are disjoint under a degenerate metric, any object u can be written 
as a sum of its bulk and weight parts as u = u. + u0 . When we multiply two objects a and b together 
with the wedge product, we can write 

(2 .68) 

When we expand the right side of this equation and multiply the bulks and weights together sepa
rately, we find that 

at\ b = a. t\ be + a. t\ bo + ao t\ be . (2.69) 

We only have three terms here because a0 A b0 is always zero due to the fact that ao and bo must 
both contain a factor of e4 . Of these three terms, the first one constitutes the bulk of the entire 
product because it's the only term for which neither factor contains a factor of e4 . Toe remaining 
two terms constitute the weight of the entire product, and we can thus express the bulk and weight 
ofa Ab as 

(at\ b ). = a. t\ be 

(at\ b )0 = a. t\ bo + ao t\ be. (2 .70) 

The antiwedge product can be decomposed in a similar way. When we multiply the bulks and 
weights of two objects a and b together with the anti wedge product, we have 

a Vb = ( a. + a 0 ) V ( be + b0 ) 

= a• Vbo +ao Vbe +ao Vbo. (2.71) 

This time, the product of the bulks a. A be is always zero because both factors a. and be are miss
ing a factor of e4 . Toe first two terms constitute the bulk of the entire product, and the last term 
constitutes the weight, so we can express the bulk and weight of av b as 

Bulk 

u. 

( a Vb ). = a. V bo + ao V be 

( a Vb )0 = a0 V bo . 

DUALITY 
Weight 

Uo 

(2.72) 

• Selects components of u without a factor of en. • Selects components of u with a factor of e,,. 

• Contains positional information about u. 

• Zero bulk means u contains the origin. 

2.8.4 Attitude 

• Contains directional information about u. 

• Zero weight means u is contained in the 
horizon. 

The partitioning of an object's components into bulk and weight has a geometric meaning that ap
pears all the time in projective algebras. Toe bulk of an object contains information about the posi
tion of the object relative to the origin, and the weight contains information about the attitude and 
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2.9 Inner Products 

Attitude 

orientation of the object independently of its position. For example, the weight of a line is specifi
cally the 3D direction vector along which the line runs, and the weight of a plane is specifically its 
3D normal bi vector, but each of these is multiplied by the projective basis vector e4 . In order to 
extract this information as a purely directional nonprojective quantity, we define a function that 
throws away the bulk of an object and removes the factor of e4 from its weight. Toe attitude of an 
object u is denoted by att ( u ) and defined as 

I att ( u ) = u V en ' I (2.73) 

where n is the number of dimensions in the projective algebra. This can be interpreted as the 
intersection of the object u with the horizon e,,. Toe result is an object that lies in the horizon and 
contains points at infinity in the directions corresponding to its attitude in space. This can also be 
interpreted as throwing away the projective dimension e,, and keeping the piece of u that intersects 
the purely Euclidean subspace of n -1 dimensions. Note that the attitude is not affected by transla
tion because any object's orientation in space is independent of its position. Translation only affects 
the bulk of a point, line, or plane. 

In the 4D projective algebra, we extract the attitude of an object by taking the antiwedge prod
uct with e4 = e321 . Toe attitudes of points, lines, and planes are listed in Table 2.9. Toe attitude of a 
point is nothing more than its weight as a scalar, so it doesn't have much geometric meaning. But 
the attitude of a line is a vector representing the point at infinity in the direction parallel to the line, 
and the attitude of a plane is a bi vector representing a line at infinity containing points in all direc
tions parallel to the plane. 

Type Attitude 

Point p att( p )=pwl 

Line I att (I) = lvx e1 + Ivy e2 + /"' e3 

Plane g att (g) = g x e 23 + g _y e 31 + g , e1 2 

Table 2.9. These are the attitudes of geometric objects in three dimensions. 

2.9 Inner Products 

Dot product 

In the previous section, we defined the metric g as an n x n matrix whose entries were given by all 
possible dot products between grade-one basis vectors in n-dimensional space. We were able to 
choose how each basis vector squared, but then the remainder of the metric exomorphism G was 
fully determined by the requirement that G (a/\ b ) = (Ga)/\ ( Gb ). We now use this larger 2" x 2" 
matrix to extend the definition of the dot product to basis elements of all grades within the exterior 
algebra and thus to all multivector quantities. 

The extended dot product a • b, denoted by a fat solid black dot, is given by 

(2.74) 

where a and b are treated as 2"-dimensional vectors of coefficients corresponding to the 2n basis 
elements in the n-dimensional exterior algebra. Toe right side of the definition is the product of a 
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Antidot product 

Chapter 2 Flat Projective Geometry 

l x 2n row vector (because a is transposed), a 211 x 211 matrix, and a 211 x l column vector. Toe final 
multiplication by 1 simply maps the scalar result onto the embedding of scalars as grade-zero ele
ments of the exterior algebra. 

Toe definition given by Equation (2.74) provides an inner product that extends linearly to the 
whole exterior algebra. It's easy to demonstrate that (a + b ) • c =a • c + b • c for any multivectors a, 
b, and c, that ( sa ) • b = a • ( sb ) = s (a• b ) for any scalar s, and that a • b = b • a. Due to the block 
diagonal form of the exomorphism matrix G, the inner product between two quantities having dif
ferent grades is always zero. Contributions to the final result of a• b are made only by terms of a 
and b that have matching grades. This is further restricted to terms having identical basis elements 
if G is a diagonal matrix, which always happens when the n x n metric g is a diagonal matrix. This 
innate simplicity of the dot and antidot products is necessary for the proper functioning of norms. 
However, there is a group of related but more general products called interior products, discussed 
in Section 2.13 below, and they generate meaningful results when two objects of different grades 
are multiplied together. 

As discussed previously in Section 2.3, a product in exterior algebra always has a correspond
ing antiproduct, and this is just as true for the dot product as it was for the wedge product. Toe 
antidot product a O b, denoted by a fat empty white dot, can be defined as 

(2.75) 

which is clearly symmetric to Equation (2 .74). The only differences are that the metric G has been 
replaced by the antimetric tG, and the scalar result is mapped onto the grade-n elements (which are 
anti grade-zero elements) instead of the grade-zero elements. Toe result of a dot product is always 
a scalar, and the result of an antidot product is always an antiscalar. 

Toe usual method for defining an antiproduct through De Morgan's laws is also valid, so an 
alternative definition of the antidot product is 

a ob = a • b. (2.76) 

We can show that Equations (2.75) and (2 .76) are equivalent by first expanding the definition of 
the dot product on the right side of Equation (2.76) as 

(2 .77) 

By taking the left complement in the definition of the antimetric (G given in Equation (2.63), we 
have G!! = (Gb, so we can now write 

(2.78) 

In the matrix product! T (Gb, the left complement operation reorders the entries of a and (Gb in the 
same way, so the matrix product between the two does not change, and we know that! T (Gb = a T tGb. 
This lets us write 

! • !?_ = ( a T (Gb ) 1 = ( a T (Gb ) 11, (2.79) 

which demonstrates the equivalency of the two definitions of the anti dot product. 
The dot and antidot products of the 16 basis elements in the 4D projective algebra with them

selves are listed in Table 2.10. The products between any two distinct basis elements are all zero 
because the metric and antimetric are both diagonal matrices. As a consequence of the fact that the 
metric is degenerate here, the dot product u • u ends up being the sum of the squares of all the 



2.9 Inner Products 

components of u. (the bulk of u) as a scalar, and the antidot product u O u ends up being the sum of 
the squares of all the components of u0 (the weight of u) as an antiscalar. Toe infix symbols used 
for dot product and anti dot product reflect this relationship by being smaller versions of the symbols 
used as subscripts to denote bulk and weight. It is a combination of the dot product and antidot 
product that allows us to determine magnitudes in the homogeneous geometric model, and this the 
main concept in the discussion of norms in the next section. 

u 1 e1 e2 e3 e4 e 41 e 42 e 43 ei3 e 31 e 12 e 423 e 431 e 412 em 11. 

u•u 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 

U 0 U 0 0 0 0 11. 11. 11. 11. 0 0 0 11. 11. 11. 0 11. 

Table 2.10. These are the dot and antidot products between each of the 16 basis elements in the 4D projective 
exterior algebra with themselves. 

Due to the way in wruch compound matrices are constructed from an n x n matrix that trans
forms grade-one vectors, the dot product between objects of higher grade can always be reduced to 
a set of dot products between combinations of the grade-one factors of those objects. This doesn 't 
really provide us with any computational advantages, but it does give us a theoretical tool that we 
can use to derive properties of other operations. In particular, the relationship that we discuss here 
will be an important stepping stone when we establish a rule for decomposing interior products in 
Section 2.13 . 

First, we consider the dot product between two basis bi vectors eiJ and ek1 under an arbitrary 
metric tensor g. Toe value of eiJ • ek1 is given by the ( s, t) entry of the second compound matrix 
C2 ( g ), where s and t are the indices of the basis bivectors eiJ and ek, within the ordered list of all 
basis bivectors. (For example, in the 4D projective algebra, the index of e23 is 4 because it is the 
fourth item in the list { e41 , e42 , e43 , e23 , e31 , e12 }.) Since the metric tensor is symmetric, the entries 
of rows and column s of C2 ( g) are both given by 9[;J /\ 9[JJ, which is the wedge product between 
columns i and j of g. Similarly, the entries of row t and column t of of C2 ( g) are both given by 
9 [k] /\ 9 [!]· This means the we can write [ C2 (g)L

1 
in the two different forms 

(2.80) 

In both cases, we obtain 

(2 .8 1) 

Toe entries of g are defined to be dot products between basis vectors, so we can rewrite this as 

eiJ • ek, = ( e; • ek )( e J • e1 )-( e; • e, )( e J • ek ) 

=le; • ek e; • e, I· 
ei • ek e J • e1 

(2.82) 

That is, the dot product between the bivectors eiJ and ek, is equal to the determinant of the 2 x 2 
matrix whose entries are the dot products between their vector factors, where the row determines 
which factor of the first bivector is involved and the column determines which factor of the second 
bivector is involved. When we generalize this to grade-k basis elements, we find that the dot product 
between two basis k-vectors is similarly given by the determinant of a k x k matrix whose entries 
are dot products between all combinations of their vector factors . Since all of this is linear, we can 
replace each grade-k basis element with an arbitrary product of k vectors to arrive at the formula 
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74 Chapter 2 Flat Projective Geometry 

a1 • b 1 a1 • b 2 a1 •bk 

( a1 t\ a2 t\ • • • t\ ak ) • (b1 t\ b 2 t\ • • • t\ b k )= 
a2 • b1 a2 • b 2 a2 • b k 

(2.83) 

ak • b 1 ak • b 2 ak • b k 

where each of the factors ai and b i are grade-one vectors. 
It would never be practical to calculate a dot product using Equation (2.83) because it's much 

easier to simply use the definition given by Equation (2.74) with the extended metric G that will 
always be known to us. However, Equation (2.83) does provide information that will help us prove 
important relationships later on. We can tum the dot product of two simple k-vectors into a sum
mation over k terms by expanding the determinant on the right side of Equation (2.83) along its 
first column to get 

a1•b2 a1 • b 3 a1 •bk 

a1 • b 1 a1•b2 a1•bk 

a2 • b 1 a2 • b 2 a 2 • b k 
k 

ai- 1 • b 2 a i-1 • b3 ai-1 • b k 
= L ( -1 Y-1 

( a i • b 1) (2.84) 
a ;+i • b2 a ;+i • b3 a ;+i • b k i = I 

ak • b 1 ak • b 2 ak • b k 

ak • b 2 ak • b 3 ak • b k 

Toe determinant of the ( k -1) x ( k -1) matrix appearing on the right side of this equation (which is 
part of the summand) is equivalent to the dot product between two simple ( k -1 )-vectors. Toe first 
is a 1 t\ • • • t\ a ;_1 t\ a ;+i t\ • • • t\ ak, which depends on the index of summation i because it is missing 
the factor a;, and the second is b2 t\ • • • t\ b k. Since the second factor is the same for all terms of the 
summation, we can pull it out and write 

(a1 t\a2 t\ · · · t\a k ) • ( b 1 A b 2 t\·· · A b k) 

= [± (-1t1 
(a; • b 1 )( a1 t\ ••• t\ a;- 1 t\ a;+1 t\ ••• ak )] • (b2 t\ •• • t\ b k ). 

1=1 

(2.85) 

This result is as far as we go for now. In Section 2.13 , we will be able to isolate this summation by 
dropping the factor b2 t\ • • • t\ b k and equating it to another expression in order to establish a funda
mental property of interior products. 

Dot Product 

a•b 

• Defined as ( a r Gb ) 1. 

• Inner product between bulks. 

DUALITY 
Antidot Product 

a 0 b 

• Defined as( ar !Gb )11. 

• Inner product between weights. 



2.10 Norms 

2.10 Norms 

With a metric and dot product established, we now have the means to quantitatively describe the 
magnitude of a geometric object. This is accomplished through the definition of a norm that maps 
an element of a vector space to a real number representing some abstract notion of distance from 
the origin. The conventional way to do this is to define the norm of a vector v, which is denoted by 
ll vl l, as the square root of the dot product of v with itself. That is, the dot product induces the norm 
given by 

llvll=~. (2.86) 

When we attempt to extend this definition to the whole projective space by using the extended dot 
product • defined in the previous section, it continues to work well for Euclidean vectors, bi vectors, 
and trivectors by producing their lengths, areas, and volumes. But it fails to produce a meaningful 
measure of magnitude for anything having a nonzero weight part because it involves the projective 
dimension e4. We need to account for the homogeneity of the projective space so that nonzero scalar 
multiples of any particular geometric object all end up having the same distance from the origin 
when the norm is applied. 

We first review what properties a norm must possess in order to be called a norm because it 
will be necessary to make some generalizations later on. Tue conventional norm must satisfy the 
following three conditions: 

1. Tue norm of v is zero if and only if v is the zero vector. 
2. If a vector vis multiplied by a scalars, then its norm is multiplied by Isl . 
3. Tue norm of the sum of two vectors v and w cannot be greater than the sum of their norms. 

Tue first of these properties guarantees that only the origin has a magnitude of zero. It also ensures 
that the difference between any two distinct vectors has a nonzero magnitude. Tue second property 
says that whenever a vector's components are scaled by a factor s, the vector's distance from the 
origin must also increase or decrease by the same factor s, ignoring sign. Tue third property is 
known as the triangle inequality, and it states that adding two vectors v and w cannot result in a 
new vector that is magically farther away from the origin than the sum of the distances of v and w 
themselves to the origin. 

If we start replacing the vector v with geometric objects from the projective algebra, we quickly 
find that the above properties lose their effectiveness when the extended dot product • is applied in 
Equation (2.86). Any line that passes through the origin would have a norm of zero despite being a 
nonzero quantity lvx e41 + Ivy e42 + /,,, e43 , so the first property is not satisfied. Toe second property is 
technically satisfied, but it demonstrates that the norm of any geometric object could be made to 
have any arbitrary value without changing the geometry itself, which renders the norm completely 
meaningless. Tue triangle inequality is also technically satisfied, but it is equally meaningless for 
similar reasons. 

2.10.1 Bulk and Weight Norms 

We have two different dot products, which are defined by Equations (2.74) and (2.75), and it turns 
out that a proper norm capturing a meaningful distance from the origin requires that both dot prod
ucts participate. We first define separate norms with each dot product, where we use the term 
"norm" loosely because these definitions do not satisfy the first property above. Since one norm is 
based on the dot product and the other norm is based on the antidot product, we can rather generi
cally call them the norm and antinorm, but in the presence of a degenerate metric, it will be fitting 
to give them the more distinctive names that follow. 
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Norm I 
Bulk norm 

Antinorm / 
Weight norm 

Unitization 

Chapter 2 Flat Projective Geometry 

The bulk norm of an object u, denoted by llull. with the symbol for bulk written as a subscript, 
is based on the dot product and defined as 

i 11 u11. =~ -1 (2.87) 

The weight norm of an object u, denoted by llullo with the symbol for weight written as a subscript, 
is based on the antidot product and defined as 

(2.88) 

The bulk norms and weight norms of points, lines, and planes are listed in Table 2.11 . As should be 
expected, the bulk norm measures the size of the bulk components of an object, and the weight 
norm measures the size of the weight components of an object. It's important to recognize that the 
bulk norm produces a scalar quantity, but the weight norm produces an antiscalar quantity. When 
the bulk norm of u is the scalar 1, we say that u is bulk normalized. Similarly, when the weight 
norm of u is the antiscalar n, we say that u is weight normalized. 

Type Bulk Norm Weight Norm 

Point p IIPII. = 1✓ p; + P.~ + p; JJPllo = IPw Ill 

Line I 11111. = 1 l;,x + l,;,y + l,;,z 11111 0 = 1l✓l;x + l~, + I! 

Plane g llgll. = lgwl 1 ll gllo = ll.j g; + g_; + g; 

Table 2.11. These are the bulk norms and weight norms of geometric objects in the 4D projective exterior 
algebra. 

2.10.2 Unitization 

The weight norm of an object can be regarded as the collective magnitude of the components that 
extend in the direction of the basis vector e4 . We project the higher-dimensional representations of 
geometric objects into 3D Euclidean space by scaling so that the weight has unit magnitude. For a 
homogeneous point, all we need to do is divide by the w coordinate because there is only one 
component that includes a factor of e4 . Lines and planes, however, each have three components that 
include a factor of e4 , and we need to divide by their size as a whole. Once the weight has been 
adjusted to have unit magnitude, we call the object unitized as a shorter alternative to calling it 
weight normalized. In general, unitization is the process of scaling the components of a geometric 
object so that its weight norm becomes the antiscalar n. An object u is unitized by calculating 

~ u u 
U = -- = --

llullo ~' 
(2.89) 

and we indicate that something has been unitized by writing it with a hat above the variable or 
expression. Table 2.12 lists the conditions under which points, lines, and planes are considered to 
be unitized because their weight norms would have unit size . 
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2.10 Norms 

Geometric norm 

Type Definition Unitization 

Point p p = P x e l + P y e 2 + P : e 3 + P w e 4 p~ = I 

Line/ / = l vx e 4 1 +lry e 42 +lvz e 43 +ln,x e 23 +lmy e 31 + / ,,,, e 12 
2 2 2 

fvx + fry + fvz = 1 

Plane g g = g x e 423 + g y e 431 + g z e 412 + g we 321 
2 2 2 

g x + g y + g , = l 

Table 2.12. The right column lists the conditions under which geometric objects in three dimensions are 
considered to be unitized. 

2.10.3 The Geometric Norm 

The bulk norm and weight norm are combined into a single quantity by simply adding them to
gether. Tue geometric norm of an object u, denoted by llull with no subscript, is defined as 

(2.90) 

The geometric norm produces a quantity llull = sl + t:ll consisting of a scalar and antiscalar pair of 
numbers. It is a homogeneous magnitude that has properties consistent with the geometric model 
of homogeneous points, lines, and planes. Tue scalar part of a homogeneous magnitude is its bulk, 
and the antiscalar part is its weight. Like all other homogeneous objects, multiplying the whole 
quantity by a nonzero scalar value does not change its meaning, and it is projected into 3D space 
by choosing a scale that makes its weight have unit size. 

Tue geometric norm provides us with a concrete measurement of distance from the origin that 
remains invariant under projection no matter how an object is homogeneously scaled. The geomet
ric norm of a point p is 

(2.91) 

and rescaling so that the antiscalar part has unit magnitude requires the division by P w to which we 
are accustomed for points in homogeneous coordinates. Tue geometric norm of a line / is 

(2 .92) 

and it is projected into 3D space by requiring that the three components ( lvx , Ivy , lvz ) of the line's 
direction make a unit vector. When this is the case, the magnitude of the line 's moment, with com
ponents ( lmx, lmy, lmz ), is equal to the perpendicular distance between the line and the origin. Finally, 
the geometric norm of a plane g is 

(2.93) 

and it is projected into 3D space by requiring that the three components (gx, g y, g, ) of the plane 's 
normal have unit magnitude. When this is the case, the absolute value of g w is equal to the perpen
dicular distance between the plane and the origin. 

Assuming the weight norm of an object u is not zero, the unitized version of its homogeneous 
magnitude [lull = sl + t:ll is given by 

- s llull =- t + 11 . 
t 

(2.94) 

The antiscalar part no longer has any meaning, and we can simply write the magnitude as a scalar 
distance value. (This is similar to how thew coordinate of a homogeneous point is typically dropped 
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Type Geometric Norm Interpretation 

✓ 2 2 2 

Point p IIPII = 

0

Px + P.v + Pz Distance from the origin to the point p. 
IPw I 

Line I IIIll = .jz,;.,, + l~y + l,~z 

.lvx + l;;y + lvz ✓ 2 ? 2 
Perpendicular distance from the origin to the line /. 

Plane g - lgwl 
Perpendicular distance from the origin to the plane g. llgll = ✓ 2 2 2 g x + g y +g, 

Table 2.13. These are the scalar parts of the geometric norms of objects in three dimensions after unitization. 
The geometric norm of an object is equal to the distance between the object and the origin. 

when projecting into 3D space.) When we unitize the geometric norms of points, lines, and planes, 
we obtain the values listed in Table 2.13 , and they all correspond to the distances between the geo
metric objects and the origin. 

The geometric norm satisfies a generalization of the three properties required for a conventional 
norm, and the differences are summarized in Table 2.14. We first have the property that the norm 
of a vector is zero if and only if the vector itself is zero. This is generalized so that the geometric 
norm of an object in the projective space is zero if and only if the object contains the origin. Since 
we are measuring the distance from the origin, any lines or planes that pass through the origin, in 
addition to the point at the origin itself, have a geometric norm of zero. Next, we have the property 
that scaling a vector causes the vector's norm to scale by the same amount. This does not apply in 
our projective space because any nonzero scale of an object's components does not change the 
geometric meaning of the object. Instead, we think about the points that make up an object and 
consider what happens when all of those points are scaled by the same factor in order to dilate the 
entire object with respect to the origin. In this case, we expect the geometric norm to be scaled by 
the same factor as well, and that is indeed what occurs. Finally, we have the triangle inequality for 
conventional norms. This property generalizes by considering what happens if we translate all of 
the points that make up an object. When we do this, the distance between the object and the origin 
cannot increase by more than the distance that the object is translated. 

Math Library Notes 

• Toe Squar edBulkNorm( ) and Squar edWeightNorm() functions return the squares of the bulk norm and 
weight norm. Squares are returned so the quotient can be taken before a single square root is applied. 

• Points, lines, and planes can be scaled to have unit weight by calling the Uniti ze() function . 

2.11 Euclidean Distances 

Given a norm on a vector space, the conventional way to measure the distance between two vectors 
a and b is to calculate Il a - b ll - This is equivalent to translating the coordinate system so that either 
a or b coincides with the origin and then taking the norm of the other vector. This is still an effective 
way to measure distances in the 4D projective algebra if one of the objects happens to be a point p. 
We can just translate the other object by - p .xyz / Pw, which can be accomplished for a point, line or 
plane by using the matrix in Equation (2.53), (2.54), or (2.55), and then take the geometric norm of 
the result to measure its distance from the origin. 



2.11 Euclidean Distances 

Conventional Norm Geometric Norm 

L llvll = 0 if and only ifv = 0. L ll u ll = 0 if and only if u contains the origin, which is 
equivalent to stating u /\ en+J = 0 in n dimensions. 

2. For any vector v and scalars, 2. Let D ( u, s) be the result of applying a dilation by a 

llsvll = Isl llvll- scale factors centered at the origin to the object u. 
Then for any object u and scalars, IID ( u, s ) II= Isl llull-

3. For any vectors v and w, 3. Let T ( u, t ) be the result of applying a translation by 

llv +wll ::; llvll+llwll - the displacement vector t to the object u. Then for any 
object u and vector t, IIT ( u, t )II .$ ll u ll + lltll-

Table 2.14. Toe definition of the geometric norm of an object u generalizes the conventional definition of 
norm to account for the geometric interpretation of objects in projective space. 

When we talk about the Euclidean distance between two objects a and b, what we mean is the 
length of the shortest straight path connecting a point on a to a point on b. For example, the distance 
between a point p and a plane g is the length of the straight path connecting p to the point on g that 
is closest to p. When one of the objects involved in a distance measurement is a point p, then there 
is no choice about what point on that object is closest to the other object because we only have p 
itself. In these cases, we can translate p to the origin and take the geometric norm of the other object 
as described above. If neither object is a point, however, then we don't know where to translate our 
coordinate system, and the same strategy doesn't work. In three dimensions, this problem appears 
only when considering the distance between two lines, but it is more common in higher numbers 
of dimensions. 

In the case of two lines / and k, we can figure out what to do by taking a closer look at the 
wedge product I I\ k . Suppose that I = p /\ q and k = r /\ s, where the points p, q, r, and s all have a 
w coordinate of one. Then the directions of the lines as 3D vectors are Iv= q - p and kv = s-r. 
Although it's somewhat difficult to visualize, the wedge product 

/ Ak = p /\ q /\ r /\s (2.95) 

can be interpreted as the signed volume of a four-dimensional parallelotope whose sides are given 
by the four-dimensional vectors p, q, r, and s. Since all four sides have a length of one in the 
direction of the w axis, that direction can be ignored by essentially dividing it out, leaving behind 
the three-dimensional parallelepiped shown in Figure 2.12. Without loss of generality, we can as
sume that the points p and r correspond to the points of closest approach on the two lines because 
sliding the points along each line (keeping the distance between p and q constant and the distance 
between rand s constant) only has the effect of skewing the parallelepiped, which does not change 
its volume. 

The area of the base of the parallelepiped is given by lllv /\ kv II-Ifwe divide the absolute volume 
Ii I\ kl of the parallelepiped by this area and take out the unit length in thew direction, then the only 
remaining dimension is the distance between the two lines corresponding to the magnitude of p - r 
in the figure. We are expressing this as an antiscalar, however, so we take the complement of I I\ k 
to turn it into a scalar. Thus, the formula for the distance d between two lines is given by 

d= ll v k l 
ll lv Ak vll' 

(2.96) 

where the numerator contains the antiwedge product between two 4D bivectors, and the denomi
nator contains the wedge product between two 3D vectors. 
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Figure 2.12. The distance between two lines I= p /\ q and k = r /\ s having 3D direction vectors Iv = q - p 
and k v = s - r is given by the complement of the volume I I\ k divided by the base area lllv /\ k v II-

Here, we have recognized that we can construct a four-dimensional volume by multiplying two 
lines together, remove the projective dimension along the w axis, and divide by the area of a two
dimensional base to obtain a height value that corresponds to the distance between the lines . This 
idea can be generalized to all types of geometric objects. Suppose that we want to find the distance 
between two objects a and b whose representations in the 4D projective algebra have grades ka and 
kb. The attitude of their wedge product has ka + kb -1 dimensions because it discards the projective 
dimension, and its volume is directly related to bow far apart a and b are. It makes sense that the 
bulk of a /\ b is thrown away because the position of a /\ b is not relevant to the distance between a 
and b. We can always translate so that a/\ b passes through the origin without affecting the size of 
att ( a /\ b). We just need to divide the volume of this attitude by the area of a base having ka + kb - 2 
dimensions (where we are using the terms volume and area only to mean that they differ in dimen
sionality by one). This area is given by the wedge product of the separate attitudes of a and b, so 
we can express the distanced ( a, b) between objects a and bas 

d(a b) = llatt(a/\b)II. 
' llatt (a)/\ att (b )II. 

(2 .97) 

Since the numerator and denominator each contain the weights of both a and b, they are divided 
out, and this formula respects the homogeneous properties of the geometry. We can manipulate the 
denominator a little bit by replacing att (a)/\ att (b) with either a/\ att (b) or att (a)/\ b and taking 
a weight norm instead of a bulk norm. The result is the same product between the original weights 
of a and b, but we can now express the distance as a homogeneous magnitude by writing 

d ( a, b) = llatt (a/\ b )II. + Ila/\ att (b )Ila• (2.98) 

The distance given by Equation (2.98) is an absolute quantity, but we know that it's both pos
sible and very useful to calculate a signed distance between a point and a plane. We have also seen 
a signed crossing orientation for the relationship between two lines in Equation (2.46). Whenever 
the sum of the grades of two objects a and bis the full dimensionality n of the projective space, the 
wedge product a/\ b is a single numerical value as an antiscalar, and av b is the same numerical 
value as a scalar. In these cases, we can extract some meaning from the sign of the value. In the 
case of a point p and a plane g, the sign of p v g tells us whether p falls on the front side or back 
side of g. In the case of two lines / and k, the sign of Iv k tells us whether the crossing orientation 
is clockwise or counterclockwise. We just need to be careful about the order of multiplication when 
the grades of both objects are odd since they don't commute. The sign of p v g agrees with the 
conventional 4D dot product g · p discussed in Chapter 1, but g v p is negated. The order in which 
we multiply two lines does not matter. 



2.12 Duals 

Euclidean 
distance 

After accounting for the possibility that we care about the sign of the result in some cases, the 
general formula for the distanced ( a, b ) between two geometric objects a and b as a homogeneous 
magnitude in an n-dimensional projective space is 

{ 
a v b + II a /\ att ( b) llo , if gr (a) + gr ( b) = n ; 

d( a b)= 
' llatt (a /\ b ) II . + Il a /\ att (b )llo, otherwise. 

(2.99) 

If we want an absolute distance in the case that gr (a)+ gr ( b) = n, all we have to do is take the 
absolute value of a v b . Using Equation (2.99), formulas for the Euclidean distances between 
the four possible combinations of points, lines, and planes in 3D space are shown in Table 2. 15. 
Toe distance between two skew lines is explored further in Comparison Chart #2. 

Distance Formula Illustration 

Distanced between points p and q. q 

d (p, q ) = II Q,y.Pw - p,y,qwll 1 + IPwqw I 11 
:__-,--

d 

Perpendicular distance d between point p and line I. 0 p 

d (p, l) = lll v x p,yz + Pwlm 111 +IIA ,fvl l ll d 
17 I ---

Perpendicular distance d between point p and plane g. ,p 

d (p, g) = (p ·g) l +IIPwg,:vz 1111 
d 

/ 7 
g / 

Perpendicular distance d between skew lines I and k. k 
I 

d (I , k ) = - (/v • km + Im • k v) l + llfv X k v 1111 

~ d 

Table 2.15. These are the Euclidean distances between various combinations of points, lines, and planes in 
three dimensions, expressed as homogeneous magnitudes. 

2.12 Duals 

Dual / 
Bulk dual 

Toe complement operation exchanges the meanings of full and empty dimensions independently of 
the metric that has been chosen for an algebra. We can construct another operation that does depend 
on the metric by simply multiplying by the metric before we take a complement. This produces the 
metric dual of an object u, which is denoted by u * with a solid black star written as a superscript. 
Toe metric dual of u is defined as 

u* = Gu 
' 

(2.100) 
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Comparison Chart #2 

Closest Points on Skew Lines k 

Given two skew lines I and kin 3D space, calculate the point 
a lying on I and the point b lying on k such that the distance 
between a and b is minimized. Also calculate the shortest 
distance d between the lines without using the closest points. 

Conventional Methods 

Let I ( s) = p + su and k ( t) = q + t v be 
parametric lines, with the first containing the 
point p and running parallel to the direction 
vector u and the second containing the point q 
and running parallel to the direction vector v. 
Assume the directions are normalized so that 

11 ° 11 = 1 and llvll = 1. 

Calculate the direction z = u x v that is 
perpendicular to both lines. The distance 
between the lines is then given by 

l(p-q)·zl 
d= llzll • 

For the closest points, we need to find the values 
of the parameters s and t such that I ( s) - k ( t) is 
perpendicular to both u and v. This condition can 
be expressed as the pair of dot products 

(p+su-q-tv)·u=O 

(p+su-q-tv)· v = 0. 

Write this linear system in matrix form as 

[ 
1 -u·v][s]=[(q-p)•u]· 

U·V -1 t (q-p)·V 

Solve for sand t by inverting the 2 x 2 matrix 
to obtain 

[
SJ 1 [ -1 U·V] [(q-p) ·U] 
t - ( U · V )2 - 1 -U • V 1 ( Q - p) · V • 

The points a and b are given by 

a = p+ su 

b = q +tv. 

Geometric Algebra 

Let I and k be lines as defined in Equation (2.36) 
with directions Iv and kv and moments Im and km, 
There is no need to assume the lines are unitized. 

Using Equation (2.99), calculate the quantities 

x=llvkl =l lv ·km +Im ·kvl 

and 

y=II I /\att(k)llo =lllv x kvlln . 

The di stance between the lines is d = x/ y. 

For the closest points, take the direction 

already calculated above, which is a vector 
perpendicular to both lines. Now construct the 
planes g =II\ z and h = k /\ z. The points a and b 
are given by 

a = hVI 

b =gV k. 



2.12 Duals 

Antidual / 
Weight dual 

and we will normally just call this "the dual" of u. The fact that we are using the right complement 
here instead of the left is an arbitrary choice, and it's made so that our results are consistent with 
the duals arising from our choice of basis elements and the single complement existing in the five
dimensional algebra discussed in Chapter 4. This choice exists only in even numbers of dimensions, 
and its effects are limited to changing the sign of some of the objects we work with, which does not 
change the meaning of those objects in a homogeneous setting. 

Naturally, if we can define one dual with the metric G, then we can define another dual with 
the antimetric G. The metric antidual of an object u, denoted by u * with an empty white star in the 
superscript, is defined as 

(2 .101) 

Again, we will normally drop the word "metric" and simply call this "the antidual" of u. We can 
also arrive at this definition by applying De Morgan's law to the definition of the dual in Equation 
(2.100). If we take the left complement of u, apply the dual, and then take the right complement of 
the result, we have 

u* =Gu =Gu - - ' (2.102) 

where the last step makes use of the definition of the antimetric (G given in Equation (2 .63). The 
definition of the antimetric also tells us that u * = Gii, which is just the application of the right 
complement and the metric in the opposite order than it was applied in Equation (2.100). 

When the metric G is the identity, the dual and antidual are equal to each other, and they are 
both the same as the right complement. When the metric is not the identity but is still orthogonal, 
the duals can negate or permute basis elements in ways that the complement does not. We will see 
a metric that has these effects in Chapter 4. As long as the metric is invertible, the dual and antidual 
are either equal or negatives of each other because GG = ±1. However, when we have a degenerate 
metric as we do in the projective space, the dual and antidual split nontrivially into two separate 
operations. In this case, the values of Gu and Gu are the complements of the bulk and weight of u, 
respectively, which we can express as 

(2.103) 

The solid black star and empty white star are paired with the solid black circle and empty white 
circle corresponding to the components having their complement taken. Because each of the two 
dual operations keep either the bulk or the weight, we often prefer to call u * the bulk dual of u, and 
we prefer to call u * the weight dual of u in settings where the metric is degenerate. Since the com
plement operation has the effect of exchanging which components belong to the bulk and weight, 
the bulk dual of u has only weight components, and the weight dual of u has only bulk components. 

For the sake of completeness, we also define duals that are based on the left complement instead 
of the right complement. It won't be necessary to use these duals except in situations where we can 
point out the fact that additional operations have left and right variants. When we need to make a 
distinction, we will call the bulk dual u * and the weight dual u * that we have already defined the 
right bulk dual and right weight dual. We denote the left bulk dual of an object u as u* with a solid 
star in the subscript instead of the superscript to match the position of the left complement notation. 
The right complement is denoted by an overbar, and a right dual is denoted by a star in the super
script. The left complement is denoted by an underbar, and a left dual is thus denoted by a star in 
the subscript. The left weight dual of an object u is therefore denoted by u*. The effects of all four 
dual operations5 on the 16 basis elements of the 4D projective algebra are shown in Table 2.16. 

5 The right bulk dual u * that we have defined is also known as the Hodge dual of u, and it is usually written with the 
Hodge star operator notation *u. Our notation provides the greater versatility necessary upon the realization that this 
particular dual is but one of four related operations. 
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u 1 e 1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e 12 e 423 e 431 e 412 e 321 11 

u* 11 e 42J e431 e 412 e 321 0 0 0 - e41 - e42 -e43 0 0 0 - e 4 0 

u. 11 -e423 - e 431 -e412 -e321 0 0 0 - e 41 - e 42 -e43 0 0 0 e4 0 

u* 0 0 0 0 e 321 - e 23 - e 31 -e12 0 0 0 -e1 -e2 -e3 0 1 

u* 0 0 0 0 - e 321 - e 23 -e31 - e 12 0 0 0 e1 e2 e 3 0 1 

Table 2.1 6. For each of the 16 basis elements u in the 4D projective exterior algebra, this table lists the right 
bulk dual u *, the left bulk dual u*, the right weight dual u *, and the left weight dual u*. 

The bulk duals and weight duals of points, lines, and planes are listed in Table 2.17. Note that 
because the bulk dual of each object has no bulk components, it must contain the origin. In a sym
metric manner, the weight dual of each object has no weight components and therefore must lie in 
the horizon. In general, the weight dual of an object u is another object containing all points at 
infinity in directions perpendicular to u itself. The weight dual of a plane is the point at infinity in 
the direction of the plane 's normal. The weight dual of a line is the line at infinity containing all 
points at infinity in directions perpendicular to the original line's direction. The weight dual of a 
point is the entire horizon. These properties are particularly important for the projection operations 
discussed in the next section. 

The bulk dual and weight dual operations distribute over the wedge product and antiwedge 
product in a particular way. First, we consider the bulk dual of a wedge product a/\ b, which can 
be expanded as 

(aAb)* =G(a /\b) . (2.104) 

Because the metric G is an exomorphism, we can distribute it across the wedge product and write 

(a /\ b)* =( Ga )A( Gb ). (2.105) 

Applying De Morgan's law for the wedge product, the right side is transformed into an anti wedge 
product of complements as 

(a/\ b )* = Ga vGb. (2.106) 

Each of the factors on the right side matches the definition of the bulk dual given by Equation 
(2.100), so we now have the identity 

I (a /\ b)* =a* v b* . I (2.107) 

This is a form of De Morgan's law for the wedge product that makes use of duals instead of com
plements. If the metric is nondegenerate, then we can apply the inverse dual to both sides so that 

Type Bulk Dual Weight Dual 

Point p * P = P x e423 + p y e431 + P z e41 2 * P = P w e 32 1 

Line/ 1* = -lmx e41 - lmy e42 - /,,IZ e43 L* = -l.x e 23 -lvy e 31 -/vz e12 

Plane g * g =-gw e4 * g =-gx e l -gy e 2 -gz e 3 

Table 2.17. These are the bulk duals and weight duals of geometric objects in the 4D projective exterior 
algebra representing 3D Euclidean space. 



2.13 Interior Products 

only a/\ b appears on the left, but this is not possible when the metric is degenerate because the 
dual cannot be inverted in that case. 

We can follow the same procedure for the weight dual of an anti wedge product av b. Expand
ing the definition of weight dual, distributing the antimetric, and applying De Morgan 's law for the 
antiwedge product gives us 

(av b )* = <G(av b ) 

= (<Ga )v (<Gb ) 

= <Ga/\ <Gb . (2.108) 

This leads us to the identity 

(2.109) 

which is a form of De Morgan's law for the anti wedge product that makes use of anti duals instead 
of complements. Again, it is not possible to move all dual operations to the right side if the metric 
is degenerate. 

Math Library Notes 

• The right bulk dual and weight dual operations are implemented by the BulkDual () and WeightDual () 
functions. 

Bulk Dual 

u* 
DUALITY 

Weight Dual 

u* 

• Defined as Gu. ■ Defined as (G u . 

• Gives the dual of the bulk components of u. • Gives the dual of the weight components of u. 

2.13 Interior Products 

As discussed in Section 2.5 , the join and meet operations combine geometric objects in two differ
ent ways. The join of objects a and b produces the higher-dimensional geometry containing both 
objects, and its grade is the sum of gr (a) and gr ( b ). The meet of objects a and b produces the 
lower-dimensional geometry contained by both objects, and its antigrade is the sum of ag (a) and 
ag (b ). There are additional ways to combine two geometric objects by applying a dual operation 
to one of them first, and this causes grades or anti grades to be subtracted. With the wedge product, 
antiwedge product, and two dual operations at our disposal, we can combine objects a and b in four 
distinct ways to produce a/\ b *, a /\ b *, a v b *, and a v b * . These are generally known as interior 
products, but we also give each of them the more specific name shown in Table 2.18. All four 
operations have geometric meanings that we discuss in this section. 

In our interior products, the dual operation always appears on the right operand because we 
defined our duals using the right complement. We can be more specific with the terminology by 
calling them right interior products. It is possible to define four more interior products for which 
the dual operation appears on the left operand, but that requires using dual operations based on the 

85 



86 

Bulk 
contraction 

Weight 
contraction 

Chapter 2 Flat Projective Geometry 

Interior Product Definition 

Bulk expansion a/\b* 

Weight expansion a/\ b* 

Bulk contraction avb* 

Weight contraction avb* 

Table 2.18. There are four right interior products that combine a wedge product or antiwedge product with a 
right bulk dual or weight dual operation. 

left complement for proper symmetry. Doing so gives us the additional left interior products b* /\ a, 
b* /\ a, b* v a, and b* v a, where we have intentionally written b on the left to keep the same name 
for the dualized operand. The only difference between right and left interior products is a possible 
change in sign that depends on the grades of the operands. Specifically, the left and right interior 
products are related by 

b . /\a= ( - 1 r(b)[ag(a)+ag(b)] a/\ b . (2.110) 

and 

b . V a =(-l)gr(b)[gr(a)+gr(b)] a vb*, (2.111) 

where the asterisk is a placeholder for either the bulk dual or weight dual operation. It won't be 
necessary for us to have both left and right versions of the interior products, so we choose to avoid 
the extra clutter by sticking only with the right versions and limiting the total number of interior 
products to four. 

2.13.1 Contractions 

The interior products that involve the antiwedge product are called contractions.6 This name is due 
to the fact that the operation removes one object from the other and produces a smaller object 
contained by the operand that isn't dualized. It's as if this object has contracted in size to become a 
lower-dimensional subspace of itself. Depending on which dual operation is involved, there are two 
different contraction operations. The bulk contraction of a with b is defined as 

bulk contraction ( a, b) = a v b * , (2.112) 

and it applies the bulk dual to the second operand. When we apply the weight dual to the second 
operand instead, we get the weight contraction, which is defined as 

weight contraction ( a, b) = a v b *. (2.113) 

When the metric is the identity, these two contractions are identical, and we simply call them "the 
contraction". When the metric is degenerate, they produce different results that have the specific 
applications discussed below. 

6 A notation in which a J b means left contraction and al b means right contraction can be found in many places through
out the literature. Aside from its deplorable typographical qualities, this notation is not adequate for distinguishing be
tween bulk and weight contractions, it unnecessarily obfuscates the basic underlying operations, and it lacks an analogous 
notation for expansions. 



2.13 Interior Products 

z 

Figure 2.13. The contraction e12 v v * removes the vector v from the bi vector e12. This produces a new vector 
that is contained in e12 and is orthogonal to v. 

First, to get a feeling for what the contraction actually does, we examine its properties in 3D 
Euclidean space where n = e123, the metric is the 3 x 3 identity matrix, and both dual operations are 
equivalent to the complement operation. Let us consider the contraction of the bi vector e12 with the 
arbitrary vector v = ae1 + be2 + ce3, which is illustrated in Figure 2.13. Distributing over the vec
tor 's components, we can write this contraction as 

and calculate each term independently. This gives us the three values 

a ( e, 2 vet)= a ( e, 2 v e23 ) = ae2 

b ( e,2 v ef) = b ( e, 2 v e3, ) = -be, 

c ( e,2 v ef) = c ( e,2 v e,2 ) = 0. 

(2.114) 

(2.115) 

The third value demonstrates how there is no way to meaningfully remove one quantity from an
other if the two are orthogonal. Attempting to remove e3 from e12 yields zero because e12 doesn't 
contain any component parallel to e3 to begin with. In general, a contraction throws away parts that 
are perpendicular to each other. This leaves the first two values, which arise from the components 
ofv that actually do lie in e12. When we contract e 12 with the e1 and e2 components of v, those com
ponents are removed, and we are left with the orthogonal subspace of e 12, giving us 

(2.116) 

The overall effect is that the vector v is projected onto e12, and that projection is then removed from 
e12 to produce a new vector that lies in e12 but is perpendicular to v. In this case, the projection of v 
onto e12 is rotated 90 degrees counterclockwise about the z axis, matching the orientation of e12. 

Had we contracted with e21 instead, with the opposite orientation, then the projection of v would 
have been rotated clockwise. 

The antiwedge product has the effect of summing the antigrades of its operands, but the con
traction behaves differently because one of the operands is dualized. In the contractions a vb* and 
av b *, the anti grades of b * and b * are both n - ag ( b ), where n is the number of dimensions, so 
the antigrade of the whole expression is ag (a)+ n -ag (b ). If we subtract this from n to obtain the 
grade instead and replace each antigrade ag ( u ) with n - gr ( u ), then we arrive at the relationship 

gr ( a v b * ) = gr ( a v b * ) = gr (a) - gr ( b ). (2.117) 
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Thus, a contraction subtracts the grades of its operands. Since nothing can have a negative grade, 
Equation (2.117) highlights the fact that the anti wedge products av b * and av b * are identically 
zero if the grade of b is greater than the grade of a. The contraction does not allow us to remove 
one object from another object of lower dimensionality. 

When a and b have the same grade, the contractions av b * and av b * must each have grade 
zero, and that means they each produce a scalar result. Suppose that a and b both have grade k and 
that we're working in an n-dimensional algebra. Considering only the bulk contraction for the mo
ment, we can expand a v b * to 

(2.118) 

where m = (; ), and u 1, u 2, ... , um are the m basis elements of grade k. Each term of the expanded 
antiwedge product on the right side bas the form a ;bJ ( U ; v Gu J ), which is nonzero only when Gu J 

itself contains au; component that causes the antiwedge product to be 1. What this means is that 
the components of a and b are paired and summed in exactly the same way as they are in the 
definition of the dot product given by Equation (2.74), and we thus have the identity 

I avb* =a•b, whengr(a)=gr(b) . , (2 .119) 

The bulk contraction reduces to the dot product when its operands have the same grade. Some
thing similar involving the antidot product happens for the weight contraction, but it must still 
produce a scalar quantity. If we expand av b * in the same way that we expanded the bulk contrac
tion, then the metric G appearing in Equation (2.118) is replaced by the antimetric tG. The compo
nents of a and bare paired and summed in exactly the same way as they are in the definition of the 
antidot product given by Equation (2. 75), but we get a scalar result instead of an anti scalar, so it's 
not exactly the antidot product to which the weight contraction reduces when its operands have the 
same grade. Nevertheless, we can write the identity 

I avb* =(a 0 b)vl, whengr(a)=gr(b) . (2.120) 

It may seem like this presents a small asymmetry that indicates a possible problem with the duality 
of the interior products, but the bulk and weight contractions are not actually duals of each other. 
We have exchanged the bulk dual and weight dual operations on the second operand, but to find 
the correct dual of the whole expression, we also need to replace the antiwedge product with the 
wedge product. The interior product that reduces exactly to the antidot product as an antiscalar for 
operands of equal grade is the weight expansion, which is discussed below in Section 2.13 .5. 

All values produced by the bulk and weight contractions between basis elements in the 4D 
projective algebra are shown in Table 2.19. The bulk contraction av b * is identically zero when
ever b has a factor of e4 , and the weight contraction a vb* is identically zero whenever b does not 
have a factor of e4 . This means that only one of the two contractions can be nonzero for any specific 
value of b. The nonzero values of the bulk contraction are highlighted in green in the table, and the 
nonzero values of the weight contraction are highlighted in purple. Entries for which the bulk con
traction coincides with the dot product or the weight contraction coincides with the scalar version 
of the antidot product are highlighted in a darker shade. The metric shown in Equation (2.61) is 
visible in the dark green cells along the diagonal. 

There are a few interesting properties that we can derive about the bulk contraction. First, it's 
very easy to show that the bulk contraction with a value that can be expressed as a wedge product 
of multiple factors can be transformed into repeated contractions with each of the factors . It follows 
directly from Equation (2.107) that we can write 
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av( b Ac)*=av b*vc* . (2 .121) 

If b and care wedge products of even smaller factors, then we could repeat the process until we 've 
transformed a contraction with a simple k-vector into an iteration of k contractions with its grade
one factors. It 's important to note that Equation (2.121) works only for the bulk contraction and not 
for the weight contraction. The dual counterpart of this decomposition applies to the weight expan
sion, which is discussed below. 

The relationship in Equation (2 .121) provides us with a way to transform a dot product involv
ing a bulk contraction into another dot product that does not. Suppose that we have three quantities 
a, b, and c such that gr ( a ) - gr ( b ) = gr ( c ) so it's possible to take the dot product ( a v b * ) • c and 
get a nonzero result. Since the dot product is equivalent to a bulk contraction, we can rewrite it and 
apply Equation (2.121) to obtain 

(avb* ) •c = a v b* vc* 

= a v( b Ac)*. (2 .122) 

The quantities a and b Ac have the same grade, so we can turn the bulk contraction on the right side 
back into a dot product and write 

( a v b * ) • c = a • ( b A c ) , when gr ( a ) = gr ( b) + gr ( c) . (2.123) 

Bulk and Weight Contraction a vb* • (a0 b ) v l 

~ 1 e 1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e 12 e 423 e 431 e 412 e 321 :n 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 1 e 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 2 e 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 3 e 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

e 4 e4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

e 41 e 41 - e 4 0 0 e 1 1 0 0 0 0 0 0 0 0 0 0 

e42 e 42 0 -e4 0 e 2 0 1 0 0 0 0 0 0 0 0 0 

e 43 e 43 0 0 -e4 e 3 0 0 1 0 0 0 0 0 0 0 0 

e 23 e 23 0 e 3 -e2 0 0 0 0 1 0 0 0 0 0 0 0 

e 31 e 31 -e3 0 e 1 0 0 0 0 0 1 0 0 0 0 0 0 

e1 2 e1 2 e 2 -e1 0 0 0 0 0 0 0 1 0 0 0 0 0 

e 423 e 423 0 -e43 e 42 e 23 0 e 3 -e2 e 4 0 0 1 0 0 0 0 

e431 e431 e43 0 -e41 e 31 -e3 0 e 1 0 e4 0 0 1 0 0 0 

e 412 e 412 - e 42 e 41 0 e 12 e 2 - e 1 0 0 0 e 4 0 0 1 0 0 

e m e m -e23 -e31 -e12 0 0 0 0 -e1 -e2 -e3 0 0 0 1 0 

1 1 e423 e 431 e 412 e m - e 23 - e 31 -e12 -e41 -e42 - e 43 -e1 -e2 -e3 -e4 1 

Table 2.19. These are the values of the bulk contraction a v b * and weight contraction av b * between all 
pairs of basis elements a and b in the 4D projective exterior algebra. The values of the bulk contraction are 
highlighted in green, and the values of the weight contraction are highlighted in purple. The darker green 
cells along the diagonal correspond to the nonzero entries oftbe metric G. 
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We now turn to the more difficult case of ( a Ab) v v * in which the left operand of the bulk 
contraction is a wedge product of two factors. The right operand is limited to a vector quantity, and 
we use the letter v to emphasize that it has grade one. The following derivation only works for 
vector quantities on the right, but as we already know, any contraction can be decomposed into a 
sequence of contractions with grade-one vectors. The result we obtain below can be repeated for 
any additional factors. 

Suppose a Ab is a simple k-vector, and let a Ab = d1 A·· · A d k, where each d; is a grade-one 
vector. Because v has grade one, the result of the bulk contraction ( d 1 A · ·· A dk) v v * has grade 
k -1. We will employ a small trick and take the dot product with an arbitrary quantity c1 A··· A ck-I 
that also has grade k-1. Using the identity given by Equation (2.123), we can rearrange this dot 
product as 

We now make use of Equation (2.85) to expand the dot product of the two k-vectors on the right 
side and write this as 

[ (d1 A 00 ·Adk)vv*}(c1 J\oo•J\C k_i) 

=[ t,<-1 Y-' ( d; • v )( d, A ·· ·Ad ,_, Ad,., A·· ·d , ) }< c, A ·· •Ac, _, ). (2.125) 

Here, both sides of the equation are dot products between the ( k-1 )-vector that we care about and 
the arbitrary ( k - 1 )-vector c1 A· · · A ck- I· The equation must hold for any value of c1 A· · · A ck-I , and 
in particular, it must hold for the grade-k basis elements. This means that for any basis element that 
is not annihilated by the metric G, the corresponding component of the left operands of the two dot 
products must be equal to each other. Altogether, those components make up the bulks of the left 
operands, so we can infer the equivalence 

If the metric is nondegenerate, then the bulk includes all the components, and the solid circle sub
scripts are not necessary. To keep things tidy, we drop the bulk notation for the rest of this derivation 
with the understanding that we are working with only the bulks in each equation. It will be added 
back to the final result. 

Continuing with Equation (2.126), we can divide the summation on the right side into two 
parts, one consisting of the first j terms and one consisting of all the terms that remain. Every term 
of the first part has a trailing factor of d J+I A·· · A dk, and every term of the second part has a leading 
factor of d1 A··· Ad 1. When we write the summations separately with those factors pulled out on 
the appropriate sides, we have 

(d 1 A···Adk)vv* 

=[ t.(-IY-' ( d, • v)( d , A· · ·Ad,_, Ad,., A···d, ) ] A( d,., A· ·· Ad, ) 

+ ( d1 J\ 00· J\ d j ) "[.± (-1t
1 

( d; • v)( d J+I J\ ••• J\ d;-1 A d;+J /\ ••• dk )]. (2 .127) 
l= j+ I 

Each of the summations inside the brackets has the same form as the right side of Equation (2.126), 
so we can replace them with bulk contractions to obtain 
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Projection 
onto vector 

(d1 A···A dk )vv* =[(d1 A···A d1 )vv*]A( d1+1 A···Adk) 

+(-1)1 (d1 A···A d1 )A[( d1+1 A···A dk)vv*J. (2.128) 

Toe factor of ( -1 )1 appearing in this equation accounts for whether the first term of the second 
summation was positive or negative. When we set a = d1 A··· Adi and b = d J+I A··· A dk, we arrive 
at the result 

[ ( a Ab) V V * ]. = [ ( a V V *)A b + ( -1 )gr(a) a A ( b V V *) ] •. (2.129) 

Remember that v is a grade-one vector in this identity, but a and b can have any grade. 
In the case that a and b are both grade-one vectors in a Euclidean space where the metric is the 

identity, Equation (2 .129) simplifies to 

(a Ab )vv* =( a• v) b -( b• v) a. (2.130) 

If this identity seems familiar, it 's due to it being a generalization of the conventional vector triple 
product v x (a x b) in a 3D vector space. Toe wedge product a Ab creates a bi vector, and the anti
wedge product with v * knocks that back down to a vector. In three dimensions, the per-coordinate 
calculations for both of those products look like cross products. Now that we have expressed Equa
tion (2.130) in terms of the operations of an exterior algebra, it applies more generally to vectors a, 
b, and v having any dimensionality. 

2.13.2 Projection and Rejection 

Suppose now that the metric is invertible (but not necessarily the identity), a is a grade-one vector, 
the vectors v and a are the same, and b has any grade. Then Equation (2.129) becomes 

(2.131) 

Assuming a • a -:t= 0, this can be rearranged to 

b=-
1
-[ aA( b va*)+(aA b)va*]. 

a •a 
(2.132) 

This equation decomposes b into two separate components with respect to the vector a. Notice that 
both components have the same factors and the same multiplication operations, but the order in 
which the products are evaluated is different. Toe first component must contain the vector a, and it 
must contain the result of the contraction b v a* that removes a from b. This component is the 
projection of b onto a, which we denote by b 11 a with parallel bars in the subscript to indicate that it 
is the part of b that is parallel to a. We take this to be the definition of projection when the metric 
is invertible and write 

a A( b v a*) 
h 11 a =-~--~. 

a • a 
(2.133) 

Toe second component in Equation (2.132) contains everything that is not part of the projection 
of b onto a. This component cannot contain anything parallel to the vector a because that particular 
direction is removed by the contraction operation. Thus, the second component represents all the 
parts of b that are perpendicular to a. We call this component the rejection of b from a and denote 
it by b .la with a perpendicular symbol in the subscript, following the notation used for projection. 
As before, we take this to be the definition of rejection and write 
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(2.134) 

When the metric is the identity, the bulk dual operation reduces to the right complement. In this 
case, Equation (2.132) becomes a way of separating b into components that contain a factor of a 
and those that do not. In particular, if a is a unit vector, then we can write 

b = a t\ ( b Va)+ ( a t\ b) Va. (2,135) 

The first term on the right side of this equation includes all components of b that have a factor of a, 
and the second term includes all components of b that do not have a factor of a. If we set a = e,, in 
an n-dimensional projective space, then this gives us alternative expressions for the bulk and weight 
of b that we can write as 

(2.136) 

These are not definitions, but they are identities that sometimes come in handy. We will use one of 
them to make a transformation below. 

2.13.3 Euclidean Angles 

When a dot product has been defined, the cosine of the Euclidean angle ¢ between two vectors a 
and bis canonically given by 

a -b 
cos¢ = 1/ a jjjjh jj ' 

(2.137) 

where /!a ll and l/ b // are each the induced norm defined by Equation (2 .86). If we insert the extended 
dot product • defined earlier by Equation (2.74), then this formula works well for Euclidean vectors, 
bi vectors, trivectors, and so on, producing the correct angle between any such objects of the same 
grade. However, it does not allow us to measure the angle between two objects a and b of different 
grades because a • bis always zero in that case. To calculate the angle between two objects like a 
vector and a bivector, we need to do some generalizing. 

The bulk contraction av b * is equivalent to a• b when the grades of a and b are the same but 
also produces meaningful results when the grades are different. Since the contraction projects its 
dualized operand onto its other operand, as shown earlier in Figure 2.13 , it introduces exactly the 
cosine factor that we need. But now, that factor is incorporated into the magnitude of a nonscalar 
result, so we are forced to take a norm in order to calculate an angle. That gives us the formula 

(2.138) 

for the cosine of the angle¢ made between two objects a and b having different grades. Here, a 
must be the object of higher grade or else the contraction is identically zero. The magnitudes in the 
denominator are both scalar values multiplying the basis element 1, so they are implicitly multiplied 
together with the wedge product. 

Since we are taking a norm that always produces a positive number in the numerator, Equation 
(2.138) can never give us an angle¢ larger than 90 degrees. While it is possible to think of two 
objects having the same grade as pointing in roughly the same direction, with an angle less than 90 
degrees between them, or in roughly opposite directions, with an angle greater than 90 degrees 
between them, the same notion does not apply to objects having different grades. A vector can never 
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make an angle larger than 90 degrees with a bivector, for instance. This is reflected in the fact that 
the contraction between two objects produces a scalar result that can be positive or negative only 
when the grades of those objects are the same. 

When it comes to measuring the angle between any pairing of homogeneous lines and planes 
in a projective space, all we have to do it plug their attitudes into Equation (2 .138). The attitude of 
a line or plane is a purely Euclidean expression of its directional orientation in space, so we can 
calculate 

ll att (a) v att (b) * II 

cos¢= • 
llatt ( a )11 . llatt (b )II. 

(2.139) 

to obtain the cosine of the angle between two geometric objects a and b. If the two objects have the 
same grade, then we don't take the norm in the numerator, and that gives us a signed scalar value. 

Equation (2.139) can be simplified in a couple ways, and we can transform the whole expres
sion of cos¢ into a homogeneous magnitude. First, we rewrite the contraction in the numerator 
using the definitions of attitude and bulk dual to get 

att ( a ) V att ( b ) * = ( a V en ) V ( b V en ) • . (2.140) 

Since the quantity b v en cannot contain a factor of en, applying the bulk operation to it has no effect, 
so we can simply drop it. Reassociating the antiwedge products and applying De Morgan 's law to 
the right complement ofb v e,, gives us 

att(a)vatt(b)* = av[en v(bAe,,)]. (2.141) 

According to Equation (2.23), applying the double right complement to en introduces a factor of 
( - 1 f -1

. If we also reverse the terms of the anti wedge product en v ( b t\ en ), then it introduces an
other factor of ( -1 ) gr( b )-J according to Equation (2.32). Reversing the terms of the wedge product 
b t\ en introduces yet another factor of ( -1 r -gr( b) according to Equation (2 .18). These three factors 
accumulate to ( -1 )2n-2

, so there is no overall sign change when we rewrite Equation (2.141) as 

att(a)vatt(b)* = av[(en Ab)ven]. (2.142) 

The part in brackets is now precisely the expression for the bulk of bas given by Equation (2.136). 
The bulk of the complement is equal to the complement of the weight, which is equal to the weight 
dual, so we can now write 

att(a)vatt(b)* = aVbe =avb 0 = avb*. (2.143) 

That takes care of the numerator in Equation (2.139). In the denominator, we simply recognize that 
the bulk norm of the attitude of an object u is really the weight norm of u expressed as a scalar 
instead of an antiscalar. We can write this relationship as 

llu llo = llatt ( u )II. t\ 11. (2.144) 

The fact that Equation (2.139) is a ratio in which the numerator is a scalar and the denominator can 
now be expressed as the product of two antiscalars leads us to the expression 

cos¢= Ila Vb* II . + Ilalio llbllo (2.145) 

as a homogeneous magnitude representing the Euclidean angle between two projective geometries 
a and b. (There is an implicit antiwedge product between the two weight norms.) When a and b 
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have the same grade, we still want a signed value in the scalar part, so we drop the bulk norm in 
that case to arrive at 

if gr (a) = gr ( b) ; 

otherwise. 
(2.146) 

Formulas for the cosines of the Euclidean angles made between the three possible combinations 
of planes and lines in 3D space are shown in Table 2.20. In the case of two planes, the scalar part 
of the homogeneous magnitude is simply given by the ordinary dot product between the planes ' 
normal vectors, in conventional terms. In the case of two lines, the situation is similar, and the 
scalar part is given by the dot product between the lines ' direction vectors. The case of a plane and 
a line is slightly more involved. By taking the magnitude of the cross product between the plane 's 
normal vector and the line's direction vector, we are calculating the sine of the angle between those 
vectors, which is the cosine of the angle made between the line and the planar surface. That angle 
can never be larger than 90 degrees, so it makes sense that we have to evaluate a norm that can 
never be negative. 

Angle Formula Illustration 

Cosine of angle¢ between planes g and h. 

Cosine of angle ¢ between plane g and line /. 

Cosine of angle</> between lines I and k. 

COS</> ( I , k) = (Iv· kv) 1 + ll l llo llkllo 

k 

Table 2.20. These are the cosines of the Euclidean angles between lines and planes in three dimensions, 
expressed as homogeneous magnitudes. 

2.13.4 Parametric Forms 

The bulk contraction provides us with a way to express each type of geometric object containing 
more than one point using a parametric form. In the 4D projective algebra, the set of such objects 
is limited to only lines and planes, but the same formulation will be applicable to a larger variety 
of objects in Chapter 4. 

Let u represent a geometric object of grade two or higher, and let p0 be a unitized point that's 
known to be contained by u. Directional information about u is stored in its attitude, so it's reason
able to expect that other points contained by u differ from p0 by some multiple of att ( u ). For a line 
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Weight 
expansion 

/, this is clearly the case because att (I) = lvx e1 + Ivy e2 + lvz e3 is a vector pointing along the direction 
of the line. We can just add scalar multiples of this attitude to the known point p0 to generate every 
other point on the line in exactly the same way that we did conventionally in Equation (1.15). 

For a plane g, the situation is different for a couple ofreasons. First, the attitude of a plane is a 
bivector att (g) = gxe23 + gye31 + g , e12, and second, a single scalar parameter is not sufficient to 
generate a two-dimensional surface. Anything that we add to the known point p0 to generate other 
points in the plane must be a vector, so whatever operation we apply to att (g) must turn a bivector 
quantity into a vector quantity. This happens when we make the parameter a vector instead of a 
scalar and use the contraction to remove that vector parameter from the attitude to leave behind an 
orthogonal vector that is parallel to the plane. This is exactly what was happening conventionally 
in Equation (1.18). 

The parametric forms for lines and planes differed from each other significantly in Chapter 1, 
but we are now able to unify them into one form that applies to both lines and planes here and to 
three more types of objects later in Section 4.6. In general, the parametric form of a geometric 
object u having grade k is given by 

I p (a) = Po + att ( u) v a* , I (2.147) 

where p0 is a point known ahead oftime to be contained in u, and a is an arbitrary parameter having 
grade k - 2. (If no point p0 is known, one can always be found be projecting the origin onto u as 
discussed in Section 2.13.6 below.) The contraction always produces a vector quantity because the 
attitude of u has grade k - 1, and the contraction operation subtracts the grade of a from it. A line 
has grade two, so its parametric form requires that a be a scalar with grade zero. A plane has grade 
three, so its parametric form requires that a be a vector with grade one. If we were working in a 
higher number of dimensions, this could be continued to parameters of higher grade. In all cases, 
a is a purely Euclidean quantity and has no weight components, though if it did, they would be 
stripped away by the bulk dual operation anyway. 

2.13.5 Expansions 

The mathematical and conceptual dual to the contraction is the expansion, which is an interior 
product that involves the wedge product instead of the anti wedge product. Contractions and expan
sions are mutual antiproducts, and we can construct one from the other in the usual manner by 
applying the right complement to the operands and applying the left complement to the result. 
When we do this for the bulk contraction a v b * defined by Equation (2.112), we get 

a vb* =av Gb 
= aA Gb 

= a t\ (Gb 

= a Ab* . (2.148) 

Toe outcome of this short derivation is that the anti wedge product has been replaced by the wedge 
product, and the bulk dual has been replaced by the weight dual. This new operation is called the 
weight expansion, which we explicitly define as 

weight expansion ( a, b ) = a t\ b *. (2.149) 

When we apply the same procedure to the weight contraction defined by Equation (2 .113), we 
obtain the final combination of wedge product and bulk dual from Table 2.18. This operation is 
called the bulk expansion, defined as 
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bulk expansion ( a, b ) = a A b *. (2.150) 

As with contractions, these two expansions are identical when the metric is the identity. In that 
case, we simply call them "the expansion". When the metric is degenerate, they produce different 
results due to the way that the duals select different components of the second operand. 

