
TLFeBOOK

Programming Game
AI by Example

Mat Buckland

Wordware Publishing, Inc.

TLFeBOOK

Library of Congress Cataloging-in-Publication Data

Buckland, Mat.
Programming game AI by example / by Mat Buckland.

p. cm.
Includes index.
ISBN 1-55622-078-2 (pbk.)
1. Computer games—Design. 2. Computer games—Programming. 3. Computer
graphics. I. Title.
QA76.76.C672B85 2004
794.8'1526—dc22 2004015103

© 2005, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard

Plano, Texas 75074

No part of this book may be reproduced in any form or by any means

without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-078-2

10 9 8 7 6 5 4 3 2 1

0409

Black & White, the Black & White logo, Lionhead, and the Lionhead logo are registered trademarks of Lionhead Studios
Limited. Screenshots used with the permission of Lionhead Studios Limited. All rights reserved.
Impossible Creatures and Relic are trademarks and/or registered trademarks of Relic Entertainment, Inc.
NEVERWINTER NIGHTS © 2002 Infogrames Entertainment, S.A. All Rights Reserved. Manufactured and marketed by
Infogrames, Inc., New York, NY. Portions © 2002 BioWare Corp. BioWare and the BioWare Logo are trademarks of BioWare
Corp. All Rights Reserved. Neverwinter Nights is a trademark owned by Wizards of the Coast, Inc., a subsidiary of Hasbro, Inc.
and is used by Infogrames Entertainment, S.A. under license. All Rights Reserved.
Unreal® Tournament 2003 ©2003 Epic Games, Inc. Unreal is a registered trademark of Epic Games, Inc. All rights reserved.
Other brand names and product names mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property
of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.
This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any disks
or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall be
liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been
caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc.,

at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

TLFeBOOK

Dedication

For Mum and Dad, who bought me my first computer, and therefore must

share some responsibility for turning me into the geek that I am.�

iii
TLFeBOOK

“Programming Game AI by Example stands out from the pack by providing indus-

trial-strength solutions to difficult problems, like steering and goal-oriented

behavior. Mat guides the reader toward building a foundation robust enough for

real games. This book is a must-have for anyone new to the field, and has tips for

the seasoned professional as well. I wish I [had] read it eight years ago!”

Jeff Orkin

AI architect, Monolith Productions, No One Lives Forever 2 and F.E.A.R.

“…a nice combination of a lot of really useful information, put together in a way

that doesn’t make my brain leak.”

Gareth Lewis

Project leader, Lionhead Studios, Black & White 2

“Each chapter of Mat’s book gently introduces the reader to a fundamental game

AI technology before expanding the new idea into a fully formed solution replete

with extensive code and clearly worded examples. The tone of the book is uncom-

plicated and accessible to the reader, allowing a novice programmer the

opportunity to get to grips with the basics of game AI programming by implement-

ing their own systems direct from theory or expanding upon code examples offered

to gain understanding in a sandbox environment. Once individual technologies are

fully understood, the book goes on to combine these ideas into several complete

game environments allowing the reader to understand the relationships between the

interacting systems of an overarching game architecture.”

Mike Ducker

AI programmer, Lionhead Studios, Fable

“Using easy-to-follow and well-described examples, this book shows you how to

use most of the techniques professional AI programmers use. A great introduction

for the beginner and an excellent reference for the more experienced!”

Eric Martel

AI programmer, Ubisoft, Far Cry (XBox)

“Programming Game AI by Example is an excellent book for the game program-

ming neophyte, the intermediate programmer, and even the expert — it doesn’t

hurt to go over familiar ground, does it? The book concisely covers all of the

important areas, including basic maths and physics through to graph theory and

scripting with Lua, to arm any programmer with the tools needed to create some

very sophisticated agent behaviours. Unusually for books of the type, Pro-

gramming Game AI by Example is solid in its software engineering too, with the

example code demonstrating game uses of familiar design patterns. I’d have no

qualms about recommending Programming Game AI by Example to any program-

mer. It’s an excellent read and an excellent springboard for ideas.”

Chris Keegan

Technical director, Climax Studios (Solent)

TLFeBOOK

Contents

Foreword . xiii

Acknowledgments . xvii

Introduction. xix

Chapter 1 A Math and Physics Primer . 1
Mathematics . 1

Cartesian Coordinates . 1

Functions and Equations . 3

Exponents and Powers . 5

Roots of Numbers (Radicals) . 6

Simplifying Equations. 7

Trigonometry . 10

Rays and Line Segments . 10

Angles . 11

Triangles . 12

Vectors . 18

Adding and Subtracting Vectors . 19

Multiplying Vectors . 20

Calculating the Magnitude of a Vector . 20

Normalizing Vectors . 21

Resolving Vectors . 22

The Dot Product . 23

A Practical Example of Vector Mathematics. 24

The Vector2D Struct . 25

Local Space and World Space. 26

Physics . 28

Time. 28

Distance . 29

Mass. 29

Position . 30

Velocity . 30

Acceleration. 32

Force . 38

Summing Up . 40

Chapter 2 State-Driven Agent Design . 43
What Exactly Is a Finite State Machine?. 44

Implementing a Finite State Machine . 45

State Transition Tables . 47

Embedded Rules . 48

The West World Project . 50

v
TLFeBOOK

The BaseGameEntity Class . 52

The Miner Class. 53

The Miner States . 54

The State Design Pattern Revisited . 55

The EnterMineAndDigForNugget State 60

Making the State Base Class Reusable . 62

Global States and State Blips. 63

Creating a State Machine Class . 64

Introducing Elsa . 67

Adding Messaging Capabilities to Your FSM . 69

The Telegram Structure . 70

Miner Bob and Elsa Communicate . 71

Message Dispatch and Management . 71

The MessageDispatcher Class . 73

Message Handling. 75

Elsa Cooks Dinner . 78

Step One . 78

Step Two . 79

Step Three . 80

Step Four . 80

Step Five . 81

Summing Up . 82

Chapter 3 How to Create Autonomously Moving Game Agents 85
What Is an Autonomous Agent? . 85

The Vehicle Model . 87

Updating the Vehicle Physics . 89

The Steering Behaviors . 91

Seek . 91

Flee . 92

Arrive . 93

Pursuit . 94

Evade . 96

Wander . 96

Obstacle Avoidance . 99

Finding the Closest Intersection Point 100

Calculating the Steering Force . 103

Wall Avoidance . 104

Interpose . 106

Hide . 107

Path Following . 110

Offset Pursuit . 111

Group Behaviors . 113

Separation . 115

Alignment . 116

Cohesion . 117

Flocking . 118

Combining Steering Behaviors . 119

Weighted Truncated Sum . 120

Weighted Truncated Running Sum with Prioritization 121

vi | Contents

TLFeBOOK

Prioritized Dithering . 123

Ensuring Zero Overlap . 124

Coping with Lots of Vehicles: Spatial Partitioning . 126

Smoothing . 130

Chapter 4 Sports Simulation — Simple Soccer. 133
The Simple Soccer Environment and Rules . 134

The Soccer Pitch . 135

The Goals . 138

The Soccer Ball . 138

SoccerBall::FuturePosition . 141

SoccerBall::TimeToCoverDistance . 142

Designing the AI . 144

The SoccerTeam Class. 145

The Receiving Player . 146

The Closest Player to the Ball . 146

The Controlling Player . 146

The Supporting Player . 146

SoccerTeam States . 152

Field Players . 155

Field Player Motion. 155

Field Player States . 156

Goalkeepers . 170

Goalkeeper Motion . 170

Goalkeeper States. 171

Key Methods Used by the AI . 176

SoccerTeam::isPassSafeFromAllOpponents 177

SoccerTeam::CanShoot . 182

SoccerTeam::FindPass . 184

SoccerTeam::GetBestPassToReceiver 185

Making Estimates and Assumptions Work for You . 189

Summing Up . 189

Chapter 5 The Secret Life of Graphs . 193
Graphs . 193

A More Formal Description . 195

Trees . 196

Graph Density . 196

Digraphs . 196

Graphs in Game AI . 197

Navigation Graphs . 198

Dependency Graphs . 199

State Graphs . 201

Implementing a Graph Class . 203

The GraphNode Class . 204

The GraphEdge Class . 205

The SparseGraph Class . 207

Graph Search Algorithms . 209

Uninformed Graph Searches. 210

Depth First Search . 210

Contents | vii

TLFeBOOK

Breadth First Search . 224

Cost-Based Graph Searches . 231

Edge Relaxation . 231

Shortest Path Trees . 233

Dijkstra’s Algorithm . 233

Dijkstra with a Twist: A* . 241

Summing Up . 247

Chapter 6 To Script, or Not to Script, That Is the Question 249
Just What Is a Scripting Language?. 249

What a Scripting Language Can Do for You . 251

Dialogue Flow . 253

Stage Direction . 254

AI Logic . 255

Scripting in Lua . 255

Setting Up Your Compiler to Work with Lua 256

Getting Started . 256

Lua Variables . 258

Lua Types. 260

Logical Operators. 263

Conditional Structures . 264

Rock-Paper-Scissors in Lua . 265

Interfacing with C/C++ . 268

Accessing Lua Global Variables from within Your C++ Program 269

Accessing a Lua Table from within Your C++ Program 271

Accessing a Lua Function from within C++ 273

Exposing a C/C++ Function to Lua. 274

Exposing a C/C++ Class to Lua . 276

Luabind to the Rescue! . 276

Setting Up Luabind . 276

Scopes . 277

Exposing C/C++ Functions Using Luabind 278

Exposing C/C++ Classes Using Luabind 279

Creating Classes in Lua Using LuaBind 281

luabind::object . 282

Creating a Scripted Finite State Machine . 285

How It Works . 285

The States . 289

GoHome . 290

Sleep . 290

GoToMine . 291

Useful URLS . 292

It Doesn’t All Smell of Roses . 292

Summing Up . 293

Chapter 7 Raven: An Overview . 295
The Game . 295

Overview of the Game Architecture . 296

The Raven_Game Class . 297

The Raven Map . 299

viii | Contents

TLFeBOOK

Raven Weapons . 301

Projectiles . 302

Triggers . 303

TriggerRegion . 304

Trigger . 305

Respawning Triggers . 307

Giver-Triggers . 308

Limited Lifetime Triggers . 309

Sound Notification Triggers . 310

Managing Triggers: The TriggerSystem Class 311

AI Design Considerations. 313

AI Implementation . 315

Decision Making. 315

Movement . 315

Path Planning . 315

Perception . 316

Target Selection . 321

Weapon Handling . 323

Putting It All Together . 327

Updating the AI Components . 328

Summing Up . 331

Chapter 8 Practical Path Planning . 333
Navigation Graph Construction. 333

Tile Based . 333

Points of Visibility . 334

Expanded Geometry . 335

NavMesh. 335

The Raven Navigation Graph . 336

Coarsely Granulated Graphs . 336

Finely Grained Graphs. 339

Adding Items to the Raven Navigation Graph 341

Using Spatial Partitioning to Speed Up Proximity Queries 342

Creating a Path Planner Class. 342

Planning a Path to a Position. 344

Planning a Path to an Item Type . 346

Paths as Nodes or Paths as Edges? . 348

An Annotated Edge Class Example . 350

Modifying the Path Planner Class to Accommodate Annotated Edges 350

Path Smoothing . 353

Path Smoothing Rough but Quick . 354

Path Smoothing Precise but Slow. 358

Methods for Reducing CPU Overhead . 359

Precalculated Paths . 359

Precalculated Costs . 361

Time-Sliced Path Planning . 363

Hierarchical Pathfinding . 372

Getting Out of Sticky Situations . 374

Summing Up . 376

Contents | ix

TLFeBOOK

Chapter 9 Goal-Driven Agent Behavior . 379
The Return of Eric the Brave . 380

Implementation . 382

Goal_Composite::ProcessSubgoals . 385

Goal_Composite::RemoveAllSubgoals . 386

Examples of Goals Used by Raven Bots . 387

Goal_Wander . 387

Goal_TraverseEdge . 388

Goal_FollowPath . 391

Goal_MoveToPosition . 393

Goal_AttackTarget . 395

Goal Arbitration. 398

Calculating the Desirability of Locating a Health Item 400

Calculating the Desirability of Locating a Specific Weapon. 401

Calculating the Desirability of Attacking the Target. 403

Calculating the Desirability of Exploring the Map 403

Putting It All Together . 404

Spin-offs . 405

Personalities . 405

State Memory . 406

Example One — Automatic Resuming of Interrupted Activities 407

Example Two — Negotiating Special Path Obstacles 408

Command Queuing . 410

Using the Queue to Script Behavior . 412

Summing Up . 414

Chapter 10 Fuzzy Logic . 415
Crisp Sets . 417

Set Operators . 418

Fuzzy Sets. 419

Defining Fuzzy Boundaries with Membership Functions 419

Fuzzy Set Operators . 421

Hedges . 423

Fuzzy Linguistic Variables . 423

Fuzzy Rules . 424

Designing FLVs for Weapon Selection . 425

Designing the Desirability FLV. 426

Designing the Distance to Target FLV 427

Designing the Ammo Status FLV. 428

Designing the Rule Set for Weapon Selection 428

Fuzzy Inference . 429

Rule One . 429

Rule Two . 430

Rule Three . 430

Defuzzification . 433

From Theory to Application: Coding a Fuzzy Logic Module 437

The FuzzyModule Class . 437

The FuzzySet Base Class . 439

The Triangular Fuzzy Set Class . 440

The Right Shoulder Fuzzy Set Class. 441

x | Contents

TLFeBOOK

Creating a Fuzzy Linguistic Variable Class . 443

Designing Classes for Building Fuzzy Rules 445

How Raven Uses the Fuzzy Logic Classes . 451

The Combs Method . 452

Fuzzy Inference and the Combs Method. 454

Implementation . 455

Summing Up . 455

Last Words . 457

Appendix A C++ Templates . 459
Appendix B UML Class Diagrams . 465
Appendix C Setting Up Your Development Environment 475

References . 477

Bugs and Errata . 479

Index . 481

Contents | xi

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Foreword

Draw the blinds. Turn off the TV set. Shut off your cell phone. Turn on a

little background music. Pour yourself a cup of your favorite “program-

mer’s drink,” and find yourself a nice, cozy chair with your favorite laptop

close at hand. You’re about to go a-learnin’.

Welcome to Programming Game AI by Example.

I must confess I was surprised when Mat contacted me back in 2003

about this book. I wondered to myself, “He already covered all of the new

techniques pretty well…what more is there to do?”

As we exchanged emails Mat expressed that he had a simple desire to

follow up on his first book, AI Techniques for Game Programming, with

something having a completely different focus. Whereas Techniques

explored the more “exotic” biological technologies that a game AI pro-

grammer might be wondering about without bogging down in computer

science minutiae, Mat wanted Example to focus more on what technologies

are actually being used by most game AI programmers in their day-to-day

work. New technologies and new approaches are always to be considered

when it makes sense to do so of course, but developers must always have

the basics at hand to build a firm foundation for any game AI engine.

That’s what this book is all about.

The Surge of Game AI’s Importance

Game AI has undergone a quiet revolution in the past few years. No longer

is it something that most developers consider only toward the end of a pro-

ject when shipping deadlines loom and the publisher is pushing to have the

game ship before the next holiday milestone. Now game AI is something

that is planned for, something that developers are deliberately making as

important a part of a game’s development as the graphics or the sound

effects. The market is rife with games of all kinds and developers are look-

ing for every edge they can get to help their game get noticed. A game with

truly smart opponents or non-player characters is one that gets noticed

automatically, no matter what it looks like.

We’ve seen this in the enormous growth in books on the subject, in the

surge in attendance at the Game Developers Conference AI roundtables,

and in the explosion of game AI web sites across the Internet. Where a few

years ago there were only a handful of books that covered AI techniques in

xiii
TLFeBOOK

terms that a programmer could understand, there are now dozens. Where a

few years ago we weren’t at all sure we could fill a single room at the GDC

with people interested in talking about the techniques they used to build

game AI engines, we now have to turn people away; we just can’t fit

everybody in the sessions. Where there were once only a small — very

small — number of web pages dedicated to game AI on the Internet, there

are now more than I can easily count; a quick Google search as I write this

showed over a hundred dedicated in whole or in part to the topic. Amazing,

absolutely amazing.

And every one of the developers who visits these pages, who comes to

the roundtables, who buys the books is interested in the same things:

� What techniques do other developers use?

� What technologies have other developers found useful?

� What do different games do for AI? Are they all faking it, does

everybody do the same thing, or is there room for improvement?

� What are the stumbling blocks that others have run into so I’m not

surprised? More importantly, what are the solutions other people

have developed so that I don’t have to?

� How can I make my AIs smarter?

� Most importantly of all, how can I make my AIs more fun?

This book is for those people. The ones who seek hard, practical examples

and hard, practical answers. There’s more than pure theory here; this book

is about real techniques with real, working examples.

About time, huh?

By Engineers, For Engineers

The most important thing to a good software engineer is to know about

techniques that work and why. Theory is great, but demos and code are

better; a developer can get right into the code and see why something

works and how it might be adapted to his own problem. This is exactly the

kind of thing that game AI developers have been pounding the walls for at

every GDC AI roundtable. And this book delivers exactly this kind of

information, and in spades.

From the initial chapters covering the sturdy finite state machine (FSM)

to the chapters exploring the more exotic areas of fuzzy logic (FL), Mat has

built a text that will serve as a ready reference and source of learning for a

long time to come. Every major technique in use by developers is covered

here, using the context of an innovative agent-based AI engine called

Raven to show how a given approach works and why. Basic reactionary

behaviors are the most obvious ones and Mat covers them in exhaustive

detail, with code showing each evolutionary iteration and demos to help it

all make sense.

xiv | Foreword

TLFeBOOK

Mat doesn’t stop there as many books do, however. Example moves on

to cover deeper approaches such as hierarchical goal-based agents, placing

such technologies in the context of the Raven engine and building on previ-

ous examples to show how they can greatly improve a game’s AI. These

are techniques in use in only a handful of games on the market today, but

they can make a game’s AI truly stand out if done properly. This book will

show you why they make a difference and how to use them. Mat even pro-

vides tips for better implementations than used in his examples and

summarizes potential improvements to the techniques covered. To this end

he offers up the occasional practical exercise to point the interested devel-

oper in ways to make a given technique better, helping readers to focus on

how they might use the technology in their own games. After all, code is

never done, it’s just done enough.

All of this makes Programming Game AI by Example a book I think

you’re really going to find useful. If you’re looking for hard code and real

techniques, for a book that covers what game AI developers are really

doing and how, then this is the book for you.

Have fun.

Steven Woodcock

ferretman@gameai.com

Foreword | xv

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Acknowledgments

A huge thanks to Steve Woodcock (gameai.com) and Eric Martel (Ubisoft),

who gave up much of their free time to help out with technical reviews of

the text and code, and to Ron Wolfe (Sidney Fire Department), who volun-

teered to be my guinea pig. I owe you guys.

I’d also like to thank Craig Reynolds (Sony), Jeff Hannan

(Codemasters), and William Combs (Boeing) for patiently answering my

questions; and to the team at Wordware for all their expertise.

Thanks also to my old friend Mark Drury for checking over the math

and physics chapter.

Finally, a big thank you and hug to my partner and best friend, Sharon,

for the many hours she spent proofreading, and for all the times I must

have stared vacantly at her moving lips whilst my mind was off visiting

another planet. I don’t know how she puts up with me.

xvii
TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Introduction

The objective of the book you hold in your hands is to provide a solid and

practical foundation to game AI, giving you the confidence to approach

new challenges with excitement and optimism. AI is an enormous topic, so

don’t expect to come away from this book an expert, but you will have

learned the skills necessary to create entertaining and challenging AI for

the majority of action game genres. Furthermore, you will have a sound

understanding of the key areas of game AI, providing a solid base for any

further learning you undertake. And let me tell you, the learning process is

endless!

Being a good game AI programmer is not just about knowing how to

implement a handful of techniques. Of course, individual techniques are

important, but how they can be made to work together is more vital to the

AI development process. To this end, this book spends a lot of time walk-

ing you through the design of agents capable of playing a team sports game

(Simple Soccer) and a deathmatch type shoot-’em-up (Raven), demonstrat-

ing clearly how each technique is used and integrated with others.

Furthermore, Simple Soccer and Raven provide a convenient test bed for

further experimentation, and within the conclusions of many of the chap-

ters are suggestions for future exploration.

Academic AI vs. Game AI

There is an important distinction to be made between the AI studied by

academics and that used in computer games. Academic research is split

into two camps: strong AI and weak AI. The field of strong AI concerns

itself with trying to create systems that mimic human thought processes

and the field of weak AI (more popular nowadays) with applying AI tech-

nologies to the solution of real-world problems. However, both of these

fields tend to focus on solving a problem optimally, with less emphasis on

hardware or time limitations. For example, some AI researchers are per-

fectly happy to leave a simulation running for hours, days, or even weeks

on their 1000-processor Beowolf cluster so long as it has a happy ending

they can write a paper about. This of course is an extreme case, but you get

my point.

Game AI programmers, on the other hand, have to work with limited

resources. The amount of processor cycles and memory available varies

xix
TLFeBOOK

from platform to platform but more often than not the AI guy will be left,

like Oliver holding out his bowl, begging for more. The upshot of this is

that compromises often have to be made in order to get an acceptable level

of performance. In addition, successful games — the ones making all the

money — do one thing very well: They entertain the player (or they have a

film license�). Ipso facto, the AI must be entertaining, and to achieve this

must more often than not be designed to be suboptimal. After all, most

players will quickly become frustrated and despondent with an AI that

always gives them a whippin’. To be enjoyable, an AI must put up a good

fight but lose more often than win. It must make the player feel clever, sly,

cunning, and powerful. It must make the player jump from his seat shout-

ing, “Take that, you little shit!”

The Illusion of Intelligence

But what is this mysterious thing we call artificial intelligence? With

regard to game AI I am firmly of the opinion that if the player believes the

agent he’s playing against is intelligent, then it is intelligent. It’s that sim-

ple. Our goal is to design agents that provide the illusion of intelligence,

nothing more.

Because the illusion of intelligence is subjective, sometimes this takes

very little effort at all. The designers of the AI for Halo, for instance, dis-

covered their playtesters could be fooled into thinking the AI agents were

more intelligent simply by increasing the number of hit points required to

kill them. For one test session they allowed the agents to die really easily

(low hit points); the result was that 36 percent of the testers thought the AI

was too easy and 8 percent thought the AI were very intelligent. For the

next test session the agents were made harder to kill (higher hit points).

After just this small change 0 percent of the testers thought the AI was too

easy and 43 percent thought the AI was very intelligent! This is an aston-

ishing result and clearly shows the importance of playtesting throughout

the game development cycle.

It has also been shown that a player’s perception of the level of intelli-

gence of a game agent can be considerably enhanced by providing the

player with some visual and/or auditory clues as to what the agent is

“thinking” about. For example, if the player enters a room and startles an

agent, it should act startled. If your game is a “stealth-’em-up” like Thief

and a game character hears something suspicious, then it should start to

look around and maybe mumble a few words such as “What was that?” or

“Is anyone there?” Even something simple like making sure that an agent

tracks the movement of neighboring agents with its head can contribute

significantly to a player’s perception of the AI.

You must be careful though when designing your AI not to let the cloak

of illusion slip, since once it does the player’s belief in the game character

xx | Introduction

TLFeBOOK

will evaporate and the game becomes much less fun to play. This will hap-

pen if the AI is seen to act stupidly (running into walls, getting stuck in

corners, not reacting to obvious stimuli) or is caught “cheating” (seeing

through walls, requiring less gold to build units than the human player,

hearing a pin drop at 500 meters), so you must take great pains to avoid

either of these pitfalls.

A Word about the Code

Writing the accompanying source code for this book has necessitated a few

compromises. For starters, the code must be formatted so each line fits in

the width of the printed page. This seems like common sense, but I’ve seen

many books where the formatting is hideous, with huge gaps and spaces

everywhere, making the code difficult to follow as it meanders about the

page. The bottom line is that, unlike your IDE, the printed page has a fixed

width within which printed code must fit: Each line of code must have a

maximum width of 82 characters. Restricting lines of code to this length

can be challenging, particularly when using the STL and templates together

with descriptive class and variable names. For this reason, I’ve had to keep

several names shorter than I would have liked, but wherever this was nec-

essary, I’ve taken the liberty of being generous with my commenting. You

will also notice in some sections of the code a profusion of temporary vari-

ables. These are here to either make the code clearer to read or to split up

long lines of code so they fit within the 82-character limit, or both.

The code and demo executables that accompany this book can be

downloaded from www.wordware.com/files/ai. Then click on Buckland_

AISource.zip and Buckland_AIExecutables.zip.

Appendix C provides instructions on how to set up your development

environment in order to compile the projects.

Practice Makes Perfect

As with all skills, the more you practice using AI techniques and designing

AI systems, the better you get. Those of you who have bought this book

because you are already involved in the development of a game’s AI can

get started with what you learn immediately — you already have the per-

fect test bed to practice on. However, for those of you who are not

currently involved in a project, I’ve included “practicals” at the end of

most chapters for you to try your hand at. These encourage you to experi-

ment with the knowledge you’ve learned, either by creating small

stand-alone examples or by altering or building upon the Simple Soccer

or Raven code projects.

Introduction | xxi

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 1

A Math and Physics Primer

T here’s no hiding from it — if you want to learn AI, it helps to know

some mathematics and physics. Sure, you can use many AI techniques

in a “cut and paste” fashion, but that’s not doing yourself any favors; the

moment you have to solve a problem slightly different from the one you’ve

borrowed the code from you’re going to run into difficulties. If you under-

stand the theory behind the techniques, however, you will stand a much

better chance of figuring out an alternative solution. Besides, it feels good

to understand the tools you’re working with. What better reason do you

need to learn this stuff but that?

I’m going to write this chapter assuming you know hardly anything at

all about math or physics. So forgive me if you already know most of it,

but I figure this way I’ll catch everyone, no matter what your experience is.

Skim through the chapter until you come to something you don’t know or

you find a topic where you think your memory needs to be refreshed. At

that point, start reading. If you are already comfortable with vector math

and the physics of motion, I suggest you skip this chapter entirely and

come back later if you find something you don’t understand.

Mathematics

We’ll start with mathematics because trying to learn physics without math

is like trying to fly without wings.

Cartesian Coordinates
You are probably already familiar with the Cartesian coordinate system. If

you’ve ever written a program that draws images to the screen then you

will almost certainly have used the Cartesian coordinate system to describe

the positions of the points, lines, and bitmaps that make up the image.

In two dimensions, the coordinate system is defined by two axes posi-

tioned at right angles to each other and marked off in unit lengths. The

horizontal axis is called the x-axis and the vertical axis, the y-axis. The

point where the axes cross is called the origin. See Figure 1.1.

1
TLFeBOOK

The arrowheads at each end of the axes in Figure 1.1 indicate they extend

in each direction infinitely. If you imagine yourself holding an infinitely

large sheet of paper with the x and y axes drawn on it, the paper represents

the xy plane — the plane on which all points in the two-dimensional Carte-

sian coordinate system can be plotted. A point in 2D space is represented

by a coordinate pair (x, y). The x and y values represent the distances along

each of the respective axes. Nowadays, a series of points or lines plotted on

the Cartesian coordinate system is usually referred to as a graph, which

saves a lot of typing for sure. :o)

� NOTE To represent three-dimensional space, another axis is needed — the
z-axis. The z-axis extends from behind your screen to way behind your head,
passing through the origin en route. See Figure 1.2.

2 | Chapter 1

Mathematics

Figure 1.1. The Cartesian coordinate system

Figure 1.2. A three-axis (3D) coordinate system

TLFeBOOK

Functions and Equations
The concept of functions is fundamental to mathematics. A function

expresses the relationship between two (or more) terms called variables,

and is typically written in the form of an equation (an algebraic expression

set equal to another algebraic expression). Variables are named as such

because, as the name implies, their values may vary. Variables are usually

expressed with letters of the alphabet. The two most common variables you

will see used in mathematical equations are x and y (although any letter or

symbol is just as valid).

If each value of x can be associated with one value of y, then y is a func-

tion of x. y is said to be the dependent variable since its value depends on

the value of x. Here are a couple of examples:

(1.1)

(1.2)

In the second example, the m and the c represent constants (sometimes

called coefficients) — values that never change no matter what the value

of x is. They are effectively similar to the 2 in equation (1.1). Therefore, if

a = 2, equation (1.1) can be written as follows:

(1.3)

Given any value of x, the corresponding y value can be calculated by put-

ting the x value into the function. Given x = 5 and x = 7 and the function

y = 2x, the y values are:

(1.4)

This type of function, where y is only dependent on one other variable, is

called a single-variable function. Single-variable functions may be visual-

ized by plotting them onto the xy Cartesian plane. To plot a function, all

you have to do is move along the x-axis and for each x value use the func-

tion to calculate the y value. Of course, it’s impossible to plot the graph for

every value of x — that would take forever (literally) — so you must select

a range of values.

The left-hand side of Figure 1.3 shows how function y = 2x looks when

plotted on the xy plane, using the range of x values between –5.0 and 5.0.

A Math and Physics Primer | 3

Mathematics

2y x�

y mx c� �

y ax�

2(5) 10

2(7) 14

y

y

� �

� �

TLFeBOOK

To plot the function y = mx + c to a graph, you must first have some values

for the constants m and c. Let’s say m = 2 and c = 3, giving the function

y = 2x + 3. The right-hand side of Figure 1.3 shows the resulting graph.

The graphs look very similar, don’t they? That’s because y = mx + c is

the function that defines all straight lines in 2D space. The constant m

defines the line’s gradient, or how steep the slope of the line is, and the

constant c dictates where the line intersects the y-axis. The function y = 2x,

shown on the left in the figure, is equivalent to the function y = mx + c,

when m = 2 and c = 0. The plot on the right is almost identical but because

its c value is 3, the point where it intersects the y-axis is shifted up by three

units.

Sometimes you will see a function such as y = mx + c written like this:

(1.5)

The notation f(x) is stating that the dependent variable — in this example,

the y — depends on the variable x in the expression given on the right-hand

side, mx + c. Often, you will see symbols other than an f to represent the

function, so don’t become confused if you come across something like the

following.

(1.6)

The g(x) represents exactly the same thing as if the equation was written

as:

(1.7)

4 | Chapter 1

Mathematics

Figure 1.3. Functions plotted in Cartesian space

()f x mx c� �

2()g x x bx� �

2()f x x bx� �

TLFeBOOK

Functions can depend on more than one variable. Take the calculation for

the area of a rectangle for example. If its length is denoted by the letter l,

and its width by w, then the area A is given by the equation:

(1.8)

To plot a two-variable function like (1.8) on a graph, a third dimension, z,

must be added, perpendicular to the other axes. Now it’s possible to plot A

to the z-axis, l to the x-axis, and w to the y-axis. See Figure 1.4.

The volume of a cube is given by the three-variable function:

(1.9)

where the h represents the height of the cube. To plot this on a graph you

need to add a fourth axis. Unfortunately, unless under the influence of

psychotropic compounds, humans cannot see in more than three dimen-

sions. However, we do have the ability to imagine them, so that’s what you

have to do if you want to plot functions with more than three variables on a

graph. Mathematicians seem to find this easy to do, but many program-

mers, myself included, don’t!

� NOTE The space an n-dimensional function occupies, where n is greater
than 3, is often referred to as hyperspace by mathematicians.

Exponents and Powers

An exponential function is defined like this:

(1.10)

A Math and Physics Primer | 5

Mathematics

A lw�

Figure 1.4. The function A = lw plotted in three dimensions

V lwh�

() xf x a�

TLFeBOOK

The a is known as the base and the x as the power. If the equation is spo-

ken, you would say that f(x) equals a to the power x. This means that a is

multiplied with itself x amount of times. So 72 is the same as writing 7x7,

and 34 is the same as writing 3x3x3x3. A number to the power of 2 is

known as the square of that number, and a number to the power of 3 is

known as the cube. Therefore, the cube of 5 is:

(1.11)

Figure 1.5 shows equation (1.10) plotted on a graph for a = 2. The curve

clearly shows how the value of y increases rapidly with x. This type of

curve is often referred to as exponential growth.

� HISTORICAL NOTE For a reason lost to time, mathematicians decided
they would use the latter part of the alphabet to represent variables and the rest
of the alphabet to represent constants. This is why the axes in the Cartesian
coordinate system are labeled x, y, and z.

Roots of Numbers (Radicals)

The square root of a number is a value that when multiplied by itself

results in the original number. Square roots are written using the radical

symbol . Therefore, the square root of 4 is written as:

(1.12)

We can square both sides of this equation to show the relationship between

the power and the root:

(1.13)

The square root of a number is also known as the second root of that num-

ber. We can also calculate the third, fourth, fifth, or any size root of a

number. The third root of a number is known as its cube root and is written

like this: . Notice how we need the 3 there to tell us that the root to be

6 | Chapter 1

Mathematics

35 5 5 5 125� � � �

Figure 1.5. The function f(x) = 2x plotted on the xy plane

4 2�

24 2�

3

TLFeBOOK

taken is the third. The cube root of a number gives a number that when

multiplied to the power of three gives the original number. For instance:

(1.14)

Once again we can cube both sides of the equation to show the relationship

between the power and the root:

(1.15)

It’s also possible to write the root of a number as a fractional exponent. For

example, the square root of a number can be written as , the third root

as , and so on.

Simplifying Equations

Often, to solve an equation you must first simplify it. One of the golden

rules for achieving this is that you can add, subtract, divide, or multiply

terms to either side. (There is one exception to this rule: The term must not

be zero when multiplying or dividing.) As long as the same thing is done to

both sides, then the sides will remain equal. This is best understood with

the aid of a couple of examples.

Example 1

Consider the following equation:

(1.16)

This equation can be simplified by subtracting 7 from both sides.

(1.17)

It can be further simplified by adding 2x to both sides:

(1.18)

We can also divide both sides by 5, giving us the answer for x:

(1.19)

Let’s take a look at a slightly more complex example.

A Math and Physics Primer | 7

Mathematics

3 27 3�

327 3�

1

2x
1

3x

3 7 22 2x x� � �

3 7 7 22 2 7

3 15 2

x x

x x

� � � � �

� �

3 2 15 2 2

5 15

x x x x

x

� � � �

�

5 15

5 5

3

x

x

�

�

TLFeBOOK

Example 2

Let’s say we want to solve the following for y:

(1.20)

First of all we can remove the parentheses by multiplying the term inside

the parentheses (3x – 5y), by the term outside (2), giving:

(1.21)

Next, it’s a good idea to remove all fractional terms by multiplying all the

terms on both sides with the denominators of the fractions (the denomina-

tors are the values beneath the line). In this example, multiplying all terms

on both sides of equation (1.21) by 3 gives:

(1.22)

At this point we have a y term on the left and x and y terms on the right.

We need to transpose similar terms so they share the same side of the equa-

tion. In this example we can do this by adding 30y to both sides.

(1.23)

Now that like terms are grouped together we can combine them. This

gives:

(1.24)

Finally, we should divide both sides by the coefficient in front of the

unknown variable. In this example we are solving for y so we must divide

both sides by 33, giving:

(1.25)

Example 3

Here are a few more rules that come in handy when simplifying equations:

(1.26)

(1.27)

8 | Chapter 1

Mathematics

2(3 5)
3

x
y x y� � �

6 10
3

x
y x y� � �

3 18 30y x y x� � �

3 30 18 30 30

3 30 18

y y x y x y

y y x x

� � � � �

� � �

33 19y x�

19

33
y x�

1
()

x
x

y y
�

a b ay bx

x y xy

�
� �

TLFeBOOK

(1.28)

(1.29)

(1.30)

Let’s take a look at some of the new rules in action. This time the equation

to simplify is:

(1.31)

Using rule (1.29) gives:

(1.32)

Multiplying both sides by x to dispose of the fractional part gives:

(1.33)

Now to get rid of the parentheses on the left:

(1.34)

To remove the parentheses on the right we use the rule from (1.28):

(1.35)

Adding 2xy to both sides gives:

(1.36)

By subtracting x2 from both sides and rearranging we get the simplified

equation:

(1.37)

A Math and Physics Primer | 9

Mathematics

2 2 2() 2x y x y xy� � � �

2 2

2

x x

y y

� �
�� �

	

x x

y y
�

2

5 2
y x

x y
x

�� �
� � � �

	

� �

� �
� �

2

2

2

5 2

5 2

y x
x y

x

y x
x y

x

�
� �

�
� �

2(5 2) ()x x y y x� � �

2 25 2 ()x xy y x� � �

2 2 25 2 2x xy x y xy� � � �

2 2 25x x y� �

2 24y x�

TLFeBOOK

The final step is to take the square root of both sides:

(1.38)

Simplifying equations can get a lot harder than this of course, but these few

rules are enough for you to understand any of the simplifications presented

in this book.

Trigonometry
Trigonometry is based on the study of triangles. The word comes from the

Greek words trigon, for triangle, and metry, for measure. It is an enor-

mously useful field of mathematics and has many practical applications in

computer science. In the game AI field, you will find it used for line-of-

sight (LOS) calculations, collision detection, some aspects of pathfinding,

etc. Lots of AI is really math-dependent when you boil it down; you will be

wise to learn it well.

Rays and Line Segments

A ray is a line with one endpoint. It is of infinite length and is defined by a

direction (usually expressed as a normalized vector; see the section on vec-

tors later in this chapter) and an origin. Figure 1.6 shows a ray situated at

the origin.

A line segment is a piece of a line and is defined by two endpoints. Fig-

ure 1.6 also shows a line segment defined by the two endpoints p1 and p2.

10 | Chapter 1

Mathematics

2y x�

Figure 1.6. A line segment and a ray

TLFeBOOK

Angles

An angle is defined as the measure of divergence of two rays that share the

same origin. See Figure 1.7.

You may be used to thinking of angles in terms of degrees. Walls in most

homes are typically at 90 degree angles, for example, and circles are 360

degrees around. Mathematicians prefer to measure the magnitude of an

angle using radians. Radians are a unit of measurement based upon a circle

of unit radius — a radius of 1 — centered at the origin. The radius of a cir-

cle is the distance from the center of the circle to its perimeter. Drawing the

two rays from Figure 1.7 onto the same diagram as the unit circle, we get

Figure 1.8. The length of the curved line segment between the two rays —

shown in the diagram as a dotted line — is the angle measured in radians

between them.

A Math and Physics Primer | 11

Mathematics

Figure 1.7. An angle

Figure 1.8. The length of the dotted line is the angle in radians between the two rays.

TLFeBOOK

Now that you know what a radian is, let’s calculate how many radians there

are in a circle. You may remember the Greek symbol � (pi) from your

school days. It’s a well-known and frequently used mathematical constant,

and has a value of 3.14159 (to five decimal places). You can use pi to cal-

culate the circumference of a circle — the distance around the entire

perimeter — using the equation:

(1.39)

Using this equation to determine the perimeter of a unit circle gives the

number of radians in a circle. That’s because the number of radians in a cir-

cle is the length of the perimeter of a circle with a radius of 1. So we just

substitute 1 for r in equation (1.39) to get:

(1.40)

Therefore, there are 2 � radians in every circle.

� TIP Now that you know how many radians make up a circle, you can convert
between radians and degrees if you ever have to. There are 360 degrees in a
circle, so that means:

360º = 2 � rads
Dividing both sides by 360 we get:

1º = 2 � /360 rads

Angles are usually denoted using the Greek letter theta, which looks like

this: �.

Triangles

A triangle consists of three line segments connected at their ends. A trian-

gle’s inner angles always add up to � radians (180 degrees). Figure 1.9

shows the different types of triangles you can encounter.

12 | Chapter 1

Mathematics

2perimeter r
�

2 2 (1) 2perimeter r num radians

� � � �

Figure 1.9. Different types of triangles

TLFeBOOK

� An equilateral triangle has sides of equal length. Triangles with this

property also have angles of equal sizes.

� An isosceles triangle has two sides and two angles of equal size.

� A right-angled triangle has one angle that is �/2 radians (90 degrees)

— a right angle. The right angle is always represented by a box.

� An acute triangle’s inner angles are all acute (less than �/2 radians).

� An obtuse triangle has one angle that is obtuse (greater than �/2

radians).

Pythagorean Theorem

The triangles you will be using most are of the right-angled variety. They

have many interesting properties you can put to good use. Possibly the

most famous property of right-angled triangles was discovered by Pythago-

ras, a Greek mathematician who lived from 569 to 475 BC. He was a very

clever chap indeed, and is most famous for stating this:

The square of the hypotenuse of a right-angled triangle is equal to the

sum of the squares of the other two sides.

The hypotenuse of a triangle is its longest side, as shown in Figure 1.10.

If the hypotenuse is denoted as h, the Pythagorean theorem can be written

as:

(1.41)

Taking the square root of both sides gives:

(1.42)

This means that if we know the length of any two sides of a right-angled

triangle, we can easily find the third.

A Math and Physics Primer | 13

Mathematics

Figure 1.10

2 2 2h a b� �

2 2h a b� �

TLFeBOOK

� TIP When working on the AI for games you will frequently find yourself using
the Pythagorean theorem to calculate if Agent A is closer to an object than
Agent B. This would normally require two calls to the square root function,
which, as we all know, is slow and should be avoided wherever possible. Fortu-
nately, when comparing the lengths of the sides of two triangles, if side A is
bigger than side B, then it will always be bigger, whether the lengths are
squared or not. This means that we can avoid taking the square roots and just
compare the squared values instead. This is known as working in squared-
distance space and is something you will see frequently in the code shown in
this book.

A Practical Example of the Pythagorean Theorem

Let’s say you have an archer at position A (8, 4) and his target at position

T (2, 1). The archer can only fire an arrow a maximum distance of 10 units.

Consequently, to determine if he can hit the target, the distance between

them must be calculated. This is easy to determine using the Pythagorean

theorem. First, the lengths of the sides TP and AP shown in Figure 1.11 are

calculated.

To find the distance AP, the y component of the archer’s position is sub-

tracted from the y component of the target’s position:

(1.43)

To find the distance TP, we do the same, but with the x components:

(1.44)

Now that TP and AP are known, the distance from the archer to the target

can be calculated using the Pythagorean theorem:

14 | Chapter 1

Mathematics

Figure 1.11

4 1 3AP � � �

8 2 6TP � � �

TLFeBOOK

(1.45)

Well within target range. Let that arrow fly!

The Mysteries of SohCahToa Unveiled
If you know the length of one of the sides of a right-angled triangle and

one of the remaining two angles, you can determine everything else about

the triangle using trigonometry. First, take a look at Figure 1.12. It shows

the names of each side of a right-angled triangle.

The side opposite the angle is called the opposite (surprise, surprise), and

the side lying between the angle and the right angle is known as the adja-

cent. There are three trigonometric functions to help calculate the features

of a right-angled triangle. You probably know them from school. They are

sine, cosine, and tangent, and are often abbreviated to sin, cos, and tan.

This is what they represent:

(1.46)

(1.47)

(1.48)

It will pay you well to memorize these three relationships because you’ll be

using them frequently. My math teacher taught me to memorize them as a

mnemonic: Soh-Cah-Toa, pronounced “sowcahtowa” (where “sow” and

“tow” rhyme with “know”). Although it looks weird, it’s easy to say, and

very easy to remember.

A Math and Physics Primer | 15

Mathematics

2 2

2 23 6

9 36

6.71

TA AP TP� �

� �

� �

�

Figure 1.12. Names of the sides of a triangle

sin()
opposite

hypotenuse
��

tan()
opposite

adjacent
��

cos()
adjacent

hypotenuse
��

TLFeBOOK

The best way of seeing how the sine, cosine, and tangent functions can

be utilized is by looking at some examples.

� TIP When working out any of the following problems on a calculator, make sure
it’s set to work in radians, and not degrees!

Take a look at Figure 1.13.

We want to calculate the length of the opposite given the length of the adja-

cent and the angle. From SohCahToa we can remember that the tangent of

an angle is equal to the opposite divided by the adjacent. Rearranging the

equation a little gives us:

(1.49)

So all we have to do to get o is pick up a calculator (to determine the tan-

gent) and plug in the numbers, like so:

(1.50)

Easy peasy. Okay, let’s try another, only this time you try to solve it first.

Calculate the length of the side h shown in Figure 1.14

Did you manage it? In this example we know the angle and the opposite.

Remembering SohCahToa, we see that it’s the sine function that should be

used because the sine of the angle is equal to the opposite divided by the

hypotenuse. Rearranging the equation gives:

16 | Chapter 1

Mathematics

Figure 1.13

()o aTan� �

6 (0.9)

7.56

o Tan�

�

Figure 1.14

TLFeBOOK

(1.51)

And plugging in the numbers gives:

(1.52)

So far so good. How about the problem shown in Figure 1.15? This time

you have to find the angle given the lengths of the adjacent and

hypotenuse.

This time our friend is the cosine function, but plugging in the numbers

creates a problem.

(1.53)

We know that the cosine of the angle is 0.769, but what is the angle itself?

How do we find that out? Well, the angle is determined using the inverse

cosine. This is normally written as cos–1. So, all you do is use the inverse

cosine button on a calculator (if you can’t see cos–1 on your calculator, you

may have to press the inverse button before the cosine button) to get the

result:

(1.54)

At this point I’m going to end the lesson in trigonometry. Although it is a

vast subject, the Pythagorean theorem and SohCahToa are all the trig the-

ory you are going to need for the rest of this book.

A Math and Physics Primer | 17

Mathematics

sin()

o
h �

�

3

sin(0.3)

10.15

h �

�

Figure 1.15

10
cos(?) 0.769

13
� �

1? cos (0.769) 0.693 radians�� �

TLFeBOOK

Vectors
You’ll be using vector math frequently when designing the AI for your

games. Vectors are used everywhere from calculating which direction a

game agent should shoot its gun to expressing the inputs and outputs of an

artificial neural network. Vectors are your friend. You should get to know

them well.

You have learned that a point on the Cartesian plane can be expressed as

two numbers, just like this:

(1.55)

A 2D vector looks almost the same when written down:

(1.56)

However, although similar, a vector represents two qualities: direction and

magnitude. The right-hand side of Figure 1.16 shows the vector (9, 6) situ-

ated at the origin.

� NOTE Vectors are typically denoted in bold typeface or as a letter with an
arrow above it like so: �v. I’ll be using the bold notation throughout this book.

The bearing of the arrow shows the direction of the vector and the length of

the line represents the magnitude of the vector. Okay, so far so good. But

what does this mean? What use is it? Well, for starters, a vector can repre-

sent the velocity of a vehicle. The magnitude of the vector represents the

speed of the vehicle and the direction represents the heading of the vehicle.

That’s quite a lot of information from just two numbers (x, y).

18 | Chapter 1

Mathematics

(,)P x y�

(,)x y�v

Figure 1.16. A point, P, and a vector, V

TLFeBOOK

Vectors aren’t restricted to two dimensions either. They can be any size

at all. You would use a 3D vector, (x, y, z) for example, to represent the

velocity of a vehicle that moves in three dimensions, like a helicopter.

Let’s take a look at some of the things you can do with vectors.

Adding and Subtracting Vectors

Imagine you are a contestant in a TV reality game. You are standing in a

clearing in the jungle. Several other competitors stand beside you. You’re

all very nervous and excited because the winner gets to date Cameron

Diaz… and the losers have to watch. Sweat is dripping from your forehead,

your hands are clammy, and you cast nervous glances at the other competi-

tors. The bronzed, anvil-chinned TV host steps forward and hands a gold-

trimmed envelope to each competitor. He steps back and orders you all to

rip open your envelopes. The first person to complete the instructions will

be the winner. You frantically tear away at the paper. Inside is a note. It

says:

I’m waiting for you in a secret location. Please hurry, it’s very hot in

here. You can reach the location by following the vectors (–5, 5), (0,

–10), (13, 7), (–4, 3).

Cameron

With a smile on your face you watch the rest of the competitors sprint off

in the direction of the first vector. You do a few calculations on the back of

the envelope and then set off in a completely different direction at a lei-

surely stroll. By the time the other competitors reach Cameron’s hideout,

sweating like old cheese and gasping for breath, they can hear your playful

giggles and the splash of cool shower water…

You beat the opposition because you knew how to add vectors together.

Figure 1.17 shows the route all the other competitors took by following the

vectors given in Cameron’s note.

A Math and Physics Primer | 19

Mathematics

Figure 1.17. The route of the opposition

TLFeBOOK

You knew, however, that if you added all the vectors together you would

get a single vector as the result: one that takes you directly to the final des-

tination. To add vectors together you simply add up all the x values to give

the result’s x component, and then do the same with the y values to get the

y component. Adding the four vectors in Cameron’s note together we get:

(1.57)

giving the vector (4, 5), exactly the same result as if we followed each vec-

tor individually. See Figure 1.18.

Multiplying Vectors

Multiplying vectors is a cinch. You just multiply each component by the

value. For example, the vector v (4, 5) multiplied by 2 is (8, 10).

Calculating the Magnitude of a Vector

The magnitude of a vector is its length. In the previous example the magni-

tude of the vector v (4, 5) is the distance from the start point to Cameron’s

hideout.

20 | Chapter 1

Mathematics

(5) (0) (13) (4) 4

(5) (10) (7) (3) 5

new x

new y

� � � � � � �

� � � � � �

Figure 1.18. Your route

TLFeBOOK

This is easy to calculate using the Pythagorean theorem.

(1.58)

If you had a three-dimensional vector then you would use the similar

equation:

(1.59)

Mathematicians place two vertical bars around a vector to denote its length.

(1.60)

Normalizing Vectors

When a vector is normalized, it retains its direction but its magnitude is

recalculated so that it is of unit length (a length of 1). To do this you divide

each component of the vector by the magnitude of the vector. Mathemati-

cians write the formula like this:

(1.61)

Therefore, to normalize the vector (4, 5) you would do this:

(1.62)

This may seem a strange thing to do to a vector but in fact, normalized vec-

tors are incredibly useful. You’ll find out why shortly.

A Math and Physics Primer | 21

Mathematics

Figure 1.19. Finding the magnitude of a vector

2 24 5 6.403magnitude � � �

2 2 2magnitude x y z� � �

magnitude � v

�
v

N
v

4 / 6.403 0.62

5 / 6.403 0.78

new x

new y

� �

� �

TLFeBOOK

Resolving Vectors

It’s possible to use trigonometry to resolve a vector into two separate vec-

tors, one parallel to the x-axis and one to the y-axis. Take a look at the

vector, v, representing the thrust of the jet-fighter shown in Figure 1.20.

To resolve v into its x/y components we need to find Oa and Ob. This will

give us the component of the aircraft’s thrust that is acting along the y-axis,

and the component along the x-axis, respectively. Another way of putting it

is that Oa is the amount of thrust acting along the x-axis, and Ob is the

amount along the y-axis.

First, let’s calculate the amount of thrust along the y-axis: Oa. From trig-

onometry we know that:

(1.63)

Rearranged, this gives:

(1.64)

To calculate Ob this equation is used:

(1.65)

Giving:

(1.66)

22 | Chapter 1

Mathematics

Figure 1.20

cos()
v

adjacent Oa

hypotenuse
� ��

()vOa Cos y component� ��

sin()
v

opposite Ob

hypotenuse
� ��

sin()vOb x component� ��

TLFeBOOK

The Dot Product

The dot product gives the angle between two vectors — something you

will need to calculate often when programming AI. Given the two 2D vec-

tors u and v, the equation looks like this:

(1.67)

The � symbol denotes the dot product. Equation (1.67) doesn’t give us an

angle though. I promised an angle, so you’ll get one! Here’s another way of

calculating the dot product:

(1.68)

Rearranging we get:

(1.69)

Remember, the vertical lines surrounding a vector indicate its magnitude.

Now is the time when you discover one of the useful uses for normalizing

vectors. If v and u are both normalized, then the equation simplifies enor-

mously to:

(1.70)

Substituting in the equation from (1.67) for the right-hand side gives:

(1.71)

giving us an equation for the angle between the vectors.

One great use of the dot product is that it will quickly tell you if one

entity is behind or in front of the facing plane of another. How so? Check

out Figure 1.21.

A Math and Physics Primer | 23

Mathematics

u v u v u vx x y y� � �

cos()u v u v �� �

cos()
u v

u v

�
��

cos()
1 1

u v

u v

�
�

�
� �

�

cos() u v u v u vx x y y� � � ��

Figure 1.21

TLFeBOOK

The figure shows a game agent facing directly north. The horizontal line is

relative to the agent and describes the facing plane of the agent. Everything

situated ahead of this line can be said to be in front of the agent.

Using the dot product it’s easy to determine if an object is situated in

front or behind the agent. The dot product of the agent’s facing vector and

the vector from the agent to the object will be positive if the object is for-

ward of the facing plane of the agent and negative if it is behind.

A Practical Example of Vector Mathematics

Here’s an example of some of the vector methods you’ve just learned about

working together. Let’s say you have a game agent, Eric the Troll, who

stands at position T (the origin) and facing in the direction given by the

normalized vector H (for heading). He can smell a helpless princess at

position P and would very much like to throw his club at her, to tenderize

her a little, before he rips her to pieces. To do this, he needs to know how

many radians he must rotate to face her. Figure 1.22 shows the situation.

You’ve discovered that you can calculate the angle between two vectors

using the dot product. However, in this problem you only have one vector

to start with, H. Therefore we need to determine the vector — the vec-

tor that points directly at the princess. This is calculated by subtracting

point T from point P. Because T is at the origin (0, 0), in this example P–T

= P. However, the answer P–T is a vector, so let’s show this by typing it in

bold and calling it P.

We know that the cosine of the angle the troll needs to turn to face the

princess is equivalent to the dot product of H and P, provided both vectors

are normalized. H is already normalized so we only need to normalize P.

Remember, to normalize a vector its components are divided by its magni-

tude. Consequently, the normal of P (NP) is:

24 | Chapter 1

Mathematics

Figure 1.22

TP
���

TLFeBOOK

(1.72)

The dot product can now be used to determine the angle.

(1.73)

So

(1.74)

To clarify the process, let’s do the whole thing again but with some num-

bers. Let’s say the troll is situated at the origin T (0, 0) and has a heading of

H (1, 0). The princess is standing at the point P (4, 5). How many radians

does the troll have to turn to face the princess?

We know that we can use equation (1.74) to calculate the angle but first

we need to determine the vector, TP, between the troll and the princess and

normalize it. To obtain TP we subtract T from P, resulting in the vector (4,

5). To normalize TP we divide it by its magnitude. This calculation was

shown earlier in equation (1.62), resulting in NTP (0.62, 0.78).

Finally we plug the numbers into equation (1.74), substituting equation

(1.71) for the dot product.

The Vector2D Struct

All the examples given in this book make use of the Vector2D struct. It’s

very straightforward and implements all the vector operations we’ve dis-

cussed. I’ll list the majority of its declaration here so you can familiarize

yourself with it.

struct Vector2D
{
double x;
double y;

Vector2D():x(0.0),y(0.0){}
Vector2D(double a, double b):x(a),y(b){}

//sets x and y to zero
inline void Zero();

//returns true if both x and y are zero
inline bool isZero()const;

A Math and Physics Primer | 25

Mathematics

p

P
N

P
�

cos()
p

N H� ��

� �1cos
p

N H
�� ��

� �
� � � �� �

� �

1

1

1

cos

cos 0.62 1 0.78 0

cos 0.62

0.902 radians

N HTP

�

�

�

� �

� � � �

�

�

�

�

�

�

TLFeBOOK

//returns the length of the vector
inline double Length()const;

//returns the squared length of the vector (thereby avoiding the sqrt)
inline double LengthSq()const;

inline void Normalize();

//returns the dot product of this and v2
inline double Dot(const Vector2D& v2)const;

//returns positive if v2 is clockwise of this vector,
//negative if counterclockwise (assuming the Y axis is pointing down,
//X axis to right like a Window app)
inline int Sign(const Vector2D& v2)const;

//returns the vector that is perpendicular to this one
inline Vector2D Perp()const;

//adjusts x and y so that the length of the vector does not exceed max
inline void Truncate(double max);

//returns the distance between this vector and the one passed as a parameter
inline double Distance(const Vector2D &v2)const;

//squared version of above
inline double DistanceSq(const Vector2D &v2)const;

//returns the vector that is the reverse of this vector
inline Vector2D GetReverse()const;

//we need some operators
const Vector2D& operator+=(const Vector2D &rhs);
const Vector2D& operator-=(const Vector2D &rhs);
const Vector2D& operator*=(const double& rhs);
const Vector2D& operator/=(const double& rhs;
bool operator==(const Vector2D& rhs)const;
bool operator!=(const Vector2D& rhs)const;

};

Local Space and World Space
It’s important you understand the difference between local space and world

space. The world space representation is normally what you see rendered

to your screen. Every object is defined by a position and orientation rela-

tive to the origin of the world coordinate system (see Figure 1.23). A

soldier is using world space when he describes the position of a tank with a

grid reference, for instance.

26 | Chapter 1

Mathematics

TLFeBOOK

Local space, however, describes the position and orientation of objects rel-

ative to a specific entity’s local coordinate system. In two dimensions, an

entity’s local coordinate system can be defined by a facing vector and a

side vector (representing the local x- and y-axis, respectively), with the ori-

gin positioned at the center of the entity (for three dimensions an additional

up vector is required). Figure 1.24 shows the axis describing the local coor-

dinate system of the dart-shaped object.

Using this local coordinate system we can transform the world so that all

the objects in it describe their position and orientation relative to it (see

Figure 1.25). This is just like viewing the world through the eyes of the

entity. Soldiers are using local space when they say stuff like “Target 50m

A Math and Physics Primer | 27

Mathematics

Figure 1.23. Some obstacles and a vehicle shown in world space

Figure 1.24. The vehicle’s local coordinate system

TLFeBOOK

away at 10 o’clock.” They are describing the location of the target relative

to their own position and facing direction.

This ability to transform objects between local and world space can help

simplify many calculations as you’ll see later in the book. (Although you

need to understand the concept, how it’s actually done is beyond the scope

of this book — check out the matrix transformations chapter of a computer

graphics book.)

Physics

My dictionary defines the science of physics as:

The science of matter and energy and of the interactions between the

two.

As a game AI programmer you’ll frequently be working with the laws of

physics, and especially ones concerned with motion, which is what will be

covered in this section. You’ll often find yourself creating algorithms for

predicting where an object or agent will be at some time in the future, for

calculating what the best angle is to fire a weapon, or what heading and

force an agent should kick a ball with to pass it to a receiver. This isn’t AI

per se of course, but it is all part of creating the illusion of intelligence and

is normally part of the AI programmer’s workload, so you need to know

this stuff.

Let’s take a look at some of the fundamental concepts used in physics.

Time
Time is a scalar quantity (completely specified by its magnitude and with

no direction) measured in seconds, abbreviated to s. Until recently, a sec-

ond was defined in terms of the rotational spin of the Earth, but as the

28 | Chapter 1

Physics

Figure 1.25. Objects transformed into the vehicle’s local space

TLFeBOOK

Earth’s rotation is slowing down slightly every year, by the late sixties this

became problematic for scientists who needed increasingly precise mea-

surements for their experiments. Today, therefore, a second is measured as:

The duration of 9,192,631,770 periods of the radiation corresponding to

the transition between the two hyperfine levels of the ground state of the

cesium 133 atom.

This definition provides today’s scientists with the constant time interval

they require for their precise experiments.

Time in computer games is measured in one of two ways: either in sec-

onds (just as in the real world) or by using the time interval between

updates as a kind of virtual second. The latter measurement can simplify

many equations but you have to be careful because, unless the update rate

is locked, the physics will differ between machines of varying speeds!

Therefore, if you choose to use a virtual second, make sure your game’s

physics update frequency is locked to a reasonable rate — usually the rate

of the slowest machine you’re developing for.

� NOTE Not all that long ago the majority of computer games used a fixed
frame rate and every component — rendering, physics, AI, etc. — was updated
at the same frequency. Many of today’s sophisticated games, however, specify a
unique rate for each component. For example, the physics might be updated 30
times a second, the AI 10 times a second, and the rendering code allowed to go
as fast as the machine it runs on. Therefore, whenever I refer to an “update
rate” in the text, if I don’t specify a context, it will be in the context of the subject
I’m talking about.

Distance
The standard unit of distance — a scalar quantity — is the meter, abbrevi-

ated to m.

Mass
Mass is a scalar quantity measured in kilograms, abbreviated to kg. Mass is

the measure of an amount of something. This can be a confusing quality to

measure since the mass of an object is calculated by weighing it, yet mass

is not a unit of weight; it is a unit of matter. The weight of an object is a

measurement of how much force gravity is exerting on that object. Because

gravity varies from place to place (even here on Earth), this means the

weight of an object can vary in different places, even though its mass never

changes. So how can mass be measured accurately?

Scientists have overcome this problem by creating a platinum-iridium

cylinder that everyone has agreed to call THE kilogram. This cylinder is

kept in Paris and all measurements are made relative to it. In other words,

you can go to France and have your own duplicate kilogram made, which

weighs exactly the same as THE kilogram. Now you know that wherever

A Math and Physics Primer | 29

Physics

TLFeBOOK

you are located, no matter what the gravity, your duplicate will have

exactly the same mass as THE kilogram back in France. Problem solved.

Position
You might think the position of an object is an easy property to measure,

but where exactly do you measure its position from? For example, if you

wanted to specify your body’s position in space, from where would you

take the measurement? Would it be from your feet, your stomach, or your

head? This presents a problem because there would be a big discrepancy

between the position of your head and that of your feet.

Physicists solve this problem by taking the location of the center of

mass of the object as its position. The center of mass is the object’s balance

point. This would be the place where you could attach an imaginary piece

of string to the object and it would balance in any position. Another good

way of thinking about the center of mass is that it is the average location of

all the mass in a body.

Velocity
Velocity is a vector quantity (a quantity that has magnitude and direction)

that expresses the rate of change of distance over time. The standard unit of

measurement of velocity is meters per second, abbreviated to m/s. This can

be expressed mathematically as:

(1.75)

The Greek capital letter �, read as delta, is used in mathematics to denote a

change in quantity. Therefore, �t in equation (1.75) represents a change in

time (a time interval) and �x a change in distance (a displacement). � is

calculated as the after quantity minus the before quantity. Therefore if an

object’s position at t = 0 is 2 (before) and at t = 1 is 5 (after), �x is 5 – 2 =

3. This can also result in negative values. For instance if an object’s posi-

tion at t = 0 is 7 (before) and at t = 1 is 3 (after), �x is 3 – 7 = –4.

� NOTE Delta’s little brother, the lowercase letter delta, written as �, is used to
represent very small changes. You often see � used in calculus. Because � looks
similar to the letter d, to prevent confusion, mathematicians tend to avoid using
d to represent distance or displacement in their equations. Instead, a less
ambiguous symbol such as �x is used.

Using equation (1.75), it’s easy to calculate the average velocity of an

object. Let’s say you want to work out the average velocity of a ball as it

rolls between two points. First calculate the displacement between the two

points, then divide by the amount of time it takes the ball to cover that

30 | Chapter 1

Physics

x
v

t

�
�

�

TLFeBOOK

distance. For instance, if the distance between the points is 5 m and the

time taken for the ball to travel between points is 2 s, then the velocity is:

(1.76)

It’s also easy to calculate how far an object has traveled if we know its

average speed and the length of time it has been traveling. Let’s say you

are driving your car at 35 mph and you’d like to know how far you’ve

moved in the last half hour. Rearranging equation (1.75) gives:

(1.77)

Popping in the numbers gives:

(1.78)

Relating this to computer games, if you have a vehicle at position P at time

t traveling at constant velocity V, we can calculate its position at the next

update step (at time t + 1) by:

(1.79)

Where V�t represents the displacement between update steps (from equa-

tion (1.77)).

Let’s make this crystal clear by showing you a code example. Following

is a listing for a Vehicle class that encapsulates the motion of a vehicle

traveling with constant velocity.

class Vehicle
{
//a vector representing its position in space
vector m_vPosition;

//a vector representing its velocity
vector m_vVelocity;

public:

//called each frame to update the position of the vehicle
void Update(float TimeElapsedSinceLastUpdate)
{
m_vPosition += m_vVelocity * TimeElapsedSinceLastUpdate;

}
};

Note that if your game uses a fixed update rate for the physics, as do many

of the examples in this book, �t will be constant and can be eliminated

from the equation. This results in the simplified Update method as follows:

A Math and Physics Primer | 31

Physics

5
2.5 m/s

2
v � �

x v t� � �

1P P Vt t t� � � �

1
distance traveled 35 17.5 miles

2
� � �

TLFeBOOK

//update for a simulation using a constant update step
void Vehicle::Update()
{
m_vPosition += m_vVelocity;

}

Remember though, that if you choose to eliminate �t like this, the unit of

time you will be using in any calculations is no longer the second but rather

the time interval between update steps.

Acceleration
Acceleration is a vector quantity that expresses the rate of change of veloc-

ity over time and is measured in meters per second per second, written as

m/s2. Acceleration can be expressed mathematically as:

(1.80)

This equation is stating that acceleration is equivalent to the change in

velocity of an object divided by the time interval during which the change

in velocity occurred.

For example, if a car starts from rest and accelerates at 2 m/s2, then

every second, 2 m/s is added to its velocity. See Table 1.1.

Table 1.1

Time(s) Velocity(m/s)

0 0

1 2

2 4

3 6

4 8

5 10

Plotting this data to a velocity versus time graph, we get Figure 1.26. If we

examine a time interval, say the interval between t = 1 and t = 4, we can

see that the gradient of the slope, given by , is equivalent to the accel-

eration during that interval.

32 | Chapter 1

Physics

v
a

t

�
�

�

v

t

�
�

TLFeBOOK

You learned earlier how the equation y = mx + c defines all straight lines in

the 2D Cartesian plane, where m is the gradient and c the intersection on

the y-axis. Because we can infer from Figure 1.26 that constant accelera-

tion is always plotted as a straight line, we can relate that equation to the

acceleration of the car. We know that the y-axis represents the velocity, v,

and that the x-axis represents time, t. We also know that the gradient m

relates to the acceleration. This gives the equation:

(1.81)

The constant u represents the velocity of the car at time t = 0, which can be

shown as the intersection of the line on the y-axis. For instance, if the car in

the example started off with a velocity of 3 m/s, then the graph would be

identical but offset upward by 3 as shown in Figure 1.27.

A Math and Physics Primer | 33

Physics

Figure 1.26. The velocity of the car plotted against time

v at u� �

Figure 1.27. The same car but traveling with an initial velocity of 3 m/s at time t = 0

TLFeBOOK

To test the equation let’s determine what the velocity of a car starting with

a velocity of 3 m/s and accelerating at 2 m/s2 will be after 3 seconds.

Plugging in the numbers to equation (1.81) gives:

(1.82)

This is exactly what we can infer from the graph. See Figure 1.28.

Another interesting thing about a velocity-time graph is that the area under

the graph between two times is equivalent to the distance traveled by the

object during that time. Let’s look at a simple example first. Figure 1.29

shows the time versus velocity graph for a vehicle that spends 2 seconds at

4 m/s then stops.

34 | Chapter 1

Physics

Figure 1.28

2 3 3

9 m/s

v

v

� � �

�

Figure 1.29

TLFeBOOK

The area under the graph (the region shaded in gray) is given by height �

width, which is equivalent to velocity � time, which as you can see gives

the result of 8 meters. This is the same result from using the equation

�x = v�t.

Figure 1.30 shows the example from earlier where a vehicle accelerates

from rest with a constant acceleration of 2 m/s2. Let’s say we’d like to cal-

culate the distance traveled between the times t = 1 and t = 3.

We know that the distance traveled between t = 1 and t = 3 is the area

beneath the graph between those times. As is clearly shown in the figure,

this is the sum of the areas of rectangle A and triangle B.

The area of A is given by the time displacement, t, multiplied by the

starting velocity, u, written as:

(1.83)

The area of B, a triangle, is half the area of the rectangle described by the

sides of the triangle. The sides of the triangle are given by the time dis-

placement, t, and the difference between the finish velocity and the start

velocity, v – u. This can be written as:

(1.84)

Therefore, the total area under the graph between times t = 1 and t = 3,

which is equivalent to the distance traveled, is the sum of these two terms,

given as:

(1.85)

A Math and Physics Primer | 35

Physics

Figure 1.30

()Area A t u� � �

1
() ()

2
Area B v u t� � �

1
()

2
x u t v u t� � � � � �

TLFeBOOK

We know that v – u is equivalent to the change in velocity �v, and that,

from equation (1.80)

(1.86)

This value for v – u can be substituted into equation (1.85) to give us an

equation that relates distance to time and acceleration.

(1.87)

Putting the numbers into this equation gives:

(1.88)

We can do another useful thing with this equation: We can factor time out

to give us an equation relating velocity to distance traveled. Here’s how.

From equation (1.81) we know that:

(1.89)

We can substitute this value for �t in equation (1.87) to give:

(1.90)

This nasty-looking equation can be simplified greatly. (If you are new to

algebra I suggest trying to simplify it yourself. If you find yourself getting

stuck, the full simplification is given at the end of the chapter.)

(1.91)

This equation is extremely useful. For example, we can use it to determine

how fast a ball dropped from the top of the Empire State Building will be

traveling when it hits the ground (assuming no air resistance due to wind or

velocity). The acceleration of a falling object is due to the force exerted

upon it by the Earth’s gravitational field and is equivalent to approximately

9.8 m/s2. The starting velocity of the ball is 0 and the height of the Empire

State Building is 381 m. Putting these values into the equation gives:

(1.92)

36 | Chapter 1

Physics

v u v a t� � � � �

21

2
x u t a t� � � � �

21
2 2 2 2

2

4 4

8 m

x

x

x

� � � � � �

� � �

� �

v u
t

a

�
� �

2
1

2

v u v u
x u a

a a

� �� � � �� � �� � � �
	
 	

2 2 2v u a x� � �

2 20 2 9.8 381

7467.6

86.41 m/s

v

v

v

� � � �

�

�

TLFeBOOK

The preceding equations hold true for all objects moving with a constant

acceleration but of course it’s also possible for objects to travel with vary-

ing acceleration. For example, an aircraft when taking off from a runway

has a high acceleration at the beginning of its run (which you can feel as a

force pushing you into the back of your seat), which decreases as the limits

of its engine’s power are reached. This type of acceleration would look

something like that shown in Figure 1.31.

As another example, Figure 1.32 shows the velocity versus time graph for a

car that accelerates to 30 km/h, brakes sharply to avoid a stray dog, and

then accelerates back to 30 km/h.

A Math and Physics Primer | 37

Physics

Figure 1.31. An aircraft accelerating up the runway

Figure 1.32

TLFeBOOK

When you have varying accelerations like these it’s only possible to deter-

mine the acceleration at a specific time. This is achieved by calculating the

gradient of the tangent to the curve at that point.

Force
According to Isaac Newton:

An impressed force is an action exerted upon a body in order to change

its state, either of rest, or of uniform motion in a right line.

Therefore, force is that quality that can alter an object’s speed or line of

motion. Force has nothing to do with motion itself though. For example, a

flying arrow does not need a constant force applied to it to keep it flying

(as was thought by Aristotle). Force is only present where changes in

motion occur, such as when the arrow is stopped by an object or when a

drag racer accelerates along the strip. The unit of force is the Newton,

abbreviated to N, and is defined as:

The force required to make a one-kilogram mass move from rest to a

speed of one meter per second in one second.

There are two different types of force: contact and non-contact forces. Con-

tact forces occur between objects that are touching each other, such as the

frictional force present between the snow and skis of a downhill skier.

Non-contact forces are those that occur between objects not touching each

other, such as the gravitational force of the Earth upon your body or the

magnetic force of the Earth upon a compass needle.

It’s important to note that many forces can act upon a single object

simultaneously. If the sum of those forces equals zero, the object remains

in motion with the same velocity in the same direction. In other words, if

an object is stationary or moving in a straight line with a constant velocity,

the sum of all the forces acting upon it must be zero. If, however, the sum

of the forces is not equal to zero, the object will accelerate in the direction

of the resultant force. This can be confusing, especially in relation to static

objects. For instance, how can there be any forces acting upon an apple sit-

ting on a table? After all, it’s not moving! The answer is that there are two

forces acting upon the apple: the force of gravity trying to pull the apple

toward the Earth and an equal and opposite force from the table pushing it

away from the Earth. This is why the apple remains motionless. Figure

1.33 shows examples of varying amounts of forces acting upon everyday

objects.

38 | Chapter 1

Physics

TLFeBOOK

We know that if the sum of the forces acting upon an object is non-zero, an

acceleration will be imparted in the direction of the force; but how much

acceleration? The answer is that the amount of acceleration, a, is propor-

tional to the object’s mass, m, and to the total force applied, F. This

relationship is given by the equation:

(1.93)

More commonly though, you will see this equation written as:

(1.94)

Using this equation, if we know how fast an object is accelerating and its

mass, we can calculate the total force acting upon it. For instance, if the

boat in Figure 1.33 has a mass of 2000 kg, and it is accelerating at a rate of

1.5 m/s2, the total force acting upon it is:

Also using the equations for force, acceleration, velocity, and position, if

we know how much force is acting on an object, we can determine the

acceleration due to that force and update the object’s position and velocity

accordingly. For example, let’s say you have a spaceship class with attrib-

utes for its mass, current velocity, and current position. Something like this:

A Math and Physics Primer | 39

Physics

Figure 1.33. From left to right and top to bottom: a falling
apple, an apple resting on a table, a ball rolling down an
inclined table, and a yacht sailing on water

F
a

m
�

F ma�

2000 1.5 3000 NtotalF � � �

TLFeBOOK

class SpaceShip
{
private:

vector m_Position;

vector m_Velocity;

float m_fMass;

public:

…
};

Given the time interval since the last update and a force to be applied, we

can create a method that updates the ship’s position and velocity. Here’s

how:

void SpaceShip::Update(float TimeElapsedSinceLastUpdate, float ForceOnShip)
{
float acceleration = ForceOnShip / m_fMass;

First of all, calculate the acceleration due to the force using equation

(1.93).

m_Velocity += acceleration * TimeElapsedSinceLastUpdate;

Next, update the velocity from the acceleration using equation (1.80).

m_vPosition += m_Velocity * TimeElapsedSinceLastUpdate;
}

Finally, the position can be updated with the updated velocity using equa-

tion (1.77).

Summing Up

This chapter covers a lot of ground. If much of this stuff is new to you,

you’ll be feeling slightly confused and perhaps a little intimidated. Don’t

worry though. Soldier on and, as you read through the book, you’ll see how

each principle is applied to a practical problem. When you see the theory

used in real-world contexts, you’ll find it a lot easier to understand.

40 | Chapter 1

Summing Up

TLFeBOOK

Simplification of Equation (1.90)

Let me show you how that pesky-looking equation is simplified. Here it is

again in all its glory.

First, let’s work on the rightmost term. From the rule shown by equation

(1.29) we can change the equation to read:

We can now tidy up the a’s a little:

Let’s now dispose of the parentheses in the (v – u)2 term using the rule

given by equation (1.28).

Let’s remove the other parentheses too.

Now to get rid of the fractional parts by multiplying every term by 2a:

Almost there now! We just need to group like terms together.

And rearrange to give the final equation.

A Math and Physics Primer | 41

Summing Up

2
1

2

v u v u
x u a

a a

� �� � � �� � �� � � �
	
 	

2

2

1 ()

2

v u v u
x u a

a a

� �� �� � �� �
	

2
()

2

v u v u
x u

a a

� �� �� � �� �
	

2 2 2

2

v u v u vu
x u

a a

� � �� �� � �� �
	

2 2 2 2

2

uv u v u vu
x

a a

� � �
� � �

2 2 2

2 2 2

2
2 2 2

2

2 2 2 2

uv u v u vu
a x a a

a a

a x uv u v u vu

� � � �� � �
� � �� � � �

	
 	

� � � � � �

2 22a x v u� � �

2 2 2v u a x� � �

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 2

State-Driven Agent Design

F inite state machines, or FSMs as they are usually referred to, have for

many years been the AI coder’s instrument of choice to imbue a game

agent with the illusion of intelligence. You will find FSMs of one kind or

another in just about every game to hit the shelves since the early days of

video games, and despite the increasing popularity of more esoteric agent

architectures, they are going to be around for a long time to come. Here are

just some of the reasons why:

They are quick and simple to code. There are many ways of program-

ming a finite state machine and almost all of them are reasonably simple to

implement. You’ll see several alternatives described in this chapter together

with the pros and cons of using them.

They are easy to debug. Because a game agent’s behavior is broken

down into easily manageable chunks, if an agent starts acting strangely, it

can be debugged by adding tracer code to each state. In this way, the AI

programmer can easily follow the sequence of events that precedes the

buggy behavior and take action accordingly.

They have little computational overhead. Finite state machines use

hardly any precious processor time because they essentially follow hard-

coded rules. There is no real “thinking” involved beyond the if-this-then-

that sort of thought process.

They are intuitive. It’s human nature to think about things as being in

one state or another and we often refer to ourselves as being in such and

such a state. How many times have you “got yourself into a state” or found

yourself in “the right state of mind”? Humans don’t really work like finite

state machines of course, but sometimes we find it useful to think of our

behavior in this way. Similarly, it is fairly easy to break down a game

agent’s behavior into a number of states and to create the rules required for

manipulating them. For the same reason, finite state machines also make it

easy for you to discuss the design of your AI with non-programmers (with

game producers and level designers for example), providing improved

communication and exchange of ideas.

They are flexible. A game agent’s finite state machine can easily be

adjusted and tweaked by the programmer to provide the behavior required

by the game designer. It’s also a simple matter to expand the scope of an

agent’s behavior by adding new states and rules. In addition, as your AI

43
TLFeBOOK

skills grow you’ll find that finite state machines provide a solid backbone

with which you can combine other techniques such as fuzzy logic or neural

networks.

What Exactly Is a Finite State Machine?

Historically, a finite state machine is a rigidly formalized device used by

mathematicians to solve problems. The most famous finite state machine is

probably Alan Turing’s hypothetical device: the Turing machine, which he

wrote about in his 1936 paper, “On Computable Numbers.” This was a

machine presaging modern-day programmable computers that could per-

form any logical operation by reading, writing, and erasing symbols on an

infinitely long strip of tape. Fortunately, as AI programmers, we can forgo

the formal mathematical definition of a finite state machine; a descriptive

one will suffice:

A finite state machine is a device, or a model of a device, which has a

finite number of states it can be in at any given time and can operate on

input to either make transitions from one state to another or to cause an

output or action to take place. A finite state machine can only be in one

state at any moment in time.

The idea behind a finite state machine, therefore, is to decompose an

object’s behavior into easily manageable “chunks” or states. The light

switch on your wall, for example, is a very simple finite state machine. It

has two states: on and off. Transitions between states are made by the input

of your finger. By flicking the switch up it makes the transition from off to

on, and by flicking the switch down it makes the transition from on to off.

There is no output or action associated with the off state (unless you con-

sider the bulb being off as an action), but when it is in the on state

electricity is allowed to flow through the switch and light up your room via

the filament in a lightbulb. See Figure 2.1.

44 | Chapter 2

What Exactly Is a Finite State Machine?

Figure 2.1. A light switch is a finite state machine. (Note that the switches are reversed
in Europe and many other parts of the world.)

TLFeBOOK

Of course, the behavior of a game agent is usually much more complex

than a lightbulb (thank goodness!). Here are some examples of how finite

state machines have been used in games.

� The ghosts’ behavior in Pac-Man is implemented as a finite state

machine. There is one Evade state, which is the same for all ghosts,

and then each ghost has its own Chase state, the actions of which are

implemented differently for each ghost. The input of the player eat-

ing one of the power pills is the condition for the transition from

Chase to Evade. The input of a timer running down is the condition

for the transition from Evade to Chase.

� Quake-style bots are implemented as finite state machines. They

have states such as FindArmor, FindHealth, SeekCover, and Run-

Away. Even the weapons in Quake implement their own mini finite

state machines. For example, a rocket may implement states such as

Move, TouchObject, and Die.

� Players in sports simulations such as the soccer game FIFA2002 are

implemented as state machines. They have states such as Strike,

Dribble, ChaseBall, and MarkPlayer. In addition, the teams them-

selves are often implemented as FSMs and can have states such as

KickOff, Defend, or WalkOutOnField.

� The NPCs (non-player characters) in RTSs (real-time strategy

games) such as Warcraft make use of finite state machines. They

have states such as MoveToPosition, Patrol, and FollowPath.

Implementing a Finite State Machine

There are a number of ways of implementing finite state machines. A naive

approach is to use a series of if-then statements or the slightly tidier mecha-

nism of a switch statement. Using a switch with an enumerated type to

represent the states looks something like this:

enum StateType{RunAway, Patrol, Attack};

void Agent::UpdateState(StateType CurrentState)
{
switch(CurrentState)
{
case state_RunAway:

EvadeEnemy();

if (Safe())
{
ChangeState(state_Patrol);

}

break;

State-Driven Agent Design | 45

Implementing a Finite State Machine

TLFeBOOK

case state_Patrol:

FollowPatrolPath();

if (Threatened())
{
if (StrongerThanEnemy())
{
ChangeState(state_Attack);

}
else
{
ChangeState(state_RunAway);

}
}

break;

case state_Attack:

if (WeakerThanEnemy())
{

ChangeState(state_RunAway);
}

else
{
BashEnemyOverHead();

}

break;

}//end switch
}

Although at first glance this approach seems reasonable, when applied

practically to anything more complicated than the simplest of game

objects, the switch/if-then solution becomes a monster lurking in the shad-

ows waiting to pounce. As more states and conditions are added, this sort

of structure ends up looking like spaghetti very quickly, making the pro-

gram flow difficult to understand and creating a debugging nightmare. In

addition, it’s inflexible and difficult to extend beyond the scope of its origi-

nal design, should that be desirable… and as we all know, it most often is.

Unless you are designing a state machine to implement very simple behav-

ior (or you are a genius), you will almost certainly find yourself first

tweaking the agent to cope with unplanned-for circumstances before hon-

ing the behavior to get the results you thought you were going to get when

you first planned out the state machine!

Additionally, as an AI coder, you will often require that a state perform a

specific action (or actions) when it’s initially entered or when the state is

exited. For example, when an agent enters the state RunAway you may

46 | Chapter 2

Implementing a Finite State Machine

TLFeBOOK

want it to wave its arms in the air and scream “Arghhhhhhh!” When it

finally escapes and changes state to Patrol, you may want it to emit a sigh,

wipe its forehead, and say “Phew!” These are actions that only occur when

the RunAway state is entered or exited and not during the usual update

step. Consequently, this additional functionality must ideally be built into

your state machine architecture. To do this within the framework of a

switch or if-then architecture would be accompanied by lots of teeth grind-

ing and waves of nausea, and produce very ugly code indeed.

State Transition Tables
A better mechanism for organizing states and affecting state transitions is a

state transition table. This is just what it says it is: a table of conditions and

the states those conditions lead to. Table 2.1 shows an example of the map-

ping for the states and conditions shown in the previous example.

Table 2.1. A simple state transition table

Current State Condition State Transition

Runaway Safe Patrol

Attack WeakerThanEnemy RunAway

Patrol Threatened AND StrongerThanEnemy Attack

Patrol Threatened AND WeakerThanEnemy RunAway

This table can be queried by an agent at regular intervals, enabling it to

make any necessary state transitions based on the stimulus it receives from

the game environment. Each state can be modeled as a separate object or

function existing external to the agent, providing a clean and flexible archi-

tecture. One that is much less prone to spaghettification than the

if-then/switch approach discussed in the previous section.

Someone once told me a vivid and silly visualization can help people to

understand an abstract concept. Let’s see if it works…

Imagine a robot kitten. It’s shiny yet cute, and has wire for whiskers and

a slot in its stomach where cartridges — analogous to its states — can be

plugged in. Each of these cartridges is programmed with logic, enabling

the kitten to perform a specific set of actions. Each set of actions encodes a

different behavior; for example, “play with string,” “eat fish,” or “poo on

carpet.” Without a cartridge stuffed inside its belly the kitten is an inani-

mate metallic sculpture, only able to sit there and look cute… in a Metal

Mickey kind of way.

The kitten is very dexterous and has the ability to autonomously

exchange its cartridge for another if instructed to do so. By providing the

rules that dictate when a cartridge should be switched, it’s possible to string

together sequences of cartridge insertions permitting the creation of all

State-Driven Agent Design | 47

Implementing a Finite State Machine

TLFeBOOK

sorts of interesting and complicated behavior. These rules are programmed

onto a tiny chip situated inside the kitten’s head, which is analogous to the

state transition table we discussed earlier. The chip communicates with the

kitten’s internal functions to retrieve the information necessary to process

the rules (such as how hungry Kitty is or how playful it’s feeling).

As a result, the state transition chip can be programmed with rules like:

IF Kitty_Hungry AND NOT Kitty_Playful

SWITCH_CARTRIDGE eat_fish

All the rules in the table are tested each time step and instructions are sent

to Kitty to switch cartridges accordingly.

This type of architecture is very flexible, making it easy to expand the

kitten’s repertoire by adding new cartridges. Each time a new cartridge is

added, the owner is only required to take a screwdriver to the kitten’s head

in order to remove and reprogram the state transition rule chip. It is not

necessary to interfere with any other internal circuitry.

Embedded Rules
An alternative approach is to embed the rules for the state transitions

within the states themselves. Applying this concept to Robo-Kitty, the state

transition chip can be dispensed with and the rules moved directly into the

cartridges. For instance, the cartridge for “play with string” can monitor

the kitty’s level of hunger and instruct it to switch cartridges for the “eat

fish” cartridge when it senses hunger rising. In turn the “eat fish” cartridge

can monitor the kitten’s bowel and instruct it to switch to the “poo on car-

pet” cartridge when it senses poo levels are running dangerously high.

Although each cartridge may be aware of the existence of any of the

other cartridges, each is a self-contained unit and not reliant on any exter-

nal logic to decide whether or not it should allow itself to be swapped for

an alternative. As a consequence, it’s a straightforward matter to add states

or even to swap the whole set of cartridges for a completely new set

(maybe ones that make little Kitty behave like a raptor). There’s no need to

take a screwdriver to the kitten’s head, only to a few of the cartridges

themselves.

Let’s take a look at how this approach is implemented within the context

of a video game. Just like Kitty’s cartridges, states are encapsulated as

objects and contain the logic required to facilitate state transitions. In addi-

tion, all state objects share a common interface: a pure virtual class named

State. Here’s a version that provides a simple interface:

class State
{
public:

48 | Chapter 2

Implementing a Finite State Machine

TLFeBOOK

virtual void Execute (Troll* troll) = 0;
};

Now imagine a Troll class that has member variables for attributes such as

health, anger, stamina, etc., and an interface allowing a client to query and

adjust those values. A Troll can be given the functionality of a finite state

machine by adding a pointer to an instance of a derived object of the State

class, and a method permitting a client to change the instance the pointer is

pointing to.

class Troll
{
/* ATTRIBUTES OMITTED */

State* m_pCurrentState;

public:

/* INTERFACE TO ATTRIBUTES OMITTED */

void Update()
{
m_pCurrentState->Execute(this);

}

void ChangeState(const State* pNewState)
{
delete m_pCurrentState;
m_pCurrentState = pNewState;

}
};

When the Update method of a Troll is called, it in turn calls the Execute

method of the current state type with the this pointer. The current state

may then use the Troll interface to query its owner, to adjust its owner’s

attributes, or to effect a state transition. In other words, how a Troll

behaves when updated can be made completely dependent on the logic in

its current state. This is best illustrated with an example, so let’s create a

couple of states to enable a troll to run away from enemies when it feels

threatened and to sleep when it feels safe.

//----------------------------------State_RunAway
class State_RunAway : public State
{
public:

void Execute(Troll* troll)
{
if (troll->isSafe())
{
troll->ChangeState(new State_Sleep());

}

State-Driven Agent Design | 49

Implementing a Finite State Machine

TLFeBOOK

else
{
troll->MoveAwayFromEnemy();

}
}

};

//----------------------------------State_Sleep
class State_Sleep : public State
{
public:

void Execute(Troll* troll)
{
if (troll->isThreatened())
{
troll->ChangeState(new State_RunAway())

}

else
{
troll->Snore();

}
}

};

As you can see, when updated, a troll will behave differently depending on

which of the states m_pCurrentState points to. Both states are encapsulated

as objects and both provide the rules effecting state transition. All very neat

and tidy.

This architecture is known as the state design pattern and provides an

elegant way of implementing state-driven behavior. Although this is a

departure from the mathematical formalization of an FSM, it is intuitive,

simple to code, and easily extensible. It also makes it extremely easy to add

enter and exit actions to each state; all you have to do is create Enter and

Exit methods and adjust the agent’s ChangeState method accordingly.

You’ll see the code that does exactly this very shortly.

The West World Project

As a practical example of how to create agents that utilize finite state

machines, we are going to look at a game environment where agents

inhabit an Old West-style gold mining town named West World. Initially

there will only be one inhabitant — a gold miner named Miner Bob — but

later in the chapter his wife will also make an appearance. You will have to

imagine the tumbleweeds, creakin’ mine props, and desert dust blowin’ in

your eyes because West World is implemented as a simple text-based con-

sole application. Any state changes or output from state actions will be sent

as text to the console window. I’m using this plaintext-only approach as it

50 | Chapter 2

The West World Project

TLFeBOOK

demonstrates clearly the mechanism of a finite state machine without add-

ing the code clutter of a more complex environment.

There are four locations in West World: a gold mine, a bank where Bob

can deposit any nuggets he finds, a saloon in which he can quench his

thirst, and home-sweet-home where he can sleep the fatigue of the day

away. Exactly where he goes, and what he does when he gets there, is

determined by Bob’s current state. He will change states depending on

variables like thirst, fatigue, and how much gold he has found hacking

away down in the gold mine.

Before we delve into the source code, check out the following sample

output from the WestWorld1 executable.

Miner Bob: Pickin' up a nugget
Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree
Miner Bob: Depositin’ gold. Total savings now: 3
Miner Bob: Leavin' the bank
Miner Bob: Walkin' to the gold mine
Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Boy, ah sure is thusty! Walkin' to the saloon
Miner Bob: That's mighty fine sippin liquor
Miner Bob: Leavin' the saloon, feelin' good
Miner Bob: Walkin' to the gold mine
Miner Bob: Pickin' up a nugget
Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree
Miner Bob: Depositin' gold. Total savings now: 4
Miner Bob: Leavin' the bank
Miner Bob: Walkin' to the gold mine
Miner Bob: Pickin' up a nugget
Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Boy, ah sure is thusty! Walkin' to the saloon
Miner Bob: That's mighty fine sippin' liquor
Miner Bob: Leavin' the saloon, feelin' good
Miner Bob: Walkin' to the gold mine
Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree
Miner Bob: Depositin' gold. Total savings now: 5
Miner Bob: Woohoo! Rich enough for now. Back home to mah li'l lady
Miner Bob: Leavin' the bank
Miner Bob: Walkin' home
Miner Bob: ZZZZ...
Miner Bob: ZZZZ...
Miner Bob: ZZZZ...
Miner Bob: ZZZZ...
Miner Bob: What a God-darn fantastic nap! Time to find more gold

State-Driven Agent Design | 51

The West World Project

TLFeBOOK

In the output from the program, each time you see Miner Bob change loca-

tion he is changing state. All the other events are the actions that take place

within the states. We’ll examine each of Miner Bob’s potential states in just

a moment, but for now, let me explain a little about the code structure of

the demo.

The BaseGameEntity Class
All inhabitants of West World are derived from the base class

BaseGameEntity. This is a simple class with a private member for storing an

ID number. It also specifies a pure virtual member function, Update, that

must be implemented by all subclasses. Update is a function that gets called

every update step and will be used by subclasses to update their state

machine along with any other data that must be updated each time step.

The BaseGameEntity class declaration looks like this:

class BaseGameEntity
{
private:

//every entity has a unique identifying number
int m_ID;

//this is the next valid ID. Each time a BaseGameEntity is instantiated
//this value is updated
static int m_iNextValidID;

//this is called within the constructor to make sure the ID is set
//correctly. It verifies that the value passed to the method is greater
//or equal to the next valid ID, before setting the ID and incrementing
//the next valid ID
void SetID(int val);

public:

BaseGameEntity(int id)
{
SetID(id);

}

virtual ~BaseGameEntity(){}

//all entities must implement an update function
virtual void Update()=0;

int ID()const{return m_ID;}
};

For reasons that will become obvious later in the chapter, it’s very impor-

tant for each entity in your game to have a unique identifier. Therefore, on

instantiation, the ID passed to the constructor is tested in the SetID method

to make sure it’s unique. If it is not, the program will exit with an assertion

52 | Chapter 2

The West World Project

TLFeBOOK

failure. In the example given in this chapter, the entities will use an enu-

merated value as their unique identifier. These can be found in the file

EntityNames.h as ent_Miner_Bob and ent_Elsa.

