

Game Engine Gems, Volume One
Edited by Eric Lengyel,

Ph.D.

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts

BOSTON, TORONTO, LONDON, SINGAPORE

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers Canada
6339 Ormindale Way
Mississauga, Ontario L5V 1J2
Canada

Jones and Bartlett Publishers International
Barb House, Barb Mews
London W6 7PA
United Kingdom

Jones and Bartlett's books and products are available through most bookstores and online
booksellers. To contact Jones and Bartlett Publishers directly, call 800-832-0034, fax 978-
443-8000, or visit our website, www.jbpub.com.

 Substantial discounts on bulk quantities of Jones and Bartlett's publications
are available to corporations, professional associations, and other qualified
organizations. For details and specific discount information, contact the
special sales department at Jones and Bartlett via the above contact
information or send an email to specialsales@jbpub.com.

Copyright © 2011 by Jones and Bartlett Publishers, LLC

ISBN-13: 9780763778880
ISBN-10: 0763778885

All rights reserved. No part of the material protected by this copyright may be
reproduced or utilized in any form, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without written
permission from the copyright owner.

The publisher recognizes and respects all marks used by companies,
manufacturers, and developers as a means to distinguish their products. All brand
names and product names mentioned in this book are trademarks or service marks of
their respective companies. Any omission or misuse (of any kind) of service marks or
trademarks, etc., is not an attempt to infringe on the copyright of others.

Production Credits
Publisher: David Pallai
Editorial Assistant: Molly Whitman
Senior Production Editor: Katherine Crighton
Associate Marketing Manager: Lindsay Ruggiero
V.P., Manufacturing and Inventory Control: Therese Connell
Cover Design: Kristin E. Parker
Cover Image: © Jesse-lee Lang/Dreamstime.com
Printing and Binding: Malloy, Inc.
Cover Printing: Malloy, Inc.

6048

Printed in the United States of America

14 13 12 11 10 10 9 8 7 6 5 4 3 2 1

Contents
Introduction .. x

Contributor Biographies .. xii

About the Editor ... xx

Part I Game Engine Design ... 1

Chapter 1 What to Look for When Evaluating Middleware for Integration 3

1.1 Middleware, How Do I Love Thee? ... 3

1.2 Integration Complexity and Modularity ... 4

1.3 Memory Management ... 4

1.4 Mass Storage I/O Access .. 6

1.5 Logging ... 7

1.6 Error Handling .. 7

1.7 Stability and Performance Consistency ... 8

1.8 Custom Profiling Tools.. 9

1.9 Customer Support .. 9

1.10 Demands on the Maintainers ... 10

1.11 Source Code Availability ... 10

1.12 Quality of Source Code .. 11

1.13 Platform Portability .. 12

1.14 Licensing Requirements .. 12

1.15 Cost ... 13

Chapter 2 The Game Asset Pipeline ... 15

ii Game Engine Gems

2.1 Asset Pipeline Overview .. 16

2.2 Asset Pipeline Design ... 24

2.3 Push or Pull Pipeline Model ... 28

2.4 COLLADA, A Standard Intermediate Language ... 31

2.5 OpenCOLLADA ... 42

2.6 User Content ... 46

Chapter 3 Volumetric Representation of Virtual Environments 53

3.1 Introduction .. 53

3.2 Overview .. 55

3.3 Data Structures ... 58

3.4 Surface Extraction .. 63

3.5 Rendering .. 71

3.6 Physics .. 78

3.7 The Future ... 79

Chapter 4 High-Level Pathfinding .. 83

4.1 Terms ... 84

4.2 Start Your Engines ... 85

4.3 Why High-Level Pathfinding? .. 86

4.4 Preprocess Phase .. 87

4.5 Fuzzy Pathing Phase .. 97

4.6 Detailed Paths Phase .. 102

4.7 Why Go Through All This Trouble? ... 104

Chapter 5 Environment Sound Culling ... 107

5.1 The Problem .. 108

5.2 A Sound Culling Solution ... 110

Contents iii

5.3 Constructing the Sound Grid .. 112

5.4 Processing the Sound Grid .. 114

5.5 Supporting Multiple Listeners .. 121

5.6 Extensions .. 121

Chapter 6 A GUI Framework and Presentation Layer .. 123

6.1 GUI Systems .. 123

6.2 Design Patterns: Model View Controller (MVC) .. 125

6.3 A GUI Design .. 127

6.4 And Finally .. 140

Chapter 7 World's Best Palettizer .. 143

7.1 Palettes? Whatever for? .. 143

7.2 Understanding Quantization .. 146

7.3 Hard-Earned Lessons ... 147

7.4 Algorithm Overview ... 149

7.5 Future Work .. 160

7.6 Results .. 161

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 165

8.1 Mechanisms of Plano-Stereoscopic Viewing .. 166

8.2 Stereo Techniques ... 176

8.3 Design Considerations for 3D Scenes .. 179

8.4 Outlook .. 182

Chapter 9 A Multithreaded 3D Renderer .. 185

9.1 The Memory Model ... 186

9.2 Building the Display Lists in Parallel ... 188

iv Game Engine Gems

9.3 Parallel Models.. 190

9.4 Synchronizing the GPU and CPU .. 191

9.5 Using Additional Processing Resources .. 192

9.6 Reducing the Pressure on the Memory Bandwidth ... 193

9.7 Performing Graphical Operations in Parallel ... 194

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 197

10.1 Uses of Multi-Core in Video Games ... 198

10.2 Multithreaded Command Buffers .. 200

10.3 Device-Independent Command Buffers ... 201

10.4 A Camera-Centric Design ... 207

10.5 Future Work.. 217

Chapter 11 A GPU-Managed Memory Pool .. 219

11.1 Background ... 220

11.2 The Memory Pool .. 221

11.3 Synchronization Issues .. 223

11.4 The Staging Buffer .. 225

11.5 Memory Pool Defragmentation ... 227

11.6 Memory Pool Eviction ... 228

11.7 Platform-Specific Considerations .. 229

11.8 Future Work.. 230

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics 233

12.1 Introduction .. 233

12.2 Velocity Field Computation ... 235

12.3 Physics Simplification .. 239

12.4 Results and Discussion .. 242

Contents v

Chapter 13 Mesh Partitioning for Fun and Profit ... 245

13.1 Desirable Algorithm Properties .. 246

13.2 Lessons Learned .. 248

13.3 When Greedy Is Good ... 250

13.4 Future Work .. 252

13.5 Graphical Walkthrough ... 253

Chapter 14 Moments of Inertia for Common Shapes ... 259

14.1 Center of Mass .. 259

14.2 The Inertia Tensor .. 261

14.3 Derivation of Moments of Inertia .. 264

14.4 Summary .. 284

Part II Rendering Techniques ... 287

Chapter 15 Physically-Based Outdoor Scene Lighting .. 289

15.1 Positioning the Sun and Moon ... 290

15.2 Computing Natural Sunlight .. 291

15.3 Moonlight and Other Nighttime Light Sources ... 295

15.4 Tone-Mapping the Light ... 296

15.5 Implementation Notes ... 299

Chapter 16 Rendering Physically-Based Skyboxes .. 301

16.1 Generating and Drawing the Skybox ... 301

16.2 Computing the Skybox Vertex Colors ... 303

16.3 Integrating the Skybox with Your Scene ... 307

16.4 Embellishing Your Skybox .. 308

vi Game Engine Gems

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 311

17.1 Technique Overview .. 312

17.2 Rendering to the Velocity-Depth-Gradient Buffer .. 315

17.3 Rendering the Post-Processing Effect ... 321

17.4 Grid Optimization .. 325

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 327

18.1 Introduction .. 327

18.2 A General Ambient Illumination Model .. 329

18.3 Screen-Space Representation of the Scene .. 332

18.4 Volumetric Ambient Occlusion ... 333

18.5 Indirect Lighting of the Near Geometry ... 338

18.6 Implementation .. 338

18.7 Results .. 341

Chapter 19 Real-Time Character Dismemberment .. 345

19.1 What is Character Damage Modeling? ... 346

19.2 Methods of Mutilation ... 347

19.3 Bone Matrix Flattening .. 348

19.4 Improvements ... 350

19.5 Demo .. 353

Chapter 20 A Deferred Decal Rendering Technique... 355

20.1 The Problem .. 356

20.2 The General Idea .. 357

20.3 Geometry Rendering .. 359

20.4 Fade Out And Wrap-Around ... 361

20.5 Surface Clipping ... 364

Contents vii

20.6 Limitations .. 365

20.7 Additional Features .. 367

Part III Programming Methods ... 369

Chapter 21 Multithreaded Object Models ... 371

21.1 Explicit Locking .. 372

21.2 Message-Based Updates ... 373

21.3 Multiple Thread Contexts ... 374

21.4 Buffered State Changes .. 375

21.5 Selecting the Best Approach .. 378

Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns 381

22.1 Tasks Versus Threads in Games ... 381

22.2 The Task Scheduler .. 383

22.3 Decomposing Game Patterns into Tasks .. 384

22.4 The Future of Task Parallelism in Games ... 390

Chapter 23 Dynamic Code Execution Hierarchies .. 391

23.1 What are Code Execution Hierarchies? .. 392

23.2 Design Features ... 395

23.3 Benefits & Pitfalls .. 399

Chapter 24 Key-Value Dictionary .. 401

24.1 Design .. 401

24.2 Using the KVD .. 402

24.3 Code Details .. 404

24.4 Caveats ... 407

viii Game Engine Gems

Chapter 25 A Basic Scheduler .. 409

25.1 Overview .. 409

25.2 Task Functionality .. 410

25.3 Scheduler Functionality ... 411

25.4 Implementation .. 413

25.5 Additional Functionality ... 413

Chapter 26 The Game State Observer Pattern .. 415

26.1 Creating a Game State Manager ... 418

26.2 The Interfaces of the Game State Observer Pattern .. 422

26.3 Making GameState Observable .. 424

26.4 Creating Observers ... 427

26.5 Managing Functionality by Game State .. 430

Chapter 27 Fast Trigonometric Operations Using Cordic Methods 433

27.1 Rotation Mode Algorithm .. 434

27.2 Vectoring Mode Algorithm .. 436

27.3 Applications .. 437

27.4 Implementation .. 437

27.5 Considerations .. 443

27.6 Extensions ... 443

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 445

28.1 History of Remote Procedure Call ... 447

28.2 How RPC Works: Internal Architecture of RPC ... 447

28.3 How to Build Your Own RPC Subsystem ... 451

28.4 Why RPC is Useful for Game Engines .. 455

Contents ix

Introduction
In the fields of computer graphics and computer game development, the word gem

has been established as a term for describing a short article that focuses on a particular
technique, a clever trick, or practical advice that a person working in these fields would
find interesting and useful. The term gem was first used in 1990 for the first volume of
the Graphics Gems series of books, which concentrated on knowledge pertaining to
computer graphics. The mainstream methods for rendering 3D images have changed
considerably since then, but many of those gems still comprise useful techniques today
and have demonstrated a timeless quality to the knowledge they contain. Several newer
book series containing the word "Gems" in their titles have appeared in related subject
areas such as game programming and GPU rendering, and they all advance the notion
of sharing knowledge through concise articles that each focus on a specific topic. We
continue the tradition with this book, the first volume of Game Engine Gems.