Recall that a contraction transforms an object a into a lower-grade quantity that it contains by 
removing any parts of another object b that are parallel to it. The object a contracts into a smaller 
part of itself. In the opposite sense, an expansion transforms an object a into a higher-grade quantity 
that contains it by adding any parts of another object b that are perpendicular to it. This time, the 
object a expands into something larger. In both the cases of contraction and expansion, the result is 
an object that is orthogonal to the operand that is dualized. 

As we did for the contraction, we can examine the properties of the expansion in 3D Euclidean 
space where n = e123 , the metric is the 3 x 3 identity matrix, and both dual operations are equivalent 
to the complement operation. We' 11 consider the expansion of an arbitrary vector v = ae1 + be2 + ce3 

onto the bi vector e12 shown in Figure 2.14. Distributing over the vector 's components, we can write 
this expansion as 

and calculate each term independently. The dual of e 12 is e3, so we have the three values 

a ( e1 A e;';) = -ae31 

b ( e 2 A e;'; ) = be23 

c ( e3 A e;'; ) = 0. 

(2.151) 

(2.152) 

The third value demonstrates that we can't add more dimensions to one quantity that are perpen
dicular to another quantity if the two are already orthogonal. In general, an expansion takes the 
parts of one object that are parallel to another object and combines them with the space that is 
perpendicular to that other object. When we expand the e3 component ofv onto e12, there is nothing 
parallel to e12 to combine withe;';, so that component is thrown away. We are left with 

(2.153) 

which is a bivector that contains v and is orthogonal to e12 as shown in the figure. 
For every property of contractions that we previously discussed, there is a corresponding dual 

property that applies to expansions. In each case, we find that the expansion property is similar to 
the contraction property but with grade replaced by antigrade, bulk replaced by weight, and all 

z 

Figure 2.14. Toe expansion v /\ et'z adds the vector v to the dual of the bivector e12 (blue). This produces a 
new bivector (green) that contains v and is orthogonal to e12. 
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products replaced by their antiproducts. To begin with, the contraction subtracts the grades of its 
operands, but the expansion subtracts the anti grades. In the expansions a/\ b * and a /\ b *, the 
wedge product adds gr (a) and n - gr ( b ), where n is the number of dimensions. If we subtract this 
sum from n to get an antigrade and replace each grade gr ( u) with n - ag ( u ), then we have 

ag ( a /\ b * ) = ag ( a /\ b * ) = ag (a) - ag ( b ), (2.154) 

which is the analog of Equation (2 .117). For the antigrade of the result to be nonnegative, ag (b) 
must be no greater than ag (a), which means that we must have gr ( b) ~ gr (a) for expansions. 

When a and b have the same grade, which is equivalent to saying they have the same antigrade, 
the expansions a/\ b * and a/\ b * must produce an antiscalar because the antigrade of the result is 
zero. Toe weight expansion, being the dual of the bulk contraction, reduces to the antidot product 
when the antigrades of its operands are the same, which we can write as 

I a /\ b * = a O b, when ag (a) = ag ( b). I (2.155) 

Toe bulk expansion similarly reduces to the value of the dot product transformed into an anti scalar, 
which we express as 

I a/\ b * = (a • b) An, when ag (a) = ag ( b). (2.156) 

These two identities are the analogs of Equations (2.119) and (2.120). 
All values produced by the bulk and weight expansions between basis elements in the 4D pro

jective algebra are shown in Table 2.21. Toe bulk expansion a/\ b * is identically zero whenever b 
has a factor of e4, and the weight expansion a /\ b * is identically zero whenever b does not have a 
factor of e4 . As with contractions, this means that only one of the two expansions can be nonzero 
for any specific value of b. Toe nonzero values of the bulk expansion are highlighted in green in 
the table, and the nonzero values of the weight expansion are highlighted in purple. Entries for 
which the weight expansion coincides with the antidot product or the bulk expansion coincides 
with the antiscalar version of the dot product are highlighted in a darker shade. Toe antimetric 
shown in Equation (2.64) is visible in the dark purple cells along the diagonal. 

Toe decomposition properties of expansions are similar to those of contractions. It follows di
rectly from Equation (2.109) that we can write 

I aA(bvc)* =aAb* Ac*, (2 .157) 

which is the analog of Equation (2.121 ). Because the weight expansion is equivalent to the antidot 
product when the operands have the same grade, this leads to the identity 

(a/\ b *) 0 c = a O (b v c) , when ag (a)= ag (b) + ag ( c) , (2 .158) 

which is the analog of Equation (2.123). Toe final identity, which is the analog of Equation (2.129), 
could be derived using a process similar to the one used for the contraction, but it's much easier to 
simply take the complement of both sides of Equation (2.129) and simplify. Doing so gives us 

[(avb)Av* Jo =[(a/\ v* )vb+(-1r(a) av(bAv* )l, (2 .159) 

where v is now an antivector, not a vector, but a and b can have any grade. 
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Bulle and Weight Expansion a Ab* - (a•b )A:11 

~ 1 e 1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e 12 e 423 e 431 e 412 e 321 :11 
1 t e 423 e m e 412 e 321 - e 23 - e 31 - e 12 - e 41 - e42 -e43 -e1 - e 2 -e3 -e4 1 

e 1 0 1 0 0 0 e m 0 0 0 e 412 - e 431 0 -e12 e 31 e 41 e 1 

e 2 0 0 1 0 0 0 e m 0 -e412 0 e 423 e 12 0 - e 23 e 42 e 2 

e 3 0 0 0 11. 0 0 0 e 321 e 431 -e423 0 -e31 e 23 0 e 43 e 3 

e 4 0 0 0 0 11. -e423 -e431 -e412 0 0 0 - e 41 -e42 - e 43 0 e 4 

e 41 0 0 0 0 0 11. 0 0 0 0 0 0 -e412 e 431 0 e 41 

e 42 0 0 0 0 0 0 11 0 0 0 0 e 412 0 - e 423 0 e 42 

e 43 0 0 0 0 0 0 0 11 0 0 0 - e 431 e 423 0 0 e 43 

e 23 0 0 0 0 0 0 0 0 1 0 0 e m 0 0 -e423 e 23 

e 31 0 0 0 0 0 0 0 0 0 11. 0 0 e m 0 -e431 e 31 

e 12 0 0 0 0 0 0 0 0 0 0 t 0 0 e 32 1 -e412 e 12 

e 423 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0 e 423 

e 431 0 0 0 0 0 0 0 0 0 0 0 0 11. 0 0 e 431 

e 412 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 e 412 

em 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 em 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Table 2.21 . These are the values of the bulk expansion a A b * and weight expansion a A b * between all pairs 
of basis elements a and b in the 4D projective exterior algebra. The values of the bulk expansion are high
lighted in green, and the values of the weight expansion are highlighted in purple. The darker purple cells 
along the diagonal correspond to the nonzero entries of the antimetric (G_ 

The primary application of the expansion operation arises when we apply the weight expansion 
to pairs of projective geometries. Given two geometric objects a and b for which a has a lower 
grade, the weight expansion a /\ b * produces a new geometry that contains a and is orthogonal to 
b. In the 4D projective algebra, the condition that gr (a) < gr ( b) leaves three possible combinations 
of points, lines, and planes for which the weight expansion operation is meaningful, and these are 
listed in Table 2.22 along with illustrations. 

As long as the higher-dimensional object b does not lie in the horizon and thus have a zero 
weight, it is always possible to construct a new geometry that is perpendicular to it and also contains 
the object a no matter what the geometric relationship is between a and b. For example, the weight 
expansion of a point onto a plane produces a line that is orthogonal to the plane and passes through 
the point even if the point lies in the plane. The weight expansion operation does not produce null 
results in special cases like the join and meet operations sometimes do. 

The weight expansion a/\ b * works the way that it does because the dual operation applied to 
the operand b produces a relative position lying in the horizon, specifically one of those listed in 
the rightmost column of Table 2.17. When one of these relative positions is joined with another 
geometry a, the result must contain a, but the original position of b is ignored. The attitude of the 
result must be a combination of the weight of a and the entire value of b *, and so it is parallel to 
the attitude of a but perpendicular to the attitude of b. Importantly, the new geometry contains the 
shortest path from any point on a to the closest point on b, thus establishing the most direct con
nection between the two. 
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Orthogonal 
projection 

Expansion Operation Illustration 

Line containing point p and orthogonal to plane g. pAg* " 

P /\ g* = - Pwgx e41 +(p ,g.v - P_v g, ) e 23 

I p 

- Pwgy e42 +(pxg, - p, gx )e31 / g h I 
- Pwg, e43 +(p_vgx - Pxg _v )e12 I 

Plane containing point p and orthogonal to line I. / t 

p /\ / * = - Pwlvx e 423 - Pwlvy e431 - Pwlvz e 412 / h •p I 
+ (pxlvx + P_vlvy + p , lvz ) e321 pl\/* 

I 

Plane containing line I and orthogonal to plane g. I Ag* 

I I\ g * = ( l,yg, - l,o: g .v ) e 423 
~I 

+ (/vz gx - lvx gz ) e431 

+ ( lvx gy - lvygx ) e412 / g 

-(l,,rxgx + lm_v g .v + lm,g, ) e 321 

Table 2.22. These are the weight expansions a /\ b * between points, lines, and planes in three dimensions. 
The result is an object that contains a and is orthogonal to b. 

Contraction 

avb* 
DUALITY 

Expansion 

a Ab* 

• Decreases the grade of a by removing the 
subspace spanned by b. 

• The result is a lower-dimensional object that is 
contained by a and is orthogonal to b. 

• The grade of the result is gr (a) - gr ( b). 

2.13.6 Geometric Projection 

• Increases the grade of a by adding the subspace 
not spanned by b. 

• The result is a higher-dimensional object that 
contains a and is orthogonal to b. 

• The antigrade of the result is ag (a) - ag ( b ). 

The weight expansion has an immediate application that should now be very conspicuous. If the 
operation a/\ b * produces a new object c that contains a and is perpendicular to b, then a simple 
intersection of c with the original object b has the effect of moving a along c until it lies in b. Since 
c is perpendicular to b, this performs an orthogonal projection of a onto b. The intersection of c 
and b is accomplished with the meet operation, so we can express the entire projection of a onto b 
with the formula 

orthogonal projection ( a, b ) = b v ( a /\ b * ). (2.160) 

In three dimensions, this formula can be used to project a point onto a plane, to project a point onto 
a line, or to project a line onto a plane. The exact calculations for these specific cases are listed in 
expanded form in Table 2.23 . 
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Chapter 2 Flat Projective Geometry 

Projection Operation Illustration 

Orthogonal projection of point p onto plane g. p 
,. 

gv( p Ag* ) = (g; + g_; + g;) (PA + Pye2 + p , e3 + Pwe4) 

-( gxPx + g.v P.v + g, p, + gwPw )(gxel + gye2 + g, e3) / g / 

Orthogonal projection of point p onto line /. 
p 

lv(p A/* ) =Uvx Px +lvyP_v +lvz Pz )(lvx el +lvy e2 +/vz e3) b + (Ivy !",, - lvz lm.v ) Pw e1 + ( lvz l,nx - lvxlm, ) Pwe2 I 

+ ( fvx lmy -fvylmx ) Pwe3 + ( f;x + f~ + f~ ) Pwe4 ► 

Orthogonal projection of line I onto plane g. 

gv(l Ag* ) = (g; + g_; + g; )(lvx e41 + lvy e42 +lv, e43 ) 

;JTTG1 -(gxlvx + g_J vy + g,lvz )(gxe41 + gye42 + g, e43 ) 

+ ( gxl11zx + g _v lmy + g, lm, ) ( gx e23 + gy e31 + g, e1 2) 

+ ( g,lvy - gyl,"' ) g we23 + (gxl,"' - g ) vx ) gw eJ1 

+ ( gy fvx - gx fvy ) gw e1 2 

Table 2.23. These are all the possible orthogonal projections between any two different kinds offlat geometry 
in three dimensions. 

The projection performed by Equation (2.160) preserves the original orientation of the object 
being projected as much as possible. The weight of a projected point keeps its original sign, and 
this is easily verified in the formulas shown in Table 2.23. The direction of a projected line makes 
a nonnegative dot product with its original direction. This can be seen by extracting the attitude 
from the formula for g v (II\ g * ) in the table and taking a dot product with the attitude of the orig
inal line I to get 

att ( g V (II\ g * )) · att (I) = g~ I; -(gXJ,, • Iv )
2 = g~ I; ( 1-cos2 0) ~ 0, (2.161) 

where 0 is the angle made between the line direction Iv and the plane normal gXJ" . 
Because the object b onto which something is being projected appears twice in Equation 

(2.160), the weight of the result is multiplied by squared weight of b. To preserve the original 
weight of the projected object a, we need to divide by llbll~ = b O b unless it is already known that b 
is unitized. Of course, this does not change the geometric meaning of the projected result, but doing 
this division may be convenient or necessary to make sure that weights don't get too large and start 
creating numerical issues. 

When a point p is projected onto a line or plane, the result is the point closest to p on the line 
or plane. When p is the origin, we give the projected point a special name, the support. The support 
of an object u, denoted by sup ( u ), is the point contained in u that is closest to the origin. By plug
ging the origin en into Equation (2.160), we can write this definition as 

(2.162) 
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Central 
projection 

For a point p in the 4D projective algebra, the weight expansion part of this formula is e4 /\ p * = 
Pwn, and sup (p) is simply the same point p scaled by its own weight. For a line/, we have 

(2.163) 

And for a plane g, we have 

(2.164) 

The orthogonal projection formula given by Equation (2 .160) works because b*, the weight 
dual of b, is an object contained in the horizon consisting of all points at infinity in directions 
perpendicular to the attitude of b. Thus, the weight expansion a/\ b * produces a geometry that con
tains a and is perpendicular to b, and intersecting that geometry with the original object b performs 
the projection. If we replace the weight expansion with a bulk expansion, then the intermediate 
object a/\ b * is something different, and we get a different kind of projection when we intersect it 
with the original object b. 

The bulk dual of b has only weight components and therefore must be an object that contains 
the origin. This means the bulk expansion a /\ b * contains both a and the origin as well as a direct 
path connecting the two. When we intersect the result of the expansion with the original object b, 
it has the effect of moving a onto b along directions between a and the origin. This performs a 
central projection of a onto b with respect to the origin, which we define as 

central projection ( a, b) = b v (a/\ b *). (2.165) 

As with the orthogonal projection, this formula can be used to project a point onto a plane, a point 
onto a line, or a line onto a plane in three dimensions. The exact calculations for these specific cases 
are listed in expanded form in Table 2.24. 

In the case that we are centrally projecting onto a plane g, the bulk dual of g is simply gw e4, 

which is the origin weighted by g,.. The bulk expansion p /\ g* involving a point pis then the line 
connecting p and the origin, and the bulk expansion l I\ g * is the plane containing both the line and 
the origin. Intersecting either of these with the plane g moves them onto the plane along the direc
tion toward or away from the origin. The case of centrally projecting a point p onto a line l is 
somewhat different because there may not be a point on the line that is directly in between p and 
the origin. The bulk dual of l is -l111x e41 - lmy e42 -/1112 e43, which is a line through the origin perpen
dicular to the moment bivector of l . The bulk expansion p /\ t* is the plane containing this line and 
the point p, and the intersection of that plane and the line l gives us a point on the line representing 
the central projection of p. The plane p /\ t* is not the plane shown in Table 2.24, however. Instead, 
the table illustrates a more intuitive equivalent in which the point p is first projected orthogonally 
onto the plane containing land the origin before being centrally projected onto l within that plane. 

If we try to centrally project an object a that contains the origin onto something else, then we 
run into trouble. For the point in a at the origin, there is no way to define the direction toward or 
away from the origin, so a projected image of that point onto another object doesn 't make sense. In 
this case, the bulk expansion a/\ b * is always zero because both a and b * have no bulk compo
nents. We can also see within the formulas listed in Table 2.24 that the weight of a does not appear 
anywhere in the projected geometries, so if a bas no bulk due to it containing the origin, then the 
result must be zero. The opposite case in which the object b that we are projecting onto contains 
the origin also produces zero. Every part of the formulas in Table 2.24 contains a factor of the bulk 
of b, so if b has no bulk, then we get a null result. The math is telling us that we just can' t do a 
central projection unless both objects involved are located somewhere away from the origin. 
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Chapter 2 Flat Projective Geometry 

Projection Operation Illustration 

Central projection of point p onto plane g. / p 

gv( p Ag*)=g! (PA+pye2 +p, e3) ~ ✓ I -(gxPx + g yp y + g , p , ) gwe4 

oe 

Central projection of point p onto line /. 

•• ~p l v ( p A/* ) = ( I,;,, + l~y + I,~, ) ( Px e1 + Py e2 + p, e3 ) 

-(/mxPx +lmyPy +lm,Pz )(lmx el +lmye2 +lmze3) 

+ (l,nx (ivz Py -fvy Pz ) + lmy (/vxPz -fvz Px ) + lmz (/vyPx - fvx Py )) e4 

Central projection of line l onto plane g. 

]lz> gv(l Ag*)= (gyl,,,, -g, lmy ) g we41 + g;vlmxe23 

+ (gzl,nx - gxlmz ) g we42 + g ! l,,,_v e31 ~ .,, -- I 
+ (gxlm.v - g ylmx ) gwe43 + g!lmze1 2 '1,,,. 

0 ~ :,:----

Table 2.24. These are all the possible central projections (with respect to the origin o) between any two 
different kinds of flat geometry in three dimensions. 

We now take a look at the anti-operations associated with the orthogonal and central projections 
by taking right complements of the inputs and the left complement of the result. Applying this 
procedure first to the central projection formula given by Equation (2.165), we have 

ii v (a/\ ii*)= ii v ( a A~) 

=iiv(avb*) 

=b/\(av b* ). (2.166) 

This new operation calculates the weight contraction of a with b and joins the result with the orig
inal object b. Since we' re taking a contraction now instead of an expansion, the object a must be 
the one having higher grade, suggesting that we are somehow projecting in a manner opposite to 
the way in which projections containing an expansion work. Indeed, when we calculate the weight 
contraction av b *, we are throwing away the bulk of a, leaving only its directional information 
behind. Taking the wedge product with b then moves a into a position that contains b without 
changing its original attitude. We call this operation the orthogonal antiprojection of a onto b and 
define it as 

orthogonal antiprojection ( a, b) = b /\ (a v b * ). (2.167) 

In the opposite sense that Equation (2.160) performs a projection, this formula can be used to anti
project a plane onto a point, to antiproject a line onto a point, or to antiproject a plane onto a line 
in three dimensions, as shown in Table 2.25. 
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Projection Operation 

Orthogonal antiprojection of plane g onto point p. 

p A(gvp* ) = p ;, (gx e 423 + g y e 431 + g , e 412 ) 

-(pxgx + P.vg.v + p ,g, ) P.ve321 

Orthogonal antiprojection of line I onto point p. 

p A (IV p *) = p ~, (/vx e 41 + lvy e42 + I,,, e 43 ) 

+ ( Pylvz - p,lvy ) P we 23 

+ ( Pz fvx - Pxfvz ) P we 3I 

+ (Pxfvv - Pyfvx ) P we1 2 

Orthogonal antiprojection of plane g onto line /. 

I J\ ( g V /* ) = (l;x + t; +I~ ) (gxe 423 + g_y e 431 + g , e 412 ) 

-(!vx g x +lvy g y +lvz g , )(lvx e423 +lvy e 43 I +/vz e 412 ) 

+ (/vz lm.v - Iv.v im, ) gx e 32 1 

+ ( fvxfmz - /vz lmx ) gy e 32 1 

+ ( fvy fmx -fvx fmy ) g , e 321 

Illustration 

~ I I bl I ~ 
p 

Table 2.25. These are all the possible orthogonal antiprojections between any two different kinds of flat ge
ometry in three dimensions. 

Projection 
DUALITY 

Antiprojection 

bv(aAb* ) 

■ Projects lower-grade object a onto higher
grade object b. 

■ Projects higher-grade object a onto lower
grade object b. 

The difference between a projection and an anti projection is that a projection moves the smaller, 
lower-dimensional object onto the larger, rugher-dimensional object, and an antiprojection works 
in reverse by moving the larger object onto the smaller object. In the case that we are antiprojecting 
onto a point, using Equation (2.167) is overkill because we can easily recalculate the position of an 
object without affecting its attitude. To antiproject a plane g onto a unitized point p, all we have to 
do is replace the g ,. coordinate of the plane, its bulk, with the dot product -gxyz • p xyz · To anti project 
a line / onto a unitized point p, we just replace the moment of the line with the cross product 
p xyz x Iv. To handle the possibility that the point is not unitized in either of these cases, the weight 
of the plane or line simply needs to be multiplied by P w after the new bulk has been calculated. 

Toe anti-operation associated with the orthogonal projection is similar to Equation (2.167), but 
the weight contraction is replaced by a bulk contraction. Because it involves a contraction av b *, 
the object a must again be the one having higher grade. This is a fourth kind of projection that we 
call the central antiprojection of a onto b and define as 
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Central 
anti projection 

Antisupport 

Chapter 2 Flat Projective Geometry 

central antiprojection ( a, b) = b A (a v b *). (2.168) 

The utility of the central antiprojection is questionable, but it is included here for completeness. It 
tends to reorient the object a being anti projected so that it contains the object b instead of moving 
it in a direction perpendicular to b. The central antiprojections of a plane onto a point, a line onto a 
point, and a plane onto a line in three dimensions are shown in Table 2.26. 

One thing the central antiprojection is good for is calculating the geometry having the dual 
meaning of the support. Whereas the support of an object is the point closest to the origin that's 
contained by the object, its dual counterpart, which we call the antisupport, is the plane farthest 
from the origin that contains the object. The support is calculated in Equation (2.162) by orthogo
nally projecting the origin en onto an object. In the dual sense, the antisupport is calculated by cen
trally antiprojecting the horizon en onto an object. We denote the antisupport of an object u by 
asp ( u ) and define it as 

I asp ( u ) = u /\ ( en V u * ) . I (2.169) 

For a plane g in the 4D projective algebra, the bulk expansion part of this formula is e4 v g* = 
-gwl, and asp (g) is simply the flipped plane g scaled by its own bulk. For a line/, we have 

Projection Operation 

Central anti projection of plane g onto point p. 

p A(gv p*) = [(P; + p;) gx -(pygy + p,g , + Pwg w) Px] e423 

+[(p; + p; )g.v -(pxgx + p, g , + Pwgw) P_v ]e431 

+ [(p; + p; ) g, -(pxgx + pygy + Pwg w) Pz ] e412 

+(p; + p; + p; )gwe321 

Central antiprojection of line I onto point p. 

p A(lvp*) = (Pxlvx + Pylvy + p, lvz )(Pxe41 + P_v e42 + p , e43) 

+ (p_; + p;) lmx e23 + (p; + p;) lm_v e31 + (p; + p; ) lm, e1 2 

+ (P, lm_v - Pim, ) Pwe41 -(pylm_v + p , lm, ) Px e23 

+ (Pxlm, - p ,lmx ) Pwe42 -(p,lm, + Pxl,,IX ) P_v e31 

+ (pylmx - Pxlmy ) Pwe43 -(pxlmx + P.vlm.v ) p, e1 2 

Central antiprojection of plane g onto line I. 

/ A ( g V 1*) = ( l,,,xgx + l,n_ygy + lm, g, ) (imx e423 + l,,,y e431 + /,,,, e41 2) 

+ (/m_vlvz -!,,,, Ivy ) g we423 + (l,,,, lvx -l,nxlvz ) g we431 

+ (/,nxlvy -lmylvx ) g we412 + ( z;,_,, + l;,_v + !;,, ) gwe321 

Illustration 

g v p* 

Table 2.26. These are all the possible central antiprojections (with respect to the origin o) between any two 
different kinds of flat geometry in three dimensions. 



2.14 2D Flat Geometry 1 OS 

And for a point p, we have 

(2.171) 

Since projections and antiprojections are dual to each other, whenever one kind of projection 
happens in regular space, its dual operation must be happening simultaneously in antispace. Any 
one of the four kinds of projection we have discussed is always one part of pair of operations in
volving one projection and one antiprojection. For example, when we perform an orthogonal pro
jection of a point onto a plane in regular space, we are also performing a central antiprojection of 
the point's complementary plane onto the plane's complementary point in antispace. As is always 
true in our projective algebra, two things are happening at the same time, and it's not possible to 
separate them. 

Math Library Notes 

■ The support operation is implemented by the Support () function . It can be called for lines and planes 
in three dimensions. 

■ The antisupport operation is implemented by the Ant i s upport () function . It can be called for points 
and lines in three dimensions. 

Support 
DUALITY 

Antisupport 

uv (en Au*) 

■ Performs an orthogonal projection of the 
origin en onto u. 

■ Gives the point contained in u that is closest 
to the origin. 

2.14 2D Flat Geometry 

uA(envu* ) 

■ Performs a central anti projection of the 
horizon e,, onto u. 

■ Gives the plane containing u that is farthest 
from the origin. 

All of the mathematical concepts developed in this chapter are just as applicable to any number of 
dimensions as they are to 3D space. We don't consider any higher dimensions in this book, but we 
do take a quick look at what happens in 2D space because it has a large amount of practical utility. 
In the 2D case, homogeneous geometries exist in a 3D projective algebra with extents in the x, y, 
and z directions. A geometric object is now projected into 2D space by scaling it so that the collec
tive magnitude of its components extending into the z direction is one. 

The 3D projective exterior algebra representing geometries in 2D space has eight basis elements 
over four possible grades, and they are listed in Table 2.27. There is one scalar basis element 1, and 
there are three vector basis elements ei, e2, and e3. The basis vector e3 corresponds to the projective 
dimension, and it plays the role that e4 fills in the 4D algebra. For the bivector basis elements, we 
have a choice when it comes to the order of the factors. Bi vectors represent lines, so it makes sense 
that two components of a bivector would correspond to the direction of a line, and that happens if 
we choose e3 1, e32, and e12 as our basis elements. However, there are many instances in which lines 
in 2D behave more likes planes in 3D, so it also makes sense to choose e23, e3 1, and e12, in which 
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Type Grade / Antigrade Values 

Scalar 0 / 3 DOD 1 

ID□ e1 

Vectors 1 / 2 DID e 2 

DOI e 3 

011 e 23 = e 2 /\ e 3 

Bivectors / Antivectors 2 / 1 IOI e 31 = e 3 /\ e 1 

HD e 12 = e1 /\ e 2 

Trivector / Antiscalar 3 / 0 Ill :U = e3 /\ e2 /\ e1 

Table 2.27. These are the 8 basis elements of the 3D projective exterior algebra. 

case two of the components correspond to the normal of a line. Both choices would produce the 
same results geometrically, but they would have different conventions for the order of components 
and their signs. The first option has a small defect in that e31 and e32 are not consistently the com
plements of e2 and e1, respectively, making it less attractive. In this book, we choose to use the 
second option, which also has the advantage that the basis bivectors in the 3D algebra are exactly 
the same as the subset basis bivectors in the 4D algebra that don't have a factor of e4 . Finally, we 
must also choose a single trivector that acts as the volume element n. For reasons that won't become 
fully apparent until later in Section 3.8, we choose n = e321 for the volume element, which happens 
to also match one of the trivector basis elements in the 4D algebra. Note that this volume element 
has the opposite orientation of the volume element e123 that we've previously used in the 3D non
projective algebra, so the signs of some complements and antiwedge products are different here as 
a result. 

The complements of all eight basis elements are shown in Table 2.28. As always, the scalar unit 
1 and the volume element n are complements of each other. In the 3D algebra, bivectors have grade 
one less than the total dimension of the algebra, so they are the anti vectors. Thus, vectors and bi vec
tors are complements of each other, but they flip signs when complemented due to the orientation 
of the volume element. In three dimensions, left complements and right complements are the same, 
so each basis element has only one complement, and we don't bother specifying left or right. 

u 1 e 1 e 2 e 3 en e 31 e 12 1 

ii :n. -e23 - e 31 - e 12 - e 1 - e 2 -e3 1 

Table 2.28. For each of the 8 basis elements u in the 3D projective exterior algebra, this table lists the com
plement ii with respect to the volume element :U = e321 . (Right and left complements are equivalent in odd 
numbers of dimensions.) 

The full multiplication tables for the wedge product and antiwedge product with the eight basis 
elements of the 3D projective exterior algebra are shown in Table 2.29. There is nothing special 
happening here, and the antiwedge product continues to be defined by 

a v b =a/\. b, (2 .172) 

where we are using only the overbar notation because there is only one complement operation. 
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Point (2D) 

Line (2D) 

Wedge Product a Ab Antiwedge Product a v b 

~ 1 e 1 e 2 e 3 e 23 e 31 e 12 11 
·~ 

1 e 1 e 2 e 3 ti3 e 31 e ,2 11 

1 1 e 1 e 2 e 3 e 23 e 31 e 12 11 1 0 0 0 0 0 0 0 1 

e1 e 1 0 e 12 -e31 -ll 0 0 0 e 1 0 0 0 0 - 1 0 0 e, 

e 2 e 2 -e,2 0 e 23 0 -ll 0 0 e 2 0 0 0 0 0 - 1 0 e 2 

e 3 e 3 e 3, -e23 0 0 0 -ll 0 e3 0 0 0 0 0 0 - 1 C3 

e 23 e 23 -11 0 0 0 0 0 0 e 23 0 -1 0 0 0 -e3 e 2 C23 

e 31 e 31 0 - 11 0 0 0 0 0 e 31 0 0 -1 0 C3 0 -e, C31 

e 12 e 12 0 0 -ll 0 0 0 0 e 12 0 0 0 -1 -e2 e, 0 e ,2 

t 11 0 0 0 0 0 0 0 11 1 e, e 2 e 3 C23 C31 e,2 1l 

Table 2.29. These are the multiplication tables for the wedge product and antiwedge product between the 8 
basis elements in the 3D projective exterior algebra representing 2D Euclidean space. 

A general 2D homogeneous point p is represented by the vector 

(2.173) 

Position Weight 

with the three coordinates Px, Py, and Pz assigned to the basis vectors e1, e2 , and e3 . The basis vector 
e3 by itself corresponds to the origin of the 2D plane. If the p2 coordinate is zero, then the point p 
is a point at infinity in the direction given by Px and Py· A general 2D homogeneous line g is rep-
resented by the bivector • 

(2.174) 

Normal Position 

where the coordinates gx and gy make up a normal vector that points in the direction perpendicular 
to the line, and the coordinate gz corresponds to the distance from the origin. If the gz coordinate 
is zero, then the line passes through the origin. The basis bi vector e12 by itself corresponds to the 
horizon of the 2D plane, containing all points at infinity. 

The join of two points p and q is given by 

(2.175) 

and it represents the line containing both p and q. The meet of two lines g and h is given by 

(2.176) 

and it represents the homogeneous point where the lines g and h intersect. These operations are 
illustrated in Table 2.30. 

The metric g for the 3D projective algebra is given by 

r
l O Oj 

g = 0 1 0 , 

0 0 0 

(2.177) 
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which means that the basis vectors e1 and e2 both square to one under the dot product, and the basis 
vector e3 is now the one without physical measure that squares to zero. The metric exomorphism G 
and the metric antiexomorphism (G based on the conventional metric g are 8 x 8 matrices, and their 
exact forms are shown in Figure 2.15. These matrices induce the dot products and antidot products 
shown in Table 2.31 for a basis element u multiplied by itself. 

Join / Meet / Expansion Operation 

Line containing points p and q. 

p Aq = (p_v q, - p,qy ) e 23 

+(p,qx - Pxq, )e31 

+ (Pxq_v - P_v qx ) e1 2 

Point where lines g and h intersect. 

gv h = (g,h.v - gyh, )e1 

+ (gxh, - g,hx ) e 2 

+ (gyhx - gxhy ) e 3 

Line containing point p and orthogonal to line g. 

* p Ag =p, g_., e23 

- p, gxe31 

+ (p _v gx - Pxg.v ) e1 2 

Illustration 

h g 

g 

Table 2.30. These are the join, meet, and weight expansion operations in two dimensions. 

1 0 

1 0 0 0 0 0 
0 1 0 0 0 0 

G = 
0 0 0 

(G = 
0 0 0 

0 0 1 

1 0 0 
0 0 0 0 1 0 
0 0 1 0 0 0 

0 1 -
Figure 2.15. These 8 x 8 matrices are the metric exomorphism G and metric antiexomorphism (G in the 3D 
projective exterior algebra representing 2D Euclidean space. 

u 1 e 1 e 2 e 1 e 21 e 11 e 12 11 

u•u 1 1 1 0 0 0 1 0 

u 0 u 0 0 0 11. 11. 11 0 11 

Table 2.31. These are the dot and antidot products between each of the 8 basis elements in the 3D projective 
exterior algebra with themselves. 



2.14 2D Flat Geometry 

Attitude (2D) 

The bulk of an object u is composed of the components of u that do not contain a factor of e3, 

and these can be derived from the metric through the product Gu. The weight is composed of the 
components that do contain a factor of e3, and these can be derived from the antimetric through the 
product (G u . The bulks and weights of points and lines are listed in Table 2.32. 

Type Bulk Weight 

Point p P• = Pxel + P_v e2 Po= Pze3 

Line g ge = g, e1 2 go= gx e23 + gye31 

Table 2.32. These are the bulks and weights of geometric objects in two dimensions. 

The attitude of an object u is calculated by intersecting u with the complement of the origin, 
which is defined in the 3D projective algebra as 

I att ( U ) = U V e3. (2.178) 

Tue attitudes of points and lines are listed in Table 2.33. As in all dimensions, the attitude of a point 
is just a scalar weight that's not terribly interesting. The attitude of a line g is a vector that points 
along the line 's direction, and it's a 90-degree clockwise turn of the normal given by the gx and gy 
coordinates. As a side note, had we decided to use basis bivectors e31 and e32 so that a line/ could 
be written as I = lvx e 31 + Ivy e32 + Im e 12 with (/vx, Ivy ) corresponding to the line 's direction, then the 
attitude of such a line would be given by lvx e1 + Ivy e2. The result is the same either way. 

Type Attitude 

Point p att( p ) = p zl 

Line g att (g) = gye1 - gx e2 

Table 2.33. These are the attitudes of geometric objects in two dimensions. 

The bulk norms and weight norms of geometric objects are calculated with the dot and antidot 
products exactly as defined previously in Section 2.10. Formulas for these values in two dimensions 
are listed in Table 2.34. Geometric objects are unitized by making the weight norm equal to the unit 
antiscalar. Tue conditions under which this is true are listed in Table 2.35. Tue geometric norms for 
objects in two dimensions are listed in Table 2.36, and these correspond to the distances between 
the objects and the origin. 

Type Bulk Norm Weight Norm 

Point p IIPII. = 1.jp; + P.~ IIP llo = IP, I 11 

Line g llglle =lgzll ll g llo = 11.J g; + g_~ 

Table 2.34. These are the bulk norms and weight norms of geometric objects in two dimensions. 
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Type Definition Unitization 

Point p p = Pxel + p y e 2 + p , e3 p; = I 

Line g g = g xe23 + g ye31 + g , e1 2 2 2 1 gx + gy = 

Table 2.35. Toe right column lists the conditions under which geometric objects in two dimensions are con
sidered to be unitized. 

Type Geometric Norm Interpretation 

Point p IIPII= 
..jp; + p_; 

Distance from the origin to the point p. 
IPzl 

Line g 1fg[1 = lg, I 

.Jg;+ g_; 
Perpendicular distance from the origin to the line g . 

Table 2.36. These are the scalar parts of the geometric norms of objects in two dimensions after unitization. 

Toe distance between two geometric objects is given in general by Equation (2.99), and the 
specific cases arising in two dimensions are listed in Table 2.37. In the case of two points, the 
distance formula in two dimensions is identical to the formula for two points in three dimensions 
except for the removal of one coordinate. In the case of a point and a line, the distance formula in 
two dimensions is similar to the formula for a point and a plane in three dimensions, not a point 
and a line. This distance is signed because it's possible to classify a point p as being on the front 
side or the back side of a line g. However, the sign of the anti wedge product p v g is flipped com
pared to the sign we get when classifying a point with respect to a plane in three dimensions. This 
product is commutative in two dimensions, but the comparable product between a point and a plane 
in three dimensions is anticommutative. Thus, if we were to calculate g v p in both cases, then we 
would always get a negative value for a position lying on the side of a plane toward which the 
normal points. If we always wanted a positive value instead for this case, we could just negate the 
underlying terms of g v p, and we would find that it's the same as calculating an ordinary dot prod
uct p · g as if p and g were just treated as ordinary vectors having three components in the two
dimensional case and four components in the three-dimensional case. 

The bulk dual of an object u is the complement of its bulk, and it is given by u * = Gu. Toe 
weight dual is the complement of the weight, and it is given by u * = Gu. There is no difference 
between right and left duals in the 3D exterior algebra because there is no difference between right 
and left complements. The bulk duals and weight duals of the eight basis elements are shown in 
Table 2.38, and the bulk duals and weight duals of points and lines are listed in Table 2.39. 

Toe four different types of interior products are constructed by taking the wedge product or 
anti wedge product of one object with the bulk dual or weight dual of another object. Toe interior 
product that is most useful when is comes to geometric manipulation is the weight expansion of a 
point p onto a line g, which is given by 

(2.179) 

This produces a new line that contains the point p and is orthogonal to the line g as illustrated at the 
bottom of Table 2.30. Intersecting this new line with the original line g using the antiwedge product 
projects the point p onto g. 



2.14 2D Flat Geometry 

The weight contraction g v h * produces the angle between two lines g and h using the formula 
given by Equation (2.146). The simplified formula in two dimensions is listed at the bottom of 
Table 2.37, and it is very similar to the formula for the angle between two planes in three dimen
sions. In both cases, the cosine of the angle is allowed to be positive or negative because the angle 
can be anything between zero and 180 degrees. 

The four separate interior products allow us to calculate the same four types of projections in 
two dimensions that we had in three dimensions, but the only nontrivial pairing of geometries here 
is a point and a line. Formulas for orthogonal and central projections and antiprojections involving 
a point and a line are listed in Table 2.40 along with illustrations. The support of a line and the 
antisupport of a point are specific cases of these projections. The support of a line g is the point 
given by the orthogonal projection of the origin e3 onto g, and the explicit formula is 

(2.180) 

The anti support of a point p is the line given by the central anti projection of the complement of the 
origin e3 onto p, and the explicit formula is 

Distance / Angle Formula 

Distanced between points p and q. 

Perpendicular distance d between point p and line g. 

d (p, g) = -(p ·g) t +llgXJ'pZ II n 

Cosine of angle¢ between lines g and h. 

(2.181) 

Illustration 

q 

~ d 

Table 2.37. These are the Euclidean distances and cosines of the Euclidean angles involving lines and planes 
in two dimensions, expressed as homogeneous magnitudes. 

u 1 e, e2 e3 e23 e31 e,2 1 

u* n - e 23 -e31 0 0 0 -e3 0 

u* 0 0 0 -e,2 -e1 -e2 0 1 

Table 2.38. For each of the 8 basis elements u in the 3D projective exterior algebra, this table lists the bulk 
dual u * and the weight dual u *. (Right and left duals are equivalent in odd numbers of dimensions.) 
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Type Bulk Dual Weight Dual 

Point p * p = -pxe23 - pye31 * p = -p, e,2 

Line g g* = -g, e3 * g = -gxe, - gye2 

Table 2.39. These are the bulk duals and weight duals of geometric objects in two dimensions. 

Projection Operation 

Orthogonal projection of point p onto line g. 

gv(p Ag* ) =(g; + g; )(Pxe, + pye2 + p , e3) 

-(gxPx + gypy + g , pz ) (gxe, + g ye2) 

Central projection of point p onto line g. 

gv( p Ag*) = g; (PA+ P.v e2) 

-(gxPx + g ypy ) g ze3 

Orthogonal antiprojection of line g onto point p. 

p /\(gv p* ) = p; (gxe23 + g ye31 ) 

-(pxgx + Pygy ) Pz e, 2 

Central anti projection of line g onto point p. 

P /\ ( g VP*)= [ P_~ gx -(pygy + p , g, ) Px ] e23 

+ [p; gy -(Pxgx + Pzgz ) P.v ] e31 

+(p; + p _n g , e,2 

Illustration 

p 

g 

p 

g 

g 

g 

Table 2.40. These are the four types of projection involving a point and a line in two dimensions. 

Math Library Notes 

• The Vector2D and Point2D classes both store only the x and y coordinates of a homogeneous 3D vector. 
The z coordinate is implicitly zero for a Vector 2D object, and it is implicitly one for a Poi nt2D object. 
There is also a FlatPoint2D class that stores all three coordinates explicitly. 

• The Line2D class stores the three coordinates of a 3D bi vector representing a flat line, and they are 
named x, y, and z. 

■ The join of two points and the meet of two lines are implemented by the Wedge () and Antiwedge () 
functions . These can both also be calculated by using the " symbol as an infix operator. 
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2.15 Dependencies 

Despite our focus on projective geometry, this chapter has established the foundations for a wide 
variety of geometric algebras that are based on the wedge product and a metric. Given a dimen
sionality n, we start with n basis vectors and generate the entire exterior algebra with the wedge 
product. The only choice we have at this point is the convention for ordering the factors of basis 
elements having grades higher than one. The order that we choose for the volume element n is par
ticularly important because it affects the signs of complements, which in turn affect the signs of 
values produced by anti-operations. These choices don' t impact the geometric interpretation in any 
significant way other than to change the orientation of some things here and there. The choice that 
does matter substantially is that of the metric tensor. The manner in which basis vectors multiply 
under the dot product determines the overall structure of the entire algebra. In this chapter, we have 
focused on a 4D algebra in which three basis vectors square to one, and the remaining basis vector 
squares to zero. The elements of this algebra are interpreted as flat geometries that arise in 3D space. 
In Chapters 4 and 5, we will encounter another 4D algebra whose elements are interpreted as round 
geometries that arise in 2D space, one dimension less. Both algebras use the same exact set of basis 
elements, and they have the same structure under the wedge and antiwedge products, but a different 
metric leads to different dot products, different duals, and a different geometric meaning. 

Figure 2.16 illustrates the dependencies among all of the mathematical constructs within geo
metric algebra that we have discussed in this chapter plus a couple more that will be introduced at 
the beginning of the next chapter. There are two configurable pieces where we are able to make 
some choices, and they are highlighted in bold green boxes. Once those have been established, the 
rest of the algebraic structure is strictly determined by the definitions of the operations. First, we 
have a choice to make about the orientation of the volume element n, and there are only two possi
bilities. The orientation that we select ultimately affects complements, duals, and all anti-operations. 
Second, we choose the form of the n x n metric tensor g that defines the dot products between all 
pairs of basis vectors. This is usually a diagonal matrix, but as we will see in Chapter 4, it can be 
convenient to transform it into a matrix that is not diagonal. Once g has been nailed down, the full 
metric exomorphism G can be built in only one way. Then the metric antiexomorphism, the dot 
product, the antidot product, the geometric norm, duals, and antiduals are rigidly fixed. 

There are two new operations appearing in Figure 2.16, the geometric product between two 
objects a and band the unary reverse operation. Each of these also has a corresponding anti-oper
ation that is derived using the same method discussed at the end of Section 2.3. Nothing we've 
covered in this chapter has a dependency on the geometric product. It is an independent operation 
that we add to the exterior algebra in the next chapter, and it provides a way to apply transformations 
to geometric objects using other geometric objects. Though not as universally capable as the exo
morphism matrices discussed in Section 2.7, the operators that transform objects with the geometric 
product have a greater connection to geometry, they require less storage, and they are more easily 
parameterized. 
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Figure 2.16. The complete structure of any geometric algebra depends on two configurable pieces, the metric 
exomorphism G and the orientation of the volume element n, shown in bold green boxes. Everything else is 
then strictly determined by the rigid definitions of operations shown in the blue boxes. Each purple box 
contains an anti-operation defined by its complementary relationship with the corresponding regular opera
tion. The dashed lines demonstrate that it is possible to define the antidot product and antidual operations 
through two different dependency paths. 



Historical Remarks 

Historical Remarks 

What is today known as exterior algebra was first developed 
by German mathematician Hermann Grassmann in the mid 
1800s, and it is often called Grassmann algebra in his honor. 
He published a book entitled Die Lineale Ausdehnungslehre, 
(which translates to Linear Extension Theory) in 1844, and it 
contained many of the foundational ideas oflinear algebra that 
would not be formalized in mainstream mathematics until 
decades later. Due to a writing style from which it was difficult 
to extract concrete meaning, Grassmann's work was not well 
understood or appreciated for the ground it broke at the time. 
His Linear Extension Theory was largely ignored even after a 
thorough revision [Gras1862] was published in 1862. Grass
mann algebra became better known once it was incorporated 
into geometric algebra by Clifford in 1878 (see historical re
marks in Chapter 3), but it was overshadowed by the rise of 
vector analysis around the same time. Only in the 20th century 
was Grassmann's work properly recognized for being well 
ahead of its time. 

Hermann Grassmann 
(1809- 1877) 

Grassmann did not introduce the upward and downward wedge symbols in use today, nor did 
he make the same distinction between the exterior product and its anti product. His work described 
a product called the combinatorial product that was written as [ EF] and operated on values E and 
F called extensive magnitudes. Inn-dimensional space, if the grades of E and F satisfied gr ( E) + 
gr ( F) ::; n, then the combinatorial product calculated what we define as EI\ F, and it was called a 
progressive product. Otherwise, if gr ( E) + gr ( F) > n, then the combinatorial product calculated 
what we define as Ev F , and it was called a regressive product. When the grades summed ton, the 
modern wedge product would produce an antiscalar value with a type distinct from a scalar value, 
but all single-component quantities were considered to be plain old numbers in Grassmann's work. 
It is now known that scalars and anti scalars must be treated as separate types of values in a complete 
and correct theory. 

The concept of a complement appeared in Grassmann's work, and the complement of a quantity 
E was denoted by IE. Though this was defined as the equivalent of a right complement such that 
[E IE]= 1 for a basis element E, no symmetric left complement was defined to go with it. The re
gressive product was expressed in terms of complements using a form of the De Morgan relation
ship that Grassmann wrote as I[ EF] = [IE IF]. The ambiguity in the combinatorial product meant 
that this expression served to define [ EF] when gr ( E) + gr ( F) > n. In the case of a progressive 
product, where gr ( E) + gr ( F) ::; n, Grassmann also used the name iiusseren multiplikation, which 
translates to external or exterior multiplication, for the operation [ EF]. He explained that the name 
of this product derived from the fact that [ EF] = 0 unless one of the factors geometrically lies out
side the other, in its exterior. This name was also intended to distinguish exterior multiplication 
from the operation [EI F] that he called the inneren multiplikation, which translates to internal or 
interior multiplication. (Grassmann's interior product could be equivalent to a contraction or ex
pansion depending on the grades of E and F.) The notion of a metric had not yet been invented at 
the time Grassmann did most of his work, so the more general dual that we use in our interior 
products was never anything more than the complement operation in his interior product, corre
sponding to the identity metric. 
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Chapter 3 
Rigid Transformations 

In the previous chapter, we developed the exterior algebra and used it to model flat homogeneous 
geometries. With that knowledge, we are able to calculate joins, meets, contractions, and expan
sions to combine geometric objects in various ways. We can perform projections, and we can meas
ure distances and angles. Using exomorphism matrices, we can extend any linear transformation 
from points to all types of geometries represented in the algebra. Everything we have done so far 
subsumes the conventional models of points, lines, and planes discussed in Chapter 1, but we have 
not yet discussed the place of quaternions and dual quaternions in geometric algebra. In this chapter, 
we focus on transformations that are performed with operators built directly from the elements of 
the projective exterior algebra and applied by using a new operation called the geometric product. 
The transformations that we study now are all rigid isometries, meaning that they preserve lengths 
and angles. Basically, the size and shape of an object does not change when a rigid transformation 
is applied. In Chapter 5, we will expand our set of operations to include conformal transformations, 
which preserve angles but not necessarily lengths, so sizes and shapes will be able to change in 
certain ways. 

3.1 The Geometric Product 

The geometric product operates on the same elements of the exterior algebra as the wedge product 
does. We write the geometric product between a and busing the notation a Ab, with an upward 
pointing wedge symbol containing a dot, 1 and we read this as "a wedge-dot b". The geometric 
product actually includes the wedge product in its result, but it also produces additional components 
that make it behave differently from the wedge product. The infix symbol A is meant to reflect the 
fact that the geometric product is the wedge product plus something more. Whereas the defining 
characteristic of the wedge product given by Equation (2.1) states that any vector multiplied by 
itself must be zero, the geometric product is built from the requirement that 

I vAv=v•v I (3.1) 

for any vector v. That is, the geometric product of any vector with itself must be equal to the dot 
product of that vector with itself. This means the geometric product depends on the metric g, unlike 
the wedge product, because the dot product of v with itself is defined as v • v = v T gv. 

1 The geometric product has historically been written as juxtaposition without any multiplication symbol so that the geo
metric product between two quantities a and b is simply denoted by ab. However, in a complete picture of geometric 
algebra based on a full understanding of duality, the geometric product appears as a pair of complementary operations 
just like everything else. The notation ab is not adequate for distinguishing between the two products, and juxtaposition 
is used in this book only for matrix products and multiplication by scalars. 
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We can define an antiproduct for the geometric product just as we have for all other products 
defined over the basis elements of the exterior algebra. The geometric antiproduct between a and b 
is denoted by a 'ii b, with a downward pointing wedge symbol containing a dot, and it is read as "a 
antiwedge-dot b". The values produced by the geometric antiproduct are defined with the usual De 
Morgan laws such that 

a 'ii b = a A b and a 'ii b = a A b. - - -- (3.2) 

The geometric antiproduct satisfies a property dual to Equation (3.1) that applies to antivectors 
instead of vectors. For any anti vector u (which has grade n -1 in an n-dimensional algebra), we 
have the relationship 

U 'i/ U = U 0 U . (3.3) 

In this section and the next, we focus on the geometric product, but the antiproduct will be important 
for the greater part of this chapter when we talk about rigid transformations of points, lines, and 
planes in a projective space. 

As summarized in Table 3 .1 , the geometric product possesses the same associative and distrib
utive properties as the wedge product, and it behaves the same way under scalar multiplication. 
Because the geometric product contains the wedge product, it must exhibit some anticommutative 
properties when we start multiplying vectors and higher-grade elements together, but it gets more 
complicated due to the additional terms it produces. If we consider the geometric product of a sum 
of two vectors a and b, as we did for the wedge product in Section 2.1.1 , then we have the equality 

(a + b ) A (a + b ) = (a + b ) • (a + b ). (3.4) 

Expanding both sides of this equation independently gives us 

a A a+aA b + b Aa+ b Ab = a• a+ 2 a • b + b • b, (3 .5) 

where we have used the fact that the dot product is commutative. The products a A a and b A b on 
the left side cancel the products a• a and b • b on the right side, and we are left with 

a Ab + b Aa = 2 a•b (3.6) 

as a property of the geometric product that holds for all vectors. If a and b are orthogonal such that 
a • b = 0, then we recover the anticommutative relationship a A b = - b A a from the wedge product. 

We can now form a complete picture of what the geometric product does when two vectors are 
multiplied together. As an example case, we consider arbitrary 3D vectors a = ax e1 + ay e2 + a, e3 

and b = bx e1 + by e2 + b, e3. The geometric product a A b is given by 

(axel +aye2 +a, e 3 )A(bxe 1 +bye2 +b, e3) = axbxe1 Ae1 +aybye2 Ae2 + a,b, e3 Ae3 

+(ayb, -a2 by )e2 Ae3+(a,bx -axb, )e3 A e1+(axby -aybx )e1 A e2. (3 .7) 

Each product of a basis vector with itself can be replaced by e; • e; through the defining property 
given by Equation (3 .1 ). The terms containing the product of two distinct basis vectors have exactly 
the same coefficients as those given by the wedge product. We come to the conclusion that the 
geometric product between two vectors can be written as 

I a Ab = a•b + a/\b, (3 .8) 

which is a multivector containing both a scalar part having grade zero and a bivector part having 
grade two. 



3.1 The Geometric Product 

Property Description 

(aAb)Ac=aA{bAc) Associative law for the geometric product. 

aA(b+c) = aAb + aAc 
Distributive laws for the geometric product. 

(a+b)Ac=aAc + bAc 

( s Aa)A b = aA( s Ab)= s (a Ab) Scalar factorization for the geometric product. 

s At = st Geometric product between scalars. 

s Aa = a A s =sa Geometric product between a scalar and a multivector. 

Table 3.1. These are the basic properties of the geometric product. The letters a, b, and c represent arbitrary 
multivectors, and the letters s and t represent scalar values. 

It 's important to realize that Equation (3.8) applies only to vectors, and there are generally more 
parts created through the geometric product a Ab between two quantities a and b having arbitrary 
grades. Each of these parts can have a grade k within the limits set by 

lgr (a)- gr (b )I~ k ~ gr (a)+ gr (b ), (3.9) 

but k must differ from either end of this range by an even number. The reason for this is that any 
piece of the geometric product that yields something of a grade lower than the upper limit does so 
because a particular basis vector in one factor is paired with the same basis vector in the other 
factor, and the two eliminate each other when they multiply to produce a scalar. The part of the 
geometric product a Ab that does have the maximum grade is equal to the wedge product a/\ b, but 
this only exists in the geometric product if gr (a)+ gr (b) is not greater than the dimensionality of 
the algebra. 

If we solve Equation (3.6) for a• band substitute it in Equation (3 .8), then we obtain the pair 
of relationships 

a•b = ½(aAb+bAa) 

a/\ b = ½ ( a Ab - b A a). (3 .10) 

These equations highlight the fact that the geometric product yields both commutative and anti
commutative components, represented by the dot product and the wedge product. The geometric 
product is completely commutative only when the vectors a and b are parallel because that's when 
the wedge product is zero. Otherwise, solving the second equation for b A a tells us that 

b A a = a A b - 2 a /\ b. (3.11) 

The geometric product is completely anticommutative only when the vectors a and b are perpen
dicular because that's when the dot product is zero. Otherwise, when a and b are neither parallel 
nor perpendicular, their geometric product contains a mixture of commutative and anti commutative 
parts. 

In any geometric algebra, an arbitrary multivector is a sum of scalar multiples of the distinct 
basis elements. We can multiply any two multivectors together with the geometric product if we 
know how to multiply any two basis elements together. The distributive and scalar factorization 
properties listed in Table 3.1 give us everything else we need. We can just multiply component by 
component and combine any scalar factors in each pairing of the components belonging to the two 
multivectors. Each basis element is either the scalar 1, a basis vector e ;, or the wedge product of 
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two or more basis vectors. We can assume that all pairs of basis vectors are orthogonal such that 
e; • e1 =0unlessi=j, so it's always the case thate; Ae1 =e; Ae1 ande1 Ae; =-e; Ae1 ifi:;cj. 
(This follows from the fact that it's always possible to choose a basis in which the metric tensor is 
a diagonal matrix.) Given two basis elements a and b, we can now follow a few simple rules to 
calculate the geometric product a Ab . Suppose that the vector factorizations of a and bare 

(3.12) 

For any vector factor e k common to both a and b, we move e k to the right in the factorization of a 
so it's the last factor, and we move ek to the left in the factorization of b so it's the first factor. Each 
time we swap the order of two consecutive factors in either a or b to accomplish this, we have to 
negate, so the overall change in sign will be ( -1 )'"+s, where r is the number of places that e k moved 
right in a, ands is the number of places that e k moved left in b. After we do this, the product a Ab 
looks like 

(3.13) 

where the index k has been removed from the lists {a,, a2, . . . } and { b1, b2, . .. }. Since the two factors 
of e k are now next to each other, we can reassociate and calculate e k A ek first, which becomes the 
scalar value given by the dot product e k • e k. (This dot product will often be+ 1, but it could also be 
-1 or O if the metric tensor is not the identity.) The factor ek has been eliminated from both a and b 
at this point, lowering the grade of each operand by one and the entire product by two. We repeat 
this process for any other common factors belonging to a and b until we can go no further. If any 
basis vectors remain, then they are all distinct, and we permute them into the preferred order that 
we've chosen for the unique basis element having those vector factors, keeping in mind that we 
need to negate if the permutation is odd. This basis element, multiplied by all the dot products that 
were calculated and the powers of -1 that were accumulated, is the final geometric product of a and 
b. As an example, consider the basis elements a= e

1 2 

and b = e
4 31 

in the 4D geometric algebra with 
the metric given by Equation (2.60). These have the vector factor e1 in common, so we move it right 
one place in a, which incurs a negation, and we move it left two places in b, which does not change 
the sign. The geometric product is then 

(3.14) 

Since e
1 

• e
1 

= 1, thls reduces to a Ab = -e
2 

A e
4 

A e
3 

= -e
2 4 3

. The preferred ordering that we have 
chosen for the vectors in the resulting trivector is 423, so we swap the first two factors with a 
negation and arrive at e, 2 A e431 = e423. 

Toe main focus of this chapter is the transformation of flat geometries in the 4D projective 
algebra where the metric defines the dot products e

1 

• e
1 

= 1, e2 • e 2 
= 1, e3 • e 3 

= 1, and e
4 

• e
4 

= 0. 
The full multiplication table for the geometric product between all pairs of the 16 basis elements is 
shown in Table 3.2. The degeneracy of the basis vector e

4 

means that the geometric product a Ab 
of any two basis elements a and b both containing a factor of e4 is zero no matter what the grades 
of a and b are. When we move the e4 factor to the right end of a and to the left end of b, the product 
e4 A e4 in the middle annihilates the entire term. For this reason, a full quarter of the multiplication 
table is filled with zeros. The same is true for the multiplication table for the geometric antiproduct, 
which is shown in Table 3.3 . In this case, a zero appears for the geometric antiproduct a 'i/ b when
ever a and b are both missing a factor of e4 . 

Because the geometric product generates quantities having components of multiple grades, it 
will be convenient to extract components of one particular grade from a multi vector u from time to 
time. The angled bracket notation ( u) k is widely used to mean all components of u that have grade 
k, and it is called the grade selection operator. Using this notation, ( u )0 is the scalar part of u, ( u )i 
extracts all vector components of u, (u)2 extracts all bivector components of u, and so on up to the 



3.1 The Geometric Product 

Geometric Product a A b 

~ 1 e 1 e 2 e 3 e 4 e 41 e42 e 43 e 23 e 31 e 12 e 423 e 431 e 412 e m 11 

1 1 e1 e 2 e 3 e 4 e 41 e42 e 43 e23 e 31 e 12 e423 e 431 e412 e m 11 

e1 e1 1 e 12 -e31 -e41 -e4 -e412 e431 -em -e3 e 2 11 e 43 -e42 -e23 e423 

e 2 e2 -e12 1 e 23 -e42 e 412 -e4 -e423 e 3 -em -e1 -e43 11 e 41 -e31 e431 

e 3 e 3 e 31 -e23 1 -e43 -e431 e423 - e 4 -e2 e 1 - e m e 42 - e 41 11 -e12 e 412 

e4 e4 e 41 e42 e43 0 0 0 0 e423 e431 e 412 0 0 0 11 0 

e 41 e41 e 4 e41 2 -e431 0 0 0 0 -11 - e 43 e 42 0 0 0 -e423 0 

e42 e42 -e412 e 4 e423 0 0 0 0 e 43 -11 -e41 0 0 0 -e431 0 

e 43 e 43 e 431 - e423 e 4 0 0 0 0 -e42 e41 -11 0 0 0 -e412 0 

e 23 e23 -em - e 3 e 2 e423 -11 - e 43 e 42 -1 -e12 e 31 -e4 -e412 e431 e 1 e41 

e 31 e31 e 3 -e321 -e1 e431 e 43 -11 -e41 e 12 -1 -e23 e 412 -e4 -e423 e2 e42 

e1 2 e12 -e2 e 1 -em e412 - e42 e 41 -11 -e31 e 23 -1 -e431 e 423 -e4 e 3 e 43 

e423 e423 -11 -e43 e 42 0 0 0 0 -e4 - e 412 e431 0 0 0 e 41 0 

e431 e431 e 43 -11 -e41 0 0 0 0 e 412 -e4 - e 423 0 0 0 e42 0 

e412 e41 2 - e 42 e 41 -11 0 0 0 0 -e431 e 423 - e 4 0 0 0 e 43 0 

e m em -e23 -e31 -e12 -11 e 423 e 431 e 412 e 1 e 2 e3 -e41 - e 42 -e43 -1 e 4 

11 11 - e 423 - e 431 -e412 0 0 0 0 e 41 e 42 e43 0 0 0 -e4 0 

Table 3.2. This is the multiplication table for the geometric product in the 4D projective algebra 
representing 3D Euclidean space. 

Geometric Antiproduct a 'i/ b 

~ 1 e1 e2 e 3 e4 e41 e42 e 43 e23 e 31 e 12 e423 e 431 e 412 e m 11 

1 0 0 0 0 e m e 23 e 31 e 12 0 0 0 e 1 e 2 e 3 0 1 
e 1 0 0 0 0 -e23 -e321 e 3 -e2 0 0 0 1 -e12 e 31 0 e1 

e 2 0 0 0 0 - e 31 - e 3 -e321 e 1 0 0 0 e 12 1 - e 23 0 e 2 

e 3 0 0 0 0 - e 12 e 2 - e 1 - e 321 0 0 0 - e 31 e 23 1 0 e 3 

e4 -em e 23 e 31 e 12 -11 e 423 e431 e412 -e1 - e 2 -e3 -e41 -e42 -e43 1 e4 

e41 e 23 -e321 e 3 -e2 e 423 -11 e 43 -e42 -1 e 12 -e31 -e4 e 412 -e431 e 1 e41 

e42 e 31 - e 3 - e 321 e 1 e 431 -e43 -11 e 41 -e12 -1 e 23 - e412 -e4 e 423 e 2 e42 

e43 e 12 e 2 - e 1 -em e 412 e 42 -e41 -11 e 31 - e 23 -1 e 431 - e 423 -e4 e 3 e43 

e 23 0 0 0 0 e 1 -1 e 12 - e 31 0 0 0 - e 321 e 3 -e2 0 e 23 

e 31 0 0 0 0 e2 -e12 -1 e23 0 0 0 -e3 -e321 e1 0 e 31 

e12 0 0 0 0 e 3 e 31 - e 23 -1 0 0 0 e 2 -e1 -em 0 e 12 

e423 - e l -1 e 12 -e31 -e41 -e4 e 412 -e431 e 321 -e3 e 2 11 -e43 e42 e 23 e423 

e431 -e2 - e12 -1 e 23 - e 42 - e 412 -e4 e 423 e 3 e 321 -e1 e43 11 -e41 e31 e 431 

e412 -e3 e 31 -e23 -1 -e43 e 431 -e423 -e4 -e2 e 1 em -e42 e41 11 e12 e 412 

e m 0 0 0 0 -1 e1 e2 e3 0 0 0 -e23 -e31 -e12 0 e m 

11 1 e1 e2 e3 e4 e41 e42 e 43 e 23 e 31 e 12 e423 e431 e412 e m 11 

Table 3.3. This is the multiplication table for the geometric antiproduct in the 4D projective alge
bra representing 3D Euclidean space. 
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antiscalar part of u, which is denoted by ( u) n in an n-dimensional algebra. Attempting to extract a 
component that does not exist in the multivector u produces zero. Any multivector u can be ex
pressed as a summation over all grades of its own components by writing 

11 

u =(u)0 +(u)1 +···+ (u),, = I (u)k . (3.15) 
k=O 

In addition to the grade selection operator, we introduce the notation u1 and unto mean the coordi
nate value of the grade-zero scalar part of u and the antigrade-zero antiscalar part of u, respectively. 
Toe use of a bold style 1 and blackboard bold style n in the subscript, corresponding to the basis 
elements for scalars and antiscalars, is intended to make it obvious which component we are refer
ring to. In this case, the extracted coordinates are ordinary real numbers, so the antiscalar part un is 
not an antiscalar value. This differs from the grade selection operator, which retains the grades of 
the extracted components. The u1 and un notation works like the Re ( z) and Im ( z ) notation for 
complex numbers. For example, if u = sl + tn, then ( u) n = tn , but un = t. 

One of the main differences between the geometric product and the simpler exterior product is 
that many elements of the algebra have inverses under the geometric product, whereas inverses do 
not exist under the exterior product. A vector v for which v • v -:t- 0 bas an inverse given by 

(3.16) 

and this is due to the fact that the product v Av is equal to the scalar quantity v • v. In the case that 
v • v = 1, the inverse of v is just v itself. Toe existence of this inverse allows us to investigate what 
it means to divide by a vector. For two vectors a and b, the quotient a/ b, which has the same 
meaning as a Ab-\ must be the quantity c such that a = c Ab. Thus, we can write the equation 

a a Ab 
a = -A b =--A b. 

b b•b 
(3.17) 

When we expand the product a Ab with Equation (3.8), we get 

a = a • b b + a t\ b Ab. 
b•b b•b 

(3.18) 

Toe first term is exactly the projection of a onto b given by Equation (2.133) when a and b have 
equal grades, and this means that the second term must be the rejection of a from b. We can there
fore formulate the projection and rejection operations for vectors as 

a llb =(a•b )A b- 1 

a _1_b =( a Ab )A b- 1
. (3 .19) 

Toe division of a bivector by a vector in the formula for the rejection is interesting because it 
illustrates the difference in the information contained in the purely bivector result of the wedge 
product at\ b and the mixed scalar and bivector result of the geometric product a Ab. We men
tioned in Section 2.1.2 that a bivector contains no information about its shape. Given a bivector 
m = a t\ b, we cannot expect to be able to recover the particular vector a originally used in the 
wedge product ifwe were to compute the quotient m A b- 1 because there are infinitely many possi
bilities. However, in the case that m = a Ab, where the geometric product appears in place of the 
wedge product, the scalar part of the multi vector m carries additional information about the angle 
between a and b through the cosine associated with the dot product. This turns an amorphous 



3.2 Dual Numbers 

bivector into a parallelogram having a definite restriction on the shapes it can assume. The magni
tude and orientation of the vectors composing the sides of the parallelogram are still undetermined 
by m alone, but as soon as we actually specify one vector b, the other vector a can always be 
recovered. The vector given by m A b- 1 is the unique vector a possessing the proper magnitude and 
forming the necessary angle with b such that m = a Ab. 

