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Preface

[Just as] other information should be available to those who want to learn and understand, program
source code is the only means for programmers to learn the art from their predecessors. It would be
unthinkable for playwrights not to allow other playwrights to read their plays [or to allow them] at
theater performances where they would be barred even from taking notes. Likewise, any good author is
well read, as every child who learns to write will read hundreds of times more than it writes.
Programmers, however, are expected to invent the alphabet and learn to write long novels all on their
own. Programming cannot grow and learn unless the next generation of programmers has access to the
knowledge and information gathered by other programmers before them. —Erik Naggum

Rendering is a fundamental component of computer graphics. At the highest level of abstraction,
rendering is the process of converting a description of a three-dimensional scene into an image.
Algorithms for animation, geometric modeling, texturing, and other areas of computer graphics all
must pass their results through some sort of rendering process so that they can be made visible in an
image. Rendering has become ubiquitous; from movies to games and beyond, it has opened new
frontiers for creative expression, entertainment, and visualization.

In the early years of the field, research in rendering focused on solving fundamental problems such as
determining which objects are visible from a given viewpoint. As effective solutions to these problems
have been found and as richer and more realistic scene descriptions have become available thanks to
continued progress in other areas of graphics, modern rendering has grown to include ideas from a
broad range of disciplines, including physics and astrophysics, astronomy, biology, psychology and the
study of perception, and pure and applied mathematics. The interdisciplinary nature of rendering is
one of the reasons that it is such a fascinating area of study.

This book presents a selection of modern rendering algorithms through the documented source code
for a complete rendering system. Nearly all of the images in this book, including the one on the front
cover, were rendered by this software. All of the algorithms that came together to generate these
images are described in these pages. The system, pbrt, is written using a programming methodology
called literate programming that mixes prose describing the system with the source code that
implements it. We believe that the literate programming approach is a valuable way to introduce ideas
in computer graphics and computer science in general. Often, some of the subtleties of an algorithm
can be unclear or hidden until it is implemented, so seeing an actual implementation is a good way to
acquire a solid understanding of that algorithm’s details. Indeed, we believe that deep understanding
of a number of carefully selected algorithms in this manner provides a better foundation for further
study of computer graphics than does superficial understanding of many.



In addition to clarifying how an algorithm is implemented in practice, presenting these algorithms in
the context of a complete and nontrivial software system also allows us to address issues in the design
and implementation of medium-sized rendering systems. The design of a rendering system’s basic
abstractions and interfaces has substantial implications for both the elegance of the implementation
and the ability to extend it later, yet the trade-offs in this design space are rarely discussed.

pbrt and the contents of this book focus exclusively on photorealistic rendering, which can be defined
variously as the task of generating images that are indistinguishable from those that a camera would
capture in a photograph or as the task of generating images that evoke the same response from a
human observer as looking at the actual scene. There are many reasons to focus on photorealism.
Photorealistic images are crucial for special effects in movies because computer-generated imagery
must often be mixed seamlessly with footage of the real world. In applications like computer games
where all of the imagery is synthetic, photorealism is an effective tool for making the observer forget
that he or she is looking at an environment that does not actually exist. Finally, photorealism gives a
reasonably well-defined metric for evaluating the quality of the rendering system’s output.

AUDIENCE

There are three main audiences that this book is intended for. The first is students in graduate or
upper-level undergraduate computer graphics classes. This book assumes existing knowledge of
computer graphics at the level of an introductory college-level course, although certain key concepts
such as basic vector geometry and transformations will be reviewed here. For students who do not
have experience with programs that have tens of thousands of lines of source code, the literate
programming style gives a gentle introduction to this complexity. We pay special attention to
explaining the reasoning behind some of the key interfaces and abstractions in the system in order to
give these readers a sense of why the system is structured in the way that it is.

The second audience is advanced graduate students and researchers in computer graphics. For those
doing research in rendering, the book provides a broad introduction to the area, and the pbrt source
code provides a foundation that can be useful to build upon (or at least to use bits of source code
from). For those working in other areas of computer graphics, we believe that having a thorough
understanding of rendering can be helpful context to carry along.

Our final audience is software developers in industry. Although many of the basic ideas in this book
will be familiar to this audience, seeing explanations of the algorithms presented in the literate style
may lead to new perspectives. pbrt also includes carefully crafted and debugged implementations of
many algorithms that can be challenging to implement correctly; these should be of particular interest
to experienced practitioners in rendering. We hope that delving into one particular organization of a
complete and nontrivial rendering system will also be thought provoking to this audience.

OVERVIEW AND GOALS

pbrt is based on the ray-tracing algorithm. Ray tracing is an elegant technique that has its origins in
lens making; Carl Friedrich Gauf3 traced rays through lenses by hand in the 19th century. Ray-tracing



algorithms on computers follow the path of infinitesimal rays of light through the scene until they
intersect a surface. This approach gives a simple method for finding the first visible object as seen
from any particular position and direction and is the basis for many rendering algorithms.

pbrt was designed and implemented with three main goals in mind: it should be complete, it should
be illustrative, and it should be physically based.

Completeness implies that the system should not lack key features found in high-quality commercial
rendering systems. In particular, it means that important practical issues, such as antialiasing,
robustness, numerical precision, and the ability to efficiently render complex scenes should all be
addressed thoroughly. It is important to consider these issues from the start of the system’s design,
since these features can have subtle implications for all components of the system and can be quite
difficult to retrofit into the system at a later stage of implementation.

Our second goal means that we tried to choose algorithms, data structures, and rendering techniques
with care and with an eye toward readability and clarity. Since their implementations will be examined
by more readers than is the case for other rendering systems, we tried to select the most elegant
algorithms that we were aware of and implement them as well as possible. This goal also required that
the system be small enough for a single person to understand completely. We have implemented pbrt
using an extensible architecture, with the core of the system implemented in terms of a set of carefully
designed interface classes, and as much of the specific functionality as possible in implementations of
these interfaces. The result is that one does not need to understand all of the specific implementations
in order to understand the basic structure of the system. This makes it easier to delve deeply into parts
of interest and skip others, without losing sight of how the overall system fits together.

There is a tension between the two goals of being complete and being illustrative. Implementing and
describing every possible useful technique would not only make this book unacceptably long, but
would also make the system prohibitively complex for most readers. In cases where pbrt lacks a
particularly useful feature, we have attempted to design the architecture so that the feature could be
added without altering the overall system design.

The basic foundations for physically based rendering are the laws of physics and their mathematical
expression. pbrt was designed to use the correct physical units and concepts for the quantities it
computes and the algorithms it implements. pbrt strives to compute images that are physically correct;

they accurately reflect the lighting as it would be in a real-world version of the scene.! One advantage
of the decision to use a physical basis is that it gives a concrete standard of program correctness: for
simple scenes, where the expected result can be computed in closed form, if pbrt does not compute
the same result, we know there must be a bug in the implementation. Similarly, if different physically
based lighting algorithms in pbrt give different results for the same scene, or if pbrt does not give the
same results as another physically based renderer, there is certainly an error in one of them. Finally,
we believe that this physically based approach to rendering is valuable because it is rigorous. When it
is not clear how a particular computation should be performed, physics gives an answer that
guarantees a consistent result.

Efficiency was given lower priority than these three goals. Since rendering systems often run for many
minutes or hours in the course of generating an image, efficiency is clearly important. However, we
have mostly confined ourselves to algorithmic efficiency rather than low-level code optimization. In



some cases, obvious micro-optimizations take a backseat to clear, well-organized code, although we
did make some effort to optimize the parts of the system where most of the computation occurs.

In the course of presenting pbrt and discussing its implementation, we hope to convey some hard-
learned lessons from years of rendering research and development. There is more to writing a good
renderer than stringing together a set of fast algorithms; making the system both flexible and robust is
a difficult task. The system’s performance must degrade gracefully as more geometry or light sources
are added to it or as any other axis of complexity is stressed.

The rewards for developing a system that addresses all these issues are enormous—it is a great
pleasure to write a new renderer or add a new feature to an existing renderer and use it to create an
image that could not be generated before. Our most fundamental goal in writing this book was to
bring this opportunity to a wider audience. Readers are encouraged to use the system to render the
example scenes in the pbrt software distribution as they progress through the book. Exercises at the
end of each chapter suggest modifications to the system that will help clarify its inner workings and
more complex projects to extend the system by adding new features.

The website for this book is located at pbrt.org. This site includes links to the pbrt source code, scenes
that can be downloaded to render with pbrt, and a bug tracker, as well as errata. Any errors in this
text that are not listed in the errata can be reported to the email address authors@pbrt.org. We greatly
value your feedback!

CHANGES BETWEEN THE FIRST AND SECOND EDITIONS

Six years passed between the publication of the first edition of this book in 2004 and the second
edition in 2010. In that time, thousands of copies of the book were sold, and the pbrt software was
downloaded thousands of times from the book’s website. The pbrt user base gave us a significant
amount of feedback and encouragement, and our experience with the system guided many of the
decisions we made in making changes between the version of pbrt presented in the first edition and
the version in the second edition. In addition to a number of bug fixes, we also made several
significant design changes and enhancements:

o Removal of the plugin architecture: The first version of pbrt used a runtime plugin
architecture to dynamically load code for implementations of objects like shapes, lights,
integrators, cameras, and other objects that were used in the scene currently being
rendered. This approach allowed users to extend pbrt with new object types (e.g., new
shape primitives) without recompiling the entire rendering system. This approach
initially seemed elegant, but it complicated the task of supporting pbrt on multiple
platforms and it made debugging more difficult. The only new usage scenario that it truly
enabled (binary-only distributions of pbrt or binary plugins) was actually contrary to
our pedagogical and open-source goals. Therefore, the plugin architecture was dropped
in this edition.

o Removal of the image-processing pipeline: The first version of pbrt provided a tone-
mapping interface that converted high-dynamic-range (HDR) floating-point output
images directly into low-dynamic-range TIFFs for display. This functionality made sense
in 2004, as support for HDR images was still sparse. In 2010, however, advances in digital
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photography had made HDR images commonplace. Although the theory and practice of
tone mapping are elegant and worth learning, we decided to focus the new book
exclusively on the process of image formation and skip the topic of image display.
Interested readers should consult the book written by Reinhard et al. (2010) for a
thorough and modern treatment of the HDR image display process.

o Task parallelism: Multicore architectures became ubiquitous, and we felt that pbrt would
not remain relevant without the ability to scale to the number of locally available cores.
We also hoped that the parallel programming implementation details documented in this
book would help graphics programmers understand some of the subtleties and
complexities in writing scalable parallel code.

o Appropriateness for “production” rendering: The first version of pbrt was intended
exclusively as a pedagogical tool and a stepping-stone for rendering research. Indeed, we
made a number of decisions in preparing the first edition that were contrary to use in a
production environment, such as limited support for image-based lighting, no support
for motion blur, and a photon mapping implementation that was not robust in the
presence of complex lighting. With much improved support for these features as well as
support for subsurface scattering and Metropolis light transport, we feel that with the
second edition, pbrt became much more suitable for rendering very high-quality images
of complex environments.

CHANGES BETWEEN THE SECOND AND THIRD EDITIONS

With the passage of another six years, it was time to update and extend the book and the pbrt system.
We continued to learn from readers’ and users’ experiences to better understand which topics were
most useful to cover. Further, rendering research continued apace; many parts of the book were due
for an update to reflect current best practices. We made significant improvements on a number of
fronts:

o Bidirectional light transport: The third version of pbrt added a bidirectional path tracer,
including full support for volumetric light transport and multiple importance sampling to
weight paths. An all-new Metropolis light transport integrator used components of the
bidirectional path tracer, allowing for a particularly succinct implementation of that
algorithm.

o Subsurface scattering: The appearance of many objects—notably, skin and translucent
objects—is a result of subsurface light transport. Our implementation of subsurface
scattering in the second edition reflected the state of the art in the early 2000s; we
thoroughly updated both BSSRDF models and our subsurface light transport algorithms
to reflect the progress made in ten subsequent years of research.

o Numerically robust intersections: The effects of floating-point round-off error in geometric
ray intersection calculations have been a long-standing challenge in ray tracing: they can
cause small errors to be present throughout the image. We focused on this issue and
derived conservative (but tight) bounds of this error, which made our implementation
more robust to this issue than previous rendering systems.

o Participating media representation: We significantly improved the way that scattering
media are described and represented in the system; this allows for more accurate results
with nested scattering media. A new sampling technique enabled unbiased rendering of



heterogeneous media in a way that cleanly integrated with all of the other parts of the
system.

o Measured materials: This edition added a new technique to represent and evaluate
measured materials using a sparse frequency-space basis. This approach is convenient
because it allows for exact importance sampling, which was not possible with the
representation used in the previous edition.

o Photon mapping: A significant step forward for photon mapping algorithms has been the
development of variants that do not require storing all of the photons in memory. We
replaced pbrt’s photon mapping algorithm with an implementation based on stochastic
progressive photon mapping, which efficiently renders many difficult light transport
effects.

o Sample generation algorithms: The distribution of sample values used for numerical
integration in rendering algorithms can have a surprisingly large effect on the quality of
the final results. We thoroughly updated our treatment of this topic, covering new
approaches and efficient implementation techniques in more depth than before.

Many other parts of the system were improved and updated to reflect progress in the field: microfacet
reflection models were treated in more depth, with much better sampling techniques; a new “curve”
shape was added for modeling hair and other fine geometry; and a new camera model that simulates
realistic lens systems was made available. Throughout the book, we made numerous smaller changes
to more clearly explain and illustrate the key concepts in physically based rendering systems like pbrt.

CHANGES BETWEEN THE THIRD AND FOURTH EDITIONS

Innovation in rendering algorithms has shown no sign of slowing down, and so in 2019 we began
focused work on a fourth edition of the text. Not only does almost every chapter include substantial
additions, but we have updated the order of chapters and ideas introduced, bringing Monte Carlo
integration and the basic ideas of path tracing to the fore rather than saving them for the end.

Capabilities of the system that have seen especially significant improvements include:

o Volumetric scattering: We have updated the algorithms that model scattering from
participating media to the state of the art, adding support for emissive volumes, efficient
sampling of volumes with varying densities, and robust support for chromatic media,
where the scattering properties vary by wavelength.

o Spectral rendering: We have excised all use of RGB color for lighting calculations; pbrt
now performs lighting calculations exclusively in terms of samples of wavelength-
dependent spectral distributions. Not only is this approach more physically accurate than
using RGB, but it also allows pbrt to accurately model effects like dispersion.

o Reflection models: Our coverage of the foundations of BSDFs and reflection models has
been extensively revised, and we have expanded the range of BSDFs covered to include
one that accurately models reflection from hair and another that models scattering from
layered materials. The measured BRDF follows a new approach that can represent a wide
set of materials’ reflection spectra.

o Light sampling: Not only have we improved the algorithms for sampling points on
individual light sources to better reflect the state of the art, but this edition also includes



support for many-light sampling, which makes it possible to efficiently render scenes with
thousands or millions of light sources by carefully sampling just a few of them.

o GPU rendering: This version of pbrt adds support for rendering on GPUs, which can
provide 10-100 times higher ray tracing performance than CPUs. We have implemented
this capability in a way so that almost all of the code presented in the book runs on both
CPUs and GPUs, which has made it possible to localize discussion of GPU-related issues
to Chapter 15.

The system has seen numerous other improvements and additions, including a new bilinear patch
shape, many updates to the sample-generation algorithms that are at the heart of Monte Carlo
integration, support for outputting auxiliary information at each pixel about the visible surface
geometry and reflection properties, and many more small improvements to the system.
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ABOUT THE COVER

The Watercolor scene on the cover was created by Angelo Ferretti of Lucydreams (www.lucydreams.it).
It requires a total of 2 GiB of on-disk storage for geometry and 836 MiB for texture maps. Come
rendering, the scene description requires 15 GiB of memory to store over 33 million unique triangles,
412 texture maps, and associated data structures.

ADDITIONAL READING

Donald Knuth’s article Literate Programming (Knuth 1984) describes the main ideas behind literate
programming as well as his web programming environment. The seminal TgX typesetting system was

written with web and has been published as a series of books (Knuth 1986; Knuth 1993a). Knuth and
Levy presented the implementation of the cweb literate programming system as a literate program
(Knuth and Levy 1994). Knuth has also published both a collection of graph algorithms in The
Stanford GraphBase (Knuth 1993b) and a simulator for the MMIX instruction set (Knuth 1999) in
literate format. These programs are enjoyable to read and are excellent presentations of their
respective algorithms. The website www.literateprogramming.com has pointers to many articles about
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literate programming, literate programs to download, and a variety of literate programming systems;
many refinements have been made since Knuth’s original development of the idea.

Other literate programs we know of that have been published as books include one on the
implementation of the 1cc compiler, which was written by Christopher Fraser and David Hanson and
published as A Retargetable C Compiler: Design and Implementation (Fraser and Hanson 1995). See
also Hanson’s book on program interface design (Hanson 1996), Mehlhorn and Néher’s presentation
on the implementation of the LEDA library (Mehlhorn and Néher 1999), Valiente’s collection of graph
algorithms (Valiente 2002), and Ruckert’s description of the mp3 audio format (Ruckert 2005).

1 Of course, any computer simulation of physics requires carefully choosing approximations that trade off requirements for
fidelity with computational efficiency. See Section 1.2 for further discussion of the choices made in pbrt.
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Rendering is the process of producing an image from the description of a 3D scene. Obviously, this is
a broad task, and there are many ways to approach it. Physically based techniques attempt to simulate
reality; that is, they use principles of physics to model the interaction of light and matter. While a
physically based approach may seem to be the most obvious way to approach rendering, it has only
been widely adopted in practice over the past 15 or so years.

This book describes pbrt, a physically based rendering system based on the ray-tracing algorithm. It
is capable of rendering realistic images of complex scenes such as the one shown in Figure 1.1. (Other
than a few exceptions in this chapter that are noted with their appearance, all the images in this book
are rendered with pbrt.) Most computer graphics books present algorithms and theory, sometimes
combined with snippets of code. In contrast, this book couples the theory with a complete
implementation of a fully functional rendering system. Furthermore, the full source code of the
system is available under an open-source license, and the full text of this book is freely available
online at pbr-book.org/4ed, as of November 1, 2023. Further information, including example scenes
and additional information about pbrt, can be found on the website, pbrt.org.

1.1 LITERATE PROGRANMMING

While creating the TgX typesetting system, Donald Knuth developed a new programming

methodology based on a simple but revolutionary idea. To quote Knuth, “let us change our traditional
attitude to the construction of programs: Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to human beings what we want a
computer to do” He named this methodology literate programming. This book (including the chapter
you are reading now) is a long literate program. This means that in the course of reading this book,
you will read the full implementation of the pbrt rendering system, not just a high-level description
of it.

Literate programs are written in a metalanguage that mixes a document formatting language (e.g.,
TgX or HTML) and a programming language (e.g., C++). Two separate systems process the program:
a “weaver” that transforms the literate program into a document suitable for typesetting and a
“tangler” that produces source code suitable for compilation. Our literate programming system is
homegrown, but it was heavily influenced by Norman Ramsey’s noweb system.
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The Kroken scene features complex geometry, materials, and
light transport. Handling all of these effects well in a rendering system makes it possible to render
photorealistic images like this one. This scene and many others can be downloaded from the pbrt
website. (Scene courtesy of Angelo Ferretti.)

The literate programming metalanguage provides two important features. The first is the ability to mix
prose with source code. This feature puts the description of the program on equal footing with its
actual source code, encouraging careful design and documentation. Second, the language provides
mechanisms for presenting the program code to the reader in an order that is entirely different from
the compiler input. Thus, the program can be described in a logical manner. Each named block of
code is called a fragment, and each fragment can refer to other fragments by name.

As a simple example, consider a function InitGlobals() that is responsible for initializing all of a

program’s global variables:!

void InitGlobals() {
nMarbles = 25.7; shoeSize = 13; dielectric = true; }

Despite its brevity, this function is hard to understand without any context. Why, for example, can the
variable nMarbles take on floating-point values? Just looking at the code, one would need to search
through the entire program to see where each variable is declared and how it is used in order to
understand its purpose and the meanings of its legal values. Although this structuring of the system is
fine for a compiler, a human reader would much rather see the initialization code for each variable
presented separately, near the code that declares and uses the variable.

In a literate program, one can instead write InitGlobals() like this:
XFunction DefinitionsX =

void InitGlobals() {

KInitialize Global Variables sX

}
This defines a fragment, called Function Definitions , that contains the
definition of the InitGlobals() function. The InitGlobals() function
itself refers to another fragment, Initialize Global Variables . Because
the initialization fragment has not yet been defined, we do not know
anything about this function except that it will presumably contain
assignments to global variables.

Just having the fragment name is just the right level of abstraction for now,
since no variables have been declared yet. When we introduce the global
variable shoeS1ize somewhere later in the program, we can then write



Initialize Global Variables = 3
shoeSize = 13;

Here we have started to define the contents of Initialize Global
Variables . When the literate program is tangled into source code for
compilation, the literate programming system will substitute the code
shoeSize = 13; inside the definition of the InitGlobals() function.

Later in the text, we may define another global variable, dielectric, and
we can append its initialization to the fragment:

Initialize Global Variables += 3
dielectric = true;

The += symbol after the fragment name shows that we have added to a
previously defined fragment.

When tangled, these three fragments turn into the code
void InitGlobals() {
// Initialize Global Variables shoeSize = 13; dielectric
= true; }
In this way, we can decompose complex functions into logically distinct
parts, making them much easier to understand. For example, we can write a
complicated function as a series of fragments:

Function Definitions +=
void complexFunc(int x, int y, double *values) {

Check validity of arguments

if (x <y){

Swap x and y

}
Do precomputation before loop
Loop through and update values array

}

Again, the contents of each fragment are expanded inline in
complexFunc() for compilation. In the document, we can introduce each
fragment and its implementation in turn. This decomposition lets us present



code a few lines at a time, making it easier to understand. Another
advantage of this style of programming is that by separating the function
into logical fragments, each with a single and well-delineated purpose, each
one can then be written, verified, or read independently. In general, we will
try to make each fragment less than 10 lines long.

In some sense, the literate programming system is just an enhanced macro
substitution package tuned to the task of rearranging program source code.
This may seem like a trivial change, but in fact literate programming is
quite different from other ways of structuring software systems.

1.1.1 INDEXING AND CROSS-REFERENCING

The following features are designed to make the text easier to navigate.
Indices in the page margins give page numbers where the functions,
variables, and methods used on that page are defined. Indices at the end of
the book collect all of these identifiers so that it’s possible to find
definitions by name. The index of fragments, starting on page 1183, lists the
pages where each fragment is defined and where it is used. An index of
class names and their members follows, starting on page 1201, and an index
of miscellaneous identifiers can be found on page 1213. Within the text, a
defined fragment name is followed by a list of page numbers on which that
fragment is used. For example, a hypothetical fragment definition such as

184, 690

A fascinating fragment
nMarbles += .001;

indicates that this fragment is used on pages 184 and 690. Occasionally we
elide fragments from the printed book that are either boilerplate code or
substantially the same as other fragments; when these fragments are used,
no page numbers will be listed.

When a fragment is used inside another fragment, the page number on
which it is first defined appears after the fragment name. For example,

Do something interesting += 500

InitializeSomethingInteresting(); Do something else interesting
486

CleanUp();



indicates that the Do something else interesting fragment is defined on
page 486.

1.2 PHOTOREALISTIC RENDERING AND THE RAY-
TRACING ALGORITHM

The goal of photorealistic rendering is to create an image of a 3D scene that
is indistinguishable from a photograph of the same scene. Before we
describe the rendering process, it is important to understand that in this
context the word indistinguishable is imprecise because it involves a human
observer, and different observers may perceive the same image differently.
Although we will cover a few perceptual issues in this book, accounting for
the precise characteristics of a given observer is a difficult and not fully
solved problem. For the most part, we will be satisfied with an accurate
simulation of the physics of light and its interaction with matter, relying on
our understanding of display technology to present the best possible image
to the viewer.

Given this single-minded focus on realistic simulation of light, it seems
prudent to ask: what is light? Perception through light is central to our very
existence, and this simple question has thus occupied the minds of famous
philosophers and physicists since the beginning of recorded time. The
ancient Indian philosophical school of Vaisheshika (5th—6th century BC)
viewed light as a collection of small particles traveling along rays at high
velocity. In the fifth century BC, the Greek philosopher Empedocles
postulated that a divine fire emerged from human eyes and combined with
light rays from the sun to produce vision. Between the 18th and 19th
century, polymaths such as Isaac Newton, Thomas Young, and Augustin-
Jean Fresnel endorsed conflicting theories modeling light as the
consequence of either wave or particle propagation. During the same time
period, André-Marie Ampere, Joseph-Louis Lagrange, Carl Friedrich Gauls,
and Michael Faraday investigated the relations between electricity and
magnetism that culminated in a sudden and dramatic unification by James
Clerk Maxwell into a combined theory that is now known as
electromagnetism.

Light is a wave-like manifestation in this framework: the motion of
electrically charged particles such as electrons in a light bulb’s filament



produces a disturbance of a surrounding electric field that propagates away
from the source. The electric oscillation also causes a secondary oscillation
of the magnetic field, which in turn reinforces an oscillation of the electric
field, and so on. The interplay of these two fields leads to a self-propagating
wave that can travel extremely large distances: millions of light years, in the
case of distant stars visible in a clear night sky. In the early 20th century,
work by Max Planck, Max Born, Erwin Schrédinger, and Werner
Heisenberg led to another substantial shift of our understanding: at a
microscopic level, elementary properties like energy and momentum are
quantized, which means that they can only exist as an integer multiple of a
base amount that is known as a quantum. In the case of electromagnetic
oscillations, this quantum is referred to as a photon. In this sense, our
physical understanding has come full circle: once we turn to very small
scales, light again betrays a particle-like behavior that coexists with its
overall wave-like nature.

How does our goal of simulating light to produce realistic images fit into all
of this? Faced with this tower of increasingly advanced explanations, a
fundamental question arises: how far must we climb this tower to attain
photorealism? To our great fortune, the answer turns out to be “not far at
all.” Waves comprising visible light are extremely small, measuring only a
few hundred nanometers from crest to trough. The complex wave-like
behavior of light appears at these small scales, but it is of little consequence
when simulating objects at the scale of, say, centimeters or meters. This is
excellent news, because detailed wave-level simulations of anything larger
than a few micrometers are impractical: computer graphics would not exist
in its current form if this level of detail was necessary to render images.
Instead, we will mostly work with equations developed between the 16th
and early 19th century that model light as particles that travel along rays.
This leads to a more efficient computational approach based on a key
operation known as ray tracing.

Ray tracing is conceptually a simple algorithm; it is based on following the
path of a ray of light through a scene as it interacts with and bounces off
objects in an environment. Although there are many ways to write a ray
tracer, all such systems simulate at least the following objects and
phenomena:



Cameras: A camera model determines how and from where the
scene is being viewed, including how an image of the scene is
recorded on a sensor. Many rendering systems generate viewing
rays starting at the camera that are then traced into the scene to
determine which objects are visible at each pixel.

Ray—object intersections: We must be able to tell precisely where
a given ray intersects a given geometric object. In addition, we
need to determine certain properties of the object at the
intersection point, such as a surface normal or its material. Most
ray tracers also have some facility for testing the intersection of a
ray with multiple objects, typically returning the closest
intersection along the ray.

Light sources: Without lighting, there would be little point in
rendering a scene. A ray tracer must model the distribution of light
throughout the scene, including not only the locations of the lights
themselves but also the way in which they distribute their energy
throughout space.

Visibility: In order to know whether a given light deposits energy
at a point on a surface, we must know whether there is an
uninterrupted path from the point to the light source. Fortunately,
this question is easy to answer in a ray tracer, since we can just
construct the ray from the surface to the light, find the closest ray—
object intersection, and compare the intersection distance to the
light distance.

Light scattering at surfaces: Each object must provide a
description of its appearance, including information about how
light interacts with the object’s surface, as well as the nature of the
reradiated (or scattered) light. Models for surface scattering are
typically parameterized so that they can simulate a variety of
appearances.

Indirect light transport: Because light can arrive at a surface after
bouncing off or passing through other surfaces, it is usually
necessary to trace additional rays to capture this effect.

Ray propagation: We need to know what happens to the light
traveling along a ray as it passes through space. If we are
rendering a scene in a vacuum, light energy remains constant
along a ray. Although true vacuums are unusual on Earth, they are



a reasonable approximation for many environments. More
sophisticated models are available for tracing rays through fog,
smoke, the Earth’s atmosphere, and so on.

We will briefly discuss each of these simulation tasks in this section. In the
next section, we will show pbrt’s high-level interface to the underlying
simulation components and will present a simple rendering algorithm that
randomly samples light paths through a scene in order to generate images.

1.2.1 CAMERAS AND FILM

Nearly everyone has used a camera and is familiar with its basic
functionality: you indicate your desire to record an image of the world
(usually by pressing a button or tapping a screen), and the image is recorded
onto a piece of film or by an electronic sensor.? One of the simplest devices
for taking photographs is called the pinhole camera. Pinhole cameras
consist of a light-tight box with a tiny hole at one end (Figure 1.2). When
the hole is uncovered, light enters and falls on a piece of photographic
paper that is affixed to the other end of the box. Despite its simplicity, this
kind of camera is still used today, mostly for artistic purposes. Long
exposure times are necessary to get enough light on the film to form an
image.
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The viewing volume is determined by the projection of the film through
the pinhole.
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When we simulate a pinhole camera, we place the film in front of the hole at the imaging
plane, and the hole is renamed the eye.



Although most cameras are substantially more complex than the pinhole
camera, it is a convenient starting point for simulation. The most important
function of the camera is to define the portion of the scene that will be
recorded onto the film. In Figure 1.2, we can see how connecting the
pinhole to the edges of the film creates a double pyramid that extends into
the scene. Objects that are not inside this pyramid cannot be imaged onto
the film. Because actual cameras image a more complex shape than a
pyramid, we will refer to the region of space that can potentially be imaged
onto the film as the viewing volume.

Another way to think about the pinhole camera is to place the film plane in
front of the pinhole but at the same distance (Figure 1.3). Note that
connecting the hole to the film defines exactly the same viewing volume as
before. Of course, this is not a practical way to build a real camera, but for
simulation purposes it is a convenient abstraction. When the film (or image)
plane is in front of the pinhole, the pinhole is frequently referred to as the
eye.

Now we come to the crucial issue in rendering: at each point in the image,
what color does the camera record? The answer to this question is partially
determined by what part of the scene is visible at that point. If we recall the
original pinhole camera, it is clear that only light rays that travel along the
vector between the pinhole and a point on the film can contribute to that
film location. In our simulated camera with the film plane in front of the
eye, we are interested in the amount of light traveling from the image point
to the eye.

Therefore, an important task of the camera simulator is to take a point on
the image and generate rays along which incident light will contribute to
that image location. Because a ray consists of an origin point and a
direction vector, this task is particularly simple for the pinhole camera
model of Figure 1.3: it uses the pinhole for the origin and the vector from
the pinhole to the imaging plane as the ray’s direction. For more complex
camera models involving multiple lenses, the calculation of the ray that
corresponds to a given point on the image may be more involved.

Light arriving at the camera along a ray will generally carry different
amounts of energy at different wavelengths. The human visual system



interprets this wavelength variation as color. Most camera sensors record
separate measurements for three wavelength distributions that correspond to
red, green, and blue colors, which is sufficient to reconstruct a scene’s
visual appearance to a human observer. (Section 4.6 discusses color in more
detail.) Therefore, cameras in pbrt also include a film abstraction that both
stores the image and models the film sensor’s response to incident light.

pbrt’s camera and film abstraction is described in detail in Chapter 5. With
the process of converting image locations to rays encapsulated in the
camera module and with the film abstraction responsible for determining
the sensor’s response to light, the rest of the rendering system can focus on
evaluating the lighting along those rays.

1.2.2 RAY-0BJECT INTERSECTIONS

Each time the camera generates a ray, the first task of the renderer is to
determine which object, if any, that ray intersects first and where the
intersection occurs. This intersection point is the visible point along the ray,
and we will want to simulate the interaction of light with the object at this
point. To find the intersection, we must test the ray for intersection against
all objects in the scene and select the one that the ray intersects first. Given
a ray r, we first start by writing it in parametric form: r(t) = o + td, where o
is the ray’s origin, d is its direction vector, and t is a parameter whose legal
range is [0, ). We can obtain a point along the ray by specifying its
parametric t value and evaluating the above equation.

It is often easy to find the intersection between the ray r and a surface
defined by an implicit function F (X, y, z) = 0. We first substitute the ray
equation into the implicit equation, producing a new function whose only
parameter is t. We then solve this function for t and substitute the smallest
positive root into the ray equation to find the desired point. For example,
the implicit equation of a sphere centered at the origin with radius r is x> +
y2+z2-r*=0.

Substituting the ray equation, we have (o, + td,)* + (o, + td,)* + (0, + td,)*

— r? = 0, where subscripts denote the corresponding component of a point
or vector. For a given ray and a given sphere, all the values besides ¢ are
known, giving us an easily solved quadratic equation in t. If there are no



real roots, the ray misses the sphere; if there are roots, the smallest positive
one gives the intersection point.

The intersection point alone is not enough information for the rest of the ray
tracer; it needs to know certain properties of the surface at the point. First, a
representation of the material at the point must be determined and passed
along to later stages of the ray-tracing algorithm.

Figure 1.4: Moana Island Scene, Rendered by pbrt. This model from a feature film exhibits the
extreme complexity of scenes rendered for movies (Walt Disney Animation Studios 2018). It features
over 146 million unique triangles, though the true geometric complexity of the scene is well into the tens
of billions of triangles due to extensive use of object instancing. (Scene courtesy of Walt Disney
Animation Studios.)

Second, additional geometric information about the intersection point will
also be required in order to shade the point. For example, the surface
normal n is always required. Although many ray tracers operate with only
n, more sophisticated rendering systems like pbrt require even more
information, such as various partial derivatives of position and surface
normal with respect to the local parameterization of the surface.

Of course, most scenes are made up of multiple objects. The brute-force
approach would be to test the ray against each object in turn, choosing the
minimum positive t value of all intersections to find the closest intersection.
This approach, while correct, is very slow, even for scenes of modest
complexity. A better approach is to incorporate an acceleration structure
that quickly rejects whole groups of objects during the ray intersection



process. This ability to quickly cull irrelevant geometry means that ray
tracing frequently runs in O(m log n) time, where m is the number of pixels
in the image and n is the number of objects in the scene.? (Building the
acceleration structure itself is necessarily at least O(n) time, however.)
Thanks to the effectiveness of acceleration structures, it is possible to render
highly complex scenes like the one shown in Figure 1.4 in reasonable
amounts of time.

pbrt’s geometric interface and implementations of it for a variety of shapes
are described in Chapter 6, and the acceleration interface and
implementations are shown in Chapter 7.

1.2.3 LIGHT DISTRIBUTION

The ray—object intersection stage gives us a point to be shaded and some
information about the local geometry at that point. Recall that our eventual
goal is to find the amount of light leaving this point in the direction of the
camera. To do this, we need to know how much light is arriving at this
point. This involves both the geometric and radiometric distribution of light
in the scene. For very simple light sources (e.g., point lights), the geometric
distribution of lighting is a simple matter of knowing the position of the
lights. However, point lights do not exist in the real world, and so
physically based lighting is often based on area light sources. This means
that the light source is associated with a geometric object that emits
illumination from its surface. However, we will use point lights in this
section to illustrate the components of light distribution; a more rigorous
discussion of light measurement and distribution is the topic of Chapters 4
and 12.
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Geometric construction for determining the power per area arriving at a point p due to a point
light source. The distance from the point to the light source is denoted by r.
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Since the point light radiates light equally in all directions, the same total power is deposited
on all spheres centered at the light.

We frequently would like to know the amount of light power being
deposited on the differential area surrounding the intersection point p
(Figure 1.5). We will assume that the point light source has some power ®
associated with it and that it radiates light equally in all directions. This
means that the power per area on a unit sphere surrounding the light is
®/(4m). (These measurements will be explained and formalized in Section
4.1.) If we consider two such spheres (Figure 1.6), it is clear that the power
per area at a point on the larger sphere must be less than the power at a
point on the smaller sphere because the same total power is distributed over
a larger area. Specifically, the power per area arriving at a point on a sphere
of radius r is proportional to 1/r2.

Furthermore, it can be shown that if the tiny surface patch dA is tilted by an
angle 6 away from the vector from the surface point to the light, the amount
of power deposited on dA is proportional to cos 6. Putting this all together,
the differential power per area dFE (the differential irradiance) is l=-art

raart

This scene has far too many lights to consider all
of them at each point where the reflected light is computed. Nevertheless, it can be rendered efficiently
using stochastic sampling of light sources. (Scene courtesy of Beeple.)

Readers already familiar with basic lighting in computer graphics will
notice two familiar laws encoded in this equation: the cosine falloff of light
for tilted surfaces mentioned above, and the one-over-r-squared falloff of
light with distance.

Scenes with multiple lights are easily handled because illumination is
linear: the contribution of each light can be computed separately and
summed to obtain the overall contribution. An implication of the linearity



of light is that sophisticated algorithms can be applied to randomly sample
lighting from only some of the light sources at each shaded point in the
scene; this is the topic of Section 12.6. Figure 1.7 shows a scene with
thousands of light sources rendered in this way.

1.2.4 VISIBILITY

The lighting distribution described in the previous section ignores one very
important component: shadows. Each light contributes illumination to the
point being shaded only if the path from the point to the light’s position is
unobstructed (Figure 1.8).