Game Engine Gems concentrates on knowledge relating to the development of
game engines, which encompass the architecture, design, and coding methods
constituting the technological foundation for today's video games. A complete game
engine typically includes large components that handle graphics, audio, networking,
and physics. There may also be large components that provide services for artificial
intelligence (AI) and graphical user interfaces (GUIs), as well as a variety of smaller
components that deal with resource management, input devices, mathematics,
multithreading, and many additional pieces of generic functionality required by the
games built upon them. Furthermore, many game engines are able to run on multiple
platforms, which may include PCs and one or more game consoles such as the
PlayStation 3 or Xbox 360. The Game Engine Gems series is specifically intended to

Contents xi

include all such aspects of game engine development targeting all current game
platforms.

This book is divided into three parts covering the broad subject areas of game
engine design, rendering techniques, and programming methods. The 28 gems
appearing in this book are written by a group of 25 authors having expertise in game
engine development, some quite extensive. It is our hope that the wisdom recorded in
these pages and the pages of future volumes of Game Engine Gems continue to serve
game developers for many years to come.

Call for Papers

At the time this book is published, work on the second volume of Game Engine Gems will have already
entered its early stages. If you are a professional developer working in a field related to game
development and would like to submit a contribution to the next book in the series, please visit our
official website at http://www.gameenginegems.com/.

Contributor Biographies

Rémi Arnaud remi@acm.org

Rémi Arnaud is working as Chief Software Architect at Screampoint International,
a company providing interoperable 5D digital city models for the benefit of
governments, property owners, developers, designers, contractors, managers, and
service providers. Rémi's involvement with real-time graphics started in the R&D
department of Thomson Training & Simulation (now Thales) designing and then
leading the Space Magic real-time visual system for training simulators, where he
finalized his Ph.D. "La synthèse d'images en temps réel". He then relocated to California
to join the Silicon Graphics IRIS Performer team, working on advanced features such
as calligraphic light points for training pilots. He then decided to be more adventurous
and co-founded Intrinsic Graphics, where he co-designed the Alchemy engine, a
middleware targeting cross-platform game development for PS2, Xbox, GameCube,
and PC. He was hired as Graphics Architect at Sony Computer Entertainment US R&D,
working on the PlayStation 3 SDK graphics API, and joined the Khronos Group to
create COLLADA asset exchange standard. More recently, Rémi worked at Intel where
he created and lead the Larrabee Game Engine Technology team.

Ron Barbosa ron@exibeo.net

Ron Barbosa has been an avid hobbyist game and game technology developer since
his teenage years. Since 1993, he has worked as a professional network/software
engineer for many companies producing internet technologies, including former
technology giants Compaq Computer Corporation and Lucent Technologies, Inc. He

Contributor Biographies xiii

currently serves as the Chief Software Architect at Boca Raton, Florida's Revelex
Corporation, a travel technology services provider. In his short spurts of spare time, he
attempts to remain active in indie game development circles and is the original author
of Planet Crashmania 9,000,000 available on Microsoft's Xbox LIVE Indie Games
service and Apple's iPod Touch Apps Store (ported to iPod Touch by James Webb).

John Bolton johnjbolton@yahoo.com

John Bolton is a software engineer at Netflix in Los Gatos, California and has been
programming games professionally since 1992. He has contributed to dozens of games
and has been lead programmer on several titles, including I Have No Mouth and I Must
Scream, Heroes of Might and Magic, and High Heat Baseball.

Khalid Djado Khalid.Djado@USherbrooke.ca

Khalid Djado is a Ph.D. student in the Department of Computer Sciences at
University of Sherbrooke. His research interests include computer graphics and
physical simulations. He is a lecturer for graduate students in game development for
the University of Sherbrooke at Ubisoft Campus. He was also a game developer at
Amusement Cyanide in Montreal. He obtained a bachelor's degree in applied
mathematics from the University Sidi Mohamed Ben Abdellah in Morocco, and a
master's in modelling, simulation, and optimisation from the University of Bretagne
Sud in France. He has been a member of ACM Siggraph since 2006.

Richard Egli Richard.Egli@USherbrooke.ca

Richard Egli is professor in the Department of Computer Sciences at University of
Sherbrooke since 2000. He received his B.Sc. degree in Computer Science and his M.Sc.
degree in Computer Sciences at University of Sherbrooke (Québec, Canada). He
received his Ph.D. in Computer Sciences from University of Montréal (Québec, Canada)
in 2000. He is the director of the centre MOIVRE (MOdélisation en Imagerie, Vision et

xiv Game Engine Gems

RÉseaux de neurones). His research interests include computer graphics, physical
simulations, and digital image processing.

Simon Franco simon_franco@hotmail.com

Simon Franco sampled his first taste of programming on the Commodore Amiga,
when he wrote his first Pong clone in AMOS, and he has been coding ever since. He
joined the games industry in 2000 after completing a degree in computer science. He
started at The Creative Assembly in 2004, where he has been to this day. When he's not
playing the latest game, he'll be writing assembly code for the ZX spectrum.

Anders Hast aht@cb.uu.se

Anders Hast works half time as a Visualization Expert at UPPMAX (Uppsala
Multidisciplinary Center for Advanced Computational Science) and half time as
associate professor at the University of Gävle, both in Sweden. He has published well
over 50 scientific papers in journals, in conferences, and as book chapters in various
areas in computer graphics, visualization, and applied mathematics. His other interests
in life, besides computer graphics research, are US model trains, drinking Czech beer,
and studying the Italian language.

Daniel F. Higgins webmaster@programming.org

Dan has spent over 10 years in the games industry, starting with Stainless Steel
Studios. He was one of the original creators of the Titan game engine, and was one of
the chief AI programmers on Empire Earth, Empires: Dawn of the Modern World and
Rise & Fall: Civilizations at War. Later, he worked at Tilted Mill on Caesar IV and
SimCity Societies. Today, along with his wife, he is owner and manager of Lunchtime
Studios, Inc.

Adrian Hirst adrian@weaseltron.com

Contributor Biographies xv

Adrian Hirst has been shedding blood, sweat, and tears programming on any and
every gaming platform for the last ten years, working with many leading developers and
publishers, most recently including Sony, Codemasters (LMA 2002, Colin McRae PC 3,
4, 5, 2005+), and Electronic Arts/Criterion (Burnout: Paradise). Most recently he set up
Weaseltron Entertainment in order to join the growing masses of independent
developers and apply his skills to new challenges. He is also remarkably good looking,
writes his own biography, and needs a beer.

Jason Hughes jhughes@steelpennygames.com

Jason Hughes is an industry veteran game programmer of 15 years and has been
actively coding for 25 years. His background covers everything from modem drivers in
6502 assembly to fluid dynamics on the Wii to a multi-platform 3D engine. Jason
tinkers with exotic data structures, advanced compression algorithms, and various tools
and technology relating to the games industry. Prior to founding Steel Penny Games,
Jason spent several years at Naughty Dog on the ICE team writing the asset pipeline
tools used by PS3 developers in the ICE and Edge libraries.

Frank Kane fkane@sundog-soft.com

Frank Kane is the owner of Sundog Software, LLC, makers of the SilverLining SDK
for real-time rendering of skies, clouds, and precipitation effects (see www.sundog-
soft.com for more information). Frank's game development experience began at Sierra
On-Line, where he worked on the system-level software of a dozen classic adventure
game titles including Phantasmagoria, Gabriel Knight II, Police Quest: SWAT, and Quest
for Glory V. He's also an alumnus of Looking Glass Studios, where he helped develop
Flight Unlimited III. Frank developed the C2Engine scene rendering engine for SDS
International's Advanced Technology Division, which is used for virtual reality training
simulators by every branch of the US military. He currently lives with his family outside
Seattle.

xvi Game Engine Gems

Jan Krassnigg Jan@Krassnigg.de

Jan Krassnigg is studying Information Technologies at the University of Aachen,
Germany.

Martin Linklater mslinklater@mac.com

Martin Linklater has been programming since 1981 when he was ten years old.
After spending his teenage years hacking C64 and Amiga code, he got a Bachelors
Degree in Computer Science in 1993. His first job in the games industry was as a
programmer for Psygnosis, soon to become Sony Computer Entertainment Europe.
After five years at SCEE he left with five colleagues to start Curly Monsters, an
independent development house. Curly Monsters closed in 2003 after releasing two
titles. Martin worked for a short time for EA, then returned to Sony in 2003. Martin is
currently a Technical Director working on an undisclosed Sony title. Martin lives in
Wallasey, UK with his wife and two-year-old son. He enjoys games, flight simulation,
sim racing, and beer.

Colt McAnlis duhroach@gmail.com

Colt McAnlis is a graphics programmer at Blizzard Entertainment, where he works
on stuff he typically can't talk about. Prior, Colt was a graphics programmer at
Microsoft Ensemble studios, where in his free time he moonlighted as an Adjunct
Professor at SMU's GUILDHALL school for video game development. He has received
a number of publications in various industry books, and continues to be an active
participant in speaking at conferences.

Jeremy Moore jeremy.moore@disney.com

Jeremy Moore is the lead engine programmer for the Core Technology Group at
Disney's Black Rock Studio in Brighton, UK. He has been working in the games industry
for over a decade. Four of those years were spent working on SCEA's ATV Offroad Fury

Contributor Biographies xvii

games on both PS2 and PSP. Among other things, he was responsible for the acclaimed
network play implementation. He now specializes in real-time graphics and being
ordered around by his two young daughters.

Jon Parise jon@indelible.org

Jon Parise is a senior software engineer engineer at Electronic Arts. He has worked
on a number of titles, including The Sims 3, The Lord of the Rings: The White Council,
Ultima Online, and The Sims Online. He was also a contributing author for Massively
Multiplayer Game Development 2. Jon earned a bachelors degree in Information
Technology from the Rochester Institute of Technology and a masters degree in
Entertainment Technology from Carnegie Mellon University.

Kurt Pelzer kurt.pelzer@gmx.net

Kurt Pelzer is a Senior Software Engineer and Software Architect with a decade of
experience in team-oriented projects within the 3D real-time simulation and games
industry. At Piranha Bytes, he has taken part in the development of the games Risen
(PC & Xbox 360), Gothic 1–3 (PC) and the engine technology used for these products.
Kurt has published articles in the technical book series GPU Gems, Game Programming
Gems, and ShaderX.

Aurelio Reis AurelioReis@gmail.com

Aurelio Reis is a programmer at id Software, where he works on graphics and
special effects. While he's interested in all aspects of game development, he especially
enjoys working on networking and gameplay as well as doing research on cutting edge
graphics techniques. An industry veteran and avid gamer, Aurelio has contributed to
numerous titles over the years, but is most excited about the game he's working on right
now, Doom 4.

xviii Game Engine Gems

Sébastien Schertenleib sscherten@bluewin.ch

Sébastien Schertenleib has been involved in academic research projects creating
3D mixed reality systems using stereoscopic visualization while completing his Ph.D.
in Computer Graphics at the Swiss Institute of Technology in Lausanne. Since then, he
has been holding a job as a Principal Engineer at Sony Computer Entertainment
Europe's R&D Division. This role includes supporting game developers on all
PlayStation platforms by providing technical training, presenting at various games
conferences, and working directly with game developers via on-site technical visits and
code share.

László Szirmay-Kalos szirmay@iit.bme.hu

László Szirmay-Kalos is the head of the Department of Control Engineering and
Information Technology at the Budapest University of Technology and Economics. He
received his Ph.D. in 1992 and full professorship in 2001 in computer graphics. His
research area is Monte-Carlo global illumination algorithms and their GPU
implementation. He has more than two hundred publications in this field. He is the
fellow of Eurographics.