In the case that the wedge product is used to calculate m = a/\ b, the lack of a scalar term in the 
result means that the shape of the oriented area corresponding to the bivector m should be a paral
lelogram having only right angles. This must be true because the cosine of 90 degrees produces the 
zero value that would end up in the scalar term of a Ab. Thus, dividing m = a/\ b by b yields a 
vector c that is orthogonal to b such that m = c Ab= c /\ b. For c /\ b to produce the same area as 
a/\ b, c must be the rejection of a from b, as shown in Figure 3.1. 

a C a 

...._ _______ -"::.~ b 

Figure 3.1. The bivectors a/\ b and c /\ b have the same area when c is the rejection of a from b. Because its 
zero scalar part enforces a right angle, the wedge product a/\ b behaves like the geometric product c Ab, and 
thus c is produced by (a/\ b) A b- 1

. 

3.2 Dual Numbers 

Dual numbers were briefly introduced in Section 1.4.4 and defined as two-component quantities 
a+ be, where a and b are real numbers, and e is a special nonzero value that satisfies e2 = 0. The 
use of the word "dual" in this context has no connection to the dual operations u * and u * but 
merely describes that these numbers have two parts. The dual numbers can be found in projective 
geometric algebra as the set of scalar-antiscalar pairs of the form sl + tll. Since there are two geo
metric products, we can perform calculations with dual numbers in two different ways. Under the 
geometric product, the scalar 1 is the identity, and the antiscalar 11 has the property 11 An= 0. In a 
symmetric manner, the roles of scalar and antiscalar exchange places under the geometric antiprod
uct such that n is the identity, and 1 has the property 1 v; 1 = 0. 

We will need to perform calculations with dual numbers such as finding an inverse, taking a 
square root, and evaluating trigonometric functions. We derive these operations here and organize 
the results into the handy reference provided by Table 3.4 so we don 't have to worry about any of 
them later. In order to distinguish between calculations taking place with the geometric product and 
those taking place with the geometric anti product, we insert the product symbol A or v; next to the 
multiplicative operation to which it applies. When raising a quantity to a power, the product symbol 
appears as a subscript so that x; means squared with respect to the geometric product, and x; means 
squared with respect to the geometric antiproduct. When performing division, we could write x;' 
for the divisor, but in the case of a stacked fraction, the product symbol is placed at the right end of 
the fraction bar so that, for example, 

1 
- '1 (3.20) 
X 

means divide by x with the geometric antiproduct. For square roots, the product symbol is placed 
to the left of the radical as in~- Finally, for exponential and trigonometric functions, the product 
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symbol appears as a subscript after the function name so that sin Ax and sinv x mean evaluate the 
sine of x using the geometric product or antiproduct, respectively. In all cases, the product symbols 
are not inserted when the quantities involved in a calculation are nothing more than real numbers 
because the operations are applied in the conventional manner. 

We begin by calculating the square of a dual number sl + tn under the geometric product, which 
is a simple matter of applying the rules 

1 A 1 = 1, 1 An= n, n A 1 = n, and n An = 0. 

The square of sl + tn under the product is thus given by 

(sl +tn)! = (sl + tn) A (sl +tn) = s 21 + 2stn. 

Under the geometric antiproduct, the rules change to 

1 v1 1 = 0, 1 v' n = 1, n v' 1 = 1, and n v1 n = n. 

Using these rules for the anti product, the square of sl + tn is given by 

(sl +tn)! = (sl + 1n)v1 (sl + tn) = 2stl +t 2 n. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

This shows an obvious symmetry between the product and antiproduct in which the behaviors of 
the scalar and antiscalar components trade places. The same type of symmetry appears in all the 
operations we can perform, so we won't bother deriving any further results for both the product 
and antiproduct. The formulas for both products are still listed in Table 3.4. 

A dual number sl + tn can be raised to an arbitrary power under the geometric product with the 
formula 

(3.25) 

This can be demonstrated for positive integer powers inductively by first assuming Equation (3.22) 
is true for n = 2 and then observing 

(sl + tn): A (sl + tn) = ( s"l + ns 11-1tn) A (sl +tn) 

=s"+11 +(n+l)s"tn. (3.26) 

Equation (3.25) can be used to derive formulas for the inverse and for square roots as well, but we 
haven't proven that negative or noninteger values of n are valid, so we will derive inverses and 
square roots with alternate methods. 

The inverse of a dual number sl + tn with respect to the geometric product is the dual number 
xl + yn with the property that 

( sl + tn) A ( xl + yn) = 1. (3.27) 

Multiplying this out with the rules given by Equation (3 .21 ), we must have sx = 1 and sy + tx = 0, 
which tells us that x = 1/ s and y = -t/ s 2

. Toe inverse of sl + tn is therefore given by 

1 1 t 
---A =-1--n. 
sl + tn s s2 

(3.28) 

A dual number does not have an inverse ifs= 0, even if the number as a whole is not zero. 
We use a similar approach to find the square root of a dual number sl + tn with respect to the 

geometric product because it must be the dual number xl + yn with the property that 
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(xl+ y n)! =sl+tn. (3.29) 

Applying Equation (3 .22) to the square, we see that we must have x 2 = s and 2xy = t. This tells us 
that x =✓s and y= t/2✓s, so the square root of sl + tn is given by 

(3.30) 

In order to calculate the exponential of a dual number with the geometric product, which we 
denote by exp A ( sl + ,n ), we make use of its power series. Writing out the first few terms, we have 

1 2 1 3 1 4 
expA (sl+tn) = l+( sl+tn)+-( sl+tn) +-(sl+tn) +-(sl+tn) +···. 

2! A 3! A 4! A 
(3 .31) 

Each of the powers of s1 + ,n can be expanded with Equation (3.25), and that gives us 

By looking at the scalar and antiscalar parts separately, we can see that the scalar part of the result 
is simply exp ( s) and the antiscalar part of the result is t exp ( s ). This means the exponential of a 
dual number of given by 

exp A ( S 1 + tn) = exp ( S) 1 + / exp ( S) n. (3 .33) 

Formulas for the sine, cosine, hyperbolic sine, and hyperbolic cosine functions under the geo
metric product are derived through power series manipulation in a manner identical to the expo
nential function, so we skip their derivations to spare ourselves the redundancy. Toe tangent and 
hyperbolic tangent functions are calculated through the ratio of their respective sine and cosine 
functions. In the case of the tangent function, we have 

tan A (sl+tn)= sinA (sl+tn) A= (sins)l+(tcoss)n A. 
• cos "' (s l+tn) (coss)l-(tsins)n 

(3.34) 

When we apply Equation (3 .28) to take care of the division, we arrive at 

tan A ( S 1 + tn) = ( tan S) 1 + / ( 1 + tan 2 
S ) n. (3.35) 

Note that the division needs to be performed with respect to the same product for which the sine 
and cosine functions are being calculated. 

Math Library Notes 

• The DualNum class implements dual numbers . It stores a scalar component s and an antiscalar compo
nent t as floating-point values. 

• The geometric product and anti product are implemented with the Wedge Dot () and AntiwedgeDot () 
functions. The multiplication and division operators * and / perform the geometric antiproduct because 
that product is more useful in the context of rigid transformations. 

• Operations appearing in Table 3.4 can be performed on DualNum instances with respect to the geometric 
product using the Inverse() , Sqrt() , InverseSqrt () , Exp() , Sin() , Cos() , and Tan() functions . The 
same operations can be performed with respect to the geometric antiproduct using the Antiinverse( ) , 
AntiSqrt() , AntiinverseSqrt() , AntiExp(), AntiSin() , AntiCos() , and AntiTan() functions . 
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Operation Geometric Product Geometric Antiproduct 

General power (sl+t11): =snl+nsn-lt11 ( sl + t11 ): = ntn-J s1 + tn11 

Square ( sl + t11 )! = s 21 + 2st11 (sl+t11)! = 2st1 +t 2 11 

1 1 t 1 s 1 
Inverse ---A =-1--11 ---VI =--l+-11 

sl+t11 s s 2 sl+t11 t2 t 

Square root !Jsl+t11 = ✓5 1+-1 -11 
2J; 

'4sl+t11 = Jis l+✓f 11 
2 t 

1 1 t 1 s 1 
Inverse square root A =-1---ll 

!Jsl+t1L J; 2s--Js 
vt = --- 1+-ll 

z/sl+tll 2t✓t Ji 
Exponential exp A ( s 1 + t11) = exp ( s) 1 + t exp ( s ) 11 expvt ( sl + t11) = s exp ( t) 1 + exp ( t) 11 

Sine sin A ( sl + t11) = (sins) 1 + ( t cos s) 11 sin vt ( sl + t11) = ( s cost) 1 + ( sin t) 11 

Cosine cos A ( s 1 + t11) = ( cos s) 1 - ( t sin s) 11 COS vt ( sl + t11) = - ( s sin t) 1 + (cost) 11 

Tangent tan A ( sl + t11) = (tans) 1 + t ( 1 + tan 2 s) 11 tan vt (sl+t11)=s(l+tan 2 t)l+(tant)11 

Hyperbolic sine sinh A ( sl + t11) = ( sinh s) 1 + ( t cosh s) 11 sinh vt ( sl + t11) = ( s cosh t) 1 + ( sinh t) 11 

Hyperbolic cosine cosh A ( s 1 + t11) = ( cosh s) 1 + ( t sinh s) 11 cosh vt ( sl + t11) = ( s sinh t) 1 + ( cosh t) 11 

Hyperbolic tangent tanh A ( s 1 + t11) = ( tanh s ) 1 + t ( 1- tanh 2 s ) 11 tanh vt ( sl + t11) = s ( 1- tanh 2 t) 1 + ( tanh t) 11 

Table 3.4. This table summarizes the results obtained when common operations are applied to a dual number sl + t11 
under the geometric product A and geometric anti product 'v . When the antiscalar part t is zero, each of the formulas 
for the geometric product reduces to the conventional operation on a real numbers. Likewise, when the scalar parts 
is zero, each of the formulas for the geometric anti product reduces to the conventional operation on a real number t. 

3.3 Reflection and Rotation 

The transformative powers of the geometric product start with its ability to perform a reflection, 
and this is something we can observe with an experiment involving vector division. Suppose that 
a and v0 are vectors, and set m = a A v

0

. Ifwe divide m by v0, then we get a A v
0 

A v01

, which just 
gives us a right back. That is not very interesting, but if we instead divide m by a, then something 
important happens. As shown in Figure 3.2, the quantity m A a- 1 must be equal to some value v 1 

such that v1 A a = m, which means that 

- I v
1 

= a A v
0 

A a . 

By decomposing m into its scalar and bivector parts, we can rewrite this as 

v1 =(a •v0)A a- 1 +(at\ v0)Aa- 1. 

(3.36) 

(3.37) 

We can reverse the order of multiplication of a and v O so we have terms that resemble the projection 
and rejection formulas given in Equation (3 .19). Reversing the factors of a dot product has no effect, 
but reversing vector factors of a wedge product causes the result to change sign. The expression for 
v 1 thus becomes 



3.3 Reflection and Rotation 

(3.38) 

Toe first term is the component of v O that is parallel to a, and the second term is the negation of the 
component of v O that is perpendicular to a. This tells us that v I must be the reflection of the vector 
v0 across the vector a, as shown in Figure 3.2. Toe geometric reason why v 1 must be the reflection 
of v O across a makes itself known when we consider that m is equal to both a A v O and v I A a. Both 
of these quantities must correspond to parallelograms sharing the same side a and possessing the 
same area, the same orientation, and the same interior angles, as shown in the figure, because this 
information is stored in the scalar and bi vector parts of m. 

Figure 3.2. The vector v 1 is the reflection of the vector v O across the vector a. Because v 1 is the same length 
as v0 and makes the same angle with a as v0 does, the geometric product v1 A a yields the same scalar and 
bivector as the geometric product a A v0. 

Toe sandwich product a A v O A a -i gives us the reflection of the vector v O across the vector a, 
and this preserves the component of v O that's parallel to a while negating the component of v0 that's 
perpendicular to a. Through the simple addition of a minus sign, we can change this into a slightly 
different kind of reflection. As shown in Figure 3.3, the vector given by-a A v 0 A a- 1 corresponds 
to the reflection of v O across the plane a, where the complement represents all directions perpen
dicular to a. These two types of reflection have significantly different meanings in ordinary 3D 
space, but when we start reflecting things in a projective space where everything is homogeneous, 
the extra minus sign will have only the effect of inverting the orientation of the object being re
flected without changing its attitude. 

Let's now consider what happens when a reflection across a vector a is followed by another 
reflection across a vector b. Toe first reflection transforms an arbitrary vector v0 into a new vector 
v1 through the formula v 1 = a A v0 A a- 1

. Toe second reflection transforms v 1 into another new vec
tor v 2 through the formula 

(3.39) 

In Figure 3.4, these two steps are illustrated separately and in combination. If we set R = b A a, then 
we can write 

(3.40) 
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Figure 3.3. The sandwich product a A v O A a - i reflects the vector v O across the vector a. Its negation is the 
reflection of v O across a, which corresponds to the subspace spanned by all directions perpendicular to a. 

after recognizing that (b A a r1 = a- 1 
A b- 1

. The bi vector part of R is oriented in the plane deter
mined by the vectors a and b. As shown on the left in Figure 3.4, the component of v0 perpendicular 
to this plane is negated by the first reflection, but is then negated again by the second reflection, 
so it does not change under the full transformation given by Equation (3.40). The effect of the 
transformation on the other component of v0 is shown on the right in Figure 3.4. For the sake of 
simplicity, we assume that v O lies in the plane with the understanding that the following explanation 
otherwise applies to only the component of v O that is parallel to the plane. The first reflection moves 
v0 to a new direction v 1 making an angle 2a with v0, where a is the angle between a and v0. The 
second reflection then moves v1 to a new direction v2 making an angle 2/J with v1, where /J is the 
angle between b and v 1. As shown in the figure, the angle ¢ between the vectors a and b is equal to 
a+ /J. We conclude that the two reflections combine to form a rotation through a total angle 2¢. 

When normalized to unit magnitude, the quantity R = b A a is an operator called a rotor. The 
sandwich product given by Equation (3 .40) rotates vectors through an angle 2¢ in the direction 
from a to b parallel to the bivector b /\ a, where¢ is the angle between a and b. Note that the direc
tion of rotation is the opposite of the winding direction associated with the bi vector b /\ a. For this 
reason, an operator R that rotates in the direction from a to b would have to be written as 

(3 .41) 

to keep the vectors a and b in the order corresponding to the rotation direction. 
The rotation operation in Equation (3.40) is valid in any number of dimensions, but it is usually 

3D space that matters to us. In three dimensions, the wedge product a/\ b can be interpreted as the 
complement of an axis of rotation given by the cross product a x b. If a and b have unit length, then 
Equation (3.41) can be written as 

R =cos¢- sin¢ ii, (3.42) 

where n is a unit vector pointing in the same direction as a x b, and the complement is taken with 
respect to the volume element e123 . This operator rotates through an angle of 2¢, so the operator that 
rotates through an angle ¢ is given by 

R ¢ ( • <P )-=COS2- sm
2 

n. (3.43) 

Upon comparison with Equation (1.63), it's now clear that rotors in three dimensions are equivalent 
to the set of quaternions. Due to the subtraction of the bivector part in Equation (3.43), the imagi
nary units i,j, and k of a quaternion are equated with the negated bivector basis elements such that 
i = -e23, j = -e31 , and k = -e12. Later in this chapter, we will see that quaternions actually have two 
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Vo 

Vo 

Figure 3.4. A vector v0 is rotated through the angle 2,P by the rotor b A a, represented by the green parallel
ogram. (Left) Toe reflection across the vector a transforms v0 into vi, and the second reflection across the 
vector b transforms v1 into v 2. (Right) In the plane determined by b /\ a, the two reflections combine to form 
a rotation through the angle 2a + 2/J from a to b, where a is the angle between a and v0, and /J is the angle 
between b and v 1. 

different representations in the 4D projective space, and the imaginary units i, j, and k map to the 
basis bivectors e41 , e42, and e43 without negation in the second one. 

As we mentioned in Section 1 .4, it wasn't quite correct to call a quaternion the sum of a scalar 
part and a vector part, and we now know that a quaternion is really the sum of a scalar part and 
bivector part. Whenever we calculated the sandwich product qvq• to rotate a vector v with a qua
ternion q, we were actually treating v as a bivector, which works in three dimensions because it has 
the same number of components as a vector. The use of the quaternion conjugate arises from the 
fact that the inverse of b A a is just a A b when a and b have unit length, and reversing the order of 
the factors in the geometric product of two vectors has the effect of negating the bi vector part of 
the result. 

The rotation performed by the rotor R in Equation (3.40) is a linear transformation that applies 
to grade-one vectors. The sandwich product R A v A R- 1 is also an exomorpbism that preserves the 
structure of the algebra under the wedge product, and this means that a rotor doesn't only perform 
rotations on vectors, but on elements of any grade. We can understand why this must be true when 
we consider a pair of orthogonal basis vectors e; and e j· The geometric product e; A e j is equal to 
the wedge product e; /\ e j because the dot product between the two basis vectors is zero. Thus, the 
sandwich product R A e ij A R- 1 can be written entirely with the geometric product as 

(3.44) 

By inserting the product R- 1 AR between the factors e ; and e j , we can split this into two sandwich 
products to obtain 

(3.45) 

The geometric product outside parentheses on the right side bas been replaced by a wedge product 
because the rotations of e; and e j must still be orthogonal, so the geometric product between them 
has no scalar part. An arbitrary bivector is simply a sum of scalar multiples of the basis bivectors 
aeij + bek, +·· ·, and each term in this sum is rotated separately by Equation (3.45). 
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3.4 Reversion 

All of the transformations that we will apply with the geometric product and antiproduct in this 
chapter and in Chapter 5 will take the form of a sandwich product such as the one shown in Equa
tion (3.39). In general, an operator T that represents some transformation applied with the geomet
ric product will be built up from a product of k vectors a1, a2, ... , a k such that 

(3.46) 

and T will transform an object x through the sandwich product TA x A T- 1
. The inverse of T is 

equal to the product of the inverses of the vectors a 1, a2 , ... , ak in reverse order, so we can write 

(3.47) 

If all of the vectors a1, a2, ... , ak are bulk normalized (which means a; • a; = 1), then the inverse of 
T is simply the geometric product of the vectors themselves multiplied in reverse order, and it 
differs from T only by a possible change in sign. This arises so often that we define a special unary 
operation to handle it. 

3.4.1 Reverse and Antireverse 

For any basis element u that is the wedge product of k basis vectors, the reverse of u is denoted by 
ii, with a tilde above it, and defined as the result of multiplying those same k basis vectors in reverse 
order.2 The overall effect is that the reverse of u is given by 

ii= ( -l )gr(u)(gr( u)-1)/ 2 U. (3.48) 

This relationship holds because the number of individual transpositions necessary to reverse the 
vector factors of a grade-k basis element u is the sum of k -1 for the first factor, k - 2 for the second 
factor, and so on. The total is the ( k -1 )-th triangular number, which is given by k ( k -1 )/ 2. This is 
odd when the grade k is equal to 2 or 3 modulo 4, so these are the grades for which the reverse 
operation ii flips the sign of u. Otherwise, when k is equal to O or 1 modulo 4, the reverse operation 
has no effect. 

Just as we did for complements in Section 2.2, we extend the reverse operation to all elements 
of an exterior algebra by requiring that it is a linear operation. That is, for any scalar s and basis 
elements a and b, we have 

sa=sa and a+ b =a+b. (3.49) 

When the reverse operation is applied to a multivector that bas components of different grades, 
some of those components could be negated while others are not. For example, taking the reverse 
of a quaternion q = wl + xe 23 + ye31 + ze12 has the effect of negating only the three bivector com
ponents without changing the scalar component so that q = wl - xe 23 - ye31 - ze12. This is the origin 
of the conjugate operation defined by Equation (1.48). 

The reverse operation distributes over the geometric product between two arbitrary multivec
tors m and n through the rule 

2 There are two notations for the reverse operation that are commonly found in the literature. One is the tilde notation that 
we use in this book, and the other is a dagger notation in which the reverse of u is denoted by u t_ The dagger option is 
not well suited for a symmetric notation corresponding to the reverse 's anti-operation. 
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Anti reverse 

m A n =ii Am. (3.50) 

This is true for multivectors because it is true for basis elements, and the geometric product is linear. 
For two basis elements a and b, multiplying them together in reverse order as b A a after reversing 
the basis vector factors of both a and b guarantees that the basis vector factors of the result also 
appear in reverse order. 

Symmetrically to the reverse operation, for any element u that is the antiwedge product of k 
anti vectors, there is an antireverse of u denoted by ~ with a tilde below it. The antireverse of u is 
defined as the result of multiplying those same k anti vectors in reverse order, but this time under 
the anti wedge product. In general , the antireverse of an element u is given by 

~ = ( - 1 r(u)(ag( u)-1)/ 2 u. (3.51) 

The reverse and antireverse are anti-operations of each other, and that means they are related by the 
De Morgan laws 

(3.52) 

where the complement is applied before the reverse operation inside the parentheses in both cases. 
We can determine bow the reverse and antireverse of a grade-k element u in n dimensions are 
related through a change of sign by combining the powers of-I in Equations (3.48) and (3.51). 
This gives us the equation 

~ = ( -l / (k-1)/ 2+(11- k)(n-k- 1)/ 2 U. (3.53) 

The exponent simplifies to k ( k- n) + n ( n -1 )/ 2, and since we can negate any term without chang
ing the resulting power of-1, we can write the relationship between reverse and antireverse as 

~ =( - l)gr(u)ag( u)+n(n-1)/ 2 fi . (3.54) 

The differences between fi and ~ in the 4D projective algebra can be seen in Table 3.5 where they 
are listed for all 16 basis elements. 

An important property of the reverse operation is that for any two arbitrary multi vectors m and 
n, the scalar part of m A ii is equal to the dot product m • n, a relationship that can be written more 
succinctly as 

(3 .55) 

To see why this equality holds, we must first realize that for any two different basis elements a and 
b, the geometric product a Ab cannot be a scalar because either a or b must have a basis vector 
factor that the other does not have. This means that every contribution to the scalar part of m A ii 

u 1 e1 e 2 e 3 e 4 e 41 e 42 e 43 e 23 e 31 e 12 e423 e 431 e4 12 e 321 1 

ii 1 e 1 e 2 e 3 e 4 - e 41 -e42 - e 43 -e23 - e 31 - e 12 -e423 -e431 - e 412 -e321 1 

~ 1 - e 1 - e 2 -e3 - e 4 - e 41 - e 42 -e43 -e23 -e31 - e 12 e 423 e 43 1 e 412 e 321 1 

Table 3.5. For each of the 16 basis elements u in the 4D geometric algebra, this table lists the reverse ii and 
the antireverse u. 
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comes from the product of a component of m and a component of n with the same basis element. 
For any basis element a = e; /\ e 1 I\ ···, we know that 

(3.56) 

But by the determinant expansion of the dot product given by Equation (2.83), we also know that 

a• a = (e - /\ e • /\ • • ·) • (e -/\ e • /\ • • ·) = ( e-• e-) ( e • • e • ) • • • I J I J I I j J , (3.57) 

so we can conclude that a A a = a• a. Since the geometric product and dot product are both linear, 
the scalar contributions from matching components of m and n simply add to yield the complete 
value of m • n. 

As always, the relationship in Equation (3 .55) has a dual counterpart, and we can derive it by 
taking complements of both sides. After taking the right complement and applying De Morgan laws 
to the geometric product and dot product, we have 

(3.58) 

Since m and n are arbitrary multivectors, so are their complements, so we can just take their left 
complements to essentially relabel them without changing the meaning of the equation. For three 
out of the four operands in Equation (3 .58), the right and left complements simply cancel out. In 
the fourth case, we are taking the reverse of!! and following it with the right complement, but 
Equation (3.52) tells us that those operations produce ~-The dual version of Equation (3 .55), which 
should be no big surprise, is then given by 

(3 .59) 

Math Library Notes 

• The reverse and antireverse operations are implemented by the Reverse() and Anti reverse() func
tions. In cases when no sign change occurs, these functions perform no operation and simply return a 
reference to the value passed to them. 

Reverse 

u 
DUALITY 

Anti reverse 

u 

• Reverses the order in which the vector factors 
of u are multiplied under the wedge product. 

• Changes sign when the grade of u is 2 or 3 
modulo 4. 

3.4.2 Dual Identities 

• Reverses the order in which the antivector 
factors of u are multiplied under the 
antiwedge product. 

• Changes sign when the antigrade of u is 2 or 3 
modulo 4. 

We can express bulk and weight duals using the two geometric products and two reverse operations. 
By substituting the same basis element u for both operands in the identity given by Equation 
(2.156), we get the relationship u /\ u * = ( u • u ) 11. telling us that the product of u with its bulk dual 
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is the volume element multiplied by the square of u. Since u and u * don't have any factors in 
common (assuming the metric is diagonal), the wedge product u /\ u * is the same as the geometric 
product u A u* , and we can write 

u Au* =(u•u )n. (3.60) 

If we multiply both sides by u on the left, then we have 

U A U A U * = U A ( U • U ) n. (3.61) 

Recognizing that u A u = u • u and assuming u • u * 0 for the moment, we can cancel u • u on both 
sides, leaving us with 

(3.62) 

In the case that u • u = 0, we also know that u * = 0 because both are made zero by the product Gu 
with the extended metric G, and it must further be true that u An= 0 because the volume element 
contains all the factors of u. Thus, Equation (3.62) bolds in general, and it is extended to all elements 
u in the algebra through linearity. 

Following a similar process for weight duals that begins with the identity u v u* = ( u O u ) v 1 
given by Equation (2.120), we obtain 

(3 .63) 

Analogs to Equations (3.62) and (3.63) for left bulk and weight duals simply have the order of 
multiplication reversed on the right side, so we also have the identities 

(3.64) 

The only difference in the definitions of right and left duals is whether the right or left complement 
is applied after multiplying by the metric or antimetric. Consequently, if u is composed of compo
nents all having even grade or all having odd grade, then u A n = ±n A u and ~ 'ii 1 = ±1 'ii~, where a 
sign change depends on the dimension of the algebra and whether u has even or odd grades in it. 

3.4.3 Geometric Constraint 

Returning to the operator T described at the beginning of this section, we can use the reverse oper
ation to write the inverse given by Equation (3 .4 7) as 

t 
T -'=-----------

( a1 •a , )(a2 •a2 )···(ak • ak) 
(3 .65) 

In the case that all of the dot products in the denominator are one, we simply have T- 1 = T. Other
wise, since TA T- 1 = 1, we can write 

(3.66) 

This is a scalar value, and Equation (3.55) tells us that the scalar part ofT AT must be equal to the 
dot product T • T. We can now generalize the vector inverse formula given by Equation (3 .16) to 
include any multi vector T that is a geometric product of vectors by stating 

(3.67) 
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Remember that we have only shown Equation (3.67) to be true for a multivector T having the 
form given by Equation (3.46), and it is not true for arbitrary multivectors. In general, the geometric 
product TAT creates higher-grade components in addition to a scalar component. However, all of 
the geometric objects in an exterior algebra can be constructed with a wedge product of vectors 
corresponding to points they contain, and it will be the case that all of the transformation operators 
in a geometric algebra are constructed with a geometric product of vectors (or a geometric anti
product of anti vectors) corresponding to a sequence of reflections. A multi vector quantity u repre
senting a geometric object or transformation operator satisfies the property 

I u A fi = u. u. I (3.68) 

This relationship is called the geometric constraint, and it bas the effect of putting some restrictions 
on the components of any multivector quantity u that bas geometric significance. For example, if 
we consider the representation of a line / defined by Equation (2.36), then the geometric product 
with the reverse gives us 

- ( 2 2 2 ) /A/ = lmx + lmy + lmz 1 + 2 ( lvx l,nx + lvy lmy + lvz lmz ) 11. (3.69) 

In order to satisfy the geometric constraint, this must be equal to I• I , so the antiscalar component 
must always be zero. This means that lvx lmx + lvy lmy + lvz lmz = 0 for all lines, which is a conclusion 
that we reached by a different route in Section 2.4.2. We will encounter similar constraints for the 
operators discussed later in this chapter. For some of the geometric objects introduced in Chapter 4, 
the constraints will be more complex. 

There is a dual counterpart to the geometric constraint stated in Equation (3.68) that applies to 
any quantity that can be expressed as a geometric antiproduct of anti vectors. The dual form of the 
geometric constraint is easy to guess, but we'll take a moment to derive it anyway. Suppose that u 
can be expressed as 

(3.70) 

where each a; is an antivector. If we take the right complement of both sides and apply the De 
Morgan law, then we have 

(3.71) 

Since this is now a geometric product of k vectors, ii must satisfy ii Au= ii• ii. Applying the De 
Morgan laws to both sides gives us 

(3.72) 

Using Equation (3.52) to apply a De Morgan law one last time to the factor containing the reverse, 
we obtain the property 

(3.73) 

This version of the geometric constraint applies to lines just as well as the original version in Equa
tion (3.68) because any line can be expressed as the intersection of two planes. When we calculate 
the geometric antiproduct of a line / with its antireverse, we get 

(3 .74) 

This time, the scalar component must be zero in order to satisfy/ v; {=I O I, so we end up with the 
same constraint of lvx lmx + lvylmy + lvz lmz = 0 that we had before. 
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In the case that a bi vector I does not satisfy the geometric constraint but is interpreted as a line 
anyway, Equations (3 .69) and (3.74) both contain exactly the information that we need to tell bow 
far out of whack it actually is. Both quantities are dual numbers, and we can divide by their square 
roots with respect to the appropriate product to normalize the bivector and establish the geometric 
constraint at the same time. In the case of the geometric product, the inverse square root of Equation 
(3 .69) is given by 

(3.75) 

which follows from the formula listed in Table 3.4. Multiplying the original line I by this quantity 
will clearly have the effect of dividing out the magnitude of the moment Im , but there is another 
effect due to the presence of the extra value Iv ·Im / I~ coming from the antiscalar part of I Al. It 
corresponds to the projection of the direction Iv onto the moment Im , which is exactly the vector 
that we would need to subtract from the line 's direction to make it perpendicular to the moment as 
required by the geometric constraint. When we multiply I by Equation (3 .75), the result is 

I 1 [ Iv • Im ( )] ~ _ A= I.? 1--2- - l,nxe4l +lmy e 42 +l,nz e 43 , 
A I A I ',JI~ Im 

(3 .76) 

and it does indeed orthogonalize the direction and moment by subtracting the projection of Iv onto 
Im from Iv before bulk normalizing the whole line. We can repeat this process for the geometric 
antiproduct by calculating the inverse square root of Equation (3.74) to get 

(3.77) 

This time, the projection of the moment Im onto the direction Iv appears, and the magnitude of the 
direction shows up in the denominator. Multiplying by I gives us 

(3 .78) 

which leaves the direction alone, orthogonalizes the moment by subtracting its projection onto the 
direction, and weight normalizes the whole line. There will be occasions in Section 3.6 when a line 
needs to be fixed up, and Equation (3 .78) will be preferred over Equation (3.76) because it unitizes 
the line and does not alter its direction. 

3.5 Euclidean lsometries 

Toe main goal of this chapter is to develop a set of operators that are able to perform all Euclidean 
isometries in 3D space. A Euclidean isometry is a transformation that preserves distances such that 
the size and shape of an object does not change, but it can be moved around and possibly turned 
inside out. When an object undergoes a Euclidean isometry, the distance between every pair of 
points p1 and p2 belonging to the object is the same after the transformation as is was before the 
transformation. This implies that for any third point p0 belonging to the object, the angle between 
any two vectors p1 - p0 and p2 - p0 is also preserved by the transformation. Transformations that 
preserve distances and angles are called rigid transformations, and they are a subset of the less 
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restricted conformal transformations, which only preserve angles but not necessarily distances, that 
we will encounter in Chapter 5. 

Every Euclidean isometry is either the identity transformation or a transformation that can be 
constructed as a sequence of k reflections across k distinct planes. The types of isometries are 
broadly classified into two groups, those for which k is even and those for which k is odd. In the 
case that k is even, we call the transformation a proper isometry, and in the case that k is odd, we 
call the transformation an improper isometry. The identity is considered a proper isometry because 
it doesn't reflect across any planes at all , and thus k = 0. 

As illustrated in Figure 3.5, proper isometries include rotations and translations, and they cor
respond to continuous motions through space. Every proper isometry can be expressed as a screw 
motion comprising a rotation through an angle ¢ about an arbitrary line and a translation by a dis
tance '5 along the direction in which that same line runs. (This fact is known as Cbasles ' theorem.) 
All simpler motions are special cases of the general screw motion. In the case that the angle of 
rotation¢ is zero, the motion we are left with is purely a translation along some direction. This 
happens when we reflect across two planes that are parallel to each other. In the case that the trans
lation distance '5 is zero, the motion we are left with is purely a rotation about some line. This hap
pens when we reflect across two planes that are not parallel to each other, and the line serving as 
the axis of rotation is precisely where the two planes intersect. We will see that a translation can be 
understood in a projective space as a rotation about a line at infinity, so rotations and translations 
are really just two different manifestations of the same thing. 

translation 
- ----- J 

general screw motion 

I 
rotation 

Figure 3.5. All proper isometries in 3D space can be expressed as a screw motion comprising a rotation 
through an angle rp about some line I and a translation by a distance J along the direction in which that line 
runs. Pure translation and pure rotation are special cases. 

As illustrated in Figure 3.6, all improper isometries are characterized by an extra reflection that 
causes the object undergoing the transformation to be mirrored or turned inside out. Every improper 
isometry can be expressed as a rotoreflection comprising a rotation through an angle ¢ about an 
arbitrary line and a reflection through a plane perpendicular to that same line. Similar to bow proper 
isometries are all special cases of a screw motion, all simpler improper isometries are special cases 
of the general rotoreflection. In the case that the angle of rotation¢ is zero, the isometry is purely 
a reflection across some plane. If the angle ¢ is 180 degrees, then the rotoreflection becomes an 
inversion through a single point. Finally, if the axis ofrotation is a line at infinity, then the isometry 
is a transflection in which a reflection across a plane is combined with a translation along a direction 
that's parallel to that same plane. 
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general rotoreflection reflection inversion 

g 

transflection 

g 

Figure 3.6. All improper isometries in 3D space can be expressed as a rotoreflection comprising a rotation 
through an angle <p about some line I and a reflection across a plane g perpendicular to that line. Reflections, 
inversions, and transflections are special cases. 

3.5.1 Reflection 

Since all Euclidean isometries can be conceptually built with a sequence of planar reflections, we 
would certainly like to find an operator that can reflect any geometric object that we have in our 
projective space across any given plane. This one operator could then be applied repeatedly to con
struct all of the possible isometries that we have discussed. An important property that any operator 
performing a rigid transformation must have is that it preserves the horizon. That is, any point lying 
at infinity before the transf01mation still lies at infinity after the transformation, but possibly in a 
different direction. Also, any point not originally lying at infinity does not somehow end up in the 
horizon after the transformation. 

As we previously demonstrated in Figure 3.3, the sandwich product-a A v0 A a- 1 reflects the 
vector v O across the plane perpendicular to the vector a. If we know a is normalized to unit length 
such that a • a= 1, then a is its own inverse, and we can use the simpler expression - a A v0 A a. Th.is 
formula reflects vectors and higher-grade quantities in a nonprojective environment where there is 
only direction and no position. To find out what happens in the 4D projective algebra, we can apply 
the same formula to the origin e4 and the horizon e321 by attempting to reflect them across the com
plement of a vector representing a point p = Pxe1 + P.v e2 + Pze3 + Pwe4. Since everything is homo
geneous here, we don't care about any scaling that occurs if p is not bulk normalized, so we don't 
bother dividing by p • p to obtain p- 1 and instead just calculate a sandwich product with p on both 
sides. Transforming the origin and horizon in this way gives us the equations 

- p A e4 A p = ( p; + p; + p;) e4 

- p A e321 A p = 2pw (pxe423 + P _v e431 + Pze412 )-(p; + p; + p; )e321. (3.79) 

The first equation tells us that the origin is fixed by the sandwich product. There is no point p that 
would move the origin somewhere else, so we couldn't possibly use this formula to reflect points 
across arbitrary planes. The second equation tells us the horizon does not stay put unless p itself 
lies at infinity (because that would mean Pw = 0). Th.is is a problem because all Euclidean isornetries 
leave the horizon at infinity where it belongs. We are forced to conclude that repeated applications 
of the fo1mula - p A v O A p cannot perform Euclidean isornetries. 
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If we're looking for a way to reflect objects across a plane, then it's only logical to expect an 
operator provirnng this functionality to involve the plane itself. Furthermore, since two reflections 
across two planes results in a rotation about the line where the planes intersect, we would expect 
the combination of two reflection operators to involve the meet of those two planes. Planes in the 
projective space are represented by antivectors, not vectors, and the meet of two planes g and h is 
calculated with the antiwedge product g v h. This strongly suggests that we should look at the geo
metric antiproduct and see how the origin and horizon are affected when they are sandwiched be
tween a plane. Calculating sandwich antiproducts with the plane g = gxe423 + gy e431 + g 2 e412 + 
g we321 gives us the equations 

-gv'e4 v'g = 2gw (gxel + gye2 + g ze3 )-(g_; + g; + g; )e4 

-gv'e321 v'g =(g; + g; + g; )e321 . (3.80) 

The first thing we observe is that the horizon is fixed, so the requirement for Euclidean isometries 
that points at infinity stay at infinity is satisfied. More importantly, the origin has moved in the 
opposite direction of the plane's normal vector g xe1 + gye2 + g 2 e3 by twice the value of gw, which 
is the plane's weighted distance from the origin. (The direction is opposite the plane's normal be
cause the e4 term has been negated.) This transforms the origin to a location on the other side of the 
plane at exactly the same distance from the plane, so we have achieved a reflection. To verify that 
this works universally for any point p, we calculate 

The conventional 4D dot product p • g is visible in this equation, and it corresponds to the weighted 
distance between the point p and the plane g. Moving by twice that distance in the opposite direc
tion of the plane 's normal vector does indeed reflect p across gin the same way that Equation (1.35) 
did in Chapter 1, but it's generalized here for points and planes having arbitrary weights. We can 
now be certain that any plane g is rnrectly able to act as a reflection operator under the geometric 
anti product. 

The similarities between Equations (3.79) and (3 .80) should be rather obvious. Duality is once 
again showing itself through the symmetric effects that the geometric product and anti product have 
on the origin and horizon. These two products are both performing two operations at once just as 
the wedge and antiwedge products do, as discussed in Section 2.6. Sandwiching with the geometric 
antiproduct rigidly transforms the space of an object, performing a Euclidean isometry, and sand
wiching with the geometric product rigidly transforms the antispace of an object. Simultaneously, 
there is a different set of transformations that happen in antis pace for the geometric anti product and 
in regular space for the geometric product that are not Euclidean isometries, and we will find out 
what those are in Section 3.9. 

The sandwich antiproduct with a plane g not only reflects a point across g, but it reflects any 
type of geometric object u across g. The exact calculations when u is a point p, a line/, and another 
plane h are listed in Table 3.6 for a unitized reflection plane g. The minus sign in front of the ex
pression -g v' u v' g has the effect of negating the orientation of the object u being reflected. This 
can be annoying in the case of points because a point starting with a positive w coordinate ends up 
with a negative w coordinate after the reflection. Since the projective space is homogeneous, drop
ping the minus sign does not change the meaning of the geometric object, so it may be convenient 
to remove it from a calculation. However, keeping the minus sign may be desirable when reflecting 
lines and planes because it causes the direction of a line and the normal of a plane to be reflected 
in the expected way. 
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Type Reflection Formula 

Point p - gvp V g = [2gx (p · g) - Px ] e1 + [2gy (p ·g)- Py ]e2 +[2g , (p ·g ) - p , ] e3 - P we4 

- g V l 'v' g = [/vx - 2gx (iv • g,:vz )] e41 + [/vv - 2gy (iv • g.\J'Z )] e42 + [ lvz - 2g , (/v • g.\J'Z )] e43 

Line l 
+ [ 2gx (/m • g,:vz ) + 2g w U~v g , - lvz gy )-1,nx ] e23 

+ [2 g y (Im · g,:yz ) + 2gw (/vz g x - fvxg , ) - 1,,,y ] e31 

+[2g, (Im · g-".l,, )+2g w (ivx g y - lV),g X )- !,,,, ]e12 

Plane h 
- gvhvg =[hx -2gx (h xvz ·g,:vz )]em +[hy -2g y ( h-".l"' ·g-".lr.: )]e431 

+ [ h, - 2g , ( h-".l"' • g,:vz )] em + [ hw - 2g w (h ,:vz • g,:vz )] em 

Table 3.6. Toe plane g = g xe423 + g .v e431 + g, e4 12 + g we321 acts as a reflection operator for points, lines, and 
planes under the geometric anti product in three dimensions. It is assumed that the reflection plane g is unitized 
so that g; + g _~ + g; = 1, but the geometries being reflected can have any weight. 

3.5.2 Rotation 

We mentioned earlier that rotations and translations involve a pair of reflections across two different 
planes, so we'd like to know exactly what happens when we reflect a point p across one plane g 
followed by another plane h. For the moment, we assume that g and h are not parallel and meet at 
an angle¢ as shown in Figure 3.7. Toe first reflection is performed by the sandwich antiproduct 
-g v p v g, and the second reflection sandwiches this result between two antiproducts with the plane 
h. Toe minus signs appearing in the two sandwich products cancel out, and the transformed point 
p' after both reflections is given by 

p' = h v(gv p vg)v h. (3.82) 

We can reassociate the antiproducts so that the planes are multiplied together first, after which p is 
sandwiched between the quantity h v g and its antireverse g v h. Defining R = h v g lets us write 

(3.83) 

p' h 

Figure 3.7. When the point p is reflected first across the plane g and then across the plane h, the result is a 
rotation about the line l (pointing out of the page) where the two planes intersect. This rotation moves p to 
the point p' by rotating through the angle 2¢ , where¢ is the angle between the two planes. 
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Our task now is to determine the exact nature of the quantity R, and this task can be accom
plished by taking a closer look at the geometric antiproduct h 'i/ g. If we write out all of the compo
nents, then we have 

h 'i/ g = (gyhz - g zhy ) e 41 + (gzhx - gxhz ) e 42 + (gxhy - gyhx ) e 43 

+ (g whx - g xhw) e23 + (gwhy - gyhw) e 31 + (g whz - gzhw) e 12 

+ (gxhx + gyhy + g zhz ) n. (3.84) 

Toe six bivector components are exactly what we get from the meet h v g listed in Table 2.7, but 
with the planes h and g multiplied in the reverse order. This bivector thus corresponds to the 
line where the two planes intersect, which is the axis of rotation. Toe remaining component is an 
antiscalar whose value is the dot product between the normal directions of the two planes. If the 
planes are both unitized, then this dot product is equal to the cosine of the angle¢ between them. 
Furthermore, the e41, e42, and e43 components making up the line's weight have a magnitude equal 
to the sine of the angle¢ because they hold the coordinates of the cross product between the planes' 
normal directions. For a unitized axis of rotation, we define the line l by 

Then the operator R becomes 

l = h vg = h vg _ 
ll h V gllo sin¢ 

R = l sin¢ + n cos¢. 

(3 .85) 

(3 .86) 

This is a general operator that performs a rotation about the unitized line/. As shown in Figure 3.7, 
the angle through which this operator rotates is twice the angle¢. This doubling of the angle is the 
same thing that happened with quaternions in Section 1.4.2, and similar doublings will continue 
appearing as we discover more operators. Toe operator R can be applied to any type of geometry 
in the algebra, but a direct implementation of the calculation R 'i/ u 'i/ ~ is rather inefficient. Optimal 
calculations for transforming points, lines, and planes with an even more general operator Q are 
provided in Section 3.6.5 below, and specialized versions for the operator R can easily be derived 
from them by setting Q111.,, = 0. 

Toe inverse of the operator R must correspond to a rotation through the same angle about the 
same line, but in the opposite direction. Negating the angle¢ in Equation (3.86) gives us 

R-1 = l sin ( -¢) + n cos ( -¢) 

= - l sin¢+ n cos¢. (3.87) 

Toe sign of the bi vector part is flipped, and the antiscalar part remains unchanged. This corresponds 
to a pair of reflections across the planes g and h occurring in the opposite order, and it thus should 
be unsurprising that we can express the inverse of R as its antireverse such that R- 1 = ~-

3.5.3 Translation 

Now we consider the case in which the planes g and h are parallel, as shown in Figure 3.8. Since 
the normal directions of the two planes are parallel, their cross product is zero, and the e41, e42, and 
e43 components of the geometric antiproduct h 'i/ g shown in Equation (3.84) are therefore zero as 
well. Assuming the planes are unitized and the normal directions are oriented the same way, the dot 
product in the antiscalar term is one, and we are left with 

(3 .88) 
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Translation 
operator 
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Figure 3.8. When a point p is reflected across two parallel planes g and h, it is translated to the point p' in 
the direction perpendicular to the planes by twice the distance c5 between the planes. 

Since the normal directions are equal, we can make the substitutions hx = g x, hy = g y, and h2 = g 2 • 

This allows us to factor out the difference g w - h w from the first three terms to get 

(3 .89) 

The values g w and h w represent the distances between the origin and the planes g and h, so their 
difference is the distance J between the two planes. As illustrated in Figure 3.8, reflecting a point p 
across the plane g and then across the plane h causes it to move in the normal direction by twice 
the distance J. It is a translation by twice the vector r = ( Jg x, Jgy, Jg2 ). Thus, a general translation 
operator T has the form 

(3.90) 

and the sandwich antiproduct T 'ii p 'ii T translates a point p by the displacement vector 2r . Com
paring against Equation (3.86), this can be interpreted as a rotation through an infinitesimal angle 
about a line that's infinitely far away. The exact calculations involved in translating a point p, a line 
/, and a plane g with the operator Tare listed in Table 3.7. 

Like the rotation operator, the inverse of a translation operator T corresponds to reflections 
across the planes g and h in the opposite order with the effect of translating by the vector -2r . Thus, 
the inverse of T is also given by its antireverse such that T-1 = T. 

3.5.4 Inversion 

Isometries more complex than rotations and translations require the application of more than two 
reflections across more than two planes. These generally lead to the screw motions and rotoreflec
tions discussed in Sections 3.6 and 3.7, but there are a couple special cases involving the reflection 

Type Translation Formula 

Point p T'v' P 'v' T = (Px + 2TxPw) e1 +(Py+ 2r yPw) e2 + ( Pz + 2r, Pw) e3 + Pive4 

Line/ 
T 'v' [\;IT = lvx e41 + Ivy e42 + lvz e43 

+ (/mx + 2r ylvz - 2r, lvy ) e23 +(/my + 2r, lvx -2rxlvz ) e31 + (Im,+ 2r)vy - 2r /vx ) e12 

Plane g T'v'g'v'! = gxe423 + gy e431 + g, e412 +( gw - 2rxgx - 2rygy - 2r,g, )e321 

Table 3.7. The multi vector T = r x e23 + r ye31 + r , e12 + n acts as a translation operator for points, lines, and 
planes under the geometric antiproduct in three dimensions. These formulas translate by the displacement 
vector 2,. The operator Tis always unitized, and the geometries being translated can have any weight. 
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across three planes that we examine here. When the three planes are all mutually orthogonal, the 
result is an inversion through the point p where all three planes intersect. An inversion is a reflection 
that goes through a single point instead of through a plane. The reflections across the first two planes 
amount to a 180 degree rotation because the planes are assumed to make an angle of 90 degrees 
with each other. The third reflection then happens in a plane perpendicular to the axis of rotation, 
so an inversion is a special case of a rotoreflection in which the rotation angle is 180 degrees. When 
three mutually orthogonal planes gi, g2, and g3 are multiplied together under the geometric anti
product, the result is just the anti wedge product g1 v g2 v g3 that gives the point p where they in
tersect, and information about the original attitudes of the planes is not needed. Thus, the sandwich 
antiproduct - p 'i/ u 'i/ p performs an inversion operation. The exact calculations when u is another 
point q, a line /, and a plane g are listed in Table 3.8 for an inversion point with unit weight. 

Type Inversion Formula 

Point q - p 'i/ q 'i/ e = ( qx - 2qwPx ) e, + ( q_v - 2qwP_v ) e 2 + ( q, - 2qwp, ) e 3 - qwe4 

Line I 
- p 'i/ /Ve = - lvx e4l - Ivy e 42 - lvz e 43 

+ (l,w, + 2pzlvy - 2pylvz ) e 23 +(/my + 2 Pxlvz - 2 p, lvx ) e 31 + (/mz + 2 P/ vx 2pxlvy ) e, 2 

Plane g - p vgve = - g x e 423 - g y e 43 1 - g , e 412 +(2pxgx + 2pygy + 2p,g, + g w ) e 321 

Table 3.8. The point p = Px e1 + P_v e2 + p, e3 + e4 acts as an inversion operator for points, lines, and planes 
under the geometric antiproduct in three dimensions. This operator p is always unitized, and the geometries 
being inverted can have any weight. 

3.5.5 Transflection 

The last special case that we look at is a transfiection, which is also known as a glide reflection. A 
transflection is built from reflections across three planes configured such that two planes are parallel 
to each other and the third plane is perpendicular to the first two. The resulting isometry is the 
combination of the translation produced by the parallel planes and the reflection across another 
plane to which the translation is parallel. The order in which these two transformations occur does 
not matter, so we can multiply the translation operator T given by Equation (3 .90) by a unitized 
plane g in the order g 'i/ Tor T 'i/ g to obtain a transflection operator J. In both cases, we get 

I J =rxe, +rye2 +r, e3+g. 1 (3 .91) 

This operator does not translate along the direction r as might be expected, but it instead translates 
along the direction given by the cross product gxyz x r . As with the other operators, the translation 
distance is twice the magnitude of r. Since we assumed the plane g is perpendicular to the other 
two planes responsible for the translation, r is perpendicular to gxyz . This means that g_'J'Z x r is also 
perpendicular to gxyz and is still a translation parallel to the plane. Optimal calculations for trans
forming points, lines, and planes with a more general operator Fare provided in Section 3.7.3 be
low, and specialized versions for the operator J can easily be derived from them by setting F pw = 0. 

3.6 Motors 

In 3D space, a combination of any number of rotations and translations can ultimately be reduced 
to a single rotation about a specific axis combined with a translation along the direction of that same 
axis. The operator that performs this general motion, and thus performs any proper isometry in 3D 



3.6 Motors 

Rigid motor (3D) 

Euclidean space, is called a motor. The name motor is a portmanteau of "motion operator" or, in 
some historical contexts, "moment-vector operator". The set of all 3D motors is equivalent to the 
set of dual quaternions briefly introduced in Section 1 .4.4, but the functionality is properly gener
alized in projective geometric algebra so it applies to points, lines, and planes. Motors can also be 
formulated in any number of dimensions, and we will discuss the 2D case in Section 3.8. 

None of the operators described in this chapter, motors included, are actually necessary in order 
to perform rigid transformations of points, lines, and planes. We have already seen in Section 2. 7 
that any 4 x 4 transformation matrix that operates on points can be extended to an exomorphism 
matrix that operates on all types of geometries. Motors can perform only a limited subset of the 
transformations that a 4 x 4 matrix can perform, and they can often be more expensive when it 
comes to raw computation. Motors have advantages that include storage size, ease of parameteri
zation, and quality of interpolation that we will certainly highlight throughout thls section, but a 
grounded perspective demands that we be candid about their disadvantages as well. 

3.6.1 Motion Operator 

The general form of a motor Q is revealed when we use the geometric anti product to combine the 
rotation operator R given by Equation (3.86) with the translation operator T given by Equation 
(3.90), but under the condition that the displacement vector -r is parallel to the direction Iv of the 
rotation axis. These operators commute when -r and Iv are parallel, so the result is the same whether 
we calculate Q = R v T or Q = T v R. Setting to -r = <5 ( lvx, !VJ,, lvz ) and assuming the line / is unit
ized, we have 

Q = (/vx e41 + lvy e42 + lvz e43 + lmxe23 + lmye31 + lmze1 2) sin¢ 

+(/vx e23 +/V)' e31 + /vz e12 )<5 cos</)-<) sin </J + 11. cos¢. (3 .92) 

This operator has eight components, and they all have even grades. The bivector and antiscalar 
components of the rotation operator R are present, but there are additional terms that modify the 
line's moment and add a new scalar component. Upon recognizing that/* = -lvx e23 - /VJ' e31 - lvz e12 , 

the operator Q can be written more compactly as 

I Q =/sin¢ - / * <5 cos¢ -<5 sin¢+ 11. cos¢. I (3 .93) 

As shown in Figure 3.9, the operation Q v u v Q rotates the object u through the angle 2¢ about the 
line I and translates it by the distance 2<5 along-the line's direction Iv. 

Negating the values of both <5 and¢ causes the rotation and translation to occur in the opposite 
direction, whlch is exactly the operation that the inverse of the motor Q would perform. Since the 
cosine function is even, the antiscalar component of Q does not change when ¢ is negated. Since 
the sine function is odd, two negations happen in the scalar component, so it also doesn't change. 
Only a single sign change affects the six bivector components, however, so they are all negated 
when Q is inverted. Considering that a motor is conceptually the composition of reflections across 
planes, these particular negations are expected because it must be the case that Q- 1 = Q . 

A motor Q can be divided into two four-component parts and written generically as 

(3.94) 

Rotation Quaternion Moment and Displacement 

where the two-letter subscripts identify specific components. The subscripts vx, vy, vz, mx, my, and 
mz correspond to the same bivector components as they do for a line, where they are assigned to 
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u 

Figure 3.9. A motor Q represents a proper Euclidean isometry, which can always be regarded as a rotation 
about a line / and a displacement along the same line. 

the direction and moment. For a motor, these three-dimensional parts are extended to four dimen
sions by adding a w coordinate to each one. The antiscalar component is labeled vw, and it is asso
ciated with the line 's direction. The scalar component is labeled mw, and it is associated with the 
line's moment. The shorthand notation Qv means the 4D vector (Qvx, Qvy, Qvz, Q"'v ), and Qm means 
the 4D vector ( Q,,u-, Q111y, Q111z, Q111w ). These four-dimensional parts are the bulk and weight of Q, 
which we identify as 

(3.95) 

and 

(3.96) 

The weight Q0 contains information about the rotation performed by Q, and it can be regarded as 
a quaternion in which we equate i = e41 , j = e42 , and k = e43 . The bulk Q. contains a mixture of in
formation about the position of the rotation axis and the displacement along the axis. If the bulk is 
zero, then the operation performed by the motor is a rotation about an axis through the origin with
out any translation. The set of all motors with a bulk of zero is equivalent to the set of quaternions. 

The fact that every proper Euclidean isometry must be the result of an even number of reflec
tions across planes means that every motor must be the geometric antiproduct of an even number 
of antivectors representing those planes. That means the geometric constraint given by Equation 
(3 .73) applies, and it must therefore always be true that 

(3.97) 

When we expand the geometric antiproduct Q 'v g, we find that 

Q 'v g = 2 (Qvx Q11,x + QvyQmy + Qvz Qmz + Qv,vQmw ) 1 + ( Q;x + Q! + Q! + Q~v ) 11. (3 .98) 

To satisfy the geometric constraint, the scalar term here must be zero, which requires that 

(3.99) 
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This constraint is always satisfied by a motor having the form shown in Equation (3.93) as long as 
the line / satisfies the constraint for a line. The constraint for a motor is very similar to that of a line 
and only adds the additional term involving thew coordinates. 

If the scalar component Qmw is zero, then Q is called a simple motor. For this to be the case, 
we must have J sin¢= 0, so either the displacement distance J is zero, which would make Q a pure 
rotation like the operator R in Equation (3.86), or the rotation angle¢ is zero, which would make 
Q a pure translation like the operator Tin Equation (3.90) . An arbitrary motor Q can always be 
factored into a pair of simple motors corresponding to a rotation about an axis passing through the 
origin followed by a translation. This allows us to express Q as the product Q = T 'v R. The rotation 
factor R is just the weight of Q, shown in Equation (3.96). The translation factor T is found by 
multiplying Q by the inverse of R, which is just g0 . Doing so gives us 

T = Q 'v g o = ( QvyQmz - Qvz Qmy + QmxQv,v - QvxQmw ) e 23 

+ ( Qvz Q,nx - QvxQmz + QmyQv,v - QvyQmw) e 31 

+ ( QVX Qmy - Qvy Qmx + QmZQV\V - QVZ QIIIW) el 2 + n. (3.100) 

A motor can always be constructed as the composition of a rotation and translation, and this is 
similar to how the equivalent 4 x 4 matrix is built from the rotation in its upper-left 3 x 3 portion and 
the translation in its fourth column. The particular details of both methods are shown side by side 
in Comparison Chart #3. 

If Q is a simple motor, then the six bivector components are exactly the components of the line 
about which a rotation occurs, and they can be read off directly. This is true when J = 0 because the 
adjustment to the moment shown in Equation (3.92) is zero. In this case, the extracted line would 
need to be unitized because it is multiplied by sin¢. If Q is a simple motor because¢= 0, then the 
three bivector components that exist can be interpreted as a rotation about the line at infinity given 
by the term-/* Jin Equation (3.93). If Q is not a simple motor, then the six bi vector components 
still represent the line about which the rotation occurs, but the line is not unitized, and it does not 
satisfy the geometric constraint. In this case, we need to apply Equation (3.78) to fix everything up. 
The orthogonalization of the moment has the effect of removing the adjustment of-/* J cos¢ in 
Equation (3.93), and we recover the original line/. 

The bulk norm and weight norm of a motor Q are given by 

(3.101) 

and 

(3 .102) 

For flat geometric objects, the geometric norm given by the ratio of the bulk norm to the weight 
norm is equal to the distance between the object and the origin. The geometric norm of an operator 
has a different interpretation, but once we find out what it means, it will make sense to apply that 
meaning to flat objects as well. First, given an arbitrary motor Q, we can factor out the weight so 
we're able to assume that Q is unitized. That allows us to put Qin the form of Equation (3.92) and 
assume that the line I is unitized because ( (;x + I~ +I! ) sin 2 ¢ + cos2 ¢ = 1. Now we only need to 
worry about deciphering the meaning of the bulk norm given by Equation (3.101). When we sub
stitute the component values from Equation (3.92) corresponding to Q,nx, Q111y, Qmz, and Qmw into the 
squared bulk norm, we have 

IIQII! = ( l,nx sin ¢ + lvxb cos¢ )2 + ( lmysin ¢ + lvyb cos¢ )2 + ( lmz sin¢+ lvzo cos¢ )2 
+ J2 sin 2 ¢. (3 .103) 
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Construct an operator that performs a rotation through the 
angle ¢ about the line containing the point p and running 
parallel to the normalized direction vector v followed by a 
translation along the displacement vector d. 

Conventional Methods 

Break the operation into three parts that will 
each have an associated 4 x 4 matrix: 

(a) Translate by -p so the line passes through 
the origin. 

(b) Rotate through the angle ¢ about the 
direction v. 

( c) Translate by p + d to move the line back 
to its original position and apply the 
displacement d. 

Let R be the upper-left 3 x 3 portion of the 
transformation matrix corresponding to part (b ). 

When an arbitrary vector u is rotated about the 
direction v, the component u11 v parallel to vis 
unchanged. The rotation is applied only to the 
perpendicular component U1-v, and the 
transformed vector u' is given by 

u' = U ll v + U 1_v COS c/J + ( V X U1-v) sin c/J . 

Using U 11 v = ( u · v) v and U 1_v = u - U 11 v, this 
expands to 

u' = u cos¢+ ( u · v) v (I-cos¢)+ ( v x u) sin¢, 

and the equivalent matrix operating on u is 

R = I cos ¢ + vv T ( 1 - cos ¢) + [ v L sin ¢ . 

The full 4 x 4 transformation M is then 

p;d][: ~][: -rJ 
p+d-Rp] 

1 ' 

where the product corresponds to parts (a), (b), 
and ( c) from right to left. 

Geometric Algebra 

Calculate I = p /\ v as the line about which the 
rotation occurs. 

The rotation through the angle ¢ about the line / is 
performed by the operator 

R = I sin <J!... + n cos <J!.... 
2 2 

The translation by the displacement vector d is 
performed by the operator 

dx dy dz 
T=-e23 +-e31 +-e12 +n. 

2 2 2 

The full transformation is then Q = T 'v R. 
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Expanding all of the squared quantities and applying the properties/; = 1 and Iv • Im = 0 possessed 
by the line simplifies this expression to 

(3 .104) 

We can recognize right away that the term <'.5
2 is the square of half the translation distance along the 

axis ofrotation, but figuring out what distance the term I! sin 2 ¢ represents takes a little more work. 
The value of I! is the squared distance between the axis of rotation and the origin, so we really just 
need to make sense out of the sin 2 ¢ factor. We start by employing the trigonometric identity 

sin 2 ¢ = .!_ ( 1 - cos 2¢) = .!_ ( 2 - 2 cos 2¢), 
2 4 

(3.105) 

and then we use a small trick to transform the rightmost expression into something easier to inter
pret. We replace the standalone value of 2 with sin 2 2¢ + cos 2 2¢ + 1, and that lets us write 

sin 2 ¢ = .!_ ( sin 2 2¢ + cos 2 2¢ + 1 - 2 cos 2¢) 
4 

= ¾ [ sin 2 2¢ + ( 1 - cos 2¢ )2 ] . (3.106) 

As shown in Figure 3 .10, if we set r = .Jif:, then r sin 2¢ and r ( 1- cos 2¢) are the side lengths in 
a right triangle for which the length of the hypotenuse is the distance that the origin o is moved by 
a rotation through the angle 2¢ about the line /. The value of I! sin 2 ¢ is therefore the square of half 
that distance due to the factor ofl/ 4. This corresponds to half the distance the origin is moved in 
the directions perpendicular to /, and the other term <'.5

2 appearing in Equation (3.104) corresponds 
to half the distance the origin is moved in the direction parallel to /. We come to the conclusion that 
the geometric norm of a motor Q is equal to half the total distance that the origin o is moved by the 
operation Q 'ii o 'ii g. 

r = ll lm ll 

o' 

r (1- cos 2cp) 

Figure 3.10. A rotation through the angle 2¢ about the unitized line/ moves the origin along the hypotenuse 
of the right triangle having side lengths r sin 2¢ and r ( 1- cos 2¢ ), where r =[[ Im[[. 

147 



148 Chapter 3 Rigid Transformations 

If we plug the angle¢= n/ 2 into the operator R =/sin¢+ n cos¢, then the antiscalar term van
ishes, and we are left with R = /. Since the rotation goes through twice the angle¢, a line by itself 
with no additional terms corresponds to a 180-degree rotation. We mentioned earlier that the inter
pretation of the geometric norm of an operator would also make sense if it were to be applied to a 
flat geometry. In a 180-degree rotation, the origin would be moved to the opposite side of the line, 
and the total distance that it moved would be twice the distance between the line and the origin. 
The same thing happens when the origin is reflected across a plane or inverted through a point. 
Thus, we can say that the geometric norm of any flat geometry can be interpreted both as the dis
tance between the origin and the geometry and as half the distance that the origin is moved when 
the geometry is used as an operator in a sandwich antiproduct. 

3.6.2 Parameterization 

A motor Q can be expressed as the exponential of a unitized line / multiplied by the dual number 
Jl + ¢n, where¢ continues to represent half the angle of rotation about the line /, and J is half the 
displacement distance along the line /. Toe exponential is evaluated with respect to the geometric 
antiproduct, which can be written as 

expv [ ( Jl + ¢n) 'i/ I]= COSv (bl+ ¢n) + sinv ( o1 + ¢n) V/ I . (3.107) 

This expansion into sine and cosine terms can be verified by looking at the power series for the 
exponential and using/ 'i/ / = -n. (Keep in mind that any quantity raised to the zero power is the 
multiplicative identity, which is n in this case.) Using the formulas for sine and cosine of a dual 
number with respect to the antiproduct in Table 3.4, this expands to 

expv [ ( Jl + ¢n) 'i/ /] = -Jl sin¢+ n cos¢+ ( Jl cos¢+ n sin¢) 'i/ I. (3.108) 

By Equation (3.63), we know that the weight dual of/ is equal to [ 'i/ 1. Since the antireverse of/ is 
its negative and I commutes with scalars under the geometric antiproduct, we have 1 'i/ I=-/*. With 
this substitution, the exponential now produces 

expv [( Jl + ¢n)'i/ /]=I sin ¢-/*J cos¢-J sin¢+ ncos ¢, (3.109) 

which is exactly the same form of a motor that's written in Equation (3.93). Toe quantity J l + ¢n is 
sometimes called the dual angle. When interpreted as a homogeneous magnitude in which Jl is the 
bulk and ¢n is the weight, it is the pitch of the screw transformation performed by the motor, which 
is the amount of translation along the screw axis per radian of rotation. 

The line / that defines the axis of rotation and the scalar values J and ¢ that define the distance 
and angle through which an object is moved make up a full parameterization of a motion operator. 
Given the eight components of a generic motor as shown in Equation (3.94), we would often like 
to be able to work backwards and discover the parameters to which the motor corresponds. This 
process essentially takes a logarithm because we are calculating the information in the exponent of 
the expression expv [ ( Jl + ¢n) 'i/ I]. 