Fortunately, in a ray tracer it is easy to determine if the light is visible from
the point being shaded. We simply construct a new ray whose origin is at
the surface point and whose direction points toward the light. These special
rays are called shadow rays. If we trace this ray through the environment,
we can check to see whether any intersections are found between the ray’s
origin and the light source by comparing the parametric t value of any
intersections found to the parametric t value along the ray of the light
source position. If there is no blocking object between the light and the
surface, the light’s contribution is included.

1.2.5 LIGHT SCATTERING AT SURFACES

We are now able to compute two pieces of information that are vital for
proper shading of a point: its location and the incident lighting. Now we
need to determine how the incident lighting is scattered at the surface.
Specifically, we are interested in the amount of light energy scattered back
along the ray that we originally traced to find the intersection point, since
that ray leads to the camera (Figure 1.9).
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A light source only deposits energy on a surface if the source is not obscured as seen from the
receiving point. The light source on the left illuminates the point p, but the light source on the right does
not.
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Incident light arriving along direction wj interacts
with the surface at point p and is scattered back toward the camera along direction wg. The amount of
light scattered toward the camera is given by the product of the incident light energy and the BRDF.

Each object in the scene provides a material, which is a description of its
appearance properties at each point on the surface. This description is given
by the bidirectional reflectance distribution function (BRDF). This function
tells us how much energy is reflected from an incoming direction w; to an

outgoing direction w,. We will write the BRDF at p as f(p, @, w;). (By

convention, directions w are unit vectors.) It is easy to generalize the notion
of a BRDF to transmitted light (obtaining a BTDF) or to general scattering
of light arriving from either side of the surface. A function that describes
general scattering is called a bidirectional scattering distribution function
(BSDF). pbrt supports a variety of BSDF models; they are described in
Chapter 9. More complex yet is the bidirectional scattering surface
reflectance distribution function (BSSRDF), which models light that exits a
surface at a different point than it enters. This is necessary to reproduce
translucent materials such as milk, marble, or skin. The BSSRDF is
described in Section 4.3.2. Figure 1.10 shows an image rendered by pbrt
based on a model of a human head where scattering from the skin is
modeled using a BSSRDF.
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Accurately modeling subsurface light
transport rather than assuming that light exits the surface at the same point it entered greatly improves the
realism of the rendered image. (Model courtesy of Infinite Realities, Inc.)

1.2.6 INDIRECT LIGHT TRANSPORT

Turner Whitted’s original paper on ray tracing (1980) emphasized its
recursive nature, which was the key that made it possible to include indirect



specular reflection and transmission in rendered images. For example, if a
ray from the camera hits a shiny object like a mirror, we can reflect the ray
about the surface normal at the intersection point and recursively invoke the
ray-tracing routine to find the light arriving at the point on the mirror,
adding its contribution to the original camera ray. This same technique can
be used to trace transmitted rays that intersect transparent objects. Many
early ray-tracing examples showcased mirrors and glass balls (Figure 1.11)
because these types of effects were difficult to capture with other rendering
techniques.

In general, the amount of light that reaches the camera from a point on an
object is given by the sum of light emitted by the object (if it is itself a light
source) and the amount of reflected light. This idea is formalized by the
light transport equation (also often known as the rendering equation),
which measures light with respect to radiance, a radiometric unit that will
be defined in Section 4.1. It says that the outgoing radiance L (p, @) from a

point p in direction w, is the emitted radiance at that point in that direction,

L(p, @,), plus the incident radiance from all directions on the sphere 2
around p scaled by the BSDF f (p, w,, ;) and a cosine term: l=.art

We will show a more complete derivation of this equation in Sections 4.3.1
and 13.1.1. Solving this integral analytically is not possible except for the
simplest of scenes, so we must either make simplifying assumptions or use
numerical integration techniques.
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(b)

Note the use of mirrored and glass objects,
which emphasizes the algorithm’s ability to handle these kinds of surfaces. (a) Rendered using Whitted’s
original ray-tracing algorithm from 1980, and (b) rendered using stochastic progressive photon mapping
(SPPM), a modern advanced light transport algorithm. SPPM is able to accurately simulate the focusing
of light that passes through the spheres.

Whitted’s ray-tracing algorithm simplifies this integral by ignoring
incoming light from most directions and only evaluating L;(p, w;) for
directions to light sources and for the directions of perfect reflection and
refraction. In other words, it turns the integral into a sum over a small
number of directions. In Section 1.3.6, we will see that simple random
sampling of Equation (1.1) can create realistic images that include both



complex lighting and complex surface scattering effects. Throughout the
remainder of the book, we will show how using more sophisticated random
sampling algorithms greatly improves the efficiency of this general
approach.

1.2.7 RAY PROPAGATION

The discussion so far has assumed that rays are traveling through a vacuum.
For example, when describing the distribution of light from a point source,
we assumed that the light’s power was distributed equally on the surface of
a sphere centered at the light without decreasing along the way. The
presence of participating media such as smoke, fog, or dust can invalidate
this assumption. These effects are important to simulate: a wide class of
interesting phenomena can be described using participating media. Figure
1.12 shows an explosion rendered by pbrt. Less dramatically, almost all
outdoor scenes are affected substantially by participating media. For
example, Earth’s atmosphere causes objects that are farther away to appear
less saturated.
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Because pbrt is capable of simulating
light emission, scattering, and absorption in detailed models of participating media, it is capable of
rendering images like this one. (Scene courtesy of Jim Price.)

There are two ways in which a participating medium can affect the light
propagating along a ray. First, the medium can extinguish (or attenuate)
light, either by absorbing it or by scattering it in a different direction. We
can capture this effect by computing the transmittance T, between the ray

origin and the intersection point. The transmittance tells us how much of the
light scattered at the intersection point makes it back to the ray origin.

A participating medium can also add to the light along a ray. This can
happen either if the medium emits light (as with a flame) or if the medium
scatters light from other directions back along the ray. We can find this
quantity by numerically evaluating the volume light transport equation, in
the same way we evaluated the light transport equation to find the amount



of light reflected from a surface. We will leave the description of
participating media and volume rendering until Chapters 11 and 14.

1.3 pbrt: SYSTEM OVERVIEW

pbrt is structured using standard object-oriented techniques: for each of a
number of fundamental types, the system specifies an interface that
implementations of that type must fulfill. For example, pbrt requires the
implementation of a particular shape that represents geometry in a scene to
provide a set of methods including one that returns the shape’s bounding
box, and another that tests for intersection with a given ray. In turn, the
majority of the system can be implemented purely in terms of those
interfaces; for example, the code that checks for occluding objects between
a light source and a point being shaded calls the shape intersection methods
without needing to consider which particular types of shapes are present in
the scene.

There are a total of 14 of these key base types, summarized in Table 1.1.
Adding a new implementation of one of these types to the system is
straightforward; the implementation must provide the required methods, it
must be compiled and linked into the executable, and the scene object
creation routines must be modified to create instances of the object as
needed as the scene description file is parsed. Section C.4 discusses
extending the system in more detail.

Most of pbrt is implemented in terms of 14 key base types, listed here.
Implementations of each of these can easily be added to the system to extend its functionality.

Base type Source Files Section
Spectrum base/spectrum.h, util/spectrum.{h,cpp} 4.5
Camera base/camera.h, cameras.{h,cpp} 5.1
Shape base/shape.h, shapes.{h,cpp} 6.1
Primitive cpu/{primitive,accelerators}.{h,cpp} 7.1
Sampler base/sampler.h, samplers.{h,cpp} 8.3
Filter base/filter.h, filters.{h,cpp} 8.8.1
BxDF base/bxdf.h, bxdfs.{h,cpp} 9.1.2
Material base/material.h, materials.{h,cpp} 10.5
FloatTexture

SpectrumTexture base/texture.h, textures.{h,cpp} 10.3

Med1ium base/medium.h, media.{h,cpp} 11.4



Light base/1ight.h, Tights.{h,cpp} 12.1
LightSampler base/lightsampler.h, lightsamplers.{h,cpp} 12.6
Integrator cpu/integrators.{h,cpp} 1.3.3

BxDF 538

Camera 206
Filter 515
FloatTexture 656
Integrator 22
Light 740
LightSampler 781
Material 674
Medium 714
Primitive 398
Sampler 469
Shape 261
Spectrum 165
SpectrumTexture 656

Conventional practice in C++ would be to specify the interfaces for each of
these types using abstract base classes that define pure virtual functions and
to have implementations inherit from those base classes and implement the
required virtual functions. In turn, the compiler would take care of
generating the code that calls the appropriate method, given a pointer to any
object of the base class type. That approach was used in the three previous
versions of pbrt, but the addition of support for rendering on graphics
processing units (GPUs) in this version motivated a more portable approach
based on tag-based dispatch, where each specific type implementation is
assigned a unique integer that determines its type at runtime. (See Section
1.5.7 for more information about this topic.) The polymorphic types that are
implemented in this way in pbrt are all defined in header files in the base/
directory.

This version of pbrt is capable of running on GPUs that support C++17
and provide APIs for ray intersection tests.* We have carefully designed the
system so that almost all of pbrt’s implementation runs on both CPUs and
GPUs s, just as it is presented in Chapters 2 through 12. We will therefore
generally say little about the CPU versus the GPU in most of the following.



The main differences between the CPU and GPU rendering paths in pbrt
are in their data flow and how they are parallelized—effectively, how the
pieces are connected together. Both the basic rendering algorithm described
later in this chapter and the light transport algorithms described in Chapters
13 and 14 are only available on the CPU. The GPU rendering pipeline is
discussed in Chapter 15, though it, too, is also capable of running on the
CPU (not as efficiently as the CPU-targeted light transport algorithms,
however).

While pbrt can render many scenes well with its current implementation, it
has frequently been extended by students, researchers, and developers.
Throughout this section are a number of notable images from those efforts.
Figures 1.13, 1.14, and 1.15 were each created by students in a rendering
course where the final class project was to extend pbrt with new
functionality in order to render an image that it could not have rendered
before. These images are among the best from that course.

1.3.1 PHASES OF EXECUTION

pbrt can be conceptually divided into three phases of execution. First, it
parses the scene description file provided by the user. The scene description
is a text file that specifies the geometric shapes that make up the scene, their
material properties, the lights that illuminate them, where the virtual camera
is positioned in the scene, and parameters to all the individual algorithms
used throughout the system. The scene file format is documented on the
pbrt website, pbrt.org.

The result of the parsing phase is an instance of the BasicScene class,
which stores the scene specification, but not in a form yet suitable for
rendering. In the second phase of execution, pbrt creates specific objects
corresponding to the scene; for example, if a perspective projection has
been specified, it is in this phase that a PerspectiveCamera object
corresponding to the specified viewing parameters is created. Previous
versions of pbrt intermixed these first two phases, but for this version we
have separated them because the CPU and GPU rendering paths differ in
some of the ways that they represent the scene in memory.

BasicScene 1134



PerspectiveCamera 220
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Guillaume Poncin and Pramod Sharma extended pbrt in numerous ways, implementing a
number of complex rendering algorithms, to make this prize-winning image for Stanford’s CS348b
rendering competition. The trees are modeled procedurally with L-systems, a glow image processing filter
increases the apparent realism of the lights on the tree, snow was modeled procedurally with metaballs,
and a subsurface scattering algorithm gave the snow its realistic appearance by accounting for the effect
of light that travels beneath the snow for some distance before leaving it.

In the third phase, the main rendering loop executes. This phase is where
pbrt usually spends the majority of its running time, and most of this book
is devoted to code that executes during this phase. To orchestrate the
rendering, pbrt implements an integrator, so-named because its main task
is to evaluate the integral in Equation (1.1).

1.3.2 pbrt’S main() FUNCTION

The main() function for the pbrt executable is defined in the file
cmd/pbrt.cpp in the directory that holds the pbrt source code, src/pbrt
in the pbrt distribution. It is only a hundred and fifty or so lines of code,
much of it devoted to processing command-line arguments and related
bookkeeping.

main program =

int main(int argc, char *argv[]) {
Convert command-line arguments to vector of strings 1
Declare variables for parsed command line 1
Process command-line arguments
Initialize pbrt »
Parse provided scene description files 2
Render the scene »
Clean up dfter rendering the scene x



Rather than operate on the argv values provided to the main() function
directly, pbrt converts the provided arguments to a vector of
std::strings. It does so not only for the greater convenience of the
string class, but also to support non-ASCII character sets. Section B.3.2
has more information about character encodings and how they are handled
in pbrt.

Convert command-line arguments to vector of strings = 18
std::vector<std::string> args =
GetCommandLineArguments (argv);

lraart

Abe Davis, David Jacobs, and Jongmin Baek rendered this amazing image of an ice cave to
take the grand prize in the 2009 Stanford CS348b rendering competition. They first implemented a
simulation of the physical process of glaciation, the process where snow falls, melts, and refreezes over
the course of many years, forming stratified layers of ice. They then simulated erosion of the ice due to
melted water runoff before generating a geometric model of the ice. Scattering of light inside the volume
was simulated with volumetric photon mapping; the blue color of the ice is entirely due to modeling the
wavelength-dependent absorption of light in the ice volume.

We will only include the definitions of some of the main function’s
fragments in the book text here. Some, such as the one that handles parsing
command-line arguments provided by the user, are both simple enough and
long enough that they are not worth the few pages that they would add to
the book’s length. However, we will include the fragment that declares the
variables in which the option values are stored.

GetCommandLineArguments () 1063
PBRTOptions 1032

Declare variables for parsed command line = 18
PBRTOptions options; std::vector<std::string> filenames;



waart

Chenlin Meng, Hubert Teo, and Jiren Zhu rendered this tasty-looking image of cotton candy
in a teacup to win the grand prize in the 2018 Stanford CS348b rendering competition. They modeled the
cotton candy with multiple layers of curves and then filled the center with a participating medium to
efficiently model scattering in its interior.

The GetCommandLineArguments () function and PBRTOptions type appear
in a mini-index in the page margin, along with the number of the page
where they are defined. The mini-indices have pointers to the definitions of
almost all the functions, classes, methods, and member variables used or
referred to on each page. (In the interests of brevity, we will omit very
widely used classes such as Ray from the mini-indices, as well as types or
methods that were just introduced in the preceding few pages.) The
PBRTOptions class stores various rendering options that are generally more
suited to be specified on the command line rather than in scene description
files—for example, how chatty pbrt should be about its progress during
rendering. It is passed to the InitPBRT() function, which aggregates the
various system-wide initialization tasks that must be performed before any
other work is done. For example, it initializes the logging system and
launches a group of threads that are used for the parallelization of pbrt.

Initialize pbrt = 18
InitPBRT(options);

After the arguments have been parsed and validated, the ParseFiles()
function takes over to handle the first of the three phases of execution
described earlier. With the assistance of two classes, BasicSceneBuilder
and BasicScene, which are respectively described in Sections C.2 and C.3,
it loops over the provided filenames, parsing each file in turn. If pbrt is run
with no filenames provided, it looks for the scene description from standard
input. The mechanics of tokenizing and parsing scene description files will
not be described in this book, but the parser implementation can be found in
the files parser.h and parser.cpp in the src/pbrt directory.

Parse provided scene description files = 18



BasicScene scene; BasicSceneBuilder builder(&scene);
ParseFiles(&builder, filenames);

BasicScene 1134
BasicSceneBuilder 1123
GetCommandLineArguments () 1063
InitPBRT() 1032

ParseFiles() 1120
PBRTOptions 1032
RenderWavefront () 927

After the scene description has been parsed, one of two functions is called
to render the scene. RenderWavefront () supports both the CPU and GPU
rendering paths, processing a million or so image samples in parallel. It is
the topic of Chapter 15. RenderCPU() renders the scene using an
Integrator implementation and is only available when running on the
CPU. It uses much less parallelism than RenderWavefront (), rendering
only as many image samples as there are CPU threads in parallel.

laart

Martin Lubich modeled this scene of the Austrian Imperial Crown using Blender; it was
originally rendered using LuxRender, which started out as a fork of the pbrt-v1 codebase. The crown
consists of approximately 3.5 million triangles that are illuminated by six area light sources with emission
spectra based on measured data from a real-world light source. It was originally rendered with 1280
samples per pixel in 73 hours of computation on a quad-core CPU. On a modern GPU, pbrt renders this
scene at the same sampling rate in 184 seconds.

Both of these functions start by converting the BasicScene into a form
suitable for efficient rendering and then pass control to a processor-specific
integrator. (More information about this process is available in Section C.3.)
We will for now gloss past the details of this transformation in order to
focus on the main rendering loop in RenderCPU (), which is much more

interesting. For that, we will take the efficient scene representation as a
given.

Render the scene = 18

if (Options->useGPU || Options->wavefront)
RenderWavefront(scene); else

RenderCPU(scene);



BasicPBRTOptions::useGPU 1031
BasicPBRTOptions::wavefront 1031
BasicScene 1134

CleanupPBRT() 1032

InitPBRT() 1032

Integrator 22

Options 1032

RenderCPU() 20

RenderWavefront () 927

After the image has been rendered, C1eanupPBRT () takes care of shutting

the system down gracefully, including, for example, terminating the threads
launched by InitPBRT().

Clean up after rendering the scene = 18
CleanupPBRT();

1.3.3 INTEGRATOR INTERFACE

In the RenderCPU() rendering path, an instance of a class that implements
the Integrator interface is responsible for rendering. Because Integrator
implementations only run on the CPU, we will define Integrator as a
standard base class with pure virtual methods. Integrator and the various
implementations are each defined in the files cpu/integrator.h and
cpu/integrator.cpp.

Integrator Definition =
class Integrator {
public: Integrator Public Methods
Integrator Public Members »
protected: Integrator Protected Methods »

¥

The base Integrator constructor takes a single Primitive that represents
all the geometric objects in the scene as well as an array that holds all the
lights in the scene.

Integrator Protected Methods = 2
Integrator(Primitive aggregate, std::vector<Light> Tights) :
aggregate(aggregate), lights(lights) {



Integrator constructor implementation 2

}

Each geometric object in the scene is represented by a Primitive, which is
primarily responsible for combining a Shape that specifies its geometry and
aMaterial that describes its appearance (e.g., the object’s color, or whether
it has a dull or glossy finish). In turn, all the geometric primitives in a scene
are collected into a single aggregate primitive that is stored in the
Integrator::aggregate member variable. This aggregate is a special
kind of primitive that itself holds references to many other primitives. The
aggregate implementation stores all the scene’s primitives in an acceleration
data structure that reduces the number of unnecessary ray intersection tests
with primitives that are far away from a given ray. Because it implements
the Primitive interface, it appears no different from a single primitive to
the rest of the system.

Integrator Public Members = 2
Primitive aggregate; std::vector<Light> Tights;

Each light source in the scene is represented by an object that implements
the Light interface, which allows the light to specify its shape and the
distribution of energy that it emits. Some lights need to know the bounding
box of the entire scene, which is unavailable when they are first created.
Therefore, the Integrator constructor calls their Preprocess () methods,
providing those bounds. At this point any “infinite” lights are also stored in
a separate array. This sort of light, which will be introduced in Section 12.5,
models infinitely far away sources of light, which is a reasonable model for
skylight as received on Earth’s surface, for example. Sometimes it will be
necessary to loop over just those lights, and for scenes with thousands of
light sources it would be inefficient to loop over all of them just to find
those.

Integrator 22
Integrator::aggregate 22
Light 740

Material 674

Primitive 398
RenderCPU() 20

Shape 261



Integrator constructor implementation = 2

Bounds3f sceneBounds = aggregate ? aggregate.Bounds() :
Bounds3f(); for (auto &light : lights) {

Tight.Preprocess(sceneBounds); if (1ight.Type() ==
LightType::Infinite) infinitelLights.push _back(1ight); }

Integrator Public Members += 2
std::vector<Light> infinitelLights;

Integrators must provide an implementation of the Render () method,
which takes no further arguments. This method is called by the
RenderCPU() function once the scene representation has been initialized.
The task of integrators is to render the scene as specified by the aggregate
and the lights. Beyond that, it is up to the specific integrator to define what
it means to render the scene, using whichever other classes that it needs to
do so (e.g., a camera model). This interface is intentionally very general to
permit a wide range of implementations—for example, one could
implement an Integrator that measures light only at a sparse set of points
distributed through the scene rather than generating a regular 2D image.

22

Integrator Public Methods
virtual void Render() = 0;

The Integrator class provides two methods related to ray—primitive
intersection for use of its subclasses. Intersect () takes a ray and a
maximum parametric distance tMax, traces the given ray into the scene, and
returns a Shapelntersection object corresponding to the closest primitive
that the ray hit, if there is an intersection along the ray before tMax. (The
Shapelntersection structure is defined in Section 6.1.3.) One thing to
note is that this method uses the type pstd: :optional for the return value
rather than std::optional from the C++ standard library; we have
reimplemented parts of the standard library in the pstd namespace for
reasons that are discussed in Section 1.5.5.

Integrator Method Definitions =
pstd::optional<Shapelntersection>
Integrator::Intersect(const Ray &ray, Float tMax) const {

if (aggregate) return aggregate.Intersect(ray, tMax);
else return {}; }



Bounds3f 97

Float 23

Integrator 22
Integrator::aggregate 22
Integrator::infinitelLights 23
Integrator::IntersectP() 24
Integrator::1ights 22

Light 740
Light::Preprocess() 743
Light::Type() 740

LightType 740
LightType::Infinite 740
Primitive::Bounds() 398
Primitive::Intersect() 398
Ray 95

RenderCPU() 20
Shapelntersection 266

Also note the capitalized floating-point type Float in Intersect()’s
signature: almost all floating-point values in pbrt are declared as Floats.
(The only exceptions are a few cases where a 32-bit float or a 64-bit
double is specifically needed (e.g., when saving binary values to files).)
Depending on the compilation flags of pbrt, Float is an alias for either
float or double, though single precision float is almost always sufficient
in practice. The definition of Float is in the pbrt.h header file, which is
included by all other source files in pbrt.

Float Type Definitions =

#ifdef PBRT_FLOAT AS DOUBLE
using Float = double; #else
using Float = float; #endif

Integrator::IntersectP() is closely related to the Intersect ()
method. It checks for the existence of intersections along the ray but only
returns a Boolean indicating whether an intersection was found. (The “P” in
its name indicates that it is a function that evaluates a predicate, using a
common naming convention from the Lisp programming language.)
Because it does not need to search for the closest intersection or return
additional geometric information about intersections, IntersectP() is



generally more efficient than Integrator::Intersect (). This routine is
used for shadow rays.

Integrator Method Definitions +=
bool Integrator::IntersectP(const Ray &ray, Float tMax)
const {
if (aggregate) return aggregate.IntersectP(ray, tMax);
else return false; }

1.3.4 ImageTilelntegrator AND THE MAIN RENDERING LOOP

Before implementing a basic integrator that simulates light transport to
render an image, we will define two Integrator subclasses that provide
additional common functionality used by that integrator as well as many of
the integrator implementations to come. We start with
ImageTilelntegrator, which inherits from Integrator. The next section
defines RayIntegrator, which inherits from ImageTilelntegrator.

All of pbrt’s CPU-based integrators render images using a camera model to
define the viewing parameters, and all parallelize rendering by splitting the
image into tiles and having different processors work on different tiles.
Therefore, pbrt includes an ImageTilelIntegrator that provides common
functionality for those tasks.

ImageTilelntegrator Definition =

class ImageTilelntegrator : public Integrator {
public: ImageTilelntegrator Public Methods
protected: ImageTilelntegrator Protected Members »

}s

In addition to the aggregate and the lights, the ImageTileIntegrator
constructor takes a Camera that specifies the viewing and lens parameters
such as position, orientation, focus, and field of view. Fi1m stored by the
camera handles image storage. The Camera classes are the subject of most
of Chapter 5, and Filmis described in Section 5.4. The Fi1m is responsible
for writing the final image to a file.



Camera 206

Film 244

Float 23

ImageTilelntegrator 24
ImageTilelntegrator::camera 25
ImageTilelntegrator:: samplerPrototype 25
Integrator 22
Integrator::aggregate 22
Integrator::Intersect() 23
Light 740

Primitive 398
Primitive::IntersectP() 398
Ray 95

RayIntegrator 28

Sampler 469

The constructor also takes a Samp1er; its role is more subtle, but its
implementation can substantially affect the quality of the images that the
system generates. First, the sampler is responsible for choosing the points
on the image plane that determine which rays are initially traced into the
scene. Second, it is responsible for supplying random sample values that are
used by integrators for estimating the value of the light transport integral,
Equation (1.1). For example, some integrators need to choose random
points on light sources to compute illumination from area lights. Generating
a good distribution of these samples is an important part of the rendering
process that can substantially affect overall efficiency; this topic is the main
focus of Chapter 8.

ImageTilelntegrator Public Methods = 24

ImageTileIntegrator(Camera camera, Sampler sampler, Primitive
aggregate, std::vector<Light> 1ights) : Integrator(aggregate,
lights), camera(camera), samplerPrototype(sampler) {}

ImageTilelntegrator Protected Members = 24
Camera camera; Sampler samplerPrototype;

For all of pbrt’s integrators, the final color computed at each pixel is based
on random sampling algorithms. If each pixel’s final value is computed as
the average of multiple samples, then the quality of the image improves. At
low numbers of samples, sampling error manifests itself as grainy high-
frequency noise in images, though error goes down at a predictable rate as
the number of samples increases. (This topic is discussed in more depth in



Section 2.1.4.) ImageTilelntegrator::Render() therefore renders the
image in waves of a few samples per pixel. For the first two waves, only a
single sample is taken in each pixel. In the next wave, two samples are
taken, with the number of samples doubling after each wave up to a limit.
While it makes no difference to the final image if the image was rendered in
waves or with all the samples being taken in a pixel before moving on to the
next one, this organization of the computation means that it is possible to
see previews of the final image during rendering where all pixels have some
samples, rather than a few pixels having many samples and the rest having
none.

Because pbrt is parallelized to run using multiple threads, there is a
balance to be struck with this approach. There is a cost for threads to
acquire work for a new image tile, and some threads end up idle at the end
of each wave once there is no more work for them to do but other threads
are still working on the tiles they have been assigned. These considerations
motivated the capped doubling approach.

ImageTilelntegrator Method Definitions =
void ImageTilelntegrator::Render()
Declare common variables for rendering image in tiles »
Render image in waves s

}

Before rendering begins, a few additional variables are required. First, the
integrator implementations will need to allocate small amounts of
temporary memory to store surface scattering properties in the course of
computing each ray’s contribution. The large number of resulting
allocations could easily overwhelm the system’s regular memory allocation
routines (e.g., new), which must coordinate multi-threaded maintenance of
elaborate data structures to track free memory. A naive implementation
could potentially spend a fairly large fraction of its computation time in the
memory allocator.

To address this issue, pbrt provides a ScratchBuffer class that manages a
small preallocated buffer of memory. ScratchBuffer allocations are very
efficient, just requiring the increment of an offset. The ScratchBuffer



does not allow independently freeing allocations; instead, all must be freed
at once, but doing so only requires resetting that offset.

Because ScratchBuffers are not safe for use by multiple threads at the
same time, an individual one is created for each thread using the
ThreadLocal template class. Its constructor takes a lambda function that
returns a fresh instance of the object of the type it manages; here, calling the
default ScratchBuffer constructor is sufficient. ThreadLocal then handles
the details of maintaining distinct copies of the object for each thread,
allocating them on demand.

Declare common variables for rendering image in tiles = 5
ThreadLocal<ScratchBuffer> scratchBuffers(
[1O) { return ScratchBuffer(); } );

Camera 206

Sampler 469
ScratchBuffer 1078
ThreadLocal 1112

Most Sampler implementations find it useful to maintain some state, such
as the coordinates of the current pixel. This means that multiple threads
cannot use a single Sampler concurrently and ThreadLocal is also used for
SampTler management. Samplers provide a Clone () method that creates a
new instance of their sampler type. The Samp1ler first provided to the
ImageTilelntegrator constructor, samplerPrototype, provides those
copies here.

Declare common variables for rendering image in tiles += L8
ThreadLocal<Sampler> samplers(
[this] () { return samplerPrototype.Clone(); });

It is helpful to provide the user with an indication of how much of the
rendering work is done and an estimate of how much longer it will take.
This task is handled by the ProgressReporter class, which takes as its first
parameter the total number of items of work. Here, the total amount of work
is the number of samples taken in each pixel times the total number of
pixels. It is important to use 64-bit precision to compute this value, since a



32-bit int may be insufficient for high-resolution images with many
samples per pixel.

Declare common variables for rendering image in tiles += %
Bounds2i pixelBounds = camera.GetFilm().PixelBounds(); int spp
= samplerPrototype.SamplesPerPixel(); ProgressReporter
progress(int64 t(spp) * pixelBounds.Area(), "Rendering",
Options->quiet);

In the following, the range of samples to be taken in the current wave is
given by waveStart and waveEnd; nextWaveSize gives the number of
samples to be taken in the next wave.

Declare common variables for rendering image in tiles += L8
int waveStart = 0, waveEnd = 1, nextWaveSize = 1;

With these variables in hand, rendering proceeds until the required number
of samples have been taken in all pixels.

Render image in waves = 25
while (waveStart < spp) {
Render current wave’s image tiles in parallel 2
Update start and end wave 2s
Optionally write current image to disk

BasicPBRTOptions::quiet 1031
Bounds2::Area() 102

Bounds2i 97

Camera::GetFilm() 207
Film::PixelBounds() 246
ImageTilelntegrator 24
ImageTilelntegrator::camera 25
ImageTilelntegrator:: samplerPrototype 25
Options 1032

ParallelFor2D() 1108
ProgressReporter 1068

Sampler 469

Sampler::Clone() 470
SampTler::SamplesPerPixel () 469
ThreadlLocal 1112



The ParallelFor2D() function loops over image tiles, running multiple
loop iterations concurrently; it is part of the parallelism-related utility
functions that are introduced in Section B.6. A C++ lambda expression
provides the loop body. ParallelFor2D() automatically chooses a tile size
to balance two concerns: on one hand, we would like to have significantly
more tiles than there are processors in the system. It is likely that some of
the tiles will take less processing time than others, so if there was for
example a 1:1 mapping between processors and tiles, then some processors
will be idle after finishing their work while others continue to work on their
region of the image. (Figure 1.17 graphs the distribution of time taken to
render tiles of an example image, illustrating this concern.) On the other
hand, having too many tiles also hurts efficiency. There is a small fixed
overhead for a thread to acquire more work in the parallel for loop and the
more tiles there are, the more times this overhead must be paid.
ParallelFor2D() therefore chooses a tile size that accounts for both the
extent of the region to be processed and the number of processors in the
system.

Render current wave’s image tiles in parallel = 26
ParallelFor2D(pixelBounds, [&] (Bounds2i tileBounds) {
Render image tile given by tileBounds 2

})s

waart

The
horizontal axis measures time in seconds. Note the wide variation in execution time, illustrating that
different parts of the image required substantially different amounts of computation.

Given a tile to render, the implementation starts by acquiring the
ScratchBuffer and Sampler for the currently executing thread. As
described earlier, the ThreadLocal: :Get () method takes care of the details
of allocating and returning individual ones of them for each thread.

With those in hand, the implementation loops over all the pixels in the tile
using a range-based for loop that uses iterators provided by the Bounds?2



class before informing the ProgressReporter about how much work has
been completed.

Render image tile given by tileBounds = 27

ScratchBuffer &scratchBuffer = scratchBuffers.Get(); Sampler
&sampler = samplers.Get(); for (Point2i pPixel : tileBounds) {

Render samples in pixel pPixel 2s

}

progress.Update((waveEnd - waveStart) * tileBounds.Area());

Bounds2 97

Bounds2::Area() 102

Bounds2i 97

ParallelFor2D() 1108

Point2i 92

ProgressReporter 1068
ProgressReporter: :Update() 1068
Sampler 469

ScratchBuffer 1078
ThreadLocal::Get() 1112

Given a pixel to take one or more samples in, the thread’s Sampler is
notified that it should start generating samples for the current pixel via
StartPixelSample(), which allows it to set up any internal state that
depends on which pixel is currently being processed. The integrator’s
EvaluatePixelSample() method is then responsible for determining the
specified sample’s value, after which any temporary memory it may have
allocated in the ScratchBuffer is freed with a call to
ScratchBuffer::Reset().

Render samples in pixel pPixel = 27

for (int sampleIndex = waveStart; sampleIndex < waveEnd;
++samplelndex) {

sampler.StartPixelSample(pPixel, samplelndex);
EvaluatePixelSample(pPixel, samplelndex, sampler,
scratchBuffer); scratchBuffer.Reset(); }

Having provided an implementation of the pure virtual
Integrator::Render() method, ImageTilelntegrator now imposes the
requirement on its subclasses that they implement the following
EvaluatePixelSample() method.



ImageTilelntegrator Public Methods += 2

virtual void EvaluatePixelSample(Point2i pPixel, int
samplelndex, Sampler sampler, ScratchBuffer &scratchBuffer) =
0;

After the parallel for loop for the current wave completes, the range of
sample indices to be processed in the next wave is computed.

Update start and end wave = 2

waveStart = waveEnd; waveEnd = std::min(spp, waveEnd +
nextWaveSize); nextWaveSize = std::min(2 * nextWaveSize, 64);

If the user has provided the --write-partial-images command-line
option, the in-progress image is written to disk before the next wave of
samples is processed. We will not include here the fragment that takes care
of this, Optionally write current image to disk

1.3.5 RayIntegrator IMPLEMENTATION

Just as the ImageTilelntegrator centralizes functionality related to
integrators that decompose the image into tiles, RayIntegrator provides
commonly used functionality to integrators that trace ray paths starting
from the camera. All of the integrators implemented in Chapters 13 and 14
inherit from RayIntegrator.

Raylntegrator Definition =
class RayIntegrator : public ImageTilelntegrator
public: Raylntegrator Public Methods

}s

Camera 206

Film 244

ImageTilelntegrator 24
ImageTileIntegrator:: EvaluatePixelSample() 28
Integrator::Render() 23

Light 740

Point2i 92

Primitive 398

RayIntegrator 28

Sampler 469
Sampler::StartPixelSample() 469
ScratchBuffer 1078
ScratchBuffer::Reset() 1079



Its constructor does nothing more than pass along the provided objects to
the ImageTile Integrator constructor.

Raylntegrator Public Methods = 28

RayIntegrator(Camera camera, Sampler sampler, Primitive
aggregate, std::vector<Light> Tights) :
ImageTileIntegrator(camera, sampler, aggregate, lights) {}

RayIntegrator implements the pure virtual EvaluatePixelSample()
method from ImageTile Integrator. At the given pixel, it uses its
Camera and Sampler to generate a ray into the scene and then calls the

Li () method, which is provided by the subclass, to determine the amount
of light arriving at the image plane along that ray. As we will see in
following chapters, the units of the value returned by this method are
related to the incident spectral radiance at the ray origin, which is generally
denoted by the symbol L; in equations—thus, the method name. This value

is passed to the Fi1m, which records the ray’s contribution to the image.
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The
SampTer provides sample values for each image sample to be taken. The Camera turns a sample into a
corresponding ray from the film plane, and the Li () method computes the radiance along that ray arriving
at the film. The sample and its radiance are passed to the Fi1m, which stores their contribution in an
image.

Figure 1.18 summarizes the main classes used in this method and the flow
of data among them.

RaylIntegrator Method Definitions
void RayIntegrator::EvaluatePixelSample(Point2i pPixel,
int samplelndex, Sampler sampler, ScratchBuffer
&scratchBuffer) {

Sample wavelengths for the ray »

Initialize CameraSample for current sample
Generate camera ray for current sample s
Trace cameraRay if valid s

Add camera ray’s contribution to image »



}

Each ray carries radiance at a number of discrete wavelengths A (four, by
default). When computing the color at each pixel, pbrt chooses different
wavelengths at different pixel samples so that the final result better reflects
the correct result over all wavelengths. To choose these wavelengths, a
sample value 1u is first provided by the Samp1er. This value will be
uniformly distributed and in the range [0, 1). The
Film::SampleWavelengths () method then maps this sample to a set of
specific wavelengths, taking into account its model of film sensor response
as a function of wavelength. Most Samp1er implementations ensure that if
multiple samples are taken in a pixel, those samples are in the aggregate
well distributed over [0, 1). In turn, they ensure that the sampled
wavelengths are also well distributed across the range of valid wavelengths,
improving image quality.

Sample wavelengths for the ray = 29

Float Tu = sampler.GetlD(); SampledWavelengths lambda =
camera.GetFilm().SampleWavelengths(Tu);

Camera 206

Camera::GetFilm() 207
CameraSample 206

Film 244
Film::SampleWavelengths() 246
Float 23

GetCameraSample() 516
ImageTilelntegrator::camera 25
Point2i 92

SampledWavelengths 173
Sampler 469

Sampler::Get1D() 470
ScratchBuffer 1078

The CameraSamp1e structure records the position on the film for which the
camera should generate a ray. This position is affected by both a sample
position provided by the sampler and the reconstruction filter that is used to
filter multiple sample values into a single value for the pixel.
GetCameraSample() handles those calculations. CameraSamp1e also stores
a time that is associated with the ray as well as a lens position sample,



which are used when rendering scenes with moving objects and for camera
models that simulate non-pinhole apertures, respectively.

Initialize CameraSample for current sample = 29

Filter filter = camera.GetFilm().GetFilter(); CameraSample
cameraSample = GetCameraSample(sampler, pPixel, filter);

The Camera interface provides two methods to generate rays:
GenerateRay (), which returns the ray for a given image sample position,
and GenerateRayDifferential (), which returns a ray differential, which
incorporates information about the rays that the camera would generate for
samples that are one pixel away on the image plane in both the x and y
directions. Ray differentials are used to get better results from some of the
texture functions defined in Chapter 10, by making it possible to compute
how quickly a texture varies with respect to the pixel spacing, which is a
key component of texture antialiasing.

Some CameraSamp]le values may not correspond to valid rays for a given
camera. Therefore, pstd: :optional is used for the
CameraRayDifferential returned by the camera.