Balázs Tóth tbalazs@sch.bme.hu

Balázs Tóth is an assistant processor at the Budapest University of Technology and
Economics. He is involved in distributed GPGPU projects and deferred shading
rendering and is responsible for the CUDA education of the faculty.

Tamás Umenhoffer umitomi@gmail.com

Tamás Umenhoffer is an assistant processor at the Budapest University of
Technology and Economics. His research topic is the computation of global
illumination effects and realistic lighting in participation media and their application in
real-time systems and games.

Contributor Biographies xix

Brad Werth bradley.j.werth@intel.com

Brad Werth is a Senior Software Engineer in Intel's Visual Computing Division.
He has been a frequent speaker at the Game Developers Conference and Austin GDC.

David Williams david@david-williams.info

David Williams received his M.Sc. in Computer Science from the University of
Warwick in 2004 before joining City University as a Ph.D. student researching Medical
Visualization. It was at this point that he developed an interest in voxels and began
investigating how the concepts could be applied to game engines. He received his Ph.D.
in 2008, but has continued to work on his Thermite3D voxel engine in his spare time.
He now works as a graphics programmer for a game development company in the UK,
and also enjoys photography and travelling.

About the Editor

Eric Lengyel lengyel@terathon.com

Eric Lengyel is a veteran of the computer games industry with over 15 years of
experience writing game engines. He has a Ph.D. in Computer Science from the
University of California, Davis, and he has a Masters Degree in Mathematics from
Virginia Tech. Eric is the founder of Terathon Software, where he currently leads
ongoing development of the C4 Engine.

Eric entered the games industry at the Yosemite Entertainment division of Sierra
Online in Oakhurst, California, where he was the lead programmer for the fifth
installment of the popular adventure RPG series Quest for Glory. He then worked on
the OpenGL team for Apple Computer at their headquarters in Cupertino, California.
More recently, Eric worked in the Advanced Technology Group at Naughty Dog in
Santa Monica, California, where he designed graphics driver software used on the
PlayStation 3 game console.

Eric is the author of the bestselling book Mathematics for 3D Game Programming
and Computer Graphics. He is also the author of The OpenGL Extensions Guide, the
mathematical concepts chapter in the book Introduction to Game Development, and
several articles in the Game Programming Gems series. His articles have also been
published in the Journal of Game Development, in the Journal of Graphics Tools, and on
Gamasutra.com. Eric currently serves on the editorial board for the recently renamed
Journal of Graphics, GPU, and Game Tools (JGGGT).

Contributor Biographies xxi

About the CD

The accompanying CD contains supplementary materials for many of the gems in
this book. These materials are organized into folders having the chapter numbers as
their names. The contents include demos, source code, examples, specifications, and
larger versions of many figures. For chapters that include project files, the source code
can be compiled using Microsoft Visual Studio.

High-resolution color images are included on the CD for many chapters, and they
can be found in the folders named Figures inside the chapter folders. All of the figures
shown in the color plates section of this book are included. Additionally, color versions
of figures are included from several additional chapters that were only printed in black
and white.

Part I

Part I Game Engine Design

1

Chapter 1 What to Look for When Evaluating Middleware for
Integration

Jason Hughes

Steel Penny Games, Inc.

1.1 Middleware, How Do I Love Thee?

Modern games are very rarely works comprised entirely of proprietary, custom
code written by in-house developers. The amount of polished functionality required to
compete in the games industry is simply an enormous task for a single studio to
undertake, and is in a word, unproductive. These days, game programmers are expected
to be comfortable using certain wheels that have been invented elsewhere and only
reinventing those that provide tangible benefits to their project or studio by directly
contributing to the success of a title or differentiating them in some way from the
competition. Given that some middleware libraries will be chosen to fulfill certain needs,
and often there are several products to choose between with similar feature sets, we ask,
"What are the considerations a team should take into account when comparing
middleware products?"

Let's assume that the language of choice is C/C++, as is most common today with
middleware and game development. Let's also assume that we're discussing an existing

4 Game Engine Gems

codebase where a specific feature is missing that can be filled by middleware, and that
the team's desire is to be surgical during integration and leave the smallest scar possible
should it need to be removed.

1.2 Integration Complexity and Modularity

The first, most important feature of a middleware package is its integration
complexity. Good libraries are highly modular, minimally intrusive, and easy to plug
into very different codebases. In short, they make very few assumptions and are fairly
decoupled from implementation details of other systems. A good library should come
with reasonable defaults or require very limited configuration before the system is in a
testable, working state. The integration engineer's level of experience can play a role in
the usability of a system, so minimal integration is key. This promotes a rapid evaluation
cycle—it leaves a bitter aftertaste when an engineer has a long integration cycle, only to
find the library is not desirable. My rule of thumb is two days. Anything that takes more
than two days to get running will waste a week putting it through its paces, and there
aren't enough weeks in a development cycle to try out alternatives.

1.3 Memory Management

Console developers all know that careful memory management is crucial to a
stable product. Middleware intended for virtual memory-backed PC systems, or even
those technologies with hefty demands that next generation consoles can satisfy, may
not be suitable for the more modest RAM budgets of yesteryear. It's important to know
not only what memory budgets are expected, but also who is responsible for managing
the allocations.

Ideally, each middleware library will have its own memory management scheme

Chapter 1 What to Look for When Evaluating Middleware for Integration 5

that simply initializes with two arguments: a pointer to a block of memory and its size.
A middleware library author is the person most knowledgeable of the sizes of
allocations, the churn rate for allocations, and the memory management algorithm
most appropriate to prevent fragmentation within their own allocation pool. Further,
this has the advantage of explicitly notifying the developer when the memory budget
has been exceeded, rather than collecting undesirably large amounts of memory from
the main heap where tracking down memory consumption can be tedious and
problematic. Also, this method tends to highlight integration mishaps where library
assets are being leaked, because it soon fails when the heap is exhausted. A resizable
heap is sometimes desirable, specifically if certain game levels need to shift memory
privileges to emphasize different systems, though this feature is fairly rare.

In the absence of a completely isolated heap managed by the middleware library, a
good fallback is one where you are expected to provide a pair of missing functions for
alloc() and free(), you can override weakly declared functions with your own, or
lastly, you can compile the library from source and are able to provide a #define macro
used throughout for allocation. None of these methods incur per-allocation function
call overhead because they are resolved by the compiler or linker. In this method, you
have the option of forwarding allocations to the main heap (refrain!), or declaring a
special heap that is dedicated to the subsystem using your choice of allocation strategy.
Some middleware provide only a method for registering allocation callbacks. It is a
common pet peeve to unnecessarily waste CPU cycles, and this is one minor gripe I
have about otherwise solid offerings.

The worst possible situation is a library that is littered with direct calls to
new/malloc and delete/free. This provides you no simple means to encapsulate the
system's resources and no simple way to measure or limit its consumption.

6 Game Engine Gems

1.4 Mass Storage I/O Access

Accessing optical media is very slow, and seeking—even on hard drives—can
dominate load times. While certain kinds of middleware need to access the file system,
particularly sound systems that stream music or asynchronous streaming systems that
load game assets in the background, most do not need direct access to the physical
media API.

These exceptions aside, middleware generally does require access to some assets,
but it should never do so by directly requesting them from the underlying system API.
A good middleware library provides explicit hooks for the developer to overload file
and data requests easily so they can be funneled through any custom file system (e.g.,
WAD or pack files) in which the developer may have chosen to store data or redirect
the file request to different hardware.

The most flexible libraries do not attempt to treat data as files or streams at all,
rather they deal exclusively with bulk memory buffers and leave resource acquisition
firmly in the hands of developers. This approach simplifies error handling and load time
optimization, and it is more rapidly deployed to new hardware with dependable results.

The worst middleware libraries (I've seen this frequently in open source code)
assume that a POSIX file system is always available, or one like it, and depend directly
on C Runtime Library calls such as FILE and fopen().

Another misguided attempt to address file system abstraction is the invasive
extension of file streams by providing an abstract interface for a reader/writer class that
the user provides. A derived instance of this interface grabs data via a virtual function
one byte at a time, or even in small fixed sized blocks. This maps very poorly to real-
world data and performance characteristics, and it should be avoided at all costs.

Chapter 1 What to Look for When Evaluating Middleware for Integration 7

1.5 Logging

There will be times when expectations will not be met inside a middleware library.
A good library handles warnings in a uniform way and has a way to integrate them into
your existing log system. Better libraries will have some kind of trivial verbosity setting
that ranges from noisy to absolutely silent and will preferably compile out the strings
and error checking entirely. Noisy verbosity settings that spew plenty of details about
the data being fed in affords developers a sense of trust that the library has been
integrated correctly and its files are being read properly. However, if you cannot
compile this out entirely, it comes at a cost of memory and CPU performance that is
unacceptable in final shipping builds. Some middleware comes with release and debug
libraries for this reason alone.

The best architected middleware products have a simple method for hooking a
logging output callback so the logs can be integrated into the game's existing reporting
system. Beware any library that blithely calls printf(), since this function is relatively
expensive and may not even have a standard output pipe connected, providing no
means to alert the user.

1.6 Error Handling

The best middleware will not have error conditions at all because they always work.
I hold out hope that such a thing exists. Meanwhile back on Earth, errors are inevitable,
and the handling of them is an important trait when determining whether some
software can operate in your project environment. There are different schools of
thought about when an error is always fatal, always recoverable, or in the gray area in
between. Middleware libraries that give you no choice in the matter, no way to override
the handling of errors, tends to be graded downward.

8 Game Engine Gems

As console developers know, patching a game is often impossible, and some bugs
are virtually impossible to reproduce or track down. Sometimes "heroic measures" are
called for to guarantee the game does not crash even when some subsystem experiences
complete and utter failure. Every piece of software should have some capacity to
forward serious errors through a handler, where in a fit of desperation you can silence
the sound system, clear the screen and print "You Win!" before hanging, or at least
reboot. Steer clear of anything that appears to use exit(), abort(), or even naked
assert() calls.

1.7 Stability and Performance Consistency

Middleware should be stable. After all, the main reason developers don't write
something themselves is the time required to write and debug it. Libraries that are
unable to report (and attempt to recover) from common trivial errors are fragile, and
will be often cursed by developers. The best middleware will never crash, will fix garbage
inputs or ignore them, and will leave plenty of debugging breadcrumbs for
programmers to follow while tracking down the problem. Top tools and engines can
sustain significant data corruption and missing files without crashing outright, which
can end up impeding an entire team's progress while dealing with the problem.

Every project has different expectations when it comes to performance, so it's up
to you to judge for yourself what is acceptable in absolute terms. However, every
middleware library that you consider usable should also have a consistent memory and
CPU performance profile. A stable frame-to-frame memory footprint is essential for
shipping games on time. Occasional spikes in the frame rate can be hard to track down,
too, and severely degrade the game experience. Good middleware should be a rock
when instrumented with a profiler in every situation.

A recent project I worked on had a single frame memory spike of 2 MB and 100

Chapter 1 What to Look for When Evaluating Middleware for Integration 9

ms. after tracking it down, it was due to a minor change in how a level script was written.
A more consistent virtual machine would have limited the number of instructions it
would execute or limit execution to a time slice. A more stable library would have kept
a closer watch on its memory usage. Anecdotal evidence is sometimes all you can get
here until you run afoul with personal experience, at the worst possible time. Ask
around.

1.8 Custom Profiling Tools

Whenever considering a package for inclusion, I am impressed with tools that
reduce uncertainty near the end of a project. These include any system that comes with
a monitoring API, or better yet, a profiler of some sort, that cuts days of potential
programmer time near the end of the game when memory is tight, CPU time is scarce,
and nobody knows where it's going. Being able to immediately pull out a tool that can
instrument a part of the game helps to rapidly narrow down the search. Gaining
visibility into content is typically hard, so any help your middleware provides is
tremendous.