If we are given an arbitrary unitized motor Q, then the first thing we do is negate all terms if 
necessary so that Qvw ~ 0. We are allowed to do this because everything is homogeneous in the 
projective space, and negating has no effect on the actual transformation that Q performs. Next, we 
examine the scalar and antiscalar components because they must satisfy 

Qmw = -J sin ¢ and Qv,v = cos ¢. (3.110) 

In the case that Q V\v = l, the angle ¢ is zero, and the motor represents a pure translation. When this 
happens, we simply read the half-displacement vector r off of the e23 , e31 and e12 components. 
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Otherwise, if Qv,v < 1, then there must be some rotation involved. We can assume that the angle¢ is 
in the range ( 0, n/ 2] because a motor rotates through the angle 2¢, and a rotation through a negative 
angle about the line / is equivalent to a rot~ough a positive angle of the same size about the 
line-/. We can now calculates= sin¢= ✓1 -Q:W, which cannot be zero because Qv,v < 1, and then 
determine the values of J and ¢ using the relationships 

J = - Qmw and ¢ = tan - 1 ( - s-J. 
s Q,,w 

(3.111) 

If Qv,v = 0, then we assign¢ = n/ 2 as the angle having an infinite tangent. The components of line 's 
direction Iv are easy to recover because they are simply multiplied by sin¢ in Equation (3 .109), so 
we have 

(3.112) 

The line 's moment lm needs to be orthogonalized with Equation (3 .78), but we can use I~ = 1/ s 2 and 
the motor constraint given by Equation (3.99) to write it as 

/ = _!_ ( Q + Qv,vQmw Q ) m mxyz 2 vxyz • 
s s 

(3.113) 

The ability to extract the parameters J, ¢ , and I from a motor Q gives us everything we need to 
continuously interpolate between two motors. The rotation and translation information contained 
in a motor can be used to describe the position and attitude of an object in space just like a 4 x 4 
matrix can, so motor interpolation provides a method for smoothly moving from one position and 
attitude to another. Given that we want to interpolate from a motor Q1 to a motor Q2, we don 't start 
with the parameters of Q 1 and interpolate directly to the parameters of Q2. Instead, we calculate 

(3.114) 

and determine the parameters J, ¢, and l for the motor Q0. Multiplying by the inverse of Q1 has the 
effect of factoring out the initial position and attitude so that the origin and coordinate axes start 
where they would be transformed to by Q 1. Once we have Q0, we interpolate from JI. (the identity) 
to Q0 by interpolating the translation distance from Oto J and the rotation angle from Oto¢ in order 
to construct an intermediate motor Q ( t) representing a screw motion about the line /. Finally, we 
multiply by Q, to reestablish the initial position and attitude to which Q ( t) is relative so that the 
intermediate motor between Q 1 and Q 2 is given by Q ( t) 'i/ Q1. 

During the interpolation, the value oft ranges from 0 to 1, and it is inserted into the exponential 
form of a motor to give us 

Q ( t) = expv [ t ( Jl +¢JI.) 'i/ l ] = I sin ( t¢) - l* t<) cos ( !¢) - tJ sin ( t¢) +JI.cos ( t¢) . (3.115) 

The rate at which t varies over time can be constant, or it can be any other function that produces 
the desired motion for some specific application. For example, the function t ( u) = 3u 2 

- 2u 3, which 
is known as the smoothstep function, begins and ends slowly as u varies from 0 to 1 at a constant 
rate. This function is one of many that is commonly used to "ease in" and "ease out" an animation 
from one position and attitude to another. Of course, the rate at which the parameter t varies deter
mines the rate at which the parameters J and¢ vary. If t varies at a constant rate, then the interpo
lated motion between two motors Q1 and Q2 consists of a rotation and translation at a constant rate 
as well. 
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While the method of interpolation just described produces perfect results , the work involved in 
using Equations (3 .111), (3 .112), and (3.113) to extract the parameters ofQ2 'i1 Q1 and then using 
Equation (3 .115) construct an intermediate motor can be computationally expensive. One of the 
most common applications of motor interpolation appears in real-time 3D graphics and is called 
dual quaternion skinning. Character models are often constructed out of a tree hierarchy of rigid 
nodes called bones covered by a polygonal mesh that could contain many thousands of vertices. 
Each bone has a transform representing its position and attitude relative to the root of the model 
tree, and each vertex in the mesh has a position that is influenced by the current transform of one 
or more bones. As the model is animated and the bones move, every vertex position needs to be 
recalculated over and over using a weighted blend among potentially several different bones, and 
this requires interpolating among several different bone transforms. 'Irus interpolation can be per
formed very cheaply by blending the entries of 4 x 4 matrices, but this often leads to visual artifacts 
because the intermediate matrices can stray very far from a state in which the upper-left 3 x 3 portion 
is orthogonal. Motor interpolation does not suffer from this problem because the motor generated 
by Equation (3 .115) is always unitized and always satisfies the geometric constraint. Interpolated 
motors tend to preserve volume in cases where interpolated matrices cause a mesh to collapse. 

The computational expense of interpolating motors thousands of times can be reduced signifi
cantly if we're willing to sacrifice the exact proportionality between the interpolation parameter t 
and the motor parameters <5 and¢. A simple interpolation of the individual components of two unit
ized motors Q1 and Q2 produces an intermediate motor that is approximately correct. To make sure 
the interpolation follows the shortest path, it is standard practice to first negate either Q1 or Q2, if 
necessary, so that Q1 ° Q2 is nonnegative. The approximate motor Q ( t) is then given by 

(3.116) 

Unless t = 0 or t = 1, this motor is not unitized, and it does not satisfy the geometric constraint given 
by Equation (3.99), so we need to make some adjustments to get it into a valid form matching 
Equation (3 .93). The process is virtually identical to the one used in Section 3.4.3 to fix a line, 
except this time, we divide by the square root of 

(3.117) 

This dual number contains exactly the information needed to unitize the motor and adjust Qm so its 
orthogonal to Qv as a four-dimensional vector. The inverse square root of Q 'i/ g is 

(3 .118) 

and multiplying Q by it gives us 

(3.119) 

If we unitize the interpolated Q ( t) first, then we just need to subtract 

(3.120) 

from the four bulk components, and we're good to go. 
An interpolated motor Q ( t) calculated with Equation (3 .116) and fixed up with Equation 

(3 .119) is exactly the same as an interpolated motor calculated with Equation (3 .115) when t = O, 
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Square root of 
general motor 

Square root of 
simple motor 

t = 1, and t = 1/2. Otherwise, the interpolation is a little slow near t = 0 and t = 1, and it's a little fast 
near the middle where t = 1/ 2. The exact match at t = 1/2 gives us an efficient way to calculate the 
square root of a motor Q because we can use Equation (3.119) to fix up a motor that is halfway 
between the identity and Q. We can even drop the halves in the expression½ Q + ½ n because any 
scale will be divided out by Equation (3 .119). 

Suppose Q is a unitized motor that satisfies the geometric constraint, and let R = Q + n. Then 
the square root of Q with respect to the geometric anti product must be given by 

(3.121) 

Since Q; = 1, the value ofR; is given by 

(3.122) 

and since Qv · Qm = 0, the value ofRv · Rm is given by 

(3.123) 

When we plug these into Equation (3.121), we have 

'4Q_ = R 'i/ ( - Qmw l+n). 
✓2 + 2Qvw 2 + 2Q,,w 

(3.124) 

Substituting Q + n for R and using the compact notation Q1 and Qn for the scalar and antiscalar co
ordinates, we can write the formula for the square root of a general motor Q as 

W = Q+n 'i/ ( n- Qi 1). 
✓2 + 2Qn 2 + 2Qn 

(3.125) 

If Q is a simple motor, then Q1 = 0, and this reduces to 

(3.126) 

where we have replaced ✓2 + 2Qn by the weight norm of R. This equation tells us that we can find 
the square root of a simple motor by just adding n and unitizing the result. 

3.6.3 Line to Line Motion 

A line is not only a geometric object but also a motion operator that performs a 180-degree rotation 
about itself. We can find an operator that transforms a line k into a line / by first considering the 
quotient I 'ii 15 because this is the operator that interpolates between a rotation about k and a rotation 
about I. When we calculate I 'ii 15 , we get 

/ 'ii 15 = ( lvz kvy - lvykvz ) e41 + ( lvz kmy - lvy km, + l1112 kvy -1,,,ykvz ) e23 

+ ( lvxkvz -fvz kvx ) e 42 + ( fvxkmz -lvz kmx + lmxkvz -/,,,,kvx ) e 31 

+ ( lvykvx - lvxkvy ) e43 + ( lvyknu - lvxkmy + lmykvx - l,,ukvy ) e1 2 

+ ( lvxk/llX + lvykmy + lvz km, + lmxkvx + lmykvy + l,nzkvz ) 1 + ( lvxkvx + lvykvy + lvz kvz ) n. (3.127) 
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Comparing against the standard form of a motor shown in Equation (3.93) tells us several things 
about this operator. Assuming that the lines are both unitized, the antiscalar coordinate Iv • k v is the 
cosine of the angle¢ between the lines' directions, and this matches the antiscalar term in Equation 
(3.93). The scalar coordinate Iv· km+ lm · k v shows up in the formula for the distance J between 
two lines, listed in Table 2.15 , and it must be scaled by the sine of the angle between the lines. This 
matches the scalar term in Equation (3.93). Finally, the direction stored in the e41 , e42, and e43 terms 
is equal to k x /. This is the direction in which the axis of rotation runs and it must be perpendicular 
to the directions of both k and /. 

Let f be the line representing the axis of rotation for the motor/ 'ii 15 . To determine the position 
off, we need to extract the bi vector terms from / 'ii 15 and apply Equation (3 .78) to unitize them and 
enforce the geometric constraint. The line f is then given by 

(3.128) 

where we have assigned b = ( /'ii 15 )2 . A tedious calculation that we do not reproduce here demon
strates that f /\ k = 0 and f /\ / = 0, which means that the distance between the line f and each of the 
lines k and / is zero. Therefore, f intersects both lines, and because the f also runs perpendicular to 
both lines, it can only pass through the points of closest approach lying on k and /, as shown in 
Figure 3.11. 

The information that we've extracted from Equation (3 .127) reveals that/ 'ii 15 is an operator 
that performs a rotation through an angle 2¢ about the line f combined with a translation along that 
line by a distance 2J. This is exactly double the motion necessary to move the line k so that it is 
coincident with the line /. We conclude that the operator that transforms a line k into the line / is 
given by the square root of I 'ii 15, which has the same axis of rotation f, but only rotates through the 
angle¢ and translates by the distance J . 

f 
I 

Figure 3.11. The line f is the axis of rotation for the operator/ V ~ . given by Equation (3 .128). It is perpen
dicular to both the lines k and I, and it passes through the points of closest approach lying on k and /. 

3.6.4 Matrix Conversion 

The sandwich anti product Q 'ii p 'ii Q is a linear transformation of the point p by the motor Q, and 
expressing it as a matrix-vector product is a very straightforward process. All we have to do is write 
each component the transformed point in terms of its original coordinates and read off the coeffi
cients multiplying Pxe1, pye2, p , e3, and Pwe4 . Since Q- 1 = Q, the only difference between a motor 
and its inverse is that the bivector components are negated, s-o the matrices corresponding to Q and 
Q- 1 are very similar. In fact, we can construct two matrices for any motor Q in such a way that their 
sum corresponds to Q and their difference corresponds to Q- 1

. 

Given a specific unitized motor Q, we define the matrices AQ and BQ as 



3.6 Motors 

1-2(Q; +Q! ) 2QvxQry 2Qvz Qvx 2 ( QryQmz -Qvz Qmy ) 

AQ= 
2QvxQry 1- 2 ( Q! + Q;x ) 2QryQvz 2 ( Qvz Q,nx -Qvx Qmz ) 

(3 .129) 
2QvzQvx 2QryQvz 1 - 2 ( Q;x + Q; ) 2 ( QvxQmy - QryQmx ) 

0 0 0 1 

and 

0 -2QVZ QV\V 2QryQviv 2 ( Qvi,,Qmx - Qvx Qmw) 

2QVZ QV\V 0 -2QvxQviv 2 ( QvivQmy - QryQmw) 
BQ = (3.130) 

-2QryQviv 2QvxQviv 0 2 ( QvivQmz - Qvz Qmw ) 

0 0 0 0 

where we have used the fact that Q;x + Q; + Q! + Q;.., = 1 in the diagonal entries of AQ. Then the 
4 x 4 matrix MQ that transforms a point p, regarded as a 4 x 1 column matrix, in the same way that 
it would be transformed by the motor Q is given by 

MQ = AQ + BQ. (3.131) 

That is, MQP = Q 'i/ p 'i/ g. Toe inverse of MQ is given by 

MQ1 = AQ - BQ, 

and this is related to Q by the equation MQ1P = Q 'i/ p 'i/ Q. 

(3 .132) 

Toe matrix MQ and its inverse are 4 x 4 matrices each having a fourth row equal to [ 0 0 0 1 ], 
which is to be expected since Q performs a rotation and translation. These matrices can be extended 
to full 16 x 16 exomorphism matrices as described in Section 2. 7 in order to transform lines and 
planes. In the case of planes, however, the third compound matrix of MQ is always equal to its 
inverse transpose, so a plane g, regarded as a 1 x 4 row matrix, can simply be transformed through 
right multiplication by MQ1

. That is gMQ1 = Q 'i/ g 'i/ Q. 
Going the other way and converting a 4 x 4 matrix M into a motor Q is more difficult. Toe 

method described here is similar to the conversion from a 3 x 3 matrix to a quaternion described at 
the end of Section 1.4.2, but it is extended to include the calculation of the four additional compo
nents ofQm. We start by assuming that M represents nothing more than a rotation and translation, 
which means it has the form 

(3 .133) 

where the upper-left 3 x 3 portion is orthogonal, and the determinant is + 1. By equating the entries 
of M to the entries of AQ + BQ given by Equations (3 .129) and (3. 130), we can construct many 
relationships that can be used to determine the components of the corresponding motor Q. For the 
diagonal entries of M, we have the four relationships 

Moo - M 11 - M 22 + 1 = 4Q;x 

M11 -M22 -Moo +1=4Q; 

M 22 -Moo -M11 +1=4Q! 

Moo +M11 +M22 +1=4(1-Q;x -Q; -Q! )=4Q~v, (3.134) 
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and for the off-diagonal entries of M , we have the six additional relationships 

M21 + M1 2 = 4QvyQvz 

M o2 + M 20 = 4QvzQvx 

M 10 + M o1 = 4QvxQvy 

M 21 -M12 =4QvxQVIV 

M o2 - M 20 =4QvyQVIV 

M 10 -Mo1 =4Qvz Q,,w. 

If M oo + M 11 + M 22 ~ 0, then we calculate 

Q.,,v = ±!:._.JMoo +M11 +M22 +l , 
2 

(3.135) 

(3.136) 

where either sign can be chosen. In this case, we know IQ"'vl is at least 1/2, so we can safely divide 
by 4QV\V in the last three off-diagonal relationships shown in Equation (3 .135) to solve for Qvx, Q,y, 
and Qvz . Otherwise, if M 00 + M 11 + M 22 < 0, then we select one of the first three diagonal relation
ships in Equation (3 .134) based on which diagonal entry M00 , M 11, or M 22 bas the greatest value 
and calculate Qvx, Qvy, or Qvz. The result is plugged into two of the first three off-diagonal relation
ships to solve for the other two values of Qvx , Qvy, and Qvz . Finally, we plug it into one of the last 
three off-diagonal relationships to solve for Q"",. 

After the four components ofQ v have been calculated, determining the four remaining com-
ponents of Qm is relatively easy. The values of Qmx, Qmy, Qmz, and Qmw are given by 

Q,,,x =½(Q"'vfx +Qvz ly -Qvylz ) 

Qmy = ½( QV\Vt y + Qvxl z - Qvz l x ) 

Qmz = ½ ( Q"'vf z + Qvylx -Qvxl y ) 

Qmw =-½(Qvxlx + Qvyly + Qvz lz ), (3.137) 

where t x = M 03, t Y = M 13, and t z = M 23 are the entries of M corresponding to the translation. 

3.6.5 Implementation 

The reasons that one would use motors instead of the equivalent 4 x 4 matrices include the smaller 
storage size, the ease of parameterization, and trivial invertibility. A 4 x 4 matrix requires storage 
for 12 floating-point numbers because its fourth row is always [ 0 0 0 1]. Because we are consid
ering matrices that have equivalent motor representations, we can assume that the upper-left 3 x 3 
portion of the matrix is orthogonal and bas a determinant of+ l. If minimum storage space is our 
goal, then we don't need to store the third column of such a matrix because it must be equal to the 
cross product of the first two columns. We can get away with storing only 9 floating-point numbers, 
and the third column can be reconstituted whenever we need to perform calculations. By compari
son, a motor requires storage for 8 floating-point numbers, but this can also be reduced by consid
ering unitization and the geometric constraint. Since Q and - Q represent the same transformation, 
we are free to negate so that Q"'v ~ 0. Then, we don't need to store the value of Q"'v for a unitized 
motor Q because Q~ = 1, and the value of Q"", can always be calculated with 

(3.138) 

The geometric constraint requires that Q v · Qm = 0, so we also don't need to store the value of Qmw 
because it can always be calculated with 
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Motor-point 
transformation 

(3.139) 

Thus, it is possible to store only 6 floating-point numbers for motor, which is two-thirds the space 
required for the equivalent matrix. However, the cost of reconstituting the Qvw and Q,,,w is rather 
significant due to the square root and division involved. 

Computational performance is a major consideration for most applications, and this is unfortu
nately an area in which motors do not shine. There are tricks that we can use to optimize a direct 
implementation of the sandwich antiproduct Q 'i/ p 'i/ Q, but the best results we can achieve will still 
be more than twice as expensive as a conventional matrix-vector multiplication. Due to this limi
tation and the fact that matrices are capable of providing a much larger set of linear transformations, 
motors should not be viewed as a wholesale replacement for matrices, but only as a specialized tool 
for purposes that benefit from their advantages. 

A close examination of the sandwich anti product Q 'i/ p 'i/ Q reveals some redundancies that we 
can exploit to minimize the total number of floating-point operations necessary to implement it. 
When a point p is transformed into the point p' by the motor Q, the point 's w coordinate is not 
modified, and the transformation of its x, y , and z coordinates can be written as 

Here, we have assigned v = ( Qvx , Qvy , Qvz ) and m = ( Q,,ix , Q,,,y, Q,,,z ) for convenience, and all bold 
quantities are being treated as ordinary 3D vectors. We first apply the vector triple product identity 

(3.141) 

in order to expose a reusable cross product. Equation (3 .140) now becomes 

(3.142) 

After a little refactoring, we can rewrite this as 

p~,z = P,ryz + 2 [Q,,,v ( v x p,ryz + PwID ) + V X ( v x p,ryz + PwID )-Q111wPwV ], (3 .143) 

which shows that we can take advantage of an even larger reusable subcalculation given by 

a= V X p,ryz + PwID. (3.144) 

The entire transformation is now reduced to 

I 

Pw = Pw· (3.145) 

Calculating the vector a requires 9 combined multiply-add operations, and then calculating p~ 
with Equation (3 .145) requires 16 more for a total of 25 multiply-add operations ( or 22 multiplies 
and 21 separate adds if the multiplication by two is turned into an addition). When it is known that 
Pw = 1, four multiplies are eliminated, and the total computational cost is 21 multiply-add opera
tions. Toe matrix product MQP, however, requires only 12 multiply-add operations in general, and 
this is reduced to 9 when Pw = 1. If many points are to be transformed by a motor, then it is much 
better for performance to convert the motor to a matrix first and use matrix multiplication. 

For the transformation of a line /, we look at the direction and moment of the sandwich anti
product Q 'i/ / 'i/ g separately. Toe direction of the transformed line /' is given by 
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(3 .146) 

where v and m continue to have the same meanings as above. This is the same as Equation (3.140) 
with p X)'Z = Iv and Pw = 0, so we can apply the same vector triple product identity and jump straight 
to the optimal calculation 

I I~ =Iv +2(Q"'.,a+v x a) , I 

where a= v x Iv. Toe moment of the transformed line I' is given by 

I~ = Im + 2 [ Qmw ( V X Iv)+ Q""' ( m X Iv + V X Im)+ ( V • Im ) V - v2 Im 

+ ( m · Iv) V + ( V · Iv) m -2 ( V • m) Iv]. 

(3.147) 

(3.148) 

To simplify this formula, we apply the vector triple product identity three times, allowing us to 
make the substitutions 

( V • Im ) V - v 2 Im = V X ( V X Im ) 

( m ·Iv) V -( V . m) Iv = m X ( V X Iv) 

( v ·Iv) m - ( v · m) Iv = v x ( m x Iv). (3.149) 

It is now possible to reuse the cross products a= v x Iv, b = v x Im, and c = m x Iv, and we can write 
the transformed moment as 

(3.150) 

Calculating I~ requires 12 multiply-adds (or 9 multiplies and 12 separate adds), and calculating I~ 
requires 24 multiply-adds (or 21 multiplies and 24 separate adds). Thus, transforming a line with a 
motor requires a total of 36 multiply-add operations. Toe 6 x 6 matrix that performs the same trans
formation requires only 27 multiply-adds, however, because nine of its entries are always zero. 

For the transformation of a plane g, we look at the normal and position of the sandwich anti
product Q 'ii g 'ii g_ separately. Toe normal of the transformed plane g' is given by 

(3 .151) 

Once again applying the vector triple product identity ( v · gX)'Z ) v - v2gX)'Z = v x ( v x gX)'Z ), we can 
now write 

(3.152) 

where a= v x gX)'Z . No special tricks can be applied to the transformed w coordinate. After grouping 
terms, it is given by 

(3.153) 

Calculating g~ requires 12 multiply-adds (or 9 multiplies and 12 separate adds), and calculating 
g;, requires 17 multiply-adds (or 16 multiplies and 10 separate adds). The total count for transform
ing a plane with a motor is thus 29 multiply-add operations. However, the same transformation can 
be accomplished using a 4 x 4 matrix with only 13 multiply-adds. 
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Aside from the computational cost of transforming points, lines, and planes with a motor, we 
are interested in the cost of composing multiple operations. The geometric antiproduct of two mo
tors Q and R is given by 

Q 'i/ R = ( Q ,,wR vx + Q vx R -.,,.v + Q vy R vz - Q vz R vy ) e 41 

+ ( Q ..,,.vR vy - Q vx R vz + Q vyR = + Q vz R vx ) e 42 

+ ( Q -.,,.vR vz + Q vx R vy - Q vy R vx + Q vz R -.,,.v ) e 43 

+ ( Q -.,,.vR -.,,.v - Q vxR vx - Q vyR vy - Q vz R vz ) 11 

+ ( Q mwR vx + QmxRv,v + Qmy R vz - QmzR vy + Q ,,..vRmx + Q vx Rmw + Q vyRmz - Q vz R my ) e 23 

+ ( QmwR vy - Q mxR vz + Q myR -.,,.v + QmzR vx + Q -.,,.vRmy - Q vx R mz + Q vyR,mv + Q vz R11u ) e 3 I 

+ ( Q,mvR vz + Q mxR vy - Qmy R vx + Q mz R v,v + Q -.,,.vRmz + Q vx Rmy - Q vy R11u + Q vz Rmw ) e 12 

+ (QmwR -.,,.v -QmxR vx -Qmy R vy -QmzR vz + Q v,vRmw -Qvx R mx -Qvy R my -Qvz R mz ) 1. (3.154) 

Calculating the eight components of the result requires 48 multiply-add operations. This is signifi
cantly higher than the cost of multiplying the equivalent 4 x 4 matrices together, which requires 
only 36 multiply-add operations. This can be reduced to 33 by exploiting the orthogonality of the 
matrices and computing the third column of the result with the cross product of the first two col
umns instead of the three dot products involved in the matrix multiplication. 

Generalizing to an n-dimensional projective algebra corresponding to an ( n -1 )-dimensional 
Euclidean space, a motor has 2"-1 components over the basis elements with even antigrade. The 
product of two motors thus involves the multiplication of22

"-
2 individual pairings of scalar coeffi

cients, where one comes from the first motor and the other comes from the second. Exactly one 
quarter of these individual multiplications can be skipped because the result is identically zero. This 
is due to half of the components of each motor not having a factor of the projective basis vector e,, 
and the anti product of two such components being zero. The product of two motors thus requires 
exactly ¾ ( 2211

-
2

) = 3 . 22
" -

4 multiply-add operations. By comparison, the product of two n x n ma
trices having a bottom row of [ 0 0 • • • 1] requires at most n ( n -1 )2 multiply-add operations be
cause the calculation of each entry in the ( n -1) x n portion that excludes the bottom row requires 
n -1 multiply-adds. The orthogonality of the upper-left ( n -1) x ( n -1) portions of the matrices 
allows further optimizations in Euclidean spaces of two and three dimensions where n = 3 and 
n = 4. The second column of any 2 x 2 rotation matrix with first column ( x, y ) must be ( - y, x ), so 
it does not need to be calculated separately, and four multiply-adds can be saved in then= 3 case. 
As already mentioned, three multiply-adds can be saved in then= 4 case because the third column 
of a 3 x 3 rotation matrix must be equal to the cross product of the first two columns. Table 3.9 
shows a comparison between the computational costs of composing motors and the equivalent 
matrices in projective algebras having two to five dimensions, which corresponds to Euclidean 
spaces having one to four dimensions. The cost of composing matrices is always less than the cost 
of composing motors. 

Math Library Notes 

• The Mot o r 3D class stores the eight components of a 3D motion operator as a pair of Quaternion objects 
named v and m. 

• The * operator can multiply motors by other motors or by quaternions with the geometric antiproduct. 

• The Tr ansform() function takes a Flatpoint3D, Point 30, Line 30, or Plane 3D object as its first 
parameter and a Mot or3D object as its second parameter. It performs the motor transformation with the 
optimized formula and returns a result having the same type as the first parameter. 
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• The Mot or3D class has a GetTran sfo r mMatrix () member function that calculates a 4 x 4 matrix with 
Equation (3.131) and returns it as a Tr ansform3D object. 

• The Mot or3D class has a SetTr ansformMatrix () member function that accepts a Transform3D object 
as its parameter. It converts the matrix to a motor using the method described in this section. The code 
assumes that the upper-left 3 x 3 portion of the input is a true rotation matrix, meaning that it is orthog
onal and has a determinant of+ 1. 

Projective Dimension Motor Composition Matrix Composition 

n=2 3 2 

n=3 12 8 

n=4 48 33 

n=5 192 80 

Table 3.9. This is a comparison of the number of multiply-add operations required by motor composition and 
equivalent matrix composition in n-dimensional projective algebras corresponding to ( n - I )-dimension 
Euclidean spaces. The motor-motor product requires 3 • 22

n-
4 multiply-adds, and the matrix-matrix product 

requires at most n ( n - ] )2 multiply-adds. Four multiply-adds are subtracted for n = 3 because the second 
column of a 2 x 2 rotation matrix with first column ( x, y ) must be ( -y, x ), and it does not need to be calcu
lated separately. Three multiply-adds are subtracted for n = 4 because the third column of a 3 x 3 rotation 
matrix can always be calculated as the cross product of the first two columns. 

3.7 Flectors 

Motors correspond to transformations that can be built from an even number of reflections across 
planes and thus perform a proper Euclidean isometry. Transformations built from an odd number 
of reflections across planes perform improper Euclidean isometries because they each have an extra 
reflection that causes a mirroring in some way. In 3D space, every improper isometry can ultimately 
be reduced to a single rotation about a specific axis combined with a reflection across a plane per
pendicular to that same axis. The operator that performs this general motion, and thus performs any 
improper isometry in 3D Euclidean space, is called afiector. As the name motor is derived from 
"motion operator", the name flector is a portmanteau of "reflection operator". 

3.7.1 Reflection Operator 

When we introduced motors, we combined the rotation operator R from Equation (3 .86) with a 
translation along the direction of the rotation axis. To construct a flector, the translation is replaced 
with a reflection across a plane g that's perpendicular to the rotation axis /, and this is illustrated in 
Figure 3.12. A comparison of Figures 3.9 and 3.12 highlights bow choosing a translation or reflec
tion aligned to the rotation axis is the only thing that differentiates between proper and improper 
isometries in 3D space. The operators R and g commute when g is perpendicular to the line /, so it 
doesn't matter in which order they are multiplied to construct a flector F. When we equate gxyz = Iv 
and assume that both R and g are unitized, the product R 'ii g yields 

F = (g v / )sin¢+ g cos¢. (3.155) 

The antiwedge product g v / is the point of intersection where the plane and line meet, so we can 
express a flector as 
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Rigid flector (3D) 

pAg* 

u 

Figure 3.12. A flector represents an improper Euclidean isometry, which can always be regarded as a rotation 
about a line and a reflection across a plane perpendicular to the same line. 

F = p sin¢ + g cos¢, (3.156) 

where p is a unitized point lying in the plane g. As shown in Figure 3.12, the operation -F 'v u 'v :f 
reflects the object u across the plane g and rotates it through the angle 2¢ about the line that 's 
perpendicular to g and passes through p. The line / about which the rotation occurs is the weight 
expansion of p onto g, which is given by 

l = p Ag*. (3.157) 

Negating the angle¢ has the effect of inverting the flector F because it reverses the direction of 
rotation, and the reflection operation is its own inverse. Because the sine function is odd, the vector 
part of F is negated when we take an inverse, and this makes sense because it must be the case that 

I r'=f- 1 (3.158) 

A reflection across a plane and an inversion across a point are special cases of the general flector 
F given by Equation (3 .156). If the angle¢ is zero, then the vector part of F vanishes, and it is just 
a reflection across a plane g. If¢= rc/ 2, which means the rotation goes through 180 degrees, then 
the trivector part of F vanishes, and it is just an inversion across the point p. In both of these cases, 
no line can be calculated with Equation (3.157) because there is no unique axis of rotation. 

A flector F can be divided into a four-component vector part and a four-component trivector 
part that we write generically as 

(3.159) 

Point Plane 
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The two-letter subscripts beginning with p identify the components of the vector part, and those 
beginning with g identify the components of the trivector part. Whereas a motor uses all basis 
elements in the algebra having an even grade, a flector uses all basis elements having an odd grade. 
The geometric constraint requires that F 'i/ ~ = F ° F, and this imposes the condition 

I FpxFgx + Fpy Fgy + Fp,Fg, + FpwFgw = 0. I (3.160) 

This tells us that the distance between the point and the plane making up a flector must be zero, as 
we already know. 

Though it's natural to break a flector into the sum of a point and a plane, these parts are not the 
same as a flector's bulk and weight. The bulk of a flector is the sum of the bulks of the point and 
plane, so we have 

(3.161) 

Likewise, the weight of a flector is the sum of the weights of its two parts, so we have 

(3.162) 

If the bulk is zero, then the operation performed by the flector is a rotoreflection in which both the 
axis of rotation and reflection plane contain the origin. 

The bulk norm and weight norm of a flector F are given by 

IIFII. = l✓F}x + F}y + F}, + Fi-a, (3.163) 

and 

(3.164) 

A flector is unitized when its weight norm is 11. Assuming that a flector Fis unitized, we can deter
mine the meaning of the bulk norm given by Equation (3.163) by plugging the component values 
from Equation (3 .155) corresponding to Fpx, Fpy, FP,, and F gw into it and using the fact that gxyz = Iv 
because the plane g is perpendicular to the line /. The squared bulk norm is then given by 

(3 .165) 

This is nearly identical to Equation (3.104) for motors, except that the translation half-distance J 
has been replaced by g"" We already know from our examination of a motor's geometric norm that 
/~ sin 2 ¢ is the square of half the distance that the origin is moved by the rotation. The value of g ,. 
is the distance between the origin and the plane g, and that is half the distance that the origin is 
moved by the reflection. The square root of l~ sin 2 ¢ + g~, is therefore the total distance that the 
origin is moved by any flector, and we see that the geometric norm has the same meaning for flectors 
as it does for motors. Because lines are also motors and both points and planes are also flectors, the 
interpretation that the geometric norm corresponds to half the distance that the origin is moved is 
valid for all objects in projective geometric algebra. This is summarized in Table 3.10 for all five 
types of objects that arise in the 4D algebra. 

Due to their reflective nature, the transformations performed by flectors cannot be smoothly 
interpolated, and flectors have no exponential form that can be parameterized. However, for any 
flector that is not just a point, we can factor out the reflection in order to express the flector as a 
product of a simple motor R and a plane. Suppose that F = p + g is a unitized flector. Then the 
weight norm of p is sin¢, and the weight norm of g is 1l cos¢ . Multiplying F by a unit-weight 
version of the plane g undoes the reflection, so we calculate 
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Type Geometric Norm Interpretation 

Point p IIPfl = 
.jp; + p~ + p; Distance from the origin to the point p. 

IPwl Half the distance that the origin is moved by the fleeter p. 

Line/ l]i[I = /;; + l~v + ';' 
Perpendicular distance from the origin to the line I. 

~ fvx + /V), + fv, Half the distance that the origin is moved by the motor/. 

Plane g l@I = lgwl Perpendicular distance from the origin to the plane g. 

✓ 2 2 2 Half the distance that the origin is moved by the fleeter g. .gx + gy + gz 

Motor Q IIQII =, 
Q;IX + Q,;y + Q,;,z + Q~W 

Half the distance that the origin is moved by the motor Q. 
Q,7x + Q! + Q~ + Q;,. 

/ 2 2 2 2 

Fleeter F IIFII=\ 
Fpx + FP\' + Fp, + Fgw 

Half the distance that the origin is moved by the fleeter F. 
F}w +Fix +F~, +F~ 

Table 3.10. The geometric norm can always be interpreted as half the distance that the origin o is moved by 
an object X applied as an operator with the sandwich antiproduct Xv o v ~ . 

R =Fv g 
,.-------:i ' 

'ljl- p ;_, 

where we are dividing by cos¢= .J1 - sin 2 ¢ = .J1 - p;. This expands to 

1 
R =~[(gyp, - g , py ) e23 + (g,Px - gxPz ) e31 + (gxPy - gyPx ) e,2] 

1-pw 

-h,(gxe41+gy e42 +g, e43 )+fl✓l-p;, 
1-p; 

(3.166) 

(3.167) 

which is a unitized rotation operator. As expected, the six bivector components corresponding to 
the axis of rotation are given by the weight expansion of p onto g, multiplied by sin¢. The original 
:flector F can now be expressed as 

F= R V g 
,.-------:i ' 

'lj l- p ;_, 

which combines the rotation and reflection. 

3.7 .2 Matrix Conversion 

(3 .168) 

As we did with motors, we can construct two matrices for any :flector F in such a way that their 
sum corresponds to the transformation - F v u v f and their difference corresponds to the inverse 
transformation -f v u v F. Given a specific unitized :flector F, we define the matrices AF and B F as 

2(F; +F~ )-1 -2FgxFgy - 2FgzFgx 2 ( FpxFpw - FgxF gw ) 

AF= 
-2FgxFgy 2( F~ +Fg~ )-1 - 2FgyFg, 2 ( FµyFpw - F gyF giv ) 

(3.169) 
-2Fg, Fgx -2FgyFgz 2(F.:X +F; )-1 2 ( Fµ,Fpw - Fg, Fgiv ) 

0 0 0 1 

16 1 



162 Chapter 3 Rigid Transformations 

and 

0 2FgzFpw -2FgyFpw 2 ( FgyFpz -Fgz Fpy ) 

-2Fgz Fpw 0 2FgxFpw 2 ( Fgz Fpx - FgxFpz ) 
(3.170) BF= 

2FgyFpw -2FgxFpw 0 2 ( FgxFpy - F gyFpx ) 

0 0 0 0 

where we have used the fact that Fg~ +Ft + F~ + F}w = l in the diagonal entries of AF, Then the 
corresponding 4 x 4 matrix MF that transforms a point p, regarded as a 4 x 1 column matrix, in the 
same way that it would be transformed by the flector F is given by 

(3 .171) 

That is, M FP = -F \i' p \i' JI. Toe inverse of MF is given by 

(3.172) 

and this is related to F by the equation M;:1p = -f \i' p \i' F. 
To go the other way and convert a 4 x 4 matrix Minto a flector F, we start by assuming that M 

truly represents a rotoreflection, which means that it has the form 

(3,173) 

where the upper-left 3 x 3 is orthogonal, and the determinant is -1. Proceeding as we did for motors, 
we equate the entries of M to the entries of AF+ BF given by Equations (3.169) and (3.170). Then, 
for the diagonal entries of M , we have the four relationships 

1-Moo + M 11 + M 22 = 4Fg~ 

l-M11 +M22 +Moo =4Ft 

l-M22 +Moo +M1 1 =4F: 

1-Moo -M11 -M22 =4(1-Fi -Ft -F~ ) =4F}w, 

And for the off-diagonal entries of M, we have the six additional relationships 

M 21 + M1 2 = -4FgyFgz 

M o2 + M 20 =-4Fgz Fgx 

M10 +Mo1 =-4FgxFgy 

M 21 - M, 2 = -4FgxFpw 

M o2 -M20 =-4FgyFpw 

M,o -Mo, =-4FgzFpw · 

If M oo + M ,, + M 22 ~ 0, then we calculate 

(3 .174) 

(3.175) 

(3 .176) 
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where either sign can be chosen. In this case, we know IFpw I is at least 1/2, so we can safely divide 
by -4Fpw in the last three off-diagonal relationships shown in Equation (3.175) to solve for Fgx, F gy, 
and F gz· Otherwise, if M 00 + M 11 + M 22 > 0, then we select one of the first three diagonal relation
ships in Equation (3.174) based on which diagonal entry M 00 , M 11, or M 22 bas the least value and 
calculate F gx , F gy, or F gz· The result is plugged into two of the first three off-diagonal relationships 
to solve for the other two values of Fgx, F gy, and F gz · Finally, we plug it into one of the last three 
off-diagonal relationships to solve for Fpw• 

After the four components F gx, F gy, F gz, and Fpw have been calculated, the values of the four 
remaining components Fpn Fpy, Fpz, and F gw are given by 

Fpx =½(Fpwlx +Fgz ty -Fgytz ) 

Fpy = ½ ( Fpwly + Fgxlz -Fgz lx ) 

Fpz = ½ ( Fpwl z + F gyl x - Fgxl y ) 

Fgw =-½(Fgxtx +Fgyty +Fgz tz ), (3.177) 

where tx = M 03, t y = M 13, and tz = M 23 are the entries of M corresponding to the translation. 

3.7.3 Implementation 

The storage and performance characteristics of a flector are identical to those of a motor. As with 
motors, only six components of any unitized flector need to be stored, and the remaining two com
ponents can be reconstituted on demand. Before storage, a flector F can be negated if necessary so 
that Fpw ~ 0, and this component can later be calculated with 

Fpw = ✓1-Ffx -Fif -F~ . (3 .178) 

The geometric constraint can also be exploited to avoid storing the Fg,v component because it must 
be given by 

(3.179) 

Thus, only the x, y, and z coordinates of the point and plane making up any flector are absolutely 
necessary in situations where minimal storage size is important. 

Optimal formulas for transforming points, lines, and planes with a flector can be derived in the 
same manner that they were for motors in Section 3.6.5. First, when a point q is transformed into 
the point q' by the flector Fusing the sandwich antiproduct -F 'i/ q 'i/ f , the point's w coordinate is 
negated, and the transformation of its x, y, and z coordinates can be written as 

q ~yz = q xyz + 2 [ Fpw (g X q xyz ) + (g · q ,yz ) g-g2q,yz + qw (p X g + Fg,,,g-FpwP) ], (3.180) 

where we have assigned p = ( Fpx, Fpy, Fpz ) and g = ( Fgx, F gy , F gz ) for convenience. Applying the 
vector triple product identity 

(3.181) 

we can rewrite this as 

(3.182) 

The cross product g x q xyz shows up twice, and this redundant subcalculation can be made larger by 
refactoring to get 
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Flector-point 
transformation 

Flector-line 
transformation 
(direction) 

Flector-line 
transformation 
(moment) 

Flector-plane 
transformation 
(normal) 

Flector-plane 
transformation 
(position) 
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(3 .183) 

We now set a= g x q ,yz - qwp, and the final transformation formula is then 

(3.184) 

It is usually undesirable for the w coordinate of a point to be negated, so a typical implementation 
would leave it alone and calculate the negative value of q~ to produce an equivalent point. 

For the transformation of a line k into k' = -F 'v k 'v JI, we derive formulas for the direction k~ 
and moment k;.. separately. A direct calculation ofk~ is given by 

We use the identity g2k v -(kv • g) g = (g x kv) x g to rewrite this as 

I k~ =2(a x g - Fpwa)- kv , I 

where a= g x kv, A direct calculation of the moment k:., is given by 

k;., = 2 [ F gw ( g X k v ) + Fpw ( p X k v - g X km ) + g 2k m - ( g · km ) g 

+(p·kv)g +(g· kv) p -2(g ·p)kv ]- km , 

(3.185) 

(3.186) 

(3.187) 

As with motors, we apply the vector triple product identity three times and make the substitutions 

g2km -(g ·km)g =( g x km ) x g 

(p ·k v )g-(g· p)kv = p x (g x kv) 

( g . kV ) p - ( g . p ) k V = g X ( p X kV ). (3.188) 

This lets us reuse the cross products a = g x k v, b = g x km, and c = p x kv so that we can write the 
transformed moment as 

(3.189) 

Finally, for the transformation of a plane h into h' = -F 'v h 'v JI, we derive formulas for the 
normal h~ and position h:v separately. A direct calculation ofh~ gives us 

h~ = 2 [ g2h,yz -(g • h-'J'Z ) g-Fpw (g x h -'J'Z ) ]- h,yz , 

Using the identity g2h -'J'Z -(g ·h-'J'Z )g =(g x h-'J'Z ) x g lets us rewrite this as 

I h~ =2( a x g - Fpwa) - h-'J'Z, I 

(3 .190) 

(3.191) 

where a = g x h-'J'Z . No special simplifications are applied to a direct calculation of thew coordinate. 
After grouping terms, it is given by 

h~ = hw + 2 [ (h ,yz X p -Fg,,,h ,iyz ) • g + Fpw ( P • hxyz )], (3.192) 
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The numbers of multiply-add operations required to calculate points, lines, and planes trans
formed by a flector are the same as those required to transform by a motor. This again means that 
the same transformations can be performed with matrix multiplication using significantly fewer 
operations. If many objects are to be transformed by a flector, then it is much better for performance 
to convert the flector to a matrix first and use matrix multiplication. 

Math Library Notes 

• The Flector3D class stores the eight components of a 3D reflection operator as a FlatPoint3D object 
p and Plane3D object g. 

• The * operator can multiply flectors by other flectors with the geometric anti product to produce a motor. 
Multiplication by a motor or quaternion produces another flector. 

• The Transform() function takes a FlatPoint3D, Point3D, Line3D, or Plane3D object as its first 
parameter and a Flector3D object as its second parameter. It performs the flector transformation with 
the optimized formula and returns a result having the same type as the first parameter. In the case of a 
point q using either of the types FlatPoint3D or Point3D, the Transform() function calculates 
F "I q VJ f without the minus sign in front avoid negating the w coordinate. 

• The Flector3D class has a GetTransformMatrix() member function that calculates a 4 x 4 matrix with 
Equation (3.171) and returns it as a Transform3D object. 

• The Flector3D class has a SetTransformMatrix() member function that accepts a Transform3D ob
ject as its parameter. It converts the matrix to a flector using the method described in this section. The 
code assumes that the upper-left 3 x 3 portion of the input is orthogonal and has a determinant of - 1. 

3.8 2D Rigid Transformations 

In order to study Euclidean isometries in 2D space, we apply the geometric product and antiproduct 
to the 3D projective exterior algebra developed in Section 2.14. The geometric product on the same 
eight basis elements must respect the same metric in which e~ = 1, e~ = 1, and e~ = 0, and the geo
metric antiproduct must obey the usual De Morgan law. Applying these requirements as we did in 
the 4D case at the beginning of this chapter leads to the multiplication tables shown in Table 3.11 
for the 3D projective geometric algebra. 

The reverse and antireverse operations continue to have the same meaning, and their effects on 
the eight basis elements are shown in Table 3.12. In the 3D projective algebra, it just happens to 
work out that the reverse and antireverse of any value are negatives of each other. 

In any n-dimensional projective algebra representing ( n -1 )-dimensional Euclidean space, the 
set of multi vectors with components having only even anti grade are motion operators, and the set 
of multi vectors with components having only odd anti grade are reflection operators. The fixed ge
ometry about which a rotation occurs is always represented by a quantity having an antigrade of 
two. In 3D space where the projective representation has four dimensions, the fixed geometry is a 
line that serves as the axis of rotation. In 2D space where the projective representation has three 
dimensions, the fixed geometry is a point that serves as the center of rotation. The fixed geometry 
in a reflection is always an antivector. In 3D space, we reflect across planes, and in 2D space, we 
reflect across lines. 

Every proper isometry in 2D is a rotation about some point p = Pxe1 + pye2 + p 2 e3, and every 
motor Q has the form 

Q = p sin ¢ + n cos¢. (3 .193) 
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Rigid motor (20) 

Chapter 3 Rigid Transformations 

Geometric Product a A b Geometric Antiproduct a 'I/ b 

I~ 1 e1 e2 e 3 e n e 31 e 12 1 I~ 1 e1 e2 e 3 e 23 e 31 e12 1 

1 1 e 1 e 2 C3 C23 C31 e 12 1 1 0 0 0 e 12 -e1 - e 2 0 1 

e 1 e 1 1 C 12 - e 31 -1 - e 3 e 2 - C23 e1 0 0 0 - e 2 - 1 e 12 0 e 1 

e 2 e 2 - e 12 1 C23 C3 -1 - e 1 - C31 ei 0 0 0 e 1 - e 12 - 1 0 e 2 

e3 C3 C31 -C23 0 0 0 -1 0 e3 e 12 e 2 - e 1 -1 e 31 -Cz3 -1 e 3 

en C23 -1 - e 3 0 0 0 C31 0 e n - e 1 -1 e 12 -e31 1 -e3 e 2 e 23 

e31 C31 C3 -1 0 0 0 - e 23 0 e31 - e 2 - e 12 -1 e 23 e 3 1 -e1 e 31 

e 12 C 12 -e2 e1 -1 - C31 C23 - 1 C3 e12 0 0 0 -1 -e2 e 1 0 C12 

1 1 - e 23 - e 31 0 0 0 C3 0 1 1 e 1 e 2 e 3 e 23 e 31 e 12 1 

Table 3.11 . These are the multiplication tables for the geometric product and geometric antiproduct in the 3D 
projective algebra representing 2D Euclidean space. 

u 1 e1 e2 e 3 e 23 C31 e 12 1 

ii 1 e 1 e 2 e 3 - e 23 - e 31 - e 12 - 1 

!! -1 - e 1 -ei - e 3 C23 e 31 e 12 1 

Table 3.12. For each of the 8 basis elements u in the 3D projective exterior algebra, this table lists the reverse 
ii and the antireverse u. 

The orientation 11. = e321 was originally chosen for the 3D volume element in Section 2.14 so that 
this motor would be expressed as the sum of two terms containing a sine and cosine instead of the 
difference. When applied using the sandwich antiproduct Q 'v u 'v Q, the motor Q rotates the object 
u through the angle 2¢ about the center given by the point p. A 2D motor has four components with 
even antigrade, and it can be written generically as 

(3.194) 

Fixed Point Rotation 

which is the sum of a vector part and an antiscalar part. The absolute value of the angle of rotation 
can always be determined by looking at the antiscalar value. It is always true that Q 'v Q = Q O Q, 
so there is no internal constraint imposed on motors in two dimensions. -

A 2D motor can be expressed in the exponential form 

Q = exp ,;, ( </Jp ), (3 .195) 

where p is unitized so that Pz = 1. Extracting the parameters p and¢ from the components of a 
motor Q is rather easy. We can just read off the center from the vector part and unitize it. Assuming 
the motor is unitized, the angle ¢ is given by 

¢ = tan - 1 Sb__ 
Qw 

(3 .196) 

We take the inverse tangent here because neither the inverse sine of Qz nor the inverse cosine of Qw 
is adequate. The inverse sine of Qz by itself would erroneously give different angles for the motors 
Q and - Q, but those are equivalent operators. The inverse cosine of Qw by itself cannot distinguish 
between positive and negative angles. 
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Rigid flector (2D) 

The bulk and weight of a 2D motor Q are given by 

(3.197) 

If the bulk is zero, then Q is either the identity or a rotation about the origin e3. The set of all 2D 
motors having a bulk of zero is equivalent to the set of complex numbers when we set i = e3. Motors 
of the form an + be3 multiply under the geometric antiproduct just as complex numbers a+ bi do. 
Wben two such motors are multiplied together, their rotation angles accumulate, just as they do for 
the equivalent complex values. 

If Q2 = 0, then the center of rotation is a point at infinity and the motor Q represents a translation 
operator T that we can write as 

(3 .198) 

This operator translates an object u by twice the vector r with the sandwich anti product T 'i/ u 'i/ I, 
Notice that the translation vector does not appear directly in the e1 and e2 components of the oper
ator, but is instead rotated 90 degrees. This happens because the vector r points toward the center 
of rotation in the horizon, and the direction of the motion going around that center must be perpen
dicular to the direction that points at it. 

The 3 x 3 matrix MQ that is equivalent to a motor Q is given by 

r

l-2Q; -2QzQw 2 (QxQz + QyQw )j 

MQ = 2Q~Qw l-2Q; 2 (QyQz -QXQW) , 

0 1 

(3.199) 

and its inverse is 

r 

1-2Q; 2QzQw 2 (QxQz -QyQw )j 

MQ
1 = -2~Qw 1-2Q; 2 ( QyQz 

1

+ QxQw) · 

0 

(3.200) 

Wben applied to a point p, these perform the transformations 

(3.201) 

Every improper isometry in 2D is a transflection with respect to some line g = gxe23 + gye31 
+ g 2 e12, and every flector F has the form 

I F =g +c:51. I (3.202) 

Wben applied using the sandwich antiproduct -F 'i/ u 'i/ :f, this flector reflects the object u across 
the line g and translates by the distance 2c:5 in the direction ( -gy, gx ). The translation direction is 
parallel to the line and is equal to a 90-degree counterclockwise rotation of the line's normal vector. 
A 2D flector has four components with odd antigrade, and it can be written generically as 

F = (3.203) 

Fixed Line Translation 
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which is the sum of a bivector part and a scalar part. If the scalar part is zero, then the flector 
represents a reflection with no accompanying translation. In two dimensions, inversion through a 
point is not represented by a flector because the operation is equivalent to a 180-degree rotation, 
which is represented by a motor with zero antiscalar part. 

The 3 x 3 matrix MF that is equivalent to a flector Fis given by 

r

l-2F2 -2FxFy -2(FxFz +FyFw)1 

M, = -2:,;, l-2F2 
-2 ( FyFzl -FxFw) , y 

0 

(3.204) 

and its inverse is 

r

l-2F2 -2FxFy -2 ( FxFz -FyFw )1 

MQ' = -2~;, l-2F2 
-2 ( FyFzl + FxFw) . y 

0 

(3 .205) 

When applied to a point p, these perform the transformations 

(3.206) 

The bulk norm and weight norm of a 2D motor Q are given by 

(3.207) 

For a 2D flector F, the bulk norm and weight norm are 

(3 .208) 

The geometric norm has the same interpretations in two dimensions as it does in three dimensions. 
In addition to giving the distance to the origin for points and lines, the geometric norm is always 
equal to half the distance that the origin is moved by any operator. This is summarized in Table 3 .13 
for all four types of objects that arise in the 3D projective geometric algebra. 

Type Geometric Norm Interpretation 

Point p IIPII= 
.jp; + p~ Distance from the origin to the point p. 

IP,I Half the distance that the origin is moved by the motor p. 

Line g llill= lg,I Perpendicular distance from the origin to the line g. 

.Jg; + g ~ Half the distance that the origin is moved by the flector g. 

Motor Q IIQll= 
Q; +Q; 

Half the distance that the origin is moved by the motor Q. 
Q; +Q; 

I 2 2 

Flector F 
1
-IFII = F, + Fw Half the distance that the origin is moved by the flector F. 

F 2 +F2 
X y 

Table 3.13. The geometric norm in two dimensions can always be interpreted as half the distance that the 
origin o is moved by an object X applied as an operator with the sandwich anti product XV/ o V/ ~-
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Math Library Notes 

• The Moto r2D class stores the four components of a 2D motion operator as floating-point values named 
x, y, z, and w. 

• The * operator can multiply motors by other motors with the geometric antiproduct. 

• The Transform() function takes a FlatPoint 2D, Point2D, or Line2D object as its first parameter and 
a Motor2D object as its second parameter. It performs the motor transformation and returns a result 
having the same type as the first parameter. 

• The Motor2D class has a GetTransformMat rix() member function that calculates a 3 x 3 matrix with 
Equation (3 .199) and returns it as a Transform2D object. 

• The Motor2D class has a SetTransformMatrix () member function that accepts a Transform2D object 
as its parameter. It converts the matrix to a motor under the assumption that the upper-left 2 x 2 portion 
of the input is a true rotation matrix, meaning that it is orthogonal and has a determinant of+ I. 

• The Flector2D class stores the four components of a 2D reflection operator as floating-point values 
named x, y, z, and w. 

■ The * operator can multiply flectors by other flectors with the geometric anti product to produce a motor. 
Multiplication by a motor produces another flector. 

• The Transform() function takes a Flatpoint2D, Point2D, or Line2D object as its first parameter and 
a Flector2D object as its second parameter. It performs the flector transformation and returns a result 
having the same type as the first parameter. In the case ofa point q using either of the types FlatPoint2D 
or Point2D, the Tran sform() function calculates F v q v f without the minus sign in front avoid ne
gating the z coordinate. 

• The Flector3D class has a GetTr ansformMatrix() member function that calculates a 3 x 3 matrix with 
Equation (3.204) and returns it as a Tr ansform2D object. 

• The Flector3D class has a SetTransformMat rix() member function that accepts a Transform2D ob
ject as its parameter. It converts the matrix to a flector under the assumption that the upper-left 2 x 2 
portion of the input is orthogonal and has a determinant of -1 . 

3.9 Operator Duality 

All of the Euclidean isometries discussed in this chapter have been performed by sandwiching an 
object u inside an operator X and multiplying with the geometric antiproduct. We had decided in 
Section 3.5 that it had to be the antiproduct v that performed these rigid transformations, and not 
the product A, because the antiproduct keeps the horizon fixed while allowing all points not in the 
horizon to move around. We also came to the conclusion that the product A does not perform rigid 
transformations because it always fixes the origin and is able to move the horizon to locations not 
infinitely far away. 

As previously discussed in Section 2.6, every object in projective geometric algebra is really a 
representation of two complementary things at the same time because it has one interpretation in 
space and another interpretation in antispace. Every operation in projective geometric algebra really 
performs two complementary actions at the same time, where one happens in space and the other 
happens in antispace. These concepts emerge from the intrinsic duality in the algebra, and the case 
is no different when it comes to the geometric product and geometric antiproduct. When we trans
form an object with the antiproduct YI, it performs a Euclidean isometry in the space of the object. 
Simultaneously, it performs a complement isometry in the antispace of the same object. If we were 
to replace the geometric antiproduct with the geometric product, then the operations performed in 
space and antispace trade places. The product A performs a complement isometry in space while 
simultaneously performing a Euclidean isometry in antispace. 
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3.9.1 Complement lsometries 

So what exactly is a complement isometry? All we know at this point is that they have to keep the 
origin fixed, but we can discover much more by examining all the invariants of Euclidean transfor
mations and their complements more closely. An invariant is any geometry that is fixed in place by 
a transformation, and knowing what that geometry is tells us a lot about the nature of the transfor
mation itself. Toe Euclidean isometries performed by motors and flectors all have invariant geom
etries that are part of the operator's algebraic representation. In three dimensions, the invariant of 
a reflection is the fixed plane across which everything else is mirrored, the invariant of a rotation is 
the fixed line about which everything else orbits, and the invariant of an inversion is the fixed point 
through which everything else is turned inside out. 

Toe important thing to understand about complement isometries is that their invariants are the 
complements of the invariants of their associated Euclidean isometries. For example, when a re
flection fixes its mirroring plane g in regular space, the complement isometry happening at the same 
time in antispace must fix the the complement of g, which is a point. Likewise, when a rotation 
fixes its axis I in regular space, its complement isometry must fix the complement of/, which is a 
different line. This tells us part of the story, but the mirroring plane of a reflection and the axis of a 
rotation are not the only invariants fixed by those transformations. 

We know that all motors and flectors fix the horizon as a whole, but they also fix specific lower
dimensional geometries that lie in the horizon. Toe complements of these fixed geometries must 
contain the origin, so they show up very prominently as invariants of the complement isometries. 
In general, we can demonstrate that for any geometry u that is fixed by a Euclidean isometry, the 
weight dual u * is also fixed by the same isometry. When we say that u is fixed by an operator X 
under the geometric antiproduct, we mean that 

X\i' u \i'X=su (3.209) 

for some scalar values that could be positive or negative. Toe algebraic representation of u may be 
scaled, but all nonzero multiples are equivalent geometries in the homogeneous model. Assuming 
that Equation (3.209) is true for some operator X and some geometry u, we now consider the ex
pression X \i' u * \i' ~- As stated by Equation (3.63), the weight dual u * is always equal to':! \i' 1, so 
we can write 

(3.210) 

and this lets us reassociate the products. Since X bas components that have either all even grades 
or all odd grades, the effect of swapping the factors 1 and ~ at the end of the product is at most a 
sign change. Also, since u represents a geometry, its components all have the same grade, so its 
antireverse is either u itself or its negation. In all cases, we have 

Xv u* vX=±Xv u vXvl - - ' (3 .211) 

where the sign isn't known without specifying X and u, but we don't care. Toe original transfor
mation of u now appears, and we know it could only scale u, so we reach the conclusion 

X \i' u * \i' ~ = ±su \i' 1 = ±su *, (3.212) 

which shows that u * must be a fixed geometry. Note that this happens only for the weight dual, and 
the bulk dual u * is not fixed in a similar manner. 

Toe primary invariant of a motor Q in the form given by Equation (3.93) is the line/ serving as 
the axis of rotation. Toe weight dual t* = -lvx e23 - Ivy e31 - lvz e12 must also be invariant under the 
screw motion that Q represents. This secondary invariant is the line at infinity in directions perpen
dicular to the axis of rotation, essentially an infinitely large ring around the line /. For a flector Fin 
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the form given by Equation (3 .156), the primary invariant is the reflection plane g. The weight dual 
g* = -gxe1 - gye2 - g ze3 is the point at infinity in the direction perpendicular to the plane, and it 
must also be invariant. 

When a geometry u and its weight dual u * are fixed in space by a Euclidean isometry, the 
complements of these two invariants must be fixed in anti space. This can be seen algebraically by 
taking the complement of Equations (3 .209) and (3.212) to get 

-=-
X v; u v; X = X A ii A X = ±sii (3.213) 

and 

* - * - * * X V/ u V/ ~ = X A u A X = ±su = ±sii , (3.214) 

where we have used Equation (3.52) to swap reverse operations, and we have applied the identity 

u * = Gu = Gii =ii*. (3.215) 

-=-
For an operator X representing a Euclidean isometry, the sandwich product X Au AX performs the 
associated complement isometry. If a geometry u is fixed by the complement isometry, then the 
bulk dual u *, not the weight dual , is also fixed by the same operation. Since the bulk dual always 
contains the origin, this means that in addition to fixing some geometry u that is the complement 
of a Euclidean isometry's invariant, a complement isometry fixes another geometry at a finite loca
tion that is parallel to ii and passes through the origin. This makes the transformations performed 
by complement isometries look very odd. 

Since the set of Euclidean isometries is generated by composing reflections across planes with 
the geometric antiproduct, the set of complement isometries is generated by composing comple
ment reflections across points with the geometric product. When a reflection operation fixes the 
plane g, its associated complement reflection fixes the point g. This is illustrated in Figure 3.13 for 
the plane g = e423 + ¾ e321 . The left side of the figure shows the ordinary Euclidean reflection that 
fixes the plane g where x = -¾, and the right side of the figure shows the associated complement 
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Figure 3.13. (Left) This is the Euclidean reflection across the plane g = e423 + ± e321 , which mirrors space 
across the yellow line where x = -¾- (Right) This is the corresponding complement reflection with respect 
to the point g = -e1 -± e4 , which combines a mirroring of space through the yellow point at ( 4, 0, 0) and 
another mirroring of space across the plane g* = e423 shown as the yellow line at x = 0. In both graphs, points 
are exchanged with other points having the same shade of green. 
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reflection that fixes the point ( 4, 0, 0 ), which is the complement of g. The fixed point g * = e1 in the 
horizon for the Euclidean reflection shows up as the fixed plane g* = e423 containing the origin in 
the complement reflection. This plane is parallel to the reflection plane g, but with the bulk removed. 
In the figure, points are exchanged under both operations with other points having the same shade 
of green. The Euclidean reflection of course shows a simple mirroring across the reflection plane, 
but the complement reflection is a complicated combination of two different kinds of mirroring. 
Space is reflected through the fixed point g at ( 4, 0, 0) in such a way that the infinitely wide region 
where x > 4 is exchanged with region between x = 2 and x = 4 of finite width. Space is also re
flected across the plane g* at x = 0 in such a way that the infinitely wide region where x < 0 is ex
changed with the region between x = 0 and x = 2 of finite width. Points lying on the plane x = 2 
forming the boundary between these two reflections are exchanged with the horizon. 

As the point g moves farther and farther to the right in the graph of the complement reflection, 
the transformation looks more and more like an ordinary Euclidean reflection. When g actually lies 
at infinity, then the transformation only mirrors across the plane g*, but this is the same as the plane 
g in this case, so the complement reflection is exactly the same as a Euclidean reflection. If the 
plane g contains the origin, and thus the point g is contained by the horizon, then the Euclidean 
reflection g 'ii u 'ii g and the complement reflection g A u Ag perform the same exact operation on 
u. The sets of Euclidean isometries and complement isometries intersect where both the origin and 
the horizon are fixed, and this is discussed further below. 

When two Euclidean reflections across planes g and h are composed with the geometric anti
product 'ii, the invariant of the resulting rotation is the meet I= h v g, which is the line contained 
by both planes. When two complement reflections with respect to points g and h are composed 
with the geometric product A , the invariant of the resulting complement rotation is the join 
T = h /\ g, which is the line containing both points. The bulk dual T*, which is a line passing through 
the origin and running perpendicular to the moment of/, is also fixed by the complement rotation. 
A comparison of the Euclidean rotation performed by R = ( e43 -½ e3 1 ) sin </J + 11 cos </J and the asso
ciated complement rotation R = ( ½ e42 -e 12 ) sin </J + 1 cos </J is shown in Figure 3.14. The axis of the 
Euclidean rotation shown on the left side of the figure is the line parallel to the z axis that passes 
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Figure 3.14. (Left) This is the flow field in the x-y plane for the rotation R = ( e43 -½ e31 ) sin¢+ n cos ¢ . The 
axis of rotation passes through the yellow point at ( ½, 0, 0 Land is perpendicular to the page. (Right) This is 
the flow field in the x-y plane for the complement rotation R = ( ½ e42 -e12 ) sin¢+ 1 cos¢. Points follow or
bits of constant eccentricity with respect to the focus at the origin and the directrix indicated by the yellow 
line at x = - 2. 
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through the x_y plane at the point ( ½, 0, 0 ). In the complement rotation on the right side, the_com
plement line I acts as a directrix for conic section orbits, and the point where its bulk dual I * in
tersects any plane containing T acts as a focus . In the x-y plane, the origi_n is the focus , and a point 
p follow~ an orbit of constant eccentricity e with respect to the directrix I under the transformation 
RA p AR. (Eccentricity is defined as the distance to the focus divided by the perpendicular distance 
to the directrix.) The orbit is elliptical when e < 1, parabolic when e = 1, and hyperbolic when e > 1. 
In the hyperbolic case, a full orbit through a complement rotation of 2n radians has pieces on both 
sides of the directrix. As the directrix moves farther and farther away from the origin, the orbits 
become more and more circular, and they become exactly circular when the directrix lies in the 
horizon. Rotations about the origin are both Euclidean isometries and complement isometries. 

A complement translation is interesting because it performs a transformation that is more prac
tical than those performed by complement reflections and rotations. An ordinary Euclidean trans
lation does not fu.. an)' point ha ing a finite location, but it must fix the horizon as a whole because 
no point can be translated away from infinity. Unlike other Euclidean isometries, a translation ac
tually fixes the horizon pointwise, which means every point and every line contained by the horizon 
is invariant. A complement translation must therefore fix not only the origin but every line and 
every plane that contains the origin as well. That being the case, any point undergoing a complement 
translation can move only along the straight line connecting it to the origin because points cannot 
leave a line containing the origin. This is visible in Figure 3.15, which compares a Euclidean trans
lation in the negative z direction performed by the operator T = -¼ e12 + n to the associated com
plement translation performed by the operator T = ¼ e43 + 1. 

To see what the overall effect of a complement translation is, we consider the operator 

- 1 
T=-e43 +1. 

2/ 
(3 .216) 

When we transform a unitized point p = p x e1 + p Y e2 + p 2 e3 + e4 with this operator using the geo
metric product, we get 

- -=- ( Pz J T ApAT = Pxe, + p ye2 + p 2 e 3 + f+l e4. (3 .217) 
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Figure 3.15. (Left) This is the flow field in the x-z plane foE_ the translation T = -¼ e12 + n. (Right) This is the 
flow field in the x-z plane for the complement translation T = ¼ e43 + 1. This is a perspective projection with 
focal length f = 2. 
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We can unitize this point by multiplying it by f / (Pz + f) , and this gives us the point 

(3.218) 

This acts like a perspective projection with focal length/ in which the center of projection lies at 
( 0, 0, - f ), and the viewing direction points along the positive z axis. The x and y coordinates are 
scaled precisely by the ratio of the focal length to the distance along the viewing direction between 
the center of projection and the point p. The z coordinate is also scaled by the same factor, and this 
has the effect of squishing the range [ 0, oo J into the range [ 0, f Jin the z direction. It also causes the 
range [- f , OJ to be expanded into the range [ -oo, OJ, and it moves everything in the range [ -oo, - /J 
to the range[/, oo ]. 

Geometric Product 
~ 

QAuAQ 

• Fixes the origin e,,. 

• Performs complement isometries in 
regular space. 

• Performs Euclidean isometries in 
antispace. 