The Miner Class
The Miner class is derived from the BaseGameEntity class and contains data

members representing the various attributes a Miner possesses, such as its

health, its level of fatigue, its position, and so forth. Like the troll example

shown earlier in the chapter, a Miner owns a pointer to an instance of a

State class in addition to a method for changing what State that pointer

points to.

class Miner : public BaseGameEntity
{
private:

//a pointer to an instance of a State
State* m_pCurrentState;

// the place where the miner is currently situated
location_type m_Location;

//how many nuggets the miner has in his pockets
int m_iGoldCarried;

//how much money the miner has deposited in the bank
int m_iMoneyInBank;

//the higher the value, the thirstier the miner
int m_iThirst;

//the higher the value, the more tired the miner
int m_iFatigue;

public:

Miner(int ID);

//this must be implemented
void Update();

//this method changes the current state to the new state
void ChangeState(State* pNewState);

/* bulk of interface omitted */
};

The Miner::Update method is straightforward; it simply increments the

m_iThirst value before calling the Execute method of the current state. It

looks like this:

State-Driven Agent Design | 53

The West World Project

TLFeBOOK

void Miner::Update()
{
m_iThirst += 1;

if (m_pCurrentState)
{
m_pCurrentState->Execute(this);

}
}

Now that you’ve seen how the Miner class operates, let’s take a look at

each of the states a miner can find itself in.

The Miner States
The gold miner will be able to enter one of four states. Here are the names

of those states followed by a description of the actions and state transitions

that occur within those states:

� EnterMineAndDigForNugget: If the miner is not located at the

gold mine, he changes location. If already at the gold mine, he digs

for nuggets of gold. When his pockets are full, Bob changes state to

VisitBankAndDepositGold, and if while digging he finds himself

thirsty, he will stop and change state to QuenchThirst.

� VisitBankAndDepositGold: In this state the miner will walk to the

bank and deposit any nuggets he is carrying. If he then considers

himself wealthy enough, he will change state to GoHomeAnd-

SleepTilRested. Otherwise he will change state to EnterMine-

AndDigForNugget.

� GoHomeAndSleepTilRested: In this state the miner will return to

his shack and sleep until his fatigue level drops below an acceptable

level. He will then change state to EnterMineAndDigForNugget.

� QuenchThirst: If at any time the miner feels thirsty (diggin’ for

gold is thusty work, don’t ya know), he changes to this state and vis-

its the saloon in order to buy a whiskey. When his thirst is quenched,

he changes state to EnterMineAndDigForNugget.

Sometimes it’s hard to follow the flow of the state logic from reading a text

description like this, so it’s often helpful to pick up pen and paper and draw

a state transition diagram for your game agents. Figure 2.2 shows the state

transition diagram for the gold miner. The bubbles represent the individual

states and the lines between them the available transitions.

A diagram like this is better on the eyes and can make it much easier to

spot any errors in the logic flow.

54 | Chapter 2

The West World Project

TLFeBOOK

The State Design Pattern Revisited
You saw a brief description of this design pattern a few pages back, but it

won’t hurt to recap. Each of a game agent’s states is implemented as a

unique class and each agent holds a pointer to an instance of its current

state. An agent also implements a ChangeState member function that can be

called to facilitate the switching of states whenever a state transition is

required. The logic for determining any state transitions is contained within

each State class. All state classes are derived from an abstract base class,

thereby defining a common interface. So far so good. You know this much

already.

Earlier in the chapter it was mentioned that it’s usually favorable for

each state to have associated enter and exit actions. This permits the pro-

grammer to write logic that is only executed once at state entry or exit and

increases the flexibility of an FSM a great deal. With these features in

mind, let’s take a look at an enhanced State base class.

class State
{
public:

virtual ~State(){}

//this will execute when the state is entered
virtual void Enter(Miner*)=0;

//this is called by the miner’s update function each update step
virtual void Execute(Miner*)=0;

//this will execute when the state is exited
virtual void Exit(Miner*)=0;

}

State-Driven Agent Design | 55

The West World Project

Figure 2.2. Miner Bob’s state transition diagram

TLFeBOOK

These additional methods are only called when a Miner changes state.

When a state transition occurs, the Miner::ChangeState method first calls

the Exit method of the current state, then it assigns the new state to the cur-

rent state, and finishes by calling the Enter method of the new state (which

is now the current state). I think code is clearer than words in this instance,

so here’s the listing for the ChangeState method:

void Miner::ChangeState(State* pNewState)
{
//make sure both states are valid before attempting to
//call their methods
assert (m_pCurrentState && pNewState);

//call the exit method of the existing state
m_pCurrentState->Exit(this);

//change state to the new state
m_pCurrentState = pNewState;

//call the entry method of the new state
m_pCurrentState->Enter(this);

}

Notice how a Miner passes the this pointer to each state, enabling the state

to use the Miner interface to access any relevant data.

� TIP The state design pattern is also useful for structuring the main components
of your game flow. For example, you could have a menu state, a save state, a
paused state, an options state, a run state, etc.

Each of the four possible states a Miner may access are derived from the

State class, giving us these concrete classes: EnterMineAndDigForNugget,

VisitBankAndDepositGold, GoHomeAndSleepTilRested, and QuenchThirst.

The Miner::m_pCurrentState pointer is able to point to any of these states.

When the Update method of Miner is called, it in turn calls the Execute

method of the currently active state with the this pointer as a parameter.

These class relationships may be easier to understand if you examine the

simplified UML class diagram shown in Figure 2.3.

Each concrete state is implemented as a singleton object. This is to

ensure that there is only one instance of each state, which agents share

(those of you unsure of what a singleton is, please read the sidebar on page

58). Using singletons makes the design more efficient because they remove

the need to allocate and deallocate memory every time a state change is

made. This is particularly important if you have many agents sharing a

complex FSM and/or you are developing for a machine with limited

resources.

56 | Chapter 2

The West World Project

TLFeBOOK

� NOTE I prefer to use singletons for the states for the reasons I’ve already
given, but there is one drawback. Because they are shared between clients, sin-
gleton states are unable to make use of their own local, agent-specific data. For
instance, if an agent uses a state that when entered should move it to an arbi-
trary position, the position cannot be stored in the state itself (because the
position may be different for each agent that is using the state). Instead, it
would have to be stored somewhere externally and be accessed by the state via
the agent’s interface. This is not really a problem if your states are accessing
only one or two pieces of data, but if you find that the states you have designed
are repeatedly accessing lots of external data, it’s probably worth considering
disposing of the singleton design and writing a few lines of code to manage the
allocation and deallocation of state memory.

State-Driven Agent Design | 57

The West World Project

Figure 2.3. UML class diagram for Miner Bob’s state machine implementation

TLFeBOOK

The Singleton Design Pattern

Often it’s useful to guarantee that an object is only instantiated once
and/or that it is globally accessible. For example, in game designs that
have environments consisting of many different entity types — players,
monsters, projectiles, plant pots, etc. — there is usually a “manager”
object that handles the creation, deletion, and management of such
objects. It is only necessary to have one instance of this object — a sin-
gleton — and it is convenient to make it globally accessible because
many other objects will require access to it.

The singleton pattern ensures both these qualities. There are many
ways of implementing a singleton (do a search at google.com and you’ll
see what I mean). I prefer to use a static method, Instance, that returns
a pointer to a static instance of the class. Here’s an example:

/* ------------------ MyClass.h -------------------- */

#ifndef MY_SINGLETON

#define MY_SINGLETON

class MyClass

{

private:

// member data

int m_iNum;

//constructor is private

MyClass(){}

//copy ctor and assignment should be private

MyClass(const MyClass &);

MyClass& operator=(const MyClass &);

public:

//strictly speaking, the destructor of a singleton should be private but some

//compilers have problems with this so I’ve left them as public in all the

//examples in this book

~MyClass();

//methods

int GetVal()const{return m_iNum;}

58 | Chapter 2

The West World Project

TLFeBOOK

static MyClass* Instance();

};

#endif

/* -------------------- MyClass.cpp ------------------- */

//this must reside in the cpp file; otherwise, an instance will be created

//for every file in which the header is included

MyClass* MyClass::Instance()

{

static MyClass instance;

return &instance;

}

Member variables and methods can now be accessed via the Instance
method like so:

int num = MyClass::Instance()->GetVal();

Because I’m lazy and don’t like writing out all that syntax each time I
want to access a singleton, I usually #define something like this:

#define MyCls MyClass::Instance()

Using this new syntax I can simply write:

int num = MyCls->GetVal();

Much easier, don’t you think?

� NOTE If singletons are a new concept to you, and you decide to
search the Internet for further information, you will discover they fuel
many a good argument about the design of object-oriented software.
Oh yes, programmers love to argue about this stuff, and nothing
stokes a dispute better than the discussion of global variables or
objects that masquerade as globals, such as singletons. My own stance
on the matter is to use them wherever I think they provide a conve-
nience and, in my opinion, do not compromise the design. I
recommend you read the arguments for and against though, and
come to your own conclusions. A good starting place is here:

http://c2.com/cgi/wiki?SingletonPattern

State-Driven Agent Design | 59

The West World Project

TLFeBOOK

Okay, let’s see how everything fits together by examining the complete

code for one of the miner states.

The EnterMineAndDigForNugget State

In this state the miner should change location to be at the gold mine.

Once at the gold mine he should dig for gold until his pockets are full,

when he should change state to VisitBankAndDepositNugget. If the

miner gets thirsty while digging he should change state to

QuenchThirst.

Because concrete states simply implement the interface defined in the vir-

tual base class State, their declarations are very straightforward:

class EnterMineAndDigForNugget : public State
{
private:

EnterMineAndDigForNugget(){}

/* copy ctor and assignment op omitted */

public:

//this is a singleton
static EnterMineAndDigForNugget* Instance();

virtual void Enter(Miner* pMiner);

virtual void Execute(Miner* pMiner);

virtual void Exit(Miner* pMiner);
};

As you can see, it’s just a formality. Let’s take a look at each of the meth-

ods in turn.

EnterMineAndDigForNugget::Enter

The code for the Enter method of EnterMineAndDigForNugget is as follows:

void EnterMineAndDigForNugget::Enter(Miner* pMiner)
{
//if the miner is not already located at the gold mine, he must
//change location to the gold mine
if (pMiner->Location() != goldmine)
{
cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "

<< "Walkin' to the gold mine";

pMiner->ChangeLocation(goldmine);
}

}

This method is called when a miner first enters the EnterMineAndDig-

ForNugget state. It ensures that the gold miner is located at the gold mine.

60 | Chapter 2

The West World Project

TLFeBOOK

An agent stores its location as an enumerated type and the ChangeLocation

method changes this value to switch locations.

EnterMineAndDigForNugget::Execute

The Execute method is a little more complicated and contains logic that can

change a miner’s state. (Don’t forget that Execute is the method called each

update step from Miner::Update.)

void EnterMineAndDigForNugget::Execute(Miner* pMiner)
{
//the miner digs for gold until he is carrying in excess of MaxNuggets.
//If he gets thirsty during his digging he stops work and
//changes state to go to the saloon for a whiskey.
pMiner->AddToGoldCarried(1);

//diggin' is hard work
pMiner->IncreaseFatigue();

cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "
<< "Pickin' up a nugget";

//if enough gold mined, go and put it in the bank
if (pMiner->PocketsFull())
{
pMiner->ChangeState(VisitBankAndDepositGold::Instance());

}

//if thirsty go and get a whiskey
if (pMiner->Thirsty())
{
pMiner->ChangeState(QuenchThirst::Instance());

}
}

Note here how the Miner::ChangeState method is called using

QuenchThirst’s or VisitBankAndDepositGold’s Instance member, which

provides a pointer to the unique instance of that class.

EnterMineAndDigForNugget::Exit

The Exit method of EnterMineAndDigForNugget outputs a message telling us

that the gold miner is leaving the mine.

void EnterMineAndDigForNugget::Exit(Miner* pMiner)
{
cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "

<< "Ah'm leavin' the gold mine with mah pockets full o' sweet gold";
}

I hope an examination of the preceding three methods helps clear up any

confusion you may have been experiencing and that you can now see how

each state is able to modify the behavior of an agent or effect a transition

into another state. You may find it useful at this stage to load up the

WestWorld1 project into your IDE and scan the code. In particular, check

State-Driven Agent Design | 61

The West World Project

TLFeBOOK

out all the states in MinerOwnedStates.cpp and examine the Miner class to

familiarize yourself with its member variables. Above all else, make sure

you understand how the state design pattern works before you read any fur-

ther. If you are a little unsure, please take the time to go over the previous

few pages until you feel comfortable with the concept.

You have seen how the use of the state design pattern provides a very

flexible mechanism for state-driven agents. It’s extremely easy to add addi-

tional states as and when required. Indeed, should you so wish, you can

switch an agent’s entire state architecture for an alternative one. This can

be useful if you have a very complicated design that would be better orga-

nized as a collection of several separate smaller state machines. For

example, the state machine for a first-person shooter (FPS) like Unreal 2

tends to be large and complex. When designing the AI for a game of this

sort you may find it preferable to think in terms of several smaller state

machines representing functionality like “defend the flag” or “explore

map,” which can be switched in and out when appropriate. The state design

pattern makes this easy to do.

Making the State Base Class Reusable

As the design stands, it’s necessary to create a separate State base class for

each character type to derive its states from. Instead, let’s make it reusable

by turning it into a class template.

template <class entity_type>
class State
{
public:

virtual void Enter(entity_type*)=0;

virtual void Execute(entity_type*)=0;

virtual void Exit(entity_type*)=0;

virtual ~State(){}
};

The declaration for a concrete state — using the EnterMineAndDigFor-

Nugget miner state as an example — now looks like this:

class EnterMineAndDigForNugget : public State<Miner>
{

public:

/* OMITTED */
};

This, as you will see shortly, makes life easier in the long run.

62 | Chapter 2

Making the State Base Class Reusable

TLFeBOOK

Global States and State Blips

More often than not, when designing finite state machines you will end up

with code that is duplicated in every state. For example, in the popular

game The Sims by Maxis, a Sim may feel the urge of nature come upon it

and have to visit the bathroom to relieve itself. This urge may occur in any

state the Sim may be in and at any time. Given the current design, to

bestow the gold miner with this type of behavior, duplicate conditional

logic would have to be added to every one of his states, or alternatively,

placed into the Miner::Update function. While the latter solution is accept-

able, it’s better to create a global state that is called every time the FSM is

updated. That way, all the logic for the FSM is contained within the states

and not in the agent class that owns the FSM.

To implement a global state, an additional member variable is required:

//notice how now that State is a class template we have to declare the entity type
State<Miner>* m_pGlobalState;

In addition to global behavior, occasionally it will be convenient for an

agent to enter a state with the condition that when the state is exited, the

agent returns to its previous state. I call this behavior a state blip. For

example, just as in The Sims, you may insist that your agent can visit the

bathroom at any time, yet make sure it always returns to its prior state. To

give an FSM this type of functionality it must keep a record of the previous

state so the state blip can revert to it. This is easy to do as all that is

required is another member variable and some additional logic in the

Miner::ChangeState method.

By now though, to implement these additions, the Miner class has

acquired two extra member variables and one additional method. It has

ended up looking something like this (extraneous detail omitted):

class Miner : public BaseGameEntity
{
private:

State<Miner>* m_pCurrentState;
State<Miner>* m_pPreviousState;
State<Miner>* m_pGlobalState;
...

public:

void ChangeState(State<Miner>* pNewState);
void RevertToPreviousState();
...

};

Hmm, looks like it’s time to tidy up a little.

State-Driven Agent Design | 63

Global States and State Blips

TLFeBOOK

Creating a State Machine Class

The design can be made a lot cleaner by encapsulating all the state related

data and methods into a state machine class. This way an agent can own an

instance of a state machine and delegate the management of current states,

global states, and previous states to it.

With this in mind take a look at the following StateMachine class

template.

template <class entity_type>
class StateMachine
{
private:

//a pointer to the agent that owns this instance
entity_type* m_pOwner;

State<entity_type>* m_pCurrentState;

//a record of the last state the agent was in
State<entity_type>* m_pPreviousState;

//this state logic is called every time the FSM is updated
State<entity_type>* m_pGlobalState;

public:

StateMachine(entity_type* owner):m_pOwner(owner),
m_pCurrentState(NULL),
m_pPreviousState(NULL),
m_pGlobalState(NULL)

{}

//use these methods to initialize the FSM
void SetCurrentState(State<entity_type>* s){m_pCurrentState = s;}
void SetGlobalState(State<entity_type>* s) {m_pGlobalState = s;}
void SetPreviousState(State<entity_type>* s){m_pPreviousState = s;}

//call this to update the FSM
void Update()const
{
//if a global state exists, call its execute method
if (m_pGlobalState) m_pGlobalState->Execute(m_pOwner);

//same for the current state
if (m_pCurrentState) m_pCurrentState->Execute(m_pOwner);

}

//change to a new state
void ChangeState(State<entity_type>* pNewState)
{
assert(pNewState &&

"<StateMachine::ChangeState>: trying to change to a null state");

64 | Chapter 2

Creating a State Machine Class

TLFeBOOK

//keep a record of the previous state
m_pPreviousState = m_pCurrentState;

//call the exit method of the existing state
m_pCurrentState->Exit(m_pOwner);

//change state to the new state
m_pCurrentState = pNewState;

//call the entry method of the new state
m_pCurrentState->Enter(m_pOwner);

}

//change state back to the previous state
void RevertToPreviousState()
{
ChangeState(m_pPreviousState);

}

//accessors
State<entity_type>* CurrentState() const{return m_pCurrentState;}
State<entity_type>* GlobalState() const{return m_pGlobalState;}
State<entity_type>* PreviousState() const{return m_pPreviousState;}

//returns true if the current state’s type is equal to the type of the
//class passed as a parameter.
bool isInState(const State<entity_type>& st)const;

};

Now all an agent has to do is to own an instance of a StateMachine and

implement a method to update the state machine to get full FSM

functionality.

State-Driven Agent Design | 65

Creating a State Machine Class

TLFeBOOK

The improved Miner class now looks like this:

class Miner : public BaseGameEntity
{
private:

//an instance of the state machine class
StateMachine<Miner>* m_pStateMachine;

/* EXTRANEOUS DETAIL OMITTED */

public:

Miner(int id):m_Location(shack),
m_iGoldCarried(0),
m_iMoneyInBank(0),
m_iThirst(0),
m_iFatigue(0),
BaseGameEntity(id)

{
//set up state machine
m_pStateMachine = new StateMachine<Miner>(this);

m_pStateMachine->SetCurrentState(GoHomeAndSleepTilRested::Instance());
m_pStateMachine->SetGlobalState(MinerGlobalState::Instance());

}

~Miner(){delete m_pStateMachine;}

void Update()
{
++m_iThirst;
m_pStateMachine->Update();

}

StateMachine<Miner>* GetFSM()const{return m_pStateMachine;}

/* EXTRANEOUS DETAIL OMITTED */
};

Notice how the current and global states must be set explicitly when a

StateMachine is instantiated.

The class hierarchy is now like that shown in Figure 2.4.

66 | Chapter 2

Creating a State Machine Class

TLFeBOOK

Introducing Elsa

To demonstrate these improvements, I’ve created the second project for

this chapter: WestWorldWithWoman. In this project, West World has

gained another inhabitant, Elsa, the gold miner’s wife. Elsa doesn’t do

much just yet; she’s mainly preoccupied with cleaning the shack and emp-

tying her bladder (she drinks way too much cawfee). The state transition

diagram for Elsa is shown in Figure 2.5.

State-Driven Agent Design | 67

Introducing Elsa

Figure 2.4. The updated design

TLFeBOOK

When you boot up the project into your IDE, notice how the VisitBathroom

state is implemented as a blip state (i.e., it always reverts back to the previ-

ous state). Also note that a global state has been defined, WifesGlobalState,

which contains the logic required for Elsa’s bathroom visits. This logic is

contained in a global state because Elsa may feel the call of nature during

any state and at any time.

Here is a sample of the output from WestWorldWithWoman. Elsa’s

actions are shown italicized.

Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree
Elsa: Walkin' to the can. Need to powda mah pretty li'l nose

Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: Depositin' gold. Total savings now: 4
Miner Bob: Leavin' the bank
Miner Bob: Walkin' to the gold mine
Elsa: Walkin' to the can. Need to powda mah pretty li'l nose

Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: Pickin' up a nugget
Elsa: Moppin' the floor

Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Boy, ah sure is thusty! Walkin' to the saloon
Elsa: Moppin' the floor

Miner Bob: That's mighty fine sippin' liquor
Miner Bob: Leavin' the saloon, feelin' good
Miner Bob: Walkin' to the gold mine
Elsa: Makin' the bed

Miner Bob: Pickin' up a nugget
Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree

68 | Chapter 2

Introducing Elsa

Figure 2.5. Elsa’s state transition diagram. The global state is not shown in the figure
because its logic is effectively implemented in any state and never changed.

TLFeBOOK

Elsa: Walkin' to the can. Need to powda mah pretty li'l nose

Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: Depositin' gold. Total savings now: 5
Miner Bob: Woohoo! Rich enough for now. Back home to mah li'l lady
Miner Bob: Leavin' the bank
Miner Bob: Walkin' home
Elsa: Walkin' to the can. Need to powda mah pretty li'l nose

Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: ZZZZ...

Adding Messaging Capabilities to Your FSM

Well-designed games tend to be event driven. That is to say, when an event

occurs — a weapon is fired, a lever is pulled, an alarm tripped, etc. — the

event is broadcast to the relevant objects in the game so that they may

respond appropriately. These events are typically sent in the form of a

packet of data that contains information about the event such as what sent

it, what objects should respond to it, what the actual event is, a time stamp,

and so forth.

The reason event-driven architectures are generally preferred is because

they are efficient. Without event handling, objects have to continuously

poll the game world to see if a particular action has occurred. With event

handling, objects can simply get on with their business until an event mes-

sage is broadcast to them. Then, if that message is pertinent, they can act

upon it.

Intelligent game agents can use the same idea to communicate with each

other. When endowed with the power to send, handle, and respond to

events, it’s easy to design behavior like the following:

� A wizard throws a fireball at an orc. The wizard sends a message

to the orc informing it of its impending doom so it may respond

accordingly, i.e., die horribly and in magnificent style.

� A football player makes a pass to a teammate. The passer can

send a message to the receiver, letting it know where it should move

to intercept the ball and at what time it should be at that position.

� A grunt is injured. It dispatches a message to each of its comrades

requesting help. When one arrives with aid, another message is

broadcast to let the others know they can resume their activities.

� A character strikes a match to help light its way along a gloomy

corridor. A delayed message is dispatched to warn that the match

will burn down to his fingers in thirty seconds. If he is still holding

the match when he receives the message, he reacts by dropping the

match and shouting out in pain.

State-Driven Agent Design | 69

Adding Messaging Capabilities to Your FSM

TLFeBOOK

Good, eh? The remainder of this chapter will demonstrate how agents can

be given the ability to handle messages like this. But before we can figure

out how to transmit them and handle them, the first thing to do is to define

exactly what a message is.

The Telegram Structure
A message is simply an enumerated type. This could be just about any-

thing. You could have agents sending messages like Msg_ReturnToBase,

Msg_MoveToPosition, or Msg_HelpNeeded. Additional information also needs

to be packaged along with the message. For example, we should record

information about who sent it, who the recipient is, what the actual mes-

sage is, a time stamp, and so forth. To do this, all the relevant information

is kept together in a structure called Telegram. The code is shown below.

Examine each member variable and get a feel for what sort of information

the game agents will be passing around.

struct Telegram
{
//the entity that sent this telegram
int Sender;

//the entity that is to receive this telegram
int Receiver;

//the message itself. These are all enumerated in the file
//"MessageTypes.h"
int Msg;

//messages can be dispatched immediately or delayed for a specified amount
//of time. If a delay is necessary, this field is stamped with the time
//the message should be dispatched.
double DispatchTime;

//any additional information that may accompany the message
void* ExtraInfo;

/* CONSTRUCTORS OMITTED */
};

The Telegram structure should be reusable, but because it’s impossible to

know in advance what sort of additional information future game designs

will need to pass in a message, a void pointer ExtraInfo is provided. This

can be used to pass any amount of additional information between charac-

ters. For example, if a platoon leader sends the message Msg_MoveToPosi-

tion to all his men, ExtraInfo can be used to store the coordinates of that

position.

70 | Chapter 2

Adding Messaging Capabilities to Your FSM

TLFeBOOK

Miner Bob and Elsa Communicate
For the purposes of this chapter, I’ve kept the communication between

Miner Bob and Elsa simple. They only have two messages they can use,

and they are enumerated as:

enum message_type
{
Msg_HiHoneyImHome,
Msg_StewReady

};

The gold miner will send Msg_HiHoneyImHome to his wife to let her know

he’s back at the shack. Msg_StewReady is utilized by the wife to let herself

know when to take dinner out of the oven and for her to communicate to

Miner Bob that food is on the table.

The new state transition diagram for Elsa is shown in Figure 2.6.

Before I show you how telegram events are handled by an agent, let me

demonstrate how they are created, managed, and dispatched.

Message Dispatch and Management
The creation, dispatch, and management of telegrams is handled by a class

named MessageDispatcher. Whenever an agent needs to send a message, it

calls MessageDispatcher::DispatchMessage with all the necessary informa-

tion, such as the message type, the time the message is to be dispatched,

the ID of the recipient, and so on. The MessageDispatcher uses this infor-

mation to create a Telegram, which it either dispatches immediately or

stores in a queue ready to be dispatched at the correct time.

State-Driven Agent Design | 71

Adding Messaging Capabilities to Your FSM

Figure 2.6. Elsa’s new state transition diagram

TLFeBOOK

Before it can dispatch a message, the MessageDispatcher must obtain a

pointer to the entity specified by the sender. Therefore, there must be some

sort of database of instantiated entities provided for the MessageDispatcher

to refer to — a sort of telephone book where pointers to agents are cross-

referenced by their ID. The database used for the demo is a singleton class

called EntityManager. Its declaration looks like this:

class EntityManager
{
private:

//to save the ol’ fingers
typedef std::map<int, BaseGameEntity*> EntityMap;

private:

//to facilitate quick lookup the entities are stored in a std::map, in
//which pointers to entities are cross-referenced by their identifying
//number
EntityMap m_EntityMap;

EntityManager(){}

//copy ctor and assignment should be private
EntityManager(const EntityManager&);
EntityManager& operator=(const EntityManager&);

public:

static EntityManager* Instance();

//this method stores a pointer to the entity in the std::vector
//m_Entities at the index position indicated by the entity's ID
//(makes for faster access)
void RegisterEntity(BaseGameEntity* NewEntity);

//returns a pointer to the entity with the ID given as a parameter
BaseGameEntity* GetEntityFromID(int id)const;

//this method removes the entity from the list
void RemoveEntity(BaseGameEntity* pEntity);

};

//provide easy access to the instance of the EntityManager
#define EntityMgr EntityManager::Instance()

When an entity is created it is registered with the entity manager like so:

Miner* Bob = new Miner(ent_Miner_Bob); //enumerated ID
EntityMgr->RegisterEntity(Bob);

A client can now request a pointer to a specific entity by passing its ID to

the method EntityManager::GetEntityFromID in this way:

Entity* pBob = EntityMgr->GetEntityFromID(ent_Miner_Bob);

72 | Chapter 2

Adding Messaging Capabilities to Your FSM

TLFeBOOK

The client can then use this pointer to call the message handler for that par-

ticular entity. More on this in a moment, but first let’s look at the way

messages are created and routed between entities.

The MessageDispatcher Class

The class that manages the dispatch of messages is a singleton named

MessageDispatcher. Take a look at the declaration of this class:

class MessageDispatcher
{
private:

//a std::set is used as the container for the delayed messages
//because of the benefit of automatic sorting and avoidance
//of duplicates. Messages are sorted by their dispatch time.
std::set<Telegram> PriorityQ;

//this method is utilized by DispatchMessage or DispatchDelayedMessages.
//This method calls the message handling member function of the receiving
//entity, pReceiver, with the newly created telegram
void Discharge(Entity* pReceiver, const Telegram& msg);

MessageDispatcher(){}

public:

//this class is a singleton
static MessageDispatcher* Instance();

//send a message to another agent.
void DispatchMessage(double delay,

int sender,
int receiver,
int msg,
void* ExtraInfo);

//send out any delayed messages. This method is called each time through
// the main game loop.
void DispatchDelayedMessages();

};

//to make life easier...
#define Dispatch MessageDispatcher::Instance()

The MessageDispatcher class handles messages to be dispatched immedi-

ately and time stamped messages, which are messages to be delivered at a

specified time in the future. Both these types of messages are created and

managed by the same method: DispatchMessage. Let’s go through the

source. (In the companion file this method has some additional lines of

code for outputting some informative text to the console. I’ve omitted them

here for clarity.)

State-Driven Agent Design | 73

Adding Messaging Capabilities to Your FSM

TLFeBOOK

void MessageDispatcher::DispatchMessage(double delay,
int sender,
int receiver,
int msg,
void* ExtraInfo)

{

This method is called when an entity sends a message to another entity.

The message sender must provide as parameters the details required to cre-

ate a Telegram structure. In addition to the sender’s ID, the receiver’s ID,

and the message itself, this function must be given a time delay and a

pointer to any additional info, if any. If the message is to be sent immedi-

ately, the method should be called with a zero or negative delay.

//get a pointer to the receiver of the message
Entity* pReceiver = EntityMgr->GetEntityFromID(receiver);

//create the telegram
Telegram telegram(0, sender, receiver, msg, ExtraInfo);

//if there is no delay, route the telegram immediately
if (delay <= 0.0)
{
//send the telegram to the recipient
Discharge(pReceiver, telegram);

}

After a pointer to the recipient is obtained via the entity manager and a

Telegram is created using the appropriate information, the message is ready

to be dispatched. If the message is for immediate dispatch, the Discharge

method is called straight away. The Discharge method passes the newly

created Telegram to the message handling method of the receiving entity

(more on this shortly). Most of the messages your agents will be sending

will be created and immediately dispatched in this way. For example, if a

troll hits a human over the head with a club, it could send an instant mes-

sage to the human telling it that it had been hit. The human would then

respond using the appropriate action, sound, and animation.

//else calculate the time when the telegram should be dispatched
else
{
double CurrentTime = Clock->GetCurrentTime();

telegram.DispatchTime = CurrentTime + delay;

//and put it in the queue
PriorityQ.insert(telegram);

}
}

If the message is to be dispatched at some time in the future, then these few

lines of code calculate the time it should be delivered before inserting the

new telegram into a priority queue — a data structure that keeps its

74 | Chapter 2

Adding Messaging Capabilities to Your FSM

TLFeBOOK

elements sorted in order of precedence. I have utilized a std::set as the

priority queue in this example because it automatically discards duplicate

telegrams.

Telegrams are sorted with respect to their time stamp and to this effect,

if you take a look at Telegram.h, you will find that the < and == operators

have been overloaded. Also note how telegrams with time stamps less than

a quarter of a second apart are to be considered identical. This prevents

many similar telegrams bunching up in the queue and being delivered en

masse, thereby flooding an agent with identical messages. Of course, this

delay will vary according to your game. Games with lots of action produc-

ing a high frequency of messages will probably require a smaller gap.

The queued telegrams are examined each update step by the method

DispatchDelayedMessages. This function checks the front of the priority

queue to see if any telegrams have expired time stamps. If so, they are dis-

patched to their recipient and removed from the queue. The code for this

method looks like this:

void MessageDispatcher::DispatchDelayedMessages()
{
//first get current time
double CurrentTime = Clock->GetCurrentTime();

//now peek at the queue to see if any telegrams need dispatching.
//remove all telegrams from the front of the queue that have gone
//past their sell-by date
while((PriorityQ.begin()->DispatchTime < CurrentTime) &&

(PriorityQ.begin()->DispatchTime > 0))
{
//read the telegram from the front of the queue
Telegram telegram = *PriorityQ.begin();

//find the recipient
Entity* pReceiver = EntityMgr->GetEntityFromID(telegram.Receiver);

//send the telegram to the recipient
Discharge(pReceiver, telegram);

//and remove it from the queue
PriorityQ.erase(PriorityQ.begin());

}
}

A call to this method must be placed in the game’s main update loop to

facilitate the correct and timely dispatch of any delayed messages.

Message Handling
Once a system for creating and dispatching messages is in place, the han-

dling of them is relatively easy. The BaseGameEntity class must be modified

so any subclass can receive messages. This is achieved by declaring

another pure virtual function, HandleMessage, which all derived classes

State-Driven Agent Design | 75

Adding Messaging Capabilities to Your FSM

TLFeBOOK

must implement. The revised BaseGameEntity base class now looks like

this:

class BaseGameEntity
{
private:

int m_ID;

/* EXTRANEOUS DETAIL REMOVED FOR CLARITY*/

public:

//all subclasses can communicate using messages.
virtual bool HandleMessage(const Telegram& msg)=0;

/* EXTRANEOUS DETAIL REMOVED FOR CLARITY*/
};

In addition, the State base class must also be modified so that a

BaseGameEntity’s states can choose to accept and handle messages. The

revised State class includes an additional OnMessage method as follows:

template <class entity_type>
class State
{
public:

//this executes if the agent receives a message from the
//message dispatcher
virtual bool OnMessage(entity_type*, const Telegram&)=0;

/* EXTRANEOUS DETAIL REMOVED FOR CLARITY*/
};

Finally, the StateMachine class is modified to contain a HandleMessage

method. When a telegram is received by an entity, it is first routed to the

entity’s current state. If the current state does not have code in place to deal

with the message, it’s routed to the entity’s global state’s message handler.

You probably noticed that OnMessage returns a bool. This is to indicate

whether or not the message has been handled successfully and enables the

code to route the message accordingly.

Here is the listing of the StateMachine::HandleMessage method:

bool StateMachine::HandleMessage(const Telegram& msg)const
{
//first see if the current state is valid and that it can handle
//the message
if (m_pCurrentState && m_pCurrentState->OnMessage(m_pOwner, msg))
{
return true;

}

//if not, and if a global state has been implemented, send
//the message to the global state

76 | Chapter 2

Adding Messaging Capabilities to Your FSM

TLFeBOOK

if (m_pGlobalState && m_pGlobalState->OnMessage(m_pOwner, msg))
{
return true;

}

return false;
}

And here’s how the Miner class routes messages sent to it:

bool Miner::HandleMessage(const Telegram& msg)
{
return m_pStateMachine->HandleMessage(msg);

}

Figure 2.7 shows the new class architecture.

State-Driven Agent Design | 77

Adding Messaging Capabilities to Your FSM

Figure 2.7. The updated design incorporating messaging

TLFeBOOK

Elsa Cooks Dinner
At this point it’s probably a good idea to take a look at a concrete example

of how messaging works, so let’s examine how it can be integrated into the

West World project. In the final version of this demo, WestWorldWith-

Messaging, there is a message sequence that proceeds like this:

1. Miner Bob enters the shack and sends a Msg_HiHoneyImHome message

to Elsa to let her know he’s arrived home.

2. Elsa receives the Msg_HiHoneyImHome message, stops what she’s cur-

rently doing, and changes state to CookStew.

3. When Elsa enters the CookStew state, she puts the stew in the oven

and sends a delayed Msg_StewReady message to herself to remind her-

self that the stew needs to be taken out of the oven at a specific time in

the future. (Normally a good stew takes at least an hour to cook, but in

cyberspace Elsa can rustle one up in just a fraction of a second!)

4. Elsa receives the Msg_StewReady message. She responds to this mes-

sage by taking the stew out of the oven and dispatching a message to

Miner Bob to inform him that dinner is on the table. Miner Bob will

only respond to this message if he is in the GoHomeAndSleepTil-

Rested state (because in this state he is always located at the shack). If

he is anywhere else, such as at the gold mine or the saloon, this mes-

sage would be dispatched and dismissed.

5. Miner Bob receives the Msg_StewReady message and changes state to

EatStew.

Let me run through the code that executes each of these steps.

Step One

Miner Bob enters the shack and sends a Msg_HiHoneyImHome message to

Elsa to let her know he’s arrived home.

Additional code has been added to the Enter method of the GoHomeAnd-

SleepTilRested state to facilitate sending a message to Elsa. Here is the

listing:

void GoHomeAndSleepTilRested::Enter(Miner* pMiner)
{
if (pMiner->Location() != shack)
{
cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "

<< "Walkin' home";

pMiner->ChangeLocation(shack);

//let the wife know I'm home
Dispatch->DispatchMessage(SEND_MSG_IMMEDIATELY, //time delay

pMiner->ID(), //ID of sender
ent_Elsa, //ID/name of recipient

78 | Chapter 2

Adding Messaging Capabilities to Your FSM

TLFeBOOK

Msg_HiHoneyImHome, //the message
NO_ADDITIONAL_INFO); //no extra info attached

}
}

As you can see, when Miner Bob changes to this state the first thing he

does is change location. He then dispatches Msg_HiHoneyImHome to Elsa by

calling the DispatchMessage method of the MessageDispatcher singleton

class. Because the message is to be dispatched immediately, the first

parameter of DispatchMessage is set to zero. No additional information is

attached to the telegram. (The constants SEND_MSG_IMMEDIATELY and

NO_ADDITIONAL_INFO are defined with the value 0 in the file

MessageDispatcher.h to aid legibility.)

� TIP You don’t have to restrict the messaging system to game characters such as
orcs, archers, and wizards. Provided an object is derived from a class that
enforces a unique identifier (like BaseGameEntity) it’s possible to send mes-
sages to it. Objects such as treasure chests, traps, magical doors, or even trees
are all items that may benefit from the ability to receive and process messages.

For example, you could derive an OakTree class from the BaseGameEntity
class and implement a message handling function to react to messages such as
HitWithAxe or StormyWeather. The oak tree can then react to these messages by
toppling over or by rustling its leaves and creaking. The possibilities you can
construct with this sort of messaging system are almost endless.

Step Two

Elsa receives the Msg_HiHoneyImHome message, stops what she’s currently

doing, and changes state to CookStew.

Because she never leaves the shack, Elsa should respond to Msg_HiHoney-

ImHome when in any state. The easiest way to implement this is to let her

global state take care of this message. (Remember, the global state is exe-

cuted each update along with the current state.)

bool WifesGlobalState::OnMessage(MinersWife* wife, const Telegram& msg)
{
switch(msg.Msg)
{
case Msg_HiHoneyImHome:
{
cout << "\nMessage handled by " << GetNameOfEntity(wife->ID())

<< " at time: " << Clock->GetCurrentTime();

cout << "\n" << GetNameOfEntity(wife->ID()) <<
": Hi honey. Let me make you some of mah fine country stew";

wife->GetFSM()->ChangeState(CookStew::Instance());
}

return true;

}//end switch

State-Driven Agent Design | 79

Adding Messaging Capabilities to Your FSM

TLFeBOOK

return false;
}

Step Three

When Elsa enters the CookStew state, she puts the stew in the oven and

sends a delayed Msg_StewReady message to herself as a reminder to take

the stew out before it burns and upsets Bob.

This is a demonstration of how delayed messages can be used. In this

example, Elsa puts the stew in the oven and then sends a delayed message

to herself as a reminder to take the stew out. As we discussed earlier, this

message will be stamped with the correct time for dispatch and stored in a

priority queue. Each time through the game loop there is a call to

MessageDispatcher::DispatchDelayedMessages. This method checks to see

if any telegrams have exceeded their time stamp and dispatches them to

their appropriate recipients where necessary.

void CookStew::Enter(MinersWife* wife)
{
//if not already cooking put the stew in the oven
if (!wife->Cooking())
{
cout << "\n" << GetNameOfEntity(wife->ID())

<< ": Puttin' the stew in the oven";

//send a delayed message to myself so that I know when to take the stew
//out of the oven
Dispatch->DispatchMessage(1.5, //time delay

wife->ID(), //sender ID
wife->ID(), //receiver ID
Msg_StewReady, //the message
NO_ADDITIONAL_INFO); //no extra info attached

wife->SetCooking(true);
}

}

Step Four

Elsa receives the Msg_StewReady message. She responds by taking the

stew out of the oven and dispatching a message to Miner Bob to inform

him that dinner is on the table. Miner Bob will only respond to this mes-

sage if he is in the GoHomeAndSleepTilRested state (to ensure he is

located at the shack).

Because Miner Bob does not have bionic ears, he will only be able to hear

Elsa calling him for dinner if he is at home. Therefore, Bob will only

respond to this message if he is in the GoHomeAndSleepTilRested state.

bool CookStew::OnMessage(MinersWife* wife, const Telegram& msg)
{

80 | Chapter 2

Adding Messaging Capabilities to Your FSM

TLFeBOOK

switch(msg.Msg)
{
case Msg_StewReady:
{
cout << "\nMessage received by " << GetNameOfEntity(wife->ID()) <<

" at time: " << Clock->GetCurrentTime();
cout << "\n" << GetNameOfEntity(wife->ID())

<< ": Stew ready! Let's eat";

//let hubby know the stew is ready
Dispatch->DispatchMessage(SEND_MSG_IMMEDIATELY,

wife->ID(),
ent_Miner_Bob,
Msg_StewReady,
NO_ADDITIONAL_INFO);

wife->SetCooking(false);

wife->GetFSM()->ChangeState(DoHouseWork::Instance());
}

return true;

}//end switch

return false;
}

Step Five

Miner Bob receives the Msg_StewReady message and changes state to

EatStew.

When Miner Bob receives Msg_StewReady he stops whatever he’s doing,

changes state to EatStew, and settles down at the table ready to eat a

mighty fine and fillin’ bowl of stew.

bool GoHomeAndSleepTilRested::OnMessage(Miner* pMiner, const Telegram& msg)
{

switch(msg.Msg)
{
case Msg_StewReady:

cout << "\nMessage handled by " << GetNameOfEntity(pMiner->ID())
<< " at time: " << Clock->GetCurrentTime();

cout << "\n" << GetNameOfEntity(pMiner->ID())
<< ": Okay hun, ahm a-comin'!";

pMiner->GetFSM()->ChangeState(EatStew::Instance());

return true;

}//end switch

State-Driven Agent Design | 81

Adding Messaging Capabilities to Your FSM

TLFeBOOK

return false; //send message to global message handler
}

Here is some example output from the WestWorldWithMessaging program.

You can see clearly where the preceding message sequence occurs.

Miner Bob: Goin' to the bank. Yes siree
Elsa: Moppin' the floor

Miner Bob: Depositin' gold. Total savings now: 5
Miner Bob: Woohoo! Rich enough for now. Back home to mah li'l lady
Miner Bob: Leavin' the bank
Miner Bob: Walkin' home
Instant telegram dispatched at time: 4.20062 by Miner Bob for Elsa. Msg is
HiHoneyImHome
Message received by Elsa at time: 4.20062
Elsa: Hi honey. Let me make you some of mah fine country stew

Elsa: Puttin' the stew in the oven

Delayed telegram from Elsa recorded at time 4.20062 for Elsa. Msg is StewReady
Elsa: Fussin' over food

Miner Bob: ZZZZ...
Elsa: Fussin' over food

Miner Bob: ZZZZ...
Elsa: Fussin' over food

Miner Bob: ZZZZ...
Elsa: Fussin' over food

Queued telegram ready for dispatch: Sent to Elsa. Msg is StewReady
Message received by Elsa at time: 5.10162
Elsa: Stew ready! Let's eat

Instant telegram dispatched at time: 5.10162 by Elsa for Miner Bob. Msg is
StewReady
Message received by Miner Bob at time: 5.10162
Miner Bob: Okay hun, ahm a-comin'!
Miner Bob: Smells reaaal goood, Elsa!
Elsa: Puttin' the stew on the table

Elsa: Time to do some more housework!

Miner Bob: Tastes real good too!
Miner Bob: Thank ya li'l lady. Ah better get back to whatever ah wuz doin'
Elsa: Washin' the dishes

Miner Bob: ZZZZ...
Elsa: Makin' the bed

Miner Bob: All mah fatigue has drained away. Time to find more gold!
Miner Bob: Walkin' to the gold mine

Summing Up

This chapter has shown you the skills required to create very flexible and

extensible finite state machines for your own games. As you have seen, the

addition of messaging has enhanced the illusion of intelligence a great deal

— the output from the WestWorldWithMessaging program is starting to

look like the actions and interactions of two real people. What’s more, this

is only a very simple example. The complexity of the behavior you can cre-

ate with finite state machines is only limited by your imagination. You

don’t have to restrict your game agents to just one finite state machine

82 | Chapter 2

Summing Up

TLFeBOOK

either. Sometimes it may be a good idea to use two FSMs working in paral-

lel: one to control a character’s movement and one to control the weapon

selection, aiming, and firing, for example. It’s even possible to have a state

itself contain a state machine. This is known as a hierarchical state

machine. For instance, your game agent may have the states Explore,

Combat, and Patrol. In turn, the Combat state may own a state machine

that manages the states required for combat such as Dodge, ChaseEnemy,

and Shoot.

Practice Makes Perfect

Before you dash away and start coding your own finite state machines, you

may find it good practice to expand the WestWorldWithMessaging project

to include an additional character. For example, you could add a Bar Fly

who insults Miner Bob in the saloon and they get into a fight. Before you

write the code, grab a pencil and a sheet of paper and sketch out the state

transition diagrams for each new character. Have fun!

State-Driven Agent Design | 83

Summing Up

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 3

How to Create Autonomously
Moving Game Agents

D uring the late ’80s I remember watching a BBC Horizon documen-

tary about state-of-the-art computer graphics and animation. There

was lots of exciting stuff covered in that program, but the thing I remember

most vividly was an amazing demonstration of the flocking behavior of

birds. It was based on very simple rules, yet it looked so spontaneous and

natural and was mesmerizing to watch. The programmer who designed the

behavior is named Craig Reynolds. He called the flocking birds “boids,”

and the simple rules the flocking behavior emerged from he called “steer-

ing behaviors.”

Since that time Reynolds has published a number of articles on various

types of steering behaviors, all of them fascinating. Most, if not all, of his

steering behaviors have direct relevance to games, which is why I’m going

to spend a considerable amount of time describing them and showing you

how to code and use them.

What Is an Autonomous Agent?

I’ve seen many definitions for what an autonomous agent is, but probably

the best is this:

An autonomous agent is a system situated within and a part of an envi-

ronment that senses that environment and acts on it, over time, in pur-

suit of its own agenda and so as to effect what it senses in the future.

Throughout this chapter I will use the term “autonomous agent” in refer-

ence to agents that possess a degree of autonomous movement. If an

autonomous agent stumbles upon an unexpected situation, like finding a

wall in its way, it will have the ability to respond and adjust its motion

accordingly. For example, you might design one autonomous agent to

behave like a rabbit and one like a fox. If while munching happily on the

fresh dewy grass, the rabbit happens to spot the fox, it will autonomously

attempt to evade it. At the same time the fox will autonomously pursue the

rabbit. Both these events occur without any further intervention from the

85
TLFeBOOK

programmer; once up and running, autonomous agents simply look after

themselves.

This is not to say that an autonomous agent should be able to cope with

absolutely any situation at all (although that might be one of your goals),

but it is often very useful to be able to bestow an amount of autonomy. For

example, a common problem when writing pathfinding code is how to deal

with dynamic obstacles. Dynamic obstacles are those objects in your game

world that move around or change position, like other agents, sliding doors,

and so forth. Given a suitable environment, incorporating the correct steer-

ing behavior into a game character will preclude writing special path-

finding code to handle dynamic obstacles — an autonomous agent will

have the ability to deal with them if and when it has to.

The movement of an autonomous agent can be broken down into three

layers:

� Action Selection: This is the part of the agent’s behavior responsible

for choosing its goals and deciding what plan to follow. It is the part

that says “go here” and “do A, B, and then C.”

� Steering: This layer is responsible for calculating the desired trajec-

tories required to satisfy the goals and plans set by the action selec-

tion layer. Steering behaviors are the implementation of this layer.

They produce a steering force that describes where an agent should

move and how fast it should travel to get there.

� Locomotion: The bottom layer, locomotion, represents the more

mechanical aspects of an agent’s movement. It is the how of travel-

ing from A to B. For example, if you had implemented the mechan-

ics of a camel, a tank, and a goldfish and then gave a command for

them to travel north, they would all use different mechanical pro-

cesses to create motion even though their intent (to move north) is

identical. By separating this layer from the steering layer, it’s possi-

ble to utilize, with little modification, the same steering behaviors

for completely different types of locomotion.

Reynolds makes use of an excellent analogy to describe the roles of each of

these layers in his paper “Steering Behaviors for Autonomous Characters.”

“Consider, for example, some cowboys tending a herd of cattle out on

the range. A cow wanders away from the herd. The trail boss tells a

cowboy to fetch the stray. The cowboy says ‘giddy-up’ to his horse and

guides it to the cow, possibly avoiding obstacles along the way. In this

example, the trail boss represents action selection: noticing that the

state of the world has changed (a cow left the herd) and setting a goal

(retrieve the stray). The steering level is represented by the cowboy, who

decomposes the goal into a series of simple sub-goals (approach the

cow, avoid obstacles, retrieve the cow). A sub-goal corresponds to a

steering behavior for the cowboy-and-horse team. Using various control

86 | Chapter 3

What Is an Autonomous Agent?

TLFeBOOK

signals (vocal commands, spurs, reins), the cowboy steers his horse

toward the target. In general terms, these signals express concepts like:

go faster, go slower, turn right, turn left, and so on. The horse imple-

ments the locomotion level. Taking the cowboy’s control signals as

input, the horse moves in the indicated direction. This motion is the

result of a complex interaction of the horse’s visual perception, its sense

of balance, and its muscles applying torques to the joints of its skeleton.

From an engineering point of view, legged locomotion is a very hard

problem, but neither the cowboy nor the horse give it a second thought.”

Not all is rosy and sweet in the world of autonomous agents though. The

implementation of steering behaviors can beset the programmer with a

truckload of new problems to deal with. Some behaviors may involve

heavy manual tweaking, while others have to be carefully coded to avoid

using large portions of CPU time. When combining behaviors, care usually

must be taken to avoid the possibility that two or more of them may cancel

each other out. There are means and ways around most of these problems

though (well, all except for the tweaking — but that’s fun anyway), and

most often the benefits of steering behaviors far outweigh any

disadvantages.

The Vehicle Model

Before I discuss each individual steering behavior I’m going to spend a lit-

tle time explaining the code and class design for the vehicle model (the

locomotion). MovingEntity is a base class from which all moving game

agents are derived. It encapsulates the data that describes a basic vehicle

with point mass. Let me run you through the class declaration:

class MovingEntity : public BaseGameEntity
{
protected:

The MovingEntity class is derived from the BaseGameEntity class, which

defines an entity with an ID, a type, a position, a bounding radius, and a

scale. All game entities from here onward in this book will be derived from

BaseGameEntity. A BaseGameEntity also has an additional Boolean member

variable, m_bTag, which will be utilized in a variety of ways, some of which

will be described very shortly. I’m not going to list the class declaration

here, but I recommend you take a quick look at the BaseGameEntity.h

header sometime during your read through this chapter.

SVector2D m_vVelocity;

//a normalized vector pointing in the direction the entity is heading.
SVector2D m_vHeading;

//a vector perpendicular to the heading vector
SVector2D m_vSide;

How to Create Autonomously Moving Game Agents | 87

The Vehicle Model

TLFeBOOK

The heading and side vectors define a local coordinate system for the mov-

ing entity. In the examples given in this chapter, a vehicle’s heading will

always be aligned with its velocity (for example, a train has a velocity

aligned heading). These values will be used often by the steering behavior

algorithms and are updated every frame.

double m_dMass;

//the maximum speed at which this entity may travel.
double m_dMaxSpeed;

//the maximum force this entity can produce to power itself
//(think rockets and thrust)
double m_dMaxForce;

//the maximum rate (radians per second) at which this vehicle can rotate
double m_dMaxTurnRate;

public:

/* EXTRANEOUS DETAIL OMITTED */
};

Although this is enough data to represent a moving object, we still need a

way of giving a moving entity access to the various types of steering

behaviors. I have chosen to create a class, Vehicle, which inherits from

MovingEntity and owns an instance of the steering behavior class,

SteeringBehaviors. SteeringBehaviors encapsulates all the different steer-

ing behaviors I’ll be discussing throughout this chapter. More on that in a

moment though; first, let’s take a look at the Vehicle class declaration.

class Vehicle : public MovingEntity
{
private:

//a pointer to the world data enabling a vehicle to access any obstacle
//path, wall, or agent data
GameWorld* m_pWorld;

The GameWorld class contains all the data and objects pertinent to the envi-

ronment the agents are situated in, such as walls, obstacles, and so on. I

won’t list the declaration here to save space, but it might be a good idea to

check out GameWorld.h in your IDE at some point to get a feel for it.

//the steering behavior class
SteeringBehaviors* m_pSteering;

A vehicle has access to all available steering behaviors through its own

instance of the steering behavior class.

public:

//updates the vehicle’s position and orientation
void Update(double time_elapsed);

88 | Chapter 3

The Vehicle Model

TLFeBOOK

/* EXTRANEOUS DETAIL OMITTED */
};

You can see the class relationships clearly in the simplified UML diagram

shown in Figure 3.1.

Updating the Vehicle Physics
Before we move on to the steering behaviors themselves, I’d just like to

walk you through the Vehicle::Update method. It’s important that you

understand every line of code in this function because it’s the main work-

horse of the Vehicle class. (If you do not know Newton’s laws of force and

motion, I would strongly recommend you read the relevant part of Chapter

1 before continuing.)

bool Vehicle::Update(double time_elapsed)
{
//calculate the combined force from each steering behavior in the
//vehicle’s list
SVector2D SteeringForce = m_pSteering->Calculate();

How to Create Autonomously Moving Game Agents | 89

The Vehicle Model

Figure 3.1. The Vehicle and SteeringBehaviors class relationships

TLFeBOOK

First the steering force for this simulation step is calculated. The Calculate

method sums all a vehicle’s active steering behaviors and returns the total

steering force.

//Acceleration = Force/Mass
SVector2D acceleration = SteeringForce / m_dMass;

Using Newton’s laws of physics, the steering force is converted into an

acceleration (see equation 1.93, Chapter 1).

//update velocity
m_vVelocity += acceleration * time_elapsed;

Using the acceleration, the vehicle’s velocity can be updated (see equation

1.81, Chapter 1).

//make sure vehicle does not exceed maximum velocity
m_vVelocity.Truncate(m_dMaxSpeed);

//update the position
m_vPos += m_vVelocity * time_elapsed;

The vehicle’s position can now be updated using the new velocity (see

equation 1.77, Chapter 1).

//update the heading if the vehicle has a velocity greater than a very small
//value
if (m_vVelocity.LengthSq() > 0.00000001)
{
m_vHeading = Vec2DNormalize(m_vVelocity);

m_vSide = m_vHeading.Perp();
}

As mentioned earlier, a MovingEntity has a local coordinate system that

must be kept updated each simulation step. A vehicle’s heading should

always be aligned with its velocity so this is updated, making it equal to the

normalized velocity vector. But — and this is important — the heading is

only calculated if the vehicle’s velocity is above a very small threshold

value. This is because if the magnitude of the velocity is zero, the program

will crash with a divide by zero error, and if the magnitude is non-zero but

very small, the vehicle may (depending on the platform and operating sys-

tem) start to move erratically a few seconds after it has stopped.

The side component of the local coordinate system is easily calculated

by calling SVector2D::Perp.

//treat the screen as a toroid
WrapAround(m_vPos, m_pWorld->cxClient(), m_pWorld->cyClient());

}

Finally, the display area is considered to wrap around from top to bottom

and from left to right (if you were to imagine it in 3D it would be toroidal

— doughnut shaped). Therefore, a check is made to see if the updated

90 | Chapter 3

The Vehicle Model

TLFeBOOK

position of the vehicle has exceeded the screen boundaries. If so, the posi-

tion is wrapped around accordingly.

That’s the boring stuff out of the way — let’s move on and have some

fun!

The Steering Behaviors

I’m now going to describe each steering behavior individually. Once I’ve

covered all of them I’ll explain the SteeringBehaviors class that encapsu-

lates them and show you the different methods available for combining

them. Toward the end of the chapter I’ll demonstrate a few tips and tricks

for getting the most out of steering behaviors.

Seek
The seek steering behavior returns a force that directs an agent toward a

target position. It is very simple to program. The code looks like this (note

that m_pVehicle points to the Vehicle that owns the SteeringBehaviors

class):

Vector2D SteeringBehaviors::Seek(Vector2D TargetPos)
{
Vector2D DesiredVelocity = Vec2DNormalize(TargetPos - m_pVehicle->Pos())

* m_pVehicle->MaxSpeed();

return (DesiredVelocity - m_pVehicle->Velocity());
}

First the desired velocity is calculated. This is the velocity the agent would

need to reach the target position in an ideal world. It represents the vector

from the agent to the target, scaled to be the length of the maximum possi-

ble speed of the agent.

The steering force returned by this method is the force required, which

when added to the agent’s current velocity vector gives the desired veloc-

ity. To achieve this you simply subtract the agent’s current velocity from

the desired velocity. See Figure 3.2.

How to Create Autonomously Moving Game Agents | 91

The Steering Behaviors

Figure 3.2. Calcu-
lating vectors for the
seek behavior. The
dotted vector shows
how the addition of
the steering force to
the current velocity
produces the desired
result.

TLFeBOOK

You can observe this behavior in action by running the Seek.exe execut-

able. Click with the left mouse button to alter the position of the target.

Notice how the agent will overshoot the target and then turn around to

approach again. The amount of overshoot is determined by the ratio of

MaxSpeed to MaxForce. You can change the magnitude of these values by

pressing the Ins/Del and Home/End keys.

Seek comes in handy for all sorts of things. As you’ll see, many of the

other steering behaviors will make use of it.

Flee
Flee is the opposite of seek. Instead of producing a steering force to steer

the agent toward a target position, flee creates a force that steers the agent

away. Here’s the code:

Vector2D SteeringBehaviors::Flee(Vector2D TargetPos)
{
Vector2D DesiredVelocity = Vec2DNormalize(m_pVehicle->Pos() - TargetPos)

* m_pVehicle->MaxSpeed();

return (DesiredVelocity - m_pVehicle->Velocity());
}

Note how the only difference is that the DesiredVelocity is calculated

using a vector pointing in the opposite direction (m_pVehicle->Pos() –

TargetPos instead of TargetPos – m_pVehicle->Pos()).

Flee can be easily adjusted to generate a fleeing force only when a vehi-

cle comes within a certain range of the target. All it takes is a couple of

extra lines of code.

Vector2D SteeringBehaviors::Flee(Vector2D TargetPos)
{
//only flee if the target is within 'panic distance'. Work in distance
//squared space.
const double PanicDistanceSq = 100.0 * 100.0;
if (Vec2DDistanceSq(m_pVehicle->Pos(), target) > PanicDistanceSq)
{
return Vector2D(0,0);

}

Vector2D DesiredVelocity = Vec2DNormalize(m_pVehicle->Pos() - TargetPos)
* m_pVehicle->MaxSpeed();

return (DesiredVelocity - m_pVehicle->Velocity());
}

Notice how the distance to the target is calculated in distance squared

space. As you saw in Chapter 1, this is to save calculating a square root.

92 | Chapter 3

The Steering Behaviors

TLFeBOOK

Arrive
Seek is useful for getting an agent moving in the right direction, but often

you’ll want your agents to come to a gentle halt at the target position, and

as you’ve seen, seek is not too great at stopping gracefully. Arrive is a

behavior that steers the agent in such a way it decelerates onto the target

position.

In addition to the target, this function takes a parameter of the enumer-

ated type Deceleration, given by:

enum Deceleration{slow = 3, normal = 2, fast = 1};

Arrive uses this value to calculate how much time the agent desires to take

to reach the target. From this value we can calculate at what speed the

agent must travel to reach the target position in the desired amount of time.

After that, the calculations proceed just like they did for seek.

Vector2D SteeringBehaviors::Arrive(Vector2D TargetPos,
Deceleration deceleration)

{
Vector2D ToTarget = TargetPos - m_pVehicle->Pos();

//calculate the distance to the target position
double dist = ToTarget.Length();

if (dist > 0)
{
//because Deceleration is enumerated as an int, this value is required
//to provide fine tweaking of the deceleration.
const double DecelerationTweaker = 0.3;

//calculate the speed required to reach the target given the desired
//deceleration
double speed = dist / ((double)deceleration * DecelerationTweaker);

//make sure the velocity does not exceed the max
speed = min(speed, m_pVehicle->MaxSpeed());

//from here proceed just like Seek except we don't need to normalize
//the ToTarget vector because we have already gone to the trouble
//of calculating its length: dist.
Vector2D DesiredVelocity = ToTarget * speed / dist;

return (DesiredVelocity - m_pVehicle->Velocity());
}

return Vector2D(0,0);
}

Now that you know what it does, have a look at the demo executable.

Notice how when the vehicle is far away from the target the arrive behav-

ior acts just the same as seek, and how the deceleration only comes into

effect when the vehicle gets close to the target.

How to Create Autonomously Moving Game Agents | 93

The Steering Behaviors

TLFeBOOK

Pursuit
Pursuit behavior is useful when an agent is required to intercept a moving

target. It could keep seeking to the current position of the target of course,

but this wouldn’t really help to create the illusion of intelligence. Imagine

you’re a child again and playing tag in the schoolyard. When you want to

tag someone, you don’t just run straight at their current position (which is

effectively seeking toward them); you predict where they are going to be in

the future and run toward that offset, making adjustments as you narrow

the gap. See Figure 3.3. This is the sort of behavior we want our agents to

demonstrate.

The success of the pursuit function depends on how well the pursuer can

predict the evader’s trajectory. This can get very complicated, so a compro-

mise must be made to obtain adequate performance without eating up too

many clock cycles.

There is one situation the pursuer may face that enables an early out: If

the evader is ahead and almost directly facing the agent, the agent should

head directly for the evader’s current position. This can be calculated

quickly using dot products (see Chapter 1). In the example code, the

evader’s inverted heading must be within 20 degrees (approximately) of

the agent’s to be considered “facing.”

One of the difficulties in creating a good predictor is deciding how far

into the future the agent should predict. Clearly, the amount of look-ahead

should be proportional to the separation between the pursuer and its evader,

and inversely proportional to the pursuer’s and evader’s speeds. Once this

time has been decided, an estimated future position can be calculated for

the pursuer to seek to. Let’s take a look at the code for this behavior:

Vector2D SteeringBehaviors::Pursuit(const Vehicle* evader)
{
//if the evader is ahead and facing the agent then we can just seek

94 | Chapter 3

The Steering Behaviors

Figure 3.3. Calculating the vectors for the pursuit steering behavior. Once again, the
dotted vector shows how the addition of the steering force to the current velocity pro-
duces the desired result.

TLFeBOOK

//for the evader's current position.
Vector2D ToEvader = evader->Pos() - m_pVehicle->Pos();

double RelativeHeading = m_pVehicle->Heading().Dot(evader->Heading());

if ((ToEvader.Dot(m_pVehicle->Heading()) > 0) &&
(RelativeHeading < -0.95)) //acos(0.95)=18 degs

{
return Seek(evader->Pos());

}

//Not considered ahead so we predict where the evader will be.

//the look-ahead time is proportional to the distance between the evader
//and the pursuer; and is inversely proportional to the sum of the
//agents' velocities
double LookAheadTime = ToEvader.Length() /

(m_pVehicle->MaxSpeed() + evader->Speed());

//now seek to the predicted future position of the evader
return Seek(evader->Pos() + evader->Velocity() * LookAheadTime);

}

� TIP Some locomotion models may also require that you factor in some time for
turning the agent to face the offset. You can do this fairly simply by increasing
the LookAheadTime by a value proportional to the dot product of the two head-
ings and to the maximum turn rate of the vehicle. Something like:

LookAheadTime += TurnAroundTime(m_pVehicle, evader->Pos());

Where TurnAroundTime is the function:

double TurnaroundTime(const Vehicle* pAgent, Vector2D TargetPos)
{
//determine the normalized vector to the target
Vector2D toTarget = Vec2DNormalize(TargetPos - pAgent->Pos());

double dot = pAgent->Heading().Dot(toTarget);

//change this value to get the desired behavior. The higher the max turn
//rate of the vehicle, the higher this value should be. If the vehicle is
//heading in the opposite direction to its target position then a value
//of 0.5 means that this function will return a time of 1 second for the
//vehicle to turn around.
const double coefficient = 0.5;

//the dot product gives a value of 1 if the target is directly ahead and -1
//if it is directly behind. Subtracting 1 and multiplying by the negative of
//the coefficient gives a positive value proportional to the rotational
//displacement of the vehicle and target.
return (dot - 1.0) * -coefficient;

}

The pursuit demo shows a small vehicle being pursued by a larger one.

The crosshair indicates the estimated future position of the evader. (The

evader is utilizing a small amount of wander steering behavior to affect its

motion. I’ll be covering wander in just a moment.)

How to Create Autonomously Moving Game Agents | 95

The Steering Behaviors

TLFeBOOK

A pursuer’s prey is set by passing the relevant method a pointer to the

target in question. To set up a situation similar to the demo for this behav-

ior you’d create two agents, one to pursue and the other to wander, just like

this:

Vehicle* prey = new Vehicle(/* params omitted */);
prey->Steering()->WanderOn();

Vehicle* predator = new Vehicle(/* params omitted */);
predator->Steering()->PursuitOn(prey);

Got that? Okay, let’s move on to pursuit’s opposite: evade.

Evade
Evade is almost the same as pursuit except that this time the evader flees

from the estimated future position.

Vector2D SteeringBehaviors::Evade(const Vehicle* pursuer)
{
/* Not necessary to include the check for facing direction this time */

Vector2D ToPursuer = pursuer->Pos() - m_pVehicle->Pos();

//the look-ahead time is proportional to the distance between the pursuer
//and the evader; and is inversely proportional to the sum of the
//agents' velocities
double LookAheadTime = ToPursuer.Length() /

(m_pVehicle->MaxSpeed() + pursuer->Speed());

//now flee away from predicted future position of the pursuer
return Flee(pursuer->Pos() + pursuer->Velocity() * LookAheadTime);

}

Note that it is not necessary to include the check for facing direction this

time.

Wander
You’ll often find wander a useful ingredient when creating an agent’s

behavior. It’s designed to produce a steering force that will give the impres-

sion of a random walk through the agent’s environment.

A naive approach is to calculate a random steering force each time step,

but this produces jittery behavior with no ability to achieve long persistent

turns. (Actually, a rather nifty sort of random function, Perlin noise, can be

used to produce smooth turning but this isn’t very CPU friendly. It’s still

something for you to look into though if you get bored on a rainy day —

Perlin noise has many applications.)

Reynolds’ solution is to project a circle in front of the vehicle and steer

toward a target that is constrained to move along the perimeter. Each time

step, a small random displacement is added to this target, and over time it

moves backward and forward along the circumference of the circle,

96 | Chapter 3

The Steering Behaviors

TLFeBOOK

creating a lovely jitter-free alternating motion. This method can be used to

produce a whole range of random motion, from very smooth undulating

turns to wild Strictly Ballroom type whirls and pirouettes depending on the

size of the circle, its distance from the vehicle, and the amount of random

displacement each frame. As they say, a picture is worth a thousand words,

so it’s probably a good idea for you to examine Figure 3.4 to get a better

understanding.

Let me take you through the code step by step. First there are three member

variables wander makes use of:

double m_dWanderRadius;

This is the radius of the constraining circle.

double m_dWanderDistance;

This is the distance the wander circle is projected in front of the agent.

double m_dWanderJitter;

Finally, m_dWanderJitter is the maximum amount of random displacement

that can be added to the target each second. Now for the method itself:

SVector2D SteeringBehaviors::Wander()
{
//first, add a small random vector to the target’s position (RandomClamped
//returns a value between -1 and 1)
m_vWanderTarget += SVector2D(RandomClamped() * m_dWanderJitter,

RandomClamped() * m_dWanderJitter);

m_vWanderTarget is a point constrained to the parameter of a circle of radius

m_dWanderRadius, centered on the vehicle (m_vWanderTarget’s initial posi-

tion is set in the constructor of SteeringBehaviors). Each time step, a small

random displacement is added to the wander target’s position. See Figure

3.5A.

//reproject this new vector back onto a unit circle
m_vWanderTarget.Normalize();

How to Create Autonomously Moving Game Agents | 97

The Steering Behaviors

Figure 3.4

TLFeBOOK

//increase the length of the vector to the same as the radius
//of the wander circle
m_vWanderTarget *= m_dWanderRadius;

The next step is to reproject this new target back onto the wander circle.

This is achieved by normalizing the vector and multiplying it by the radius

of the wander circle. See Figure 3.5B.

//move the target into a position WanderDist in front of the agent
SVector2D targetLocal = m_vWanderTarget + SVector2D(m_dWanderDistance, 0);

//project the target into world space
SVector2D targetWorld = PointToWorldSpace(targetLocal,

m_pVehicle->Heading(),
m_pVehicle->Side(),
m_pVehicle->Pos());

//and steer toward it
return targetWorld - m_pVehicle->Pos();

}

Finally, the new target is moved in front of the vehicle by an amount equal

to m_dWanderDistance and projected into world space. The steering force is

then calculated as the vector to this position. See Figure 3.5C.

98 | Chapter 3

The Steering Behaviors

Figure 3.5. Steps toward calculating the wander behavior

TLFeBOOK

If you have a computer at hand I recommend you check out the demo for

this behavior. The green circle is the constraining “wander circle” and the

red dot the target. The demo allows you to adjust the size of the wander cir-

cle, the amount of jitter, and the wander distance so you can observe the

effect they have on the behavior. Notice the relationship between the wan-

der distance and the variation in angle of the steering force returned from

the method. When the wander circle is far away from the vehicle, the

method produces small variations in angle, thereby limiting the vehicle to

small turns. As the circle is moved closer to the vehicle, the amount it can

turn becomes less and less restricted.

� 3D TIP If you require your agents to wander in three dimensions (like a space-
ship patrolling its territory), all you have to do is constrain the wander target to
a sphere instead of a circle.

Obstacle Avoidance
Obstacle avoidance is a behavior that steers a vehicle to avoid obstacles

lying in its path. An obstacle is any object that can be approximated by a

circle (or sphere, if you are working in 3D). This is achieved by steering

the vehicle so as to keep a rectangular area — a detection box, extending

forward from the vehicle — free of collisions. The detection box’s width is

equal to the bounding radius of the vehicle, and its length is proportional to

the vehicle’s current speed — the faster it goes, the longer the detection

box.

I think before I describe this process any further it would be a good idea

to show you a diagram. Figure 3.6 shows a vehicle, some obstacles, and the

detection box used in the calculations.

How to Create Autonomously Moving Game Agents | 99

The Steering Behaviors

Figure 3.6. Setup for the obstacle avoidance steering behavior

TLFeBOOK

Finding the Closest Intersection Point

The process of checking for intersections with obstacles is quite compli-

cated, so let’s take this step by step.

A) The vehicle should only consider those obstacles within range of its

detection box. Initially, the obstacle avoidance algorithm iterates

through all the obstacles in the game world and tags those that are

within this range for further consideration.

B) The algorithm then transforms all the tagged obstacles into the vehi-

cle’s local space (for an explanation of local space, see Chapter 1).

This makes life much easier as after transformation any objects with a

negative local x-coordinate can be dismissed.

C) The algorithm now has to check to see if any obstacles overlap the

detection box. Local coordinates are useful here as all you need to do

is expand the bounding radius of an obstacle by half the width of the

detection box (the vehicle’s bounding radius) and then check to see if

its local y value is smaller than this value. If it isn’t, then it won’t

intersect the detection box and can subsequently be discarded from

further consideration.

Figure 3.7 should help clear up these first three steps for you. The letters on

the obstacles in the diagram correspond to the descriptions.

D) At this point there are only those obstacles remaining that intersect the

detection box. It’s now necessary to find the intersection point closest

to the vehicle. Once more, local space comes to the rescue. Step C

expanded an object’s bounding radius. Using this, a simple line/circle

intersection test can be used to find where the expanded circle inter-

sects the x-axis. There will be two intersection points, as shown in

Figure 3.8. (We don’t have to worry about the case where there is one

100 | Chapter 3

The Steering Behaviors

Figure 3.7. Steps A, B, and C

TLFeBOOK

intersection tangent to the circle — the vehicle will appear to just

glance off the obstacle.) Note that it is possible to have an obstacle in

front of the vehicle, but it will have an intersection point to the rear of

the vehicle. This is shown in the figure by obstacle A. The algorithm

discards these cases and only considers intersection points laying on

the positive x-axis.

The algorithm tests all the remaining obstacles to find the one with the

closest (positive) intersection point.

Before I show you how the steering force is calculated, let me list the

part of the obstacle avoidance algorithm code that implements steps A to

D.

Vector2D
SteeringBehaviors::ObstacleAvoidance(const std::vector<BaseGameEntity*>

&obstacles)
{
//the detection box length is proportional to the agent's velocity
m_dDBoxLength = Prm.MinDetectionBoxLength +

(m_pVehicle->Speed()/m_pVehicle->MaxSpeed()) *
Prm.MinDetectionBoxLength;

All the parameters used by the project are read from an initialization file

called Params.ini and stored in the singleton class ParamLoader. All the data

in this class is public and is easily accessible through the #definition of Prm

(#define Prm (*ParamLoader::Instance())). If further clarification is

needed, see the ParamLoader.h file.

//tag all obstacles within range of the box for processing
m_pVehicle->World()->TagObstaclesWithinViewRange(m_pVehicle, m_dDBoxLength);

//this will keep track of the closest intersecting obstacle (CIB)
BaseGameEntity* ClosestIntersectingObstacle = NULL;

How to Create Autonomously Moving Game Agents | 101

The Steering Behaviors

Figure 3.8. Intersection points

TLFeBOOK

//this will be used to track the distance to the CIB
double DistToClosestIP = MaxDouble;

//this will record the transformed local coordinates of the CIB
Vector2D LocalPosOfClosestObstacle;

std::vector<BaseGameEntity*>::const_iterator curOb = obstacles.begin();

while(curOb != obstacles.end())
{
//if the obstacle has been tagged within range proceed
if ((*curOb)->IsTagged())
{
//calculate this obstacle's position in local space
Vector2D LocalPos = PointToLocalSpace((*curOb)->Pos(),

m_pVehicle->Heading(),
m_pVehicle->Side(),
m_pVehicle->Pos());

//if the local position has a negative x value then it must lay
//behind the agent. (in which case it can be ignored)
if (LocalPos.x >= 0)
{
//if the distance from the x axis to the object's position is less
//than its radius + half the width of the detection box then there
//is a potential intersection.
double ExpandedRadius = (*curOb)->BRadius() + m_pVehicle->BRadius();

if (fabs(LocalPos.y) < ExpandedRadius)
{
//now to do a line/circle intersection test. The center of the
//circle is represented by (cX, cY). The intersection points are
//given by the formula x = cX +/-sqrt(r^2-cY^2) for y=0.
//We only need to look at the smallest positive value of x because
//that will be the closest point of intersection.
double cX = LocalPos.x;
double cY = LocalPos.y;

//we only need to calculate the sqrt part of the above equation once
double SqrtPart = sqrt(ExpandedRadius*ExpandedRadius - cY*cY);

double ip = A - SqrtPart;

if (ip <= 0)
{
ip = A + SqrtPart;

}

//test to see if this is the closest so far. If it is, keep a
//record of the obstacle and its local coordinates
if (ip < DistToClosestIP)
{
DistToClosestIP = ip;

ClosestIntersectingObstacle = *curOb;

102 | Chapter 3

The Steering Behaviors

TLFeBOOK

LocalPosOfClosestObstacle = LocalPos;
}

}
}

}

++curOb;
}

Calculating the Steering Force

Determining the steering force is easy. It’s calculated in two parts: a lateral

force and a braking force. See Figure 3.9.

There are a number of ways to calculate the lateral force but the one I pre-

fer is to subtract the y value of the obstacle’s local position from its radius.

This results in a lateral steering force away from the obstacle that dimin-

ishes with the obstacle’s distance from the x-axis. This force is scaled in

proportion to the vehicle’s distance from the obstacle (because the closer

the vehicle is to an obstacle the quicker it should react).

The next component of the steering force is the braking force. This is a

force acting backward, along the horizontal axis as shown in the figure, and

is also scaled in proportion to the vehicle’s distance from the obstacle.

The steering force is finally transformed into world space, resulting in

the value returned from the method. The code is as follows

//if we have found an intersecting obstacle, calculate a steering
//force away from it
Vector2D SteeringForce;

if (ClosestIntersectingObstacle)
{
//the closer the agent is to an object, the stronger the steering force

How to Create Autonomously Moving Game Agents | 103

The Steering Behaviors

Figure 3.9. Calculating the steering force

TLFeBOOK

//should be
double multiplier = 1.0 + (m_dDBoxLength - LocalPosOfClosestObstacle.x) /

m_dDBoxLength;

//calculate the lateral force
SteeringForce.y = (ClosestIntersectingObstacle->BRadius()-

LocalPosOfClosestObstacle.y) * multiplier;

//apply a braking force proportional to the obstacle’s distance from
//the vehicle.
const double BrakingWeight = 0.2;

SteeringForce.x = (ClosestIntersectingObstacle->BRadius() -
LocalPosOfClosestObstacle.x) *
BrakingWeight;

}

//finally, convert the steering vector from local to world space
return VectorToWorldSpace(SteeringForce,

m_pVehicle->Heading(),
m_pVehicle->Side());

}

� 3D TIP When implementing obstacle avoidance in three dimensions, use
spheres to approximate the obstacles and a cylinder in place of the detection
box. The math to check against a sphere is not that much different than that to
check against a circle. Once the obstacles have been converted into local space,
steps A and B are the same as you have already seen, and step C just involves
checking against another axis.

Wall Avoidance
A wall is a line segment (in 3D, a polygon) with a normal pointing in the

direction it is facing. Wall avoidance steers to avoid potential collisions

with a wall. It does this by projecting three “feelers” out in front of the

vehicle and testing to see if any of them intersect with any walls in the

game world. See Figure 3.10. (The little “stub” halfway along the wall

indicates the direction of the wall normal.) This is similar to how cats and

rodents use their whiskers to navigate their environment in the dark.

104 | Chapter 3

The Steering Behaviors

Figure 3.10. Wall avoidance

TLFeBOOK

When the closest intersecting wall has been found (if there is one of

course), a steering force is calculated. This is deduced by calculating how

far the feeler tip has penetrated through the wall and then by creating a

force of that magnitude in the direction of the wall normal.

Vector2D SteeringBehaviors::WallAvoidance(const std::vector<Wall2D>& walls)
{
//the feelers are contained in a std::vector, m_Feelers
CreateFeelers();

double DistToThisIP = 0.0;
double DistToClosestIP = MaxDouble;

//this will hold an index into the vector of walls
int ClosestWall = -1;

Vector2D SteeringForce,
point, //used for storing temporary info
ClosestPoint; //holds the closest intersection point

//examine each feeler in turn
for (int flr=0; flr<m_Feelers.size(); ++flr)
{
//run through each wall checking for any intersection points
for (int w=0; w<walls.size(); ++w)
{
if (LineIntersection2D(m_pVehicle->Pos(),

m_Feelers[flr],
walls[w].From(),
walls[w].To(),
DistToThisIP,
point))

{
//is this the closest found so far? If so keep a record
if (DistToThisIP < DistToClosestIP)
{
DistToClosestIP = DistToThisIP;

ClosestWall = w;

ClosestPoint = point;
}

}
}//next wall

//if an intersection point has been detected, calculate a force
//that will direct the agent away
if (ClosestWall >=0)
{
//calculate by what distance the projected position of the agent
//will overshoot the wall
Vector2D OverShoot = m_Feelers[flr] - ClosestPoint;

//create a force in the direction of the wall normal, with a

How to Create Autonomously Moving Game Agents | 105

The Steering Behaviors

TLFeBOOK

//magnitude of the overshoot
SteeringForce = walls[ClosestWall].Normal() * OverShoot.Length();

}

}//next feeler

return SteeringForce;
}

I have found the three feeler approach to give good results, but it’s possible

to achieve reasonable performance with just one feeler that continuously

scans left and right in front of the vehicle. It all depends on how many pro-

cessor cycles you have to play with and how accurate you require the

behavior to be.

� NOTE If you are the impatient sort and have already looked at the source
code, you may have noticed that the final update function in the source is a little
more complicated than the basic update function listed earlier. This is because
many of the techniques I will be describing toward the end of this chapter
involve adding to, or even changing, this function. All the steering behaviors
listed over the next few pages, however, just use this basic skeleton.

Interpose
Interpose returns a steering force that moves a vehicle to the midpoint of

the imaginary line connecting two other agents (or points in space, or of an

agent and a point). A bodyguard taking a bullet for his employer or a soc-

cer player intercepting a pass are examples of this type of behavior.

Like pursuit, the vehicle must estimate where the two agents are going

to be located at a time T in the future. It

can then steer toward that position. But

how do we know what the best value of T

is to use? The answer is, we don’t, so we

make a calculated guess instead.

The first step in calculating this force

is to determine the midpoint of a line con-

necting the positions of the agents at the

current time step. The distance from this

point is computed and the value divided

by the vehicle’s maximum speed to give

the time required to travel the distance.

This is our T value. See Figure 3.11, top.

Using T, the agents’ positions are

extrapolated into the future. The midpoint

of these predicted positions is determined

and finally the vehicle uses the arrive

behavior to steer toward that point. See

Figure 3.11, bottom.

106 | Chapter 3

The Steering Behaviors

Figure 3.11. Predicting the inter-
pose point

TLFeBOOK

Here’s the listing:

Vector2D SteeringBehaviors::Interpose(const Vehicle* AgentA,
const Vehicle* AgentB)

{
//first we need to figure out where the two agents are going to be at
//time T in the future. This is approximated by determining the time
//taken to reach the midway point at the current time at max speed.
Vector2D MidPoint = (AgentA->Pos() + AgentB->Pos()) / 2.0;

double TimeToReachMidPoint = Vec2DDistance(m_pVehicle->Pos(), MidPoint) /
m_pVehicle->MaxSpeed();

//now we have T, we assume that agent A and agent B will continue on a
//straight trajectory and extrapolate to get their future positions
Vector2D APos = AgentA->Pos() + AgentA->Velocity() * TimeToReachMidPoint;
Vector2D BPos = AgentB->Pos() + AgentB->Velocity() * TimeToReachMidPoint;

//calculate the midpoint of these predicted positions
MidPoint = (APos + BPos) / 2.0;

//then steer to arrive at it
return Arrive(MidPoint, fast);

}

Note that arrive is called with fast deceleration, allowing the vehicle to

reach the target position as quickly as possible.

The demo for this behavior shows a red vehicle attempting to interpose

itself between two blue wandering vehicles.

Hide
Hide attempts to position a vehicle so that an obstacle is always between

itself and the agent — the hunter — it’s trying to hide from. You can use

this behavior not only for situations where you require an NPC to hide

from the player — like find cover when fired at — but also in situations

where you would like an NPC to sneak up on a player. For example, you

can create an NPC capable of stalking a player through a gloomy forest,

darting from tree to tree. Creepy!

The method I prefer to effect this behavior is as follows:

Step One. For each of the obstacles, a hiding spot is determined. See Fig-

ure 3.12.

How to Create Autonomously Moving Game Agents | 107

The Steering Behaviors

TLFeBOOK

These are calculated by the method GetHidingPosition, which looks like

this:

SVector2D SteeringBehaviors::GetHidingPosition(const SVector2D& posOb,
const double radiusOb,
const SVector2D& posTarget)

{
//calculate how far away the agent is to be from the chosen obstacle’s
//bounding radius
const double DistanceFromBoundary = 30.0;

double DistAway = radiusOb + DistanceFromBoundary;

//calculate the heading toward the object from the target
SVector2D ToOb = Vec2DNormalize(posOb - posTarget);

//scale it to size and add to the obstacle's position to get
//the hiding spot.
return (ToOb * DistAway) + posOb;

}

Given the position of a target and the position and radius of an obstacle,

this method calculates a position DistanceFromBoundary away from the

object’s bounding radius and directly opposite the target. It does this by

scaling the normalized “to obstacle” vector by the required distance away

from the center of the obstacle and then adding the result to the obstacle’s

position. The black dots in Figure 3.12 show the hiding spots returned by

this method for that example.

Step Two. The distance to each of these spots is determined. The vehicle

then uses the arrive behavior to steer toward the closest. If no appropriate

obstacles can be found, the vehicle evades the target.

108 | Chapter 3

The Steering Behaviors

Figure 3.12. Potential hiding spots

TLFeBOOK

Here’s how it’s done in code:

SVector2D SteeringBehaviors::Hide(const Vehicle* target,
vector<BaseGameEntity*>& obstacles)

{
double DistToClosest = MaxDouble
SVector2D BestHidingSpot;

std::vector<BaseGameEntity*>::iterator curOb = obstacles.begin();
while(curOb != obstacles.end())
{
//calculate the position of the hiding spot for this obstacle
SVector2D HidingSpot = GetHidingPosition((*curOb)->Pos(),

(*curOb)->BRadius(),
target->Pos());

//work in distance-squared space to find the closest hiding
//spot to the agent
double dist = Vec2DDistanceSq(HidingSpot, m_pVehicle->Pos());

if (dist < DistToClosest)
{
DistToClosest = dist;

BestHidingSpot = HidingSpot;
}

++curOb;

}//end while

//if no suitable obstacles found then evade the target
if (DistToClosest == MaxDouble)
{
return Evade(target);

}

//else use Arrive on the hiding spot
return Arrive(BestHidingSpot, fast);

}

The demo executable shows two vehicles hiding from a slower, wandering

vehicle.

There are a few modifications you can make to this algorithm:

1. You can allow the vehicle to hide only if the target is within its field

of view. This tends to produce unsatisfactory performance though,

because the vehicle starts to act like a child hiding from monsters

beneath the bed sheets. I’m sure you remember the feeling — the “if

you can’t see it, then it can’t see you” effect. It might work when

you’re a kid, but this sort of behavior just makes the vehicle look

dumb. This can be countered slightly though by adding in a time

effect so that the vehicle will hide if the target is visible or if it has

How to Create Autonomously Moving Game Agents | 109

The Steering Behaviors

TLFeBOOK

seen the target within the last n seconds. This gives it a sort of mem-

ory and produces reasonable-looking behavior.

2. The same as above, but this time the vehicle only tries to hide if the

vehicle can see the target and the target can see the vehicle.

3. It might be desirable to produce a force that steers a vehicle so that it

always favors hiding positions that are to the side or rear of the pur-

suer. This can be achieved easily using your friend the dot product to

bias the distances returned from GetHidingPosition.

4. At the beginning of any of the methods a check can be made to test if

the target is within a “threat distance” before proceeding with any fur-

ther calculations. If the target is not a threat, then the method can

return immediately with a zero vector.

Path Following
Path following creates a steering force that moves a vehicle along a series

of waypoints forming a path. Sometimes paths have a start and end point,

and other times they loop back around on themselves forming a never-

ending, closed path. See Figure 3.13.

You’ll find countless uses for using paths in your game. You can use them

to create agents that patrol important areas of a map, to enable units to tra-

verse difficult terrain, or to help racing cars navigate around a racetrack.

They are useful in most situations where an agent must visit a series of

checkpoints.

The paths the vehicles described in this chapter follow are described by

a std::list of Vector2Ds. In addition, the vehicle also needs to know what

the current waypoint is and whether it is a closed path or not to enable it to

take the appropriate action when it reaches the final waypoint. If it is a

closed path, it should head back to the first waypoint in the list and start all

110 | Chapter 3

The Steering Behaviors

Figure 3.13. Different types of paths

TLFeBOOK

over again. If it’s an open path, the vehicle should just decelerate to a stop

(arrive) over the final waypoint.

Path is a class that looks after all these details. I’m not going to list it

here but you may like to examine it in your IDE. You can find it in the file

Path.h.

The simplest way of following a path is to set the current waypoint to

the first in the list, steer toward that using seek until the vehicle comes

within a target distance of it, then grab the next waypoint and seek to that,

and so on, until the current waypoint is the last waypoint in the list. When

this happens the vehicle should either arrive at the current waypoint, or, if

the path is a closed loop, the current waypoint should be set to the first in

the list again, and the vehicle just keeps on seeking. Here’s the code for

path following:

SVector2D SteeringBehaviors::FollowPath()
{
//move to next target if close enough to current target (working in
//distance squared space)
if(Vec2DDistanceSq(m_pPath->CurrentWaypoint(), m_pVehicle->Pos()) <

m_WaypointSeekDistSq)
{
m_pPath->SetNextWaypoint();

}

if (!m_pPath->Finished())
{
return Seek(m_pPath->CurrentWaypoint());

}

else
{
return Arrive(m_pPath->CurrentWaypoint(), normal);

}
}

You have to be very careful when implementing path following. The

behavior is very sensitive to the max steering force/max speed ratio and

also the variable m_WaypointSeekDistSq. The demo executable for this

behavior allows you to alter these values to see what effect they have. As

you will discover, it’s easy to create behavior that is sloppy. How tight you

need the path following to be depends entirely on your game environment.

If you have a game with lots of gloomy tight corridors, then you’re (proba-

bly) going to need stricter path following than a game set in the Sahara.

Offset Pursuit
Offset pursuit calculates the steering force required to keep a vehicle posi-

tioned at a specified offset from a target vehicle. This is particularly useful

for creating formations. When you watch an air display, such as the British

Red Arrows, many of the spectacular maneuvers require that the aircraft

How to Create Autonomously Moving Game Agents | 111

The Steering Behaviors

TLFeBOOK

remain in the same relative positions to the lead aircraft. See Figure 3.14.

This is the sort of behavior we want to emulate.

The offset is always defined in “leader” space, so the first thing to do when

calculating this steering force is to determine the offset’s position in world

space. After that the function proceeds similar to pursuit: A future position

for the offset is predicted and the vehicle arrives at that position.

SVector2D SteeringBehaviors::OffsetPursuit(const Vehicle* leader,
const SVector2D offset)

{

//calculate the offset’s position in world space
SVector2D WorldOffsetPos = PointToWorldSpace(offset,

leader->Heading(),
leader->Side(),
leader->Pos());

SVector2D ToOffset = WorldOffsetPos - m_pVehicle->Pos();

//the look-ahead time is proportional to the distance between the leader
//and the pursuer; and is inversely proportional to the sum of both
//agents’ velocities
double LookAheadTime = ToOffset.Length() /

(m_pVehicle->MaxSpeed() + leader->Speed());

//now arrive at the predicted future position of the offset
return Arrive(WorldOffsetPos + leader->Velocity() * LookAheadTime, fast);

}

Arrive is used instead of seek as it gives far smoother motion and isn’t so

reliant on the max speed and max force settings of the vehicles. Seek can

give some rather bizarre results at times — orderly formations can turn into

what looks like a swarm of bees attacking the formation leader!

112 | Chapter 3

The Steering Behaviors

Figure 3.14. Offset pursuit. The leader is shown in dark gray.

TLFeBOOK

Offset pursuit is useful for all kinds of situations. Here are a few:

� Marking an opponent in a sports simulation

� Docking with a spaceship

� Shadowing an aircraft

� Implementing battle formations

The demo executable for offset pursuit shows three smaller vehicles

attempting to remain at offsets to the larger lead vehicle. The lead vehicle

is using arrive to follow the crosshair (click the left mouse button to posi-

tion the crosshair).

Group Behaviors

Group behaviors are steering behaviors that take into consideration some

or all of the other vehicles in the game world. The flocking behavior I

described at the beginning of this chapter is a good example of a group

behavior. In fact, flocking is a combination of three group behaviors —

cohesion, separation, and alignment — all working together. We’ll take a

look at these specific behaviors in detail shortly, but first let me show you

how a group is defined.

To determine the steering force for a group behavior, a vehicle will con-

sider all other vehicles within a circular area of predefined size — known

as the neighborhood radius — centered on the vehicle. Figure 3.15 should

help clarify. The white vehicle is the steering agent and the gray circle

shows the extent of its neighborhood. Consequently, all the vehicles shown

in black are considered to be its neighbors and the vehicles shown in gray

are not.

Before a steering force can be calculated, a vehicle’s neighbors must be

determined and either stored in a container or tagged ready for processing.

In the demo code for this chapter, the neighboring vehicles are tagged

How to Create Autonomously Moving Game Agents | 113

Group Behaviors

Figure 3.15. The neighborhood radius

TLFeBOOK

using the BaseGameEntity::Tag method. This is done by the TagNeighbors

function template. Here’s the code:

template <class T, class conT>
void TagNeighbors(const T* entity, conT& ContainerOfEntities, double radius)
{
//iterate through all entities checking for range
for (typename conT::iterator curEntity = ContainerOfEntities.begin();

curEntity != ContainerOfEntities.end();
++curEntity)

{
//first clear any current tag
(*curEntity)->UnTag();

Vector2D to = (*curEntity)->Pos() - entity->Pos();

//the bounding radius of the other is taken into account by adding it
//to the range
double range = radius + (*curEntity)->BRadius();

//if entity within range, tag for further consideration. (working in
//distance-squared space to avoid sqrts)
if (((*curEntity) != entity) && (to.LengthSq() < range*range))
{
(*curEntity)->Tag();

}

}//next entity
}

Most of the group behaviors utilize a similar neighborhood radius, so we

can save a little time by calling this method only once prior to a call to any

of the group behaviors.

if (On(separation) || On(alignment) || On(cohesion))
{
TagNeighbors(m_pVehicle, m_pVehicle->World()->Agents(), ViewDistance);

}

� TIP You can pep up the realism slightly for group behaviors by adding a
field-of-view constraint to your agent. For example you can restrict the vehicles
included in the neighboring region by only tagging those that are within, say,
270 degrees of the heading of the steering agent. You can implement this easily
by testing against the dot product of the steering agent’s heading and the vector
to the potential neighbor.