1.9 Customer Support

Commercial middleware typically offers integration specialists, telephone support,
direct email support, and forums or mailing lists. Sometimes, this is exactly what a team
needs to move forward, especially when they reach a major stumbling block. The whole
reason for middleware is to reduce risk and uncertainty, which customer support does.
Middleware that comes with no expectation of support is useless. I have discarded more
than a few great and promising technologies simply because the author was unavailable
to answer a couple of questions.

10 Game Engine Gems

Watch for fast response times in forums and dedicated personnel who answer
questions on the phone or in email, and be prepared to send your integration code to
them when they ask for it. (That's all the better reason to keep it tidy.)

1.10 Demands on the Maintainers

Programmers are busy, expensive resources. Middleware that requires a lot of
effort and attention to integrate well with your flavor of build system is going to be
kicked to the curb very quickly. Ideally, you simply add a library to the build process,
#include a header file, and call a few functions. Ta-da! It's integrated.

Sometimes, the middleware is more invasive, and requires various #define
macros to be set to configure it. Or perhaps it needs to be integrated directly into your
project and compiled with your game. Additionally, some middleware has external
dependencies that must be present for it to compile. Worse still, it may require
introducing a new tool into the build process that may not work well with the build
system. Turnkey systems are clearly preferable. I look for middleware that comes with
GCC and Microsoft Visual Studio project files, but with extremely basic project
configurations. This proves that the compilers I care about can handle the code, and
that I can throw away the project files and integrate them my own way after an initial
build using the provided project file.

1.11 Source Code Availability

Eventually, you may need to debug into the source code of a middleware product
you plan to integrate. If it is a proprietary, closed-source product without a source code
option at a reasonable price, look for alternatives. While certain "industry secret" parts
of libraries may be binary-only, vendors know that source code is expected and will

Chapter 1 What to Look for When Evaluating Middleware for Integration 11

often provide it with a license. Those who don't provide source typically claim that their
customer support obviates that need. While this may be true, the moment there's an
issue that customer support can't solve, but source code could, is the moment we start
searching for a replacement. Again, a big reason for using middleware is that it's proven
and stable, so source code should not really be necessary. But the availability is still
important should the need arise.

1.12 Quality of Source Code

Having source code does not always mean you have the ability to make meaningful
changes. The best middleware has excellent documentation that is auto-generated from
source on every new code drop. It will have a familiar and consistent bracing scheme,
some kind of naming convention for functions and variables, and ideally will live inside
a brief namespace.

Take a moment to peruse the important header files. Inspect for #define macros
for language keywords or common functions such as new, min, and max, or in fact any
macro that escapes the scope of the header which could cause issues elsewhere. Use an
archive-inspection utility such as dumpbin (in Windows) or nm (in Linux) to verify that
the only exported symbols the middleware library defines are in a consistent namespace
to avoid conflicts with other libraries or your own code.

Questionable middleware will be littered with #pragma statements, will disable
errors, will reduce the warning level, etc. Scrutinize this heavily. These statements being
in header files can harm the quality of your code and may cause some files to stop
compiling simply by including them.

12 Game Engine Gems

1.13 Platform Portability

Certain kinds of middleware are likely to be platform independent, but even if you
have the source code there may be lurking byte ordering (endianness) issues. Inspect
the file and network stream handling for endian swapping code or perhaps different
asset building tools per-platform that sets up data into native formats.

Multithreading is very common in games today. Some middleware libraries
predate this shift. Determine how thread locking is handled, if the code is thread-safe,
and whether the thread controls are easy to override with a different platform's interface.
Be aware that any library that does nothing with threading is, by its very nature, likely
to be unsafe to use in a threaded environment. Factor in time for making the library
thread-safe, or at least limiting its use to a single, specific thread at all times.

Also consider whether your game may be ported to a less-capable hardware
platform at some point. If it might, determine what features are unique to this
middleware offering that would make porting to a different library particularly difficult
if this library does not exist for lower-end platforms.

1.14 Licensing Requirements

I am not a lawyer, and this is not legal advice. Consult a lawyer of your own to
answer specific questions, and read every license personally. Also note, most publishers
and even some hardware manufacturers have strict regulations about what open source
licenses are allowed in products you develop. Clear all open source licenses through
their legal departments before integrating one. What follows are my informed layman's
opinions.

Every open source license that I know of springs into action as the result of

Chapter 1 What to Look for When Evaluating Middleware for Integration 13

distributing software. What this means is, as long as you do not distribute the software
outside your company, you can use whatever you like for applications used internally.
Feel free to use any open source code in your internally-facing server technology or
tools, but do not plan to distribute those programs.

Public domain code is completely harmless. Once you copy the code to your hard
drive, you own it, and every modification you put into it is yours to keep. You may of
course change the license to something else, release it back to the public domain, or
keep it secret. It's yours.

The MIT, Zlib, etc., licenses appear to more or less disavow any responsibility for
how you use their software. They do not require anything except a credit clause and that
certain notices remain in the code. This is not a restrictive license with respect to retail
use.

The LGPL license has some stipulations that require distribution of the source of
the library (and possibly parts of your own application). Read this carefully before using
in retail products.

The GPL license and many other similar licenses require complete code release on
distribution if you integrate them into your products.

Frequently, commercial middleware licenses will require credit attributions, splash
screens, an intro movie, etc. Be careful to adhere to these, and give credit where it's
due—middleware authors helped make your game happen.

1.15 Cost

Every game has a different budget for middleware. Expect prices to vary widely
from $100 to $750,000, depending on what kind of product you're looking at. Great
middleware demands professional attention to detail, and when using a library

14 Game Engine Gems

professionally, good support is important (but often costs more depending on your level
of need).

When looking for a library that costs money, consider whether the cost is per-seat,
per-game, per-platform, or if it has a maintenance license such as per-annum. Many
middleware companies have special rates for digital download titles versus retail titles.
Also, be willing to call up the account manager at your chosen middleware shop and try
to sweet talk them into a discount. You might be surprised at how flexible they are if
this is your first title with them—they know very well that middleware tends to become
entrenched and expensive to remove, so it's good for them to get you hooked on their
product. Try to work out multiple project deals, if you have that kind of leverage.

Some libraries, such as Zlib, have evolved to the point where there is plenty of
support online in forums and sample code, and the number of bugs is approaching zero.
When libraries calcify, the fact that they are free is not an issue. However, open source
libraries are not free in general unless your time has no value. Take an estimate of how
many man-weeks it will take to implement the various missing features listed above,
assign a price to those man-weeks and compare that with the cost of the middleware
library. If they're even close to parity, go with commercial middleware, simply because
it's established, tested, supported, and best of all, you will free up programmers to work
on actual game features instead of patching up someone else's pet project.

References

[1] Kyle Wilson."Opinion: Defining Good Middleware". Gamasutra.com.
http://www.gamasutra.com/php-bin/news_index.php?story=20406

2

Chapter 2 The Game Asset Pipeline

Rémi Arnaud

Screampoint International

Highlights

The Game Asset Pipeline (a.k.a. the Content Pipeline, and hereafter, simply the
Asset Pipeline) is an intricate mechanism that interfaces the artists to the game engine.
Game teams have seen their artist/programmer ratio skyrocketing in order to cope with
the quantities of high-quality assets on tight schedules. Making sure the assets are
delivered in the right form at the right place is an important part of managing the
creation process so that artists and designers can create, preview, add, and tweak
content as easily and swiftly as possible.

This gem is composed of the following sections:

• Asset pipeline overview: What is the role and composition of an asset pipeline?

• Asset pipeline design: What are the main goals and hurdles involved in designing an
asset pipeline?

• Push or pull pipeline model: Approaching the problem from a different perspective
to achieve a better design.

• COLLADA, a standard intermediate language for digital assets: Taking advantage
of a standard and its broad availability to build an asset pipeline.

16 Game Engine Gems

• OpenCOLLADA, a new open source framework based on SAX parsing and direct
write technology.

• User content: Retargeting the asset pipeline to foster user content creation.

2.1 Asset Pipeline Overview

The asset pipeline is the path that all the game assets follow from their creation
tool to their final in-game version. There are a lot of asset types needed in a game:
models, materials, textures, animations, audio, and video to name a few. The asset
pipeline takes care of obtaining the data from the tools used for their creation, and then
optimizes, splits or merges, converts, and outputs the final data that can used by the
game engine. A typical asset pipeline is described in Figure 2.1 and explained in the
following paragraphs.

Source Assets

Source assets are created by artists and designers. The tools used to create source
assets are usually referenced as Digital Content Creation (DCC) tools. In general, source
assets are created through a set of specialized tools: one for modeling, one for texture
creation, one for gaming data, and one for level layout. Source assets should contain all
the information necessary to build the game content. In other words, it should be
possible to delete all the assets except for the source assets and still be able to rebuild the
game content. Source assets are often kept in the tool-specific format, and they should
be stored using a version control system such as Subversion [1] or Perforce [2]. Since
source assets are rather large and often in binary format, be sure to use a version control
system that can handle large binary files.

Chapter 2 The Game Asset Pipeline 17

Figure 2.1: Asset Pipeline Components.

Final Assets

Final assets are optimized and packaged for each target platform. Often enough,
the developer has no choice in what the final format has to be since the target platform,
third party engine, or the publisher may impose a given format. There is no need for
superfluous information in the final assets, so all the data is pruned to its required
minimum. Just like source code, assets have to be compiled and optimized for each
target. For instance, textures should to be stored in the format and size that the
hardware can use immediately, as texture compression algorithms and parameters need
to be optimized for the target texture hardware and display capabilities. Geometry data
is also compiled for each target. Most platforms will only accept triangles, but the

javascript:PopImage('IMG_2','fig34_01_0_0.jpg','653','547')

18 Game Engine Gems

number of triangles per batch, the sorting order of the vertices, the need for triangle
strips, and the amount of data per vertex will have a big impact on the performance of
the game engine. Limitations on the shader rendering capabilities of the hardware may
also have an impact on the geometry since it may be necessary to create several
geometries to enable the engine to use these in separate passes to create the desired
effect.

Final assets also have to be optimized for game loading speed. Conversion of the
data into hardware binary representation is one of the possible optimizations since this
will save CPU time while loading, but it is not necessarily the main bottleneck to
optimize since I/O (bandwidth or seeking) may actually be more problematic than CPU
performance (parsing, decoding) nowadays. For really simple games, it may be enough
to compact the data as much as possible and load it once at launch or at each change of
level. But for more evolved games, the expectation is that the data will be continuously
streamed while the player is progressing in the game to provide a better immersive
experience. Having a good real-time data streaming capability built into the engine is
one of the fundamental core technologies that will also help with providing a similar
experience for the player on various platforms, as limitations in device memory size can
be hidden by a local cache mechanism. Also, if the content is to be stored on a hardware
format that has specific limitations (for example, a CD or DVD may have long seek
times), it may be important to sort the data in the order in which it will be encountered
in the game.

Build Process

The build process is the process that transforms all the source data and creates the
optimized packaged data for each target platform. The build process should be
automatic, as done with the game source code. The build should be optimized to only
process the data that has changed from the previous build. Building the optimized data
for an entire game can take hours, if not the entire day. It is especially painful at the end

Chapter 2 The Game Asset Pipeline 19

of a project when there is a lot of tweaking that needs to occur in a short amount of time
and the build time is the longest as the data repository is fully populated. Early in the
process, little attention may be given to the optimization of the build process and the
organization of the data, but the overall quality and success of the game will depend on
the final editing that occurs when most of the assets have been created. In other words,
a poorly designed build process is likely to directly impact the quality of the end product.