3.9.2 Transformation Groups 

DUALITY 
Geometric Antiproduct 

• Fixes the horizon e,,. 

• Performs Euclidean isometries in 
regular space. 

• Performs complement isometries in 
antispace. 

The set of all Euclidean isometries in n dimensions forms an algebraic group called the Euclidean 
group and denoted by E ( n ). In three dimensions, every member of the Euclidean group can be 
represented by a motor Q having the form 

(3.219) 

or by a flector F having the form 

(3.220) 

Under the geometric antiproduct 'ii , arbitrary combinations of these operators form the Euclidean 
group E ( 3) with 11. as the identity, and they transform any object u in the algebra through the sand
wich products u' = Q 'ii u 'ii Q and u' = -F 'ii u 'ii f. 

The set of all complement isometries in n dimensions also forms a group, and we call it the 
complement Euclidean group denoted by E ( n ). The bar over the letter E means that every member 
of E ( n) is the complement of some member of E ( n ). In three dimensions, every complement 
isometry can be represented by a complement motor Q having the form 

(3.221) 

or by a complement flector F having the form 

(3.222) 
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Under the geometric product A, arbitrary combinations of these operators form the complement 
Euclidean group E ( 3) with 1 as the identity, and they transform any object u in the algebra through 
the sandwich products u' = Q A u A Q and u' = -FA u AF . 

The geometric product corresponds to transform composition in the group E ( n ), and the geo
metric antiproduct corresponds to transform composition in the group E ( n ). Reflections across 
planes are represented by antivectors (having antigrade one), and they meet at lower-dimensional 
invariants under the geometric antiproduct. Symmetrically, complement reflections across points 
are represented by vectors (having grade one), and they join at higher-dimensional invariants under 
the geometric product. A sandwich product u' = Q A u A Q transforms the space of u with an ele
ment ofE ( n ), and it transforms the antispace of u with the complementary element ofE ( n ). Sym
metrically, a sandwich antiproduct u' = Q v u v Q transforms the space of u with an element of 
E ( n ), and it transforms the anti space of u with the complementary element of E ( n ). Every element 
of E ( n) fixes the origin, and every element of E ( n) fixes the horizon. 

The groups E ( n) and E ( n) are isomorphic due to the De Morgan laws relating the geometric 
product and antiproduct. They each have a number of important subgroups, some of which are 
shared between them, and their hierarchical relationships are shown in Figure 3.16. In particular, 
the Euclidean group E ( n) contains the special Euclidean subgroup, denoted by SE ( n ), that in
cludes all proper isometries performed by motors but excludes improper isometries performed by 
flectors. All complements of proper isometries belong to the complementary subgroup SE ( n) of 
E ( n ). The subgroups SE ( n) and SE ( n) further contain a translation subgroup T ( n) and a com
plementary translation subgroup T ( n ). 

Any transformation that fixes both the origin and the horizon belongs to both the groups E ( n) 
and E ( n ). The Euclidean group and its complement intersect at the orthogonal group, which is 
denoted O ( n ), and it contains all rotations about the origin as well as all rotoreflections about the 
origin. Every member of O ( n) has a representation with zero weight that transforms elements with 
the geometric product and a complementary representation with zero bulk that transforms elements 
with the geometric antiproduct. For example, conventional quaternions q have two representations, 
one that transforms any object u through the sandwich product q A u A q and another that trans
forms any object u through the sandwich antiproduct q v u v q, as discussed further below. The 
orthogonal group has a subgroup called the special orthogonaf group, denoted SO ( n ), and it ex
cludes improper isometries. The special orthogonal group is the intersection between SE ( n) and 
SE ( n ). The only member of the translation group T ( n) or its complement T ( n) that fixes both the 
origin and horizon is the identity, so they intersect trivially. 

In terms of matrix multiplication, a general element of the Euclidean group E ( n) transforms a 
point by multiplying it on the left by an ( n + 1) x ( n +I) matrix of the form 

[

Mn xn 

0 1xn 

T nxl] 

1 ' 
(3 .223) 

where the n x n submatrix M is orthogonal. A general element of the complement Euclidean group 
E ( n) transforms points with matrices of the form 

(3 .224) 

In the special subgroups SE ( n) and SE ( n ), the submatrix M has a determinant of+ I. In the trans
lation subgroups T ( n) and T ( n ), M is the identity matrix. In the shared subgroups of E ( n) and 
E ( n ), there is no translation or complement translation, and r = 0 in the matrix representations. In 
this case, such a transformation belongs to O ( n ), and if M has a determinant of+ 1, then it belongs 
toSO(n). 
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The matrix representations of a transformation in E ( n) and its complement in E ( n) are related 
by the inverse transpose operation. That is, if H is an ( n + 1) x ( n + 1) matrix representing an element 
ofE ( n ), then the corresponding element of E ( n) is given by (H-1 r, and vice versa. This is what 
happens to the matrix representation when we take the complement of a geometric algebra operator 
and apply it with the opposite product. 

A Geometric 
Product 

E(n) 

Complement 
Euclidean 

SE(n) 

Special [RT 
01

] 
Complement 
Euclidean 

T(n) 

Complement 
Translation 

u' = XAuAX 

A and V/ 
O(n) 

Orthogonal [ MO 01] 

SO(n) 

Special [Ro o
1
] 

Orthogonal 

Geometric 
Anti product 

Euclidean 

SE(n) 

Special 
Euclidean 

T(n) 

Translation [ 0
1 Tl] 

u' = Xvtu vtX 

Origin fixed Horizon fixed 

I(n) 

Identity 
[0
1 01] 

Origin and horizon fixed 

Figure 3.16. These are the hierarchical relationships among important transformation groups that arise in 
projective geometric algebras. Every transformation X belonging to a group in a blue box on the left operates 
on an object u through the sandwich product X A u A X, and every transformation X belonging to a group in 
a red box on the right operates on an object u through the sandwich anti product X '<I u '<I~ - Transformations 
belonging to groups in purple boxes in the center have two operator forms and can be used with either the 
product or antiproduct. In the matrix representations, Mis an orthogonal n x n matrix with determinant ±1, R 
is an orthogonal n x n matrix with determinant+ 1, and I is then x n identity matrix. The translation vector -r 
is a 1 x n row in blue boxes and an n x I column in red boxes. 
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3.9.3 Quaternions Revisited 

Because quaternions keep both the origin and horizon fixed, they are members of the group SO ( 3) 
where the special Euclidean group SE ( 3) and complementary special Euclidean group SE ( 3) in
tersect. Consequently, every quaternion has two different representations in the three-dimensional 
geometric algebra. First, the set of quaternions is exactly the subset of motors with bulk zero that 
perform pure rotations about the origin without any translation. In this case, the units i,j , and k are 
identified as 

A quaternion q can then be written as 

and any point, line, or plane u is rotated about the origin through the sandwich anti product 

u'= q v u v q. 

A unit quaternion can also be written as 

q = a sin¢,+ n cos¢,, 

(3.225) 

(3.226) 

(3 .227) 

(3 .228) 

where a = ax e41 + a y e42 + a2 e43 is a unit bi vector representing the axis of rotation, and</> is half the 
angle of rotation. 

Second, the set of quaternions is exactly the subset of complement motors for which the direct
rix lies in the horizon. In this case, the weight is zero, and the units i,j , and k are identified as 

A quaternion q can then be written as 

and any point, line, or plane u is rotated about the origin through the sandwich product 

u'= q Au Aq. 

A unit quaternion can also be written as 

q = -a sin ¢, + 1 cos ¢,, 

(3.229) 

(3.230) 

(3.231) 

(3 .232) 

where a = ax e23 + aye31 + a, e12 is a unit bivector representing the axis of rotation, and¢, is half the 
angle of rotation. This form of a quaternion matches the operator that we derived in a nonprojective 
setting in Section 3 .3. However, the first form of a quaternion above is the one typically used in the 
projective algebra because that one can be extended to include translations. 
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Historical Remarks 

William Kindgon Clifford was an English mathematician who 
coined the term geometric algebra when he successfully 
combined the multiplication of Hamilton's quaternions with 
the building blocks of Grassmann's extension theory. Today, 
a broad class of mathematical structures known as Clifford 
algebras are named in his honor. 

Clifford wrote about Grassmann algebra and quaternions 
in a paper entitled "Applications of Grassmann's Extensive 
Algebra" [Cliffl878a] that was published in the American 
Journal of Mathematics in 1878. This paper discussed four
dimensional projective geometries very similar to those found 
in Chapter 2 of this book, but he didn't quite reach the point 
of using a degenerate metric. Importantly, his paper did 
include the realization that the i, j , and k components of a 
quaternion were not the same as the components of an 
ordinary vector, but were instead the combinations of pairs of 
vector basis elements, what we now call bivectors. 

Also in 1878, Clifford published his book Elements of 

Chapter 3 Rigid Transformations 

William Kingdon Clifford 
(1845- 1879) 

Dynamic [Cliffl 878b] which contained a description of the two different types of multiplication 
between three-component quantities that arise when two quaternions are multiplied together. These 
were equivalent to the definitions of the dot product and cross product that would become widely 
known as part of the vector analysis framework established roughly two decades later. 



Chapter 4 
Round Projective Geometry 

In the preceding chapters, the addition of one extra dimension to an n-dimensional Euclidean vector 
space allowed us to build a projective model that we refer to as the rigid geometric algebra (RGA) 
in order to distinguish it from the algebra introduced in this chapter. In ( n + 1 )-dimensional rigid 
geometric algebra, flat geometries with homogeneous representations are combined in various ways 
using the exterior products, and they are rigidly transformed using the geometric products. We now 
add two extra dimensions to build a larger, doubly projective model called the conformal geometric 
algebra (CGA). This ( n + 2 )-dimensional algebra includes everything that we have already seen in 
the rigid geometric algebra, but the geometric objects are generalized in such a way that they are 
all round and have specific radii. Toe flat points, lines, and planes that we are familiar with now 
become special cases in which the radii of the round objects are infinite. This chapter introduces 
round objects and explores the same kinds of geometric manipulation with the exterior products 
that was covered in Chapter 2, such as the join, meet, and projection operations. Toe topic of the 
next chapter is similar to that of Chapter 3, and it discusses the non-rigid "conformal" transfor
mations that can be performed with the geometric products. 

4.1 Construction 

Conformal geometric algebra is constructed by adding two projective basis vectors called e_ and e+ 
to the set of ordinary basis vectors e1, e2 , . .. , en of n-dimensional Euclidean space. Toe new vectors 
are named this way because their squares under the dot product are 

e_ • e_ = -1 and e+ • e+ = + 1. (4.1) 

This by itself is enough to build the entire algebra and observe all of its emergent properties. The 
projections that follow are part of the standard way to interpret what's going on when we talk about 
specific vectors, bivectors, trivectors, etc., and start multiplying them together with the exterior 
product and geometric product. 

We proceed in the algebra representing three-dimensional Euclidean space because it bas been 
the primary focus of this book and will continue to be the main area on which we concentrate in 
this chapter. We begin by considering a homogeneous point 

(4.2) 

where the basis vector e_ is temporarily filling the role that e4 previously played. As in the algebras 
we have already studied in the preceding chapters, any nonzero scalar multiple of this point belongs 
to the same equivalence class, so we can just assume w = 1. Now, we perform a stereographic pro
jection of the point p onto the four-dimensional unit hypersphere that is centered ate_ and extends 
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( 0, 1, 1) 

(0, 1, 0) p = (x, 1, 0) 

Figure 4.1. Toe stereographic projection of the point p is the point q where the line connecting p to the north 
pole ate_ + e+ intersects the unit hypersphere centered ate_. Toe e_ axis points out of the page. 

with a radius of one into the { e1, e2 , e3 , e+} subspace. Since this is extremely difficult to visualize, 
we drop the e2 and e3 dimensions so that we are left with only e1, e_, and e+, which we keep in that 
order. The point p then has the coordinates ( x, 1, 0 ), as shown in Figure 4.1. 

The hypersphere is centered at the coordinates ( 0, 1, 0 ), and we are projecting toward the north 
pole at the coordinates ( 0, 1, 1 ). The projection of p is the point q = ( a, 1, b) where the straight line 
connecting p to the north pole intersects the surface of the hypersphere. Everything is happening 
in the plane where the e_ coordinate is one, so we can ignore it and just worry about the e1 and e+ 
coordinates. Since q is on the surface of the circle where the hypersphere intersects this plane, we 
know that a2 + b2 = 1. If we subtract the north pole coordinates from both p and q, then the resulting 
directions must be parallel, so we can also say 

( a, 0, b-l) x ( x, 0,-1) = 0, (4.3) 

and that gives us the relationship ( 1- b) x = a. Squaring both sides and using a2 + b2 = 1 produces 
the equation 

(l-b)2 x 2 =a2 =l - b2 =(1 - b)(l+b), 

from which we can determine that the value of b is given by 

x2 -1 
b = - 2-· 

X +l 

Plugging this into a 2 + b2 = 1 allows us to solve for a to get 

The projected point q is thus 

2x 
a = - 2-· 

X +l 

2x x2 -1 
q = -

2
- ei +e_ + - 2 - e+. 

X +l X +l 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Since we are using homogeneous coordinates, we can multiply q by any nonzero scalar value with
out changing its geometric meaning. To make the e1 coordinate the value x that we started with at 
the point p, we choose to multiply by ½ ( x2 + 1 ), and that produces 



4.1 Construction 

(4.8) 

Regrouping the coefficients of thee_ and e+ components lets us write 

(4.9) 

It is convenient to introduce two new vectors e4 and es defined as 

(4.10) 

where we have purposely included the factor of½ in one vector but not the other. Using e4 and es, 
the projected point q is finally expressed as 

(4.11) 

When we add the e2 and e3 dimensions back in, this becomes 

(4.12) 

In conformal geometric algebra, every unitized point q has the form given by Equation (4.12). 
Toe first four components are the same as they were in rigid geometric algebra, but now there is a 
fifth component that holds half the squared distance to the origin. We will expand upon the meaning 
of this component in the next section, but first, it's important to establish a meaning for the vectors 
e4 and es by themselves. When we consider the case in which ( x, y, z ) = ( 0, 0, 0 ), then we can im
mediately identify the vector e4 as the origin, which is nicely consistent with the meaning it has in 
rigid geometric algebra. Now assuming that ( x , y , z )-:;:. ( 0, 0, 0 ), we can homogeneously scale q by 
the value 2/ ( x2 + y2 + z2 

) , and we have 

2x 2y 2z 2 
q = 2 2 2 ei + 2 2 2 e2 + 2 2 2 e3 + 2 2 2 e4 + es, 

x+ y +z x+ y + z x+ y + z x + y + z 
(4.13) 

As the magnitude of ( x, y, z ) is allowed to become arbitrarily large, the first four components all 
approach zero, leaving only a constant es, This makes it apparent that es corresponds to any point 
that is infinitely far away from the origin. Since it is defined as e_ + e+, the vector es coincides with 
the north pole of the hypersphere onto which we projected, which is known as the point at infinity. 
This is a different kind of point at infinity compared to the points in the horizon that we have in 
rigid geometric algebra because there is no directional information. All points infinitely far from 
the origin stereographically project onto the same point at the north pole. Points in the horizon still 
exist in conformal geometric algebra, but not as the kind of point in Equation (4.12). 

Figure 4.2 provides a visualization of the double projection happening in conformal geometric 
algebra. We are working in five-dimensional space, but that obviously can't be drawn on a two
dimensional page, so the y and z axes corresponding to the e2 and e3 basis vectors are omitted. This 
leaves the x axis corresponding to the basis vector e1 and the two directions corresponding to the e_ 
and e+ basis vectors. Toe yellow plane is really a three-dimensional subspace that lies one unit away 
from the origin o in the e4 direction, and it represents the homogeneous projection. A point q of the 
form given by Equation (4.12) can be homogeneously scaled by any value, but when it has ane4 

coordinate of one, it lies in the yellow plane. The green surface is really a four-dimensional subspace 
called the null cone, and it represents the stereographic projection. Toe circle centered ate_ inside 
the cone is the same circle that appears in Figure 4.1, and the point es is the north pole. The null 
cone gets its name from the fact that any point lying on its surface is a null vector, which means it 
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squares to zero under the dot product. Using the dot products defined fore_ and e+ in Equation (4.1) 
together with the definitions of e4 and es in Equation ( 4.10), we can work out the dot products 

e4 • e4 = e5 • es = 0 

e4 • es = es • e4 = -1. (4.14) 

When we apply these to any point q of the form shown in Equation (4.12) or any scalar multiple of 
such a point, we find it 's always the case that q • q = 0. Every point q falls on the green cone, and 
when it is unitized so the e4 coordinate is one, it also lies in the yellow plane. This intersection 
between the null cone and the subspace lying one unit into the e4 direction is called the horosphere. 
Although drawn as a purple parabola with only one dimension in the figure , the horosphere is really 
a three-dimensional paraboloidal surface. This is where the geometric objects we will be studying 
in this chapter exist when they have a unit weight. 

Figure 4.2. The yellow plane corresponds to the subspace that is one unit from the origin o in the e4 direction, 
and it represents the homogeneous projection. The green cone corresponds to the surface where every point 
q of the form given by Equation (4.12) lies, and it represents the stereographic projection. Toe intersection 
of these two subspaces is the horosphere, shown here as the purple parabola. 

There is somewhat of an arbitrary choice in the definitions of e4 and es appearing in Equation 
( 4.10). Several alternate definitions are possible in which e4 = s ( e_ - e+) and es = t ( e_ + e+ ) for 
various constant values of s and t, though it is common to require st = 1/2 because that makes the 
bi vectors e_ /\ e+ and e4 /\ es equal. Definitions that set s= 1/ 2 and t = 1 tend to produce the cleanest 
formulation of the entire algebra. The vectors e1, e2 , e3, e4 and es constitute an alternate vector basis 
that we use instead of e1, e2 , e3, e_, and e+ because doing so allows us to interpret the meanings of 
geometric objects and conformal transformations in a more intuitive way. We can easily transform 
from one basis to the other with Equation ( 4.10) and the inverse relationships 

I e_ =2 es +e4 

I e+ =2 es - e4 . (4.15) 



4.1 Construction 

However, we will be working with the e4-es basis virtually all the time, and there will rarely be any 
need to consider the e_ -e+ basis. 1 

All 32 basis elements covering the six grades in the 5D conformal exterior algebra are listed in 
Table 4.1. Half of the basis elements, those missing the factor es, are exactly the same as the basis 
elements shown in Table 2.3 for the projective exterior algebra. By convention, the basis elements 
without a factor es are listed first for each grade, and they are kept in the same order as they were 
listed in the 4D algebra. Toe basis elements that do have a factor of es follow, and the factor of es is 
always last in a product of basis vectors. Toe preceding factors always occur in the same order as 
they do in a basis element having the same factors without es at the end. So there are two copies of 
the 16 basis elements from the 4D projective exterior algebra, one copy that is exactly the same, 
and a second copy for which each basis element has been multiplied by es on the right side. In 
addition to the scalar basis element 1 and five basis vectors, there are ten bivectors, ten trivectors, 
five quadrivectors, and the volume element 11, which is equal to e1234s here. 

Toe wedge product works in conformal geometric algebra in exactly the same way that it does 
in rigid geometric algebra. Toe full multiplication table in the 5D algebra contains 1024 entries, and 
it is displayed across two pages in Appendix A. We define complements with respect to the e4-es 
basis and the volume element e1234s. Toe complements of all 32 basis elements in the 5D algebra 
are shown in Table 4.2. Since there are an odd number of dimensions, right complements and left 
complements are the same, and we always use the overbar notation ii. With complements defined, 
we can construct the antiwedge product by using the De Morgan law. Toe full multiplication table 
for the antiwedge product in the 5D algebra is also shown in Appendix A. 

Type Grade Basis Elements 

Scalar 0 1 

Vectors I e1, e2, e 3, e4, e s 

Bi vectors 2 e4,, e 42, e43, e 23, e 31, e 12, e, s, e 2s, e 3s , e 45 

Tri vectors 3 e423, e431, e41 2, e 32 1, e41 s, e42s, e435, e 23s, e 31s, e1 2s 

Quadrivectors 4 e1 234, e 423s, e 431s, e 412s, e 321s 

Antiscalar 5 n = e1 2345 

Table 4.1. These are the 32 basis elements of the 5D conformal exterior algebra. 

u 

ii 

u e◄23 I e431 e◄ 12 e321 e4l5 e◄2s e◄Js e23s e31s em e 1234 e◄2Js e4315 e◄12s e321s 1 

ii -e1s I - e2s -e3s -e◄s -e23 - e 31 -e12 - e41 - e42 - e◄J es e 1 e2 e3 e4 1 

Table 4.2. For each of the 32 basis elements u in the 5D conformal exterior algebra, this table lists the com
plement ii. (Right and left complements are equivalent in odd numbers of dimensions.) 

1 In addition to different choices for the constants sand t, the literature contains several different notations for the basis 
vectors that we call e4 and e5, and this includes symbols like o and oo that reflect thei r interpretations as the origin and the 
point at infinity. We prefer e4 and e5 because the subscripts match the storage order of coordinates in the math library 
(following e1, e2, and e3), and they correspond nicely to the rows and columns of the matrices appearing in Chapter 5. 
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184 Chapter 4 Round Projective Geometry 

In conformal geometric algebra, the metric tensor 9± with respect to the set of basis vectors 
B± = { e1, e2 , e3 , e_, e+ } is the 5 x 5 diagonal matrix 

1 0 0 0 0 

0 1 0 0 0 

9± = 0 0 1 0 0 (4.16) 

0 0 0 -1 0 

0 0 0 0 1 

Since we will be using the set of basis vectors B = { e1, e2 , e3 , e4 , e5 }, we need to transform 9± into 
the equivalent metric tensor 9 that operates on vectors over the basis B rather than the basis B±. We 
accomplish this by examining the dot product between two vectors u ± and v ± defined on the basis 
B±, which is given by 

( 4.17) 

To take the dot product between vectors u and v defined on the basis B, we need to first change the 
basis to B± by multiplying by the matrix 

1 0 0 0 0 

0 1 0 0 0 

M= 0 0 1 0 0 (4.18) 

0 0 0 I 1 2 

0 0 0 I 1 -2 

which implements Equation ( 4.10) to transform e4 and e5. The dot product between u and v is then 
given by 

(4.19) 

and this means that the metric tensor 9 for the basis B must be equal to the matrix product MT 9±M. 
Showing just the lower-right 2 x 2 portion of this product, we have 

(4.20) 

We can now write the full 5 x 5 metric tensor 9 as 

1 0 0 0 0 

0 1 0 0 0 

9 = 0 0 1 0 0 (4.21) 

0 0 0 0 -1 

0 0 0 -1 0 

This is the metric tensor that we use throughout our study of conformal geometric algebra. Notice 
that it matches the dot products between e4 and e5 that we already figured out in Equation (4.14). 
Because they both represent valid points, the origin and the point at infinity, e4 and e5 are both null 
vectors, and they indeed do square to zero under the dot product. However, we now have a new 
type of interaction between basis vectors that doesn't show up in rigid geometric algebra. The dot 
products between e4 and e5 are both -1. This feature of the metric tensor effects how duals are cal
culated in this chapter and how the geometric product is calculated in the Chapter 5. 



4.1 Construction 

Toe metric tensor g shown in Equation (4.21) is extended to the full metric exomorphism G 
laid out in Figure 4.3. Interestingly, both the metric and antirnetric for the 4D rigid algebra appear 
inside the full metric for the 5D conformal algebra. Toe entries of the 4D metric given by Equation 
(2.61) are enclosed in boxes with solid outlines, and the negative entries of the 4D antirnetric given 
by Equation (2.64) are enclosed in boxes with dotted outlines. That both of these are part of the 5D 
metric reflects the fact that there are two copies of the rigid geometric algebra inside the conformal 
geometric algebra, one that works with products and one that works with antiproducts. 

Since det ( g) = -1, the metric and antimetric must satisfy G (G = -I. Since g is its own inverse, 
so is G, and we have the simple relationship 

G=-G (4.22) 

in the conformal geometric algebra for any number of dimensions. Because the dot product and 
antidot product are defined with the metric and antimetric by Equations (2.74) and (2.75), they also 

G = 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 0 -1 
0 0 0 -1: 0 

0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0:~·~·o·~-
0 1 0 0 0 o:o 0 0 0 
0 0 1 0 0 O:0 0 0 0 
0 0 0 0 0 0: 0 0 0 -1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 0 -1 0 0 
0 0 0 0 0 -1 0 
0 0 0 0 0 0 - 1 
1 0 0 0 0 0 0 .... -.... .. -----.. ----
0 :-1 0 0 0 0 0 

0 0 0 0: 0 -1 0 0 0 0 
0 0 0 0:0 

-1 0 0 o:o 
0-100:0 
0 0 - 1 0: 0 

0 -1 0 
0 0 0 
0 0 0 
0 0 0 

0 0 
0 0 
0 0 
0 0 

0 0 0 0 1 
o :.:.. i • ci • o • ·o 

0:0 - 100 
0:00-10 
I:0 0 0 0 

Figure 4.3. This is the metric exomorphism G for the 5D conformal exterior algebra, where rows and columns 
correspond to the basis elements in the order shown in Table 4.1. The metric antiexomorphism (G is simply 
equal to - G . The entries of the metric and the negative entries of the antimetric in the 4D rigid exterior algebra 
are enclosed in boxes with solid outlines and dotted outlines, respectively. 
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have a simple relationship that we can express as 

ao b =-a • b. (4.23) 

That is, the antidot product as an antiscalar is just the negative complement of the dot product as a 
scalar. Similarly, because the dual and antidual are defined with the metric and antimetric by Equa
tions (2.100) and (2.101 ), they are related by 

u* = - u* . (4.24) 

The metric duals and antiduals of all 32 basis elements in the 5D conformal geometric algebra are 
listed in Table 4.3 . 

u 1 e 1 e 2 e 3 e4 es e 41 e 42 e 43 e 23 e 31 e 12 e 1s e 2s e 3s e4s 

u* n e423s e 431 s e412s - e ,234 -e321s - e 423 -e431 - e 412 - e41s - e42s - e 43s - em - e 31 s - e m e m 

u* -n - e 423s - e 431 s -e41 2s e ,234 e 321s e423 e 431 e 41 2 e41s e42s e43s e 23s e31s e12s - em 

u e 423 e 431 e 412 e m e 41s e 42s e 43s e 23s e 31 s e m e 1234 e 423s e 431s e 41 2s e m s n 
u* e41 e42 e 43 - e 4s e23 e 31 e,2 e ,s e2s e 3s e4 - e 1 - ei -e3 es - 1 
u* - e 41 - e 42 - e43 e4s - e 23 - e 31 - e 12 - e1s - e 2s -e3s - e 4 e1 e 2 e 3 -es 1 

Table 4.3. For each of the 32 basis elements u in the 5D conformal exterior algebra, this table lists the metric 
dual u * and antidual u *. (Right and left duals are equivalent in odd numbers of dimensions.) 

4.2 3D Round Geometry 

In Section 2.4, flat geometric objects were constructed by joining points together with the wedge 
product, and k-vectors represented ( k -1 )-dimensional flat subspaces. A vector was a OD point, a 
bi vector was a 1D line, and a trivector was a 2D plane. The process is exactly the same in conformal 
geometric algebra, except now the results are generalized to round geometric objects. A k-vector in 
CGA corresponds to the ( k - 2 )-dimensional spherical surface of a ( k -1 )-dimensional solid ball. 
A bi vector is a 0-spbere that we call a dipole because it consists of the two points on either end of 
some line segment. A trivector is a circle corresponding to the boundary of a disk aligned to some 
plane. Finally, a quadrivector is a sphere. Applying the same pattern to a point bizarrely implies 
that a vector is the surface of a zero-dimensional ball, which bas dimension -1. One way to interpret 
this is that a point in CGA is a kind of inverted sphere that's hollow on the inside and solid through
out all space on the outside. Indeed, the algebra allows us to assign a radius to a point just like we 
can for dipoles, circles, and spheres. 

For all four types of geometry, the radius shows up in the algebraic representation as a squared 
quantity r 2

, and it can be positive, negative, or zero. We refer to any geometry for which r 2 > 0 as 
a real object, whether it be a point, dipole, circle, or sphere. A geometry for which r 2 < 0 is called 
an imaginary object because the radius r must be an imaginary number if its square is negative. A 
geometry for which r 2 = 0 is called a null object. 

The flat geometries from rigid geometric algebra are included in conformal geometric algebra, 
and they show up when one of the points participating in the wedge product is the point at infinity 
e5. The points that are multiplied together to construct a higher-dimensional object are contained by 
that object. If one of the points is infinitely far away, then the object containing that point and the 
others must have an infinite radius. Everything in the rigid algebra transfers over to the conformal 
algebra through multiplication by e5, and this includes not only geometric objects but also motors, 
flectors, and even homogeneous magnitudes. 



4.2 3D Round Geometry 

Flat point (3D) 

Line (3D) 

Plane (3D) 

A flat point p = Pxe, + pye2 + p , e3 + Pwe4 gets multiplied by es in the conformal algebra and 
becomes 

( 4.25) 

This bivector is really a dipole with one end at p and the other end at the point at infinity. We use 
the specific term.fiat point to distinguish it from the vector q shown in Equation (4.12), which we 
will call a round point from now on. A round point can have a finite radius that is real, imaginary, 
or null, but a flat point always has an infinite radius. 

A flat line/ = lvx e41 + Ivy e42 + lvz e43 + l,,u e23 + l,,,y e31 + /,,,, e12 gets multiplied by es in the confor
mal algebra and becomes 

(4.26) 

This trivector is a circle that passes through the point at infinity, and it thus has an infinite radius. 
We don 't need to include the word "flat" when describing a line because there is no round geometry 
that it can be confused with. The remaining flat geometry, a plane g = gxe423 + gye431 + g , e412 + 
g we321 , gets multiplied by es in the conformal algebra and becomes 

(4.27) 

This quadrivector is a sphere that contains the point at infinity on its surface. A plane is a sphere 
with an infinite radius. 

4.2.1 Representations 

Vectors, bivectors, trivectors, and quadrivectors correspond to round points, dipoles, circles, and 
spheres in CGA. Round points and spheres each have five components because they are the vectors 
and antivectors in the 5D algebra. Dipoles and circles each have ten components, but there is some 
redundant information stored in them, and we will see in Section 4.10 that they really have only six 
degrees of freedom. Here, we break down the components and assign some geometric meaning to 
all of them. A flat geometric object appears prominently in each representation of a round object, 
and it corresponds to the round object's carrier, which is the smallest flat subspace that contains 
the round object. Toe diagrams of a dipole and circle appearing below also show a container, which 
is the smallest sphere that contains a round object. Carriers and cocarriers are discussed further in 
Section 4.2.3 , and containers are discussed further in Section 4.2.5. 

In the geometric interpretations that we give below, the components of each type of object are 
divided into two groups that we call the round part and the flat part. Toe round part of an algebraic 
representation is the collection of components that do not contain a factor of the basis vector es, 
The fiat part is everything else that does contain a factor of e5. Toe round part is highlighted green 
in the equations below that define component naming that we' ll be using, and the flat part is high
lighted purple. The components of the round part are called the round part because they exist only 
for round objects. Flat points, lines, and planes do not have a round part, only a flat part. Toe round 
part always contains a round object's carrier geometry, and a round object is considered unitized 
when its carrier is unitized. 

We begin with the round point having the form that we already derived in Equation (4.12), but 
now we make a small tweak by adding a radius. A round point a at the position p = (Px , Py, p , ) 
with radius r is given by 
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Round point (3D) 

Dipole (3D) 

Chapter 4 Round Projective Geometry 

(4.28) 

As is the case for all round objects, the value of r 2 can be positive, negative, or zero. If r 2 > 0, then 
a is a real round point, and if r 2 < 0, then a is an imaginary round point. If r 2 = 0, then a is a null 
round point, and we recover Equation (4.12). 

We mentioned earlier that all points having the form shown in Equation ( 4.12) are null vectors 
that lie on the null cone, but if we endow a point with a radius, that is no longer true. A point a with 
a nonzero radius is not a null vector and does not satisfy a • a= 0. A point with a real radius lies 
inside the horosphere shown in Figure 4.2, and a point with an imaginary radius lies outside the 
horosphere. As we' ll see below in Section 4.3, this dot product is actually measuring the radius. 

A round point a is written in terms of generic coordinates as 

(4.29) 

Carrier Point Infinity 

(when a, =ay =a, =aw=O) 

where we always use the subscripts x, y , z, w, and u. The carrier point stored in the round part is the 
fl.at point that coincides with the round point but has no radius. If a round point has no round part, 
leaving only the e5 component, then it is the point at infinity. 

Let a and b be round points of radius zero that are both the same distance r from a center point 
p = (Px , Py, Pz ) in opposite directions along the unit-length vector n = ( nx, ny, n2 ), as shown in 
Figure 4.4. If we multiply them together with the wedge product to calculate a/\ b and unitize the 
result, then we have constructed a dipole d of the form 

The six components of the round part appearing first in this formula are exactly the components of 
a line containing the point p and running in the direction n. This is the carrier of a dipole, which is 
shown as the black line in the figure. The cocarrier is the subspace containing the center p but 
perpendicular to the carrier, and it is shown as the yellow plane. 

A dipole dis written in terms of generic coordinates as 

Cocarrier Normal Cocarrier Position 

(4.31 ) 

Carrier Line Flat Point 

(whend.,, =dvy =d,~ =dmx =dmy =d,,,, =0) 

The subscripts vx, vy, vz, mx, my, and mz identifying the components of the carrier have the same 
meanings as they do for a flat line. The four remaining components have the subscripts px, py, pz, 
and pw because they constitute a flat point p when the round part is zero. This happens when one 
of the two points a and b that were multiplied together to construct the dipole is the point at infinity. 
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Circle(30) 

As we did for the two parts of a line Iv and lm , we sometimes use a shorthand notation for various 
three-component parts of a dipole. The notation d v means the vector ( dvx, d ,y, d ,,, ), and the notation 
dm means the vector ( d mx ' dmy' dm= ). For the vector ( d px ' d PY' d P= ), we use the longer notation d pxyz 
to make it clear that it's a three-dimensional vector that excludes the pw component. 

Cocarrier Container 

Carrier 

Figure 4.4. A dipole, shown here as the pair of blue points connected by a dashed line, is a zero-dimensional 
sphere. The points of radius zero on its surface lie at the distance r from the center p along the direction n. 

When we multiply three round points together with the wedge product, the result is the unique 
circle c that contains all three of them on its surface. As shown in Figure 4.5 , this circle bas a center 
panda radius r, and it lies in a plane with the unit-length normal vector n determined by the three 
points. Using the parameters p, n, and r, a circle can be written as the trivector 

C = nx e423 + nye431 + n= e412 + (pynz - p , ny ) e415 + (p=nx - Pxn=) e425 + ( Pxny - P_v nx ) e435 

p 2 -r2 
+ (p · n )(Pxem +pye315 +p, e125 -e321)-

2 
(nxem +nye315 +n, e125 ). (4.32) 

The nonnal of the carrier plane can be seen in the first three terms, which make use of the same 
components e423, e43 1, and e412 that a flat plane has in the rigid algebra. Tue position of the carrier 
plane in the e321 component has the value - p · n as it must for a plane with normal n that contains 
the point p. The carrier is shown as the yellow plane in the figure, and the cocarrier is shown as the 
black line that is perpendicular to it and contains the center p. 

A circle c is written in terms of generic coordinates as 

Cocarrier Direction Cocarrier Moment 

Carrier Plane Flat Line 

( when c gx = Cgy = c gz = c gw = 0) 

The subscripts gx, gy, gz, and gw correspond to the carrier and have the same meaning as they do 
for a flat plane. The six subscripts vx, vy, vz, mx, my, and mz constitute the flat line that c becomes 
when the round part is zero. A straight line is the special case of a circle that contains the point at 
infinity e5. Again, we have a shorthand notation for the various three-component parts of a circle. 
The notation Cv means the vector ( Cvx' C,y' Cvz ), and the notation Cm means the vector ( Cmx' Cmy' Cmz ). 
Since the carrier has four components, we use the notation Cg-'J'Z for the vector ( Cgx , Cgy , Cgz ) to ex
clude the gw coordinate. 
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Sphere (3D) 

Chapter 4 Round Projective Geometry 

Container 

Cocarrier 

Figure 4.5. A circle, shown here as the bold blue ring, is a one-dimensional sphere. The points of radius zero 
on its surface lie at a distance r from the center p in directions perpendicular to the normal vector n. 

Multiplying four round points together with the wedge product constructs the unique sphere s 
that contains all four points on its surface. A sphere having the center p and radius r is represented 
by the quadrivector 

(4.34) 

The e1234 component holds the weight of a sphere, and it is intentionally negative one here because 
that makes it possible to read the coordinates of the center directly from the first three terms. This 
is similar to how the center of a round point can be read directly when its weight component e4 is 
positive one. Round points and spheres are duals of each other, and as can be seen in Table 4.3, 
either the three components containing Px, Py, and p 2 or the one weight component has to be ne
gated no matter which dual is applied to convert between them. 

A sphere s is written in terms of generic coordinates as 

Carrier Space Flat Plane 

(when Su= 0) 

(4.35) 

where we always use the subscripts x, y, z, w, and u just as we do for a round point. Our convention 
is to write the round part before the flat part, so the u coordinate appears first for a sphere and last 
for a round point. The carrier for a sphere is the entire 3D space, which is represented by the 4D 
volume element e1234 from the rigid algebra. When the e1234 component is zero, a sphere becomes 
a flat plane that contains the point at infinity e5. 

In the numerous diagrams that appear throughout this chapter, we draw the various types of flat 
and round geometric objects with a consistent visual appearance for easy identification. Examples 
are shown in Table 4.4. Flat points are always enclosed by a small orange disk so they are not 
confused with round points. Lines are always drawn as a bold black segment with an arrowhead at 
one end, and planes are always filled with a yellow-orange gradient. Each of the four types of round 
object can appear in two different colors that are used to distinguish between real and imaginary 
radii . For dipoles, circles, and spheres, the color blue indicates that the object has a real radius, and 
the color red indicates that it has an imaginary radius. The colors are different for round points 
because they otherwise look exactly like spheres, and we need a way to tell the difference. For 
round points, the color green indicates a real radius, and the color purple indicates an imaginary 
radius. Aside from color, spheres and round points are drawn as balls with black points at their 
centers. The centers of round points are a little bit smaller than the centers of spheres. Dipoles are 
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drawn as a pair of points connected by a dashed line, where the dashing is meant to convey that the 
segment between the two points is not part of the dipole's surface. Finally, circles are drawn as bold 
rings with black points at their centers. 

Flat Object 

Flat point p 

Line/ 

Plane g 

Round Object 

Round point a 

Dipole d 

Circle c 

Spheres 

Real 

0 
, 

, , 
, 

,• , 

0 

Appearance 

0 

0 

Imaginary 

0 
, , 

• ' 

, , 
,• , 

0 

Table 4.4. Toe various types of geometries in conformal geometry algebra are consistently drawn as shown 
in this table. Toe color blue is generally used to indicate that a round geometry is real, and the color red is 
used to indicate that it is imaginary. Toe exception is round points which use green and purple for real and 
imaginary to distinguish them from spheres. 

Math Library Notes 

• The Round Point 3D class stores the five coordinates of a 5D vector representing a round point, and they 
are named x, y, z, w, and u. 

• Toe Dipol e3D class stores the ten components of a 5D bi vector representing a dipole. These components 
are divided into three parts named v, m, and p, which are the direction of the carrier line as a Vector3D, 
the moment of the carrier line as a Bi vector 30, and the flat point as a FlatPoint3D. 
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• The Circle3D class stores the ten components of a SD trivector representing a circle. These components 
are divided into three parts named g, v, and m, which are the carrier plane as a Plane3D, the direction of 
the flat line as a Vector3D, and the moment of the flat line as a Bivector3D. 

• The Sphere3D class stores the five coordinates of a SD quadrivector representing a sphere, and they are 
named u, x, y, z, and w. 

• The FlatPoint3D, Line3D, and Plane3D classes are used for flat geometries in conformal geometric 
algebra as well as rigid geometric algebra. 

4.2.2 Duals 

In conformal geometric algebra, a geometric object u and its dual u * have symmetric properties. 
When we calculate the dual of a round object, what we get is another round object of the comple
mentary grade that has the same center. The magnitude of the radius is also the same, but real and 
imaginary radii are exchanged. That is, the squared radius ofu * has the same size but the opposite 
sign of the squared radius of u. Spheres are dual to round points, and circles are dual to dipoles. If 
we think of a real circle as the equator of a globe, then the dual of that circle is the imaginary dipole 
whose surface coincides with the north and south poles of the same globe. The opposite is also true. 
The dual of a real dipole coinciding with the poles is the imaginary circle at the equator. 

The duals of all seven types of geometric objects in 3D space are listed in Table 4.5, and they 
are easily calculated one component at a time using the information in Table 4.3. The duals of the 
flat geometries are included, but they will be of little interest except to note that they each have a 
carrier in the horizon. For example, a flat point is a dipole with one pole at infinity, so the equator 
in its dual is a circle whose carrier plane is the whole horizon. Because the metric is not degenerate, 
no information is lost when we calculate a dual, which is unlike the rigid algebra. Taking the dual 
of a dual in CGA returns to the original object, but it's always negated in the 5D case. 

4.2.3 Carriers 

We have already mentioned the carrier of a round object. It is the lowest dimensional flat object 
that contains it. The carrier of a round point is the flat point at the same location, the carrier of a 
dipole is the line in which it lies, the carrier of a circle is the plane in which it lies, and the carrier 

Type Dual 

Flat point p * P = Pive 321 - P x e 23s - p _,, e 31s - p , e 12s 

Line I I* = l vx e 23 +lry e 31 + / ,.,. e 12 + l mx e 1s +lmy e 2s +lm, e Js 

Plane g * g = -gx e 1 -gy e 2-g, e 3 + gw e s 

Round point a * a = -awe 1234 + a x e 423s + a y e 431s + a , e 412s - a u e 321s 

Dipole d 
d* = -dvx e 42J -dry e 43 1 - d ..,, e 412 +dµw e J2 1 

- d mx e 41s - d my e 42s - d m, e 43s -dµx e 23s -dµy e 31s - d µ, e 12s 

* 
Circle c 

c =Cgx e 41 + cgi, e 42 +cgz e 43 

+ Cvx e 23 + cry e 31 + cvz e 12 +C,,u- e 15 + Cmy e 25 + Cm, e 35 -Cgiv e 45 

Spheres * S =-Sx e l - S y e 2 - S, e 3 + Su e 4 + Sw e s 

Table 4.5. These are the duals of the geometric objects arising in the conformal geometric algebra over 3D 
space. The antidual u * is always the negation of the dual u * in this algebra. 
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Carrier 

Cocarrier 

Center 

of a sphere is all of 3D space. Toe carrier of any object can be calculated by taking the wedge 
product with the point at infinity es. Denoting the carrier of an object u by car ( u ), this gives us the 
definition 

I car ( u ) = u A es. I (4.36) 

This product has the effect of annihilating the flat part of the object (because es A es = 0) and ap
pending a factor of es to each component of the round part to make it a flat geometry. 

Toe cocarrier of a round object u, which we denote by ccr ( u ), is defined to be the carrier of 
the object's anti dual u *, which we can write as 

I ccr ( u) = u * A es. I (4.37) 

There is no geometric reason to choose the antidual over the dual here, and we do so only because 
it produces results with more favorable signs. The carriers and cocarriers of the round objects in 3D 
space are listed in Table 4.6. 

For a round object u of grade k, the carrier of u has grade k + 1, and the cocarrier of u has grade 
n - k + 1, where n is the dimension of the algebra. The carrier and cocarrier both contain the center 
of the object, and their antiwedge product has grade two. Thus, the meet of the carrier and cocarrier 
is a flat point p coinciding with the center of the object that we can calculate with the formula 

p = ccr ( u ) v car ( u ). (4.38) 

This is not the formula we will typically use for the center of an object, however. Instead, we replace 
car ( u ) with u itself below because it provides a way to incorporate the radius into the center and 
express it as a round point. 

Type Carrier Cocarrier 

Round point a car(a)= a x e 15 +ay e 25 +a, e 35 +aw e 45 ccr(a)=awn 

Dipole d 
car ( d ) = d vx e 415 + d vv e 425 + d vz e 435 ccr ( d ) = d vx e 4235 + d ,y e 43 15 + d vz e 4125 

+ d,nx e 235 + d,,,y e 315 + d,,,, e1 25 - d µw e 32 15 

Circle c 
Car ( C) = C gx e 4235 + C gy e4315 + C gz e4 I 25 ccr ( c) = - Cgx e415 -cw e425 - cgz e 435 

+ Cgw e 3215 -Cvx e 235 - C,y e 315 - Cvz e l25 

Spheres car ( S) = Su ll ccr ( s) = s x e 15 + Sy e 25 + s z e 35 - s u e 45 

Table 4.6. These are the carriers and cocarriers of the round geometric objects arising in the conformal geo
metric algebra over 3D space, as defined by Equations (4.36) and (4.37). 

4.2.4 Centers 

Toe center of a round object is the round point having the same position and radius. Toe center of 
an object u is denoted by cen ( u ), and it is given by 

I cen ( u ) = ccr ( u ) v u, (4.39) 

which is the meet of u and its own cocarrier. We will sometimes call this the round center to dis
tinguish it from the flat center given by Equation (4.38). Toe squared radius of an object's round 
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center has the same sign as the squared radius of the object itself. That is, the center of a real object 
is real, and the center of an imaginary object is imaginary. It's useful to express the center of a 
round object as a round point because it can serve as the anchor point for a parametric description 
of the object. The centers of the round objects in 3D space are listed in Table 4.7. As shown in the 
table, applying the function in Equation ( 4.39) to a round point returns the same geometry, as would 
be expected, but with some homogeneous scaling based on the point's weight. 

Type Center 

Round point a Cen (a)= Gx Gw el + Gy Gw e 2 + G, Gw e 3 + G~ e 4 + GwGu es 

cen ( d ) = (dvy d mz -dvz d m_v +dvx d µw )e1 

+ ( d vz d,nx - d vx dmz + d vy d pw) e2 
Dipole d 

+ ( d vx d my - d vy d mx + d vz d pw ) e3 

( 2 2 2 ) ( 2 ) + d vx + d vy + d vz e4 + d pw - d vx d px - d vy d PY -dvz d pz es 

cen ( C) = ( CgyCvz -CgzCvy -CgxCgw ) e1 

+ ( CgzCvx -CgxC,,, -CgyCgw ) e2 
Circle c 

+ ( Cg,:Cvy -CgyCvx -CgzCgw ) e3 

( 2 2 2) ( 2 2 2 ) + Cg,: + Cgy + Cgz e4 + Cvx +Cvy +Cvz +CgxCmx +CgyCmy +CgzCmz es 

Spheres Cen ( S) = - SxS11 e1 -SySu e2 -s,s11 e3 + s,; e4 + ( s; + S_~ + s; -SwSu ) es 

Table 4. 7. These are the centers of the round geometric objects arising in the conformal geometric algebra 
over 3D space, as round points defined by Equation (4.39). 

4.2.5 Containers 

The container of a round object is the smallest sphere that contains it. The container of an object u 
is denoted by con ( u ), and it is given by 

I con ( u ) = u /\ car ( u ) * , (4.40) 

which is an expansion of u onto its own carrier using the antidual operation. (The dual would also 
produce the same container, but we use the antidual to be consistent with the expansions appearing 
later in Section 4.8.) As with centers, the squared radius of an object's container has the same sign 
as the squared radius of the object itself. That is, a real object has a real container, and an imaginary 
object has an imaginary container. The containers of the round objects in 3D space are listed in 
Table 4.8. As shown in the table, applying the function in Equation (4.40) to a sphere returns the 
same geometry, as would be expected, but with some homogeneous scaling based on the sphere's 
weight. 

4.2.6 Partners 

The partner of a round object is the object of the same type having the same position, same carrier, 
and same absolute size, but having a squared radius of the opposite sign. The partner of an object u 
is denoted by par ( u ), and it is given by 
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Partner 

Type 

par ( u ) = ( -l)gr( u )+I con ( u * ) v car ( u ), (4.41) 

which is the meet of the container of u * and the carrier of u. This formula works because taking 
the dual of u exchanges real and imaginary radii , and the container function keeps it that way. Tue 
power of -1 in front isn't technically necessary, but it conveniently preserves the orientation of the 
geometry u. Tue partners of the round objects in 3D space are listed in Table 4.9, which shows that 
some of the calculations can be surprisingly complicated for such a simple change to the geometry. 

Type Container 

Round point a con (a) =-a! e1 234 + a x a w e 4235 +ay a w e 4315 +a, a we 4125 +( GwGu - a ; -a_~ - a ; )e3215 

con ( d ) = ( d ;x + d ~ + d ! ) e, 234 

+ ( d VZ d ll(Y - d V),d m, - d vx d pw ) e 4235 

Dipole d + ( d vx d m, - d vz d mx - d vy d pw ) e 4315 

+ ( d vy d mx -dvx d my -dvz d pw ) e 4125 

+ ( d ,~ + d ;,y + d ,2,,, + d .,xd px + d vy d py + d vz d pz ) e 3215 

con ( c ) = - ( ct + c;v + c:, ) e 1234 

+ ( CgyCvz - Cg,Cvy - CgxCg,,, ) e 4235 

Circle c + ( CgzCvx -CgxCvz -CgyCgw ) e 4315 

+ ( CgxCvy -CgyCvx -CgzCgw ) e 4125 

+ ( CgxC,nx + CgyCmy + CgzCmz - C~ ) e 32 15 

Sphere s COn ( S) = S~ e1 234 + SxSu e 4235 + S ySu e 4315 + S ,Su e 4125 + SwSu e 3215 

Table 4.8. These are the containers of the round geometric objects arising in the conformal geometric algebra 
over 3D space, as spheres defined by Equation (4.40). 

Partner 

Round point a () 2 2 2 3 ( 2 2 2 ) par a = GxGw e1+Gy Gw e 2+ a , a w e 3 +Gw e 4 + Gx +ay +a, -GwG11 Gw e 5 

par ( d ) = ( d ;x + d ~ + d ! ) ( d vx e 41 + d v_v e 42 + d vz e 43 + d,nx e 23 + dm_v e 31 + d ,nz e 12 + d pw e 4s ) 

Dipole d + ( d ;w - d ~ -d;,y - d,;IZ -dvx d px -dV),d PY - d vz d p, ) ( d vx e 15 + d vy e 25 + d vz e 35) 

+ ( d 111, d v_v - d my d vz ) d pw e1 5 + ( d mx d vz - dm, d vx ) d pw e 2s + ( d my d vx - d mx d v_v ) d pw e 3s 

par ( C) = ( ct + c;,, + cb ) ( Cgx e 423 + Cgy e 43 1 + Cg, e4 12 + Cgiv e 321 + Cvx e 415 + CV), e 425 + Cvz e 435 ) 

Circle c + ( C~v - c;x - C~ - c! - Cg;rC,nx - CgyCmy - CgzCmz ) ( Cgx e 235 + Cgy e 315 + Cgz e 125 ) 

+ ( CvyCgz - CvzCgy ) Cgw e 235 + ( CvzCgx -CvxCgz ) Cgiv e 315 + ( CvxCgy - CvyCgx ) Cgw e 125 

Sphere s () 3 2 2 2 ( 2 2 2 ) par S = s11 e 1234 +SxS11e4235 + SyS11 e 43 15 +S,S11 e 41 25 + Sx +Sy +S, - S wS 11 S11 e 32 15 

Table 4.9. These are the partners of the round geometric objects arising in the conformal geometric algebra over 3D 
space, as defined by Equation ( 4.41 ). 
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4.2.7 Attitude 

Toe attitude function that we first defined in Section 2.8.4 continues to apply in conformal geomet
ric algebra. In 3D space, we extract the attitude of an object with the formula 

I att ( U ) = U V e 4 , I (4.42) 

which removes any component containing a factor of e4 . Toe attitudes of all flat objects and round 
objects in 3D space are listed in Table 4.10. For flat objects, the attitudes listed here match the 
attitudes shown in Table 2.9, but now each one has an additional factor of e5. For round objects, we 
can see that the attitude of the carrier is extracted, but there is some additional information as well , 
and it has to do with the radii of surface points. This will enable parametric formulations of the 
surfaces of round objects later in Section 4.6. 

Type Attitude 

Flat point p att (p) = Pwes 

Line l 

Plane g 

Round point a 

Dipole d 

Circle c 

Spheres 

Table 4.10. These are the attitudes of the geometric objects arising in the conformal geometric algebra over 
3D space, as defined by Equation (4.42). 

Math Library Notes 

• Toe dual and antidual operations are implemented by the Dual() and Antidual() functions for round 
objects only. 

• Toe carriers and cocarriers of round objects are returned by the Carrier() and Cocarrier() functions. 

• The Center() function calculates the center of a RoundPoint3D, Dipole 30, Circle 30, or Sphere3D 
object. Toe return value always has type RoundPoint3D. 

• Toe Container() function calculates the container of a Round Point 30, Dipole 30, Circle 30, or 
Sphere3D object. Toe return value always has type Sphere3D. 

• Toe Partner() function calculates the partner of a RoundPoint3D, Dipole3D, Circle 30, or Sphere3D 
object. The return value always has the same type as its input. 

• Toe Attitude() function returns the attitude of a RoundPoint3D, Dipole3D, Circle3D, or Sphere3D 
object. The return type is a floating-point value, a RoundPoint3D object, a Dipole3D object, and a 
Circle3D object, respectively. 
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4.3 Norms 

Center norm 

In Section 4.2.1 , we divided the components of a geometric object into a round part and a flat part, 
which are those components that do not have a factor of e5 and those that do have a factor of e5, 

respectively. Each of those parts can be further divided into a bulk and weight depending on 
whether a factor of e4 is present. This lets us classify all the components of an object as belonging 
to one of four parts as follows . 

• The round bulk of u, denoted by u. with a solid black circle written as a subscript, consists of 
all components of u that do not have a factor of either e5 or e4 . The round bulk bas the same 
meaning as in the rigid algebra, and it is equivalent to the bulk of the carrier geometry for round 
objects. The round bulk for flat objects is always zero. 

• The round weight of u, denoted by u0 with an empty white circle written as a subscript, consists 
of all components of u that do not have a factor of e5 but do have a factor of e4 . The round 
weight has the same meaning as in the rigid algebra, and it is equivalent to the weight of the 
carrier geometry for round objects. The round weight for flat objects is always zero. 

• The fiat bulk of u, denoted by U ■ with a solid black square written as a subscript, consists of all 
components of u that have a factor of e5 but do not have a factor of e4 . For flat objects, the flat 
bulk has the same meaning as bulk does in the rigid algebra. 

• The fiat weight of u, denoted by u0 with an empty white square written as a subscript, consists 
of all components of u that have a factor of both e5 and e4 . For flat objects, the flat weight has 
the same meaning as weight does in the rigid algebra. 

The bulk and weight of the round and flat parts of each type of geometry arising in conformal 
geometric algebra are listed in Table 4.11. 

By measuring the size of the components belonging to each of the four separate parts of an 
object u, we can define four separate norms. Naturally, we call these the round bulk norm !lull., the 
round weight norm llullo, the flat bulk norm !lull., and the flat weight norm llull0 , where we are using 
the same kind of notation as we did for the bulk and weight norms in the rigid algebra. All four 
norms are listed for each type of geometry in Table 4.12. As with the separate treatment of the bulk 
and weight norms in the rigid algebra, we are using the term "norm" loosely here. True norms need 
to measure a distance that satisfies the requirements that we previously listed in Table 2.14. 

For flat objects, the ratio of the flat bulk norm to the flat weight norm is equivalent to the 
geometric norm in the rigid algebra, and its value is the distance from the origin to the object. For 
round objects, the ratio of the round bulk norm to the round weight norm is the distance from the 
object to the carrier geometry. The round weight always contains the homogeneous weight of a 
round object, so unitizing a round object amounts to making the round weight norm have unit 
magnitude. To remove homogeneous scaling, all other norms must be divided by the round weight 
norm. 

The flat part of a round object contains information about the center and radius. In particular, 
the flat weight norm is the weighted distance between the support of the carrier and the center of 
an object. This means that the round bulk norm and flat weight norm form the sides of a right 
triangle in which the hypotenuse connects the origin to the center, as shown in Figure 4.6. That 
being the case, we define the center norm of a round object u as 

(4.43) 

The center norm is denoted by double vertical bars with a circle containing a dot at its center written 
as a subscript. The center norm is weighted, so we need to divide by the round weight norm llullo to 
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get the actual distance between the center and the origin. The center norms for the four types of 
round object in 3D space are listed in Table 4.13 . 

Whenever an inner product is defined, it induces a norm. In conformal geometric algebra, we 
have the dot product and antidot product, and their magnitudes are negatives of each other due to 
the the metric and antimetric having the relationship (G = - G. When we take the dot product of a 
round object u with itselfusing any of the representations given in Section 4.2.1, we find it is always 
the case that 

u • u =-r2 

' 
(4.44) 

where r is the radius of the object. Ifwe take a square root of this value, then we'll get an imaginary 
number when u has a real radius and a real number when u has an imaginary radius. To avoid this 
reversal of real and imaginary values, we instead calculate the radius of an object with the square 
root of the antidot product because u O u = r 2 1l. The radius norm of a round object u is denoted by 
llull 0 with a circle containing a radial line written as a subscript, and it is defined by 

(4.45) 

This norm produces real values for real objects and imaginary values for imaginary objects. The 
radius norm is weighted just like all the other norms, so it needs to be divided by the round weight 
norm llullo in order to calculate the actual radius of u. The radius norm for the four types of round 
object in 3D space are listed in Table 4.13. 

Type Round bulk and weight Flat bulk and weight 

Flat point p 
P• =0 P■ = P x e1 s + p y e2s + P z e 3s 

P o =0 P o = P we4s 

1. =0 I■ = lnu e 23s +lmy e 31s +/nrz e1 2s 
Line / 

lo =0 lo = l vx e41 s + Ivy e42s + l vz e43s 

Plane g 
g. =0 g. = g we 321 5 

go =0 g o = g x e4235 + g y e4315 + g z e41 25 

Round point a 
a. =ax e) +ay e 2 +az e3 a. = a 11 e 5 

a o = a we 4 a o =0 

Dipole d 
de =dmxe 23 +dmy e 31 +dmz C1 2 d■ = d µx e1 s +dµy e 2s +dµz e 3s 

d o = d vx e41 + dvy e42 + d vz e43 d o = d µw C45 

Circle c 
Ce =Cgiv e321 C■ =C11zx e 235 +Cmy e 315 +Cmz CJ 25 

Co= cgx e423 +cgy e 43 1 +cgz C412 Co =cv,: e41 s +cvy e42s +cv:: e435 

s. = 0 S ■ = S we 32 15 
Spheres 

So = s" e1234 So= Sx C4235 +sy e4315 + sz e41 25 

Table 4.11. For each type of geometric object u in the conformal geometric algebra over 3D space, this table 
lists the round bulk u., the round weight u

0
, the flat bulk U■, and the flat weight u

0
. 
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Type Round bulk norm Round weight norm Flat bulk norm Flat weight norm 

Flat point p IIPII. =0 I\ P llo =0 II P II . = ✓ p; + P.~ + p; \\ p \\o = \Pw I 

Line/ 11111. = 0 IILllo =0 11 111 . = l ;,x + l,;,v + 1,2,,: \\/\lo = ✓fi7x +!,;, +/~ 

Plane g llgll. =o llg\lo =o \\gll. =lgw\ llg\l□ = ✓ g; + g_~ + g; 

Round point a \\a\l. = ✓a; +a; +a; Ilalio =\aw\ \l a \l . = \au I Ilalio =0 

Dipole d \\ d \l e = ✓d,;,x + d;,y + d},z \\ d \lo = ✓d,;x + d~, + d,~ ll d ll■ = ✓d;x + d;y + d;: \\ d llo = \dpw \ 

Circle c \\ cl\. = \cg,v I \\ cl\0 = ✓c~x +c~, +c~ \\cl\. = ✓c;,x +c,~,v + c;,= llcl\0 = ✓c;x + c~ + c~ 

Spheres 11s\l. =0 llsllo =Is,,\ \1s11. = lsw I 11s\10 = ✓s; +s; +s; 

Table 4.12. These are the round bulk norms, round weight nonns, flat bulk norms, and flat weight norms of geometric 
objects in the conformal geometric algebra over 3D space. 

ll c ll . 

ll cllo 

0 

Figure 4.6. The circle c lies in a carrier plane with support p. The round bulk norm llcll. corresponds to the perpendic
ular distance between the origin o and the plane, which is the length of the line segment connecting the origin and the 
support p. The flat weight norm \lc\\0 corresponds to the distance between the support p and the center of the circle c 
in the carrier plane. These form the sides of a right triangle for which the hypotenuse corresponds to the distance 
between the origin and the center of the circle, given by the center norm llcllo• All of the norms are homogeneously 
scaled and must be divided by the round weight norm llc\\ 0 if the circle is not unitized. 

Type Center orm Radius orm 

Round point a lla\\0 = ✓a; + a_; + a; llall0 = ✓2awau - a; - a; -a; 

Dipole d ll d ll0 = ✓d~ + d,2,,y + d;,: + d;w ll d \\0 = 2 2 2 2 ( ) ~-~-~-~-2~~+~~+~~ 

Circle c ll c \\0 = ✓c~v + c;x + c~, + c~ llc\\0 = 2 2 2 2 ( ) ~ +~ +~-~ +2 ~~ +~~ +~~ 

Spheres 11s110 = ✓ s.~ + s~ + s; llsl\0 = ✓ s; + s; + s; - 2s wSu 

Table 4.13. This table lists the center norm ll u llo and radius nonn ll u \\0 for the round objects in the conformal geometric 
algebra over 30 space. 
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Math Library Notes 

• The Sq uaredCente rNorm() and SquaredRadiusNo rm() functions return the squares of the center norm 
and radius norm. Squares are returned so the quotient can be taken before a single square root is applied. 

• The SquaredBulkNorm() and Squar edWeightNorm() functions return the squares of the round bulk 
norm and round weight norm. Their names do not contain the word Round so the same functions can be 
used with flat objects and round objects. 

• The SquaredFlat BulkNorm() and Sq uaredFlatWeightNorm() functions return the squares of the flat 
bulk norm and flat weight norm. 

• Round points, dipoles, circles, and spheres can be scaled to have unit weight by calling the Unitize() 
function . 

4.4 Alignment 

There are two types of alignment between round objects that appear everywhere in conformal geo
metric algebra. Two objects are "aligned" when they are algebraically orthogonal, as described in 
Section 4.5 , or when one of the objects contains the other, as described in Section 4.6. Depending 
on whether the radius of each object is real or imaginary, they may be right aligned or polar aligned, 
and these two types are illustrated in Figure 4.7. Alignment always applies to the containers of the 
objects that are involved. This doesn't change anything visually for spheres and round points, but 
dipoles and circles must be enclosed by the smallest sphere possible in order to visualize their 
alignments to other objects. 

When two objects are right aligned, the surfaces of their containers meet at right angles, as 
shown on the left in the figure. This can happen only if the center of each container lies outside the 
other container. When two objects are polar aligned, the surface of the larger object 's container 
intersects the surface of the smaller object 's container at a lower-dimensional surface of maximum 
radius, as shown on the right in the figure. Toe center of the intersection coincides with the center 
of the smaller object, and this center must lie inside the container of the larger object. 

It is also possible for a round object to be aligned to a flat object. In the case, the flat object 
simply passes through the center of the round object. Such a geometric configuration satisfies the 
definitions of both right alignment and polar alignment. 

Right Alignment Polar Alignment 

Figure 4.7. When two round objects are aligned because they are orthogonal or one contains the other, there 
are two possible configurations. (Left) Two objects are right aligned when the surfaces of their containers 
meet at right angles. (Right) Two objects are polar aligned when the surface of the larger object's container 
intersects the surface of the smaller object's container at a surface having a center that coincides with the the 
smaller object's center. 
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4.5 Dot Products 

When we take the dot product between two unitized round objects u1 and u2 of the same type, we 
obtain a real number that depends on the difference v between their center positions and their radii 
r1 and r2. In the case of dipoles and circles, the vectors n1 and n2 corresponding to either the direc
tions of the carrier lines or the normals of the carrier planes are also involved. Toe absolute positions 
of the objects do not matter, and in this setting, the dot product has the unusual property that it is 
not affected by a translation of the coordinate system. Formulas for the dot products between pairs 
of round objects in 3D space are listed in Table 4.14. Toe results produced for dipoles and circles 
are rather involved, but it's not too difficult to interpret the dot products of round points and spheres 
geometrically. 

Type Dot Product 

Round points a1 and a2 
1( 2 2 2) a1 • a2 =- 2 v +r1 +r2 

Dipoles d1 and d 2 
1 ( 2 2 2 ) d1•d2=- 2( n1· n2) v +r1 +r2 +( n1·v)(n2• v) 

Circles c1 and c2 C1 •C2 = + ½ ( D1 • D2) ( v2 - r? - ri) -( D1 • V) ( Dz • V) 

Spheres s1 and s2 S1 • S2 1( 2 2 2) =+- v -r1 -r2 
2 

Table 4.14. These are the dot products between pairs of unitized round objects having the same type in the 
conformal geometric algebra over 3D space. The vector vis the difference between the centers of the objects 
(and it doesn 't matter which way they are subtracted), and the scalars r1 and r2 are their radii. For dipoles, the 
vectors n1 and n2 are the directions of the carrier lines, and for circles, the vectors n1 and n2 are the normals 
of the carrier planes. 

4.5.1 Round Points 

Figure 4.8 shows the geometric relationship between two round points a1 and a2 as it pertains to the 
dot product a1 • a2. We consider the three different cases that are possible, that both points are real, 
that one point is real and the other is imaginary, and that both points are imaginary. In all cases, the 
dot product gives us v2 + r? + rf multiplied by -½, but the geometric meaning of this number 
changes a little depending on whether r? and rf are positive or negative. In particular, what it means 
for two points to have a dot product of zero, and thus be considered orthogonal, is different among 
the three possible cases. 