It’s even possible to adjust an agent’s FOV dynamically and make it into a
feature of the AI. For example, in a war game a soldier’s FOV may be detrimen-
tally affected by its fatigue, thereby affecting its ability to perceive its
environment. I don’t think this idea has been used in a commercial game but
it’s certainly food for thought.

Now that you know how a group is defined let’s take a look at some of the

behaviors that operate on them.

114 | Chapter 3

Group Behaviors

TLFeBOOK

Separation
Separation creates a force that steers a vehicle away from those in its

neighborhood region. When applied to a number of vehicles, they will

spread out, trying to maximize their distance from every other vehicle. See

Figure 3.16, top.

This is an easy behavior to implement. Prior to calling separation, all the

agents situated within a vehicle’s neighborhood are tagged. Separation

then iterates through the tagged vehicles, examining each one. The vector

to each vehicle under consideration is normalized, divided by the distance

to the neighbor, and added to the steering force.

Vector2D SteeringBehaviors::Separation(const std::vector<Vehicle*>& neighbors)
{
Vector2D SteeringForce;

for (int a=0; a<neighbors.size(); ++a)
{
//make sure this agent isn't included in the calculations and that
//the agent being examined is close enough.
if((neighbors[a] != m_pVehicle) && neighbors[a]->IsTagged())
{
Vector2D ToAgent = m_pVehicle->Pos() - neighbors[a]->Pos();

//scale the force inversely proportional to the agent's distance
//from its neighbor.
SteeringForce += Vec2DNormalize(ToAgent)/ToAgent.Length();

How to Create Autonomously Moving Game Agents | 115

Group Behaviors

Figure 3.16. The separation, alignment, and cohesion group behaviors

TLFeBOOK

}
}

return SteeringForce;
}

Alignment
Alignment attempts to keep a vehicle’s heading aligned with its neighbors.

See Figure 3.16, middle. The force is calculated by first iterating through

all the neighbors and averaging their heading vectors. This value is the

desired heading, so we just subtract the vehicle’s heading to get the steer-

ing force.

Vector2D SteeringBehaviors::Alignment(const std::vector<Vehicle*>& neighbors)
{
//used to record the average heading of the neighbors
Vector2D AverageHeading;

//used to count the number of vehicles in the neighborhood
int NeighborCount = 0

//iterate through all the tagged vehicles and sum their heading vectors
for (int a=0; a<neighbors.size(); ++a)
{
//make sure *this* agent isn't included in the calculations and that
//the agent being examined is close enough
if((neighbors[a] != m_pVehicle) && neighbors[a]->IsTagged)
{
AverageHeading += neighbors[a]->Heading();

++NeighborCount;
}

}

//if the neighborhood contained one or more vehicles, average their
//heading vectors.
if (NeighborCount > 0)
{
AverageHeading /= (double)NeighborCount;

AverageHeading -= m_pVehicle->Heading();
}

return AverageHeading;
}

Cars moving along roads demonstrate alignment type behavior. They also

demonstrate separation as they try to keep a minimum distance from each

other.

116 | Chapter 3

Group Behaviors

TLFeBOOK

Cohesion
Cohesion produces a steering force that moves a vehicle toward the center

of mass of its neighbors. See Figure 3.16, bottom. A sheep running after its

flock is demonstrating cohesive behavior. Use this force to keep a group of

vehicles together.

This method proceeds similarly to the last, except this time we calculate

the average of the position vectors of the neighbors. This gives us the cen-

ter of mass of the neighbors — the place the vehicle wants to get to — so it

seeks to that position.

Vector2D SteeringBehaviors::Cohesion(const std::vector<Vehicle*>& neighbors)
{
//first find the center of mass of all the agents
Vector2D CenterOfMass, SteeringForce;

int NeighborCount = 0;

//iterate through the neighbors and sum up all the position vectors
for (int a=0; a<neighbors.size(); ++a)
{
//make sure *this* agent isn't included in the calculations and that
//the agent being examined is a neighbor
if((neighbors[a] != m_pVehicle) && neighbors[a]->IsTagged())
{
CenterOfMass += neighbors[a]->Pos();

++NeighborCount;
}

}

if (NeighborCount > 0)
{
//the center of mass is the average of the sum of positions
CenterOfMass /= (double)NeighborCount;

//now seek toward that position
SteeringForce = Seek(CenterOfMass);

}

return SteeringForce;
}

You might be a little disappointed that I haven’t included demos for separa-

tion, cohesion, and alignment. Well, there’s a reason for that: Like Itchy

and Scratchy, they are not particularly interesting on their own; they are

much better appreciated when they are combined, which takes us nicely

into flocking.

How to Create Autonomously Moving Game Agents | 117

Group Behaviors

TLFeBOOK

Flocking
Flocking is the behavior I mentioned at the beginning of this chapter —

the one I saw on the BBC documentary. It’s a beautiful demonstration of

what has become known as emergent behavior. Emergent behavior is

behavior that looks complex and/or purposeful to the observer but is actu-

ally derived spontaneously from fairly simple rules. The lower-level

entities following the rules have no idea of the bigger picture; they are only

aware of themselves and maybe a few of their neighbors.

One good example of emergence is an experiment undertaken by Chris

Melhuish and Owen Holland at the University of the West of England.

Melhuish and Holland are interested in stigmergy, the field of science

partly occupied with emergent behavior in social insects like ants, termites,

and bees. They became interested in the way ants gather their dead, eggs,

and other material into piles, and specifically the ant Leptothorax, because

it lives among the cracks in rocks and operates, for all intents and purposes,

in 2D… just like a wheeled robot. When observing Leptothorax in the lab-

oratory, bustling about in their simulated crack — two sheets of glass —

they noticed the ants had a tendency to push small granules of rock mate-

rial together into clusters and wondered if they could design robots capable

of doing the same.

After a little sweat and toil they managed to create robots operating on

very simple rules, capable of gathering randomly scattered Frisbees into

clusters. The robots had no knowledge of each other and didn’t know what

a cluster, or even a Frisbee, was. They couldn’t even see the Frisbees. They

could only push Frisbees using a U-shaped arm situated in front of them.

So how does the clustering behavior happen? Well, when the robots are

switched on, they wander about until they bump into a Frisbee. A single

Frisbee doesn’t change a robot’s behavior. However, when a Frisbee-

pushing robot bumps into a second Frisbee, it immediately leaves the two

Frisbees where they are, backs up a little, rotates by a random amount, and

then wanders off again. Using just these simple rules and a little time, a

few robots will push all the Frisbees into a few large clusters. Just like the

ants.

Anyhow, let me abandon all this talk of Frisbees and get back to the

flocking. Flocking, as originally described by Reynolds, is a combination

of the three previously described group behaviors: separation, alignment,

and cohesion. This works okay but, because of the limited view distance of

a vehicle, it’s possible for an agent to become isolated from its flock. If this

happens, it will just sit still and do nothing. To prevent this from happen-

ing, I prefer to add in the wander behavior too. This way, all the agents

keep moving all the time.

Tweaking the magnitudes of each of the contributing behaviors will give

you different effects such as shoals of fish, loose swirling flocks of birds,

118 | Chapter 3

Group Behaviors

TLFeBOOK

or bustling close-knit herds of sheep. I’ve even managed to produce dense

flocks of hundreds of tiny particles that are reminiscent of jellyfish. As this

behavior is better seen than described, I recommend you open up the demo

executable and play around for a while. Beware though — flocking is

addictive! (Maybe that’s why some animals like to do it so much…) You

can adjust the influence of each behavior with the “A/Z,” “S/X,” and

“D/C” keys. In addition you can view the neighbors of one of the agents by

pressing the “G” key.

� INTERESTING FACT Steering behaviors are often used to create special
effects for films. The first film to use the flocking behavior was Batman Returns,
where you can see flocks of bats and herds of penguins. The most recent films
to use steering behaviors are The Lord of the Rings trilogy, directed by Peter
Jackson. The movement of the orc armies in those films is created using steering
behaviors via a piece of software called Massive.

Now that you’ve seen the benefits, let’s take a look at exactly how steering

behaviors can be combined.

Combining Steering Behaviors

Often you will be using a combination of steering behaviors to get the

behavior you desire. Very rarely will you only use one behavior in isola-

tion. For example, you might like to implement an FPS bot that will run

from A to B (path following) while avoiding any other bots (separation)

and walls (wall avoidance) that may try to impede its progress (see Chap-

ter 7, “Raven: An Overview”). Or you might want the sheep you’ve

implemented as a food resource in your RTS game to flock together (flock-

ing) while simultaneously wandering around the environment (wander),

avoiding trees (obstacle avoidance), and scattering (evade) whenever a

human or dog comes near.

All the steering behaviors described in this chapter are methods of one

class: SteeringBehaviors. A Vehicle owns an instance of this class and

activates/deactivates the various behaviors by switching them on and off

using accessor methods. For example, to set up one of the sheep for the sit-

uation described in the previous paragraph, you may do something like this

(assuming a dog-like agent has already been created):

Vehicle* Sheep = new Vehicle();

Sheep->Steering()->SeparationOn();
Sheep->Steering()->AlignmentOn();
Sheep->Steering()->CohesionOn();
Sheep->Steering()->ObstacleAvoidanceOn();
Sheep->Steering()->WanderOn();
Sheep->Steering()->EvadeOn(Dog);

And from now on the sheep will look after itself! (You may have to shear it

in the summer though.)

How to Create Autonomously Moving Game Agents | 119

Combining Steering Behaviors

TLFeBOOK

� NOTE Because of the number of demos I‘ve created for this chapter, the
SteeringBehaviors class is enormous and contains much more code than
would ever get used in a single project. Very rarely will you use more than a
handful of behaviors for each game you design. Therefore, whenever I use
steering behaviors in later chapters, I will use a cut-down version of the
SteeringBehaviors class, custom made for the task at hand. I suggest you do
the same. (Another approach is to define a separate class for each behavior and
add them to a std::container as you need them.)

Inside the Vehicle::Update method you will see this line:

SVector2D SteeringForce = m_pSteering->Calculate();

This call determines the resultant force from all the active behaviors. This

is not simply a sum of all the steering forces though. Don’t forget that the

vehicle is constrained by a maximum steering force, so this sum must be

truncated in some way to make sure its magnitude never exceeds the limit.

There are a number of ways you can do this. It’s impossible to say if one

method is better than another because it depends on what behaviors you

need to work with and what CPU resources you have to spare. They all

have their pros and cons. I strongly recommend you experiment for

yourself.

Weighted Truncated Sum
The simplest approach is to multiply each steering behavior with a weight,

sum them all together, and then truncate the result to the maximum allow-

able steering force. Like this:

SVector2D Calculate()
{
SVector2D SteeringForce;

SteeringForce += Wander() * dWanderAmount;
SteeringForce += ObstacleAvoidance() * dObstacleAvoidanceAmount;
SteeringForce += Separation() * dSeparationAmount;

return SteeringForce.Truncate(MAX_STEERING_FORCE);
}

This can work fine, but the trade-off is that it comes with a few problems.

The first problem is that because every active behavior is calculated every

time step, this is a very costly method to process. Additionally, the behav-

ior weights can be very difficult to tweak. (Did I say difficult? Sorry, I

mean very difficult!�) The biggest problem, however, happens with con-

flicting forces — a common scenario is where a vehicle is backed up

against a wall by several other vehicles. In this example, the separating

forces from the neighboring vehicles can be greater than the repulsive force

from the wall and the vehicle can end up being pushed through the wall

boundary. This is almost certainly not going to be favorable. Sure you can

make the weights for the wall avoidance huge, but then your vehicle may

behave strangely next time it finds itself alone and next to a wall. Like I

120 | Chapter 3

Combining Steering Behaviors

TLFeBOOK

mentioned, tweaking the parameters for a weighted sum can be quite a jug-

gling act!

Weighted Truncated Running Sum with Prioritization
What a mouthful! This is the method used to determine the steering forces

for all the examples used in this book, chosen mainly because it gives a

good compromise between speed and accuracy. This method involves cal-

culating a prioritized weighted running total that is truncated after the

addition of each force to make sure the magnitude of the steering force

does not exceed the maximum available.

The steering behaviors are prioritized since some behaviors can be con-

sidered much more important than others. Let’s say a vehicle is using the

behaviors separation, alignment, cohesion, wall avoidance, and obstacle

avoidance. The wall avoidance and obstacle avoidance behaviors should

be given priority over the others as the vehicle should try not to intersect a

wall or an obstacle — it’s more important for a vehicle to avoid a wall than

it is for it to align itself with another vehicle. If what it takes to avoid a wall

is higgledy-piggledy alignment, then that’s probably going to be okay and

certainly preferable to colliding with a wall. It’s also more important for

vehicles to maintain some separation from each other than it is for them to

align. But it’s probably less important for vehicles to maintain separation

than avoid walls. See where I’m going with this? Each behavior is priori-

tized and processed in order. The behaviors with the highest priority are

processed first, the ones with the lowest, last.

In addition to the prioritization, this method iterates through every active

behavior, summing up the forces (with weighting) as it goes. Immediately

after the calculation of each new behavior, the resultant force, together with

the running total, is dispatched to a method called AccumulateForce. This

function first determines how much of the maximum available steering

force is remaining, and then one of the following happens:

� If there is a surplus remaining, the new force is added to the running

total.

� If there is no surplus remaining, the method returns false. When this

happens, Calculate returns the current value of m_vSteeringForce

immediately and without considering any further active behaviors.

� If there is still some steering force available, but the magnitude

remaining is less than the magnitude of the new force, the new force

is truncated to the remaining magnitude before it is added.

Here is a snippet of code from the SteeringBehaviors::Calculate method

to help you better understand what I’m talking about.

SVector2D SteeringBehaviors::Calculate()
{
//reset the force.

How to Create Autonomously Moving Game Agents | 121

Combining Steering Behaviors

TLFeBOOK

m_vSteeringForce.Zero();

SVector2D force;
if (On(wall_avoidance))
{
force = WallAvoidance(m_pVehicle->World()->Walls()) *

m_dMultWallAvoidance;

if (!AccumulateForce(m_vSteeringForce, force)) return m_vSteeringForce;
}

if (On(obstacle_avoidance))
{
force = ObstacleAvoidance(m_pVehicle->World()->Obstacles()) *

m_dMultObstacleAvoidance;

if (!AccumulateForce(m_vSteeringForce, force)) return m_vSteeringForce;
}

if (On(separation))
{
force = Separation(m_pVehicle->World()->Agents()) *

m_dMultSeparation;

if (!AccumulateForce(m_vSteeringForce, force)) return m_vSteeringForce;
}

/* EXTRANEOUS STEERING FORCES OMITTED */
return m_vSteeringForce;

}

This doesn’t show all the steering forces, just a few so you can get the gen-

eral idea. To see the list of all behaviors and the order of their

prioritization, check out the SteeringBehaviors::Calculate method in your

IDE. The AccumulateForce method may also be better explained in code.

Take your time looking over this method and make sure you understand

what it’s doing.

bool SteeringBehaviors::AccumulateForce(Vector2D &RunningTot,
Vector2D ForceToAdd)

{

//calculate how much steering force the vehicle has used so far
double MagnitudeSoFar = RunningTot.Length();

//calculate how much steering force remains to be used by this vehicle
double MagnitudeRemaining = m_pVehicle->MaxForce() - MagnitudeSoFar;

//return false if there is no more force left to use
if (MagnitudeRemaining <= 0.0) return false;

//calculate the magnitude of the force we want to add
double MagnitudeToAdd = ForceToAdd.Length();

//if the magnitude of the sum of ForceToAdd and the running total

122 | Chapter 3

Combining Steering Behaviors

TLFeBOOK

//does not exceed the maximum force available to this vehicle, just
//add together. Otherwise add as much of the ForceToAdd vector as
//possible without going over the max.
if (MagnitudeToAdd < MagnitudeRemaining)
{
RunningTot += ForceToAdd;

}

else
{

//add it to the steering force
RunningTot += (Vec2DNormalize(ForceToAdd) * MagnitudeRemaining);

}

return true;
}

Prioritized Dithering
In his paper, Reynolds suggests a method of force combination he calls pri-

oritized dithering. When used, this method checks to see if the first priority

behavior is going to be evaluated this simulation step, dependent on a pre-

set probability. If it is and the result is non-zero, the method returns the

calculated force and no other active behaviors are considered. If the result

is zero or if that behavior has been skipped over due to its probability of

being evaluated, the next priority behavior is considered and so on, for all

the active behaviors. This is a little snippet of code to help you understand

the concept:

SVector2D SteeringBehaviors::CalculateDithered()
{
//reset the steering force
m_vSteeringForce.Zero();

//the behavior probabilities
const double prWallAvoidance = 0.9;
const double prObstacleAvoidance = 0.9;
const double prSeparation = 0.8;
const double prAlignment = 0.5;
const double prCohesion = 0.5;
const double prWander = 0.8;

if (On(wall_avoidance) && RandFloat() > prWallAvoidance)
{
m_vSteeringForce = WallAvoidance(m_pVehicle->World()->Walls()) *

m_dWeightWallAvoidance / prWallAvoidance;

if (!m_vSteeringForce.IsZero())
{
m_vSteeringForce.Truncate(m_pVehicle->MaxForce());

return m_vSteeringForce;

How to Create Autonomously Moving Game Agents | 123

Combining Steering Behaviors

TLFeBOOK

}
}

if (On(obstacle_avoidance) && RandFloat() > prObstacleAvoidance)
{
m_vSteeringForce += ObstacleAvoidance(m_pVehicle->World()->Obstacles()) *

m_dWeightObstacleAvoidance / prObstacleAvoidance;

if (!m_vSteeringForce.IsZero())
{
m_vSteeringForce.Truncate(m_pVehicle->MaxForce());

return m_vSteeringForce;
}

}

if (On(separation) && RandFloat() > prSeparation)
{
m_vSteeringForce += Separation(m_pVehicle->World()->Agents()) *

m_dWeightSeparation / prSeparation;

if (!m_vSteeringForce.IsZero())
{
m_vSteeringForce.Truncate(m_pVehicle->MaxForce());

return m_vSteeringForce;
}

}

/* ETC ETC */

This method requires far less CPU time than the others, but at the cost of

accuracy. Additionally, you will have to tweak the probabilities a fair bit

before you get the behavior just as you want it. Nevertheless, if you are low

on resources and it’s not imperative your agent’s movements are precise,

this method is certainly worth experimenting with. You can see the effect

of each of the three summing methods I’ve described by running the demo

Big Shoal/Big Shoal.exe. This demonstration shows a shoal of 300 small

vehicles (think fish) being wary of a single larger wandering vehicle (think

shark). You can switch between the various summing methods to observe

how they affect the frame rate and accuracy of the behaviors. You can also

add walls or obstacles to the environment to see how the agents handle

those using the different summing methods.

Ensuring Zero Overlap

Often when combining behaviors, the vehicles will occasionally overlap

one another. The separation steering force alone is not enough to prevent

this from happening. Most of the time this is okay — a little overlap will

go unnoticed by the player — but sometimes it’s necessary to ensure that

whatever happens, vehicles cannot pass through one another’s bounding

124 | Chapter 3

Ensuring Zero Overlap

TLFeBOOK

radii. This can be prevented with the use of a non-penetration constraint.

This is a function that tests for overlap. If there is any, the vehicles are

moved apart in a direction away from the point of contact (and without

regard to their mass, velocity, or any other physical constraints). See Figure

3.17.

The constraint is implemented as a function template and can be used for

any objects derived from a BaseGameEntity. You can find the code in the

EntityFunctionTemplates.h header and it looks like this:

template <class T, class conT>
void EnforceNonPenetrationConstraint(const T& entity,

const conT& ContainerOfEntities)
{
//iterate through all entities checking for any overlap of bounding radii
for (typename conT::const_iterator curEntity =ContainerOfEntities.begin();

curEntity != ContainerOfEntities.end();
++curEntity)

{
//make sure we don't check against the individual
if (*curEntity == entity) continue;

//calculate the distance between the positions of the entities
Vector2D ToEntity = entity->Pos() - (*curEntity)->Pos();

double DistFromEachOther = ToEntity.Length();

//if this distance is smaller than the sum of their radii then this
//entity must be moved away in the direction parallel to the
//ToEntity vector
double AmountOfOverLap = (*curEntity)->BRadius() + entity->BRadius() -

DistFromEachOther;
if (AmountOfOverLap >= 0)
{
//move the entity a distance away equivalent to the amount of overlap.
entity->SetPos(entity->Pos() + (ToEntity/DistFromEachOther) *

AmountOfOverLap);
}

}//next entity
}

How to Create Autonomously Moving Game Agents | 125

Ensuring Zero Overlap

Figure 3.17. The non-penetration constraint in action

TLFeBOOK

You can watch the non-penetration constraint in action by running the

craftily named Non Penetration Constraint.exe demo. Try altering the

amount of separation to see what effect it has on the vehicles.

� NOTE For large numbers of densely packed vehicles such as you would see
in big congested flocks, the non-penetration constraint will fail occasionally and
there will be some overlap. Fortunately, this is not usually a problem as the
overlap is difficult to see with the human eye.

Coping with Lots of Vehicles: Spatial Partitioning

When you have many interacting vehicles, it becomes increasingly ineffi-

cient to tag neighboring entities by comparing each one with every other

one. In algorithm theory, something called Big O notation is used to

express the relationship of time taken to the number of objects being pro-

cessed. The all-pairs method we have been using to search for neighboring

vehicles can be said to work in O(n2) time. This means that as the number

of vehicles grows, the time taken to compare them increases in proportion

to the square of their number. You can easily see how the time taken will

escalate rapidly. If processing one object takes 10 seconds, then processing

10 objects will take 100 seconds. Not good, if you want a flock of several

hundred birds!

Large speed improvements can be made by partitioning the world space.

There are many different techniques to choose from. You’ve probably

heard of many of them — BSP trees, quad-trees, oct-trees, etc. — and may

even have used them, in which case you’ll be familiar with their advan-

tages. The method I use here is called cell-space partitioning, sometimes

called bin-space partitioning (that’s not short for binary space partitioning

by the way; in this case “bin” really means bin). With this method, 2D

space is divided up into a number of cells (or bins). Each cell contains a list

of pointers to all the entities it contains. This is updated (in an entity’s

update method) every time an entity changes position. If an entity moves

into a new cell, it is removed from its old cell’s list and added to the current

one.

This way, instead of having to test every vehicle against every other, we

can just determine which cells lie within a vehicle’s neighborhood and test

against the vehicles contained in those cells. Here is how it’s done step by

step:

1. First of all, an entity’s bounding radius is approximated with a box.

See Figure 3.18.

2. The cells that intersect with this box are tested to see if they contain

any entities.

126 | Chapter 3

Coping with Lots of Vehicles: Spatial Partitioning

TLFeBOOK

3. All the entities contained within the cells from step 2 are examined to

see if they are positioned within the neighborhood radius. If they are,

they are added to the neighborhood list.

� 3D NOTE If you are working in 3D, simply make the cells cubes and use a
sphere as the neighborhood region.

If entities maintain a minimum separation distance from each other, then

the number of entities each cell can contain is finite and cell space parti-

tioning will operate in O(n) time. This means the time taken to process the

algorithm is directly proportional to the number of objects it’s operating on.

If the number of objects is doubled, the time taken is only doubled and not

squared as with O(n2) algorithms. This implies the advantage you gain

using space partitioning over the standard all-pairs technique is dependent

on how many agents you have moving around. For small numbers, say less

than fifty, there is no real advantage; but for large numbers, cell-space par-

titioning can be much faster. Even if the entities do not maintain a

minimum separation distance and there is occasional overlap, on average

the algorithm will perform much better than O(n2).

I have implemented cell-space partitioning as a class template:

CellSpacePartition. This class uses another class template, Cell, to define

the cell structure.

template <class entity>
struct Cell
{
//all the entities inhabiting this cell
std::list<entity> Members;

//the cell's bounding box (it's inverted because the Windows' default
//coordinate system has a y-axis that increases as it descends)
InvertedAABBox2D BBox;

How to Create Autonomously Moving Game Agents | 127

Coping with Lots of Vehicles: Spatial Partitioning

Figure 3.18. Cell-space partitioning. The circled vehicles are those within the white
vehicle’s neighborhood region.

TLFeBOOK

Cell(Vector2D topleft,
Vector2D botright):BBox(InvertedAABBox2D(topleft, botright))

{}
};

A Cell is a very simple structure. It contains an instance of a bounding box

class, which defines its extents, and a list of pointers to all those entities

that are situated within this bounding area.

The CellSpacePartition class definition is as follows:

template <class entity>
class CellSpacePartition
{
private:

//the required number of cells in the space
std::vector<Cell<entity> > m_Cells;

//this is used to store any valid neighbors when an agent searches
//its neighboring space
std::vector<entity> m_Neighbors;

//this iterator will be used by the methods next and begin to traverse
//through the above vector of neighbors
std::vector<entity>::iterator m_curNeighbor;

//the width and height of the world space the entities inhabit
double m_dSpaceWidth;
double m_dSpaceHeight;

//the number of cells the space is going to be divided into
int m_iNumCellsX;
int m_iNumCellsY;

double m_dCellSizeX;
double m_dCellSizeY;

//given a position in the game space, this method determines the
//relevant cell's index
inline int PositionToIndex(const Vector2D& pos)const;

public:

CellSpacePartition(double width, //width of the environment
double height, //height ...
int cellsX, //number of cells horizontally
int cellsY, //number of cells vertically
int MaxEntitys); //maximum number of entities to add

//adds entities to the class by allocating them to the appropriate cell
inline void AddEntity(const entity& ent);

//update an entity's cell by calling this from your entity's Update method

128 | Chapter 3

Coping with Lots of Vehicles: Spatial Partitioning

TLFeBOOK

inline void UpdateEntity(const entity& ent, Vector2D OldPos);

//this method calculates all a target's neighbors and stores them in
//the neighbor vector. After you have called this method use the begin,
//next, and end methods to iterate through the vector.
inline void CalculateNeighbors(Vector2D TargetPos, double QueryRadius);

//returns a reference to the entity at the front of the neighbor vector
inline entity& begin();

//this returns the next entity in the neighbor vector
inline entity& next();

//returns true if the end of the vector is found (a zero value marks the end)
inline bool end();

//empties the cells of entities
void EmptyCells();

};

The class initializes m_Neighbors to have a maximum size equal to the total

number of entities in the world. The iterator methods begin, next, and end

and the CalculateNeighbors method manually keep track of valid elements

inside this vector. This is to prevent the slowdown associated with the

memory allocation and deallocation costs of repeatedly calling std::vec-

tor::clear() and std::vector::push_back() many times a second. Instead,

previous values are simply overwritten and a zero value is used to mark the

end of the vector.

Here is the listing for the CalculateNeighbors method. Notice how it fol-

lows the steps described earlier to determine a vehicle’s neighbors.

template<class entity>
void CellSpacePartition<entity>::CalculateNeighbors(Vector2D TargetPos,

double QueryRadius)
{
//create an iterator and set it to the beginning of the neighbor list
std::list<entity>::iterator curNbor = m_Neighbors.begin();

//create the query box that is the bounding box of the target's query
//area
InvertedAABBox2D QueryBox(TargetPos - Vector2D(QueryRadius, QueryRadius),

TargetPos + Vector2D(QueryRadius, QueryRadius));

//iterate through each cell and test to see if its bounding box overlaps
//with the query box. If it does and it also contains entities then
//make further proximity tests.
std::vector<Cell<entity> >::iterator curCell;
for (curCell=m_Cells.begin(); curCell!=m_Cells.end(); ++curCell)
{
//test to see if this cell contains members and if it overlaps the
//query box
if (curCell->pBBox->isOverlappedWith(QueryBox) &&

!curCell->Members.empty())
{

How to Create Autonomously Moving Game Agents | 129

Coping with Lots of Vehicles: Spatial Partitioning

TLFeBOOK

//add any entities found within query radius to the neighbor list
std::list<entity>::iterator it = curCell->Members.begin();
for (it; it!=curCell->Members.end(); ++it)
{
if (Vec2DDistanceSq((*it)->Pos(), TargetPos) <

QueryRadius*QueryRadius)
{
*curNbor++ = *it;

}
}

}
}//next cell

//mark the end of the list with a zero.
*curNbor = 0;

}

You can find the full implementation of this class in Common/misc/

CellSpacePartition.h. I have added cell space partitioning to the demo

Big_Shoal.exe. It’s now called Another_Big_Shoal.exe. You can toggle the

partitioning on and off and see the difference it makes to the frame rate.

There is also an option to view how the space is divided (default is 7 x 7

cells) and to see the query box and neighborhood radius of one of the

agents.

� TIP When applying the steering force to some vehicle types it can be useful to
resolve the steering vector into forward and side components. For a car, for
example, this would be analogous to creating the throttle and steering forces,
respectively. To this end, you will find the methods ForwardComponent and
SideComponent in the 2D SteeringBehaviors class used in this chapter’s
accompanying project file.

Smoothing

When playing with the demos, you may have noticed that sometimes a

vehicle can twitch or jitter slightly when it finds itself in a situation with

conflicting responses from different behaviors. For example, if you run one

of the Big Shoal demos and switch the obstacles and walls on, you will see

that sometimes when the “shark” agent approaches a wall or an obstacle,

its nose shudders or trembles a little. This is because in one update step the

obstacle avoidance behavior returns a steering force away from the obsta-

cle but in the next update step there is no threat from the obstacle, so one of

the agent’s other active behaviors may return a steering force pulling its

heading back toward the obstruction, and so on, creating unwanted oscilla-

tions in the vehicle’s heading. Figure 3.19 shows how these oscillations can

be started with just two conflicting behaviors: obstacle avoidance and

seek.

130 | Chapter 3

Smoothing

TLFeBOOK

This shakiness is usually not too noticeable. Occasionally though, there

will be times when it will be preferable for the shaking not to occur. So

how do you stop it? Well, as the vehicle’s velocity is always aligned with

its heading, stopping the shaking is not trivial. To negotiate the scenario

given in Figure 3.19 successfully and smoothly, the vehicle needs to be

able to foresee the conflict ahead of time and change behavior accordingly.

Although this can be done, the solution can require a lot of calculation and

additional baggage. A simple alternative suggested by Robin Green of

Sony is to decouple the heading from the velocity vector and to average its

value over several update steps. While this solution isn’t perfect, it pro-

duces adequate results at low cost (relative to any other solution I know

about). To facilitate this, another member variable is added to the Vehicle

class: m_vSmoothedHeading. This vector records the average of a vehicle’s

heading vector and is updated each simulation step (in Vehicle::Update),

using a call to an instance of a Smoother — a class that samples a value

over a range and returns the average. This is what the call looks like:

if (SmoothingIsOn())
{
m_vSmoothedHeading = m_pHeadingSmoother->Update(Heading());

}

This smoothed heading vector is used by the world transform function in

the render call to transform a vehicle’s vertices to the screen. The number

of update steps the Smoother uses to calculate the average is set in

How to Create Autonomously Moving Game Agents | 131

Smoothing

Figure 3.19. Conflicting behaviors can produce “judder.”

TLFeBOOK

params.ini and is assigned to the variable NumSamplesForSmoothing. When

adjusting this value, you should try to keep it as low as possible to avoid

unnecessary calculations and memory use. Using very high values pro-

duces weird behavior. Try using a value of 100 for NumSamplesForSmoothing

and you’ll see what I mean. It reminds me of a quote from The Hitch-

hiker’s Guide to the Galaxy:

“You know,” said Arthur with a slight cough, “if this is

Southend, there’s something very odd about it…”

“You mean the way the sea stays steady and the buildings keep

washing up and down?” said Ford. “Yes, I thought that was odd too.”

You can see the difference smoothing makes if you run the Another_Big_

Shoal with Smoothing executable.

Practice Makes Perfect

In his paper “Steering Behaviors for Autonomous Characters,” Reynolds

describes a behavior called leader following. Leader following is a behav-

ior that creates a steering force to keep multiple vehicles moving in single

file behind a leader vehicle. If you’ve ever watched goslings follow their

mother you’ll know what I mean. To create this sort of behavior the follow-

ers must arrive at an offset position behind the vehicle in front while using

separation to remain apart from one another. See Figure 3.20.

Leader following can be improved further by creating a behavior that steers

a vehicle laterally away from the direction of the leader if it finds itself in

the leader’s path.

Create a group of 20 vehicles that behave like a flock of sheep. Now add

a user-controlled vehicle you can steer using the keyboard. Program your

sheep so they believe the vehicle is a dog. Can you get the flock’s behavior

to look realistic?

132 | Chapter 3

Smoothing

Figure 3.20. Leader following

TLFeBOOK

Chapter 4

Sports Simulation —
Simple Soccer

D esigning team sport AI, and particularly AI to play soccer, is not

easy. To create agents capable of playing a game anything like their

professional human counterparts takes a serious amount of hard work.

Many high-tech teams from notable universities around the world have

been competing in a robotic soccer tournament, Robocup, since the early

nineties. Although the ambitious goal of the tournament is to produce

robots capable of winning the World Cup by the year 2050 (I’m not kid-

ding), there is also a simulated soccer tournament running alongside the

robotic one, where teams of simulated soccer players compete on virtual

turf. Many of these teams use cutting-edge AI technology, much of it spe-

cially developed for soccer. If you were to attend a tournament, you would

hear, between the cheers and the groans, teams discussing the merits of

fuzzy-Q learning, the design of multi-agent coordination graphs, and situa-

tion-based strategic positioning.

Fortunately, as game programmers, we don’t have to concern ourselves

with all the detail of a properly simulated soccer environment. Our goal is

not to win the World Cup but to produce agents capable of playing soccer

well enough to provide an entertaining challenge to the game player. This

chapter will walk you through the creation of game agents capable of play-

ing a simplified version of soccer — Simple Soccer — using only the skills

you’ve learned so far in this book.

My intention is not to demonstrate how every tactic and skill should be

modeled, but to show you how to design and implement a team sports AI

framework capable of supporting your own ideas. With this in mind, I’ve

kept the game environment and the rules for Simple Soccer, well… very

simple. I have also chosen to omit some obvious tactics. Partly because it

will reduce the complexity of the AI and therefore make it easier for you to

understand the flow of the state machine logic, but mainly because it will

give you the opportunity of consolidating the skills you have learned in a

proper, real-life, full-blown game AI project if you decide to tackle the

exercises at the end of this chapter.

133
TLFeBOOK

By the time you’ve finished this chapter you will have the ability to cre-

ate AI agents capable of playing most team games. Ice hockey, rugby,

cricket, American football, and even capture-the-flag — you name it,

you’ll be able to code an entertaining AI for it.

The Simple Soccer Environment and Rules

The rules of the game are uncomplicated. There are two teams: red and

blue. Each team contains four field players and one goalkeeper. The objec-

tive of the game is to score as many goals as possible. A goal is scored by

kicking the ball over the opposing team’s goal line.

The sides of a Simple Soccer playing area (called a “pitch”) are walled

in (like ice hockey) so the ball cannot travel outside the playing area, but

simply rebounds off the walls. This means that unlike normal soccer, there

are no corners or throw-ins. Oh, and there’s definitely no offside rule! Fig-

ure 4.1 shows the setup at the start of a typical game.

The game environment consists of the following items:

� A soccer pitch

� Two goals

� One ball

� Two teams

� Eight field players

� Two goalkeepers

Each item type is encapsulated as an object. You can see how they are all

related to each other by studying the simplified UML class diagram shown

in Figure 4.2.

134 | Chapter 4

The Simple Soccer Environment and Rules

Figure 4.1. Kick-off positions (players are shown at increased scale for clarity)

TLFeBOOK

The player and goalkeeper objects are similar to the game agents you’ve

already encountered in this book. I’ll be describing them in detail very

shortly, but first I’d like to show you how the soccer pitch, goals, and soc-

cer ball are implemented. This should give you a feel for the environment

the game agents occupy and then I can move on to the nitty-gritty of the AI

itself.

The Soccer Pitch
The soccer pitch is a rectangular playing area enclosed by walls. At each of

the short ends of the pitch, there is a goal centrally positioned. See Figure

4.1. The small circle at the center of the playing area is referred to as the

center-spot. The ball is positioned on the center-spot prior to the start of the

match. When a goal is scored both teams relinquish control of the ball and

it’s repositioned on the center-spot ready for another “kick-off.” (For those

soccer fans among my readers, please forgive my elaborate descriptions,

but if I didn’t go to this trouble I just know the moment this book is

released I’ll receive a dozen emails from the inhabitants of some hidden

Himalayan valley wondering what on earth I’m talking about!)

Sports Simulation — Simple Soccer | 135

The Simple Soccer Environment and Rules

Figure 4.2. The Simple Soccer high-level object hierarchy

TLFeBOOK

The playing area is encapsulated by the class SoccerPitch. A single

instance of this class is instantiated in main.cpp. The SoccerPitch object

owns instances of SoccerTeam, SoccerBall, and Goal objects.

Here’s the class declaration:

class SoccerPitch
{
public:

SoccerBall* m_pBall;

SoccerTeam* m_pRedTeam;
SoccerTeam* m_pBlueTeam;

Goal* m_pRedGoal;
Goal* m_pBlueGoal;

These first few members are self explanatory and I’ll be describing the rel-

evant classes in detail in a few pages.

//container for the boundary walls
std::vector<Wall2D> m_vecWalls;

The pitch boundaries in the Simple Soccer environment are represented by

Wall2Ds. Walls are described by a line segment with two endpoints and a

normal to the line segment representing the facing direction. You may

remember them from the wall avoidance steering behavior description.

//defines the dimensions of the playing area
Region* m_pPlayingArea;

A Region object is used to describe the dimensions of the soccer pitch. A

Region stores the top left, right bottom, and center positions of the declared

area, and also an identifying number (ID).

std::vector<Region*> m_Regions;

Soccer players have to know where they are on the soccer pitch and

although their x, y coordinates give a very specific position, it’s also useful

to split the pitch up into regions players can make use of to implement

strategies. To facilitate this, the pitch is divided into eighteen areas as

shown in Figure 4.3.

At the beginning of a game, each player is assigned a region to be its

home region. This will be the region it returns to after a goal is scored or

when it has finished making a play with the ball. A player’s home region

may vary during a game depending on the team strategy. For example,

when attacking, it’s advantageous for a team to occupy positions farther

forward on the field (upfield) than when defending.

136 | Chapter 4

The Simple Soccer Environment and Rules

TLFeBOOK

bool m_bGameOn;

Teams can query this value to see if the game is in play or not. (The game

is not on if a goal has just been scored and all the players are returning to

their kick-off positions.)

bool m_bGoalKeeperHasBall;

This value is set to true if either team’s goalkeeper has the ball. Players can

query this value to help them select an appropriate behavior. For example,

if a goalkeeper has possession of the ball, a nearby opponent will not

attempt to kick it.

/* EXTRANEOUS DETAIL OMITTED */

public:

SoccerPitch(int cxClient, int cyClient);

~SoccerPitch();

void Update();

bool Render();

/* EXTRANEOUS DETAIL OMITTED */

};

The SoccerPitch::Update and SoccerPitch::Render functions are at the top

of the update and render hierarchy. Each update step, these methods are

called from within the main game loop and, in turn, the appropriate Render

and Update methods of every other game entity is called.

Sports Simulation — Simple Soccer | 137

The Simple Soccer Environment and Rules

Figure 4.3. The pitch divided into regions

TLFeBOOK

The Goals
A goal on a real-life soccer pitch is defined by a left goal post and a right

goal post. A goal is scored if any part of the ball crosses the goal line —

the line connecting the goal posts. A rectangular area in front of each goal

is drawn in the relevant team’s color to make distinguishing each team’s

side easy. The goal line is the line that describes the rear of this box.

Here is the class declaration:

class Goal
{
private:

Vector2D m_vLeftPost;
Vector2D m_vRightPost;

//a vector representing the facing direction of the goal
Vector2D m_vFacing;

//the position of the center of the goal line
Vector2D m_vCenter;

//each time Scored() detects a goal this is incremented
int m_iNumGoalsScored;

public:

Goal(Vector2D left, Vector2D right):m_vLeftPost(left),
m_vRightPost(right),
m_vCenter((left+right)/2.0),
m_iNumGoalsScored(0)

{
m_vFacing = Vec2DNormalize(right-left).Perp();

}

//Given the current ball position and the previous ball position,
//this method returns true if the ball has crossed the goal line
//and increments m_iNumGoalsScored
inline bool Scored(const SoccerBall*const ball);

/* ACCESSOR METHODS OMITTED */
};

Each time step, the Scored method of each team’s goal is called from

within SoccerPitch::Update. If a goal is detected, then the players and ball

are reset to their start positions ready for kick-off.

The Soccer Ball
A soccer ball is a little more interesting. The data and methods to encapsu-

late a soccer ball are encoded in the SoccerBall class. A soccer ball moves,

so its class inherits from the MovingEntity class we used in Chapter 3. In

addition to the functionality provided by MovingEntity, SoccerBall also has

138 | Chapter 4

The Simple Soccer Environment and Rules

TLFeBOOK

data members for recording the ball’s last updated position and methods

for kicking the ball, testing for collisions, and calculating the future posi-

tion of the ball.

When a real soccer ball is kicked it gently decelerates to rest because of

the friction from the ground and the air resistance acting upon it. Simple

Soccer balls don’t live in the real world, but we can model a similar effect

by applying a constant deceleration (a negative acceleration) to the ball’s

motion. The amount of deceleration is set in Params.ini as the value

Friction.

Here is the complete declaration of the SoccerBall class followed by

descriptions of a couple of its important methods.

class SoccerBall : public MovingEntity
{
private:

//keeps a record of the ball's position at the last update
Vector2D m_vOldPos;

//a pointer to the player(or goalkeeper) who possesses the ball
PlayerBase* m_pOwner;

//a local reference to the walls that make up the pitch boundary
//(used in the collision detection)
const std::vector<Wall2D>& m_PitchBoundary;

//tests to see if the ball has collided with a wall and reflects
//the ball's velocity accordingly
void TestCollisionWithWalls(const std::vector<Wall2D>& walls);

The soccer ball only checks for collisions with the pitch boundary; it

doesn’t test for collisions against the players, as the ball must be able to

move freely around and through their “feet.”

public:

SoccerBall(Vector2D pos,
double BallSize,
double mass,
std::vector<Wall2D>& PitchBoundary):

//set up the base class
MovingEntity(pos,

BallSize,
Vector2D(0,0),
-1.0, //max speed - unused
Vector2D(0,1),
mass,
Vector2D(1.0,1.0), //scale - unused
0, //turn rate - unused
0), //max force - unused

m_PitchBoundary(PitchBoundary),
m_pOwner(NULL)

Sports Simulation — Simple Soccer | 139

The Simple Soccer Environment and Rules

TLFeBOOK

{}

//implement base class Update
void Update(double time_elapsed);

//implement base class Render
void Render();

//a soccer ball doesn't need to handle messages
bool HandleMessage(const Telegram& msg){return false;}

//this method applies a directional force to the ball (kicks it!)
void Kick(Vector2D direction, double force);

//given a kicking force and a distance to traverse defined by start
//and finish points, this method calculates how long it will take the
//ball to cover the distance.
double TimeToCoverDistance(Vector2D from,

Vector2D to,
double force)const;

//this method calculates where the ball will be at a given time
Vector2D FuturePosition(double time)const;

//this is used by players and goalkeepers to "trap" a ball -- to stop
//it dead. The trapping player is then assumed to be in possession of
//the ball and m_pOwner is adjusted accordingly
void Trap(PlayerBase* owner){m_vVelocity.Zero(); m_pOwner = owner;}

Vector2D OldPos()const{return m_vOldPos;}

//this places the ball at the desired location and sets its velocity to zero
void PlaceAtPosition(Vector2D NewPos);

};

Before I move on to describe the player and team classes, I’d just like to go

over a couple of the SoccerBall’s public methods to make sure you under-

stand the math they contain. These methods are frequently used by players

to predict where the ball will be at some time in the future or to predict

how long it will take the ball to reach a position. When you design the AI

for a sports game/simulation you will be using your math and physics skills

a lot. Oh yes! So if you don’t know your theory, now’s the time to head

back to Chapter 1 and read up on it; otherwise you’ll be more lost than a

rapper in a rainforest.

� 3D Note: Although the demo has been coded in 2D, you would apply
exactly the same techniques to a 3D game. There is a little more complexity
because the ball will bounce and may travel above the players’ heads, so you
would have to add additional player skills for making chip shots and “heading”
the ball, but these are mainly physics considerations. The AI is more or less the
same; you would just have to add a few more states to the FSM and some addi-
tional logic to check for the height of the ball when calculating intercepts and
the like.

140 | Chapter 4

The Simple Soccer Environment and Rules

TLFeBOOK

SoccerBall::FuturePosition

Given a length of time as a parameter, FuturePosition calculates where the

ball will be at that time in the future — assuming its trajectory continues

uninterrupted. Don’t forget that the ball experiences a frictional force with

the ground, which must be taken into consideration. The frictional force is

expressed as a constant acceleration acting opposite to the direction the ball

is moving (deceleration, in other words). This constant is defined in

params.ini as Friction.

To determine the position Pt of the ball at time t, we must calculate how

far it travels using equation (1.87) from Chapter 1:

(4.1)

where �x is the distance traveled, u is the velocity of the ball when kicked,

and a is the deceleration due to friction.

Once the distance traveled has been calculated, we know how much to add

to the ball’s position, but not in which direction. However, we do know the

ball is traveling in the direction of its velocity vector. Therefore, if we nor-

malize the ball’s velocity vector and multiply it by the distance traveled,

we end up with a vector that gives us the distance and direction. If this vec-

tor is added to the ball’s position, the result is the predicted position. Here

is the calculation in code:

Vector2D SoccerBall::FuturePosition(double time)const
{
//using the equation x = ut + 1/2at^2, where x = distance, a = friction
//u = start velocity

//calculate the ut term, which is a vector
Vector2D ut = m_vVelocity * time;

//calculate the 1/2at^2 term, which is scalar

Sports Simulation — Simple Soccer | 141

The Simple Soccer Environment and Rules

Figure 4.4. Calculating distance traveled

21

2
x u t a t� � � � �

TLFeBOOK

double half_a_t_squared = 0.5 * Prm.Friction * time * time;

//turn the scalar quantity into a vector by multiplying the value with
//the normalized velocity vector (because that gives the direction)
Vector2D ScalarToVector = half_a_t_squared * Vec2DNormalize(m_vVelocity);

//the predicted position is the ball’s position plus these two terms
return Pos() + ut + ScalarToVector;

}

� NOTE Many of the methods and functions shown throughout this book con-
tain unnecessary temporary variables. They are there to aid your understanding,
as their removal often obfuscates the underlying calculation(s) or makes the line
of code too long to fit comfortably on the pages of this book.

SoccerBall::TimeToCoverDistance

Given two positions, A and B, and a kicking force, this method returns a

double indicating how long it will take for the ball to travel between the

two. Of course, given a large distance and a small kicking force, it may not

be possible for the ball to cover the distance at all. In this event, the method

returns a negative value.

This time the equation to use is this:

(4.2)

Rearranging the variables gives the equation for time taken:

(4.3)

We know a = Friction, so we have to find v and u, where v = velocity at

point B, and u will be the speed of the ball immediately after it has been

kicked. In Simple Soccer, velocities are not accumulative. The ball is

assumed to always have a zero velocity immediately prior to a kick.

Although technically this is unrealistic — if the ball has just been passed to

the kicking player, it will not have a zero velocity — in practice, this

method results in easier calculations, while still looking realistic to the

observer. With this in mind, u is equal to the instantaneous acceleration

applied to the ball by the force of the kick. Therefore:

(4.4)

Now that u and a have been calculated, we only have to calculate v, and all

three values can be popped into equation (4.3) to solve for �t. To deter-

mine v (the velocity at point B), the following equation is used:

(4.5)

142 | Chapter 4

The Simple Soccer Environment and Rules

v u a t� � �

v u
t

a

�
� �

F
u a

m
� �

2 2 2v u a x� � �

TLFeBOOK

Taking the square root of both sides gives:

(4.6)

Don’t forget �x is the distance between A and B. If the term u2 + 2a�x is

negative, the velocity is not a real number (you can’t calculate the square

root of a negative number… well, you can, that’s what complex numbers

are for, but for the purposes of this book we’ll pretend you can’t). This

means the ball cannot cover the distance from A to B. If the term is posi-

tive, then we have found v and it’s a simple matter to put all the values into

equation (4.3) to solve for �t.

Below is the source code for you to examine.

double SoccerBall::TimeToCoverDistance(Vector2D A,
Vector2D B,
double force)const

{
//this will be the velocity of the ball in the next time step *if*
//the player was to make the pass.
double speed = force / m_dMass;

//calculate the velocity at B using the equation
//
// v^2 = u^2 + 2ax
//

//first calculate s (the distance between the two positions)
double DistanceToCover = Vec2DDistance(A, B);

double term = speed*speed + 2.0*DistanceToCover*Prm.Friction;

//if (u^2 + 2ax) is negative it means the ball cannot reach point B.
if (term <= 0) return -1.0;

double v = sqrt(term);

//it’s possible for the ball to reach B and we know its speed when it
//gets there, so now it's easy to calculate the time using the equation
//
// t = v-u
// ---
// a
//
return (v-speed)/Prm.Friction;

}

Sports Simulation — Simple Soccer | 143

The Simple Soccer Environment and Rules

2 2v u a x� � �

TLFeBOOK

Designing the AI

There are two types of soccer players on a Simple Soccer team: field play-

ers and goalkeepers. Both of these types derive from the same base class,

PlayerBase. Both make use of a cut-down version of the SteeringBehaviors

class you saw in the last chapter and both own finite state machines, with

their own set of states. See Figure 4.5.

144 | Chapter 4

Designing the AI

Figure 4.5. Class relationships at the agent level

TLFeBOOK

Not all the methods of every class are shown, but it gives a good idea of

the design. The majority of the methods that are listed for PlayerBase and

SoccerTeam comprise the interface a player’s state machine uses to route its

AI logic. (I’ve omitted each method’s parameters to permit me to fit the

diagram on one page!)

Notice how a SoccerTeam also owns a StateMachine, giving a team the

ability to change its behavior depending on the current state of play. Imple-

menting AI at the team level in addition to the player level creates what is

known as tiered AI. This type of AI is used in all sorts of computer games.

You will often find tiered AI in real-time strategy (RTS) games where the

enemy AI is commonly implemented in several layers at, say, the unit,

troop, and commander levels.

Notice also how the players and their teams have the ability to send

messages. Messages may be passed from player to player (including goal-

keepers) or from soccer team to player. In this demo players do not pass

messages to their team. (Although there is no reason why they couldn’t. If

you have a good reason for your players messaging their team, go ahead

and do it.) All messages dispatched to field players or goalkeepers are han-

dled via each class’s respective global state, as you shall see later on in the

chapter.

Since a player’s team state dictates to some extent how the player should

behave, your journey into the guts of the AI of Simple Soccer is probably

best commenced with a description of the SoccerTeam class. After you

understand what makes a team tick, I’ll move on to describe how the play-

ers and goalkeepers work their soccer magic.

The SoccerTeam Class
The SoccerTeam class owns instances of the players that comprise the soc-

cer team. It has pointers to the soccer pitch, the opposing team, the team’s

home goal, and its opponent’s goal. Additionally, it has pointers to the

“key” players on the pitch. Individual players can query their soccer team

and use this information in their state machine logic.

First of all, I’ll describe the roles of these key players and then move on

to discuss the various states a Simple Soccer team utilizes. Here’s how the

key player pointers are declared in the class prototype:

class SoccerTeam
{
private:

/* EXTRANEOUS DETAIL OMITTED */

//pointers to "key" players
PlayerBase* m_pReceivingPlayer;
PlayerBase* m_pPlayerClosestToBall;
PlayerBase* m_pControllingPlayer;

Sports Simulation — Simple Soccer | 145

Designing the AI

TLFeBOOK

PlayerBase* m_pSupportingPlayer;

/* EXTRANEOUS DETAIL OMITTED */
};

The Receiving Player

When a player kicks the ball toward another player, the player waiting to

receive the ball is, not surprisingly, known as the receiver. There will only

ever be one receiver allocated at any one time. If there is no allocated

receiver, this value is set to NULL.

The Closest Player to the Ball

This pointer points to the team member who is currently closest to the ball.

As you can imagine, knowing this sort of information is useful when a

player has to decide if he should chase after the ball or leave it for another

team member to pursue. Each time step, the soccer team will calculate

which player is the closest and keep this pointer continuously updated.

Therefore, during play, m_pPlayerClosestToBall will never be NULL.

The Controlling Player

The controlling player is the player who is in command of the soccer ball.

An obvious example of a controlling player is one who is about to make a

pass to a teammate. A less obvious example is the player waiting to receive

the ball once the pass has been made. In the latter example, even though

the ball may be nowhere near the receiving player, the player is said to be

in control since unless intercepted by an opponent, the receiver will be the

next player able to kick the ball. The controlling player, when moving

upfield toward the opponent’s goal, is often referred to as the attacking

player or, even more simply, as just the attacker. If the team does not con-

trol the ball, this pointer will be set to NULL.

The Supporting Player

When a player gains control of the ball, the team will designate a support-

ing player. The supporting player will attempt to move into a useful

position farther upfield from the attacker. Supporting positions are rated

based on certain qualities such as how easy it is for the attacker to pass the

ball to the position and the likelihood of scoring a goal from the position.

For example, position B in Figure 4.6 would be considered a good support-

ing position (good view of the opponent’s goal, easy to pass to), position C

a so-so supporting position (fair view of the opponent’s goal, poor passing

potential), and position D a very poor support position (little passing poten-

tial, no shot at the goal, not upfield of the attacker).

If there is no allocated supporting player, this pointer will point to NULL.

146 | Chapter 4

Designing the AI

TLFeBOOK

The supporting positions are calculated by sampling a series of locations

on the playing field and running several tests on them, resulting in a cumu-

lative score. The position with the highest score is deemed the best

supporting spot, or BSS as I shall sometimes refer to it. This is achieved

with the aid of a class named the SupportSpotCalculator. I guess right now

might be a good time to go off on a small but important tangent to show

you how this class operates.

Calculating the Best Support Spot

The SupportSpotCalculator class calculates the BSS by scoring a number

of spot positions sampled from the opponent’s half of the pitch. The default

spot locations (for the red team) are shown in Figure 4.7.

Sports Simulation — Simple Soccer | 147

Designing the AI

Figure 4.6. Support positions: the good, the bad, and the ugly

Figure 4.7. The red team considers these potential support spots.

TLFeBOOK

As you can see, all the spots are located in the opponent’s half of the pitch.

There is no need to sample positions farther downfield, as the supporting

player will always be trying to find the location that gives the best opportu-

nity of a goal shot, and that will inevitably be situated close to the

opponent’s goal.

A support spot has a position and a score, like so:

struct SupportSpot
{
Vector2D m_vPos;

double m_dScore;

SupportSpot(Vector2D pos, double val):m_vPos(pos),
m_dScore(value)

{}
};

The spots are scored by examining each one in turn and scoring them for a

particular quality, such as whether or not a goal is possible from the spot’s

position or how far away from the controlling player the spot is situated.

The scores for each quality are accumulated and the spot with the highest

score is marked as the best supporting spot. The supporting player can then

move toward the BSS’s position in readiness for a pass from the attacker.

� NOTE It’s not essential that the BSS is calculated every update step;
therefore the number of times the calculation is made is regulated to Support-
SpotUpdateFreq times per second. The default value, set in params.ini, is once
per second.

To determine exactly what these qualities should be, you have to think like

a soccer player. If you were running up that soccer pitch trying to put your-

self in an advantageous support position, what factors would you consider?

Probably you would value positions where your fellow teammates could

pass the ball to you. In your mental map of the soccer pitch, you would

imagine yourself at each location and consider those positions where you

think it would be safe for the attacker to pass the ball to you as good posi-

tions in which to place yourself. The SupportSpotCalculator does the same

by giving each spot that satisfies this condition a score equivalent to the

value: Spot_CanPassScore (set as 2.0 in params.ini). Figure 4.8 shows a typ-

ical position during a game, highlighting all the spots that have been rated

for passing potential.

In addition, positions from which a goal can be scored are worthy of

attention. Therefore the SupportSpotCalculator assigns a score of

Spot_CanScoreFromPositionScore to each spot passing the goal-shot-is-pos-

sible test. I’m no expert soccer player (far from it!) but I reckon the ability

to make a pass to a spot should be ranked higher than the ability to make a

goal shot from a spot — after all, the attacker must be able to pass the ball

148 | Chapter 4

Designing the AI

TLFeBOOK

to the supporting player before a goal attempt can be made. With this in

mind, the default value for Spot_CanScoreFromPositionScore is 1.0. Figure

4.9 shows the same position as Figure 4.8 with the spots rated for goal shot

potential.

Another consideration a supporting player may make is to aim for a posi-

tion a specific distance away from its teammate. Not too far away to make

the pass difficult and risky, and not too close to make the pass wasteful.

I’ve used a value of 200 pixels as the optimal distance a supporting

player should be away from the controlling player. At this distance a spot

will receive an optimal score of Spot_DistFromControllingPlayerScore

Sports Simulation — Simple Soccer | 149

Designing the AI

Figure 4.8. Spots rated for passing potential

Figure 4.9. Spots rated by their goal scoring potential

TLFeBOOK

(default 2.0), with scores trailing off for distances any closer or farther

away. See Figure 4.10.

When each position has been examined and all the scores have been accu-

mulated, the spot with the highest score is considered to be the best

supporting spot, and the supporting attacker will move to occupy this posi-

tion in readiness to receive a pass.

This procedure of determining the BSS is undertaken in the method

SupportSpotCalculator::DetermineBestSupportingPosition. Here is the

source code for you to examine:

Vector2D SupportSpotCalculator::DetermineBestSupportingPosition()
{
//only update the spots every few frames
if (!m_pRegulator->AllowCodeFlow()&& m_pBestSupportingSpot)
{
return m_pBestSupportingSpot->m_vPos;

}

//reset the best supporting spot
m_pBestSupportingSpot = NULL;

double BestScoreSoFar = 0.0;

std::vector<SupportSpot>::iterator curSpot;

for (curSpot = m_Spots.begin(); curSpot != m_Spots.end(); ++curSpot)
{
//first remove any previous score. (the score is set to one so that
//the viewer can see the positions of all the spots if he has the
//aids turned on)
curSpot->m_dScore = 1.0;

150 | Chapter 4

Designing the AI

Figure 4.10. Spots rated according to their distance from
the attacker. The larger the spot, the higher its score.

TLFeBOOK

//Test 1. is it possible to make a safe pass from the ball's position
//to this position?
if(m_pTeam->isPassSafeFromAllOpponents(m_pTeam->ControllingPlayer()->Pos(),

curSpot->m_vPos,
NULL,
Prm.MaxPassingForce))

{
curSpot->m_dScore += Prm.Spot_PassSafeStrength;

}

//Test 2. Determine if a goal can be scored from this position.
if(m_pTeam->CanShoot(curSpot->m_vPos,

Prm.MaxShootingForce))
{
curSpot->m_dScore += Prm.Spot_CanScoreStrength;

}

//Test 3. calculate how far this spot is away from the controlling
//player. The farther away, the higher the score. Any distances farther
//away than OptimalDistance pixels do not receive a score.
if (m_pTeam->SupportingPlayer())
{
const double OptimalDistance = 200.0;

double dist = Vec2DDistance(m_pTeam->ControllingPlayer()->Pos(),
curSpot->m_vPos);

double temp = fabs(OptimalDistance - dist);

if (temp < OptimalDistance)
{

//normalize the distance and add it to the score
curSpot->m_dScore += Prm.Spot_DistFromControllingPlayerStrength *

(OptimalDistance-temp)/OptimalDistance;
}

}

//check to see if this spot has the highest score so far
if (curSpot->m_dScore > BestScoreSoFar)
{
BestScoreSoFar = curSpot->m_dScore;

m_pBestSupportingSpot = &(*curSpot);
}

}

return m_pBestSupportingSpot->m_vPos;
}

Well, I guess that “little tangent” to discuss the subject of support spots

turned into quite a large one! Before I got distracted, I was telling you how

the SoccerTeam class did its stuff, remember? As I’ve mentioned, a

SoccerTeam owns a state machine. This gives it the ability to change its

Sports Simulation — Simple Soccer | 151

Designing the AI

TLFeBOOK

behavior according to what state it’s in. Let’s now take a close look at a

team’s available states and how they can affect the behavior of its players.

SoccerTeam States

At any moment in time, a soccer team can be in one of three states:

Defending, Attacking, or PrepareForKickOff. I’ve kept the logic of

these states very simple — my intention is to show you how to implement

a tiered AI and not to demonstrate how to create complex soccer tactics —

although they can be easily added to and modified to create just about any

type of team behavior you can imagine.

As I mentioned earlier, players use the idea of “regions” to help position

themselves correctly on the playing field. The team states use these regions

to control where players should move if they are not in possession of the

ball or supporting/attacking. When defending, for example, it’s sensible for

a soccer team to move its players closer to the home goal, and when attack-

ing, the players should move farther upfield, closer to the opponent’s goal.

Here are descriptions of each team state in detail.

PrepareForKickOff

A team enters this state immediately after a goal has been scored. The

Enter method sets all the key player pointers to NULL, changes their home

regions back to the kick-off positions, and sends each player a message

requesting they move back to their home regions. Something like this, in

fact:

void PrepareForKickOff::Enter(SoccerTeam* team)
{
//reset key player pointers
team->SetControllingPlayer(NULL);
team->SetSupportingPlayer(NULL);
team->SetReceiver(NULL);
team->SetPlayerClosestToBall(NULL);

//send Msg_GoHome to each player.
team->ReturnAllFieldPlayersToHome();

}

Each Execute cycle, the team waits until all the players from both teams are

situated within their home regions, at which point it changes state to

Defending and the match recommences.

void PrepareForKickOff::Execute(SoccerTeam* team)
{
//if both teams in position, start the game
if (team->AllPlayersAtHome() && team->Opponents()->AllPlayersAtHome())
{
team->ChangeState(team, Defending::Instance());

}
}

152 | Chapter 4

Designing the AI

TLFeBOOK

Defending

The Enter method of a soccer team’s Defending state changes the home

positions of all the team members to be located in the team’s half of the

pitch. Bringing all the players close to the home goal like this makes it

harder for the opposing team to maneuver the ball through and score a

goal. Figure 4.11 shows the home positions for the red team when they are

in the Defending state.

void Defending::Enter(SoccerTeam* team)
{
//these define the home regions for this state of each of the players
const int BlueRegions[TeamSize] = {1,6,8,3,5};
const int RedRegions[TeamSize] = {16,9,11,12,14};

//set up the player's home regions
if (team->Color() == SoccerTeam::blue)
{
ChangePlayerHomeRegions(team, BlueRegions);

}
else
{
ChangePlayerHomeRegions(team, RedRegions);

}

//if a player is in either the Wait or ReturnToHomeRegion states, its
//steering target must be updated to that of its new home region
team->UpdateTargetsOfWaitingPlayers();

}

The Execute method of the Defending state continuously queries the team

to see if it has gained control of the ball. As soon as the team has control,

the team changes state to Attacking.

Sports Simulation — Simple Soccer | 153

Designing the AI

Figure 4.11. Players in their home regions for the Defending team state

TLFeBOOK

void Defending::Execute(SoccerTeam* team)
{
//if in control change states
if (team->InControl())
{
team->ChangeState(team, Attacking::Instance()); return;

}
}

Attacking

As the Enter method of the Attacking state looks identical to that for the

Defending state, I’m not going to waste space and list it here. The only

difference is that the players are assigned different home regions. The

regions assigned to the red team’s players when Attacking are shown in

Figure 4.12.

As you can see, the players position themselves much closer to the oppo-

nent’s goal. This gives them an increased chance of keeping the ball in the

opponent’s half of the pitch and therefore more chance of scoring a goal.

Notice how one player is kept back, positioned just ahead of the goal-

keeper, in order to provide a modicum of defense should an opponent break

free with the ball and make a run for the team’s goal.

The Execute method of the Attacking state is also similar to that for the

Defending state with one addition. When a team gains control of the ball,

the team immediately iterates through all the players to determine which

one will provide the best support for the attacker. Once a support player has

been assigned, it will merrily move off toward the best supporting spot, as

determined by the process we discussed earlier.

154 | Chapter 4

Designing the AI

Figure 4.12. Players in their home regions for the Attacking team state

TLFeBOOK

void Attacking::Execute(SoccerTeam* team)
{
//if this team is no longer in control change states
if (!team->InControl())
{
team->ChangeState(team, Defending::Instance()); return;

}

//calculate the best position for any supporting attacker to move to
team->DetermineBestSupportingPosition();

}

That’s enough about the SoccerTeam class for now. Let’s take a look at how

the players are implemented.

Field Players
The field players are the guys who run around the field, passing the ball

and taking shots at their opponent’s goal. There are two types of field play-

ers: attackers and defenders. Both are instantiated as objects of the same

class, FieldPlayer, but an enumerated member variable is set to determine

their role. Defenders mainly stay to the rear of the field protecting the

home goal, and attackers are given more freedom to move up the field,

toward the opponent’s goal.

Field Player Motion

A field player has a velocity-aligned heading and utilizes steering behav-

iors to move into position and to chase the ball. When motionless, a field

player rotates to face the ball. It doesn’t do this to perceive the ball, as it

always knows where the ball is (from querying the game world directly),

but because it has a better chance of passing immediately after an intercept

and because it looks better to our human eyes. Remember, this is about

creating the illusion of intelligence, and not hard-core AI as studied by

academics. Most human players will assume that if a computer player is

tracking the ball with its head, then it must be “watching” the ball. By cre-

ating players that always track the ball we also ensure nothing odd happens

— like a player receiving and controlling the ball when it’s facing in the

opposite direction. That sort of thing would break the illusion, leaving a

human player feeling cheated and dissatisfied. I’m sure you have experi-

enced this feeling yourself when playing games. It only takes a small

dodgy-looking event to damage a player’s confidence in the AI.

The field players move around the pitch utilizing the arrive and seek

behaviors to steer toward the steering behavior target or using pursuit to

chase the ball’s predicted future position. Any required steering behavior is

typically switched on in a state’s Enter method and switched off in its Exit

method, which brings me nicely around to discussing the states a field

player can occupy.

Sports Simulation — Simple Soccer | 155

Designing the AI

TLFeBOOK

Field Player States

In real life, soccer players must learn a set of skills in order to control the

ball well enough to coordinate team play and to score goals. They do this

by endless hours of practice and repetition of the same moves. Simple Soc-

cer players don’t have to practice, but they do rely on you, the programmer,

to bestow them with the skills they need to play well.

A field player’s finite state machine utilizes eight states:

� GlobalPlayerState

� Wait

� ReceiveBall

� KickBall

� Dribble

� ChaseBall

� ReturnToHomeRegion

� SupportAttacker

State changes are made either in the logic of a state itself or when a player

is sent a message by another player (to receive a ball for example).

GlobalPlayerState

The main purpose of the field player’s global state is to be a message

router. Although much of a player’s behavior is implemented by the logic

contained within each of its states, it’s also desirable to implement some

form of player cooperation via a communication system. A good example

of this is when a supporting player finds itself in an advantageous position

and requests a pass from a teammate. To facilitate player communication,

the trusty messaging system you learned about in Chapter 2 is implemented.

There are five messages used in Simple Soccer. They are:

� Msg_SupportAttacker

� Msg_GoHome

� Msg_ReceiveBall

� Msg_PassToMe

� Msg_Wait

The messages are enumerated in the file SoccerMessages.h. Let’s take a

look at how each of them is processed.

bool GlobalPlayerState::OnMessage(FieldPlayer* player, const Telegram& telegram)
{
switch(telegram.Msg)
{
case Msg_ReceiveBall:
{
//set the target
player->Steering()->SetTarget(*(Vector2D*)(telegram.ExtraInfo));

//change state
player->ChangeState(player, ReceiveBall::Instance());

156 | Chapter 4

Designing the AI

TLFeBOOK

return true;
}

break;

Msg_ReceiveBall is sent to the receiving player when a pass is made. The

position of the pass target is stored as the receiver’s steering behavior tar-

get. The receiving player acknowledges the message by changing state to

ReceiveBall.

case Msg_SupportAttacker:
{
//if already supporting just return
if (player->CurrentState() == SupportAttacker::Instance()) return true;

//set the target to be the best supporting position
player->Steering()->SetTarget(player->Team()->GetSupportSpot());

//change the state
player->ChangeState(player, SupportAttacker::Instance());

return true;
}

break;

Msg_SupportAttacker is sent by the controlling player to request support as

it attempts to move the ball farther up the field. When a player receives this

message, it sets its steering target to the best supporting spot and then

changes state to SupportAttacker.

case Msg_GoHome:
{
player->SetDefaultHomeRegion();

player->ChangeState(player, ReturnToHomeRegion::Instance());

return true;
}

break;

When a player receives this message, it moves back to its home region. It’s

frequently broadcast by the goalkeepers prior to goal kicks and by the

“pitch” to move the players back into their kick-off positions between

goals.

case Msg_Wait:
{
//change the state
player->ChangeState(player, Wait::Instance());

return true;
}

break;

Sports Simulation — Simple Soccer | 157

Designing the AI

TLFeBOOK

Msg_Wait instructs a player to wait at its current position.

case Msg_PassToMe:
{
//get the position of the player requesting the pass
FieldPlayer* receiver = (FieldPlayer*)(telegram.ExtraInfo);

//if the ball is not within kicking range or the player does not have
//a window within which he can make the kick, this player cannot pass
//the ball to the player making the request.
if (!player->BallWithinKickingRange())
{
return true;

}

//make the pass
player->Ball()->Kick(receiver->Pos() - player->Ball()->Pos(),

Prm.MaxPassingForce);

//let the receiver know a pass is coming
Dispatch->DispatchMsg(SEND_MSG_IMMEDIATELY,

player->ID(),
receiver->ID(),
Msg_ReceiveBall,
NO_SCOPE,
&receiver->Pos());

//change state
player->ChangeState(player, Wait::Instance());

player->FindSupport();

return true;
}

break;

Msg_PassToMe is used in a couple of situations, mainly when a supporting

player has moved into position and thinks it has a good chance of scoring a

goal. When a player receives this message, it passes the ball to the request-

ing player (if the pass can be made safely).

}//end switch

return false;
}

In addition to OnMessage, the global state also implements the Execute

method. This lowers the maximum speed of a player if it’s close to the ball

to simulate the way that soccer players move slower when they have

possession.

void GlobalPlayerState::Execute(FieldPlayer* player)
{
//if a player is in possession and close to the ball reduce his max speed

158 | Chapter 4

Designing the AI

TLFeBOOK

if((player->BallWithinReceivingRange()) &&
(player->Team()->ControllingPlayer() == player))

{
player->SetMaxSpeed(Prm.PlayerMaxSpeedWithBall);

}

else
{

player->SetMaxSpeed(Prm.PlayerMaxSpeedWithoutBall);
}

}

ChaseBall

When a player is in the ChaseBall state, it will seek to the ball’s current

position, attempting to get within kicking range.

When a player enters this state its seek behavior is activated like so:

void ChaseBall::Enter(FieldPlayer* player)
{
player->Steering()->SeekOn();

}

During an update of the Execute method a player will change state to

KickBall if the ball comes within kicking range. If the ball is not within

range, a player will continue to chase the ball as long as that player remains

the closest member of its team to the ball.

void ChaseBall::Execute(FieldPlayer* player)
{
//if the ball is within kicking range the player changes state to KickBall.
if (player->BallWithinKickingRange())
{
player->ChangeState(player, KickBall::Instance());

return;
}

//if the player is the closest player to the ball then he should keep
//chasing it
if (player->isClosestTeamMemberToBall())
{
player->Steering()->SetTarget(player->Ball()->Pos());

return;
}

//if the player is not closest to the ball anymore, he should return back
//to his home region and wait for another opportunity
player->ChangeState(player, ReturnToHomeRegion::Instance());

}

When a player exits this state, the seek behavior is deactivated.

void ChaseBall::Exit(FieldPlayer* player)
{

Sports Simulation — Simple Soccer | 159

Designing the AI

TLFeBOOK

player->Steering()->SeekOff();
}

Wait

When in the Wait state a player will stay positioned at the location given by

its steering behavior target. If the player gets jostled out of position by

another player, it will move back into position.

There are a couple of exit conditions for this state:

� If a waiting player finds itself upfield of a teammate that is control-

ling the ball, it will message the teammate with a request for it to

pass the ball. This is because it’s desirable to get the ball as far

upfield as possible and as quickly as possible. If safe, the teammate

will make the pass and the waiting player will change state to

receive the ball.

� If the ball becomes closer to the waiting player than any other team-

mate and there is no allocated receiving player, it will change state to

ChaseBall.

void Wait::Execute(FieldPlayer* player)
{
//if the player has been jostled out of position, get back in position
if (!player->AtTarget())
{
player->Steering()->ArriveOn();

return;
}

else
{
player->Steering()->ArriveOff();

player->SetVelocity(Vector2D(0,0));

//the player should keep his eyes on the ball!
player->TrackBall();

}

//if this player's team is controlling AND this player is not the attacker
//AND is farther up the field than the attacker he should request a pass.
if (player->Team()->InControl() &&

(!player->isControllingPlayer()) &&
player->isAheadOfAttacker())

{
player->Team()->RequestPass(player);

return;
}

if (player->Pitch()->GameOn())
{
//if the ball is nearer this player than any other team member AND

160 | Chapter 4

Designing the AI

TLFeBOOK

//there is not an assigned receiver AND neither goalkeeper has
//the ball, go chase it
if (player->isClosestTeamMemberToBall() &&

player->Team()->Receiver() == NULL &&
!player->Pitch()->GoalKeeperHasBall())

{
player->ChangeState(player, ChaseBall::Instance());

return;
}
}

}

ReceiveBall

A player enters the ReceiveBall state when it processes a Msg_ReceiveBall

message. This message is sent to the receiving player by the player that has

just made the pass. The ExtraInfo field of the Telegram contains the target

position of the ball so the receiving player’s steering target can be set

accordingly, allowing the receiver to move into position, ready to intercept

the ball.

There can only ever be one player from each team in the ReceiveBall

state — it wouldn’t be good tactics to have two or more players attempting

to intercept the same pass, so the first thing the Enter method of this state

does is update the appropriate SoccerTeam pointers to enable the other team

members to query them if necessary.

To create more interesting and natural-looking play, there are two

methods of receiving a ball. One method uses the arrive behavior to steer

toward the ball’s target position; the other uses the pursuit behavior to

pursue the ball. A player chooses between them depending on the value

ChanceOfUsingArriveTypeReceiveBehavior, whether or not an opposing

player is within a threatening radius, and whether or not the receiver is

positioned in the third of the pitch closest to the opponent’s goal (I call this

area the “hot region”).

void ReceiveBall::Enter(FieldPlayer* player)
{
//let the team know this player is receiving the ball
player->Team()->SetReceiver(player);

//this player is also now the controlling player
player->Team()->SetControllingPlayer(player);

//there are two types of receive behavior. One uses arrive to direct
//the receiver to the position sent by the passer in its telegram. The
//other uses the pursuit behavior to pursue the ball.
//This statement selects between them dependent on the probability
//ChanceOfUsingArriveTypeReceiveBehavior, whether or not an opposing
//player is close to the receiving player, and whether or not the receiving
//player is in the opponent's "hot region" (the third of the pitch closest
//to the opponent's goal)
const double PassThreatRadius = 70.0;

Sports Simulation — Simple Soccer | 161

Designing the AI

TLFeBOOK

if ((player->InHotRegion() ||
RandFloat() < Prm.ChanceOfUsingArriveTypeReceiveBehavior) &&
!player->Team()->isOpponentWithinRadius(player->Pos(), PassThreatRadius))

{
player->Steering()->ArriveOn();

}
else
{
player->Steering()->PursuitOn();

}
}

The Execute method is straightforward. A receiving player will move into

position and will remain there unless the soccer ball comes within a speci-

fied distance or if its team loses control of the ball, at which time the player

will change to the ChaseBall state.

void ReceiveBall::Execute(FieldPlayer* player)
{
//if the ball comes close enough to the player or if his team loses control
//he should change state to chase the ball
if (player->BallWithinReceivingRange() || !player->Team()->InControl())
{
player->ChangeState(player, ChaseBall::Instance());

return;
}

//the player’s target must be continuously updated with the ball position
//if the pursuit steering behavior is used to pursue the ball.
if (player->Steering()->PursuitIsOn())
{
player->Steering()->SetTarget(player->Ball()->Pos());

}

//if the player has "arrived" at the steering target he should wait and
//turn to face the ball
if (player->AtTarget())
{
player->Steering()->ArriveOff();
player->Steering()->PursuitOff();
player->TrackBall();
player->SetVelocity(Vector2D(0,0));

}
}

KickBall

If there’s one thing that soccer players like doing more than getting drunk

and hugging each other, it’s kicking soccer balls. Oh yes. They love it.

Simple Soccer players are no different. Well, I guess they don’t get drunk

and hug each other, but they do enjoy a good kick around.

A Simple Soccer player must be able to control and kick the ball in a

number of ways. It must be able to attempt shots at the opponent’s goal,

162 | Chapter 4

Designing the AI

TLFeBOOK

have the skills necessary to pass the ball to another player, and be able to

dribble. When a player obtains control of the ball it should select the most

appropriate option to use at any time.

The KickBall state implements the logic for goal shots and passing. If

for some reason a player cannot take a shot or a pass is not necessary, the

player’s state will be changed to Dribble. A player cannot remain in the

KickBall state for longer than one update cycle; whether the ball is kicked

or not, the player will always change state somewhere in the journey

through the state logic. A player enters this state if the ball comes within

PlayerKickingDistance of its position.

Let me walk you through the source code:

void KickBall::Enter(FieldPlayer* player)
{
//let the team know this player is controlling
player->Team()->SetControllingPlayer(player);

//the player can only make so many kick attempts per second.
if (!player->isReadyForNextKick())
{
player->ChangeState(player, ChaseBall::Instance());

}
}

The Enter method first lets the team know that this player is the controlling

player and then checks to see if the player is permitted to kick the ball this

update step. Players are only allowed to make kick attempts a few times a

second, at a frequency stored in the variable PlayerKickFrequency. If the

player cannot make a kick attempt, its state is changed to ChaseBall and it

will continue running after the ball.

The number of times a player may kick a ball per second is restricted to

prevent anomalies in behavior. For example, with no restriction, situations

can occur where the ball is kicked, the player goes into the wait state, and

then, because the ball is still in kicking range, a split second later the play-

ers kicks it again. Because of the way the ball physics is handled, this can

result in jerky, unnatural ball motion.

void KickBall::Execute(FieldPlayer* player)
{
//calculate the dot product of the vector pointing to the ball
//and the player's heading
Vector2D ToBall = player->Ball()->Pos() - player->Pos();
double dot = player->Heading().Dot(Vec2DNormalize(ToBall));

//cannot kick the ball if the goalkeeper is in possession or if it’s
//behind the player or if there is already an assigned receiver. So just
//continue chasing the ball
if (player->Team()->Receiver() != NULL ||

player->Pitch()->GoalKeeperHasBall() ||
(dot < 0))

{

Sports Simulation — Simple Soccer | 163

Designing the AI

TLFeBOOK

player->ChangeState(player, ChaseBall::Instance());
return;

}

When the Execute method is entered, the dot product of the player’s head-

ing and the vector pointing toward the ball is calculated to determine if the

ball is behind or in front of the player. If the ball is behind, or there is

already a player waiting to receive the ball, or one of the goalkeepers has

the ball, the player’s state is changed so that it continues to chase the ball.

If the player is able to kick the ball, the state logic determines if there is

a possible goal shot to be made. After all, goals are the aim of the game, so

it naturally should be the first thing considered when a player obtains con-

trol of the ball.

/* Attempt a shot at the goal */

//the dot product is used to adjust the shooting force. The more
//directly the ball is ahead of the player, the more forceful the kick
double power = Prm.MaxShootingForce * dot;

Notice how the power of the shot is proportional to how directly ahead of

the player the ball is. If the ball is situated to the side, the power with

which the shot can be made is reduced.

//if a shot is possible, this vector will hold the position along the
//opponent's goal line the player should aim for.
Vector2D BallTarget;

//if it’s determined that the player could score a goal from this position
//OR if he should just kick the ball anyway, the player will attempt
//to make the shot
if (player->Team()->CanShoot(player->Ball()->Pos(),

power,
BallTarget) ||

(RandFloat() < Prm.ChancePlayerAttemptsPotShot))
{

The CanShoot method determines if there is a potential shot at the goal.

(You will find a detailed description of the CanShoot method toward the end

of this chapter.) If there is a potential shot, CanShoot will return true and

store the position the player should aim for in the vector BallTarget. If it

returns false, we check to see whether or not a “cosmetic” potshot should

be made (BallTarget will hold the location of the last position found

invalid by CanShoot, so we know the shot is guaranteed to fail). The reason

for making the occasional potshot is to liven up the gameplay, making it

look far more exciting to the human observer; it can get tedious quickly if

the computer players always score from a goal attempt. The occasional ran-

dom potshot introduces a little uncertainty, and makes the game a much

more enjoyable experience.

//add some noise to the kick. We don't want players who are
//too accurate! The amount of noise can be adjusted by altering

164 | Chapter 4

Designing the AI

TLFeBOOK

//Prm.PlayerKickingAccuracy
BallTarget = AddNoiseToKick(player->Ball()->Pos(), BallTarget);

//this is the direction the ball will be kicked
Vector2D KickDirection = BallTarget - player->Ball()->Pos();

player->Ball()->Kick(KickDirection, power);

The ball is kicked by calling the SoccerBall::Kick method with the desired

heading. Because perfect players making perfect kicks all the time does not

make for very realistic-looking soccer, an amount of noise is added to the

kick direction. This ensures the players will occasionally make poor kicks.

//change state
player->ChangeState(player, Wait::Instance());

player->FindSupport();

return;
}

Once the ball has been kicked, the player changes to the Wait state and

requests assistance from another teammate by calling the

PlayerBase::FindSupport method. FindSupport “asks” the team to deter-

mine the teammate best suited to provide support, and to send a request via

the messaging system for the team member to enter the SupportAttacker

state. The state then returns control to the player’s Update method.

If no shot at the goal is possible, the player considers a pass. A player

will only consider this option if it’s threatened by an opposing player. A

player is deemed to be threatened by another when the two are less than

PlayerComfortZone pixels apart and the opponent is ahead of the facing

plane of the player. The default is set in params.ini at 60 pixels. A larger

value will result in players making more passes and a smaller value will

result in more successful tackles.

/* Attempt a pass to a player */

//if a receiver is found, this will point to it
PlayerBase* receiver = NULL;

power = Prm.MaxPassingForce * dot;

//test if there are any potential candidates available to receive a pass
if (player->isThreatened() &&

player->Team()->CanPass(player,
receiver,
BallTarget,
power,
Prm.MinPassDist))

{
//add some noise to the kick
BallTarget = AddNoiseToKick(player->Ball()->Pos(), BallTarget);

Sports Simulation — Simple Soccer | 165

Designing the AI

TLFeBOOK

Vector2D KickDirection = BallTarget - player->Ball()->Pos();

player->Ball()->Kick(KickDirection, power);

//let the receiver know a pass is coming
Dispatch->DispatchMsg(SEND_MSG_IMMEDIATELY,

player->ID(),
receiver->ID(),
Msg_ReceiveBall,
NO_SCOPE,
&BallTarget);

The method FindPass examines all the friendly players to find the team-

mate farthest up the playing field situated in a position where a pass can be

made without getting intercepted. (A detailed description of FindPass can

be found toward the end of this chapter.) If a valid pass is found, the kick is

made (with added noise as before), and the receiver is notified by sending

it a message to change state to ReceiveBall.

//the player should wait at his current position unless instructed
//otherwise
player->ChangeState(player, Wait::Instance());

player->FindSupport();

return;
}

If the game logic flows to this point, then neither an appropriate pass nor a

goal attempt has been found. The player still has the ball though, so it

enters the Dribble state. (It’s worth noting that this is not the only time

passes are made — teammates can request passes from players by sending

them the appropriate message.)

//cannot shoot or pass, so dribble the ball upfield
else
{
player->FindSupport();

player->ChangeState(player, Dribble::Instance());
}

}

Dribble

Dribbling is something babies are excellent at, from both ends… but the

word has also been adopted by the game of soccer to describe the art of

moving a ball along the field in a series of small kicks and dashes. Using

this skill, a player is able to rotate on the spot or move agilely around an

opponent while retaining control of the ball.

Because one of the exercises at the end of this chapter will be for you to

try to improve this skill, I’ve only implemented a simple method of

166 | Chapter 4

Designing the AI

TLFeBOOK

dribbling, giving a player just enough ability to move the game along at a

reasonable pace.

The Enter method simply lets the rest of the team know that the drib-

bling player is assumed to be in control of the ball.

void Dribble::Enter(FieldPlayer* player)
{
//let the team know this player is controlling
player->Team()->SetControllingPlayer(player);

}

The Execute method contains the majority of the AI logic. First, a check is

made to see if the ball is between the player and its home goal (downfield

of the player). This situation is undesirable, because the player wants to

move the ball as far upfield as possible. Therefore the player must turn

around while still retaining control of the ball. To achieve this, players

make a series of very small kicks in a direction (45 degrees) away from

their facing direction. After making each small kick, the player changes

state to ChaseBall. When done several times in quick succession, this has

the effect of rotating the player and ball until they are heading in the cor-

rect direction (toward the opponent’s goal).

If the ball is positioned upfield of the player, the player will nudge it a

short distance forward and then change state to ChaseBall in order to fol-

low it.

void Dribble::Execute(FieldPlayer* player)
{
double dot = player->Team()->HomeGoal()->Facing().Dot(player->Heading());

//if the ball is between the player and the home goal, it needs to swivel
//the ball around by doing multiple small kicks and turns until the player
//is facing in the correct direction
if (dot < 0)
{
//the player's heading is going to be rotated by a small amount (Pi/4)
//and then the ball will be kicked in that direction
Vector2D direction = player->Heading();

//calculate the sign (+/–) of the angle between the player heading and the
//facing direction of the goal so that the player rotates around in the
//correct direction
double angle = QuarterPi * -1 *

player->Team()->HomeGoal()->Facing().Sign(player->Heading());

Vec2DRotateAroundOrigin(direction, angle);

//this value works well when the player is attempting to control the
//ball and turn at the same time
const double KickingForce = 0.8;

player->Ball()->Kick(direction, KickingForce);
}

Sports Simulation — Simple Soccer | 167

Designing the AI

4

TLFeBOOK

//kick the ball down the field
else
{
player->Ball()->Kick(player->Team()->HomeGoal()->Facing(),

Prm.MaxDribbleForce);
}

//the player has kicked the ball so he must now change state to follow it
player->ChangeState(player, ChaseBall::Instance());

return;
}

SupportAttacker

When a player obtains control of the ball he immediately requests support

by calling the PlayerBase::FindSupport method. FindSupport examines

each team member in turn to determine which player is closest to the

best supporting spot (calculated every few time steps by SupportSpot-

Calculator) and messages that player to change state to SupportAttacker.

On entering this state, the player’s arrive behavior is switched on and

its steering target is set to the location of the BSS.

void SupportAttacker::Enter(FieldPlayer* player)
{
player->Steering()->ArriveOn();

player->Steering()->SetTarget(player->Team()->GetSupportSpot());
}

There are a number of conditions that make up the logic of the Execute

method. Let’s step through them.

void SupportAttacker::Execute(FieldPlayer* player)
{
//if his team loses control go back home
if (!player->Team()->InControl())
{
player->ChangeState(player, ReturnToHomeRegion::Instance()); return;

}

If a player’s team loses control, the player should change state to move

back toward its home position.

//if the best supporting spot changes, change the steering target
if (player->Team()->GetSupportSpot() != player->Steering()->Target())
{
player->Steering()->SetTarget(player->Team()->GetSupportSpot());

player->Steering()->ArriveOn();
}

168 | Chapter 4

Designing the AI

TLFeBOOK

As you have seen, the position of the best supporting spot changes accord-

ing to many factors, so any supporting player must always make sure its

steering target is kept updated with the latest position.

//if this player has a shot at the goal AND the attacker can pass
//the ball to him the attacker should pass the ball to this player
if(player->Team()->CanShoot(player->Pos(),

Prm.MaxShootingForce))
{
player->Team()->RequestPass(player);

}

A supporting player spends the majority of its time in the opponent’s half

of the pitch. Therefore it should always be on the lookout for the possibility

of a shot at the opponent’s goal. These few lines use the SoccerTeam::Can-

Shoot method to determine if there is a potential goal shot. If the result is

affirmative, the player requests a pass from the player controlling the ball.

In turn, if RequestPass determines that a pass from the controlling player to

this player is possible without being intercepted, a Msg_ReceiveBall mes-

sage will be sent and the player will change state accordingly in readiness

to receive the ball.

//if this player is located at the support spot and his team still has
//possession, he should remain still and turn to face the ball
if (player->AtTarget())
{
player->Steering()->ArriveOff();

//the player should keep his eyes on the ball!
player->TrackBall();

player->SetVelocity(Vector2D(0,0));

//if not threatened by another player request a pass
if (!player->isThreatened())
{
player->Team()->RequestPass(player);

}
}

}

Finally, if the supporting player reaches the position of the BSS, it waits

and makes sure it’s always facing the ball. If there are no opponents within

its immediate vicinity and it doesn’t feel threatened, it requests a pass from

the controlling player.

� NOTE Note that a request for a pass does not mean a pass will be made. A
pass will only be made if the pass is considered safe from interception.

Sports Simulation — Simple Soccer | 169

Designing the AI

TLFeBOOK

Goalkeepers
A goalkeeper’s job is to keep the ball from traveling over the goal line. To

do this, a goalkeeper utilizes a different set of skills than a field player and

is therefore implemented as a separate class, GoalKeeper. A goalkeeper will

move backward and forward along the goal mouth until the ball comes

within a specific range, at which point it will move outward toward the ball

in an attempt to intercept it. If a goalkeeper attains possession of the ball, it

puts the ball back in play by kicking it to an appropriate team member.

A Simple Soccer goalkeeper is assigned to the region that overlaps its

team’s goal. Therefore the red goalkeeper is assigned to region 16 and the

blue goalkeeper to region 1.

Goalkeeper Motion

Along with having a completely different set of states than a field player,

the GoalKeeper class must employ a slightly different setup for its motion.

If you observe a goalkeeper playing soccer you will notice that he is almost

always looking directly at the ball and that many of his movements are

from side to side, rather than along his facing direction like a field player.

Because an entity using steering behaviors has a velocity aligned heading,

a goalkeeper utilizes another vector, m_vLookAt, to indicate facing direction,

and it’s this vector that is passed to the Render function in order to trans-

form the goalkeeper’s vertices. The end result is an entity that appears to be

always facing the ball and can move laterally from side to side as well as

along its heading axis. See Figure 4.13.

170 | Chapter 4

Designing the AI

Figure 4.13. Goalkeeper movement

TLFeBOOK

Goalkeeper States

A goalkeeper utilizes five states. These are:

� GlobalKeeperState

� TendGoal

� ReturnHome

� PutBallBackInPlay

� InterceptBall

Let’s take a look at each one of these in detail to see what makes a goal-

keeper tick.

GlobalKeeperState

Like the FieldPlayer global state, the GoalKeeper global state is used as the

router for all the messages it can receive. A goalkeeper only listens for two

messages: Msg_GoHome and Msg_ReceiveBall.

I think the code can speak for itself here:

bool GlobalKeeperState::OnMessage(GoalKeeper* keeper, const Telegram& telegram)
{
switch(telegram.Msg)
{
case Msg_GoHome:
{
keeper->SetDefaultHomeRegion();

keeper->ChangeState(keeper, ReturnHome::Instance());
}

break;

case Msg_ReceiveBall:
{
keeper->ChangeState(keeper, InterceptBall::Instance());

}

break;

}//end switch

return false;
}

TendGoal

When in the TendGoal state, a goalkeeper will move laterally across the

front of the goal mouth, attempting to keep its body between the ball and a

moving position located to its rear somewhere along the goal line. Here is

the state’s Enter method:

void TendGoal::Enter(GoalKeeper* keeper)
{
//turn interpose on
keeper->Steering()->InterposeOn(Prm.GoalKeeperTendingDistance);

Sports Simulation — Simple Soccer | 171

Designing the AI

TLFeBOOK

//interpose will position the agent between the ball position and a target
//position situated along the goal mouth. This call sets the target
keeper->Steering()->SetTarget(keeper->GetRearInterposeTarget());

}

First, the interpose steering behavior is activated. Interpose will return a

steering force that attempts to position the goalkeeper between the ball and

a position situated along the goal mouth. This position is determined by the

GoalKeeper::GetRearInterposeTarget method, which assigns a position to

the target proportionally as far up the length of the goal mouth as the ball is

positioned up the width of the pitch. (I hope that sentence made sense

because I agonized over it for ten minutes and it’s the best I could do!)