Generate camera ray for current sample = 29
pstd::optional<CameraRayDifferential> cameraRay =
camera.GenerateRayDifferential (cameraSample, Tambda);

If the camera ray is valid, it is passed along to the RayIntegrator
subclass’s Li () method implementation after some additional preparation.
In addition to returning the radiance along the ray L, the subclass is also
responsible for initializing an instance of the VisibleSurface class, which
records geometric information about the surface the ray intersects (if any) at
each pixel for the use of Film implementations like the GBufferFilm that
store more information than just color at each pixel.

Trace cameraRay if valid = 29

SampledSpectrum L(0.); VisibleSurface visibleSurface; if
(cameraRay) {

Scale camera ray differentials based on image sampling rate s
Evaluate radiance along camera ray »
Issue warning if unexpected radiance value is returned



Camera 206

Camera:: GenerateRayDifferential() 207
Camera::GetFilm() 207
CameraRayDifferential 207

CameraSample 206

Film::GetFilter() 246

Filter 515

Float 23

GBufferFilm 253

GetCameraSample() 516
ImageTilelntegrator::camera 25
RayDifferential:: ScaleDifferentials() 97
RayIntegrator 28

SampledSpectrum 171
Sampler::SamplesPerPixel () 469
VisibleSurface 245

Before the ray is passed to the Li () method, the ScaleDifferentials()
method scales the differential rays to account for the actual spacing between
samples on the film plane when multiple samples are taken per pixel.

30

Scale camera ray differentials based on image sampling rate
Float rayDiffScale =

std::max<Float>(.125f, 1 /
std::sqrt((Float)sampler.SamplesPerPixel())); cameraRay-
>ray.ScaleDifferentials(rayDiffScale);

For Film implementations that do not store geometric information at each
pixel, it is worth saving the work of populating the VisibleSurface class.
Therefore, a pointer to this class is only passed in the call to the Li ()
method if it is necessary, and a null pointer is passed otherwise. Integrator
implementations then should only initialize the VisibleSurface if it is
non-null.

CameraRayDifferential also carries a weight associated with the ray that
is used to scale the returned radiance value. For simple camera models,
each ray is weighted equally, but camera models that more accurately
simulate the process of image formation by lens systems may generate
some rays that contribute more than others. Such a camera model might
simulate the effect of less light arriving at the edges of the film plane than at
the center, an effect called vignetting.



Evaluate radiance along camera ray = 30
bool initializeVisibleSurface =
camera.GetFilm().UsesVisibleSurface(); L = cameraRay->weight *
Li (cameraRay->ray, lambda, sampler, scratchBuffer,
initializeVisibleSurface ? &visibleSurface : nullptr);

Li () is a pure virtual method that RayIntegrator subclasses must
implement. It returns the incident radiance at the origin of a given ray,
sampled at the specified wavelengths.

RayIntegrator Public Methods += 28
virtual SampledSpectrum Li(

RayDifferential ray, SampledWavelengths &lambda, Sampler
sampler, ScratchBuffer &scratchBuffer, VisibleSurface
*visibleSurface) const = 0;

A common side effect of bugs in the rendering process is that impossible
radiance values are computed. For example, division by zero results in
radiance values equal to either the IEEE floating-point infinity or a “not a
number” value. The renderer looks for these possibilities and prints an error
message when it encounters them. Here we will not include the fragment
that does this, Issue warning if unexpected radiance value is returned

See the implementation in cpu/integrator.cpp if you are interested in its
details.

After the radiance arriving at the ray’s origin is known, a call to
Film::AddSample() updates the corresponding pixel in the image, given
the weighted radiance for the sample. The details of how sample values are
recorded in the film are explained in Sections 5.4 and 8.8.

Add camera ray’s contribution to image = 29

camera.GetFilm() .AddSample(pPixel, L, Tambda,
&visibleSurface, cameraSample.filterWeight);

1.3.6 RANDOM WALK INTEGRATOR

Although it has taken a few pages to go through the implementation of the
integrator infrastructure that culminated in RayIntegrator, we can now
turn to implementing light transport integration algorithms in a simpler
context than having to start implementing a complete

Integrator: :Render() method. The RandomWalkIntegrator that we will



describe in this section inherits from RayIntegrator and thus all the details
of multi-threading, generating the initial ray from the camera and then
adding the radiance along that ray to the image, are all taken care of. The
integrator operates in a simpler context: a ray has been provided and its task
is to compute the radiance arriving at its origin.

Recall that in Section 1.2.7 we mentioned that in the absence of
participating media, the light carried by a ray is unchanged as it passes
through free space. We will ignore the possibility of participating media in
the implementation of this integrator, which allows us to take a first step:
given the first intersection of a ray with the geometry in the scene, the
radiance arriving at the ray’s origin is equal to the radiance leaving the
intersection point toward the ray’s origin. That outgoing radiance is given
by the light transport equation (1.1), though it is hopeless to evaluate it in
closed form. Numerical approaches are required, and the ones used in pbrt
are based on Monte Carlo integration, which makes it possible to estimate
the values of integrals based on pointwise evaluation of their integrands.
Chapter 2 provides an introduction to Monte Carlo integration, and
additional Monte Carlo techniques will be introduced as they are used
throughout the book.

Camera: :GetFilm() 207
CameraRayDifferential::ray 207
CameraRayDifferential::weight 207
CameraSample::filterWeight 206
Film::AddSample() 244
Film::UsesVisibleSurface() 245
ImageTilelntegrator::camera 25
Integrator::Render() 23
RayDifferential 96
RayIntegrator 28
RayIntegrator::Li() 31
SampledSpectrum 171
SampledWavelengths 173

Sampler 469

ScratchBuffer 1078
VisibleSurface 245



waart

Because the
RandomWalkIntegrator does not handle perfectly specular surfaces, the two glasses on the table are
black. Furthermore, even with the 8,192 samples per pixel used to render this image, the result is still
peppered with high-frequency noise. (Note, for example, the far wall and the base of the chair.) (Scene
courtesy of Angelo Ferretti.)

In order to compute the outgoing radiance, the RandomWalkIntegrator
implements a simple Monte Carlo approach that is based on incrementally
constructing a random walk, where a series of points on scene surfaces are
randomly chosen in succession to construct light-carrying paths starting
from the camera. This approach effectively models image formation in the
real world in reverse, starting from the camera rather than from the light
sources. Going backward in this respect is still physically valid because the
physical models of light that pbrt is based on are time-reversible.

RandomWalkIntegrator 33

Although the implementation of the random walk sampling algorithm is in
total just over twenty lines of code, it is capable of simulating complex
lighting and shading effects; Figure 1.19 shows an image rendered using it.
(That image required many hours of computation to achieve that level of
quality, however.) For the remainder of this section, we will gloss over a
few of the mathematical details of the integrator’s implementation and
focus on an intuitive understanding of the approach, though subsequent
chapters will fill in the gaps and explain this and more sophisticated
techniques more rigorously.

RandomWalkIntegrator Definition =
class RandomWalkIntegrator : public RayIntegrator {

public: RandomWalkiIntegrator Public Methods s
private: RandomWalkIntegrator Private Methods s
RandomWalkIntegrator Private Members s

}s



This integrator recursively evaluates the random walk. Therefore, its Li ()
method implementation does little more than start the recursion, via a call to
the LiRandomWalk () method. Most of the parameters to Li () are just
passed along, though the VisibleSurface is ignored for this simple
integrator and an additional parameter is added to track the depth of
recursion.

RandomWalkIntegrator Public Methods = 33

SampledSpectrum Li(RayDifferential ray, SampledWavelengths
&lambda, Sampler sampler, ScratchBuffer &scratchBuffer,
VisibleSurface *visibleSurface) const {

return LiRandomWalk(ray, lambda, sampler, scratchBuffer,
0);}

RandomWalkIntegrator Private Methods = 33
SampledSpectrum LiRandomWalk(RayDifferential ray,
SampledWavelengths &lambda, Sampler sampler, ScratchBuffer
&scratchBuffer, int depth) const {

Intersect ray with scene and return if no intersection s

Get emitted radiance at surface intersection za

Terminate random walk if maximum depth has been reached 3s
Compute BSDF at random walk intersection point 3s

Randomly sample direction leaving surface for random walk 3s
Evaluate BSDF at surface for sampled direction 3s

Recursively trace ray to estimate incident radiance at surface ss

Integrator::Intersect() 23
RandomWalkIntegrator:: LiRandomWalk() 33
RayDifferential 96
RayIntegrator 28
SampledSpectrum 171
SampledWavelengths 173
Sampler 469

ScratchBuffer 1078
Shapelntersection 266
Shapelntersection::intr 266
Surfacelnteraction 138
VisibleSurface 245

The first step is to find the closest intersection of the ray with the shapes in
the scene. If no intersection is found, the ray has left the scene. Otherwise, a
Surfacelnteraction that is returned as part of the ShapeIntersection



structure provides information about the local geometric properties of the
intersection point.

Intersect ray with scene and return if no intersection = 33
pstd::optional<Shapelntersection> si = Intersect(ray); if

(Isi) {

Return emitted light from infinite light sources 34

}

Surfacelnteraction &isect = si->intr;

If no intersection was found, radiance still may be carried along the ray due
to light sources such as the ImageInfinitelLight that do not have
geometry associated with them. The Light::Le() method allows such
lights to return their radiance for a given ray.

Return emitted light from infinite light sources = 33
SampledSpectrum Le(0.f); for (Light Tight : infiniteLights) Le
+= light.Le(ray, lambda); return Le;

If a valid intersection has been found, we must evaluate the light transport
equation at the intersection point. The first term, L.(p, w,), which is the

emitted radiance, is easy: emission is part of the scene specification and the
emitted radiance is available by calling the SurfacelInteraction::Le()
method, which takes the outgoing direction of interest. Here, we are
interested in radiance emitted back along the ray’s direction. If the object is
not emissive, that method returns a zero-valued spectral distribution.

Get emitted radiance at surface intersection = 33
Vector3f wo = -ray.d; SampledSpectrum Le = isect.Le(wo,
Tambda) ;

Evaluating the second term of the light transport equation requires
computing an integral over the sphere of directions around the intersection
point p. Application of the principles of Monte Carlo integration can be
used to show that if directions «" are chosen with equal probability over all
possible directions, then an estimate of the integral can be computed as a
weighted product of the BSDF f, which describes the light scattering
properties of the material at p, the incident lighting, L;, and a cosine factor:

wart



In other words, given a random direction «’, estimating the value of the
integral requires evaluating the terms in the integrand for that direction and
then scaling by a factor of 4n. (This factor, which is derived in Section
A.5.2, relates to the surface area of a unit sphere.) Since only a single
direction is considered, there is almost always error in the Monte Carlo
estimate compared to the true value of the integral. However, it can be
shown that estimates like this one are correct in expectation: informally,
that they give the correct result on average. Averaging multiple independent
estimates generally reduces this error—hence, the practice of taking
multiple samples per pixel.

The BSDF and the cosine factor of the estimate are easily evaluated,
leaving us with L;, the incident radiance, unknown. However, note that we

have found ourselves right back where we started with the initial call to
LiRandomWaTk (): we have a ray for which we would like to find the
incident radiance at the origin—that, a recursive call to LiRandomWaTk ()
will provide.

ImageInfinitelLight 767
Integrator::infinitelLights 23
Light 740

Light::Le() 743

Ray::d 95

SampledSpectrum 171
Surfacelnteraction::Le() 762
Vector3f 86

Before computing the estimate of the integral, we must consider terminating
the recursion. The RandomWalkIntegrator stops at a predetermined
maximum depth, maxDepth. Without this termination criterion, the
algorithm might never terminate (imagine, e.g., a hall-of-mirrors scene).
This member variable is initialized in the constructor based on a parameter
that can be set in the scene description file.

RandomWalkIntegrator Private Members = 33
int maxDepth;

Terminate random walk if maximum depth has been reached = 33
if (depth == maxDepth) return Le;



If the random walk is not terminated, the

Surfacelnteraction: :GetBSDF() method is called to find the BSDF at
the intersection point. It evaluates texture functions to determine surface
properties and then initializes a representation of the BSDF. It generally
needs to allocate memory for the objects that constitute the BSDF’s
representation; because this memory only needs to be active when
processing the current ray, the ScratchBuffer is provided to it to use for
its allocations.

Compute BSDF at random walk intersection point = 33
BSDF bsdf = isect.GetBSDF(ray, lambda, camera, scratchBuffer,
sampler);

Next, we need to sample a random direction w' to compute the estimate in
Equation (1.2). The SampleUniformSphere () function returns a uniformly
distributed direction on the unit sphere, given two uniform values in [0, 1)
that are provided here by the sampler.

Randomly sample direction leaving surface for random walk = 33
Point2f u = sampler.Get2D(); Vector3f wp =
SampleUniformSphere(u);

All the factors of the Monte Carlo estimate other than the incident radiance
can now be readily evaluated. The BSDF class provides an f () method that
evaluates the BSDF for a pair of specified directions, and the cosine of the
angle with the surface normal can be computed using the AbsDot ()
function, which returns the absolute value of the dot product between two
vectors. If the vectors are normalized, as both are here, this value is equal to
the absolute value of the cosine of the angle between them (Section 3.3.2).

It is possible that the BSDF will be zero-valued for the provided directions
and thus that fcos will be as well—for example, the BSDF is zero if the
surface is not transmissive but the two directions are on opposite sides of
it.> In that case, there is no reason to continue the random walk, since
subsequent points will make no contribution to the result.

Evaluate BSDF at surface for sampled direction = 33

SampledSpectrum fcos = bsdf.f(wo, wp) * AbsDot (wp,
isect.shading.n); if (!fcos) return Le;



AbsDot () 90

BSDF 544

BSDF::f() 545

Pi 1033

Point2f 92

RandomWalkIntegrator:: LiRandomWalk() 33
RandomWalkIntegrator:: maxDepth 34
SampledSpectrum 171
Sampler::Get2D() 470
SampleUniformSphere() 1016
ScratchBuffer 1078
Surfacelnteraction::GetBSDF() 682
Surfacelnteraction:: shading::n 139
Surfacelnteraction:: SpawnRay() 645
Vector3f 86

The remaining task is to compute the new ray leaving the surface in the
sampled direction w'. This task is handled by the SpawnRay () method,
which returns a ray leaving an intersection in the provided direction,
ensuring that the ray is sufficiently offset from the surface that it does not
incorrectly reintersect it due to round-off error. Given the ray, the recursive
call to LiRandomWalk () can be made to estimate the incident radiance,
which completes the estimate of Equation (1.2).

Recursively trace ray to estimate incident radiance at surface = 33

ray = isect.SpawnRay(wp); return Le + fcos * LiRandomWalk(ray,
Tambda, sampler, scratchBuffer, depth + 1) / (1 / (4 * Pi));
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(a) Rendered using the
RandomWalkIntegrator. (b) Rendered using the PathIntegrator, which follows the same general
approach but uses more sophisticated Monte Carlo techniques. The PathIntegrator gives a substantially
better image for roughly the same amount of work, with 54.5x reduction in mean squared error.

This simple approach has many shortcomings. For example, if the emissive
surfaces are small, most ray paths will not find any light and many rays will
need to be traced to form an accurate image. In the limit case of a point
light source, the image will be black, since there is zero probability of
intersecting such a light source. Similar issues apply with BSDF models



that scatter light in a concentrated set of directions. In the limiting case of a
perfect mirror that scatters incident light along a single direction, the
RandomWalkIntegrator will never be able to randomly sample that
direction.

Those issues and more can be addressed through more sophisticated
application of Monte Carlo integration techniques. In subsequent chapters,
we will introduce a succession of improvements that lead to much more
accurate results. The integrators that are defined in Chapters 13 through 15
are the culmination of those developments. All still build on the same basic
ideas used in the RandomWalkIntegrator, but are much more efficient and
robust than it is. Figure 1.20 compares the RandomWalkIntegrator to one
of the improved integrators and gives a sense of how much improvement is
possible.

PathIntegrator 833
RandomWalkIntegrator 33

1.4 HOW TO PROCEED THROUGH THIS BOOK

We have written this book assuming it will be read in roughly front-to-back
order. We have tried to minimize the number of forward references to ideas
and interfaces that have not yet been introduced, but we do assume that the
reader is acquainted with the previous content at any particular point in the
text. Some sections go into depth about advanced topics that some readers
may wish to skip over, particularly on first reading; each advanced section
is identified by an asterisk in its title.

Because of the modular nature of the system, the main requirements are that
the reader be familiar with the low-level classes like Point3f, Ray, and
SampledSpectrum; the interfaces defined by the abstract base classes listed
in Table 1.1; and the rendering loop that culminates in calls to integrators’
RayIntegrator::Li() methods. Given that knowledge, for example, the
reader who does not care about precisely how a camera model based on a
perspective projection matrix maps CameraSamp]es to rays can skip over
the implementation of that camera and can just remember that the

Camera: :GenerateRayDifferential () method somehow turns a
CameraSample into a RayDifferential.



The remainder of this book is divided into four main parts of a few chapters
each. First, Chapters 2 through 4 introduce the foundations of the system. A
brief introduction to the key ideas underlying Monte Carlo integration is
provided in Chapter 2, and Chapter 3 then describes widely used geometric
classes like Point3f, Ray, and Bounds3f. Chapter 4 introduces the physical
units used to measure light and the SampledSpectrum class that pbrt uses
to represent spectral distributions. It also discusses color, the human
perception of spectra, which affects how input is provided to the renderer
and how it generates output.

The second part of the book covers image formation and how the scene
geometry is represented. Chapter 5 defines the Camera interface and a few
different camera implementations before discussing the overall process of
turning spectral radiance arriving at the film into images. Chapter 6 then
introduces the Shape interface and gives implementations of a number of
shapes, including showing how to perform ray intersection tests with them.
Chapter 7 describes the implementations of the acceleration structures that
make ray tracing more efficient by skipping tests with primitives that a ray
can be shown to definitely not intersect. Finally, Chapter 8’s topic is the
Sampler classes that place samples on the image plane and provide random
samples for Monte Carlo integration.

The third part of the book is about light and how it scatters from surfaces
and participating media. Chapter 9 includes a collection of classes that
define a variety of types of reflection from surfaces. Materials, described in
Chapter 10, use these reflection functions to implement a number of
different surface types, such as plastic, glass, and metal. Spatial variation in
material properties (color, roughness, etc.) is modeled by textures, which
are also described in Chapter 10. Chapter 11 introduces the abstractions that
describe how light is scattered and absorbed in participating media, and
Chapter 12 then describes the interface for light sources and a variety of
light source implementations.

Bounds3f 97

Camera 206

Camera:: GenerateRayDifferential() 207
CameraSample 206

Point3f 92

RandomWalkIntegrator 33



Ray 95

RayDifferential 96
RayIntegrator::Li() 31
SampledSpectrum 171
Sampler 469

Shape 261

The last part brings all the ideas from the rest of the book together to
implement a number of interesting light transport algorithms. The
integrators in Chapters 13 and 14 represent a variety of different
applications of Monte Carlo integration to compute more accurate
approximations of the light transport equation than the
RandomWalkIntegrator. Chapter 15 then describes the implementation of
a high-performance integrator that runs on the GPU, based on all the same
classes that are used in the implementations of the CPU-based integrators.

Chapter 16, the last chapter of the book, provides a brief retrospective and
discussion of system design decisions along with a number of suggestions
for more far-reaching projects than those in the exercises. Appendices
contain more Monte Carlo sampling algorithms, describe utility functions,
and explain details of how the scene description is created as the input file
is parsed.

1.4.1 THE EXERCISES

At the end of each chapter you will find exercises related to the material
covered in that chapter. Each exercise is marked as one of three levels of
difficulty: @ An exercise that should take only an hour or two @ A reading
and/or implementation task that would be suitable for a course assignment
and should take between 10 and 20 hours of work e A suggested final
project for a course that will likely take 40 hours or more to complete

1.4.2 VIEWING THE IMAGES

Figures throughout the book compare the results of rendering the same
scene using different algorithms. As with previous editions of the book, we
have done our best to ensure that these differences are evident on the
printed page, though even high quality printing cannot match modern



display technology, especially now with the widespread availability of high
dynamic range displays.

We have therefore made all of the rendered images that are used in figures
available online. For example, the first image shown in this chapter as
Figure 1.1 is available at the URL pbr-book.org/4ed/fig/1.1. All of the
others follow the same naming scheme.

1.4.3 THE ONLINE EDITION

Starting on November 1, 2023, the full contents of this book will be freely
available online at pbr-book.org/4ed. (The previous edition of the book is
already available at that website.) The online edition includes additional
content that could not be included in the printed book due to page
constraints. All of that material is supplementary to the contents of this
book. For example, it includes the implementation of an additional camera
model, a kd-tree acceleration structure, and a full chapter on bidirectional
light transport algorithms. (Almost all of the additional material appeared in
the previous edition of the book.)

1.5 USING AND UNDERSTANDING THE CODE

The pbrt source code distribution is available from pbrt.org. The website
also includes additional documentation, images rendered with pbrt,
example scenes, errata, and links to a bug reporting system. We encourage
you to visit the website and subscribe to the pbrt mailing list.

pbrt is written in C++, but we have tried to make it accessible to non-C++
experts by limiting the use of esoteric features of the language. Staying
close to the core language features also helps with the system’s portability.
We make use of C++’s extensive standard library whenever it is applicable
but will not discuss the semantics of calls to standard library functions in
the text. Our expectation is that the reader will consult documentation of the
standard library as necessary.

We will occasionally omit short sections of pbrt’s source code from the
book. For example, when there are a number of cases to be handled, all with
nearly identical code, we will present one case and note that the code for the
remaining cases has been omitted from the text. Default class constructors



are generally not shown, and the text also does not include details like the
various #include directives at the start of each source file. All the omitted
code can be found in the pbrt source code distribution.

1.5.1 SOURCE CODE ORGANIZATION

The source code used for building pbrt is under the src directory in the
pbrt distribution. In that directory are src/ext, which has the source code
for various third-party libraries that are used by pbrt, and src/pbrt, which
contains pbrt’s source code. We will not discuss the third-party libraries’
implementations in the book.

The source files in the src/pbrt directory mostly consist of
implementations of the various interface types. For example, shapes.h and
shapes.cpp have implementations of the Shape interface, materials.h
and materials.cpp have materials, and so forth. That directory also holds
the source code for parsing pbrt’s scene description files.

The pbrt.h header file in src/pbrt is the first file that is included by all
other source files in the system. It contains a few macros and widely useful
forward declarations, though we have tried to keep it short and to minimize
the number of other headers that it includes in the interests of compile time
efficiency.

The src/pbrt directory also contains a number of subdirectories. They
have the following roles:

e base: Header files defining the interfaces for 12 of the common
interface types listed in Table 1.1 (Primitive and Integrator are
CPU-only and so are defined in files in the cpu directory).

e cmd: Source files containing the main() functions for the
executables that are built for pbrt. (Others besides the pbrt
executable include imgtool, which performs various image
processing operations, and pbrt test, which contains unit tests.)

e cpu: CPU-specific code, including Integrator implementations.

e gpu: GPU-specific source code, including functions for allocating
memory and launching work on the GPU.

e util: Lower-level utility code, most of it not specific to rendering.



o wavefront: Implementation of the WavefrontPathIntegrator,

which is introduced in Chapter 15. This integrator runs on both
CPUs and GPUs.

1.5.2 NAMING CONVENTIONS

Functions and classes are generally named using Camel case, with the first
letter of each word capitalized and no delineation for spaces. One exception
is some methods of container classes, which follow the naming convention
of the C++ standard library when they have matching functionality (e.g.,
size() and begin() and end() for iterators). Variables also use Camel
case, though with the first letter lowercase, except for a few global
variables.

We also try to match mathematical notation in naming: for example, we use
variables like p for points p and w for directions w. We will occasionally add
a p to the end of a variable to denote a primed symbol: wp for w'.
Underscores are used to indicate subscripts in equations: theta_ o for 0,

for example.

Our use of underscores is not perfectly consistent, however. Short variable
names often omit the underscore—we use wi for w; and we have already

seen the use of Li for L;. We also occasionally use an underscore to separate

a word from a lowercase mathematical symbol. For example, we use
Sample_f for a method that samples a function f rather than Samplef,
which would be more difficult to read, or Samp1eF, which would obscure
the connection to the function f (“where was the function F defined?”).

Integrator 22

Primitive 398

Shape 261
WavefrontPathIntegrator 939

1.5.3 POINTER OR REFERENCE?

C++ provides two different mechanisms for passing an object to a function
or method by reference: pointers and references. If a function argument is
not intended as an output variable, either can be used to save the expense of
passing the entire structure on the stack. The convention in pbrt is to use a



pointer when the argument will be completely changed by the function or
method, a reference when some of its internal state will be changed but it
will not be fully reinitialized, and const references when it will not be
changed at all. One important exception to this rule is that we will always
use a pointer when we want to be able to pass nul1ptr to indicate that a
parameter is not available or should not be used.

1.5.4 ABSTRACTION VERSUS EFFICIENCY

One of the primary tensions when designing interfaces for software systems
is making a reasonable trade-off between abstraction and efficiency. For
example, many programmers religiously make all data in all classes
private and provide methods to obtain or modify the values of the data
items. For simple classes (e.g., Vector3f), we believe that approach
needlessly hides a basic property of the implementation—that the class
holds three floating-point coordinates—that we can reasonably expect to
never change. Of course, using no information hiding and exposing all
details of all classes’ internals leads to a code maintenance nightmare, but
we believe that there is nothing wrong with judiciously exposing basic
design decisions throughout the system. For example, the fact that a Ray is
represented with a point, a vector, a time, and the medium it is in is a
decision that does not need to be hidden behind a layer of abstraction. Code
elsewhere is shorter and easier to understand when details like these are
exposed.

An important thing to keep in mind when writing a software system and
making these sorts of trade-offs is the expected final size of the system.
pbrt is roughly 70,000 lines of code and it is never going to grow to be a
million lines of code; this fact should be reflected in the amount of
information hiding used in the system. It would be a waste of programmer
time (and likely a source of runtime inefficiency) to design the interfaces to
accommodate a system of a much higher level of complexity.

1.5.5 pstd

We have reimplemented a subset of the C++ standard library in the pstd
namespace; this was necessary in order to use those parts of it
interchangeably on the CPU and on the GPU. For the purposes of reading



pbrt’s source code, anything in pstd provides the same functionality with
the same type and methods as the corresponding entity in std. We will
therefore not document usage of pstd in the text here.

1.5.6 ALLOCATORS

Almost all dynamic memory allocation for the objects that represent the
scene in pbrt is performed using an instance of an AlTocator that is
provided to the object creation methods. In pbrt, AlTocator is shorthand
for the C++ standard library’s pmr: :polymorphic_allocator type. Its
definition is in pbrt.h so that it is available to all other source files.

Define Allocator =
using Allocator =
pstd::pmr::polymorphic_allocator<std::byte>;

std::pmr::polymorphic_allocator implementations provide a few
methods for allocating and freeing objects. These three are used widely in
pbrt:®

Ray 95
Vector3f 86

void *allocate bytes(size t nbytes, size t alignment);
template <class T> T *allocate object(size t n = 1);
template <class T, class.. Args> T *new_object(Args &&..
args);

The first, alTocate bytes(), allocates the specified number of bytes of
memory. Next, allocate_object () allocates an array of n objects of the
specified type T, initializing each one with its default constructor. The final
method, new_object (), allocates a single object of type T and calls its
constructor with the provided arguments. There are corresponding methods
for freeing each type of allocation: deallocate bytes(),
deallocate object(), and delete object().

A tricky detail related to the use of allocators with data structures from the
C++ standard library is that a container’s allocator is fixed once its



constructor has run. Thus, if one container is assigned to another, the target
container’s allocator is unchanged even though all the values it stores are
updated. (This is the case even with C++’s move semantics.) Therefore, it is
common to see objects’ constructors in pbrt passing along an allocator in
member initializer lists for containers that they store even if they are not yet
ready to set the values stored in them.

Using an explicit memory allocator rather than direct calls to new and
delete has a few advantages. Not only does it make it easy to do things
like track the total amount of memory that has been allocated, but it also
makes it easy to substitute allocators that are optimized for many small
allocations, as is useful when building acceleration structures in Chapter 7.
Using allocators in this way also makes it easy to store the scene objects in
memory that is visible to the GPU when GPU rendering is being used.

1.5.7 DYNAMIC DISPATCH

As mentioned in Section 1.3, virtual functions are generally not used for
dynamic dispatch with polymorphic types in pbrt (the main exception
being the Integrators). Instead, the TaggedPointer class is used to
represent a pointer to one of a specified set of types; it includes machinery
for runtime type identification and thence dynamic dispatch. (Its
implementation can be found in Appendix B.4.4.) Two considerations
motivate its use.

First, in C++, an instance of an object that inherits from an abstract base
class includes a hidden virtual function table pointer that is used to resolve
virtual function calls. On most modern systems, this pointer uses eight bytes
of memory. While eight bytes may not seem like much, we have found that
when rendering complex scenes with previous versions of pbrt, a
substantial amount of memory would be used just for virtual function
pointers for shapes and primitives. With the TaggedPointer class, there is
no incremental storage cost for type information.

The other problem with virtual function tables is that they store function
pointers that point to executable code. Of course, that’s what they are
supposed to do, but this characteristic means that a virtual function table
can be valid for method calls from either the CPU or from the GPU, but not



from both simultaneously, since the executable code for the different
processors is stored at different memory locations. When using the GPU for
rendering, it is useful to be able to call methods from both processors,
however.

For all the code that just calls methods of polymorphic objects, the use of
pbrt’s Tagged Pointer in place of virtual functions makes no difference
other than the fact that method calls are made using the . operator, just as
would be used for a C++ reference. Section 4.5.1, which introduces
Spectrum, the first class based on TaggedPointer that occurs in the book,
has more details about how pbrt’s dynamic dispatch scheme is
implemented.

Spectrum 165
TaggedPointer 1073

1.5.8 CODE OPTIMIZATION

We have tried to make pbrt efficient through the use of well-chosen
algorithms rather than through local micro-optimizations, so that the system
can be more easily understood. However, efficiency is an integral part of
rendering, and so we discuss performance issues throughout the book.

For both CPUs and GPUs, processing performance continues to grow more
quickly than the speed at which data can be loaded from main memory into
the processor. This means that waiting for values to be fetched from
memory can be a major performance limitation. The most important
optimizations that we discuss relate to minimizing unnecessary memory
access and organizing algorithms and data structures in ways that lead to
coherent access patterns; paying attention to these issues can speed up
program execution much more than reducing the total number of
instructions executed.

1.5.9 DEBUGGING AND LOGGING

Debugging a renderer can be challenging, especially in cases where the
result is correct most of the time but not always. pbrt includes a number of
facilities to ease debugging.



One of the most important is a suite of unit tests. We have found unit testing
to be invaluable in the development of pbrt for the reassurance it gives that
the tested functionality is very likely to be correct. Having this assurance
relieves the concern behind questions during debugging such as “am [ sure
that the hash table that is being used here is not itself the source of my
bug?” Alternatively, a failing unit test is almost always easier to debug than
an incorrect image generated by the renderer; many of the tests have been
added along the way as we have debugged pbrt. Unit tests for a file
code.cpp are found in code_tests.cpp. All the unit tests are executed by
an invocation of the pbrt_test executable and specific ones can be
selected via command-line options.

There are many assertions throughout the pbrt codebase, most of them not
included in the book text. These check conditions that should never be true
and issue an error and exit immediately if they are found to be true at
runtime. (See Section B.3.6 for the definitions of the assertion macros used
in pbrt.) A failed assertion gives a first hint about the source of an error;
like a unit test, an assertion helps focus debugging, at least with a starting
point. Some of the more computationally expensive assertions in pbrt are
only enabled for debug builds; if the renderer is crashing or otherwise
producing incorrect output, it is worthwhile to try running a debug build to
see if one of those additional assertions fails and yields a clue.

We have also endeavored to make the execution of pbrt at a given pixel
sample deterministic. One challenge with debugging a renderer is a crash
that only happens after minutes or hours of rendering computation. With
deterministic execution, rendering can be restarted at a single pixel sample
in order to more quickly return to the point of a crash. Furthermore, upon a
crash pbrt will print a message such as “Rendering failed at pixel (16, 27)
sample 821. Debug with --debugstart 16,27,821”. The values printed after
“debugstart” depend on the integrator being used, but are sufficient to
restart its computation close to the point of a crash.

Finally, it is often useful to print out the values stored in a data structure
during the course of debugging. We have implemented ToString()
methods for nearly all of pbrt’s classes. They return a std: :string
representation of them so that it is easy to print their full object state during



program execution. Furthermore, pbrt’s custom Printf() and
StringPrintf() functions (Section B.3.3) automatically use the string
returned by ToString() for an object when a %s specifier is found in the
formatting string.

Printf() 1064
StringPrintf() 1064

1.5.10 PARALLELISM AND THREAD SAFETY

In pbrt (as is the case for most ray tracers), the vast majority of data at
rendering time is read only (e.g., the scene description and texture images).
Much of the parsing of the scene file and creation of the scene
representation in memory is done with a single thread of execution, so there
are few synchronization issues during that phase of execution.” During
rendering, concurrent read access to all the read-only data by multiple
threads works with no problems on both the CPU and the GPU; we only
need to be concerned with situations where data in memory is being
modified.

As a general rule, the low-level classes and structures in the system are not
thread-safe. For example, the Point3f class, which stores three float
values to represent a point in 3D space, is not safe for multiple threads to
call methods that modify it at the same time. (Multiple threads can use
Point3fs as read-only data simultaneously, of course.) The runtime
overhead to make Point3f thread-safe would have a substantial effect on
performance with little benefit in return.

The same is true for classes like Vector3f, Normal3f, SampledSpectrum,
Transform, Quaternion, and SurfaceInteraction. These classes are
usually either created at scene construction time and then used as read-only
data or allocated on the stack during rendering and used only by a single
thread.

The utility classes ScratchBuffer (used for high-performance temporary
memory allocation) and RNG (pseudo-random number generation) are also
not safe for use by multiple threads; these classes store state that is modified
when their methods are called, and the overhead from protecting



modification to their state with mutual exclusion would be excessive
relative to the amount of computation they perform. Consequently, in code
like the ImageTilelntegrator::Render() method earlier, pbrt allocates
per-thread instances of these classes on the stack.

With two exceptions, implementations of the base types listed in Table 1.1
are safe for multiple threads to use simultaneously. With a little care, it is
usually straightforward to implement new instances of these base classes so
they do not modify any shared state in their methods.

The first exceptions are the Light Preprocess () method
implementations. These are called by the system during scene construction,
and implementations of them generally modify shared state in their objects.
Therefore, it is helpful to allow the implementer to assume that only a
single thread will call into these methods. (This is a separate issue from the
consideration that implementations of these methods that are
computationally intensive may use ParallelFor() to parallelize their
computation.) The second exception is Sampler class implementations;
their methods are also not expected to be thread-safe. This is another
instance where this requirement would impose an excessive performance
and scalability impact; many threads simultaneously trying to get samples
from a single Samp1er would limit the system’s overall performance.
Therefore, as described in Section 1.3.4, a unique Sampler is created for
each rendering thread using Sampler::Clone().

All stand-alone functions in pbrt are thread-safe (as long as multiple
threads do not pass pointers to the same data to them).

ImageTilelntegrator::Render() 25
Light 740
Light::Preprocess() 743
Normal3f 94
ParallelFor() 1107
Point3f 92

RNG 1054
SampledSpectrum 171
Sampler 469
Sampler::Clone() 470
ScratchBuffer 1078
Surfacelnteraction 138



Transform 120
Vector3f 86

1.5.11 EXTENDING THE SYSTEM

One of our goals in writing this book and building the pbrt system was to
make it easier for developers and researchers to experiment with new (or
old!) ideas in rendering. One of the great joys in computer graphics is
writing new software that makes a new image; even small changes to the
system can be fun to experiment with. The exercises throughout the book
suggest many changes to make to the system, ranging from small tweaks to
major open-ended research projects. Section C.4 in Appendix C has more
information about the mechanics of adding new implementations of the
interfaces listed in Table 1.1.

1.5.12 BUGS

Although we made every effort to make pbrt as correct as possible through
extensive testing, it is inevitable that some bugs are still present.

If you believe you have found a bug in the system, please do the following:

1. Reproduce the bug with an unmodified copy of the latest version
of pbrt.

2. Check the online discussion forum and the bug-tracking system at
pbrt.org. Your issue may be a known bug, or it may be a
commonly misunderstood feature.

3. Try to find the simplest possible test case that demonstrates the
bug. Many bugs can be demonstrated by scene description files
that are just a few lines long, and debugging is much easier with a
simple scene than a complex one.

4. Submit a detailed bug report using our online bug-tracking
system. Make sure that you include the scene file that
demonstrates the bug and a detailed description of why you think
pbrt is not behaving correctly with the scene. If you can provide
a patch that fixes the bug, all the better!

We will periodically update the pbrt source code repository with bug fixes
and minor enhancements. (Be aware that we often let bug reports



accumulate for a few months before going through them; do not take this as
an indication that we do not value them!) However, we will not make major
changes to the pbrt source code so that it does not diverge from the system
described here in the book.

1.6 A BRIEF HISTORY OF PHYSICALLY BASED
RENDERING

Through the early years of computer graphics in the 1970s, the most
important problems to solve were fundamental issues like visibility
algorithms and geometric representations. When a megabyte of RAM was a
rare and expensive luxury and when a computer capable of a million
floating-point operations per second cost hundreds of thousands of dollars,
the complexity of what was possible in computer graphics was
correspondingly limited, and any attempt to accurately simulate physics for
rendering was infeasible.

As computers have become more capable and less expensive, it has become
possible to consider more computationally demanding approaches to
rendering, which in turn has made physically based approaches viable. This
progression is neatly explained by Blinn’s law: “as technology advances,
rendering time remains constant.”