In the case that both round points a1 and a2 are real, we know that ri2 > 0 and rf > 0. As shown 
in the first row of Figure 4.8, the value v2 + r? + rf can be interpreted as the squared length of the 
hypotenuse of a right triangle in which the square of one leg is rf and the square of the other leg is 
v2 + r? . Toe value v2 + ri2 is itself the squared length of the hypotenuse of another right triangle in 
which the two legs have squared lengths r? and v2. Since all of these values are positive, there are 
no nonzero real radii for which a1 • a2 = 0, and consequently, no pair of real round points can ever 
be orthogonal. If both radii are reduced to zero, making both a1 and a2 null points, then the dot 
product between them becomes 

(4.46) 
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• 

r/ > 0 

Figure 4.8. The dot product between two round points with radii r1 and r 2 can be interpreted in three distinct 
ways depending on whether each is real (green) or imaginary (purple). The vector v represents the difference 
between the positions of the points. The right column illustrates the alignment when the points are considered 
orthogonal because the dot product between them is zero. 

which is the squared distance between the two points multiplied by -½- (Remember that the points 
are unitized here, and the right side would be multiplied by their weights otherwise.) Ifa 1 and a2 

are the same point, but with a nonzero real radius r, then the distance between them is zero, and the 
dot product simplifies to Equation (4.44), which measures the squared radius. Toe only way to 
obtain a dot product of zero without using imaginary radii is to take the dot product of a round point 
having radius zero with itself. 

In the case that a 1 is imaginary and a2 is real, we haver? < 0 and rf > 0, and things get a little 
strange in the second row of Figure 4.8 because the diagrams include some imaginary lengths. 
Nevertheless, the use oflengths that square to negative numbers allows us to derive some geometric 
intuition from the algebraic relationship between the two points. Toe value v2 + r? + rf is still in
terpreted as the squared length of the hypotenuse of a right triangle, but it can become negative 
when the two points are close enough together. Toe squares of the legs are stil l rf and v2 + ri2, but 
in this case, v2 + r? must be less than v2 because r? < 0. This time, v2 is the squared length of the 
hypotenuse of the second triangle, and the squared lengths of the triangle 's legs are r? and v2 + r( 



4.5 Dot Products 

Since one of the points is imaginary, it is possible to obtain a dot product of zero between them 
even if they both have nonzero radii and different center positions. An imaginary point a1 and a real 
point a2 are orthogonal precisely when 

(4.47) 

lltis configuration is illustrated in the second row of the figure, and it shows that llvll and r2 are the 
legs of a right triangle for which the hypotenuse has the imaginary length r1. The absolute value of 
r1 must be larger than r2 for this to be possible when r2 is real. As demonstrated in the figure, when 
an imaginary point and real point are orthogonal, they are polar aligned. 

In the final case that both round points a1 and a2 are imaginary, we have r1
2 < 0 and rl < 0. We 

assume that the points have been numbered such that I r1 I 2".: I r2 I so that a I is larger than a 2 ( or the 
same size) as drawn in the third row of Figure 4.8. Since the radii square to negative numbers, the 
value v2 + r? + rl is guaranteed to be smaller than v2 + r?, and both of these values can be negative 
when the two points are close enough together. The value v2 + r? must also be smaller than v2. As 
a result of these relationships, v2 + r? + rl is the squared length of one leg of a right triangle for 
which v2 + r? is the squared length of the hypotenuse, and that becomes one leg of another right 
triangle for which v2 is the squared length of the hypotenuse. Two imaginary points are orthogonal 
precisely when 

(4.48) 

and trus special case is shown in the third row of the figure. Here, r1 and r2 are the imaginary lengths 
of the legs of a right triangle for which the hypotenuse has the real length ll vll- When two imaginary 
points are orthogonal, they are right aligned. 

4.5.2 Spheres 

Since round points and spheres are duals of each other, they share similar properties. The dot prod
uct between two spheres s1 and s2 shown in Table 4.14 has the same form as the dot product be
tween two points with the only difference being some sign changes that must exist due to the 
relationship (G = - G between the metric and antimetric. The squares of the radii are both negated 
because the dual of a real point is an imaginary sphere, and the dual of an imaginary point is a real 
sphere. Thus, as shown in the first row of Figure 4.9, the dot product between two real spheres 
behaves just like the dot product between two imaginary points except that it has the opposite sign. 
Two real spheres with centers separated by the vector v are orthogonal when ri2 + rl = v2, and they 
are right aligned just like two imaginary points. A real sphere s1 and an imaginary sphere s2 are 
orthogonal when v2 + rl = jri 12. and they are polar aligned just like mixed points. Finally, since two 
real points can never be orthogonal, it must also be true that two imaginary spheres can never be 
orthogonal. The only way that the dot product between two non-real spheres can be zero is if they 
are both null spheres with the same center position. 

4.5.3 Partners 

If we consider the case of a round object u and its partner, then we find that they are always orthog
onal. Recall that par ( u ) has the same center and absolute size, but its radius is changed from real 
to imaginary or vice versa. Thus, in each of the formulas listed in Table 4.14, the difference v be
tween the centers is zero, and the radii must be related by r? = -rl . For dipoles and circles, the 
attitudes of the carriers also match, so we have D 1 = Dz.Under these conditions, all four dot products 
in the table become zero, and we can state that in general, 

u • par ( u ) = 0. (4.49) 
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Figure 4.9. The dot product between two spheres with radii r1 and r 2 can be interpreted in three distinct ways 
depending on whether each is real (blue) or imaginary (red). The vector v represents the difference between 
the centers of the spheres. The right column illustrates the alignment when spheres are considered orthogonal 
because the dot product between them is zero. 

4.5.4 Conjugates 

For every round object u, there is another round object of the same type that we call the conformal 
conjugate, and it has a special relationship with u. The conformal conjugate is calculated by negat
ing the flat part of u while leaving the round part of u unchanged. Put another way, every component 
of u containing a factor of e5 is negated. Using the dagger notation u t to represent the confonnal 
conjugate of u, we can write this definition as 

(4.50) 

Negating the flat part of u bas the effect of changing the center position and radius in such a way 
that the dot product u • u t is the squared distance to the origin. This property lets us formulate an 
alternate definition for the center norm llull0 that we previously defined in Equation (4.43). We can 
now express the distance between the origin and the center of an object as 

-( 
I 



4.6 Containment 

Center norm 
(alternate) (4.51) 

As with the original center norm, this alternate center norm is weighted and needs to be divided by 
the round weight norm llullo if u is not unitized. 

The conformal conjugate operation is an involution, and the conjugate of u t is just u itself. This 
means that l!u t !1 0 = l! u !1 0 , which says the conjugate of u must have a center that's the same distance 
from the origin as the center of u. In the case of a unitized round point a, only the au coordinate is 
negated by the conjugate operation, so a t bas the same center as a. However, by comparing the 
squared radius r? of a and the squared radius r} of a t using the radius norm listed in Table 4.13 , we 
see that 

(4.52) 

and 

2 -11 t 11 2 
- 2 2 2 2 - 2 ( 2 2 2 ) 2 r 2 - a 0 - - au -ax -ay -az -- ax + ay + az -r1, (4.53) 

where we assume aw = 1. Plugging these into the dot product a • at gives us a; + a; +a;, which is 
indeed the squared distance to the origin. 

In the case of a unitized sphere s, the s x, s y, s z , and s w coordinates are all negated by the conju
gate operation, but the Su coordinate is left alone. The center of the sphere gets reflected through the 
origin and lies on the opposite side at the same distance away. The squared distance v 2 between the 
centers of sands t is thus equal to 4 ( s; + s; + s; ). The squared radius ri2 of sand the squared radius 
r} of st are given by 

(4.54) 

and 

(4.55) 

where we assume S u = -1. Plugging v2
, r?, and r} into the dot products• st gives us s; + s; + s;, 

which is the distance that we need. 
In all cases, the components of the flat weight are negated by the conformal conjugate opera

tion, but they still have the same magnitude. The flat weight norm l!ul10 corresponds to the distance 
between the center of u and the support of its carrier. For dipoles and circles, this means the center 
of the conjugate is reflected through the support to a position lying in the same carrier on the oppo
site side of the support at the same distance away. This center of the conjugate u t also lies at the 
same distance from the origin as the center of u, as required, and its radius is adjusted so that u • u t 
is the squared distance to the origin. 

4.6 Containment 

When we talk about join, meet, and expansion operations below, it will be important to understand 
what it means for one object a to be contained in another object b from a geometric perspective. 
Algebraically speaking, we define containment between a and b to be true precisely under the con
dition that a /\ b = 0. When this condition is satisfied, the objects a and b share one of the two types 
of alignment defined in Section 4.4. 

Figure 4.10 illustrates the three possible ways in which a round point a of radius r can be con
tained by a sphere s of radius R. The surface of the sphere itself is the set of null points having 
radius zero with positions that are exactly the distance R from the sphere's center. However, these 
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null points are not the only points for which a /\ s = 0. There are round points with nonzero radii 
both inside and outside the sphere that are algebraically still contained by the sphere because their 
wedge product with the sphere is zero. 

Using the generic definitions for a round point and a sphere as given by Equations (4.29) and 
( 4.35), the wedge product a /\ sis the antiscalar value 

(4.56) 

This is just a 5D dot product if we treat both a and s as ordinary vectors and match the subscripts. 
It demonstrates that a /\ s is easy to calculate, but it doesn't tell us much about the geometric rela
tionship between a and s. If we instead write a and s in the forms given by Equations ( 4.28) and 
( 4.34), which are always unitized such that aw = 1 and s11 = -1, then we get a much more informative 
result. The wedge product a/\ s is now given by 

1( 2 2 2 ) a /\s = - 2 v +r -R , (4.57) 

where the vector v is the difference between the centers of a and s. This looks an awful lot like the 
dot product between two points a1 and a2 listed in Table 4.14, and that is not a coincidence. The 
similarity is due to the bulk expansion property a /\ b * = (a• b) 11 stated by Equation (2.156) back 
in Chapter 2. The spheres having the squared radius R2 is the dual of a round point b with the same 
coordinates, but since real and imaginary radii are exchanged for duals, b would have a squared 
radius of -R 2

. The outcome of this relationship is that containment of a point by a sphere looks just 
like a pair of orthogonal points in which a real sphere is replaced by an imaginary point of the same 
size, and an imaginary sphere is replaced by a real point of the same size. 

We consider the four separate cases in which a real sphere or an imaginary sphere contains a 
real round point or an imaginary round point. First, suppose that both the point a and the spheres 
are real, so r 2 > 0 and R 2 > 0. We continue to use the vector v for the difference between the centers 
of a and s. As shown in the upper-left part of Figure 4.10, the wedge product a/\ s given by Equa
tion (4.57) is zero when v2 + r 2 = R 2

, and this happens when the lengths ll vll and r form the legs of 
a right triangle in which the hypotenuse has length R. The point is polar aligned with the sphere in 
this case. When ll v ll approaches the sphere 's radius R, the point's radius r must approach zero, and 
when ll vll approaches zero, the point's radius r must approach the sphere's radius R. Null points 
(with zero radius) contained by a sphere must have centers on the surface of the sphere, and real 
points contained by a sphere must have centers inside the sphere. The maximum radius of such a 
real point is R, the radius of the sphere, and this is exactly the round center of the sphere as defined 
in Section 4.2.4. 

Next, suppose that the point a is imaginary and the spheres is still real, so r 2 < 0 and R2 > 0 as 
shown in the upper-right part of Figure 4.10. The Pythagorean relationship v2 + r 2 = R2 that causes 
the wedge product a /\ s to be zero still holds, but we now rewrite it as R2 

- r 2 = v2 to highlight the 
fact that llvll takes over the role of the hypotenuse in a right triangle in which Rand r correspond to 
the two legs. In this case, the point is right aligned with the sphere, and that means the point's center 
must lie outside the sphere. Whenllv ll approaches the sphere's radius R, the point 's radius r must 
approach zero, but there is no upper limit to the size of r. 

Finally, we consider the case in which the spheres is imaginary such that R2 < 0. In this case, 
there is no real radius r that can satisfy the equation v2 + r 2 

- R2 = 0, so it is not possible for an 
imaginary sphere to contain any real round points at all. However, an imaginary sphere is still able 
to contain imaginary points as shown in the lower-right part of Figure 4.10. This time, the point is 
polar aligned with the sphere, and it is always at least as large as the sphere. We rewrite the Pythag
orean relationship as v2 

- R2 = -r2 to highlight that r is now the length of the hypotenuse. When 
llvll approaches zero, the point's radius r must approach the sphere 's radius R. The two radii are 
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Figure 4.10. These are the cases in which a real or imaginary sphere of radius R contains a real or imaginary 
round point of radius r. Toe vector v is the difference between the center of the sphere and the center of the 
point. Real spheres contain real points centered inside the sphere and imaginary points centered outside. 
Imaginary spheres contain imaginary points both inside and outside, but they contain no real points at all. 

equal when the point is the round center of the sphere, and this is the imaginary point of minimum 
size that can be contained by an imaginary sphere. There is no limit to how large r can be as the 
distance II v II from the center of the sphere grows. 

Since a real sphere can only contain real points that have centers inside the sphere and imagi
nary points that have centers outside the sphere, it can be thought of as a solid ball of real space 
surrounded by an infinite expanse of empty imaginary space. When we consider the dual of a real 
sphere, it 's interesting to note that an imaginary round point is only contained by imaginary spheres 
that have centers inside the point and by real spheres that have centers outside the point. An imag
inary round point can thus be thought of as an empty ball of imaginary space surrounded by an 
infinite expanse of solid real space. This is consistent with our characterization of round points as 
inverted spheres at the beginning of Section 4.2. 

Round points contained by dipoles and circles behave just as they do for spheres but under the 
restriction that their centers must lie in the carrier. The wedge product between a dipole and a point 
not centered on its carrier line always constructs a circle, and the wedge product between a circle 
and a point not centered on its carrier plane always constructs a sphere. When a round point does 
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lie in the carrier of a dipole or circle, the geometric relationships are identical to those shown in 
Figure 4.10, except the sphere is replaced by the container of the dipole or circle. 

A round object u always contains its round center, and we can express this containment in 
general by the equation 

I u A cen ( u) = 0. I (4.58) 

Suppose that u has grade k. Every round point a contained by u can be expressed as an offset from 
cen ( u) by taking the contraction of the attitude of u with a parameter of grade k - 2 in the same 
manner previously described in Section 2.13.4. That is, 

a ( a ) = cen ( u ) + att ( u ) v a* , (4.59) 

where att ( u) is given by an entry in Table 4.10, and a is a parameter in the space of all Euclidean 
( k- 2 )-vectors. If u is a dipole, then a is a scalar. If u is a circle, then a is a vector xe1 + ye2 + ze3. 

If u is a sphere, then a is a bivector xe 23 + ye31 + ze12. When a round point is offset from the center 
of u by Equation ( 4.59), its radius is also adjusted using the information in the attitude. 

Toe center of u is always weighted by the square of the weight of u, and the attitude of u is 
always has the same weight as u. To have matching weights in both terms of Equation (4.59), the 
parameter a must also have the same weight as u. This is particularly convenient because we can 
base a on the radius norm llu 11 0 , which also has the same weight as u. Toe set of null points lying 
on the surface of u is then given by 

a (a) = cen ( u) + att ( u) V ( II u 110 a)* ' (4.60) 

where the hat on a indicates that it has unit magnitude. If u is unitized, then each point a (a) is also 
unitized, but we can otherwise just divide by the point's w coordinate, which has the same value 
for all a. 

Toe parametric form of a dipole d with real radius r is demonstrated in Figure 4.11. Toe round 
center of d has the same radius as d itself and is shown as the largest green disk in the figure. Toe 

d 

a=O 
cen (d) 

Figure 4.11. The unitized dipole d has a real radius r, and the two blue points represent its surface. The largest 
green disk is the round center of d. Other points contained by d are generated parametrically by adding 
a att ( d) to the center position, where a is a scalar value. When a= ±r, the result is the pair of null points on 
the surface of the dipole. 
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Dipole surface 
points 

parameter a is a scalar in this case, so we can express points contained by d as 

a (a) = cen ( d ) + a att ( d ). (4.61) 

Assurrung that d is unitized, the round point a (a) is inside the dipole 's container when - r <a < r, 
and it has a polar alignment with d because it is a real point. As a approaches the radius r, the radius 
of a (a) shrinks in size, and this is shown for several values of a in the figure. When a = ±r, null 
points are generated, and these coincide with the surface of the dipole. In general, we can calculate 
the two round points P± on the surface of a dipole d with the fonnula 

(4.62) 

When lal > r , the round point a (a) is outside the dipole's container, and it has a right alignment 
with d because it must be an imaginary point. 

4.7 Join and Meet 

In the conformal algebra, join and meet operations are perfo1med between all types of flat and 
round geometric objects using the wedge product and antiwedge product in exactly the same way 
they were used in the rigid algebra. The round objects involved in these operations can be real, 
imaginary, or null, and the results produced by these operations can be real, imaginary, or null. In 
all cases, the object that we construct with a join or meet operation obeys specific containment 
requirements, and that means that it has a particular alignment with the two objects being combined. 
The join of objects a and b must be a new object that simultaneously contains both a and b. The 
meet of a and b must be a new object that is simultaneously contained by both a and b. 

1he join of two round points is the unique dipole whose container is aligned to the both points. 
If the points are null points, meaning their radii are zero, then they coincide with the surface of the 
dipole. Otherwise, they are aligned with the dipole in one of the ways shown in Table 4.10. Multiple 
examples of this are shown in Figure 4.12, where three round points a, b, and care illustrated along 
with their wedge products. The join of all three points is the unique circle, also shown in the figure, 
that contains all three of them at the same time. This circle contains the surfaces of all three dipoles 
a /\ b, b /\ c, and c /\ a as well, and we can think of it as the join of any one of the dipoles with the 
third point. If we were to join the circle with a fourth point not already contained by the circle, then 
we would get the unique sphere containing all four points. 

Figure 4.12. Toe three round points a, b, and c (where a is imaginary, b is real, and c is real) are joined with 
the wedge product to construct three dipoles a /\ b, b /\ c, and c /\ a. Toe triple wedge product a/\ b /\ c con
structs the circle containing all three points and the surfaces of all three dipoles. 
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210 Chapter 4 Round Projective Geometry 

Flat geometries are created when we join a round geometry with the point at infinity e5, and as 
we have already seen, this extracts the carrier of the round geometry. The join of a flat geometry 
with a round geometry always yields another flat geometry because the factor of e5 can't be elimi
nated by the wedge product. The join of two flat geometries is always zero because they both already 
contain a factor of e5. Consequently, we can't join two flat geometries in the conformal algebra in 
the same way that we could in the rigid algebra. Instead, we can create a line by joining a round 
point with a flat point, and we can create a plane by either joining a round point with a line or 
joining a flat point with a dipole. 

In total, there are seven different ways in which various objects can be joined in three dimen
sions. The exact calculations involved in the wedge product for each case are listed in Table 4.15 
along with illustrations. All of the examples in the table depict configurations in which the result is 
either a flat object or a real round object. Imaginary round objects can also be constructed with the 
join operation, but it requires that both objects a and b participating in the wedge product be imag
inary and that they are too close together for the container of their product a/\ b to be right aligned 
with a and b. 

The meet operation provides an extremely efficient way to both express and calculate the inter
section of two geometric objects in the conformal algebra. In three dimensions, there are 12 possible 
ways to perform a meet between two objects of various types, and the per-component calculations 
of the corresponding anti wedge products are listed in Tables 4.16 and 4.17 with illustrations . With 
the exception of the last case, each of the examples given in the tables depicts a configuration in 
which two real or flat geometries actually intersect to produce a real result. However, it is much 
easier to produce imaginary results with the meet operation than it is with the join operation. When
ever two objects are not actually intersecting, their meet is still a meaningful geometry of the same 
type that we would get if there was an intersection, but it is an imaginary object. 

Figure 4.13 shows an example in which a real spheres and imaginary sphere t do not intersect. 
The meets v t is an imaginary circle between the two spheres lying in a plane perpendicular to the 
line segment connecting the centers of the spheres. The container of the circle is right aligned to the 
real sphere and polar aligned to the imaginary sphere. If both spheres were real but still not inter
secting, then their meet would still be an imaginary circle, but it would be adjusted so that it is right 
aligned with both spheres, and that would cause its position and radius to be a little different. As 
the two spheres move closer together, the circle shrinks until it has radius zero when the spheres 
are tangent to each other. In general, the meet of tangent objects produces a null round geometry. 
These null objects still have carriers with a meaningful attitude, so it's possible to extract directional 
information from a circle or dipole where two tangent objects meet even though it has a radius of 

s 
• • sv t 

Figure 4.13. The meet of two spheres sand t that don 't actually intersect is an imaginary circle. Here, sis a 
real sphere, and t is an imaginary sphere. The circle s v t is right aligned to the real sphere s and polar aligned 
to the imaginary sphere t. 



4.7 Join and Meet 

Join Operation 

Dipole containing round points a and b. 

a/\ b = ( a wbx -axb w ) C41 + ( a .,b y -ay bw ) C42 + ( a ..,b , -a: bw ) C43 

+(ay b , -a=b .v )e23 +(a: bx -axb, )e31 +(axby -a_..bx )e12 

+ ( a x b11 - a 11 b .r ) e 15 + ( a _.. b" -a11by ) e 2s 

+ ( a , b11 - a ubz ) C35 + ( a wbu - a ub w ) C45 

Line containing flat point p and round point a. 

p /\ 3 = ( p xa w - P wOx ) C415 + (P:O_v - P _v O; ) e 235 

+ (p_v a w - p ..,a _v ) e 425 + (pxa ; - P : Ox ) e 315 

+ (p, a w - P wOz ) e 435 +(py a x - P xOy ) e 125 

Circle containing dipole d and round point a. 

d /\ 3 = ( d vv a; -d,,; a y + dnv: Ow ) e 423 + ( d vz a x -d,, ... a , + d myaw ) e 43 1 

+(d,,xa _v -dv_v a x +dnrzaw )e412 -(d,nxax +dmy a y +dm, a , ) e 321 

+ ( d pxa w -d µwa x + d ,-xa u ) e 41 5 + ( d µ, a y -d pva= + dnv:a" ) e 235 

+ ( dpy a w - d pwa y + d,'1/ all) e 425 + ( d pxOz -dp, a x + d m,,011) e 315 

+ ( d p; Ow - d pwa ; + d,-: a ll ) e 435 + ( d pya x -d pxa _v + d n,;a,, ) e 12s 

Plane containing line I and round point a. 

I I\ a = ( l vz a y -1,, ,a , - 1,nxOw ) e 4235 + ( l ,,xa z - ! ,,; a x - l mv a w ) e 4315 

+ (lvy a x -1,'X a y -lm: Ow ) e 4125 + Um..- a x + l my a y + l n,; Oz ) e 32 15 

Plane containing dipole d and fl at point p. 

d /\ P = ( d vv P z -d,c P _v + d nv:P w ) e 4235 

+ ( d,,z P x -d,,xP : + d my P w ) e 431s 

+ ( d vx P y -dv_v P x + dm, P w ) e 412s 

-( dmxP x + d m_v P _,, + dm:: P z ) e 32 15 

Sphere containing circle c and round point a . 

C /\a= -( CgxOx + CgyOy + Cgz Oz + Cg,vOw ) e 1234 

+ ( C,,, a y - Cvy a : + Cgx a u -c,n.ra w ) e 4235 

+ ( CvxOz -Cv:: Ox + Cgv0 11 - CmyOw ) e 4315 

+ ( C,y a x - Cvx Oy + Cg: 0 11 -CmzOw ) e 4125 

+ ( Cnv:Ox + C111va _v + Cn,;O; + Cgw0 11 ) e 3215 

Sphere containing dipoles d and f . 

d /\ f = - ( d vx f mx + d vv /,n_v + d,,z j,n, + d mx f vx + dm_v fvv + dm:fvz ) e l234 

+ ( d vy f p: -d,,, fpy + d p,J,J, -dpy /1-: + dmxf pw + dpw/,nx) e 4235 

+ ( d vz f px - d ,,xf p: + d pxf vz - d p: f vx + d myfpw + d pwfmy ) e 4315 

+ ( dvxfpy -dv_v fpx + d pvf.,x - d pxf v_v + dm:: f pw + d µwf,11, ) e 4125 

-(dnv:fpx +d,n_v f pv +dm: f pz +dpx /,nx +dpv /,ny +dp:/,11: )e3215 

Illustration 

~ 
~ 

c /\ a 

• 
d 

• f 
d/\f 

Table 4.15. These are the join operations between objects in CGA over 3D space. 
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zero. For two tangent spheres sand t , all we have to do is calculate ( s v t) /\ e 5 to get the plane that's 
tangent to both spheres. (In practice, we don't actually have to multiply by e5 because we can just 
read the carrier plane's coordinates from the round part of the circle.) 

The meet of flat objects works in the conformal algebra exactly as it did in the rigid algebra. 
The meet of two planes produces the line where they intersect, and the meet of a line and a plane 
produces the flat point where they intersect. Some of the most useful meet operations in the con
formal algebra involve a flat geometry and a round geometry. In these cases, the result is a lower
dimensional round geometry that's real if an intersection actually occurs and imaginary otherwise. 
An example giving the details for the intersection of a line and a sphere is provided in Comparison 
Chart #4. 

If both objects participating in a meet operation are trivectors, which represent circles and lines, 
then the result produced by their anti wedge product is a round point. In the case of two circles that 
don't share the same carrier plane, this round point is null if the circles touch at exactly one point, 
it's real if the containers of the circles intersect at more than one point, and it's imaginary otherwise. 
This property can be used to quickly determine whether two circles with arbitrary centers, attitudes, 
and radii are linked, and the details are laid out in Comparison Chart #5. In the case that one object 
is a circle and the other is a line not lying in the circle 's carrier plane, the meet produces a round 
point that is null if the line hits the circle at exactly one point, real if the line passes through the 
middle of the circle, and imaginary if the line passes outside the circle. Finally, if the two objects 
are skew lines, then the meet produces the same crossing orientation as it did in the rigid algebra, 
except now it's a multiple of e5. This makes sense because both flat lines contain the point at infinity, 
so that's where they must intersect. 

Math Library Notes 

• Toe join and meet operations for objects in the conformal algebra are implemented by the Wedge() and 
Antiwedge() functions. 

• Any of the join and meet operations can also be calculated by using the/\ symbol as an infix operator. 



4.7 Join and Meet 

Meet Operation 

Circle where spheres s and t intersect. 

S Vt= ( S 11 lx -Sxl 11 ) e 423 + ( S 11 l y -Syt 11 ) e 431 

+(s,,t, -s,t,, )e412 +(s11tw-S,vf11 )e321 

+ ( S=ly -Sy l z ) e 415 + ( Sx f= -S, t x ) e 425 + ( Sy t x -Sxly) e 435 

+ ( Sx f w - Swlx ) e 235 + ( Syf"' - S,..f y ) e 315 + ( S , t ,.. - Swlz ) e 125 

.Circle where sphere s and plane g intersect. 

S V g = S11gx e423 + s,,gy e 431 + S11g, e 412 + S11gw e 321 

+ ( s=gy -syg, ) e 415 + ( Sxg, -s, g x ) e 425 + ( Sygx -sxgy ) e435 

+ ( Sxg w -swgx ) e 235 + ( Sygw -Swgy) e 315 + ( S=gw -Swgz ) e 125 

Line where planes g and h intersect. 

g V h = (g , h y - g _,, h=) e 415 + (gx h w - gwhx) e 235 

+ (gxh= - g, h x ) e 425 + (gy hw - g wh v ) e 315 

+ (g y h x - gxhy ) e 435 + (g=h w - gwh z ) e 125 

Dipole where sphere s and circle c intersect. 

SVC = ( s .vCg= -S,Cgy + S,,C,~. ) e 41 + ( SwCgx -SxCgw + S 11 Cmx) e 23 

+ ( S=Cgx - SxCg= + S,,C,,y ) e 42 + ( SwCgi, -SyCgw + SuCmy ) e 31 

+ ( SxCgi, -SyCgx + S 11 C,,;:) e 43 + ( SwCgz - S,Cg,v + S11 Cm=) e 12 

+(s,Cmy -s.,,Cm= +SwCvx )e15 +(SxCmz -S=C111X +SwC,v )e25 

+ ( S yCmx - SxCmv + SwCvz) e 35 -( SxCvx + S yCvv + S,C,,;: ) e 45 

Dipole where plane g and circle c intersect. 

g V C = (g yCg,: - g,cgy) e 41 + (gwCgx - gxCg,v) e 23 

+ (g,cgx - g xcgz ) e 42 + ( gwCgv - g ycg,., ) e 31 

+ ( gxCgv - g yCgx ) e 43 + (gwCgz - g=Cg,v ) e 12 

+ (g ,c,,iv - g yCmz + g wCvx ) e 15 + (g xCm= - g,Cmx + gwc,,, ) e 25 

+ (gyCmx - g xCmy + g wCvz ) e 35 -(g,Cvx + gyc•J' + g ,Cvz ) e 45 

Dipole where sphere s and line I intersect. 

s V I = sufvx e 41 + s 11 /,J, e 42 + s,J,= e 43 

+s,Jmx e 23 +sul117.v e 31 +s,,/m=e l2 

+ ( s,lmv -s/mz + Swl,,x) e 15 + ( sxfm= - s)mx + Swl ,J') e 25 

+(s.vlmx -sX/11()' +s,J,= )e35 -(s.rfvx +s.,Jvv +s, l ,= )e45 

Flat point where plane g and line / intersect. 

g V / = (g, lmy - g y lm, + g,J,x) e 15 + (g xlm, - g='nlX + g wl vy ) e 25 

+ (g.J,,IX - gxlmy + g,J,-c) e 35 -(gxlvx + g/vy + g , l vz) e45 

Illustration 

Table 4.16. These are the meet operations between objects in CGA over 30 space (part l of2). 
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Meet Operation 

Round point contained by circles c and o. 

CV O = ( Cgz Omy - Cgy O111: + C111y Ogz - Cm: OgJ, + CvxOgw + g g,,.Ovx ) e1 

+ ( Cgx Omz -Cgz Omx + Cmz Ogx - C,,ir Ogz + C".l.Ogw + g g,vO•J' ) e2 

+ ( CgJ.Omx - Cgx Omy + Cmx OgJ, -C,,\vOgx + C,-= Ogw + g 1,,wOv: ) e 3 

- ( CgxOvx + CgJ,O~r + Cg: O,,z + Cvx Ogx + C,y OgJ. + C,r. Ogz ) e 4 

- ( Cmx Ovx + C111vOw + Cm: O,,c + Cvx O,nr + C,J,Omy + Cv:;: Om: ) e s 

Round point centered on line / and contained by circle c. 

cv/ = ( c g: lmy -cg;.!111: +cg,J vx )e1 +( c gxl m: -Cg='mx +cg,.,/,~, )e2 

+ ( Cg.,l,nr -cg.J111y + Cgwl ,-= ) e 3 -( c gxf vx + Cgvl l'.)' + c g:fv: ) e 4 

- ( Cmxlvx + Cn\V l \'.). + Cm:lv: + C.,x l 111X + c,~.lmy + Cv: l m: ) e s 

Round point contained by sphere s and dipole d. 

s v d = ( s _.. d 111= -s= d my -swd ,"' + s,, d px ) e1 

+ ( S: d n,x - S xd m: - s wd l)' + s,, d PY ) e2 

+ ( S xd ll\V -sy d nLr -swd ,,c + s,, d p: ) e 3 

+ ( Sx d vx + s _.. d ,)' + S : d v: + s,, d pw ) e 4 

-(sx d px + s _v d py +s:d p: +swd pw )e5 

Round point centered in plane g and contained by dipole d. 

g V d = ( g _.. d m: - g, d mr - g wd vx ) e1 

+ (g: d mx - g x d n,: - g wd ".l' ) e 2 

+ (gx d my - g _.. d ,,,x - g wd ,'Z ) e 3 

+( g x d vx + g y d v,· +d: d ,,z )e4 

-( g x d px + g y d p_v + g z d p, + g wd pw )es 

Round point centered at flat point p and contained by sphere s. 

S V p = S 11 p x el + S 11 p y e 2 + S 11 p : e 3 + S 11 p w e4 

- ( S x P x +Sy P _v +S: P z +SwP w )es 

Chapter 4 Round Projective Geometry 

Illustration 

svd 

Table 4.17. These are the meet operations between objects in CGA over 3D space (part 2 of 2). 



4.7 Join and Meet 

Comparison Chart #4 

Line-Sphere Intersection 

Calculate the points a and b where a line / intersects a sphere 
having center c and radius r. 

Conventional Methods 

Let I ( t) = p + t v be a parametric line containing 
the point p and running parallel to the direction 
vector v. Assume the direction is normalized so 
that llvll = 1. 

Translate the center of the sphere to the origin. 
Translate the line by subtracting c from p. 

The goal is to solve the equation ( p + tv )2 = r 2 

for values oft and plug them into the line p + tv 
to obtain the intersection points a and b. 

Expanding the quadratic equation, recognizing 
that v2 = 1, and collecting terms in powers oft, 
we have 

t 2 +2(p·v)t+p2 -r 2 =0. 

The discriminant 6 of the polynomial is given by 

6=(p·v)2-p2+r2 

If 6 < 0, then the line does not intersect the 
sphere. 

The parameter values where the line intersects 
the sphere are given by t = - p · v ± .JJ. Plugging 
these into the line/ ( t ), the points a and b are 
obtained with 

a= q - v./J and b = q + v./J, 

where q = p - ( p · v) v + c is the midpoint 
between them. 

Geometric Algebra 

Let/ be a flat line as defined in Equation ( 4.26) 
with direction Iv and moment Im. Assume the line 
is unitized so that ll l v II= 1. Assume the sphere 
defined by Equation (4.34) is unitized so that 
S11 =-l. 

Translate the center of the sphere to the origin so 
it is given bys= -e1234 + ¼ r 2e3215 . Translate the 
line by subtracting c x Iv from its moment Im. 

The goal is to calculate the endpoints of the 
dipole d = s v I, the meet of sand/. These are 
the intersection points a and b. 

Applying the fonnula in Table 4.16 with 
s x =Sy = S : = 0, the dipole dis given by 

d = -lvxe41 - l.:ve42 - l."' e43 - lmxe 23 - lmye31 - l111:e12 

Using I;= 1, the squared radius of the dipole is 
given by 

ll d ll! = r
2 
-I!. 

Iflldll~ < 0, then the line does not intersect the 
sphere. 

The center of the dipole is given by 

cen ( d ) = ( lv;Jm= - lv:lmy) e1 + ( lv:lmx - l.,xlm:) e2 

+(lv.Jm_v -lv;,lmx )e3 +e4 +½r 2e5 • 

The points a and b are obtained with 

a= q -I,, ll d ll0 and b = q + Iv ll d ll0, 

where q = cen ( d ) + c is the midpoint between 
them. 

215 



216 

Comparison Chart #5 

Linked Circles 

Chapter 4 Round Projective Geometry 

Determine whether two circles with centers c1 and c2, 

radii r1 and r2, and plane normals n1 and n2 are linked. 

Conventional Methods 

Let d1 = -n 1 -c1 and d2 = -n 2 -c2. The circles lie 
in the planes [ D1 I di] and [ D 2 I d2]. 

Calculate a parametric line p + tv where the two 
planes intersect using rows I and N in Table 1.1. 
The direction of the line is simply v = n1 x n2. If 
v = 0, then the circles lie in parallel planes and 
cannot be linked. The point p is given by 

d1 ( v x n 2 ) + d 2 ( n 1 x v ) 
p = 2 • 

V 

The points where each circle intersects the plane 
of the other circle must lie on the line p + t v. 

Solve for values oft such that 

(p+tv-c1 )
2 =d. 

These correspond to points on the line p + tv that 
also lie on the circle centered at c1. Writing as a 
quadratic equation in t, we have 

v 2t2 +2(u-v)t+u 2 -d =0, 

where u = p - c1. The discriminant c5 of the 
polynomial is 

c5 = ( u · v )2 
- v2 

( u2 
- r? ). 

If c5 < 0, then neither circle intersects the plane of 
the other, so they are not linked. Otherwise, 

-(u-v)±v'o 
l1 ,2 = 2 • 

V 

Calculate the points q1 = s + t1 v and q2 = s + t2 v, 
wheres= p- c2 . The circles are linked if 

( qf - r}) ( q~ - r}) < 0 

because one point would be inside the circle 
centered at c2 and the other would be outside. 

Geometric Algebra 

Let c1 and c2 be circles as defined in Equation 
( 4.32). 

Calculate the round point a= c1 v c2 where the 
circles meet using the formula in Table 4.17. 

The weighted squared radius of the round point is 
given by 

Ifllall! > 0, then the circles are linked. 



4.8 Expansions 

4.8 Expansions 

The final operation that we examine in the conformal algebra is the expansion. Just as it did in the 
rigid algebra, the expansion a /\ b * constructs an object that contains a and is orthogonal to b. We 
could use either dual in the conformal algebra since they are just negatives of each other, but we 
choose the antidual in order to be consistent with the weight dual that was necessary for orthogonal 
projection in the rigid algebra. Tables 4.18, 4.19, and 4.20 illustrate the 18 different combinations 
in which one object can be expanded onto another object of higher grade in three dimensions. The 
tables also list the per-component calculations for each expansion. 

Compared to the rigid algebra, the only difference for expansions in the conformal algebra is 
what it means to be orthogonal. The flat geometries that connected points to lines, points to planes, 
and lines to planes shown in Table 2.22 are still present in the conformal algebra when we expand 
a flat object onto another flat object, but the orthogonal objects created when we expand a round 
object onto another geometry are generalized to be spherical. Tue container of the expansion a/\ b * 
is always aligned to the containers of a and b. 

The practical application of the expansion operation is the ability to project a lower-dimensional 
object a onto a higher-dimensional object b by using the meet operation to intersect the expansion 
a/\ b * with b. We calculate b v (a /\ b *) to perform such a projection in exactly the same manner 
used in the rigid algebra at the beginning of Section 2.13 .6. In the conformal algebra, the projection 
of a onto b follows a generally round path that is a straight shot only when a is a flat object. As an 
example, consider the expansion of a circle c onto a plane g, which is shown in the second row of 
Table 4.19. Tue expansion c /\ g * is the sphere that contains c and is orthogonal to g. Containment 
and orthogonality both imply alignment, and which type depends on whether the objects are real 
of imaginary. In the case of a flat object, alignment to a round object requires that the flat object 
pass through the center of the round object. So the sphere in this case has a center in the plane g 
and contains the circle c. When we intersect the sphere with the plane g by calculating g v ( c /\ g * ), 
the result is a circle that has been projected onto the plane. This kind of projection takes some 
getting used to, but it is a natural feature of the conformal algebra. Tue conventional meaning of 
orthogonal projection is impossible because there is no way to represent the noncircular ellipse that 
would generally result from the projection of a circle onto a plane. 

We mentioned in Section 4.2.5 that the container of an object u is equivalent to the expansion 
of u onto its own carrier. Just as we could in the rigid algebra, we can expand an object onto another 
object that already contains it and still get a meaningful result. When we calculate u /\ car ( u) *, we 
always get a sphere, the container of u, that has a center in the carrier of u and is simultaneously 
polar aligned to u. If we were to project this container onto the carrier, then we just get u back, so 
we can write 

u = car ( u) v con ( u ), (4.63) 

which can be interpreted as a sort of factorization of u into the anti wedge product of a flat object 
and a sphere. 
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Expansion Operation 

Dipole containing round point a and orthogonal to sphere s. 

a/\ S * = ( GxS11 + GwSx ) e41 + ( GySz -G:Sy ) e23 

+ ( GyS11 + GwSy ) e 42 + ( G,Sx -GxSz ) e 31 

+ ( G:Su + GwSz ) e 43 + ( GxSy -GySx) e 12 

- ( GxSw + G11 Sx ) e 15 -( GySw + G11 S_v ) e 25 

- ( G:Sn, + GuS:) e 35 + ( G11 S 11 -GwSw ) e45 

Dipole containing round point a and orthogonal to plane g. 

a/\ g* = a wgx e 41 + ( a yg= - a =gy ) e 23 

+ a wgy e 42 + ( a ,gx -axg=) e 31 

+ a wg, e 43 + ( a xgy -aygx ) e1 2 

-( a Xg\V + allgX ) eJ 5 -( Gygw + a llg)' ) e 25 

-( a =gw + aug, ) e 35 - a \Vg \V e 45 

Circle containing dipole d and orthogonal to sphere s. 

d /\ s* = ( d,J,SZ -dvzSy -dmxSu ) e 423 + ( d v,Sx -d,,xs, -d,nySu) e 431 

+ ( d ,,xSy - d vysx - dm, Su) e 412 -( d ,nxSx + dmySy + d,n:Sz ) e 321 

-( d ,,xSw + dµ wSx + dpxSu ) e 415 + ( d pzSy -d pySz - d ,,,xSw ) e 235 

-(dv:,,Sw +dµwSy +dµ_, ,S11 )e425 +(dpxS: -dp:Sx -d,nySw) e 315 

-( d vzSw + d pwSz + d p,S11 ) e 435 + ( d pySx -d pxSy -d111,Sw ) e 125 

Circle containing dipole d and orthogonal to plane g. 

d /\ g* = ( d ,J,g= -d,,zgy) e 423 + ( d ,,zgx - d vxg = ) e431 

+ ( d vxgy - d v:,,g x ) e 412 -( d,, IX g X + dmy g y + d m= g=) e 321 

- ( d,xgw + d µw g x ) e 41s + ( d p=g.v -dpy g = -dmxg w ) e 23s 

-( d vygw + d "wgy ) e42s + ( d px g = -dp,g_r -d,.,,,gw) e 31s 

-( d v::gw + d µwg, ) e 43s + ( d µ_vgx -dµxg.v -dm, g w ) e 12s 

Line containing flat point p and orthogonal to sphere s. 

p /\ S * = -(pwSx + P xS11 ) e 415 + (P:Sy - P y S: ) e 235 

-(PwSy + P yS11 )e425 +(pxS: - P :Sx )e315 

- (p wS: + p , s,,) e 435 + (P _vSx - P xSy ) e 125 

Line containing flat point p and orthogonal to plane g. 

P /\ g * = - P wg x e 41s + ( p=gy - P .vg= ) e 23s 

- P wg y e 42s +(px g , - p , g x )e31s 

- P wg , e 435 + ( P y g x - P x g _v ) e 125 

lllustration 
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Table 4.18. These are the expansion operations in CGA over 3D space (part l of 3). 



4.8 Expansions 

Expansion Operation 

Sphere containing circle c and orthogonal to sphere s. 

C/\S * = ( egwS11 - egxSx - egvSy - eg=S, )e1234 

+( evzS_1, - evvS= + emxS11 - e gxSw )e4235 

+ ( e,.xS, - e,~Sx + emyS11 - egySw) e 4315 

+ ( e,ySx -evxSy + em= Su - eg=Sw) e4 125 

+ ( e,,v:Sx + emySy + e,nzS= - egwSw ) e 321 5 

Sphere containing circle c and orthogonal to plane g. 

C /\ g * = - ( egxg x + egyg y + eg= g = ) e1 234 

+ ( e,~g y - evvg , - egxg w) e4235 

+ ( e,,xg, - ev:: g x -eg),g W) e 4315 

+(evv g x - evxg y -eg= g w)e41 25 

+ ( emxg x + e,,,_vg y + em, g = -eg,vg w ) e 32 1s 

Plane containing line I and orthogonal to sphere s. 

I I\ s * = ( l, ,,S_v -1,),s= + l ,nxs,, ) e4235 + ( l vxs= -1,,,sx + lmySu ) e 4315 

+(!,J,Sx -1,-xsy + ln,::S11 )e4125 +(imxSx +lmySy +lm= Sz )e32 1s 

Plane containing line I and orthogonal to plane g. 

I I\ g * = (/vz g y -fvv g , ) e 4235 + (l.,xg , - l ,., g x ) e 43 15 

+ (/vv g x - l vx g y ) e 412s + ( l ,,,xg x + lmyg _v + lm= g , ) e 321s 

Circle containing round point a and orthogonal to circle c. 

a/\ C * = ( ayegz - a=egv - awevx ) e423 + ( a=egx - axeg, - awevv ) e431 

+ ( axegJ, - ayegx - a we,~ ) e412 + ( a ... e,, ... +aye~,, + a=e,,, ) e 321 

- ( axegw + awem.x + a11 egx ) e 415 + ( a, emy -a_v em= -a,,evx ) e 235 

- ( ayeg,,, + awemy + auegv ) e 425 + ( axem= - a,e,,v; -a11 evy ) e 315 

-( a, egw + awem= + a,,egz ) e 435 + ( ayemx -axemy -a,,e,,;: ) e 125 

Circle containing round point a and orthogonal to line /. 

a/\ 1* = - a,J vx e423 - awl >)' e 431 - a,vfvz e41 2 

+(axl ,,x +ayl vv +a),,, )e32 1 

- a,J,nx e 41s + ( a, lm_v -avfm= -a,J,,x ) e 23s 

-awlmy e42s +( axlm, -a, l,,,x -a,J,,, )e31 s 

- awl11v: e 435 + ( a_yl,,,x -axfmy - a,,lv:: ) e 125 

Table 4.19. These are the expansion operations in CGA over 3D space (part 2 of3). 
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Expansion Operation 

Plane containing flat point p and orthogonal to circle c. 

p /\ c* = (pyCg: - p .cg), - P wCvx ) e 4235 

+(PzCgx - P xCgz - P wC,:v )e43 15 

+ ( P xCgi, - P _vCgx - P wCvz ) e 4125 

+ ( P xCvx + P yC,~. + P :C,-c ) e 32 15 

Plane containing flat point p and orthogonal to line/. 

p /\ / * = - p ,vfvx e 4235 - p . J ,,_,, e 4315 - p ,J .. : e 4125 

+ (p.J.,x + p _,, 1,:.- + P ='," ) e 321s 

Sphere containing dipole d and orthogonal to circle c. 

d /\ c* = (dvxCvx + d ,,_,,c,J' +dv,Cvz +d,n.,Cgx +dmyCg), + d m,Cgz )e1234 

+ ( d ,,zC111y - d ,~,Cm: - d pwCvx + d pyCg: -d p:Cg), + d ,,,xCg,v ) e 4235 

+ ( d vxCmz - d ,-cCmx - d pwCvv + d p:Cgx -d pxCgz + d m,,Cgw ) e 43 J5 

+ ( d ,~,Cmx - d ,.xCmy - d pwCv: + d pxCIJ)' - d pyCgx + d ,,,zCg,v ) e 4125 

+(dpxC,,: + d pyC~ + d p:C,.: +d,,,xCmx +d,,!.,Cmy + d 111:Cm: )e3215 

Sphere containing dipole d and orthogonal to line /. 

d /\ / * = ( d vx l vx + d v., l ,:v + d vz l vz ) e 1234 

+ ( d vz / 111.v - d ~ ' m= - d p,J vx ) e423s 

+ ( d ,.xl mz - d ,J mx - d p,vfvy ) e 43J5 

+ ( d v.,lmx - d vxl my - d p,J vz ) e 4125 

+ ( d px f vx + d pyfll)' + d p=1,-c + d mxfnv: + d my fmy + d m=1m: ) e 32 15 

Sphere containing round point a and orthogonal to dipole d. 

a/\ ct * = ( a x d vx + a y d ,,_,, + a : d ,. - a wd pw ) e ,234 

+ ( Gz d my - a y d m: + a wd px - a ,, d .,x ) e 4235 

+ ( a x d mz -a: d mx + a wd PY - a ll d \)' ) e 43 15 

+ ( a _,, d ,,a - a x d m.r + a wd P= - a " d ''= ) e 412s 

+ ( a ud pw - a x d px - a .,, d PY - a z d pz ) e 32 15 

Sphere containing round point a and centered at flat point p. 

* a /\ p = -awp wel 234 +awp x e 4235 +aw p y e 43 15 + a wp z e 4125 

+ ( GuP w -Gx P x -a_,, p _,, -G: P:) e 32 15 

Chapter 4 Round Projective Geometry 

Illustration 

8/\p* 

Table 4.20. These are the expansion operations in CGA over 3D space (part 3 of 3). 



4.9 20 Round Geometry 

4.9 2D Round Geometry 

The conformal geometric algebra over 2D Euclidean space is a four-dimensional algebra with the 
16 basis elements listed in Table 4.21. These are exactly the same basis elements used by the rigid 
geometric algebra over 3D Euclidean space, but they are listed in a different order so basis elements 
without a factor of e4 come first for each grade. Multiplication tables for the wedge and anti wedge 
product showing the basis elements in this order are included in Appendix A. 

In two dimensions, the basis vector e3 corresponds to the origin, and the basis vector e4 corre
sponds to the point at infinity. In terms of e_ and e+, they are defined as 

(4.64) 

We have chosen to write the e4 factor on the left for each basis element that includes it so there is 
an exact match between the exterior algebras for 3D projective space and 2D conformal space. The 
volume element is e4321 , which is equivalent to e1234 . 

Because the exterior algebras generated by the wedge and antiwedge products for the rigid 
algebra over 3D space and the conformal algebra over 2D space are identical, there is an interesting 
correspondence between the two structures. A vector can be interpreted as either a 3D flat point or 
a 2D round point, a bivector can be interpreted as either a 3D line or a 2D dipole, and a trivector 
can be interpreted as either a 3D plane or a 2D circle. The actual per-component calculations in
volved in performing join and meet operations are exactly the same, and it's just our interpretation 
of the results that is different. Geometric objects of the same grade in two algebras of different 
dimensionalities must have the same degrees of freedom, and that is discussed in Section 4.10. 

The four-dimensional rigid and conformal algebras diverge where the metric is involved. In the 
conformal geometric algebra over 2D Euclidean space, the metric tensor g with respect to the set 
of basis vectors e1, e2, e3, and e4 is the 4 x 4 matrix 

(4.65) 

This metric tensor is extended to the full metric exomorphism G shown in Figure 4.14. As with the 
metric for 3D Euclidean space, G contains the metric and negative antimetric for the 2D rigid ex
terior algebra, and the pieces belonging to those metrics are enclosed in boxes with solid and dotted 
outlines. 

Type Grade Basis Elements 

Scalar 0 1 

Vectors 1 e1 , e 2, e 3, e 4 

Bivectors 2 e 23, e 31, e 12, e 41, e 42, e 43 

Trivectors 3 e 32 1, e 423, e 43 1, e 412 

Antiscalar 4 11 = e 1234 

Table 4.21. These are the 16 basis elements of the 4D conformal exterior algebra. 
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Flat point (2D) 

Line (2D) 

Round point (2D) 

Chapter 4 Round Projective Geometry 

11 
1 0 0 0 
0 1 0 0 
0 0 0 -1 
0 0 - 1: 0 

0 0 0 0 1 0 
0 0 0 -1 0 0 

G = 
0 0 1 0 0 0 .. .. .... .. .. .. .. 
0 - 1 0: 0 0 0 
1 0 o:o 0 0 
0 0 O:O 0 - 1 

W.~.P .. !. 
0 :- 1 0 0 

' 0: 0 -1 0 
1 : 0 0 0 

-1: 

Figure 4.14. This is the metric exomorphism G for the 4D conformal exterior algebra, where rows and col
umns correspond to the basis elements in the order shown in Table 4.21. The metric antiexomorphism (G is 
simply equal to - G. The entries of the metric and the negative entries of the antimetric in the 3D rigid exterior 
algebra are enclosed in boxes with solid outlines and dotted outlines, respectively. 

Objects representing two-dimensional flat geometries in the 3D rigid algebra are multiplied by 
e4 on the left to become flat geometries in the 4D conformal algebra. A flat point p is represented 
by the bivector 

(4.66) 

and a flat line g is represented by the trivector 

1 g = g x e 423 + g y e431 + g z e 4,2· (4.67) 

Round objects in two-dimensional space have representations similar to round objects in three
dimensional space. The round part of an object is the collection of components that do not have a 
factor of e4 , and the flat part is the collection of components that do have a factor of e4 . There are 
three types of round objects in the 4D conformal algebra, and they are round points, dipoles, and 
circles. A round point a with center p = ( p x , p y ) and radius r has the form 

(4.68) 

A round point a is expressed as a generic vector 

(4.69) 

Carrier Point Infinity 
( when ax = a y = a, = 0) 
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Dipole (2D) 

Circle (2D) 

with four components that are always labeled x, y, z, and w. The round part contains the flat carrier 
point coinciding with the center of the round point. If the round part is zero, leaving only the e4 

component, then a is the point at infinity. 
A dipole d with center p = ( Px, Py ), radius r, and normal vector n = ( nx, ny ) has the form 

p 2 +r2 
d =nxe23 +nye31-(p ·n)e12 +---(nye41 -nxe42) 

2 

-(Pxny - p ynx )(pxe41 + p ye42 + e43). (4.70) 

Note that the vector n does not have the same meaning for a dipole in two dimensions as it does 
for a dipole in three dimensions. In the same way that lines in two dimensions have a normal vector 
that is perpendicular to the line, so do dipoles, as shown in Figure 4.15. This is different from the 
direction n for a dipole in three dimensions, which points along the direction of the line carrying 
the dipole. A dipole is expressed as a generic bivector 

Cocarrier Normal 

Carrier Line 

Cocarrier Position 

Flat Point 

(whendgx =dw =dgz =0) 

(4.71) 

with components that are always labeled gx, gy, gz,px,py, and pz. The notation dg means the vector 
dg = ( d gx, d gy, d gz ), and the notation dP means the vector dP = ( d px, dpy, dpz ). The dipole 's carrier 
line occupies the round part of the bi vector, and if the dipole has no round part, then it is a flat point. 

Container 

n 

/ 
Cocarrier 

Figure 4.15. A dipole is shown here as the pair of blue points connected by a dashed line. Toe points ofradius 
zero on its surface lie at a distance r from the center p in directions perpendicular to the normal vector n. 

A circle c with center p = (Px, Py ) and radius r has the form 

(4.72) 

As with spheres in three dimensions, the weight in the e321 component is intentionally negative so 
that the center can be directly read from the e423 and e431 components. A circle is expressed as a 
generic trivector 
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Carrier Plane Flat Line 
(when Cw= 0) 

Chapter 4 Round Projective Geometry 

(4.73) 

with four components labeled w, x, y, and z that are written with the round part first. If the round 
part is zero, then the circle is a line that includes the point at infinity. 

Math Library Notes 

• The RoundPoi nt2D class stores the four coordinates of a 4D vector representing a round point in two 
dimensions, and they are named x, y, z, and w. 

• The Di pole2D class stores the six components of a 4D bi vector representing a dipole in two dimensions. 
These components are divided into two parts named g and p, which are the carrier line as a Li ne2D and 
the flat point as a FlatPoint2D. 

• The Circ l e2D class stores the four coordinates of a 4D trivector representing a circle in two dimensions, 
and they are named w, x, y, and z. 

• The FlatPoint2D and Li ne2D classes are used for flat geometries in conformal geometric algebra as 
well as rigid geometric algebra. 

Since the 4D conformal and rigid algebras are built on the same exterior algebra, the right and 
left complements are the same in both. However, duals are different because the metrics are differ
ent. The right and left duals and antiduals u * = Gu , u* = Gu, u * = (Gu, and u* = (G u are listed in 
Table 4.22 for all 16 basis elements in the algebra. As always in conformal geometric algebras, the 
antidual is the negative dual because (G = - G. The duals of the five types of geometric object in the 
4D conformal algebra are listed in Table 4.23 . 

u 1 e 1 e 2 e 3 e4 e 23 e 31 e 12 e 41 e 42 e43 e m e 423 e 431 e 412 1 

u* :n. e 423 e 431 - e 321 - e 412 - e 31 e 23 - e 43 e 42 - e 41 e 12 -e3 e , e 2 - e 4 - 1 

u. :n. - e 423 - e 431 e m e 412 - e 3, e 23 - e 43 e 42 - e 41 e 12 e 3 -e, -e2 e 4 - 1 

u* -1 - e 423 - e 43 1 e m e 412 e 31 - e 23 e 43 -e42 e 41 - e 12 e 3 - e , - e z e 4 1 

U -tr -1 e 423 e 431 - e 321 -e412 e 31 - e 23 e 43 -e42 e 41 -e12 - e 3 e , e 2 - e 4 1 

Table 4.22. For each of the 16 basis elements u in the 4D conformal exterior algebra, this table lists the right 
dual u *, the left dual " *' the right antidual u *, and the left antidual " *· 

Type Dual 

Flat point p * p = p , e 12 - P y e 4I + P x e 42 

Line g * g = gx e 1 + g y e 2 -g, e 4 

Round point a * a =-a, e 321+ax e 423 +ay e 431 -aw e 412 

Dipole d ct* = d gy e 23 - d gx e 31 + d pz e 12 - d py e 4I + d px e 42 - d gz e 43 

Circle c * C = Cx e1+ Cy e 2-Cw e 3 - C, e 4 

Table 4.23. These are the duals of the geometric objects arising in the conformal geometric algebra over 2D 
space. The antidual is always the negation of the dual in this algebra. 
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4.9 2D Round Geometry 

Carrier (2D) 

Cocarrier (2D) 

The carrier of a round object u is extracted by multiplying it by e4 with the wedge product. We 
define the carrier in two dimensions as 

car ( u ) = e4 /\ u, (4.74) 

where e4 multiplies u on the left because e4 comes first in subscript ordering for all the basis ele
ments. Multiplying on the right would not change the underlying geometry, and we only multiply 
on the left to avoid extraneous sign flips . As in three-dimensions, the cocarrier is the carrier of the 
antidual, and we define it as 

ccr ( u ) = e4 /\ u *. (4.75) 

The carriers and cocarriers for round objects in two dimensions are listed in Table 4.24. They are 
nontrivial only for a dipole, and that case is illustrated in Figure 4.15. 

Type Carrier Cocarrier 

Round point a ccr(a)=a,11 

Dipole d 

Circle c car ( c) = Cw 11 

Table 4.24. These are the carriers and cocarriers of the round geometric objects arising in the conformal 
geometric algebra over 2D space, as defined by Equations (4.74) and (4.75). 

Centers, containers, and partners have the same definitions in two dimensions as those given 
by Equations ( 4.39), ( 4.40), and ( 4.41) in three dimensions. They are listed for the two-dimensional 
round objects in Table 4.25. As in the 3D rigid algebra, the attitude of an object u in the 4D confor
mal algebra is extracted by taking the anti wedge product with the complement of the origin e3. The 
attitudes of the five types of geometric objects in the 4D conformal algebra are listed in Table 4.26. 
These attitudes can be used to parametrically generate round points contained by an object as de
scribed in Section 4.6. 

Table 4.27 lists the bulks and weights of the round parts and flat parts of the five types of geo
metric objects in the 4D conformal algebra, and the associated norms are listed in Table 4.28. Just 
as in three dimensions, a two-dimensional object is unitized when its round weight has a magnitude 
of one. The round bulk norm corresponds to the weighted perpendicular distance between the origin 
and the object's carrier, and the flat weight norm corresponds to the weighted distance between the 
carrier's support and the object's center. The center norm of a round object u can be defined as 
either the combination of these distances as given by Equation (4.43) or by the dot product of u and 
its conformal conjugate as given by Equation (4.51). The radius norm continues to be defined in 
two dimensions with the antidot product as shown in Equation ( 4.45). The center norms and radius 
norms for round objects in the 4D conformal algebra are listed in Table 4.29. 

There are only three ways to join two objects in two dimensions, and they are illustrated in 
Table 4.30. These are the 2D analogs of the first three 3D join operations listed in Table 4.15 . Even 
though the exterior algebras for the 4D rigid algebra and 4D conformal algebra are equivalent, there 
is one more join operation listed here compared to those listed in Table 2.7 because we have made 
a distinction between a general dipole and a flat point, which is a specific kind of dipole with one 
end at infinity. 
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226 Chapter 4 Round Projective Geometry 

There are six nontrivial meet operations, and they are shown in Tables 4.31 and 4.32. These 
operations are analogs of 3D meet operations shown in Tables 4.16 and 4.17, but for cases where 
one or both objects are of dimensionality one greater. For instance, the meet of two circles in 2D is 
analogous to the meet of two spheres in 3D. The details of this particular case are discussed further 
in Comparison Chart #6. Finally, there are eight distinct expansion operations in two dimensions, 
and they are listed in Tables 4.33 and 4.34. As in three dimensions, a 2D object a can be projected 
onto another 2D object b of higher grade by calculating the expansion a /\ b * and then taking the 
meet of the result with b. 

Type Center 

Round point a cen ( a)= GxGz e1 + Gy Gz e 2 + a; e 3 + GzGw e 4 

cen ( d ) = - ( d gy d pz + d gx d gz ) e1 + ( d gx d pz - d gy d gz ) e 2 

Dipole d 
+ ( d ix + d ~ ) e 3 + ( d ;z - d gx d PY + d gy d px ) e 4 

Circle c Cen ( C) = - CxCw e l - CyCw e 2 + c! e 3 + ( c; + C_~ - CzCw ) e 4 

Type Container 

Round point a COn (a)= -a; e 32 1 + GxGz e 423 + Gy Gz e 43 1 + ( Oz Ow - a; - a_~) e 412 

Dipole d 
con ( d ) = - ( d ix + d ~ ) e 321 -( d gx d gz + d gy d pz ) e 423 

+ ( d gx d pz - d gy d gz ) e 43 1 + ( d gy d px - d gx d pv - d ~ ) e 412 

Circle c con ( C) = - c! e 321 - CxCw e 423 - CyCw e 43 1 - CzCw e 412 

Type Partner 

Round point a () 2 2 3 ( 2 2 ) par a = GxGz e 1 + Gy Gz e 2 + Oz e 3 + Ox + Gy - Oz Ow Oz e 4 

Dipole d 
par (d ) = ( d ix + d ~ , ) (dgx e 23 +dgy e 31 + d gz e 12 + d µz e 43 ) 

+ ( d iz -d;z +dgx d py -dgy d px ) (dgy e 41 -dgx e 42 )-dgz d pz ( d gx e 41 +dgy e 42 ) 

Circle c () 3 2 2 ( 2 2 ) par C = Cw e 32 1 + CxCw e 423 + CyCw e 43 1 + Cx + Cy - CzCw Cw e 412 

Table 4.25. These are the centers, containers, and partners of the round geometric objects arising in the con
formal geometric algebra over 2D space. 

Type Attitude 

Flat point p att (p) = - p , e 4 

Line g att (g) = -gy e 41 + gx e 42 

Round point a att (a )= Oz 1 

Dipole d att ( d ) = d gy e 1 - d gx e 2 - d p, e 4 

Circle c att ( C) = -Cw e1 2 -Cy e 41 + Cx e 42 

Table 4.26. These are the attitudes of the geometric objects arising in the conformal geometric algebra over 
2D space, as defined by Equation (2.178). 
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4.9 2D Round Geometry 

Type Round bulk and weight Flat bulk and weight 

Flat point p 
Pe =0 P■ = Pxe41 + pye42 

Po =0 Po= p, e43 

Line g 
ge =0 g. =gze412 

go =0 go = gxe423 + gye431 

ae = axe1 + aye2 a■ = awC4 
Round point a 

a0 = a, e3 ao =0 

Dipole d 
de = dgz e12 d. =dpxe41 +dpy C42 

do= dgx C23 +dgv e31 do= d µz e43 

Ce =0 C■ = CzC412 
Circle c 

Co = Cw C321 Co =cxe423+cy e431 

Table 4.27. For each type of geometric object u in the conformal geometric algebra over 2D space, this table 
lists the round bulk Ue, the round weight u

0
, the flat bulk U■, and the flat weight u

0

. 

Type Round bulk norm Round weight norm Flat bulk norm Flat weight norm 

Flat point p II Plle =0 II Pllo =0 II P II . = ✓ p; + p; II Pllo = IP, I 

Line g ll glle =o ll gllo = o ll gll. = lg, I ll gl lo =.Jg; + g _; 

Round point a llalle = .Ja; + a_; Ilalio = la, I llall. =!awl Ilalio =0 

Dipole d ll d lle =ldgzl ll d llo = ✓dix +di_y lldll ■ = .jd;x + d;y ll d llo =ldpz l 

Circle c llclle =o llcllo =lcwl ll c ll . = icz I llcllo =.Jc; + c; 

Table 4.28. These are the round bulk norms, round weight norms, flat bulk norms, and flat weight norms of 
geometric objects in the conformal geometric algebra over 2D space. 

Type Center Norm Radius Norm 

Round point a Ilalio = .J a; + a; llall0 = .J2a,aw - a; - a; 

Dipole d ll d llo = .jd~ +d;z ll d ll0 = .jd;z -d~ -2 ( dgxd py - dgydpx) 

Circle c ll c llo = .Jc; +c; llcll0 =.Jc; + c_; - 2c,cw 

Table 4.29. This table lists the center norm ll u llo and radius norm ll u ll0 for the round objects in the conformal 
geometric algebra over 2D space. 
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Join Operation 

Dipole containing round points a and b. 

a/\ b = ( aybz -a,b.v ) e23 + ( a, bx -axb, ) e 31 + ( axb.v -a.vbx ) e12 

+ ( awbx - axbw) e41 + ( awb.v - a.vbw) e42 + ( awb, -a,bw) e43 

Line containing flat point p and round point a. 

p /\a= (P_v Gz - p , ay ) e423 

+ (P, Gx - PxGz ) e431 

+ ( PxGy - P_vGx ) e412 

Circle containing dipole d and round point a. 

d/\a =-(dgx Gx +dgy ay +dgz az )e321 

+(dpyGz -dp,ay +dgxaw)e423 

+(dp,ax -dpxGz +dg,,a w )e431 

+(dpxGy -dpyGx +dgz a w )e41 2 

Table 4.30. These are the join operations in CGA over 2D space. 

Meet Operation 

Dipole where circles c and o intersect. 