One of the major issues with optimizing the asset build process is the lack of
information about dependencies. Since source assets are often stored in a tool-specific
opaque format, it is not often possible to easily parse the data and recursively collect the
dependency information. The need for dependency information and the direct
extraction from the source has been in place for many years in source code development,
but unfortunately, such a process has not yet matured for assets and will require the
game engine developers to actively develop their own.

There are a few good sources of information about asset build systems, such as the
book The Game Asset Pipeline [3] and the Microsoft XNA content pipeline [4]. We
mention the latter in spite of the fact that XNA is designed to only target Microsoft
platforms (PC and Xbox 360) and has several design limitations, such as relying on file
extensions to separate the data types and imposing the build information to be
embedded in the source code rather than as descriptive data [5].

Manifest

One very common issue with game development is that it quickly becomes
impossible to know what assets are needed, what assets depend on others, and what
assets are no longer necessary. Often data is piled up into a shared directory during
development, and the game works fine since all the data referenced by the scripts or
other assets are available. The problem is that there is no easy way to know which assets
are really necessary, so packaging a demo in the middle of a project often results in

20 Game Engine Gems

several gigabytes of compressed data, making it hard to distribute. Manually
maintaining a manifest is easier said than done, as it requires imposing a strong policy
on artists and designers to make sure they add all the assets referenced into the manifest
and remove the ones not in use. In practice, there is no hope for maintaining a manifest
manually, so it is very necessary to create an automatic system that extracts the manifest
from the game's top-level description (i.e., level design files). Having access to external
references stored inside the assets, such as scripts, textures, models, animation, or other
references becomes an obvious need in order to be able to automatically create the
manifest, so one must be wary of using opaque formats in the asset pipeline. The good
news is that this information can be used to create a dependency graph enabling the
build process to work only on the files that are necessary for a given level. The
dependency graph also provides an understanding of what assets need to be rebuilt
when they depend on assets that have been changed.

Fast Path

The fast path is the ability for assets to be loaded into the game engine without
going through the full build process. This shortcut is very important to provide for
better artist efficiency. When using the fast path, the artist invokes a minimal export
mechanism that enables a faster iteration. Note that an artist is often working on a
particular subset of the assets, and only the data for those assets will follow the fast path;
the other elements of the scene can still be loaded from the final build path. This means
the engine needs to allow for both full build and fast path assets to be active
simultaneously during production. The fast path loader can later be pruned from the
engine unless the developer wants to keep this capability as a feature to modders (see
Section 2.6). The fast path is an optimization of the overall production process, which
may be very important to the success of delivering the game within time and budget
constraints.

Chapter 2 The Game Asset Pipeline 21

Intermediate Assets

Intermediate assets represent the data in between the source and the final form.
Intermediate assets are created using an exporter from the DCC tool and also represent
the data that has been processed along the build process just before final transformation
into the final asset packaging. The intermediate asset format should be very easy to read,
parse, and extend. Intermediate assets should contain all the information that may be
necessary down the pipeline, and be lossless wherever possible [1]. There is no need to
prune and over-optimize early; it is much more efficient and automatic to discard data
further down in the pipeline rather than having to re-export all the source assets each
time additional information is required. Plain text, or structured XML files [6] are
recommended formats for most intermediate assets; this provides for human
readability and occasional hand editing in addition to taking advantage of numerous
libraries capable of handling standard XML format. Especially useful is the built-in
capability from languages such as C#, Python, Java, and others to be able to directly load
an XML document and provide easy programmatic access and search functions to the
embedded document object model (DOM).

Ideally, one single flexible intermediate format should be used to store the data
during the entire transformation process so that the same format and I/O code can be
used throughout the content pipeline and provide the flexibility to change the build
process steps and their execution order. This means the format needs to store the data
in a representation as close as possible to the representation in the DCC tool—in order
to simplify the export process and ensure the least data loss as possible—as well as
convert the data to a format as close as possible to the final encoding required by the
target platforms. This involves a bit of additional complexity when designing the
intermediate format, but ultimately, it is a big win to avoid overloading the export
process with early transformations at the cost of export time and data loss. As shown in
Figure 2.2, asset processing modules can apply transformations directly to intermediate

22 Game Engine Gems

assets, such as triangulation, texture processing, and level-of-detail calculation.

Figure 2.2: Intermediate assets along the build process.

The Pipeline

A combination of processing modules compose the build pipeline. Intermediate
assets can be probed at any point in the pipeline since they are available in the same
format throughout. Although not fundamentally necessary, it is possible to create a
specific tool with a user interface that enables the creation of a build process by simply
connecting asset processing modules to each other [7]. This design also enables the

javascript:PopImage('IMG_3','fig38_01_0_0.jpg','695','637')

Chapter 2 The Game Asset Pipeline 23

build process to be more generic in order to handle data from a variety of sources and
tools, as well as being configurable to support existing and future target platforms, by
combining or configuring a set of asset processing modules differently.

There would be no need to use different formatting for source and intermediate
assets if one single format could serve both purposes and is recognized by the DCC tools.
This does not mean the data will stay untransformed through the build process; it
means the same formatting can be used to store the data at all stages of the
transformation. For instance, there exist hundreds of image file types/formats [8], but
unfortunately, none seems able to offer all the properties to be both source and
intermediate format. Ideally, we would have a format that can store uncompressed
and/or lossless compression pixels for the source form. Some images need to be stored
in higher resolutions than the usual 8 bits per component, so the format should allow
for 16 bits, or even 24 bits per component. More and more often, high dynamic range
(HDR) storage is necessary, for which an open format has been made available:
OpenEXR [9]. On the other end, the intermediate format should be able to represent
the data as close as possible to the target platform format, but the requirements are all
over the spectrum to the point that it is almost impossible. For instance, final texture
data has to represent mipmaps, cube maps, volume maps, height maps, normal maps,
and texture arrays, and it has to deal with memory alignment, swizzling, tiling, and
hardware compression (DXT). The D3DX10 format from Microsoft [10] is probably
the closest to the needs for intermediate image format. It includes the DirectDraw
Surface (DDS) description [11] as well as PNG [12], IFF [13], and BMP [14]. Moreover,
it can also be used, at least on the Microsoft platform, as a final format. The problem is
that there may not be an export and import workflow for this format in the image
creation tool, forcing the use of two separate formats for the source and intermediate
image assets.

In addition to the conversion from the source format to the intermediate format,

24 Game Engine Gems

images also have to be made available to the DCC tool, which may require yet another
format conversion. A very popular tool to create images is Adobe Photoshop, whose
PSD native format can store a lot of types of data. Hopefully, main DCC tools can
directly load PSD images and may even take advantage of layers and other additional
information. Interestingly, Adobe has recently made available the open source Generic
Image Library [15], which aims at simplifying and optimizing the processing of image
assets, but unfortunately, it does not provide I/O support for Adobe's own PSD format!

In the past, game engine developers had to create their own intermediate format
and write their own exporter as a plug-in for each vendor-specific tool in use by artists,
which can be a daunting task, especially when tracking DCC SDK issues. Luckily, this
is no longer a necessity, and engine developers should instead take advantage of a
standard intermediate format and available source code [16], as discussed in Section 2.4.

[1]Intermediate assets stored in an open and well-documented format are also very
important for archival of the game assets. Here's an interesting story: A large studio
shipped a game based on a new IP and cleverly stored all the source assets, source code,
and build processes. It took many years, but eventually the sequel was ordered. The
problem was that the source assets were not recognized by the new version of the DCC
tools. Cleverly, they had also stored the tools used to create the assets. The problem was
that there was no way to get a license server working for those old tools. Intermediate
assets were stored in a binary opaque format, so no help there. All the assets had to be
created again. Using a text/XML documented intermediate format in the archive would
have saved a lot of time and money.

2.2 Asset Pipeline Design

From the end-user perspective, the asset pipeline should be transparent. In fact,
the ultimate reward for the developer of the asset pipeline occurs when artists and game

Chapter 2 The Game Asset Pipeline 25

designers do not know about the existence of the pipeline and feel there is nothing in
between their creation tools and the game engine. The most important piece of the asset
pipeline from the user's point of view is the game engine editor. It is the tool that
provides the asset integration interface into the game engine. The editor is built on top
of the same engine core technology as the game itself and provides artists, designers,
and engineers the necessary WYSIWYG (What You See Is What You Get) environment
for putting together the assets and addressing design or engine issues rapidly.

Game Engine Editor

There are two possible workflows to consider for the game engine editor:

1. The editor is an advanced viewer, enabling the user to check the assets within the
engine and have control over the camera position, lighting conditions, and which
assets are displayed. In this design, the assets are modified and edited only in the
DCC tools and are exported whenever there is a change.

2. Some of the assets can be edited using the editor. This alternate design creates a
more complex asset pipeline workflow, as the editor is effectively creating source
assets that need to be stored properly for the build process.

The two main concerns when designing a content pipeline are efficiency and
flexibility [17]. Efficiency is required in order for the team building the game to be able
to deliver great content on time, and flexibility is required to be able to adapt the
pipeline to the evolving needs of the team. Unfortunately, these two priorities are
somewhat in opposition to each other, so there isn't a single solution that can satisfy all
projects. Instead, a choice of compromises defining the requirements for the design of
the asset pipeline is needed.

Therefore, the game engine editor will offer a combination of view-only and
editing capabilities based on the specifics of a project. The question is where to draw the
line. Obviously, it is not practical to rewrite all the editing functionality of all the DCC

26 Game Engine Gems

tools in the editor. This would be a major task and change the focus of the development
from creating a game to creating DCC tools, which is a different business all together.
Some have tried to go the other way around, writing the game editor as a plug-in to a
DCC tool. But it does not work either, as this requires writing (for example) an image
editor, audio editor, script editor, AI tool, and level editor inside a 3D package, and it
locks the tool chain to the extension capabilities of the tool SDK. The right compromise
is to write only the editing features in the game editor that are either very specific to the
game itself or provide a very large efficiency improvement over off-the-shelf tools. In
fact, a game team should always be on the lookout for the availability of new tools that
could improve their efficiency. The asset pipeline should be designed to provide enough
flexibility to enable the inclusion of new tools, which can be a delicate process
throughout the course of a project.

The other main point to consider is robustness. The asset pipeline is the backbone
of the project and the team. The project is at a standstill when the pipeline is broken,
and everyone on the team is idling while they wait for the pipeline to be fixed. A solid
design and the proper documentation telling a team how to use and extend the asset
pipeline is the key to its robustness.

Efficiency, flexibility, and robustness are all main goals of the intermediate asset
format. The primary advantage of providing a step between the source and the final
asset format is decoupling engine development and asset creation. If the final assets are
to be created directly while exporting, most changes in the engine would require a
synchronized change in the exporters, which would require re-exporting all the assets.
It is much more efficient to cache the intermediate assets and provide the necessary
changes to the fast path and the final steps of the build than it is to load all the assets
back into the DCC tools and re-export. Doing so may require very expensive and time-
consuming manual operation since most DCC tools are not easily or efficiently driven
from the command line. A well designed intermediate format is not likely to change

Chapter 2 The Game Asset Pipeline 27

much during the course of a project. If correctly cached and the source-asset-
dependency tracked, the final assets can be recreated from the intermediate assets
automatically, mimicking what is already true today for source code (when building the
executable does not need to rebuild all the intermediate object code). Having an
intermediate asset format in an easily readable format provides an easier way for game
engine programmers to debug and experiment.