Hopefully Figure 4.14 will help your understanding. From the goalkeeper’s

perspective, the farther the ball is to the left, the farther to the left along the

goal line is the interpose rear target. As the ball moves to the goalkeeper’s

right, the interpose rear target moves to the right of the goal mouth with it.

The black double-headed arrow indicates the distance the goalkeeper

attempts to keep between itself and the back of the net. This value is set in

params.ini as GoalKeeperTendingDistance.

Let’s move on to the Execute method.

void TendGoal::Execute(GoalKeeper* keeper)
{
//the rear interpose target will change as the ball’s position changes
//so it must be updated each update step
keeper->Steering()->SetTarget(keeper->GetRearInterposeTarget());

172 | Chapter 4

Designing the AI

Figure 4.14. Tending the goal

TLFeBOOK

//if the ball comes in range the keeper traps it and then changes state
//to put the ball back in play
if (keeper->BallWithinPlayerRange())
{
keeper->Ball()->Trap();

keeper->Pitch()->SetGoalKeeperHasBall(true);

keeper->ChangeState(keeper, PutBallBackInPlay::Instance());

return;
}

//if ball is within a predefined distance, the keeper moves out from
//position to try to intercept it.
if (keeper->BallWithinRangeForIntercept())
{
keeper->ChangeState(keeper, InterceptBall::Instance());

}

First, a check is made to see if the ball is close enough for the goalkeeper

to grab hold of. If so, the ball is trapped and the keeper changes state to

PutBallBackInPlay. Next, if the ball comes within intercept range, shown

in Figure 4.14 as the area in light gray and set in params.ini as

GoalKeeperInterceptRange, the keeper changes state to InterceptBall.

//if the keeper has ventured too far away from the goal line and there
//is no threat from the opponents he should move back toward it
if (keeper->TooFarFromGoalMouth() && keeper->Team()->InControl())
{
keeper->ChangeState(keeper, ReturnHome::Instance());

return;
}

}

Occasionally, following a state change from InterceptBall to TendGoal,

the goalkeeper can find itself too far away from the goal. The last few lines

of code check for this eventuality and, if safe to do so, changes the keeper’s

state to ReturnHome.

The TendGoal::Exit method is very simple; it just deactivates the inter-

pose steering behavior.

void TendGoal::Exit(GoalKeeper* keeper)
{
keeper->Steering()->InterposeOff();

}

ReturnHome

The ReturnHome state moves the goalkeeper back toward its home

region. When the home region is reached or if the opponents gain control

over the ball, the keeper is put back into the TendGoal state.

Sports Simulation — Simple Soccer | 173

Designing the AI

TLFeBOOK

void ReturnHome::Enter(GoalKeeper* keeper)
{
keeper->Steering()->ArriveOn();

}

void ReturnHome::Execute(GoalKeeper* keeper)
{
keeper->Steering()->SetTarget(keeper->HomeRegion()->Center());

//if close enough to home or the opponents get control over the ball,
//change state to tend goal
if (keeper->InHomeRegion() || !keeper->Team()->InControl())
{
keeper->ChangeState(keeper, TendGoal::Instance());

}
}

void ReturnHome::Exit(GoalKeeper* keeper)
{
keeper->Steering()->ArriveOff();

}

PutBallBackInPlay

When a goalkeeper gains possession of the ball, it enters the PutBallBack-

InPlay state. A couple of things happen in the Enter method of this state.

First, the keeper lets its team know it has the ball, then all the field players

are instructed to go back to their home regions via the call to the

SoccerTeam::ReturnAllFieldPlayersToHome method. This ensures that there

will be enough free space between the keeper and the players to make a

goal kick.

void PutBallBackInPlay::Enter(GoalKeeper* keeper)
{
//let the team know that the keeper is in control
keeper->Team()->SetControllingPlayer(keeper);

//send all the players home
keeper->Team()->Opponents()->ReturnAllFieldPlayersToHome();
keeper->Team()->ReturnAllFieldPlayersToHome();

}

The goalkeeper now waits until all the other players have moved far

enough away and it can make a clean pass to one of its team members. As

soon as an opportunity to pass becomes available, the keeper passes the

ball, sends a message to the receiving player to let it know the ball is on its

way, and then changes state to return to tending the goal.

void PutBallBackInPlay::Execute(GoalKeeper* keeper)
{
PlayerBase* receiver = NULL;
Vector2D BallTarget;

//test if there are players farther forward on the field we might
//be able to pass to. If so, make a pass.

174 | Chapter 4

Designing the AI

TLFeBOOK

if (keeper->Team()->FindPass(keeper,
receiver,
BallTarget,
Prm.MaxPassingForce,
Prm.GoalkeeperMinPassDist))

{
//make the pass
keeper->Ball()->Kick(Vec2DNormalize(BallTarget - keeper->Ball()->Pos()),

Prm.MaxPassingForce);

//goalkeeper no longer has ball
keeper->Pitch()->SetGoalKeeperHasBall(false);

//let the receiving player know the ball's comin' at him
Dispatcher->DispatchMsg(SEND_MSG_IMMEDIATELY,

keeper->ID(),
receiver->ID(),
Msg_ReceiveBall,
&BallTarget);

//go back to tending the goal
keeper->GetFSM()->ChangeState(TendGoal::Instance());

return;
}

keeper->SetVelocity(Vector2D());
}

InterceptBall

A goalkeeper will attempt to intercept the ball if the opponents have con-

trol and if it comes into “threat range” — the gray area shown in Figure

4.15. It uses the pursuit steering behavior to steer it toward the ball.

Sports Simulation — Simple Soccer | 175

Designing the AI

Figure 4.15. A goalkeeper’s “threat range”

TLFeBOOK

void InterceptBall::Enter(GoalKeeper* keeper)
{
keeper->Steering()->PursuitOn();

}

As the goalkeeper moves outward, toward the ball, it keeps checking the

distance to the goal to make sure it doesn’t travel too far. If the goalkeeper

does find itself out of goal range it changes state to ReturnHome. There is

one exception to this: If the goalkeeper is out of goal range yet is the clos-

est player on the pitch to the ball, he keeps running after it.

If the ball comes in range of the goalkeeper, he stops the ball using the

SoccerBall::Trap method, lets everyone know he is in possession, and

changes state in order to put the ball back in play.

void InterceptBall::Execute(GoalKeeper* keeper)
{
//if the goalkeeper moves too far away from the goal he should return to his
//home region UNLESS he is the closest player to the ball, in which case
//he should keep trying to intercept it.
if (keeper->TooFarFromGoalMouth() && !keeper->ClosestPlayerOnPitchToBall())
{
keeper->ChangeState(keeper, ReturnHome::Instance());

return;
}

//if the ball becomes in range of the goalkeeper's hands he traps the
//ball and puts it back in play
if (keeper->BallWithinPlayerRange())
{
keeper->Ball()->Trap();

keeper->Pitch()->SetGoalKeeperHasBall(true);

keeper->ChangeState(keeper, PutBallBackInPlay::Instance());

return;
}

}

The exit method of InterceptBall turns off the pursuit behavior.

Key Methods Used by the AI
A number of the methods of the SoccerTeam class are used frequently by

the AI, and thus a full description is important to your complete under-

standing of how the AI works. With this in mind, I’ll spend the next few

pages taking you through each one step by step. Put your math hat back

on…

176 | Chapter 4

Designing the AI

TLFeBOOK

SoccerTeam::isPassSafeFromAllOpponents

A soccer player, whatever his role in the game, is continually assessing his

position in relation to those around him and making judgments based upon

those assessments. One calculation the AI undertakes frequently is to deter-

mine if a pass from position A to position B can be intercepted by any

opposing player at any point in the ball’s trajectory. It needs this informa-

tion to judge whether or not it can make passes, whether it should request a

pass from the current attacker, or if there is a chance of scoring a goal.

Consider Figure 4.16. Player A would like to know if it can pass the ball to

player B without it being intercepted by any of the opponents W, X, Y, or

Z. To determine this it must consider each opponent in turn and calculate if

an intercept is likely. SoccerTeam::isPassSafeFromOpponent is where all the

work is done.

The method takes as parameters the start and end positions of the pass, a

pointer to the opponent to be considered, a pointer to the receiver the ball is

being passed to, and the force the ball is going to be kicked with. The

method is called for each opponent in the opposing team by the method

SoccerTeam::isPassSafeFromAllOpponents.

bool SoccerTeam::isPassSafeFromOpponent(Vector2D from,
Vector2D target,
const PlayerBase* const receiver,
const PlayerBase* const opp,
double PassingForce)const

{
//move the opponent into local space.
Vector2D ToTarget = target - from;

Sports Simulation — Simple Soccer | 177

Designing the AI

Figure 4.16. Player A passing directly to player B

TLFeBOOK

Vector2D ToTargetNormalized = Vec2DNormalize(ToTarget);

Vector2D LocalPosOpp = PointToLocalSpace(opp->Pos(),
ToTargetNormalized,
ToTargetNormalized.Perp(),
from);

The first step is to assume A is looking directly at the “target” position (in

this example, the position of player B) and move the opponent into A’s

local coordinate system. Figure 4.17 shows how all the opposing players in

Figure 4.16 are positioned when moved into player A’s local space.

//if opponent is behind the kicker then pass is considered okay (this is
//based on the assumption the ball is going to be kicked with a
//velocity greater than the opponent's max velocity)
if (LocalPosOpp.x < 0)
{
return true;

}

An assumption is made that the ball will always be kicked with an initial

velocity greater than a player’s maximum speed. If this is true, any oppo-

nents situated behind the kicker’s local y-axis may be removed from any

further consideration. Therefore, given the example in Figure 4.17, W can

be discarded.

Next, any opponents positioned farther away from the passing player

than the target are considered. If the situation is as shown in Figure 4.16

and the target location of the pass is situated at the receiver’s feet, then any

opponent situated farther away than this may be immediately discarded.

However, this method is also called to test the validity of potential passes

178 | Chapter 4

Designing the AI

Figure 4.17. The players transformed into A’s local space

TLFeBOOK

that are situated to either side of the receiving player, such as the ones

shown in Figure 4.18.

In this instance an additional test must be made to check that the opponent

is farther away from the target position than the receiver. If so, then the

opponent may be discarded.

//if the opponent is farther away than the target we need to consider if
//the opponent can reach the position before the receiver.
if (Vec2DDistanceSq(from, target) < Vec2DDistanceSq(opp->Pos(), from))
{
//this condition is here because sometimes this function may be called
//without reference to a receiver. (For example, you may want to find
//out if a ball can reach a position on the field before an opponent
//can get to it)
if (receiver)
{
if (Vec2DDistanceSq(target, opp->Pos()) >

Vec2DDistanceSq(target, receiver->Pos()))
{
return true;

}
}

else
{
return true;

}
}

Sports Simulation — Simple Soccer | 179

Designing the AI

Figure 4.18. Passes to either side of the receiving player are also possible.

TLFeBOOK

The best chance an opponent situated between the two previous conditions

has of intercepting the ball is to run to the point where the ball’s trajectory

is perpendicular to the opponent’s position, shown as points Yp and Xp for

players Y and X respectively in Figure 4.19.

To intercept the ball, an opponent must be able to reach this point before

the ball gets there. To show you how to calculate if this is possible, let’s

examine the case of opponent Y.

First of all, the time taken for the ball to cover the distance from A to Yp

is determined by calling SoccerBall::TimeToCoverDistance. This method

was described in detail earlier, so you should understand how it works.

Given this time, it’s possible to calculate how far opponent Y can travel

before the ball reaches point Yp (time * velocity). I call this distance Y’s

range, because it’s the distance Y can travel in any direction in the speci-

fied amount of time. To this range must be added the radius of the soccer

ball and the radius of the player’s bounding circle. This range value now

represents the player’s “reach” given the time it takes for the ball to reach

Yp.

The reach of Y and X are shown by the dotted circles in Figure 4.20.

180 | Chapter 4

Designing the AI

Figure 4.19. Testing the intercept points

TLFeBOOK

If the circle described by an opponent’s reach intersects the x-axis, it indi-

cates the opponent is able to intercept the ball within the allotted time.

Therefore, in this example, it can be concluded that opponent Y is not a

threat but opponent X is.

Here is the last snippet of code for you to examine.

//calculate how long it takes the ball to cover the distance to the
//position orthogonal to the opponent's position
double TimeForBall =
Pitch()->Ball()->TimeToCoverDistance(Vector2D(0,0),

Vector2D(LocalPosOpp.x, 0),
PassingForce);

//now calculate how far the opponent can run in this time
double reach = opp->MaxSpeed() * TimeForBall +

Pitch()->Ball()->BRadius()+
opp->BRadius();

//if the distance to the opponent's y position is less than his running
//range plus the radius of the ball and the opponent's radius, then the
//ball can be intercepted
if (fabs(LocalPosOpp.y) < reach)
{
return false;

}

return true;
}

Sports Simulation — Simple Soccer | 181

Designing the AI

Figure 4.20. Opponent movement ranges

TLFeBOOK

� NOTE Technically speaking, the ranges shown in Figure 4.20 are incorrect.
I’ve made the assumption that it takes zero time for the opponent to rotate to
face its intercept point. To be accurate, the time needed to rotate should also be
taken into consideration, in which case the range is described by an ellipse
instead of a circle. Like so:

Obviously, it’s a lot more expensive to calculate ellipse-line intersections, which
is why circles are used instead.

SoccerTeam::CanShoot

One very important skill a soccer player has is, of course, the ability to

score goals. A player who is in possession of the ball may query the

SoccerTeam::CanShoot method to see if it’s able to score a goal given the

ball’s current position and a value representing the force with which the

player kicks the ball. If the method determines the player is able to shoot, it

will return true and store the position the player should shoot at in a refer-

ence to a vector, ShotTarget.

The method works by randomly selecting a number of positions along

the goal mouth and testing each of them in turn to check if the ball can be

kicked to that point without being intercepted by any of the opposing play-

ers. See Figure 4.22.

182 | Chapter 4

Designing the AI

Figure 4.21

TLFeBOOK

Here is the code listing. (Notice how there is a check to make sure the kick-

ing force is enough to move the ball over the goal line.)

bool SoccerTeam::CanShoot(Vector2D BallPos,
double power
Vector2D& ShotTarget)const

{
//the number of randomly created shot targets this method will test
int NumAttempts = Prm.NumAttemptsToFindValidStrike;

while (NumAttempts--)
{
//choose a random position along the opponent's goal mouth. (making
//sure the ball's radius is taken into account)
ShotTarget = OpponentsGoal()->Center();

//the y value of the shot position should lie somewhere between the two
//goal posts (taking into consideration the ball diameter)
int MinYVal = OpponentsGoal()->LeftPost().x + Pitch()->Ball()->BRadius();
int MaxYVal = OpponentsGoal()->RightPost().x - Pitch()->Ball()->BRadius();

ShotTarget.x = RandInt(MinYVal, MaxYVal);

//make sure striking the ball with the given power is enough to drive
//the ball over the goal line.
double time = Pitch()->Ball()->TimeToCoverDistance(BallPos,

ShotTarget,
power);

//if so, this shot is then tested to see if any of the opponents
//can intercept it.
if (time > 0)

Sports Simulation — Simple Soccer | 183

Designing the AI

Figure 4.22. Randomly selected shot targets

TLFeBOOK

{
if (isPassSafeFromAllOpponents(BallPos, ShotTarget, NULL, power))
{
return true;

}
}

}

return false;
}

SoccerTeam::FindPass

The FindPass method is called by a player to determine if a pass to a team-

mate is possible and, if so, which position and teammate is best to pass the

ball to.

The method takes as parameters a pointer to the player requesting the

pass; a reference to a pointer that will point to the receiving player (if a

pass is found); a reference to a vector, PassTarget, to which will be

assigned the position the pass will be made to; the power the ball will be

kicked with; and a value representing the minimum distance a receiver

should be from the passing player, MinPassingDistance.

The method then iterates through all the passer’s teammates and calls

GetBestPassToReceiver for each of those that are at least MinPassing-

Distance from the passer. GetBestPassToReceiver examines a number of

potential passing locations for the teammate under consideration and, if a

pass can be safely made, stores the best opportunity in the vector

BallTarget.

After all the teammates have been considered, if a valid pass has been

found, the one that is closest to the opponent’s baseline is assigned to

PassTarget and the pointer to the player that should receive the pass is

assigned to receiver. The method then returns true.

Here is the listing for you to examine.

bool SoccerTeam::FindPass(const PlayerBase*const passer,
PlayerBase*& receiver,
Vector2D& PassTarget,
double power,
double MinPassingDistance)const

{

std::vector<PlayerBase*>::const_iterator curPlyr = Members().begin();

double ClosestToGoalSoFar = MaxDouble;
Vector2D BallTarget;

//iterate through all this player's team members and calculate which
//one is in a position to be passed the ball

184 | Chapter 4

Designing the AI

TLFeBOOK

for (curPlyr; curPlyr != Members().end(); ++curPlyr)
{
//make sure the potential receiver being examined is not this player
//and that it’s farther away than the minimum pass distance
if ((*curPlyr != passer) &&

(Vec2DDistanceSq(passer->Pos(), (*curPlyr)->Pos()) >
MinPassingDistance*MinPassingDistance))

{
if (GetBestPassToReceiver(passer, *curPlyr, BallTarget, power))
{
//if the pass target is the closest to the opponent's goal line found
//so far, keep a record of it
double Dist2Goal = fabs(BallTarget.x - OpponentsGoal()->Center().x);

if (Dist2Goal < ClosestToGoalSoFar)
{
ClosestToGoalSoFar = Dist2Goal;

//keep a record of this player
receiver = *curPlyr;

//and the target
PassTarget = BallTarget;

}
}

}
}//next team member

if (receiver) return true;

else return false;
}

SoccerTeam::GetBestPassToReceiver

Given a passer and a receiver, this method examines several different posi-

tions situated around the receiver to test if a pass may be made safely to

any of them. If a pass can be made, the method stores the best pass — the

one to the position closest to the opponent’s baseline — in the parameter

PassTarget, and returns true.

Let me talk you through the algorithm using the situation shown in Fig-

ure 4.23.

bool SoccerTeam::GetBestPassToReceiver(const PlayerBase* const passer,
const PlayerBase* const receiver,
Vector2D& PassTarget,
double power)const

{

Sports Simulation — Simple Soccer | 185

Designing the AI

TLFeBOOK

First of all, the method calculates how long it will take for the ball to reach

the receiver’s position and immediately returns false if it’s impossible to

reach this point given the kicking force, power.

//first, calculate how much time it will take for the ball to reach
//this receiver
double time = Pitch()->Ball()->TimeToCoverDistance(Pitch()->Ball()->Pos(),

receiver->Pos(),
power);

//return false if ball cannot reach the receiver after having been
//kicked with the given power
if (time <= 0) return false;

It’s now possible to calculate how far the receiver is able to move within

this time, using the equation �x = v�t. The intercept points of the tangents

from the ball to this range circle represent the limits of the receiver’s pass

envelope. See Figure 4.24.

//the maximum distance the receiver can cover in this time
double InterceptRange = time * receiver->MaxSpeed();

In other words, assuming it does not waste time turning around or acceler-

ating to maximum speed, the receiver can reach positions ip1 or ip2 just in

time to intercept the ball. However in reality, this distance is often too

large, especially if the distance between the receiver and passer is reaching

the limits within which a pass can be made (often ip1 and ip2 will end up

situated outside the playing area). It’s much better to consider passes to

positions that lay well within this region. This will reduce the chance of

opponents intercepting the ball and also make the pass less prone to

186 | Chapter 4

Designing the AI

Figure 4.23. A typical passing situation

TLFeBOOK

unforeseen difficulties (such as the receiver having to maneuver around

opponents to reach the pass target). It also gives the receiver some “space,”

some time in which it can reach the position and then orient itself properly

in time to receive the pass. With this in mind, the intercept range is scaled

down to about a third of its original size. See Figure 4.25.

//Scale down the intercept range
const double ScalingFactor = 0.3;
InterceptRange *= ScalingFactor;

Sports Simulation — Simple Soccer | 187

Designing the AI

Figure 4.25. The receiver’s range is reduced.

Figure 4.24. The limits of the receiver’s range

TLFeBOOK

As you can see, this looks much more reasonable and more like the type of

passing range a human soccer player would consider. The next step is to

calculate the positions of ip1 and ip2. These will be considered as potential

passing targets. In addition, the method will also consider a pass directly to

the receiver’s current location. These three positions are stored in the array

Passes.

//calculate the pass targets that are positioned at the intercepts
//of the tangents from the ball to the receiver's range circle.
Vector2D ip1, ip2;

GetTangentPoints(receiver->Pos(),
InterceptRange,
Pitch()->Ball()->Pos(),
ip1,
ip2);

const int NumPassesToTry = 3;
Vector2D Passes[NumPassesToTry] = {ip1, receiver->Pos(), ip2};

Finally, the method iterates through each potential pass to make sure the

position is located within the playing area and to ensure it’s safe from an

interception attempt by any opponents.

The loop makes a note of the best valid pass it examines and returns the

result accordingly.

// this pass is the best found so far if it’s:
//
// 1. Farther upfield than the closest valid pass for this receiver
// found so far
// 2. Within the playing area
// 3. Cannot be intercepted by any opponents

double ClosestSoFar = MaxDouble;
bool bResult = false;

for (int pass=0; pass<NumPassesToTry; ++pass)
{
double dist = fabs(Passes[pass].x - OpponentsGoal()->Center().x);

if ((dist < ClosestSoFar) &&
Pitch()->PlayingArea()->Inside(Passes[pass]) &&
isPassSafeFromAllOpponents(Pitch()->Ball()->Pos(),

Passes[pass],
receiver,
power))

{
ClosestSoFar = dist;
PassTarget = Passes[pass];
bResult = true;

}
}

188 | Chapter 4

Designing the AI

TLFeBOOK

return bResult;
}

Making Estimates and Assumptions Work for You

You have probably noticed I’ve used many estimates and assumptions

throughout the calculations described in this chapter. At first, this may

seem like a bad thing because, as programmers, we’re used to making sure

everything works “just so,” like perfect clockwork automatons.

Sometimes, however, it’s beneficial to design your game’s AI in such a

way that it makes occasional mistakes. This, as far as making computer

game AI goes, can be a Good Thing. Why? Because it’s more realistic.

Humans make mistakes and misjudgments all the time, and therefore the

occasional mistake made by the AI makes for a much more entertaining

experience from a human player’s perspective.

There are two ways of inducing mistakes. The first is to make the AI

“perfect” and dumb it down. The second is to allow “errors” to creep in by

making assumptions or estimates when designing the algorithms the AI

uses. You have seen both of these methods used in Simple Soccer. An

example of the former is when random noise is used to introduce a small

amount of error in direction every time the ball is kicked. An example of

the latter is where circles instead of ellipses are used to describe an oppo-

nent’s intercept range.

When deciding how to create error and uncertainty in your AI, you must

examine each appropriate algorithm carefully. My advice is this: If an algo-

rithm is easy to code and doesn’t require much processor time, do it the

“correct” way, make it perfect, and dumb down to taste. Otherwise, check

if it’s possible to make any assumptions or estimates to help reduce the

complexity of the algorithm. If your algorithm can be simplified in this

way, code it, then make sure you test it thoroughly to ensure the AI per-

forms satisfactorily.

Summing Up

Simple Soccer demonstrates how team-based AI for a sports game can be

created using only a handful of basic AI techniques. Of course, as it stands,

the behavior is neither particularly sophisticated nor complete. As your

knowledge of AI techniques and experience increase you will see many

areas where the design of Simple Soccer can be improved or added to. For

starters, though, you might like to try your hand at some of the following

practice exercises.

Sports Simulation — Simple Soccer | 189

Making Estimates and Assumptions Work for You

TLFeBOOK

Practice Makes Perfect

The following exercises have been designed to reinforce each of the differ-

ent skills you have learned so far in the book. I hope you have a lot of fun

completing them.

1. As it stands, the dribbling behavior is poor: If the supporting player

cannot move into a suitable position quickly enough, the attacker will

happily dribble the ball in a straight line directly into the hands of the

opposing team’s goalkeeper (or into the rear wall, whichever comes

first). Improve this behavior by adding logic to prevent the attacker

from moving too far ahead of the supporting player. Found that easy?

What other ways can you think of to improve an attacker’s behavior?

Can you create players that can dribble the ball around opponents?

2. Other than the change of home regions, there isn’t any defensive play

implemented in the example code. Create players that are able to

interpose themselves between the opponent’s attacking and supporting

players.

3. Adjust the support spot calculator to try different scoring schemes.

There are many options for you to experiment with here. For example,

you could rate a position for the quality of being equidistant from all

the opponents or for the quality of being ahead of the controlling

player’s position. You could even vary the rating scheme based on

where the controlling and supporting players are located.

4. Create additional states at the team level to implement more varied

tactics. In addition to just assigning different home regions to the

players, create states that assign roles to some of the players too. One

tactic might be to hem in the opposing team’s attacking player by

assigning players to surround it. Another could be to command some

of the players to stay close — to “mark” in soccer terminology — any

of the opponents the AI perceives as a threat (like one situated near

the home goal for example).

5. Change the program so that a passing player kicks the ball with the

correct force required for it to arrive at the receiver’s feet with a

velocity of your choice.

6. Introduce the idea of stamina. All players start off with the same

amount of stamina and as they run around the field they use it up. The

less stamina they have, the slower they can run and the less power

they can put into their shots. They can only recover their stamina if

they are motionless.

7. Implement a referee. This is not as easy as it first sounds. The referee

must always try to position itself where it can see the ball and players

without interfering with the action.

190 | Chapter 4

Summing Up

TLFeBOOK

� NOTE To assist you, I’ve left some of the debug code in the Simple Soccer
project. When you compile and run the program, you will see an additional win-
dow to which you can output debug information. Any information sent to this
window is also output to a file called DebugLog.txt that you can view after the
program has been exited. (Be careful though — if you are outputting lots of
debug info, this text file can grow quickly.)

To write to the debug console, use the format:

debug_con << "This is a number : " << 3 << "";

The " " at the end of the line gives a line return. You can send any type to the
console that has overloaded the << operator.

When you have finished debugging you can remove the console by com-
menting out the line #define DEBUG in the DebugConsole.h file. This will route
all your debugging comments to a dummy stream.

In addition to the debug console, the main program has options accessible
through the menus to give you immediate visual feedback of some of the key
concepts.

Sports Simulation — Simple Soccer | 191

Summing Up

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 5

The Secret Life of Graphs

T his chapter focuses on a mind-bogglingly useful mathematical abstrac-

tion called a graph. You’ll be using graphs a lot in game AI. In fact,

you’ve already seen them: The state transition bubble diagrams from Chap-

ter 1 are a type of graph. Graphs and their baby brothers, trees, are used by

game AI programmers all the time. They can be used for a whole variety of

things — from enabling game agents to travel between two points effi-

ciently, to deciding what to build next in a strategy game and solving

puzzles.

The first part of this chapter will be spent introducing you to the differ-

ent kinds of graphs and the terminology associated with them. You’ll learn

what graphs actually are, how they can be used, and how to code them effi-

ciently. The remainder of the chapter will describe, in lots of detail, many

of the search algorithms available to exploit the full power of graphs.

Graphs

When developing the AI for games, one of the most common uses of

graphs is to represent a network of paths an agent can use to navigate

around its environment. When I first learned this I was confused, as all my

life I’d known a graph to look like the graphs I was taught to draw at

193

Figure 5.1. A typical graph

TLFeBOOK

school — something like the familiar shape shown in Figure 5.1, for

example.

I’d always thought of graphs as useful for visualizing the rise and fall of

some property, like the temperature charts shown on TV weather reports or

sales figures, stuff like that, and so I was left wondering how this sort of

graph could possibly be used to represent the paths weaving around the

walls and obstacles in a game environment. If you have never studied

graph theory, then this is possibly the way you think about graphs too. I

guess it’s just the way we are conditioned. However, let me show you

something interesting. Check out Figure 5.2.

This is the same graph, but I’ve changed the axis labeling to represent the x

and y coordinates of Cartesian space, adding a few cosmetic embellish-

ments so that now it represents a path meandering close to a river. In fact it

looks like something your average person on the street would refer to as a

map. Indeed, the whole image is a map, but the series of waypoints and the

footpath connecting them is represented by a very simple graph. Now I

realize a few of you will be thinking this is no big deal, but I believe that

for many this subtle shift in perspective can be a revelation. It certainly was

for me. In graph terminology, the waypoints are called nodes (or some-

times vectors) and the footpaths connecting them are called edges (or

sometimes arcs).

Figure 5.3 shows some more examples of graphs. As you can see, they

can assume a wide variety of configurations.

194 | Chapter 5

Graphs

Figure 5.2

TLFeBOOK

In a broader context, a graph is a symbolic representation of a network, and

while the nodes and edges may represent a spatial relationship, such as the

example previously discussed, this doesn’t have to be the case. Graphs can

be used to represent networks of any kind, from telephone networks and

the World Wide Web to electronic circuits and artificial neural networks.

� NOTE Graphs can be either connected or unconnected. A graph is consid-
ered to be connected when it’s possible to trace a path from every single node
to every other.

Graphs A, B, D, and E in Figure 5.3 are examples of connected graphs.
Graphs C and F are examples of unconnected graphs.

A More Formal Description
A graph, G, can be formally defined as the set of nodes or vertices, N, link-

ing with the set of edges, E. You will often find this written as:

(5.1)

If each node in a graph is labeled with an integer in the range 0 to (N-1), an

edge can now be referred to by the nodes it connects, for example 3-5 or

19-7.

Many graphs have edges that are weighted — they contain information

about the cost of moving from one node to another. For example, in the

graph shown in Figure 5.2, the cost of traversing an edge is the distance

between the two nodes it connects. In a graph representing the tech-tree for

The Secret Life of Graphs | 195

Graphs

Figure 5.3. Examples of graphs

� �,G N E�

TLFeBOOK

a Warcraft-like RTS game the edges might indicate the resources required

to upgrade each unit.

� NOTE Although a graph may have multiple connections to the same node or
even looped connections connecting a node to itself, these features are rarely
necessary for game AI and will not be considered in the following pages.

Trees
Most programmers are aware of the tree data structure. Trees are used pro-

fusely throughout all programming disciplines. However, you may not

realize that trees are the subset of graphs comprising all graphs that are

acyclic (containing no cyclic paths). Graph E in Figure 5.3 is a tree, and

that’s probably the shape you are familiar with, but graph D is also a tree.

Graph F is a forest of trees.

Graph Density
The ratio of edges to nodes indicates whether a graph is sparse or dense.

Sparse graphs have few connections per node and dense graphs many. Fig-

ure 5.4 shows an example of both types. In order to reduce complexity and

keep CPU and memory usage to a minimum, you should prefer sparse

graphs whenever possible, for example, when designing a graph for use in

path planning (see Chapter 8).

Knowing whether a graph is dense or sparse is helpful when selecting an

appropriate data structure to encode the graph’s structure, since an imple-

mentation that is efficient for a dense graph is probably not going to be

efficient for one that is sparse.

Digraphs
So far we have assumed that if it’s possible to travel from node A to node

B, then it’s also possible to do the reverse. This may not always be the

case. Sometimes you may need to implement a graph where the connec-

tions are directional. For example, your game may have a “death-slide”

positioned across a river. An agent should only be able to traverse this one

196 | Chapter 5

Graphs

Figure 5.4. Examples of dense and sparse graphs

TLFeBOOK

way — from the top to the bottom — so we have to find a way of repre-

senting this type of connection.

Alternatively, it may be possible to travel between two nodes in either

direction but the cost of each traversal may be different. A good example

of this is if you want your agents to take the terrain’s gradients into consid-

eration. After all, it’s easy for a vehicle to travel efficiently and quickly

downhill, but it takes a lot more fuel for a vehicle to move uphill, and its

top speed will be much slower. We can reflect this information using a

graph called a digraph, or DAG for short.

A digraph has edges that are directed, or one way. The nodes that define

a directed edge are known as an ordered pair and specify the direction of

the edge. For example, the ordered pair 16-6 indicates that it’s possible to

travel from node 16 to node 6 but not from node 6 to 16. In this example,

node 16 is known as the source node and node 6 the destination node.

Figure 5.5 shows a small digraph. The edges are drawn using arrows to

indicate their direction.

When designing a data structure for graphs it’s often helpful to think of

undirected graphs as digraphs with two edges connecting each connected

pair of nodes. This is convenient because both types of graphs (directed

and undirected) can then be represented by the same data structure. For

example, the sparse undirected graph shown in Figure 5.4 can be repre-

sented by the digraph shown in Figure 5.6.

Graphs in Game AI
Before we move on to the implementation of the code for a graph, let’s

take a quick look at some of the things you can use a graph for in the

development of a game’s AI, starting with the most popular use: navigation

or pathfinding.

The Secret Life of Graphs | 197

Graphs

Figure 5.5. A simple digraph. Note that
in the world of digraphs, unconnected
graphs are more frequent as they may
contain nodes that are only reachable
from one direction.

Figure 5.6. Representing an undirected
graph as a digraph

TLFeBOOK

Navigation Graphs

A navigation graph, or navgraph, is an abstraction of all the locations in a

game environment the game agents may visit and of all the connections

between those points. Consequently, a well-designed navgraph is a data

structure embodying all the possible paths through the game environment

and is therefore extremely handy for helping your game agents decide how

to get from A to B.

Each node in a navgraph usually represents the position of a key area or

object within the environment and each edge represents the connections

between those points. Furthermore, each edge will have an associated cost,

which in the simplest case represents the distance between the nodes it con-

nects. This type of graph is known to mathematicians as a Euclidian graph.

Figure 5.7 shows a navigation graph created for a small walled environ-

ment and highlights a path through that graph.

I’d like to make it clear that a game agent is not restricted to moving along

the graph edges as though it were a train traveling along rails. An agent can

move to any unobstructed position within the game environment, but it

uses the navigation graph to negotiate its environment — to plan paths

between two or more points and to traverse them. For example, if an agent

positioned at point A finds it necessary to move to position B, it can use the

navgraph to calculate the best route between the nodes closest to those

points.

Figure 5.7 is typical of a navigation graph created for a first-person

shooter. Other types of games may find a different node layout more effec-

tive. RTS/RPG type games, for instance, are often based upon a grid of

tiles or cells, where each tile represents a different type of terrain such as

198 | Chapter 5

Graphs

Figure 5.7. A simple navigation graph. The collection of all the edges and nodes con-
stitute the graph. The highlighted edges represent a possible path through the graph.

TLFeBOOK

grass, road, mud, etc. Therefore, it’s convenient to create a graph using the

center points of each tile and assigning edge costs based upon the distance

between cells weighted for the terrain type the edge moves over. This

approach enables game agents to easily calculate paths that avoid water,

prefer traveling on roads to mud, and meander around mountains. Figure

5.8 shows the sort of cell layout you can expect to see utilized in an

RTS/RPG.

Because some RTS/RPG games can use literally hundreds of thousands of

cells, the disadvantage of this approach is that the graphs can be extremely

large, costly to search, and take up large amounts of memory. Fortunately

for AI developers, some of these problems can be avoided using techniques

you will learn later in the book.

� TIP If you are creating a “stealth ‘em up” like the games Thief and Thief 2 by
Looking Glass Studios/Eidos Interactive, you can use a navgraph that has its
edges weighted by how much sound a character would make traversing the
edge. Edges that are quiet to traverse such as those along carpet would have
low edge weights, and loud edges high values. Designing your graphs this way
enables your game characters to find the quietest path between two rooms.

Dependency Graphs

Dependency graphs are used in resource management type games to

describe the dependencies between the various buildings, materials, units,

and technologies available to a player. Figure 5.9 shows part of a depend-

ency graph created for such a game. This kind of graph makes it easy to see

what prerequisites are required for the creation of each type of resource.

The Secret Life of Graphs | 199

Graphs

Figure 5.8. A typical cell-based environment. Although not shown for clarity, graph
nodes are positioned in the centers of the cells with edges connecting adjacent nodes.
The PathFinder demo for this chapter uses this type of navgraph.

TLFeBOOK

Dependency graphs are invaluable when designing an AI for this type of

genre because the AI can use them to decide on strategies, predict the

future status of an opponent, and assign resources effectively. Here are

some examples based upon the graph shown in the figure.

1. If the AI is preparing for battle and ascertains that archers are going to

be advantageous, it can examine the dependency graph to conclude

that before it can produce archers, it must first make sure it has a bar-

racks and the technology of arrows. It also knows that in order to

produce arrows it must have a lumber mill producing wood. There-

fore, if the AI already has a lumber mill it can assign resources to

building a barracks or vice versa. If the AI has neither a barracks nor a

lumber mill it can inspect the technology graph further to determine

that it’s probably advantageous to build the barracks before the lumber

mill. Why? Because the barracks is a prerequisite for three different

kinds of fighting unit, whereas a lumber mill is only a prerequisite for

producing wood. The AI has already determined a battle is imminent,

so it should realize (if you’ve designed it correctly, of course) that it

should be putting resources into making fighting units as soon as pos-

sible, because as we all know, knights and foot soldiers make better

warriors than planks of wood!

2. If an enemy foot soldier carrying a gun comes into the AI’s territory,

the AI can work backward through the graph to conclude that:

� The enemy must have already built a forge and a lumber mill.

� The enemy must have developed the technology of gunpowder.

� The enemy must be producing the resources of wood and iron.

200 | Chapter 5

Graphs

Figure 5.9. A simple dependency graph

TLFeBOOK

Further examination of the graph would indicate that the enemy

probably either has cannons or is currently building them. Nasty!

The AI can use this information to decide on the best plan of

attack. For example, the AI would know that to prevent any more

gun-toting enemies from reaching its territory, it should target the

enemy’s forge and lumber mill. It can also infer that sending an assas-

sin to hit the enemy blacksmith would weaken its foe considerably,

and perhaps devote resources toward creating an assassin for this

purpose.

3. Often, a technology or specific unit is key to a team winning a game.

If the costs of building each resource are assigned to the dependency

graph’s edges, then the AI can use this information to calculate the

most efficient route to produce that resource.

State Graphs

A state graph is a representation of every possible state a system can be in

and the transitions between those states. This collection of a system’s

potential states is known as its state space. A graph of this type can be

searched to see if a particular state is possible or to find the most efficient

route to a specific state.

Let’s look at a simple example using the “Towers of Hanoi” puzzle.

In this simple version of the puzzle there are three pegs — A, B, and C —

and three rings of varying sizes that fit over the pegs. The rings start off

positioned in order of size over peg A. The aim of the puzzle is to move the

rings until they are all positioned on peg C, also in order of size. Only one

ring may be moved at a time. A ring may be placed either on an empty peg

or on top of a ring that is bigger than itself.

We can represent the state space of this puzzle using a graph where each

node represents one of the possible states the puzzle may occupy. The

edges of the graph represent the transitions between the states: If it’s

The Secret Life of Graphs | 201

Graphs

Figure 5.10. The Towers of Hanoi

TLFeBOOK

possible to move directly from one state to another there will be an edge

connecting the two states; otherwise there will be no connection. The graph

is constructed by first creating a node that contains the start state of the

puzzle. This is known as the root node. The root node is then expanded by

adding all the states attainable from that node to the graph, and then each

of those states is expanded, and so on, until all the possible states and tran-

sitions have been added to the graph. Each state’s previous state is called

its parent state, and the new state is called the child of the parent state.

Figure 5.11 shows this process. An arrow connecting two states means

that one state can be reached from the other by moving one of the disks.

The graph gets complicated quickly, so I’ve omitted many of the possible

states to make it easier to see one of the paths leading to a solution.

202 | Chapter 5

Graphs

Figure 5.11. Expanding the states for the Towers of Hanoi puzzle. The dotted boxes
indicate states that have not been expanded.

TLFeBOOK

A state graph can easily be searched to find a goal state. In this example,

the goal state is one where all the pieces are positioned on peg C in the cor-

rect order. By searching the state space it’s possible to not only find a

single solution, but to find every possible solution or the solution requiring

the fewest moves (or the most moves if that’s what you are looking for).

The average number of child nodes radiating from each parent node is

known as a graph’s branching factor. For some problems, such as the puz-

zle example we have discussed here, the branching factor is low — on the

order of one to three branches per node — making it possible to represent

with a graph the entire state space in a computer’s memory. For many

domains though, the branching factor is much higher and the number of

potential states grows enormously as the distance from the root node (the

depth of the graph) increases. With these types of systems it’s impossible to

represent the entire state space because it will quickly exceed the memory

capabilities of even the most powerful computer. Even if such a graph

could be stored, it would still take eons to complete a search. Conse-

quently, these types of graphs are created and searched by expanding a few

nodes at a time, typically (but not always) using algorithms that direct the

search toward the goal state.

Implementing a Graph Class

Two popular data structures used to represent graphs are adjacency matri-

ces and adjacency lists. Adjacency matrix graphs use a two-dimensional

matrix of Booleans or floats to store a graph’s connectivity information.

Booleans are used if there is no cost associated with traversing an edge and

floats are used when there is an associated cost, such as for a navigation

graph where each edge represents the distance between two nodes. The

exact implementation is, of course, up to the designer and the needs of his

problem. Figure 5.12 shows what the adjacency matrix looks like for the

digraph in Figure 5.6.

The Secret Life of Graphs | 203

Implementing a Graph Class

Figure 5.12. An adjacency matrix

TLFeBOOK

Each “1” represents a connection between two nodes, and each “0” repre-

sents the lack of a connection. By reading the values directly off the matrix

from Figure 5.12, we know that there is no connection from node 2 to 6,

but there is an edge connecting 4 to 2.

Adjacency matrices are intuitive, but for large sparse graphs this type of

representation is inefficient as most of the matrix is used storing unneces-

sary zero values. A much better data structure for sparse graphs (the most

commonly occurring graphs in game AI) is the adjacency list.

For each node present, an adjacency list graph stores a linked list of all

its adjacent edges. Figure 5.13 shows how this works for the previous

example.

Adjacency lists are efficient for storing sparse graphs because they don’t

waste space storing null connections. The amount of space required to store

a graph using this type of data structure is proportional to N + E (number

of nodes + number of edges), whereas for an adjacency matrix it is propor-

tional to N2 (number of nodes squared).

As most of the graphs you will come across in AI game development are

sparse, an adjacency list will frequently be your data structure of choice.

With this in mind let’s take a look at the source code required to implement

such a graph.

The GraphNode Class
GraphNode encapsulates the minimum information a node requires for an

adjacency list graph representation: a unique identifying number, or index.

Here’s the listing of the graph node declaration:

class GraphNode
{
protected:

//every node has an index. A valid index is >= 0
int m_iIndex;

public:

204 | Chapter 5

Implementing a Graph Class

Figure 5.13. An adjacency list representation of the digraph from Figure 5.6

TLFeBOOK

GraphNode():m_iIndex(invalid_node_index){}
GraphNode(int idx):m_iIndex(idx){}

virtual ~GraphNode(){}

int Index()const;
void SetIndex(int NewIndex);

};

Because often you will require that a node contains additional information,

GraphNode is typically used as a base class from which to derive custom-

built nodes. For example, a navigation graph’s nodes must store spatial

information, and a dependency graph’s nodes must contain information

about the assets they represent.

A node class designed for use within a navigation graph might look

something like this:

template < class extra_info = void*>
class NavGraphNode : public GraphNode
{
protected:

//the node's position
Vector2D m_vPosition;

//often you will require a navgraph node to contain additional information.
//For example a node might represent a pickup such as armor in which
//case m_ExtraInfo could be an enumerated value denoting the pickup type,
//thereby enabling a search algorithm to search a graph for specific items.
//Going one step further, m_ExtraInfo could be a pointer to the instance of
//the item type the node is twinned with. This would allow a search algorithm
//to test the status of the pickup during the search. See Chapter 8 for further
//info.
extra_info m_ExtraInfo;

public:

/*INTERFACE OMITTED */
};

Please note that although the node class listed here uses a 2D vector to rep-

resent a node’s position, a graph can exist in any number of dimensions

you like. If you are creating a navigation graph for a 3D game, simply use

3D vectors. Everything will work just the same.

The GraphEdge Class
The GraphEdge class encapsulates the basic information required to denote a

connection between two graph nodes. Here’s the code:

class GraphEdge
{
protected:

The Secret Life of Graphs | 205

Implementing a Graph Class

TLFeBOOK

//An edge connects two nodes. Valid node indices are always positive.
int m_iFrom;
int m_iTo;

//the cost of traversing the edge
double m_dCost;

public:

//ctors
GraphEdge(int from, int to, double cost):m_dCost(cost),

m_iFrom(from),
m_iTo(to)

{}

GraphEdge(int from, int to):m_dCost(1.0),
m_iFrom(from),
m_iTo(to)

{}

GraphEdge():m_dCost(1.0),
m_iFrom(invalid_node_index),
m_iTo(invalid_node_index)

{}

Occasionally it’s useful to be able to create a GraphEdge with either or both

indices set to an “invalid” (negative) value. The enumerated value

invalid_node_index found in the file NodeTypeEnumerations.h is used

here to initialize From and To in the default constructor.

virtual ~GraphEdge(){}

int From()const;
void SetFrom(int NewIndex);

int To()const;
void SetTo(int NewIndex);

double Cost()const;
void SetCost(double NewCost);

};

If you are working on a platform where memory use is a much greater con-

cern than the speed of searching a graph, you can get good savings on

cell-based graphs (or graphs of equal or greater density) by not explicitly

storing the cost of each edge. Instead, you can save memory by omitting

the cost field from the GraphEdge class and calculate the cost “on-the-fly”

using a function of attributes of its two adjacent nodes. For example, if the

edge cost is equal to the distance between two nodes, the function would be

the Euclidean distance. Something like:

206 | Chapter 5

Implementing a Graph Class

TLFeBOOK

//cost from A to B
cost = Distance(NodeA.Position, NodeB.Position)

Because there are usually eight times more edges than vertices in this type

of graph, the memory savings can be considerable when large numbers of

nodes are involved.

The SparseGraph Class
Graph nodes and edges are grouped together in the SparseGraph class. This

is implemented as a class template, enabling this type of graph to use any

appropriate node and edge types. Algorithms that operate on graphs should

be able to access the node and edge data quickly. With this in mind, the

SparseGraph class is designed so that each node’s index number keys

directly into a vector of graph nodes (m_Nodes) and a vector of adjacency

edge lists (m_Edges), giving a lookup time of O(1). However, this creates a

problem when a node is removed from the graph, since if it were to be

removed from m_Nodes also, all the indexing for any higher indexed nodes

would be invalidated. Therefore, instead of erasing the node from the vec-

tor, its index is set to the enumerated value invalid_node_index, and all the

methods of SparseGraph treat this value as if there were no node present.

Here is the listing of SparseGraph’s declaration.

template <class node_type, class edge_type>
class SparseGraph
{
public:

//enable easy client access to the edge and node types used in the graph
typedef edge_type EdgeType;
typedef node_type NodeType;

//a few more useful typedefs
typedef std::vector<node_type> NodeVector;
typedef std::list<edge_type> EdgeList;
typedef std::vector<EdgeList> EdgeListVector;

private:

//the nodes that comprise this graph
NodeVector m_Nodes;

//a vector of adjacency edge lists. (each node index keys into the
//list of edges associated with that node)
EdgeListVector m_Edges;

//is this a directed graph?
bool m_bDigraph;

The Secret Life of Graphs | 207

Implementing a Graph Class

TLFeBOOK

//the index of the next node to be added
int m_iNextNodeIndex;

/* EXTRANEOUS DETAIL OMITTED */

public:

//ctor
SparseGraph(bool digraph): m_iNextNodeIndex(0), m_bDigraph(digraph){}

//returns the node at the given index
const NodeType& GetNode(int idx)const;

//non-const version
NodeType& GetNode(int idx);

//const method for obtaining a reference to an edge
const EdgeType& GetEdge(int from, int to)const;

//non const version
EdgeType& GetEdge(int from, int to);

//retrieves the next free node index
int GetNextFreeNodeIndex()const;

//adds a node to the graph and returns its index
int AddNode(NodeType node);

//removes a node by setting its index to invalid_node_index
void RemoveNode(int node);

//methods to add and remove edges
void AddEdge(EdgeType edge);
void RemoveEdge(int from, int to);

Note how the class has methods for removing nodes and edges. This is a

necessary feature if your graph is dynamic and has the ability to change as

the game progresses. For example, it’s easy to represent the disruption

wreaked by an earthquake by removing (and sometimes by adding) edges

from a navigation graph. Alternatively, gameplay similar to that of Com-

mand & Conquer can add and remove edges as players build or blast away

bridges and walls.

//returns the number of active + inactive nodes present in the graph
int NumNodes()const;

//returns the number of active nodes present in the graph
int NumActiveNodes()const;

//returns the number of edges present in the graph
int NumEdges()const;

208 | Chapter 5

Implementing a Graph Class

TLFeBOOK

//returns true if the graph is directed
bool isDigraph()const;

//returns true if the graph contains no nodes
bool isEmpty()const;

//returns true if a node with the given index is present in the graph
bool isPresent(int nd)const;

//methods for loading and saving graphs from an open file stream or from
//a filename
bool Save(const char* FileName)const;
bool Save(std::ofstream& stream)const;
bool Load(const char* FileName);
bool Load(std::ifstream& stream);

//clears the graph ready for new node insertions
void Clear();

//iterators clients may use to access nodes and edges
class ConstEdgeIterator;
class EdgeIterator;
class NodeIterator;
class ConstNodeIterator;

};

From the information in this section you have learned that graphs are a

powerful tool to have at your disposal. However, the graph data structure

alone has few uses. Much of the power of graphs is only realized when

they are operated upon by algorithms designed to explore them, either to

find a specific node or to find a path between nodes. The rest of this chap-

ter is devoted to a study of several of those algorithms.

Graph Search Algorithms

Graph theory has been a popular area of study of mathematicians for many

years and numerous algorithms have been devised to search and explore a

graph’s topology. Among other things, by utilizing search algorithms it is

possible to:

� Visit every node in a graph, effectively mapping out the graph’s

topology.

� Find any path between two nodes. This is useful if you want to find a

node but you don’t really care how you get there. For example, this

type of search can be used to find one (or more) of the solutions to

the Towers of Hanoi puzzle.

� Find the best path between two nodes. What is “best” depends on the

problem. If the graph to be searched is a navgraph, the best path may

be the shortest path between two nodes, the path that takes an agent

between two points in the fastest time, the path that avoids enemy

line of sight, or the most quiet path (à la Thief). If the graph is a state

The Secret Life of Graphs | 209

Graph Search Algorithms

TLFeBOOK

graph such as that for the Towers of Hanoi puzzle, then the best path

will be the one reaching the solution in the fewest steps.

Before I get to the nitty-gritty I’d like to make it clear that many of you are

initially going to find some of these algorithms difficult to understand. In

fact I think graph search algorithms should come with a health warning.

Something like the following would be appropriate:

WARNING!

Beware! Search algorithms have the ability to create in the average human
brain terrible amounts of frustration and confusion, leading to headaches,
nausea, and sleep deprivation. Spontaneous and excessive howling is not
uncommon. Please be aware these symptoms are commonplace in the early
stages of the learning curve and are not generally cause for concern. Nor-
mal service is usually resumed within a reasonable length of time. (If
symptoms persist, however, stay clear of busy roads, razor blades, and
loaded weapons. Seek medical advice at the earliest opportunity.)

Seriously though, for many people this stuff can be difficult to understand.

For this reason I’m going to take my time explaining each algorithm. It’s

very important that you understand the theory and don’t just use these tech-

niques in a “cut and paste” fashion, because often you may want to modify

an algorithm to suit your own requirements. Without an understanding of

how these searches work, any modification will be almost impossible and

you’ll be left scratching your head in frustration.

Strap yourself into your seat then. Let’s get on with it!

Uninformed Graph Searches
Uninformed graph searches, or blind searches as they are sometimes

known, search a graph without regard to any associated edge costs. They

can distinguish individual nodes and edges however, enabling them to

identify a target node or to recognize previously visited nodes or edges.

This is the only information required to either completely explore a graph

(to visit every node) or find a path between two nodes.

Depth First Search

Meet little Billy. Billy is standing at the entrance to a typical theme park: a

conglomeration of rides and other attractions and the paths meandering

through the park that connect them. Billy doesn’t have a map but he’s eager

to discover what rides and other entertainment the park has to offer.

Fortunately Billy knows about graph theory and he quickly spots the

similarity between the layout of a theme park and a graph. He sees that

each attraction can be represented by a node and the paths between them

by edges. Knowing this, Billy can ensure he visits every attraction and

walks down every path using a search algorithm called the depth first

search, or DFS for short.

210 | Chapter 5

Graph Search Algorithms

TLFeBOOK

The depth first search is so named because it searches by moving as

deep into the graph as possible. When it hits a dead end it backtracks to a

shallower node where it can continue its exploration. Using the theme park

as an example, this is how the algorithm works:

From the entrance to the park (the source node), Billy makes a note of

its description and of the paths that extend outward from it (the edges) on a

slip of paper. Next, he chooses one of the paths to walk down. It makes no

difference which — he can choose one at random provided it’s a path he

hasn’t already explored. Every time a path leads Billy to a new attraction

he makes a note of its name and of the paths connected to it. The illustra-

tions labeled A to D in Figure 5.14 demonstrate the first few steps of this

process. The thin black lines represent unexplored paths and the high-

lighted lines show the paths Billy has chosen to walk down.

When he reaches the position shown at D, Billy notices that no new paths

lead from the Pirate Ship (in graph parlance this node is known as a termi-

nal node). Therefore, to continue the search he backtracks to the 3D

Cinema where there are further unexplored paths to traverse. See Figure

5.15 E.

When he reaches the Ice Blaster there are four unexplored paths to try.

The first two he navigates lead back to previously visited places — the

Entrance and the Funhouse — so he marks each path as explored before

backtracking to the Ice Blaster to try another route. Eventually he finds a

path leading to the Slot Machines. See Figure 5.15 F, G, and H.

The Secret Life of Graphs | 211

Graph Search Algorithms

Figure 5.14

TLFeBOOK

This process of moving forward through the graph as far as possible before

backtracking to previously unexplored paths continues until the entire

theme park has been mapped. Steps I to L in Figure 5.15 show the next few

steps of the process. Figure 5.16 shows the finished graph after Billy has

visited every attraction and walked down every path.

212 | Chapter 5

Graph Search Algorithms

Figure 5.15

TLFeBOOK

� NOTE Given a source node, the depth first search can only guarantee that
all the nodes and edges will be visited in a connected graph. Remember, a con-
nected graph is one where any node can be reached from any other. If you are
searching an unconnected graph, such as C in Figure 5.3, then the algorithm
must be expanded to include a source node for each sub-graph.

Implementing the Algorithm

The DFS is implemented as a class template and can be used with any

graph implementation (such as a dense graph) using the same interface as

the SparseGraph class shown earlier. First let’s walk through the class dec-

laration, then I’ll go on to describe the search algorithm itself.

template<class graph_type>
class Graph_SearchDFS
{
private:

//to aid legibility
enum {visited, unvisited, no_parent_assigned};

//create typedefs for the edge and node types used by the graph
typedef typename graph_type::EdgeType Edge;
typedef typename graph_type::NodeType Node;

private:

//a reference to the graph to be searched
const graph_type & m_Graph;

//this records the indexes of all the nodes that are visited as the
//search progresses
std::vector<int> m_Visited;

The Secret Life of Graphs | 213

Graph Search Algorithms

Figure 5.16. Billy’s completed map

TLFeBOOK

m_Visited contains the same number of elements as there are nodes in the

graph. Each element is initially set to unvisited. As the search progresses,

every time a node is visited its corresponding element in m_Visited will be

set to visited.

//this holds the route taken to the target.
std::vector<int> m_Route;

m_Route also contains the same number of elements as there are nodes in

the graph. Each element is initially set to no_parent_assigned. As the graph

search proceeds, this vector stores the route to the target node by recording

the parents of each node at the relevant index. For example, if the path to

the target follows the nodes 3 - 8 - 27, then m_Route[8] will hold 3 and

m_Route[27] will hold 8.

//the source and target node indices
int m_iSource,

m_iTarget;

When you explore a graph, more often than not you’ll be searching for a

specific target (or targets). To use the theme park analogy again, it’s as

though you are searching for a particular ride such as the rollercoaster.

With this in mind, search algorithms usually make use of a termination

condition, generally in the form of a target node index.

//true if a path to the target has been found
bool m_bFound;

//this method performs the DFS search
bool Search();

This method is the code that implements the depth first search algorithm.

We’ll dive into its guts in just a moment.

public:

Graph_SearchDFS(const graph_type& graph,
int source,
int target = -1):

m_Graph(graph),
m_iSource(source),
m_iTarget(target),
m_bFound(false),
m_Visited(m_Graph.NumNodes(), unvisited),
m_Route(m_Graph.NumNodes(), no_parent_assigned)

{
m_bFound = Search();

}

//returns true if the target node has been located
bool Found()const{return m_bFound;}

//returns a vector of node indexes that comprise the shortest path

214 | Chapter 5

Graph Search Algorithms

TLFeBOOK

//from the source to the target
std::list<int> GetPathToTarget()const;

};

The DFS search algorithm is implemented using a std::stack of const

pointers to the edges comprising the graph it is searching. A stack is a last

in, first out data structure (usually abbreviated to LIFO). The stack is used

in a similar way to the sheet of paper our friend Billy used to explore the

theme park: Edges are pushed onto it as the search proceeds, just as Billy

jotted down the paths as he explored.

Have a quick look at the code for the Search method and then I’ll talk

you through it with an example to make sure you understand how it does

its magic.

template <class graph_type>
bool Graph_SearchDFS<graph_type>::Search()
{
//create a std stack of pointers to edges
std::stack<const Edge*> stack;

//create a dummy edge and put on the stack
Edge Dummy(m_iSource, m_iSource, 0);

stack.push(&Dummy);

//while there are edges on the stack keep searching
while (!stack.empty())
{
//grab the next edge
const Edge* Next = stack.top();

//remove the edge from the stack
stack.pop();

//make a note of the parent of the node this edge points to
m_Route[Next->To] = Next->From();

//and mark it visited
m_Visited[Next->To()] = visited;

//if the target has been found the method can return success
if (Next->To() == m_iTarget)
{
return true;

}

//push the edges leading from the node this edge points to onto
//the stack (provided the edge does not point to a previously
//visited node)
graph_type::ConstEdgeIterator ConstEdgeItr(m_Graph, Next->To());

for (const Edge* pE=ConstEdgeItr.begin();
!ConstEdgeItr.end();
pE=ConstEdgeItr.next())

The Secret Life of Graphs | 215

Graph Search Algorithms

TLFeBOOK

{
if (m_Visited[pE->To()] == unvisited)
{
stack.push(pE);

}
}

}//while

//no path to target
return false;

}

To help your understanding let’s examine a simple example. Using the

undirected graph shown in Figure 5.17, let’s say we want to search for

node 3 (the target node), commencing the search from node 5 (the source

node).

Search begins by creating a dummy edge — one leading from the source

node back to the source node — and putting it on the stack. See Figure

5.18. The highlight indicates that the edge is on the stack.

The search proceeds by entering a while loop. While there are still unex-

plored edges on the stack, the algorithm iterates through the following

steps. The comments in brackets describe the situation for the first iteration

through the loop.

1. Remove the topmost edge from the stack. (The dummy edge [5 - 5].)

2. Note the parent of the edge’s destination node by inserting the parent’s

index in the vector m_Routes, at the element referred to by the destina-

tion node’s index. (Because a dummy edge is used to start the

algorithm, the parent of node 5 is also node 5. Therefore m_Routes[5]

is set to 5.)

216 | Chapter 5

Graph Search Algorithms

Figure 5.17. A simple graph search problem

TLFeBOOK

3. Mark the edge’s destination node as visited by assigning the enumera-

tion visited to the relevant index in the m_Visited vector

(m_Visited[5] = visited).

4. Test for termination. If the edge’s destination node is the target node,

then the search can return success. (5 is not the target node so the

search continues.)

5. If the edge’s destination node is not the target, then provided the node

the current edge points to has not already been visited, all its adjacent

edges are pushed onto the stack. (The edges [5 - 2], [5 - 4], and [5 - 6]

are pushed into stack.)

Figure 5.19 shows the state of play of the algorithm after one iteration of

the while loop. The gray color of the source node indicates that it’s been

marked as visited.

The Secret Life of Graphs | 217

Graph Search Algorithms

Figure 5.18. A dummy edge is placed on the stack.

Figure 5.19. The edges leading from node 5 are placed on the stack.

TLFeBOOK

At this point, the algorithm branches back to the beginning of the while

loop, pops the next edge off the top of the stack (edge [5 - 2]), marks its

destination node as visited (node 2), and makes a note of the parent of the

destination node (node 5 is the parent of node 2).

Next, the algorithm considers what edges should be pushed onto the

stack. Node 2 (which edge [5 - 2] points to) has two adjacent edges: [2 - 1]

and [2 - 5]. Node 5 has been marked as visited so edge [2 - 5] does not get

added to the stack. As node 1 hasn’t been visited, the edge leading to it,

[2 - 1], is pushed onto the stack. See Figure 5.20. The thick black line from

[5 - 2] indicates that particular edge will not be considered further.

Once again the algorithm branches back to the beginning of the while loop

and pops the next edge off the stack (edge [2 -1]), marks its destination

node as visited (node 1), and makes a note of its parent (node 2 is the par-

ent of node 1). Node 1 has edges leading to node 3 and node 2. Node 2 has

already been visited so only the edge [1 - 3] is pushed onto the stack. See

Figure 5.21.

218 | Chapter 5

Graph Search Algorithms

Figure 5.20

Figure 5.21

TLFeBOOK

This time when the algorithm pops the next edge [1 - 3] from the stack,

after the usual procedure of marking the destination node and noting the

parent, the algorithm finds that it has located the target, at which point the

algorithm exits. At this stage the status is as shown in Figure 5.22.

During the search, the path to the target node is stored in the vector m_Route

(represented in the previous figures by the table used to store each node’s

parents). The method GetPathToTarget extracts this information and returns

it as a vector of integers representing the indices of the nodes an agent must

follow to move from source to target. Here’s what the source code looks

like:

template <class Graph>
std::list<int> Graph_SearchDFS<Graph>::GetPathToTarget()const
{
std::list<int> path;

//just return an empty path if no path to target found or if
//no target has been specified
if (!m_bFound || m_iTarget<0) return path;

int nd = m_iTarget;

path.push_back(nd);

while (nd != m_iSource)
{
nd = m_Route[nd];

path.push_back(nd);
}

return path;
}

The Secret Life of Graphs | 219

Graph Search Algorithms

Figure 5.22

TLFeBOOK

This is a very simple method. It starts by testing to see what the parent of

the target node is, and then the parent of that node, and so on until the

source node is reached. In the example you have been following in the last

few pages, the path this method returns is 5 - 2 - 1 - 3.

� NOTE For speed and efficiency, the implementations of the search algo-
rithms described in this chapter are designed to operate on graphs created prior
to the search. However, for some problems it will be impossible to do this
because the expected size of the graph is either too large to store in memory or
because it’s necessary to conserve memory by only creating those nodes and
edges that are essential to the search. For example, if you wanted to search the
state space of a game like chess, it’s impossible to build a state graph prior to
the search due to the massive number of possible states. Instead, nodes and
edges must be created as the search proceeds.

The DFS in Action

To give you some useful visual feedback I’ve created a demo program to

accompany this chapter, which demonstrates the various graph searches on

a grid layout navigation graph. This type of node arrangement is commonly

found in tile-based games where a node is positioned in the center of each

tile and edges connect to the closest eight neighbors. See Screenshot 5.1.

The vertical and horizontal lines represent the tile boundaries, the dots are

the graph nodes, and the thin lines extending from the nodes are the con-

necting edges. Unfortunately, the screenshot is printed in grayscale, so it

may not be easy to see everything clearly. If you are close to a computer

I’d recommend you run the executable PathFinder.exe, and press the “G”

key to see the graph displayed.

220 | Chapter 5

Graph Search Algorithms

Screenshot 5.1

TLFeBOOK

� NOTE Although in the real world the diagonal connections in the PathFinder
demo are longer than the vertical and horizontal connections, the depth first
search has no knowledge of any associated edge cost and therefore treats all
edges as equal.

I’ve used a grid-based node arrangement for the demo because it makes it

easy to create experimental graphs by blocking in tiles to represent obsta-

cles or varying terrain. However, this does not mean that your game must

use a grid-based graph. I’m emphasizing this point because I frequently

see newcomers struggle to understand how a graph can be in any shape

other than a grid. They say things like, “I know how the XYZ search algo-

rithm works for tile-based RTS games, but is it possible to use it in my

FPS?” I see this sort of question a lot and I suppose it’s because the major-

ity of demos, tutorials, and articles about pathfinding show examples using

a grid-based node layout (for the reasons already listed), and I guess people

assume that’s the way it’s got to be. Please… I’m begging you, don’t make

the same mistake! Graphs can be any shape you like (and in any number of

dimensions).

Anyway, let’s get back to the DFS. Screenshot 5.2 shows a simple map

I’ve created by blocking out some of the tiles as obstacles.

As it’s printed in grayscale, I’ve made the source and target nodes easier to

see by marking them with a square and a cross, respectively. The numbers

in the bottom right-hand corner show the number of nodes and edges in the

underlying graph.

The Secret Life of Graphs | 221

Graph Search Algorithms

Screenshot 5.2. A simple test map (To aid clarity,
the graph is not shown, just the tiles.)

TLFeBOOK

DFS Improvements

Some graphs can be very deep and the DFS can easily get delayed by
going too far down the wrong path. In the worst-case scenario, the DFS
may be unable to recover from a wrong choice early on in the search,
becoming permanently stuck.

As an example, let’s say you want to find the solution to a randomly
mixed-up Rubik’s Cube. The entire state space for this problem is enor-
mous and prohibits the generation of the complete state graph prior to
any search, therefore nodes are created on-the-fly as each state is
expanded starting from the root node. At some point in the search, the
DFS algorithm may choose an edge leading to a sub-graph of the state
space that does not contain a solution state, but that is too large to
expand fully given the computational power available. This results in a
solution never being returned by the DFS, and the computer will effec-
tively hang.

Fortunately, by limiting how many edges deep the DFS algorithm
searches before it starts to backtrack, this can be prevented. This is called
depth limited search. By utilizing depth limited search, provided the depth
is one the algorithm can search given the computational power avail-
able, the DFS will always return a solution if there is one to be found at
that depth.

However, depth limited search has a major drawback. How do you
know what limit to set for the maximum search depth? For most problem
domains it’s impossible to judge what that limit should be. Using the
Rubik’s Cube as an example, a solution might be three moves away or
fifteen. If the maximum search depth is set at ten, it may or may not find
a solution. If it is set too high, the number of possible states may result in
a search that hangs. Fortunately, there is a way around this problem:
iterative deepening DFS.

Iterative deepening search works by using the DFS to search a graph
with a depth limit of one, then depth two, then three, and so on until the
search is complete. Although at first glance this may appear to be a
waste of resources as the nodes at shallower depths are searched multi-
ple times, in reality the majority of nodes are always on the fringe of the
search. This is especially true of searches through graphs with a high
branching factor. Given a branching factor of eight, like that of the graph
in the PathFinder demo, the number of nodes on the fringe is shown in
Table 5.1.

222 | Chapter 5

Graph Search Algorithms

TLFeBOOK

Table 5.1

Depth Fringe Nodes Total Nodes

0 1 1

1 8 9

2 64 73

3 512 585

4 4096 4681

n 8n 1+ …+8n–1+8n

I imagine a few of you might be thinking something along the lines of
“But if, during a normal DFS search, a depth of n hangs the computer,
surely when the iterative deepening DFS reaches the same depth it
will also hang the computer!” The answer is yes, if the IDDFS is per-
mitted to go that deep you will get problems, but the secret to using
the iterative deepening approach is to impose a cutoff, usually defined
as a time limit. When the time allocated to the search expires, the
algorithm terminates, regardless of what level it has reached.

A spin-off from this methodical approach is that given enough time
and a valid target, the iterative deepening DFS will not only find the
target, but it will find the target in the fewest steps possible.

The Secret Life of Graphs | 223

Graph Search Algorithms

TLFeBOOK

The line in Screenshot 5.3 illustrates the path the DFS has made in its

quest for the target. As you can see, it meanders around over almost the

entire map area before stumbling upon the target node, clearly demonstrat-

ing that, although the DFS finds the target, it doesn’t guarantee to find the

best route to the target.

Also note in this example that the DFS has not explored any edges not on

the path to the target node. When the target node can be reached via multi-

ple paths this is a common trait of the DFS, making it a speedy algorithm

to employ when the path length is unimportant (i.e., if searching a state

space to see whether a particular state exists as opposed to determining the

fastest route to that state).

Breadth First Search

Although the plain-vanilla DFS guarantees to find a target node in a con-

nected graph, it does not guarantee to find the best path to that node — the

path containing the fewest edges. In the previous example, the DFS

resulted in a path spanning three edges even though the best path spans

two: 5 - 4 - 3. See Figure 5.22 on page 219.

The BFS algorithm fans out from the source node and examines each of

the nodes its edges lead to before fanning out from those nodes and exam-

ining all the edges they connect to and so on. You can think of the search as

exploring all the nodes that are one edge away from the source node, then

all the nodes two edges away, then three edges, and so on until the target

node is found. Therefore, as soon as the target is located, the path leading

to it is guaranteed to contain the fewest edges possible. (There may be

other paths of equal length, but there will be no shorter path.)

224 | Chapter 5

Graph Search Algorithms

Screenshot 5.3. The DFS in action

TLFeBOOK

Implementing the Algorithm

The algorithm for BFS is almost exactly the same as for DFS except it uses

a first in, first out (FIFO) queue instead of a stack. Consequently, this time

edges are retrieved from the queue in the same order they are put onto the

queue. Take a look at the source code for the BFS Search method.

template <class graph_type>
bool Graph_SearchBFS< graph_type>::Search()
{
//create a std queue of pointer's edges
std::queue<const Edge*> Q;

//create a dummy edge and put on the queue
const Edge Dummy(m_iSource, m_iSource, 0);
Q.push(&Dummy);

//mark the source node as visited
m_Visited[m_iSource] = visited;

//while there are edges in the queue keep searching
while (!Q.empty())
{
//grab the next edge
const Edge* Next = Q.front();

Q.pop();

//mark the parent of this node
m_Route[Next->To()] = Next->From();

//exit if the target has been found
if (Next->To() == m_iTarget)
{
return true;

}

//push the edges leading from the node at the end of this edge
//onto the queue
graph_type::ConstEdgeIterator ConstEdgeItr(m_Graph, Next->To());

for (const Edge* pE=ConstEdgeItr.begin();
!ConstEdgeItr.end();
pE=ConstEdgeItr.next())

{
//if the node hasn't already been visited we can push the
//edge onto the queue
if (m_Visited[pE->To()] == unvisited)
{
Q.push(pE);

//the node is marked as visited here, BEFORE it is examined, because
//it ensures a maximum of N edges are ever placed in the queue,
// rather than E edges.
m_Visited[pE->To()] = visited;

The Secret Life of Graphs | 225

Graph Search Algorithms

TLFeBOOK

}
}

}

//no path to target
return false;

}

To clarify the algorithm for you, let’s go through the same example used

previously. Figure 5.23 will refresh your memory.

The BFS commences like the DFS. First a dummy edge [5 - 5] is created

and pushed onto the queue. Then the source node is marked as visited. See

Figure 5.24.

226 | Chapter 5

Graph Search Algorithms

Figure 5.23. Find the shortest path from node 5 to node 3.

Figure 5.24

TLFeBOOK

Next the algorithm makes a note of 5’s parent. As before, because the first

edge to be considered is a dummy edge, node 5 is set to be the parent of

itself. This edge is then removed from the front of the queue and all of

node 5’s adjacent edges (the ones pointing to unvisited nodes) are added.

See Figure 5.25.

So far everything has looked very similar to the DFS, but this is where the

algorithm starts to differ. Next, the edge [5 - 6] is removed from the queue.

Node 5 is noted to be the parent of node 6. As both of node 6’s adjacent

edges point to previously visited nodes, they are not added to the queue.

See Figure 5.26.

The Secret Life of Graphs | 227

Graph Search Algorithms

Figure 5.25

Figure 5.26

TLFeBOOK

Next off the queue is edge [5 - 4]. Node 5 is noted to be node 4’s parent.

Node 4 has three adjacent edges but only the edge [4 - 3] points to an

unmarked node, so this is the only one that is put on the queue. See Figure

5.27.

Next is the edge [5 - 2]. Node 5 is noted to be node 2’s parent and the edge

[2 - 1] placed on the queue. See Figure 5.28.

The edge [4 - 3] is next. Node 4 is noted to be node 3’s parent. As node 3 is

also the target node, it is at this point the algorithm exits. See Figure 5.29.

228 | Chapter 5

Graph Search Algorithms

Figure 5.27

Figure 5.28

TLFeBOOK

Using the m_Routes vector to work back through the parents from the target

node to the source, we get the path 3 - 4 - 5. This is the path between the

two containing the fewest edges… the best path.

� TIP You can speed up the BFS (and many other graph search algorithms) by
running two searches simultaneously, one started at the source node and the
other at the target node, and stopping the search when they meet. This is called
a bidirectional search.

The BFS in Action

Let’s fire up the PathFinder program again to see the BFS operating in the

real world. First of all I think it will be useful for you to examine the sim-

ple example shown in Screenshot 5.4. (If you are running the PathFinder

program, load up the file no_obstacles_source_target_close.map, and click

the BF button on the toolbar.)

The Secret Life of Graphs | 229

Graph Search Algorithms

Figure 5.29

Screenshot 5.4

TLFeBOOK

In this case there are no obstacles present. The source node is positioned

close to the target node with only a few other nodes (tiles) separating them.

Once again the thick line shows the path the BFS algorithm has found. The

thin lines represent all the edges the algorithm has visited on its way to the

target. This clearly demonstrates how the BFS fans out from the source

node until the target node has been found. The visited edges form a square

shape because the BFS, like the DFS, treats all edges as though they are of

equal length. The path veers to the left and then to the right instead of

directly toward the target node for the same reason. They both take the

same number of steps but the path shape is entirely dependent on the order

in which each node’s edges are explored.

Screenshot 5.5 shows the BFS operation on the same map we saw ear-

lier. The improvement in path length is clear, although this is to be

expected as the plain DFS is not suited for shortest path searches. Once

more, note how each and every edge up to the same depth away from the

source node as the target has been visited.

Unfortunately, because the BFS is so systematic in its exploration, it can

prove unwieldy to use on anything other than small search spaces. If we

denote the branching factor as b and the number of edges the target node is

away from the source as d (the depth), then the number of nodes examined

is given by equation 5.2.

(5.2)

If the graph to be explored is very large and has a high branching factor,

then the BFS will hog a lot of memory and perform poorly. Even worse, if

the state space has a branching factor so high it prohibits the creation of a

230 | Chapter 5

Graph Search Algorithms

Screenshot 5.5

2 31 db b b b�� � � � �

TLFeBOOK

complete graph prior to the search, requiring the BFS to expand the nodes

as it explores, a search could take literally years to terminate. In their book

Artificial Intelligence: A Modern Approach, Russell and Norvig give an

example of a puzzle with a branching factor of 10; assuming that it takes

one millisecond to expand each node, the BFS will take 3,500 years to

reach a depth of 14! Computers have become much faster beasts since the

first edition of that book was published, but even so you would still be an

old man in the amount of time the BFS takes to get to this depth.

Cost-Based Graph Searches
For many problem domains, the related graph will have a cost (sometimes

referred to as a weight) associated with traversing an edge. For instance,

navigation graphs usually have edges with a cost proportional to the dis-

tance between the nodes they connect. To find the shortest paths through

the graph these costs must be taken into account. It’s simply not enough —

as we did previously with the BFS — to find the path containing the fewest

number of edges because, with an associated cost, it can be much cheaper

to travel down many short edges than two long ones. See Figure 5.30.

Although it’s possible to use the BFS or DFS to exhaustively search

through all the routes to a target node, adding up the costs of each path as it

goes and then selecting the lowest cost path, it’s obviously a very ineffi-

cient solution. Fortunately there are much better methods at our disposal.

Edge Relaxation

The search algorithms discussed in the remainder of this chapter are based

on a technique called edge relaxation. As an algorithm proceeds it gathers

information about the best path found so far (BPSF) from the source node

to any of the other nodes en route to the target. This information is updated

The Secret Life of Graphs | 231

Graph Search Algorithms

Figure 5.30. The path 1 - 5 - 4 - 3 is shorter than the path 1 - 2 - 3 even though it
contains more edges.

TLFeBOOK

as new edges are examined. If a newly examined edge infers that the path

to a node may be made shorter by using it in place of the existing best path,

then that edge is added and the path is updated accordingly.

This relaxation process, as with all graph operations, is much easier to

understand by observing a diagram. Take a look at Figure 5.31. With the

graph shown in A, the best path from 1 to 4 via 3 is not improved by exam-

ining the edge [5 - 4]. Therefore no relaxation is necessary. With graph B,

however, the edge [5 - 4] can be utilized to create a shorter path to 4; as a

result the BPSF must be updated accordingly by changing node 4’s parent

from 3 to 5 (giving the path 1 - 2 - 5 - 4).

This process is called edge relaxation because it mimics the way a piece of

elastic stretched along the edges of the BPSF would relax (become less

taut) when an edge is found that facilitates a shorter path.

Each algorithm keeps a std::vector of floats (indexed by node) repre-

senting the best total cost to each node found by the algorithm so far. Given

the general case shown in Figure 5.32, pseudocode to relax a path would

look something like this:

if (TotalCostToThisNode[t] > TotalCostToThisNode[n] + EdgeCost(n-to-t))
{
TotalCostToThisNode[t] = TotalCostToThisNode[n] + EdgeCost(n-to-t));

Parent(t) = n;
}

232 | Chapter 5

Graph Search Algorithms

Figure 5.31

TLFeBOOK

Shortest Path Trees

Given a graph, G, and a source node, the shortest path tree (SPT) is the

sub-tree of G that represents the shortest path from any node on the SPT to

the source node. Again, a picture is worth a thousand words, so take a look

at Figure 5.33. It shows an SPT with its root positioned at node 1.

The following algorithms find the shortest paths in weighted graphs by

“growing” a shortest path tree outward from the source node.

Dijkstra’s Algorithm

Professor Edsger Wybe Dijkstra has provided computer science with many

valuable contributions, but one of the most famous is his algorithm for

finding shortest paths in weighted graphs.

The Secret Life of Graphs | 233

Graph Search Algorithms

Figure 5.32

Figure 5.33. The shortest path tree for node 1 is shown on the left by the thick edges
and represented again on the right by a directed tree. To find the shortest path from
any node in the graph to node 1, all you have to do is trace the route backward
through the SPT from the node in question. For example, tracing the path from node 3
to node 1 gives the path 1 - 6 - 4 - 3.

TLFeBOOK

Dijkstra’s algorithm builds a shortest path tree one edge at a time by first

adding the source node to the SPT and then by adding the edge that gives

the shortest path from the source to a node not already on the SPT. This

process results in an SPT containing the shortest path from every node in

the graph to the source node. If the algorithm is supplied with a target

node, the process will terminate as soon as it is found. At the point the

algorithm terminates, the SPT it has generated will contain the shortest

path to the source node from the target node, and from every node visited

during the search.

� HISTORICAL NOTE Dijkstra is also famous for having designed and coded
the Algol 60 compiler and for fervently denouncing the use of the goto state-
ment in programming. I am also rather fond of his saying that “the question of
whether computers can think is like the question of whether submarines can
swim.” Regrettably, Dijkstra died in 2002 of cancer.

Let’s step through an example using the same graph you saw in Figure 5.33

but in this instance the source node will be node 5.

First, node 5 is added to the SPT and the edges leaving it are placed on

the search frontier. See Figure 5.34.

The algorithm then examines the destination nodes of the edges on the

frontier — 6 and 2 — and adds the one closest to the source (node 2 at dis-

tance 1.9) to the SPT. Next, any edges leaving node 2 are added to the

frontier. See Figure 5.35.

234 | Chapter 5

Graph Search Algorithms

Figure 5.34. Node 5 is added to the SPT. Edges on the search frontier are highlighted.

TLFeBOOK

Again the algorithm examines the destination nodes of the edges on the

frontier. The cost to get to node 3 from the source is 5.0 and the cost to get

to node 6 is 3.0. Node 6 is therefore the next node to be added to the SPT,

and all the edges leaving it are added to the frontier. See Figure 5.36.

The process is repeated once more. As the cost to node 4 is less than the

cost to node 3, this is added to the SPT. This time, however, the only edge

from node 4 leads to node 3 — a node that is already the destination node

of an edge on the frontier. This is where edge relaxation comes into play.

Examining both the possible paths to 3, the algorithm sees that path 5 - 2 -

3 has a cost of 5.0 and path 5 - 6 - 4 - 3 a higher cost of 7.8. Therefore, the

edge [2 - 3] remains on the SPT and the edge [4 - 3] is removed from fur-

ther consideration. See Figure 5.37.

The Secret Life of Graphs | 235

Graph Search Algorithms

Figure 5.35. Thick black edges represent those on the SPT.

Figure 5.36

TLFeBOOK

Finally node 3 is added to the SPT. See Figure 5.38. Notice how the edge

[3 - 5] has not been added to the frontier. This is because node 5 is already

on the SPT and does not require further consideration. Additionally, notice

how node 1 has not been added to the SPT. Since there are only edges lead-

ing away from node 1 it is effectively isolated from the other nodes in the

graph.

Implementing Dijkstra’s Algorithm

The implementation of Dijkstra’s shortest path algorithm can be gnarly to

understand at first and I confess I’ve not been looking forward to writing

this part of the chapter because I reckon it’s not going to be any easier to

explain! I think we both need to take a deep breath before we move on:

breathe in… hold it… three, two, one… and out.

236 | Chapter 5

Graph Search Algorithms

Figure 5.37

Figure 5.38

TLFeBOOK

That’s much better. Okay, let me begin by showing you the class decla-

ration. The comments within the code provide explanations of each of the

member variables, most of which should by now sound familiar.

template <class graph_type >
class Graph_SearchDijkstra
{
private:

//create typedefs for the node and edge types used by the graph
typedef typename graph_type::EdgeType Edge;
typedef typename graph_type::NodeType Node;

private:

const graph_type & m_Graph;

//this vector contains the edges that comprise the shortest path tree -
//a directed sub-tree of the graph that encapsulates the best paths from
//every node on the SPT to the source node.
std::vector<const Edge*> m_ShortestPathTree;

//this is indexed into by node index and holds the total cost of the best
//path found so far to the given node. For example, m_CostToThisNode[5]
//will hold the total cost of all the edges that comprise the best path
//to node 5 found so far in the search (if node 5 is present and has
//been visited of course).
std::vector<double> m_CostToThisNode;

//this is an indexed (by node) vector of "parent" edges leading to nodes
//connected to the SPT but that have not been added to the SPT yet.
std::vector<const Edge*> m_SearchFrontier;

int m_iSource;
int m_iTarget;

void Search();

public:

Graph_SearchDijkstra(const graph_type& graph,
int source,
int target = -1):m_Graph(graph),

m_ShortestPathTree(graph.NumNodes()),
m_SearchFrontier(graph.NumNodes()),
m_CostToThisNode(graph.NumNodes()),
m_iSource(source),
m_iTarget(target)

{
Search();

}

//returns the vector of edges defining the SPT. If a target is given
//in the constructor, then this will be the SPT comprising all the nodes
//examined before the target is found, else it will contain all the nodes

The Secret Life of Graphs | 237

Graph Search Algorithms

TLFeBOOK

//in the graph.
std::vector<const Edge*> GetAllPaths()const;

//returns a vector of node indexes comprising the shortest path
//from the source to the target. It calculates the path by working
//backward through the SPT from the target node.
std::list<int> GetPathToTarget()const;

//returns the total cost to the target
double GetCostToTarget()const;

};

This search algorithm is implemented using an indexed priority queue. A

priority queue, or PQ for short, is a queue that keeps its elements sorted in

order of priority (no surprises there then). This type of data structure can be

utilized to store the destination nodes of the edges on the search frontier, in

order of increasing distance (cost) from the source node. This method guar-

antees that the node at the front of the PQ will be the node not already on

the SPT that is closest to the source node. Am I making sense so far? If not,

please berate me under your breath before reading this paragraph again.

A PQ must be able to maintain the elements stored within it in sorted

order. This implies each graph node must have an additional member vari-

able to store the costs accumulated to that node, in order that the � or �

operators may be overloaded to give the correct behavior. Although using

an additional member variable is certainly a valid solution, I’d rather not

have to change the existing graph node, and besides, this can be problem-

atic when multiple searches are run simultaneously, since each individual

search will be utilizing the same data record. This can be overcome by cre-

ating copies of the nodes, but then precious memory and speed is forfeited.

The alternative is to use an indexed priority queue (iPQ for short). This

type of PQ indexes into a vector of keys. In this example, the keys are the

accumulated costs for each node stored in the vector m_CostToThisNode. A

node is added to the queue by inserting its index. Similarly, when a node is

retrieved from the iPQ, it is its index that is returned and not the node itself

(or a pointer to the node). This index can then be used to access the node

and its data via m_Graph::GetNode.

It’s time to show you some source code. Make sure you take your time

and understand every line of this algorithm; it will pay dividends for you in

the long run. I have made copious comments within the source to aid your

understanding but, if you are a mere mortal, I doubt the comments alone

will be enough for it to “click” on first reading. (If after a few readings you

still find yourself having difficulty with the algorithm, I strongly recom-

mend you step through the code on a sheet of paper using a simple

example.)

template <class graph_type>
void Graph_SearchDijkstra<graph_type>::Search()

238 | Chapter 5

Graph Search Algorithms

TLFeBOOK

{
//create an indexed priority queue that sorts smallest to largest
//(front to back). Note that the maximum number of elements the iPQ
//may contain is NumNodes(). This is because no node can be represented
// on the queue more than once.
IndexedPriorityQLow<double> pq(m_CostToThisNode, m_Graph.NumNodes());

//put the source node on the queue
pq.insert(m_iSource);

//while the queue is not empty
while(!pq.empty())
{
//get the lowest cost node from the queue. Don't forget, the return value
//is a *node index*, not the node itself. This node is the node not already
//on the SPT that is the closest to the source node
int NextClosestNode = pq.Pop();

//move this edge from the search frontier to the shortest path tree
m_ShortestPathTree[NextClosestNode] = m_SearchFrontier[NextClosestNode];

//if the target has been found exit
if (NextClosestNode == m_iTarget) return;

//now to relax the edges. For each edge connected to the next closest node
graph_type::ConstEdgeIterator ConstEdgeItr(m_Graph, NextClosestNode);
for (const Edge* pE=ConstEdgeItr.begin();

!ConstEdgeItr.end();
pE=ConstEdgeItr.next())

{
//the total cost to the node this edge points to is the cost to the
//current node plus the cost of the edge connecting them.
double NewCost = m_CostToThisNode[NextClosestNode] + pE->Cost();

//if this edge has never been on the frontier make a note of the cost
//to reach the node it points to, then add the edge to the frontier
//and the destination node to the PQ.
if (m_SearchFrontier[pE->To()] == 0)
{
m_CostToThisNode[pE->To()] = NewCost;

pq.insert(pE->To());

m_SearchFrontier[pE->To()] = pE;
}

//else test to see if the cost to reach the destination node via the
//current node is cheaper than the cheapest cost found so far. If
//this path is cheaper we assign the new cost to the destination
//node, update its entry in the PQ to reflect the change, and add the
//edge to the frontier
else if ((NewCost < m_CostToThisNode[pE->To()]) &&

(m_ShortestPathTree[pE->To()] == 0))
{
m_CostToThisNode[pE->To()] = NewCost;

The Secret Life of Graphs | 239

Graph Search Algorithms

TLFeBOOK

//because the cost is less than it was previously, the PQ must be
//resorted to account for this.
pq.ChangePriority(pE->To());

m_SearchFrontier[pE->To()] = pE;
}

}
}

}

� TIP The indexed priority queue implementation utilizes a two-way heap to store
the elements. For sparse graphs, if every edge examined produces an improve-
ment in cost (requiring that IndexedPriorityQLow::ChangePriority is
called), the algorithm gives a worst-case running time of Elog2N, although in
practice the running time will be significantly lower.

It’s possible to gain further speed improvements by using a d-way heap
where d is a function of the graph density. This time the worst-case running time
will be ElogdN.

When all’s said and done, Dijkstra’s shortest path algorithm is a pretty

good performer and is guaranteed to find the shortest path between two

nodes if one exists.

Dijkstra’s Algorithm in Action

Let’s start up the PathFinder program once more and check out how

Dijkstra’s algorithm performs on the examples we saw earlier. Screenshot

5.6 illustrates the algorithm operating on the simple problem.

The result is similar to breadth first search, although now the tree compris-

ing the examined edges is circular in appearance. This is due to Dijkstra’s

algorithm working with the actual costs of the edges, and so this time

240 | Chapter 5

Graph Search Algorithms

Screenshot 5.6

TLFeBOOK

diagonal edges cost more to traverse than horizontal or vertical ones. With

this in mind you can see how the algorithm has searched a similar distance

in every direction before reaching the target.

Screenshot 5.7 shows Dijkstra’s algorithm operating on the more com-

plex map.

Like the BFS, Dijkstra’s algorithm examines an awful lot of edges.

Wouldn’t it be great if the algorithm could be given hints as it progresses to

nudge the search along in the correct direction? Well, luckily for us, this is

possible. Ladies and gentlemen, please put your hands together in a round

of applause and welcome A*!

Dijkstra with a Twist: A*

Dijkstra’s algorithm searches by minimizing the cost of the path so far. It

can be improved significantly by taking into account, when putting nodes

on the frontier, an estimate of the cost to the target from each node under

consideration. This estimate is usually referred to as a heuristic, and the

name given to the algorithm that uses this method of heuristically directed

search is A* (pronounced ay-star). And jolly good it is too!

If the heuristic used by the algorithm gives the lower bound on the

actual cost (underestimates the cost) from any node to the target, then A* is

guaranteed to give optimal paths. For graphs that contain spatial informa-

tion, such as navigation graphs, there are several heuristic functions you

can use, the most straightforward being the straight-line distance between

the nodes in question. This is sometimes referred to as the Euclidean

distance.

The Secret Life of Graphs | 241

Graph Search Algorithms

Screenshot 5.7

TLFeBOOK

A* proceeds in an almost identical fashion to Dijkstra’s search algo-

rithm. The only difference is in the calculation of the costs of the nodes on

the search frontier. The adjusted cost, F, to the node when positioned on the

priority queue (the search frontier), is calculated as:

(5.3)

where G is the cumulative cost to reach a node and H is the heuristic esti-

mate of the distance to the target. For an edge E that has just come off the

frontier and been added to the SPT, the pseudocode to calculate the cost to

its destination node looks like this:

Cost = AccumulativeCostTo(E.From) + E.Cost + CostTo(Target)

Utilizing a heuristic in this way, the modified costs direct the search toward

the target node instead of radiating outward equally in all directions. This

results in fewer edges needing to be examined, thereby speeding up the

search and is the primary difference between A* and Dijkstra’s algorithm.

� NOTE If you set the heuristic cost to zero in A*, the resulting search behaves
exactly the same as Dijkstra’s algorithm.

Let’s take a peek at how A* operates on the problem graphs used in the

PathFinder program.

A* in Action

Screenshot 5.8 shows the result of A* operating on the simple source-target

example problem. As you can see, no extraneous edges have been consid-

ered, and the path leads directly to the target. The heuristic function used is

the straight-line distance between two nodes.

242 | Chapter 5

Graph Search Algorithms

Screenshot 5.8. Do not pass Go, do not collect £200.

F G H� �

TLFeBOOK

Screen shot 5.9 is just as impressive. Observe how few edges the A* algo-

rithm had to consider before finding the target. As a consequence of this,

the time taken to perform the search is considerably less than for any of the

other searches (even though an evil square root is required to calculate the

heuristic cost).

� NOTE A* is proven to be optimally efficient. In other words, no other search
algorithm will expand fewer nodes in the quest for the least cost path between
source and target.

Implementing A*

The A* class is very similar to Graph_SearchDijkstra. The implementation

of the search requires that two std::vectors of costs are maintained: one

for the F cost to each node, which is indexed into by the priority queue,

and one for the G cost to each node. In addition, when creating an instance

of this class you must specify, as a template parameter, the heuristic to be

used. This design makes it easy for custom-built heuristics to be used with

the class, like the Manhattan distance heuristic mentioned toward the end

of this chapter.