Jim Blinn’s simple statement captures an important constraint: given a
certain number of images that must be rendered (be it a handful for a
research paper or over a hundred thousand for a feature film), it is only
possible to take so much processing time for each one. One has a certain
amount of computation available and one has some amount of time
available before rendering must be finished, so the maximum computation
per image is necessarily limited.

Blinn’s law also expresses the observation that there remains a gap between
the images people would like to be able to render and the images that they
can render: as computers have become faster, content creators have
continued to use increased computational capability to render more
complex scenes with more sophisticated rendering algorithms, rather than
rendering the same scenes as before, just more quickly. Rendering
continues to consume all computational capabilities made available to it.



1.6.1 RESEARCH

Physically based approaches to rendering started to be seriously considered
by graphics researchers in the 1980s. Whitted’s paper (1980) introduced the
idea of using ray tracing for global lighting effects, opening the door to
accurately simulating the distribution of light in scenes. The rendered
images his approach produced were markedly different from any that had
been seen before, which spurred excitement about this approach.

Another notable early advancement in physically based rendering was Cook
and Torrance’s reflection model (1981, 1982), which introduced microfacet
reflection models to graphics. Among other contributions, they showed that
accurately modeling microfacet reflection made it possible to render metal
surfaces accurately; metal was not well rendered by earlier approaches.

Shortly afterward, Goral et al. (1984) made connections between the
thermal transfer literature and rendering, showing how to incorporate global
diffuse lighting effects using a physically based approximation of light
transport. This method was based on finite-element techniques, where areas
of surfaces in the scene exchanged energy with each other. This approach
came to be referred to as “radiosity,” after a related physical unit. Following
work by Cohen and Greenberg (1985) and Nishita and Nakamae (1985)
introduced important improvements. Once again, a physically based
approach led to images with lighting effects that had not previously been
seen in rendered images, which led to many researchers pursuing
improvements in this area.

While the radiosity approach was based on physical units and conservation
of energy, in time it became clear that it would not lead to practical
rendering algorithms: the asymptotic computational complexity was a
difficult-to-manage O(n?), and it was necessary to retessellate geometric
models along shadow boundaries for good results; researchers had difficulty
developing robust and efficient tessellation algorithms for this purpose.
Radiosity’s adoption in practice was limited.

During the radiosity years, a small group of researchers pursued physically
based approaches to rendering that were based on ray tracing and Monte
Carlo integration. At the time, many looked at their work with skepticism;
objectionable noise in images due to Monte Carlo integration error seemed



unavoidable, while radiosity-based methods quickly gave visually pleasing
results, at least on relatively simple scenes.

In 1984, Cook, Porter, and Carpenter introduced distributed ray tracing,
which generalized Whitted’s algorithm to compute motion blur and defocus
blur from cameras, blurry reflection from glossy surfaces, and illumination
from area light sources (Cook et al. 1984), showing that ray tracing was
capable of generating a host of important soft lighting effects.

Shortly afterward, Kajiya (1986) introduced path tracing; he set out a
rigorous formulation of the rendering problem (the light transport integral
equation) and showed how to apply Monte Carlo integration to solve it.
This work required immense amounts of computation: to render a 256 x
256 pixel image of two spheres with path tracing required 7 hours of
computation on an IBM 4341 computer, which cost roughly $280,000 when
it was first released (Farmer 1981). With von Herzen, Kajiya also
introduced the volume-rendering equation to graphics (Kajiya and von
Herzen 1984); this equation describes the scattering of light in participating
media.

Both Cook et al.’s and Kajiya’s work once again led to images unlike any
that had been seen before, demonstrating the value of physically based
methods. In subsequent years, important work on Monte Carlo for realistic
image synthesis was described in papers by Arvo and Kirk (1990) and Kirk
and Arvo (1991). Shirley’s Ph.D. dissertation (1990) and follow-on work by
Shirley et al. (1996) were important contributions to Monte Carlo—based
efforts. Hall’s book, Illumination and Color in Computer Generated
Imagery (1989), was one of the first books to present rendering in a
physically based framework, and Andrew Glassner’s Principles of Digital
Image Synthesis laid out foundations of the field (1995). Ward’s Radiance
rendering system was an early open source physically based rendering
system, focused on lighting design (Ward 1994), and Slusallek’s Vision
renderer was designed to bridge the gap between physically based
approaches and the then widely used RenderMan interface, which was not
physically based (Slusallek 1996).

Following Torrance and Cook’s work, much of the research in the Program
of Computer Graphics at Cornell University investigated physically based



approaches. The motivations for this work were summarized by Greenberg
et al. (1997), who made a strong argument for a physically accurate
rendering based on measurements of the material properties of real-world
objects and on deep understanding of the human visual system.

A crucial step forward for physically based rendering was Veach’s work,
described in detail in his dissertation (Veach 1997). Veach advanced key
theoretical foundations of Monte Carlo rendering while also developing
new algorithms like multiple importance sampling, bidirectional path
tracing, and Metropolis light transport that greatly improved its efficiency.
Using Blinn’s law as a guide, we believe that these significant
improvements in efficiency were critical to practical adoption of these
approaches.

Around this time, as computers became faster and more parallel, a number
of researchers started pursuing real-time ray tracing; Wald, Slusallek, and
Benthin wrote an influential paper that described a highly optimized ray
tracer that was much more efficient than previous ray tracers (Wald et al.
2001b). Many subsequent papers introduced increasingly more efficient
ray-tracing algorithms. Though most of this work was not physically based,
the results led to great progress in ray-tracing acceleration structures and
performance of the geometric components of ray tracing. Because
physically based rendering generally makes substantial use of ray tracing,
this work has in turn had the same helpful effect as faster computers have,
making it possible to render more complex scenes with physical
approaches.

We end our summary of the key steps in the research progress of physically
based rendering at this point, though much more has been done. The
“Further Reading” sections in all the subsequent chapters of this book cover
this work in detail.

1.6.2 PRODUCTION

With more capable computers in the 1980s, computer graphics could start to
be used for animation and film production. Early examples include Jim
Blinn’s rendering of the Voyager 2 flyby of Saturn in 1981 and visual



effects in the movies Star Trek II: The Wrath of Khan (1982), Tron (1982),
and The Last Starfighter (1984).

In early production use of computer-generated imagery, rasterization-based
rendering (notably, the Reyes algorithm (Cook et al. 1987)) was the only
viable option. One reason was that not enough computation was available
for complex reflection models or for the global lighting effects that
physically based ray tracing could provide. More significantly, rasterization
had the important advantage that it did not require that the entire scene
representation fit into main memory.

When RAM was much less plentiful, almost any interesting scene was too
large to fit into main memory. Rasterization-based algorithms made it
possible to render scenes while having only a small subset of the full scene
representation in memory at any time. Global lighting effects are difficult to
achieve if the whole scene cannot fit into main memory; for many years,
with limited computer systems, content creators effectively decided that
geometric and texture complexity was more important to visual realism
than lighting complexity (and in turn physical accuracy).

Many practitioners at this time also believed that physically based
approaches were undesirable for production: one of the great things about
computer graphics is that one can cheat reality with impunity to achieve a
desired artistic effect. For example, lighting designers on regular movies
often struggle to place light sources so that they are not visible to the
camera or spend considerable effort placing a light to illuminate an actor
without shining too much light on the background. Computer graphics
offers the opportunity to, for example, implement a light source model that
shines twice as much light on a character as on a background object. For
many years, this capability seemed much more useful than physical
accuracy.

Visual effects practitioners who had the specific need to match rendered
imagery to filmed real-world environments pioneered capturing real-world
lighting and shading effects and were early adopters of physically based
approaches in the late 1990s and early 2000s. (See Snow (2010) for a
history of ILM’s early work in this area, for example.) During this time,
Blue Sky Studios adopted a physically based pipeline (Ohmer 1997). The



photorealism of an advertisement they made for a Braun shaver in 1992
caught the attention of many, and their short film, Bunny, shown in 1998,
was an early example of Monte Carlo global illumination used in
production. Its visual look was substantially different from those of films
and shorts rendered with Reyes and was widely noted. Subsequent feature
films from Blue Sky also followed this approach. Unfortunately, Blue Sky
never published significant technical details of their approach, limiting their
wider influence.

During the early 2000s, the mental ray ray-tracing system was used by a
number of studios, mostly for visual effects. It was an efficient ray tracer
with sophisticated global illumination algorithm implementations. The main
focus of its developers was computer-aided design and product design
applications, so it lacked features like the ability to handle extremely
complex scenes and the enormous numbers of texture maps that film
production demanded.

After Bunny, another watershed moment came in 2001, when Marcos
Fajardo came to the SIGGRAPH conference with an early version of his
Arnold renderer. He showed images in the Monte Carlo image synthesis
course that not only had complex geometry, textures, and global
illumination but also were rendered in tens of minutes. While these scenes
were not of the complexity of those used in film production at the time, his
results showed many the creative opportunities from the combination of
global illumination and complex scenes.

Fajardo brought Arnold to Sony Pictures Imageworks, where work started
to transform it to a production-capable physically based rendering system.
Many issues had to be addressed, including efficient motion blur,
programmable shading, support for massively complex scenes, and deferred
loading of scene geometry and textures. Arnold was first used on the movie
Monster House and is now available as a commercial product.

In the early 2000s, Pixar’s RenderMan renderer started to support hybrid
rasterization and ray-tracing algorithms and included a number of
innovative algorithms for computing global illumination solutions in
complex scenes. RenderMan was recently rewritten to be a physically based



ray tracer, following the general system architecture of pbrt (Christensen
2015).
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Gravity (2013) featured spectacular computer-generated imagery of a realistic space
environment with volumetric scattering and large numbers of anisotropic metal surfaces. The image was
generated using Arnold, a physically based rendering system that accounts for global illumination. Image
courtesy of Warner Bros. and Framestore.

One of the main reasons that physically based Monte Carlo approaches to
rendering have been successful in production is that they end up improving
the productivity of artists. These have been some of the important factors:

e The algorithms involved have essentially just a single quality
knob: how many samples to take per pixel; this is extremely
helpful for artists. Ray-tracing algorithms are also suited to both
progressive refinement and quickly computing rough previews by
taking just a few samples per pixel; rasterization-based renderers
do not have equivalent capabilities.

* Adopting physically based reflection models has made it easier to
design surface materials. Earlier, when reflection models that did
not necessarily conserve energy were used, an object might be
placed in a single lighting environment while its surface reflection
parameters were adjusted. The object might look great in that
environment, but it would often appear completely wrong when
moved to another lighting environment because surfaces were
reflecting too little or too much energy: surface properties had
been set to unreasonable values.

e The quality of shadows computed with ray tracing is much better
than it is with rasterization. Eliminating the need to tweak shadow
map resolutions, biases, and other parameters has eliminated an
unpleasant task of lighting artists. Further, physically based
methods bring with them bounce lighting and other soft-lighting
effects from the method itself, rather than as an artistically tuned
manual process.



As of this writing, physically based rendering is used widely for producing
computer-generated imagery for movies; Figures 1.21 and 1.22 show
images from two recent movies that used physically based approaches.

In a seminal early paper, Arthur Appel (1968) first described the basic idea
of ray tracing to solve the hidden surface problem and to compute shadows
in polygonal scenes. Goldstein and Nagel (1971) later showed how ray
tracing could be used to render scenes with quadric surfaces. Kay and
Greenberg (1979) described a ray-tracing approach to rendering
transparency, and Whitted’s seminal CACM article described a general
recursive ray-tracing algorithm that accurately simulates reflection and
refraction from specular surfaces and shadows from point light sources
(Whitted 1980). Whitted has recently written an article describing
developments over the early years of ray tracing (Whitted 2020).
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This image from Alita: Battle Angel (2019) was also rendered using a physically based
rendering system. Image by Weta Digital, © 2018 Twentieth Century Fox Film Corporation. All Rights
Reserved.

In addition to the ones discussed in Section 1.6, notable early books on
physically based rendering and image synthesis include Cohen and
Wallace’s Radiosity and Realistic Image Synthesis (1993), Sillion and
Puech’s Radiosity and Global Illumination (1994), and Ashdown’s
Radiosity: A Programmer’s Perspective (1994), all of which primarily
describe the finite-element radiosity method. The course notes from the
Monte Carlo ray-tracing course at SIGGRAPH have a wealth of practical
information (Jensen et al. 2001a, 2003), much of it still relevant, now nearly
twenty years later.

In a paper on ray-tracing system design, Kirk and Arvo (1988) suggested
many principles that have now become classic in renderer design. Their
renderer was implemented as a core kernel that encapsulated the basic
rendering algorithms and interacted with primitives and shading routines
via a carefully constructed object-oriented interface. This approach made it



easy to extend the system with new primitives and acceleration methods.
pbrt’s design is based on these ideas.

To this day, a good reference on basic ray-tracer design is Introduction to
Ray Tracing (Glassner 1989a), which describes the state of the art in ray
tracing at that time and has a chapter by Heckbert that sketches the design
of a basic ray tracer. More recently, Shirley and Morley’s Realistic Ray
Tracing (2003) offers an easy-to-understand introduction to ray tracing and
includes the complete source code to a basic ray tracer. Suffern’s book
(2007) also provides a gentle introduction to ray tracing. Shirley’s Ray
Tracing in One Weekend series (2020) is an accessible introduction to the
joy of writing a ray tracer.

Researchers at Cornell University have developed a rendering testbed over
many years; its design and overall structure were described by Trumbore,
Lytle, and Greenberg (1993). Its predecessor was described by Hall and
Greenberg (1983). This system is a loosely coupled set of modules and
libraries, each designed to handle a single task (ray—object intersection
acceleration, image storage, etc.) and written in a way that makes it easy to
combine appropriate modules to investigate and develop new rendering
algorithms. This testbed has been quite successful, serving as the
foundation for much of the rendering research done at Cornell through the
1990s.

Radiance was the first widely available open source renderer based
fundamentally on physical quantities. It was designed to perform accurate
lighting simulation for architectural design. Ward described its design and
history in a paper and a book (Ward 1994; Larson and Shakespeare 1998).
Radiance is designed in the UNIX style, as a set of interacting programs,
each handling a different part of the rendering process. This general type of
rendering architecture was first described by Duff (1985).

Glassner’s (1993) Spectrum rendering architecture also focuses on
physically based rendering, approached through a signal-processing-based
formulation of the problem. It is an extensible system built with a plug-in
architecture; pbrt’s approach of using parameter/value lists for initializing
implementations of the main abstract interfaces is similar to Spectrum’s.



One notable feature of Spectrum is that all parameters that describe the
scene can be functions of time.

Slusallek and Seidel (1995, 1996; Slusallek 1996) described the Vision
rendering system, which is also physically based and designed to support a
wide variety of light transport algorithms. In particular, it had the ambitious
goal of supporting both Monte Carlo and finite-element-based light
transport algorithms.

Many papers have been written that describe the design and implementation
of other rendering systems, including renderers for entertainment and
artistic applications. The Reyes architecture, which forms the basis for
Pixar’s RenderMan renderer, was first described by Cook et al. (1987), and
a number of improvements to the original algorithm have been summarized
by Apodaca and Gritz (2000). Gritz and Hahn (1996) described the BMRT
ray tracer. The renderer in the Maya modeling and animation system was
described by Sung et al. (1998), and some of the internal structure of the
mental ray renderer is described in Driemeyer and Herken’s book on its
API (Driemeyer and Herken 2002). The design of the high-performance
Manta interactive ray tracer was described by Bigler et al. (2006).

OptiX introduced a particularly interesting design approach for high-
performance ray tracing: it is based on doing JIT compilation at runtime to
generate a specialized version of the ray tracer, intermingling user-provided
code (such as for material evaluation and sampling) and renderer-provided
code (such as high-performance ray—object intersection). It was described
by Parker et al. (2010).

More recently, Eisenacher et al. discussed the ray sorting architecture of
Disney’s Hyperion renderer (Eisenacher et al. 2013), and Lee et al. have
written about the implementation of the MoonRay rendering system at
DreamWorks (Lee et al. 2017). The implementation of the Iray ray tracer
was described by Keller et al. (2017).

In 2018, a special issue of ACM Transactions on Graphics included papers
describing the implementations of five rendering systems that are used for
feature film production. These papers are full of details about the various
renderers; reading them is time well spent. They include Burley et al.’s
description of Disney’s Hyperion renderer (2018), Christensen et al. on



Pixar’s modern RenderMan (2018), Fascione et al. describing Weta
Digital’s Manuka (2018), Georgiev et al. on Solid Angle’s version of
Arnold (2018) and Kulla et al. on the version of Arnold used at Sony
Pictures Imageworks (2018).

Whereas standard rendering algorithms generate images from a 3D scene
description, the Mitsuba 2 system is engineered around the corresponding
inverse problem. It computes derivatives with respect to scene parameters
using JIT-compiled kernels that efficiently run on GPUs and CPUs. These
kernels are then used in the inner loop of an optimization algorithm to
reconstruct 3D scenes that are consistent with user-provided input images.
This topic is further discussed in Section 16.3.1. The system’s design and
implementation was described by Nimier-David et al. (2019).

1.1 A good way to gain an understanding of pbrt is to follow the process of computing the
radiance value for a single ray in a debugger. Build a version of pbrt with debugging
symbols and set up your debugger to run pbrt with a not-too-complex scene. Set
breakpoints in the ImageTilelntegrator::Render() method and trace through the
process of how a ray is generated, how its radiance value is computed, and how its
contribution is added to the image. The first time you do this, you may want to specify
that only a single thread of execution should be used by providing --nthreads 1 as
command-line arguments to pbrt; doing so ensures that all computation is done in the
main processing thread, which may make it easier to understand what is going on,
depending on how easy your debugger makes it to step through the program when it is
running multiple threads.

As you gain more understanding about the details of the system later in the book, repeat
this process and trace through particular parts of the system more carefully.

ImageTileIntegrator::Render() 25

1 The example code in this section is merely illustrative and is not part of pbrt itself.

2 Although digital sensors are now more common than physical film, we will use “film” to encompass both in cases where either
could be used.

3 Although ray tracing’s logarithmic complexity is often heralded as one of its key strengths, this complexity is typically only true
on average. A number of ray-tracing algorithms that have guaranteed logarithmic running time have been published in the
computational geometry literature, but these algorithms only work for certain types of scenes and have very expensive
preprocessing and storage requirements. Szirmay-Kalos and Marton provide pointers to the relevant literature (Szirmay-
Kalos and Marton 1998). In practice, the ray intersection algorithms presented in this book are sublinear, but without
expensive preprocessing and huge memory usage it is always possible to construct worst-case scenes where ray tracing runs
in O(mn) time. One consolation is that scenes representing realistic environments generally do not exhibit this worst-case
behavior.

4 At the time of writing, these capabilities are only available on NVIDIA hardware, but it would not be too difficult to port pbrt
to other architectures that provide them in the future.



5 It would be easy enough to check if the BSDF was only reflective and to only sample directions on the same side of the surface
as the ray, but for this simple integrator we will not bother.

6 Because pmr: :polymorphic_allocator is a recent addition to C++ that is not yet widely used, yet is widely used in pbrt, we
break our regular habit of not documenting standard library functionality in the text here.

7 Exceptions include the fact that we try to load image maps and binary geometry files in parallel, some image resampling
performed on texture images, and construction of one variant of the BVHAggregate, though all of these are highly localized.
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Rendering is full of integration problems. In addition to the light transport equation (1.1), in the
following chapters we will see that integral equations also describe a variety of additional quantities
related to light, including the sensor response in a camera, the attenuation and scattering of light in
participating media, and scattering from materials like skin. These integral equations generally do not
have analytic solutions, so we must turn to numerical methods. Although standard numerical
integration techniques like trapezoidal integration or Gaussian quadrature are effective at solving low-
dimensional smooth integrals, their rate of convergence is poor for the higher dimensional and
discontinuous integrals that are common in rendering. Monte Carlo integration techniques provide
one solution to this problem. They use random sampling to evaluate integrals with a convergence rate
that is independent of the dimensionality of the integrand.

Monte Carlo integration1 has the useful property that it only requires the ability to evaluate an
integrand f(x) at arbitrary points in the domain in order to estimate the value of its integral / f(x) dx.
This property not only makes Monte Carlo easy to implement but also makes the technique applicable
to a broad variety of integrands. It has a natural extension to multidimensional functions; in Chapter
13, we will see that the light transport algorithm implemented in the RandomWalkIntegrator can be
shown to be estimating the value of an infinite-dimensional integral.

Judicious use of randomness has revolutionized the field of algorithm design. Randomized algorithms
fall broadly into two classes: Las Vegas and Monte Carlo. Las Vegas algorithms are those that use
randomness but always give the same result in the end (e.g., choosing a random array entry as the
pivot element in Quicksort). Monte Carlo algorithms, on the other hand, give different results
depending on the particular random numbers used along the way but give the right answer on
average. So, by averaging the results of several runs of a Monte Carlo algorithm (on the same input), it
is possible to find a result that is statistically very likely to be close to the true answer.
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The following sections discuss the basic principles of Monte Carlo integration, focusing on those that
are widely used in pbrt. See also Appendix A, which has the implementations of additional Monte
Carlo sampling functions that are more rarely used in the system.

2.1 MONTE CARLO: BASICS

Because Monte Carlo integration is based on randomization, we will start this chapter with a brief
review of ideas from probability and statistics that provide the foundations of the approach. Doing so



will allow us to introduce the basic Monte Carlo algorithm as well as mathematical tools for
evaluating its error.

2.1.1 BACKGROUND AND PROBABILITY REVIEW

We will start by defining some terms and reviewing basic ideas from probability. We assume that the
reader is already familiar with basic probability concepts; readers needing a more complete
introduction to this topic should consult a textbook such as Sheldon Ross’s Introduction to Probability
Models (2002).

A random variable X is a value chosen by some random process. We will generally use capital letters to
denote random variables, with exceptions made for a few Greek symbols that represent special
random variables. Random variables are always drawn from some domain, which can be either

discrete (e.g., a fixed, finite set of possibilities) or continuous (e.g., the real numbers R). Applying a
function fto a random variable X results in a new random variable Y = f{X).

For example, the result of a roll of a die is a discrete random variable sampled from the set of events X;

€ {1, 2, 3, 4, 5, 6}. Each event has a probability |, art, and the sum of probability ¥ p; is necessarily
one. A random variable like this one that has the same probability for all potential values of it is said
to be uniform. A function p(X) that gives a discrete random variable’s probability is termed a

il
probability mass function (PMF), and so we could equivalently write # (X) = Zin this case.

Two random variables are independent if the probability of one does not affect the probability of the
other. In this case, the joint probability p(X, Y) of two random variables is given by the product of their
probabilities:

pX, Y) = p(X) p(Y).

For example, two random variables representing random samples of the six sides of a die are
independent.

For dependent random variables, one’s probability affects the other’s. Consider a bag filled with some
number of black balls and some number of white balls. If we randomly choose two balls from the bag,
the probability of the second ball being white is affected by the color of the first ball since its choice
changes the number of balls of one type left in the bag. We will say that the second ball’s probability is
conditioned on the choice of the first one. In this case, the joint probability for choosing two balls X
and Y is given by

[ art

where p(Y|X) is the conditional probability of Y given a value of X.
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In the following, it will often be the case that a random variable’s probability is conditioned on many
values; for example, when choosing a light source from which to sample illumination, the



BVHLightSampler in Section 12.6.3 considers the 3D position of the receiving point and its surface
normal, and so the choice of light is conditioned on them. However, we will often omit the variables
that a random variable is conditioned on in cases where there are many of them and where
enumerating them would obscure notation.

A particularly important random variable is the canonical uniform random variable, which we will
write as & This variable takes on all values in its domain [0, 1) independently and with uniform
probability. This particular variable is important for two reasons. First, it is easy to generate a variable
with this distribution in software—most runtime libraries have a pseudo-random number generator

that does just that.2 Second, we can take the canonical uniform random variable £ and map it to a
discrete random variable, choosing X; if

[oart

For lighting applications, we might want to define the probability of sampling illumination from each
light in the scene based on its power ®; relative to the total power from all sources:

Notice that these p; values also sum to 1. Given such per-light probabilities, £ could be used to select a

light source from which to sample illumination.

The cumulative distribution function (CDF) P(x) of a random variable is the probability that a value
from the variable’s distribution is less than or equal to some value x:

[oart

al

For the die example, |, jart, since two of the six possibilities are less than or equal to 2.

Continuous random variables take on values over ranges of continuous domains (e.g., the real
numbers, directions on the unit sphere, or the surfaces of shapes in the scene). Beyond &, another
example of a continuous random variable is the random variable that ranges over the real numbers
between 0 and 2, where the probability of its taking on any particular value x is proportional to the
value 2 — x: it is twice as likely for this random variable to take on a value around 0 as it is to take one
around 1, and so forth.

The probability density function (PDF) formalizes this idea: it describes the relative probability of a
random variable taking on a particular value and is the continuous analog of the PME The PDF p(x)
is the derivative of the random variable’s CDE

[ art

For uniform random variables, p(x) is a constant; this is a direct consequence of uniformity. For § we
have



1 xe€[0,1)

My ) = .
; 0 otherwise.

PDFs are necessarily nonnegative and always integrate to 1 over their domains. Note that their value
at a point x is not necessarily less than 1, however.

Given an interval [g, b] in the domain, integrating the PDF gives the probability that a random
variable lies inside the interval:

|o.art

This follows directly from the first fundamental theorem of calculus and the definition of the PDEF.

2.1.2 EXPECTED VALUES

The expected value Ep[f(x)] of a function f is defined as the average value of the function over some

distribution of values p(x) over its domain D. It is defined as
[oart

As an example, consider finding the expected value of the cosine function between 0 and 7, where p is

uniform. Because the PDF p(x) must integrate to 1 over the domain, p(x) =1/, 50>

[ art

which is precisely the expected result. (Consider the graph of cos x over [0, 7] to see why this is so.)
The expected value has a few useful properties that follow from its definition:
[oart

We will repeatedly use these properties in derivations in the following sections.

2.1.3 THE MONTE CARLO ESTIMATOR

We can now define the Monte Carlo estimator, which approximates the value of an arbitrary integral.
Suppose that we want to evaluate a 1D integral | “art. Given a supply of independent uniform random

variables X; € [a, b], the Monte Carlo estimator says that the expected value of the estimator

[oart

E[F,], is equal to the integral. This fact can be demonstrated with just a few steps. First, note that the
PDF p(x) corresponding to the random variable X; must be equal to 1/(b — a), since p must not only

be a constant but also integrate to 1 over the domain [a, b]. Algebraic manipulation using the
properties from Equations (2.4) and (2.5) then shows that



|ojart

Extending this estimator to multiple dimensions or complex integration domains is straightforward: n
independent samples X; are taken from a uniform multidimensional PDE, and the estimator is applied

in the same way. For example, consider the 3D integral
[ art

If samples X; = (xj, y;, z;) are chosen uniformly from the cube from [xq, x1] x [y, ¥1] X [20> 21], then
the PDF p(X) is the constant value

[oart



and the estimator is

[ art

The restriction to uniform random variables can be relaxed with a small generalization. This is an
important step, since carefully choosing the PDF from which samples are drawn leads to a key
technique for reducing error in Monte Carlo that will be introduced in Section 2.2.2. If the random
variables X; are drawn from a PDF p(x), then the estimator

| art

can be used to estimate the integral instead. The only limitation on p(x) is that it must be nonzero for
all x where |f(x)| > 0.

It is similarly not too hard to see that the expected value of this estimator is the desired integral of f:
| art

We can now understand the factor of 1/(47) in the implementation of the RandomWalk Integrator:
directions are uniformly sampled over the unit sphere, which has area 4m. Because the PDF is
normalized over the sampling domain, it must have the constant value 1/(47). When the estimator of
Equation (2.7) is applied, that value appears in the divisor.

With Monte Carlo, the number of samples n can be chosen arbitrarily, regardless of the
dimensionality of the integrand. This is another important advantage of Monte Carlo over traditional
deterministic quadrature techniques, which typically require a number of samples that is exponential
in the dimension.

2.1.4 ERROR IN MONTE CARLO ESTIMATORS

Showing that the Monte Carlo estimator converges to the right answer is not enough to justify its use;
its rate of convergence is important too. Variance, the expected squared deviation of a function from
its expected value, is a useful way to characterize Monte Carlo estimators’ convergence. The variance
of an estimator F is defined as

[oart



from which it follows that

[ art

This property and Equation (2.5) yield an alternative expression for the variance:
[gart
Thus, the variance is the expected value of the square minus the square of the expected value.

If the estimator is a sum of independent random variables (like the Monte Carlo estimator F;), then

the variance of the sum is the sum of the individual random variables’ variances:

[ art

From Equation (2.10) it is easy to show that variance decreases linearly with the number of samples #.
Because variance is squared error, the error in a Monte Carlo estimate therefore only goes down at a

rate of O(n_l/ 2) in the number of samples. Although standard quadrature techniques converge at a
faster rate in one dimension, their performance becomes exponentially worse as the dimensionality of
the integrand increases, while Monte Carlos convergence rate is independent of the dimension,
making Monte Carlo the only practical numerical integration algorithm for high-dimensional
integrals.

The O(n_l/ 2) characteristic of Monte Carlo’s rate of error reduction is apparent when watching a
progressive rendering of a scene where additional samples are incrementally taken in all pixels. The
image improves rapidly for the first few samples when doubling the number of samples is relatively
little additional work. Later on, once tens or hundreds of samples have been taken, each additional
sample doubling takes much longer and remaining error in the image takes a long time to disappear.

The linear decrease in variance with increasing numbers of samples makes it easy to compare different
Monte Carlo estimators. Consider two estimators, where the second has half the variance of the first
but takes three times as long to compute an estimate; which of the two is better? In that case, the first
is preferable: it could take three times as many samples in the time consumed by the second, in which
case it would achieve a 3x variance reduction. This concept can be encapsulated in the efficiency of an
estimator F, which is defined as

[gart
where V[F] is its variance and T[F] is the running time to compute its value.

Not all estimators of integrals have expected values that are equal to the value of the integral. Such
estimators are said to be biased, where the difference

[gart

is the amount of bias. Biased estimators may still be desirable if they are able to get close to the correct
result more quickly than unbiased estimators. Kalos and Whitlock (1986, pp. 36-37) gave the



following example: consider the problem of computing an estimate of the mean value of a uniform
distribution X; ~ p over the interval from 0 to 1. One could use the estimator

[oart
or one could use the biased estimator

[oart

The first estimator is unbiased but has variance with order O(n_l). The second estimator’s expected
value is

[oart

so it is biased, although its variance is O(n_z), which is much better. This estimator has the useful
property that its error goes to 0 in the limit as the number of samples n goes to infinity; such

estimators are consistent.* Most of the Monte Carlo estimators used in pbrt are unbiased, with the
notable exception of the SPPMIntegrator, which implements a photon mapping algorithm.

Closely related to the variance is the mean squared error (MSE), which is defined as the expectation of
the squared difference of an estimator and the true value,

[oart

For an unbiased estimator, MSE is equal to the variance; otherwise it is the sum of variance and the
squared bias of the estimator.

It is possible to work out the variance and MSE of some simple estimators in closed form, but for most
of the ones of interest in rendering, this is not possible. Yet it is still useful to be able to quantify these
values. For this purpose, the sample variance can be computed using a set of independent random
variables X;. Equation (2.8) points at one way to compute the sample variance for a set of n random

variables X;. If the sample mean is computed as their average, |, jart, then the sample variance is

1 - 5
p lZ:[J(E-—J'(]‘. [2.11]

The division by n — 1 rather than n is Bessel’s correction, and ensures that the sample variance is an
unbiased estimate of the variance. (See also Section B.2.11, where a numerically stable approach for
computing the sample variance is introduced.)

The sample variance is itself an estimate of the variance, so it has variance itself. Consider, for
example, a random variable that has a value of 1 99.99% of the time, and a value of one million 0.01%
of the time. If we took ten random samples of it that all had the value 1, the sample variance would
suggest that the random variable had zero variance even though its variance is actually much higher.



If an accurate estimate of the integral |, Jjart can be computed (for example, using a large number of
samples), then the mean squared error can be estimated by

[ art

The imgtool utility program that is provided in pbrt’s distribution can compute an image’s MSE with
respect to a reference image via its di ff option.

2.2 IMPROVING EFFICIENCY

Given an unbiased Monte Carlo estimator, we are in the fortunate position of having a reliable
relationship between the number of samples taken and variance (and thus, error). If we have an
unacceptably noisy rendered image, increasing the number of samples will reduce error in a
predictable way, and—given enough computation—an image of sufficient quality can be generated.

However, computation takes time, and often there is not enough of it. The deadline for a movie may
be at hand, or the sixtieth-of-a-second time slice in a real-time renderer may be coming to an end.
Given the consequentially limited number of samples, the only option for variance reduction is to find
ways to make more of the samples that can be taken. Fortunately, a variety of techniques have been
developed to improve the basic Monte Carlo estimator by making the most of the samples that are
taken; here we will discuss the most important ones that are used in pbrt.

2.2.1 STRATIFIED SAMPLING

A classic and effective family of techniques for variance reduction is based on the careful placement of
samples in order to better capture the features of the integrand (or, more accurately, to be less likely to
miss important features). These techniques are used extensively in pbrt. Stratified sampling
decomposes the integration domain into regions and places samples in each one; here we will analyze
that approach in terms of its variance reduction properties. Later, in Section 8.2.1, we will return with
machinery based on Fourier analysis that provides further insights about it.

Stratified sampling subdivides the integration domain A into n nonoverlapping regions A, Ay, ...,

A,,. Each region is called a stratum, and they must completely cover the original domain:

[ art

To draw samples from A, we will draw n; samples from each A;, according to densities p; inside each

stratum. A simple example is supersampling a pixel. With stratified sampling, the area around a pixel
is divided into a k x k grid, and a sample is drawn uniformly within each grid cell. This is better than

taking k? random samples, since the sample locations are less likely to clump together. Here we will
show why this technique reduces variance.

Within a single stratum A;, the Monte Carlo estimate is

[gart



where X; ; is the jth sample drawn from density p;. The overall estimate is |, 'art, where v; is the
ij J p Y Pi L i

fractional volume of stratum i (v; € (0, 1]).

The true value of the integrand in stratum i is

| jart
and the variance in this stratum is

[ art

Thus, with n; samples in the stratum, the variance of the per-stratum estimator is |, jart. This shows
that the variance of the overall estimator is

[oart

If we make the reasonable assumption that the number of samples 7; is proportional to the volume v;,

then we have n; = v;jn, and the variance of the overall estimator is

[ art

To compare this result to the variance without stratification, we note that choosing an unstratified
sample is equivalent to choosing a random stratum I according to the discrete probability distribution
defined by the volumes v; and then choosing a random sample X in j. In this sense, X is chosen

conditionally on I, so it can be shown using conditional probability that

[ art

where Q is the mean of f over the whole domain AP

|ojart

Variance is higher and the image noisier (a) when independent random sampling is used than
(b) when a stratified distribution of sample directions is used instead. (Bunny model courtesy of the
Stanford Computer Graphics Laboratory.)

There are two things to notice about Equation (2.12). First, we know that the right-hand sum must be
nonnegative, since variance is always nonnegative. Second, it demonstrates that stratified sampling
can never increase variance. Stratification always reduces variance unless the right-hand sum is
exactly 0. It can only be 0 when the function f has the same mean over each stratum A;. For stratified

sampling to work best, we would like to maximize the right-hand sum, so it is best to make the strata
have means that are as unequal as possible. This explains why compact strata are desirable if one does
not know anything about the function f. If the strata are wide, they will contain more variation and
will have y; closer to the true mean Q.



Figure 2.1 shows the effect of using stratified sampling versus an independent random distribution for
sampling when rendering an image that includes glossy reflection. There is a reasonable reduction in
variance at essentially no cost in running time.

The main downside of stratified sampling is that it suffers from the same “curse of dimensionality” as
standard numerical quadrature. Full stratification in D dimensions with S strata per dimension

requires sD samples, which quickly becomes prohibitive. Fortunately, it is often possible to stratify
some of the dimensions independently and then randomly associate samples from different
dimensions; this approach will be used in Section 8.5. Choosing which dimensions are stratified
should be done in a way that stratifies dimensions that tend to be most highly correlated in their effect
on the value of the integrand (Owen 1998).

2.2.2 IMPORTANCE SAMPLING
Importance sampling is a powerful variance reduction technique that exploits the fact that the Monte
Carlo estimator

[ art

converges more quickly if the samples are taken from a distribution p(x) that is similar to the function
flx) in the integrand. In this case, samples are more likely to be taken when the magnitude of the
integrand is relatively large. Importance sampling is one of the most frequently used variance
reduction techniques in rendering, since it is easy to apply and is very effective when good sampling
distributions are used.

To see why such sampling distributions reduce error, first consider the effect of using a distribution

p(x) « fx), or p(x) = cf(x).6 It is trivial to show that normalization of the PDF requires that
| jart

Finding such a PDF requires that we know the value of the integral, which is what we were trying to
estimate in the first place. Nonetheless, if we could sample from this distribution, each term of the
sum in the estimator would have the value

| jart

The variance of the estimator is zero! Of course, this is ludicrous since we would not bother using
Monte Carlo if we could integrate f directly. However, if a density p(x) can be found that is similar in
shape to f(x), variance is reduced.

As a more realistic example, consider the Gaussian function |, art, which is plotted in Figure 2.2(a)
over [0, 1]. Its value is close to zero over most of the domain. Samples X with X < 0.2 or X > 0.3 are of
little help in estimating the value of the integral since they give no information about the magnitude
of the bump in the function’s value around 1/4. With uniform sampling and the basic Monte Carlo
estimator, variance is approximately 0.0365.