CVO = (cxOw-CwOx )e23 +(cyOw-CwOy )e31 +(c,Ow-CwOz )e12 

+ ( CzOy -CyOz ) e41 + ( CxOz - C,Ox ) e42 + ( CyOx - CxOy ) e 43 

Dipole where circle c and line g intersect. 

cvg = -cwg x e 23 -cwg _y e 31 -cwg , e1 2 

+ ( c, g y -cyg z ) e41 + ( Cxg z -c, g x ) e42 + ( Cyg x -Cxg y ) e43 

Flat point where lines g and h intersect. 

gvh =(g, h_v -gyh, )e41 

+ (gxh, - g , hx ) e 42 

+ (gyhx - g xhy ) e 43 

Chapter 4 Round Projective Geometry 

Illustration 

~ 
-c___J p/\a 

Illustration 

h g 

Table 4.31. These are the meet operations in CGA over 2D space (part 1 of 2). 
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Meet Operation 

Round point contained by circle c and dipole d. 

cv d = ( c, d g,, - c_v d g, + cwd px )e1 

+ ( Cx d gz - Cz d gx + cwd py ) e 2 

+ ( Cy d gx - cxd gy + Cwd pz ) e 3 

-( Cx d px + Cy d py + Cz d pz ) e 4 

Round point contained by line g and dipole d. 

g v d = (g , d gy - g _v d gz ) e1 

+ (gxd gz - g , d gx ) e 2 

+ (g_v d gx - g xd g,, ) e 3 

-(gx d px + g y d py + g z d pz ) e4 

Round point centered at flat point p and contained by circle c. 

cv p = CwP x el + cw p y e 2 + CwP z e 3 - ( Cx P x + Cy P _v + Cz P z )e4 

Illustration 

• 
C 

Table 4 .32. These are the meet operations in CGA over 2D space (part 2 of2). 

Expansion Operation 

Dipole containing round point a and orthogonal to circle c. 

a/\ c * = ( a ,Cy + GyCw ) e 23 -( a ,Cx + GxCw ) e 31 + ( GyCx -GxCy ) e 12 

-(axe , +awCx )e41 -(ayCz +awCy )e42 +(awCw- GzCz )e43 

Dipole containing round point a and orthogonal to line g. 

a/\g* = a , g y e 23 -a, g x e 31 +(ay g x -ax g y )e12 

-(ax g z +awg x )e41 - (ay g z +awg _v )e42 - a , g , e 43 

Illustration 

0g 

Table 4.33. These are the expansion operations in CGA over 2D space (part 1 of 2). 
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Expansion Operation 

Circle containing dipole d and orthogonal to circle c. 

d /\ c* = ( dgxCx + dgycy - dgz Cw) e321 

+ ( d gxCz + d pzCy + d pyCw ) e423 

+ ( d gyCz -d pzCx - d pxCw ) e431 

+(dpyCx -dpxCy +dgzc, )e412 

Circle containing dipole d and orthogonal to line g. 

d Ag*= (dgx gx +dK.J,g _)' ) e321 

+ ( d gxg, + d pzgy) e423 

+(dgy g , -dp, g x )e431 

+(dpygx -dpxg .v +dgz g , )e412 

Line containing flat point p and orthogonal to circle c. 

p AC*= ( p ,cy + PyCw) e423 

-(P,Cx + PxCw ) e431 

+ (pyCx - PxCy ) e41 2 

Line containing flat point p and orthogonal to line g. 

Circle containing round point a and orthogonal to dipole d. 

a Ad*= ( axdgy -ayd gx + a,d pz ) e321 

-( a, d px + aydgz + awdgv ) e423 

+(axdgz +awdgx -a, dP.v )e431 

+(axdpx +ayd py -awd p, )e41 2 

Circle containing round point a and centered at flat point p. 

* a/\ p = Ozp, e321 -OzPxe423 -a, p ye431 

+(axPx +ayp y -OwPz )e41 2 

Chapter 4 Round Projective Geometry 

Illustration 

C 

• 

g 

p Ag* 

Table 4.34. These are the expansion operations in CGA over 2D space (part 2 of2). 
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Comparison Chart #6 

Intersection of 2D Circles 

Determine whether a circle with center c1 and radius r1 and 
another circle with center c2 and radius r2 intersect. If so, 
calculate the points of intersection p1 and p2. 

Conventional Methods 

Let v = c2 - c1 be the difference between the two 
centers, and let d = ll vll -

Let q be the point where the line connecting the 
centers c1 and c2 intersects the line connecting 
the points p1 and p2. The point q is halfway 
between the points Pi and P 2• 

Let a be the distance between q and C i, and let b 
be the distance between q and p1. 

We have the Pythagorean relationships 

a2 + b2 = ri2 and ( d - a )2 + b2 = r}. 

Eliminating b2 lets us write a as 

d 2 2 2 + r 1 -r2 
a = ----

2d 

Plugging this into a 2 + b2 = r? gives us 

( 2 2 2 )2 
2 2 d + r1 -r2 

b = r1 - ~-------'--
4d2 

If b 2 < 0, then the circles do not intersect. 

The point q is given by 

q = c1 +(a/ d)v. 

The points p1 and p2 are then given by 

P 1,2 =q±(b/ d)u, 

where u = ( -vy, Vx ). 

Geometric Algebra 

Let c1 and c2 be circles as defined by Equation 
(4.72). 

Calculate the dipole d = c1 v c2 where the circles 
meet using the formula in Table 4.31. 

The squared radius of the dipole is given by 

lldll! _ d;z -d;, -2(dgxd py -dgyd px ) 

lldl!; - d;x + di;, 

Ifl!d!I! < 0, then the circles do not intersect. 

Otherwise, we unitize the dipole by dividing its 
components by lldllo• 

The point q coincides with the center of the 
unitized dipole d, which is given by 

cen( d) = 
-(dgxdgz +dgydpz )e1 +(dgxdpz -dgy dgz )e2 

+e3 +( d;z -dgxdpy +dgyd px )e4. 

The attitude of the dipole dis given by 

att(d)=dgy e1 -dgx e2 -dpze4. 

The points p1 and p2 are then given by 

_ + lldll0 
P1,2 - cen ( d )- lldllo att ( d ), 

where we only calculate the x and y coordinates. 
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232 Chapter 4 Round Projective Geometry 

4.10 Degrees of Freedom 

Degrees of 
freedom 

In our projective algebras, every distinct instance of a geometric object has a specific number of 
coordinate values that completely encode its position and attitude. For round objects, the radius is 
also included in this encoding. Tue projective representation of each type of geometry is a mathe
matical abstraction that makes computation convenient, but it actually contains more information 
than necessary to describe any geometry with a finite position. The simplest example is the repre
sentation of a point in 3D space by a homogeneous vector with four components. Even though we 
are using four numbers to represent a point, there is a redundancy that leads to infinitely many 4D 
vectors collapsing to the same location in space when we divide by the weight. There are ultimately 
only three numerical values necessary to identify any specific point in 3D space, and this minimum 
number is called the point 's degrees of freedom. The number of values necessary to identify lines, 
planes, and round objects is also less than the number of coordinates in their representations, and 
not just by a difference of one. Tue term "degrees of freedom", often abbreviated DOF, generally 
refers to the minimum number of independent numerical values required to fully describe the state 
of a system. In the case of a specific type of geometric object, degrees of freedom means the mini
mum number of values necessary to distinguish among all instances of that type. 

We can determine a general formula for the degrees of freedom possessed by a k-dimensional 
flat geometry existing inside an n-dimensional ambient space by considering its position and atti
tude separately. First, we identify the support of the geometry, which is the point contained in the 
geometry that is closest to the origin. There are no restrictions on the location of the support, so it 
has n degrees of translational freedom because it has n coordinates. If the geometry is itself a point, 
then we' re already done because there is no attitude to consider. Otherwise, we imagine that the 
geometry is attached to the support and restricted to be perpendicular to the direction v connecting 
the support to the origin. This establishes part of the attitude, but the geometry is still free to rotate 
within the ( n -1 )-dimensional subspace perpendicular to v. We can figure out how many degrees 
of freedom are contained in this rotation by considering how a k-dimensional subspace can be em
bedded inside an m-dimensional ambient space. We can choose k basis vectors to span the subspace, 
and each one has m components determining its direction in the ambient space. This establishes an 
absolute maximum of km degrees of freedom. But there are infinitely many ways to choose a basis 
for the same subspace, so we need to remove all linear transformations of the subspace onto itself 
to account for the redundancy. For a basis aligned to the subspace, these transformations correspond 
to all invertible k x k matrices, so k 2 degrees should be subtracted for a reduced count of k ( m -k) 
degrees of freedom for the rotation. After adding this to the n degrees of translational freedom and 
substituting m = n -1, we have n + k ( n - k -1) total degrees of freedom . This can be simplified 
slightly to 

I DOF ( n, k) = ( n - k )( k + 1) , I (4.76) 

where the notation DOF ( n, k) means the degrees of freedom that a k-dimensional flat geometry 
has inside an n-dimensional space. 

A k-dimensional round object has a greater number of degrees of freedom than a k-dimensional 
flat object, and these degrees of freedom come from three sources. First, the object's carrier is a 
( k + 1 )-dimensional flat geometry that is free to have any position and attitude in space, so its de
grees of freedom are given by Equation (4.76), but with k increased by one. Second, the center of 
the round object can exist anywhere on the carrier, and this adds another k + 1 degrees of freedom. 
Finally, one more degree of freedom must be added to account for an arbitrary radius. Tue total 
number of degrees of freedom for a k-dimensional round object in an n-dimensional space is thus 
given by ( n - k -1) ( k + 2) + k + 2. This number is also be equal to DOF ( n + 1, k + 1 ), which reflects 
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5D 
vector 

0 

a correspondence between the representations of k-dimensional flat objects in n dimensions and 
( k -1 )-dimensional round objects inn -1 dimensions. 

The degrees of freedom possessed by all flat objects in spaces of dimension one to four and all 
round objects in spaces of dimension zero to three are shown in Figure 4.16. A symmetry is clearly 
visible in the diagram because DOF ( n, k) = DOF ( n, n - k - 1 ). It must be trne that an object occu
pying k dimensions inside an n-dimensional space has the same rotational degrees of freedom as a 
object occupying all except k dimensions in addition to the same number n of translational degrees 
of freedom. 

Geometric reasoning allowed us to derive Equation (4.76) and figure out how many degrees of 
freedom each type of object must have. We can arrive at the same results through a purely algebraic 
route by considering the components of each type's projective representation. Ak-dimensional flat 
object existing inside an n-dimensional Euclidean space is represented in a rigid geometric algebra 
by a homogeneous ( k + I )-vector in an ( n + 1 )-dimensional projective space. Toe number of coor
dinates in such a representation is thus ( Z: : ), and this places an upper limit on the possible degrees 
of freedom. One degree is always removed to account for homogeneity because any nonzero scaling 
of the algebraic representation has no effect on the actual geometry. For vectors and anti vectors, 

(n + ))-dimensional type ____. 2D 2 Number of (n+l ) 
vector 

1 
coords coordinates = k + I 

Flat geometry ____. 
0 DOF 0 Round geometry 

in n dimensions in n - 1 dimensions 
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Figure 4.16. The four rows in this diagram show the degrees of freedom possessed by flat geometric objects in spaces 
of dimension n = 1 to n = 4. In each row, the dimensionality of the geometry begins at k = 0 in the leftmost cell and 
increases one at a time going to the right. The same four rows also contain the degrees of freedom possessed by round 
geometric objects in spaces of one dimension lower. The dimensionality of each round object is one less than the flat 
object sharing the same cell. 
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this reduces the degrees of freedom to the dimension n, which we know must be the lower limit for 
a point. For any other type of object that has a grade in between that of vectors and antivectors, 
there are internal constraints imposed on the object's components by Equation (3 .68) or (3 .73). 
Each constraint takes away a degree of freedom because it means that the values of the components 
cannot be chosen arbitrarily and must be dependent on each other in some way. For a line I in 3D 
space, we have already seen in Equation (2 .37) that the constraint Iv· Im = 0 must always be true, 
and this reduces the degrees of freedom by one in addition to the one removed for homogeneity. 
The six components of a 3D line therefore have only four degrees of freedom, and this is shown in 
the third row of Figure 4.16. The same constraint applies to a dipole in 2D Euclidean space because 
it is a six-component bivector in the conformal algebra. 

In the conformal algebra over a 3D Euclidean space, dipoles and circles both have representa
tions that are not vectors or anti vectors. A dipole d defined by Equation ( 4.31) is a bi vector with 
ten components and thus a maximum of ten degrees of freedom. Removing one degree for homo
geneity brings us down to nine degrees. The specific constraints on the components can be deter
mined by calculating d v c_! and requiring that it be equal to the antiscalar given by d O d. The 
geometric antiproduct gives us 

d v c,! = 2 ( dpydvz -dpz dvy -dpwd,nx ) e, 

+ 2 ( d pzdvx -dpxdvz -dpwdmy ) e 2 

+ 2 ( d pxdvy -dpydvx -dpwdmz ) e 3 

- 2 ( dvx dmx + dvydmy + dvz dmz ) e 4 - 2 ( d pxdmx + d pydmy + dpzdmz ) es 

+ [ d;w -d,;,x -d,;,y -d,;,z - 2 ( d pxdvx + d pydvy + d pzdvz )] 11. . (4.77) 

If this has to be an antiscalar quantity, then the coefficients of all five vector components must be 
identically zero. This condition can be expressed for the e1, e2, and e3 components more concisely 
by writing 

I d pxyz x d v - dpwdm =0. , (4.78) 

Since this is a three-dimensional equation, it constitutes three separate constraints, and it removes 
three degrees of freedom. The coefficients of the e4 and es components impose two additional con
straints that we can express as dv · dm = 0 and d pxyz • dm = 0. However, these two constraints are not 
independent of Equation ( 4. 78) because they can be derived from it by simply taking dot products 
with d v and d pxyz· They do not remove any further degrees of freedom, and we are left with a total 
of six. The meaning of Equation ( 4. 78) becomes clear when we compare it against the formula for 
the join of a line and a point in Table 2. 7. The flat part of a dipole, which is a point p, must lie on 
the dipole's carrier line I so that I I\ p = 0. 

A circle c defined by Equation ( 4.33) is a trivector that also has ten components. Because circles 
and dipoles are duals of each other, they must have the same number of degrees of freedom. We 
therefore already know that a circle bas six degrees of freedom, but we would still like to take a 
look at the constraints that make it so. Again, one degree is removed to account for homogeneity, 
so we will subtract the number of constraints from nine. The specific constraints are revealed by 
calculating 

CV£= 2 ( CgJJCmz - CgzCmy - Cg,vCvx ) e, 

+ 2 ( CgzC,nx - CgxCmz - Cg,vCvy ) e 2 

+ 2 ( CgxCmy - CgJJCmx - Cg,vCvz ) e 3 

+ 2 ( CgxCvx + CgJJCvy + CgzCvz ) e4 + 2 ( C,nxCvx + C111yCvy + C111zCvz ) es 

+ [ C~x + C~ + C~ - Ci,v + 2 ( CgxC,nx + CgJJCmy + CgzCmz )] 11.. (4.79) 
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Circle 
constraint 

As before, all five vector coefficients must be identically zero, and they correspond to three inde
pendent constraints altogether. From the e1, e2 , and e3 components, we have 

I Cgxyz X Cm -Cg,vCv = 0. I (4.80) 

This equation removes three degrees of freedom, reducing the total to six. The coefficients of the e4 

and e5 components impose the additional constraints Cgxyz • Cv = 0 and Cm • Cv = 0, but these can be 
derived from Equation (4.80) by taking dot products with Cgxyz and Cm. As with dipoles, Equation 
(4.80) has a meaning when we compare it to a formula in Table 2.7, this time the meet of a plane 
and a line. The flat part of a circle, which is a line/, must be contained in the circle's carrier plane 
g so that g v I = 0. 

The fourth row of Figure 4.16 includes the six degrees of freedom shared by dipoles and circles 
in 3D space. Table 4.35 lists all of the algebraic constraints that we have derived for flat and round 
objects in 3D space, including the additional dependent constraints that are implied by Equations 
( 4. 78) and ( 4.80). The table also highlights, for both 3D space and 2D space, the differences between 
the number of coordinates in the representation of each geometry type and the degrees of freedom 
due to homogeneity and any internal constraints on the coordinate values. 

3D Type Coords DOF Constraints 

Flat point p 4 DOF{3, 0)=3 -

Line I 6 DOF{3, 1) = 4 Iv ·Im= 0 

Plane g 4 DOF(3, 2) =3 -

Round point a 5 DOF( 4,0) = 4 -

d pxyz x d v -dpwdm = 0 

Dipole d 10 DOF( 4,1)= 6 d v · dm = 0 (implied) 

d µxyz · dm = 0 (implied) 

Cg-'),z X Cm - CgwCv = 0 

Circle c 10 DOF( 4, 2) = 6 Cgxyz ·Cv = 0 (implied) 

Cm · Cv = 0 (implied) 

Spheres 5 DOF( 4, 3) = 4 -

2D Type Coords DOF Constraints 

Flat point p 3 DOF(2, 0) = 2 

Line g 3 DOF{2, I)= 2 

Round point a 4 DOF(3,0)=3 

Dipole d 6 DOF{3, 1) = 4 

Circle c 4 DOF(3,2)=3 

Table 4.35. These tables summarize the number of homogeneous coordinates, the degrees of freedom (DOF), 
and the algebraic constraints for the types of flat objects and round objects appearing in the rigid algebra and 
conformal algebra over 3D (blue) and 2D (red) Euclidean spaces. 
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Chapter 5 
Conformal Transformations 

We end the book with a short look at the kinds of transformations that can be performed in the 
conformal geometric algebra. Chapter 3 provided a comprehensive examination of the rigid trans
formations that arise in projective geometric algebra, which include all Euclidean isometries that 
preserve distances and angles. Importantly, we saw that proper and improper isometries performed 
with sandwich products required a bit more computation than the equivalent matrix formulations. 
The conformal geometric algebra introduced in Chapter 4 gets its name because the transformations 
that can be performed within it make up a much larger set of transformations that preserve angles 
but not necessarily distances. It is beyond the scope of this chapter to cover the wide variety of 
conformal transformations in its entirety, but we do highlight some of the most interesting charac
teristics. The sandwich products that implement conformal transformations begin crossing into the 
realm of the computationally absurd, reaching a point where it would be a challenge to fit some 
per-component calculations onto a single page. We will provide a small taste of the complexity for 
relatively simple transformations like translation and dilation to demonstrate that it would be much 
more practical to implement them with conventional methods. As such, the material presented in 
this chapter should be considered primarily an exhibition of mathematical beauty. 

5.1 Generalized Operators 

In the rigid geometric algebra, a rigid transformation is performed on an object u by calculating the 
sandwich product Xv u v ~ for some operator X that could be a motor or flector. Complement 
isometries are performed by using the geometric product instead of the geometric anti product. Con
formal transformations are performed in the same manner except now, u can be a flat object or 
round object, and in the case of a round object, u can be real, imaginary, or null. The operator X is 
much more complicated because it can have up to 16 components, twice as many as the eight com
ponents that a general operator bas in the rigid algebra. 

Calculating the geometric product between elements using the basis vectors e4 and e5 can be 
tricky due to the nondiagonal metric tensor. In order to calculate a geometric product in the confor
mal algebra by hand using the method described in Section 3.1, it's necessary to first use Equation 
( 4.15) to convert all factors of e4 and e5 to the basis that includes the vectors e_ and e+. Then the 
multiplication can be carried out with a diagonal metric tensor, and the result can be converted back 
to the e4-e5 basis with Equation ( 4.10). The complete 1024-entry multiplication tables for the geo
metric product and antiproduct with respect to the e4-e5 basis are each displayed across two pages 
in Appendix A. 

The reverses of all 32 basis elements in the 5D conformal algebra are listed in Table 5.1. The 
reverse and antireverse operations are always the same in this case because the exponent in Equa
tion (3.54) is always even. We still write the tilde below the operator in the sandwich antiproduct 
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u 1 e1 e2 C3 C4 C5 C41 C42 C43 C23 C3 1 e12 C1 s C25 C35 C45 

ii 1 e 1 e 2 C3 C4 C5 - C41 - C42 - C43 - e 23 - e 31 - e 12 - C 15 - C25 - C35 - C45 

u C423 C43 1 C412 C321 C415 C425 C435 C235 C31s C125 e1 234 C4235 C431 5 C4125 C3215 11 

ii - C423 - C431 - e 412 - e 321 - C415 - C425 - C435 - C235 - e 31s - C 125 C 1234 C4235 C4315 C412s C3215 11 

Table 5.1. For each of the 32 basis elements u in the SD conformal exterior algebra, these are the reverses ii. 
(Reverses and antireverses are equivalent in five dimensions.) 

XV/ u V/ ~ to indicate antireverse so we're consistent with algebras of other dimensionalities. Keep 
in mind that reverse and antireverse are not equivalent operations in the 4D conformal algebra 
discussed below in Section 5.4. 

5.1.1 Rigid Transformations 

All of the rigid transformations developed in Chapter 3 continue to function in the same way in the 
conformal algebra. The only difference is that all rigid operators are multiplied by e5 just like the 
flat geometric objects were in Equations ( 4.25), ( 4.26), and ( 4.27). Thus, a general rigid motor Q in 
the conformal algebra over three-dimensional space has the form 

(5.1) 

and general rigid flector F has the form 

(5.2) 

The components ofQ and F have the same meanings here as they did previously in Equations (3.94) 
and (3.159). The sandwich anti products Q V/ u V/ Q and-F V/ u V/ I can perform Euclidean isome
tries on all objects in the conformal algebra, so u can be a round point, dipole, circle, or sphere. 
Flat points, lines, and planes are now special cases in which a dipole, circle, or sphere has an infinite 
radius. 

The homogeneous magnitude cH + ¢11. that represents the pitch of a screw motion in the rigid 
algebra where 11. = e1234 is also multiplied by e5 to bring it into the conformal algebra. The exponen
tial form of a rigid motor Q is given by 

(5.3) 

where the antiscalar unit 11. is now e12345 . The quantity se5 + t11. behaves as a dual number under the 
geometric anti product. When we remove the factors of e5, the quantity s 1+te1234 behaves as a dual 
number under the geometric product. 

The amount of computation necessary to transform a flat object with a rigid motor Q or rigid 
flector F does not change in the conformal algebra. For example, the formulas listed in Table 3.7 
for translating flat points, lines, and planes are sti ll perfectly valid. However, it does require a 
greater amount of computation to transform a round point, and much more for dipoles and circles. 
The reason that transforming a round point is more expensive than transforming a flat point is that 
its position and radius are mixed together in the e5 component. When the point is moved rigidly, 
this component needs to be recomputed in such a way that the radius does not change. This extra 
computation is unavoidable even if the radius is zero because the e5 component of a round point 
depends on its position. 



5.1 Generalized Operators 

Translation 
operator 

Toe translation operator T in the conformal algebra has the form 

(5.4) 

which again is just the translation operator from the rigid algebra multiplied by e5. When we apply 
this operator to a vector representing a round point a with the sandwich antiproduct TV/ a V/ T, the 
effect is that a is multiplied by the 5 x 5 matrix 

1 0 0 fx 0 

0 1 0 t y 0 

0 0 1 t z 0 ' (5 .5) 

0 0 0 1 0 

fx t y l z l t2 
2 1 

where t = 2r is the displacement vector. The upper-left 4 x 4 portion of this matrix is precisely the 
same matrix that translates four-dimensional homogeneous points. Toe zeros in the rightmost col
umn of the first four rows mean that the x, y, z, and w components of the translated point do not 
depend on the u component. Toe bottom row of this matrix is responsible for calculating the new 
value of the u component, and it depends on all five components of the point. 

Toe per-component formulas that arise when the translation operator T is applied to all seven 
types of geometries in three dimensions are listed in Table 5.2. Toe formulas for flat points, lines, 
and planes are identical to the versions listed in Table 3.7 for the rigid algebra. The formula for a 
round point implements the matrix given by Equation (5.5), and the formula for a sphere is very 
similar due to the fact that round points and spheres are duals. Toe formulas for dipoles and circles 
are much more involved. Notice that the carriers, whose components are always listed first, are 
translated with exactly the same formulas as the corresponding flat objects. That is, the carrier line 
of a dipole is translated just like a flat line, and the carrier plane of a circle is translated just like a 
flat plane. Toe large amount of extra work necessary to calculate the round components (those with 
a factor of e5) make the implementation of operators in the conformal algebra rather impractical. 
For example, it would be easier to store the seven floating-point values defining the center, radius, • 
and normal of a circle, transform those with conventional methods as necessary, and only construct 
a ten-component geometric algebra representation with Equation (4.32) when it 's time to do calcu
lations in the exterior algebra using the wedge and antiwedge products. Toe computation necessary 
for something as simple as a translation operator is already excessive, and it gets much worse for 
more complicated conformal motions. 

5.1.2 Sphere Inversion 

In the rigid algebra, all Euclidean isometries are built up from one or more reflections across planes. 
If the planes are configured in a special way, such as two planes being parallel to each other, then 
the result is a specific type of rigid transformation, a translation in that case. In conformal geometric 
algebra, planes are generalized to spheres, and all conformal transformations are built up from one 
or more inversions through spheres. If the spheres are configured in a special way, such as two 
spheres as being concentric, then the result is a specific type of conformal transformation. In this 
case, the concentric spheres generate a dilation, which is described in detail later in Section 5.2. 

A sphere inversion is not the same kind of inversion as the improper isometry discussed in 
Section 3 .5 .4 that reflects through a single point. A sphere inversion is a reciprocation of space that 
exchanges everything inside a sphere with everything outside. Toe surface of the sphere doesn't 
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Type Translation Formula 

Flat point p TV p VT= (P x + 2rx P w ) e15 +(Py + 2Ty P w ) e25 + (p , + 2r, p w) e35 + P w e 45 

Line / 
TV f VT= l vx e 415 + l vy e 425 + l vz e435 + [lmx + 2 ( T y l v, - r , l vy )] e235 

+ [/my + 2 ( r , l vx -rxl vz )] e315 + [/mz + 2 ( r ) vy - r _vfvx )] e125 

Plane g TV g VT= gx e4235 + g _y e4315 + g, e412s + (g w - 2, • g-'Y' ) e3215 

TV a VT= (ax+ 2rx a w ) e1 +( a y + 2ry a w ) e2 +( a , + 2r, aw) e3 +aw e 4 

Round point a 
+(au +2, •a,yz + 2 ,

2
a w )es 

Tv d VT= d vx e 41 + d vy e 42 +dvz e 43 +[ d ,,u +2 ( r y d ,,., -r, d vy ))e23 

+[dmy +2(r, d vx - r x d ,,., ))e31 +[dm, +2(rx d vy -ry d vx ))e12 

Dipole d 
+ [dµx + 2(ry d m, -r, d m.v +rx d pw +2rx , · d v- ,

2
d vx ))e15 

+ [ d PY + 2 ( r , d mx - r x d m, + r y d pw + 2ry ?" • dv - , 2 
d vy )] e25 

+ [ d pz + 2 ( r x d m.v - r _v d nu + r, d pw + 2r, , • d v - , 2 
d vz )] e35 

+ ( d pw + 2, • dv) e45 

Tv CV T = Cgx e423 + Cgv e431 + Cgz e412 

+ ( Cgw - 2, ·Cg,yz ) e321 + [ Cvx + 2 ( Ty Cgz - r , Cgv )] e415 

+ [ Cvy + 2 ( r , Cgx -rxCgz )] e425 +[ Cvz + 2 ( TxCgv -ry Cgx )] e435 
Circle c 

+ [ C,nx + 2 ( Ty Cvz - Tz Cvy - TxCgw + 2rx i · Cg,yz - ,
2

Cgx ) ] e235 

+ [ Cmy + 2 ( TzCvx -TxCvz - Ty Cgw + 2r y ' · Cg,yz - ,
2Cgv )] e315 

+ [Cm, + 2 ( TxCvy - Ty Cvx -T, Cgw + 2r, , • Cg-'),z - ,
2

Cgz )] e125 

Tv s VT= Su e1234 + ( S x - 2rx S u ) e4235 + ( Sy -2ry Su ) e4315 + ( s, - 2r, Su ) e412s 
Spheres 

+ ( Sw -2, · S-'J,, + 2 ,
2

Su ) e321s 

Table 5.2. Toe multi vector T = r x e235 + r .v e315 + r , e125 + 11 acts as a translation operator for flat and round 
objects under the geometric antiproduct in three dimensions. These formulas translate by the displacement 
vector 2, . Toe operator Tis always unitized, and the geometries being translated can have any weight. 

move just like points on a plane don't move when space is reflected across it. An inversion can be 
performed with a sphere having any center and radius, even a radius that is zero or imaginary. As 
long as the radius isn ' t zero, any inversion is an involution that returns everything to its starting 
location when performed twice. Because the entire infinite expanse of space outside the sphere has 
to end up squished inside the finite volume of the sphere after an inversion, distances are clearly 
not preserved. 

A sphere s is a flector in the conformal algebra, and an object u is inverted across a sphere by 
calculating -s 'v u 'v ~- (The antireverse operation has no effect on antivectors, so s = ~. and we write 
the antireverse here just to be consistent with other operators.) To get an idea of what an inversion 
looks like, suppose that a round point a lies at a distance x from the center of a sphere of radius r, 
as shown in Figure 5. l(a). When the point is inverted across the sphere, it is moved along the line 
connecting it to the center of the sphere to a distance r 2 

/ x from the center. Tue product of the old 
distance from center and new distance from center is equal to the squared radius of the sphere. In 



5.1 General ized Operators 

this way, inversion in a sphere performs a sort of geometric reciprocal. When the sphere is real, the 
new position of the point is on the same side of the sphere's center as the old position. When the 
sphere is imaginary, the new position is on the opposite side at a negative distance so the product 
with the original positive distance is the negative value given by r2. 

Several examples of sphere inversion are shown in Figure 5.1. In each part, the two objects are 
images of each other under an inversion across the blue sphere. As illustrated by the circles in part 
(b ), the surfaces of round objects are inverted pointwise, and this has the effect of changing the 
radius. Part (c) demonstrates that flat objects do not remain flat unless they contain the center of the 
sphere. All flat objects contain the point at infinity e5, and that point must end up at a distance of 
zero from the center of the sphere after the inversion. As a result, the inversion of any flat object is 
an object that contains the center of the sphere. In the opposite sense, the inversion of any object 
that contains the center of the sphere must contain the point at infinity and must therefore be a flat 
object. Toe circle and line shown in part (c) are sphere inversions of each other. Another example 
of this relationship is shown in part ( d), and this time, the line intersects the sphere. Points on the 
surface of the sphere do not move under an inversion, so the circle corresponding to the line 's 
inversion must contain the center of the sphere and the two points where the line pierces its surface. 
1he final example in part ( e) demonstrates a similar but less intuitive relationship between flat points 
and dipoles. A flat point is really a dipole with one end at some position p and the other end at 
infinity. When a flat point is inverted across the sphere, the endpoint at infinity must be moved to 
the center of the sphere, and the endpoint at p is inverted just like any other point. Toe resulting 
dipole is the lower-dimensional analog of the circle shown in pai1 ( c ). 

(b) (c) 

• 0 

•---• 0 

Figure 5.1. These are several examples of sphere inversion. Toe two objects shown in each case are inversions 
of each other across the blue sphere. (a) A point at a distance x from the center of a sphere of radius r is 
moved to the distance r 2 / x from the center after inversion. (b) Surfaces of round objects are inverted 
pointwise. (c) Since flat objects like the line shown contain the point at infinity e5, their inversions must 
contain the center of the sphere. ( d) An object intersects the sphere at the same points as its inversion. ( e) A 
flat point is a dipole with one end at infinity, so its inversion must be a dipole with one end at the center of 
the sphere. 
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Sphere inversion is a linear transformation in the 5D projective space, which means it can be 
implemented by a 5 x 5 matrix. The matrix corresponding to the inversion across a sphere of radius 
r centered at the point ( mx, my, mz ) is 

r
2 -2m2 

X -2mxmy -2mxmz ( m
2 

- r
2

) mx 2mx 

-2mxmy 2 2 2 r - my -2mymz ( m
2 -r2 )my 2my 

-2mxmz -2mymz r
2 -2m 2 

z (m
2
-r

2 )mz 2mz (5.6) 

-2mx -2my -2mz m 2 2 

-(m2 -r2 )mx -( m
2
-r

2 )my -( m
2 
-r

2 )mz ½(m 2 -r2 ) 2 m 2 

This matrix transforms a 5D vector representing a round point. Though not obvious by looking at 
the entries of this matrix, inversion across a sphere of radius zero, a null sphere, moves all points 
to the center of the sphere but with some weighting. The matrix simplifies considerably when the 
sphere is centered at the origin, and it becomes clear that the origin e4 and the point at infinity e5 

are exchanged in that case. 

5.1.3 Circle Rotation 

When two plane reflections are composed in the rigid algebra, the result is a rotation about the line 
where the two planes intersect. This is generalized in the conformal algebra by composing two 
sphere inversions to produce a rotation about the circle where the two spheres intersect. The axis of 
rotation is now generalized to a circle, and depending on the spatial relationship of the two spheres 
multiplied together, that circle can be real, imaginary, or null. The conformal motions associated 
with these three cases are shown in Figure 5.2. 

A circle rotation operator R can be expressed as the exponential 

R = exp11 (</Jc). (5 .7) 

The sandwich anti product R 'i/ u 'i/ 13- rotates the object u through the angle 2¢ about the circle c. 
How the rotation looks depends on the sign of the squared radius of c. If c is not a null circle, then 
we radius normalize it so that c O c = ±11 by dividing by the absolute value of the radius norm llc ll0 . 

This does not change the meaning of c geometrically because the reciprocal of the radius is moved 
into the weight of c. What it does do is allow us to evaluate the exponential in Equation (5.7) with 
a power series and validate the use of l3- instead of R- 1 in the sandwich anti product. 

If c O c = n after radius normalization, then the circle c is real. The anti dot product c O c is equal 
to the geometric anti product c 'ii£, and since£= -c, it must be true that c 'ii c = -n in this case. For 
anything that squares to negative one, the power series expansion of the exponential function pro
duces sines and cosines, so the circle rotation operator can be written as 

I R =csin¢+ncos¢. 1 (5 .8) 

Compared to the rotation operator shown in Equation (3.86), the only difference is that the line/ 
bas been generalized to a circle c. This operation is called an elliptic rotation, and it is shown on 
the left in Figure 5.2. An elliptic rotation is the motion that we would intuitively expect if we were 
asked to generalize a rotation about a line to a rotation about a circle. Throughout a full revolution 
as </J ranges from zero to n radians, all of the space outside the circle flows through the interior of 
the circle at some point in time. In particular, the point at infinity arrives at the center of the circle 
halfway through a revolution when </J = n/ 2. The point beginning at the center reaches infinity at the 
same time, so they exchange places. 
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Hyperbolic 
rotation 
operator 

Parabolic 
rotation 
operator 

Now suppose that c O c = -n because the circle c is imaginary. In this case, c 'ii c = n, and the 
power series expansion of the exponential function produces hyperbolic sines and cosines. This 
time, the circle rotation operator can be written as 

I R=csinb¢+ncosb¢. 1 (5.9) 

This operation is called a hyperbolic rotation, and it is shown on the right in Figure 5.2. Whereas 
an elliptic rotation fixes the real circle c, a hyperbolic rotation fixes the real dipole c *, the dual of 
the imaginary circle c. As shown in the figure, the ends of the dipole serve as the source and sink 
for the motion that a hyperbolic rotation generates such that points in space move away from the 
source and toward the sink. This motion is not cyclic as in the elliptic rotation, and points just move 
closer to the sink at a slowing rate as the angle¢ increases indefinitely. 

The final case is that c O c = 0, which corresponds to a null circle. Since c 'ii c = 0 as well, the 
power series expansion of the exponential bas only two terms, and the circle rotation operator now 
becomes 

Real Circle / Elliptic Rotation 

R = c sin ¢, + n cos ¢, 

R =¢c + n. (5.10) 

Imaginary Circle / Hyperbolic Rotation 

R = c sinh ¢, + n cosh ¢, 

Null Circle / Parabolic Rotation 

R =¢,c+ll. 

Figure 5.2. (Top left) The motion generated by a real circle c is an elliptic rotation in which points revolve 
about a fixed circular axis. (Top right) The motion generated by an imaginary circle c is a hyperbolic rotation 
in which points flow between the fixed ends of the dipole c*. (Bottom) The motion generated by a null circle 
c is a parabolic rotation in which points follow noncyclic loops from one side of the fixed center to the other. 
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This operation is called a parabolic rotation, and it is shown at the bottom of Figure 5.2. Toe only 
fixed point is the center of the circle, and other points in space flow along loops from one side to 
the other. As in hyperbolic rotations, this motion is not cyclic, and points move toward the center 
at a slowing rate as the angle¢ increases indefinitely. A parabolic rotation represents the boundary 
between elliptic rotations and hyperbolic rotations. As the absolute size of the circle shrinks in the 
real and imaginary cases because the squared radius approaches zero, the shapes of the elliptic and 
hyperbolic rotations both approach the shape of the parabolic rotation. 

For all three circle rotations described above, the inverse of the operator R is simply~- In the 
elliptic case, c 'ii£ = n, and we have 

R 'ii ~ = ( c 'ii £) sin 2 ¢ + c sin ¢ cos ¢ + £ sin ¢ cos ¢ + n cos 2 ¢ = n, (5 .11) 

where the fact that c = -£ causes the terms containing sin¢ cos </J to cancel out. In the hyperbolic 
case, c 'i/ £ = -n, and we have 

R 'ii~ = ( c 'ii£) sinh 2 ¢ + c sinh ¢ cosh ¢ + £ sinh </J cosh <fJ + n cosh 2 
</J = n. (5.12) 

And in the parabolic case, c 'i/ £ = 0, and we have 

R 'ii~ = c 'ii£+ </Jc+¢£+ n = n. (5.13) 

By composing arbitrary numbers of circle rotations of various kinds and rigid screw motions, 
a large variety of conformal motions can be constructed, but we are not going to examine them all. 
In general, a motor Q in the 5D conformal algebra has 16 components of even antigrade, of which 
10 belong the the trivector part, five belong to the vector part, and one belongs to the antiscalar 
part. The circle rotations that we described above do not have a vector part, so they each have 11 
components. When two circle rotations are multiplied together, the vector part of the result contains 
the antiwedge product of the two circles, which is the round point where they meet. 

5.2 Dilation 

Perhaps the most fundamental feature distinguishing conformal transformations from rigid trans
formations is the ability to perform a dilation, also known as a homothety or a uniform scale, with 
respect to any fixed point. This is something that could be accomplished to a limited degree in the 
rigid algebra by scaling all the bulk components of a flat object, effectively changing its distance 
from the origin, but this is artificial and can't be combined with other transformations. In the con
formal algebra, there are operators that perform dilations with the usual sandwich product, and they 
can be composed with everything else. 

Geometrically, a dilation is the spherical analog of a translation. A translation is accomplished 
in both the rigid and conformal algebras when we reflect across two parallel planes as previously 
illustrated in Figure 3.8. A dilation is accomplished, in the conformal algebra only, by inverting 
across two concentric spheres, as shown in Figure 5.3. Suppose that the two spheres s1 and s2 shar
ing a common center have radii r1 and r2 . When a round point a at a distance x from the center is 
inverted across s1, the transformed point is given by -s 1 'i/ a 'i/ ~" and it lies at a distance r? / x from 
the center, as discussed in Section 5.1.2. This new point is inverted across the second sphere s2 by 
calculating 

a' = s 'ii s 'ii a 'i/ s 'ii s 2 I _ I _ 2, (5.14) 

and the final result a' must lie at a distance from the center given by 

(5.15) 



5.2 Dilation 

Dilation 
operator 

Figure 5.3. When a round point a is inverted across two concentric spheres s1 and s2 having radii r1 and r2, it 
is dilated by a factor of r} / r? with respect to the center of the spheres to become the point a'. 

The total effect is that the distance between the original point a and the center of the spheres has 
been scaled by the ratio d / r? of the spheres' squared radii. 

The geometric anti product of two concentric spheres yields a dilation operator D that we can 
express in terms of a center position ( mx, my , m2) and a scale factor rJ. Let s1 and s2 be two concen
tric unitized spheres with radii r1 and r2. The dilation operator D is given by 

(5.16) 

The quantity mxe235 + mye315 +m2 e125 -e321 is an imaginary circle in the horizon. This is difficult 
to visualize because it has an infinite radius and no attitude, but it can be interpreted as the dual of 
the flat point mx e15 + my e25 + m2 e35 + e45 corresponding to the center of the dilation. When we mul
tiply D by its own antireverse, we find that D v' J.? = d r} 11., so we normalize it by dividing by the 
square root of this value to get 

(5.17) 

The scale factor rJ of a dilation is determined only by the ratio of the squared radii and does not 
depend on either radius by itself, so we would like to write D in terms of rJ instead of r1 and r2. We 
can do this by dividing numerators and denominators in Equation ( 5 .17) by d and replacing the 
ratios r} / r? that appear by rJ. That produces the operator 

1-rJ l+rJ 
D= 1 (mxe23s +mye31s +mze12s -e32 1)+ 1 11.. 

2--.J(J 2--.JrJ 
(5.18) 

This operator dilates any object u by the scale factor rJ about the fixed center position ( mx, my, m2) 
when applied as the sandwich antiproduct D v' u v' ].?. When u is a flat point, line, or plane, then the 
dilated result has the same weight as the original value of u, but when u is a round object, its weight 
picks up a factor ofl/ rJ . We can get rid of this factor by simply dropping the square roots in Equation 
(5 .18) to arrive at 

(5 .19) 
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This version of the operator is not normalized, but it dilates round objects without changing their 
weights. Since everything is homogeneous, it doesn 't really matter that D 'ii l> = o-11 in this case. The 
only downside is that it causes the weights of flat objects to pick up a factor of a- now, so it may be 
necessary to unitize them. 

The 5 x 5 matrix that implements Equation ( 5 .19) for vectors representing round points is 

O" 0 0 (1-o-)mx 0 

0 O" 0 (1-o-)my 0 

0 0 O" (1-o-) mz 0 (5.20) 

0 0 0 1 0 

o-(1-o-)mx o-(1-o-)my O" ( 1- O") mz ½(l-o-) 2m 2 0" 2 

This matrix bas a form similar to the translation matrix given by Equation (5.5) in that the fourth 
row is a constant [ 0 0 0 1 0] and the rightmost column bas a nonzero entry only in the last row. 
The upper-left 4 x 4 portion correctly dilates a 4D homogeneous point by a scale factor a- about the 
center m = ( mx, my, mz ). The fifth row recalculates the radius of a round point, and it leaves a radius 
of zero unchanged. 

The dilation operator is a motor in the conformal algebra, and it can be expressed as an expo
nential of the circle c = mx e235 + my e315 + mz e125 - e321 that defines its center. As mentioned earlier, 
this circle is imaginary, and it always squares as c 'ii c = 11. That being the case, the hyperbolic rota
tion formula in Equation (5.9) applies, and we can write 

D = exp -., ( oc) = c sinb o + 11 cosb o. (5.21) 

We just need to figure out how the angle o relates to the scale factor a- . When we expand the hyper
bolic sine and cosine in terms of exponentials, we can express D as 

By multiplying numerators and denominators by e-0
, this can be rewritten as 

We have a match with Equation (5.18) when we set e-20 = a- , and that means 

1 
o = --In O" . 

2 

(5 .22) 

(5.23) 

(5 .24) 

Table 5.3 lists the per-component formulas that arise when the version of the dilation operator 
D given by Equation (5.19) is applied to all seven types of geometries in three dimensions. The 
formulas for flat points, lines, and planes each contain a superfluous homogeneous factor of a- that 
would typically be dropped in a direct implementation. The formula for a round point is equivalent 
to multiplication by the 5 x 5 matrix in Equation (5.20) . As with the translation operator shown ear
lier in Table 5.2, the formulas for dilating dipoles and circles are rather ridiculous considering the 
simple effect they have. This makes dilation with a sandwich product impractical by itself since it 
would be much easier to just scale an object's center and radius. Geometric algebra representations 
could then be rebuilt from definitions whenever they are going to be used with operations of the 
exterior algebra. 



5.2 Dilation 

Type Dilation Formula 

Flat point p 
D v pv)? = [ a

2 
Px +a (I-a)mxPw ]e1s + [ a 2 

P.v +a (I-a) myPtt, ]e25 

+[a
2
p , +a(I-a)m, Piv]e3s +apwe4s 

D v Iv J? = alvx e41 s +alvv e42s +alvz e43s 

+ [ a 2
lmx +a (I-a )(m_,,fvz -m,lvv )]em 

Line I 
+[a

2
l,1!v +a(I-a)(m, l vx -mxl vz )]e315 

+ [a
2

lmz +a(I-a)(mxl ".l, -myl vx )]e125 

D v g 'ii J? = agxe423s + agye431s + ag, e412s 
Plane g 

+ [ a 2
g w -a (I-a) m · gxyz ] e3215 

D 'ila'i!J?=(aax +(I-a)mxaw)e1 +(aay +(l-a)myaw)e2 

Round point a +(aa, +(I-a)m, aw)e3 +awe4 

+[a
2
a11 +a(l-a) m ·a.ryz +½(1-a)

2 
m

2
aw]e 5 

D V d 'ii J? = d vx e41 + d vy e42 + d vz e43 + [ ad,nx + (1-a) ( myd vz -m, d".l, )] e23 

+ [ admy + (1-a )( m, d vx -mxd vz )] e31 + [ adm, + (1-a )( mxd ry -myd vx )] e12 

+ [ a
2
d px +a(l-a)(mydm, -m,dm.v +mxdpw)+½ (l-a)2 (2mxm ·d v -m2

d vx )]e15 

Dipole d 
+ [ a

2
dpy + a (I-a) ( m, d,nx -mxdmz + mydpw) +½ (1-a )2 ( 2mym • d v -m 2

d ry )] e2s 

+[ a
2
dpy +a (I-a )(mxdmy -m.vdmx +m,dµw )+½ (l-a)2 (2m, m ·d v - m

2
d vz )]e35 

+[ adpw +(1-a) m ·dv] e45 

D vcv )? = Cgx e423 +cgi, e431 +cgz e41 2 

+ [ acgw -(I-a) m ·Cg.ryz ]e321 +[ acvx +(1-a) ( mycgz -m, c/0' )]e415 

+ [ acvv +(I- a) ( m, Cgx -mxCgz )] e425 + [ acvz + ( 1-a) ( mxCgi, -mycgx )] e435 
Circle c 

+ [ a 2
Cmx + a (I-a)( myCvz -m, cvy -mxCgw ) +½ (1 -a )

2 
( 2mxm • Cg.ryz - m

2
cgx ) ] e235 

+ [ a 2
Cmy + a (I-a) ( m, Cvx -mxCvz -myCgw ) +½(I-a )2 ( 2mym ·Cg.ryz -m2cgi, )] e315 

+ [ a
2

Cmz + a (I-a)( mxCvy - myCvx -m, cgw ) +½ (1-a )
2 

( 2m, m • Cg,yz - m 2cgz )] e125 

D 'ii s 'ii J? = s" e1 234 + ( a Sx -( 1-a) mxsu) e4z35 

Spheres + ( asy -(I-a) mysu) e4315 +( as, -(1-a) m, s11 ) e4125 

+ [ a 2 
Sw -a ( l -a) m · Sxyz + ½ ( 1 - 0- )2 ill 

2 
Su ] e321 5 

Table 5.3. The multivector D = 1; a ( mxe235 + mye315 + m, e125 -e321 ) + 1;a 11. acts as a dilation operator for flat 
and round objects under the geometric antiproduct in three dimensions. These formulas dilate by the scale 
factor a about the fixed center m = ( m., , my, m, ) . The operator D is weighted so that the weights of round 
objects are preserved. 
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5.3 Duals and Complements 

Because the metric is not degenerate in the conformal algebra, transformations that are performed 
with the geometric antiproduct can also be performed with the geometric product, but with a dual 
operator. Suppose that an operator X performs a specific transformation with a sandwich of geo
metric antiproducts such that u' = X 'ii u 'ii~- Then the dual of X performs the exact same transfor
mation with the sandwich of geometric products 

u'=X* AuAX*. (5.25) 

This means that every operator essentially has two different representations, X and x*. For exam
ple, the translation operator T given by Equation (5.4) has the dual form 

(5.26) 

The operator T* works with the geometric product such that the sandwich T* Au A T* translates 
the object u by the displacement vector 2-r. (Notice that T* contains a subtraction whereas T does 
not). Even though this is a rigid transformation, there is no corresponding dual operator in the rigid 
algebra that also performs a translation. As established in Chapter 3, operations that perform Eu
clidean isometries must use the geometric antiproduct. For the sake of consistency, we prefer to use 
the antiproduct in the conformal algebra as well, but it is not a requirement. 

As another example, the dilation operator D given by Equation (5.19) has the dual form 

(5.27) 

The sandwich product DA u AD* dilates the object u by the scale factor a about the fixed center 
m = ( mx, my, m2 ). The interpretation of the fixed geometry in this form of the operator is much 
more intuitive because it can easily be read off as the flat point mxe15 + mye25 + m2 e35 + e45 . This 
highlights a special feature of the conformal algebra that makes it possible to always construct an 
operator that contains the invariant of a transformation as a real geometry or null geometry. We can 
do that because the dual of any imaginary object is real, so any operator based on an imaginary 
object x and applied with one product can be dualized into an equivalent operator based on the dual 
real object x * and applied with the complementary product. 

It's always the real geometry, either x or x *, that is invariant regardless of which product is 
used to perform an operation. This is exemplified by the hyperbolic rotation shown in Figure 5.2. 
Because the circle c is imaginary in that case, it is not the invariant geometry. Instead, its dual c * 
is the invariant geometry because it is the real dipole dual to the imaginary circle. We can write the 
operator R in terms of the real invariant as 

R* =c* sinh¢-lcosh¢, (5.28) 

which is the dual of Equation (5.9), and then transform objects with the sandwich R *Au AR*. 
In Section 3.9.2, it was demonstrated that for any operator X that performs a Euclidean isome

try with the geometric anti product, the complement of X performs a different kind of transformation 
with the geometric product, a complement isometry. This led to the two complementary sets of 
transformation groups shown in Figure 3.16. The geometric product could only perform transfor
mations that fixed the origin, and the geometric antiproduct could only perform transformations 
that fixed the horizon. Any transformation that fixed both the origin and the horizon could be per
formed by both products. These transformation groups also exist in the conformal algebra, and they 
are shown in the purple boxes in Figure 5.4. 



5.3 Duals and Complements 

As in the rigid algebra, taking the complement of an operator in the conformal algebra has the 
same effect as taking the inverse transpose of the equivalent matrix formulation, but this is now 
extended to the larger 5 x 5 matrices such as those shown in Equations (5.5) and (5 .20). This has the 
effect of turning an operator that fixes the origin into one that fixes the horizon, and vice versa. The 
dilation operator D in the conformal algebra fixes the horizon, and its complement operator D fixes 
the origin. By adjoining the group D ( n) of dilations about the origin to the groups from the rigid 
algebra, we double the number of closed subgroups in the conformal algebra that fix either the 
origin or horizon. The new subgroups that combine a dilation with a Euclidean isometry or com
plement isometry are shown in the green boxes in Figure 5.4. 

Since every operator in the conformal algebra has two forms, complement operators can also 
be performed using either the geometric product or antiproduct. In the rigid algebra, a complement 
operator X was necessarily performed with the geometric product, but in the conformal algebra, 
we can take its dual and perform the same operation with the geometric antiproduct. The dual of 
the complement is given by 

-* - -
X = GX=GX=-GX, (5 .29) 

where G is the metric exomorphism, and we have used the facts that (G = -G and the double com
plement is the identity in five dimensions. Sign changes don't matter for operators, so we would 
just drop any negation that arises, including the one in Equation (5.29). What this means is that for 
an operator X performed with one of the geometric products, the operator GX performs the com
plement operation with the same product. 

The form of the 5 x 5 matrix corresponding to the type of transformation performed by the mem
bers of each subgroup are also shown in Figure 5.4. Every matrix on the left side of the figure has 
zeros in its fourth column everywhere except the fourth row, and this means that the origin e4 is 
mapped to itself. Every matrix on the right side of the figure has zeros in its fifth column everywhere 
except the fifth row, and this means that the point at infinity e5 is mapped to itself. In the center of 
the figure, both e4 and e5 are fixed. 

In each of the complement groups shown on the left side of Figure 5.4, all entries in the right
most column of the matrix representations are potentially nonzero, and this means that the position 
of a round point after the transformation is applied depends on the point's radius. Null points having 
radius zero do not follow the same paths shown for flat points undergoing complement isometries 
in Figures 3.14 and 3.15. To recover the same complement isometries in the conformal algebra, a 
round point must have a zero u component so that the upper-left 4 x 4 portion of the transformation 
matrix is effectively applied to it. Such a point is an imaginary round point with a squared radius 
equal to its negative squared distance from the origin. 

In general, operations in the conformal algebra fix neither the origin nor the horizon. Both are 
moved by a sphere inversion unless the surface of the sphere happens to contain the origin. All of 
the circle rotations also move both the origin and horizon except in special cases when the origin 
is part of the invariant geometry. Arbitrary combinations of these operations generate the much 
larger conformal group represented by the blue box at the top of Figure 5.4. 
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E{n)xD(n) 

[
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O"t' TM t'2 /2 0" 2 
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Figure 5.4. These are particular transformation subgroups in conformal geometric algebra. Toe matrix I is the n x n 
identity, the matrix R is a rotation, and the matrix M is merely orthogonal. The vector -r is a translation, and the scalar 
a is a positive scale value. Groups on the left fix the origin, groups on the right fix the point at infinity, and groups in 
the center fix both. Groups with a purple background are equivalent to those with the same name shown in Figure 3.16. 
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5.4 2D Conformal Transformations 

There are many conformal motions possible that we have not discussed. Some of the more general 
motions can be understood well in two dimensions, so we take a look at a specific kind of motor in 
the 4D conformal geometric algebra introduced in Section 4.9. Toe full multiplication tables for the 
geometric product and anti product in this algebra are included in Appendix A, and the reverses are 
given in Table 3.5 since they are the same in the 4D rigid geometric algebra. 

Toe conformal motor Q that we are interested in bas the exponential form 

Q = exp., [( c51 + ¢11)v d], (5 .30) 

where d is a 2D dipole, and the values of J and ¢ are scalar values. This expression is algebraically 
identical to that given in Section 3.6.2. Toe dual number Jl + ¢11 is the same, and the 2D dipole d 
has the same six-component bivector representation as the 3D line / in the rigid algebra. The 4D 
conformal algebra over two-dimensional Euclidean space and the 4D rigid algebra over three-di
mensional Euclidean space have the same exterior structures and differ only in their metric tensors. 
The degenerate metric in the rigid algebra was responsible for some simplifications when the expo
nential form of Q was expanded, but the conformal metric will cause the expansion of Equation 
(5.30) to be more complicated. 

We assume that d is a real dipole that has been radius normalized so that d v' d = -11. It will 
make things easier if we split the exponential into a product of exponentials and write 

Q = exp., [( J1 + ¢n) v d ] = exp., (-Jd* )v exp., ( ¢d ). (5.31) 

This relies on a couple of facts, the first of which is that d and 1 commute under the antiproduct. 
Also, since~ = - d, the product 1 v d is then equal to - d* according to Equation (3 .63), so 

exp., [ ( Jl + ¢11) v' d] = exp., ( -Jd* + ¢d ). (5.32) 

Now, using Equation (3 .63) again, it's easy to show that d v' d* = d* v' d = 1, so d and d* commute, 
and we are allowed to convert an exponential of the sum - J d* + ¢d into a product of exponentials. 
The exponential exp., ( ¢d ) on the right side of Equation ( 5 .31) expands into sines and cosines be
cause d is a real dipole. Toe other exponential exp., ( -Jd* ) expands into hyperbolic sines and co
sines because d* is an imaginary dipole, and therefore d* v' d* = 11. We can now write Q as 

Q = ( - d * sinh J + 11 cosh J) v' ( d sin ¢ + 11 cos ¢ ) , 

and this finally multiplies out to 

Q = d cosh J sin ¢ - d * sinh J cos¢ -1 sinh J sin ¢ + n cosh J cos¢. 

(5.33) 

(5.34) 

The screw motion represented by Equation (3 .109) is given by the same equation after we make the 
substitutions d = I , cosh J = 1, and sinh J = J. 

In the conformal motion that the motor Q in Equation (5.34) represents, the dipole d determines 
the fixed points in the 2D plane, and the homogeneous magnitude Jl + ¢11 controls the shape of the 
motion. Toe quotient J/¢ is called the loxodromic parameter, and it corresponds to a continuous 
transition between elliptic and hyperbolic motions. Toe motions produced by several different 
parameter values are shown in Figure 5.5. When¢ = 0, the motion is entirely hyperbolic, as shown 
in the upper-left part of the figure. When J = 0, the motion is entirely elliptic, as shown in the upper
right part of the figure. Otherwise, the motor Q produces a blend of hyperbolic and elliptic motions 
called a loxodromic transformation. Three intermediate steps are shown at the bottom of the figure. 
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Elliptic Transformation 

-

1/~~ -
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-----~--;:;;> / -
/ I \ 

~ 

- / 
~ / / 
~;/ 111 =-===--

J/ ¢ = 1/3 
Figure 5.5. These are the mixtures of hyperbolic and elliptic conformal transformations produced by the motor Q from 
Equation (5.34). The yellow dots are the fixed endpoints of dipole d. When both the angles J and¢ are nonzero, the 
result is a loxodromic transformation. 

When the dipole d used to construct the motor Q in Equation (5.30) is a flat point p, the only 
fixed point at a finite position is p itself. The point at infinity e4 is also fixed because that's where 
the other end of the dipole is. In this case, an algebraically equivalent but conceptually different set 
of transformations are produced, and examples for the same loxodromic parameters are shown in 
Figure 5.6. This demonstrates that dilations and rotations are on opposite ends of the same spectrum 
and that it's possible to continuously transform one of those types of motion into the other. As 
shown in the upper-left part of the figure, the motion is a dilation when¢= 0. We have already seen 
in Section 5.2 that dilations are hyperbolic in nature. As shown in the upper-right part of the figure, 
the motion is a rotation when J = 0. Otherwise, the motor Q produces a swirling motion that blends 
a dilation and rotation together as shown in three examples at the bottom of the figure. 

There are two special cases corresponding to dipoles of radius zero. These result in parabolic 
motions when exponentiated to produce the motor 

Q = exp.., ( ¢d) = ¢d + 11 . (5.35) 

The transformation performed by Q in this case is the parabolic motion shown on the left side of 
Figure 5.7. When dis a flat point p = Pxe4 1 + pye42 in the horizon, the transformation performed 
by Q is a translation by the displacement vector ( 2py, -2px ). 
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Hyperbolic Transformation Elliptic Transformation 

Q = exp,., [ ( J l + ¢,11) V/ p] 

Dilation Rotation 

J/ ¢, = 1/0 J/¢, = 0/1 
Loxodrornic Transformations 

~ ~ I///(/✓~---

-=--~ ~r/'1 / I 
~ t ~~> I I; 

J/ ¢, = 3/ 1 J/¢, = 1/1 J/¢, = 1/3 

Figure 5.6. These are the mixtures of dilations and rotations produced by the motor Q from Equation (5.34) when the 
dipole is a flat point p shown as a yellow dot. When both the angles J and ¢, are nonzero, the result is a loxodromic 
transformation. 

Parabolic Transformations ---

Q = exp,., ( ¢,d) Q = exp.., ( ¢,p) Translation 

Figure 5.7. These are parabolic conformal transformations in two dimensions, corresponding to dipoles of radius zero. 
When the dipole is a flat point p in the horizon, the transformation is a translation. 
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Appendix A 
Conformal Products 

This appendix contains multiplication tables for the exterior products and geometric products in the 
conformal algebras over three-dimensional and two-dimensional Euclidean spaces. All of the tables 
for 3D conformal algebras are too large to fit on a single page, so they are split in half and displayed 
across two facing pages. In the tables for the exterior products, highlighting is applied to nonzero 
entries. In the tables for the geometric products, highlighting indicates that the value of the geo
metric product includes the value of the corresponding exterior product. 
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Wedge Product a /\ b 
3D Conformal Exterior Algebra 

N 1 e 1 e 2 e 3 e . es e . 1 e .2 e 43 e 23 e 31 e 12 e1s e2s e 3s e•s 

1 1 e 1 e 2 e 3 e . es e .1 e .2 e .3 e 23 e 31 e 12 e1s e2s e 3s e•s 

e 1 e 1 0 e 12 - e 31 - e •1 e1s 0 - e •12 e 431 - e m 0 0 0 e 125 - e 31s - e•1s 

e 2 e 2 - e 12 0 en - e •2 e2s e •12 0 - e•n 0 - en, 0 - e 125 0 e 23s - e•2s 

e 3 e 3 e 31 - e 23 0 - e 43 e 3s - e .3 , e .23 0 0 0 - e 321 e 31s - e 23s 0 - e 43s 

e . e . e ., e .2 e 43 0 e •s 0 0 0 e 423 e 431 e . ,2 e.,s e 42S e •Js 0 

e s e s - e1s - e 2s - e 3s - e •s 0 e .,s e 42s e 43s e 23s e 31s e,2s 0 0 0 0 

e ., e ., 0 e .,2 - e 431 0 e .,s 0 0 0 - e m• 0 0 0 e 412s - e 431s 0 

e . 2 e .2 - e .,2 0 e 423 0 e 42s 0 0 0 0 - e m• 0 - e 4125 0 e 423S 0 

e 43 e .3 e 431 - e•n 0 0 e 43s 0 0 0 0 0 - e m• e 431S - e 423s 0 0 

e 23 e 23 - e 321 0 0 e 423 ens -e123. 0 0 0 0 0 - e321s 0 0 e 423S 

e 31 e 31 0 - e 321 0 e .3 , e 31s 0 - e m• 0 0 0 0 0 - e 321s 0 e431s 

e ,2 e ,2 0 0 - e 321 e . ,2 e 125 0 0 - e 123. 0 0 0 0 0 - e321s e .125 
► 

e ,s e ,s 0 - e 12s e 31s e. ,s 0 0 - e 4125 e 431s - e 321s 0 0 0 0 0 0 

e2s e2s e 125 0 - e 23s e•2s 0 e .125 0 - e•ns 0 - e ms 0 0 0 0 0 

e 3s e 3s - e 31s ens 0 e 43s 0 - e 431s e 423s 0 0 0 - e321s 0 0 0 0 

e •s e•s - e .,s - e 42s - e 43s 0 0 0 0 0 e •Bs e 43 1S e 412S 0 0 0 0 

e•n e 423 - e m• 0 0 0 e 423s 0 0 0 0 0 0 - 11 0 0 0 ► 
e . 3, e 431 0 -e1234 0 0 e 431S 0 0 0 0 0 0 0 - 11 0 0 

e .,2 e .,2 0 0 - e 123. 0 e .125 0 0 0 0 0 0 0 0 -11 0 

en1 e 321 0 0 0 - e 1234 e321s 0 0 0 0 0 0 0 0 0 -11 

e .,s e. ,s 0 - e 412s e 431 s 0 0 0 0 0 - 11 0 0 0 0 0 0 

e 42s e 42s e .125 0 - e 423s 0 0 0 0 0 0 - 11 0 0 0 0 0 

e 43s e .3s - e 431s e 423S 0 0 0 0 0 0 0 0 - 11 0 0 0 0 

e 23s CiJs e ms 0 0 - e 423s 0 - 11 0 0 0 0 0 0 0 0 0 

e 31s e 31s 0 e 321s 0 - e 431s 0 0 - 11 0 0 0 0 0 0 0 0 

e 125 e 125 0 0 e321s - e 4125 0 0 0 - 11 0 0 0 0 0 0 0 

e 1234 e ,234 0 0 0 0 ll 0 0 0 0 0 0 0 0 0 0 

e 423s e 423S 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 4l!S e 431s 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 

e .125 e .125 0 0 ll 0 0 0 0 0 0 0 0 0 0 0 0 

e m s e321 s 0 0 0 ll 0 0 0 0 0 0 0 0 0 0 0 

ll ll 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Wedge Product a /\ b 
3D Conformal Exterior Algebra 

N e.23 e43I e.12 em e4IS e•2s e43s e 23s e 31s em e m • e•23s e43IS e.m e ms 11 

1 e.23 e43I e.12 e321 e•1s e•2s e.3s e235 e31s em em• e.235 e431s e.m ems 11 

e1 e 1234 0 0 0 0 - e•m e43I S - ems 0 0 0 11 0 0 0 0 

e 2 0 em• 0 0 e4l2S 0 - e.23s 0 - ems 0 0 0 11 0 0 0 

e 3 0 0 e 123• 0 -e431s e423s 0 0 0 - ems 0 0 0 11 0 0 

e. 0 0 0 e1234 0 0 0 e423s ems e412s 0 0 0 0 11 0 

e s - e 423s - ems - e41 2s - ems 0 0 0 0 0 0 11 0 0 0 0 0 

e.1 0 0 0 0 0 0 0 - 11 0 0 0 0 0 0 0 0 

e.2 0 0 0 0 0 0 0 0 - 11 0 0 0 0 0 0 0 

e .3 0 0 0 0 0 0 0 0 0 -11 0 0 0 0 0 0 

e23 0 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 

e 31 0 0 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 

e 12 0 0 0 0 0 0 -11 0 0 0 0 0 0 0 0 0 

e1 s - 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 2s 0 - 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 35 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 0 0 

e .s 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 0 

e.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e431 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e◄12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e•1s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e◄2s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e◄3s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 31s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

em 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

em• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e.235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e 43 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e•12s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e m s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Anti wedge Product av b 
3D Conformal Exterior Algebra 

I~ 1 e1 e2 ei e. 