An advantage of the intermediate asset design over the object code is that it can
provide for cross-platform asset creation. The build process can create final assets for
several platforms from the intermediate assets, favoring a game design philosophy
where source assets are created at very high resolution and the build process takes care
of down-scaling the assets for the various targets. Automatically converting high-
resolution assets is not always possible, but it is much more flexible and efficient than
having to create source assets for each target. An example of this idea used in most
pipelines nowadays is to create high-density polygon models, and then create a normal
map texture associated with a lower density model, where the number of polygons and
texture size can be adapted to the different targets as well as provide a means for level
of detail management. Looking into procedural definitions of assets is a good way to
provide for better automatic adaptability, although the tools available in that space are
not as mature as the traditional DCC methods that are easier for artist to master.

Processing the high-density or higher-level abstraction assets into final assets can
be a complex and resource-intensive process that is better done with an independent
build system that can be optimized taking advantage of multi-core CPUs and number
crunching APIs for the GPU, such as CUDA. More and more tool and middleware
providers have started to take advantage of this technique to provide faster processing.
A good design goal is to progressively move the asset processing into the engine itself,
taking advantage of the ever growing available processing power. This provides for a
sustainable technology path that will convert compute power into more flexible and

28 Game Engine Gems

efficient content creation.

2.3 Push or Pull Pipeline Model

It is really tempting to directly modify an intermediate asset without editing the
source asset and re-exporting. When pressed for time, it seems like the right thing to
do, but most of the time, this is not such a good idea since intermediate assets get
overwritten next time the source is modified and exported.

The ideal solution would be to be able to make changes at any point in the pipeline
and make sure that those changes are reported back in the source data. One way to do
this is to be able to import the intermediate assets back into the DCC tool so the
modifications can be merged back into the source assets. But there is a slew of data in
the source assets that are not reproduced in the intermediate data, such as construction
history and tool widget layout. Additionally, the intermediate asset may have been
processed so that the original form of the data is lost. Therefore, reimporting the
intermediate assets should be done with the idea that changes will be merged into the
source. Unfortunately, unlike source code development where diff and merge tools are
common and allow for concurrent development, detecting and merging changes is not
a common feature of DCC tools. This lack of merge tools in the asset workflow has also
directly impacted the way content versioning systems are used. When dealing with
source code, it is customary for several programmers to make changes to the same
source files and use merging tools to consolidate the changes later. But the lack of such
tools for content forces the use of lock mechanisms, allowing only one person to make
changes to a given source asset at a time. This in turn has forced the source assets to be
split in a large number of files in order to enable concurrent development to take place,
because if all the data was in a single file, only one artist would be able to work on the
content at a time. This is robust, but not very flexible or efficient.

Chapter 2 The Game Asset Pipeline 29

Traditionally, the asset pipeline has been designed as a push model, in which the
user has to create the intermediate assets or final assets by invoking the build process
and then load the result into the editor to see what the final result is. An improvement
to this model is to use the game engine editor to pull the intermediate or final assets
directly from the user interface. An example of this technique is implemented in the
latest Torque 3D asset pipeline [18], where the game engine editor is actively listening
to changes in the intermediate or final assets and automatically updates the content in
the editor upon external changes. Another similar idea is described in The All-
Important Import Pipeline [19], where the game engine editor provides the user with
direct loading of the intermediate assets and automatically invokes the build process to
create the final assets on demand. This enables the user to pull the intermediate assets
directly, rather than having to invoke the build process manually. Those two ideas can
be combined to listen for intermediate asset changes and automatically invoke the build
process. This mechanism can be combined with the fast path loading mechanism to
provide a better interactive WYSIWYG iterative process, while a background process
creates the final assets and automatically replaces the "slow" content with "optimized"
content whenever it is available, transparently to the user.

Those ideas are a step in the right direction, but do not yet address the problem of
editing intermediate assets when the source asset should in fact be modified. The asset
pipeline design illustrated in Figure 2.3 adds a Remote Control line where the user can
select any content in the game engine editor, and provided that the intermediate asset
stores the source asset dependency and associated DCC tool, the source asset editing
tool is automatically launched and provided to the user so it can be changed and re-
exported. Combined with the previous method where the engine is listening to
intermediate asset changes and automatically invoking the build process, this provides
for an efficient, flexible, and robust design of the asset pipeline. The asset pipeline is
viewed as a pull model by the user. Intermediate assets are pulled into the editor, for

30 Game Engine Gems

example, using an asset browser that can provide a quick preview of the assets
categorized by type. The editor can automatically create the manifest and automatically
build the dependency graph for the build by following the dependencies stored in the
intermediate assets. The editor can be used to select one or several assets and invoke an
edit command that will look into the intermediate asset information, or the user
preferences, and invoke the preferred DCC tool to edit the correct source asset. The
editor can also directly invoke the version control system to appropriately check out a
local copy and check back in modified assets. A collection of generic models can be
provided to serve as placeholders that can be inserted in the current game level for assets
to be created later, enabling a task list for the art team to be generated automatically.

Figure 2.3: Game engine editor in control of the asset pipeline.

javascript:PopImage('IMG_4','fig44_01_0_0.jpg','599','511')

Chapter 2 The Game Asset Pipeline 31

2.4 COLLADA, A Standard Intermediate Language

During SIGGRAPH 2004 [20], COLLADA was introduced as the first open Digital
Asset Exchange (or .dae) specification targeting game developers. This initial
specification was provided to the public after a year of work. Exactly a year earlier,
during SIGGRAPH 2003, Sony Computer Entertainment was able to create a working
group composed of key companies in the field to attempt the creation of a common
intermediate language that would provide everything needed to represent the assets for
advanced platforms such as the PlayStation 3. Companies such as Alias, Discreet, and
Softimage that were competitors agreed to leave their weapons home and help with the
design and prototyping. Game developers working at Digital Eclipse, Electronic Arts,
Ubisoft, and Vicarious Visions liked the idea and offered to help.

Several iterations of the specification were completed, and thanks to the first
developers that took the challenge to help resolve many of the issues in real use cases,
the specification finally got to a stable state. In July 2005, the version 1.4 specification
[21] was published as an open standard by the Khronos Group [22], the same group
managing the OpenGL, OpenGL ES, OpenCL, and other well-known graphics standard
specifications. The version 1.4 specification had minor fixes made, providing the 1.4.1
specification which, at the time of this publication, is the most popular implementation
available.

During SIGGRAPH 2008, the version 1.5 version of the COLLADA specification
was introduced [23], adding features from the CAD and GIS worlds such as inverse
kinematics (IK), boundary representations (b-rep), geographic location, and
mathematical representation of constraints using the MathML descriptive language.
The version 1.4.x and 1.5.x specifications are not fully backwards compatible, which is
not an issue since intermediate assets are to be re-exported from the source assets

32 Game Engine Gems

anyway. As of today, the version 1.4.x format is the format supported by most
applications, while version 1.5 support is limited to a few applications, mostly in the
CAD space. Version 1.4.x and 1.5.x are to exist and be maintained in parallel. The new
features introduced in version 1.5 will most likely never find their way into the version
1.4.x specification, though, so more and more tools are likely to provide both
implementations. Loading version 1.4 or 1.5 should be transparent from the user's
perspective anyway, since the document contains information about which version it is
encoded with.

Since COLLADA is an open standard, many companies have been providing
implementations. COLLADA was designed from the start to be a lossless intermediate
language that applications can export and import. It is important for COLLADA to be
a language, and in order to be useful, a language needs to be both spoken and
understood. Also, to be able to validate and test an implementation, it is necessary to
test an application with valid documents to load and then export in order to compare
with the original data set to see if any data was lost during the process. This is the
foundation of the official Khronos COLLADA conformance test that is available to
Khronos Adopter members and provides a validation and certification process in order
to provide the end-user with the assurance of a good quality implementation. The
applications that have passed the test are authorized to display the conformance badge
logo. Setting up an effective independent conformance test is no easy task, so before it
is available and enforced there is some level of incompatibility due to the different
possible human interpretation of the specification, but nothing that cannot be fixed by
the end-user.

Since COLLADA provides for both import and export functionality, and since it
is available for many tools, it has also been popular as an interchange format. The goal
of an interchange format is to enable source assets to be transferred from one DCC tool
to another DCC tool, which is definitely not the purpose of the asset pipeline. It turns

Chapter 2 The Game Asset Pipeline 33

out that COLLADA is quite good as an interchange format, and has been providing for
free, faster, and more accurate conversion of data between tools than some of the
existing solutions.

The COLLADA 1.4.x feature list includes geometry, animation, skinning,
morphing, materials, shaders, cameras, (rigid body) physics, and a transformation
hierarchy. It is built upon the XML (Extensible Markup Language) standard for
encoding documents electronically, so all COLLADA documents can be managed by
any of the commercial or open-source XML tools. COLLADA is defined using the
XML-Schema language [24] so that the COLLADA schema can be used by tools to
validate the document or automatically create APIs in various languages as well as
editing and presentation tools.

COLLADA is extensible in a very structured way. It is mandatory for an
intermediate format to be extensible because the asset pipeline will need to encode data
specific to the game engine or the game itself. The problem with extensions is how to
design them so that the tools that do not recognize the extension can still import the
intermediate assets and be able, when possible, to carry an extension forward.
COLLADA provides several places in the schema where objects can be extended using
the <technique> and <extra> elements associated with other elements in the
specification. Since these elements are not permitted to be placed everywhere in the
document, a COLLADA parser can be designed to recognize those extensions and
either ignore the content, or better, keep the content in a string to pass the information
through. Of course, if the tool recognizes the extension, it should use it! There are two
ways to extend an object: either it is additional information augmenting the definition
of an existing element, or it is an alternative definition of the common definition of the
element. It is up to the developer to decide how to extend. In the case that the extension
is made by substitution, it is a requirement to keep a common definition available that
can be used by other tools as a place holder. For example, an engine using specific

34 Game Engine Gems

geometry definitions, such as metaballs [25], can use the <extra> element to store the
metaball information and keep a standard mesh geometry to store a generic mesh.

Let's have a look of some design principles that are applied to provide the flexibility
necessary to represent data in a common language while still enabling it to be as close
as possible to the specific DCC representation as well as enabling internal
transformations to move it closer to the engine-specific representation. The remainder
of this section is an overview of the COLLADA design principles. For more technically
detailed information, the reader can refer to the COLLADA 1.4 and 1.5 specifications
available on the Khronos website [22] and on the CD accompanying this book. These
specifications and the COLLADA reference book [26] provide more details on the
choices made when designing the standard.

The <source> Element

The <source> elements contain the raw data that is used by the assets. Like every
other element, it has an id attribute that has to be unique in a valid document. A source
contains a one-dimensional array of data of a specific type (ID, name, boolean, floating-
point, or integer). Each element can have a name, which has to be a valid XML string of
characters, but the name information is only used to store information relevant for
humans and never used to reference an object in a document. Floats and integers can
be expressed with any number of digits, providing for any level of accuracy needed.
Despite popular belief, there is absolutely no loss of accuracy representing floating point
numbers using decimal digits, provided that enough digits are used—9 for single
precision and 17 for double precision [27]. The arrays themselves contain a count
attribute that provides for easier memory allocation.

The <technique_common> element provides information about how the source
should be accessed by the other elements defined by the specification. The <technique>
element is where the extensions can be found; an element can carry extensions from

Chapter 2 The Game Asset Pipeline 35

several tools at the same time since each tool provides a profile name for its technique.