If samples are instead drawn from the piecewise-constant distribution



| jart

which is plotted in Figure 2.2(b), and the estimator from Equation (2.7) is used instead, then variance
is reduced by a factor of approximately 6.7x. A representative set of 6 points from this distribution is
shown in Figure 2.2(c); we can see that most of the evaluations of f(x) are in the interesting region
where it is not nearly zero.

[gart

(a) A narrow Gaussian function that is close to zero over most of the range [0, 1]. The basic
Monte Carlo estimator of Equation (2.6) has relatively high variance if it is used to integrate this function,
since most samples have values that are close to zero. (b) A PDF that roughly approximates the function’s
distribution. If this PDF is used to generate samples, variance is reduced substantially. (c) A representative
distribution of samples generated according to (b).

Importance sampling can increase variance if a poorly chosen distribution is used, however. Consider
instead using the distribution

1.2 x<[0,0.15)
plx)=4¢ 0.2 xe[0.15 0.35)
1.2 x<[0.35, 1),

for estimating the integral of the Gaussian function. This PDF increases the probability of sampling
the function where its value is close to zero and decreases the probability of sampling it where its
magnitude is larger.

Not only does this PDF generate fewer samples where the integrand is large, but when it does, the
magnitude of f(x)/p(x) in the Monte Carlo estimator will be especially high since p(x) = 0.2 in that
region. The result is approximately 5.4x higher variance than uniform sampling, and nearly 36x
higher variance than the better PDF above. In the context of Monte Carlo integration for rendering
where evaluating the integrand generally involves the expense of tracing a ray, it is desirable to
minimize the number of samples taken; using an inferior sampling distribution and making up for it
by evaluating more samples is an unappealing option.

2.2.3 MULTIPLE IMPORTANCE SAMPLING

We are frequently faced with integrals that are the product of two or more functions: / f;(x)fp,(x) dx. It

is often possible to derive separate importance sampling strategies for individual factors individually,
though not one that is similar to their product. This situation is especially common in the integrals
involved with light transport, such as in the product of BSDE, incident radiance, and a cosine factor in
the light transport equation (1.1).

To understand the challenges involved with applying Monte Carlo to such products, assume for now
the good fortune of having two sampling distributions p, and p, that match the distributions of f,



and fp, exactly. (In practice, this will not normally be the case.) With the Monte Carlo estimator of
Equation (2.7), we have two options: we might draw samples using p,, which gives the estimator

[gart

where ¢ is a constant equal to the integral of f,, since p,(x) « f;(x). The variance of this estimator is

proportional to the variance of f, which may itself be high.7 Conversely, we might sample from py,
though doing so gives us an estimator with variance proportional to the variance of f;, which may

similarly be high. In the more common case where the sampling distributions only approximately
match one of the factors, the situation is usually even worse.

Unfortunately, the obvious solution of taking some samples from each distribution and averaging the
two estimators is not much better. Because variance is additive, once variance has crept into an
estimator, we cannot eliminate it by adding it to another low-variance estimator.

Multiple importance sampling (MIS) addresses exactly this issue, with an easy-to-implement variance
reduction technique. The basic idea is that, when estimating an integral, we should draw samples from
multiple sampling distributions, chosen in the hope that at least one of them will match the shape of
the integrand reasonably well, even if we do not know which one this will be. MIS then provides a
method to weight the samples from each technique that can eliminate large variance spikes due to
mismatches between the integrand’s value and the sampling density. Specialized sampling routines
that only account for unusual special cases are even encouraged, as they reduce variance when those
cases occur, with relatively little cost in general.

With two sampling distributions p, and pj, and a single sample taken from each one, X ~ p; and Y ~
Pp» the MIS Monte Carlo estimator is w;(X)

| art

where w, and wy, are weighting functions chosen such that the expected value of this estimator is the

value of the integral of f(x).

More generally, given n sampling distributions p; with n; samples X; j taken from the ith distribution,
the MIS Monte Carlo estimator is

[ art

(The full set of conditions on the weighting functions for the estimator to be unbiased are that they
sum to 1 when f(x) # 0, |, jart, and that w;(x) = 0 if p;(x) = 0.)

Setting x;(X) = 1/n corresponds to the case of summing the various estimators, which we have already

seen is an ineffective way to reduce variance. It would be better if the weighting functions were
relatively large when the corresponding sampling technique was a good match to the integrand and
relatively small when it was not, thus reducing the contribution of high-variance samples.



In practice, a good choice for the weighting functions is given by the balance heuristic, which attempts
to fulfill this goal by taking into account all the different ways that a sample could have been
generated, rather than just the particular one that was used to do so. The balance heuristic’s weighting
function for the ith sampling technique is

|gart

With the balance heuristic and our example of taking a single sample from each of two sampling
techniques, the estimator of Equation (2.13) works out to be

[oart

Each evaluation of f is divided by the sum of all PDFs for the corresponding sample rather than just
the one that generated the sample. Thus, if p; generates a sample with low probability at a point where

the py, has a higher probability, then dividing by p,(X) + pp(X) reduces the sample’s contribution.
Effectively, such samples are downweighted when sampled from p,, recognizing that the sampling
technique associated with py, is more effective at the corresponding point in the integration domain.

As long as just one of the sampling techniques has a reasonable probability of sampling a point where
the function’s value is large, the MIS weights can lead to a significant reduction in variance.

BalanceHeuristic() computes Equation (2.14) for the specific case of two distributions p, and py,.

We will not need a more general multidistribution case in pbrt.

XSampling Inline FunctionsX =
Float BalanceHeuristic(int nf, Float fPdf, int ng, Float gPdf) {
return (nf * fPdf) / (nf * fPdf + ng * gPdf);
}

In practice, the power heuristic often reduces variance even further. For an exponent f3, the power
heuristic is

|ojart

Note that the power heuristic has a similar form to the balance heuristic, though it further reduces the
contribution of relatively low probabilities. Our implementation has f = 2 hard-coded in its
implementation; that parameter value usually works well in practice.

Float 23
Sqr() 1034

XSampling Inline FunctionsX +=
Float PowerHeuristic(int nf, Float fPdf, int ng, Float gPdf) {
Float f = nf * fPdf, g = ng * gPdf;
return Sqr(f) / (Sqr(f) + Sqr(g));



Multiple importance sampling can be applied even without sampling from all the distributions. This
approach is known as the single sample model. We will not include the derivation here, but it can be
shown that given an integrand f(x), if a sampling technique p; is chosen from a set of techniques with

probability g; and a sample X is drawn from p;, then the single sample estimator

|gart

gives an unbiased estimate of the integral. For the single sample model, the balance heuristic is
provably optimal.

One shortcoming of multiple importance sampling is that if one of the sampling techniques is a very
good match to the integrand, MIS can slightly increase variance. For rendering applications, MIS is
almost always worthwhile for the variance reduction it provides in cases that can otherwise have high
variance.

MIS Compensation

Multiple importance sampling is generally applied using probability distributions that are all
individually valid for importance sampling the integrand, with nonzero probability of generating a
sample anywhere that the integrand is nonzero. However, when MIS is being used, it is not a
requirement that all PDFs are nonzero where the function’s value is nonzero; only one of them must

be.

This observation led to the development of a technique called MIS compensation, which can further
reduce variance. It is motivated by the fact that if all the sampling distributions allocate some
probability to sampling regions where the integrand’s value is small, it is often the case that that region
of the integrand ends up being oversampled, leaving the region where the integrand is high
undersampled.

MIS compensation is based on the idea of sharpening one or more (but not all) the probability
distributions—for example, by adjusting them to have zero probability in areas where they earlier had
low probability. A new sampling distribution p' can, for example, be defined by

| art
for some fixed value 6.
This technique is especially easy to apply in the case of tabularized sampling distributions. In Section

12.5, it is used to good effect for sampling environment map light sources.

2.2.4 RUSSIAN ROULETTE

Russian roulette is a technique that can improve the efficiency of Monte Carlo estimates by skipping
the evaluation of samples that would make a small contribution to the final result. In rendering, we
often have estimators of the form

[ art



where the integrand consists of some factors (X) that are easily evaluated (e.g., those that relate to
how the surface scatters light) and others that are more expensive to evaluate, such as a binary
visibility factor v(X) that requires tracing a ray. In these cases, most of the computational expense of
evaluating the estimator lies in v.

If f(X) is zero, it is obviously worth skipping the work of evaluating v(X), since its value will not affect
the value of the estimator. However, if we also skipped evaluating estimators where f(X) was small but
nonzero, then we would introduce bias into the estimator and would systemically underestimate the
value of the integrand. Russian roulette solves this problem, making it possible to also skip tracing
rays when f(X)’s value is small but not necessarily 0, while still computing the correct value on
average.

To apply Russian roulette, we select some termination probability g. This value can be chosen in
almost any manner; for example, it could be based on an estimate of the value of the integrand for the
particular sample chosen, increasing as the integrand’s value becomes smaller. With probability g, the
estimator is not evaluated for the particular sample, and some constant value ¢ is used in its place (c =
0 is often used). With probability 1 — g, the estimator is still evaluated but is weighted by the factor
1/(1 - g), which effectively compensates for the samples that were skipped.



We have the new estimator
[oart

It is easy to see that its expected value is the same as the expected value of the original estimator:
[oart

Russian roulette never reduces variance. In fact, unless somehow ¢ = F, it will always increase
variance. However, it does improve Monte Carlo efficiency if the probabilities are chosen so that
samples that are likely to make a small contribution to the final result are skipped.

2.2.5 SPLITTING

While Russian roulette reduces the number of samples, splitting increases the number of samples in
some dimensions of multidimensional integrals in order to improve efficiency. As an example,
consider an integral of the general form

|ojart

With the standard importance sampling estimator, we might draw n samples from independent
distributions, X; ~ p,and Y; ~ Py and compute

[ art

Splitting allows us to formalize the idea of taking more than one sample for the integral over B for
each sample taken in A. With splitting, we might take m samples Y; j for each sample Xj, giving the

estimator
| art

If it is possible to partially evaluate f(X;, -) for each Xj, then we can compute a total of nm samples

more efficiently than we had taken nm independent X; values using Equation (2.18).

For an example from rendering, an integral of the form of Equation (2.17) is evaluated to compute the
color of pixels in an image: an integral is taken over the area of the pixel A where at each point in the
pixel x, a ray is traced into the scene and the reflected radiance at the intersection point is computed
using an integral over the hemisphere (denoted here by B) for which one or more rays are traced.
With splitting, we can take multiple samples for each lighting integral, improving efficiency by
amortizing the cost of tracing the initial ray from the camera over them.

2.3 SAMPLING USING THE INVERSION METHOD

To evaluate the Monte Carlo estimator in Equation (2.7), it is necessary to be able to draw random
samples from a chosen probability distribution. There are a variety of techniques for doing so, but one
of the most important for rendering is the inversion method, which maps uniform samples from [0, 1)



to a given 1D probability distribution by inverting the distribution’s CDE. (In Section 2.4.2 we will see
how this approach can be applied to higher-dimensional functions by considering a sequence of 1D
distributions.) When used with well-distributed samples such as those generated by the samplers that
are defined in Chapter 8, the inversion method can be particularly effective. Throughout the
remainder of the book, we will see the application of the inversion method to generate samples from
the distributions defined by BSDFs, light sources, cameras, and scattering media.

2.3.1 DISCRETE CASE

Equation (2.2) leads to an algorithm for sampling from a set of discrete probabilities using a uniform
random variable. Suppose we have a process with four possible outcomes where the probabilities of
each of the four outcomes are given by p1, po, p3, and py, with | “art. The corresponding PMF is

shown in Figure 2.3.

There is a direct connection between the sums in Equation (2.2) and the definition of the CDE The
discrete CDF is given by

|ojart

which can be interpreted graphically by stacking the bars of the PMF on top of each other, starting at
the left. This idea is shown in Figure 2.4.

The sampling operation of Equation (2.2) can be expressed as finding i such that

|ojart

[oart

The sum of their probabilities Y'; p;j is
necessarily 1.

[ art

Each column’s height is given
by the PMF for the event that it represents plus the sum of the PMFs for the previous events, | _art.

which can be interpreted as inverting the CDF P, and thus, the name of the technique. Continuing the
graphical interpretation, this sampling operation can be considered in terms of projecting the events’
probabilities onto the vertical axis where they cover the range [0, 1] and using a random variable £ to
select among them (see Figure 2.5). It should be clear that this draws from the correct distribution—



the probability of the uniform sample hitting any particular bar is exactly equal to the height of that
bar.

The SampleDiscrete() function implements this algorithm. It takes a not-necessarily normalized set
of nonnegative weights, a uniform random sample u, and returns the index of one of the weights with
probability proportional to its weight. The sampling operation it performs corresponds to finding i
such that

[oart

which corresponds to multiplying Equation (2.19) by ¥ w;. (Not requiring a normalized PMF is a

convenience for calling code and not much more work in the function’s implementation.) Two
optional parameters are provided to return the value of the PMF for the sample as well as a new
uniform random sample that is derived from u.

This function is designed for the case where only a single sample needs to be generated from the
weights’ distribution; if multiple samples are required, the AliasTabTe, which will be introduced in
Section A.1, should generally be used instead: it generates samples in O(1) time after an O(n)
preprocessing step, whereas SampleDiscrete() requires O(n) time for each sample generated.

XSampling Inline FunctionsX +=
int SampleDiscrete(pstd::span<const Float> weights, Float u, Float *pmf,
Float *uRemapped) {
XHandle empty weights for discrete sampling 71X
KCompute sum of weights 71K
¥Compute rescaled u sample 71X
XFind offset in weights corresponding to u' 71X
XCompute PMF and remapped u value, if necessary 71X
return offset;

AliasTable 994
Float 23

The case of weights being empty is handled first so that subsequent code can assume that there is at
least one weight.

XWHandle empty weights for discrete sampling]= 70
if (weights.empty()) {
if (pmf)
*pmf = 0;
return -1;



The discrete probability of sampling the ith element is given by weights[i] divided by the sum of all
weight values. Therefore, the function computes that sum next.

XCompute sum of weightsX = 70
Float sumWeights = 0;
for (Float w : weights)
sumWeights += w;

Following Equation (2.20), the uniform sample u is scaled by the sum of the weights to get a value v’
that will be used to sample from them. Even though the provided u value should be in the range [0, 1),
it is possible that u * sumWeights will be equal to sumWeights due to floating-point round-off. In
that rare case, up is bumped down to the next lower floating-point value so that subsequent code can
assume that up < sumWeights.

KCompute rescaled u' sampleX = 70
Float up = u * sumWeights;
if (up == sumWeights)
up = NextFloatDown (up);

We would now like to find the last offset in the weights array i where the random sample up is greater
than the sum of weights up to i. Sampling is performed using a linear search from the start of the
array, accumulating a sum of weights until the sum would be greater than u'.

XFind offset in weights corresponding to u™ = 7
int offset = 0;
Float sum = 0;
while (sum + weights[offset] <= up)
sum += weights[offset++];

After the while loop terminates, the randomness in the provided sample u has only been used to
select an element of the array—a discrete choice. The offset of a sample between the CDF values that
bracket it is itself a uniform random value that can easily be remapped to [0, 1). This value is returned
to the caller in uRemapped, if requested.

One might ask: why bother? It is not too difficult to generate uniform random variables, so the benefit
of providing this option may seem marginal. However, for some of the high-quality sample generation
algorithms in Chapter 8, it can be beneficial to reuse samples in this way rather than generating new
ones—thus, this option is provided.

Float 23
NextFloatDown() 366
OneMinusEpsilon 470



XCompute PMF and remapped u value, if necessary¥ = 70
if (pmf)
*pmf = weights[offset] / sumWeights;
if (uRemapped)
*uRemapped = std::min((up - sum) / weights[offset],
OneMinusEpsilon);

[ art

To use the inversion method to draw a sample from the distribution described by the PMF in
Figure 2.3, a canonical uniform random variable is plotted on the vertical axis. By construction, the
horizontal extension of & will intersect the box representing the ith outcome with probability p;. If the

corresponding event is chosen for a set of random variables &, then the resulting distribution of events will
be distributed according to the PMF.

2.3.2 CONTINUOUS CASE

In order to generalize this technique to continuous distributions, consider what happens as the
number of discrete possibilities approaches infinity. The PMF from Figure 2.3 becomes a PDF, and the
CDF from Figure 2.4 becomes its integral. The projection process is still the same, but it has a
convenient mathematical interpretation—it represents inverting the CDF and evaluating the inverse

at &,

More precisely, we can draw a sample X; from a PDF p(x) with the following steps:

1. Integrate the PDF to find the CDF8 | art.
2. Obtain a uniformly distributed random number &.

3. Generate a sample by solving & = P(X) for X; in other words, find X = P_l(«f).

We will illustrate this algorithm with a simple example; see Section A.4 for its application to a number
of additional functions.

Sampling a Linear Function

The function f(x) = (1 — x)a + xb defined over [0, 1] linearly interpolates between a at x = 0 and b at x
= 1. Here we will assume that a, b > 0; an exercise at the end of the chapter discusses the more general
case.

XMath Inline Functions¥ =
Float Lerp(Float x, Float a, Float b) {
return (1 - x) * a + x * b;



The function’s integral is |, art, which gives the normalization constant 2/(a + b) to define its PDE,

[ art

Float 23

XSampling Inline FunctionsX +=
Float LinearPDF(Float x, Float a, Float b) {
if (x<0] x>1)
return 0;
return 2 * Lerp(x, a, b) / (a + b);
}

Integrating the PDF gives the CDFE, which is the quadratic function

[ art

Inverting & = P(X) gives a sampling recipe
[gart

though note that in this form, the case a = b gives an indeterminate result. The more stable
formulation

[gart
computes the same result and is implemented here.

XSampling Inline FunctionsX +=
Float SampleLinear(Float u, Float a, Float b) f{
if (u==0 & a == 0) return 0;
Float x = u * (a + b) / (a + std::sqrt(Lerp(u, Sqr(a), Sqr(b))));
return std::min(x, OneMinusEpsilon);

}

One detail to note is the std: :min call in the return statement, which ensures that the returned value
is within the range [0, 1). Although the sampling algorithm generates values in that range given & €
[0, 1), round-off error may cause the result to be equal to 1. Because some of the code that calls the
sampling routines depends on the returned values being in the specified range, the sampling routines
must ensure this is so.

In addition to providing functions that sample from a distribution and compute the PDF of a sample,
pbrt usually also provides functions that invert sampling operations, returning the random sample &
that corresponds to a value x. In the 1D case, this is equivalent to evaluating the CDE

XSampling Inline Functions¥ +=



Float InvertLinearSample(Float x, Float a, Float b) {
return x * (a * (2 - x) +b *x) / (a +b);

Float 23

Lerp() 72
OneMinusEpsilon 470
Sqr() 1034

2.4 TRANSFORMING BETWEEN DISTRIBUTIONS

In describing the inversion method, we introduced a technique that generates samples according to
some distribution by transforming canonical uniform random variables in a particular manner. Here,
we will investigate the more general question of which distribution results when we transform
samples from an arbitrary distribution to some other distribution with a function f. Understanding
the effect of such transformations is useful for a few reasons, though here we will focus on how they
allow us to derive multidimensional sampling algorithms.

Suppose we are given a random variable X drawn from some PDF p(x) with CDF P(x). Given a
function f(x) with y = f(x), if we compute Y = f(X), we would like to find the distribution of the new
random variable Y. In this case, the function f(x) must be a one-to-one transformation; if multiple
values of x mapped to the same y value, then it would be impossible to unambiguously describe the
probability density of a particular y value. A direct consequence of f being one-to-one is that its
derivative must either be strictly greater than 0 or strictly less than 0, which implies that for a given x,

Pr{Y < fix)} = PriX < x}.
From the definition of the CDF, Equation (2.3), we can see that

PA(y) = PAf(x)) = P(x).

This relationship between CDFs leads directly to the relationship between their PDFs. If we assume
that fs derivative is greater than 0, differentiating gives

[gart



and so

[ art

In general, fs derivative is either strictly positive or strictly negative, and the relationship between the
densities is

| jart

How can we use this formula? Suppose that p(x) = 2x over the domain [0, 1], and let f(x) = sin x. What
is the PDF of the random variable Y = f(X)? Because we know that df/dx = cos x,

[gart

This procedure may seem backward—usually we have some PDF that we want to sample from, not a
given transformation. For example, we might have X drawn from some p(x) and would like to
compute Y from some distribution pf(y). What transformation should we use? All we need is for the

CDFs to be equal, or Pf(y) = P(x), which immediately gives the transformation

| jart

This is a generalization of the inversion method, since if X were uniformly distributed over [0, 1) then
P(x) = x, and we have the same procedure as was introduced previously.

2.4.1 TRANSFORMATION IN MULTIPLE DIMENSIONS

In the general d-dimensional case, a similar derivation gives the analogous relationship between
different densities. We will not show the derivation here; it follows the same form as the 1D case.
Suppose we have a d-dimensional random variable X with density function p(x). Now let Y = T(X),
where T is a bijection. In this case, the densities are related by

Lart

where |JT | is the absolute value of the determinant of T’s Jacobian matrix, which is

[ art

where subscripts index dimensions of T(x) and x.

For a 2D example of the use of Equation (2.21), the polar transformation relates Cartesian (x, y)
coordinates to a polar radius and angle,

x=rcos 0

y=rsin 0.

Suppose we draw samples from some density p(r, 6). What is the corresponding density p(x, y)? The
Jacobian of this transformation is



| jart

and the determinant is r (cos2 0 + sinZ 0) = r. So, p(x, y) = p(r, 0)/r. Of course, this is backward from
what we usually want—typically we start with a sampling strategy in Cartesian coordinates and want
to transform it to one in polar coordinates. In that case, we would have

[gart

In 3D, given the spherical coordinate representation of directions, Equation (3.7), the Jacobian of this

transformation has determinant |J7| = r% sin 6, so the corresponding density function is

[gart
This transformation is important since it helps us represent directions as points (x, 3, z) on the unit

sphere.

2.4.2 SAMPLING WITH MULTIDIMENSIONAL TRANSFORMATIONS

Suppose we have a 2D joint density function p(x, y) that we wish to draw samples (X, Y) from. If the
densities are independent, they can be expressed as the product of 1D densities

P y) = px(x) py(y)s

and random variables (X, Y) can be found by independently sampling X from p, and Y from py- Many

useful densities are not separable, however, so we will introduce the theory of how to sample from
multidimensional distributions in the general case.

Given a 2D density function, the marginal density function p(x) is obtained by “integrating out” one of
the dimensions:

| art

This can be thought of as the density function for X alone. More precisely, it is the average density for
a particular x over all possible y values.

If we can draw a sample X ~ p(x), then—using Equation (2.1)—we can see that in order to sample Y,
we need to sample from the conditional probability density, Y ~ p(y|x), which is given by:

[gart

Sampling from higher-dimensional distributions can be performed in a similar fashion, integrating
out all but one of the dimensions, sampling that one, and then applying the same technique to the
remaining conditional distribution, which has one fewer dimension.

Sampling the Bilinear Function



The bilinear function

[ art

interpolates between four values w; at the four corners of [0, 1]2. (wg is at (0, 0), wy is at (1, 0), wp at

(0, 1), and w3 at (1, 1).) After integration and normalization, we can find that its PDF is

[oart

XSampling Inline FunctionsX +=
Float BilinearPDF(Point2f p, pstd::span<const Float> w) {
if (px<0]px>1]py<0]py=>1)
return 0;
if (w[0] + w[1] + w[2] + w[3] == 0)
return 1;
return 4 * ((1 - p[0]) * (1 - p[1]) * w[O] + p[O] * (1 - p[1]) * w[1] +
(1 - pl0]) * p[1] * w[2] + p[0] * p[1] * w[3]) /
(w[o] + w[1] + w[2] + w[3]);
}

The two dimensions of this function are not independent, so the sampling method samples a marginal
distribution before sampling the resulting conditional distribution.

XSampling Inline Functions¥ +=
Point2f SampleBilinear(Point2f u, pstd::span<const Float> w) {
Point2f p;
KSample y for bilinear marginal distribution 77X
WSample x for bilinear conditional distribution 77X
return p;

}

We can choose either x or y to be the marginal distribution. If we choose y and integrate out x, we find
that

[ art

Float 23
Point2f 92
SampleLinear() 73

p(y) performs linear interpolation between two constant values, and so we can use Sample Linear()
to sample from the simplified proportional function since it normalizes the associated PDFE.



XSample y for bilinear marginal distributionX = 76
p.y = SampleLinear(u[1], w[0] + w[1], w[2] + w[3]);

Applying Equation (2.1) and again canceling out common factors, we have
[oart

which can also be sampled in x using SampleLinear().

XSample x for bilinear conditional distributionX = 7

p.x = SampleLinear(u[0], Lerp(p.y, w[0], w[2]), Lerp(p.y,
wl1], w[3]));

Because the bilinear sampling routine is based on the composition of two 1D linear sampling
operations, it can be inverted by applying the inverses of those two operations in reverse order.

XSampling Inline FunctionsX +=
Point2f InvertBilinearSample(Point2f p, pstd::span<const Float> w) {
return {InvertLinearSample(p.x, Lerp(p.y, w[0], w[2]),

Lerp(p.y, w[1], w[3])),
InvertLinearSample(p.y, w[0] + w[1], w[2] + w[3])};

}

See Section A.5 for further examples of multidimensional sampling algorithms, including techniques
for sampling directions on the unit sphere and hemisphere, sampling unit disks, and other useful
distributions for rendering.

The Monte Carlo method was introduced soon after the development of the digital computer by
Stanislaw Ulam and John von Neumann (Ulam et al. 1947), though it also seems to have been
independently invented by Enrico Fermi (Metropolis 1987). An early paper on Monte Carlo was
written by Metropolis and Ulam (1949).

Many books have been written on Monte Carlo integration. Hammersley and Handscomb (1964),
Spanier and Gelbard (1969), and Kalos and Whitlock (1986) are classic references. More recent books

on the topic include those by Sobol (1994), Fishman (1996), and Liu (2001). We have also found
Owen’s in-progress book (2019) to be an invaluable resource. Motwani and Raghavan (1995) have
written an excellent introduction to the broader topic of randomized algorithms.

Most of the functions of interest in rendering are nonnegative; applying importance sampling to
negative functions requires special care. A straightforward option is to define a sampling distribution
that is proportional to the absolute value of the function. See also Owen and Zhou (2000) for a more
effective sampling approach for such functions.



Multiple importance sampling was developed by Veach and Guibas (Veach and Guibas 1995; Veach
1997). Normally, a predetermined number of samples are taken using each sampling technique; see
Pajot et al. (2011) and Lu et al. (2013) for approaches to adaptively distributing the samples over
strategies in an effort to reduce variance by choosing those that are the best match to the integrand.
Grittmann et al. (2019) tracked the variance of each sampling technique and then dynamically
adjusted the MIS weights accordingly. The MIS compensation approach was developed by Karlik et al.
(2019).

Float 23
InvertLinearSample() 73
Lerp() 72

Point2f 92
SampleLinear() 73

Sbert and collaborators (2016, 2017, 2018) have performed further variance analysis on MIS
estimators and have developed improved methods based on allocating samples according to the
variance and cost of each technique. Kondapaneni et al. (2019) considered the generalization of MIS
to include negative weights and derived optimal estimators in that setting. West et al. (2020)
considered the case where a continuum of sampling techniques are available and derived an optimal
MIS estimator for that case, and Grittmann et al. (2021) have developed improved MIS estimators
when correlation is present among samples (as is the case, for example, with bidirectional light
transport algorithms).

Heitz (2020) described an inversion-based sampling method that can be applied when CDF inversion
of a 1D function is not possible. It is based on sampling from a second function that approximates the
first and then using a second random variable to adjust the sample to match the original function’s
distribution. An interesting alternative to manually deriving sampling techniques was described by
Anderson et al. (2017), who developed a domain-specific language for sampling where probabilities
are automatically computed, given the implementation of a sampling algorithm. They showed the
effectiveness of their approach with succinct implementations of a number of tricky sampling
techniques.

The numerically stable sampling technique used in SampleLinear() is an application of Muller’s
method (1956) due to Heitz (2020).

In applications of Monte Carlo in graphics, the integrand is often a product of factors, where no
sampling distribution is available that fits the full product. While multiple importance sampling can
give reasonable results in this case, at least minimizing variance from ineffective sampling techniques,
sampling the full product is still preferable. Talbot et al. (2005) applied importance resampling to this
problem, taking multiple samples from some distribution and then choosing among them with
probability proportional to the full integrand. More recently, Hart et al. (2020) presented a simple
technique based on warping uniform samples that can be used to approximate product sampling. For
more information on this topic, see also the “Further Reading” sections of Chapters 13 and 14, which
discuss product sampling approaches in the context of specific light transport algorithms.

Debugging Monte Carlo algorithms can be challenging, since it is their behavior in expectation that
determines their correctness: it may be difficult to tell if the program execution for a particular sample



is correct. Statistical tests can be an effective approach for checking their correctness. See the papers
by Subr and Arvo (2007a) and by Jung et al. (2020) for applicable techniques.

See also the “Further Reading” section in Appendix A, which has information about the sampling
algorithms implemented there as well as related approaches.

EXERCISES

SampleLinear() 73

2.1 Write a program that compares Monte Carlo and one or more alternative numerical
integration techniques. Structure this program so that it is easy to replace the particular
function being integrated. Verify that the different techniques compute the same result
(given a sufficient number of samples for each of them). Modify your program so that it
draws samples from distributions other than the uniform distribution for the Monte Carlo
estimate, and verify that it still computes the correct result when the correct estimator,
Equation (2.7), is used. (Make sure that any alternative distributions you use have nonzero
probability of choosing any value of x where f (x) > 0.)

2.2 Write a program that computes unbiased Monte Carlo estimates of the integral of a given
function. Compute an estimate of the variance of the estimates by performing a series of
trials with successively more samples and computing the mean squared error for each one.
Demonstrate numerically that variance decreases at a rate of O(n).

2.3 The algorithm for sampling the linear interpolation function in Section 2.3.2 implicitly
assumes that g, b > 0 and that thus f(x) > 0. If f is negative, then the importance sampling
PDF should be proportional to |f(x)|. Generalize Sample Linear() and the associated
PDF and inversion functions to handle the case where f is always negative as well as the
case where it crosses zero due to a and b having different signs.

SampleLinear() 73

1 For brevity, we will refer to Monte Carlo integration simply as “Monte Carlo.”

2 Although the theory of Monte Carlo is based on using truly random numbers, in practice a well-written pseudo-random number
generator (PRNG) is sufficient. pbrt uses a particularly high-quality PRNG that returns a sequence of pseudo-random values
that is effectively as “random” as true random numbers. True random numbers, found by measuring random phenomena like
atomic decay or atmospheric noise, are available from sources like www.random.org for those for whom PRNGs are not
acceptable.

3 When computing expected values with a uniform distribution, we will drop the subscript p from Ep.

4 As a technical note, it is possible for an estimator with infinite variance to be unbiased but not consistent. Such estimators do not
generally come up in rendering, however.

5 See Veach (1997) for a derivation of this result.

6 We will generally assume that f(x) > 0; if it is negative, we might set p(x) « |f(x)|. See the “Further Reading” section for more
discussion of this topic.

7 Note that the definition of variance in Equation (2.8) does not preclude computing the variance of a function itself.

8 In general, the lower limit of integration should be —oo, although if p(x) = 0 for x < 0, this equation is equivalent.


http://www.random.org/
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Almost all nontrivial graphics programs are built on a foundation of geometric classes that represent
mathematical constructs like points, vectors, and rays. Because these classes are ubiquitous
throughout the system, good abstractions and efficient implementations are critical. This chapter
presents the interface to and implementation of pbrt’s geometric foundation. Note that these are not
the classes that represent the actual scene geometry (triangles, spheres, etc.); those classes are the topic
of Chapter 6.

3.1 COORDINATE SYSTEMS

As is typical in computer graphics, pbrt represents three-dimensional points, vectors, and normal
vectors with three coordinate values: x, y, and z. These values are meaningless without a coordinate
system that defines the origin of the space and gives three linearly independent vectors that define the
x, y, and z axes of the space. Together, the origin and three vectors are called the frame that defines the
coordinate system. Given an arbitrary point or direction in 3D, its (x, y, z) coordinate values depend
on its relationship to the frame. Figure 3.1 shows an example that illustrates this idea in 2D.

In the general n-dimensional case, a frame’s origin p, and its n linearly independent basis vectors

define an n-dimensional affine space. All vectors v in the space can be expressed as a linear
combination of the basis vectors. Given a vector v and the basis vectors v;, there is a unique set of

scalar values s; such that v=syvy +... +s,v},.

The scalars s; are the representation of v with respect to the basis {v{, v, ... , v,;} and are the
coordinate values that we store with the vector. Similarly, for all points p, there are unique scalars s;
such that the point can be expressed in terms of the origin p, and the basis vectors p = p, +s1vy + ...
+5,Vy.

Thus, although points and vectors are both represented by x, y, and z coordinates in 3D, they are
distinct mathematical entities and are not freely interchangeable.
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In 2D, the (x, y) coordinates of a point p are defined by the relationship of the point to a
particular 2D coordinate system. Here, two coordinate systems are shown; the point might have
coordinates (3, 3) with respect to the coordinate system with its coordinate axes drawn in solid lines but
have coordinates (2, —4) with respect to the coordinate system with dashed axes. In either case, the 2D
point p is at the same absolute position in space.
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(a) In a left-handed coordinate system, the z axis points into the page when the x and y axes
are oriented with x pointing to the right and y pointing up. (b) In a right-handed system, the z axis points
out of the page.

This definition of points and vectors in terms of coordinate systems reveals a paradox: to define a
frame we need a point and a set of vectors, but we can only meaningfully talk about points and vectors
with respect to a particular frame. Therefore, in three dimensions we need a standard frame with
origin (0, 0, 0) and basis vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1). All other frames will be defined with
respect to this canonical coordinate system, which we call world space.

3.1.1 COORDINATE SYSTEM HANDEDNESS

There are two different ways that the three coordinate axes can be arranged, as shown in Figure 3.2.
Given perpendicular x and y coordinate axes, the z axis can point in one of two directions. These two
choices are called left-handed and right-handed. The choice between the two is arbitrary but has a
number of implications for how some of the geometric operations throughout the system are
implemented. pbrt uses a left-handed coordinate system.

3.2 n-TUPLE BASE CLASSES



pbrt’s classes that represent two- and three-dimensional points, vectors, and surface normals are all
based on general n-tuple classes, whose definitions we will start with. The definitions of these classes
as well as the types that inherit from them are defined in the files util/vecmath.h and
util/vecmath.cpp under the main pbrt source directory.

Although this and the following few sections define classes that have simple logic in most of their
method implementations, they make more use of advanced C++ programming techniques than we
generally use in pbrt. Doing so reduces the amount of redundant code needed to implement the
point, vector, and normal classes and makes them extensible in ways that will be useful later. If you are
not a C++ expert, it is fine to gloss over these details and to focus on understanding the functionality
that these classes provide. Alternatively, you could use this as an opportunity to learn more corners of
the language.

Both TupleZ and Tuple3 are template classes. They are templated not just on a type used for storing
each coordinate’s value but also on the type of the class that inherits from it to define a specific two- or
three-dimensional type. If one has not seen it before, this is a strange construction: normally,

inheritance is sufficient, and the base class has no need to know the type of the subclass.! In this case,

having the base class know the child class’s type makes it possible to write generic methods that
operate on and return values of the child type, as we will see shortly.

XTuple2 DefinitionX =
template <template <typename> class Child, typename T>
class Tuple2 {
public:
XTuple2 Public MethodsX
XTuple2 Public Members 83X

}s

The two-dimensional tuple stores its values as x and y and makes them available as public member
variables. The pair of curly braces after each one ensures that the member variables are default
initialized; for numeric types, this initializes them to 0.

XTuple2 Public MembersX = 83
T x{}, y{};

We will focus on the Tuple3 implementation for the remainder of this section. Tuple2 is almost
entirely the same but with one fewer coordinate.

XTuple3 DefinitionX =
template <template <typename> class Child, typename T>
class Tuple3 {
pubTic:
XTuple3 Public Methods s
XTuple3 Public Members sdX

}s



Tuple3 83

By default, the (x, y;, z) values are set to zero, although the user of the class can optionally supply
values for each of the components. If the user does supply values, the constructor checks that none of
them has the floating-point “not a number” (NaN) value using the DCHECK() macro. When compiled
in optimized mode, this macro disappears from the compiled code, saving the expense of verifying
this case. NaNs almost certainly indicate a bug in the system; if a NaN is generated by some
computation, we would like to catch it as soon as possible in order to make isolating its source easier.
(See Section 6.8.1 for more discussion of NaN values.)

XTuple3 Public MethodsX = 83
Tuple3(T x, Ty, T z) : x(x), y(y), z(z) { DCHECK(!HasNaN());
}

Readers who have been exposed to object-oriented design may question our decision to make the
tuple component values publicly accessible. Typically, member variables are only accessible inside
their class, and external code that wishes to access or modify the contents of a class must do so
through a well-defined API that may include selector and mutator functions. Although we are
sympathetic to the principle of encapsulation, it is not appropriate here. The purpose of selector and
mutator functions is to hide the class’s internal implementation details. In the case of three-
dimensional tuples, hiding this basic part of their design gains nothing and adds bulk to code that
uses them.

XTuple3 Public MembersX = 83
T x{}, y{}, z{};

The HasNaN() test checks each component individually.

XTuple3 Public MethodsX += 83

bool HasNaN() const { return IsNaN(x) || IsNaN(y) || IsNaN(z);
}

An alternate implementation of these two tuple classes would be to have a single template class that is
also parameterized with an integer number of dimensions and to represent the coordinates with an
array of that many T values. While this approach would reduce the total amount of code by
eliminating the need for separate two- and three-dimensional tuple types, individual components of
the vector could not be accessed as v.x and so forth. We believe that, in this case, a bit more code in
the vector implementations is worthwhile in return for more transparent access to components.
However, some routines do find it useful to be able to easily loop over the components of vectors; the
tuple classes also provide a C++ operator to index into the components so that, given an instance v,
v[0] == v.xand so forth.