1 0 0 0 0 0 

e1 0 0 0 0 0 

e2 0 0 0 0 0 

el 0 0 0 0 0 

e. 0 0 0 0 0 

es 0 0 0 0 0 

e.1 0 0 0 0 0 

e.2 0 0 0 0 0 

e.i 0 0 0 0 0 

eii 0 0 0 0 0 

ei1 0 0 0 0 0 

e,2 0 0 0 0 0 

e,s 0 0 0 0 0 

e2s 0 0 0 0 0 

eis 0 0 0 0 0 

e•s 0 0 0 0 0 

e.23 0 0 0 0 0 

e•i1 0 0 0 0 0 

e•12 0 0 0 0 0 

em 0 0 0 0 0 

e.,s 0 0 0 0 0 

e.is 0 0 0 0 0 

e•is 0 0 0 0 0 

e23s 0 0 0 0 0 

ei1s 0 0 0 0 0 

e125 0 0 0 0 0 

e1234 0 0 0 0 0 

e423s 0 1 0 0 0 

e◄i1s 0 0 1 0 0 

e.125 0 0 0 1 0 

ems 0 0 0 0 1 
ll 1 e1 e2 ei e. 

es e.1 e.2 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 -1 0 

0 0 -1 
0 0 0 

1 0 0 

0 e. 0 

0 0 e. 

0 0 0 

0 -e, -e2 

es e., e.2 
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e.i e23 ei1 e,2 e,s e2s eis e•s 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
► 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 - 1 0 

0 0 0 0 0 0 0 -1 
0 - 1 0 0 0 0 0 0 

0 0 - 1 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 0 0 e1 e2 ei e. 

0 0 ei - e2 - es 0 0 0 

0 - ei 0 e, 0 - es 0 0 

e. e2 -e1 0 0 0 - es 0 

- ei 0 0 0 0 0 0 -es 

e•i e2i ei1 e1 2 e,s e2s e is e.s 
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Anti wedge Product av b 
3D Conformal Exterior Algebra 

~ e .23 e 43 I e •12 e m e•1s 

1 0 0 0 0 0 

e 1 0 0 0 0 0 

e 2 0 0 0 0 0 

e 3 0 0 0 0 0 

e . 0 0 0 0 0 

e s 0 0 0 0 0 

e.1 0 0 0 0 0 

e .2 0 0 0 0 0 

e .3 0 0 0 0 0 

fi3 0 0 0 0 - 1 

e 31 0 0 0 0 0 

e 12 0 0 0 0 0 

e 1s - 1 0 0 0 0 

e 2s 0 - 1 0 0 0 

e 3s 0 0 - 1 0 0 

e•s 0 0 0 - 1 0 

e◄2J 0 0 0 0 - e . 

e43I 0 0 0 0 0 

e4l2 0 0 0 0 0 

e m 0 0 0 0 e 1 

e 4IS - e◄ 0 0 e 1 0 

e •2s 0 - e • 0 e 2 0 

e .35 0 0 - e. e3 0 

e 23s 0 e3 - e 2 0 - e s 

e 31s - e 3 0 e1 0 0 

e m e 2 - e1 0 0 0 

e 1234 0 0 0 0 e.1 

e◄2Js 0 e.3 - e.2 - e 23 - e•s 

e43IS - e.3 0 e.1 - e 31 0 

e◄ 12s e•2 - e •1 0 - e 12 0 

ems fi3 e 31 e12 0 e1s 

:n e.23 e43I e◄12 e m e◄u 

e •2s e 43s e 23s 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 - 1 
0 0 0 

0 0 0 

0 0 0 

-1 0 0 

0 - 1 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

- e• 0 e 3 

0 -e◄ -e2 

e 2 e 3 0 

0 0 - es 

0 0 0 

0 0 0 

0 0 0 

- e s 0 0 

0 - e s 0 

e.2 e43 e23 

0 0 0 

- e •s 0 e 3s 

0 -e◄s - e 2s 

e 2s e 3s 0 

e •2s e◄Js e 235 
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e 31s e m e 1234 e .23s e43IS e •m e ms :n 
0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 e 1 

0 0 0 0 1 0 0 e2 

0 0 0 0 0 1 0 e 3 

0 0 0 0 0 0 1 e. 

0 0 1 0 0 0 0 e s 

0 0 0 - e • 0 0 e 1 e .1 

- 1 0 0 0 - e. 0 e 2 e.2 

0 - 1 0 0 0 - e• e 3 e.3 

0 0 0 0 e 3 -e2 0 e 23 

0 0 0 -e3 0 e 1 0 e 31 

0 0 0 e2 - e1 0 0 e 12 

0 0 - e1 e s 0 0 0 e 1s 

0 0 - e 2 0 e s 0 0 e is 

0 0 -e3 0 0 e s 0 e 3s 

0 0 -e. 0 0 0 e s e•s 

- e 3 e 2 0 0 - e.3 e.2 fi3 e.23 

0 - e1 0 e.3 0 - e◄ 1 e 31 e431 

e 1 0 0 -e•2 e.1 0 e 12 e•1 2 

0 0 0 - e 23 - e 31 - e 12 0 e 32 1 

0 0 e.1 - e◄s 0 0 e1s e •1s 

- e s 0 e.2 0 - e•s 0 e 2s e .is 

0 -es e.3 0 0 - e •s e 35 e .3s 

0 0 en 0 e 3s - e 2s 0 e m 

0 0 e 31 - e 3s 0 e 1s 0 e31s 

0 0 e1 2 e 2s - e 1s 0 0 e m 

e31 e 12 0 e◄2J e43I e•12 e m e1234 

- e35 e2s - e◄2l 0 - e•Js e •2s e 23s e◄2ls 

0 - e1s - e.31 e◄Js 0 - e•1s e 31s e 43IS 

e 1s 0 -e◄ l 2 -e◄2s e•1s 0 e m e•m 

0 0 -em - e 23s - e31s - e m 0 e ms 

e 31s e m e 1234 e◄2ls e43IS e•m e ms :n 
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Geometric Product a A b 
3D Conformal Geometric A lgebra 

~ 1 e, e, e3 e. e, e, , e., e., e,) e31 e12 ell e,, e3, e., 

1 1 e, e, e3 e. e, e., e., e.3 e23 e3, e12 ell e,, e,, e., 

e, e, 1 e12 - e31 - e,u ell - e• - e •12 e◄Jl - e 321 - e3 e, e, em - e 31s - em 
e, e, - e12 1 e,, - e,, e,, e 412 - e, - em e3 -e321 - e, - e 12s e, em - e 4zs 

e3 e3 e31 - e23 1 - eu e3, - e 431 em - e. - e, e, - e 321 e 31s - e,35 e, - e•1s 

e, e. e,, e,, e,3 0 e., - 1 0 0 0 em e◄11 e◄ 12 e 1 + e .41s e 2 + e◄2s e1 + e◄1s e, 

e, e, - eu - e,, -eJS - 1 - e,, 0 e◄ 1s -e1 e.,, - e, e,.1.s- e1 e,,, e 115 em 0 0 0 - e, 

e., e" e, e .. ,2 -e◄ll 0 e1 + e,us 0 0 0 - e1234 - e.o e., e., - 1 e◄ 125 - e12 e 1, - e .01.s e" 
e., e., -e◄ 12 e, e.23 0 e, + e.,, 0 0 0 e43 - e1234 -e◄ 1 e 12- e •125 e., - I C4235- e 23 e., 

e,3 e,3 C431 - em e, 0 C3 + e435 0 0 0 - e•2 e., -e121◄ e◄11s - e 11 e 21 - C423s e., - 1 e,3 

e,3 e23 - e 121 - e3 e, e◄21 em -e123. - e.3 e., -1 -e12 e" - en,s - e,, e,, e •21.s 

e3, e31 e, - en, - e, e◄1 1 e31l e.3 - e121◄ - e .. , e12 - 1 - e,3 e" - C321s - ell e4JIS 

e12 e12 - e, e, - e 121 e ,112 e ,2s - e◄2 e" - e12,.. - e 11 e23 - 1 - e2s ell - e 121.s e ,u2.s 

ell ell - e, - e 12s e 11s ern - e, 0 - 1 - e., - e 12 - C,412.s e 11 + e .. 11.s - en1s - e3, e,, 0 0 0 - ell 

e,, e,, em - e, - e 21s e.,, - e, 0 e 12 + e412s - 1 - e., - e23- e,m e35 - e 321.s - ell 0 0 0 - e,, 

e35 e3, - em em - e, em- e3 0 - e 11 - e◄115 e 23 + C4235 - 1 - e,, -e,, ell - enu 0 0 0 - e,, 

e,, e,, - e,.1.s -C42.s -e43s - e. e, - C41 -e◄2 - C43 e◄23s e◄1u e .. 12.s ell e,, e,, 1 

C423 em - e,234 -e◄1 e,, 0 e•m - e,, 0 0 0 - e• - e 412 e 431 - em-11 - e 3 - C435 e2 + e.us e.23 

e◄11 e◄11 eu -C1234 - C41 0 e 43u -e11 0 0 0 C412 - e• - em e3+ em - em- 11 - e 1 - e ,u.s e 431 

e .. 12 e .. 12 - e 42 e., - em, 0 e 412.s - e12 0 0 0 - e 431 e.,, - e• - e2 - e425 e , +e41s - em -1 e 412 

e 321 e 321 - e23 - e31 - e12 -e,234 e 32u e.,, e 431 e 412 e, e, e3 - em - e 31.s - e 12.s - 1 

e 4IS e4 1s - e 4.s - e 412.s e431s - e 41 - e 1.s - e• - e .. ,2 e 431 -11 - e 43s e 42S - e, - e 12s e31l - e, 

e 42S e .. 2.s e41 2..s - e 4s - e423s - e 42 - e2i e .. 12 - e, - e.,, e 43s - 1 - e ,.1.s e 12.s - e, - e,,, - e, 

e435 e 43s -e431s e423.s - e .. s - e 43 - e3, -e431 e423 - e• - e 42.s e 41s -1 - e 31.s em - e, - ei 

em e,,, em, e,, -e,, - e23 - e,m 0 e,21 - 1 e3- e435 em-e, - e, - e,,, em 0 0 0 - e23s 

e 31.s e 31.s - e" e 321s ell - e 31 - e 431s 0 e 43.5 - e 3 e321 -1 e 1 - e 41s em - e, - e 23s 0 0 0 - e 31s 

e 12s e,,, e,, - e15 e 32is - e1 2 - e .. 12s 0 e, - e425 e 41s- e 1 em- 11 - e 31s e,,, - e, 0 0 0 - em 

e,234 e,234 - em - e 431 - e 412 0 e,21 +11 0 0 0 e,, e,, e,3 e,, - e,m e 31 - e431s e ,2 - e41is e,m 

e 423s e 423s 11 e 43s - e.,, - e.,, e,,, e,234 e,3 - e42 - e 4s - e 412s e 431S - e 321s - e3, e,, en 
e 43u e 431s - e 43s 1 e41s - e431 e 31s - e,3 e 1234 e., e•m - e., - e.,,, e3, - e 321s - ell en 

e 412S e 412S e 42S - e 41s 11 - e ,.12 em e., - e 41 e 1234 - e 4315 e 423S - e4s - e,, ell - e 321s e12 

e 321.s e 321.s em em em 11 - em 0 e,3 + e•m e 31 + C431s e 12 + e 41 2.s ell e,, e,, 0 0 0 - e 321s 

n 11 e 423s e 431s e 412..s - e,234 - e 321.s e 423 e 431 e .. 12 e 41s e42s e43s em e 31s e 12s - e 321 
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Geometric Product a A b 
3D Conformal Geometric Algebra 

~ e423 e 4ll e◄ 1 2 e 321 e41 5 e42S e435 em e 31s e12s e1 2J◄ e ,1235 e 431s e4l25 e 3215 n 
1 e◄2J e431 e◄ 1 2 e 321 e.,s e42S e◄Js em ern e12s e1234 e423S e 431s e •12s C321s n 
e, e,™ e., -e◄2 - e23 -e◄s - e◄ 12s e◄J 15 - e 321 s - ell e,., e.23 1 e◄Js - e◄zs - ens e 4235 

e, - C43 e,™ e., - C31 e ,1125 -C4s -C423s ell -C321s - e 1s C431 - C435 n C41s - C3u C4315 

e, e., - C41 C1234 - e12 -e◄11, C4235 - C45 - e,., e,, - e321s C412 C42s - C415 1 - e 12s C4115 

e, 0 0 0 C1734 - C41 - C42 - C43 ems- e23 C,01s- C31 C412s-C12 0 e,23 C431 C412 em+ 1 - C1234 

es - e21 - C4235 - e 31- C4315 - e12 - e,m - e 32u - e,s - e,s - e,s 0 0 0 1-em - em - C315 - C12s 0 - C121s 

e., 0 0 0 - C423 - e• -C412 C431 - em -1 - e,- em C2 + C425 0 - C1234 - e., e., en-e•m e.23 
e., 0 0 0 - C431 C412 - e• - C423 C3 + C43:5 - em - 1 - e, - em 0 e., - C 123,1 - C41 C31 - C43i, C431 

e., 0 0 0 - C412 - C431 em - e, -C2 - C42s C 1 + C415 -em -1 0 - e,, e., - e,™ C 12 - C4125 C412 

e" - e, - C412 e,,, e, -n - C435 C42s - es - em C31s e,, - e,s - C412s C431s e,s C415 

e" C412 - e, - C423 e, C43.5 -n -C41s e,,., - es - e,,s e., C4125 - e,s - e 423s e,s e 42S 

e12 - e◄Jl e42J - e, e, - e•2s e 41s - 1 - e31s ens - es e., - e431s e 42Js - e,s e,s e 43s 

e,s em - 1 e3- e 43s em- e, em - es - e 12s e 31s 0 0 0 en +e,m e 3215 ell - e,., 0 em 

e,., em - e, em - n e, - em e 31s C12s - es - e,,s 0 0 0 C31 + C4315 - e,s C3215 e,s 0 C31s 

e,, e,- em C415- e 1 em -1 e,,., - e 31s em - es 0 0 0 e ,2 + e 4125 e,., - e,s e 321s 0 e,,., 

e., - e •2J - e 431 - e◄ ll -1 - e, - e, - e, ens e 31s e,,., - e,™ en ell e12 e 321s - e 321 

e◄2J 0 0 0 e., e,™ e,, - C42 I - e,s e 12 - e◄1zs e.01s- e 31 0 - e, - C◄J2 e◄Jt e 1 + e 41s - e,, 

e 431 0 0 0 e., - e,, C1 234 e., e◄l25 - C 12 1 - e•s en- e•m 0 C412 - e, - e •n e, +em - e., 

em 0 0 0 e,, e., - C41 e,™ e 31- e ,ms C4z3s - e 23 1 - e,s 0 - e 431 em - e, e 3 + C43s - e,, 

em - e,, - e,, - e •J - 1 e •ns e 43IS C4125 e,s e,s e,s e, - e 41s - e.,., - C435 - es e,s 

C415 e 1234 e,, - e◄z e 42Js 1 e12 - e31 C321s e,s - e,s em C321 e, - e, C23s -e,, 

C42s - e,, e,23-4 e., C431s - e12 1 e" - e,s C321s e,s e 431 - e, em e, e 31s - C31 

e◄Js e., - e., e,23-4 C41zs e31 - e23 1 e,s - eu e 321s e 412 e, - e, em e,,., - e12 

em 1 + e,s e12 + e412s - C31 - e◄JIS - e,, C3215 e,s -e,., 0 0 0 e◄u - e 1 es e,,., - C31s 0 - e 15 

e 31s - e 12 - e412s 1 + e,s en+ ems - e,s - e,s C321s e,s 0 0 0 em - e, - e,,., es ens 0 -e,., 

e 12s e 31 + C431s -en-ems 1 + e,s - e,s e,s -C1s C321s 0 0 0 e.,s - e, C31s - em es 0 -e,s 

e,™ 0 0 0 - e, em C431 C412 e, + e.,s e, + e,,., C3 + C435 0 e., e., e,, 1 - e,s e, 

e◄lJS e, e .,2 - C431 - C41s C321 e, -e, - es - e,,., e 31s - e,, - 1 - e12 e" e,s - e, 

e ,u1s - em e, C423 - C42s - e, C321 e, e,,., - es - em - e., e12 - 1 - en e,., - e, 

e◄ 1 2S C431 - e 423 e, - e 43s e, - e, C321 - C31s C23s - e, - e,, - e31 ell - 1 e,s - e, 

ems e,,s - e, em-e, C435- C3 es ens C31s em 0 0 0 1 +e,s - e,s - e,s - e,s 0 es 

1 -C41 - C4z - e 43 e., - e23 - e 31 - e1 2 - eu -e,s - e 3s e, - e, - e, - e, es - 1 
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Geometric Antiproduct a v b 
3D Conformal Geometric Algebra 

~ 1 e, e, e, e, e, 

1 - 11 - e421s - e 431s - e41 is C 1234 C321s 

e, --e4235 - 11 C435 - C42.s - C423 C21s 

e, -e431S - C435 -11 C41s - e,u1 C11s 

e, --e4125 e.12.s - C415 -11 - e◄ 12 em 
e, em, e,23 C431 C412 0 11-em 

e, C3215 - ens - C315 - e 12.s em + 11 0 

e◄ 1 - C423 - e123, e., - e., 0 en+em, 
e., - C431 - C43 - em, e" 0 C31 + C.4315 

e., - C412 e., -C41 - C 1234 0 C1 2 + C412s 

e,, - C415 e., - C4125 C431s e◄ 1 e" 
e" - C42s C412s e., - C423s e., e,, 

e12 - e.,, - C4315 C423s e., e., e,, 

e" - em C121s - e,, e,, en - em, 0 

e,, - e 11.s e,, C121s - eu e 11 - e .n1s 0 

e,, - e 12s - e,, e" C3215 e12-e.u2s 0 

e., C321 -en - e" - e ,2 C12J.1 - e 121s 

em e◄ 1 - e, e 412 - e 411 0 e 41s - e 1 

e .u, e., - C412 - e, C423 0 C42s - e 2 

e ,.12 e., C431 - C423 - e, 0 e.,,- e, 

e,21 - e., e 41s C42s C435 - e, e, 

C415 e,, - em e, - e, e◄21 C23s 

C42s e" - e, - e 121 e, e 411 em 
e.,, e12 e, - e, - e 121 e◄ 12 C125 

e 21s e" e, - e 1is C315 e 1 + C41 s 0 

e1u e,, e 12s e, - en, e, + e.,, 0 

em e,, - e 11s en, e, e 1 + e ,ns 0 

e,234 - e, e" e., e., 0 1 + e., 
e,,,, e, 1 - e12 e" e" - ei, 

e ,.1u e, e12 1 - e,, e., - e,, 

e◄ l 25 e, - C31 e23 1 e., - e,, 

e,m - e, - ei, - e,, - e,, 1 - e., 0 

:D. 1 e, e, e, e, e, 

e" e., 

- C423 - C431 

C 1234 - e,u 

e., e123, 

- e., e◄ 1 

0 0 

C23 - C4235 C31 - C431s 

0 0 

0 0 

0 0 

e, - em 

C412 e, 

- C431 C423 

em + 11 -e3 - e.,, 

C3 + C.435 e321 + 11 

-e2 - e 425 e , + e 4u 

- em - e 431 

0 0 

0 0 

0 0 

- e41 - C42 

- e 1234 e., 

-e., - e123, 

e., - C41 

e., -1 e 12- C412s 

e ,.12.5- e 12 e., - 1 

e 31 -e411s e423,-en 

0 0 

e, - e •12 

e 412 e, 

- C431 em 

- e, - e"' - e, - e,,, 

e◄ 1 e., 
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e., e23 e" e12 e" e,, e,, e., 

- C412 - C41s - C42s - C43.s - e,,, - e 31s - C 125 C321 

e., e., - e 412s C431s - e 12u e,, - e2s - e23 

- C41 C4125 e., - C4235 - e,, - C321s e" - e" 
e123, - e.n1s C4235 e., e,, - ei, - C321s - e12 

0 e" e., e., en +e,m C31 + C431s C 12 + C4125 - em, 

e12- em, e" e,, e,, 0 0 0 C12u 

0 e, - C412 C431 11- em C3 - C435 eus - e2 em 
0 e .412 e, - C,123 e.,, - e, 11- e,21 C1 - C41s e,m 

0 - C431 C423 e, e, - e.,, em-e, 11-em C412 

C431 11 - C435 C42s e, - e 12s C31s e, 

- em C435 11 - e 41s e12s e, -e,,, e, 

e, - C,12.s em 11 - em e,,, e, e, 

C2 + C42s e, - C12s C31s 0 0 0 - C235 

- e 1 - C415 C 12s e, - e,,, 0 0 0 - C315 

em+ll - e 11s e,,, e, 0 0 0 - e 125 

- e 412 e, e, e, en, e 11s e12s - 11 

0 -e1214 e., - e., -1 - e., C12 + C4125 - C31 - e 431S - e 41 

0 - C43 - e123, e" - e 12 - e 412s - 1 - e., en+ e423s - C42 

0 e., - e 41 - e 1234 e 31 + e◄11s - C23 - C4235 - 1 - e., - C43 

- e., - C423s - e◄JIS - C4125 ei, e,, e,, -1 
- e., - 1 e12 - e31 - e 121s e,, - e,, C4235 

e" - e 12 -1 e,, - e,, - e 121s e" e◄11s 

- C1234 e" - e23 - 1 e,, - ei, - C321s e◄ 1is 

C4315- e 31 - e 121s e,, -e,, 0 0 0 e" 
e23 - e,,,, - e,, - e 12u e" 0 0 0 e,, 

e., - 1 e,, -e1s - e 321s 0 0 0 e,, 

0 - e421 - e 431 - e ,.,2 C1 - C415 e 2 - C425 C3 - e435 e, 

e 431 - e 121 e, - e, - e, em - e 11s - C41s 

- e423 - e, - e 121 e, - em - e, e,,, - e◄2s 

e, e, -e, - e 121 C31s - C235 - e, - C435 

- e, - e.,, - e,,, - em - e 12s 0 0 0 - e, 
e., e,, e" e12 e" e,, e,, e., 
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Geometric Antiproduct a 'i/ b 
3D Conformal Geometric Algebra 

IN e 423 e.n1 e◄ 12 e 321 e,us 

1 e. , e.2 e., - e◄s e2, 

e, e. -e◄ 1 2 e 43I e 41 s - e 321 

e2 e◄1 2 e. - em e.,, - e, 

e, - e .431 e423 e. e◄Js e, 

e. 0 0 0 e. em 

e, e 1 + C415 e 2 + C425 e1 + e,os - e, en, 

e., 0 0 0 e., - C 1234 

e•2 0 0 0 e•2 - e., 
e., 0 0 0 e., e42 

e2, - e ,234 e., - e,2 - C423s - 1 

ell - e" - C 1234 e., - C431 s - e,2 

e,2 e.2 - e., - e,21◄ - e•m ell 

e,, e., - 1 C12 - C4125 C4315- C31 - e,, - C321s 

e,, C41 25 - C12 e.,- 1 C23 - C4235 - e,, - e,, 

e,, C31 - C,43 15 C4235 - en e., - 1 - e,, e,, 

e., e., e.2 e., - 1 C4235 

C423 0 0 0 em - e. 
C431 0 0 0 C431 - C41 2 

em 0 0 0 C41 2 e ,01 

e 321 - em - C431 - e 41 2 11 e, 

e 41S - e, e 412 - e.,1 e, - 11 

e ,us - e 412 -e. em e, - e 43s 

e.,, e." - em - e• e, C42s 

em - em -11 e, + e.,, - e2 - e.,, - em - e, 
e,,, - e, - e.,, - em - 11 e 1 + e 41s - e 31s - em 

em e, + e.,, -e1 - e .us - em - 11 - em e 31s 

e,m 0 0 0 e,m e,, 

e•m - e 1234 e., - e,2 - e,, - e., 

e•m - e., - e,m e.1 - e" - e 412s 

e 412s e.2 -e41 - e 1n 4 - e,2 C43 1s 

e 321s e23- e•m e,1 - e,,,, e 12 - e 412s - e 321 s e,, 
1 e 423 e 43 1 e .12 e 321 e 4IS 

e 42s e 43s 

e" e,2 

e, - e2 

- e 321 e, 

- e, - e 321 

C431 C412 

e 11s em 

e., - e•2 

- e123• e., 
- e◄ 1 - e,m 

e,2 - ell 

- 1 en 

- en - 1 
e,, - e,, 

- C321s e,, 

- e,, - C3215 

C431 s C4125 

C412 - C,431 

- e. em 

- C423 - e• 
e, e, 

C43s - e.,, 

- 11 e 41s 

-e◄IS - 11 

em - C31s 

- e, en, 

-en, - e, 

e•2 e., 

e◄1zs - C431s 

- e., C423s 

-e◄2Js - e., 
e,, e,, 
e.,, e43S 
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em e3u e12s e 1234 e 423s e,ou e 412s e 321s 11 

e,, e2, e,, - e• e, e2 e, - e, 1 

- e, e 12s - e 31s -e◄ 1 1 - e,2 ell e,, e, 

- em - e, en, -e◄2 e,2 1 - e23 e,, e, 

em - em - e, - e., - e" e23 1 e,, e, 

C41s - e 1 C425 - e 2 e 435 -C3 0 -e◄ 1 - e .. 2 - C43 1 +e., e. 
0 0 0 1- e., e,, e,, e,, 0 e, 

- 1 - e., C 12 + C412s - C31 - C431s 0 - e. e ,u 2 - C431 e 1 - e 41s e., 
- e 12 - e◄ 1is - 1 - e., e,, +em, 0 - e◄ 12 - e• em e2- em e•2 

C31 + C4315 - e2,- e.m -1-e., 0 C431 -e◄21 - e. e, -e.,, e., 

- C121 5 e,, - e,, - em - e,2, e, - e2 - em e2, 

- e,, - e 321s e,, - C431 - e, - em e, - C31s ell 

e,, - e,, - C321s - em e2 - e, - em - e 12s e,2 

0 0 0 - e, - e.,, e, - em C31s 0 e,, 

0 0 0 - e, - e.,, e,,, e, - en, 0 e2, 

0 0 0 - e, - e.,, - C3is em e, 0 e,, 

- e1s - e,, - e,, - e. - e.n s - e.us - C435 e, e., 
e,21 - 11 e.,, - e, e2-em 0 e121◄ - e., e.2 en+ C42JS em 

e, - e.,, e,2, - 11 e.,, - e, 0 e., e,m - e., C31 + e ,01s C431 

em - e2 e, - e.,, e,21 - 11 0 - e•2 e., e,m e12 + e .. ,zs e.,2 

em em em - C1234 - e23 - e" - e,2 e 32u e,2, 

- e, em - e 31s e., - e., e•m - e431s e,, e.,, 

- em - e, em e•2 - e 41 2s - e4s C4235 e,, e◄2s 

e 31s - en, - e, e., C431s - C423s - e., e,, e.,, 
0 0 0 en - em, - e 321s e,, - e,, 0 en, 

0 0 0 e 31 - e 43is - e,, - e 321s e,, 0 e 3u 

0 0 0 e12 - e 4125 e,, - e 1s - C321s 0 e 12s 

e23 +e.m e 31 + e 431s e 12 + e 4125 0 em e .31 e 412 em -1 e 1234 

C321s - e,, e,, - em :n -e◄JS e.,, e,,, e 423S 

e,, e 321s - e,, - e 431 e 43s :n - e.,, em e 43IS 

- e,, e,, C321s - e412 -e◄2s e◄ I S :n em e 412s 

0 0 0 - em - 1 - em - em - em 0 e 32 1s 

em em em e,2,. e 423s e◄JIS e◄ 1is e 321s t 
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Wedge Product a /\ b 
2D Conformal Exterior Algebra 

~ 1 e1 e 2 e 3 e. e 23 

1 1 e 1 e 2 e 3 e . e 23 

e 1 e 1 0 e 12 -e31 -e •• -em 

e 2 e 2 -e12 0 e 23 -e• 2 0 

e 3 e 3 e 31 -en 0 -e43 0 

e. e . e , 1 e 42 e 43 0 e 423 

en CiJ -em 0 0 e 423 0 

e 31 e 31 0 -e321 0 e 43 1 0 

e12 e 12 0 0 -em e 412 0 

e .1 e 41 0 e4 12 - e 431 0 -11 

e .2 e42 -e•12 0 e 423 0 0 

e .3 e 43 e431 -e.23 0 0 0 

e m e m 0 0 0 -11 0 

em e 423 - 11 0 0 0 0 

e.31 e431 0 -11 0 0 0 

e.12 e 412 0 0 -11 0 0 

t 11 0 0 0 0 0 

Anti wedge Product av b 
2D Conformal Exterior Algebra 

~ 1 e 1 e 2 e 3 e. en 
1 0 0 0 0 0 0 

e 1 0 0 0 0 0 0 

ei 0 0 0 0 0 0 

e 3 0 0 0 0 0 0 

e. 0 0 0 0 0 0 

en 0 0 0 0 0 0 

e 31 0 0 0 0 0 0 

e 12 0 0 0 0 0 0 

e.1 0 0 0 0 0 - 1 

e.i 0 0 0 0 0 0 

e,3 0 0 0 0 0 0 

e 321 0 0 0 0 -1 0 

e •2J 0 - 1 0 0 0 0 

e,31 0 0 -1 0 0 e 3 

e•12 0 0 0 -1 0 -e2 

t 1 e1 e 2 e 3 e. e n 

e 31 

e 31 

0 

-em 

0 

e 431 

0 

0 

0 

0 

-11 

0 

0 

0 

0 

0 

0 

e 31 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- 1 
0 

0 

- e 3 

0 

e 1 

e 31 
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e12 e • • e.i e,3 em e,23 e•J• e.12 11. 

e 12 e 41 e42 e 43 e m e 423 e 431 e 412 11 

0 0 -e• 12 e 431 0 11 0 0 0 

0 e 412 0 -e423 0 0 11 0 0 

- e m - e 431 e 423 0 0 0 0 11 0 

e 412 0 0 0 11 0 0 0 0 

0 -11 0 0 0 0 0 0 0 

0 0 - 11 0 0 0 0 0 0 

0 0 0 -11 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

- 11 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

e12 e.1 e.i ~ em e,23 e .31 e.12 t 

0 0 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 0 e 1 

0 0 0 0 0 0 1 0 e 2 

0 0 0 0 0 0 0 1 e 3 

0 0 0 0 1 0 0 0 e4 

0 -1 0 0 0 0 e 3 -Ci CiJ 

0 0 - 1 0 0 - e 3 0 e 1 e 31 

0 0 0 - 1 0 e 2 - e 1 0 e 12 

0 0 0 0 e 1 - e. 0 0 e 41 

0 0 0 0 e 2 0 -e• 0 e 42 

- 1 0 0 0 e 3 0 0 - e. e 43 

0 e 1 e 2 e 3 0 - Ci3 - e 31 - e 12 e m 

e 2 - e. 0 0 e 23 0 - e 43 e 42 e 423 

- e 1 0 - e . 0 e 31 e 43 0 - e,1 e 431 

0 0 0 -e• e 12 -e•2 e 41 0 e 41 2 

e 12 e .1 e 42 e 43 e 321 e 423 e 43 1 e 412 11 
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Geometric Product a A b 
2D Conformal Geometric Algebra 

~ 1 e 1 "2 e 3 e. "23 

1 1 e 1 "2 e 3 e4 e 23 

e 1 e 1 1 e 12 - e 31 - e4 1 - e m 

e 2 e 2 -e12 1 e 23 - e42 e 3 

~ e 3 e 31 - e 23 0 - l - e43 0 

e. e. e.1 e.2 e 43 - 1 0 e 2 + e 42J 

e 23 e 23 - e m - e 3 0 e42J - e 2 0 

~ l e 31 e 3 - e m 0 e1 + e 431 0 

e 12 e 12 - e 2 e 1 - e m e 412 - e 31 

e 41 e 41 e 4 e • 12 e1 - e431 0 - e 12 - 11 

e.z e.2 - e412 e. e 2 + e.23 0 e 43 - 1 

e.3 e 43 e 431 - e42J e 3 - e 4 e 23 

e m e m - e 23 - e 31 0 e1 2 -11 0 

e.n e42J -11 - e 43 - e 23 - e 42 - e 3 

e.31 e 431 e 43 - 11 -e31 e 41 - e m 

e.12 e• 12 -e42 e 41 - e 12 - :D. 0 e 1 - e 431 

1 11 - e•n - e 431 e 321 e 412 e 31 

Geometric Antiproduct a ':/ b 
2D Conformal Geometric Algebra 

~ 1 e 1 "2 e 3 e. e n 

1 - 11 - e423 - e 431 e 32 1 e41 2 - e 31 

e 1 e 423 11 - e 43 - e n -e.2 - e 3 

e 2 e 431 e 43 11 -e31 e 41 e m 

e 3 - e 321 e 23 e 31 0 - e 12- :D. 0 

e. - e 412 e 42 - e •1 e 12 - ll 0 - e 1 - e431 

e n - e 31 e 3 e m 0 e 1 - e 431 0 

e3 1 e n - e m e 3 0 e 2 + e4n 0 

e 12 - e◄J - e431 e 423 e 3 - e 4 e 23 

e.1 e .2 - e4 12 - e• e 42J - e 2 0 - 1 - e43 

e◄2 - e 41 e4 - e 412 e 1+ e 431 0 1l - e 12 

e.3 e 12 "2 - e 1 - e 321 e 412 e 31 

e 321 e 3 - e 31 e 23 0 e43 - 1 0 

e.23 - e 1 - 1 e 12 -e31 - e 41 e m 

e.31 - e 2 - e 12 - 1 e 23 - e42 e 3 

e.12 e. - e 41 - e •2 - l - e 43 0 e 423 - e 2 

t 1 e1 e 2 e 3 e. e 23 

e 31 e 12 

e 31 e12 

- e 3 e 2 

- e m - e 1 

0 - e m 

e 431 - e 1 e• 12 

0 e 31 

0 - e 23 

e 23 - 1 

l - e43 e 42 

- e 12- 1I - e 41 

e 31 - 11 

0 e 3 

e m e 431 

- e 3 -e.23 

e 2 + e 42J - e• 
- e 23 e 43 

e 31 e 12 

e n - e 43 

- e m - e431 

- e 3 e •n 

0 - e 3 

e◄2J - e 2 e 4 

0 - e 23 

0 - e 31 

e 31 11 

e 12 - 11 e 41 

- 1 - e 43 e 42 

- e n - 1 

0 - e m 

- e 3 e 2 

e m - e1 

e 1 + e431 e.12 

e 31 e12 
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e.1 e.2 e.3 e 321 e.n e 431 e.12 1 

e 41 e42 e43 e 321 e 42J e 43 1 e412 11 

- e• - e 41 2 e 431 - "23 11 e 43 - e•2 e 423 

e•12 - e 4 - e 42J - e 31 - e43 11 e .1 e 431 

- e 1 - e431 e 423 - e 2 - e 3 0 - e 23 - e 31 1l - e 12 - e m 

0 0 e 4 e 12 + 11 - e 42 e41 0 - e◄ l 2 

e 12 - 11 - 1 - e.J - e 23 0 - e 3 e 321 e 1 + e◄J1 e 31 

1 + e 43 e 12 - 11 - e 31 0 - e m - e 3 e 2 - e42J - e 23 

- e 42 e .1 - 11 e 3 - e 431 e 423 - e• e 43 

0 0 e 41 - "2 - e 42J - e 412 e 4 0 - e 42 

0 0 e•2 e 1 - e 431 - e 4 - e•12 0 e • 1 

- e•1 - e •2 1 e m - "2 e 1 - e •12 - e 12 

e42J - e 2 e1 + e 43 1 - e m 0 - e 31 e 23 - 1 - e .J e 3 

e 412 - e 4 - e 2 e 31 1 e 12 e .1 - e 1 

e. e 412 e 1 - e 23 - e 12 1 e.2 - e 2 

0 0 e 412 e 43 - 1 - e 41 - e 42 0 e. 

- e 42 e 41 - e 12 -e3 e 1 e 2 - e 4 - 1 

e.1 e.2 e.3 e m e.n e.31 e.12 t 
e.2 - e41 e 12 - e 3 e1 e 2 - e 4 1 

- e 412 - e• - e 2 - e 31 1 - e 12 - e •1 e 1 

e. - e 412 e 1 e n e 12 1 - e◄2 e 2 

e 2 + e423 e 431- e 1 - e m 0 - e 31 e 23 1- e43 e 3 

0 0 e 412 1 + e43 - e 41 - e •2 0 e. 
e43 - 1 e 12+ ll - e 31 0 - e 32 1 e 3 - e 2 - e4n e 23 

- e 12 - 11 e43 - 1 e 23 0 - e 3 - e m e1 - e 431 e 31 

- e41 - e•2 - 1 e m e 2 -e1 - e 412 e 12 

0 0 - e 42 e1 + e431 - e 4 e 412 0 e◄1 

0 0 e 41 e 2 - e 423 - e 412 - e4 0 e •2 

e .2 - e • 1 - 11 e 3 e 431 - e4n - e 4 e 43 

e 1 -e431 e 2 + e42J e 3 0 - e 23 -e31 - e1 2 -11 e m 

- e• e41 2 -e431 e 23 11 -e43 e42 e 423 

- e 412 - e4 e 423 e 31 e43 11 - e 41 e 431 

0 0 - e• e 12 -11 - e •2 e., 0 e 412 

e4 1 e42 e43 em e 423 e431 e 412 11 



Appendix B 
Geometric Properties 

This appendix contains data tables filled with the properties of the various types of flat and round 
geometries discussed throughout the book. Information about flat geometries in n dimensions per
tains to their representations in the ( n + l )-dimensional rigid algebra, and information about round 
geometries in n dimensions pertains to their representations in the ( n + 2 )-dimensional conformal 
algebra. 
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Point (3D) 
I 3D Rigid Algebras 

p =(pxel + pye2 + Pze3 + we 

I 
Position Weight 

Degrees of Freedom DOF(3, 0)=3 Attitude att (p ) = Pwl 

Right Complement P = Pxe423 + Pye431 + p , e412 + P we321 

Bulle Dual * P = Pxe423 + p ye431 + p , e4 12 Bulk Norm IIPII. = 1✓ p; + p _; + p; 

Weight Dual * P = P we321 Weight Norm IIPllo =IPwl n 

Antisupport asp (p ) = - PxPwe423 - PvPwe431 - PzPive412 +(p; + p _; + p ; ) e321 

Line (3D) I 3D Rigid Algebras 

I =~vxe41 +lvye42 +/vze4] +~mxe23 +lmye31 +/mze1:J 

I I 
Direction Moment 

Degrees of Freedom DOF(3, 1) = 4 Constraints lv · lm=O 

Attitude att ( l) = lvx e1 + Ivy e2 + lvz e3 

Right Complement f = -lmxe41 -lmye42 -lmz e43 -lvx e23 -lvy e31 -/vz e12 

Bulk Dual l* = -lmx e41 - lm.v e42 - Im, e43 Bulle Norm lllll. = l✓l;ix + l;,y + !;12 

Weight Dual 1* = -lvx e23 - IV), e3 I - lvz e12 Weight Norm lllllo = ll✓l;x +t! +I! 

Support sup ( l ) = ( lvy lmz - lvz lmy ) e1 + ( lvz lmx - lvx lmz ) e2 + ( lvx lmy - lvylmx ) e3 + l; e4 

Antisupport asp (l) = (/vz lmy - lvy lmz ) e423 + Uvx lmz -lvz lntx ) e431 + (!vy lmx - lvxlmy ) e41 2 + l~ e321 

Plane (3D) 
I 3D Rigid Algebras 

g =[gxe423 + g y e431 + g z e41~ + ~ we32 J 

I I 
Normal Position 

Degrees of Freedom DOF(3, 2) = 3 Attitude I att(g)=gxe23 +g_v e31+g, e12 

Right Complement g = -gxel -g_., e2 -g, e3 -gwe4 

Bulk Dual * g = - g we4 Bulk Norm llgll. = lgwl 1 

Weight Dual * g =-gxe1-gye2-gze3 Weight Norm llgllo = n✓ g; + g ; + g; 

Support sup (g) = -gxg we1 - g yg we2 - g wg , e3 + ( g; + g ; + g;) e4 
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Round Point (3D) 
I 

3D Conformal Algebras 

p 2 +r2 a = ~ e, + aye2 + aze3 + aweJ + aue 

I a = Pxel + p ye2 + P ze 3 +e4 + e 5 
2 

Carrier Point Infinity 
p = center position, r = radius 

( when ax = ay = a, = aw= 0) 

Center Cen ( 3) = axawel + ayawe2 + a, awe3 + a~e4 + awaues 

Container con (a)= -a~e1234 + axawe423S + ayawe431S + a, a we412s + ( awau -a; - a_; - a; ) e321s 

Partner () 2 2 2 3 ( 2 2 2 ) par 3 = axawel + ayawe2 + a, awe3 + a we4 + ax + ay + a, -awau awes 

Carrier car(a)= axe1s +aye2s +a, e3s +awe4s (flat point) 

Cocarrier ccr(a)=aw]. (full space) 

Attitude att (a) = awl 

Dual * a = -awe1234 + axe423S + ay e431s + a, e412s - au e321s 

Degrees of Freedom DOF( 4, 0) = 4 

Center Norm ll a ll0 = .Ja; +a; + a; Radius Norm I ll a ll0 = .J2awau -a; - a; -a; 

Weight Norm Il alio = law I 

Sphere (3D) 
I 3D Conformal Algebras 

S =~ue~ J + ~.re423S +sye431S +sze412S +Swe321J p 2 -r2 
T I s = Pxe423s + p ye431s + P ze412s -e1 234 - e 321s 

2 
Carrier Space Flat Plane 

p = center position, r = radius 
(whens.= 0) 

Center cen ( S) = -SxSu e1 - SySu e2 - S,Su e3 + s,; e4 + ( s; + s_; + s; -SwSu) es 

Container COn ( S) = -s,; e1234 -SxSu e423s -S ySu e431s - S,Su e412s - SwSu e32 JS 

Partner () 3 2 2 2 ( 2 2 2 ) par S =Su e1 234 +SxSu e423s +SySu e431s+S,Su e4l2s+ Sx+Sy +S,-SwSu Su e32IS 

Carrier car ( s) = Su]. (full space) 

Cocarrier ccr(s) = sxe1s +sye 2s +s, e3s -su e4s ~ (flat point) 

Attitude att ( S) = Su e321 + Sx e23S + Sye3IS + S, e12s 

Dual * s = -sxe1 -sye2 -s, e3 + su e4 +swes 

Degrees of Freedom DOF( 4,3) = 4 

Center Norm 11s110 = .Js; +s_; +s; I Radius Norm I 11s110 = .Js; +s; +s; -2swSu 

Weight Norm llsllo = lsu I 
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Dipole (3D) I 3D Confonnal Algebras 

d =nxe41 + n _v e 42 + n:e43 +(pynz - p=n_v )e23 +(p:nx - Pxn= )e31 +(pxny - P_v nx )e12 

p2 + r 2 
+ (p • n )(pxei s + P _v e2s + Pze35 + e 45 )-

2 
( nxe is + n _v e 2s + n , e 35) 

p = center position, n = line direction, r = radius 

Cocarrier Normal Cocarrier Position 

d = ~ v.re4) + dvye42 + dvze43 + dmxe23 + dmye31 + dmzel ; +~ pxeis + d pye2s + d pze35 + d pwe4s) 

I I 
Carrier Line Flat Point 

{when d,~ = dvy = dvz =dmx = dmy =dmz = 0) 

cen ( d ) = ( d ,~·dm= -d,,;dniv + dvxd pw ) e 1 

+ ( d.,, d,,tr -d.,xd,,,= + d,~,d pw ) e 2 

Center + ( d,xdmv -dvvdmx + dv,: d pw ) e 3 Cocarrier Container 
+ ( d;x +d; +d ,~ )e4 \ / 
+ ( d~w - d.,xd px - d,),d PY - d,,, d p: ) e 5 ' r ' n 

' 
con ( d ) = -( d,; + d~, + d! ) e1 234 

•p 

+ ( d ,~-d m: - dv, d ,,,_v + d vxdpw ) e 4z35 

Container + ( d ,=dmx -d,xdm, + dvyd pw) e 43J5 
Carrier 

+ ( d.,xdmy -d~,,d,,,x + d, ,; d pw ) e4l 25 

- ( d,;,x +d,;,y +d,~= +dvxdµx +d.,_vd µ_v +dv: dµ= )e3215 

par ( d ) = ( d;x + d:i, + d ,~ ) ( d vx e41 + dvy e42 + d,,; e 43 + dn/X e 23 + dll(V e31 + dm: e 12 + d pw e45 ) 

Partner ( 
2 2 2 2 )( ) + d pw- dn,x- dmy -dm, -d,,xdpx -dvyd p_v -d,,;dp: d .,x e1 s +d,,y e2s +d.,, e3s 

+ ( dm,d .,. - dm_vd ,= ) d pw e15 + ( dmxd ,,, -dm, dvx ) d pw e25 + ( dmyd vx - d,mdvv ) dµw e35 

Carrier car ( d ) = dvx e 415 + d,,, C425 + d .,: e 435 + d,,,xC235 + d,ny C315 + d,,,, C125 (flat line) 

Cocarrier ccr ( d ) = d, ,x C4235 + dV), C4315 + d,,z C4125 - d p.., e 3215 (flat plane) 

Attitude att ( d) = d ,-x e1 + d ,J, e2 + d" e3 + d pw e5 

Dual ct* = - d,x e423 - d \J' e 431 - dv: e 412 + dpw e321 - dn,x e4l5 - dmy e 425 - dm, e 435 - dpx e 235 - dpy CJ15 - dp: e1 2s 

Constraints d /J·'J'= x d v - d pwdm = 0, d v ·dm = 0, d JJ.\)'= ·dm = 0 

DOF DOF{4, l) = 6 

Center Norm ll d llo = .jd,;IJ( + d;,y + d,;., + d~.., 

Radius Norm ll d ll0 = 2 2 2 2 ( ) ~-~-4-~-2~~+~~+~~ 

Weight Norm l! d llo = .jd ,~x + d,;, + d ,~ 
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Circle (3D) 
I 3D Conformal Algebras 

c = n x e 423 + n _v e 43 1 + n = e412 + ( P _v n z - P : n y ) e 415 + ( P : n x - P x n z ) e425 + ( P x n y - p y n x ) e 435 

p 2 -r2 

+ (p · n )(px e 23s + p y e 3 1s + P z e 125 -e321 )-
2 

( n x e 23s + n y e 3 1s + n:e l25 ) 

p = center position, n = plane normal, r = radius 

Cocarrier Direction Cocarrier Moment 

L_ -
c = c~e423 + c&l:'e431 + c~e412 + c~e32J + ~ v.xe41s + c_,,e42s + Cvze435 + Cmxe23s +c~e31s + Cmze12J 

I I 
Carrier Plane Flat Line 

( when Cg, = c gy = c gz = c gw = 0) 

cen ( c) = ( CgyCvz - CgzC,J' -Cg,Cgiv ) e 1 

+ ( Cgz Cvx -CgxCvz -CgvCgiv ) e 2 

Center + ( cgxCvv -Cgi,C,,- -CgzCg,,, )e3 Carrier Container 
( 

? 2 2 ) \ / + Cgx + Cgi, + Cgz e 4 

( 
2 2 ? ) 

+ Cvx + Cvv + C,";, + CgxC11Lt + CgyCm,· + Cg=Cm: e 5 n 
r 

con ( c) =- ( c ~x + c~, + c~ )e1 234 
p 

+ ( CgyCv: - Cg,C~v - CgxCgiv ) e 4235 

Container + ( Cg=C,oc -CgxCv:: - CgyCgiv ) e 4315 
Cocarrier ~ 

+ ( Cgx C,'.v - Cgy Cvx - CgzCgiv ) e 4125 

+ ( CgxCmx + C1,,,,,Cmy + Cg:C,,,, - ci-w ) e 32 15 

par ( c) = ( c~x + c~ + c~= ) ( cgx e 423 + cg1, e 431 + cgz e 412 + cgi,, e 321 + c,,. e 415 + c,J, e 425 + c ,~ e 435 ) 

Partner ( 2 2 2 2 )( ) + Cgiv -Cvx - Cvv - Cvz -CgxC11Lt -Cgi,Cmy - CgzCmz Cgx e 235 + Cgv e 315 + Cgz el 25 

+ ( C,J'Cgz - C,.:Cgi, ) C&,w e 235 + ( CvzCgx -CvxCgz ) Cgiv e 315 + ( CvxCgy - C~vCgx ) Cgw el 25 

Carrier Car ( C) = Cgx e 4235 + Cgi, e 43 15 + Cgz e 4125 + Cgw e 3215 (flat plane) 

Cocarrier CCr ( C) = -Cgx e 415 - Cgi, e 425 - Cgz e 435 -C,,, e 235 - C~v e 315 - C,~ e 125 (flat line) 

Attitude att( c) = Cgx e 23 + Cgv e 31 + cg, e 12 + Cvx e1 5 +c"', e 25 +cv: e 35 

Dual * C =Cgx e 41 + cgy e 42 + Cg: e 43 + Cvx e 23 + c,y e 31 + Cvz e l2 + c,m e1 5 + Cnry, e 25 + c,,,, e 35 -Cg,,, e 45 

Constraints Cg,:,~ X Cm - CgivCv = 0, Cv · Cm =0, Cg.IF ·Cv = 0 

DOF DOF( 4, 2) = 6 

Center Norm jjcjj0 = ../c ~v + C~x + c; + c: 

Radius Norm 1l cll0 = 2 2 2 2 2( ) 
~ + ~ + ~-~ + ~~ +~~ +~~ 

Weight Norm llcllo = ../c~x + c :,, + c~ 
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Point (2D) 
I 

2D Rigid Algebras 

p = !Pxel + p )'_ e2 + ze 

I 
Position Weight 

Degrees of Freedom DOF(2, 0)=2 

Attitude att( p )=p, 1 

Complement p = - pxe23 - PyC31 - P: e12 

Bulk Dual * p = -pxe23 - Pye31 Bulk Norm IIPII. = 1-.J p; + Pi, 

Weight Dual p* =-p, e,2 Weight Norm II P llo = IP, I 11 

Antisupport asp( p ) =-pxp, e23 - PvPze31 +(p; + P.~ ) e12 

Line (2D) I 2D Rigid Algebras 

g = !ixe23 + g y e3 J + zel 

I 
Normal Position 

Degrees of Freedom DOF(2, 1) = 2 

Attitude att( g )=gye1 - gxe2 

Complement g = - gxe, - g ye2 - g ze3 

Bulk Dual g* = - g ze3 Bulk Norm ll g ll . = lgz 11 

Weight Dual * g = -gxe, - g ye2 Weight Norm ll g llo = 11..Jg ; + g; 

Support sup (g ) = -gxg ze, -g.,g : e2 +(g; + g _~ ) e3 
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Round Point (2D) I 2D Conformal Algebras 

p 2 + r2 
a = ~ xel + a )' e2 + Oze3) + Owe4 

I a= P x e, + p y e 2 +e3 + e4 
2 

Carrier Point Infinity 
p = center position, r= radius 

( when ax = ay = a, = 0) 

Center cen (a)= axa, e 1 +a_. a , e2 +a; e3 +a, awe4 

Container con (a)= -a; e321 + axa, e423 + aya , e431 + ( a, a w -a; -a_~ ) e412 

Partner () 2 2 3 ( 2 2 ) par a = axa , e, +aya, e2 +a, e3 + ax +ay - a , aw a , es 

Carrier car(a)=axe41 +ay e 42 +a, e 43 (flat point) 

Cocarrier ccr (a)= a, 11. (full plane) 

Attitude att (a)= a, 1 

Dual * a =-a, e32 1+axe423+ay e431-aw e41 2 

Degrees of Freedom DOF(3,0) =3 

Center Norm Il alio = v'a; +a;, Radius Norm I !lallo = ✓2a,aw - a; - a_~ 

Weight Norm Ilalio =Ia, I 

Circle (2D) I 2D Conformal Algebras 

p 2 -r2 C = Cwe321 + ~ xe423 +cye431 +Cze41zj 

I C= P xe423 + p ye 431 -e321 - e412 
2 

p = center position, r = radius 
Carrier Plane Flat Line 

(when Cw =0) 

Center Cen ( C) = -CxCw el -CyCwe2 + c! e3 + ( c; + Ci, -C, Cw) e4 

Container con ( C) = -c!e321 -CxCw e423 - CyCw e431 -C,Cw e412 

Partner () 3 2 2 ( 2 2 ) par C = Cw e321 + CxCw e423 + CyCw e431 + Cx + Cy -C,Cw Cwe412 

Carrier car(c)=cwll (full plane) 

Cocarrier CCr ( C) = -Cx e41 -Cy e42 + Cw e43 (flat point) 

Attitude att ( C) = -Cw e1 2 -Cy e41 + Cxe42 

Dual * C = Cx el +cye2 -Cwe3 -C, e4 

Degrees of Freedom DOF(3,2)=3 

Center Norm llcllo = ✓c; +c;, I Radius Norm I !lcll0 = v'c; + c_~ - 2c, cw 

Weight Norm llcllo = !cw! 
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Dipole (2D) I 2D Conformal Algebras 

p 2 + r 2 
d=nxe23 +ny e31 -(p·n )e12 + (ny e41 -nx e42 ) 

2 

-(pxny - p ynx )(Pxe41 + p y e42 + e43) 

p = center position, n = line normal, r = radius 

Cocarrier Normal Cocarrier Position 

d = &:f)!'Xe23 +d,o,e31 +dgze1 z. + f!/pxe41 +dpye42 +dpze4] 

I I 
Carrier Line Flat Point 

( when dgx = dgy = dgz = 0) 

cen (d ) =-(dgxdgz +dgyd pz )e1 

+ (dgxd pz -dgy,dgz )e2 
Container 

Center 
+ ( dix + d~ ) e3 

D l 
+ ( d;z -dgxdpy +dgy d px )e4 , ~ 

Cocarrier r , Carrier , 

con ( d) = - ( dix + d~, ) e321 
, , 

l p , 
- (dgxd gz +dgyd p, )e423 

, , , 
Container , 

+ ( dgxd pz -dgy dgz ) e431 
-

+(dgyd px -dgxd p_., -d! )e412 

Partner 
par ( d ) = ( db- +d~ ) ( dgx e23 + d g_y e31 + dgz e12 +dpz e43 ) 

+ ( di, -d;, +dgx d p_v - dgyd px )(dg_y e41 -dgx e42 )-dgz d p, (dgx e41 +dgy e42) 

Carrier car ( d) = dgx e423 + d g_y e43 1 + dgz e412 (flat line) 

Cocarrier ccr ( d ) = - dgy e423 +dgx e43 1 - d p, e412 (flat line) 

Attitude att ( d) = d gy e1 - d gx e2 - d pz e4 

Dual d* = dgy e23 -dgx e31 -dp, e1 2 -dp_v e41 +dpx e42 -dgz e43 

Constraints dg ·dp = 0 

Degrees of Freedom DOF(3, 1) = 4 

Center Norm lid llo = ✓ d! + d;z 

Radius Norm lldll0 = ✓d;, - diz -2 { dgxd py -dgy d px ) 

Weight Norm lldllo = ✓dix + d~ 



Appendix C 
Notation Reference 

This appendix summarizes the mathematical notation pertaining to geometric algebra as used 
throughout this book. Each entry in the tables that fo llow includes a brief description identifying 
the purpose of the notation and a reference to the location where the notation is introduced. Most 
entries also include the code point corresponding to the Unicode character used by the notation, 
which is provided to encourage a consistent appearance in materials written on the subject. 

Notation Unicode Description Reference 

1 U+01D7CF Scalar unit 40 

n U+01D7D9 
Antiscalar unit / 

40 
Volume element 

g U+01D58C Metric tensor 66 

G U+01D406 
Metric / 

67 
Metric exomorphism 

(G U+01D53E 
Antimetric / 

68 
Metric antiexomorphism 

Table C.1. Notation fo r fo undational elements. 

Notation Unicode Description Reference 

Ut U+01D7CF Scalar part 122 

Un U+01D7D9 Antiscalar part 122 

(u)k - Grade selection 120 

u. U+25CF 
Bulk / 

69 
Round bulk 

Uo U+25CB 
Weight / 

69 
Round weight 

U ■ U+25A0 Flat bulk 197 

Uo U+25Al Flat weight 197 

Table C.2. Notation for component extraction. 
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otation Unicode Description Reference 

ii U+0304 Right complement 45 

!! U+0331 Left complement 45 

u* U+2605 
Dual / 

81 
Bulk dual 

u* Antidual / 
83 U+2606 

Weight dual 

fi U+0303 Reverse 130 

u U+0330 Antireverse 131 

Table C.3. Notation for various unary operations. 

Notation Unicode Description Reference 

a Ab U+2227 
Wedge product / 

33 
Exterior product 

avb U+2228 
Antiwedge product / 

46 
Exterior antiproduct 

a Ab U+27D1 Geometric product 117 

a v'b U+27C7 Geometric antiproduct 118 

a•b U+2022 
Dot product I 

71 
Inner product 

a 0 b U+2218 
Antidot product I 

72 
Inner antiproduct 

Table C.4. Notation for various products. 

Notation Unicode Description Reference 

11 ° 11. U+25CF 
Norm / 

76 
Bulk norm 

11 ° 110 U+25CB 
Antinorm / 

76 
Weight norm 

11 ° 11 - Geometric norm 77 

u U+0302 Unitization 76 

11 ° 110 U+2299 Center norm 197 

11 ° 110 not defined Radius norm 198 

Table C.5. Notation for norms and related operations. 
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Notation Description Reference 

gr( u) Grade 42 

ag (u) Antigrade 42 

att ( u) Attitude 71 

sup( u ) Support 100 

asp ( u) Antisupport 104 

car ( u) Carrier 193 

ccr ( u) Cocarrier 193 

cen ( u) Center 193 

con (u) Container 194 

par ( u) Partner 195 

Table C.6. Notation for various properties of an object. 
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[Dors2007] 

[Grasl862] 

[Hamil844] 
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[Leng2022] 
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A 
alignment, 200 
angle, dual, 148 
angle, Euclidean, 92- 94 
antidot product, 72 
antidual, 83 
antigrade, 42 
antimetric, 68-69 
antinorm, 75 
anti-operation, 49 
antiproduct, 46-49 
antiprojection 

central anti projection, 103 
orthogonal anti projection, 102 

antireverse, 131 
antiscalar, 41 
antispace, of object, 58, 138, I 69 
antisupport, 104 
antiwedge product, 46 
attitude, 70- 71 , 196 

B 
basis elements, 38-44 
bivector, 34-36 

2D line, 107 
3D line, 51 

blade, 38 
bulk, 69- 70 
bulk contraction, 86 
bulk dual, 83 
bulk expansion, 95 
bulk norm, 76 
bulk normalization, 76 

C 
carrier, 192- 93 
center, 193- 94 
center norm, 197, 205 
central antiprojection, 103 
central projection, 101 

Index 

Chasles ' theorem, 136 
circle 

2D representation, 223 
3 D representation, 189 

circle rotation, 242-44 
Clifford, William Kindgon, 178 
cocarrier, 193 
comparison chart 

closest points on skew lines, 82 
intersection of 2D circles, 231 
line-sphere intersection, 215 
line-triangle intersection, 59 
linked circles, 216 
rotation operator, 146 

complement, 44-46 
complement isometry, 170-74 
complement reflection, 171 
complement rotation, 172 
complement translation, 173 
compound matrix, 62 
conformal geometric algebra, 179 
conjugate, conformal, 204-5 
constraint, geometric, 133- 35, 233- 35 
container, 194 
containment, 205- 9 
contraction, 86-91 

bulk contraction, 86 
weight contraction, 86 

cross product, 1-4 
crossing orientation, 57 

D 
De Morgan law, 48, 72, 83, 84, 85, 118, 131 
degrees of freedom, 232- 35 
dependencies, 113 
dilation, 244-46 
dipole 

2D representation, 223 
3D representation, 188-89 

directrix, 173 

281 
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distance 
between point and line, 12- 13 
between point and plane, 10 
between skew lines, 18 

distance, Euclidean, 78- 81 
dot product, 71 

between round points, 201- 3 
between spheres, 203 

dual, 81 - 85, 132- 33 , 192 
bulk dual, 83 
weight dual , 83 

dual angle, 148 
dual number, 30, 123- 25 

exponential, 125 
inverse, 124 
square root, 124 

dual quaternion, 30-31 
dual quaternion skinning, 150 
duality, 16, 58- 61 

E 

bulk and weight, 70 
bulk dual and weight dual, 85 
contraction and expansion, 99 
dot product and antidot product, 74 
geometric product and geometric antiproduct, 

174 
grade and antigrade, 44 
metric and antimetric, 69 
origin and horizon, 55 
projection and antiprojection, 103 
reverse and antireverse, 132 
scalars and antiscalars, 41 
support and antisupport, 105 
wedge and antiwedge products, 49 

eccentricity, 1 73 
elliptic rotation, 242 
Euclidean angle, 92- 94 
Euclidean distance, 78- 81 
Euclidean group, 174-76 
Euclidean isometry, 135- 36 
exomorphism, 61- 65 
expansion, 95- 98 

2D conformal algebra, 226 
2D rigid algebra, 110 
3D conformal algebra, 217 
3D rigid algebra, 98 
bulk expansion, 95 
weight expansion, 95 

exponential 
of dual number, 125 
of motor, 148 

exterior antiproduct, 47 
exterior product, 33- 34 

F 
flat bulk, 197 
flat point, 187 
flat weight, 197 
flector, 158- 65, 238 

matrix conversion, 161- 63 
norm, 160 
two-dimensional, 167 

focus, 173 

G 
geometric antiproduct, 11 8 
geometric constraint, 133- 35, 233- 35 
geometric norm, 77 
geometric product, 117- 23 
grade, 38 
grade selection operator, 120 
Grassmann, Hermann, 115 
group, 174-76, 248 

H 
Hamilton, William Rowan, 32 
homogeneous coordinates, 4-6 
homogeneous magnitude, 77 
homothety, 244 
horizon, 54 
horosphere, 182 
hyperbolic rotation, 243 

I 
imaginary object, 186 
inner product, 71- 7 4 
interior product, 85- 105 
intersection 

of line and plane, 13, 57 
of line and triangle, 59 
of three planes, 13- 14 
of two planes, 14-15, 56 

invariant, 170 
mverse 

of dual number, 124 
of vector, 122 

inversion, 141-42 
inversion, sphere, 239-42 
isometry, complement, 170-74 
isometry, Euclidean, 135- 36 

J 
join, 55- 58 

2D conformal algebra, 225 
2D rigid algebra, I 07 
3D conformal algebra, 209- 10 
3D rigid algebra, 55 

Index 



Index 

L 
line 

2D representation, 107 
3D representation, 51- 52 
distance between point and line, 12- 13 
intersection of line and plane, 13 
moment, 11 
parametric, 7, 95 
transformation, 19 

loxodromic parameter, 251 

M 
matrix 

compound matrix, 62 
meet, 55- 58 

2D conformal algebra, 226 
2D rigid algebra, 107 
3D conformal algebra, 210- 12 
3D rigid algebra, 56 

metric, 66- 68 
2D conformal algebra, 221 
2D rigid algebra, 107 
3D conformal algebra, 184-86 
3D rigid algebra, 66 

motor, 142- 57, 238 
exponential, 148 

N 

matrix conversion, 152- 54 
norm, 145 
parameterization, 148- 51 
simple, 145 
square root, 151 
two-dimensional, 165 

norm, 75- 78 
bulk norm, 76 
center norm, 197, 205 
geometric norm, 77 
in conformal algebra, 197 
of flector, 160 
of motor, 145 
radius norm, 198 
weight norm, 76 

normal vector, 2 
normalization 

bulk normalization, 76 
of plane, 9 
weight normalization, 76 

null cone, 181 
null object, 186 
null vector, 181 

0 
origin, 50 

orthogonal anti projection, 102 
orthogonal projection, 99 

p 
parabolic rotation, 244 
parametric form, 94-95 , 208- 9 
parametric line, 7, 95 
parametric plane, 8, 95 
partner, 194-95, 203 
Pascal's triangle, 38, 45 
perspective projection, 174 
pitch, 148 
plane 

3D representation, 52- 54 
distance between point and plane, 10 
front and back sides, 10 
intersection of line and plane, 13 
intersection of three planes, 13- 14 
intersection of two planes, 14-15 
normalization, 9 
parametric, 8, 95 
reflection across, 15 
transformation, 18 

Pliicker coordinates, 10--11, 64 
Plucker, Julius, 32 
point 

2D representation, 107 
3D representation, 50 
distance between point and line, 12- 13 
distance between point and plane, 10 

product 
antidot product, 72 
antiwedge product, 33- 34 
dot product, 71 
geometric product, 117- 23 
inner product, 71- 74 
interior product, 85- 105 
wedge product, 33- 34 

projection, 91 , 99- 105, 122 
central projection, 101 
orthogonal projection, 99 

Q 
quadrivector, 38 
quaternion, 20- 31 , 128, 177 

R 
radius norm, 198 
radius normalization, 242 
real object, 186 
reflection, 126, 137- 38 

across plane, 15 
rejection, 91, 122 
reverse, 130, 237 
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rotation, 139--40 
rotation, circle, 242--44 
rotor, 128 
rotoreflection, 136 
round bulk, 197 
round center, 193- 94 
round point 

2D representation, 222 
3D representation, 187- 88 

round weight, 197 

s 
sandwich product, 23, 127, 137, 237 
scale, 244 
screw motion, 136 
simple k-vector, 38 
simple motor, 145 
skinning, dual quaternion, 150 
smoothstep function , 149 
space, of object, 58 
sphere 

3D representation, 190 
sphere inversion, 239--42 
square root 

of dual number, 124 
of motor, 151 

stereographic projection, 179- 82 
support, I 00 

T 
transflection, 142 
transformation 

ofline, 19 
ofplane, 18 

translation, 140--41 , 239 
triangle inequality, 75 
trivector, 36-38 

3D plane, 54 

u 
unitization, 76 

V 
vector 

2D point, 107 
3D point, 50 
inverse of, 122 
normal vector, 2 

volume element, 40 

w 
wedge product, 33- 34 
weight, 69- 70 
weight contraction, 86 
weight dual , 83 
weight expansion, 95 
weight norm, 76 
weight normalization, 76 

Index 
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