Here’s the class declaration for you to peruse:

template <class graph_type, class heuristic>
class Graph_SearchAStar
{
private:

//create a typedef for the edge type used by the graph
typedef typename graph_type::EdgeType Edge;

private:

The Secret Life of Graphs | 243

Graph Search Algorithms

Screen shot 5.9

TLFeBOOK

const graph_type& m_Graph;

//indexed into by node. Contains the "real" cumulative cost to that node
std::vector<double> m_GCosts;

//indexed into by node. Contains the cost from adding m_GCosts[n] to
//the heuristic cost from n to the target node. This is the vector the
//iPQ indexes into.
std::vector<double> m_FCosts;

std::vector<const Edge*> m_ShortestPathTree;
std::vector<const Edge*> m_SearchFrontier;

int m_iSource;
int m_iTarget;

//the A* search algorithm
void Search();

public:

Graph_SearchAStar(graph_type& graph,
int source,
int target):m_Graph(graph),

m_ShortestPathTree(graph.NumNodes()),
m_SearchFrontier(graph.NumNodes()),
m_GCosts(graph.NumNodes(), 0.0),
m_FCosts(graph.NumNodes(), 0.0),
m_iSource(source),
m_iTarget(target)

{
Search();

}

//returns the vector of edges that the algorithm has examined
std::vector<const Edge*> GetSPT()const;

//returns a vector of node indexes that comprise the shortest path
//from the source to the target
std::list<int> GetPathToTarget()const;

//returns the total cost to the target
double GetCostToTarget()const;

};

Heuristic policies for use with this class must provide a static Calculate

method with the following signature:

//calculate the heuristic cost from node nd1 to node nd2
static double Calculate(const graph_type& G, int nd1, int nd2);

Since the graph used by the PathFinder demo represents spatial informa-

tion, the heuristic cost is calculated to be the straight-line distance (also

known as the Euclidean distance) to the target node from each node under

consideration. The following code shows how such a heuristic is

244 | Chapter 5

Graph Search Algorithms

TLFeBOOK

implemented as a class that can be used as a template parameter for

Graph_SearchAStar.

class Heuristic_Euclid
{
public:

Heuristic_Euclid(){}

//calculate the straight-line distance from node nd1 to node nd2
template <class graph_type>
static double Calculate(const graph_type& G, int nd1, int nd2)
{
return Vec2DDistance(G.GetNode(nd1).Position, G.GetNode(nd2).Position);

}
};

The heuristic type is passed as a template parameter when an instance of

the A* search class is created. Here is how the PathFinder demo program

creates an instance of the A* search using the Euclidean heuristic:

//create a couple of typedefs so the code will sit comfortably on the page
typedef SparseGraph<NavGraphNode<>, GraphEdge> NavGraph;
typedef Graph_SearchAStar<NavGraph, Heuristic_Euclid> AStarSearch;

//create an instance of the A* search using the Euclidean heuristic
AStarSearch AStar(*m_pGraph, m_iSourceCell, m_iTargetCell);

The implementation of the A* Search method is almost identical to that

used for Dijkstra’s shortest path algorithm. The only exception is that the

cost to reach a specific node before it is put on the frontier is now calcu-

lated as G + H (instead of just G). The value of H is determined by calling

the static method of the heuristic policy class.

template <class graph_type, class heuristic>
void Graph_SearchAStar<graph_type, heuristic>::Search()
{
//create an indexed priority queue of nodes. The queue will give priority
//to nodes with low F costs. (F=G+H)
IndexedPriorityQLow<double> pq(m_FCosts, m_Graph.NumNodes());

//put the source node on the queue
pq.insert(m_iSource);

//while the queue is not empty
while(!pq.empty())
{
//get lowest cost node from the queue
int NextClosestNode = pq.Pop();

//move this node from the frontier to the spanning tree
m_ShortestPathTree[NextClosestNode] = m_SearchFrontier[NextClosestNode];

//if the target has been found exit
if (NextClosestNode == m_iTarget) return;

The Secret Life of Graphs | 245

Graph Search Algorithms

TLFeBOOK

//now to test all the edges attached to this node
graph_type::ConstEdgeIterator ConstEdgeItr(m_Graph, NextClosestNode);

for (const Edge* pE=ConstEdgeItr.begin();
!ConstEdgeItr.end();
pE=ConstEdgeItr.next())

{
//calculate the heuristic cost from this node to the target (H)
double HCost = heuristic::Calculate(m_Graph, m_iTarget, pE->To());

//calculate the "real" cost to this node from the source (G)
double GCost = m_GCosts[NextClosestNode] + pE->Cost();

//if the node has not been added to the frontier, add it and update
//the G and F costs
if (m_SearchFrontier[pE->To()] == NULL)
{
m_FCosts[pE->T()] = GCost + HCost;
m_GCosts[pE->To()] = GCost;

pq.insert(pE->To());

m_SearchFrontier[pE->To()] = pE;
}

//if this node is already on the frontier but the cost to get here this
//way is cheaper than has been found previously, update the node costs
//and frontier accordingly.
else if ((GCost < m_GCosts[pE->To()]) &&

(m_ShortestPathTree[pE->To()]==NULL))
{
m_FCosts[pE->To()] = GCost + HCost;
m_GCosts[pE->To()] = GCost;

pq.ChangePriority(pE->To());

m_SearchFrontier[pE->To()] = pE;
}

}
}

}

� TIP If you are working with strict memory requirements you can curb the
amount of memory the A* or Dijkstra’s search uses by limiting the number of
nodes put on the priority queue. In other words, only the n best nodes are kept
on the queue. This has become known as a beam search.

The Manhattan Distance Heuristic

You have seen how the A* search algorithm class can be used with the

Euclidean (straight-line distance) heuristic. Another heuristic function pop-

ular with programmers of games that have navgraphs with grid-like

topology, such as tile-based war games, is the Manhattan distance between

two nodes: the sum of the displacement in tiles vertically and horizontally.

246 | Chapter 5

Graph Search Algorithms

TLFeBOOK

For example, the Manhattan distance between the nodes v and w in Figure

5.39 is 10 (6 + 4).

The Manhattan distance gives a speed increase over the Euclidean heuristic

because no square root is required for the calculation.

Summing Up

You should now have a decent understanding of graphs and of the algo-

rithms you can use to search them. As with most AI techniques, your

understanding will grow enormously through practical experience, so I

urge you to attempt at least some of the following problems.

Practice Makes Perfect

1. Using a pencil and paper, trace out the DFS, BFS, and Dijkstra’s algo-

rithm for the following graph. Use a different start and finish node for

each search. Extra points will be awarded for use of style and color.

The Secret Life of Graphs | 247

Summing Up

Figure 5.39. Calculating the Manhattan distance between two nodes

TLFeBOOK

2. Create a Manhattan distance heuristic policy class to estimate the dis-

tance between a node and the target in a navigation graph. Try the

heuristic out with different graphs. Is it better or worse than the

Euclidean heuristic for grid-based graphs?

3. The Euclidean heuristic calculates the straight-line distance between

nodes. This calculation requires the use of a square root. Create a heu-

ristic that works in distance-squared space and note the shape of the

paths it creates.

4. Create a program to find the best solution to the n-disk Towers of

Hanoi puzzle where n can be any positive integer. To do this you must

rewrite the BFS algorithm so that nodes and edges are added to the

state graph as the search proceeds. This is an excellent way to test

your understanding of the material presented in this chapter.

5. Now modify the algorithm you created in 4 to search for the best solu-

tion using iterative deepening DFS. How does it compare?

6. Use the A* algorithm to solve a shuffled Rubik’s Cube. Give much

consideration to the design of the heuristic function. This is a difficult

problem, searching a potentially enormous search space, so first try

your algorithm on a cube that is only one rotation away from a solu-

tion, then two, and so on. (Tip: If you are having difficulty designing a

heuristic, do a search on the Internet… there are several interesting

papers and articles on the subject.)

248 | Chapter 5

Summing Up

Figure 5.40

TLFeBOOK

Chapter 6

To Script, or Not to Script,
That Is the Question

S cripting languages are rapidly gaining popularity with game develop-

ers. You only have to listen to the buzz at developer conferences or see

the amount of discussion regarding scripting on the Internet developer

forums to know what a hot topic they have become. Several big-name

developers have started to use scripting extensively in their titles. Epic

Games’ Unreal Tournament series, BioWare’s Neverwinter Nights, and

Crytek’s Far Cry all utilize scripting languages.

To appreciate what all the fuss is about you need to know what a scripting

language is before you understand how a game can benefit from using one.

Just What Is a Scripting Language?

As projects grow in size, the time required to compile the source code

increases. As we all know, this can be a real pain in the backside. Changing

just a couple of constants can result in a lengthy rebuild. For this reason,

249

Screenshot 6.1. Unreal Tournament 2003
� Epic Games, Inc.

TLFeBOOK

it’s common practice to place many of the constants in a separate initializa-

tion file and create code to read and parse that file. This way, if you want to

change some values, you don’t need to recompile the project; you only

have to change the values in the initialization/configuration file — usually

a simple text file. You may be surprised to know the use of an initialization

file like this is a rudimentary form of scripting and the text the initialization

file contains is a very basic scripting language.

A more advanced scripting language increases the interaction between

the script and the executable, enabling you to not only initialize variables

but to create game logic or even game objects, all from one or more script

files. These script files are run from within your program by something

called a virtual machine, or VM for short. I’m not going to go into the

details of virtual machines in this book — it’s too low level and I don’t

think it’s appropriate — but it helps to think of a VM as an emulated CPU

sitting snugly inside your game’s executable (your web browser, for exam-

ple, uses a virtual machine to run Java code). You write functions in the

syntax of the scripting language, which are read and then run inside the

virtual machine. The beauty of scripting is that the virtual machine can

communicate with the language inside which it resides (in our case C++),

enabling data to easily be passed back and forth.

Scripts can either be interpreted or compiled. An interpreted script exists

in the same format in which it is written — the human readable scripting

language itself — and is read, parsed, and executed line by line by some-

thing called an interpreter. As this can be a slow process to do on-the-fly,

some interpreted scripting languages automatically compile the script

before it’s executed. Another problem with interpreted scripts is that they

can easily be understood and edited by game players who like nothing

better than to give themselves an unfair advantage.

250 | Chapter 6

Just What Is a Scripting Language?

Screenshot 6.2. Black & White
� Lionhead Studios Limited

TLFeBOOK

Compiled scripts are scripts that have been converted by the scripting lan-

guage’s compiler into a form of machine code the VM can execute directly.

This machine code, or byte code, is completely platform independent

because it’s not been compiled to run on a type of machine, it’s been com-

piled to run inside the virtual machine. Compiled scripts run faster, are

smaller in size, and are therefore quicker to load. An additional benefit is

that byte code is illegible to humans and therefore less prone to misuse by

the end user.

What a Scripting Language Can Do for You

Scripting languages can assist the development process in many ways:

They can be used as a quick and easy way of reading variables and

game data from initialization files. There’s no need to write a parser of

your own — just plug in the scripting language and off you go. And

although this is a little like using a snowplow instead of a shovel to shift

the snow from your driveway, it makes the job quick and easy and you

don’t get blisters on your hands.

They can save time and increase productivity. As game projects grow

in size, so too does the time required to build them. Full engine compiles

frequently take several minutes to complete and in some instances, well

over an hour. This can be a nightmare for the AI programmer who has just

implemented his latest brainwave and needs to test its performance before

moving on to the next stage of his master plan. The last thing you want to

do is sit around drinking yet another coffee, drumming the rhythm to the

“Ace of Spades” on your thighs while your machine chugs away. However,

if some of the AI logic is transferred from C++ to a script, changes can be

made easily and quickly without need for recompilation. In projects where

To Script, or Not to Script, That Is the Question | 251

What a Scripting Language Can Do for You

Screenshot 6.3. Impossible Creatures
� Relic Entertainment, Inc.

TLFeBOOK

you know in advance that compile times are going to be a daily thorn in

your side, it’s worth considering scripting the majority of the AI decision

logic while the game is in development, and then transferring the speed-

critical stuff back to C++ prior to shipping. This keeps your productivity

and cranial juices flowing while simultaneously reducing caffeine jitters to

a minimum, which means it’s good for the heart as well as the cash flow.

They can increase creativity. Scripting languages usually operate at a

higher level than languages such as C++ and utilize syntax that is more

intuitive to non-programmers. This is advantageous because it allows other

members of the development team like level designers, artists, and produc-

ers to make adjustments to the gameplay (or any other aspect of the design)

without having to pester you every few minutes. They are able to do this

from the comfort of their own workstations, making as many adjustments

as they like to the exposed functionality of the AI without any need for

major rebuilds. This is beneficial to both productivity and creativity. The

former promotes experimentation and the latter enables you, the program-

mer, to work uninterrupted. Since this ability to play with the engine allows

any interested members of the development team to get their hands dirty

and fool around with the gameplay, giving them a greater sense of involve-

ment in the final product, it’s also good for morale.

They provide extensibility. In recent years there has been an upsurge in

players customizing games to create “mods.” Some of these mods are

unrecognizable from the original game because just about everything has

changed. The maps are different, the textures are unique, the weapons more

kick-ass, and the bad guys badder. Using a scripting language, it’s possible

to expose as much or as little of your game engine as you like, putting its

power directly into the hands of the mod makers. Increasingly, game devel-

opers are electing to give game players the opportunity to tinker with their

252 | Chapter 6

What a Scripting Language Can Do for You

Screenshot 6.4. Neverwinter Nights
� Atari/BioWare

TLFeBOOK

products, and this trend is likely to continue well into the future. This has

become a big selling point for many games. Probably the two best known

examples in recent times are Epic Games’ Unreal Tournament 2004 (and

UT2003) and BioWare’s Neverwinter Nights. Both provide the gamer with

a powerful scripting engine, enabling individuals and teams to create rich,

custom-built scenarios.

Now that you’ve seen some of the advantages of using scripting in your

games, let’s take a look at some specific examples of how scripting lan-

guages have been used by game developers.

Dialogue Flow
One of the simplest and earliest uses of scripting languages in games is to

manage the vast amounts of dialogue found in RPG type games. In these,

scripts are used to control the flow of dialogue between a character and the

player. A typical script might look something like this:

** Dialogue script 1 for Eric the Gross Nosed **

FUNCTION DialogueWithGrossNosedEric(Player plyr)

Speak(“Welcome stranger. What brings thee amongst us gentle folk?”)

int reply = plyr.SpeakOption(1, “Yo dude, wazzup?”,

2, “I want your money, your woman, and that chicken”)

IF reply == 1 THEN

Speak(“Wazzuuuuuup!”)

ELSE IF reply == 2 THEN

Speak(“Well, well. A fight ye wants, is it? Ye can’t just go around these parts demandin’ chickens

from folk. Yer likely to get that ugly face smashed in. Be off with thee!”)

END IF

END FUNCTION

This sort of script would be called by the main game code on the occur-

rence of a specific event. In this example, it would be the player entering

the vicinity of Eric the Gross Nosed. Utilizing scripts in this way makes it

easy for game designers to write humongous amounts of dialogue quickly

and easily.

There’s no need to stop at just dialogue. Scripts can be written to control

a character’s actions and the camera positioning, and handle sounds and

animation, providing a kind of…

To Script, or Not to Script, That Is the Question | 253

What a Scripting Language Can Do for You

TLFeBOOK

Stage Direction
Stage direction is probably the most common utilization of scripting in

games at the time of this book’s publication. These types of scripts turn the

common or garden-variety game designer into a virtual film director, a ver-

itable cyber-Spielberg capable of manipulating the actions of the game

characters and environments at will, enabling the designer to create

immersive and entertaining game scenarios without so much as a whisper

in the AI or engine programmer’s ear. These type of scripts open up the

guts of the game engine to the wannabe Scorseses on your development

team, allowing game objects and events to be easily handled and created.

Here’s how such a script might look:

FUNCTION script_castle_guard (player)

** create a guard situated at the castle’s drawbridge

guard = Guard(GetPos(Drawbridge))

**focus and lock the camera on the guard

LockCamera(guard)

**move the guard toward the player

guard.Move(GetPos(player))

IF Player.Has(GetFlag(AUTHORIZATION_FROM_KING)) THEN

**welcome the player and escort him to the king

guard.Speak(“Good Evening” + player.Name()+” His Majesty is expecting you. Come this way”)

guard.Move(GetPos(Throne_Room))

player.Follow(guard)

ELSE

**give the player some verbal abuse, then dump him in the dungeon

guard.Speak(“OI! Wot are you doin’ on my bridge! You are coming with me, my son!”)

guard.Move(GetPos(Dungeon))

player.Follow(guard)

END IF

**move guard back to drawbridge

guard.Move(GetPos(Drawbridge))

END FUNCTION

Used correctly, scripted sequences enhance the game playing experience

and are an ideal vehicle to move a story line forward. Lionhead’s Black &

White made great use of this type of stage direction to control the game’s

quests.

254 | Chapter 6

What a Scripting Language Can Do for You

TLFeBOOK

AI Logic
Tweaking the AI of game characters is a big part of an AI programmer’s

job. If the project is particularly large, this can prove to be a very frustrat-

ing experience as each change to the code may involve a lengthy

recompile. Fortunately, this can be avoided by utilizing a scripting lan-

guage. I don’t mean by this that scripting languages should be used to write

speed-critical portions of AI code — such as the code required to do a

graph search, for example — but that scripts may be used to write the deci-

sion logic of your game agents. For example, if your agent uses a finite

state machine, rather than hard-coding the states, you can expose the inter-

face of your agent class (and any other relevant classes) to the scripting

language and write scripts for each state, enabling the agent’s flow of logic

to be easily adjusted. This means you can tweak until your heart bursts

without any of the usual inconvenience of sitting around waiting for

recompiles. Far Cry and Unreal Tournament are a couple of examples of

games that use scripts in this way.

Scripting in Lua

Over the last five years a scripting language called Lua has increased in

popularity with game developers and has been used to provide scripting for

many notable games including:

� Escape from Monkey Island

� MDK 2

� Grim Fandango

� Baldur’s Gate

� Impossible Creatures

To Script, or Not to Script, That Is the Question | 255

Scripting in Lua

Screenshot 6.5. Black & White
� Lionhead Studios Limited

TLFeBOOK

� Homeworld 2

� Far Cry

Lua has gained this popularity because it’s extremely powerful and fast (for

a scripting language), yet lightweight and simple to use. The icing on the

cake is that it’s also very portable, free, and open-source.

It’s impossible within the space of one chapter to describe all the features

of Lua, but I can provide you with a decent introduction, certainly enough

to whet your appetite and to show you how Lua can be used effectively in

your own games.

Let’s get started then…

Setting Up Your Compiler to Work with Lua
The Lua headers and libraries can be found in the common/lua-5.0 folder

in the downloadable files. You must direct your compiler to search for the

Lua header files in the common/lua-5.0/include folder, and for the lua

libraries in the common/lua-5.0/lib folder. When you create a project, make

sure you add the Lua libraries: lua.lib, lualib.lib, and lauxlib.lib.

Getting Started
Before you learn how to interface your C/C++ programs with Lua, you

need to know how to program using the Lua programming language. With

this in mind, the next few pages will be spent giving you a tour of Lua to

familiarize you with the data types and syntax. Fortunately, Lua is very

easy to learn and it will only take you a short while before you feel compe-

tent enough to start writing your own scripts. Once you are familiar with

256 | Chapter 6

Scripting in Lua

Screenshot 6.6. Impossible Creatures
� Relic Entertainment, Inc.

TLFeBOOK

the language, I’ll demonstrate how Lua variables and functions can be

accessed from within C++ and vice versa. We’ll then spend some time

examining how C++ classes can be exposed to Lua before moving on to a

little project that ties everything together.

� NOTE Although this chapter will show you enough to get you started, it’s
impossible to do the language justice in just one chapter. Therefore, I highly rec-
ommend you read the Lua documentation and visit the Lua user’s wiki online at
http://lua-users.org/wiki/.

Lua comes with an interactive interpreter (common/lua-5.0/bin/lua.exe)

you can use to try out little snippets of code by typing them directly into

the console at the command prompt, but for anything more than a couple of

lines you may find this tedious. I think the best way to start your journey

into Lua is by showing you how to run a script using the C/C++ Lua API.

This way you can use the familiar environment of your compiler’s IDE to

write and run scripts.

Let me talk you through the code required to run a Lua script from a

C/C++ program.

extern "C"
{
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>

}

First you have to include the relevant header files. Since Lua is a pure C

library, you must let the compiler know this explicitly or you’ll experience

problems. This is done by encasing the #includes with extern “C”.

//include the lua libraries. If your compiler doesn't support this pragma
//then don't forget to add the libraries in your project settings!
#pragma comment(lib, "lua.lib")
#pragma comment(lib, "lualib.lib")

#include <iostream>

int main()
{
//create a lua state
lua_State* pL = lua_open();

Each script file you run will be executed in a dynamically allocated struc-

ture called a lua_State. Every function in the Lua library requires that a

pointer to a lua_State be passed to it as a parameter. Therefore, before run-

ning a script file you must create a Lua state by calling lua_open.

//enable access to the standard libraries
luaopen_base(pL);
luaopen_string(pL);
luaopen_table(pL);

To Script, or Not to Script, That Is the Question | 257

Scripting in Lua

TLFeBOOK

luaopen_math(pL);
luaopen_io(pL);

Lua comes with several standard libraries. They provide input/output,

mathematical, and string manipulation functions, among other things.

These lines of code make sure the library commands can be called from

within your Lua script. Of course, if your Lua scripts don’t use these

library functions, they may be omitted. For now though, let’s include all of

them.

if (int error = lua_dofile(pL, "your_first_lua_script.lua") != 0)
{
std::cout << "\n[C++]: ERROR(" << error << "): Problem with lua"

<< "script file!\n\n" << std::endl;

return 0;
}

The command lua_dofile loads, compiles, and executes a Lua script. If

there is a problem with running the script the function returns an error

code.

It is also possible to precompile a Lua script using luac.exe, which you

can find in the common/lua-5.0/bin folder. As mentioned earlier, compiled

scripts load quicker and are effectively sealed from the eyes of the end

user. Precompiled scripts are loaded into your program in the same way as

regular scripts.

//tidy up
lua_close(pL);

To tidy up, lua_close must be called. This function destroys all the objects

in the Lua state and frees up any dynamically allocated memory.

return 0;
}

If you boot up the project StartHere, you can try out your own Lua pro-

grams as you work your way through the first section of this chapter by

typing them out in the your_first_lua_script.lua file and then hitting the run

button.

Lua Variables

Lua is a dynamically typed language. This means that unlike C/C++, vari-

ables can be assigned any type. In other words, you can do stuff like this:

--start lua script

--assign the string “Bilbo Baggins” to the variable ‘name’

name = “Bilbo Baggins”

print (“name = “..name)

258 | Chapter 6

Scripting in Lua

TLFeBOOK

--now assign the floating-point number 3.14159 to the variable pi

pi = 3.14159

--assigning pi to name is also valid

name = pi

--as is this

pi = false

Notice that comments in Lua are proceeded by -- instead of the double

slash or /* … */ used for C++/C comments. You can also write comments

over multiple lines using the following syntax:

--[[this is an extremely long

comment separated

over several lines]]

Although statements spread over multiple lines must be terminated with a

semicolon, this is not mandatory for single line statements. Consequently,

all the following statements are correct syntax:

A = 10

B = 10; A = 10;

B = 10; A = 10

B = 10 A = 10

print (

“It is possible to span over multiple lines”

);

If the semicolon at the end of the print statement had not been present, it

would have given an error.

It’s also possible to assign values to several variables simultaneously.

For example, you can do stuff like this:

a, b, c, d = 1, 2, 3, 4

x, y, z = a, b, c

If the number of variables on the left-hand side is greater than the number

on the right, then the nil value is applied to the extraneous variables. nil is

a special Lua type and indicates the absence of meaning. For example:

x, y, z = 1, 2

print (x, y, z)

gives the output:

1 2 nil

To Script, or Not to Script, That Is the Question | 259

Scripting in Lua

TLFeBOOK

If the number of terms on the right-hand side is greater, then the additional

values are simply discarded. For example:

x, y, z = 1, 2, 3, 4, 5

print (x, y, z)

gives the output:

1 2 3

There are three different kinds of variables in Lua: global, local, and table

fields. Variables are considered to be global unless they are explicitly

defined as local using the local keyword, like so:

local name = “sally”

Before a value is assigned to a variable its value is nil.

I’m starting to get a little ahead of myself here, so let me break off and

discuss the Lua variable types in detail.

Lua Types

Lua uses eight basic types. They are as follows:

Nil

nil has been defined to be distinct from any other value and is used to rep-

resent the absence of meaning. Once you have created a variable, it’s

possible to “delete” it by assigning the nil type to it. The nil type is Lua’s

magic wand: If a variable is assigned this value, it vanishes as though it

never existed. Poof!

Number

The number type is used to represent floating-point numbers. Internally,

this value is treated as a double. Therefore, when you pass numbers to your

C/C++ program, you must remember to cast them to the correct type.

String

The string type is an array of 8-bit characters. You can join strings together

using the concatenation operator .. (two dots). If either side of the .. opera-

tor is not a string, then it is converted prior to concatenation. Therefore:

age = 25

print (“I am “..age..” years of age”)

gives the output:

I am 25 years of age

Boolean

This represents a true or false value. A zero or nil signifies a false value,

and anything else, true.

260 | Chapter 6

Scripting in Lua

TLFeBOOK

Functions

Functions in Lua are also a type and can be assigned to variables. The

function can then be called using that variable’s name. Because Lua is

typeless, no types have to be specified either in the parameter list or as a

return value. Here’s an example of a simple function to add two numbers

together. Note how the function block ends with the end keyword.

add = function(a, b)

return a+b

end

This syntax is a little unfamiliar to us, so Lua provides another way of

declaring a function, which looks a little more like C++:

function add(a, b)

return a+b

end

Unlike C++, Lua functions can return several variables at once, so the fol-

lowing is perfectly acceptable:

function IncrementTwoValues(a, b)

return a+1, b+1

end

a = 2; b = 10;

print (a, b)

a, b = IncrementTwoValues(a, b);

print (a, b)

The output from this script is:

2 10
3 11

Tables

A table is a very powerful data type. You can think of a table as a kind of

associative array or hash table, which means not only can you index a table

with integers, but you can also index into a table using any type of key. In

addition, Lua tables are heterogeneous — they can mix data types.

To Script, or Not to Script, That Is the Question | 261

Scripting in Lua

TLFeBOOK

A C/C++ style syntax is used to access tables. Here are some examples

using integers as indexes:

--create a table

test_table = {}

--assign some values to it

test_table[1] = 4

test_table[2] = 5.6

test_table[3] = "Hello World"

It’s also possible to construct the same table using this syntax:

test_table = {4, 5.6, "Hello World"}

Now let’s add a couple of associative indices:

test_table["eight"] = 8

test_table[3.141] = "Pi"

n-dimensional tables are easy also. Let’s say you want to create a lookup

table to decide who wins the game of rock-paper-scissors as shown in Fig-

ure 6.1.

The table tells us a rock played against scissors is a win, paper played

against paper is a draw, and so on. This is how the table can be reproduced

as a Lua table:

lookup = {}

lookup["rock"] = {}

lookup["rock"]["rock"] = “draw”

lookup["rock"]["paper"] = “lose”

lookup["rock"]["scissors"] = “win”

lookup["paper"] = {}

lookup["paper"]["rock"] = “win”

lookup["paper"]["paper"] = “draw”

lookup["paper"]["scissors"] = “lose”

lookup["scissors"] = {}

lookup["scissors"]["rock"] = “lose”

262 | Chapter 6

Scripting in Lua

Figure 6.1

TLFeBOOK

lookup["scissors"]["paper"] = “win”

lookup["scissors"]["scissors"] = “draw”

Fortunately, this can be reduced in size to something more pleasing to the

eye:

lookup = {}

lookup["rock"] = {rock = “draw”, paper = “lose”, scissors = “win”}

lookup["paper"] = {rock = “win”, paper = “draw”, scissors = “lose”}

lookup["scissors"] = {rock = “lose”, paper = “win”, scissors = “draw”}

In addition to using the square brackets ([]) to retrieve a value, the access

operator (.) may also be used, like so:

test_table.eight = 8

Functions can also be assigned to tables, so you can do stuff like this:

function add(a, b)

return a+b

end

op = {}

op["add"] = add

print(op.add(4, 7));

UserData

The userdata type is provided to allow Lua variables to store custom

C/C++ data. A variable of the type userdata cannot be created or modified

inside Lua, only through the C/C++ interface. Because userdata corre-

sponds to a raw block of memory, there are no predefined operations (other

than assignment and an identity test), but it is possible to define operations

using metatables.

� NOTE A metatable may be assigned to Lua userdata or table types and can
be used to define the behavior of the type it is attached to. Each metatable is a
table in its own right and defines the behavior for the type it is attached to for
specific operations such as +, ==, or concatenate. You use them in a similar
way to operator overloading in C++. Please see the Lua documentation for
some good examples of how you may use metatables.

Threads

The thread type enables individual threads of execution to be spawned.

Logical Operators

Lua has three logical operators: and, or, and not. They operate very much

like their C++ counterparts &&, ||, and !. Like C++, they only evaluate the

second term if necessary. The values False and nil are false; everything

else is considered to be true.

To Script, or Not to Script, That Is the Question | 263

Scripting in Lua

TLFeBOOK

Conditional Structures

Lua provides the conditional structures if, while, repeat, and for. Lua’s ver-

sions of the if and while control structures are very similar to those used in

C/C++, except the conditions are not required to be supplied inside paren-

theses. Here is an example of the former:

if a == 4 then

print ("yup")

else

print ("nope")

end

And here is an example of a while loop:

while a > 1 do

a = a - 1

end

Notice how both the if and while structures end their blocks with the end

keyword.

repeat’s dancing partner is until. They work together like this:

repeat

a = a - 1

print (a)

until a == 0

There are two versions of the familiar for structure. One is numeric and the

other is used with tables. The numeric for has the syntax:

for var = lower_value, upper_value, step do

something()

end

This means the loop will be executed for each value of var between

lower_value and upper_value in increments of step. Therefore, the code:

for a = 10, 14, 2 do

print (a)

end

264 | Chapter 6

Scripting in Lua

TLFeBOOK

gives the output of:

10
12
14

The variable a is automatically declared as a local variable and is only visi-

ble within the loop. For loops may be exited using the break keyword.

The other type of for loop is used to traverse tables. This has a different

syntax.

for k, v in t do

something()

end

The k and v refer to the table t’s key-value pair. Here’s an example to clarify

how it works:

data = {a=1, b=2, c=3}

for k, v in data do

print (k, v)

end

Running this snippet of code produces the output:

a 1
c 3
b 2

As you can see, the values are not listed in the expected order. This is

because the order is undefined in Lua; it depends on how the table has been

stored internally.

Rock-Paper-Scissors in Lua
As a simple example to demonstrate some of the syntax of the Lua pro-

gramming language, here’s some simple code that plays the game

rock-paper-scissors. (The AI is extremely dumb; it just picks randomly.)

--Name: rock_paper_scissors2.lua

--Author: Mat Buckland

--Desc: lua script to implement a rock-paper-scissors game

--[[seed the random number generator]]

To Script, or Not to Script, That Is the Question | 265

Scripting in Lua

TLFeBOOK

math.randomseed(os.time())

--[[these global variables will hold the scores of the player

and the computer]]

user_score = 0

comp_score = 0

--[[this table is used to determine who wins which round]]

lookup = {};

lookup["rock"] = {rock = ”draw”, paper = “lose”, scissors = “win” }

lookup["paper"] = {rock = “win”, paper = ”draw”, scissors = “lose”}

lookup["scissors"] = {rock = “lose”, paper = “win”, scissors = ”draw”}

--[[this function returns the computer's best guess]]

function GetAIMove()

--create a table so we can convert an integer to a play string

local int_to_name = {"scissors", "rock", "paper"}

--get a random integer in the range 1-3 and use it as an index

--into the table we've just made so that the function can return

--a random play

return int_to_name[math.random(3)]

end

--[[this function uses the lookup table to decide the winner and

allocates scores accordingly]]

function EvaluateTheGuesses(user_guess, comp_guess)

print ("user guess... "..user_guess.." comp guess... "..comp_guess)

if (lookup[user_guess][comp_guess] == “win”) then

print ("You Win the Round!")

user_score = user_score + 1

elseif (lookup[user_guess][comp_guess] == “lose”) then

print ("Computer Wins the Round")

comp_score = comp_score + 1

266 | Chapter 6

Scripting in Lua

TLFeBOOK

else

print ("Draw!")

print (lookup[user_guess][comp_guess])

end

end

--[[main game loop]]

print ("Enter q to quit game");

print()

loop = true

while loop == true do

--let the user know the current score

print("User: "..user_score.." Computer: "..comp_score)

--grab input from the user via the keyboard

user_guess = io.stdin:read '*l'

--[[declare a table to convert the user's input into a string]]

local letter_to_string = {s = "scissors", r = "rock", p = "paper"}

if user_guess == "q" then

loop = false --quit the game if user enters 'q'

elseif (user_guess == "r") or (user_guess == "p") or (user_guess == "s") then

comp_guess = GetAIMove()

EvaluateTheGuesses(letter_to_string[user_guess], comp_guess)

else

print ("Invalid input, try again")

end

end

Now that you’ve got a feel for the Lua language, let’s get on with what you

really want to know: how to interface Lua with your C/C++ programs.

To Script, or Not to Script, That Is the Question | 267

Scripting in Lua

TLFeBOOK

� TIP When compiling you may get a whole load of linker errors with this
signature:

libcmt.lib(blahblah.obj) : error LNK2005: __blahblah already defined in LIBCD.lib

or the warning:

defaultlib "LIBCMT" conflicts with use of other libs; use /NODEFAULTLIB:library

This is because the Lua libraries will have been compiled with a different set of
runtime libraries than your application. In 99% of cases you can remove these
by telling your compiler to ignore the libcmt library. (In VC6 go to Project Set-
tings -> Link -> Input, then enter libcmt in the Ignore Libraries field.) If this
doesn’t work then you will need to create the Lua libraries yourself with the cor-
rect settings (see the docs).

Interfacing with C/C++
C++ and Lua use different syntax and data types, so it’s impossible for

them to “talk” directly to one another. You can view this conceptually as

two pirates shipwrecked on separate islands situated too far apart for them

to be able to converse with each other, no matter how loudly they shout.

Fortunately, one of the pirates owns a very vocal parrot named Bernie.

Bernie remembers and repeats the last thing said to him and regularly flies

between the islands in search of food. The pirates quickly realize Bernie

can be used as a means of communicating with each other. If Pirate One

wants to know Pirate Two’s name, he can say to Bernie “Ahoy there

matey! Who be I speakin’ to?” and wait for the parrot to fly across the

waters. When he returns, Bernie will speak the last thing Pirate Two

uttered: “I be Black Beard. Arrr, harrr. Yes I be.”

In the same way the pirates use Bernie to route their conversation, Lua

and C++ are able to communicate using a virtual stack, which grows and

shrinks according to the demands of the script. As a quick example, let’s

say the string “Captain Hook” has been assigned to the variable

Pirates_Name in a Lua script file.

Pirates_Name = “Captain Hook”

A C++ function can access this variable by following these steps:

1. The C++ function puts the string Pirates_Name on the Lua stack.

2. Lua reads the stack and finds the string Pirates_Name.

3. Lua looks up the value of Pirates_Name in its global table and places

whatever is assigned to it — “Captain Hook” — on the stack.

4. The C++ function grabs the string Captain Hook from the top of the

stack.

Presto! Lua and C++ have just passed data between each other. Of course,

when passing data back and forth for arrays and function calls and so forth,

this process becomes much more complicated but is still essentially the

same.

268 | Chapter 6

Scripting in Lua

TLFeBOOK

In customary stack implementations elements

can only be “popped” and “pushed” on or off the

stack, but with Lua the stack is also accessible by

index. If n is the number of elements in the stack,

then the elements are numbered from 1 to n, from

the bottom (first in) of the stack upward. It’s also

possible to index into the stack using the negative

integers: –1 to –n. In this case, the elements are

counted from the top (last in) downward to –n. See

Figure 6.2.

In the figure, “e” can be said to be at position 5

or at position –3. In Lua, either value is correct.

Many programmers prefer to work with negative

indices because that way you don’t need to know

the exact size of the stack and only need to keep track of any recent values

pushed onto it.

Don’t be concerned if you feel a little confused right now. You’ll see

many examples of exactly how the Lua stack is used in the following pages

and soon it will become second nature.

� NOTE The default stack size LUA_MINSTACK is defined in lua.h as 20. You
don’t need to worry about adjusting this unless you create functions that push
lots of values onto the stack (like recursive functions).

Accessing Lua Global Variables from within Your C++ Program

Let’s say you have a Lua script file that has the global variables name and

age defined and you’d like to access those values in your C++ program.

--global string and number types

name = "Spiderman"

age = 29

To be able to access those variables you must first put them on the Lua

stack. You can do this by passing a pointer to the Lua state they have been

defined in, and their name to the API function lua_getglobal. First of all

though, it’s wise to make sure the stack’s top is set to index 0 (0 is empty)

by using the function lua_settop. Here’s the C++ code to do just that:

//reset the stack index
lua_settop(pL, 0);

And here’s the code to put the variables we want to access on the stack:

//put the lua global variables "age" and "name" on the stack.
lua_getglobal(pL, "age");
lua_getglobal(pL, "name");

To Script, or Not to Script, That Is the Question | 269

Scripting in Lua

Figure 6.2. A Lua virtual
stack containing the
characters “a” to “g”

TLFeBOOK

Now they are at our mercy! Before the C++ code grabs them, however, it’s

wise to make sure the values you think are on the top of the stack are actu-

ally at the top. This is done using one of the following:

int lua_type (lua_State *L, int index);
int lua_isnil (lua_State *L, int index);
int lua_isboolean (lua_State *L, int index);
int lua_isnumber (lua_State *L, int index);
int lua_isstring (lua_State *L, int index);
int lua_istable (lua_State *L, int index);
int lua_isfunction (lua_State *L, int index);
int lua_iscfunction (lua_State *L, int index);
int lua_isuserdata (lua_State *L, int index);

where index is the stack index you’d like to check. In our small example,

we want to make sure the two values at positions 1 and 2 in the stack are a

number and string respectively. Here’s the code to do just that:

//check that the variables are the correct type. (notice how the
//stack index starts at 1, not 0)
if (!lua_isnumber(pL, 1) || !lua_isstring(pL, 2))
{
cout << "\n[C++]: ERROR: Invalid type!";

}

At this point we know that values of the correct type are where they should

be in the stack so it’s time for C++ to grab them. However, because the val-

ues on the stack are Lua types, they need to be converted to C++ types.

This is done using one of the following Lua API functions:

int lua_toboolean (lua_State *L, int index);
lua_Number lua_tonumber (lua_State *L, int index);
const char* lua_tostring (lua_State *L, int index);
size_t lua_strlen (lua_State *L, int index);
lua_CFunction lua_tocfunction (lua_State *L, int index);
void* lua_touserdata (lua_State *L, int index);
lua_State* lua_tothread (lua_State *L, int index);
void* lua_topointer (lua_State *L, int index);

This is how the appropriate conversion function is used to retrieve the val-

ues of age and name from the stack.

//now assign the values to C++ variables
string name = lua_tostring(pL, 2);

//notice the cast to int with this.
int age = (int)lua_tonumber(pL, 1);

Notice how the number had to be cast to the correct type. This is because

all numbers in Lua are treated as doubles.

Obviously, going through all these calls to grab just one variable can get

extremely tedious very quickly, so it’s best if you create your own func-

tions to speed this process up. Here’s an example of a function template to

grab a number from the stack:

270 | Chapter 6

Scripting in Lua

TLFeBOOK

template <class T>
inline T PopLuaNumber(lua_State* pL, const char* name)
{
lua_settop(pL, 0);

lua_getglobal(pL, name);

//check that the variable is the correct type.
if (!lua_isnumber(pL, 1))
{
cout << "\n[C++]: ERROR: Invalid type!";

}

//grab the value, cast to the correct type, and return
T val = (T)lua_tonumber(pL, 1);

//remove the value from the stack
lua_pop(pL, 1);

return val;
}

Okay, that was easy. Let’s move on to something a little more complicated.

� TIP Because it’s so easy to retrieve values from a script file, and because the
Lua code itself is so lightweight, Lua provides a quick and simple way to create
your game’s initialization/configuration files.

Accessing a Lua Table from within Your C++ Program

Accessing a Lua table is a little more involved because there is a key asso-

ciated with each element. Let’s take a look at the simple table defined in

the following Lua script.

--global table creation

simple_table = {name="Dan Dare", age=20}

To retrieve one or more of the elements, first of all simple_table must be

added to the stack. This is done in a similar way to what you’ve already

seen, by using lua_getglobal.

//reset the stack index
lua_settop(pL, 0);

//put the table on the stack
lua_getglobal(pL, "simple_table");

Next a check is made to ensure the correct type is in the expected position.

if (!lua_istable(pL, 1))
{
cout << "\n[C++]: ERROR: simple_table is not a valid table";

}

To Script, or Not to Script, That Is the Question | 271

Scripting in Lua

TLFeBOOK

else
{

Now to retrieve the element indexed into by the key “name.” To do that,

the key must be pushed onto the stack so Lua knows what it’s looking for.

You can push values from C/C++ onto the stack using one of these API

calls:

void lua_pushboolean (lua_State *L, int b);
void lua_pushnumber (lua_State *L, lua_Number n);
void lua_pushlstring (lua_State *L, const char *s, size_t len);
void lua_pushstring (lua_State *L, const char *s);
void lua_pushnil (lua_State *L);
void lua_pushcfunction (lua_State *L, lua_CFunction f);
void lua_pushlightuserdata (lua_State *L, void *p);

The keys in this example are strings, so lua_pushstring is used to push

“name” onto the stack.

//push the key onto the stack
lua_pushstring(pL, "name");

lua_gettable is a function that pops the key off the stack, grabs the corre-

sponding element, and puts it back on the stack. Notice how I’ve used

negative indices to index backward from the top of the stack (–1 is the top,

remember).

//table is now at -2 (key is at -1). lua_gettable now pops the key off
//the stack and then puts the data found at the key location on the stack
lua_gettable(pL, -2);

Once the desired element is on the top of the stack, as before, it’s a good

idea to ensure it is of the correct type.

//check that element is the correct type
if (!lua_isstring(pL, -1))
{
cout << "\n[C++]: ERROR: invalid type";

}

Finally, grab the data.

//grab the data
name = lua_tostring(pL, -1);

cout << "\n\n[C++]: name = " << name;

And remove it from the stack.

lua_pop(pL, 1);
}

By now you should be getting a feel for how the stack is used, so let’s

move on to accessing functions defined in Lua from within a C++ program.

272 | Chapter 6

Scripting in Lua

TLFeBOOK

Accessing a Lua Function from within C++

Using a similar process to that used in the last two sections, you can allow

your C/C++ program to access Lua functions. Let’s use the simple function

add as an example:

--function to add two numbers together and return the result

function add(a, b)

return (a + b)

end;

A Lua function is a type just like a number, string, or table, so the process

for accessing one is familiar. First, place the function on the stack and

make sure what’s there is what you are expecting.

//get the function from the global table and push it on the stack
lua_getglobal(pL, "add");

//check that it is there
if (!lua_isfunction(pL, -1))
{
cout << "\n\n[C++]: Oops! The lua function 'add' has not been defined";

}

Next the parameters are pushed onto the stack. The first parameter is

pushed first, followed by any others. The add function takes two parame-

ters, so the following code pushes the numbers 5 and 8 onto the stack.

//push some variables onto the lua stack
lua_pushnumber(pL, 5);
lua_pushnumber(pL, 8);

At this point the Lua stack contains all the information required to call the

function: the function name and the parameters we want to pass to it. The

function is called using the API function lua_call. Its prototype looks like

this:

void lua_call (lua_State *L, int nargs, int nresults);

nargs is the number of parameters that have been pushed onto the stack,

and nresults is the number of parameters the function will return. The

parameters are returned in direct order, so the last parameter returned will

be on the top of the stack.

Here’s how lua_call is used to call the add function.

//calling the function with parameters to set the number of parameters in
//the lua func and how many return values it returns. Puts the result at
//the top of the stack.
lua_call(pL, 2, 1);

To Script, or Not to Script, That Is the Question | 273

Scripting in Lua

TLFeBOOK

Finally the result is retrieved and removed from the top of the stack.

//grab the result from the top of the stack
int result = lua_tonumber(pL, -1);

lua_pop(pL, 1);

All these examples can be found in the project cpp_using_lua.

� NOTE Most of the Lua API “functions” mentioned in this chapter are actually
#defines. I recommend you check them out at some point by examining the
lua.h, lualib.h, and lauxlib.lib files.

Exposing a C/C++ Function to Lua

To call a C/C++ function from a Lua script it must be of the type

lua_CFunction, which is defined as:

int (lua_CFunction*) (lua_State*)

In other words, you must make sure your C/C++ function takes the form:

int function_name(lua_State*)

Let’s take a look at an example. I’m going to alter the rock-paper-scissors

example shown earlier so that some of the functions are written in C++ and

are called from within the Lua script. You can find the project file under

the name lua_using_cpp.

In the RockPaperScissors.h file you’ll see a C++ function called

EvaluateTheGuesses, which has the prototype:

void EvaluateTheGuesses(std::string user_guess,
std::string comp_guess,
int& user_score,
int& comp_score);

To be able to call this function from Lua, the prototype has to be changed

to conform to the correct signature. This is easy to do by wrapping it inside

another function that has the required footprint. Inside the wrapper, any

parameters are retrieved from the stack as before and used to call the func-

tion proper. Any return values are then pushed onto the stack.

Let me demonstrate by showing you how the EvaluateTheGuesses func-

tion is wrapped. First we create a similarly named function with the correct

footprint.

int cpp_EvaluateTheGuesses(lua_State* pL)
{

lua_gettop is then used to return the index of the top element of the stack.

When a function call is made from Lua, the top of the stack is reset and

then any parameters are pushed onto the stack. Therefore, the value

lua_gettop returns is equal to the number of parameters Lua is attempting

to pass.

//get the number of parameters passed to this function from the lua
//stack and make sure it is equal to the correct number of parameters

274 | Chapter 6

Scripting in Lua

TLFeBOOK

//for EvaluateTheGuesses.
int n = lua_gettop(pL);

It’s always a good idea at this point to confirm that the number of parame-

ters Lua is passing is correct.

if (n!=4)
{
std::cout << "\n[C++]: Wrong number of arguments for"

<< " cpp_EvaluateTheGuesses";

return 0;
}

And that the parameters are of the correct type.

//check that the parameters are of the correct type.
if (!lua_isstring(pL, 1) || !lua_isstring(pL, 2) ||

!lua_isnumber(pL, 3) || !lua_isnumber(pL, 4))
{
std::cout << "\n[C++]: ERROR: Invalid types passed to"

<< " cpp_EvaluateTheGuesses";
}

At this point we know we have the correct amount of parameters and that

they are of the correct type, so we can proceed by grabbing them from the

stack and calling the function proper.

//grab the parameters off the stack
std::string user_guess = lua_tostring(pL, 1);
std::string comp_guess = lua_tostring(pL, 2);
int user_score = (int)lua_tonumber(pL, 3);
int comp_score = (int)lua_tonumber(pL, 4);

//call the C++ function proper
EvaluateTheGuesses(user_guess, comp_guess, user_score, comp_score);

user_score and comp_score have been updated, so it’s time to pass them

back to Lua.

//now push the updated scores onto the stack
lua_pushnumber(pL, user_score);
lua_pushnumber(pL, comp_score);

//return the number of values pushed onto the stack
return 2;

}

Once your C/C++ function has been wrapped, you must register it with Lua

using the API function lua_register before your Lua script attempts to use

it. lua_register takes as parameters a pointer to a Lua state, a string defin-

ing the name of the function, and a pointer to the function, like so:

lua_register(pL, "cpp_EvaluateTheGuesses", cpp_EvaluateTheGuesses);

Once a function has been registered with Lua it can be called from a Lua

script as normal.

To Script, or Not to Script, That Is the Question | 275

Scripting in Lua

TLFeBOOK

� NOTE Unlike C++, Lua handles memory management automatically. It uses
something called a garbage collector to periodically delete all the dead objects.
The performance of the garbage collector can be customized to your taste,
ranging from immediate deletion of dead objects to no deletion. See the Lua
documentation for further details.

Exposing a C/C++ Class to Lua

This is where things start to get tricky! Exposing a C++ class to a Lua

script can be pretty gnarly. You basically have to create a Lua table that has

as its elements the class data and methods you require to expose. You may

also have to create a metatable that defines how your class behaves with

any appropriate operators such as == or *. As you have seen, simply expos-

ing a C-like function to Lua can get longwinded, so you can imagine the

amount of work required to expose a C++ class. Fortunately, someone has

already done the hard work for us and created an API allowing for

pain-free class (and function) registration. It’s called Luabind, and just like

Lua it’s free, open-source, and easy to use and understand.

Luabind to the Rescue!
Luabind is a library for creating bindings between Lua and C++. It is

implemented using the magic of template meta-programming so the source

code is not for the faint hearted, but it makes exposing your C/C++ classes

and functions a cinch. It handles inheritance and templated classes and you

can even use it to create classes in Lua. It’s still in the early days of devel-

opment, so it is not without its problems, but these are few and the

developers, Daniel Wallin and Arvid Norberg, have put in a lot of time to

iron out the bugs and to provide fast and helpful support should you need

it.

Setting Up Luabind

Before you can use Luabind you must set up your compiler correctly.

Luabind (6.0) requires you to have the Boost library 1.30.0 or later headers

installed. You can download Boost from www.boost.org. Unzip and add the

boost header folder to your compiler’s include paths.

The required files for Luabind are in the folder common/luabind. You

must set this path in your compiler for the Luabind headers, and the path

common/luabind/src for the source files. Although you can build the

Luabind libraries, it’s much easier (unless you are using UNIX) to just

include all the files found in common/luabind/src in your project.

� TIP For those of you who use .NET, there is a Lua and Luabind .NET wrapper
called LuaDotNet available from codeproject. You can grab it from:
http://www.codeproject.com/managedcpp/luanetwrapper.asp.

276 | Chapter 6

Scripting in Lua

TLFeBOOK

To use Luabind you must include the Luabind header along with the Lua

files, and then call the function luabind::open(lua_State*). This registers

all the functions Luabind uses to expose your classes and functions.

You eventually end up with code that flows like this:

extern "C"
{
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>

}

#include <luabind/luabind.hpp>

int main()
{
//create a lua state
lua_State* pLua = lua_open();

//open luabind
luabind::open(pLua);

/* Register functions and classes with luabind here */

/* load and run the script here */

//tidy up
lua_close(pLua);

return 0;
}

Now let me show you how easy Luabind is to use.

Scopes

Any function or class you register using Luabind must be registered in a

scope. This can be either a namespace of your choice or in the global

scope, which Luabind calls module. To create a scope you use

luabind::module. It is used like this:

luabind::module(pL)
[
//register stuff here

];

This will register functions and classes in the global scope. To place your

functions or classes in a namespace, you call luabind::module using the

desired name like so:

luabind::module(pL, "MyNamespace")
[
//register stuff here

];

To Script, or Not to Script, That Is the Question | 277

Scripting in Lua

TLFeBOOK

Luabind represents namespaces using a table, so in this example, all the

functions and classes registered will be put into the table MyNameSpace.

Exposing C/C++ Functions Using Luabind

To expose a C/C++ function to Lua use the luabind::def function. As an

example, let’s take two simple functions, add and HelloWorld, and bind

them to Lua. Here are the functions:

void HelloWorld()
{
cout << "\n[C++]: Hello World!" << endl;

}

int add(int a, int b)
{
return a + b;

}

And here’s how you bind them:

module(pL)
[
def("HelloWorld", &HelloWorld),
def("add", &add)

];

How easy is that! Following is a Lua script file that calls the exposed

functions.

--lua script to demonstrate exposing C++ functions to Lua using luabind

print("[lua]: About to call the C++ HelloWorld() function")

HelloWorld()

print("\n[lua]: About to call the C++ add() function")

a = 10

b = 5

print ("\n[lua]: "..a.." + "..b.." = "..add(a, b))

Running this script gives the output:

[lua]: About to call the C++ HelloWorld() function
[C++]: HelloWorld!
[lua]: About to call the C++ add() function
[lua]: 10 + 5 = 15

The project file containing this script is called ExposingCPPFunctions-

ToLua.

278 | Chapter 6

Scripting in Lua

TLFeBOOK

If you have overloaded functions then you must explicitly give their sig-

nature when you register them. So if you have the functions:

int MyFunc(int);
void MyFunc(double);

they should be registered as:

module(pLua)
[
def("MyFunc", (int (*)(int)) &MyFunc),
def("MyFunc", (void (*)(double)) &MyFunc),

];

� NOTE When using Luabind, your compiler may complain that its internal
heap limit has been exceeded. In MSVC 6.0 you can increase the limit by going
to Project Settings, clicking on the C++ tab, and adding /ZmXXX to the end of
the options string where XXX is a value between 100 and 2000. The default
value is 100, so just increase it a little. Make sure you add /Zm in both the
debug and release versions.

Exposing C/C++ Classes Using Luabind

Binding classes to Lua is not much more complicated. It’s done using the

class template class_ and one of its methods, def, to register any construc-

tors, methods, member variables, and destructors. class_::def returns a

this pointer to enable chaining. The following show how you use it.

The class Animal:

class Animal
{
private:

int m_iNumLegs;

std::string m_NoiseEmitted;

public:

Animal(std::string NoiseEmitted,
int NumLegs):m_iNumLegs(NumLegs),

m_NoiseEmitted(NoiseEmitted)
{}

virtual ~Animal(){}

virtual void Speak()const
{std::cout << "\n[C++]: " << m_NoiseEmitted << std::endl;}

int NumLegs()const{return m_iNumLegs;}
};

To Script, or Not to Script, That Is the Question | 279

Scripting in Lua

TLFeBOOK

is registered like so:

module(pLua)
[
class_<Animal>("Animal")
.def(constructor<string, int>())
.def("Speak", &Animal::Speak)
.def("NumLegs", &Animal::NumLegs)

];

Once registered, it’s possible to create an instance of the class inside a Lua

script. Here’s an example:

--create an animal object and call its methods

cat = Animal("Meow", 4);

print ("\n[Lua]: A cat has "..cat:NumLegs().. " legs.");

cat:Speak();

Notice how the : operator is used to call the methods. This is a shorthand

way of writing cat.Speak(cat). Methods must be called this way because

classes in Lua are represented by tables. Each element of the table repre-

sents a class member variable or method.

It’s almost as easy to bind a derived class. Here’s an example of a class

derived from the Animal class.

class Pet : public Animal
{
private:

std::string m_Name;

public:

Pet(std::string name,
std::string noise,
int NumLegs):Animal(noise, NumLegs),

m_Name(name)
{}

std::string GetName()const{return m_Name;}
};

Using Luabind, the Pet class is exposed to Lua, making use of the template

parameter bases<base class> to specify its base class. Here’s how:

module(pLua)
[
class_<Pet, bases<Animal> >("Pet")

.def(constructor<string, string, int>())

.def("GetName", &Pet::GetName)

];

280 | Chapter 6

Scripting in Lua

TLFeBOOK

If your class is derived from multiple classes, each base class must be

named with bases<> and separated by commas, like this:

class_<Derived, bases<Base1, Base2, Base3> >("Derived")

Creating Classes in Lua Using LuaBind

It’s also possible to define classes within your Lua scripts using Luabind.

Here’s how you would go about creating a class similar to Animal.

--Lua script to define the class: Animal

class 'Animal'

function Animal:__init(num_legs, noise_made)

self.NoiseMade = noise_made

self.NumLegs = num_legs

end

function Animal:Speak()

print(self.NoiseMade)

end

function Animal:GetNumLegs()

return self.NumLegs

end

The self keyword is like the this keyword in C++. Here’s an example of the

Animal class being used:

--example of use

cat = Animal(4, "meow")

cat:Speak()

print ("a cat has "..cat:GetNumLegs().." legs")

When this Lua script is executed the output is:

meow
a cat has 4 legs

It’s also possible to use inheritance with Luabind classes. Here’s how a Pet

class — derived from an Animal — is defined:

class 'Pet' (Animal)

function Pet:__init(name, num_legs, noise_made) super(num_legs, noise_made)

To Script, or Not to Script, That Is the Question | 281

Scripting in Lua

TLFeBOOK

self.Name = name

end

function Pet:GetName()

return self.Name

end

Notice how the super keyword is used to call the constructor of the base

class before initializing any of the derived class’s data members. Here’s a

short script that demonstrates the use of a Pet:

dog = Pet("Albert", 4, "woof")

dog:Speak()

print ("my dog’s name is "..dog:GetName())

Running this script gives the output:

woof
my dog’s name is Albert

The project CreatingClassesUsingLuabind demonstrates the use of Luabind

to create classes.

luabind::object

To facilitate passing Lua types to your C++ functions and objects, Luabind

provides a class named object. This class has the ability to represent any

Lua type and comes in very handy indeed. Here’s the prototype cut and

pasted straight from the Luabind docs. Have a good look at it and then I’ll

talk you through some of the member functions.

class object
{
public:
class iterator;
class raw_iterator;
class array_iterator;

template<class T>
object(lua_State*, const T& value);
object(const object&);
object(lua_State*);
object();

~object();

iterator begin() const;
iterator end() const;
raw_iterator raw_begin() const;

282 | Chapter 6

Scripting in Lua

TLFeBOOK

raw_iterator raw_end() const;
array_iterator abegin() const;
array_iterator aend() const;

void set();
lua_State* lua_state() const;
void pushvalue() const;
bool is_valid() const;
operator bool() const;

template<class Key>
<implementation-defined> operator[](const Key&);

template<class Key>
object at(const Key&) const;

template<class Key>
object raw_at(const Key&) const;

template<class T>
object& operator=(const T&);
object& operator=(const object&);

template<class T>
bool operator==(const T&) const;
bool operator==(const object&) const;
bool operator<(const object&) const;
bool operator<=(const object&) const;
bool operator>(const object&) const;
bool operator>=(const object&) const;
bool operator!=(const object&) const;

void swap(object&);
int type() const;

<implementation-defined> operator()();

template<class A0>
<implementation-defined> operator()(const A0& a0);

template<class A0, class A1>
<implementation-defined> operator()(const A0& a0, const A1& a1);

/* ... */
};

at() and []

Once a Lua type is assigned to a luabind::object you can use the [] opera-

tor or the at() method to access the data. at() provides read-only access

and [] read and write access. The parameter passed to [] or at() must be a

Lua type name in the global scope. (Remember, all Lua variables are

defined in the global scope unless explicitly declared local.) To convert a

luabind::object to a C++ type you must use luabind::object_cast.

To Script, or Not to Script, That Is the Question | 283

Scripting in Lua

TLFeBOOK

For example, let’s say a Lua script defines some values like this:

Mat = 37

Sharon = 15

Scooter = 1.5

The Lua global table, in which those values reside, can be assigned to a

luabind::object using get_globals, like this:

luabind::object global_table = get_globals(pLua);

The data can now be retrieved from the luabind::object like this:

float scooter = luabind::object_cast<float>(global_table.at("Scooter"));

Or changed like this:

global_table["Mat"] = 10;

One of the more useful things possible with a luabind::object is to use it

to call functions defined in Lua. You can even include luabind::objects as

member variables of a C++ class, enabling the functionality of that class to

be changed whenever you want by reassigning different Lua functions to

the objects. You’ll see an example of this later in the chapter when I show

you how to design a scripted finite state machine class.

is_valid and bool

is_valid and operator bool provide a way of checking that a

luabind::object contains a valid type. For example:

//assign the Lua global environment to a luabind::object
luabind::object MyObject = get_globals(pLua);

//check if the object is valid and if so do something with the value indexed
//into by "key"
if (MyObject.is_valid())
{

DoSomething(MyObject[key]);
}

This can also be written as:

if (MyObject)
{

DoSomething(MyObject[key]);
}

A luabind::object is invalid when it has been created using the default

constructor and has not yet been assigned a value.

Object Iterators

The methods end() and begin() return luabind::iterator objects. These

iterators work in the forward direction only and can be used to step through

the elements of any table the luabind::object is holding.

284 | Chapter 6

Scripting in Lua

TLFeBOOK

� TIP In addition to luabind::object, Luabind also provides luabind::func-
tor, which is a more lightweight object you can use if you only need to store
functions. See the Luabind documentation for more details.

Creating a Scripted Finite State Machine

To end the chapter I’m going to demonstrate how Lua, together with

Luabind, can be used to create a scripted finite state machine class. This

class is used in a similar way to the state machine class you’ve already seen

described in this book, except now the game agent’s state logic can be writ-

ten in the Lua scripting language. Not only will this be a demonstration of

the power of scripting languages, but it will help consolidate everything

you have learned in this chapter.

As we have discussed, a scripted FSM has many advantages over a

hard-coded state machine. Because any new logic can immediately be

tested without recompiling the source, the frustration of the testing and

tweaking phases of an agent’s AI is reduced, resulting in faster develop-

ment cycles. Additionally, once the AI framework has been exposed to a

scripting language, you can hand your designer, artists, or whoever a copy

of the compiled game, together with a little documentation, and they can

fool around with the AI to their heart’s content without having to pester

you any further. Well, okay, you may have to work on the interface a little

until everyone is happy, but that’s about all. When the game is released you

can choose to either compile the script files, effectively encrypting them

from the prying eyes of the game player, or leave the scripts as they are,

provide a little documentation, and put the power of your engine into the

game player’s hands.

� NOTE Luabind can be a great tool but, because it relies heavily on template
programming, the addition of it to a project will result in increased compile
times. This, alas, is the price we have to pay for its functionality.

How It Works
To be able to write state logic within a script file, the scripting language

must be able to access the interfaces of the relevant C++ objects. For this

example, I’m going to show you how the WestWorld demo from Chapter 1

can be converted to use a scripted state machine. As a result, the relevant

classes to expose to Lua will be Miner and Entity. In addition, the methods

of the scripted state machine class itself must also be exposed to enable

state changes to be made from within a script.

The StateMachine class used up to now has made use of the state design

pattern to implement its functionality. The StateMachine class has a data

member of base class type State, representing the current state of the

agent. This member variable can be exchanged at any time with any other

derived type of State in order to change the functionality of the class. To

To Script, or Not to Script, That Is the Question | 285

Creating a Scripted Finite State Machine

TLFeBOOK

provide similar behavior, the scripted state machine class has a member

variable of type luabind::object, which represents the current state of the

agent. The states are created in Lua as Lua tables. Each table contains three

functions, providing the logic for the Enter, Execute, and Exit phases of the

state. This is easier to show than to describe. A Lua table providing similar

functionality to a C++ State class is created like this:

--create a table to represent the state

State_DoSomething = {}

--now create the Enter, Execute, and Exit methods

State_DoSomething[“Enter”] = function(pAgent)

--logic goes here

end

State_DoSomething[“Execute”] = function(pAgent)

--logic goes here

end

State_DoSomething[“Exit”] = function(pAgent)

--logic goes here

end

You’ll see some concrete examples of Miner states in a moment, but for

now it is enough to know that a Lua table like this can be assigned to a

luabind::object. Once assigned, it is a straightforward matter to call the

appropriate function using the luabind::object::at() method.

Let’s take a look at the ScriptedStateMachine class to see how these

ideas are put together. Check out the following code carefully. Notice how

the m_CurrentState member variable acts as the holder for the current state

and how it is changed by passing a luabind::object type to the

ChangeState method. Other than a few small alterations, the class looks

very similar to its C++ StateMachine cousin — and so it should because it

provides the same functionality.

template <class entity_type>
class ScriptedStateMachine
{
private:

//pointer to the agent that owns this instance
entity_type* m_pOwner;

//the current state is a Lua table of Lua functions. A table may be
//represented in C++ using a luabind::object
luabind::object m_CurrentState;

public:

ScriptedStateMachine(entity_type* owner):m_pOwner(owner){}

//this method assigns a state to the FSM

286 | Chapter 6

Creating a Scripted Finite State Machine

TLFeBOOK

void SetCurrentState(const luabind::object& s){m_CurrentState = s;}

//this method makes sure the current state object is valid before calling
// the Execute function of the Lua table it represents
void UpdateScriptedStateMachine()
{
//make sure the state is valid before calling its Execute "method"
if (m_CurrentState.is_valid())
{
m_CurrentState.at("Execute")(m_pOwner);

}
}

//change to a new state
void ChangeState(const luabind::object& new_state)
{
//call the Exit method of the existing state
m_CurrentState.at("Exit")(m_pOwner);

//change state to the new state
m_CurrentState = new_state;

//call the Entry method of the new state
m_CurrentState.at("Enter")(m_pOwner);

}

//retrieve the current state
const luabind::object& CurrentState()const{return m_CurrentState;}

};

The state logic contained within the Lua scripts must be able to call some

of the methods of ScriptedStateMachine to permit state transitions. Conse-

quently, Luabind is used to expose the relevant member functions like this:

void RegisterScriptedStateMachineWithLua(lua_State* pLua)
{
luabind::module(pLua)
[
class_<ScriptedStateMachine<Miner> >("ScriptedStateMachine")

.def("ChangeState", &ScriptedStateMachine<Miner>::ChangeState)

.def("CurrentState", &ScriptedStateMachine<Miner>::CurrentState)

.def("SetCurrentState", &ScriptedStateMachine<Miner>::SetCurrentState)
];

}

Notice how only the methods required by the state logic are exposed.

There’s no point exposing UpdateScriptedStateMachine because, in this

example, it should never be called from within a script.

Following are listings of the Entity class, the Miner class, and the func-

tions that are called to bind them. You needn’t dwell on these listings as the

classes will be familiar in structure, but be sure to observe how the perti-

nent methods are registered with Lua.

To Script, or Not to Script, That Is the Question | 287

Creating a Scripted Finite State Machine

TLFeBOOK

Here’s the Entity class declaration:

class Entity
{

private:

int m_ID;

std::string m_Name;

//used by the constructor to give each entity a unique ID
int NextValidID(){static int NextID = 0; return NextID++;}

public:

Entity(std::string name = "NoName"):m_ID(NextValidID()), m_Name(name){}

virtual ~Entity(){}

//all entities must implement an update function
virtual void Update()=0;

//accessors
int ID()const{return m_ID;}
std::string Name()const{return m_Name;}

};

And here’s the function that registers the class with Lua:

void RegisterEntityWithLua(lua_State* pLua)
{
module(pLua)
[
class_<Entity>("Entity")

.def("Name", &Entity::Name)

.def("ID", &Entity::ID)
];

}

The Miner class is a cut-down version of the one from Chapter 2. It looks

like this:

class Miner : public Entity
{
private:

ScriptedStateMachine<Miner>* m_pStateMachine;

//how many nuggets the miner has in his pockets
int m_iGoldCarried;

//the higher the value, the more tired the miner
int m_iFatigue;

288 | Chapter 6

Creating a Scripted Finite State Machine

TLFeBOOK

public:

Miner(std::string name);

~Miner(){delete m_pStateMachine;}

//this must be implemented
void Update();

int GoldCarried()const{return m_iGoldCarried;}
void SetGoldCarried(int val){m_iGoldCarried = val;}
void AddToGoldCarried(int val);

bool Fatigued()const;
void DecreaseFatigue(){m_iFatigue -= 1;}
void IncreaseFatigue(){m_iFatigue += 1;}

ScriptedStateMachine<Miner>* GetFSM()const{return m_pStateMachine;}
};

Here’s how the Miner class is registered. Note how the bases<> parameter is

used to specify the Miner’s base class.

void RegisterMinerWithLua(lua_State* pLua)
{
module(pLua)
[
class_<Miner, bases<Entity> >("Miner")

.def("GoldCarried", &Miner::GoldCarried)

.def("SetGoldCarried", &Miner::SetGoldCarried)

.def("AddToGoldCarried", &Miner::AddToGoldCarried)

.def("Fatigued", &Miner::Fatigued)

.def("DecreaseFatigue", &Miner::DecreaseFatigue)

.def("IncreaseFatigue", &Miner::IncreaseFatigue)

.def("GetFSM", &Miner::GetFSM)
];

}

Now that it’s possible to access the Miner, Entity, and ScriptedState-

Machine interfaces from within a Lua script, we can write the AI logic for

each state.

The States
As discussed previously, the Miner states will be written in the Lua script-

ing language. Instead of a C++ class, each state is represented by a Lua

table that has elements containing Enter, Execute, and Exit functions.

To keep it simple and concise there are only three states implemented

for a Miner — GoHome, Sleep, and GoToMine — but this will be sufficient to

demonstrate the idea.

Here’s how the three states are implemented:

To Script, or Not to Script, That Is the Question | 289

Creating a Scripted Finite State Machine

TLFeBOOK

GoHome

State_GoHome = {}

State_GoHome["Enter"] = function(miner)

print ("[Lua]: Walkin' home in the hot n' thusty heat of the desert")

end

State_GoHome["Execute"] = function(miner)

print ("[Lua]: Back at the shack. Yes siree!")

if miner:Fatigued() then

miner:GetFSM():ChangeState(State_Sleep)

else

miner:GetFSM():ChangeState(State_GoToMine)

end

end

State_GoHome["Exit"] = function(miner)

print ("[Lua]: Puttin' mah boots on n' gettin' ready for a day at the mine")

end

Sleep

State_Sleep = {}

State_Sleep["Enter"] = function(miner)

print ("[Lua]: Miner "..miner:Name().." is dozin' off")

end

State_Sleep["Execute"] = function(miner)

if miner:Fatigued() then

print ("[Lua]: ZZZZZZ... ")

miner:DecreaseFatigue()

290 | Chapter 6

Creating a Scripted Finite State Machine

TLFeBOOK

else

miner:GetFSM():ChangeState(State_GoToMine)

end

end

State_Sleep["Exit"] = function(miner)

print ("[Lua]: Miner "..miner:Name().." is feelin' mighty refreshed!")

end

GoToMine

State_GoToMine = {}

State_GoToMine["Enter"] = function(miner)

print ("[Lua]: Miner "..miner:Name().." enters gold mine")

end

State_GoToMine["Execute"] = function(miner)

miner:IncreaseFatigue()

miner:AddToGoldCarried(2)

print ("[Lua]: Miner "..miner:Name().." has got "..miner:GoldCarried().." nuggets")

if miner:GoldCarried() > 4 then

print ("[Lua]: Miner "..miner:Name().." decides to go home, with his pockets full of nuggets")

miner:GetFSM():ChangeState(State_GoHome)

end

end

State_GoToMine["Exit"] = function(miner)

print ("[Lua]: Miner "..miner:Name().." exits gold mine")

end

And that’s it. The scripted state machine class calls the relevant functions

of each table to give the Enter, Execute, and Exit behavior of each state.

To Script, or Not to Script, That Is the Question | 291

Creating a Scripted Finite State Machine

TLFeBOOK

State changes are made by switching the table the luabind::object

m_CurrentState points to.

You can check out firsthand how everything works by compiling the

ScriptedStateMachine project. Fool around with it a little, add some addi-

tional states, and play around for a while to get a feel for how everything

integrates.

Useful URLS

If you start to use Lua and Luabind seriously, you will probably run into

many problems requiring assistance. Fortunately, you can find a lot of sup-

port on the Internet. The following is a list of some of the more useful

resources available to help you out of difficulty:

� http://www.lua.org/

The home page of Lua and the place where you can subscribe to the

Lua mailing list

� http://lua-users.org/wiki/LuaDirectory

This is the Lua wiki. It has many useful articles and links to help you

out.

� http://lua-users.org/lists/lua-l/

This is a searchable database of the Lua mailing list.

� http://luabind.sourceforge.net/

The home of Luabind. Luabind also has a mailing list you can sub-

scribe to.

It Doesn’t All Smell of Roses

By now, I bet you’re thinking that scripting languages are the code equiva-

lent of a trip to Willy Wonka’s chocolate factory. Everything you want and

more, all wrapped up in pretty ribbons. Well, I have to give it to you

straight… it’s not. There are a few downsides. For starters, all those lovely

helper apps you’ve come to know and love aren’t going to help you when

you type your scripts (not without modification, anyway). Say farewell to

auto-complete and a teary adieu to those lovely little info boxes that appear

when your mouse hovers over a variable. Oh boy! Like electricity or

doughnuts, you don’t realize how much you rely on these things until you

have to make do without.

� TIP There are a number of editors available that are useful for writing scripts
(providing colored syntax and auto indent, for example). Two of the best free
editors are SciTE (www.scintilla.org/SciTE.html) and Crimson Editor
(www.crimsoneditor.com).

292 | Chapter 6

Useful URLS

TLFeBOOK

In addition, debugging a script can be hell. Languages such as C/C++ have

matured over many years and your typical development environment

comes with a powerful suite of debugging utilities. You can step through

code a line at a time, break into the code at will, and create watches to track

the peskier of your variables. Programmers have never had it so easy. How-

ever, when you start to use scripting languages, the simplest of bugs can

take an age to track down. Even a plain old syntactical error can seem like

a bug from hell.

Of course, the level of evil inherent in scripting languages varies tre-

mendously. Some languages provide no assistance whatsoever, while

others (Lua for example) provide a few error codes, may throw exceptions,

and can halt the script before too much damage is done. Very few, however,

provide the sort of facilities you are used to, so most of the time you will

end up writing your own.

Summing Up

Scripting is such an enormous topic that it is impossible to teach everything

about it in just one chapter. However, by now you should know enough to

be able to create reasonably complex scripts using the Lua scripting lan-

guage and integrate them seamlessly in your own games and applications.

If this chapter has got you excited about the possibilities provided by Lua

and Luabind, then I strongly recommend you put a day or two aside and

read the documentation from cover to cover. It’s also a good idea to visit

some of the URLs I’ve mentioned and browse through the mailing list

archives. You’ll find all sorts of unusual and interesting ways of using the

Lua language.

Happy scripting!

To Script, or Not to Script, That Is the Question | 293

Summing Up

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 7

Raven: An Overview

T his chapter will present an overview of a game named Raven. Raven

will be used as the framework within which all the remaining tech-

niques described in this book will be implemented (in addition to most of

the ones you’ve already learned). First, some time will be spent familiariz-

ing you with the game architecture before concluding with an outline of the

components that make up the AI. Full descriptions of some of these com-

ponents will be provided within this chapter. Others will have entire

chapters dedicated to them.

The Game

Raven is a top-down 2D game environment that is simple, yet complex

enough to adequately demonstrate the techniques described in this book. A

typical Raven map consists of a number of rooms and corridors, several

spawn points from which the agents (“bots”) are generated, and items such

as health packs or weapons the bots can pick up and use. See Screenshot

7.1.

295

Screenshot 7.1. This looks better in motion. Honest!

TLFeBOOK

The gameplay is similar to a Quake-style deathmatch. When commenc-

ing a game, several AI controlled bots are spawned that run around the map

attempting to make as many kills as possible and picking up weapons and

health as needed. If a bot is killed, it immediately respawns with full health

from a random spawn point and the position where it was killed is marked

by a “grave” for several seconds.

A bot can be selected by right-clicking on it once. When selected, a red

circle will be drawn around the bot and additional AI-related information

will be drawn to the screen depending on what options are set in the menu.

Right-click on a selected bot, and you will “possess” it — it will be

under your control. A possessed bot is encircled in blue and can be moved

by right-clicking on the part of the map you’d like it to travel to. The navi-

gation AI of the bot will automatically provide assistance by planning the

shortest path to the chosen location. The aim of the bot is controlled by the

mouse. Because a bot is able to aim independently of the direction of its

movement, a possessed bot will always face in the direction of the mouse

cursor. A left click will fire the bot’s current weapon in the direction of the

mouse cursor. (For ranged weapons, such as the rocket launcher, the target

is the cursor position.) You can change weapons (provided the bot is carry-

ing more than one) by pressing the keys “1” to “4”. A bot is released from

your control by right-clicking on a different bot or by pressing the “X” key.

� NOTE Although when you play the game you can see all the other bots
clearly, each bot’s AI is only able to see other bots that are within its field of
view and not obscured by walls. This makes the design of the AI much more
interesting. The FOV is set in the Raven/params.lua file.

Overview of the Game Architecture

In this section we’ll examine the key classes that comprise the game frame-

work. Figure 7.1 shows an overview of how the high-level objects

interrelate.

296 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

Let’s take a look at some of these classes in more detail.

The Raven_Game Class
The Raven_Game class is the project’s hub. This class owns an instance of a

Raven_Map, a container of bots, and a container of any active projectiles

(rockets, slugs, etc.). Among others, the Raven_Game class has methods for

loading maps and their associated navigation graphs, updating and render-

ing the game entities and geometry, querying the world with line-of-sight

requests, and handling user input.

Raven: An Overview | 297

Overview of the Game Architecture

Figure 7.1. The Raven architecture

TLFeBOOK

Following is a partial listing of the Raven_Game class declaration. Have a

quick glance to familiarize yourself with it.

class Raven_Game
{
private:

Raven_Map* m_pMap;

std::list<Raven_Bot*> m_Bots;

//the user may select a bot to control manually. This member
//holds a pointer to that bot
Raven_Bot* m_pSelectedBot;

//this list contains any active projectiles (slugs, rockets,
//shotgun pellets, etc.)
std::list<Raven_Projectile*> m_Projectiles;

/* EXTRANEOUS DETAIL OMITTED FOR CLARITY */

public:

//the usual suspects
void Render();
void Update();

//loads an environment from a file
bool LoadMap(const std::string& FileName);

//returns true if a bot of size BoundingRadius cannot move from A to B
//without bumping into world geometry
bool isPathObstructed(Vector2D A, Vector2D B, double BoundingRadius = 0)const;

//returns a vector of pointers to bots in the FOV of the given bot
std::vector<Raven_Bot*> GetAllBotsInFOV(const Raven_Bot* pBot)const;

//returns true if the second bot is unobstructed by walls and in the field
//of view of the first.
bool isSecondVisibleToFirst(const Raven_Bot* pFirst,

const Raven_Bot* pSecond)const;

/* EXTRANEOUS DETAIL OMITTED FOR CLARITY */
};

� TIP Note that GetAllBotsInFOV does not limit the number of bots returned by
the method. This is not necessary for the demo, but for games where there
might frequently be dozens or even hundreds of other agents in view, it’s a
good idea to cap the number to the n closest the agent can see.

298 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

The Raven Map
The Raven_Map class owns containers of all the objects that make up the

game world geometry — walls, triggers, spawn points, etc. — and also

owns an instance of the map’s navigation graph. These items are created

when a file of the Raven map format is opened.

When Raven is run, the default map (Raven_DM1) and its correspond-

ing navigation graph are read from file. A number of Raven bots are then

created at randomly selected, unoccupied spawn points.

� NOTE The parameters for Raven are stored in the Lua script file params.lua.
Access to the scripts is made convenient through the use of a singleton class
Raven_Scriptor, which in turn is derived from the Scriptor class. This class
is simply an encapsulation of all the commonly used methods for accessing Lua
variables like LuaPopNumber and LuaPopString. If you need further clarifica-
tion, check out the file common/script/Scriptor.h.

Here is a partial listing of Raven_Map’s declaration.

class Raven_Map
{
public:

typedef NavGraphNode<GraphEdge, Trigger<Raven_Bot>*> GraphNode;
typedef SparseGraph<GraphNode> NavGraph;
typedef TriggerSystem<Trigger<Raven_Bot> > Trigger_System;

private:

//the walls that comprise the current map's architecture.
std::vector<Wall2D*> m_Walls;

//triggers are objects that define a region of space. When a raven bot
//enters that area, it "triggers" an event. That event may be anything
//from increasing a bot's health to opening a door or requesting a lift.
Trigger_System m_TriggerSystem;

//this holds a number of spawn positions. When a bot is instantiated
//it will appear at a randomly selected point chosen from this vector.
std::vector<Vector2D> m_SpawnPoints;

//this map’s accompanying navigation graph
NavGraph* m_pNavGraph;

/* EXTRANEOUS DETAIL OMITTED */

public:

Raven_Map();
~Raven_Map();

void Render();

//loads an environment from a file

Raven: An Overview | 299

Overview of the Game Architecture

TLFeBOOK

bool LoadMap(const std::string& FileName);

void AddSoundTrigger(Raven_Bot* pSoundSource, double range);

double CalculateCostToTravelBetweenNodes(unsigned int nd1,
unsigned int nd2)const;

void UpdateTriggerSystem(std::list<Raven_Bot*>& bots);

/* EXTRANEOUS DETAIL OMITTED */
};

Raven map files are created in the editor that accompanies the project.

Although simple, it is more than adequate for creating Raven maps and

their accompanying navigation graphs. See the following sidebar.

The Raven Map Editor

I’ve coded a simple map editor to help create and edit Raven maps. See
Screenshot 7.2.

The editor is easy to use. Just click on the buttons at the bottom of the
window to select the object you want to add, then click in the display
window to add it. Save the map when it’s finished into the
Raven/Maps folder. Further instructions are provided by the
ReadMe.doc in the Map Editor folder.

300 | Chapter 7

Overview of the Game Architecture

Screenshot 7.2. The Raven Map Editor

TLFeBOOK

Raven Weapons
There are four weapons available. They are:

� The Blaster: This is a bot’s default weapon. It fires green bolts of

electricity at the rate of three per second. This weapon automatically

recharges so it can never run out of ammo. It inflicts only one unit of

damage per hit.

� The Shotgun: A shotgun can only be fired once per second. Each

cartridge contains ten balls of shot, which spread out as they leave

the gun. This means the shotgun is far more accurate and deadly at

close to medium distances than it is at long range. Each ball of shot

inflicts one unit of damage.

� The Rocket Launcher: The rocket launcher has a firing rate of 1.5

rockets per second. The rockets travel fairly slowly and explode on

impact. Any entity caught in a rocket’s blast radius will incur ten

units of damage. Because rockets travel fairly slowly and can be eas-

ily dodged, the rocket launcher is best used as a medium range

weapon.

� The Railgun: A railgun fires slugs at the rate of one per second. The

slugs travel almost instantaneously to the target, making this weapon

ideal for sniping and long-distance shots. (Railgun shots are only

stopped by walls, so if several bots standing in a line are hit, the slug

will penetrate all of them.)

A Raven bot starts each game holding a blaster and gains possession of the

other types of weapons by locating them on the map and running over

them. If a bot already has a weapon of the type it has run over, only the

weapon’s ammo is added to the inventory.

Each of the weapon types inherit from the Raven_Weapon class. The pub-

lic interface of the class looks like this:

class Raven_Weapon
{
public:

Raven_Weapon(unsigned int TypeOfGun
unsigned int DefaultNumRounds,
unsigned int MaxRoundsCarried,
double RateOfFire,
double IdealRange,
double ProjectileSpeed,
Raven_Bot* OwnerOfGun);

virtual ~Raven_Weapon(){}

//this method aims the weapon at the given target by rotating the weapon's
//owner's facing direction (constrained by the bot's turning rate). It
//returns true if the weapon is directly facing the target.

Raven: An Overview | 301

Overview of the Game Architecture

TLFeBOOK

bool AimAt(Vector2D target)const;

//this discharges a projectile from the weapon at the given target position
//(provided the weapon is ready to be discharged... every weapon has its
//own rate of fire)
virtual void ShootAt(Vector2D target) = 0;

//each weapon has its own shape and color
virtual void Render() = 0;

//this method returns a value representing the desirability of using the
//weapon. This is used by the AI to select the most suitable weapon for
//a bot's current situation. This value is calculated using fuzzy logic.
//(Fuzzy logic is covered in Chapter 10)
virtual double GetDesirability(double DistToTarget)=0;

//returns the maximum speed of the projectile this weapon fires
double GetProjectileSpeed()const;

int NumRoundsRemaining()const;
void DecrementNumRounds();
void IncrementRounds(int num);

//returns an enumerated value representing the gun type
unsigned int GetTypeOfGun()const;

};

Both AI and human players use this interface to aim and shoot weapons. If

you are interested in seeing how each weapon type is implemented, please

check out the relevant files in the Raven/Armory folder.

Projectiles
The projectiles (slugs, pellets, rockets, and bolts) fired by the weapons are

derived from the Raven_Projectile class, which in turn inherits from the

familiar MovingEntity class. The class hierarchy is shown in Figure 7.2.

Each projectile is modeled as a point mass and obeys real-world physics.

(This is overkill for this type of game, but given that a MovingEntity class

had already been defined it was a piece of cake to implement.)

When a weapon is fired, an instance of the correct type of projectile is

created and added to Raven_Game::m_Projectiles. Once the projectile has

impacted (and any animation sequence has terminated) it is removed from

the list. Whenever a projectile intersects a bot, it sends it a message inform-

ing it of who fired the shot and the amount of damage done.

302 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

Triggers
A trigger is an object that defines a condition, which, when satisfied by an

agent, generates an action (it is triggered). Many of the triggers utilized in

commercial games have the property that they are triggered when a game

entity enters a trigger region: a predefined region of space that is attached

to the trigger. These regions can be any arbitrary shape but are usually cir-

cular or rectangular for 2D environments and spherical, cubic, or

cylindrical for 3D environments.

Triggers are a wonderfully useful tool for both game designers and AI

programmers. You can use them to create all sorts of events and behaviors.

For instance, triggers make doing stuff like this easy:

� A game character wanders down a gloomy corridor. It steps onto a

pressure-sensitive plate and triggers a mechanism that rams forty

pointy sticks through its respiratory cavity. (This is one of the most

obvious uses for a trigger.)

� You shoot a guard. When it dies a trigger is added to the game that

alerts other guards to the body if they wander within a specified dis-

tance of it.

� A game character shoots its gun. A trigger is added to the game that

alerts any other character within a specified radius to the noise.

� A lever on a wall is implemented as a trigger. If an agent pulls it, it

opens a door.

� You’ve implemented a puzzle in one corner of a room but you think

a few players will have difficulty solving it. As an aid, you can

Raven: An Overview | 303

Overview of the Game Architecture

Figure 7.2. UML class diagram showing the Raven projectile hierarchy

TLFeBOOK

attach a trigger to the puzzle that activates if the player stands near it

more than three times. When activated, the trigger flashes up some

kind of hint system to help the player solve the puzzle.

� A troll whacks an ogre on its head with a spiky stick. The ogre runs

off but is bleeding. As each drop of blood falls to the ground it

leaves a trigger. The troll can then chase the ogre by following the

trail of blood.

Raven makes use of several types of triggers. The class hierarchy is given

in Figure 7.3.

It’s worthwhile spending some time examining each of these objects in

detail. First let’s take a quick look at the TriggerRegion class.

TriggerRegion

The TriggerRegion class defines a method isTouching that all trigger

regions must implement. isTouching returns true if an entity of the given

size and position is overlapping the trigger region. Each trigger type owns

304 | Chapter 7

Overview of the Game Architecture

Figure 7.3. The Trigger class hierarchy

TLFeBOOK

an instance of a TriggerRegion and utilizes the isTouching method to deter-

mine when it should be triggered.

Here is its declaration:

class TriggerRegion
{
public:

virtual ~TriggerRegion(){}

virtual bool isTouching(Vector2D EntityPos, double EntityRadius)const = 0;
};

And here is an example of a concrete trigger region that defines a circular

region of space:

class TriggerRegion_Circle : public TriggerRegion
{
private:

//the center of the region
Vector2D m_vPos;

//the radius of the region
double m_dRadius;

public:

TriggerRegion_Circle(Vector2D pos,
double radius):m_dRadius(radius),

m_vPos(pos)
{}

bool isTouching(Vector2D pos, double EntityRadius)const
{
//distances calculated in squared-distance space
return Vec2DDistanceSq(m_vPos, pos) <

(EntityRadius + m_dRadius)*(EntityRadius + m_dRadius);
}

};

As you can see, the method isTouching will return true as soon as the entity

overlaps with the circle defined by the region.

Trigger

The Trigger class is a base class from which all other trigger types are

derived. It has two methods that must be implemented by all child classes:

Try and Update. These methods are called each iteration of the game’s

update loop. Update updates a trigger’s internal state (if any). Try tests if the

entity passed to it as a parameter is overlapping the trigger region and takes

action appropriately.

Raven: An Overview | 305

Overview of the Game Architecture

TLFeBOOK

Trigger’s declaration is straightforward. Here’s the listing:

template <class entity_type>
class Trigger : public BaseGameEntity
{
private:

//Every trigger owns a trigger region. If an entity comes within this
//region the trigger is activated
TriggerRegion* m_pRegionOfInfluence;

//if this is true the trigger will be removed from the game on the
//next update
bool m_bRemoveFromGame;

//it's convenient to be able to deactivate certain types of triggers
//on an event. Therefore a trigger can only be triggered when this
//value is true (respawning triggers make good use of this)
bool m_bActive;

//some types of triggers are twinned with a graph node. This enables
//the pathfinding component of an AI to search a navgraph for a specific
//type of trigger.
int m_iGraphNodeIndex;

protected:

void SetGraphNodeIndex(int idx){m_iGraphNodeIndex = idx;}

void SetToBeRemovedFromGame(){m_bRemoveFromGame = true;}
void SetInactive(){m_bActive = false;}
void SetActive(){m_bActive = true;}

//returns true if the entity given by a position and bounding radius is
//overlapping the trigger region
bool isTouchingTrigger(Vector2D EntityPos, double EntityRadius)const;

//child classes use one of these methods to add a trigger region
void AddCircularTriggerRegion(Vector2D center, double radius);
void AddRectangularTriggerRegion(Vector2D TopLeft, Vector2D BottomRight);

public:

Trigger(unsigned int id);
virtual ~Trigger();

//when this is called the trigger determines if the entity is within the
//trigger's region of influence. If it is then the trigger will be
//triggered and the appropriate action will be taken.
virtual void Try(entity_type*) = 0;

//called each update step of the game. This method updates any internal
//state the trigger may have
virtual void Update() = 0;

306 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

int GraphNodeIndex()const{return m_iGraphNodeIndex;}
bool isToBeRemoved()const{return m_bRemoveFromGame;}
bool isActive(){return m_bActive;}

};

Triggers have the m_iGraphNodeIndex member variable because it’s occa-

sionally useful to link certain types of triggers with a node of a navigation

graph. For example, in Raven, item types such as health and weapons are

implemented as a special type of trigger called giver-triggers. Because

giver-triggers are linked with a graph node, the path planner is able to eas-

ily search the navgraph for a particular item type, such as the closest

instance of a health item when a bot is running low on health (Chapter 8

will explain this in more detail).

Respawning Triggers

The Trigger_Respawning class is derived from Trigger and defines a trigger

that becomes inactive for a certain period of time after it has been triggered

by an entity. This type of trigger is utilized within Raven to implement item

types a bot can “pick up,” such as health or weapons. In this way an item

can be made to respawn (reappear) at its original location a period of time

after it is picked up.

template <class entity_type>
class Trigger_Respawning : public Trigger<entity_type>
{
protected:

//When a bot comes within this trigger's area of influence it is triggered
//but then becomes inactive for a specified amount of time. These values
//control the amount of time required to pass before the trigger becomes
//active once more.
int m_iNumUpdatesBetweenRespawns;
int m_iNumUpdatesRemainingUntilRespawn;

//sets the trigger to be inactive for m_iNumUpdatesBetweenRespawns
//update steps
void Deactivate()
{
SetInactive();
m_iNumUpdatesRemainingUntilRespawn = m_iNumUpdatesBetweenRespawns;

}

public:

Trigger_Respawning(int id);
virtual ~Trigger_Respawning();

//to be implemented by child classes
virtual void Try(entity_type*) = 0;

Raven: An Overview | 307

Overview of the Game Architecture

TLFeBOOK

//this is called each game-tick to update the trigger's internal state
virtual void Update()
{
if ((--m_iNumUpdatesRemainingUntilRespawn <= 0) && !isActive())
{
SetActive();

}
}

void SetRespawnDelay(unsigned int numTicks);
};

� NOTE Since Raven utilizes a fixed update rate, the triggers use update steps
as their representation of time (each update step is one unit of time). If, how-
ever, you choose to implement a variable update frequency for your trigger
system, remember to program your trigger’s update method to use the time dif-
ference between updates.

Giver-Triggers

The health and weapon items in Raven are implemented using a type of

trigger called a giver-trigger. Whenever an entity enters a giver-trigger’s

trigger region, it is “given” the corresponding item. Health givers obvi-

ously increase a bot’s health and weapon givers provide a bot with an

instance of the weapon type they represent. Another way of looking at it is

that the bot “picks up” the item the trigger represents.

To enable health and weapon items to respawn after they have been

picked up by a bot, giver-triggers inherit from the Trigger_Respawning

class.