XTuple3 Public MethodsX += 83
T operator[](int i) const {
if (i == 0) return x;



if (i == 1) return y;
return z;

}

If the tuple type is non-const, then indexing returns a reference, allowing components of the tuple to
be set.

XTuple3 Public MethodsX += 83
T &operator[] (int i) {
if (i == 0) return x;
if (i == 1) return y;
return z;

DCHECK() 1066
IsNaN() 363
Tuple3 83

We can now turn to the implementation of arithmetic operations that operate on the values stored in
a tuple. Their code is fairly dense. For example, here is the method that adds together two three-tuples
of some type (for example, Child might be Vector3, the forthcoming three-dimensional vector type).

XTuple3 Public MethodsX += 83
template <typename U>

auto operator+(Child<U> c) const -> Child<decltype(T{} +
U{})> {

return {x + c.x, y + c.y, z + c.z};

}

There are a few things to note in the implementation of operator+. By virtue of being a template
method based on another type U, it supports adding two elements of the same Child template type,
though they may use different types for storing their components (T and U in the code here). However,
because the base type of the method’s parameter is Chi1d, it is only possible to add two values of the
same child type using this method. If this method instead took a Tuple3 for the parameter, then it
would silently allow addition with any type that inherited from Tup1e3, which might not be intended.

There are two interesting things in the declaration of the return type, to the right of the -> operator
after the method’s parameter list. First, the base return type is Child; thus, if one adds two Vector3
values, the returned value will be of Vector3 type. This, too, eliminates a class of potential errors: if a
Tuple3 was returned, then it would for example be possible to add two Vector3s and assign the result
to a Point3, which is nonsensical. Finally, the component type of the returned type is determined
based on the type of an expression adding values of types T and U. Thus, this method follows C++’s



standard type promotion rules: if a Vector3 that stored integer values is added to one that stores
Floats, the result is a Vector3 storing Floats.

In the interests of space, we will not include the other Tuple3 arithmetic operators here, nor will we
include the various other utility functions that perform component-wise operations on them. The full
list of capabilities provided by TupleZ and Tuple3 is:

The basic arithmetic operators of per-component addition, subtraction, and negation,
including the “in place” (e.g., operator+=) forms of them.

Component-wise multiplication and division by a scalar value, including “in place”
variants.

Abs (a), which returns a value where the absolute value of each component of the tuple
type has been taken.

Ceil(a) and Floor(a), which return a value where the components have been rounded
up or down to the nearest integer value, respectively.

Lerp(t, a, b),which returns the result of the linear interpolation (1-t)*a + t*b.
FMA(a, b, c), which takes three tuples and returns the result of a component-wise
fused multiply-add a*b + c.

Min(a, b) and Max(a, b), which respectively return the component-wise minimum
and maximum of the two given tuples.

MinComponentValue(a) and MaxComponentValue(a), which respectively return the
minimum and maximum value of the tuple’s components.

MinComponentIndex(a) and MaxComponentIndex(a), which respectively return the
zero-based index of the tuple element with minimum or maximum value.

Permute(a, perm), which returns the permutation of the tuple according to an array of
indices.

HProd(a), which returns the horizontal product—the component values multiplied
together.

Tuple2 83
Tuple3 83

3.3 VECTORS

pbrt provides both 2D and 3D vector classes that are based on the corresponding two- and three-
dimensional tuple classes. Both vector types are themselves parameterized by the type of the
underlying vector element, thus making it easy to instantiate vectors of both integer and floating-

point types.

MVector2 Definition =
template <typename T>

class Vector2 : public Tuple2<Vector2, T> {
public:
[[Vector2 Public Methodd]

}s



Two-dimensional vectors of Floats and integers are widely used, so we will define aliases for those
two types.

MVector2* Definitions¥ =
using Vector2f = Vector2<Float>;
using Vector2i = Vector2<int>;

As with Tuple2, we will not include any further details of Vector2 since it is very similar to Vector3,
which we will discuss in more detail.

A Vector3’s tuple of component values gives its representation in terms of the x, y, and z (in 3D) axes
of the space it is defined in. The individual components of a 3D vector v will be written v,, vy and v,.

XVector3 DefinitionX =
template <typename T>
class Vector3 : public Tuple3<Vector3, T> {
pubTic:
K Vector3 Public Methods ss
bs

We also define type aliases for two commonly used three-dimensional vector types.

XVector3* Definitions¥ =
using Vector3f = Vector3<Float>;
using Vector3i = Vector3<int>;

Vector3 provides a few constructors, including a default constructor (not shown here) and one that
allows specifying each component value directly.

XVector3 Public MethodsX = 86
Vector3(T x, Ty, T z) : Tuple3<pbrt::Vector3, T>(x, y, z) {}

There is also a constructor that takes a Vector3 with a different element type. It is qualified with
explicit so that it is not unintentionally used in automatic type conversions; a cast must be used to
signify the intent of the type conversion.

Float 23
Tuple2 83
Tuple3 83
Vector2 86
Vector3 86

XVector3 Public MethodsX +=
template <typename U>



explicit Vector3(Vector3<U> v)
: Tuple3<pbrt::Vector3, T>(T(v.x), T(v.y), T(v.z)) {}

[oart

(a) Vector addition: v + w. (b) Notice that the sum v + w forms the diagonal of the
parallelogram formed by v and w, which shows the commutativity of vector addition: v+ w =w + v.

|ojart

(a) Vector subtraction. (b) If we consider the parallelogram formed by two vectors, the
diagonals are given by w — v (dashed line) and —v — w (not shown).

Finally, constructors are provided to convert from the forthcoming Point3 and Normal3 types. Their
straightforward implementations are not included here. These, too, are explicit to help ensure that
they are only used in situations where the conversion is meaningful.

XVector3 Public MethodsX += 86
template <typename U>
explicit Vector3(Point3<U> p);
template <typename U>
explicit Vector3(Normal3<U> n);

Addition and subtraction of vectors is performed component-wise, via methods from Tuple3. The
usual geometric interpretation of vector addition and subtraction is shown in Figures 3.3 and 3.4. A
vector’s length can be changed via component-wise multiplication or division by a scalar. These
capabilities, too, are provided by Tuple3 and so do not require any additional implementation in the
Vector3 class.

3.3.1 NORMALIZATION AND VECTOR LENGTH

It is often necessary to normalize a vector—that is, to compute a new vector pointing in the same
direction but with unit length. A normalized vector is often called a unit vector. The notation used in
this book for normalized vectors is that |, art is the normalized version of v. Before getting to
normalization, we will start with computing vectors’” lengths.

The squared length of a vector is given by the sum of the squares of its component values.

X Vector3 Inline FunctionsX =



template <typename T>
T LengthSquared(Vector3<T> v) { return Sqr(v.x) + Sqr(v.y) + Sqr(v.z); }

Normal3 94
Point3 92
Sqr() 1034
Tuple3 83
Vector3 86

Moving on to computing the length of a vector leads us to a quandary: what type should the
Length() function return? For example, if the Vector3 stores an integer type, that type is probably
not an appropriate return type since the vector’s length will not necessarily be integer-valued. In that
case, Float would be a better choice, though we should not standardize on Float for everything,
because given a Vector3 of double-precision values, we should return the length as a doubTe as well.
Continuing our journey through advanced C++, we turn to a technique known as type traits to solve
this dilemma.

First, we define a general TuplelLength template class that holds a type definition, type. The default is
set here to be Float.

XTupleLength DefinitionX =
template <typename T>
struct TupleLength { using type = Float; };

For Vector3s of doubles, we also provide a template specialization that defines doub1e as the type for
length given doubTe for the element type.

XTupleLength DefinitionX +=
template <>
struct TuplelLength<double> { using type = double; };

Now we can implement Length (), using TupleLength to determine which type to return. Note that
the return type cannot be specified before the function declaration is complete since the type T is not
known until the function parameters have been parsed. Therefore, the function is declared as auto
with the return type specified after its parameter list.

XVector3 Inline Functions¥ +=
template <typename T>
auto Length(Vector3<T> v) -> typename TuplelLength<T>::type {
using std::sqrt;
return sqrt(LengthSquared(v));



There is one more C++ subtlety in these few lines of code: the reader may wonder, why have a using
std::sqrt declaration in the implementation of Length() and then call sqrt(), rather than just
calling std::sqrt() directly? That construction is used because we would like to be able to use
component types T that do not have overloaded versions of std::sqrt() available to them. For
example, we will later make use of Vector3s that store intervals of values for each component using a
forthcoming Interval class. With the way the code is written here, if std: :sqrt () supports the type
T, the std variant of the function is called. If not, then so long as we have defined a function named
sqrt () that takes our custom type, that version will be used.

With all of this in hand, the implementation of Normalize() is thankfully now trivial. The use of
auto for the return type ensures that if for example Normalize() is called with a vector with integer
components, then the returned vector type has Float components according to type conversion from
the division operator.

XVector3 Inline FunctionsX +=
template <typename T>
auto Normalize(Vector3<T> v) { return v / Length(v); }

Float 23
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Length() 88
LengthSquared() 87
Tuplelength 88
Vector3 86

3.3.2 DOT AND CROSS PRODUCT

Two useful operations on vectors are the dot product (also known as the scalar or inner product) and
the cross product. For two 3D vectors v and w, their dot product (v - w) is defined as vywy + v)w), +

v,W, and the implementation follows directly.

X Vector3 Inline Functions¥ +=
template <typename T>
T Dot (Vector3<T> v, Vector3<T> w) {
return v.x * w.x + v.y * w.y + v.z * w.z;

}

A few basic properties directly follow from the definition of the dot product. For example, if u, v, and
w are vectors and s is a scalar value, then: (u-v) = (v-u)

(su-v)=s(u-v)

(u-(v+w)=(u-v) + (u-w).

The dot product has a simple relationship to the angle between the two vectors:



| art

where 0 is the angle between v and w, and ||v|| denotes the length of the vector v. It follows from this
that (v - w) is zero if and only if v and w are perpendicular, provided that neither v nor w is degenerate
—equal to (0, 0, 0). A set of two or more mutually perpendicular vectors is said to be orthogonal. An
orthogonal set of unit vectors is called orthonormal.

It follows from Equation (3.1) that if v and w are unit vectors, their dot product is the cosine of the
angle between them. As the cosine of the angle between two vectors often needs to be computed for
rendering, we will frequently make use of this property.

If we would like to find the angle between two normalized vectors, we could use the standard library’s
inverse cosine function, passing it the value of the dot product between the two vectors. However, that
approach can suffer from a loss of accuracy when the two vectors are nearly parallel or facing in
nearly opposite directions. The following reformulation does more of its computation with values
close to the origin where there is more floating-point precision, giving a more accurate result.

K Vector3 Inline Functions¥ +=
template <typename T>
Float AngleBetween(Vector3<T> v1, Vector3<T> v2) {
if (Dot(vl, v2) < 0)
return Pi - 2 * SafeASin(Length(vl + v2) / 2);



else
return 2 * SafeASin(Length(v2 - v1) / 2);

AbsDot () 90
Dot () 89

Float 23
Length() 88

Pi 1033
SafeASin() 1035
Vector3 86

We will frequently need to compute the absolute value of the dot product as well. The AbsDot ()
function does this for us so that a separate call to std: :abs () is not necessary in that case.

[ art

The orthogonal projection of a vector v onto a normalized vector w gives a vector v, that is
parallel to w. The difference vector, v — v,;, shown here as a dashed line, is perpendicular to w.

XVector3 Inline FunctionsX +=
template <typename T>
T AbsDot(Vector3<T> v1, Vector3<T> v2) { return std::abs(Dot(vl, v2)); }

A useful operation on vectors that is based on the dot product is the Gram-Schmidt process, which
transforms a set of non-orthogonal vectors that form a basis into orthogonal vectors that span the
same basis. It is based on successive application of the orthogonal projection of a vector v onto a
normalized vector W, which is given by (v - W)W (see Figure 3.5). The orthogonal projection can be
used to compute a new vector |, jart

that is orthogonal to w. An advantage of computing vl in this way is that vl and w span the same

subspace as v and w did.

The GramSchmidt() function implements Equation (3.2); it expects the vector w to already be
normalized.

KVector3 Inline Functions¥ +=
template <typename T>
Vector3<T> GramSchmidt (Vector3<T> v, Vector3<T> w) {
return v - Dot(v, w) * w;



The cross product is another useful operation for 3D vectors. Given two vectors in 3D, the cross
product vxw is a vector that is perpendicular to both of them. Given orthogonal vectors v and w, then
vxw is defined to be a vector such that (v, w, vxw) form an orthogonal coordinate system.

The cross product is defined as:

(VXW)y = VyWz = VzWy
(vxw) y = VZWx = VxWz

(vxw), = VxWy = VyWy.
A way to remember this is to compute the determinant of the matrix:

|o.art

Dot () 89
Vector3 86

where i, j, and k represent the axes (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. Note that this equation
is merely a memory aid and not a rigorous mathematical construction, since the matrix entries are a
mix of scalars and vectors.

[ art

The area of a parallelogram with edges given by vectors vq and vy is equal to |[v1| h. From
Equation (3.3), the length of the cross product of vy and vy is equal to the product of the two vector
lengths times the sine of the angle between them—the parallelogram area.

The cross product implementation here uses the DifferenceOfProducts() function that is
introduced in Section B.2.9. Given values a, b, ¢, and d, it computes a*b-c*d in a way that maintains
more floating-point accuracy than a direct implementation of that expression would. This concern is
not a theoretical one: previous versions of pbrt have resorted to using double precision for the
implementation of Cross() so that numerical error would not lead to artifacts in rendered images.
Using DifferenceOfProducts() is a better solution since it can operate entirely in single precision
while still computing a result with low error.

XVector3 Inline Functions¥ +=
template <typename T>
Vector3<T> Cross(Vector3<T> v, Vector3<T> w) {
return {DifferenceOfProducts(v.y, w.z, v.z, w.y),
DifferenceOfProducts(v.z, w.x, V.X, W.z),
DifferenceOfProducts(v.x, w.y, v.y, w.X)};



From the definition of the cross product, we can derive
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where 0 is the angle between v and w. An important implication of this is that the cross product of
two perpendicular unit vectors is itself a unit vector. Note also that the result of the cross product is a
degenerate vector if vand w are parallel.

This definition also shows a convenient way to compute the area of a parallelogram (Figure 3.6). If the
two edges of the parallelogram are given by vectors v and vy, and it has height A, the area is given by

lv1]l 4. Since h = sin 6]|v ||, we can use Equation (3.3) to see that the area is [[vyxv|.

3.3.3 COORDINATE SYSTEM FROM A VECTOR

We will sometimes find it useful to construct a local coordinate system given only a single normalized
3D vector. To do so, we must find two additional normalized vectors such that all three vectors are
mutually perpendicular.

DifferenceOfProducts() 1044
Vector3 86

Given a vector v, it can be shown that the two vectors
[ art

fulfill these conditions. However, computing those properties directly has high error when v, = -1
due to a loss of accuracy when 1/(1 + v,) is calculated. A reformulation of that computation, used in

the following implementation, addresses that issue.

X Vector3 Inline Functions¥ +=
template <typename T>
void CoordinateSystem(Vector3<T> v1, Vector3<T> *v2, Vector3<T> *v3) {
Float sign = pstd::copysign(Float(1l), vl.z);
Float a = -1 / (sign + vl.z);
Float b = vl.x * vl.y * a;

*v2 = Vector3<T>(1 + sign * Sqr(vl.x) * a, sign * b, -sign * vl.x);
*v3 = Vector3<T>(b, sign + Sqr(vl.y) * a, -vl.y);
}
3.4 POINTS

A point is a zero-dimensional location in 2D or 3D space. The Point2 and Point3 classes in pbrt
represent points in the obvious way: using x, y, z (in 3D) coordinates with respect to a coordinate
system. Although the same representation is used for vectors, the fact that a point represents a



position whereas a vector represents a direction leads to a number of important differences in how
they are treated. Points are denoted in text by p.

In this section, we will continue the approach of only including implementations of the 3D point
methods for the Point3 class here.

XPoint3 DefinitionX =
template <typename T>
class Point3 : public Tuple3<Point3, T> {
pubTic:
XPoint3 Public Methods 9X
bs

As with vectors, it is helpful to have shorter type names for commonly used point types.

XPoint3* DefinitionsX =
using Point3f = Point3<Float>;
using Point3i = Point3<int>;

It is also useful to be able to convert a point with one element type (e.g., a Point3f) to a point of
another one (e.g., Point31i) as well as to be able to convert a point to a vector with a different
underlying element type. The following constructor and conversion operator provide these
conversions. Both also require an explicit cast, to make it clear in source code when they are being
used.

XPoint3 Public MethodsX =
template <typename U> 92
explicit Point3(Point3<U> p)
: Tuple3<pbrt::Point3, T>(T(p.x), T(p.y), T(p.z)) {}
template <typename U>
explicit Point3(Vector3<U> v)
: Tuple3<pbrt::Point3, T>(T(v.x), T(v.y), T(v.z)) {}

There are certain Point3 methods that either return or take a Vector3. For instance, one can add a
vector to a point, offsetting it in the given direction to obtain a new point. Analogous methods, not
included in the text, also allow subtracting a vector from a point.
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The vector v = p' — p is given by the
component-wise subtraction of the points p’ and p.

XPoint3 Public MethodsX += 92
template <typename U>
auto operator+(Vector3<U> v) const -> Point3<decltype(T{} +
u{})> {
return {x + v.x, y + v.y, z + v.z};
}
template <typename U>
Point3<T> &operator+=(Vector3<U> v) {
X += V.X3 Yy += V.y; z += v.zZ;
return *this;

}

Alternately, one can subtract one point from another, obtaining the vector between them, as shown in
Figure 3.7.

XPoint3 Public MethodsX += 92
template <typename U>
auto operator-(Point3<U> p) const -> Vector3<decltype(T{} -
U{})> {
return {x - p.X, y - p.y, Z - p.Z};

}

The distance between two points can be computed by subtracting them to compute the vector
between them and then finding the length of that vector. Note that we can just use auto for the return
type and let it be set according to the return type of Length(); there is no need to use the
Tuplelength type trait to find that type.

XPoint3 Inline FunctionsX =
template <typename T>
auto Distance(Point3<T> pl, Point3<T> p2) { return Length(pl - p2); }

The squared distance between two points can be similarly computed using LengthSquared().

XPoint3 Inline Functions¥ +=
template <typename T>



auto DistanceSquared(Point3<T> pl, Point3<T> p2) {
return LengthSquared(pl - p2);

}
3.5 NORMALS

Length() 88
LengthSquared() 87
Point3 92
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Vector3 86

A surface normal (or just normal) is a vector that is perpendicular to a surface at a particular position.
It can be defined as the cross product of any two nonparallel vectors that are tangent to the surface at a
point. Although normals are superficially similar to vectors, it is important to distinguish between the
two of them: because normals are defined in terms of their relationship to a particular surface, they
behave differently than vectors in some situations, particularly when applying transformations. (That
difference is discussed in Section 3.10.)

XNormal3 Definition =
template <typename T>
class Normal3 : public Tuple3<Normal3, T> {
public:
XNormal3 Public Methods sdX

}s

KNormal3 DefinitionX +=
using Normal3f = Normal3<Float>;

The implementations of Normal3s and Vector3s are very similar. Like vectors, normals are
represented by three components X, y, and z; they can be added and subtracted to compute new
normals; and they can be scaled and normalized. However, a normal cannot be added to a point, and
one cannot take the cross product of two normals. Note that, in an unfortunate turn of terminology,
normals are not necessarily normalized.

In addition to the usual constructors (not included here), Normal3 allows conversion from Vector3
values given an explicit typecast, similarly to the other Tuple2- and Tuple3-based classes.

XNormal3 Public MethodsX = 94
template <typename U>
explicit Normal3<T>(Vector3<U> v)
: Tuple3<pbrt::Normal3, T>(T(v.x), T(v.y), T(v.z)) {}



The Dot () and AbsDot () functions are also overloaded to compute dot products between the various
possible combinations of normals and vectors. This code will not be included in the text here. We also
will not include implementations of all the various other Normal3 methods here, since they are similar
to those for vectors.

One new operation to implement comes from the fact that it is often necessary to flip a surface
normal so it lies in the same hemisphere as a given vector—for example, the surface normal that lies
in the same hemisphere as a ray leaving a surface is frequently needed. The FaceForward() utility
function encapsulates this small computation. (pbrt also provides variants of this function for the
other three combinations of Vector3s and Normal3s as parameters.) Be careful when using the other
instances, though: when using the version that takes two Vector3s, for example, ensure that the first
parameter is the one that should be returned (possibly flipped) and the second is the one to test
against. Reversing the two parameters will give unexpected results.

XNormal3 Inline FunctionsX =
template <typename T>
Normal3<T> FaceForward(Normal3<T> n, Vector3<T> v) {
return (Dot(n, v) < 0.f) ? -n : n;
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3.6 RAYS

A ray r is a semi-infinite line specified by its origin o and direction d; see Figure 3.8. pbrt represents
Rays using a Point3f for the origin and a Vector3f for the direction; there is no need for non-
Float-based rays in pbrt. See the files ray.h and ray.cpp in the pbrt source code distribution for
the implementation of the Ray class implementation.
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A ray is a semi-infinite line defined by its origin o and its direction vector d.



XRay DefinitionX =
class Ray {
pubTic:
XRay Public Methods ss¥
KRay Public Members 95X

}s

Because we will be referring to these variables often throughout the code, the origin and direction
members of a Ray are succinctly named o0 and d. Note that we again make the data publicly available
for convenience.

XRay Public MembersX = %
Point3f o;
Vector3f d;

The parametric form of a ray expresses it as a function of a scalar value ¢, giving the set of points that
the ray passes through: | Jart

The Ray class overloads the function application operator for rays in order to match the r(t) notation
in Equation (3.4).

XRay Public MethodsX = 9
Point3f operator()(Float t) const { return o +d * t; }

Given this method, when we need to find the point at a particular position along a ray, we can write
code like:

Ray r(Point3f(0, 0, 0), Vector3f(l, 2, 3));
Point3f p = r(1.7);

Each ray also has a time value associated with it. In scenes with animated objects, the rendering
system constructs a representation of the scene at the appropriate time for each ray.

XRay Public Members¥ += 9
Float time = 0;

Float 23
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Each ray also records the medium at its origin. The Med1ium class, which will be introduced in Section
11.4, encapsulates the (potentially spatially varying) properties of participating media such as a foggy
atmosphere, smoke, or scattering liquids like milk. Associating this information with rays makes it
possible for other parts of the system to account correctly for the effect of rays passing from one
medium to another.

XRay Public MembersX += %
Medium medium = nullptr;

Constructing Rays is straightforward. The default constructor relies on the Point3f and Vector3f
constructors to set the origin and direction to (0, 0, 0). Alternately, a particular point and direction
can be provided. If an origin and direction are provided, the constructor allows values to be given for
the ray’s time and medium.

XRay Public MethodsX += %
Ray(Point3f o, Vector3f d, Float time = 0.f, Medium medium =
nullptr)
: o(o), d(d), time(time), medium(medium) {}

3.6.1 RAY DIFFERENTIALS

To be able to perform better antialiasing with the texture functions defined in Chapter 10, pbrt makes
use of the RayDifferential class, which is a subclass of Ray that contains additional information
about two auxiliary rays. These extra rays represent camera rays offset by one sample in the x and y
direction from the main ray on the film plane. By determining the area that these three rays project to

on an object being shaded, a Texture can estimate an area to average over for proper antialiasing
(Section 10.1).

Because RayDifferential inherits from Ray, geometric interfaces in the system can be written to
take const Ray & parameters, so that either a Ray or RayDifferential can be passed to them. Only
the routines that need to account for antialiasing and texturing require RayDifferential parameters.

XRayDifferential DefinitionX =
class RayDifferential : public Ray {
pubTic:
XRayDifferential Public Methods sX
XRayDifferential Public Members s

bs
The RayDifferential constructor mirrors the Ray’s.

XRayDifferential Public MethodsX = %
RayDifferential(Point3f o, Vector3f d, Float time = 0.f,
Medium medium = nullptr)



: Ray(o, d, time, medium) {}

In some cases, differential rays may not be available. Routines that take RayDifferential parameters
should check the hasDifferentials member variable before accessing the differential rays’ origins
or directions.

XRayDifferential Public MembersX = %
bool hasDifferentials = false;
Point3f rxOrigin, ryOrigin;
Vector3f rxDirection, ryDirection;

There is also a constructor to create a RayDifferential from a Ray. As with the previous
constructor, the default false value of the hasDifferentials member variable is left as is.

XRayDifferential Public MethodsX += 96
explicit RayDifferential(const Ray &ray) : Ray(ray) {}

Camera 206

Float 23

Medium 714

Point3f 92

Ray 95
RayDifferential 96
Texture 655
Vector3f 86

Camera implementations in pbrt compute differentials for rays leaving the camera under the
assumption that camera rays are spaced one pixel apart. Integrators usually generate multiple camera
rays per pixel, in which case the actual distance between samples is lower and the differentials should
be updated accordingly; if this factor is not accounted for, then textures in images will generally be too
blurry. The ScaleDifferentials() method below takes care of this, given an estimated sample

spacing of s. It is called, for example, by the fragment Generate camera ray for current sample in
Chapter 1.

XRayDifferential Public MethodsX += 9
void ScaleDifferentials(Float s) {
rxOrigin = o + (rxOrigin - o) * s;
ryOrigin = o + (ryOrigin - o) * s;

d + (rxDirection - d) * s;
d + (ryDirection - d) * s;

rxDirection
ryDirection

3.7 BOUNDING BOXES



Many parts of the system operate on axis-aligned regions of space. For example, multi-threading in
pbrt is implemented by subdividing the image into 2D rectangular tiles that can be processed
independently, and the bounding volume hierarchy in Section 7.3 uses 3D boxes to bound geometric
primitives in the scene. The Bounds2 and Bounds3 template classes are used to represent the extent of
these sorts of regions. Both are parameterized by a type T that is used to represent the coordinates of
their extents. As with the earlier vector math types, we will focus here on the 3D variant, Bounds3,
since Bounds2 is effectively a subset of it.

KBounds2 DefinitionX =
template <typename T>
class Bounds2 {
pubTic:
XBounds2 Public MethodsX
XBounds2 Public MembersX

}s

XBounds3 Definition =
template <typename T>
class Bounds3 {
public:
XBounds3 Public Methods ssX
XBounds3 Public Members 9sX

bs
We use the same shorthand as before to define names for commonly used bounding types.

XBounds[23][fi] DefinitionsX =

using Bounds2f = Bounds2<Float>;
using Bounds2i = Bounds2<int>;
using Bounds3f = Bounds3<Float>;

using Bounds3i Bounds3<int>;
Bounds2 97

Bounds3 97

Float 23

Ray::d 95

Ray::095

RayDifferential::rxDirection 96
RayDifferential::rx0Origin 96
RayDifferential::ryDirection 96
RayDifferential::ryOrigin 96



There are a few possible representations for these sorts of bounding boxes; pbrt uses axis-aligned
bounding boxes (AABBs), where the box edges are mutually perpendicular and aligned with the
coordinate system axes. Another possible choice is oriented bounding boxes (OBBs), where the box
edges on different sides are still perpendicular to each other but not necessarily coordinate-system
aligned. A 3D AABB can be described by one of its vertices and three lengths, each representing the
distance spanned along the x, y, and z coordinate axes. Alternatively, two opposite vertices of the box
can describe it. We chose the two-point representation for pbrt’s Bounds2 and Bounds3 classes; they
store the positions of the vertex with minimum coordinate values and of the one with maximum
coordinate values. A 2D illustration of a bounding box and its representation is shown in Figure 3.9.
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The Bounds2 and Bounds3 classes store only the
coordinates of the minimum and maximum points of the box; the other box corners are implicit in this
representation.

XBounds3 Public MembersX = 97
Point3<T> pMin, pMax;

The default constructors create an empty box by setting the extent to an invalid configuration, which
violates the invariant that pMin.x <= pMax.x (and similarly for the other dimensions). By initializing
two corner points with the largest and smallest representable number, any operations involving an
empty box (e.g., Union()) will yield the correct result.

XBounds3 Public MethodsX = 97
Bounds3() {
T minNum = std::numeric_limits<T>::Towest();
T maxNum

std::numeric_1imits<T>::max();

pMin
pMax

Point3<T>(maxNum, maxNum, maxNum);
Point3<T>(minNum, minNum, minNum);

}

It is also useful to be able to initialize bounds that enclose just a single point:

XBounds3 Public MethodsX += 97
explicit Bounds3(Point3<T> p) : pMin(p), pMax(p) {}

If the caller passes two corner points (pl and p2) to define the box, the constructor needs to find their

component-wise minimum and maximum values since it is not necessarily the case that pl.x <=
p2.X, and so on.

XBounds3 Public MethodsX += 97



Bounds3(Point3<T> pl, Point3<T> p2)
: pMin(Min(pl, p2)), pMax(Max(pl, p2)) {}

It can be useful to use array indexing to select between the two points at the corners of the box.
Assertions in the debug build, not shown here, check that the provided index is either 0 or 1.

XBounds3 Public MethodsX += 97
Point3<T> operator[](int i) const { return (i == 0) ? pMin :
pMax; }
Point3<T> &operator[](int i) { return (i == 0) ? pMin : pMax;
}

Bounds2 97
Bounds3 97
Bounds3: :pMax 98
Bounds3::pMin 98
Point3 92
Tuple3::Max() 85
Tuple3::Min() 85

The Corner() method returns the coordinates of one of the eight corners of the bounding box. Its
logic calls the operator[] method with a zero or one value for each dimension that is based on one
of the low three bits of corner and then extracts the corresponding component.

It is worthwhile to verify that this method returns the positions of all eight corners when passed
values from 0 to 7 if that is not immediately evident.

XBounds3 Public MethodsX += 97
Point3<T> Corner(int corner) const {
return Point3<T>((*this)[(corner & 1)].x,
(*this) [(corner & 2) 2 1 : 0].y,
(*this)[(corner & 4) 2 1 : 0].z);
}

Given a bounding box and a point, the Union() function returns a new bounding box that
encompasses that point as well as the original bounds.

XBounds3 Inline Functions¥ =
template <typename T>
Bounds3<T> Union(const Bounds3<T> &b, Point3<T> p) {
Bounds3<T> ret;
ret.pMin = Min(b.pMin, p);
ret.pMax = Max(b.pMax, p);



return ret;

}

One subtlety that applies to this and some of the following functions is that it is important that the
pMin and pMax members of ret be set directly here, rather than passing the values returned by Min ()
and Max () to the Bounds3 constructor. The detail stems from the fact that if the provided bounds are
both degenerate, the returned bounds should be degenerate as well. If a degenerate extent is passed to
the constructor, then it will sort the coordinate values, which in turn leads to what is essentially an
infinite bound.

It is similarly possible to construct a new box that bounds the space encompassed by two other
bounding boxes. The definition of this function is similar to the earlier Union() method that takes a
Point3f; the difference is that the pMin and pMax of the second box are used for the Min() and Max ()
tests, respectively.

XBounds3 Inline Functions¥ +=
template <typename T>
Bounds3<T> Union(const Bounds3<T> &bl, const Bounds3<T> &b2) {
Bounds3<T> ret;
ret.pMin = Min(bl.pMin, b2.pMin);
Max(bl.pMax, b2.pMax); return ret;

ret.pMax

}

The intersection of two bounding boxes can be found by computing the maximum of their two
respective minimum coordinates and the minimum of their maximum coordinates. (See Figure 3.10.)
XBounds3 Inline FunctionsX +=
template <typename T>
Bounds3<T> Intersect(const Bounds3<T> &bl, const Bounds3<T> &b2) {
Bounds3<T> b;
b.pMin = Max(bl.pMin, b2.pMin);
b.pMax = Min(bl.pMax, b2.pMax);
return b;

Bounds3 97
Bounds3: :pMax 98
Bounds3::pMin 98
Point3 92
Point3f 92
Tuple3::Max() 85
Tuple3::Min() 85
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Given two bounding boxes with pMin and pMax
points denoted by open circles, the bounding box of their area of intersection (shaded region) has a
minimum point (lower left filled circle) with coordinates given by the maximum of the coordinates of the
minimum points of the two boxes in each dimension. Similarly, its maximum point (upper right filled
circle) is given by the minimums of the boxes’ maximum coordinates.

We can also determine if two bounding boxes overlap by seeing if their
extents overlap in all of x, y, and z:

Bounds3 Inline Functions +=
template <typename T>
bool Overlaps(const Bounds3<T> &b1l, const Bounds3<T> &b2)
{
bool x = (bl.pMax.x >= b2.pMin.x) && (bl.pMin.x <=

b2.pMax.x);
bool y = (bl.pMax.y >= b2.pMin.y) && (bl.pMin.y <=
b2.pMax.y);
bool z = (bl.pMax.z >= b2.pMin.z) && (bl.pMin.z <=
b2.pMax.z);

return (x && y && z);
}

Three 1D containment tests determine if a given point is inside a bounding
box.

Bounds3 Inline Functions +=
template <typename T>
bool Inside(Point3<T> p, const Bounds3<T> &b) {
return (p.x >= b.pMin.x && p.x <= b.pMax.x &&
p.y >= b.pMin.y && p.y <= b.pMax.y &&
p.z >= b.pMin.z && p.z <= b.pMax.z);



The InsideExclusive() variant of Inside() does not consider points on
the upper boundary to be inside the bounds. It is mostly useful with integer-
typed bounds.

Bounds3 Inline Functions +=
template <typename T>
bool InsideExclusive(Point3<T> p, const Bounds3<T> &b) {
return (p.x >= b.pMin.x &% p.x < b.pMax.x &&
p.y >= b.pMin.y && p.y < b.pMax.y &&
p.z >= b.pMin.z && p.z < b.pMax.z);

Bounds3 97
Bounds3: :pMax 98
Bounds3::pMin 98
Point3 92

DistanceSquared() returns the squared distance from a point to a
bounding box or zero if the point is inside it. The geometric setting of the
computation is shown in Figure 3.11. After the distance from the point to
the box is computed in each dimension, the squared distance is found by
summing the squares of each of the 1D distances.
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We
first find the distance from the point to the box in each dimension. Here, the point represented by an
empty circle on the upper left is above to the left of the box, so its x and y distances are respectively
pMin.x - p.xand pMin.y - p.y. The other point represented by an empty circle is to the right of the
box but overlaps its extent in the y dimension, giving it respective distances of p.x - pMax.x and zero.
The logic in Bounds3::DistanceSquared() computes these distances by finding the maximum of zero
and the distances to the minimum and maximum points in each dimension.

Bounds3 Inline Functions +=

template <typename T, typename U>

auto DistanceSquared(Point3<T> p, const Bounds3<U> &b) {
using TDist = decltype(T{} - U{});



TDist dx = std::max<TDist>({0, b.pMin.x - p.x, p.x -
b.pMax.x});
TDist dy = std::max<TDist>({0, b.pMin.y - p.y, p.y -
b.pMax.y});
TDist dz = std::max<TDist>({0, b.pMin.z - p.z, p.z -

b.pMax.z});
return Sqr(dx) + Sqr(dy) + Sqr(dz);
}

It is easy to compute the distance from a point to a bounding box, though
some indirection is needed to be able to determine the correct return type
using TuplelLength.

Bounds3 Inline Functions +=

template <typename T, typename U>

auto Distance(Point3<T> p, const Bounds3<U> &b) {
auto dist2 = DistanceSquared(p, b);
using TDist = typename
TuplelLength<decltype(dist2)>::type;
return std::sqrt(TDist(dist2));

}

The Expand() function pads the bounding box by a constant factor in all
dimensions.

Bounds3 Inline Functions +=

template <typename T, typename U>

Bounds3<T> Expand(const Bounds3<T> &b, U delta) ({
Bounds3<T> ret;
ret.pMin = b.pMin - Vector3<T>(delta, delta, delta);
ret.pMax = b.pMax + Vector3<T>(delta, delta, delta);
return ret;

}

Bounds3 97
Bounds3::DistanceSquared() 101



Bounds3: :pMax 98
Bounds3::pMin 98
Point3 92

Sqr() 1034
TuplelLength 88
Vector3 86

Diagonal () returns the vector along the box diagonal from the minimum
point to the maximum point.

Bounds3 Public Methods += 97
Vector3<T> Diagonal() const { return pMax - pMin; }

Methods for computing the surface area of the six faces of the box and the
volume inside of it are also useful. (This is a place where Bounds2 and
Bounds3 diverge: these methods are not available in Bounds?2, though it
does have an Area() method.)

Bounds3 Public Methods += 97
T SurfaceArea() const {
Vector3<T> d = Diagonal();
return 2 * (d.x * d.y + d.x * d.z + d.y * d.z);
}

Bounds3 Public Methods += 97
T Volume() const {
Vector3<T> d = Diagonal();
return d.x * d.y * d.z;

}

The Bounds3: :MaxDimension() method returns the index of which of the
three axes is longest. This is useful, for example, when deciding which axis
to subdivide when building some of the ray-intersection acceleration
structures.

Bounds3 Public Methods += 97
int MaxDimension() const {
Vector3<T> d = Diagonal();
if (d.x > d.y & d.x > d.z) return 0;
else if (d.y > d.z) return 1;
else return 2;



Lerp() linearly interpolates between the corners of the box by the given
amount in each dimension.