Figure 2.4 shows that only one array can be in a <source> element by using a
selector, and it shows that the name attribute is optional (by using dotted lines) and the
id attribute is mandatory. All this information is stored in the XML schema available
on the Khronos website, which can be automatically converted into a drawing or used
to validate a document. Listing 2.1 shows what a source looks like in a document and
that it is quite easy to parse.

Figure 2.4: Definition of the <source> element.

javascript:PopImage('IMG_5','fig48_01_0_0.jpg','765','619')

36 Game Engine Gems

Listing 2.1: A example <source> element and <accessor> element.

<source id="mesh1-geometry-position">

 <float_array id="mesh1-geometry-position-array" count="24">

 2518.1875 4074.512965 0. 2518.1875 0.

 ...

 </float_array>

 <technique_common>

 <accessor source="#mesh1-geometry-position-array"

 count="8" stride="3">

 <param name="X" type="float"/>

 <param name="Y" type="float"/>

 <param name="Z" type="float"/>

 </accessor>

 </technique_common>

</source>

The <accessor> Element

The <accessor> element, shown in Figure 2.5, is where the flexibility is built in.
It enables us to organize the arrays in a format that is closer to either the tool or the
target format, allowing the build process to convert from one to another. This provides
better decoupling from the exporter's point of view since the exporter can export the
data as is and then use the <accessor> element to explain how the data should be
accessed. The count attribute tells how many elements can be accessed through the
<accessor> element and what offset and stride is to be used, typically creating n-tuples
of data. Then it describes one parameter for each element of the n-tuple, giving it a
name and type. An example is shown in Listing 2.1.

If a <param> element is not given a name, that means the corresponding value is
to be ignored. So a source array with 3-tuple values could actually be defining only a 2-
tuple with one padding value. As you can see, it is possible within the same language to

Chapter 2 The Game Asset Pipeline 37

represent a position array in many different ways. The astute reader will notice that the
array element is optional in a <source> element, the reason being that an <accessor>
element can reference an array stored in another <source> element, making it possible
to reuse the same array of data in a different way through several <accessor> elements.

Figure 2.5: Definition of the <accessor> element.

Geometry and the <mesh> Element

Geometry is most often represented by a <mesh> element, although the
<convex_mesh> element and the <spline> element are used for rigid body physics and
2D animation curves, respectively. The COLLADA 1.5 specification adds <brep> to the
list of geometry types. A <mesh> element contains a collection of <lines>,
<linestrips>, <polygons>, <polylist>, <triangles>, <trifans>, and

javascript:PopImage('IMG_6','fig49_01_0_0.jpg','577','508')

38 Game Engine Gems

<tristrips> elements. Most likely, the mesh data found right after the export are
polygons, and these are transformed into triangles closer to the end of the build pipeline.

Figure 2.6: Definition of the <vertices> element.

A <mesh> element contains a mandatory <vertices> element, as shown in Figure
2.6. It has one mandatory input element that references a <source> element, meaning
it uses the <accessor> element in the <source> element to access the data. One very
interesting design feature is that there is no mention of the dimensionality of the vertex
data in COLLADA. In other words, a vertex can have one, two, three, or any number of
dimensions, though most content will be using 3D vertices with X, Y, and Z parameter
names since transformations and positions are limited to 4D homogeneous coordinate
space in the <scene><node> element. The <input> element associates one semantic
with a source. Naturally, the one mandatory input is for the semantic POSITION, which

Chapter 2 The Game Asset Pipeline 39

provides the position (e.g., x, xy, xyz, xyzw) of all the vertices used in the mesh
primitives. A <vertices> element can contain as many <input> elements as necessary
to attach additional data associated with each vertex. For example, it is customary to
have a NORMAL stored per vertex, and it is also common in older systems to have a
COLOR per vertex.

Referring to the <triangles> element in Figure 2.7 as an example of a <mesh>
element sub-object, one can see it is also composed of a set of <input> elements that
store the data associated with each primitive as opposed to each vertex as previously
done in the <vertices> element. One of the <input> elements defines the semantic
VERTEX, which references by index the POSITION defined in the <mesh><vertices>
elements used for each primitive. Obviously, there are three vertices per element in a
triangle list. The <p> element is therefore composed of a P×N set of indexes, where P is
the count of primitives and N is the number of <input> elements defined in the
primitive list.

40 Game Engine Gems

Figure 2.7: Definition of the <triangles> element.

Conclusion

To conclude this overview of the design of an intermediate asset format and the
choices made for the COLLADA standard, it is worth mentioning a few additional high
level concepts.

The most important and difficult design concept to keep in mind when designing
an intermediate asset format is to try to avoid as much as possible a particular
implementation or run-time. In other words, the data should be self-described so it can
be transformed and used with any existing or future run-time. This is a really difficult
design goal, and it's what occupied most of the design meetings in the COLLADA

javascript:PopImage('IMG_8','fig51_01_0_0.jpg','609','632')

Chapter 2 The Game Asset Pipeline 41

working group, as the first draft of a feature is always close to how it will be used by the
run-time or how it is created in the modeler. Making sure that the data is not described
relative to one single usage model is very important, as this ensures the design is not
made obsolete as technology is rapidly evolving or is limiting creativity by imposing a
model that does not fit with yet-to-be-invented usage models. This one design point is
the main difference between COLLADA and most other formats. This difference is
obvious when comparing with Autodesk proprietary FBX interchange technology
which is defined entirely through an API and specific usage model:

"The FBX file format is not documented. Applications use FBX SDK to import scene data
from an FBX file or to export scene data to an FBX file."

— FBX SDK Programmer's Guide, page 6 [28].

Another important principle of design is the categorization of elements into
<library_xx> element types that help with the organization of the data as well as
enable document contents to be separated by type. Important is the distinction between
the data definition and its utilization through instancing. This enables an element to be
used many times without having to repeat its definition, which would cause the size of
the intermediate and final assets to bloat tremendously. COLLADA enables some of the
values of an element to be modified when instanced through the use of <param>
elements, so it is possible to share most of the element definition and save a lot of space
while still enabling source data changes to affect all instances, which comes in handy
during production.

Last but not least, COLLADA takes advantage of URI technology [29], which
enables elements to reference data within other documents for flexible organization,
and it takes advantage of many different storage technologies as well. For instance, an
external reference URI can be an HTTP request that is interpreted by a web server as a

42 Game Engine Gems

database query, or it can be a simple reference to a file on the local storage device. One
main issue that comes with utilizing formats that do not have a good external reference
mechanism is that the intermediate assets all need to be grouped in one single document.
Such a document can grow to an unmanageable size during the course of the project.
Moreover, this means that all the data has to be imported and then exported by all of
the tools used in the asset pipeline, which is a major limiting issue.

2.5 OpenCOLLADA

Given the open nature of COLLADA and its description using standard XML
technology, there exist many commercial and open source options that can be used to
interface with COLLADA documents. Some programming languages such as C# and
Python provide libraries that can directly interface with XML data, providing the
programmer with a Document Object Model (DOM) [30], a memory representation of
the XML hierarchy that can be programmatically accessed. The libraries supplied with
C++, the most used language in game engine development, do not provide this
capability directly. There are several generic libraries that exist for loading and saving
XML content, and there are a few commercial tools that can generate a specific access
API created automatically within the XML schema, enabling the creation of an API
specific to a particular document. A COLLADA DOM is available for C++
programmers, and it automatically generates a core API from the schema in addition
to providing an API to help manage the objects once in memory. A DOM provides
more than a loading and saving interface; it allows for the XML elements to exist in
memory so they can be edited directly without having to create a separate
representation [31].

More recently during SIGGRAPH 2009, NetAllied Systems announced the
availability of OpenCOLLADA [32], which is the first open source implementation to

Chapter 2 The Game Asset Pipeline 43

take advantage of SAX parsing and direct write technology, providing support for both
versions 1.4 and 1.5. The project page is located on the web at
http://www.opencollada.org/. The 3DS Max and Maya plug-ins built on this technology,
as well as the source code for the framework, are available on that web page, and they
are included on the CD accompanying this book for convenience. The reader is
encouraged to check the web page for the latest updates.

SAX (Simple API for XML) is an alternative model to the DOM for parsing XML
documents [33]. The main issue prevalent among most available libraries is that they
load all of the XML data and create an in-memory representation of the data before a
third copy of the data is made to create the object representation used by the program
loading the assets. This problem is very common across all file-loading SDKs regardless
of the format itself, and this issue is making it quite difficult to handle the very large
assets that are becoming more and more common.

The same memory management issue exists when exporting content if a library is
used to create a complete in-memory representation of the data to be exported before
the data is written out. Workstation memory is commonly maxed out when a large
model is loaded in a DCC tool, and as the export is invoked, the computer hangs as all
memory contents are swapped out to make room for yet another copy of the same data.
The same principle can be used when exporting content by writing out the data
directory and avoiding the creation of another copy of the content.

The DAE2Ogre sample code shown in Listing 2.2 (and included on the
accompanying CD) demonstrates how to take advantage of this technology. The idea is
to associate a writer to the reader C++ object, where the reader is the COLLADA SAX
parser, and the writer (in this case) is the Ogre engine-specific format. Since all data is
not available in memory at once, it is not possible to follow references and expect to
find the data in place. So instead, the SAX parser uses a UniqueId type for referencing.

44 Game Engine Gems

Since the data is passed to the writer in the order that it appears in the COLLADA file,
it might not be possible to resolve a reference immediately in the case of forward
referenced data. To solve this problem, it is common to load the file twice. In the first
pass, scene graph, material, and other data are gathered and stored. In the second pass,
geometry, animation, and other data are handled. A SAX parser is a bit more complex
than having all the data in memory, but thanks to the availability OpenCOLLADA open
source framework [34], it is not so difficult. As we have already seen, there is a big
advantage in memory usage for such technology, which is mandatory when assets are
very large, but it also turns into performance gain as we will observe.

Listing 2.1: This is a sample exporter from DAE2OgreOgreWriter.cpp.

OgreWriter::write()

{

 COLLADASaxFWL::Loader loader;

 COLLADAFW::Root root(&loader, this);

 // load and write scene

 mCurrentRun = SCENEGRAPH_RUN;

 root.loadDocument(mInputFile.toNativePath())

 // if there is no visual scene in the COLLADA file,

 // nothing to export here

 if (mVisualScene)

 {

 SceneGraphWriter sceneGraphWriter(this, *mVisualScene,

 mLibrayNodesList);

 sceneGraphWriter.write();

 }

 // load and write geometries

Chapter 2 The Game Asset Pipeline 45

 mCurrentRun = GEOMETRY_RUN;

 root.loadDocument(mInputFile.toNativePath())

}

Tables 2.1 and 2.2 show the duration and memory consumption of an import
operation and an export operation for a large scene in 3DS Max. The tables compare
the open-source OpenCOLLADA technology and the Feeling Software open-source
implementation using the DOM / intermediate memory model library FCollada [35].
Interestingly, the difference in performance between these two COLLADA
implementations is observable regardless of the exact format used for storage, and the
reader is encouraged to do some performance tests on large datasets to improve the
efficiency of his asset pipeline, if needed.

Table 2.1: Import into 3DS Max using OpenCOLLADA for Max and Feeling's ColladaMax.

Boom.dae, 116 MB one mesh OpenCOLLADA ColladaMax

Time used for import 3.8 s 32.5 s

Max memory consumption during import 752 MB 784 MB

Memory consumption after import 444 MB 476 MB

Memory consumption after deleting scene 284 MB 332 MB

Table 2.2: Export from 3DS Max using OpenCOLLADA for Max and Feeling's ColladaMax.