Weapon Givers

Here is the declaration of the Trigger_WeaponGiver class.

class Trigger_WeaponGiver : public Trigger_Respawning<Raven_Bot>
{
private:

/* EXTRANEOUS DETAIL OMITTED */

public:

//this type of trigger is created when reading a map file
Trigger_WeaponGiver(std::ifstream& datafile);

//if triggered, this trigger will call the PickupWeapon method of the
//bot. PickupWeapon will instantiate a weapon of the appropriate type.
void Try(Raven_Bot*);

//draws a symbol representing the weapon type at the trigger’s location
void Render();

/* EXTRANEOUS DETAIL OMITTED */
};

308 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

The Try method is implemented like so:

void Trigger_WeaponGiver::Try(Raven_Bot* pBot)
{
if (isActive() && isTouchingTrigger(pBot->Pos(), pBot->BRadius()))
{
pBot->PickupWeapon(EntityType());

Deactivate();
}

}

If the trigger is active and the bot is overlapping the trigger region, the

Raven_Bot::PickupWeapon method is called. This method instantiates a

weapon of the given type and adds it (or ammo only if already held) to the

bot’s inventory. Finally, the logic deactivates the trigger. The trigger will

remain deactivated for a specific amount of time before it reactivates.

When deactivated, the trigger will not be rendered.

Health Givers

Health giver-triggers are implemented very similarly.

void Trigger_HealthGiver::Try(Raven_Bot* pBot)
{
if (isActive() && isTouchingTrigger(pBot->Pos(), pBot->BRadius()))
{
pBot->IncreaseHealth(m_iHealthGiven);

Deactivate();
}

}

As you can see, this is almost the same code as used previously except this

time the triggering bot’s health is increased.

Limited Lifetime Triggers

Occasionally a trigger with a fixed lifespan is needed — one that remains

in the environment for a certain number of update steps before getting

automatically removed. Trigger_LimitedLifetime provides such an object.

template <class entity_type>
class Trigger_LimitedLifetime : public Trigger<entity_type>
{
protected:

//the lifetime of this trigger in update steps
int m_iLifetime;

public:

Trigger_LimitedLifetime(int lifetime);
virtual ~Trigger_LimitedLifetime(){}

Raven: An Overview | 309

Overview of the Game Architecture

TLFeBOOK

//children of this class should always make sure this is called from within
//their own update method
virtual void Update()
{
//if the lifetime counter expires set this trigger to be removed from
//the game
if (--m_iLifetime <= 0)
{
SetToBeRemovedFromGame();

}
}

//to be implemented by child classes
virtual void Try(entity_type*) = 0;

};

The sound notification trigger is a good example of how limited lifespan

triggers are used.

Sound Notification Triggers

This type of trigger is used in Raven to notify other entities of gunshot

sounds. Every time a weapon is fired a Trigger_SoundNotify is created and

left at the position of the shot. This type of trigger has a circular trigger

region with a radius proportional to the loudness of the weapon. It is

derived from Trigger_LimitedLifetime and is designed to only be active

for one bot trigger update. When a bot triggers this type of trigger, it sends

a message to the bot notifying it which bot made the sound.

class Trigger_SoundNotify : public Trigger_LimitedLifetime<Raven_Bot>
{
private:

//a pointer to the bot that has made this sound
Raven_Bot* m_pSoundSource;

public:

Trigger_SoundNotify(Raven_Bot* source, double range);

void Trigger_SoundNotify::Try(Raven_Bot* pBot)
{
//is this bot within range of this sound
if (isTouchingTrigger(pBot->Pos(), pBot->BRadius()))
{
Dispatcher->DispatchMsg(SEND_MSG_IMMEDIATELY,

SENDER_ID_IRRELEVANT,
pBot->ID(),
Msg_GunshotSound,
m_pSoundSource);

}
}

};

310 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

Managing Triggers: The TriggerSystem Class

The TriggerSystem class is responsible for managing a collection of trig-

gers. The Raven_Map class owns an instance of a TriggerSystem and

registers each trigger with the system as it is created. The trigger system

takes care of updating and rendering all registered triggers and removes

triggers as their lifetime expires.

Here’s the source for TriggerSystem. I’ve listed the method bodies of

UpdateTriggers and TryTriggers so you can see exactly how they work.

template <class trigger_type>
class TriggerSystem
{
public:

typedef std::list<trigger_type*> TriggerList;

private:

//a container of all the triggers
TriggerList m_Triggers;

//this method iterates through all the triggers present in the system and
//calls their Update method in order that their internal state can be
//updated if necessary. It also removes any triggers from the system that
//have their m_bRemoveFromGame field set to true.
void UpdateTriggers()
{
TriggerList::iterator curTrg = m_Triggers.begin();
while (curTrg != m_Triggers.end())
{
//remove trigger if dead
if ((*curTrg)->isToBeRemoved())
{
delete *curTrg;

curTrg = m_Triggers.erase(curTrg);
}
else
{
//update this trigger
(*curTrg)->Update();

++curTrg;
}

}
}

//this method iterates through the container of entities passed as a
//parameter and passes each one to the Try method of each trigger provided
//the entity is alive and is ready for a trigger update.
template <class ContainerOfEntities>

Raven: An Overview | 311

Overview of the Game Architecture

TLFeBOOK

void TryTriggers(ContainerOfEntities& entities)
{
//test each entity against the triggers
ContainerOfEntities::iterator curEnt = entities.begin();
for (curEnt; curEnt != entities.end(); ++curEnt)
{
//an entity must be ready for its next trigger update and it must be
//alive before it is tested against each trigger.
if ((*curEnt)->isReadyForTriggerUpdate() && (*curEnt)->isAlive())
{
TriggerList::const_iterator curTrg;
for (curTrg = m_Triggers.begin(); curTrg != m_Triggers.end(); ++curTrg)
{
(*curTrg)->Try(*curEnt);

}
}

}
}

public:

~TriggerSystem()
{
Clear();

}

//this deletes any current triggers and empties the trigger list
void Clear();

//This method should be called each update step of the game. It will first
//update the internal state of the triggers and then try each entity against
//each active trigger to test if any should be triggered.
template <class ContainerOfEntities>
void Update(ContainerOfEntities& entities)
{
UpdateTriggers();
TryTriggers(entities);

}

//this is used to register triggers with the TriggerSystem (the TriggerSystem
//will take care of tidying up memory used by a trigger)
void Register(trigger_type* trigger);

//some triggers are required to be rendered (like giver-triggers for example)
void Render();

const TriggerList& GetTriggers()const{return m_Triggers;}
};

Okay, that should be enough insight into the Raven game framework. Let’s

now take a look at the design of the bot AI.

312 | Chapter 7

Overview of the Game Architecture

TLFeBOOK

AI Design Considerations

The design of the Raven bot AI is approached in the usual manner: We

consider what behavior is required of the bots to be successful within their

environment and decompose that behavior into a list of components we are

able to implement and coordinate.

I’m sure you have either played or watched someone play a Quake-like

deathmatch game, so let’s mull over that experience and see what observa-

tions can be made about how a human player plays this sort of game. Two

obvious skills required are the ability to move around and the ability to aim

and shoot a weapon at other players. What isn’t so immediately obvious is

that if you watch experienced players you will notice that they are almost

always aiming and shooting at an enemy (provided one is in their vicinity)

whether they are attacking or defending, and regardless of the direction

they are moving. For instance, they might be strafing from side to side or

running away backward while laying down defensive fire. We’ll take a tip

from this observation and implement the weapon handling and movement

components of the AI so that they operate independently of each other.

What sort of movement related skills will the AI need? It’s clear a bot

should be able to move in any direction while avoiding walls and other

bots. We can also see it’s necessary to implement some type of search algo-

rithm to enable the AI to plan paths to specific locations or items.

What about weapon handling? What kind of weapon related decisions

does a player have to make? Well, first of all, a player has to decide which

weapon is best suited for the current situation. In Raven there are four

kinds of weapons: the blaster, the shotgun, the rocket launcher, and the

railgun. Each of these weapons has pros and cons. For example, a shotgun

is devastating when an enemy is close, but because of the way the shot

spreads outward as it travels away from the gun muzzle it becomes much

less effective with distance (see Figure 7.4). A rocket launcher is great at

medium distance but is dangerous to use up close because of the

splashback from the explosion. Any AI we implement must be able to

weigh the pros and cons of each weapon and select one accordingly.

A player also has to be able to aim his chosen weapon effectively. For

weapons that fire high-velocity projectiles, such as the railgun and shotgun,

a player must aim directly at an enemy’s position, but in the case of weap-

ons that fire slower-moving projectiles, such as the blaster or rocket

launcher, a player must be able to predict the enemy’s movement and aim

accordingly. The bot AI must be able to do the same.

Often in games of this sort a player will be pitted against multiple oppo-

nents. If two or more enemies are visible, the player must decide which one

to target. As a result, any AI we design must also be able to select a single

target from a group. This brings us to another issue: that of perception.

Human players select targets from the opponents perceived by their senses.

Raven: An Overview | 313

AI Design Considerations

TLFeBOOK

In Raven this includes visible opponents and opponents that are noisy

enough to be heard. In addition, humans also use their short-term memory

to keep track of any bots they have encountered recently; human players do

not instantly forget about opponents that have recently moved out of their

sensory range. For example, if a player is chasing a target that then disap-

pears around a corner, he will keep chasing the target even though it cannot

be seen. To be convincing, any bot AI must also exhibit similar sensory

abilities.

Of course, all the skills mentioned thus far operate at a fairly low level.

For many games of this type, it’s simply not enough to run around a map at

random, firing at enemies only when they’re stumbled upon. A decent AI

must be able to reflect upon its own state and that of the world around it

and choose actions it thinks will help improve its state. For example, a bot

should be able to recognize when it is running low on health and formulate

a plan to locate and navigate to a health item. If a bot is fighting an enemy

but is short on ammo, it should be able to consider the possibility of break-

ing off the fight in order to locate a few extra rockets. Therefore some type

of high-level decision-making logic must be implemented.

314 | Chapter 7

AI Design Considerations

Figure 7.4. Shotgun damage

TLFeBOOK

AI Implementation

To imbue a bot with the illusion of intelligence we need to employ quite a

list of skills and abilities. Let’s walk through them and discuss how each is

implemented by the Raven bot AI.

Decision Making
For their decision-making processes Raven bots use an architecture based

around the arbitration of goals. The behavior necessary for a bot to win a

game is decomposed into several high-level goals such as “attack,” “find

health,” or “chase target.” Goals can be nested and it’s common for

high-level goals to be composed of two or more subgoals. For instance, the

“find health” goal is composed of the subgoals “find path to closest active

health item” and “follow path to item.” In turn, the goal “follow path” can

be decomposed into several “move to position” type goals.

Every time the decision-making component of a bot’s AI is updated,

each of the high-level goals is evaluated for its suitability given the bot’s

current status and the one with the highest score is selected as the current

goal. The bot will then decompose this goal into its constituent subgoals

and attempt to satisfy each one in turn.

This type of decision-making architecture is covered in detail in

Chapter 9.

Movement
For low-level movement the Raven bots make use of the steering behaviors

seek, arrive, wander, wall avoidance, and separation. There is no colli-

sion detection or response between the bots and world geometry; the bots

rely entirely on wall avoidance and separation steering behaviors to nego-

tiate their environment. (I’m not advocating that you should use this

approach in your own projects — your game will probably require much

stricter collision detection — but it’s adequate for the demos that accom-

pany this book. It’s also a rather good demonstration of just how effective

steering behaviors can be if used correctly.)

Steering behaviors are implemented in the usual way described in previ-

ous chapters. The Raven_Bot class inherits from a MovingEntity and

instantiates its own instance of the familiar steering behavior object. AI

components that influence a bot’s movement use the interface to this

instance to control the movement of the bot.

Path Planning
The bots in Raven must be able to plan paths through their environment in

order to move to a target location or toward an instance of a game item

Raven: An Overview | 315

AI Implementation

TLFeBOOK

such as a weapon or health. To facilitate this process, each bot owns a dedi-

cated path planning class that its decision-making component can use to

request paths.

The evolution of the Raven path planner component is discussed in

detail in Chapter 8.

Perception
For many game genres (but not all), modeling perception accurately is one

of the keys to maintaining the illusion of intelligence since an agent’s

awareness of its environment should be consistent with its embodiment. If

a game character has two eyes and two ears situated on its head in a similar

fashion to a human, then it should perceive its environment accordingly.

This is not to say we have to model stereo vision and hearing, but it is para-

mount that in a game of this type an agent’s decision logic is consistent

with what it should and should not be able to perceive within its sensory

horizon. If there is any inconsistency the player will grow disillusioned and

his enjoyment of the game will be greatly diminished. For instance, I’m

sure most of us have witnessed behavior similar to the following.

� You approach a bot silently from the rear, but it immediately turns

around (maybe it hears you blink) and fragments your intestines with

a chaingun.

� You run and hide. It’s impossible for your enemy to know you have

shut yourself in a tiny storage room, but nevertheless it proceeds

directly to your location, opens the door, and lobs a grenade inside.

� You notice two guards in a guard tower. They sweep the ground with

a powerful searchlight but you notice a path to the base of the tower

that is always in darkness. You quietly and confidently crawl along

your chosen route. The searchlight never goes near you, yet one of

the guards shouts “Achtung” and pops a cap in your ass.

These types of events occur because the programmer has given the AI total

access to the game’s data, thereby bestowing the agents with the gift of

sensory omnipotence. He’s done it because it was easier, or because he

didn’t have time to separate out truth vs. perception, or perhaps just

because he didn’t give it any thought. In any event, this is a big “no-no”

with gamers. They will lose interest in the game because they will believe

the AI is cheating (which, of course, it is).

� NOTE This type of sensory modeling is not as important for RTS-type games
where the CPU/memory overhead of implementing such a system for hundreds
of agents will likely be prohibitive. It’s also doubtful that significant improve-
ments in gameplay will be made from implementing such a system.

To prevent these perceptual inconsistencies an agent’s sense of vision and

hearing must be filtered to ensure consistency with its visual and aural

capabilities. For example, in a game where each bot must exhibit similar

316 | Chapter 7

AI Implementation

TLFeBOOK

sensory capabilities to the human player, if a human player’s view is

restricted to 90 degrees, the bots should share the same restriction. If a

player’s sight is occluded by walls and obstacles, this should also apply to

the bots. If a player cannot hear a character blink or hear sounds farther

away than a certain range, then neither should the bots; and if light levels

play an important part in the gameplay, a bot should not be able to see in

the dark (unless it’s wearing night-vision goggles of course).

Another type of perception related problem often seen in computer

games is what I like to call selective sensory nescience: the inability of

agents to sense specific types of events or entities. Here are some typical

examples.

� You enter a room. There are two trolls in the distance with their

backs to you. They are close enough for you to make out their mut-

tering. They are discussing lunch. An ogre leaps out from the dark-

ness to your left, startling you. You slay the ogre by unleashing your

largest and loudest spell: Death By Thunder Cannon. The ogre

explodes magnificently in a rip-roaring explosion of apocalyptic

magnitude yet the two trolls don’t hear it — they simply keep on dis-

cussing the merits of mint sauce with roast lamb.

� You stab a Nazi guard in the back. As he slumps to the floor you

hear more guards approach, so you slink off into a dark corner. The

guards enter the room and your mouse hand tenses, ready for the

moment when they start looking around for the intruder. However,

the guards do not see the body on the floor, even when they walk

right over it.

� You find yourself in a hack and slash fight with a ghostly warrior.

Unfortunately, you have misjudged the situation and are on the

receiving end of a serious kicking. In desperation you turn and run

out the nearest doorway only to find that as soon as you are out of

sight the warrior forgets all about you.

Once again the illusion of intelligence is broken because the game charac-

ters are not behaving consistently with what is expected from their

perceptual capability. In these examples though, it’s not because the agents

perceive too much information, but rather too little. The latter example is

particularly interesting as it demonstrates how, in order to be convincing,

an agent must also be bestowed with a mechanism for simulating

short-term memory. Without short-term memory an agent is incapable of

considering potential opponents that lie outside its sensory horizon. This

can result in spectacularly stupid-looking behavior.

In Figure 7.5, two opponents — Gnasher and Basher — are in Billy’s

field of view and he selects one, Basher, to be his target. Billy then turns to

face Basher and shoots him. See Figure 7.6.

Raven: An Overview | 317

AI Implementation

TLFeBOOK

Unfortunately for Billy, as his programmer has not bestowed him with any

short-term memory, as soon as Gnasher leaves his field of view he is for-

gotten. This gives Gnasher the opportunity to sneak up on Billy and bite his

head off. See Figure 7.7.

318 | Chapter 7

AI Implementation

Figure 7.5. Billy and two opponents. The dotted lines describe Billy’s field of view.

Figure 7.6. Billy slays Basher.

Figure 7.7. Billy loses his head.

TLFeBOOK

This type of sequence is easily avoided if agents are able to remember what

they have recently sensed for a period of time.

In Raven, the task of managing, filtering, and remembering sensory

input is encapsulated by the class Raven_SensoryMemory, which each bot

owns an instance of. This object manages a std::map of MemoryRecords,

which is a simple data structure that looks like this:

struct MemoryRecord
{
//records the time the opponent was last sensed (seen or heard). This
//is used to determine if a bot can "remember" this record or not.
//(if CurrentTime() - dTimeLastSensed is greater than the bot's
//memory span, the data in this record is made unavailable to clients)
double dTimeLastSensed;

//it can be useful to know how long an opponent has been visible. This
//variable is tagged with the current time whenever an opponent first becomes
//visible. It's then a simple matter to calculate how long the opponent has
//been in view (CurrentTime - dTimeBecameVisible)
double dTimeBecameVisible;

//it can also be useful to know the last time an opponent was seen
double dTimeLastVisible;

//a vector marking the position where the opponent was last sensed. This can
// be used to help hunt down an opponent if it goes out of view
Vector2D vLastSensedPosition;

//set to true if opponent is within the field of view of the owner
bool bWithinFOV;

//set to true if there is no obstruction between the opponent and the owner,
//permitting a shot.
bool bShootable;

};

Each time a bot encounters a new opponent, an instance of a MemoryRecord

is created and added to the memory map. Once a record has been made,

whenever the corresponding opponent is heard or seen its record is updated

with the relevant information. A bot is able to use this memory map to

determine what opponents it has sensed recently and to react accordingly.

In addition, because each memory record caches visibility information,

many line-of-sight calculations can be avoided. Instead of requesting

time-consuming line-of-sight requests from the game world object, a bot

can simply and quickly retrieve the Boolean value stored in its memory

map.

The declaration of Raven_SensoryMemory is as follows:

class Raven_SensoryMemory
{
private:

Raven: An Overview | 319

AI Implementation

TLFeBOOK

typedef std::map<Raven_Bot*, MemoryRecord> MemoryMap;

private:

//the owner of this instance
Raven_Bot* m_pOwner;

//this container is used to simulate memory of sensory events. A MemoryRecord
//is created for each opponent in the environment. Each record is updated
//whenever the opponent is encountered. (when it is seen or heard)
MemoryMap m_MemoryMap;

//a bot has a memory span equivalent to this value. When a bot requests a
//list of all recently sensed opponents, this value is used to determine if
//the bot is able to remember an opponent or not.
double m_dMemorySpan;

//this methods checks to see if there is an existing record for pBot. If
//not, a new MemoryRecord record is made and added to the memory map.(Called
//by UpdateWithSoundSource & UpdateVision)
void MakeNewRecordIfNotAlreadyPresent(Raven_Bot* pBot);

public:

Raven_SensoryMemory(Raven_Bot* owner, double MemorySpan);

//this method is used to update the memory map whenever an opponent makes
//a noise
void UpdateWithSoundSource(Raven_Bot* pNoiseMaker);

//this method iterates through all the opponents in the game world and
//updates the records of those that are in the owner's FOV
void UpdateVision();

bool isOpponentShootable(Raven_Bot* pOpponent)const;
bool isOpponentWithinFOV(Raven_Bot* pOpponent)const;
Vector2D GetLastRecordedPositionOfOpponent(Raven_Bot* pOpponent)const;
double GetTimeOpponentHasBeenVisible(Raven_Bot* pOpponent)const;
double GetTimeSinceLastSensed(Raven_Bot* pOpponent)const;
double GetTimeOpponentHasBeenOutOfView(Raven_Bot* pOpponent)const;

//this method returns a list of all the opponents that have had their
//records updated within the last m_dMemorySpan seconds.
std::list<Raven_Bot*> GetListOfRecentlySensedOpponents()const;

};

Whenever a sound event occurs, the UpdateWithSoundSource method is

called with a pointer to the source of the sound. UpdateVision is called

from Raven_Bot::Update at a specified frequency. Together, these methods

ensure that a bot’s sense of hearing and vision are always up to date. A bot

may then request information from its sensory memory using one of the

listed methods, the most interesting being GetListOfRecentlySensed-

Opponents. This iterates through the memory map and builds a list of all

320 | Chapter 7

AI Implementation

TLFeBOOK

those opponents sensed within recent memory. Here’s what the method

looks like:

std::list<Raven_Bot*>
Raven_SensoryMemory::GetListOfRecentlySensedOpponents()const
{
//this will store all the opponents the bot can remember
std::list<Raven_Bot*> opponents;

double CurrentTime = Clock->GetCurrentTime();

MemoryMap::const_iterator curRecord = m_MemoryMap.begin();
for (curRecord; curRecord!=m_MemoryMap.end(); ++curRecord)
{
//if this bot has been updated in the memory recently, add to list
if ((CurrentTime - curRecord->second.dTimeLastSensed) <= m_dMemorySpan)
{
opponents.push_back(curRecord->first);

}
}

return opponents;
}

As you can see, if a particular record has not been updated within the last

m_dMemorySpan seconds it is not added to the list, and the bot effectively for-

gets all about that opponent. This ensures that a bot will remember an

opponent for a short while after it has been sensed even if it goes out of

view.

Target Selection
The class that handles target selection is called Raven_TargetingSystem.

Each Raven_Bot owns an instance of this class and delegates target selection

to it. Its declaration looks like this:

class Raven_TargetingSystem
{
private:

//the owner of this system
Raven_Bot* m_pOwner;

//the current target (this will be null if there is no target assigned)
Raven_Bot* m_pCurrentTarget;

public:

Raven_TargetingSystem(Raven_Bot* owner);

//each time this method is called the opponents in the owner's sensory
//memory are examined and the closest is assigned to m_pCurrentTarget.
//if there are no opponents that have had their memory records updated

Raven: An Overview | 321

AI Implementation

TLFeBOOK

//within the memory span of the owner then the current target is set
//to zero
void Update();

//returns true if there is a currently assigned target
bool isTargetPresent()const;

//returns true if the target is within the field of view of the owner
bool isTargetWithinFOV()const;

//returns true if there is unobstructed line of sight between the target
//and the owner
bool isTargetShootable()const;

//returns the position where the target was last seen. Throws an exception if
//there is no target currently assigned
Vector2D GetLastRecordedPosition()const;

//returns the amount of time the target has been in the field of view
double GetTimeTargetHasBeenVisible()const;

//returns the amount of time the target has been out of view
double GetTimeTargetHasBeenOutOfView()const;

//returns a pointer to the target. null if no target current.
Raven_Bot* GetTarget()const;

//sets the target pointer to null
void ClearTarget();

};

At a specified interval, the targeting system Update method is called from

Raven_Bot::Update. Update obtains a list of recently perceived opponents

from the sensory memory and selects one of them to be the current target.

The selection criterion used by the Raven bots is very simple: The clos-

est opponent is assigned to be the current target. This works adequately for

Raven but your game may demand alternative or more rigorous selection

criteria. For instance, you might prefer to design a selection method that

incorporates one or more of the following:

� An opponent’s angle of deviation from the bot’s heading (in other

words, he’s right in front of you)

� An opponent’s facing direction (he can’t see you — sneak attack!)

� The range of the weapon the opponent is carrying (he can’t get me)

� The range of the weapon the bot is carrying (I can’t get him)

� Any power-ups the opponents or bot may be using (how tough is

he?)

� How long an opponent has been visible (he probably knows about

me if I know about him)

322 | Chapter 7

AI Implementation

TLFeBOOK

� How much damage an opponent has inflicted on the bot in the last

few seconds (that makes me mad!)

� How many times an opponent has been killed by the bot (ha, ha!)

� How many times the bot has been killed by an opponent (meanie!)

Weapon Handling
The Raven bots use the Raven_WeaponSystem class to manage all operations

specific to weapons and their deployment. This class owns a std::map of

instances of weapons, keyed into by their type, a pointer to the currently

held weapon, and variables denoting the aiming accuracy of the bot and the

bot’s reaction time. These last two variables are used by the weapon aiming

logic to prevent a bot from hitting its target 100 percent of the time or

shooting at an opponent the instant it comes into view. This is important

because if an AI performs too well most players will quickly become frus-

trated and stop playing the game. These values allow the game testers to

adjust the bots’ skill level until they put up a tough battle, but lose more

often than win. This, for most players, will provide the most enjoyable

gaming experience.

In addition to the member variables, the class has methods for adding

weapons, changing the current weapon, aiming and shooting the current

weapon, and selecting the best weapon for the current game state.

Here’s the declaration for you to look over.

class Raven_WeaponSystem
{
private:

//a map of weapon instances keyed into by type
typedef std::map<int, Raven_Weapon*> WeaponMap;

private:

Raven_Bot* m_pOwner;

//pointers to the weapons the bot is carrying (a bot may only carry one
//instance of each weapon)
WeaponMap m_WeaponMap;

//a pointer to the weapon the bot is currently holding
Raven_Weapon* m_pCurrentWeapon;

//this is the minimum amount of time a bot needs to see an opponent before
//it can react to it. This variable is used to prevent a bot from shooting at
//an opponent the instant it becomes visible.
double m_dReactionTime;

Raven: An Overview | 323

AI Implementation

TLFeBOOK

//each time the current weapon is fired a certain amount of random noise is
//added to the angle of the shot. This prevents the bots from hitting
//their opponent 100% of the time. The lower this value the more accurate
//a bot's aim will be. Recommended values are between 0 and 0.2 (the value
//represents the max deviation in radians that can be added to each shot).
double m_dAimAccuracy;

//the amount of time a bot will continue aiming at the position of the target
//even if the target disappears from view.
double m_dAimPersistance;

//predicts where the target will be by the time it takes the current weapon's
//projectile type to reach it. Used by TakeAimAndShoot
Vector2D PredictFuturePositionOfTarget()const;

//adds a random deviation to the firing angle not greater than m_dAimAccuracy
//rads
void AddNoiseToAim(Vector2D& AimingPos)const;

public:

Raven_WeaponSystem(Raven_Bot* owner,
double ReactionTime,
double AimAccuracy,
double AimPersistance);

~Raven_WeaponSystem();

//sets up the weapon map with just one weapon: the blaster
void Initialize();

//this method aims the bot's current weapon at the target (if there is a
//target) and, if aimed correctly, fires a round. (Called each update step
//from Raven_Bot::Update)
void TakeAimAndShoot()const;

//this method determines the most appropriate weapon to use given the current
//game state. (Called every n update steps from Raven_Bot::Update)
void SelectWeapon();

//this will add a weapon of the specified type to the bot's inventory.
//If the bot already has a weapon of this type only the ammo is added.
//(called by the weapon giver-triggers to give a bot a weapon)
void AddWeapon(unsigned int weapon_type);

//changes the current weapon to one of the specified type (provided that type
//is in the bot's possession)
void ChangeWeapon(unsigned int type);

//returns a pointer to the current weapon
Raven_Weapon* GetCurrentWeapon()const{return m_pCurrentWeapon;}

324 | Chapter 7

AI Implementation

TLFeBOOK

//returns a pointer to the specified weapon type (if in inventory, null if
//not)
Raven_Weapon* GetWeaponFromInventory(int weapon_type);

//returns the amount of ammo remaining for the specified weapon
int GetAmmoRemainingForWeapon(unsigned int weapon_type);

double ReactionTime()const{return m_dReactionTime;}
};

The method SelectWeapon uses fuzzy logic to decide the best weapon to use

for the current game state. Fuzzy logic is logic that has been extended to

encompass partial truths. In other words, an object doesn’t have to be either

a member of a set or not; with fuzzy logic an object can be a member of a

set to a matter of degree. Fuzzy logic and its application to weapon selec-

tion is covered in detail in Chapter 10.

Each update step the TakeAimAndShoot method is called from

Raven_Bot::Update. This method first queries the targeting system to ensure

the current target is either shootable (the targeting system in turn retrieves

this information from the bot’s sensory memory) or has only very recently

moved out of view. The latter condition ensures that a bot will continue

aiming its weapon at the target even if it briefly dodges behind a wall or

other obstacle. If neither condition is true, the weapon’s facing direction

will be aligned with the bot’s heading.

If one of the conditions is true, the best place to aim the current weapon

is determined. For “instant hit” weapons, such as the shotgun or railgun,

this will be directly at the target. For weapons that fire slower-moving pro-

jectiles, such as the rocket launcher or blaster, the method must predict

where the target will be by the time the projectile reaches it. This calcula-

tion is similar to that used for the pursuit steering behavior and is

undertaken by the method PredictFuturePositionOfTarget.

� TIP As the Raven code stands, the prediction of a target’s future position for
weapon aiming is based upon its instantaneous velocity — the velocity at which
it is moving at the time of the calculation. However, this can give poor results,
especially if the target is dodging around a lot. A more accurate method is to
take the average of the target’s velocity sampled over the last t time steps.

Once an aiming position has been determined the logic rotates the facing

position of the bot toward it and shoots the weapon, provided it is aimed

correctly and that the target has been in view longer than the time required

for the bot to react.

Raven: An Overview | 325

AI Implementation

TLFeBOOK

All this logic is much clearer in code, so here is the method’s listing:

void Raven_WeaponSystem::TakeAimAndShoot()const
{
//aim the weapon only if the current target is shootable or if it has only
//very recently gone out of view (this latter condition is to ensure the
//weapon is aimed at the target even if it temporarily dodges behind a wall
//or other cover)
if (m_pOwner->GetTargetSys()->isTargetShootable() ||

(m_pOwner->GetTargetSys()->GetTimeTargetHasBeenOutOfView() <
m_dAimPersistance))

{
//the position the weapon will be aimed at
Vector2D AimingPos = m_pOwner->GetTargetBot()->Pos();

//if the current weapon is not an instant hit type gun the target position
//must be adjusted to take into account the predicted movement of the
//target
if (GetCurrentWeapon()->GetType() == type_rocket_launcher ||

GetCurrentWeapon()->GetType() == type_blaster)
{
AimingPos = PredictFuturePositionOfTarget();

//if the weapon is aimed correctly, there is line of sight between the
//bot and the aiming position, and it has been in view for a period longer
//than the bot's reaction time, shoot the weapon
if (m_pOwner->RotateFacingTowardPosition(AimingPos) &&

(m_pOwner->GetTargetSys()->GetTimeTargetHasBeenVisible() >
m_dReactionTime) &&
m_pOwner->GetWorld()->isLOSOkay(AimingPos, m_pOwner->Pos()))

{
AddNoiseToAim(AimingPos);

GetCurrentWeapon()->ShootAt(AimingPos);
}

}

//no need to predict movement, aim directly at target
else
{
//if the weapon is aimed correctly and it has been in view for a period
//longer than the bot's reaction time, shoot the weapon
if (m_pOwner->RotateFacingTowardPosition(AimingPos) &&

(m_pOwner->GetTargetSys()->GetTimeTargetHasBeenVisible() >
m_dReactionTime))

{
AddNoiseToAim(AimingPos);

GetCurrentWeapon()->ShootAt(AimingPos);
}

}

326 | Chapter 7

AI Implementation

TLFeBOOK

}

//no target to shoot at so rotate facing to be parallel with the bot's
//heading direction
else
{
m_pOwner->RotateFacingTowardPosition(m_pOwner->Pos()+ m_pOwner->Heading());

}
}

Notice how when the aiming position is predicted, a line-of-sight test must

be made to ensure the predicted position is unobstructed by walls. This is

not necessary if the weapon is aimed directly at the target because the LOS

to the target position is cached when the target’s memory record is updated.

Notice also how immediately before the weapon is fired, some noise is

added to the aiming position in order to prevent the shot from hitting the

target 100 percent of the time.

� TIP For some games it’s a good idea to ensure an AI controlled agent always
misses the first time it takes a shot at the player. This is because the shot will
warn the player to the presence of the agent, enabling him to take appropriate
action without getting hurt immediately. This is particularly useful for scenarios
where a player often enters unexplored rooms full of baddies because it gives
him a chance to retreat a little and take stock of the situation instead of getting
unexpectedly slaughtered.

Also, when deliberately shooting to miss, if the projectile or its trajectory can
easily be seen (like a rocket or arrow), you can add to the excitement by ensur-
ing the shot passes close by and within the player’s field of view.

Another good aiming tip is this: If the player’s health is very low, reduce the
aiming accuracy of any bots shooting at him. This way he gets a chance to pull
off an amazing recovery, which will enhance his game playing experience signif-
icantly. (He gets to feel like Aragorn in the Battle for Helm’s Deep instead of like
Paul Newman and Robert Redford in the last few minutes of Butch Cassidy and
the Sundance Kid!)

Putting It All Together
Figure 7.8 shows how the AI components discussed in the last few pages

interrelate. Note how the Goal_Think object has no direct control of

low-level components such as movement and weapon handling. Its purpose

is to arbitrate between and manage the processing of high-level goals. Indi-

vidual goals utilize the lower-level components as and when required.

Raven: An Overview | 327

AI Implementation

TLFeBOOK

All these components are updated with a specific frequency from the

Raven_Bot::Update method so I guess that’s where we should cast our eyes

next.

Updating the AI Components
It’s not essential for all the components of a bot’s AI to be updated each

time step. Many of the components are very CPU intensive and updating

them all at the same rate would be folly. Instead, each component is exam-

ined to see how time critical or processor intensive it is and an update

frequency is assigned accordingly. For instance, it’s generally essential for

the movement component of the AI to be updated every time step in order

328 | Chapter 7

AI Implementation

Figure 7.8. The Raven bot AI. Only a couple of high-level goals are shown to aid
clarity.

TLFeBOOK

for obstacles and walls to be avoided correctly. A component such as

weapon selection is not so time critical and therefore its update frequency

can occur at a much slower rate; say, twice a second. Similarly, the compo-

nent of a bot’s sensory memory that polls the game world for visible

opponents is very processor intensive because of the number of line-of-

sight tests undertaken. For this reason, the polling is restricted to a low fre-

quency — by default four times a second — and the results are cached.

This is not rocket science of course. Often you will have no way of

knowing what the ideal update frequency is, so you must make an

informed guess and tweak until you’re happy with the results.

The Raven bots use instances of Regulator objects to control the updates

of each of their AI components. This is a straightforward class that is

instantiated using the required update frequency and has a single method,

isReady, that returns true if it’s time to allow the next update. The declara-

tion of the class looks like this:

class Regulator
{
private:

//the time period between updates
double m_dUpdatePeriod;

//the next time the regulator allows code flow
DWORD m_dwNextUpdateTime;

public:

Regulator(double NumUpdatesPerSecondRqd);

//returns true if the current time exceeds m_dwNextUpdateTime
bool isReady();

};

The Regulator class automatically ensures updates are staggered over mul-

tiple time steps by adding a small random offset (between 0 and 1 second)

to m_dwNextUpdateTime upon instantiation. (Without this offset, the same

component of all active agents will be updated on the same time step.)

� TIP By using regulators it’s also possible to implement a kind of “level of detail”
AI by lowering the update rate of some of the AI components of agents that are
far away from the player and insignificant to his immediate experience. Raven
doesn’t do this since the game world is small, but you might like to experiment
with this idea for your own games.

The Raven_Bot class instantiates several regulators and uses the majority of

them in its Update method like so:

void Raven_Bot::Update()
{
//process the currently active goal. Note this is required even if the bot
//is under user control. This is because goals are created whenever a user

Raven: An Overview | 329

AI Implementation

TLFeBOOK

//clicks on an area of the map that necessitates a path planning request.
m_pBrain->Process();

//Calculate the steering force and update the bot's velocity and position
UpdateMovement();

//if the bot is under AI control
if (!isPossessed())
{
//update the sensory memory with any visual stimulus
if (m_pVisionUpdateRegulator->isReady())
{
m_pSensoryMem->UpdateVision();

}

//examine all the opponents in the bot's sensory memory and select one
//to be the current target
if (m_pTargetSelectionRegulator->isReady())
{
m_pTargSys->Update();

}

//appraise and arbitrate between all possible high-level goals
if (m_pGoalArbitrationRegulator->isReady())
{

m_pBrain->Arbitrate();
}

//select the appropriate weapon to use from the weapons currently in
//the inventory
if (m_pWeaponSelectionRegulator->isReady())
{
m_pWeaponSys->SelectWeapon();

}

//this method aims the bot's current weapon at the current target
//and takes a shot if a shot is possible
m_pWeaponSys->TakeAimAndShoot();

}
}

The update frequencies for each component can be found in params.lua.

The default settings are shown in Table 7.1.

Table 7.1. AI update frequencies

Component Frequency (updates per second)

Vision 4

Target selection 2

Goal arbitration 2

Weapon selection 2

330 | Chapter 7

AI Implementation

TLFeBOOK

� NOTE For this book, I chose to aggregate the Regulator instances in the
Raven_Bot class because it makes their use more explicit. You may prefer for
the objects requiring regulation to instantiate their own instances and use them
to control the flow of logic in the appropriate method (usually their Update
method).

Summing Up

This chapter has provided an overview of the design of AI for agents capa-

ble of playing a deathmatch type game. Although your understanding is

still incomplete, you have seen how an agent’s AI can be decomposed into

several small, easily managed components, which are capable of communi-

cating and working together to form a unified behavior. The remaining

chapters will provide the plaster to plug the gaps in your knowledge.

Practice Makes Perfect

1. So far, Raven bots can only sense opponents they see or hear. How-

ever, they are still unable to feel the terrible burning and ripping

sensation of a steel bullet casing tearing through their flesh. Write

code to update their sensory system so that a bot is able to sense when

it is being shot at. Create another field in the MemoryRecord structure to

record the amount of damage each opponent has inflicted in the last

few seconds. This value could be used as part of the target selection

criterion.

2. Try out different target selection criteria. Observe how they affect the

gameplay. Change the code so that each bot uses a unique criterion

and play them off against each other to see which one performs best.

Raven: An Overview | 331

Summing Up

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 8

Practical Path Planning

You saw in Chapter 5 how navigation graphs can be utilized by agents

to plan paths between locations in the environment. However, when it

comes down to implementing that theory in practice, you’ll find there are

all sorts of problems to overcome before your agents start moving around

like you want them to. This chapter addresses many of the practical issues

encountered when designing the path planning module(s) of game agents.

Although the demos in this chapter are based around the Raven framework,

most of the techniques are applicable across a wide range of game genres.

Navigation Graph Construction

To determine a path from A to B using a search algorithm such as those

discussed in Chapter 5, a game environment must be partitioned into a data

structure the algorithms can explore: a navigation graph. Because there are

many ways of representing the geometry that makes up a game world —

tile-, vector-, or polygon-based for example — it’s hardly surprising there

are numerous methods of converting the pertinent spatial information into a

graph-like data structure. Let’s examine several of the popular methods uti-

lized in modern games.

Tile Based
Tile- or cell-based games like those found abundantly in the RTS and war

game genres have large and sometimes complex environments based on

squares or hexes. It therefore makes sense to design the game’s navigation

graph around these cells: Each graph node represents the center of a cell,

with the graph edges denoting the connections between adjacent cells. In

games of this type there will occasionally be a cost for maneuvering a

game unit — like a tank or soldier — across the varying types of terrain.

Water and mud are, after all, much more difficult for a Sherman tank to

cross than tarmac or compacted earth. Since each cell is normally assigned

a specific terrain type by the map designer, it’s a trivial matter to use this

information to weight the edges of the navigation graph accordingly. The

algorithms employed to search the graph can make use of this additional

information to determine appropriate paths through the terrain, ones that

avoid water and mud or go around hills rather than over the top of them.

333
TLFeBOOK

The downside to using cells as the skeleton for a navgraph is that the

search spaces can quickly become extremely large. Even a modest 100 x

100 cell map will need a graph made up of up to 10,000 nodes and 78,000

(or so) edges. Given that RTS games usually have dozens or even hundreds

of AI units active at any one time, with many of them requesting graph

searches each update step, that’s a hell of a lot of number crunching to be

done, not to mention the related memory cost. Fortunately there are a num-

ber of methods available to ease the burden, which we’ll be taking a look at

later in the chapter.

Points of Visibility
A points of visibility (POV) navigation graph is created by placing graph

nodes, usually by hand, at important points in the environment such that

each graph node has line of sight to at least one other. Positioned carefully,

the graph nodes will make a graph connecting all the important areas in the

world geometry. Figure 8.1 shows a simple POV graph created for a Raven

map (Raven_DM1).

One feature of POV graphs is that they may be easily expanded to include

nodes that proffer information over and above the connectivity data. For

example, nodes can easily be added to a POV graph to represent good snip-

ing, cover, or ambush positions. The downside is that if a game map is

large and complex the map designer can spend an awful lot of precious

development time positioning and tweaking the graph. A POV graph can

also be problematic if you plan to include any type of map generation fea-

ture, since you must then develop some automated method to generate the

POV graph structure as well for the new maps to be of any use. (This is

334 | Chapter 8

Navigation Graph Construction

Figure 8.1. Points of visibility navigation graph

TLFeBOOK

why some games don’t have random map generation features.) One solu-

tion for this problem, however, is to use expanded geometry techniques.

Expanded Geometry
If a game environment is constructed from polygons it’s possible to use the

information present in those shapes to automatically create a POV graph,

which, for large maps can be a real time-saver. This is achieved by first

expanding the polygons by an amount proportional to the bounding radius

of the game agents. See Figures 8.2 A and B. The vertices defining this

expanded geometry are then added as nodes to a navigation graph. Finally,

an algorithm is run to test for line of sight between the vertices, and edges

are added to the graph appropriately. Figure 8.2 C shows the finished navi-

gation graph.

As the polygons are expanded by an amount not less than an agent’s

bounding radius, an agent can search the resulting navigation graph to cre-

ate paths that safely negotiate the environment without bumping into walls.

NavMesh
One approach growing in popularity with game developers is to use a net-

work of convex polygons, called a navmesh, to describe the walkable areas

of a game environment. A convex polygon has the valuable property that it

allows unobstructed travel from any point in the polygon to any other. This

is useful because it enables an environment to be represented using a graph

Practical Path Planning | 335

Navigation Graph Construction

Figure 8.2. Creating a POV using expanded geometry

TLFeBOOK

where each node represents a convex space (instead of a point). Figure 8.3

shows the map from Figure 8.1 partitioned in such a way.

Why is this a good thing? Well, navmeshes are efficient. The data structure

required to store one is compact and can be searched very quickly. In addi-

tion, where environments are constructed entirely from polygons — like

the majority of 3D FPS type games — it’s possible to use algorithms to

partition the walkable areas of the maps automatically.

The Raven Navigation Graph

Because they provide me with the greatest opportunity for demonstrating a

varied range of techniques, the navigation graphs for Raven maps are cre-

ated using the POV method. You saw earlier how the navgraph shown in

Figure 8.1 was created by positioning nodes by hand inside a map editor. In

this example a small number of nodes have been positioned at important

intersections. Since each node is effectively representing a large spatial

region, this type of graph can be said to be coarsely granulated (or

grained). Coarsely granulated graphs are very compact data structures.

They use very little memory and are quick to search and relatively easy to

create, although they do have several limitations. Let’s take a look at some

of their faults.

Coarsely Granulated Graphs
If a game restricts its agents to movement along the edges of a navigation

graph only, such as the movement of the characters in the Pac-Man range

of games (see Screenshot 8.1), then a coarsely granulated navgraph is the

336 | Chapter 8

The Raven Navigation Graph

Figure 8.3. Raven_DM1 partitioned into a navmesh

TLFeBOOK

perfect choice. However, if you are designing a navgraph for a game where

the characters are given more freedom, coarse graphs can be harbingers of

all sorts of problems.

For example, most RTS/RPG games use a control system where the user is

free to command characters to move to any navigable area of the map.

Normally this is done with a couple of mouse clicks, one to select the NPC

and another to select the position it should move to. To move the NPC into

position the AI must follow these steps:

1. Find the closest visible graph node to the NPC’s current location, say,

node A.

2. Find the closest visible graph node to the target location, say, node B.

3. Use a search algorithm to find the least cost path from A to B.

4. Move the NPC to node A.

5. Move the NPC along the path calculated in step 3.

6. Move the NPC from B to the target location.

If these steps are followed with a coarsely grained graph, such as the one

shown earlier, unsightly paths will regularly occur. See Figure 8.4 for an

example.

Some of these kinks can be ironed out using a path smoothing algo-

rithm, such as the one discussed later in this chapter, but due to the

coarseness of the navigation graph there will still be many occasions where

an agent will zigzag unnaturally at the start and end points of a path. Even

worse, when using coarse graphs there are almost always a few positions

on the map to which there is no line of sight from any of the graph nodes,

effectively rendering those areas invisible to any path planner. Figure 8.5

illustrates two positions on the Raven_DM1 map that are inaccessible to

Practical Path Planning | 337

The Raven Navigation Graph

Screenshot 8.1: Pacmen at play

TLFeBOOK

the path planner. These “invisible” areas are fairly easy to spot when test-

ing a small map, but are much harder to find as the complexity of a map

increases. This is reflected in a number of games that have been released

with such problems.

You can observe these problems first hand by running the Raven_

CoarseGraph executable. When the demo is run the bot will explore the

environment by creating paths to randomly selected graph nodes. Right-

338 | Chapter 8

The Raven Navigation Graph

Figure 8.4. The path of an agent moving from its current position to the one marked
by the X. (The closest node to the agent and the closest node to the target are shown
by a and b respectively.) Notice how the agent must double back on itself twice to get
to the target location. Nasty.

Figure 8.5. Map positions that are “invisible” to the navigation graph

TLFeBOOK

click on the bot to select it and you will be able to see the path it’s follow-

ing shown as a series of red dots. Notice how the bot’s movement looks

okay as long as it sticks to positions along the navigation graph. Now

right-click on the bot again to “possess” it. Once possessed, you can

right-click anywhere else in the environment and the bot will attempt to

calculate a path to that point (as long as the point is located within a navi-

gable area of the map). Observe how the bot has to backtrack to follow

certain paths.

Finely Grained Graphs
Poor paths and inaccessible positions can be improved by increasing the

granularity of the navigation graph. Figure 8.6 is an example of a very

finely granulated graph created for the Raven_DM1 map. Creating a graph

like this by hand is extremely tedious, so a flood fill algorithm is utilized

by the map editor to do the majority of the work. See the following sidebar

for further details.

Since finely grained graphs are similar in topology to tile-based navigation

graphs — and therefore present similar challenges to the AI programmer

— I’ll be using them as a basis to demonstrate the techniques described in

the remainder of this chapter. This way I hope to kill several birds with one

stone, and by the end of the chapter you’ll understand how to create an

agent capable of planning paths through any game environment, be it an

FPS, RTS, or RPG.

Practical Path Planning | 339

The Raven Navigation Graph

Figure 8.6. A finely granulated navigation graph

TLFeBOOK

Using the Flood Fill Algorithm to Create a

Navigation Graph

To use the flood fill algorithm to create a navigation graph a single
“seed” node is first placed somewhere in the map. See Figure 8.7, top
left. The algorithm then “grows” a graph by expanding nodes and
edges outward from the seed in each available direction, and then
from the nodes on the fringe of the graph, until all the navigable area
is filled. The figure shows the first six iterations of such a process.

This is a similar sort of technique paint programs use to fill an
irregular shape, except instead of flooding a shape with a color the
editor uses the algorithm to flood a map with graph nodes and edges.
Individual nodes can then be moved, deleted, or added by the
designer to give the desired result. To ensure that an agent’s move-
ment is unrestricted, during the process the algorithm ensures that all
nodes and edges are positioned a minimum distance equal to the
agent’s bounding radius from any walls.

340 | Chapter 8

The Raven Navigation Graph

Figure 8.7. The first six iterations of the flood fill
algorithm

TLFeBOOK

Adding Items to the Raven Navigation Graph
Most games include items an agent can pick up and use in some way.

These items can be added as nodes to the navigation graph, enabling the

path planning AI to easily search for the items and plan paths to them.

Where there are multiple instances of the same item, the AI can use the

navgraph to quickly determine which is the least costly to reach.

Remember back in Chapter 5 I showed you an example of a graph node

class designed specifically for use with navigation graphs? Just in case

your memory is as poor as mine, here’s the listing again:

template <class extra_info = void*>
class NavGraphNode : public GraphNode
{
protected:

//the node's position
Vector2D m_vPosition;

//often you will want a navgraph node to contain additional information.
//(for example a node might represent the position of an item type
//such as health, thereby enabling a search algorithm to search a graph
//for that item type)
extra_info m_ExtraInfo;

public:

//ctors
NavGraphNode():m_ExtraInfo(extra_info()){}

NavGraphNode(int idx,
Vector2D pos):GraphNode(idx),

m_vPosition(pos),
m_ExtraInfo(extra_info())

{}

virtual ~NavGraphNode(){}

Vector2D Pos()const;
void SetPos(Vector2D NewPosition);

extra_info ExtraInfo()const;
void SetExtraInfo(extra_info info);

/* EXTRANEOUS DETAIL OMMITTED */
};

This is the node class used by the Raven navigation graph. As mentioned in

the previous chapter, item types in Raven are derived from the Trigger

class. When a giver-trigger is added to a map using the map editor, a graph

node is also added. That node’s m_ExtraInfo member is assigned a pointer

to the item it’s twinned with, thereby enabling a modified search algorithm

Practical Path Planning | 341

The Raven Navigation Graph

TLFeBOOK

to query the navigation graph for particular item types as well as for spe-

cific node indexes. You’ll be seeing exactly how this is done later in the

chapter.

� TIP When designing the maps for some games it’s a good idea to place fre-
quently used items such as ammunition and armor directly in the most
commonly used paths of the game agents. This helps the agents because they
will tend to stay focused on the more important game objectives instead of hav-
ing to run around searching for weapons and ammo.

Using Spatial Partitioning to Speed Up Proximity Queries
One of the most frequently used methods of a path planning class is a func-

tion that determines the closest visible node to a given position. If this

search is undertaken by iterating through all the nodes in order to find the

closest, the performance will be in O(n2) time: Each time the number of

nodes doubles, the time taken to search them increases fourfold. As you

saw in Chapter 3, the efficiency of such searches can be improved by using

a spatial partitioning technique such as cell-space partitioning, BSP trees,

quad-trees, or any other of the numerous methods available. For navigation

graphs of over a couple hundred nodes, spatial partitioning gives dramatic

speed increases as the search time becomes a function of the node density,

O(d), rather than the number of nodes; and since the density of nodes

throughout navgraphs tends to be fairly consistent, the time taken to do a

node proximity query will be constant. Consequently, the Raven_Game class

partitions a navgraph’s nodes using the cell-space method when a map is

loaded.

� NOTE There is no code written for this chapter per se. All the demos have
been created by compiling the Raven project files with certain options switched
on or off to demonstrate each technique I discuss. Because of this, the demos
use compiled Lua script files to prevent you from twiddling with options that may
crash the demos. For full twiddling rights, please compile the Raven project
proper!

Creating a Path Planner Class

The majority of the remainder of this chapter will be spent following the

development of a path planning class capable of executing and managing

the numerous graph search requests required by a Raven bot. This class is

called Raven_PathPlanner and each bot will own an instance of it. The class

will start off simple, but as the chapter progresses its capabilities will be

expanded incrementally, providing the opportunity to demonstrate how to

solve many of the typical problems encountered when developing a path

planning AI.

First let’s consider the minimum functionality a path planning object

must provide. A Raven bot at the very least should be able to plan a path

342 | Chapter 8

Creating a Path Planner Class

TLFeBOOK

from its current position to any other location, given that both positions are

valid and navigable, and a path is possible. A Raven bot should also be

capable of planning the least cost path between its current position and a

specific item type, such as a health pack. As a result, the path planning

class must have methods for searching the navgraph for such paths and for

accessing the resultant path data. With these features in mind let’s have a

first try at a path planning class.

class Raven_PathPlanner
{
private:

//for legibility
enum {no_closest_node_found = -1};

private:

//A pointer to the owner of this class
Raven_Bot* m_pOwner;

//a local reference to the navgraph
const Raven_Map::NavGraph& m_NavGraph;

//this is the position the bot wishes to plan a path to reach
Vector2D m_vDestinationPos;

//returns the index of the closest visible and unobstructed graph node to
//the given position. If none is found it returns the enumerated value
//"no_closest_node_found"
int GetClosestNodeToPosition(Vector2D pos)const;

public:

Raven_PathPlanner(Raven_Bot* owner);

//finds the least cost path between the agent's position and the target
//position. Fills path with a list of waypoints if the search is successful
//and returns true. Returns false if unsuccessful
bool CreatePathToPosition(Vector2D TargetPos, std::list<Vector2D>& path);

//finds the least cost path to an instance of ItemType. Fills path with a
//list of waypoints if the search is successful and returns true. Returns
//false if unsuccessful
bool CreatePathToItem(unsigned int ItemType, std::list<Vector2D>& path);

};

This class provides the minimum functionality a game agent requires. Let’s

take a closer look at the methods that create the paths.

Practical Path Planning | 343

Creating a Path Planner Class

TLFeBOOK

Planning a Path to a Position

Planning a path from a bot’s current location to a target location is straight-

forward. The path planner must:

1. Find the closest visible unobstructed graph node to the bot’s current

location.

2. Find the closest visible unobstructed graph node to the target location.

3. Use a search algorithm to find the least cost path between the two.

The following code uses these steps. The comments should be adequate

explanation.

bool Raven_PathPlanner::CreatePathToPosition(Vector2D TargetPos,
std::list<Vector2D>& path)

{
//make a note of the target position
m_vDestinationPos = TargetPos;

//if the target is unobstructed from the bot's position, a path does not need
//to be calculated, and the bot can ARRIVE directly at the destination.
//isPathObstructed is a method that takes a start
//position, a target position, and an entity radius and determines if an
//agent of that size is able to move unobstructed between the two positions.
//It is used here to determine if the bot can move directly to the target
//location without the need for planning a path.
if (!m_pOwner()->GetWorld()->isPathObstructed(m_pOwner->Pos(),

TargetPos,
m_pOwner->BRadius()))

{
path.push_back(TargetPos);

return true;
}
//find the closest unobstructed node to the bot's position.

344 | Chapter 8

Creating a Path Planner Class

Figure 8.8. Planning a path to a position

TLFeBOOK

//GetClosestNodeToPosition is a method that queries the navigation graph
//nodes (via the cell-space partition) to determine the closest unobstructed
//node to the given position vector. It is used here to find the closest
//unobstructed node to the bot’s current location.
int ClosestNodeToBot = GetClosestNodeToPosition(m_pOwner->Pos());

//if no visible node found return failure. This will occur if the
//navgraph is badly designed or if the bot has managed to get itself
//*inside* the geometry (surrounded by walls) or an obstacle.
if (ClosestNodeToBot == no_closest_node_found)
{
return false;

}

//find the closest visible unobstructed node to the target position
int ClosestNodeToTarget = GetClosestNodeToPosition(TargetPos);

//return failure if there is a problem locating a visible node from
//the target.
//This sort of thing occurs much more frequently than the above. For
//example, if the user clicks inside an area bounded by walls or inside an
//object.
if (ClosestNodeToTarget == no_closest_node_found)
{
return false;

}

//create an instance of the A* search class to search for a path between the
//closest node to the bot and the closest node to the target position. This
//A* search will utilize the Euclidean straight line heuristic
typedef Graph_SearchAStar< Raven_Map::NavGraph, Heuristic_Euclid> AStar;

AStar search(m_NavGraph,
ClosestNodeToBot,
ClosestNodeToTarget);

//grab the path
std::list<int> PathOfNodeIndices = search.GetPathToTarget();

//if the search is successful convert the node indices into position vectors
if (!PathOfNodeIndices.empty())
{
ConvertIndicesToVectors(PathOfNodeIndices, path);

//remember to add the target position to the end of the path
path.push_back(TargetPos);

return true;
}
else
{

//no path found by the search
return false;

}
}

Practical Path Planning | 345

Creating a Path Planner Class

TLFeBOOK

Planning a Path to an Item Type

A* is the better algorithm to search for the least cost path from the bot’s

current position to a specific target position, but what about when the least

cost path is required to a item type — such as a rocket launcher — where

there may be many instances in the environment of the particular type? To

calculate the heuristic cost during an A* search, the algorithm must have

both a source position and a target position. Consequently, when using A*

to search for the closest instance of an item type, a search must be com-

pleted for each instance present in the game world before the one with the

least cost path can be chosen as the best item to move toward. This is okay

if your map contains only a handful of instances of an item, but what if it

contains many? After all, it’s not uncommon for RTS game environments

to include dozens or even hundreds of instances of resources like trees or

gold. That means numerous A* searches will be necessary to locate just

one item. This is not good.

When many similar item types are present, Dijkstra’s algorithm is the

better choice. As you’ve learned, Dijkstra’s algorithm “grows” a shortest

path tree outward from the root node until either the target has been

reached or the entire graph has been explored. As soon as the item searched

for is located, the algorithm will terminate and the SPT will contain the

path from the root to the closest item of the desired type. In other words, no

matter how many instances of an item type are present in the game world,

Dijkstra’s algorithm only needs to be run once to find the least cost path to

one of them

As it stands, the Dijkstra’s algorithm class used thus far in this book will

only terminate when a particular node index is found. As a result, the code

346 | Chapter 8

Creating a Path Planner Class

Figure 8.9. Planning a path to an item type

TLFeBOOK

needs to be altered so the search will terminate upon the location of an

active item type (a giver-trigger). This can easily be achieved by specifying

as a template parameter a policy that acts as a termination condition. For

example:

template <class graph_type, class termination_condition>
class Graph_SearchDijkstra
{

/* OMITTED */
};

A termination condition policy is a class containing a single static method,

isSatisfied, which returns true if the conditions required for termination

are fulfilled. The signature of isSatisfied looks like this:

static bool isSatisfied(const graph_type& G, int target, int CurrentNodeIdx);

A modified Dijkstra’s algorithm can use such a policy to determine when

the search should conclude. To facilitate this, the line:

//if the target has been found exit
if (NextClosestNode == m_iTarget) return;

found in Graph_SearchDijkstra::Search is replaced with:

//if the target has been found exit
if (termination_condition::isSatisfied(m_Graph,

m_iTarget,
NextClosestNode))

{
//make a note of the node index that has satisfied the condition. This
//is so we can work backward from the index to extract the path from
//the shortest path tree.
m_iTarget = NextClosestNode;

return;
}

Before this adapted algorithm can be used though, an appropriate termina-

tion condition policy must be created. In Raven, item types are represented

by giver-triggers. Therefore, when searching for an item type, a search

should terminate when a graph node that has its m_ExtraInfo field pointing

to an active trigger of the correct type is located.

Here is the termination condition policy class that ends a search based

upon those criteria:

template <class trigger_type>
class FindActiveTrigger
{
public:

template <class graph_type>
static bool isSatisfied(const graph_type& G, int target, int CurrentNodeIdx)
{
bool bSatisfied = false;

Practical Path Planning | 347

Creating a Path Planner Class

TLFeBOOK

//get a reference to the node at the given node index
const graph_type::NodeType& node = G.GetNode(CurrentNodeIdx);

//if the extra info field is pointing to a giver-trigger, test to make sure
//it is active and that it is of the correct type.
if ((node.ExtraInfo() != NULL) &&

node.ExtraInfo()->isActive() &&
(node.ExtraInfo()->EntityType() == target))

{
bSatisfied = true;

}

return bSatisfied;
}

};

Armed with this termination condition and the customized Dijkstra search

algorithm, it’s a simple matter to find the path with the least cost to an

active item of a specific type. Let’s say you want to find the closest health

pack to the graph node with index 6. Here’s how:

typedef FindActiveTrigger<Trigger<Raven_Bot> > term_con;
typedef Graph_SearchDijkstra_TS<RavenMap::NavGraph, term_con> SearchDij;

//instantiate the search
SearchDij dij(G, //the graph

6, //the source node
type_health); //the item type we are searching for

//grab the path
std::list<int> path = dij.GetPathToTarget();

where type_health is an enumerated value.

� 3D NOTE By now I hope you understand there is no difference between
pathfinding in 3D and pathfinding in 2D. Sure, for an agent to get around in
most 3D environments it might have to do stuff like jump ravines and use lifts,
but these considerations should be transparent to a path planner. They simply
manifest themselves as edge cost adjustments so that the search algorithm can
account for the cost of doing the jump, traversing the ledge, using a lift, or
doing whatever when it is searching for the least cost path to a target position.
If this is still not evident, I strongly recommend you backtrack and reread Chap-
ter 5 while keeping in mind that a graph may exist in any number of
dimensions.

Paths as Nodes or Paths as Edges?

So far we’ve been thinking about paths as a series of position vectors, or

waypoints. Often though, paths comprised of graph edges give the AI pro-

grammer additional flexibility. As an example, let’s consider a game with

NPCs that must have their movement between certain points in the envi-

ronment constrained to a specific type such as “tiptoe across here,” “crawl

under here,” or “run quickly here.” You may think that the game’s relevant

navgraph nodes could be annotated with flags indicating the desired

348 | Chapter 8

Paths as Nodes or Paths as Edges?

TLFeBOOK

behavior (for example, a node could be tagged with the “tiptoe” behavior

to make an agent start tiptoeing as soon as it reaches that node), but in

practice there are problems with this approach.

For example, Figure 8.10 shows part of a navgraph where one of the

edges, A - B, traverses a river. The game design requires that agents must

change to the “swim” behavior when traveling from A to B (or vice versa),

so the nodes A and B are annotated to reflect this. Let’s say an agent is fol-

lowing the path e - A - B - h. When the agent reaches node A its behavior

will change to swimming and it can cross the edge to B safely. So far so

good, but unfortunately at this point it runs into problems. When it reaches

node B, which is also annotated with the swim behavior, it will continue

swimming along the edge B - h. Not good. If this isn’t bad enough, let’s say

an agent wants to follow the path e - A - c. As soon as it reaches A it will

still start swimming even though it has no intention of crossing the river!

This problem can easily be resolved, however, if the graph edges are anno-

tated instead of the nodes. This way an agent can easily query the edge

information as it follows the path and change behavior accordingly. Given

the previous example this means that the edge A - B is annotated with the

instruction to swim and all the other edges with the instruction to walk (or

whatever else might be appropriate). Now, when an agent follows the path

e - A - B - h its movement will be correct.

� TIP Using annotation you can easily specify edge behavior that is modified dur-
ing gameplay. For instance, you could design a map that has a makeshift bridge
— like a fallen log — crossing a stream, which agents traverse normally until
the bridge is destroyed or moved. When the bridge is removed, the annotation
of the edge is changed to “swim” and its cost increased to reflect the additional
amount of time required to move along it. In this way, agents still consider the

Practical Path Planning | 349

Paths as Nodes or Paths as Edges?

Figure 8.10. A navgraph spanning a river

TLFeBOOK

edge when planning paths and will modify their animation appropriately when
they traverse it. (You could even remove/disable the edge to represent condi-
tions making the stream impassable, like a flood.)

An Annotated Edge Class Example
An annotated edge is easily created by deriving from GraphEdge and adding

an additional data member to represent the flag (or flags, depending on

what sort of information you’d like the edge to represent). Here’s an

example:

class NavGraphEdge : public GraphEdge
{
public:

//enumerate some behavior flags
enum BehaviorType
{
normal = 1 << 0,
tippy_toe = 1 << 1,
swim = 1 << 2,
crawl = 1 << 3,
creep = 1 << 4

};

protected:

//the behavior associated with traversing this edge
BehaviorType m_iBehavior;

/* EXTRANEOUS DETAIL OMITTED */
};

� TIP If your game design requires edge and/or node annotation you will often
find that the extra fields in the node/edge classes are unused (or set to “nor-
mal”) for the majority of instances in the navgraph. This can be a significant
waste of memory if your graph is large. In such cases I recommend you use a
hash-map type lookup table or, in the case where there is a large amount of
annotation per instance, create a special data structure that each edge or node
can store a pointer to.

Modifying the Path Planner Class to Accommodate
Annotated Edges

To accommodate edge annotation, the path planner and search algorithm

classes must be modified to return paths that contain the additional infor-

mation. To facilitate this, Raven makes use of the PathEdge class — a

simple data structure that stores node position and edge annotation infor-

mation. Here is its listing:

class PathEdge
{
private:

350 | Chapter 8

Paths as Nodes or Paths as Edges?

TLFeBOOK

//positions of the source and destination nodes this edge connects
Vector2D m_vSource;
Vector2D m_vDestination;

//the behavior associated with traversing this edge
int m_iBehavior;

public:

PathEdge(Vector2D Source,
Vector2D Destination,
int Behavior):m_vSource(Source),

m_vDestination(Destination),
m_iBehavior(Behavior)

{}

Vector2D Destination()const;
void SetDestination(Vector2D NewDest);

Vector2D Source()const;
void SetSource(Vector2D NewSource);

int Behavior()const;
};

The Raven_PathPlanner::CreatePath methods and the corresponding search

algorithms are altered slightly to create std::lists of PathEdges. Here’s the

listing of the modified CreatePathToPosition method with the changes in

bold.

bool Raven_PathPlanner::CreatePathToPosition(Vector2D TargetPos,
std::list<PathEdge>& path)

{
//if the target is unobstructed from the bot's position, a path does not need
//to be calculated, and the bot can ARRIVE directly at the destination.
if (!m_pOwner()->GetWorld()->isPathObstructed(m_pOwner->Pos(),

TargetPos,
m_pOwner->BRadius()))

{
//create an edge connecting the bot's current position and the
//target position and push it on the path list (flagged to use the
//"normal" behavior)
path.push_back(PathEdge(m_pOwner->Pos(), TargetPos, NavGraphEdge::normal));

return true;
}
//find the closest unobstructed node to the bot's position.
int ClosestNodeToBot = GetClosestNodeToPosition(m_pOwner->Pos());
if (ClosestNodeToBot == no_closest_node_found)
{
//no path possible
return false;

}

Practical Path Planning | 351

Paths as Nodes or Paths as Edges?

TLFeBOOK

//find the closest visible unobstructed node to the target position
int ClosestNodeToTarget = GetClosestNodeToPosition(TargetPos);
if (ClosestNodeToTarget == no_closest_node_found)
{
//no path possible
return false;

}

//create an instance of the A* search class.
typedef Graph_SearchAStar<Raven_Map::NavGraph, Heuristic_Euclid> AStar;

AStar search(m_NavGraph, ClosestNodeToBot, ClosestNodeToTarget);

//grab the path as a list of PathEdges
path = search.GetPathAsPathEdges();

//if the search has been successful add the first and last edges manually to
//the path
if (!path.empty())
{
path.push_front(PathEdge(m_pOwner->Pos(),

path.front().GetSource(),
NavGraphEdge::normal));

path.push_back(PathEdge(path.back().GetDestination(),
TargetPos,
NavGraphEdge::normal));

return true;
}

else
{

//no path found by the search
return false;

}
}

A bot can now easily query the annotation of path edges and make appro-

priate behavior adjustments. In pseudocode, each time a bot pops a new

edge of the list it does something like this:

if (Bot.PathPlanner.CreatePathToPosition(destination, path))
{
PathEdge next = GetNextEdgeFromPath(path)
switch(next.Behavior)
{

case behavior_stealth:
set stealth mode
break

case behavior_swim
set swim mode
break

etc

352 | Chapter 8

Paths as Nodes or Paths as Edges?

TLFeBOOK

}
Bot.MoveTo(NavGraph.GetNodePosition(next.To))

}

You can assume from here onward that any demos using the Raven frame-

work will use edge paths instead of waypoint paths.

� TIP Some game worlds include teleporters or “portals” that agents can use to
move magically and instantaneously between locations. If your game makes use
of such devices, you will not be able to use the A* search algorithm to accu-
rately plan paths because it’s impossible to accommodate them within the
heuristic. Instead you must utilize an alternative search algorithm such as
Dijkstra’s.

Path Smoothing
Quite often, and especially if a game’s navigation graph is in the shape of a

grid, the paths created by the path planner tend to contain unnecessary

edges, producing kinks like those shown in Figure 8.11. These look unnat-

ural to the human eye — after all, a human wouldn’t zigzag needlessly like

this, so it looks bad when a game agent does it. (Of course this is perfectly

acceptable if you are modeling domestic cats, which appear to have their

own secret agenda when moving from A to B�.)

Using A* and a grid-based navgraph, better-looking paths can be created

using the Manhattan distance heuristic in combination with a function that

penalizes each change in direction. (The Manhattan distance, remember, is

the sum of the number of tiles displaced horizontally and vertically

between the nodes under consideration.) However, the paths produced are

still far from ideal due to the graph’s topology restricting turns to incre-

ments of 45 degrees. This method also fails with another common problem.

Practical Path Planning | 353

Paths as Nodes or Paths as Edges?

Figure 8.11. A kinky path

TLFeBOOK

As we have seen, before a path planner can search for a path it must find

the graph nodes closest to the start and destination positions, and these will

not always be the ones that give a natural-looking path. The solution to

both these problems is to post-process paths to “smooth” out the unwanted

kinks. There are a couple of methods for doing this — one rough and one

precise.

Path Smoothing Rough but Quick

A reasonably quick method for smoothing a path works by checking the

“passability” between adjacent edges. If one of the edges is superfluous,

the two edges are replaced with one. See Figure 8.12.

The algorithm proceeds as follows: First, two iterators, E1 and E2, are

positioned at the first and second path edges respectively. Then these steps

are followed:

1. Grab the source position of E1.

2. Grab the destination position of E2.

3. If the agent can move between these two positions unobstructed by

the world geometry, assign the destination of E1 to that of E2 and

remove E2 from the path. Reassign E2 to the new edge following E1.

(Note that this is not a simple line-of-sight test as an entity’s size must

be taken into consideration — it must be able to move between the

two positions without bumping into any walls.)

4. If the agent cannot move unobstructed between the two positions,

assign E2 to E1 and advance E2.

5. Repeat steps until the destination of E2 is equal to the destination of

the path.

354 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.12

TLFeBOOK

Let’s see this algorithm in action and smooth the path shown in Figure

8.13. First, E1 is pointed at the first edge in the path and E2 to the second.

E1 is the edge S - 1 and E2 the edge 1 - 2. We can see that an agent is able

to move unobstructed between E1->Source (S) and E2->Destination (2) so

the position of node index 2 is assigned to E1->Destination, the edge 1 - 2

is removed from the path, and E2 is advanced to point to the edge 2 - 3.

See Figure 8.14. (Notice the edge pointed to by E1 is now linking S - 2.)

Practical Path Planning | 355

Paths as Nodes or Paths as Edges?

Figure 8.13

Figure 8.14

TLFeBOOK

Once again we can see that an agent is able to move unobstructed between

E1->Source (S) and E2->Destination (3), so again the path and iterators are

updated, giving the situation shown in Figure 8.15.

This time, however, the positions E1->Source (S) and E2->Destination (4)

are obstructed. Therefore, E1 and E2 are both advanced one edge. See Fig-

ure 8.16.

Again, the path between nodes 3 and 5 is obstructed so E1 and E2 are

advanced. This time, as the path between 4 and T is passable, the edges are

356 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.15

Figure 8.16

TLFeBOOK

updated to reflect this, giving the final smoothed path shown in Figure

8.17.

The source code to smooth a path using this algorithm looks like this:

void Raven_PathPlanner::SmoothPathEdgesQuick(std::list<PathEdge>& path)
{
//create a couple of iterators and point them at the front of the path
std::list<PathEdge>::iterator e1(path.begin()), e2(path.begin());

//increment e2 so it points to the edge following e1.
++e2;

//while e2 is not the last edge in the path, step through the edges, checking
//to see if the agent can move without obstruction from the source node of
//e1 to the destination node of e2. If the agent can move between those
//positions then the two edges are replaced with a single edge.
while (e2 != path.end())
{
//check for obstruction, adjust and remove the edges accordingly
if (m_pOwner->canWalkBetween(e1->Source(), e2->Destination()))
{
e1->SetDestination(e2->Destination());
e2 = path.erase(e2);

}

else
{
e1 = e2;
++e2;

}
}

}

Practical Path Planning | 357

Paths as Nodes or Paths as Edges?

Figure 8.17. The finished path

TLFeBOOK

Path Smoothing Precise but Slow

Alas, the previous algorithm is not perfect. If you examine Figure 8.17

again you can see that the last two edges could have easily been replaced

with just one as shown in Figure 8.18.

The algorithm missed this because it only checked the passability between

adjacent edges. A more precise smoothing algorithm must iterate through

all the edges from E1 to the final edge each time E1 is advanced. However,

although precise, this method is much slower because many additional

intersection tests have to be made. Of course, which smoothing algorithm

you use, or whether you decide to use smoothing at all, depends on how

much processor time you have available and the requirements of your

game.

The code to smooth a path more precisely looks like this:

void Raven_PathPlanner::SmoothPathEdgesPrecise(std::list<PathEdge>& path)
{
//create a couple of iterators
std::list<PathEdge>::iterator e1, e2;

//point e1 to the beginning of the path
e1 = path.begin();

while (e1 != path.end())
{
//point e2 at the edge immediately following e1
e2 = e1;
++e2;

//while e2 is not the last edge in the path, step through the edges,
//checking to see if the agent can move without obstruction from the

358 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.18. A better path

TLFeBOOK

//source node of e1 to the destination node of e2. If the agent can move
//between those positions then any edges between e1 and e2 are
//replaced with a single edge.
while (e2 != path.end())
{
//check for obstruction, adjust and remove the edges accordingly
if (m_pOwner->canWalkBetween(e1->Source(), e2->Destination()))
{
e1->SetDestination(e2->Destination());
e2 = path.erase(++e1, ++e2);
e1 = e2;
--e1;

}

else
{
++e2;

}
}

++e1;
}

}

You can see both of these algorithms in action by running the

Raven_PathSmoothing demo.

� NOTE If your map makes use of graph edges annotated with special behav-
iors or if your agents have other constraints like a restricted turning circle, the
smoothing algorithms must be modified to prevent deletion of important edges.
See the Raven project source for an example.

Methods for Reducing CPU Overhead
Load spikes take place when the amount of processor cycles required by a

game engine is in excess of the number of cycles available. If a game has

oodles of AI controlled agents running around, all able to request paths at

any time, then load spikes can occur when too many of them simulta-

neously request searches. When this happens, the fluid flow of the game

will be interrupted as the CPU attempts to keep up with the demands put on

it, thus creating a jerky, stuttering motion. Obviously this is a bad thing and

should be avoided wherever possible. The next few pages will be devoted

to methods that lessen the likelihood of load spikes by reducing the

per-update overhead of path planning requests.

Precalculated Paths

If your game environment is static and you have memory to spare, a good

option for lessening the CPU load is to use precalculated lookup tables,

enabling paths to be determined extremely quickly. These may be calcu-

lated at any convenient time, such as when a map is read from file or

Practical Path Planning | 359

Paths as Nodes or Paths as Edges?

TLFeBOOK

created by the map editor and stored along with the map data. A lookup

table must include routes from every node in the navgraph to every other

node in the navgraph. This can be calculated using Dijkstra’s algorithm to

create the shortest paths tree (SPT) for every node in the graph. (Remem-

ber, the SPT is a sub-tree of the navgraph rooted at the target node that

contains the shortest path to every other node.) The information is then

extracted and stored in a two-dimensional array of integers.

For example, given the graph shown in Figure 8.19, the corresponding

lookup table is as shown in Figure 8.20. The entries in the table show the

next node the agent should travel to on the path from start to destination.

For instance, to determine the least cost path from C to E, we cross-

reference C with E, giving node B. Node B is then cross-referenced with

the destination to give D, and so on, until the table entry is equivalent to

the target node. In this instance, we get the path C - B - D - E, which is the

shortest path from C to E.

360 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.19. A simple graph

Figure 8.20. The shortest paths lookup table
for the graph shown in Figure 8.19

TLFeBOOK

The source code to create such a table can be found in the file common/

graph/HandyGraphFunctions.h. It will create an all-pairs lookup table for

any graph type with an interface similar to SparseGraph. It looks like this:

template <class graph_type>
std::vector<std::vector<int> > CreateAllPairsTable(const graph_type& G)
{
enum {no_path = -1};

//create a 2D table of elements all set to the enumerated value no_path
std::vector<int> row(G.NumNodes(), no_path);

std::vector<std::vector<int> > shortest_paths(G.NumNodes(), row);

for (int source=0; source<G.NumNodes(); ++source)
{
//calculate the SPT for this node
Graph_SearchDijkstra<graph_type> search(G, source);

std::vector<const GraphEdge*> spt = search.GetSPT();

//now that we have the SPT it's easy to work backward through it to find
//the shortest paths from each node to this source node
for (int target = 0; target<G.NumNodes(); ++target)
{
if (source == target)
{
shortest_paths[source][target] = target;

}

else
{
int nd = target;

while ((nd != source) && (spt[nd] != 0))
{
shortest_paths[spt[nd]->From][target]= nd;

nd = spt[nd]->From;
}

}
}//next target node

}//next source node

return shortest_paths;
}

Precalculated Costs

Sometimes it’s necessary for a game agent to calculate the cost of traveling

from one place to another. For example, together with other features, an

agent may factor in the cost of a game object when deciding if it wants to

pick up that item. A search to determine these costs for each item type each

AI update step will be very expensive if the navigation graph is large

Practical Path Planning | 361

Paths as Nodes or Paths as Edges?

TLFeBOOK

and/or there are many items of the same type. In situations like this a pre-

calculated costs table may prove invaluable. This is constructed in a similar

way to the all-pairs route table discussed in the last section, except this

time the elements of the table represent the total cost to follow the shortest

path from one node to any other. See Figure 8.21.

The code to create such a table is as follows:

template <class graph_type>
std::vector<std::vector<double> > CreateAllPairsCostsTable(const graph_type& G)
{
std::vector<double> row(G.NumNodes(), 0.0);

std::vector<std::vector<double> > PathCosts(G.NumNodes(), row);

for (int source=0; source<G.NumNodes(); ++source)
{
//do the search
Graph_SearchDijkstra<graph_type> search(G, source);

//iterate through every node in the graph and grab the cost to travel to
//that node
for (int target = 0; target<G.NumNodes(); ++target)
{
if (source != target)
{
PathCosts[source][target]= search.GetCostToNode(target);

}
}//next target node

362 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.21. The path cost lookup table for the
graph shown in Figure 8.19

TLFeBOOK

}//next source node

return PathCosts;
}

The Raven bots will make use of cost lookup tables to evaluate goals later

in the book.

� TIP If you look closely at the path cost lookup table shown in Figure 8.21 you
will notice that it is symmetrical about the top-left to bottom-right diagonal. Pro-
vided your graphs are not directed (the cost of traveling from A to B is always
the same as from B to A), you can make the table much more efficient by

storing the table as a one-dimensional array of size i
i =

i = n -

1

(1)

� , where n is the

number of nodes in the graph. (The � symbol, by the way, is the Greek capital
letter Sigma and indicates summation. In this example the Sigma symbol indi-
cates that you should sum all the integers between i=1 and i=(n-1). In other

words, if n is 5, the result of i
i =

i = n -

1

(1)

� would be 1+2+3+4=10).

Time-Sliced Path Planning

An alternative to precalculating lookup tables to lighten the CPU load is to

allocate a fixed amount of CPU resources per update step for all the search

requests and to distribute these resources evenly between the searches. This

is achieved by dividing up the searches over multiple time steps, a tech-

nique known as time slicing. A considerable amount of extra work is

required to get this idea working but it’s worth the effort for some games

because the load on the CPU from the graph searches is guaranteed to be

constant, no matter how many agents are making requests.

� NOTE I’d like to make it clear that time-sliced pathfinding is overkill for a
game with only a handful of agents such as Raven, but it’s a great technique to
consider if your game has dozens or hundreds of agents, and especially if you’re
developing for a console platform, because it helps you to live within the con-
straints of the hardware.

First of all, the Dijkstra and A* searches must be modified in such a way

that they can search a graph over multiple update steps. Then, as agents

request searches, their path planners create instances of the relevant

searches (A* or Dijkstra) and register themselves with a path manager

class. The path manager keeps a list of pointers to all active path planners,

which it iterates through each time step, evenly sharing the available CPU

resources between them. When a search is either completed successfully or

a path is not located, the path planner notifies its owner by sending it a

message. Figure 8.22 shows a UML type sequence diagram of the process.

Practical Path Planning | 363

Paths as Nodes or Paths as Edges?

TLFeBOOK

It’s time to take a detailed look at the modifications required to effect this

process. Let’s start by examining how the A* and Dijkstra’s search algo-

rithm classes are adapted.

Modifying the Search Algorithms to Accommodate

Time-Slicing

The A* and Dijkstra’s search algorithms contain a loop that repeats the fol-

lowing steps:

1. Grab the next node from the priority queue.

2. Add the node to the shortest paths tree.

3. Test to see if the node is the target.

4. If the node is not the target, examine the nodes it is connected to, plac-

ing them on the priority queue when appropriate. If the node is the

target, return success.

We’ll refer to a single iteration of these steps as a search cycle. Because

repeated iterations will eventually complete a search, search cycles can be

used to divide a search over multiple time steps. Consequently, the A* and

Dijkstra’s search algorithm classes are modified to contain a method called

CycleOnce, which contains the code required to undertake a single search

364 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.22. The process sequence for a time-sliced A* search

TLFeBOOK

cycle. This is relatively easy to do by instantiating the priority queue as a

class member and initializing it with the source node index in the construc-

tor. In addition the algorithm must be modified slightly so that CycleOnce

returns an enumerated value indicating the status of the search. The status

can be one of the following: target_found, target_not_found, or

search_incomplete. A client is then able to call CycleOnce repeatedly until

the return value indicates completion of the search.

Here is the listing of the time-sliced A* algorithm’s CycleOnce method.

template <class graph_type, class heuristic>
int Graph_SearchAStar_TS<graph_type, heuristic>::CycleOnce()
{
//if the PQ is empty the target has not been found
if (m_pPQ->empty())
{
return target_not_found;

}

//get lowest cost node from the queue
int NextClosestNode = m_pPQ->Pop();

//put the node on the SPT
m_ShortestPathTree[NextClosestNode] = m_SearchFrontier[NextClosestNode];

//if the target has been found exit
if (NextClosestNode == m_iTarget)
{
return target_found;

}

//now to test all the edges attached to this node
Graph::ConstEdgeIterator EdgeItr(m_Graph, NextClosestNode);

for (const GraphEdge* pE=EdgeItr.beg(); !EdgeItr.end(); pE=EdgeItr.nxt())
{
/* SAME AS IN PREVIOUS A* ALGORITHM */

}

//there are still nodes to explore
return search_incomplete;

}

� TIP If your game utilizes agents deployed in squads or platoons, you don’t need
to plan a path for each member of the platoon every time the platoon needs to
move from A to B; just plan a single path for the platoon leader and make all
the other members of the platoon follow that leader (using an appropriate
steering behavior).

Creating a Common Interface for the Search Algorithms

Given that it’s possible for both A* and Dijkstra’s searches to be used by

the path planner (to search for positions or items respectively), it’s conve-

nient for them to share a common interface. As a result, both the

Practical Path Planning | 365

Paths as Nodes or Paths as Edges?

TLFeBOOK

time-sliced A* class and the time-sliced Dijkstra’s class derive from a vir-

tual class named Graph_SearchTimeSliced.

Here is the declaration of the interface:

template <class edge_type>
class Graph_SearchTimeSliced
{
public:

enum SearchType{AStar, Dijkstra};

private:

SearchType m_SearchType;

public:

Graph_SearchTimeSliced(SearchType type):m_SearchType(type){}

virtual ~Graph_SearchTimeSliced(){}

//When called, this method runs the algorithm through one search cycle. The
//method returns an enumerated value (target_found, target_not_found,
//search_incomplete) indicating the status of the search
virtual int CycleOnce()=0;

//returns the vector of edges that the algorithm has examined
virtual std::vector<const edge_type*> GetSPT()const=0;

//returns the total cost to the target
virtual double GetCostToTarget()const=0;

//returns the path as a list of PathEdges
virtual std::list<PathEdge> GetPathAsPathEdges()const=0;

SearchType GetType()const{return m_SearchType;}
};

The path planner class is now able to instantiate either kind of search and

assign it to a single pointer. The following listing is the updated version of

the Raven_PathPlanner class and illustrates the extra data and methods

required to facilitate the creation of time-sliced path requests.

class Raven_PathPlanner
{
private:

//a pointer to an instance of the current graph search algorithm.
Graph_SearchTimeSliced* m_pCurrentSearch;

/* EXTRANEOUS DETAIL OMITTED */

public:

366 | Chapter 8

Paths as Nodes or Paths as Edges?

TLFeBOOK

//creates an instance of the A* time-sliced search and registers it with
//the path manager
bool RequestPathToItem(unsigned int ItemType);

//creates an instance of the Dijkstra's time-sliced search and registers
//it with the path manager
bool RequestPathToTarget(Vector2D TargetPos);

//the path manager calls this to iterate once though the search cycle
//of the currently assigned search algorithm. When a search is terminated
//the method messages the owner with either the msg_NoPathAvailable or
//msg_PathReady messages.
int CycleOnce()const;

//called by an agent after it has been notified that a search has terminated
//successfully. The method extracts the path from m_pCurrentSearch, adds
//additional edges appropriate to the search type and returns it as a list of
//PathEdges.
Path GetPath();

};

The Raven_PathPlanner::CycleOnce method calls the CycleOnce method of

the currently instantiated search and checks the result. If the result indicates

success or failure, a message is dispatched to the owner of the class to

enable any appropriate action to be taken. To clarify, here is the listing of

that method:

int Raven_PathPlanner::CycleOnce()const
{
assert (m_pCurrentSearch &&

"<Raven_PathPlanner::CycleOnce>: No search object instantiated");

int result = m_pCurrentSearch->CycleOnce();

//let the bot know of the failure to find a path
if (result == target_not_found)
{

Dispatcher->DispatchMsg(SEND_MSG_IMMEDIATELY,
SENDER_ID_IRRELEVANT,
m_pOwner->ID(),
Msg_NoPathAvailable,
NO_ADDITIONAL_INFO);

}

//let the bot know a path has been found
else if (result == target_found)
{
//if the search was for an item type then the final node in the path will
//represent a giver trigger. Consequently, it's worth passing the pointer
//to the trigger in the extra info field of the message. (The pointer
//will just be NULL if no trigger)
void* pTrigger =
m_NavGraph.GetNode(m_pCurrentSearch->GetPathToTarget().back()).ExtraInfo();

Practical Path Planning | 367

Paths as Nodes or Paths as Edges?

TLFeBOOK

Dispatcher->DispatchMsg(SEND_MSG_IMMEDIATELY,
SENDER_ID_IRRELEVANT,
m_pOwner->ID(),
Msg_PathReady,
pTrigger);

}

return result;
}

Let’s now examine the class that manages all the search requests.

The Path Manager

The path manager is a class template called, not surprisingly, PathManager.

When a bot makes a path request via its path planner, the planner creates an

instance of the correct type of search (A* for positions, Dijkstra’s for

types) and registers itself with the path manager. The path manager keeps a

list of all active search requests, which it updates each time step.

Here is its definition:

template <class path_planner>
class PathManager
{
private:

//a container of all the active search requests
std::list<path_planner*> m_SearchRequests;

//this is the total number of search cycles allocated to the manager.
//Each update step these are divided equally among all registered path
//requests
unsigned int m_iNumSearchCyclesPerUpdate;

public:

PathManager(unsigned int NumCyclesPerUpdate);

//every time this is called, the total amount of search cycles available will
//be shared out equally between all the active path requests. If a search
//completes successfully or fails, the method will notify the relevant bot
void UpdateSearches();

//a path planner should call this method to register a search with the
//manager. (The method checks to ensure the path planner is only registered
//once)
void Register(path_planner* pPathPlanner);

//an agent can use this method to remove a search request.
void UnRegister(path_planner* pPathPlanner);

};

The path manager is allocated a number of search cycles it can use to

update all active searches each update step. When UpdateSearches is called,

the allocated cycles are shared equally between the registered path planners

368 | Chapter 8

Paths as Nodes or Paths as Edges?

TLFeBOOK

and each active search’s CycleOnce method is called the appropriate num-

ber of times. When a search ends in success or failure the path manager

removes the search request from its list.

Here is the listing of the method for your perusal.

template <class path_planner>
inline void PathManager<path_planner>::UpdateSearches()
{
int NumCyclesRemaining = m_iNumSearchCyclesPerUpdate;

//iterate through the search requests until either all requests have been
//fulfilled or there are no search cycles remaining for this update step.
std::list<path_planner*>::iterator curPath = m_SearchRequests.begin();
while (NumCyclesRemaining-- && !m_SearchRequests.empty())
{
//make one search cycle of this path request
int result = (*curPath)->CycleOnce();

//if the search has terminated remove from the list
if ((result == target_found) || (result == target_not_found))
{
//remove this path from the path list
curPath = m_SearchRequests.erase(curPath);

}
//move on to the next
else
{
++curPath;

}

//the iterator may now be pointing to the end of the list. If this is so,
// it must be reset to the beginning.
if (curPath == m_SearchRequests.end())
{
curPath = m_SearchRequests.begin();

}

}//end while
}

� NOTE Instead of restricting the path manager to a number of search cycles,
you may prefer to allocate a specific amount of time to use each update for the
path searches. This is easily accomplished by adding code to exit the
PathPlanner::UpdateSearches method when the allotted time has been
exceeded.

Creating and Registering a Search

As we have seen, each Raven bot owns an instance of the Raven_Path-

Planner class. To permit the creation of time-sliced path requests, this class

has been modified to own a pointer to an instance of a time-sliced search

algorithm (an instance of the Graph_SearchDijkstra_TS class when a bot

requests a path to an item type and an instance of the Graph_SearchAStar_

Practical Path Planning | 369

Paths as Nodes or Paths as Edges?

TLFeBOOK

TS class if a bot requests a path to a target position). These instances are

created and registered with the search manager in the methods Request-

PathToTarget or RequestPathToItem.

Here is how the request for an item search is made:

bool Raven_PathPlanner:: RequestPathToItem(unsigned int ItemType)
{
//clear the waypoint list and delete any active search
GetReadyForNewSearch();

//find the closest visible node to the bot's position
int ClosestNodeToBot = GetClosestNodeToPosition(m_pOwner->Pos());

//remove the destination node from the list and return false if no visible
//node found. This will occur if the navgraph is badly designed or if the bot
//has managed to get itself *inside* the geometry (surrounded by walls)
//or an obstacle
if (ClosestNodeToBot == no_closest_node_found)
{
return false;

}

//create an instance of the Dijkstra search class
typedef FindActiveTrigger<Trigger<Raven_Bot> > term_con;
typedef Graph_SearchDijkstra_TS<Raven_Map::NavGraph, term_con> DijSearch;

m_pCurrentSearch = new DijSearch(m_pWorld->GetNavigationGraph(),
ClosestNodeToBot,
ItemType);

//and register the search with the path manager
m_pWorld->GetPathManager()->Register(this);

return true;
}

Once registered, the path manager will call the CycleOnce method of the

relevant algorithm each update step until the search terminates in success

or failure. When an agent is notified that a path has been found, it grabs the

path from the path planner by calling the Raven_PathPlanner::GetPath

method.

Preventing the Twiddling of Thumbs

One consequence of time-sliced path planning is that there will be a delay

from the time an agent requests a path to the time it receives notification

that the search has been successful or unsuccessful. This delay is propor-

tional to the size of the navigation graph, the number of search cycles per

update allocated to the search manager, and the number of active search

requests. The delay may be very small, just a few update steps, or it may be

large, even as much as a couple of seconds. For some games it may be

okay for an agent to sit around twiddling its thumbs during this period, but

for many it will be important that the agent responds immediately in some

370 | Chapter 8

Paths as Nodes or Paths as Edges?

TLFeBOOK

way. After all, when a game player clicks on an NPC and then clicks on a

location for that NPC to move to, he expects it to react without delay and

will not be impressed with the game if this does not happen. So what is our

poor little game agent to do in this situation? It must start moving before a

path has been formulated, but where to?

A simple option, and the one I have used for Raven, is for the agent to

seek toward its goal until it receives notification from the search manager

that a path is ready, at which time it follows the path. However, if the bot

requests a search to an item type, then the goal location is unknown until a

search is completed (because there may be many instances of that item). In

this situation the bot simply wanders until it receives notification. This

works fine in most cases but it does present another problem: By the time a

path is formulated, an agent may have moved quite a distance from the

position where the search was initially requested. Consequently, the first

few nodes of the path returned from the planner will be located in such a

way that the agent will need to backtrack to follow them. For an example

of this, examine Figure 8.23. In A the bot has requested a path from the

path planner and during the delay is seeking toward the target. Figure 8.23

B shows the position at the time when the bot receives notification that a path

has been formulated. As you can see, left to its own devices the bot will turn

around and backtrack to follow the waypoints. Bad bot! Naughty bot!

Fortunately, we already have a solution to this problem. When the smooth-

ing algorithm described earlier is used on the path, all the excess waypoints

are automatically deleted, resulting in the more natural-looking path shown

in Figure 8.24. Time-sliced path planning therefore should always be used

in conjunction with some sort of path smoothing.