Bounds3 Public Methods += 97
Point3f Lerp(Point3f t) const {
return Point3f(pbrt::Lerp(t.x, pMin.x, pMax.x),
pbrt::Lerp(t.y, pMin.y, pMax.y),
pbrt::Lerp(t.z, pMin.z, pMax.z));
}

Offset() is effectively the inverse of Lerp (). It returns the continuous

position of a point relative to the corners of the box, where a point at the
minimum corner has offset (0, 0, 0), a point at the maximum corner has

offset (1, 1, 1), and so forth.

Bounds3 Public Methods += 97
Vector3f Offset(Point3f p) const {
Vector3f o = p - pMin;
if (pMax.x > pMin.x) o.x /= pMax.x - pMin.x;
if (pMax.y > pMin.y) o.y /= pMax.y - pMin.y;
if (pMax.z > pMin.z) o.z /= pMax.z - pMin.z;
return o;
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Bounds3::Diagonal () 101
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Bounds3: :pMax 98
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Lerp() 72

Point3f 92

Vector3 86

Vector3f 86

Bounds3 also provides a method that returns the center and radius of a
sphere that bounds the bounding box. In general, this may give a far looser
fit than a sphere that bounded the original contents of the Bounds3 directly,
although for some geometric operations it is easier to work with a sphere
than a box, in which case the worse fit may be an acceptable trade-off.

Bounds3 Public Methods += 97
void BoundingSphere(Point3<T> *center, Float *radius) const {



*center = (pMin + pMax) / 2;
*radius = Inside(*center, *this) ? Distance(*center,
pMax) : 0;

}

Straightforward methods test for empty and degenerate bounding boxes.
Note that “empty” means that a bounding box has zero volume but does not
necessarily imply that it has zero surface area.

Bounds3 Public Methods +=

bool IsEmpty() const {
return pMin.x >= pMax.x || pMin.y >= pMax.y || pMin.z >=
pMax.z; }

bool IsDegenerate() const {

return pMin.x > pMax.x || pMin.y > pMax.y | pMin.z >
pMax.z; }

Finally, for integer bounds, there is an iterator class that fulfills the
requirements of a C++ forward iterator (i.e., it can only be advanced). The
details are slightly tedious and not particularly interesting, so the code is not
included in the book. Having this definition makes it possible to write code
using range-based for loops to iterate over integer coordinates in a
bounding box:

Bounds2i b = ..

for (Point2i p : b) {

}

As implemented, the iteration goes up to but does not visit points equal to
the maximum extent in each dimension.

3.8 SPHERICAL GEOMETRY

Geometry on the unit sphere is also frequently useful in rendering. 3D unit
direction vectors can equivalently be represented as points on the unit
sphere, and sets of directions can be represented as areas on the unit sphere.
Useful operations such as bounding a set of directions can often be cleanly
expressed as bounds on the unit sphere. We will therefore introduce some



useful principles of spherical geometry and related classes and functions in
this section.

3.8.1 S0LID ANGLES

In 2D, the planar angle is the total angle subtended by some object with
respect to some position (Figure 3.12). Consider the unit circle around the
point p; if we project the shaded object onto that circle, some length of the
circle s will be covered by its projection. The arc length of s (which is the
same as the angle 0) is the angle subtended by the object. Planar angles are
measured in radians and the entire unit circle covers 2m radians.

The solid angle extends the 2D unit circle to a 3D unit sphere (Figure 3.13).
The total area s is the solid angle subtended by the object. Solid angles are
measured in steradians (sr). The entire sphere subtends a solid angle of 4
sr, and a hemisphere subtends 27 sr.

Bounds3::Inside() 100
Bounds3: :pMax 98
Bounds3::pMin 98
Distance() 93

Float 23

Point3 92
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The planar angle of an object as seen from a point p is equal to the angle it
subtends as seen from p or, equivalently, as the length of the arc s on the unit sphere.

aart

The solid angle s subtended by a 3D object is computed by projecting the
object onto the unit sphere and measuring the area of its projection.



By providing a way to measure area on the unit sphere (and thus over the
unit directions), the solid angle also provides the foundation for a measure
for integrating spherical functions; the differential solid angle dw
corresponds to the differential area measure on the unit sphere.

3.8.2 SPHERICAL POLYGONS

We will sometimes find it useful to consider the set of directions from a
point to the surface of a polygon. (Doing so can be useful, for example,
when computing the illumination arriving at a point from an emissive
polygon.) If a regular planar polygon is projected onto the unit sphere, it
forms a spherical polygon.

A vertex of a spherical polygon can be found by normalizing the vector
from the center of the sphere to the corresponding vertex of the original
polygon. Each edge of a spherical polygon is given by the intersection of
the unit sphere with the plane that goes through the sphere’s center and the
corresponding two vertices of the polygon. The result is a great circle on
the sphere that is the shortest distance between the two vertices on the
surface of the sphere (Figure 3.14).

waart

A spherical polygon corresponds to the projection of a polygon onto the unit sphere. Its
vertices correspond to the unit vectors to the original polygon’s vertices and its edges are defined by the
intersection of the sphere and the planes that go through the sphere’s center and two vertices of the

polygon.
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Each vertex’s angle is labeled with the Greek letter corresponding to
the letter used for its vertex.

The angle at each vertex is given by the angle between the planes
corresponding to the two edges that meet at the vertex (Figure 3.15). (The



angle between two planes is termed their dihedral angle.) We will label the
angle at each vertex with the Greek letter that corresponds to its label (a for
the vertex a and so forth). Unlike planar triangles, the three angles of a
spherical triangle do not sum to 7 radians; rather, their sum is 7 + A, where
A is the spherical triangle’s area. Given the angles a, 5, and y, it follows that
the area of a spherical triangle can be computed using Girard’s theorem,
which says that a triangle’s surface area A on the unit sphere is given by the
“excess angle”
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Direct implementation of Equation (3.5) requires multiple calls to
expensive inverse trigonometric functions, and its computation can be
prone to error due to floating-point cancellation. A more efficient and
accurate approach is to apply the relationship l=-art

which can be derived from Equation (3.5) using spherical trigonometric
identities. That approach is used in SphericalTriangleArea(), which
takes three vectors on the unit sphere corresponding to the spherical
triangle’s vertices.

Spherical Geometry Inline Functions =
Float SphericalTriangleArea(Vector3f a, Vector3f b,
Vector3f c) {
return std::abs(2 * std::atan2(Dot(a, Cross(b, c)),
1 + Dot(a, b) + Dot(a, c) +
Dot(b, c)));

}

The area of a quadrilateral projected onto the unit sphere is given by o + 3 +
y + 8 — 2mt, where a, f3, y, and ¢ are its interior angles. This value is
computed by SphericalQuadArea (), which takes the vertex positions on
the unit sphere. Its implementation is very similar to
SphericalTriangleArea(), so it is not included here.

Spherical Geometry Inline Functions +=
Float SphericalQuadArea(Vector3f a, Vector3f b, Vector3f
c, Vector3f d);



3.8.3 SPHERICAL PARAMETERIZATIONS

The 3D Cartesian coordinates of a point on the unit sphere are not always
the most convenient representation of a direction. For example, if we are
tabulating a function over the unit sphere, a 2D parameterization that takes
advantage of the fact that the sphere’s surface is two-dimensional is
preferable.

There are a variety of mappings between 2D and the sphere. Developing
such mappings that fulfill various goals has been an important part of map
making since its beginnings. It can be shown that any mapping from the
plane to the sphere introduces some form of distortion; the task then is to
choose a mapping that best fulfills the requirements for a particular
application. pbrt thus uses three different spherical parameterizations, each
with different advantages and disadvantages.

Spherical Coordinates

Spherical coordinates (6, ¢) are a well-known parameterization of the
sphere. For a general sphere of radius r, they are related to Cartesian
coordinates by l«.art

(See Figure 3.16.)

For convenience, we will define a SphericalDirection() function that
converts a 8 and ¢ pair into a unit (x, y, z) vector, applying these equations
directly. Notice that the function is given the sine and cosine of 0, rather
than 0 itself. This is because the sine and cosine of 6 are often already
available to the caller. This is not normally the case for ¢, however, so ¢ is
passed in as is.

Spherical Geometry Inline Functions +=
Vector3f SphericalDirection(Float sinTheta, Float
cosTheta, Float phi) {

return Vector3f(Clamp(sinTheta, -1, 1) * std::cos(phi),
Clamp(sinTheta, -1, 1) * std::sin(phi),
Clamp(cosTheta, -1, 1));

Cross() 91



Dot () 89

Float 23
SphericalTriangleArea() 106
Vector3f 86
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A direction vector can be written in terms of spherical coordinates (0, ¢) if the x, y, and z
basis vectors are given as well. The spherical angle formulae make it easy to convert between the two
representations.

The conversion of a direction (X, y, z) to spherical coordinates can be found
by

lwaart

The corresponding functions follow. Note that SphericalTheta() assumes
that the vector v has been normalized before being passed in; using
SafeACos () in place of std: :acos () avoids errors if |v.z| is slightly
greater than 1 due to floating-point round-off error.

Spherical Geometry Inline Functions +=
Float SphericalTheta(Vector3f v) { return SafeACos(v.z); }

SphericalPhi () returns an angle in [0, 2], which sometimes requires an
adjustment to the value returned by std::atan2().

Spherical Geometry Inline Functions +=
Float SphericalPhi(Vector3f v) {

Float p = std::atan2(v.y, v.x);
return (p <0) ? (p+2 * Pi) : p;
}

Given a direction vector w, it is easy to compute quantities like the cosine
of the angle 6:

cos0=((0,0,1) * w) = w,.



This is a much more efficient computation than it would have been to
compute w’s 6 value using first an expensive inverse trigonometric function
to compute 8 and then another expensive function to compute its cosine.
The following functions compute this cosine and a few useful variations.

Float 23

Pi 1033

SafeACos() 1035
SphericalTheta() 107
Sqr() 1034

Vector3f 86

Spherical Geometry Inline Functions +=

Float CosTheta(Vector3f w) { return w.z; }

Float Cos2Theta(Vector3f w) { return Sqr(w.z); }

Float AbsCosTheta(Vector3f w) { return std::abs(w.z); }

The value of sin? 6 can be efficiently computed using the trigonometric

identity sin” 0 + cos® 0 = 1, though we need to be careful to avoid returning
a negative value in the rare case that 1 - Cos2Theta(w) is less than zero
due to floating-point round-off error.
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The values of sin ¢ and cos ¢ can be computed using the circular coordinate equations x = r
cos ¢ and y = r sin ¢, where r, the length of the dashed line, is equal to sin 6.

Spherical Geometry Inline Functions +=
Float Sin2Theta(Vector3f w) { return std::max<Float>(0, 1
- Cos2Theta(w)); } Float SinTheta(Vector3f w) {

return std::sqrt(Sin2Theta(w)); }

The tangent of the angle 6 can be computed via the identity tan 6 = sin 6/cos
6.

Spherical Geometry Inline Functions +=



Float TanTheta(Vector3f w) { return SinTheta(w) /
CosTheta(w); }

Float Tan2Theta(Vector3f w) { return Sin2Theta(w) /
Cos2Theta(w); }

The sine and cosine of the ¢ angle can also be easily found from (x, y, z)
coordinates without using inverse trigonometric functions (Figure 3.17). In
the z = 0 plane, the vector w has coordinates (x, y), which are given by r cos
¢ and r sin ¢, respectively. The radius r is sin 0, so l=art

Spherical Geometry Inline Functions +=

Float CosPhi(Vector3f w) {
Float sinTheta = SinTheta(w);
return (sinTheta == 0) ? 1 : Clamp(w.x / sinTheta, -1,
1)3

}

Float SinPhi(Vector3f w) ({

Float sinTheta = SinTheta(w);
return (sinTheta == 0) ? 0 : Clamp(w.y / sinTheta, -1,
1);

}

Finally, the cosine of the angle A¢ between two vectors’ ¢ values can be
found by zeroing their z coordinates to get 2D vectors in the z = 0 plane and
then normalizing them. The dot product of these two vectors gives the
cosine of the angle between them. The implementation below rearranges the
terms a bit for efficiency so that only a single square root operation needs to
be performed.

Clamp() 1033
Cos2Theta() 107
CosTheta() 107
Float 23
Sin2Theta() 108
SinTheta() 108
Vector3f 86

Spherical Geometry Inline Functions +=



Float CosDPhi(Vector3f wa, Vector3f wb) {
Float waxy = Sqr(wa.x) + Sqgr(wa.y), wbxy = Sqr(wb.x) +
Sqr(wb.y);
if (waxy == 0 || wbxy == 0) return 1;
return Clamp((wa.x * wb.x + wa.y * wb.y) /
std::sqrt(waxy * wbxy),
-1, 1);
}

Parameterizing the sphere with spherical coordinates corresponds to the
equirectangular mapping of the sphere. It is not a particularly good
parameterization for representing regularly sampled data on the sphere due
to substantial distortion at the sphere’s poles.

Octahedral Encoding

While Vector3f is a convenient representation for computation using unit
vectors, it does not use storage efficiently: not only does it use 12 bytes of
memory (assuming 4-byte Floats), but it is capable of representing 3D
direction vectors of arbitrary length. Normalized vectors are a small subset
of all the possible Vector3fs, however, which means that the storage
represented by those 12 bytes is not well allocated for them. When many
normalized vectors need to be stored in memory, a more space-efficient
representation can be worthwhile.

Spherical coordinates could be used for this task. Doing so would reduce
the storage required to two Floats, though with the disadvantage that
relatively expensive trigonometric and inverse trigonometric functions
would be required to convert to and from Vector3s. Further, spherical
coordinates provide more precision near the poles and less near the equator;
a more equal distribution of precision across all unit vectors is preferable.
(Due to the way that floating-point numbers are represented, Vector3f
suffers from providing different precision in different parts of the unit
sphere as well.) OctahedralVector provides a compact representation for
unit vectors with an even distribution of precision and efficient encoding
and decoding routines. Our implementation uses just 4 bytes of memory for
each unit vector; all the possible values of those 4 bytes correspond to a



valid unit vector. Its representation is not suitable for computation, but it is
easy to convert between it and Vector3f, which makes it an appealing
option for in-memory storage of normalized vectors.

OctahedralVector Definition =
class OctahedralVector {
public:
OctahedralVector Public Methods u
private:
OctahedralVector Private Methods uo
OctahedralVector Private Members uo

}s

As indicated by its name, this unit vector is based on an octahedral mapping
of the unit sphere that is illustrated in Figure 3.18.

The algorithm to convert a unit vector to this representation is surprisingly
simple. The first step is to project the vector onto the faces of the 3D
octahedron; this can be done by dividing the vector components by the
vector’s L1 norm, [v,| + |v,| + |[v,|. For points in the upper hemisphere (i.e.,

with v, > 0), projection down to the z = 0 plane then just requires taking the
x and y components directly.

Clamp() 1033

Float 23
OctahedralVector 109
Sqr() 1034

Vector3 86

Vector3f 86
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The OctahedralVector’s parameterization of the unit sphere can be understood by first
considering (a) an octahedron inscribed in the sphere. Its 2D parameterization is then defined by (b)
flattening the top pyramid into the z = 0 plane and (c) unwrapping the bottom half and projecting its

triangles onto the same plane. (d) The result allows a simple [-1, 1]2 parameterization. (Figure after
Figure 2 in Meyer et al. (2010).)

OctahedralVector Public Methods = 109
OctahedralVector(Vector3f v) {

v /= std::abs(v.x) + std::abs(v.y) + std::abs(v.z);

if (v.z >=0) {

x = Encode(v.x);
y = Encode(v.y);
} else {

Encode octahedral vector with z < 0 10

}
}

For directions in the lower hemisphere, the reprojection to the appropriate
point in [-1, 1]? is slightly more complex, though it can be expressed
without any conditional control flow with a bit of care. (Here is another
concise fragment of code that is worth understanding; consider in
comparison code based on i f statements that handled unwrapping the four
triangles independently.)

Encode octahedral vector withz <0 = 110
x = Encode((1 - std::abs(v.y)) * Sign(v.x));
y = Encode((1 - std::abs(v.x)) * Sign(v.y));

The helper function OctahedralVector::Sign() uses the standard math
library function std: :copysign() to return +1 according to the sign of v
(positive/negative zero are treated like ordinary numbers).

OctahedralVector Private Methods = 109
static Float Sign(Float v) { return std::copysign(1l.f, v); }

The 2D parameterization in Figure 3.18(d) is then represented using a 16-
bit value for each coordinate that quantizes the range [—1, 1]with 21° steps.



OctahedralVector Private Members = 109
uintle t x, y;

Encode() performs the encoding from a value in [-1, 1]to the integer
encoding.

OctahedralVector Private Methods +=
static uintl6 t Encode(Float f) {
return pstd::round(Clamp((f + 1) / 2, 0, 1) * 65535.f);

Clamp() 1033

Float 23

OctahedralVector 109
OctahedralVector::Encode() 110
OctahedralVector::Sign() 110
Vector3f 86

The mapping back to a Vector3f follows the same steps in reverse. For
directions in the upper hemisphere, the z value on the octahedron face is
easily found. Normalizing that vector then gives the corresponding unit
vector.

OctahedralVector Public Methods += 109
explicit operator Vector3f() const {
Vector3f v;
v.x = -1 +2 * (x / 65535.f);
v.y = -1+ 2 * (y / 65535.f);
v.z = 1 - (std::abs(v.x) + std::abs(v.y));
Reparameterize directions in the z < 0 portion of the octahedron m
return Normalize(v);

}

For directions in the lower hemisphere, the inverse of the mapping
implemented in the Encode octahedral vector withz <0 fragment must
be performed before the direction is normalized.

Reparameterize directions in the z < 0 portion of the octahedron = m
if (v.z <0) {
Float xo = v.x;
v.x = (1 - std::abs(v.y)) * Sign(xo);



v.y = (1 - std::abs(xo)) * Sign(v.y);
}

Equal-Area Mapping

The third spherical parameterization used in pbrt is carefully designed to
preserve area: any area on the surface of the sphere maps to a proportional
area in the parametric domain. This representation is a good choice for
tabulating functions on the sphere, as it is continuous, has reasonably low
distortion, and all values stored represent the same solid angle. It combines
the octahedral mapping used in the OctahedralVector class with a variant
of the square-to-disk mapping from Section A.5.1, which maps the unit
square to the hemisphere in a way that preserves area. The mapping splits
the unit square into four sectors, each of which is mapped to a sector of the
hemisphere (see Figure 3.19).

Given (u, v) € [-1, 1]% then in the first sector where u >0 and u — |v| > 0,
defining the polar coordinates of a point on the unit disk by l».art

gives an area-preserving mapping with ¢ € [-m/4, n/4]. Similar mappings
can be found for the other three sectors.

Given (r, ¢), the corresponding point on the positive hemisphere is then
given by

leaart
This mapping is also area-preserving.

This mapping can be extended to the entire sphere using the same
octahedral mapping that was used for the OctahedralVector. There are
then three steps:

Float 23

Normalize() s
OctahedralVector 1o
OctahedralVector::Sign() o
Vector3f ss

1. First, the octahedral mapping is applied to the direction, giving a
point (u, v) € [-1, 1]°.



2. For directions in the upper hemisphere, the concentric hemisphere
mapping, Equation (3.9), is applied to the inner square of the
octahedral mapping. Doing so requires accounting for the fact
that it is rotated by 45° from the square expected by the
hemispherical mapping.

3. Directions in the lower hemisphere are mirrored over across their
quadrant’s diagonal before the hemispherical mapping is applied.
The resulting direction vector’s z component is then negated.

waart

The uniform hemispherical mapping (a) first transforms the unit square to the unit disk so
that the four shaded sectors of the square are mapped to the corresponding shaded sectors of the disk. (b)
Points on the disk are then mapped to the hemisphere in a manner that preserves relative area.

The following implementation of this approach goes through some care to
be branch free: no matter what the input value, there is a single path of
control flow through the function. When possible, this characteristic is often
helpful for performance, especially on the GPU, though we note that this
function usually represents a small fraction of pbrt’s execution time, so this
characteristic does not affect the system’s overall performance.

Square—Sphere Mapping Function Definitions =
Vector3f EqualAreaSquareToSphere(Point2f p) {
Transform p to [-1, 1]? and compute absolute values us
Compute radius r as signed distance from diagonal us
Compute angle ¢ for square to sphere mapping us
Find z coordinate for spherical direction us
Compute cos ¢ and sin ¢ for original quadrant and return vector

113

}

After transforming the original point p in [0, 11% to (u, v) € [-1, 1], the
implementation also computes the absolute value of these coordinates u' =
lu| and v' = |v|. Doing so remaps the three quadrants with one or two
negative coordinate values to the positive quadrant, flipping each quadrant



so that its upper hemisphere is mapped to u’' + v' < 1, which corresponds to
the upper hemisphere in the original positive quadrant. (Each lower
hemisphere is also mapped to the u' + v' > 1 region, corresponding to the
original negative quadrant.)

Point2f «

Vector3f ss

laart

The signed distance to the
u' +Vv' =1 line is computed. One minus its absolute value gives a radius between 0 and 1.

Transform p to [—1, 1]2 and compute absolute values = e

Float u =2 *p.x -1, v=2%*p.y - 1;
Float up = std::abs(u), vp = std::abs(v);

Most of this function’s implementation operates using (u’, v') in the positive
quadrant. Its next step is to compute the radius r for the mapping to the disk
by computing the signed distance to the u + v = 1 diagonal that splits the
upper and lower hemispheres where the lower hemisphere’s signed distance
is negative (Figure 3.20).

Compute radius r as signed distance from diagonal = 112
Float signedDistance = 1 - (up + vp);
Float d = std::abs(signedDistance);
Float r = 1 - d;

The ¢ computation accounts for the 45° rotation with an added /4 term.

Compute angle ¢ for square to sphere mapping = nz
Float phi = (r==021: (vp -up) / r+ 1) * Pi / 4;

The sign of the signed distance computed earlier indicates whether the (u',
V") point is in the lower hemisphere; the returned z coordinate takes its sign.

Find z coordinate for spherical direction = 12
Float z = pstd::copysign(1l - Sqr(r), signedDistance);



After computing cos ¢ and sin ¢ in the positive quadrant, it is necessary to
remap those values to the correct ones for the actual quadrant of the original
point (u, v). Associating the sign of u with the computed cos ¢ value and the
sign of v with sin ¢ suffices to do so and this operation can be done with
another use of copysign().

Compute cos ¢ and sin ¢ for original quadrant and return vector = 12
Float cosPhi = pstd::copysign(std::cos(phi), u);
Float sinPhi = pstd::copysign(std::sin(phi), v);
return Vector3f(cosPhi * r * SafeSqrt(2 - Sqr(r)),
sinPhi * r * SafeSqrt(2 - Sqr(r)), z);

EqualAreaSquareToSphere() 112
Float 23

Pi 1033

SafeSqrt() 1034

Sqr() 1034

Vector3f 86

The inverse mapping is performed by the EqualAreaSphereToSquare()
function, which effectively performs the same operations in reverse and is
therefore not included here. Also useful and also not included,
WrapEquaTAreaSquare () handles the boundary cases of points p that are
just outside of [0, 1]° (as may happen during bilinear interpolation with
image texture lookups) and wraps them around to the appropriate valid
coordinates that can be passed to EqualAreaSquareToSphere().
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A set of directions, shown here as a shaded
region on the sphere, can be bounded using a cone described by a central direction vector v and a spread
angle 0 set such that all the directions in the set are inside the cone.

3.8.4 BOUNDING DIRECTIONS

In addition to bounding regions of space, it is also sometimes useful to
bound a set of directions. For example, if a light source emits illumination
in some directions but not others, that information can be used to cull that



light source from being included in lighting calculations for points it
certainly does not illuminate. pbrt provides the DirectionCone class for
such uses; it represents a cone that is parameterized by a central direction
and an angular spread (see Figure 3.21).

DirectionCone Definition =
class DirectionCone {
public:
DirectionCone Public Methods u.
DirectionCone Public Members ua

}s

The DirectionCone provides a variety of constructors, including one that
takes the central axis of the cone and the cosine of its spread angle and one
that bounds a single direction. For both the constructor parameters and the
cone representation stored in the class, the cosine of the spread angle is
used rather than the angle itself. Doing so makes it possible to perform
some of the following operations with DirectionCones using efficient dot
products in place of more expensive trigonometric functions.

DirectionCone Public Methods = 14
DirectionCone() = default;
DirectionCone(Vector3f w, Float cosTheta)
: w(Normalize(w)), cosTheta(cosTheta) {}
explicit DirectionCone(Vector3f w) : DirectionCone(w, 1) {}

The default DirectionCone is empty; an invalid value of infinity for
cosTheta encodes that case.

DirectionCone Public Members = 114
Vector3f w;
Float cosTheta = Infinity;

A convenience method reports whether the cone is empty.

DirectionCone Public Methods += 114
bool IsEmpty() const { return cosTheta == Infinity; }

DirectionCone 114
DirectionCone::cosTheta 114



Float 23
Infinity 361
Normalize() 88
Vector3f 86

Another convenience method provides the bound for all directions.

DirectionCone Public Methods += 14
static DirectionCone EntireSphere() {
return DirectionCone(Vector3f(0, 0, 1), -1);
}

Given a DirectionCone, it is easy to check if a given direction vector is
inside its bounds: the cosine of the angle between the direction and the
cone’s central direction must be greater than the cosine of the cone’s spread
angle. (Note that for the angle to be smaller, the cosine must be larger.)
DirectionCone Inline Functions =
bool Inside(const DirectionCone &d, Vector3f w) {
return !d.IsEmpty() && Dot(d.w, Normalize(w)) >=

d.cosTheta;

}

BoundSubtendedDirections() returns a DirectionCone that bounds the
directions subtended by a given bounding box with respect to a point p.

DirectionCone Inline Functions +=
DirectionCone BoundSubtendedDirections(const Bounds3f &b,
Point3f p) {
Compute bounding sphere for b and check if p is inside us
Compute and return DirectionCone for bounding sphere us

}

First, a bounding sphere is found for the bounds b. If the given point p is
inside the sphere, then a direction bound of all directions is returned. Note
that the point p may be inside the sphere but outside b, in which case the
returned bounds will be overly conservative. This issue is discussed further
in an exercise at the end of the chapter.

Compute bounding sphere for b and check if p is inside = s



Float radius;

Point3f pCenter;

b.BoundingSphere(&pCenter, &radius);

if (DistanceSquared(p, pCenter) < Sqr(radius))
return DirectionCone::EntireSphere();

Bounds3: :BoundingSphere() 103
Bounds3f 97

DirectionCone 114
DirectionCone::cosTheta 114
DirectionCone: :EntireSphere() 115
DirectionCone::IsEmpty() 114
DirectionCone::w 114
DistanceSquared() 93

Dot () 89

Float 23

Normalize() 88

Point3f 92

SafeSqrt() 1034

Sqr() 1034

Vector3f 86

Otherwise the central axis of the bounds is given by the vector from p to the
center of the sphere and the cosine of the spread angle is easily found using
basic trigonometry (see Figure 3.22).

115

Compute and return DirectionCone for bounding sphere
Vector3f w = Normalize(pCenter - p);
Float sin2ThetaMax = Sqr(radius) / DistanceSquared(pCenter,
p)s
Float cosThetaMax = SafeSqrt(l - sin2ThetaMax);
return DirectionCone(w, cosThetaMax);

Finally, we will find it useful to be able to take the union of two
DirectionCones, finding a DirectionCone that bounds both of them.



waart

Given a bounding
sphere and a reference point p outside of the sphere, the cosine of the angle 8 can be found by first
computing sin 0 by dividing the sphere’s radius r by the distance d between p and the sphere’s center and

then using the identity sin? 0+ cos2 0= 1.

DirectionCone Function Definitions =
DirectionCone Union(const DirectionCone &a, const
DirectionCone &b) {
Handle the cases where one or both cones are empty us
Handle the cases where one cone is inside the other us
Compute the spread angle of the merged cone, 0,

Find the merged cone’s axis and return cone union us

}

If one of the cones is empty, we can immediately return the other one.
Handle the cases where one or both cones are empty =
if (a.IsEmpty()) return b;
if (b.IsEmpty()) return a;

Otherwise the implementation computes a few angles that will be helpful,

116

including the actual spread angle of each cone as well as the angle between
their two central direction vectors. These values give enough information to

determine if one cone is entirely bounded by the other (see Figure 3.23).

Handle the cases where one cone is inside the other =
Float theta _a = SafeACos(a.cosTheta), theta b =
SafeACos(b.cosTheta);

Float theta d = AngleBetween(a.w, b.w);

if (std::min(theta d + theta b, Pi) <= theta a)
return a;

if (std::min(theta d + theta a, Pi) <= theta_b)
return b;

116



Otherwise it is necessary to compute a new cone that bounds both of them.

As illustrated in Figure 3.24, the sum of 8, 8, and 0, gives the full angle

that the new cone must cover; half of that is its spread angle.

AngleBetween() 89
DirectionCone 114
DirectionCone::cosTheta 114
DirectionCone: :IsEmpty() 114
DirectionCone::w 114

Float 23

Pi 1033

SafeACos() 1035
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Given two direction

cones a and b, their spread angles 6, and 6, and the angle between their two central direction vectors 6,

we can determine if one cone is entirely inside the other. Here, 8, > 64 + 6p, and so b is inside a.
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If 64 is
the angle between two cones’ central axes and the two cones have spread angles 0, and 6}, then the total
angle that the cone bounds is 8, + 64 + 6} and so its spread angle is half of that.

Compute the spread angle of the merged cone, 0, =

Float theta o = (theta a + theta d + theta b) / 2;
if (theta_o >= Pi)
return DirectionCone::EntireSphere();

116

The direction vector for the new cone should not be set with the average of

the two cones’ direction vectors; that vector and a spread angle of 8, does

not necessarily bound the two given cones. Using that vector would require



a spread angle of 0,/2 + max(20,, 20,), which is never less than 0,,. (It is

worthwhile to sketch out a few cases on paper to convince yourself of this.)
DirectionCone::EntireSphere() s

Float 23
Pi 1033

Rotate() 12

Instead, we find the vector perpendicular to the cones’ direction vectors
using the cross product and rotate a.w by the angle around that axis that
causes it to bound both cones’ angles. (The Rotate () function used for this
will be introduced shortly, in Section 3.9.7.) In the case that
LengthSquared(wr) == 0, the vectors face in opposite directions and a

bound of the entire sphere is returned.?

Find the merged cone’s axis and return cone union = 116
Float theta r = theta o - theta a;
Vector3f wr = Cross(a.w, b.w);
if (LengthSquared(wr) == 0)
return DirectionCone::EntireSphere();
Vector3f w = Rotate(Degrees(theta r), wr)(a.w);
return DirectionCone(w, std::cos(theta 0));



3.9 TRANSFORMATIONS

In general, a transformation T is a mapping from points to points and from vectors to vectors: p’ =
T(p) v =T(v).

The transformation T may be an arbitrary procedure. However, we will consider a subset of all
possible transformations in this chapter. In particular, they will be

o Linear: If T is an arbitrary linear transformation and s is an arbitrary scalar, then T(sv) =
sT(v) and T(v; + vp) = T(vy) + T(vy). These two properties can greatly simplify
reasoning about transformations.

o Continuous: Roughly speaking, T maps the neighborhoods around p and v to
neighborhoods around p’ and v'.

o One-to-one and invertible: For each p, T maps p' to a single unique p'. Furthermore, there

exists an inverse transform T~ ! that maps p’ back to p.

We will often want to take a point, vector, or normal defined with respect to one coordinate frame and
find its coordinate values with respect to another frame. Using basic properties of linear algebra, a 4 x
4 matrix can be shown to express the linear transformation of a point or vector from one frame to
another. Furthermore, such a 4 x 4 matrix suffices to express all linear transformations of points and
vectors within a fixed frame, such as translation in space or rotation around a point. Therefore, there
are two different (and incompatible!) ways that a matrix can be interpreted:

o Transformation within the frame: Given a point, the matrix could express how to compute
a new point in the same frame that represents the transformation of the original point
(e.g., by translating it in some direction).

o Transformation from one frame to another: A matrix can express the coordinates of a
point or vector in a new frame in terms of the coordinates in the original frame.

Most uses of transformations in pbrt are for transforming points from one frame to another.

In general, transformations make it possible to work in the most convenient coordinate space. For
example, we can write routines that define a virtual camera, assuming that the camera is located at the
origin, looks down the z axis, and has the y axis pointing up and the x axis pointing right. These
assumptions greatly simplify the camera implementation. To place the camera at any point in the
scene looking in any direction, we construct a transformation that maps points in the scene’s
coordinate system to the cameras coordinate system. (See Section 5.1.1 for more information about
camera coordinate spaces in pbrt.)
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Rotate() 126

Vector3f 86

3.9.1 HOMOGENEOUS COORDINATES

Given a frame defined by (p,, vy, Vo, V3), there is ambiguity between the
representation of a point (p,, p, p,) and a vector (v,, v,, v,) with the same
(x, y, z) coordinates. Using the representations of points and vectors
introduced at the start of the chapter, we can write the point as the inner
product [s; s, s3 11[v4 V5 v3 p,]” and the vector as the inner product l=art.
These four-vectors of three s; values and a zero or one are called the

homogeneous representations of the point and the vector. The fourth
coordinate of the homogeneous representation is sometimes called the
weight. For a point, its value can be any scalar other than zero: the
homogeneous points [1, 3, -2, 1] and [-2, —6, 4, —2] describe the same
Cartesian point (1, 3, —2). Converting homogeneous points into ordinary
points entails dividing the first three components by the weight: l=.art

We will use these facts to see how a transformation matrix can describe
how points and vectors in one frame can be mapped to another frame.
Consider a matrix M that describes the transformation from one coordinate
system to another: l».art

(In this book, we define matrix element indices starting from zero, so that
equations and source code correspond more directly.) Then if the
transformation represented by M is applied to the x axis vector (1, 0, 0), we
have Mx = M[1 0 0 01" = [mg o m; o my o m3 ol

Thus, directly reading the columns of the matrix shows how the basis
vectors and the origin of the current coordinate system are transformed by

the matrix: My = [mg  my { my { mg 41"

Mz = [mg , my 5 my 5 M 5"

Mp = [mg, 3 my, 3my 3 ms 31",
In general, by characterizing how the basis is transformed, we know how
any point or vector specified in terms of that basis is transformed. Because

points and vectors in a coordinate system are expressed in terms of the
coordinate system’s frame, applying the transformation to them directly is



equivalent to applying the transformation to the coordinate system’s basis
and finding their coordinates in terms of the transformed basis.

We will not use homogeneous coordinates explicitly in our code; there is no
Homogeneous Point class in pbrt. However, the various transformation
routines in the next section will implicitly convert points, vectors, and
normals to homogeneous form, transform the homogeneous points, and then
convert them back before returning the result. This isolates the details of
homogeneous coordinates in one place (namely, the implementation of
transformations).

3.9.2 Transform CLASS DEFINITION

The Transform class represents a 4 x 4 transformation. Its implementation
is in the files util/transform.h and util/transform.cpp.

Transform Definition
class Transform {
public:
Transform Public Methods 1»
private:
Transform Private Members

}s

The transformation matrix is represented by the elements of the matrix m,
which is represented by a SquareMatrix<4> object. (The SquareMatrix
class is defined in Section B.2.12.) The matrix m is stored in row-major

form, so element m[i] [j] corresponds to m; ;, where i is the row number

and j is the column number. For convenience, the Transform also stores the
inverse of m in its Transform: :mInv member variable; for pbrt’s needs, it
is better to have the inverse easily available than to repeatedly compute it as
needed.

Transform Private Members = 120
SquareMatrix<4> m, mlnv;

This representation of transformations is relatively memory hungry:
assuming 4 bytes of storage for a Float value, a Transform requires 128



bytes of storage. Used naively, this approach can be wasteful; if a scene has
millions of shapes but only a few thousand unique transformations, there is
no reason to redundantly store the same matrices many times. Therefore,
Shapes in pbrt store a pointer to a Transform and the scene specification
code defined in Section C.2.3 uses an InternCache of Transforms to
ensure that all shapes that share the same transformation point to a single
instance of that transformation in memory.

3.9.3 BASIC OPERATIONS

When a new Transformis created, it defaults to the identity transformation
—the transformation that maps each point and each vector to itself. This
transformation is represented by the identity matrix: l«-art

The implementation here relies on the default SquareMatrix constructor to
fill in the identity matrix for m and mInv.

Transform Public Methods = 120
Transform() = default;

A Transform can also be created from a given matrix. In this case, the
matrix must be explicitly inverted.

Transform Public Methods += 120
Transform(const SquareMatrix<4> &m) : m(m) {
pstd::optional<SquareMatrix<4>> inv = Inverse(m);
if (inv)
mInv = *inv;
else {
Initialize mInv with not-a-number values 1z

}

InternCache 1070

Shape 261

SquareMatrix 1049
SquareMatrix::Inverse() 1051
Transform 120

Transform: :mInv 120



If the matrix provided by the caller is degenerate and cannot be inverted,
mInv is initialized with floating-point not-a-number values, which poison
computations that involve them: arithmetic performed using a not-a-number
value always gives a not-a-number value. In this way, a caller who provides
a degenerate matrix m can still use the Transform as long as no methods
that access mInv are called.

Initialize mInv with not-a-number values = 120

Float NaN = std::numeric_limits<Float>::has_signaling_NaN
?
std::numeric_limits<Float>::signaling NaN()
: std::numeric_Timits<Float>::quiet NaN();

for (int i = 0; i < 4; ++i)

for (int j = 05 j < 4; ++j)
mInv[i][j] = NaN;

Another constructor allows specifying the elements of the matrix using a
regular 2D array.