Practical Path Planning | 371

Paths as Nodes or Paths as Edges?

Figure 8.23. A bot seeks, then backtracks (bot shown at increased scale for clarity).

TLFeBOOK

You can observe these effects firsthand by running the Raven_TimeSlicing

demo and watching the bots navigate the environment with smoothing

turned on or off. (The number of search cycles available to the search man-

ager per update has been made extremely small to highlight the effect.)

� TIP If you see that your agents are often following each other in single file to
reach a location or item, and you are utilizing A* to generate the paths, you can
vary the path produced by the search algorithm by adding some noise to the
heuristic. This will result in slightly different paths for the same search. An exam-
ple of such a heuristic can be found in the file common/graph/AStarHeuristic-
Policies.h.

Hierarchical Pathfinding

Another technique available to cut down the CPU overhead of graph

searches is named hierarchical pathfinding. It works in a similar way to

how humans move around their environment. (Well, not really, but it

makes for a good example�.) For instance, let’s say you wake up in the

middle of the night and decide to fetch a glass of milk. At one level of

awareness you will probably follow a path that traverses a series of rooms

(e.g., bedroom to top of stairs to bottom of stairs to hallway to dining room

to kitchen) but at another you will be planning the paths between the rooms

as you reach them. For instance, when you arrive at the dining room your

brain will automatically calculate a path into the kitchen that may involve

walking around the dining table, avoiding a dresser full of plates, opening a

door, and trying not to kick the dog’s water bowl. As such your mind is

planning paths on several different levels — at different granularities.

Another way of looking at it is that at one level the path is planned using a

series of areas (dining room, kitchen, etc.), and at the lower level it is

planned using a series of points through those areas.

372 | Chapter 8

Paths as Nodes or Paths as Edges?

Figure 8.24. Result after smoothing

TLFeBOOK

This concept can be replicated in a computer by designing a path plan-

ner that utilizes two superimposed navgraphs of different granularities —

one coarse, one fine. For example, imagine a strategy game based upon the

American Civil War. A hierarchical path planner for this game could utilize

a coarsely granulated graph to represent connectivity information at the

state level and a finely granulated one at the level of towns and roads.

When a military unit requests a path from Atlanta to Richmond, the path

planner determines what states these towns lie in — Georgia and Virginia

— and calculates a path between them using the state navgraph: Georgia to

South Carolina to North Carolina to Virginia. This path can be calculated

extremely quickly as the graph only contains a few dozen nodes, one for

each state represented in the game. The planner then uses the finely grained

navgraph to calculate paths between the states as and when the unit

requires them. In this way searches of the finely grained graph are kept

shallow, and therefore quick.

� NOTE Although the use of two graph layers is the most typical implementa-
tion of hierarchical pathfinding, there’s nothing to prevent you from using more
layers if your game environment is complex enough to warrant it.

Applying the same idea to the Raven_DM1 map, the path planner could

use the graphs shown in Figure 8.25. The graph on the left can be used to

quickly determine paths at the “room” level and the one on the right to

determine the paths between the rooms, at the “point” level.

Of course, this is a trivial example; you should only consider hierarchical

pathfinding when a game requires path planning over large and/or complex

environments.

Practical Path Planning | 373

Paths as Nodes or Paths as Edges?

Figure 8.25. Hierarchical path planning

TLFeBOOK

� NOTE It’s worth mentioning that a kind of two-tiered hierarchical path-
finding is implicit when a world is partitioned using a navmesh. (Note how
the high-level graph in Figure 8.25 closely resembles the navmesh shown in
Figure 8.3).

Getting Out of Sticky Situations

A problem players of computer games witness far too regularly is that of

NPCs getting stuck. This can happen for all sorts of reasons. In particular,

it occurs frequently when an environment contains lots of agents and the

geometry has bottlenecks. A bottleneck could be a small space between

two obstacles, a narrow doorway, or a tight corridor. If too many agents

simultaneously attempt to navigate a bottleneck, then some of them may be

pushed backward and end up wedged against a wall or obstacle. Let’s have

a look at this happening with a simple example.

Figure 8.26 shows a bot — we’ll call him Eric — following the path A

to B to C. It also shows a number of other bots traveling in the opposite

direction. Eric is in for a nasty surprise.

In Figure 8.27, Eric has reached waypoint A so it’s removed from the list

and B assigned as the next waypoint. Unfortunately, as this happens, the

other bots arrive and start to jostle Eric back through the doorway.

In Figure 8.28, Eric has been pushed all the way back out of the doorway,

but he still keeps seeking to waypoint B. Silly old Eric.

374 | Chapter 8

Getting Out of Sticky Situations

Figure 8.26

Figure 8.27

TLFeBOOK

Finally Eric ends up wedged against the wall, struggling furiously, still

hopelessly trying to seek to his next waypoint as shown in Figure 8.29.

Tsk, tsk.

Obviously we don’t want this sort of thing to happen, so any AI worth its

salt should make regular tests for such situations and plan accordingly. But

how to do this? Well, one way is for the agent to calculate the distance to

its current waypoint each update step. If this value remains about the same

or consistently increases, then it’s a fair bet the agent is either stuck or

being pushed backward by the separation force from neighboring agents.

Another way is to calculate an expected arrival time for each waypoint and

replan if the current time exceeds the expected. This is the approach

adopted in Raven. It is very simple to implement. Whenever a new edge is

pulled off the path, the expected time to traverse it is calculated as follows

(in pseudocode):

Edge next = GetNextEdgeFromPath(path)

//in a simple navgraph the edge cost is the length of the edge
ExpectedTimeToReachPos = next.cost / Bot.MaxSpeed

//factor in a margin of error
MarginOfError = 2.0;

ExpectedTimeToReachPos += MarginOfError;

Practical Path Planning | 375

Getting Out of Sticky Situations

Figure 8.28

Figure 8.29

TLFeBOOK

The margin of error is used to take into account any reactive behavior the

bot undertakes during its journey, such as veering to the side to avoid

another bot or jostling in doorways and narrow passages. This margin

should be small enough to prevent your agents from looking dumb, yet

large enough to prevent the agents from frequently requesting new paths

from the path planner.

� NOTE You can observe bots getting stuck if you run the Raven_BotsGetting-
Stuck demo. In the demo several bots are exploring the map. An arrow is drawn
from their current position to their current destination. As they jostle around the
doorways some of them will get stuck, a few of them permanently.

Summing Up

This chapter has presented many methods and techniques related to path

planning. Most of the ideas have been incorporated into the Raven game

framework so you can see them working in situ and examine the code to

see how it all works together. Please note that this is only by way of exam-

ple. You wouldn’t normally use all these techniques at one time. Just use

whatever your game demands and no more.

Practice Makes Perfect

When moving to a target position, the Raven bots fill the gap created by the

time required to undertake a graph search by seeking to that position. This

is cheap and easy to implement, but in games with hundreds of agents or

huge navgraphs the delay may be too long for this approach to be effective.

Given too long a delay, the agents will start walking stupidly into walls and

other obstacles. Also there are times when the best path to a position

involves walking away from, or perpendicular to, the target before bending

back around to face it. See Figure 8.30.

376 | Chapter 8

Summing Up

Figure 8.30. Problem situations

TLFeBOOK

Seeking in situations like this for any length of time is a definite no-no.

What agents must do instead is determine a partial path to the target posi-

tion. That is to say, the A* algorithm must be modified to return the path to

the node closest to the target after a user-defined number of search cycles

or search depth has been reached. The agent can then follow this path until

the complete path is created. This will produce much better-looking behav-

ior and reduce the chances of making the agent look stupid.

Your mission, should you choose to accept it, is to modify the

PathPlanner project to produce partial paths between the source and target

nodes.

Practical Path Planning | 377

Summing Up

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Chapter 9

Goal-Driven Agent Behavior

S o far, we’ve examined agents utilizing a finite state machine-based

architecture where behavior is decomposed into several states, each of

which contains the logic to enable transitions to other states. This chapter

introduces a subtly different approach. Instead of states, an agent’s behav-

ior is defined as a collection of hierarchical goals.

Goals are either atomic or composite in nature. Atomic goals define a

single task, behavior, or action, such as seek to position or reload weapon,

whereas composite goals are comprised of several subgoals, which in turn

may be either atomic or composite, thereby defining a nested hierarchy.

Composites usually describe more complex tasks than their atomic breth-

ren such as build weapons factory or retreat and find cover. Both types

of goals are able to monitor their status and have the capability to replan if

they fail.

This hierarchical architecture provides the AI programmer with an intu-

itive mechanism for defining agent behavior because it shares many

similarities with the human thought process. Humans select high-level

abstract goals based upon their needs and desires and then recursively

decompose them into a plan of action that can be followed. For instance,

on a rainy day you might decide to visit the cinema. This is an abstract

goal that cannot be acted upon until it’s decomposed into smaller subgoals

such as leave house, travel to cinema, and enter cinema. In turn, each of

these is abstract and must be broken down further. This process is usually

transparent of course, but we occasionally become conscious of it when the

decomposition involves choice. For example, the subgoal travel to cinema

can be satisfied in any number of ways — you may travel there by car,

public transport, cycle, or on foot — and you may find yourself spending a

few moments deliberating your choice. (This is especially true if you are

collaborating with several other humans to satisfy a goal — think back to

the last time you visited a video/DVD rental store with your friends. Argh!)

This process continues until the goals have been decomposed into basic

motor actions your body is able to execute. The leave house goal, for

example, can be broken down into these component goals: walk to closet,

open closet door, remove coat from coat hook, put coat on, walk to

kitchen, put shoes on, open door, walk outside, and so on. Furthermore,

humans don’t like to squander energy so we generally don’t waste precious

379
TLFeBOOK

calories thinking about a goal until it is absolutely necessary. For instance,

you wouldn’t decide how to open a can of beans until you have it in your

hand or how to tie your shoelaces until your shoes are on your feet.

A goal-directed agent mimics this behavior. Each think update the agent

examines the game state and selects from a set of predefined high-level

goals, or strategies — the one it believes will most likely enable it to sat-

isfy its strongest desire (usually, to win the game). The agent will then

attempt to follow this goal by decomposing it into any constituent

subgoals, satisfying each one in turn. It will continue doing this until the

goal is either satisfied or has failed, or until the game state necessitates a

change of strategy.

The Return of Eric the Brave

Let’s walk through an example using our favorite game agent Eric, who

has recently found employment in the RPG “Dragon Slayer 2.” Eric’s AI

programmer has created several strategies for him to select from including

Defend from Dragon, Attack Dragon, Buy Sword, Get Food, and Get

Drunk. These strategies represent high-level abstract goals that are com-

prised of smaller subgoals such as Create Path, Follow Path, Traverse

Path Edge, Stab Dragon, Slice Dragon, Run Away, and Hide. Therefore,

to complete a strategy Eric must decompose it into its relevant subgoals

and satisfy each in turn (decomposing them further if necessary).

Eric has just entered the game world and since he’s not carrying a

weapon and is therefore feeling vulnerable, his strongest desire is to find

some sort of pointy stick before a dragon spots him. His “brain” (a special

type of goal capable of making decisions) considers all the strategies avail-

able and finds that Buy Sword fits the bill admirably, so this is assigned as

the goal to pursue until he elects otherwise. See Figure 9.1.

Eric cannot act upon this goal though because at this level it’s too abstract

and needs to be decomposed — or expanded, if you prefer to think of it

that way — into its constituent subgoals. For the purposes of this example

we’ll assume Buy Sword consists of the subgoals shown in Figure 9.2. To

380 | Chapter 9

The Return of Eric the Brave

Figure 9.1. The Buy Sword goal slotted into Eric’s brain

TLFeBOOK

obtain a sword Eric must first find some gold, then walk to the smithy

where the blacksmith will gladly accept it as payment.

Agents satisfy goals consecutively so Go To Smithy will not be evaluated

until Get Gold has been completed. This is another composite goal, how-

ever, so to complete it Eric must expand the hierarchy further. Get Gold

consists of the subgoals Plan Path (Goldmine), Follow Path, and Pick

Up Nugget. See Figure 9.3.

The Plan Path (Goldmine) goal is satisfied by sending a request to the

path planner to plan a path to the gold mine. It is then removed from the

goal list. The next one Eric considers is Follow Path, which can be further

decomposed into several atomic Traverse Edge goals, each of which con-

tain the logic required to follow an edge of the path leading to the gold

mine. See Figure 9.4.

Goal-Driven Agent Behavior | 381

The Return of Eric the Brave

Figure 9.2. The Buy Sword goal is expanded into its constituent parts.

Figure 9.3. Expansion of the Get Gold goal

TLFeBOOK

This process of decomposing and satisfying goals continues until the entire

hierarchy has been traversed and Eric is left with a gleaming new sword in

his hands.

Well, that’s the what; let’s now look at the how.

Implementation

Nested object hierarchies, such as those required to implement hierarchical

goal-based agents, are commonly found in software. For instance, word

processors like the one I’m using to write this book store documents as col-

lections of atomic and composite components. The smallest components,

alphanumeric characters, are grouped together into increasingly complex

collections. For example, the word “philosophy” is a composite component

comprised of several atomic components, and the sentence “I think there-

fore I am” is a composite component comprised of three composite and

two atomic objects. In turn, sentences can be grouped together into para-

graph objects, which can be grouped into pages and so on. I’m sure you get

the idea. The important point to note is that the application is able to handle

composite and atomic objects uniformly, regardless of their size or com-

plexity — it’s just as easy to cut and paste a word as it is several pages of

text. This is exactly the property required by hierarchical goals. But how do

we code it?

The composite design pattern provides a solution. It works by defining

an abstract base class that represents both composite and atomic objects.

This enables clients to manipulate all goals identically, no matter how sim-

ple or complex they may be. See Figure 9.5.

382 | Chapter 9

Implementation

Figure 9.4. Expanding the Follow Path goal

TLFeBOOK

The figure clearly shows how Composite objects aggregate instances of

Components, which in turn may be either Composite or Atomic. Notice how

Composite objects forward client requests to their children. In this arche-

typal example requests are forwarded to all children. However, other

designs may require a slightly different implementation, as is the case with

goals.

Figure 9.6 shows the composite pattern applied to the design of hierar-

chical goals. Subgoals are added by pushing them onto the front of the

subgoal container and are processed in LIFO (last in, first out) order in the

same way as a stack-like data structure. Notice how client requests are only

forwarded to the frontmost subgoal, ensuring that subgoals are evaluated in

sequence.

Goal-Driven Agent Behavior | 383

Implementation

Figure 9.5 The archetypal composite design pattern

Figure 9.6. The composite pattern applied to goals

TLFeBOOK

Goal objects share a lot of similarities with the State class. They have a

method for handling messages just like State, and Activate, Process, and

Terminate methods, which share similarities with the Enter, Execute, and

Exit methods of State.

The Activate method contains initialization logic and represents the

planning phase of the goal. Unlike the State::Enter method though, which

is only called once when a state first becomes current, a Goal is able to call

its Activate method any number of times to replan if the situation

demands.

Process, which is executed each update step, returns an enumerated

value indicating the status of the goal. This can be one of four values:

� inactive: The goal is waiting to be activated.

� active: The goal has been activated and will be processed each

update step.

� completed: The goal has completed and will be removed on the next

update.

� failed: The goal has failed and will either replan or be removed on

the next update.

The Terminate method undertakes any necessary tidying up before a goal is

exited and is called just before a goal is destroyed.

In practice, a chunk of the logic implemented by composite goals is

common to all composites and can be abstracted out into a Goal_Composite

class, which all concrete composite goals can inherit from, resulting in the

final design fleshed out in Figure 9.7.

The UML diagrams do an adequate job of describing the Goal class hier-

archy so I won’t waste paper listing their declarations, but I think it will be

helpful if I list the source for a couple of the Goal_Composite methods.

384 | Chapter 9

Implementation

TLFeBOOK

Goal_Composite::ProcessSubgoals
All composite goals call this method each update step to process their

subgoals. The method ensures that all completed and failed goals are

removed from the list before processing the next subgoal in line and return-

ing its status. If the subgoal list is empty, completed is returned.

template <class entity_type>
int Goal_Composite<entity_type>::ProcessSubgoals()
{
//remove all completed and failed goals from the front of the subgoal list
while (!m_SubGoals.empty() &&

(m_SubGoals.front()->isComplete() || m_SubGoals.front()->hasFailed()))
{
m_SubGoals.front()->Terminate();
delete m_SubGoals.front();
m_SubGoals.pop_front();

Goal-Driven Agent Behavior | 385

Implementation

Figure 9.7. The final design. The figure shows three examples of concrete classes used
by the Raven bots.

TLFeBOOK

}

//if any subgoals remain, process the one at the front of the list
if (!m_SubGoals.empty())
{
//grab the status of the frontmost subgoal
int StatusOfSubGoals = m_SubGoals.front()->Process();

//we have to test for the special case where the frontmost subgoal
//reports "completed" and the subgoal list contains additional goals.
//When this is the case, to ensure the parent keeps processing its
//subgoal list,the "active" status is returned
if (StatusOfSubGoals == completed && m_SubGoals.size() > 1)
{
return active;

}

return StatusOfSubGoals;
}

//no more subgoals to process - return "completed"
else
{
return completed;

}
}

Goal_Composite::RemoveAllSubgoals
This method clears the subgoal list. It ensures that all subgoals are

destroyed cleanly by calling each one’s Terminate method before deletion.

template <class entity_type>
void Goal_Composite<entity_type>::RemoveAllSubgoals()
{
for (SubgoalList::iterator it = m_SubGoals.begin();

it != m_SubGoals.end();
++it)

{
(*it)->Terminate();

delete *it;
}

m_SubGoals.clear();
}

� NOTE Some of you might be wondering how atomic goals implement the
AddSubgoal method. After all, this method is meaningless in this context
(because an atomic goal cannot by definition aggregate child goals), but it still
has to be implemented in order to provide the common interface we require.

Since clients should know if a goal is composite or not and therefore
shouldn’t ever call AddSubgoal on an atomic goal, I’ve chosen for the method
to throw an exception.

386 | Chapter 9

Implementation

TLFeBOOK

Examples of Goals Used by Raven Bots

The Raven bots utilize the goals listed in Table 9.1 to define their behavior.

Table 9.1 Goals used by Raven bots

Composite Goals Atomic Goals

Goal_Think Goal_Wander

Goal_GetItem Goal_SeekToPosition

Goal_MoveToPosition Goal_TraverseEdge

Goal_FollowPath Goal_DodgeSideToSide

Goal_AttackTarget

Goal_Explore

Goal_HuntTarget

Goal_Think is the highest-level goal of all. Each bot instantiates a copy of

this goal, which persists until the bot is destroyed. Its task is to select

between other high-level (strategy) goals according to their suitability to

the current game state. We’ll be taking a closer look at Goal_Think shortly,

but first I think it will be a good idea to examine the code of a few of the

other goals so you get a feel for how they work.

Goal_Wander
This is the easiest goal to understand and the simplest in a Raven bot’s pal-

ette. It is an atomic goal that activates the wander steering behavior. Here

is its declaration.

class Goal_Wander : public Goal<Raven_Bot>
{
public:

Goal_Wander(Raven_Bot* pBot):Goal<Raven_Bot>(pBot, goal_wander){}

//must be implemented
void Activate();
int Process();
void Terminate();

};

As you can see, the declaration is very straightforward. The class inherits

from Goal and has methods that implement Goal’s interface. Let’s take a

look at each method in turn.

void Goal_Wander::Activate()
{
m_Status = active;

Goal-Driven Agent Behavior | 387

Examples of Goals Used by Raven Bots

TLFeBOOK

m_pOwner->GetSteering()->WanderOn();
}

The Activate method simply turns on the wander steering behavior (see

Chapter 3 if you need a refresher) and sets the goal’s status to active.

int Goal_Wander::Process()
{
//if status is inactive, call Activate() and set status to active
ActivateIfInactive();

return m_Status;
}

Goal_Wander::Process is just as straightforward. ActivateIfInactive is

called at the beginning of every goal’s Process logic. If a goal’s status is

inactive (as it always will be the first time Process is called because

m_Status is set to inactive in the constructor), the Activate method is

called, thereby initializing the goal.

Finally, the Terminate method switches the wander behavior off.

void Goal_Wander::Terminate()
{
m_pOwner->GetSteering()->WanderOff();

}

Now let’s examine a more complex atomic goal.

Goal_TraverseEdge
This directs a bot along a path edge and continuously monitors its progress

to ensure it doesn’t get stuck. To facilitate this, along with a local copy of

the path edge, it owns data members for recording the time the goal is acti-

vated and the time the bot is expected to take to traverse the edge. It also

owns a Boolean data member to record whether the edge is the last in the

path. This value is needed to determine what steering behavior should be

used to traverse the edge (seek for normal path edges, arrive for the last).

Here’s its declaration:

class Goal_TraverseEdge : public Goal<Raven_Bot>
{
private:

//the edge the bot will follow
PathEdge m_Edge;

//true if m_Edge is the last in the path.
bool m_bLastEdgeInPath;

//the estimated time the bot should take to traverse the edge
double m_dTimeExpected;

//this records the time this goal was activated
double m_dStartTime;

388 | Chapter 9

Examples of Goals Used by Raven Bots

TLFeBOOK

//returns true if the bot gets stuck
bool isStuck()const;

public:

Goal_TraverseEdge(Raven_Bot* pBot,
PathEdge edge,
bool LastEdge);

//the usual suspects
void Activate();
int Process();
void Terminate();

};

Prior to determining the estimated time required to traverse it, the Activate

method queries the flag field of the graph edge to ascertain if any special

terrain type is associated with it — mud, snow, water, etc. — and the bot’s

behavior is changed accordingly. (This feature is not used by Raven but I

wanted to show you how to handle it should your game use specific terrain

types.)

The method ends with code for activating the appropriate steering

behavior. Here’s the source:

void Goal_TraverseEdge::Activate()
{
m_Status = active;

//the edge behavior flag may specify a type of movement that necessitates a
//change in the bot's behavior as it follows this edge
switch(m_Edge.GetBehaviorFlag())
{
case NavGraphEdge::swim:
{
m_pOwner->SetMaxSpeed(script->GetDouble("Bot_MaxSwimmingSpeed"));

//set appropriate animation
}

break;

case NavGraphEdge::crawl:
{

m_pOwner->SetMaxSpeed(script->GetDouble("Bot_MaxCrawlingSpeed"));

//set appropriate animation
}

break;
}

//record the time the bot starts this goal
m_dStartTime = Clock->GetCurrentTime();

Goal-Driven Agent Behavior | 389

Examples of Goals Used by Raven Bots

TLFeBOOK

//calculate the expected time required to reach this waypoint. This value
//is used to determine if the bot becomes stuck
m_dTimeExpected =
m_pOwner->CalculateTimeToReachPosition(m_Edge.GetDestination());

//factor in a margin of error for any reactive behavior. 2 seconds
//should be plenty
static const double MarginOfError = 2.0;

m_dTimeExpected += MarginOfError;

//set the steering target
m_pOwner->GetSteering()->SetTarget(m_Edge.GetDestination());

//Set the appropriate steering behavior. If this is the last edge in the path
//the bot should arrive at the position it points to, else it should seek
if (m_bLastEdgeInPath)
{

m_pOwner->GetSteering()->ArriveOn();
}

else
{
m_pOwner->GetSteering()->SeekOn();

}
}

Once the goal has been activated it’s a straightforward matter to process it.

Each time the Process method is called, the code tests to see if the bot has

become stuck or reached the end of the edge and sets m_Status accordingly.

int Goal_TraverseEdge::Process()
{
//if status is inactive, call Activate()
ActivateIfInactive();

//if the bot has become stuck return failure
if (isStuck())
{
m_Status = failed;

}

//if the bot has reached the end of the edge return completed
else
{
if (m_pOwner->isAtPosition(m_Edge.GetDestination()))
{
m_Status = completed;

}
}

return m_Status;
}

390 | Chapter 9

Examples of Goals Used by Raven Bots

TLFeBOOK

The Terminate method turns off the steering behaviors and resets the bot’s

maximum speed back to normal.

void Goal_TraverseEdge::Terminate()
{
//turn off steering behaviors
m_pOwner->GetSteering()->SeekOff();
m_pOwner->GetSteering()->ArriveOff();

//return max speed back to normal
m_pOwner->SetMaxSpeed(script->GetDouble("Bot_MaxSpeed"));

}

Let’s now move on to examine some composite goals.

Goal_FollowPath
This directs a bot along a path by repeatedly popping edges from the front

of the path and pushing traverse edge type goals onto the front of its

subgoal list.

Here’s its declaration:

class Goal_FollowPath : public Goal_Composite<Raven_Bot>
{
private:

//a local copy of the path returned by the path planner
std::list<PathEdge> m_Path;

public:

Goal_FollowPath(Raven_Bot* pBot, std::list<PathEdge> path);

//the usual suspects
void Activate();
int Process();
void Terminate(){}

};

In addition to having specific terrain types associated with them, graph

edges may also require a bot to use a specific action to move along them.

For example, an edge may require that an agent fly, jump, or even use a

grappling hook to move along it. This type of movement constraint cannot

be handled by simply adjusting the maximum speed and animation cycle of

the agent. Instead, a unique traverse edge type goal must be created for

each action. The follow path goal can then query the edge flags within its

Activate method and add the correct type of traverse edge goal to its

subgoal list as it pops edges from the path. To clarify, here’s the listing for

the Activate method:

void Goal_FollowPath::Activate()
{
m_iStatus = active;

Goal-Driven Agent Behavior | 391

Examples of Goals Used by Raven Bots

TLFeBOOK

//get a reference to the next edge
PathEdge edge = m_Path.front();

//remove the edge from the path
m_Path.pop_front();

//some edges specify that the bot should use a specific behavior when
//following them. This switch statement queries the edge behavior flag and
//adds the appropriate goals(s) to the subgoal list.
switch(edge.GetBehaviorFlags())
{
case NavGraphEdge::normal:
{
AddSubgoal(new Goal_TraverseEdge(m_pOwner, edge, m_Path.empty()));

}

break;

case NavGraphEdge::goes_through_door:
{

//also add a goal that is able to handle opening the door
AddSubgoal(new Goal_NegotiateDoor(m_pOwner, edge, m_Path.empty()));

}

break;

case NavGraphEdge::jump:
{
//add subgoal to jump along the edge

}

break;

case NavGraphEdge::grapple:
{
//add subgoal to grapple along the edge

}

break;

default:

throw
std::runtime_error("<Goal_FollowPath::Activate>: Unrecognized edge type");

}
}

For efficiency, notice how only one edge at a time is removed from the

path. To facilitate this, the Process method calls Activate each time it

detects its subgoals are complete and the path is not empty. Here’s how:

int Goal_FollowPath::Process()
{
//if status is inactive, call Activate()

392 | Chapter 9

Examples of Goals Used by Raven Bots

TLFeBOOK

ActivateIfInactive();

//if there are no subgoals and there is still an edge left to traverse, add
//the edge as a subgoal
m_Status = ProcessSubgoals();

//if there are no subgoals present check to see if the path still has edges.
//if it does call Activate to grab the next edge.
if (m_Status == completed && !m_Path.empty())
{
Activate();

}

return m_Status;
}

The Goal_FollowPath::Terminate method contains no logic since there is

nothing to tidy up.

� TIP When the Raven executable is run, there’s an option to view the goal list of
a selected agent in the menu. See Screenshot 9.1.

The figure is in grayscale but when you run the demo active goals will be drawn
in blue, completed in green, inactive in black, and failed in red. The indenting
shows how the goals are nested.

Goal_MoveToPosition
This composite goal is used to move a bot to any position on a map. Here

is its declaration:

class Goal_MoveToPosition : public Goal_Composite<Raven_Bot>
{
private:

//the position the bot wants to reach
Vector2D m_vDestination;

public:

Goal-Driven Agent Behavior | 393

Examples of Goals Used by Raven Bots

Screenshot 9.1

TLFeBOOK

Goal_MoveToPosition(Raven_Bot* pBot, Vector2D pos);

//the usual suspects
void Activate();
int Process();
void Terminate(){}

//this goal is able to accept messages
bool HandleMessage(const Telegram& msg);

};

Goal_MoveToPosition is instantiated with the location of the desired destina-

tion. When the goal is activated it requests a path to that position from the

bot’s path planner. Since time-sliced pathfinding is used, the bot may have

a short wait until the path is formulated so in the interim Goal_SeekTo-

Position is added. (See the section in Chapter 8 called “Preventing the

Twiddling of Thumbs” for further explanation.)

void Goal_MoveToPosition::Activate()
{
m_Status = active;

//make sure the subgoal list is clear
RemoveAllSubgoals();

//requests a path to the target position from the path planner. Because, for
//demonstration purposes, the Raven path planner uses time slicing when
//processing the path requests, the bot may have to wait a few update cycles
//before a path is calculated. Consequently, for appearance sake, it just
//seeks directly to the target position while it's awaiting notification
//that the path planning request has succeeded/failed
if (m_pOwner->GetPathPlanner()->RequestPathToTarget(m_vDestination))
{
AddSubgoal(new Goal_SeekToPosition(m_pOwner, m_vDestination));

}
}

Once the path is created, the path planner will notify the bot via a telegram,

which will be forwarded to any active goals. Therefore Goal_MoveTo-

Position must have the capability to handle messages, enabling it to

respond appropriately — either by adding the follow path goal to its

subgoal list or by signaling failure if the planner reports no path is possible.

The listing is shown below. (Note how the message is forwarded to goals

farther down the hierarchy before this goal attempts to handle it.)

bool Goal_MoveToPosition::HandleMessage(const Telegram& msg)
{
//first, pass the message down the goal hierarchy
bool bHandled = ForwardMessageToFrontMostSubgoal(msg);

//if the msg was not handled, test to see if this goal can handle it
if (bHandled == false)
{

394 | Chapter 9

Examples of Goals Used by Raven Bots

TLFeBOOK

switch(msg.Msg)
{
case Msg_PathReady:

//clear any existing goals
RemoveAllSubgoals();

AddSubgoal(new Goal_FollowPath(m_pOwner,
m_pOwner->GetPathPlanner()->GetPath()));

return true; //msg handled

case Msg_NoPathAvailable:

m_Status = failed;

return true; //msg handled

default: return false;
}

}

//handled by subgoals
return true;

}

Goal_MoveToPosition’s subgoals are processed and continuously monitored

for failure. If one of the subgoals fails, then this goal reactivates itself in

order to replan.

int Goal_MoveToPosition::Process()
{
//if status is inactive, call Activate() and set status to active
ActivateIfInactive();

//process the subgoals
m_Status = ProcessSubgoals();

//if any of the subgoals have failed then this goal replans
ReactivateIfFailed();

return m_Status;
}

Let’s now move on to see how one of the other strategy-level goals works:

Goal_AttackTarget.

Goal_AttackTarget
A bot selects this strategy when it’s feeling healthy and well armed enough

to attack its current target. Goal_AttackTarget is a composite goal and its

declaration is straightforward.

Goal-Driven Agent Behavior | 395

Examples of Goals Used by Raven Bots

TLFeBOOK

class Goal_AttackTarget : public Goal_Composite<Raven_Bot>
{
public:

Goal_AttackTarget(Raven_Bot* pOwner);

void Activate();

int Process();

void Terminate(){m_iStatus = completed;}
};

All the action happens in the Activate method. First of all any existing

subgoals are removed and then a check is made to ensure the bot’s target is

still current. This is essential because the target may die or move out of the

bot’s sensory horizon while this goal is still active. In the event of this hap-

pening the goal must exit.

void Goal_AttackTarget::Activate()
{
m_iStatus = active;

//if this goal is reactivated then there may be some existing subgoals that
//must be removed
RemoveAllSubgoals();

//it is possible for a bot's target to die while this goal is active so we
//must test to make sure the bot always has an active target
if (!m_pOwner->GetTargetSys()->isTargetPresent())
{

m_iStatus = completed;

return;
}

Next the bot queries its targeting system to find out if it has a direct shot at

the target. If a shot is possible it selects a movement tactic to follow.

Remember, the weapon system is a completely separate component of the

AI and will always automatically select the best weapon and aim and shoot

at the current target, no matter what goal the bot is pursuing (see Chapter 7

if you need to refresh your memory). This means that this goal must only

dictate how the bot should move while attacking. I have provided Raven

bots with just two choices: If there is space to the left or right of the bot, it

will strafe from side to side by adding Goal_DodgeSideToSide to its subgoal

list. If there is no room to dodge, the bot simply seeks to the target’s cur-

rent position.

//if the bot is able to shoot the target (there is LOS between bot and
//target), then select a tactic to follow while shooting
if (m_pOwner->GetTargetSys()->isTargetShootable())
{
//if the bot has space to strafe then do so

396 | Chapter 9

Examples of Goals Used by Raven Bots

TLFeBOOK

Vector2D dummy;
if (m_pOwner->canStepLeft(dummy) || m_pOwner->canStepRight(dummy))
{
AddSubgoal(new Goal_DodgeSideToSide(m_pOwner));

}

//if not able to strafe, head directly at the target's position
else
{
AddSubgoal(new Goal_SeekToPosition(m_pOwner,

m_pOwner->GetTargetBot()->Pos()));
}

}

Depending on the requirements of your game you will probably want to

give your bot a much wider choice of aggressive movement tactics from

which to select. For instance, you might like to add a tactic that moves the

bot to the perfect range for shooting its current (or favorite) weapon or one

that selects a good sniping or cover position (don’t forget, navgraph nodes

can be annotated with this sort of information).

If there is no direct shot at the target — because it may have just run

around a corner — the bot adds Goal_HuntTarget to its subgoal list.

//if the target is not visible, go hunt it.
else
{
AddSubgoal(new Goal_HuntTarget(m_pOwner));

}
}

The Process method for Goal_AttackTarget is trivial. It just makes sure the

subgoals are processed and that the goal replans if a problem is detected.

int Goal_AttackTarget::Process()
{
//if status is inactive, call Activate()
ActivateIfInactive();

//process the subgoals
m_iStatus = ProcessSubgoals();

ReactivateIfFailed();

return m_iStatus;
}

I’m not going to go into the details of Goal_HuntTarget and Goal_Dodge-

SideToSide. It’s pretty obvious what they do and you can always examine

the source code if you want to look at the nitty-gritty.

Goal-Driven Agent Behavior | 397

Examples of Goals Used by Raven Bots

TLFeBOOK

Goal Arbitration

You now understand how goals work and have seen some concrete exam-

ples, but you’re probably still wondering how the bots select between strat-

egy-level goals. This is accomplished by the composite goal Goal_

Think, which each bot owns a persistent instance of, forming the root of its

goal hierarchy. Goal_Think’s function is to arbitrate between available strat-

egies, choosing the most appropriate to be pursued. There are six strategy-

level goals. They are:

� Explore: An agent picks an arbitrary point in its environment and

plans and follows a path to that point.

� Get Health: An agent finds the least cost path to an instance of a

health item and follows the path to that item.

� Get Weapon (Rocket Launcher): An agent finds the least cost path

to an instance of a rocket launcher and follows the path to it.

� Get Weapon (Shotgun): An agent finds the least cost path to an

instance of a shotgun and follows the path to it.

398 | Chapter 9

Goal Arbitration

Figure 9.8. Although not explicitly shown, each Goal_Think instance instantiates

three GetWeaponGoal_Evaluator objects, one for each weapon type the bot can
pick up.

TLFeBOOK

� Get Weapon (Railgun): An agent finds the least cost path to an

instance of a railgun and follows the path to it.

� Attack Target: An agent determines a strategy for attacking its cur-

rent target.

Every think update each of these strategies is evaluated and given a score

representing the desirability of pursuing it. The strategy with the highest

score is assigned to be the one the agent will attempt to satisfy. To facilitate

this process each Goal_Think aggregates several Goal_Evaluator instances,

one for each strategy. These objects have methods for calculating the desir-

ability of the strategy they represent, and for adding that goal to

Goal_Think’s subgoal list. Figure 9.8 illustrates the design.

Each CalculateDesirability method is a hand-crafted algorithm that

returns a value indicating the desirability of a bot pursuing the respective

strategy. These algorithms can be tricky to create so it’s often useful to first

construct some helper functions that map feature specific information from

the game to a numerical value in the range 0 to 1. These are then utilized in

the formulation of the desirability algorithms. It’s not especially important

what range of values your feature extraction methods return — 0 to 1, 0 to

100, or –10000 to 1000 are all okay — but it helps if they are standardized

across all methods. This will make it easier on your brain when you begin

to create the algorithms for desirability.

To decide what information needs extracting from the game world, con-

sider each strategy goal in turn and what game features have bearing upon

the desirability of pursuing it. For instance, the GetHealth evaluation is

going to require information regarding the status of a bot’s health and the

location of a health item. Similarly, the AttackTarget evaluator is going to

require information in respect to the weapons and ammo a bot is carrying,

in addition to its health levels (a bot low on health is much less likely to

attack an opponent than a bot that is feeling fit as a fiddle). The

ExploreGoal evaluator is a special case as you’ll see shortly, but the

GetWeapon evaluator will require additional knowledge about how far

away a specific weapon is and the current ammo a bot is carrying for that

weapon.

Raven uses four such feature extraction functions, implemented as static

methods of the Raven_Feature class. Here is the listing of the class declara-

tion, which contains a description of each method in the comments:

class Raven_Feature
{
public:

//returns a value between 0 and 1 based on the bot's health. The better
//the health, the higher the rating
static double Health(Raven_Bot* pBot);

//returns a value between 0 and 1 based on the bot's distance to the

Goal-Driven Agent Behavior | 399

Goal Arbitration

TLFeBOOK

//given item. The farther the item, the higher the rating. If there is no
//item of the given type present in the game world at the time this method
//is called the value returned is 1
static double DistanceToItem(Raven_Bot* pBot, int ItemType);

//returns a value between 0 and 1 based on how much ammo the bot has for
//the given weapon, and the maximum amount of ammo the bot can carry. The
//closer the amount carried is to the max amount, the higher the score
static double IndividualWeaponStrength(Raven_Bot* pBot, int WeaponType);

//returns a value between 0 and 1 based on the total amount of ammo the
//bot is carrying for each of the weapons. Each of the three weapons a bot
//can pick up can contribute a third to the score. In other words, if a bot
//is carrying an RL and an RG and has max ammo for the RG but only half max
//for the RL, the rating will be 1/3 + 1/6 + 0 = 0.5
static double TotalWeaponStrength(Raven_Bot* pBot);

};

I’ll not list the method bodies here, but you may find it interesting to check

them out at some point. You can find them in the file

Raven/goals/Raven_Feature.cpp.

Now that we have some helper functions let’s take a look at how they

can be used to calculate the desirability scores for each strategy, which are

also standardized to be in the range 0 to 1.

Calculating the Desirability of Locating a Health Item
Generally speaking, the desirability of locating a health item is propor-

tional to the current health level of a bot and is inversely proportional to the

distance away from the closest instance. Because each of these features is

extracted by the methods discussed earlier and represented as a number in

the range 0 to 1, this can be written as:

where k is a constant used to tweak the result. This relationship makes

sense because the farther you have to travel to retrieve an item the less you

desire it, whereas the lower your health level, the greater your desire. (Note

that we don’t have to worry about a divide by zero error because it’s

impossible for an agent to get closer than its bounding radius away from an

item before the item is triggered.)

Here is the source code from Raven that implements this algorithm.

double GetHealthGoal_Evaluator::CalculateDesirability(Raven_Bot* pBot)
{
//first grab the distance to the closest instance of a health item
double Distance = Raven_Feature::DistanceToItem(pBot, type_health);

//if the distance feature is rated with a value of 1 it means that the

400 | Chapter 9

Goal Arbitration

1
health

Health
Desirability k

DistToHealth

�� �� � � �
� 	

TLFeBOOK

//item is either not present on the map or too far away to be worth
//considering, therefore the desirability is zero
if (Distance == 1)
{
return 0;

}
else
{
//value used to tweak the desirability
const double Tweaker = 0.2;

//the desirability of finding a health item is proportional to the amount
//of health remaining and inversely proportional to the distance from the
//nearest instance of a health item.
double Desirability = Tweaker * (1-Raven_Feature::Health(pBot)) /

(Raven_Feature::DistanceToItem(pBot, type_health));

//ensure the value is in the range 0 to 1
Clamp(Desirability, 0, 1);

return Desirability;
}

}

Calculating the Desirability of Locating a Specific Weapon
This is very similar to the previous algorithm. The desirability of locating a

specific weapon can be given as:

Notice how both the weapon strength and health features contribute to the

desirability of retrieving a weapon. This is sensible because as a bot

becomes more badly damaged or the amount of ammo it’s carrying for that

particular weapon increases, its desire for retrieving it should diminish.

This is how the algorithm looks in code:

double GetWeaponGoal_Evaluator::CalculateDesirability(Raven_Bot* pBot)
{
//grab the distance to the closest instance of the weapon type
double Distance = Raven_Feature::DistanceToItem(pBot, m_iWeaponType);

//if the distance feature is rated with a value of 1 it means that the
//item is either not present on the map or too far away to be worth
//considering, therefore the desirability is zero
if (Distance == 1)
{
return 0;

}
else
{
//value used to tweak the desirability

Goal-Driven Agent Behavior | 401

Goal Arbitration

 �1
weapon

Health WeaponStrength
Desirability k

DistToWeapon

� �� �
� � � �

� 	

TLFeBOOK

const double Tweaker = 0.15f;

double Health, WeaponStrength;

Health = Raven_Feature::Health(pBot);

WeaponStrength = Raven_Feature::IndividualWeaponStrength(pBot, m_iWeaponType);

double Desirability = (Tweaker * Health * (1-WeaponStrength)) / Distance;

//ensure the value is in the range 0 to 1
Clamp(Desirability, 0, 1);

return Desirability;
}

}

The bonus of using distance as a factor in the desirability calculation for

picking up weapon and health items is that, given the correct circum-

stances, bots will temporarily change strategy and divert their course to

pick up nearby items.

� TIP The influence of distance in the desirability algorithms we’ve examined so
far is linear. In other words, the desirability is directly proportional to the dis-
tance from the item. However, you may prefer the “pull” of the item on the bot
to become stronger more quickly as the bot approaches (like the force you feel
when you move two magnets toward each other), instead of at a constant rate
(like the force you feel when you stretch a spring). This is best explained with a
graph. See Figure 9.9.

To create an algorithm that produces a desirability-distance curve similar to the
graph on the right you must divide by the square (or even cube) of the distance.
In other words, the equation is changed to:

Don’t forget that you will also have to tweak k to give you the results you desire.

402 | Chapter 9

Goal Arbitration

Figure 9.9. The graph on the left shows a linear relationship with distance; the one on
the right is non-linear.

 �
2

1
weapon

Health WeaponStrength
Desirability k

DistToWeapon

� �� �
� � � �

� 	

TLFeBOOK

Calculating the Desirability of Attacking the Target
The desirability of attacking an opponent is proportional to how healthy

and powerful a bot is feeling. The “powerful” feature, in the context of

Raven, is an indication of the number of guns and ammo a bot is carrying

and is evaluated by the method Raven_Feature::TotalWeaponStrength. (I

recommend you take a peek inside this method next time you’re sitting at

your computer.) Using these two features we can calculate the desirability

of pursuing the AttackTarget goal:

Here’s how it looks written in code:

double AttackTargetGoal_Evaluator::CalculateDesirability(Raven_Bot* pBot)
{
double Desirability = 0.0;

//only do the calculation if there is a target present
if (pBot->GetTargetSys()->isTargetPresent())
{

const double Tweaker = 1.0;

Desirability = Tweaker *
Raven_Feature::Health(pBot) *
Raven_Feature::TotalWeaponStrength(pBot);

}

return Desirability;
}

� TIP Depending on how sophisticated you need your agent to be you can add
and remove strategies from the arbiter. (Remember, Goal_Think is the arbiter
of a Raven bot’s strategy goals.) Indeed, you can even switch in and out entire
sets of strategy goals to provide an agent with a whole new suite of behaviors to
select from. Far Cry, for instance, uses this sort of technique to good effect.

Calculating the Desirability of Exploring the Map
This one is easy. Imagine yourself playing the game. You’re only likely to

go exploring the map if there are no other things requiring your immediate

attention like attacking an opponent or looking for ammo or health. Conse-

quently, the desirability of exploring the map is fixed as a low constant

value, thus ensuring the option to explore is only selected if all alternatives

have lower desirability scores. Here’s the code:

double ExploreGoal_Evaluator::CalculateDesirability(Raven_Bot* pBot)
{
const double Desirability = 0.05;

return Desirability;
}

Goal-Driven Agent Behavior | 403

Goal Arbitration

attackDesirability k TotalWeaponStrength Health� � �

TLFeBOOK

Putting It All Together
Once a desirability function has been defined for each evaluator object, all

that remains is for Goal_Think to iterate through them each think update

and select the highest to be the strategy a bot will pursue. Here’s the code

to clarify:

void Goal_Think::Arbitrate()
{
double best = 0;
Goal_Evaluator* MostDesirable = NULL;

//iterate through all the evaluators to see which produces the highest score
GoalEvaluators::iterator curDes = m_Evaluators.begin();
for (curDes; curDes != m_Evaluators.end(); ++curDes)
{
double desirabilty = (*curDes)->CalculateDesirability(m_pOwner);

if (desirabilty >= best)
{
best = desirabilty;
MostDesirable = *curDes;

}
}

MostDesirable->SetGoal(m_pOwner);
}

� TIP Human players have the ability to anticipate what another player is about to
do and act accordingly. We can do this because we are able to briefly shift our
point of view to that of any other player and think about what their desires
might be given our understanding of their state and the state of the game
world. Here’s an example:

You observe from a distance two players, Sid and Eric, battling it out
with rocket launchers when all of a sudden, after getting hit twice in suc-
cession, Eric breaks off and starts running down a corridor. You shift your
point of perspective to Eric and, because you know he’s low on health, you
anticipate it’s very likely he’s heading toward the health pack you know he
knows is located in a room at the end of the corridor. You also realize that
you are positioned closer to the health than Eric so you decide to “steal” it
away from him and wait out of view until he arrives, whereupon you smear
his intestines along a wall with your plasma rifle.

The ability to anticipate another’s actions like this is an innate characteristic of
human behavior — we do it all the time — but it is possible to give an agent a
similar, if somewhat much lessened, capability. Because the desires of goal arbi-
tration agents are determined algorithmically, you can have a bot run the
relevant attributes (health, ammo, etc.) of the human player through its own (or
custom) arbiter to make a guess at what the player’s desires might be at that
time. Of course the accuracy of this guess very much depends on how closely
the bot’s desires match the player’s — and that’s up to your behavioral model-
ing skills — but it’s usually not too difficult to make the occasional accurate
prediction that enables a bot to give the player a nasty surprise, even with a
very basic model.

404 | Chapter 9

Goal Arbitration

TLFeBOOK

Spin-offs

One great thing about a hierarchical goal-based arbitration design is that

extra features are provided with little additional effort from the program-

mer. We’ll spend the remainder of the chapter taking a look at them.

Personalities
Because the desirability scores are constrained to the same range, it’s a

simple matter to create agents with different personality traits by multiply-

ing each score with a constant that biases it in the required direction. For

instance, to create a Raven bot that plays aggressively with little regard for

its own safety, you can bias its desire to get health by 0.6 and its desire to

attack targets by 1.5. To create one that plays cautiously you can bias a

bot’s desires so it’s more likely to pick up weapons and health than attack.

If you were to design goal-directed agents for an RTS game you could cre-

ate one opponent that favors exploration and researching technology,

another that prefers to create huge armies as quickly as possible, and one

other that is obsessive about establishing city defenses.

To facilitate such personality traits, the Goal_Evaluator base class con-

tains a member variable m_dCharacterBias, which is assigned a value by

the client in the constructor like so:

class Goal_Evaluator
{
protected:

//when the desirability score for a goal has been evaluated it is multiplied
//by this value. It can be used to create bots with preferences based upon
//their personality
double m_dCharacterBias;

public:

Goal_Evaluator(double CharacterBias):m_dCharacterBias(CharacterBias){}

/* EXTRANEOUS DETAIL OMITTED */
};

m_dCharacterBias is utilized in the CalculateDesirability method of each

subclass to adjust the desirability score calculation. Here’s how it is added

to the desirability calculation for AttackTarget:

double AttackTargetGoal_Evaluator::CalculateDesirability(Raven_Bot* pBot)
{
double Desirability = 0.0;

//only do the calculation if there is a target present
if (pBot->GetTargetSys()->isTargetPresent())
{

const double Tweaker = 1.0;

Goal-Driven Agent Behavior | 405

Spin-offs

TLFeBOOK

Desirability = Tweaker *
Raven_Feature::Health(pBot) *
Raven_Feature::TotalWeaponStrength(pBot);

//bias the value according to the personality of the bot
Desirability *= m_dCharacterBias;

}

return Desirability;
}

If your game design requires that the bots’ personalities persist between

games, you should create a separate script file for each bot containing the

biases (plus any other bot character-specific data, such as weapon aiming

accuracy, weapon selection preferences, etc.). There are no bots of this type

in Raven, however; each time you run the program the bots’ desirability

biases are assigned random values in the constructor of Goal_Think, like so:

//these biases could be loaded in from a script on a per bot basis
//but for now we'll just give them some random values
const double LowRangeOfBias = 0.5;
const double HighRangeOfBias = 1.5;

double HealthBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double ShotgunBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double RocketLauncherBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double RailgunBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double ExploreBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double AttackBias = RandInRange(LowRangeOfBias, HighRangeOfBias);

//create the evaluator objects
m_Evaluators.push_back(new GetHealthGoal_Evaluator(HealthBias));
m_Evaluators.push_back(new ExploreGoal_Evaluator(ExploreBias));
m_Evaluators.push_back(new AttackTargetGoal_Evaluator(AttackBias));
m_Evaluators.push_back(new GetWeaponGoal_Evaluator(ShotgunBias,

type_shotgun));
m_Evaluators.push_back(new GetWeaponGoal_Evaluator(RailgunBias,

type_rail_gun));
m_Evaluators.push_back(new GetWeaponGoal_Evaluator(RocketLauncherBias,

type_rocket_launcher));

� TIP Goal arbitration is essentially an algorithmic process defined by a handful of
numbers. As a result, it is not driven by logic (like an FSM) but by data. This is
hugely advantageous because all you have to do to change the behavior is
tweak the numbers, which you may prefer to keep in a script file so that other
members of your team can easily experiment with them.

State Memory
The stack-like (LIFO) nature of composite goals automatically endows

agents with a memory, enabling them to temporarily change behavior by

pushing a new goal (or goals) onto the front of the current goal’s subgoal

list. As soon as the new goal is satisfied it will popped from the list and the

406 | Chapter 9

Spin-offs

TLFeBOOK

agent will resume whatever it was doing previously. This is a very power-

ful feature that can be exploited in many different ways.

Here are a couple of examples.

Example One — Automatic Resuming of Interrupted Activities

Imagine that Eric, who is on his way to the smithy, gold in pocket, is set

upon by a thief with a Rambo knife. This occurs just before he reaches the

third waypoint of the path he is following. His brain’s subgoal list at this

point resembles Figure 9.10.

Eric didn’t expect this to happen, but fortunately the AI programmer has

created a goal for dealing with just this sort of thing called DefendAgainst-

Attacker. This goal is pushed onto the front of his subgoal list and remains

active until the thief either runs away or is killed by Eric. See Figure 9.11.

Goal-Driven Agent Behavior | 407

Spin-offs

Figure 9.10

Figure 9.11

TLFeBOOK

The great thing about this design is that when DefendAgainstAttacker is

satisfied and removed from the list, Eric automatically resumes following

the edge to waypoint three.

Some of you will probably be thinking “Ah, but what if while chasing

after the thief Eric loses sight of waypoint three?” Well, that’s the fantastic

thing about this design. Because the goals have built-in logic for detecting

failure and for replanning, if a goal fails the design moves backward up

through the hierarchy until a parent is found that is capable of replanning

the goal.

Example Two — Negotiating Special Path Obstacles

Many game designs necessitate that agents are capable of negotiating one

or more types of path obstacles, such as doors, elevators, drawbridges, and

moving platforms. Often this requires the agent to follow a short sequence

of actions. For example, to use an elevator an agent must find the button

that calls it, walk toward the button, press it, and then walk back and stand

in front of the doors until the elevator arrives. Using a moving platform is a

similar process: The agent must walk toward the mechanism that operates

the platform, press/pull it, walk to the embarking point, wait for the plat-

form to arrive, and finally, step onto the platform and wait until it gets to

wherever it’s going. See Figure 9.12.

These “obstacles” should be transparent to the path planner since they are

not barriers to an agent’s movement. It takes time to negotiate them of

course, but this can be reflected in the navgraph edge costs.

408 | Chapter 9

Spin-offs

Figure 9.12. An agent uses a moving platform to cross a pit of fire. A) The agent walks
to the button and presses it. B) The agent walks back and waits for the platform to
arrive. C) The agent steps on the platform and remains stationary as it travels across
the fiery pit. D) The agent continues on its way.

TLFeBOOK

In order for agents to deal with such obstacles, the graph edge that

passes through them must be annotated with information reflecting their

type. The FollowPath goal can then check this information and ensure that

the correct type of goal is pushed onto the front of an agent’s goal list when

such an edge is encountered. As in the previous example, the agent will

pursue this new subgoal until it is completed and then resume whatever it

was doing before.

To demonstrate this principle I’ve added support for negotiating sliding

doors to the Raven bots’ repertoires. Sliding doors are opened by touching

a “button” located somewhere close to the door (one at each side). When a

door is added in the map editor any graph edges that cross the door bound-

ary are marked with the goes_through_door flag. If a bot encounters an

edge flagged like this (as they are pulled off the path in Goal_FollowPath::

Activate), a NegotiateDoor goal is added to its subgoal list like so:

void Goal_FollowPath::Activate()
{
//get a reference to the next edge
const PathEdge& edge = m_Path.front();

switch(edge.GetBehaviorFlags())
{
case NavGraphEdge::goes_through_door:
{
//add a goal that is able to handle opening the door
AddSubgoal(new Goal_NegotiateDoor(m_pOwner, edge));

}

break;
//etc

The NegotiateDoor goal directs a bot through the sequence of actions

required to open and pass through the door. As an example, let’s consider

the case of the bot shown in Figure 9.13 whose path takes it along the edge

AB, which is obstructed by a sliding door.

Goal-Driven Agent Behavior | 409

Spin-offs

Figure 9.13

TLFeBOOK

To get through the sliding door, the bot must follow these steps

1. Get the list of buttons that open the door (b1 and b2).

2. From the list, select the closest navigable button (b1).

3. Plan and follow a path to button b1 (the button will trigger, opening

the door).

4. Plan and follow a path to node A.

5. Traverse the edge AB.

Goal_NegotiateDoor addresses each of these steps in its Activate method,

adding the subgoals necessary to complete the task. The listing will help

clarify.

void Goal_NegotiateDoor::Activate()
{
m_iStatus = active;

//if this goal is reactivated then there may be some existing subgoals that
//must be removed
RemoveAllSubgoals();

//get the position of the closest navigable switch
Vector2D posSw = m_pOwner->GetWorld()->GetPosOfClosestSwitch(m_pOwner->Pos(),

m_PathEdge.GetDoorID());

//because goals are *pushed* onto the front of the subgoal list they must
//be added in reverse order.

//first, the goal to traverse the edge that passes through the door
AddSubgoal(new Goal_TraverseEdge(m_pOwner, m_PathEdge));

//next, the goal that will move the bot to the beginning of the edge that
//passes through the door
AddSubgoal(new Goal_MoveToPosition(m_pOwner, m_PathEdge.GetSource()));

//finally, the goal that will direct the bot to the location of the switch
AddSubgoal(new Goal_MoveToPosition(m_pOwner, posSw));

}

You can see Raven’s bots navigating doors by running Raven and loading

the map Raven_DM1_With_Doors.map. It uses a sparse navgraph so you

can clearly see how the NegotiateDoor goal works.

Command Queuing
Real-time strategy games have grown in complexity tremendously over the

last few years. Not only has the number of NPCs a player is able to control

increased, but also the number of commands he can instruct the NPCs to

follow. This has necessitated several improvements to the user interface,

one being the ability for a player to queue an NPC’s orders — something

that has become known as command queuing (or build queuing).

410 | Chapter 9

Spin-offs

TLFeBOOK

One of the first uses of queuing was to position waypoints for an NPC to

follow as a path. To do this a player holds down a key while clicking on the

map to create a series of waypoints. The NPC stores the waypoints in a

FIFO (first in, first out) data structure and follows them in order, stopping

when its queue is empty. See Figure 9.14.

Designers quickly realized that with slight modification, the user could also

assign patrol points to an NPC. If the waypoints are assigned by the player

as patrol points (by holding down a different key while clicking), they are

returned to the back of the queue as the NPC reaches them. In this way an

Goal-Driven Agent Behavior | 411

Spin-offs

Figure 9.14. Queuing path waypoints

Figure 9.15. Queuing patrol waypoints

TLFeBOOK

NPC will endlessly loop through its patrol points until instructed otherwise.

See Figure 9.15.

Very shortly after this innovation, it was realized that not only could

position vectors be queued, but so could any type of command. Subse-

quently, rather than issuing only one order at a time, by simply holding

down a key while selecting orders, the player could queue multiple com-

mands. For example, an NPC can be instructed to collect some gold, then

build a barracks, then attack an enemy unit. Once the orders are issued the

player can focus his attention elsewhere, confident the NPC will follow

orders.

Command queuing significantly reduces the amount of time a player has

to spend on micromanagement and increases the time available for more

enjoyable aspects of the game. It therefore has become an indispensable

feature within the RTS genre. Fortunately, using the composite goal archi-

tecture, this sort of functionality is incredibly easy to implement. All you

have to do is allow clients to add goals to the rear of the subgoal list in

addition to the front. That’s it! Five minutes of work and you get command

queuing.

You can observe command queuing in action in Raven. Unfortunately,

unlike an RTS, Raven does not have lots of interesting commands, but you

can queue multiple MoveToPosition goals by holding down the “Q” key

while clicking on the map. I implemented this by adding the QueueGoal_

MoveToPosition method to Goal_Think and some additional code for calling

that method if the player clicks on the map while holding down the appro-

priate key. If you release the “Q” key and right-click on the map again, the

queue is cleared and replaced with the single new goal. This would be just

as easy to implement with any goal of your choosing though, because the

queuing takes care of itself.

Using the Queue to Script Behavior
Another benefit of turning the subgoal list into a queue is that it enables

you to script linear action sequences without too much difficulty. For

example, you can create behavior like the following:

� A player enters a room and a ghostly game character appears that

floats to a chest positioned in the corner, opens the chest, takes out a

scroll, floats back to the player, and hands him the scroll.

� A player enters a hotel lobby with a glass ceiling. After a brief time

spent in the room, a helicopter is heard. Seconds later the ceiling

shatters into a million shards and several armed men in black are

seen rappelling from the helicopter. When they hit the floor they

scatter, each finding cover in a separate location, and start firing at

the player.

412 | Chapter 9

Spin-offs

TLFeBOOK

� A player finds an old brass lamp. He rubs it and a genie appears. The

genie says “Follow me” and leads the player to the opening to a

secret tunnel, where it promptly vanishes in a puff of smoke.

To do this you have to ensure you define a goal for each step of the

sequence and the triggers required to activate the script. In addition, you

have to expose the relevant C++ code to your scripting language.

For example, to script the third example from the previous list in Lua

you’d need to complete these tasks.

1. Create three goals:

� A SayPhrase goal, which would output some text to the screen for

a specified amount of time.

� A LeadPlayerToPosition goal. This is similar to the MoveTo-

Position goal seen in Raven except it has additional logic for mak-

ing sure the genie does not lose sight of the player while leading

him to the secret tunnel.

� A VanishInPuffOfSmoke goal, which would remove the instance

of the genie from the game world and leave behind a puff of

smoke.

2. Create a trigger that is activated when a player performs the “rub”

action on a specific “lamp” object. When activated, the trigger should

call the appropriate Lua function.

3. Expose the relevant parts of the game architecture to Lua. Ideally

you’d like to write a script that looks a little like this:

function AddGenieTourGuide(LampPos, TunnelPos, Player)

--create an instance of a genie at the position of the lamp
genie = CreateGenie(LampPos)

--first welcome the player, text stays on screen for 2 seconds
genie:SayPhrase("Welcome oh great "..Player:GetName().. "!", 2)

--order the player to follow the genie. text stays on screen for
--3 seconds
genie:SayPhrase("Follow me for your three wishes", 3)

--lead the player to the tunnel entrance
genie:LeadPlayerToPosition(Player, TunnelPos)

--vanish
genie:VanishInPuffOfSmoke

end

Therefore you need to expose a C++ method that creates a genie, adds it to

the game world, and returns a pointer to it, along with methods for adding

the appropriate goals to a genie’s goal queue.

Goal-Driven Agent Behavior | 413

Spin-offs

TLFeBOOK

Summing Up

This chapter has presented a flexible and powerful goal-based agent archi-

tecture. You have learned how an agent’s behavior can be modeled as a set

of high-level strategies, each of which is comprised of a nested hierarchy

of composite and atomic goals. You’ve also learned how agents can arbi-

trate between those strategies to select the most appropriate one to pursue

given the current game state.

Although it shares many similarities, this type of architecture is far more

sophisticated than a state-based design and will require some practice

before you are able to use it confidently. As usual, I’m going to end the

chapter with a few ideas you can play around with to help improve your

understanding.

Practice Makes Perfect

1. Decent human FPS players get a “feel” for when a particular item is

about to respawn. Indeed it’s not unknown for some deathmatch play-

ers to play with an alarm clock by the side of their monitor! The

Raven bots, however, currently haven’t a clue when an item is going

to respawn. Create a termination condition for the Dijkstra’s search

algorithm that calculates if an inactive (invisible) item type will

respawn in the time it takes to reach it, thereby enabling a bot to pre-

empt it.

2. The Raven bots have no defensive strategy. At the moment they just

attempt to hunt down an item type if they do not feel strong enough to

attack and hope this will lead them out of harm’s way. You will notice

when you watch the demo that this behavior often gets them into trou-

ble since they make no attempt to dodge shots when pursuing an item.

Write the logic and any extra goals required to enable bots to detect

such situations and to dodge from side to side while still pursuing an

item type.

3. Add character scripting to Raven and create one or two scripted

sequences. This is a great exercise and will reinforce many of the

things you’ve learned so far. You don’t need to script anything com-

plex. For instance, you could do something similar to the genie

example described earlier. Create a script from the player’s point of

view that goes like this: When the player stands in a certain position, a

bot enters the location from somewhere “out of view” (of course, this

isn’t really possible given the top-down nature of Raven, but you

know what I mean), stops in front of the player, says “Follow Me,”

and then leads the player to a random location.

414 | Chapter 9

Summing Up

TLFeBOOK

Chapter 10

Fuzzy Logic

H umans have the incredible ability to communicate skills simply and

accurately by using vague linguistic rules. For example, a TV chef

might instruct you how to make perfect cheese on toast like this:

1. Cut two slices of bread medium thick.

2. Turn the heat on the griddle on high.

3. Grill the slices on one side until golden brown.

4. Turn the slices over and add a generous helping of cheese.

5. Replace and grill until the top of the cheese is slightly brown.

6. Remove, sprinkle on a small amount of black pepper, and eat.

The words shown in bold are all vague linguistic terms, yet we would all

be confident of following these instructions to create a delicious snack.

Humans do this sort of thing all the time. It’s a transparent and natural pro-

cess for us to interpret instructions like this in a meaningful and accurate

way.

When designing the AI for computer games, wouldn’t it be great to be

able to communicate with a computer in a similar fashion — to quickly and

simply map expert knowledge from the human domain to the digital one?

If computers were able to understand vague linguistic terms then we could

sit down with an expert in the domain of interest (more often than not that

will be you), ask questions pertinent to the skill necessary to be successful

within that domain, and from the answers quickly create some linguistic

rules for the computer to interpret — just like the ones shown for making

toast.

Conventional logic is inadequate for processing such rules. As an exam-

ple, imagine you are programming a golfing game and you’ve been given

the job of spending the day with Tiger Woods to determine some ground

rules for playing golf. At the end of the day your notepad is full of words

of wisdom such as these:

When putting: If the ball is far from the hole and the green is sloping

gently downward from left to right, then hit the ball firmly and at an

angle slightly to the left of the flag.

When putting: If the ball is very close to the hole, and the green

between the ball and hole is level, then hit the ball gently and directly

at the hole.

415
TLFeBOOK

When driving from the tee: If the wind is of strong force and blowing

right to left, and the hole is far away, then hit the ball hard and at an

angle far to the right of the flag.

These rules are very descriptive and make perfect sense to a human but are

difficult to translate into a language a computer can understand. Words like

“far,” “very close,” and “gently” do not have sharp, well-defined bound-

aries, and when we attempt to describe them in code the result often looks

clumsy and artificial. For instance, we might encode the descriptive term

“Distance” as the set of intervals:

Close = the ball is between 0 meters and 2 meters from the hole.

Medium = the ball is between 2 meters and 5 meters from the hole.

Far = the ball is greater than 5 meters from the hole.

But what if the ball is 4.99 meters away from the hole? Using these inter-

vals to represent distances, a computer will put the ball firmly in the

“Medium” slot, even though the addition of a couple more centimeters will

transform it to being far away! It’s not hard to see that when manipulating

data presented in such a way any AI’s reasoning about a domain is going to

be fundamentally flawed. Of course, it’s possible to reduce the effect of

this problem by creating smaller and smaller intervals, but the underlying

problem remains because the distance terms are still represented by dis-

crete intervals.

Compare this to how a human reasons. When considering linguistic

terms such as “far” and “close” or “gently” and “firmly,” a human being is

able to place vague boundaries on those terms and allow a value to be asso-

ciated with a term to a matter of degree. When the ball is 4.99 meters away

from the hole, a human will regard it to be partly associated with the term

“medium distance” but mostly with the term “far distance.” In this way

humans perceive the distance quality of the ball gradually shifting between

linguistic terms instead of changing abruptly, allowing us to reason accu-

rately about linguistic rules such as the ones given for playing golf or

making toast.

Fuzzy logic, invented by a man named Lotfi Zadeh in the mid-sixties,

enables a computer to reason about linguistic terms and rules in a way sim-

ilar to humans. Concepts like “far” or “slightly” are not represented by

discrete intervals, but by fuzzy sets, enabling values to be assigned to sets

to a matter of a degree — a process called fuzzification. Using fuzzified

values computers are able to interpret linguistic rules and produce an out-

put that may remain fuzzy or — more commonly, especially in video

games — can be defuzzified to provide a crisp value. This is known as

fuzzy rule-based inference, and is one of the most popular uses of fuzzy

logic. See Figure 10.1.

416 | Chapter 10

TLFeBOOK

We’ll look into the fuzzy process in more detail shortly but, before you can

begin to understand fuzzy sets, it helps to understand the mathematics of

crisp sets, so our journey into fuzzydom will commence there.

� NOTE Interpreting linguistic rules is only one of the many uses of fuzzy logic.
I’ve focused on this application here because it’s one of the most useful features
for game AI programmers. Fuzzy logic has been successfully applied to many
other areas including control engineering, pattern recognition, relational data-
bases, and data analysis. You more than likely have several solid state fuzzy
logic controllers in your home. They might be regulating your central heating
system or stabilizing the image in your video camera.

Crisp Sets

Crisp sets are the mathematical concepts taught in school. They have

clearly defined boundaries: An object (sometimes called an element) either

completely belongs to a set or it doesn’t. This is fine for many problems

since many objects can be precisely classified. After all, a spade is a spade;

it’s not partly a spade and partly a pair of garden shears.

The domain of all elements a set belongs to is called the universe of dis-

course. The white rectangle of Figure 10.2 represents the universe of

discourse of integers in the range 1 to 15. The circles inside the UOD

denote the set of even integers and the set of odd integers.

Fuzzy Logic | 417

Crisp Sets

Figure 10.1. Fuzzy rule-based inference

Figure 10.2

TLFeBOOK

Using mathematical notation these sets can be written as:

Odd = {1, 3, 5, 7, 9, 11, 13, 15}

Even = {2, 4, 6, 8, 10, 12, 14}

As is evident, the degree of membership of a number to a crisp set is either

true or false, 1 or 0. The number 5 is 100 percent odd and 0 percent even.

In classical set theory all the integers are black and white in this way —

they are members of one set to a degree of 1 and to the other to a degree of

0. It’s also worth highlighting that an element can be contained in more

than one crisp set. For example, the integer 3 is a member of the set of odd

numbers, the set of prime numbers, and the set of all numbers less then 5.

But in all these sets its degree of membership is 1.

Set Operators
There are a number of operations that can be performed on sets. The most

common are union, intersection, and complement.

The union of two sets is the set that contains all the elements from both

sets. The union operator is usually written using the symbol �. Given the

two sets A = {1, 2, 3, 4} and B = {3, 5, 7}, the union of A and B can be

written as:

(10.1)

The union of two sets is equivalent to ORing the sets together — a given

element is in one OR the other.

The intersection of two sets, written using the symbol �, is the set con-

taining all the elements present in both sets. Using the sets A and B from

above, their intersection is written as:

(10.2)

The intersection of two sets is equivalent to ANDing the sets together.

Using our two sets above there is only one element that is in set A AND in

set B, making the intersection of sets A and B {3}.

The complement of a set is the set containing all the elements in the uni-

verse of discourse not present in the set. In other words, it is the inverse of

the set. Let’s say the universe of discourse of A and B is A � B as given in

equation (10.1), then A’s complement is B, and B’s complement is A. The

complement operator is usually written using the ' symbol, although some-

times it is denoted by a bar across the top of the set’s name. Both options

are shown in equation 10.3.

(10.3)

The complement operator is equivalent to NOT.

418 | Chapter 10

Crisp Sets

�
1,2,3,4,3,5,7A B� �

�
3A B� �

'A B

B A

�

�

TLFeBOOK

Fuzzy Sets

Crisp sets are useful but problematic in many situations. For instance, let’s

examine the universe of discourse of all IQs, and let’s define sets for

Dumb, Average, and Clever like so:

Dumb = {70, 71, 72, … 89}

Average = {90, 91, 92, … 109}

Clever = {110, 111, 112, … 129}

A graphical way of showing these crisp sets is shown in Figure 10.3. Note

how the degree of membership of an element in any of the sets can be

either 1 or 0.

People’s intelligence can now be categorized by assigning them to one of

these sets based upon their IQ score. Clearly though, a person with an IQ of

109 is well above average intelligence and probably the majority of his

peers would categorize him as clever. He’s certainly much more intelligent

than a person who has a score of 92 even though both fall into the same

category. It’s also ridiculous to compare a person with an IQ of 79 and a

person of IQ 80 and come to the conclusion that one is dumb and the other

isn’t! This is where crisp sets fall down. Fuzzy sets allow elements to be

assigned to them to a matter of degree.

Defining Fuzzy Boundaries with Membership Functions
A fuzzy set is defined by a membership function. These functions can be

any arbitrary shape but are typically triangular or trapezoidal. Figure 10.4

shows a few examples of membership functions. Notice how they define a

gradual transition from regions completely outside the set to regions com-

pletely within the set, thereby enabling a value to have partial membership

to a set. This is the essence of fuzzy logic.

Fuzzy Logic | 419

Fuzzy Sets

Figure 10.3

TLFeBOOK

Figure 10.5 shows how the linguistic terms Dumb, Average, and Clever can

be represented as fuzzy sets comprised of triangular membership functions.

The dotted line shows how Brian, who has an IQ of 115, is a member of

two sets. His degree of membership in Clever is 0.75 and in Average is

0.25. This is consistent with how a human would reason about Brian’s

420 | Chapter 10

Fuzzy Sets

Figure 10.4. Some example membership functions. The singleton membership function
is not really fuzzy — it’s a special type of set that behaves like a discrete value. I’ve
included it here though because singletons are occasionally used in the creation of
fuzzy rules.

Figure 10.5. Dumb, Average, and Clever as fuzzy sets. The dotted line represents an
IQ of 115, and its points of intersection with the sets Clever and Average represent its
degree of membership in those sets.

TLFeBOOK

intelligence. A human will consider him to be mostly clever, above aver-

age, which is exactly what can be inferred from his fuzzy set membership

values.

� NOTE It’s worth noting that the linguistic terms associated with fuzzy sets
can change their meaning when used in differing frames of reference. For
example, the meaning of the fuzzy sets Tall, Medium, and Short will be different
for Europeans than it would be for the pygmies of South America. All fuzzy sets,
therefore, are defined and used within a context.

A membership function can be written in mathematical notation like this:

(10.4)

Using this notation we can write Brian’s degree of membership, or DOM

for short, in the fuzzy set Clever as:

(10.5)

Fuzzy Set Operators
Intersections, unions, and complements of fuzzy sets are possible, just as

they are with crisp sets. The fuzzy intersection operation is mathematically

equivalent to the AND operator. The result of ANDing two or more fuzzy

sets together is another fuzzy set. The fuzzy set of people who are Average

AND Clever is shown graphically in Figure 10.6.

The graphical example illustrates well how the AND operator is equivalent

to taking the minimum DOM (degree of membership) for each set a value

is a member of. This is written mathematically as:

(10.6)

Fuzzy Logic | 421

Fuzzy Sets

Figure 10.6. The set of people who are Average AND Clever

_ _ ()Name of setF x

() (115) 0.75Brian CleverClever F� �

�
() min (), ()Average Clever Average CleverF x F x F x� �

TLFeBOOK

Brian’s degree of membership in the set of people who are Average AND

Clever is 0.25.

The union of fuzzy sets is equivalent to the OR operator. The compound

set that is the result of ORing two or more sets together uses the maximum

of the DOMs of the component sets. For the sets Average and Clever this is

written as:

(10.7)

Figure 10.7 shows the set of people who are Average OR Clever. Brian’s

membership in this set is 0.75.

The complement of a value with a DOM of m is 1–m. Figure 10.8 describes

the set of people who are NOT Clever. We saw earlier how Brian’s degree

of membership to Clever is 0.75, so his DOM to NOT Clever should be 1 –

0.75 = 0.25, which is exactly what we can see in the figure.

422 | Chapter 10

Fuzzy Sets

Figure 10.7. The set of people who are Average OR Clever

Figure 10.8. The complement of Clever

�
() max (), ()Average Clever Average CleverF x F x F x� �

TLFeBOOK

NOT Clever can be written mathematically as:

(10.8)

Hedges
Hedges are unary operators that can be employed to modify the meaning of

a fuzzy set. Two commonly used hedges are VERY and FAIRLY. For a

fuzzy set A, VERY modifies it like so:

(10.9)

In other words, it results in the square of the membership degree. FAIRLY

modifies a fuzzy set by taking the square root of the membership degree,

like so:

(10.10)

The effect of these hedges is best seen graphically. Figure 10.9 shows how

VERY narrows the membership function and how FAIRLY widens it. This

is intuitive because the criteria for membership in a set modified by

FAIRLY should be more relaxed than for the set itself. And the opposite

holds for VERY — the criterion is tightened.

Fuzzy Linguistic Variables

A fuzzy linguistic variable (or FLV) is the composition of one or more

fuzzy sets to represent a concept or domain qualitatively. Given our earlier

example, the sets Dumb, Average, and Clever are members of the fuzzy lin-

guistic variable IQ. This can be written in set notation as:

IQ = {Dumb, Average, Clever}

Fuzzy Logic | 423

Fuzzy Linguistic Variables

Figure 10.9. Modifying the shape of a membership function using fuzzy hedges

() ' 1 ()Clever CleverF x F x� �

2

() (())VERY A AF F x�

() ()FAIRLY A AF F x�

TLFeBOOK

Here are some other examples of fuzzy linguistic variables and their com-

ponent fuzzy sets:

Speed = {Slow, Medium, Fast}

Height = {Midget, Short, Medium, Tall, Giant}

Allegiance = {Friend, Neutral, Foe}

Target Heading = {Far Left, Left, Center, Right, Far Right}

Figure 10.10 shows the FLV Target Heading in graphical form. Notice

how the membership functions of the member sets can be varied in shape

and asymmetrical if the problem demands it. The collection of shapes

(membership functions) that comprise the FLV is known as a fuzzy mani-

fold, or fuzzy surface.

� NOTE Practitioners of fuzzy logic seem unable to agree upon consistent ter-
minology for describing the linguistic elements that comprise a fuzzy system (oh,
the irony). Often you will find the expression “fuzzy linguistic variable” (or just
“linguistic variable”) applied to a collection of fuzzy sets and to the individual
sets themselves. This can be confusing when reading the available literature.

Fuzzy Rules

This is where everything starts to come together. I realize you may be con-

fused at the moment but hang in there; enlightenment will shortly be yours!

Fuzzy rules are comprised of an antecedent and a consequent in the

form:

IF antecedent THEN consequent

The antecedent represents a condition and the consequent describes the

consequence if that condition is satisfied. This type of rule is familiar to all

programmers. We’ve all written code like:

IF Wizard.Health() <= 0 THEN Wizard.isDead()

424 | Chapter 10

Fuzzy Rules

Figure 10.10. The FLV Target Heading

TLFeBOOK

The difference with fuzzy rules is that unlike conventional rules where the

consequent either fires or not, in fuzzy systems the consequent can fire to a

matter of degree. Here are some examples of fuzzy rules:

IF Target_isFarRight THEN Turn_QuicklyToRight

IF VERY(Enemy_BadlyInjured) THEN Behavior_Aggressive

IF Target_isFarAway AND Allegiance_isEnemy THEN

Shields_OnLowPower

IF Ball_isCloseToHole AND Green_isLevel THEN HitBall_Gently

AND HitBall_DirectlyAtHole

IF (Bend_HairpinLeft OR Bend_HairpinRight) AND Track_SlightlyWet

THEN Speed_VerySlow

The antecedent, then, can be a single fuzzy term or the set that is the result

of a combination of several fuzzy terms. The degree of membership of the

antecedent defines the degree to which the consequent fires. A fuzzy infer-

ence system is typically comprised of many such rules, the number of

which is proportional to the number of FLVs required for the problem

domain and the number of membership sets those FLVs contain. Each time

a fuzzy system iterates through its rule set it combines the consequents that

have fired and defuzzifies the result to give a crisp value. More on the

details of this in a moment but first, before we delve deeper, let’s design

some FLVs we can use to solve a real-world problem. Given a practical

example you can sink your teeth into, I’m sure you’ll find it much easier to

see how all this stuff works together.

Designing FLVs for Weapon Selection
Because the rules a human player uses to decide when to change weapons

can easily be described using linguistic terms, weapon selection is a good

candidate for the application of fuzzy logic. Let’s see how this idea can be

applied to Raven.

To keep the example simple, we’ll say the desirability of selecting a par-

ticular weapon from the inventory is dependent on two factors: the distance

to the target and the amount of ammo. Each weapon class owns an instance

of a fuzzy module, and each module is initialized with FLVs representing

the linguistic terms Distance to Target, Ammo Status (antecedents), and

Desirability (consequent), and also with rules pertinent to that weapon.

The rules infer how desirable that weapon is for any given scenario,

enabling a bot to select the weapon with the highest desirability score to be

the current weapon.

The FLVs Distance to Target and Desirability are defined identically

for each weapon type. Ammo Status and the rule set are custom built. The

examples given in this chapter will focus on designing the FLVs and rule

set for the rocket launcher.

Fuzzy Logic | 425

Fuzzy Rules

TLFeBOOK

Designing the Desirability FLV

We’ll start by designing the fuzzy linguistic variable required to denote the

consequent set: Desirability. There are a couple of important guidelines to

adhere to when designing FLVs. They are:

� For any vertical line (representing an input value) drawn through the

FLV, the sum of the DOMs in each of the fuzzy sets it intersects with

should be approximately 1. This ensures a smooth transition between

values over the FLV’s fuzzy manifold (the combined shape of all

membership sets).

� For any vertical line drawn through the FLV, it should only intersect

with two or fewer fuzzy sets.

An FLV that breaks the first guideline is shown in Figure 10.11 A, and an

FLV that breaks the second is shown in Figure 10.11 B.

The FLV Desirability is required to represent the domain of all scores

from 0 to 100. Therefore its member sets must adequately cover that range

(while adhering to the guidelines). I have chosen to use three member sets:

a left-shouldered set, a triangular set, and a right-shouldered set, represent-

ing the linguistic terms Undesirable, Desirable, and VeryDesirable as

shown in Figure 10.12.

426 | Chapter 10

Fuzzy Rules

Figure 10.11. Badly designed FLVs

TLFeBOOK

Designing the Distance to Target FLV

Next, we’ll consider the antecedent: Distance to Target. Once again the

FLV is comprised of three sets, named Target_Close, Target_Medium, and

Target_Far. These three terms are perfectly adequate to enable an expert

(that’s us folks) to determine rules for weapon selection. When I’m playing

a game I think of the term “close” to mean almost next to me — at the sort

of range where you might consider hand-to-hand combat. Therefore I’ve

set the peak of the fuzzy set Target_Close at the distance 25 pixels, which I

feel is about right given the scale of a typical Raven map (a bot has a

bounding radius of about 10 pixels). I’ve chosen to use 150 pixels as the

peak for Target_Medium because that feels about right, and I’ve chosen to

make Target_Far a shoulder shape that peaks at 300 and then plateaus to

400. Notice how I’m not too concerned about the specific values; I’m just

using values that “feel” correct. Distance to Target is shown in Figure

10.13.

Fuzzy Logic | 427

Fuzzy Rules

Figure 10.12. Desirability

Figure 10.13. Distance to Target

TLFeBOOK

Designing the Ammo Status FLV

Finally, we’ll tackle Ammo Status, which will utilize the fuzzy sets

Ammo_Low, Ammo_Okay, and Ammo_Loads. Because linguistic terms are

defined within a context (since what you might consider an okay amount of

ammo for, say, a grenade launcher, is unlikely to be an okay amount for a

machine gun), this FLV varies from weapon to weapon.

A rocket launcher is able to shoot two rockets per second, so I’d say that

an okay amount of ammo is about 10 rockets. If carrying 30 or so rockets,

I’d consider myself to have loads of ammo and anything less than 10 is

low. With this in mind I’ve designed Ammo Status as shown in Figure

10.14.

As you can see, designing FLVs is mainly common sense: You simply

examine and translate your own or, even better, an expert’s knowledge

about the domain.

Designing the Rule Set for Weapon Selection
Now that we have some fuzzy terms to play with, let’s work on the rules.

To cover all the possibilities, a rule must be created for each possible com-

bination of antecedent sets. The FLVs Ammo Status and Distance to

Target each contain three member sets, so to cover every combination nine

rules must be defined.

Once again I’m going to play the role of expert. In my “expert” opinion,

a rocket launcher is a great medium distance weapon but it’s dangerous to

use close up because you’re likely to get damaged by the blast of the explo-

sion. Also, because rockets move slowly, it’s a poor choice of weapon

when the target is far away since the rockets can be easily dodged. With

these facts in mind, here are the nine rules I’ve created for determining the

desirability of using a rocket launcher:

428 | Chapter 10

Fuzzy Rules

Figure 10.14. Ammo Status for the rocket launcher

TLFeBOOK

Rule 1. IF Target_Far AND Ammo_Loads THEN Desirable

Rule 2. IF Target_Far AND Ammo_Okay THEN Undesirable

Rule 3. IF Target_Far AND Ammo_Low THEN Undesirable

Rule 4. IF Target_Medium AND Ammo_Loads THEN VeryDesirable

Rule 5. IF Target_Medium AND Ammo_Okay THEN VeryDesirable

Rule 6. IF Target_Medium AND Ammo_Low THEN Desirable

Rule 7. IF Target_Close AND Ammo_Loads THEN Undesirable

Rule 8. IF Target_Close AND Ammo_Okay THEN Undesirable

Rule 9. IF Target_Close AND Ammo_Low THEN Undesirable

Note that these rules are only my opinion and will reflect my level of

expertise in the game. When you design the rules for your own game, con-

sult the best player you have on your development team because the more

expert the player you derive the rules from, the better your AI will perform.

This makes sense in the same way that Michael Schumacher will be able to

describe a much better set of rules for driving a Formula One racing car

than you or me.

Fuzzy Inference
It’s now time to study the fuzzy inference procedure. This is where we

present the system with some values to see which rules fire and to what

degree. Fuzzy inference follows these steps:

1. For each rule,

1a. For each antecedent, calculate the degree of membership of the

input data.

1b. Calculate the rule’s inferred conclusion based upon the values

determined in 1a.

2. Combine all the inferred conclusions into a single conclusion (a fuzzy

set).

3. For crisp values, the conclusion from 2 must be defuzzified.

Let’s now work through these steps using some of the rules we’ve created

for weapon selection and some crisp input values. Let’s say the target is at

a distance of 200 pixels and the amount of ammo remaining is 8 rockets.

One rule at a time then…

Rule One

IF Target_Far AND Ammo_Loads THEN Desirable

The degree of membership of the value 200 to the set Target_Far is 0.33.

The degree of membership of the value 8 in the set Ammo_Loads is 0. The

AND operator results in the minimum of these values so the inferred con-

clusion for Rule 1 is Desirable = 0. In other words, the rule doesn’t fire.

Figure 10.15 shows this rule graphically.

Fuzzy Logic | 429

Fuzzy Rules

TLFeBOOK

Rule Two

IF Target_Far AND Ammo_Okay THEN Undesirable

For the second rule the degree of membership of the value 200 to the set

Target_Far is 0.33. The degree of membership of the value 8 in the set

Ammo_Okay is 0.78. The inferred conclusion for Rule 2 therefore is Unde-

sirable = 0.33. See Figure 10.16.

Rule Three

IF Target_Far AND Ammo_Low THEN Undesirable

Appling the same values to the third rule, the degree of membership of the

value 200 to the set Target_Far is 0.33. The degree of membership of the

value 8 in the set Ammo_Low is 0.2. The inferred conclusion for Rule 3

therefore is Undesirable = 0.2. See Figure 10.17.

430 | Chapter 10

Fuzzy Rules

Figure 10.15. The value enclosed by the circle indicates the inferred conclusion.

Figure 10.16. Rule 2

Figure 10.17. Rule 3
TLFeBOOK

I’m sure you’ve got the gist of this by now so to spare a lot of repetition the

inferred results for all the rules are summarized by the matrix shown in

Figure 10.18. (This type of matrix is known as a fuzzy associative matrix,

or FAM for short.)

Note that VeryDesirable has fired once to a degree of 0.67. Desirable has

fired once to a degree of 0.2, and Undesirable has fired twice with the

degrees 0.2 and 0.33. One way to think of these values is as confidence

levels. Given the input data, the fuzzy rules have inferred the result

VeryDesirable with a confidence of 0.67 and the result Desirable with a

confidence of 0.2. But what conclusion is inferred for Undesirable, which

has fired twice? Well, there are a few ways of handling multiple confi-

dences. The two most popular are bounded sum (sum and bound to 1) and

maximum value (equivalent to ORing the confidences together). It doesn’t

make a vast amount of difference which method you choose. I prefer to OR

the values together, which in this example results in a confidence for Unde-

sirable of 0.33.

To summarize, Table 10.1 lists the inferred conclusions of applying the

values of distance to target = 200 and ammo status = 8 to all the rules.

Fuzzy Logic | 431

Fuzzy Rules

Figure 10.18. The FAM for the weapon selection rule base given the input values tar-
get distance = 200 and ammo status = 8. The shaded cells highlight rules that have
fired.

TLFeBOOK

Table 10.1

Consequent Confidence

Undesirable 0.33

Desirable 0.2

Very Desirable 0.67

These results are shown graphically in Figure 10.19. Notice how the mem-

bership function of each consequent is clipped to the level of confidence.

The next step is to combine the inferred results into a single fuzzy mani-

fold. See Figure 10.20.

432 | Chapter 10

Fuzzy Rules

Figure 10.19. The inferred results of processing the rule set for weapon selection

TLFeBOOK

Now that we have a composite fuzzy set representing the inferred conclu-

sion of all the rules in the rule base, it’s time to turn the process around and

convert this output set into a single crisp value. This is achieved by a pro-

cess called defuzzification.

Defuzzification

Defuzzification is the reverse of fuzzification: the process of turning a

fuzzy set into a crisp value. There are many techniques for doing this and

the next few pages will be spent examining the most common.

Mean of Maximum (MOM)

The mean of maximum — MOM for short — method of defuzzification

calculates the average of those output values that have the highest confi-

dence degrees. Figure 10.21 shows how this technique can be used to

determine a crisp value from the output distribution for Desirability calcu-

lated earlier.

Fuzzy Logic | 433

Fuzzy Rules

Figure 10.20. Combining the conclusions

TLFeBOOK

One problem with this method is it doesn’t take into account those sets in

the output that do not have confidences equal to the highest (like those

shown in the figure in gray), which can bias the resultant crisp value to one

end of the domain. More accurate fuzzification methods such as the ones

listed below resolve this problem.

Centroid

The centroid method is the most accurate but is also the most complex to

calculate. It works by determining the center of mass of the output sets. If

you imagine each member set of the output set cut out of card stock and

then glued together to form the shape of the fuzzy manifold, the center of

mass is the position where the resultant shape would balance if placed on a

ruler. See Figure 10.22.

The centroid of a fuzzy manifold is calculated by slicing up the manifold

into s sample points and calculating the sum of the contribution of the

DOM at each sample point to the total, divided by the sum of the DOMs of

the samples. The formula is given in (10.11).

(10.11)

434 | Chapter 10

Fuzzy Rules

Figure 10.21. The mean of maximum method results in a desirability score of 83.

Figure 10.22. Finding the centroid

()

()

s DomainMax

s DomainMin

s DomainMax

s DomainMin

s DOM s

CrispValue

DOM s

�

�
�

�

�
�

�

�
TLFeBOOK

where s is the value at each sample point and DOM(s) is the degree of

membership in the FLV of that value. The more sample points chosen to do

the calculation, the more accurate the result, although in practice 10 to 20

samples usually suffice.

Now I realize some of you may be having palpitations at this point so

it’s probably best if I clarify using an example. We’ll defuzzify the fuzzy

manifold resulting from running the weapon selection rules using the 10

sample points shown in Figure 10.23.

For each sample point, the DOM in each member set is calculated. Table

10.2 summarizes the results. (Note: The values given for the samples at 30

and 70 are imprecise as they are simply estimated from Figure 10.23, but

they are sufficiently accurate for this demonstration.)

Table 10.2

Value Undesirable Desirable VeryDesirable Sum

10 0.33 0 0 0.33

20 0.33 0 0 0.33

30 0.33 0.2 0 0.53

40 0.33 0.2 0 0.53

50 0 0.2 0 0.2

60 0 0.2 0.4 0.6

70 0 0.2 0.67 0.87

80 0 0 0.67 0.67

90 0 0 0.67 0.67

100 0 0 0.67 0.67

Now to plug the numbers into equation (10.11). First let’s calculate the

numerator (the part of the equation above the line).

Fuzzy Logic | 435

Fuzzy Rules

Figure 10.23. Calculating the centroid

TLFeBOOK

(10.12)

And now the denominator (the part below the line):

(10.13)

Dividing the numerator by the denominator gives the crisp value:

(10.14)

Average of Maxima (MaxAv)

The maximum or representative value of a fuzzy set is the value where

membership in that set is 1. For triangular sets this is the simply the value

at the midpoint; for sets containing plateaus — such as right shoulder, left

shoulder, and trapezoidal sets — this value is the average of the values at

the beginning and end of the plateau. The average of maxima (MaxAv for

short) defuzzification method scales the representative value of each conse-

quent by its confidence and takes the average, like so:

(10.15)

The representative values of the sets comprising the output manifold are

summarized in Table 10.3.

436 | Chapter 10

Fuzzy Rules

10 0.33

20 0.33

30 0.53

40 0.53

50 0.2

60 0.6

70 0.87

80 0.67

90 0.67

100 0.67 334.8

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

0.33 0.33 0.53 0.53 0.2 0.6 0.87 0.67 0.67 0.67 5.4� � � � � � � � � �

334.8

5.4

62

Desirability �

�

representative value confidence
Crisp Value

confidence

�
� �

�

TLFeBOOK

Table 10.3

Set Representative Value Confidence

Undesirable 12.5 0.33

Desirable 50 0.2

VeryDesirable 87.5 0.67

Plugging these values into the equation gives the desirability as a crisp

value:

(10.16)

As you can see, this method has produced a value very close to that calcu-

lated by the more accurate but costlier to calculate centroid technique (and

it would have been closer had I not estimated some of the values in the

centroid calculation) and therefore, this is the one I’d advise you use in

your games and applications.

Well, that’s it! We’ve gone from crisp values (distance to target = 200,

ammo status = 8) to fuzzy sets, to inference, and back to a crisp value rep-

resenting the desirability of using the rocket launcher (83, 62, or 60.625

depending on the defuzzification method). If this process is repeated for

each weapon type a bot is carrying, it’s a simple matter to select the one

with the highest desirability score to be the weapon the bot should use

given its current situation.

From Theory to Application: Coding a Fuzzy Logic Module

It’s now time to see exactly how the classes required to implement fuzzy

logic have been designed and how they are integrated with Raven.

The FuzzyModule Class
The FuzzyModule class is the heart of the fuzzy system. It contains a

std::map of fuzzy linguistic variables and a std::vector containing the rule

base. In addition, it has methods for adding FLVs and rules to the module

and for running the module through the process of fuzzification, inference,

and defuzzification.

Fuzzy Logic | 437

From Theory to Application: Coding a Fuzzy Logic Module

12.5 0.33 50 0.2 87.5 0.67

0.33 0.2 0.67

72.75

1.2

60.625

Desirability

Desirability

� � � � �
�

� �

�

�

TLFeBOOK

class FuzzyModule
{
private:

typedef std::map<std::string, FuzzyVariable*> VarMap;

public:

//a client must pass one of these values to the defuzzify method.
//This module only supports the MaxAv and centroid methods.
enum DefuzzifyType{max_av, centroid};

//when calculating the centroid of the fuzzy manifold this value is used
//to determine how many cross sections should be sampled
enum {NumSamplesToUseForCentroid = 15};

private:

//a map of all the fuzzy variables this module uses
VarMap m_Variables;

//a vector containing all the fuzzy rules
std::vector<FuzzyRule*> m_Rules;

//zeros the DOMs of the consequents of each rule. Used by Defuzzify()
inline void SetConfidencesOfConsequentsToZero();

public:

~FuzzyModule();

//creates a new "empty" fuzzy variable and returns a reference to it.
FuzzyVariable& CreateFLV(const std::string& VarName);

//adds a rule to the module
void AddRule(FuzzyTerm& antecedent, FuzzyTerm& consequence);

//this method calls the Fuzzify method of the named FLV
inline void Fuzzify(const std::string& NameOfFLV, double val);

//given a fuzzy variable and a defuzzification method this returns a
//crisp value
inline double DeFuzzify(const std::string& key, DefuzzifyType method);

};

A client will typically create an instance of this class for each AI that

requires a unique fuzzy rule set. FLVs can then be added to the module

using the CreateFLV method. This method returns a reference to the newly

created FLV. Here’s an example of how a module is used to create the

fuzzy linguistic variables required for the weapon selection example:

FuzzyModule fm;
FuzzyVariable& DistToTarget = fm.CreateFLV("DistToTarget");

438 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

FuzzyVariable& Desirability = fm.CreateFLV("Desirability");
FuzzyVariable& AmmoStatus = fm.CreateFLV("AmmoStatus");

At this point in time though, each of these FLVs is “empty.” To be useful,

an FLV must be initialized with some member sets. Let’s take a look at

how the different types of fuzzy sets are encapsulated.

The FuzzySet Base Class
Since it’s necessary to manipulate fuzzy sets using a common interface, all

fuzzy set types are derived from the abstract class FuzzySet. Each class

contains a data member to store the degree of membership of the value to

be fuzzified. Concrete FuzzySets own additional data for describing the

shape of their membership function.

class FuzzySet
{
protected:

//this will hold the degree of membership in this set of a given value
double m_dDOM;

//this is the maximum of the set's membership function. For instance, if
//the set is triangular then this will be the peak point of the triangle.
//If the set has a plateau then this value will be the midpoint of the
//plateau. This value is set in the constructor to avoid run-time
//calculation of midpoint values.
double m_dRepresentativeValue;

public:

FuzzySet(double RepVal):m_dDOM(0.0), m_dRepresentativeValue(RepVal){}

//return the degree of membership in this set of the given value. NOTE:
//this does not set m_dDOM to the DOM of the value passed as the parameter.
//This is because the centroid defuzzification method also uses this method
//to determine the DOMs of the values it uses as its sample points.
virtual double CalculateDOM(double val)const = 0;

//if this fuzzy set is part of a consequent FLV and it is fired by a rule,
//then this method sets the DOM (in this context, the DOM represents a
//confidence level) to the maximum of the parameter value or the set's
//existing m_dDOM value
void ORwithDOM(double val);

//accessor methods
double GetRepresentativeVal()const;
void ClearDOM(){m_dDOM = 0.0;}
double GetDOM()const{return m_dDOM;}
void SetDOM(double val);

};

Let’s now take a close look at a couple of concrete fuzzy set classes.

Fuzzy Logic | 439

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

The Triangular Fuzzy Set Class
A triangular fuzzy set is defined by three values: a peak point, a left offset,

and a right offset. See Figure 10.24.

The declaration of the class encapsulating this data is as follows:

class FuzzySet_Triangle : public FuzzySet
{
private:

//the values that define the shape of this FLV
double m_dPeakPoint;
double m_dLeftOffset;
double m_dRightOffset;

public:

FuzzySet_Triangle(double mid,
double lft,
double rgt):FuzzySet(mid),

m_dPeakPoint(mid),
m_dLeftOffset(lft),
m_dRightOffset(rgt)

{}

//this method calculates the degree of membership for a particular value
double CalculateDOM(double val)const;

};

As you can see, it’s very straightforward. Notice how the midpoint of the

triangle is passed to the constructor of the base class as the representative

value for this shape. The interface from FuzzySet only defines one method

that must be implemented: CalculateDOM, the method that determines the

degree of membership of a value to the set. The following is the code for

that implementation:

double FuzzySet_Triangle::CalculateDOM(double val)const
{
//test for the case where the triangle's left or right offsets are zero

440 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

Figure 10.24. A triangular membership function

TLFeBOOK

//(to prevent divide by zero errors below)
if ((isEqual(m_dRightOffset, 0.0) && (isEqual(m_dPeakPoint, val))) ||

(isEqual(m_dLeftOffset, 0.0) && (isEqual(m_dPeakPoint, val))))
{
return 1.0;

}

//find DOM if left of center
if ((val <= m_dPeakPoint) && (val >= (m_dPeakPoint - m_dLeftOffset)))
{
double grad = 1.0 / m_dLeftOffset;

return grad * (val - (m_dPeakPoint - m_dLeftOffset));
}

//find DOM if right of center
else if ((val > m_dPeakPoint) && (val < (m_dPeakPoint + m_dRightOffset)))
{
double grad = 1.0 / -m_dRightOffset;

return grad * (val - m_dPeakPoint) + 1.0;
}

//out of range of this FLV, return zero
else
{
return 0.0;

}
}

The Right Shoulder Fuzzy Set Class
A right-shouldered fuzzy set is also parameterized by three values: a peak

point, a left offset, and a right offset. See Figure 10.25.

Once again the class definition is straightforward:

class FuzzySet_RightShoulder : public FuzzySet
{
private:

Fuzzy Logic | 441

From Theory to Application: Coding a Fuzzy Logic Module

Figure 10.25. A right shoulder membership function

TLFeBOOK

//the values that define the shape of this FLV
double m_dPeakPoint;
double m_dLeftOffset;
double m_dRightOffset;

public:

FuzzySet_RightShoulder(double peak,
double LeftOffset,
double RightOffset):

FuzzySet(((peak + RightOffset) + peak) / 2),
m_dPeakPoint(peak),
m_dLeftOffset(LeftOffset),
m_dRightOffset(RightOffset)

{}

//this method calculates the degree of membership for a particular value
double CalculateDOM(double val)const;

};

This time the representative value is the midpoint of the plateau of the

shoulder.

The CalculateDOM method is also slightly different.

double FuzzySet_RightShoulder::CalculateDOM(double val)const
{
//check for case where the offset may be zero
if (isEqual(0, m_dLeftOffset) && isEqual(val,m_dMidPoint))
{
return 1.0;

}

//find DOM if left of center
if ((val <= m_dMidPoint) && (val > (m_dMidPoint - m_dLeftOffset)))
{
double grad = 1.0 / m_dLeftOffset;

return grad * (val - (m_dMidPoint - m_dLeftOffset));
}

//find DOM if right of center
else if (val > m_dMidPoint)
{
return 1.0;

}

//out of range of this FLV, return zero
else
{
return 0.0;

}
}

442 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

Again, it’s all very straightforward. I don’t want to waste paper listing the

code for the other fuzzy sets; they’re just as clear-cut and easy to under-

stand. Let’s move on to the fuzzy linguistic variable class.

Creating a Fuzzy Linguistic Variable Class
The fuzzy linguistic variable class FuzzyVariable contains a std::map of

pointers to instances of FuzzySets — the sets that make up its manifold. In

addition, it has methods for adding fuzzy sets and for fuzzifying and

defuzzifying values.

Whenever a member set is created and added to an FLV, the min/max

ranges of the FLV are recalculated and assigned to the values m_dMinRange

and m_dMaxRange. Keeping a record of the range of the domain of the FLV

in this way allows the logic to determine if a value presented for

fuzzification is out of bounds and to exit with an assertion if necessary.

Here’s the class declaration:

class FuzzyVariable
{
private:

typedef std::map<std::string, FuzzySet*> MemberSets;

private:

//disallow copies
FuzzyVariable(const FuzzyVariable&);
FuzzyVariable& operator=(const FuzzyVariable&);

private:

//a map of the fuzzy sets that comprise this variable
MemberSets m_MemberSets;

//the minimum and maximum value of the range of this variable
double m_dMinRange;
double m_dMaxRange;

//this method is called with the upper and lower bound of a set each time a
//new set is added to adjust the upper and lower range values accordingly
void AdjustRangeToFit(double min, double max);

//a client retrieves a reference to a fuzzy variable when an instance is
//created via FuzzyModule::CreateFLV(). To prevent the client from deleting
//the instance the FuzzyVariable destructor is made private and the
//FuzzyModule class made a friend.
~FuzzyVariable();

friend class FuzzyModule;

Fuzzy Logic | 443

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

public:

FuzzyVariable():m_dMinRange(0.0),m_dMaxRange(0.0){}

//the following methods create instances of the sets named in the method
//name and adds them to the member set map. Each time a set of any type is
//added the m_dMinRange and m_dMaxRange are adjusted accordingly. All of the
//methods return a proxy class representing the newly created instance. This
//proxy set can be used as an operand when creating the rule base.
FzSet AddLeftShoulderSet(std::string name,

double minBound,
double peak,
double maxBound);

FzSet AddRightShoulderSet(std::string name,
double minBound,
double peak,
double maxBound);

FzSet AddTriangularSet(std::string name,
double minBound,
double peak,
double maxBound);

FzSet AddSingletonSet(std::string name,
double minBound,
double peak,
double maxBound);

//fuzzify a value by calculating its DOM in each of this variable's subsets
void Fuzzify(double val);

//defuzzify the variable using the MaxAv method
double DeFuzzifyMaxAv()const;

//defuzzify the variable using the centroid method
double DeFuzzifyCentroid(int NumSamples)const;

};

Notice how the methods for creating and adding sets do not use the same

parameters used by the fuzzy set classes themselves. For example, in addi-

tion to a string representing the name, the AddLeftShoulderSet method

takes as parameters the minimum bound, a peak point, and a maximum

bound, whereas the FuzzySet_Triangle class uses values specifying a mid-

point, a left offset, and a right offset. This is simply to make the methods

more instinctive for clients to use. Typically, when creating FLVs you will

sketch out their member sets on paper (or imagine them in your head),

making it a lot easier to read off the values left to right instead of calculat-

ing all the offsets.

444 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

Let’s build on our example and add some member sets to DistToTarget.

FuzzyModule fm;
FuzzyVariable& DistToTarget = fm.CreateFLV("DistToTarget");

FzSet Target_Close = DistToTarget.AddLeftShoulderSet("Target_Close",
0,
25,
150);

FzSet Target_Medium = DistToTarget.AddTriangularSet("Target_Medium",
25,
50,
300);

FzSet Target_Far = DistToTarget.AddRightShoulderSet("Target_Far",
150,
300,
500);

These few lines of code create the FLV shown in Figure 10.26.

Notice how an instance of a FzSet is returned by each of the set addition

methods. This is a proxy class that mimics the functionality of a concrete

FuzzySet. The concrete instances themselves are contained within

FuzzyVariable::m_MemberSets. These proxies are used as operands when

constructing a fuzzy rule base.

Designing Classes for Building Fuzzy Rules
This is undoubtedly the gnarliest part of coding a fuzzy system. As you’ve

learned, each fuzzy rule takes the form:

IF antecedent THEN consequent

where the antecedent and consequent can be single fuzzy sets or composite

sets that are the results of operations. To be flexible the fuzzy module must

be able to handle rules using not only the AND operator but also the OR

Fuzzy Logic | 445

From Theory to Application: Coding a Fuzzy Logic Module

Figure 10.26

TLFeBOOK

and NOT operators and fuzzy hedges such as VERY and FAIRLY. In other

words, the module should be able to cope with rules like the following:

IF a1 and a2 THEN c1

IF VERY(a1) AND (a2 OR a3) THEN c1

IF [(a1 AND a2) OR (NOT(a3) AND VERY(a4))] THEN [c1 AND c2]

Within the final rule observe how the OR operator is operating on the result

of (a1 AND a2) and the result of (NOT(a3) AND VERY(a4)). In turn, the

AND in the second term is operating on the results of NOT(a3) and

VERY(a4). If that isn’t complex enough, the rule has two consequents

ANDed together. Obviously this example is well over the top and it’s

extremely unlikely a game AI programmer will ever require a rule such as

this (although it wouldn’t be too uncommon a sight in many fuzzy expert

systems), but it illustrates my point well — any operator class worth its salt

must be able to handle individual operands and compositions of operands

and operators identically. This is clearly another area where the composite

design pattern comes to the rescue.

To reiterate: The idea behind the composite pattern is to design a com-

mon interface for both composite and atomic objects to implement; when a

request is made of the composite it will forward it to one or more of its

children (see Chapter 9 if you require a more detailed explanation of the

composite pattern). In fuzzy rules, operands (fuzzy sets) are atomic objects,

and operators (AND, OR, VERY, etc.) are composites. Therefore, a class is

required that defines a common interface for both these types of objects to

implement. That class is called FuzzyTerm and it looks like this:

class FuzzyTerm
{
public:

virtual ~FuzzyTerm(){}

//all terms must implement a virtual constructor
virtual FuzzyTerm* Clone()const = 0;

//retrieves the degree of membership of the term
virtual double GetDOM()const=0;

//clears the degree of membership of the term
virtual void ClearDOM()=0;

// method for updating the DOM of a consequent when a rule fires
virtual void ORwithDOM(double val)=0;

};

Because any type of fuzzy operation on one or more sets results in a com-

posite fuzzy set, this small interface is adequate to define objects for use in

the construction of fuzzy rules. Figure 10.27 shows the relationship

446 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

between the FuzzyTerm class, the fuzzy AND operator class FzAND (compos-

ite), and the FzSet fuzzy set proxy object (atomic).

Observe how the FzAND object may contain from two to four FuzzyTerms

and that when one of its methods is called it iterates through each of them

and delegates the call to each child’s corresponding method or uses their

interface to calculate a result. Also notice how a FzSet acts as a proxy for a

FuzzySet object. A proxy class is used to hide a real class from a client; it

acts as a surrogate to the real class in order to control access to it. Proxy

classes maintain a reference to the class they are a surrogate for and when a

client calls a method of the proxy class, it forwards the call to the equiva-

lent method of the reference.

Whenever a FuzzySet is added to a FuzzyVariable the client is handed a

proxy to it in the form of a FzSet. This proxy can be copied and used multi-

ple times in the creation of the rule base. No matter how many times it is

copied it will always surrogate for the same object, which tidies up the

design considerably since we don’t have to worry about keeping track of

copies of FuzzySets as rules are created.

Using this design for all operators and operands it’s possible to produce

a very user-friendly interface for creating fuzzy rules. Clients use syntax

like the following to add rules:

fm.AddRule(FzAND(Target_Far, Ammo_Low), Undesirable);

Fuzzy Logic | 447

From Theory to Application: Coding a Fuzzy Logic Module

Figure 10.27. The composite pattern applied to fuzzy operators and operands

TLFeBOOK

Even the complex term shown earlier is easy to construct:

fm.AddRule(FzOR(FzAND(a1,a2), FzAND(FzNOT(a3), FzVery(a4))), FzAND(c1, c2));

To understand this better let’s delve into the guts of the AddRule method.

Here’s the implementation:

void FuzzyModule::AddRule(FuzzyTerm& antecedent, FuzzyTerm& consequence)
{
m_Rules.push_back(new FuzzyRule(antecedent, consequence)));

}

As you can see, all this method does is create a local copy of a FuzzyRule

class. A FuzzyRule contains an instance of a FuzzyTerm denoting the ante-

cedent and another denoting the consequent. These instances are copies of

the FuzzyTerms used to construct the FuzzyRule. This is one reason why

each FuzzyTerm subclass must implement the virtual constructor method

Clone.

Here’s the listing so you can see exactly what’s going on.

class FuzzyRule
{
private:

//antecedent (usually a composite of several fuzzy sets and operators)
const FuzzyTerm* m_pAntecedent;

//consequence (usually a single fuzzy set, but can be several ANDed together)
FuzzyTerm* m_pConsequence;

//it doesn't make sense to allow clients to copy rules
FuzzyRule(const FuzzyRule&);
FuzzyRule& operator=(const FuzzyRule&);

public:

FuzzyRule(FuzzyTerm& ant,
FuzzyTerm& con):m_pAntecedent(ant.Clone()),

m_pConsequence(con.Clone())
{}

~FuzzyRule(){delete m_pAntecedent; delete m_pConsequence;}

void SetConfidenceOfConsequentToZero(){m_pConsequence->ClearDOM();}

//this method updates the DOM (the confidence) of the consequent term with
//the DOM of the antecedent term.
void Calculate()
{
m_pConsequence->ORwithDOM(m_pAntecedent->GetDOM());

}
};

Okay, I think that’s enough comment on the design of classes used to create

and execute fuzzy rules. If you want to dig into the guts a little further, I

advise you to check out the implementation of the FzAND, FzOR, FzVery, and

448 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

FzFairly classes, which you can find in the common/fuzzy folder. The

UML diagram in Figure10.28 will also help you to understand how all the

objects used by the fuzzy module interrelate.

Continuing with the code shown earlier in this section, here is how the rule

base for the rocket launcher can be added to the fuzzy module:

/* first initialize the fuzzy module with FLVs */

/* now add the rule set */
fm.AddRule(FzAND(Target_Close, Ammo_Loads), Undesirable);
fm.AddRule(FzAND(Target_Close, Ammo_Okay), Undesirable);
fm.AddRule(FzAND(Target_Close, Ammo_Low), Undesirable);
fm.AddRule(FzAND(Target_Medium, Ammo_Loads), VeryDesirable);

Fuzzy Logic | 449

From Theory to Application: Coding a Fuzzy Logic Module

Figure 10.28

TLFeBOOK

fm.AddRule(FzAND(Target_Medium, Ammo_Okay), VeryDesirable);
fm.AddRule(FzAND(Target_Medium, Ammo_Low), Desirable);
fm.AddRule(FzAND(Target_Far, Ammo_Loads), Desirable);
fm.AddRule(FzAND(Target_Far, Ammo_Okay), Desirable);
fm.AddRule(FzAND(Target_Far, Ammo_Low), Undesirable);

Once a FuzzyModule has been initialized, it’s a painless matter to input val-

ues and calculate a crisp conclusion. Here’s a method that does just that:

double CalculateDesirability(FuzzyModule& fm, double dist, double ammo)
{

//fuzzify the inputs
fm.Fuzzify("DistToTarget", dist);
fm.Fuzzify("AmmoStatus", ammo);

//this method automatically processes the rules and defuzzifies
//the inferred conclusion
return fm.DeFuzzify("Desirability", FuzzyModule::max_av);

}

When the DeFuzzify method is called, the rules are processed and the

inferred conclusion defuzzified into a crisp value. Here’s the method for

your perusal:

inline double
FuzzyModule::DeFuzzify(const std::string& NameOfFLV, DefuzzifyMethod method)
{
//first make sure the named FLV exists in this module
assert ((m_Variables.find(NameOfFLV) != m_Variables.end()) &&

"<FuzzyModule::DeFuzzifyMaxAv>:key not found");

//clear the DOMs of all the consequents
SetConfidencesOfConsequentsToZero();

//process the rules
std::vector<FuzzyRule*>::iterator curRule = m_Rules.begin();
for (curRule; curRule != m_Rules.end(); ++curRule)
{
(*curRule)->Calculate();

}

//now defuzzify the resultant conclusion using the specified method
switch (method)
{
case centroid:

return m_Variables[NameOfFLV]->DeFuzzifyCentroid(NumSamples);

case max_av:

return m_Variables[NameOfFLV]->DeFuzzifyMaxAv();
}

return 0;
}

450 | Chapter 10

From Theory to Application: Coding a Fuzzy Logic Module

TLFeBOOK

How Raven Uses the Fuzzy Logic Classes

Each Raven weapon owns an instance of a fuzzy module, which is initial-

ized with FLVs and rules specific to the weapon. All weapons are derived

from the Raven_Weapon abstract base class and implement the method

GetDesirability, which updates the fuzzy module and returns a crisp desir-

ability score.

Here are the relevant parts of Raven_Weapon:

class Raven_Weapon
{
protected:

FuzzyModule m_FuzzyModule;

/* EXTRANEOUS DETAIL OMITTED */

public:

virtual double GetDesirability(double DistToTarget)=0;

/* EXTRANEOUS DETAIL OMITTED */
};

Every few update cycles (twice a second by default) the bots query each of

the weapons in their inventory to determine which of them is the most

desirable given the distance to the bot’s target and the ammo remaining,

and selects the one with the highest desirability score. The code that imple-

ments this logic is listed below.

void Raven_Bot::SelectWeapon()
{
//only need to run this code if a target is present
if (m_pTargSys->isTargetPresent())
{
//calculate the distance to the target
double DistToTarget = Vec2DDistance(Pos(), m_pTargSys->GetTarget()->Pos());

//for each weapon in the inventory calculate its desirability given the
//current situation. The most desirable weapon is selected
double BestSoFar = MinDouble;

std::vector<Raven_Weapon*>::const_iterator curWeap;
for (curWeap = m_Weapons.begin(); curWeap != m_Weapons.end(); ++curWeap)
{
//grab the desirability of this weapon (desirability is based upon
//distance to target and ammo remaining)
double score = (*curWeap)->GetDesirability(DistToTarget);

//if it is the most desirable so far select it
if (score > BestSoFar)
{
BestSoFar = score;

Fuzzy Logic | 451

How Raven Uses the Fuzzy Logic Classes

TLFeBOOK

//place the weapon in the bot's hand.
m_pCurrentWeapon = *curWeap;

}
}

}
}

The Combs Method

One major problem with fuzzy inference systems is that as the complexity

of the problem increases, the number of rules required escalates at an

alarming rate. For example, the simple module created to solve the weapon

selection problem only required nine rules — one for each possible combi-

nation of the antecedent sets — but if we add just one more FLV, again

consisting of three member sets, then 27 rules are necessary. It gets much

worse if the number of member sets in each FLV has to be increased to

obtain more precision. For instance, 125 rules are required for a system

with three FLVs each containing five member sets. Add another FLV con-

sisting of five member sets and the number skyrockets to 625 rules! This

effect is known as combinatorial explosion and is a huge problem when

designing fuzzy systems for time-critical applications, which of course is

what computer games are.

Luckily for us, we have a knight in shining armor in the form of William

Combs, an engineer with Boeing. In 1997 Combs proposed a system that

enables the number of rules to grow linearly with the number of member

sets instead of exponentially. Table 10.4 shows the number of rules

required using the traditional method versus the Combs method (assume

each FLV contains five member sets).

Table 10.4

Number of FLVs Rules Rqd. (traditional) Rules Rqd. (Combs)

2 25 10

3 125 15

4 625 20

5 3,125 25

6 15,625 30

7 78,125 35

8 390, 625 40

A big difference, I’m sure you’ll agree!

The theory behind the Combs method works on the principle that a rule

such as:

IF Target_Far AND Ammo_Loads THEN Desirable

452 | Chapter 10

The Combs Method

TLFeBOOK

is logically equivalent to:

IF Target_Far THEN Desirable

OR

IF Ammo_Loads THEN Desirable

Using this principle, a rule base can be defined that contains only one rule

per consequent member set. For example, the nine rules for the desirability

of the rocket launcher given previously:

Rule 1. IF Target_Far AND Ammo_Loads THEN Desirable

Rule 2. IF Target_Far AND Ammo_Okay THEN Undesirable

Rule 3. IF Target_Far AND Ammo_Low THEN Undesirable

Rule 4. IF Target_Medium AND Ammo_Loads THEN VeryDesirable

Rule 5. IF Target_Medium AND Ammo_Okay THEN VeryDesirable

Rule 6. IF Target_Medium AND Ammo_Low THEN Desirable

Rule 7. IF Target_Close AND Ammo_Loads THEN Undesirable

Rule 8. IF Target_Close AND Ammo_Okay THEN Undesirable

Rule 9. IF Target_Close AND Ammo_Low THEN Undesirable

can be reduced to six rules:

Rule 1. IF Target_Close THEN Undesirable

Rule 2. IF Target_Medium THEN VeryDesirable

Rule 3. IF Target_Far THEN Undesirable

Rule 4. IF Ammo_Low THEN Undesirable

Rule 5. IF Ammo_Okay THEN Desirable

Rule 6. IF Ammo_Loads THEN VeryDesirable

This is not a great reduction of course, but as you saw in Table 10.4, the

Combs method becomes an increasingly attractive alternative as the num-

ber of member sets used by the linguistic variables rises.

One of the drawbacks with this method is that the changes to the rule

base required to accommodate the logic are not intuitive. Combs gives a

good example in his paper “The Combs Method for Rapid Inference”:

When I got my first driver’s license, my insurance agent reminded me

that since I was sixteen AND male AND single, my insurance premium

would be high. Later, after college, he said that since I was in my

mid-twenties AND male AND married, my insurance premium would be

moderately low.

This latter statement seems to make more intuitive sense than our alter-

native format: since I was in my mid-twenties, my insurance premium

would be moderately low, OR since I was a male, my insurance premium

would be moderately high, OR since I was married, my insurance pre-

mium would be low.

Fuzzy Logic | 453

The Combs Method

TLFeBOOK

No agent wanting to close a sale would utter such a seemingly conflict-

ing statement. One of the problems with [this method] is that the trans-

formation from [(p and q) then r] to [(p then r) or (q then r)] shifts our

focus from one rule to what appears to be the union of two (or more)

rules. In addition, since each of these alternative rules can contain dif-

ferent consequent subsets, they seem to be contradicting each other:

either my premium is high OR my premium is low. How can it be both?

For many of you, the counterintuitiveness of this method may be a stum-

bling block but if so, persevere — it’s definitely worth the effort if you find

yourself working with large rule bases.

Fuzzy Inference and the Combs Method
When using the Combs method, rules are processed as normal. To clarify,

let’s work through an example with the same figures used in the example

shown earlier in the chapter: 200 pixels for distance and 8 for ammo status.

Calculating the result of each rule we get:

Target_Close � Undesirable (0.0)

Target_Medium � VeryDesirable (0.67)

Target_Far � Undesirable (0.33)

Ammo_Low � Undesirable (0.22)

Ammo_Okay � Desirable (0.78)

Ammo_Loads � VeryDesirable (0.0)

454 | Chapter 10

The Combs Method

Figure 10.29

TLFeBOOK

Now all we have to do is clip the relevant member sets of the consequent to

the maximum of those values (ORing them together). This procedure and

the resulting set is shown in Figure 10.29.

Using the MaxAv defuzzification method on this set results in a crisp

value of 57.16, a very similar result to that received from the traditional

fuzzy logic inference procedure.

Implementation
One fantastic aspect of this method is that no changes have to be made to

the fuzzy logic classes to implement it. You only have to rewrite the rules

to conform to the Combs logic. Bonus!

� NOTE If you are curious about the logic behind the Combs method, I recom-
mend you examine his paper. He gives a very detailed proof of the logic behind
the method, which is well worth reading when you have a few minutes to spare.

Summing Up

You should now have a firm understanding of the theory behind fuzzy

logic, but you’ll need to get some practical experience under your belt

before you recognize just how powerful and flexible it is. With this in mind

I strongly suggest you try your hand at some of the following tasks (they

start easy and become increasingly complex).

Practice Makes Perfect

1. Delve into the Raven code and increase the number of sets used in the

fuzzy linguistic variables to five. This means you will have to com-

pletely redefine the FLVs and the accompanying rules for each

weapon (or for just one of the weapons if you are feeling lazy�).

2. If you completed task 1 successfully you will have ended up with 25

rules. Your second challenge is to reduce the number of rules to 10 by

converting them to the Combs method.

3. As it stands, the bot aiming logic is weak. Adding random noise to the

aiming is okay but it’s not very realistic. With random noise a bot will

still occasionally make very stupid and obvious aiming errors. For

instance, on occasions when a lot of noise is added, a bot might miss a

shot that a human player — no matter how poor — would never miss.

Alternatively, when very little is added a bot will from time to time

make shots that no mortal player could ever make. (Don’t you just

hate it when that happens!)

Fuzzy Logic | 455

Summing Up

TLFeBOOK

The bot aiming can be made a lot more realistic by using fuzzy

logic to calculate the deviation of each shot from perfect based upon

variables like distance to target, relative lateral velocity, and how long

the opponent has been visible. (Other considerations might be size,

visibility, and profile — standing up, crouching, face on, side on, etc.

— but these aren’t relevant to Raven.) Use the skills you’ve learned in

this chapter to implement fuzzy rules for accomplishing this.

456 | Chapter 10

Summing Up

TLFeBOOK

Last Words

Wow! The end of the book is here. No more late nights (for a short while at

least). I can go out and party. See my friends. I wonder how old they’ll

look. Maybe my girlfriend will even start talking to me again!

Seriously though, I hope you’ve enjoyed reading this book, have learned

from it, and are ready to start implementing the techniques in your own

games (if you haven’t started already). If you’d like to discuss any of the

topics in this book or anything else related to AI, please visit the forum at

my web site, www.ai-junkie.com.

I’d like to end the book with a few guidelines I recommend you revisit

from time to time… to keep it real, as rappers are fond of saying.

� There is very rarely just one correct way of creating a good game AI

solution. Experiment with various methods as much as time permits

before committing yourself to a design.

� Playtest often, and listen to your playtesters. If possible, watch them

play. Make sure you take a notepad and pen, as you’ll be using them

a lot.

� During your learning curve you will find yourself drawn — inevita-

bly, like a moth to a flame — to one or two AI techniques that really

make your whiskers curl. Do not fall into the trap of obsessing over

such techniques and contriving problems to apply them to. This is

akin to finding a hammer and then walking around looking for stuff

to hit with it.

� Do at least one brainstorming session devoted to AI with everyone

else on your team, not just the game designer/producer (yes, even the

artists). This will result in several new and possibly exciting ideas

for you to mull over.

� The design of game AI is an iterative process. There’s no way you’re

going to get it right the first time. It’s just not possible to consider all

the intricacies of anything more complex than the simplest of prob-

lems, so do not become disheartened when your first attempt per-

forms poorly. Persevere, learn from your mistakes, and keep

repeating the design cycle until you get it right.

457
TLFeBOOK

� Don’t limit your reading to game AI related topics. Many of your

best ideas will come when reading around the subject. Cognitive sci-

ence, robotics, philosophy, psychology, social science, biology, and

even military tactics are all topics worthy of your time.

� A hugely clever and almost unbeatable opponent is rarely the goal of

a game AI programmer. Good AI has one purpose: to make the

gameplay fun. You will be wise to remind yourself of this from time

to time because, believe me, it is very easy to miss the point and get

bogged down with trying to make the most intelligent game agent

known to man instead of one that makes a player laugh and shout

with glee.

� Above all, when designing AI, always bear in mind that the sophisti-

cation of your game agent should be proportional to its life span.

There is little point designing an agent that utilizes all the latest tech-

nological bells and whistles if it’s only expected to live for three sec-

onds before a player blows its head off.

458 | Last Words

TLFeBOOK

Appendix A

C++ Templates

T his appendix has been written as a quick and very brief introduction to

C++ templates. It only skims the surface of what you can achieve with

templates, but I cover enough ground for you to understand the code that

accompanies this book.

Function Templates

If you have never used templates before then you will have almost cer-

tainly at some time created several versions of the same function to cater to

each type you require the function to operate on. For example, you may

create a function called Clamp that takes an integer and makes sure its value

is between two limits. Something like this:

void Clamp(int& Val, int MinVal, int MaxVal)
{
if (Val < MinVal) {Val = MinVal; return;}
if (Val > MaxVal) {Val = MaxVal; return;}

}

Later on in your project, you realize that you want the same functionality

but for floats. So you create another version of Clamp:

void Clamp(float& Val, float MinVal, float MaxVal)
{
if (Val < MinVal) {Val = MinVal; return;}
if (Val > MaxVal) {Val = MaxVal; return;}

}

And you may find that you want to add more versions for other types too.

Repeating all this code every time you want to support a new type can

become a pain in the butt. Fortunately for us, C++ templates provide a

mechanism to allow classes and functions to be parameterized so that they

provide the same behavior for different types. The declaration of a function

template is very similar to a normal function declaration except the type is

left unspecified. Here’s how the Clamp function shown previously looks as

a function template:

template <typename T>
void Clamp(T& Val, T MinVal, T MaxVal)
{
if (Val < MinVal) {Val = MinVal; return;}

459
TLFeBOOK

if (Val > MaxVal) {Val = MaxVal; return;}
}

The template keyword is basically stating that this definition specifies a

family of functions that are parameterized by the template parameter T.

When this function template is called, an instance of Clamp will be gener-

ated by the compiler for each type for which the template is used. So, given

the following program:

int main()
{
int intVal = 10;
int iMin = 20;
int iMax = 30;

cout < "\nintVal before Clamp = " < intVal;

Clamp(intVal, iMin, iMax);

cout < "\nintVal after Clamp = " < intVal;

float floatVal = 10.5;
float fMin = 25.5;
float fMax = 35.5;

cout < "\n\nfloatVal before Clamp = " < floatVal;

Clamp(floatVal, fMin, fMax);

cout < "\nfloatVal after Clamp = " < floatVal;

return 0;
}

the compiler will create two instances of Clamp, one taking integers as

parameters and the other taking floats, giving the output:

intVal before Clamp = 10
intVal after Clamp = 20

floatVal before Clamp = 10.5
floatVal after Clamp = 25.5

Adding More Types
So far so good, but what if you wanted to do something like:

Clamp(floatVal, iMin, iMax);

Now that the parameters include one float and two integers, the function

template for Clamp given previously will not compile. You will get the

error: “template parameter 'T' is ambiguous” or something similar. To pro-

vide support for more types you must add them to the parameterized list

like so:

460 | Appendix A

Function Templates

TLFeBOOK

template <typename T, typename M>
void Clamp(T& Val, M MinVal, M MaxVal)
{
if (Val < MinVal) {Val = MinVal; return;}
if (Val > MaxVal) {Val = MaxVal; return;}

}

Using this definition the Clamp family of functions will accept different

types for the value and for the range (a little contrived I know, but it gets

the point across). Now you can do stuff like this:

int main()
{
int intVal = 10;
int iMin = 20;
int iMax = 30;
float floatVal = 10.5;
float fMin = 25.5;
float fMax = 35.5;

cout < "\nintVal before Clamp = " < intVal;
Clamp(intVal, fMin, fMax);
cout < "\nintVal after Clamp = " < intVal;

cout < "\n\nfloatVal before Clamp = " < floatVal;
Clamp(floatVal, iMin, iMax);
cout < "\nfloatVal after Clamp = " < floatVal;

return 0;
}

giving the output:

intVal before Clamp = 10
intVal after Clamp = 25

floatVal before Clamp = 10.5
floatVal after Clamp = 20

Class Templates

Just like functions, classes can be parameterized with one or more types.

For example, the STL container classes you are probably familiar with are

class templates you can use to manipulate collections of objects, whatever

their type.

A common way of demonstrating how a class template works is to

implement a stack-like data structure. Here’s the declaration of Stack, a

class that acts as a stack and can hold five elements of the parameterized

type T:

template <class T>
class Stack
{
private:

C++ Templates | 461

Class Templates

TLFeBOOK

enum {MaxEntries = 5};

T m_Slots[MaxEntries];

int m_NextFreeSlot;

public:

Stack():m_NextFreeSlot(0){}

//add an object to the stack
void Push(const T& t);

//remove an object from the stack
T Pop();

bool Full()const{return m_NextFreeSlot == MaxEntries;}
bool Empty()const{return m_NextFreeSlot == 0;}

};

As you can see, there is little difference between a class template and a

function template. You may have noticed that this time I declared the

parameterized type as <class T> and not <typename T> as I did for the func-

tion template. You can use either of these keywords interchangeably as

they are for all intents and purposes identical.

Inside the class template the type identifier T can be used just like any

other type. In this example it’s used to declare an array, m_Slots, of size 5,

as the parameter type to be passed to the member function Push, and as the

return type of the member function Pop.

The definition of a class member function is made by first specifying

that it is a function template and then by using the full type of the class

template itself: Stack<T>. That was a horrible sentence so perhaps I’d better

show you explicitly. Here’s the implementation of the Stack::Push member

function:

template <class T>
void Stack<T>::Push(const T& t)
{
if (m_NextFreeSlot < MaxEntries)
{
m_Slots[m_NextFreeSlot++] = t;

}
else
{
throw std::out_of_range("stack empty");

}
}

And here’s the implementation of Stack::Pop:

template <class T>
T Stack<T>::Pop()
{
if (m_NextFreeSlot >= 0)

462 | Appendix A

Class Templates

TLFeBOOK

{
return m_Slots[--m_NextFreeSlot];

}
else
{
throw std::range_error("stack empty");

}
}

An instance of a Stack is created by specifying the template arguments

explicitly. Here’s a small program showing how Stack can be used with the

types int and float:

int main()
{
Stack<int> iStack;
Stack<float> fStack;

//add some values to the stacks
for (int i=0; i<10; ++i)
{
if (!iStack.Full()) iStack.Push(i);

if (!fStack.Full()) fStack.Push(i*0.5);

}

//pop the values from the int stack
cout < "Popping the ints... ";
for (i=0; i<10; ++i)
{
if (!iStack.Empty())
{
cout < iStack.Pop() < ", ";

}
}

//pop the values from the float stack
cout < "\n\nPopping the floats... ";
for (i=0; i<10; ++i)
{
if (!fStack.Empty())
{
cout < fStack.Pop() < ", ";

}
}

return 0;
}

The output from this program is:

Popping the ints... 4, 3, 2, 1, 0,

Popping the floats... 2, 1.5, 1, 0.5, 0,

C++ Templates | 463

Class Templates

TLFeBOOK

When the compiler tackles the line:

Stack<float> fStack

the compiler creates code resembling the class Stack where all instances of

T are replaced by the type float. One important point to note here is that

only the member functions that are called within your program are

instantiated. This has the bonus that you can instantiate a class template for

types that cannot be operated on by certain member functions as long as

those member functions are not used. To clarify this point, imagine the

Stack class implements a method Write that sends the contents of the stack

to an ostream (by calling each element’s < operator), and imagine you have

another class, MyDodgyClass, which does not overload the < operator.

Because only those member functions that are called are instantiated in

code, you could still use a Stack<MyDodgyClass> as long as you never call

its Write method.

Linker Confusion

Finally, let me show you a problem with C++ templates. Normally, we are

used to splitting up our classes and functions into declarations, which go

into a header file (*.h/*.hpp), and their definitions, which go into a

.c/.cpp file. Unfortunately, if you try to organize templates in the same

way you will get linker errors. This is because when your code is compil-

ing, the compiler needs to know what templates to instantiate and for what

types. The only way it can do this is by examining code in (usually)

another file, which has been compiled separately. When the compiler sees

that a function template or class is being used it assumes that the definition

is provided elsewhere and leaves a note for the linker to resolve the issue.

But of course the linker cannot because no template code has been created,

hence the error.

Unfortunately, the best way of resolving this problem at the moment is

to put both class and function template declarations and definitions in one

big header file. This is, of course, undesirable, as our compile times will

soar, but alas it is the most reliable option as I write this. There are alterna-

tives, such as explicit instantiation or by using the poorly supported export

keyword, but these are usually more trouble than they are worth at the

moment. Hopefully something will be done about this problem in the next

few years.

464 | Appendix A

Linker Confusion

TLFeBOOK

Appendix B

UML Class Diagrams

T he Unified Modeling Language (UML) is a useful tool for object-

oriented analysis and design. One part of the UML, the class diagram,

is utilized frequently throughout this book because this type of diagram is

especially good at clearly and succinctly describing the static relationships

between objects.

Figure 1 shows the class diagram utilized in Chapter 7 to describe the

relationships between some of the objects used in one of the book’s

projects.

465

Figure 1. Example UML class diagram

TLFeBOOK

If this is the first time you’ve seen a UML class diagram you’ll probably

find the figure perplexing, but by the time you’ve finished reading this

appendix it will make perfect sense (knock on wood�).

Class Names, Attributes, and Operations

First of all let’s start off with the name, attributes, and operations of a class.

Classes are represented by a rectangle divided into three compartments.

The name of the class is in bold at the top of the rectangle, attributes are

written beneath, and operations are listed in the bottom compartment. See

Figure 2.

For example, if one of the objects in a game is a racing car, it can be speci-

fied as shown in Figure 3.

Of course, a racing car object is likely to be much more complex than this,

but we only need to list the attributes and operations of immediate interest.

The class can easily be fleshed out more fully at a later stage if necessary.

(Quite often, I don’t show any attributes or operations at all and use class

diagrams simply to show the relationships between objects, as demon-

strated by Figure 1.) Note that the operations of a class define its interface.

The type of an attribute can be shown listed after its name and separated

by a colon. The return value of an operation may also be shown in the same

way, as can the type of a parameter. See Figure 4.

466 | Appendix B

Class Names, Attributes, and Operations

Figure 2. The class/object rectangle

Figure 3. Example of attributes and operations

TLFeBOOK

Throughout the book I rarely use the “name : type” format for parameters

as it often makes the diagrams too large to fit on the page comfortably.

Instead, I just list the type, or sometimes a descriptive name if the type can

be inferred from it.

Visibility of Attributes and Operations

Each class attribute and operation has a visibility associated with it. For

instance, an attribute may either be public, private, or protected. This prop-

erty is shown using the symbols + for public, - for private, and # for

protected. Figure 5 shows the RacingCar object with the visibility of its

attributes and operations listed.

As with the types, it’s not imperative that you list the visibilities when

drawing class diagrams; they only need to be shown if they are immedi-

ately important to the part of the design you are modeling (or, as in my

case, describing).

When all the attributes, operations, types, visibilities, etc., are specified

it’s very easy to convert the class into code. For example, C++ code for the

RacingCar object looks like this:

class RacingCar
{
private:

vector m_vPosition;

vector m_vVelocity;

public:

void Steer(float amount){...}

UML Class Diagrams | 467

Visibility of Attributes and Operations

Figure 4. Specifying the type

Figure 5

TLFeBOOK

void Accelerate(float amount){...}

vector GetPosition()const{return m_vPosition;}
};

Relationships

Classes are not much use on their own. In object-oriented design each

object usually has a relationship with one or more other objects, such as the

child-parent type relationship of inheritance or the relationship between a

class method and its parameters. The following describe the notation the

UML specifies to denote each particular type of relationship.

Association
An association between two classes represents a connection or link

between instances of those classes, and is denoted using a solid line. Unfor-

tunately, at the time of writing, UML practitioners seem unable to agree

upon what the italicized text in the previous sentence actually means, so for

the purposes of this book an association is said to exist between two classes

if one of them contains a persistent reference to the other.

Figure 6 shows the association between a RacingCar object and a Driver

object.

This class diagram tells us that a racing car is driven by a driver and that a

driver drives a racing car. It also tells us that a RacingCar instance main-

tains a persistent reference to a Driver instance (via a pointer, instance, or

reference) and vice versa. In this example both ends have been explicitly

named with a descriptive label called a role name, although much of the

time this is not necessary as the role is usually implicit given the names of

the classes and the type of association linking them. I prefer to only name

the roles when I believe it is absolutely necessary as I feel it makes a com-

plex class diagram simpler to comprehend.

Multiplicity

The end of an association may also have multiplicity, which is an indication

of the number of instances participating in the relationship. For instance, a

racing car can only have one or zero drivers, and a driver is either driving a

car or not. This can be shown as in Figure 7 using 0..1 to specify the range.

468 | Appendix B

Relationships

Figure 6. An association

TLFeBOOK

Figure 8 demonstrates how a RacingCar object can be shown to be associ-

ated with any number of Sponsor objects (using an asterisk to indicate

infinity as the upper bound of the range), and how a Sponsor can only be

associated with one RacingCar at any time.

Figure 8 shows the longhand way of specifying an unlimited range and a

range of 1, but often (and certainly within this book) you will see these

relationships expressed in shorthand, as shown in Figure 9. The single

asterisk denotes an unbounded range between 0 and infinity, and the

absence of any numbers or an asterisk at the end of an association implies a

singular relationship.

UML Class Diagrams | 469

Relationships

Figure 7. An association showing multiplicity

Figure 8

Figure 9

TLFeBOOK

It is also possible for a multiplicity to represent a combination of dis-

crete values. For instance, a car may have two or four doors — 2, 4.

Given only the associations shown in Figure 9, we can infer how an

interface for a RacingCar class might look:

class RacingCar
{
public:

Driver* GetDriver()const;
void SetDriver(Driver* pNewDriver);
bool isBeingDriven()const;

void AddSponsor(Sponsor* pSponsor);
void RemoveSponsor(Sponsor* pSponsor);
int GetNumSponsors()const;

...
};

Navigability

So far the associations you’ve seen have been bidirectional: A RacingCar

knows about a Driver instance, and that Driver instance knows about the

RacingCar instance. A RacingCar knows about each Sponsor instance and

each Sponsor knows about the RacingCar. Often however, you will need to

express a unidirectional association. For example, it’s unlikely that a

RacingCar need be aware of the Spectators watching it, but it is important

that a Spectator is aware of the car it is watching. This is a one-way rela-

tionship and is expressed by adding an arrow to the appropriate end of the

association. See Figure 10.

470 | Appendix B

Relationships

Figure 10. A Spectator has a unidirectional association with a RacingCar.

TLFeBOOK

Notice also how the figure clearly shows how a Spectator may be watching

any number of racing cars.

Shared and Composite Aggregation

Aggregation is a special case of association and denotes the part of rela-

tionship. For instance, an arm is a part of a body. There are two types of

aggregation: shared and composite. Shared aggregation is when the parts

can be shared between wholes and composite aggregation is when the parts

are owned by the whole.

For example, the mesh (3D polygon model) that describes the shape of a

racing car and is textured and rendered to a display can be shared by many

racing cars. As a result, this can be represented as shared aggregation,

which is denoted by a hollow diamond. See Figure 11.

Note that shared aggregation implies that when a RacingCar is destroyed

its Mesh is not destroyed. (Also note how the diagram shows that a Mesh

object knows nothing about a RacingCar object.)

Composite aggregation is a much stronger relationship and implies the

parts live and die with the whole. Sticking with our RacingCar example,

we could say that a Chassis has this type of relationship with a car. A Chas-

sis is wholly owned by a RacingCar and is destroyed when the car is

destroyed. This kind of relationship is denoted using a filled diamond as

shown in Figure 12.

UML Class Diagrams | 471

Relationships

Figure 11. The relationship between a Mesh and a RacingCar is shown as a shared
aggregation.

TLFeBOOK

There is a very subtle difference between shared aggregation and associa-

tion. For example, in the design discussed thus far the relationship between

a Spectator and a RacingCar has been shown as an association, but as many

different Spectators can watch the same car you might think it’s okay to

show the relationship as shared aggregation. However, a spectator is not

part of the whole of a racing car and the relationship therefore is associa-

tion, not aggregation.

Generalization
Generalization is a way of describing the relationship between classes that

have common properties. With regard to C++, generalization describes the

is a relationship of inheritance. For example, a design might require that

different types of RacingCar are subclassed from RacingCar to provide

vehicles for specific kinds of races, such as rally, Formula One, or touring.

This type of relationship is shown using a hollow triangle on the base class

end of the association as shown in Figure 13.

472 | Appendix B

Relationships

Figure 12. The relationship between a Chassis and a RacingCar is a composite
aggregation.

Figure 13. Expressing the base-derived class relationship

TLFeBOOK

Often in object-oriented design we use the concept of an abstract class to

define an interface to be implemented by any subclasses. This is described

explicitly by the UML using italicized text for the class name and for any

of its abstract operations. Therefore, if RacingCar is to be implemented as

an abstract class with one pure virtual method Update, the relationship

between it and other racing cars is shown as in Figure 14.

Note that some people prefer to make the relationship more explicit by

adding “{abstract}” beneath the class name or after any abstract operation’s

name. This is shown in Figure 15.

Dependencies
Often you will find that a class depends on another for some reason, yet the

relationship between them is not an association (as defined by the UML).

This occurs for all sorts of reasons. For instance, if a method of class A

takes a reference to class B as a parameter, then A has a dependency on B.

Another good example of a dependency is when A sends a message to B

via a third party, which would be typical of a design incorporating event

handling.

UML Class Diagrams | 473

Relationships

Figure 14. Describing an abstract base class

Figure 15. Describing an abstract base class more explicitly

TLFeBOOK

A dependency is shown using a dashed line with an arrow at one end,

and can be optionally qualified by a label. Figure 16 shows how a

RacingCar has a dependency to a RaceTrack.

Notes

Notes are an additional feature you can use to zoom in on specific features

that need further explanation in some way. For instance, I use notes in the

class diagrams printed in this book to add pseudocode where necessary. A

note is depicted as a rectangle with a “folded” corner and has a dashed line

connecting it to the area of interest. Figure 17 shows how a note is used to

explain how the UpdatePhysics method of a RacingCar iterates through its

four wheels, calling each one’s Update method.

Summing Up

Did you follow all that okay? To test yourself, flip back to Figure 1 and see

how much sense it makes. If you still find it confusing, read through this

appendix again. If you understood it, well done! Now you can get back to

the AI!

474 | Appendix B

Notes

Figure 16. The dependency relationship

Figure 17. A note can be used to provide further detail.

TLFeBOOK

Appendix C

Setting Up Your
Development Environment

Downloading the Demo Executables

You can download the demo executables discussed in the book from the

following URL: www.wordware.com/files/ai. Then click on Buckland_

AIExecutables.zip.

Downloading and Installing the Source Code

To set up your development environment in order to compile and run the

projects discussed in the book, follow these steps:

1. Download the zip file containing the source code from

www.wordware.com/files/ai. Then click on Buckland_AISource.zip.

Unzip and extract to a folder of your choice (for example, C:\AI

Source).

2. Download and install the Boost library headers from www.boost.org.

(By default this will be something like C:\ boost_1_31_0.)

3. Assuming you have unzipped Boost and the source code into the fold-

ers specified in steps 1 and 2, add the following paths to the general

settings of your compiler in your development environment.

Include file paths

� C:\ boost_1_31_0

� C:\AI Source\Common

� C:\AI Source\Common\lua-5.0\include

� C:\AI Source\Common\luabind

Source file paths

� C:\AI Source\Common

� C:\AI Source\Common\lua-5.0

� C:\AI Source\Common\luabind

Library file paths

� C:\AI Source\Common\lua-5.0\lib

475
TLFeBOOK

This page intentionally left blank.

TLFeBOOK

References

“A Generic Fuzzy State Machine in C++,” Game Programming Gems 2,

Eric Dysband

Algorithms in C++: Parts 1-4, Robert Sedgewick

Algorithms in C++: Part 5, Robert Sedgewick

Applying UML and Patterns, Craig Larman

Artificial Intelligence: A Modern Approach, Stuart Russell and Peter

Norvig

Artificial Intelligence: A New Synthesis, Nils J. Nilsson

C++ Templates: The Complete Guide, David Vandevoorde and Nicolai M.

Josuttis

Design Patterns, Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides

Effective C++, Scott Meyers

“Enhancing a State Machine Language through Messaging,” AI Game Pro-

gramming Wisdom, Steve Rabin

Fuzzy Logic: Intelligence, Control, and Information, John Yen and Reza

Langari

“How Autonomous is an Autonomous Agent?” Bertil Ekdahl

“Interactions with Groups of Autonomous Characters,” Craig Reynolds

“It Knows What You’re Going To Do: Adding Anticipation to a

Quakebot,” John E. Laird

Layered Learning in Multiagent Systems: A Winning Approach to Robotic

Soccer, Peter Stone

Lua 5.0 Reference Manual

More Effective C++, Scott Meyers

“Navigating Doors, Elevators, Ledges and Other Obstacles,” AI Game Pro-

gramming Wisdom, John Hancock

Newtonian Physics, Benjamin Crowell

477
TLFeBOOK

“Pathfinding Design Architecture,” AI Game Programming Wisdom, Dan

Higgins

Pattern Hatching, John Vlissides

Physics for Game Developers, David M. Bourg

“Polygon Soup for the Programmer’s Soul,” Patrick Smith

“Smart Moves: Intelligent Pathfinding,” Bryan Stout

“Steering Behaviors,” Christian Schnellhammer and Thomas Feilkas

“Steering Behaviors for Autonomous Characters,” Craig Reynolds

“Steering Behaviours,” Robin Green

“Stigmergy, Self-Organisation, and Sorting in Collective Robotics,” Owen

Holland and Chris Melhuish

The C++ Programming Language, Bjarne Stroustrup

The C++ Standard Library, Nicolai Josuttis

“The Combs Method for Rapid Inference,” William E. Combs

“The Integration of AI and Level Design in Halo,” Jaime Griesemer and

Chris Butcher

“The Quake 3 Arena Bot,” J.M.P. van Waveren

“Toward More Realistic Pathfinding,” Marco Pinter

UML Distilled, Martin Fowler and Kendall Scott

UML Tutorial: Finite State Machines, Robert C. Martin

478 | References

TLFeBOOK

Bugs and Errata

As you’ve seen, I’ve written a lot of code to accompany this book. Since I

don’t have the support of a group of playtesters to test it, it will be a mira-

cle if there are no bugs lurking within.

You will be able to download bug fixes from the following URL:

www.ai-junkie.com/ai_book2/bugs

If you find a bug that hasn’t been reported, please let me know by sending

an email to bugs@ai-junkie.com so I can address it.

Similarly, although my editors and I have made every effort to ensure

the text is error free, a few typos always seem to slip through the net. Any

corrections to the text will be made available at the following URL:

www.ai-junkie.com/ai_book2/errata

I’d be very appreciative if you could email errata@ai-junkie.com with the

details of any such errors you discover.

479
TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Index

A

A* search algorithm, 241, 345, 363-370

and efficiency, 243

implementation, 243-246

acceleration, 32

constant, 32-36

in physics, 32

unit of, 32

varying, 37

action selection (agent movement), 86

acyclic graph, 196

adjacency list, 203

adjacency matrix, 203

adjacent, triangle, 15

agent communication, see messaging

AI, xix-xx

cheating, 316

strong, xix

tiered, 145

updating components of, 328-331

weak, xix

AI logic, and scripting, 255

aiming accuracy, of Raven bot, 323

Algol 60, 234

alignment (steering behavior), 116

ambushing, and navigation graph, 334

Ammo Status (fuzzy linguistic variable), 428

AND, using with sets, 418

angles, 11-12

annotation,

and graph edges, 349-353, 409

and graph nodes 348-349

ant (Leptothorax), 118

antecedent, 425

anticipation, using, 404

arbitration, and goals, 398-404

arc, 194

arrive (steering behavior), 93

assumptions, making them work for you, 189

at() and at[] luabind::object, 283-284, 286

atomic goal, 379, 383, 387

atomic object, 382

attackers, Simple Soccer, 146, 155

AttackGoal_Evaluator::CalculateDesirability

C++ method, 403

attacking player, 146

Attacking soccer team state, 152, 154-155

Attacking::Execute C++ method, 154-155

automatic resumption of interrupted activities,

407-408

autonomous agent, 85-86

average of maxima (defuzzification method),

436-437

axes, Cartesian coordinate, 1

B

Baldur’s Gate, 255

ball, 134

BaseGameEntity C++ class, 52, 76

bases template parameter, 280

beam search, 246

begin() luabind::object, 284

best path,

and breadth first search, 231

graph search, 209

best path so far, 231

best support spot, 146, 168, 169

bias, character, 405

bidirectional search, 229

Big O notation, 126

bin-space partitioning, see cell-space

partitioning

Black & White, 254

blaster, Raven weapon, 301, 313

blind search, 210

481
TLFeBOOK

boid, 85

bool luabind::object, 284

Boolean, Lua type, 260

Boost library, 276

bot, 295, 296

AI design considerations, 313-314

movement, 313

path planning, 313

possessing, 296

respawning, 296

selecting, 296

target selection, 313

weapon aiming, 313

weapon handling, 313

bottleneck, and path planning, 374

BPSF, see best path so far

branching factor, 203, 222, 230-231

breadth first search, 224-231

implementation, 225-226

BSS, see best support spot

bugs and errata, 479

build queuing, see command queuing

button, 409-410

byte code, 251

C

C++ templates, 459-464

Cartesian coordinates, 1

Cell C++ struct, 127

CellSpacePartition C++ class, 128-129

cell-space partitioning, 126-130, 342

center of mass,

and cohesion steering behavior, 117

and defuzzification, 434

position, 30

center-spot, Simple Soccer, 135

centroid (defuzzification method), 434-436

ChaseBall field player state, 156, 159-160

ChaseBall::Enter C++ method, 159

ChaseBall::Execute C++ method, 159

ChaseBall::Exit C++ method, 159-160

checkpoint, path, 110

cheese, on toast, 415

child state, 202

circumference, 12

class diagram, UML, 465-474

class, exposing C++ to Lua, 276

class templates, 461-464

closest player to ball, Simple Soccer, 146

coarsely granulated navigation graph, 336-339

coefficient, 3

cohesion (steering behavior), 117

combinatorial explosion, 452

Combs method, 452-455

and fuzzy inference, 454-455

Combs, William, 452

Command & Conquer, 208

command queuing, 410-412

compile time, and scripting, 251

compiled script, 250-251, 258

complement,

crisp set, 418

fuzzy set, 422

composite design pattern, 382-386, 446

composite goal, 379, 383, 393, 395, 398, 406

composite object, 382

CompositeGoal C++ class, 383

conditional structures, Lua, 264-265

confidence, and fuzzy logic, 431, 434, 436

configuration file, and scripting, 250

connected graph, 195

and depth first search, 213

consequent, 425

constant, and equations, 3

contact force, 38

controlling player, Simple Soccer, 146

coordinate pair, 2

coordinate system, world, 26-27

coordinates, Cartesian, 1

cosine,

of angle, 15

inverse, 17

cost-based graph searches, 231-247

cost, graph edge, 231

cover, and navigation graph, 334

CPU overhead, reducing for path planning,

359-374

CreateAllPairsCostsTable C++ method,

362-363

CreateAllPairsTable C++ method, 361

creativity, and scripting, 252

crisp sets, 417-418, 419

482 | Index

TLFeBOOK

cube

of number, 6

root, 6

cutoff, depth first search, 223

cyclic graph, 196

D

DAG, see digraphs

Deceleration enumerated type, 93

decision making, of Raven bot, 314, 315

defenders, Simple Soccer, 155

Defending soccer team state, 152, 153-154

Defending::Enter C++ method, 153

Defending::Execute C++ method, 154

defuzzification, 433-437

defuzzify, 416, 425, 429

degree of membership (sets), 418, 419,

421-422, 429, 434

degree, and angle, 11

delta, 30

demos, downloading, 475

denominator, 8, 436

density of graph, 196

dependency graphs, 199-201

dependent variable, 3

depth first search, 210-224

implementation, 213-220

improvements to, 222-223

depth limited search, 222

design pattern,

composite, 446

singleton, 57-59

state, 50, 55

desirability,

goal evaluation, 399-404

of attacking target, 403

of exploring, 403

of health item, 400-401

of weapon, 401-402

Desirability (fuzzy linguistic variable), 425,

426-427

destination node, and graphs, 197

detection box, in obstacle avoidance, 99

DFS, see depth first search

dialogue flow, and scripting, 253

digraphs, 196-197

Dijkstra, Edsger Wybe, 233

Dijkstra’s algorithm, 233-236, 346, 360,

363-370

implementation, 236-241

Distance to Target (fuzzy linguistic variable),

427

distance, unit of, 29

distance-squared space, 92

DOM, see degree of membership

door, negotiating, 408

dot product, 23

Dribble field player state, 156, 166-168

Dribble::Enter C++ method, 167

Dribble::Execute C++ method, 167-168

dummy edge, 216, 226

d-way heap data structure, 240

dynamic graph, 208

dynamic obstacle, 86

dynamically typed language, 258

E

edge,

cost, 197, 198, 206

graph, 194

removal from graph, 208

edge paths versus node paths, 348-350

edge relaxation, 231-233

electricity bolt, Raven projectile, 301, 302

element, and sets, 417

elevator, negotiating, 408

Elsa, 67

embedded rules, finite state machine, 48

emergent behavior, 119

end() luabind::object, 284

EnforceNonPenetrationConstraint C++

function template, 125

ent_Elsa enumeration, 53

ent_Miner_Bob enumeration, 53

EnterMineAndDigForNugget state, 60-62

EnterMineAndDigForNugget::Enter method,

60

EnterMineAndDigForNugget::Execute

method, 61

EnterMineAndDigForNugget::Exit method, 61

EntityManager C++ class, 72

equations, 3

simplifying, 7-10

Eric the troll, 24

Index | 483

TLFeBOOK

Escape from Monkey Island, 255

estimates, making them work for you, 189

Euclidean distance, 206

heuristic, 241, 244

Euclidean graph, 198

evade (steering behavior), 96

event-driven architectures, 69

examples, see demos and source code

expanded geometry navigation graph, 335

expert knowledge, 415

ExploreGoal_Evaluator::CalculateDesirability

C++ method, 403

exponent, fractional, 7

exponential

function, 5

growth, 6

F

FAIRLY hedge, 423

FAM, see fuzzy associative matrix

Far Cry, 249, 255, 256

feelers, wall avoidance steering behavior, 104

field of view,

constraint for steering behaviors, 114

for Raven bot, 317, 318

field player states, 156

ChaseBall, 156, 159-160

Dribble, 156, 166-168

GlobalPlayerState, 156-159

KickBall, 156, 162-166

ReceiveBall, 156, 161-162

ReturnToHomeRegion, 156

SupportAttacker, 156, 168-169

Wait, 156, 160-161

field players,

messages, 156-159

motion, 155

Simple Soccer, 134, 144, 155-170

FIFA 2002, 45

FIFO data structure, 225, 411

FindActiveTrigger C++ class, 347-348

finely granulated navigation graph, 339

finite state machine, 43, 44, 379

embedded rules, 48

game related examples, 45

hierarchical, 83

memory, 406-410

pros, 43

scripted, 285-292

state transition table 47

switch statement implementation, 45

firing rate, weapon, 301

flee (steering behavior), 92

flocking (steering behavior), 85, 113, 118-119

flood fill, and navigation graph, 339, 340

FLV, see fuzzy linguistic variable

force, 38

forest, 196

FOV, see field of view

fractional exponent, 7

friction, and soccer ball, 141, 142

Frisbee, 118

FSM, see finite state machine

function, 3

accessing Lua in C++, 273-274

assigning to a Lua table, 263

exponent, 5

exposing C++ to Lua, 274-275

function templates, 459-461

function, Lua type, 261

fuzzification, 416

fuzzy associative matrix, 431

fuzzy inference, example using weapon

selection, 429-437

fuzzy linguistic variable, 423-424

and weapon selection, 425

C++ implementation, 443-445

creating, 445

design guidelines, 426

fuzzy logic, 325, 415-458

and weapon selection 425

fuzzy manifold, 424, 432, 435

fuzzy module, 425

C++ object relationships, 449

fuzzy rule-based inference, 416

fuzzy rules, 424-425

and weapon selection, 428-429

C++ implementation, 445

fuzzy sets, 419-423

C++ implementation, 439-442

operators, 421-423

right shoulder, 441

484 | Index

TLFeBOOK

triangular, 440

fuzzy surface, 424

FuzzyModule C++ class, 437-439, 450

FuzzyModule::CreateFLV C++ method,

438-439

FuzzyRule C++ class, 448

FuzzySet C++ class, 439

FuzzySet_RightShoulder C++ class, 441-442

FuzzySet_RightShoulder::CalculateDOM C++

method, 442

FuzzySet_Triangle C++ class, 440

FuzzySet_Triangle::CalculateDOM C++

method, 440-441

FuzzyTerm C++ class, 446

FuzzyVariable C++ class, 443-445

FzAND C++ class, 447

FzFairly C++ class, 449

FzSet C++ class, 447

G

garbage collector, Lua, 276

geometry, game world, 333, 334

get_globals library function, 284

GetHealthGoal_Evaluator::CalculateDesir-

ability C++ method, 400-401

GetWeaponGoal_Evaluator::CalculateDesir-

ability C++ method, 401-402

giver-triggers, 308-309

global state, 63

global variable, Lua, 260

accessing in C++, 269-271

GlobalKeeperState goalkeeper state, 171

GlobalKeeperState::OnMessage C++ method,

171

GlobalPlayerState field player state, 156-159

GlobalPlayerState::Execute C++ method,

158-159

GlobalPlayerState::OnMessage C++ method,

156-158

goal arbitration, 315, 398-404

Goal C++ class, 138, 383

goal decomposition, 379

goal line, 134, 170

goal shot, 163

goal, Simple Soccer, 138

Goal_AttackTarget C++ class, 395-397

Goal_Composite::ProcessSubgoals C++

method, 385-386

Goal_Composite::RemoveAllSubgoals C++

method, 386

goal-directed agents, 379-414

Goal_Evaluator C++ class, 399, 405

Goal_FollowPath C++ class, 391-393

Goal_MoveToPosition C++ class, 393-395

Goal_NegotiateDoor C++ class, 409, 410

Goal_Think C++ class, 387, 398

Goal_Think::Arbitrate C++ method, 404

Goal_TraverseEdge C++ class, 388-391

Goal_Wander C++ class, 387- 388

goalkeeper, 134, 144, 170-176

motion of, 170

goalkeeper states, 171-176

GlobalKeeperState, 171

InterceptBall, 171, 175-176

PutBallBackInPlay, 171, 174-175

ReturnHome, 171, 173-174

TendGoal, 171-173

goals, 134, 138, 315

atomic, 379, 383, 387

composite, 379, 383, 393, 395, 398, 406

decomposition of, 315

hierarchical, 379-414

nested, 315

golf, 415

gradient,

as edge cost, 197

straight line, 4

velocity versus time graph, 32

graph edge, 194

associated action, 391

graph node, 194

graph search algorithms, 209-247

Graph_SearchAStar::CycleOnce C++ method,

364

Graph_SearchTimeSliced C++ interface, 366

GraphEdge C++ class, 205-206

GraphNode C++ class, 204-205

graphs, 193-209

acyclic, 196

adjacency list representation, 203

adjacency matrix representation, 203

and Cartesian space, 194

Index | 485

TLFeBOOK

and paths, 193

and state transition bubble diagram, 193

and temperature, 193

branching factor, 203

Cartesian coordinate system, 2

connected, 195

cyclic, 196

dense, 196

dynamic, 208

navigation, 333-342

sparse, 196

topology of, 209

unconnected, 195

use in game AI, 197-203

velocity versus time, 33, 37

weighted edge, 195

GraphSearch_BFS::Search C++ method,

225-226

GraphSearch_DFS C++ class, 213-215

GraphSearch_DFS::GetPathToTarget C++

method, 219

GraphSearch_DFS::Search C++ method,

215-216

GraphSearchAStar C++ class, 243-244

GraphSearchAStar::Search C++ class,

245-246

GraphSearchDijkstra C++ class, 237

GraphSearchDijkstra::Search C++ class,

238-240

gravitational force, 36, 38

gravity, and mass, 29

Green, Robin, 131

Grim Fandango, 255

group steering behaviors, 113-119

H

Halo, xx

hash table data structure, 261

health givers, 309

health pack, 295

heap,

d-way, 240

two-way, 240

heap limit, and Luabind, 279

hearing, of Raven bot, 316, 317

hedges, 423

heuristic, 241

Manhattan distance, 353

template parameter, 243, 244

Heuristic_Euclid C++ class, 245

hide (steering behavior), 107-110

hierarchical goal, 379-414

implementation, 382-386

hierarchical pathfinding, 372-374

high-level goal, 379

Holland, Owen, 118

home region, 136

Homeworld 2, 256

hyperspace, 5

hypotenuse, triangle, 13

I

IDDFS, see iterative deepening depth first

search

illusion of intelligence, xx-xxi, 155, 315, 317

Impossible Creatures, 255

indexed priority queue,

data structure, 238

running time, 240

influence of distance on desirability, 402

inheritance, and Lua, 281

InterceptBall goalkeeper state, 171, 175-176

InterceptBall::Enter C++ method, 176

InterceptBall::Execute C++ method, 176

interpose (steering behavior), 106-107

interpreted script, 250

interpreter, 250

Lua, 257

intersection,

crisp set, 418

fuzzy set, 421

interval, discrete, 416

invalid_node_index C++ enumeration, 206

inverse cosine, 17

iPQ, see indexed priority queue

is_valid luabind::object, 284

items,

adding to navigation graph, 341-342

as graph nodes, 341

iterative deepening depth first search, 222

J

jitter, and steering behaviors, 130

486 | Index

TLFeBOOK

K

key,

and hash table, 261

indexed priority queue, 238

Lua table, 271-272

weapon type, 323

key methods, Simple Soccer AI, 176

key player, 145

key-value pair, Lua, 265

KickBall field player state, 156, 162-166

KickBall::Enter C++ method, 163

KickBall::Execute C++ method, 163-164

kicking force, Simple Soccer, 142

kicking range, Simple Soccer, 159

kick-off, Simple Soccer, 135

L

leader following, 132

leader space, offset pursuit steering behavior,

112

Leptothorax (ant), 118

level of detail AI, 329

library, Lua, 258

LIFO data structure, 215, 383, 406

limited lifetime triggers, 309-310

line of sight,

and navigation graphs, 334, 335, 337

caching, 319

test, 327, 329

line segment, 10

linguistic rule, 415

linguistic term, 415, 416, 421

load spike, 359

local coordinate system, MovingEntity class,

87

local space, 26-27

obstacle avoidance steering behavior,

100

local variable, Lua, 260, 265

locomotion (agent movement), 86

LOD AI, see level of detail AI

logical operators, Lua, 263

lookup table, 359-363

LOS, see line of sight

lower bound, cost, 241

Lua scripting language, 255-276

accessing function in C++, 273-274

accessing global variable in C++,

269-271

accessing table in C++, 271-272

Boolean type, 260

break, 265

C/C++ API, 257

comments, 259

exposing C++ class to, 276

exposing C++ function to, 274-275

for, 264

function type, 261

garbage collector, 276

global variable, 260

interfacing with C++, 268-276

library, 258, 268

local variable, 260

logical operators, 263

luac.exe, 258

memory management, 276

metatable, 263, 276

nil type, 259, 260

number type, 260

repeat, 264

setting up your compiler, 256

string type, 260

table type, 261-263, 276, 286

table variable, 260

thread type, 263

types, 260-263

until, 264

userdata type, 263

using with hierarchical goals, 413

variables, 258-260

virtual stack, 268-269

while, 264

lua_call function, 273

lua_close function, 258

lua_dofile function, 258

lua_getglobal function, 271

lua_gettable function, 272

lua_gettop function, 274

LUA_MINSTACK, 269

lua_open function, 257

lua_pushstring function, 272

lua_register function, 275

Index | 487

TLFeBOOK

lua_State structure, 257

Luabind, 276-285

bases template parameter, 280

creating classes in Lua, 281-282

exposing C++ classes, 279-281

exposing C++ functions, 278-279

module, 277

scopes, 277-278

self keyword, 281

setting up, 276-277

super keyword, 282

luabind::def library function, 278, 279

luabind::functor library object, 285

luabind::iterator library object, 284

luabind::module library function, 277

luabind::object library object, 282-285, 286

luabind::object_cast library function, 283

luabind objects,

at() and at[], 283-284, 286

begin(), 284

bool, 284

end, 284

is_valid, 284

luabind::open library function, 277

M

machine code, 251

Manhattan distance heuristic, 243, 246-247,

353

map editor, 300, 409

mass, 29

mathematics, 1-28

MaxAv, see average of maxima

maximum search depth, 222

maximum speed, field player, 158

MDK 2, 255

mean of maximum (defuzzification method),

433-434

Melhuish, Chris, 118

membership function,

and fuzzy logic, 419-421

clipping, 432

mathematical notation, 421

memory, 314

map, 319

of state, 406-410

record, 319

short-term, 314

memory management, and Lua, 276

MemoryRecord C++ struct, 319

message,

dispatch and management, 71

enumerated type, 70

example of delayed, 80

handling, 75-77

MessageDispatcher C++ class, 71, 73-75

MessageDispatcher::Discharge method 74

MessageDispatcher::DispatchDelayedMessage

method, 75

MessageDispatcher::DispatchMessage

method, 74

messages, field player, 156-159

messaging,

and Simple Soccer, 145

FSM, 69-77

metatable, 263, 276

micromanagement, 412

Miner Bob, 50

Miner C++ class, 53, 66

mistakes, deliberate, 189

mods, 252

module, Luabind, 277

MOM, see mean of maximum

motion,

field player, 155

goalkeeper, 170

movement constraint, graph edge, 391

movement, of Raven bot, 315

moving platform, negotiating, 408

MovingEntity C++ class, 87

N

navgraph, see navigation graph

NavGraphEdge C++ class, 350

NavGraphNode C++ class, 205, 341

navigation graph, 198, 333

adding items, 341-342

and terrain, 333

cell, 333

coarsely granulated, 336-339

construction of, 333-342

expanded geometry, 335

finely granulated, 339

488 | Index

TLFeBOOK

flood fill, 339, 340

hex, 333

points of visibility, 334-335

search space, 334

tile-based, 333-334, 339

navmesh, 335-336

neighborhood radius, and group steering

behavior, 113

neighborhood region, and separation steering

behavior, 115

nested goal, see hierarchical goal

network, as representation of graph, 195

neural network, and graphs, 195

Neverwinter Nights, 249, 253

nil, Lua type, 259, 260

node,

graph, 194

removal from graph, 208

node paths versus edge paths, 348-350

noise,

adding to kick direction, 165

and weapon aiming, 327

non-contact force, 38

non-penetration constraint, 124-126

Norberg, Arvid, 276

normal, wall, 104

NOT, using with sets, 418

number, Lua type, 260

numerator, 435

O

object iterator luabind::object, 284-285

obstacle avoidance (steering behavior),

99-104

braking steering force, 103

lateral steering force, 103

obstacles, negotiating, 408-409

offset pursuit (steering behavior), 111-113

offset, offset pursuit steering behavior,

111-112

opposite, triangle, 15

OR, using with sets, 418

ordered pair, 197

origin,

Cartesian coordinates, 1

ray, 10

P

Pac-Man,

and FSM, 45

and navigation graphs, 336-337

parent state, 202

passability, and paths, 354

passing the ball, Simple Soccer, 177

path, 110

best, 209

closed, 110

graph search, 209

looped, 110

shortest, 209

through navigation graph, 198

Path C++ class, 111

path following (steering behavior), 110-111

path manager, 363, 368

path planner,

and Goal_MoveToPosition, 394

creating, 342-377

path planning, 333-377

and platoons, 365

of Raven bot, 313, 315

to item type, 346-348

to position, 344-345

path smoothing, 353-359

precise, 358-359

rough, 354-357

PathEdge C++ class, 351

PathManager C++ class, 368

PathManager class template, 368-370

PathManager::UpdateSearches C++ method,

368, 369

patrol point, 411

perception, 313

modeling, 316

of Raven bot, 316

perceptual inconsistency, 316

Perlin noise, 96

personality traits, 405-406

aggressive, 405

cautious, 405

obsessive, 405

persistent, 406

physics, 28-41

acceleration, 32,

Index | 489

TLFeBOOK

distance, 29

force, 38

mass, 29

position, 30

time, 28

velocity, 30

pi, 12

PlayerBase C++ class, 144

PlayerBase::FindSupport C++ method, 165,

168

plot,

function, 3

graph, 3

points of visibility navigation graph, 334-335

poll, 69

polygons, and navigation graphs, 335, 336

portals, 353

position,

center of mass, 30

physics, 30

potshot, 164

POV, see points of visibility navigation graph

power, exponent, 6

PQ, see priority queue data structure

precalculated costs, 361-363

precalculated paths, 359-361

prediction,

and dependency graphs, 200

and pursuit steering behavior, 94

and weapon aiming, 325

enemy movement, 313

interpose steering behavior, 106

soccer ball, 140

PrepareForKickOff soccer team state, 152

PrepareForKickOff::Enter C++ method, 152

PrepareForKickOff::Execute C++ method,

152-153

princess, tenderized, 24

prioritized dithering, 123

priority queue data structure, 74-75, 238, 365

projectiles, 302-303

class hierarchy, 303

impact, 302

proximity query, 342

proxy object, 447

pursuit (steering behavior), 94-96

PutBallBackInPlay goalkeeper state, 171,

175-175

PutBallBackInPlay::Enter C++ method, 174

PutBallBackInPlay::Execute C++ method,

174-175

Pythagoras, 13

Pythagorean theorem, 13-14

Q

Quake,

deathmatch, 313

FSM, 45

queue, 411

data structure, 225

R

radian, angle, 11

radians, number in a circle, 12

radical, 6

radius, 11

railgun, Raven weapon, 301, 313

Raven,

and fuzzy logic, 451-452

architecture, 296-312

bot, 323

game, 295-296

gameplay, 296

map, 295

object relationships, 297

overview, 295-331

weapons, 301-302

Raven bot AI, object relationships, 328

Raven Map Editor, 300

Raven_Bot C++ class, 315

Raven_Bot::PickupWeapon C++ method, 309

Raven_Bot::SelectWeapon C++ method,

451-452

Raven_Bot::Update C++ method, 322, 325,

328, 329-330

Raven_Feature C++ class, 399-400

Raven_Game C++ class, 297-298

Raven_Map C++ class, 297, 299-300, 311

Raven_PathPlanner C++ class, 342, 343,

366-367

Raven_PathPlanner::CreatePathToPosition

C++ method, 344 -345, 351-352

490 | Index

TLFeBOOK

Raven_PathPlanner::CycleOnce C++ method,

367-368

Raven_PathPlanner::RequestPathToItem C++

method, 370

Raven_PathPlanner::SmoothPathEdgesPrecise

C++ method, 358-359

Raven_PathPlanner::SmoothPathEdgesQuick

C++ method, 357

Raven_Projectile C++ class, 302

Raven_Scriptor C++ class, 299

Raven_SensoryMemory C++ class, 319-321

Raven_SensoryMemory::GetListOfRecently-

SensedOpponents C++ method, 320, 321

Raven_SensoryMemory::Update C++ method,

320

Raven_SensoryMemory::UpdateVision C++

method, 320

Raven_SensoryMemory::UpdateWithSound-

Source C++ method, 320

Raven_TargetingSystem C++ class, 321

Raven_Weapon C++ class, 301-302, 451

Raven_WeaponSystem C++ class, 323-325

Raven_WeaponSystem::PredictFuturePosi-

tionOfTarget C++ method, 325

Raven_WeaponSystem::SelectWeapon C++

method, 325

Raven_WeaponSystem::TakeAimAndShoot

C++ method, 325, 326-327

ray, 10

reaction time, of Raven bot, 323

ReceiveBall field player state, 156, 161-162

ReceiveBall::Enter C++ method, 161-162

ReceiveBall::Execute C++ method, 162

receiver, 146

receiving player, 146

region, 170

Simple Soccer, 136, 137, 152

Region C++ class, 136

Regulator C++ class, 329, 331

representative value, 436

respawning trigger, 307-308

ReturnHome goalkeeper state, 171, 173-174

ReturnHome::Enter C++ method, 174

ReturnToHomeRegion field player state, 156

Reynolds, Craig, 85

Robocup, 133

rocket launcher, Raven weapon, 301, 313

rocket, Raven projectile, 301, 302

rock-paper-scissors, 262-263, 265-267, 274

role, of soccer player, 155

root node, 202

shortest path tree, 233

root, of number, 6

Rubik’s cube, and depth first search, 222

runtime error, and Lua, 268

S

scalar quantity, 28

meter, 29

Schumacher, Michael, 429

scopes, luabind, 277-278

script,

compiled, 250, 251, 258

interpreted, 250

scripted behavior, and hierarchical goals,

412-413

scripted finite state machine, 285-292

ScriptedStateMachine C++ class, 286-287

scripting, 249-293

scripting language, 249-293

search algorithms, modifying for time-slicing,

364-368

search cycle, 364

search frontier, 234, 242

search space, navigation graph, 334

seek (steering behavior), 91

selection criterion, target selection, 322-323

selective sensory nescience, 317

self, Luabind keyword, 281

sensory horizon, 316, 317, 396

sensory memory, 322, 325, 329

sensory omnipotence, 316

separation (steering behavior), 115-116

set operators, 418

set, fuzzy, 325

shortest path tree, 233, 346, 360

short-term memory, 314

shot, Raven projectile, 301, 302

shotgun, Raven weapon, 301, 313

Simple Soccer

attackers, 155

ball, 134

defenders, 155

environment, 134

Index | 491

TLFeBOOK

field players, 134, 155-170

goalkeepers, 134, 170-176

passing the ball, 177

pitch, 135

rules, 134

team, 134

sine, of angle, 15

singleton, 57-59

single-variable function, 3

skill level, of Raven bot, 323

sliding door, negotiating, 409

slug, Raven projectile, 301, 302

smoothing, and steering behaviors,130-132

sniping, and navigation graph, 334

soccer, 133 see also Simple Soccer

soccer ball, 138

trapping, 173

soccer pitch, 135

soccer player,

attacking, 146

closest to ball, 146

controlling, 146

key, 145

receiving, 146

supporting, 146

soccer team states, 152

Attacking, 152, 154-155

Defending, 152, 153-154

PrepareForKickOff, 152

SoccerBall C++ class, 139-140

SoccerBall::FuturePosition C++ method,

141-142

SoccerBall::Kick C++ method, 165

SoccerBall::TimeToCoverDistance C++

method, 142-143

SoccerPitch C++ class, 136-137

SoccerTeam C++ class, 144, 145

SoccerTeam::CanShoot C++ method, 164,

169, 182-184

SoccerTeam::FindPass C++ method, 166,

184-185

SoccerTeam::GetBestPassFromReceiver C++

method, 185-189

SoccerTeam::isPassSafeFromAllOpponents

C++ method, 177

SoccerTeam::isPassSafeFromOpponent C++

method, 177-182

SohCahToa, triangle, 15

sound event, Raven, 320

sound notification triggers, 310

source code,

downloading, 475

installing, 475

source node, and graphs, 197

space,

local, 26-27

world, 26

sparse graph, 196, 204

SparseGraph C++ class, 207-209

spatial partitioning, 126-130

and navigation graphs, 342

spawn point, 299

spin-offs, from hierarchical goals, 405-413

SPT, see shortest path tree

square root, 6

square, of number, 6

squared-distance space, 14

stack,

data structure, 215

indexing, 269

stage direction, and scripting, 254

state, 379

blip, 63

design pattern, 50, 55

enter and exit methods, 46-47

global, 63

graph, 201

State C++ class, 48, 55, 62, 76, 384

state-driven agent architecture, 43

state machine, finite, see finite state machine

state space, 201

Rubik’s cube, 222

state transition, 44, 201

diagram, 54, 55, 68, 71

table, 47

StateMachine C++ class, 64, 145

states, scripted, 289-292

steering (agent movement), 86

steering behaviors,

activating and deactivating, 119

and Raven bot movement, 315

492 | Index

TLFeBOOK

combining, 119-124

group, 113-119

truncating, 120-124

steering behaviors (types)

alignment, 116

arrive, 93

cohesion, 117

evade, 96

flee, 92

flocking, 118-119

hide, 107-110

interpose, 106-107

obstacle avoidance, 99-104

offset pursuit, 111-113

path following, 110-111

pursuit, 94-96

seek, 91

separation, 115-116

wall avoidance, 104-106

wander, 96-99

SteeringBehaviors C++ class, 88, 144

SteeringBehaviors::Alignment method, 116

SteeringBehaviors::Arrive method, 93, 97-98

SteeringBehaviors::Cohesion method, 117

SteeringBehaviors::Evade method, 96

SteeringBehaviors::Flee method, 92

SteeringBehaviors::FollowPath method, 111

SteeringBehaviors::Hide method, 109

SteeringBehaviors::Interpose method, 107

SteeringBehaviors::ObstacleAvoidance

method, 101-104

SteeringBehaviors::OffsetPursuit method, 112

SteeringBehaviors::Pursuit method, 94-95

SteeringBehaviors::Seek method, 91

SteeringBehaviors::Separation method,

115-116

SteeringBehaviors::WallAvoidance method,

105-106

SteeringBehaviors::Wander method, 97-98

stereo vision, 316

stigmergy, 118

straight line, equation for, 4

strategy, 380, 399

string, Lua type, 260

stuck, getting, 374-376

subgoal, 315, 383, 386, 412

super, Luabind keyword, 282

support spot, 146

SupportAttacker field player state, 156,

168-169

SupportAttacker::Enter C++ method, 168

SupportAttacker::Execute C++ method,

168-169

supporting player, 146

SupportSpot C++ struct, 148

SupportSpotCalculator C++ class, 147-151

T

table,

accessing, 262

accessing Lua in C++, 271-272

constructing, 262

table, Lua type, 261-263, 276, 286

table variable, Lua, 260

tagging, neighborhood radius, 113

TagNeighbors C++ function template, 114

tangent, of angle, 15

target selection, 321-323

criterion, 322-323

targeting, and Goal_AttackTarget, 396

team sport AI, 133

team, Simple Soccer, 134

tech-tree, 195

Telegram C++ struct, 70

telegrams, sorting, 75

teleporters, 353

templates,

C++, 459-464

class, 461-464

function, 459-461

temporary variables, 142

TendGoal goalkeeper state, 171-173

TendGoal::Enter C++ method, 171-172

TendGoal::Execute C++ method, 172-173

TendGoal::Exit C++ method, 173

terminal node, 211

termination condition,

graph search, 347-348

policy class, 347

theta, 12

thread, Lua type, 263

threat range, Simple Soccer, 175

three-variable function, 5

Index | 493

TLFeBOOK

thumbs, preventing the twiddling of, 370-372

tiered AI, 145, 152

tile-based navigation graph, 333-334, 339

time, 29

physics, 28

unit of, 28

time-sliced path planning, 363-370

time-sliced search request, registering,

369-370

time-slicing, 363

topology, of graph, 209

Towers of Hanoi puzzle, 201-203

trajectory, soccer ball, 141

transform, local and world coordinate system,

27, 28

trees, 193, 196

triangles, 12-17

acute, 13

equilateral, 13

isosceles, 13

obtuse, 13

right-angled, 13

types of, 12

Trigger C++ class, 305-307

and navigation graph, 341

trigger region, 303

Trigger_HealthGiver::Try C++ method, 309

Trigger_LimitedLifetime C++ class, 309-310

Trigger_SoundNotification C++ class, 310

Trigger_WeaponGiver C++ class, 308

Trigger_WeaponGiver::Try C++ method, 309

TriggerRegion C++ class, 304-305

triggers, 299, 303-312

and scripting, 413

class hierarchy, 304

deactivated, 309

giver-trigger, 308-309

health giver, 309

limited lifetime, 309-310

managing, 311-312

reactivated, 309

respawning, 307-308

sound notification, 310

weapon giver, 308-309

TriggerSystem C++ class, 311-312

trigonometry, 10-17

angle, 11

line segment, 10

ray, 10

truncation of steering behavior, 120-124

Turing, Alan, 44

two-variable function, 5

two-way heap data structure, 240

U

UML class diagrams, 465-474

unconnected graph, 195

and depth first search, 213

Unified Modeling Language, 465

uninformed graph searches, 210-231

union,

crisp set, 418

fuzzy set, 422

unit radius, 11

universe of discourse, 417, 418

Unreal Tournament, 249, 253, 255

update frequency, 328-331

user interface, 410

userdata, Lua type, 263

V

variables, 3

vector, 18

direction, 18

dot product, 23

graph, 194

magnitude, 18

quantity, 30

Vector2D C++ struct, 25

vectors, 18-26

adding, 19

calculating the magnitude, 20

multiplying, 20,

normalizing, 21

resolving, 22

subtracting, 19

Vehicle C++ class, 88

vehicle model,

physics, 89

steering behavior, 87-88

Vehicle::Update method, 89

velocity, 30

494 | Index

TLFeBOOK

velocity-aligned heading, field player, 155

VERY hedge, 423

virtual machine, 250

virtual stack, 268

W

Wait field player state, 156, 160-161

Wait::Execute C++ method, 160-161

wall, 104

normal, 104

Simple Soccer, 136

wall avoidance (steering behavior), 104-106

Wallin, Daniel, 276

wander (steering behavior), 96-99

Warcraft, 45, 196

weapon aiming, of Raven bot, 313

weapon givers, 308-309

weapon handling, 323-327

of Raven bot, 313

weapon selection, and fuzzy logic, 449-450,

451-452

weapons,

in Raven, 301

instant hit, 325

selecting in Raven, 296

weight, 29

graph edge, 231

weighted edge, graph, 195

weighted graph, 233

weighted truncated running sum with

prioritization, 121

weighted truncated sum, 120

West World, 50

output listing, 51, 68, 82

Woods, Tiger, 415

world coordinate system, 26-27

world space, 26-27

obstacle avoidance steering behavior,

103

offset pursuit steering behavior, 112

wander steering behavior, 98

wrapper function, 274

wrong path, and depth first search, 222

Z

Zadeh, Lotfi, 416

Index | 495

TLFeBOOK

TLFeBOOK

DirectX 9 Audio Exposed
1-55622-288-2 • $59.95
6 x 9 • 568 pp.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: ai0782

Looking for more?

Check these and other titles from
Wordware’s complete list.

ShaderX2: Introductions & Tutorials
with DirectX 9
1-55622-902-X • $44.95
6 x 9 • 384 pp.

SQL Anywhere Studio 9 Developer’s
Guide
1-55622-506-7 • $49.95
6 x 9 • 488 pp.

Introduction to 3D Game
Programming with DirectX 9.0
1-55622-913-5 • $49.95
6 x 9 • 424 pp.

Programming Multiplayer
Games
1-55622-076-6 • $59.95
6 x 9 • 576 pp.

Advanced 3D Game Programming
with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

Learn Vertex and Pixel Shader
Programming with DirectX 9
1-55622-287-4 • $34.95
6 x 9 • 304 pp.

DirectX 9 User Interfaces
1-55622-249-1 • $44.95
6 x 9 • 376 pp.

ShaderX2: Shader Programming
Tips & Tricks with DirectX 9
1-55622-988-7 • $59.95
6 x 9 • 728 pp.

Wireless Game Development in
Java with MIDP 2.0
1-55622-998-4 • $39.95
6 x 9 • 360 pp.

Game Design Theory and Practice
2nd Ed.
1-55622-912-7 • $54.95
6 x 9 • 728 pp.

Official Butterfly.net Game
Developer’s Guide
1-55622-044-8 • $49.95
6 x 9 • 424 pp.

TLFeBOOK

LightWave 3D 8 Lighting
1-55622-094-4 • $54.95
6 x 9 • 536 pp.

Looking for more?

Check out Wordware’s market-leading Graphics
Library featuring the following new releases,

backlist, and upcoming titles.

LightWave 3D 8: 1001 Tips & Tricks
1-55622-090-1 • $39.95
6 x 9 • 648 pp.

LightWave 3D 8 Cartoon Charac-
ter Creation Vol. I
1-55622-253-X • $49.95
6 x 9 • 500 pp.

LightWave 3D 8 Cartoon Charac-
ter Creation Vol. II
1-55622-254-8 • $49.95
6 x 9 • 550 pp.

Advanced Lighting and Materials with
Shaders
1-55622-292-0 • $59.95
9 x 7 • 500 pp.

LightWave 3D 8 Texturing
1-55622-285-8 • $49.95
6 x 9 • 504 pp.

Essential LightWave 3D 7.5
1-55622-226-2 • $44.95
6 x 9 • 424 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

3DS Max Lighting
1-55622-401-X • $49.95
6 x 9 • 536 pp.

CGI Filmmaking: The Creation of Ghost
Warrior
1-55622-227-0 • $49.95
9 x 7 • 344 pp.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: ai0782
TLFeBOOK

	Programming.Game.AI.By.Example
	Dedication
	Contents
	Foreword
	Acknowledgments
	Introduction
	1 A Math and Physics Primer
	2 State-Driven Agent Design
	3 How to Create Autonomously Moving Game Agents
	4 Sports Simulation—Simple Soccer
	5 The Secret Life of Graphs
	6 To Script, or Not to Script, That Is the Question
	7 Raven: An Overview
	8 Practical Path Planning
	9 Goal-Driven Agent Behavior
	10 Fuzzy Logic
	Appendix A C++ Templates
	Appendix B UML Class Diagrams
	Appendix C Setting Up Your Development Environment
	References
	Bugs and Errata
	Index