Transform Public Methods += 120
Transform(const Float mat[4][4]) : Transform(SquareMatrix<4>

(mat)) {}

The most commonly used constructor takes a reference to the
transformation matrix along with an explicitly provided inverse. This is a
superior approach to computing the inverse in the constructor because many
geometric transformations have simple inverses and we can avoid the
expense and potential loss of numeric accuracy from computing a general 4
X 4 matrix inverse. Of course, this places the burden on the caller to make
sure that the supplied inverse is correct.

Transform Public Methods += 120

Transform(const SquareMatrix<4> &m, const SquareMatrix<4>
&mInv) : m(m), mInv(mInv) {}

Both the matrix and its inverse are made available for callers that need to
access them directly.

Transform Public Methods += 120
const SquareMatrix<4> &GetMatrix() const { return m; }

const SquareMatrix<4> &GetInverseMatrix() const { return
mInv; }



The Transform representing the inverse of a Transform can be returned by
just swapping the roles of mInv and m.

Transform Inline Functions =
Transform Inverse(const Transform &t) {
return Transform(t.GetInverseMatrix(), t.GetMatrix());

}

Transposing the two matrices in the transform to compute a new transform
can also be useful.

Transform Inline Functions +=
Transform Transpose(const Transform &t)
return Transform(Transpose(t.GetMatrix()),
Transpose(t.GetInverseMatrix()));

}

The Transform class also provides equality and inequality testing methods
as well as an IsIdentity() method that checks to see if the transformation
is the identity.
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Transform: :mInv 120

Transform Public Methods += 120
bool operator==(const Transform &t) const { return t.m == m;

}

bool operator!=(const Transform &t) const { return t.m != m;
}
bool IsIdentity() const { return m.IsIdentity(); }

3.9.4 TRANSLATIONS



One of the simplest transformations is the translation transformation, T(Ax,
Ay, Az). When applied to a point p, it translates p’s coordinates by Ax, Ay,
and Az, as shown in Figure 3.25. As an example, T(2, 2, 1)(x, y, z) = (x + 2,
y+2,z+1).

Translation has some basic properties:
laart

Translation only affects points, leaving vectors unchanged. In matrix form,
the translation transformation is l-art

When we consider the operation of a translation matrix on a point, we see
the value of homogeneous coordinates. Consider the product of the matrix
for T(Ax, Ay, Az) with a point p in homogeneous coordinates [x y z 1]':
lart

As expected, we have computed a new point with its coordinates offset by
(Ax, Ay, Az). However, if we apply T to a vector v, we have l=.art

SquareMatrix::IsIdentity() 1050
Transform 120
Transform::m 120

lraart

Adding offsets Ax and Ay to a point’s coordinates correspondingly
changes its position in space.

The result is the same vector v. This makes sense because vectors represent
directions, so translation leaves them unchanged.

The Translate() function returns a Transform that represents a given
translation—it is a straightforward application of the translation matrix
equation. The inverse of the translation is easily computed, so it is provided
to the Transform constructor as well.

Transform Function Definitions =
Transform Translate(Vector3f delta) {



SquareMatrix<4> m(1, 0, 0, delta.x,
0, 1, 0, delta.y,
0, 0, 1, delta.z,
0, 0, 0, 1);
SquareMatrix<4> minv(1, 0, 0, -delta.x,
0, 1, 0, -delta.y,
0, 0, 1, -delta.z,
0, 0, 0, 1);
return Transform(m, minv);

3.9.5 SCALING

Another basic transformation is the scale transformation, S(s,, s, s,). It has

the effect of taking a point or vector and multiplying its components by
scale factors in x, y, and z: S(2, 2, 1)(x, y, z) = (2x, 2y, z). It has the
following basic properties: l=.art

We can differentiate between uniform scaling, where all three scale factors
have the same value, and nonuniform scaling, where they may have
different values. The general scale matrix is l»art

Transform Function Definitions +=
Transform Scale(Float x, Float y, Float z) f{

SquareMatrix<4> m(x, 0, 0, O,
09 y’ O’ 0’

0,0,z 0,

0, 0, 0, 1);
SquareMatrix<4> minv(l / x, 0, 0, O,
0, 1 /vy, 0,0,
0, 0,1/ z,0,
0, 0, 0, 1);
return Transform(m, minv);
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It is useful to be able to test if a transformation has a scaling term in it; an
easy way to do this is to transform the three coordinate axes and see if any
of their lengths are appreciably different from one.

Transform Public Methods += 120
bool HasScale(Float tolerance = le-3f) const {
Float 1a2 = LengthSquared((*this) (Vector3f(1, 0, 0)));
Float 1b2 = LengthSquared((*this)(Vector3f(0, 1, 0)));
Float 1c2 = LengthSquared((*this) (Vector3f(0, 0, 1)));
return (std::abs(1a2 - 1) > tolerance ||
std::abs(1b2 - 1) > tolerance |
std::abs(1c2 - 1) > tolerance);

3.9.6 x, y, AND z AXIS ROTATIONS

Another useful type of transformation is the rotation transformation, R. In
general, we can define an arbitrary axis from the origin in any direction and
then rotate around that axis by a given angle. The most common rotations
of this type are around the x, y, and z coordinate axes. We will write these
rotations as R,(6), R, (), and so on. The rotation around an arbitrary axis

(X, y, z) is denoted by R, ,, 1(6).
Rotations also have some basic properties:

aart

where RT is the matrix transpose of R. This last property, that the inverse of
R is equal to its transpose, stems from the fact that R is an orthogonal
matrix; its first three columns (or rows) are all normalized and orthogonal
to each other. Fortunately, the transpose is much easier to compute than a
full matrix inverse.



For a left-handed coordinate system, the matrix for clockwise rotation
around the x axis is

lwaart
Figure 3.26 gives an intuition for how this matrix works.

It is easy to see that the matrix leaves the x axis unchanged:
R (®[1000]"=[1000]".

It maps the y axis (0, 1, 0) to (0, cos 6, sin 0) and the z axis to (0, — sin 0,
cos 0). The y and z axes remain in the same plane, perpendicular to the x
axis, but are rotated by the given angle. An arbitrary point in space is
similarly rotated about the x axis by this transformation while staying in the
same yz plane as it was originally.

The implementation of the RotateX() function is straightforward.

Float 23
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aart

Clockwise rotation by an angle 6 about the x axis leaves the x coordinate unchanged. The y
and z axes are mapped to the vectors given by the dashed lines; y and z coordinates move accordingly.

Transform Function Definitions +=
Transform RotateX(Float theta) {
Float sinTheta = std::sin(Radians(theta));
Float cosTheta = std::cos(Radians(theta));
SquareMatrix<4> m(1, 0, 0, O,
0, cosTheta, -sinTheta, O,



0, sinTheta, cosTheta, 0,

0, 0, 0, 1);
return Transform(m, Transpose(m));

}

Similarly, for clockwise rotation around y and z, we have
laart

The implementations of RotateY () and RotateZ () follow directly and are
not included here.

3.9.7 ROTATION AROUND AN ARBITRARY AXIS

We also provide a routine to compute the transformation that represents
rotation around an arbitrary axis. A common derivation of this matrix is
based on computing rotations that map the given axis to a fixed axis (e.g.,
z), performing the rotation there, and then rotating the fixed axis back to the
original axis. A more elegant derivation can be constructed with vector
algebra.

Consider a normalized direction vector a that gives the axis to rotate around
by angle 0, and a vector v to be rotated (Figure 3.27).

First, we can compute the vector v, along the axis a that is in the plane

through the end point of v and is parallel to a. Assuming v and a form an
angle a, we have v, = a ||v|| cos @ = a(v - a).

Float 23
Radians() 1033
SquareMatrix 1049
Transform 120

We now compute a pair of basis vectors v; and v, in this plane. Trivially,
one of them isv; = v — v,



waart

A vector v can be rotated around an arbitrary axis a by constructing a coordinate system (p,
V1, v2) in the plane perpendicular to the axis that passes through v’s end point and rotating the vectors vq

and vy about p. Applying this rotation to the axes of the coordinate system (1, 0, 0), (0, 1, 0), and (0, 0, 1)
gives the general rotation matrix for this rotation.

and the other can be computed with a cross product
v, = (vq X a).

Because a is normalized, v; and v, have the same length, equal to the length
of the vector between v and v,. To now compute the rotation by an angle 0
about v, in the plane of rotation, the rotation formulae earlier give us v’ = v,
+ v, cos 0 + v, sin 6.

To convert this to a rotation matrix, we apply this formula to the basis
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) to get the values of the rows of the

matrix. The result of all this is encapsulated in the following function. As
with the other rotation matrices, the inverse is equal to the transpose.

Because some callers of the Rotate () function already have sin 6 and cos 6
at hand, pbrt provides a variant of the function that takes those values
directly.

Transform Inline Functions +=
Transform Rotate(Float sinTheta, Float cosTheta, Vector3f
axis) {
Vector3f a = Normalize(axis);
SquareMatrix<4> m;
Compute rotation of first basis vector s
Compute rotations of second and third basis vectors
return Transform(m, Transpose(m));

}

Compute rotation of first basis vector
m[0][0] = a.x * a.x + (1 - a.x

126

* Il

a.x) * cosTheta;



m[0][1] = a.x * a.y * (1 - cosTheta) - a.z * sinTheta;
m[0][2] = a.x * a.z * (1 - cosTheta) + a.y * sinTheta;
m[0] [3] = 0;
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The code for the other two basis vectors follows similarly and is not
included here.

A second variant of Rotate () takes the angle 6 in degrees, computes its
sine and cosine, and calls the first.

Transform Inline Functions +=

Transform Rotate(Float theta, Vector3f axis) {
Float sinTheta = std::sin(Radians(theta));
Float cosTheta = std::cos(Radians(theta));
return Rotate(sinTheta, cosTheta, axis);

3.9.8 ROTATING ONE VECTOR TO ANOTHER

It is sometimes useful to find the transformation that performs a rotation
that aligns one unit vector f with another t (where f denotes “from” and t
denotes “to”). One way to do so is to define a rotation axis by the cross
product of the two vectors, compute the rotation angle as the arccosine of
their dot product, and then use the Rotate () function. However, this
approach not only becomes unstable when the two vectors are nearly
parallel but also requires a number of expensive trigonometric function
calls.

A different approach to deriving this rotation matrix is based on finding a
pair of reflection transformations that reflect f to an intermediate vector r
and then reflect r to t. The product of such a pair of reflections gives the
desired rotation. The Householder matrix H(v) provides a way to find these



reflections: it reflects the given vector v to its negation —v while leaving all

o 2 T
) ) Hiv)=1- vV,
vectors orthogonal to v unchanged and is defined as Vv

where I is the identity matrix.

With the product of the two reflections

lwaart

the second matrix reflects f to r and the first then reflects r to t, which
together give the desired rotation.

Transform Inline Functions +=
Transform RotateFromTo(Vector3f from, Vector3f to) ({
Compute intermediate vector for vector reflection 1
Initialize matrix r for rotation us
return Transform(r, Transpose(r));

}

The intermediate reflection direction ref1 is determined by choosing a
basis vector that is not too closely aligned to either of the fromand to
vectors. In the computation here, because 0.72 is just slightly greater than
v2/2, the absolute value of at least one pair of matching coordinates must
then both be less than 0.72, assuming the vectors are normalized. In this
way, a loss of accuracy is avoided when the reflection direction is nearly
parallel to either fromor to.

Compute intermediate vector for vector reflection = 127
Vector3f refl;
if (std::abs(from.x) < 0.72f && std::abs(to.x) < 0.72f)
refl = Vector3f(1l, 0, 0);
else if (std::abs(from.y) < 0.72f && std::abs(to.y) < 0.72f)
refl = Vector3f(0, 1, 0);
else
refl = Vector3f(0, 0, 1);
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Transform 120
Vector3f 86

Given the reflection axis, the matrix elements can be initialized directly.

Initialize matrix r for rotation = 127
Vector3f u = refl - from, v = refl - to;
SquareMatrix<4> r;
for (int i = 0; i < 3; ++1)
for (int j = 0; j < 3; ++j)
Initialize matrix element r[i] [j] 128

Expanding the product of the Householder matrices in Equation (3.10), we
can find that the matrix element r; ; is given by l=art

where §; ; is the Kronecker delta function that is 1 if i and j are equal and 0
otherwise. The implementation follows directly.

Initialize matrix element v[1] [j] = 128
rlil103] = ((i ==3) 2 1:0) -
2 / Dot(u, u) * u[i] * u[j] -
2 / Dot(v, v) * v[i] * v[j] +
4 * Dot(u, v) / (Dot(u, u) * Dot(v, v)) * v[i] *
uljls

3.9.9 THE LOOK-AT TRANSFORMATION

The look-at transformation is particularly useful for placing a camera in the
scene. The caller specifies the desired position of the camera, a point the
camera is looking at, and an “up” vector that orients the camera along the
viewing direction implied by the first two parameters. All of these values
are typically given in world-space coordinates; this gives a transformation
from world space to camera space (Figure 3.28). We will assume that use in
the discussion below, though note that this way of specifying
transformations can also be useful for placing light sources in the scene.

In order to find the entries of the look-at transformation matrix, we use
principles described earlier in this section: the columns of a transformation
matrix give the effect of the transformation on the basis of a coordinate
system.

Dot () 89



SquareMatrix 1049
Vector3f 86
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Given a camera position, the position being looked at from the camera, and an “up”
direction, the look-at transformation describes a transformation from a left-handed viewing coordinate
system where the camera is at the origin looking down the +z axis, and the +y axis is along the up
direction.

Transform Function Definitions +=
Transform LookAt(Point3f pos, Point3f Took, Vector3f up) {
SquareMatrix<4> worldFromCamera;
Initialize fourth column of viewing matrix s
Initialize first three columns of viewing matrix s
SquareMatrix<4> cameraFromWorld =
InvertOrExit(worldFromCamera) ;
return Transform(cameraFromWorld, worldFromCamera);

}

The easiest column is the fourth one, which gives the point that the camera-

space origin, [0 0 0 1]7, maps to in world space. This is clearly just the
camera position, supplied by the user.

Initialize fourth column of viewing matrix = 129
worldFromCamera[0] [3] = pos.x;
worldFromCamera[1] [3] = pos.y;
worldFromCamera[2] [3] = pos.z;
worldFromCamera[3][3] = 1;

The other three columns are not much more difficult. First, LookAt ()
computes the normalized direction vector from the camera location to the
look-at point; this gives the vector coordinates that the z axis should map to
and, thus, the third column of the matrix. (In a left-handed coordinate
system, camera space is defined with the viewing direction down the +z
axis.) The first column, giving the world-space direction that the +x axis in



camera space maps to, is found by taking the cross product of the user-
supplied “up” vector with the recently computed viewing direction vector.
Finally, the “up” vector is recomputed by taking the cross product of the
viewing direction vector with the transformed x axis vector, thus ensuring
that the y and z axes are perpendicular and we have an orthonormal viewing
coordinate system.

Initialize first three columns of viewing matrix = 129
Vector3f dir = Normalize(look - pos);
Vector3f right = Normalize(Cross(Normalize(up), dir));
Vector3f newUp = Cross(dir, right);
worldFromCamera[0] [0] = right.x;
worldFromCamera[1] [0] = right.y;
worldFromCamera[2] [0] = right.z;
worldFromCamera[3] [0] = O.;
worldFromCamera[0] [1] = newUp.x;
worldFromCamera[1][1] = newUp.y;
worldFromCamera[2][1] = newUp.z;
worldFromCamera[3][1] = O.;
worldFromCamera[0] [2] = dir.x;
worldFromCamera[1l] [2] = dir.y;
worldFromCamera[2] [2] = dir.z;
worldFromCamera[3][2] = O.;
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3.10 APPLYING TRANSFORMATIONS

We can now define routines that perform the appropriate matrix
multiplications to transform points and vectors. We will overload the
function application operator to describe these transformations; this lets us
write code like:

Point3f p = ...;



Transform T = ...;
Point3f pNew = T(p);

3.10.1 POINTS

The point transformation routine takes a point (X, y, z) and implicitly
represents it as the homogeneous column vector [x y z 1]%. 1t then
transforms the point by premultiplying this vector with the transformation
matrix. Finally, it divides by w to convert back to a non-homogeneous point
representation. For efficiency, this method skips the division by the
homogeneous weight, w, when w = 1, which is common for most of the
transformations that will be used in pbrt—only the projective
transformations defined in Chapter 5 will require this division.

Transform Inline Methods =

template <typename T>

Point3<T> Transform::operator() (Point3<T> p) const {
T xp = m[0][0] * p.x + m[0][1] * p.y + m[0][2] * p.
m[0] [3];
T yp = m[1][0] * p.x + m[1][1] * p.y + m[1][2] * p.
m[1][3];
T zp = m[2][0] * p.x + m[2][1] * p.y + m[2][2] * p.
m[2] [3];
T wp = m[3][0] * p.x + m[3][1] * p.y + m[3][2] * p.
m[3][3];

N
+

N
+

N
+

N
+

if (wp == 1)
return Point3<T>(xp, yp, zp);
else

return Point3<T>(xp, yp, zp) / wp;
}

The Transform class also provides a corresponding ApplyInverse()
method for each type it transforms. The one for Point3 applies its inverse
transformation to the given point. Calling this method is more succinct and
generally more efficient than calling Transform::Inverse() and then
calling its operator().



Transform Public Methods += 120
template <typename T>
Point3<T> ApplyInverse(Point3<T> p) const;

All subsequent types that can be transformed also have an ApplyInverse()
method, though we will not include them in the book text.

3.10.2 VECTORS

The transformations of vectors can be computed in a similar fashion.
However, the multiplication of the matrix and the column vector is
simplified since the implicit homogeneous w coordinate is zero.

Transform Inline Methods +=
template <typename T>

Vector3<T> Transform::operator() (Vector3<T> v) const {
return Vector3<T>(m[0][0] * v.x + m[0][1] * v.y + m[O]

[2] * v.z,
m[1][0] * v.x + m[1][1] * v.y + m[1][2] *
V.Z,
m[2][0] * v.x + m[2][1] * v.y + m[2][2] *
V.Z);
}

Transform 120
Transform::Inverse() 121
Transform::m 120

Vector3 86
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(a) Original circle, with the normal at a point indicated by
an arrow. (b) When scaling the circle to be half as tall in the y direction, simply treating the normal as a
direction and scaling it in the same manner gives a normal that is no longer perpendicular to the surface.
(c) A properly transformed normal.



3.10.3 NORMALS

Normals do not transform in the same way that vectors do, as shown in
Figure 3.29. Although tangent vectors at a surface transform in the
straightforward way, normals require special treatment. Because the normal
vector n and any tangent vector t on the surface are orthogonal by
construction, we know thatn - t=n? t=0.

When we transform a point on the surface by some matrix M, the new
tangent vector t' at the transformed point is Mt. The transformed normal n'’
should be equal to Sn for some 4x4 matrix S. To maintain the orthogonality
requirement, we must have l=.art

This condition holds if ST M = I, the identity matrix. Therefore, ST=M1
and so S = (M 1)T, and we see that normals must be transformed by the
inverse transpose of the transformation matrix. This detail is one of the
reasons why Transforms maintain their inverses.

Note that this method does not explicitly compute the transpose of the
inverse when transforming normals. It just indexes into the inverse matrix
in a different order (compare to the code for transforming Vector3fs).

Transform Inline Methods +=
template <typename T>
Normal3<T> Transform::operator() (Normal3<T> n) const {
TX=n.X,Y =n.y, Z=n.z;
return Normal3<T>(mInv[0][0] * x + mInv[1][0] * y +
mInv[2][0] * z,
mInv[O][1] * x + mInv[1][1] * y + mInv[2]
[1] * z,
mInv[0][2] * x + mInv[1][2] * y + mInv[2]
[2] * z);
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3.10.4 RAYS

Transforming rays is conceptually straightforward: it is a matter of
transforming the constituent origin and direction and copying the other data
members. (pbrt also provides a similar method for transforming
RayDifferentials.) The approach used in pbrt to manage floating-point
round-off error introduces some subtleties that require a small adjustment to
the transformed ray origin. The Offset ray origin to edge of error bounds
and compute tMax fragment handles these details; it is defined in Section
6.8.6, where round-off error and pbrt’s mechanisms for dealing with it are
discussed.

Transform Inline Methods +=
Ray Transform::operator() (const Ray &r, Float *tMax) const

{

Point3fi o = (*this) (Point3fi(r.0));
Vector3f d = (*this)(r.d);

Offset ray origin to edge of error bounds and compute tMax s
return Ray(Point3f(o), d, r.time, r.medium);

3.10.5 BOUNDING BOXES

The easiest way to transform an axis-aligned bounding box is to transform
all eight of its corner vertices and then compute a new bounding box that
encompasses those points. The implementation of this approach is shown
below; one of the exercises for this chapter is to implement a technique to
do this computation more efficiently.

Transform Method Definitions =
Bounds3f Transform::operator() (const Bounds3f &b) const {
Bounds3f bt;
for (int i = 0; i < 8; ++i)
bt = Union(bt, (*this)(b.Corner(i)));
return bt;



3.10.6 COMPOSITION OF TRANSFORMATIONS

Having defined how the matrices representing individual types of
transformations are constructed, we can now consider an aggregate
transformation resulting from a series of individual transformations. We
will finally see the real value of representing transformations with matrices.

Consider a series of transformations ABC. We would like to compute a new
transformation T such that applying T gives the same result as applying
each of A, B, and C in reverse order; that is, A(B(C(p))) = T(p). Such a
transformation T can be computed by multiplying the matrices of the
transformations A, B, and C together. In pbrt, we can write:

Transform T = A * B * C;
Then we can apply T to Point3fs p as usual, Point3f pp = T(p), instead
of applying each transformation in turn: Point3f pp = A(B(C(p))).

We overload the C++ * operator in the Transform class to compute the new
transformation that results from postmultiplying a transformation with
another transformation t2. In matrix multiplication, the (i, j)th element of
the resulting matrix is the inner product of the ith row of the first matrix
with the jth column of the second.
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The inverse of the resulting transformation is equal to the product of
t2.mInv * mInv. This is a result of the matrix identity (AB) ' = B~1A™L.

Transform Method Definitions +=
Transform Transform::operator*(const Transform &t2) const

{

return Transform(m * t2.m, t2.mInv * mlInv);



3.10.7 TRANSFORMATIONS AND COORDINATE SYSTEM HANDEDNESS

Certain types of transformations change a left-handed coordinate system
into a right-handed one, or vice versa. Some routines will need to know if
the handedness of the source coordinate system is different from that of the
destination. In particular, routines that want to ensure that a surface normal
always points “outside” of a surface might need to flip the normal’s
direction after transformation if the handedness changes.

Fortunately, it is easy to tell if handedness is changed by a transformation: it
happens only when the determinant of the transformation’s upper-left 3x3
submatrix is negative.

Transform Method Definitions +=
bool Transform::SwapsHandedness() const {

SquareMatrix<3> s(m[0][0], m[0][1], m[O][2],
m[1][0], m[1][1], m[1][2],
m[2] [0], m[2][1], m[2][2]);

return Determinant(s) < 0;

3.10.8 VECTOR FRAMES

It is sometimes useful to define a rotation that aligns three orthonormal
vectors in a coordinate system with the x, y, and z axes. Applying such a
transformation to direction vectors in that coordinate system can simplify
subsequent computations. For example, in pbrt, BSDF evaluation is
performed in a coordinate system where the surface normal is aligned with
the z axis. Among other things, this makes it possible to efficiently evaluate
trigonometric functions using functions like the CosTheta() function that
was introduced in Section 3.8.3.

The Frame class efficiently represents and performs such transformations,
avoiding the full generality (and hence, complexity) of the Transform
class. It only needs to store a 3 x 3 matrix, and storing the inverse is



unnecessary since it is just the matrix’s transpose, given orthonormal basis
vectors.

Frame Definition =
class Frame {
public:
Frame Public Methods s
Frame Public Members 1

}s

Given three orthonormal vectors X, y, and z, the matrix F that transforms
vectors into their space is l=.art
The Frame stores this matrix using three Vector3fs.

Frame Public Members = 133
Vector3f x, y, z;

CosTheta() 107

DCHECK() 1066

Frame 133

SquareMatrix 1049
SquareMatrix::Determinant() 1051
Vector3f 86

The three basis vectors can be specified explicitly; in debug builds,
DCHECK () s in the constructor ensure that the provided vectors are
orthonormal.

Frame Public Methods = 133
Frame() : x(1, 0, 0), y(0, 1, 0), z(0, 0, 1) {}
Frame(Vector3f x, Vector3f y, Vector3f z);

Frame also provides convenience methods that construct a frame from just
two of the basis vectors, using the cross product to compute the third.

Frame Public Methods += 133
static Frame FromXZ(Vector3f x, Vector3f z) {
return Frame(x, Cross(z, x), z);
}
static Frame FromXY(Vector3f x, Vector3f y) {



return Frame(x, y, Cross(x, y));

}

Only the z axis vector can be provided as well, in which case the others are
set arbitrarily.

Frame Public Methods += 133
static Frame FromZ(Vector3f z) {
Vector3f x, y;
CoordinateSystem(z, &x, &y);
return Frame(x, y, z);

}

A variety of other functions, not included here, allow specifying a frame
using a normal vector and specifying it via just the x or y basis vector.

Transforming a vector into the frame’s coordinate space is done using the F
matrix. Because Vector3fs were used to store its rows, the matrix-vector
product can be expressed as three dot products.

Frame Public Methods += 133
Vector3f ToLocal(Vector3f v) const {
return Vector3f(Dot(v, x), Dot(v, y), Dot(v, z));

}

A Tolocal () method is also provided for normal vectors. In this case, we
do not need to compute the inverse transpose of F for the transformation
normals (recall the discussion of transforming normals in Section 3.10.3).
Because F is an orthonormal matrix (its rows and columns are mutually
orthogonal and unit length), its inverse is equal to its transpose, so it is its
own inverse transpose already.

Frame Public Methods += 133
Normal3f ToLocal(Normal3f n) const {
return Normal3f(Dot(n, x), Dot(n, y), Dot(n, z));

)

The method that transforms vectors out of the frame’s local space
transposes F to find its inverse before multiplying by the vector. In this
case, the resulting computation can be expressed as the sum of three scaled



versions of the matrix columns. As before, surface normals transform as
regular vectors. (That method is not included here.)
CoordinateSystem() o

Cross() o
Dot () a9
Frame 133
Frame: :X 133
Frame::y 133
Frame::z 133
Normal3f o
Transform 120
Vector3f s

Frame Public Methods +=
Vector3f FromLocal(Vector3f v) const {
return v.x * x + v.y *y + v.z * z;

}

For convenience, there is a Transform constructor that takes a Frame. Its
simple implementation is not included here.

Transform Public Methods +=
explicit Transform(const Frame &frame);
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Three spheres, reflected in a mirror, spinning at different rates using
pbrt’s transformation animation code. Note that the reflections of the spheres are blurry as well as the
spheres themselves.

3.10.9 ANIMATING TRANSFORMATIONS

pbrt supports time-varying transformation matrices for cameras and
geometric primitives in the scene. Rather than just supplying a single

133

120



transformation to place an object in the scene, the user may supply a
number of keyframe transformations, each one associated with a particular
time. This makes it possible for the camera to move and for objects in the
scene to be in motion during the time the simulated camera’s shutter is
open. Figure 3.30 shows three spheres animated using keyframe matrix
animation in pbrt.

Directly interpolating the matrix elements of transformation matrices at
different times usually does not work well, especially if a rotation is
included in the associated change of transformation. pbrt therefore
implements algorithms that decompose transformations into translations,
rotations, and scales, each of which can be independently interpolated
before they are reassembled to form an interpolated transformation. The
AnimatedTransform class that implements those algorithms is not included
here in the printed book, though the online edition of the book (recall
Section 1.4.3) includes thorough documentation of its implementation. Here
we will summarize its interface so that its use in forthcoming text can be
understood.

Its constructor takes two transformations and associated times. Due to the
computational cost of decomposing and recomposing transformations as
well as the storage requirements of AnimatedTransform, which total
roughly 400 bytes, it is worthwhile to avoid using AnimatedTransform if
the two matrices are equal.

AnimatedTransform(Transform startTransform, Float
startTime,

Transform endTransform, Float endTime);

The Interpolate() method returns the interpolated transformation for the
given time. If the time is outside of the range specified to the constructor,
whichever of startTransform or endTransform is closest in time is
returned.

Transform Interpolate(Float time) const;

Point3f 92



Methods are also available to apply transformations and inverse
transformations to pbrt’s basic geometric classes. For example, the
following two methods transform points. (Because Point3f does not store
an associated time, the time must be provided separately. However, classes
like Ray and Interaction that do store a time are passed to their
transformation methods unaccompanied.)

Point3f operator() (Point3f p, Float time) const;

Point3f ApplyInverse(Point3f p, Float time) const;
It is usually more efficient to transform a geometric object using those
methods than to retrieve the interpolated Transform using the
Interpolate() method and then use its transformation methods since the
specialized transformation methods can apply optimizations like not
computing unneeded inverse transformations.

The other key method provided by AnimatedTransform is

MotionBounds (), which computes a bounding box that bounds the motion
of a bounding box over the AnimatedTransform’s time range. Taking the
union of the bounds of the transformed bounding box at startTime and
endTime is not sufficient to bound the box’s motion over intermediate
times; this method therefore takes care of the tricky details of accurately
bounding the motion.

Bounds3f MotionBounds(const Bounds3f &b) const;

3.11 INTERACTIONS

The last abstractions in this chapter, SurfaceInteraction and
MediumInteraction, respectively represent local information at points on
surfaces and in participating media. For example, the ray—shape intersection
routines in Chapter 6 return information about the local differential
geometry at intersection points in a SurfaceInteraction. Later, the
texturing code in Chapter 10 computes material properties using values
from the Surfacelnteraction. The closely related MediumInteraction
class is used to represent points where light interacts with participating
media like smoke or clouds. The implementations of all of these classes are
in the files interaction.h and interaction.cpp.



Both SurfacelInteraction and MediumInteraction inherit from a
generic Interaction class that provides common member variables and
methods, which allows parts of the system for which the differences
between surface and medium interactions do not matter to be implemented
purely in terms of Interactions.

Interaction Definition =
class Interaction {
public:
Interaction Public Methods s
Interaction Public Members i

}s

A variety of Interaction constructors are available; depending on what
sort of interaction is being constructed and what sort of information about it
is relevant, corresponding sets of parameters are accepted. This one is the
most general of them.

Interaction Public Methods = 136

Interaction(Point3fi pi, Normal3f n, Point2f uv, Vector3f wo,
Float time)

: pi(pi), n(n), uv(uv), wo(Normalize(wo)), time(time) {}

Float 23

Interaction 136
Interval 1057
MediumInteraction 141
Normal3f 94

Point2f 92

Point3fi 1061

Ray 95

Vector3f 86

All interactions have a point p associated with them. This point is stored
using the Point3fi class, which uses an Interval to represent each
coordinate value. Storing a small interval of floating-point values rather
than a single F1oat makes it possible to represent bounds on the numeric
error in the intersection point, as occurs when the point p was computed by
a ray intersection calculation. This information will be useful for avoiding



incorrect self-intersections for rays leaving surfaces, as will be discussed in
Section 6.8.6.

Interaction Public Members = 136
Point3fi pi;

Interaction provides a convenience method that returns a regular
Point3f for the interaction point for the parts of the system that do not
need to account for any error in it (e.g., the texture evaluation routines).

Interaction Public Methods += 136
Point3f p() const { return Point3f(pi); }

All interactions also have a time associated with them. Among other uses,
this value is necessary for setting the time of a spawned ray leaving the
interaction.

Interaction Public Members += 136
Float time = 0;

For interactions that lie along a ray (either from a ray—shape intersection or
from a ray passing through participating media), the negative ray direction
is stored in the wo member variable, which corresponds to @, the notation

we use for the outgoing direction when computing lighting at points. For
other types of interaction points where the notion of an outgoing direction
does not apply (e.g., those found by randomly sampling points on the
surface of shapes), wo has the value (0, 0, 0).

Interaction Public Members += 136
Vector3f wo;

For interactions on surfaces, n stores the surface normal at the point and uv
stores its (u, v) parametric coordinates. It is fair to ask, why are these values
stored in the base Interaction class rather than in Surfacelnteraction?
The reason is that there are some parts of the system that mostly do not care
about the distinction between surface and medium interactions—for
example, some of the routines that sample points on light sources given a
point to be illuminated. Those make use of these values if they are available
and ignore them if they are set to zero. By accepting the small dissonance of



having them in the wrong place here, the implementations of those methods
and the code that calls them is made that much simpler.

Interaction Public Members += 136
Normal3f n;
Point2f uv;

It is possible to check if a pointer or reference to an Interaction is one of
the two subclasses. A nonzero surface normal is used as a distinguisher for
a surface.

Interaction Public Methods += 136
bool IsSurfacelnteraction() const { return n != Normal3f(0,
0, 0); }
bool IsMediumInteraction() const { return
'IsSurfacelnteraction(); }

Methods are provided to cast to the subclass types as well. This is a good
place for a run-time check to ensure that the requested conversion is valid.
The non-const variant of this method as well as corresponding
AsMedium() methods follow similarly and are not included in the text.

Float 23

Interaction:: IsSurfacelnteraction() 137
Interaction::n 137

Normal3f 94

Point2f 92

Point3f 92

Point3fi 1061

Vector3f 86

Interaction Public Methods += 136
const Surfacelnteraction &AsSurface() const {
CHECK(IsSurfacelInteraction());
return (const Surfacelnteraction &)*this;

}

Interactions can also represent either an interface between two types of
participating media using an instance of the MediumInterface class, which
is defined in Section 11.4, or the properties of the scattering medium at their
point using a Medium. Here as well, the Interaction abstraction leaks:
surfaces can represent interfaces between media, and at a point inside a



medium, there is no interface but there is the current medium. Both of these
values are stored in Interaction for the same reasons of expediency that n
and uv were.

Interaction Public Members += 136
const MediumInterface *mediumInterface = nullptr;
Medium medium = nullptr;

3.11.1 SURFACE INTERACTION

As described earlier, the geometry of a particular point on a surface (often a
position found by intersecting a ray against the surface) is represented by a
Surfacelnteraction. Having this abstraction lets most of the system work
with points on surfaces without needing to consider the particular type of
geometric shape the points lie on.

Surfacelnteraction Definition =
class Surfacelnteraction : public Interaction {
public:
Surfacelnteraction Public Methods 1
Surfacelnteraction Public Members 1

}s

In addition to the point p, the surface normal n, and (u, v) coordinates from
the parameterization of the surface from the Interaction base class, the
Surfacelnteraction also stores the parametric partial derivatives of the
point 0p/du and 0p/dv and the partial derivatives of the surface normal on/
ou and on/0v. See Figure 3.31 for a depiction of these values.

Surfacelnteraction Public Members = 138
Vector3f dpdu, dpdv;
Normal3f dndu, dndv;

This representation implicitly assumes that shapes have a parametric
description—that for some range of (u, v) values, points on the surface are
given by some function f such that p = f(u, v). Although this is not true for
all shapes, all of the shapes that pbrt supports do have at least a local
parametric description, so we will stick with the parametric representation



since this assumption is helpful elsewhere (e.g., for antialiasing of textures
in Chapter 10).

CHECK() 1066

Interaction 136

Interaction:: IsSurfacelnteraction() 137
Medium 714

MediumInterface 715

Normal3f 94

Surfacelnteraction 138

Vector3f 86

The Surfacelnteraction constructor takes parameters that set all of these
values. It computes the normal as the cross product of the partial
derivatives.

waart

The parametric partial derivatives of
the surface, dp/0u and dp/dv, lie in the tangent plane but are not necessarily orthogonal. The surface
normal n is given by the cross product of dp/du and dp/dv. The vectors on/ou and on/0v record the
differential change in surface normal as we move u and v along the surface.

Surfacelnteraction Public Methods = 138

SurfaceInteraction(Point3fi pi, Point2f uv, Vector3f wo,
Vector3f dpdu,
Vector3f dpdv, Normal3f dndu, Normal3f dndv, Float
time,
bool flipNormal)
: Interaction(pi, Normal3f(Normalize(Cross(dpdu, dpdv))),
uv, wo, time),
dpdu(dpdu), dpdv(dpdv), dndu(dndu), dndv(dndv) {
Initialize shading geometry from true geometry 13
Adjust normal based on orientation and handedness 1

}

Surfacelnteraction stores a second instance of a surface normal and the
various partial derivatives to represent possibly perturbed values of these
quantities—as can be generated by bump mapping or interpolated per-



vertex normals with meshes. Some parts of the system use this shading
geometry, while others need to work with the original quantities.

Surfacelnteraction Public Members += 138
struct {
Normal3f n;
Vector3f dpdu, dpdv;
Normal3f dndu, dndv;
} shading;

The shading geometry values are initialized in the constructor to match the
original surface geometry. If shading geometry is present, it generally is not
computed until some time after the SurfacelInteraction constructor runs.
The SetShadingGeometry () method, to be defined shortly, updates the
shading geometry.

Initialize shading geometry from true geometry = 139
shading.n = n;
shading.dpdu = dpdu;
shading.dpdv = dpdv;
shading.dndu = dndu;
shading.dndv = dndv;

Cross() 91

Float 23

Interaction 136

Normal3f 94

Normalize() 88

Point2f 92

Point3fi 1061

Surfacelnteraction 138
Surfacelnteraction:: shading::dndu 139
Surfacelnteraction:: shading::dndv 139
Surfacelnteraction:: shading::dpdu 139
Surfacelnteraction:: shading::dpdv 139
Surfacelnteraction:: shading::n 139
Vector3f 86

The surface normal has special meaning to pbrt, which assumes that, for
closed shapes, the normal is oriented such that it points to the outside of the
shape. For geometry used as an area light source, light is by default emitted
from only the side of the surface that the normal points toward; the other



side is black. Because normals have this special meaning, pbrt provides a
mechanism for the user to reverse the orientation of the normal, flipping it