Boom.max, 29 MB one mesh OpenCOLLADA ColladaMax

Time used for export 3.5 s 46.3 s

46 Game Engine Gems

Table 2.2: Export from 3DS Max using OpenCOLLADA for Max and Feeling's ColladaMax.

Boom.max, 29 MB one mesh OpenCOLLADA ColladaMax

Max memory consumption during export 438 MB 623 MB

Memory consumption after export 418 MB 418 MB

2.6 User Content

Modding is a computer game community slang expression that is derived from the
verb "modify", used particularly with regard to creating new or altered content.
Modding was once regarded as a fringe activity, but is now encouraged since it extends
the shelf life of games. Tools are provided to help the gaming community create
additional content requiring the purchase of the game itself, which provides additional
content and revenues at no additional cost for the developers. In fact, strong
communities are developed and provide strong viral marketing, thereby creating
additional stickiness and loyalty to the game developer. Content created by end users is
referred to as user content or as player content.

In order for end-users to create content, the game developer has to provide access
to a simplified or more robust version of the game editor, scripting, and content
pipeline. Since end-users are not likely to have access to expensive DCC tools, it is
important to provide an asset pipeline that can also take advantage of free tools such as
Blender [36], Google SketchUp [37], or XSI Mod Tool [38]. Crymod is an example of a
successful modding community for the Crytek games, which has its own portal on the
web at http://www.crymod.com/. Crytek has partnered with Softimage (now owned by
Autodesk) to offer a specialized version of their COLLADA exporter that provides a
free-to-use professional grade tool with integrated asset pipeline to enhance the

Chapter 2 The Game Asset Pipeline 47

creation of high quality user content. The modified exporter uses specific name
semantics that are recognized by the Crytek engine and used to connect the created
content to their physics and other game-specific entities. It should be noted that this
asset pipeline (Mod Tool to COLLADA to CryEngine) was not used by Crytek to
develop their own game, but was designed specifically for the modding community. But
now that this tool chain has been developed, it has also found internal usage.

More and more user content can be found online in 3D content repositories.
Google 3D Warehouse has been offering the capability for SketchUp users to upload
content to this repository, allowing anyone to search and download the content in the
COLLADA format. With the introduction of SketchUp 7.1 features providing free
import and export of COLLADA, it now is possible for content created in any other
tools to be uploaded into the warehouse to be shared with other users. Since the
warehouse is connected to Google Earth, there are many models of existing buildings
and ever increasing variety of content. Taking advantage of this content in the
prototyping phase of a game is something that should be considered since it is a good
shortcut for developing the gameplay before replacing the content with the real assets
later on. Another user content website has taken a different approach: www.3dvia.com
(a Dassault Systèmes company) enables users to upload the content encoded in many
source formats and automatically run conversion tools on the server so that any
uploaded content is made available in both 3DXML (a Dassault proprietary format) and
COLLADA. At the time of this writing, more than 150,000 users and 15,000 models are
active within this 3D user content community.

Some games go even further in taking advantage of end-user creativity. Spore, a
game from Maxis/Electronic Arts, is a good example in which the user is provided
content creation tools to make their own creatures, vehicles, and buildings to use in the
game. The latest edition of Spore extends the principle to the creation of adventures, or
mini-games. The motto of this type of game is that "the fun is in the tool", and Spore

48 Game Engine Gems

users had a lot of fun, as it is reported that more than three million creatures have been
created already. During SIGGRAPH 2009, Will Wright, creator of the The Sims and
Spore, delivered a keynote [39] in which he announced an additional step in favor of
user content. With the latest patch for Spore, users cannot only create content that
enriches the game for everyone else, but can also export the creature from the game into
the COLLADA format [40]. This small change opens up a world of possibilities for end-
users. The creatures are exported with their skeleton and skin, as well as diffuse,
specular, and bump maps. Already, many end-users have given freedom to their
creatures from the Spore engine and used sophisticated rendering and materials to
embellish their creations, which they then share with others. (For example, see the
"Majestic Dragon" on the accompanying CD.) More sophisticated users are creating
animations that have been posted on YouTube. These advanced users are now
educating other users and trying out all the tools that can import COLLADA models.
In the future, it is likely that short animated features will be created by end-users, but
even more exciting will be the intersection of different gaming communities. It is
possible that there are already Spore creatures fighting inside a CryMod!

The Future

Pandora's box is open, and there is no turning back. User content is growing, and
the need for an easy-to-use asset pipeline for both end-users and professional content
developers alike is growing. 3D is making its way toward becoming main stream media,
just like audio and video in digital form are now commonly produced and consumed
via mainstream media. It is expected that the need for a better asset pipeline is growing
as 3D is becoming more pervasive. In particular, the consumer availability of native 3D
display TVs and monitors [41], advanced shader-capable 3D accelerators in mobile
devices [42], and native hardware-accelerated 3D rendering inside web browsers [43,
44] are also pushing the envelope.

Chapter 2 The Game Asset Pipeline 49

References

[1] Subversion. http://subversion.tigris.org/

[2] Perforce. http://www.perforce.com/

[3] Ben Carter.The Game Asset Pipeline. Charles River Media, 2004.

[4] Microsoft. XNA Game Studio 3.1. 2009. http://msdn.microsoft.com/en-
us/library/bb203887.aspx

[5] Rémi Arnaud. COLLADA for XNA forum discussion and source code. 2008.
https://collada.org/public_forum/viewtopic.php?f=13&t=651and
https://collada.org/public_forum/viewtopic.php?f=13&t=676

[6] W3C. Extensible Markup Language (XML) 1.0, 5th ed. November 26, 2008.
http://www.w3.org/TR/REC-xml/

[7] Sony Computer Entertainment. "COLLADA Refinery".
https://collada.org/mediawiki/index.php/COLLADA_Refinery

[8] "Image file types". http://www.fileinfo.com/filetypes/image

[9] Industrial Light & Magic. OpenEXR. http://www.openexr.com/

[10] Microsoft. "D3DX10 image format". http://msdn.microsoft.com/en-
us/library/ee416748%28VS.85%29.aspx

[11] Microsoft. "DDS image format". http://msdn.microsoft.com/en-
us/library/ee418141%28VS.85%29.aspx

[12] Portable Network Graphics. "An Open, Extensible Image Format with Lossless
Compression". http://www.libpng.org/pub/png/

50 Game Engine Gems

[13] IBM. "Standards and Specs: The Interchange File Format (IFF)". 1985.
http://www.ibm.com/developerworks/power/library/pa-spec16/

[14] Microsoft Windows Bitmap Format.
http://www.fileformat.info/format/bmp/spec/e27073c25463436f8a64fa789c886d9c/view.h
tm

[15] Adobe. "Open Source Generic Image Library (GIL)".
http://opensource.adobe.com/wiki/display/gil/Generic+Image+Library

[16] Rémi Arnaud and Kathleen Maher."COLLADA: Content Development Using an
Open Standard". Game Developer Magazine, May 2007.

[17] Noel Llopis."Optimizing the Content Pipeline". Game Developer Magazine, April
2004.

[18] GarageGames. "Effortless Art Pipeline using COLLADA".
http://www.garagegames.com/products/torque-3d#feature-pipeline

[19] Rod Green."The All-Important Import Pipeline". Game Developer Magazine, April
2009.

[20] Mark Barnes and Rémi Arnaud. "SIGGRAPH 2004 COLLADA Tech Talk". 2004.
http://www.collada.org/public_forum/files/COLLADASiggraphTechTalkWebQuality.pdf

[21] Sony Computer Entertainment. "COLLADA Approved by Khronos Group as Open
Standard". July 29, 2005. http://www.scei.co.jp/corporate/release/pdf/050729e.pdf

[22] The Khronos Group. "COLLADA—3D Asset Exchange Schema".
http://khronos.org/collada/

[23] Khronos Group. "Khronos Releases COLLADA 1.5.0 Specification with New
Automation, Kinematics, and Geospatial Functionality", August 5, 2008.
http://www.khronos.org/news/press/releases/khronos_releases_collada_150_specification_
with_new_automation_kinematics_a/

Chapter 2 The Game Asset Pipeline 51

[24] "The X3C XML Schema". 2001. http://www.w3.org/XML/Schema

[25] "Metaballs". 1999.
http://www.siggraph.org/education/materials/HyperGraph/modeling/metaballs/metaballs.h
tm

[26] Rémi Arnaud and Mark Barnes.COLLADA: Sailing the Gulf of 3D Digital Content
Creation. AK Peters, 2006.

[27] David Goldberg."What Every Computer Scientist Should Know About Floating-Point
Arithmetic". 1991. http://docs.sun.com/source/806-3568/ncg_goldberg.html#812

[28] Autodesk. FBX SDK Programmer's Guide, 2009.
http://images.autodesk.com/adsk/files/fbx_sdk_programmers_guide_2010_2.pdf

[29] W3C. "Uniform Resource Identifier (URI): RFC 3986". 2005.
http://www.ietf.org/rfc/rfc3986.txt

[30] The XML Document Object Model from W3C, 2005. http://www.w3.org/DOM/

[31] COLLADA wiki. "COLLADA DOM Portal".
https://collada.org/mediawiki/index.php/Portal:COLLADA_DOM

[32] Khronos Group. "The Khronos Group Announces Significant COLLADA
Momentum at SIGGRAPH 2009". 2009. http://www.blendernation.com/the-khronos-
group-announces-significant-collada-momentum-at-Siggraph2009/

[33] Wikipedia. "Simple API for XML".
http://en.wikipedia.org/wiki/Simple_API_for_XML

[34] Netallied Systems GmBh. "OpenCOLLADA SDK".
http://www.opencollada.org/faq.html

52 Game Engine Gems

[35] Feeling Software. COLLADA Support. http://www.feelingsoftware.com/en_US/3D-
collada-tools/collada-tools.html

[36] Blender Foundation. Blender. http://www.blender.org/

[37] Google. Google SketchUp. http://sketchup.google.com/

[38] Autodesk. "Autodesk Softimage Mod Tool".
http://usa.autodesk.com/adsk/servlet/pc/item?id=13571257&siteID=123112

[39] Stephen Jacobs."SIGGRAPH: Wright Talks Perception And 'Entertaining The Hive
Mind'". Gamasutra.com, August 6, 2009. http://www.gamasutra.com/php-
bin/news_index.php?story=24733

[40] Dan Moskowitz."How To Export Spore Creatures to Maya".
http://forum.spore.com/jforum/posts/list/37155.page

[41] Marguerite Reardon."3D is coming to a living room near you". CES 2009.
http://ces.cnet.com/8301-19167_1-10142957-100.html

[42] Apple. "OpenGL ES on iPhone OS".
http://developer.apple.com/iphone/library/documentation/3DDrawing/Conceptual/OpenG
LES_ProgrammingGuide/OpenGLESontheiPhone/OpenGLESontheiPhone.html#//apple_r
ef/doc/uid/TP40008793-CH101-SW1

[43] Google. "O3D API". http://code.google.com/apis/o3d/

[44] Khronos Group. "Khronos Details WebGL Initiative to Bring Hardware-Accelerated
3D Graphics to the Internet". http://www.khronos.org/news/press/releases/khronos-webgl-
initiative-hardware-accelerated-3d-graphics-internet/

3

Chapter 3 Volumetric Representation of Virtual Environments

David Williams

Thermite3D

3.1 Introduction

The use of height maps as a mechanism for representing terrains is well established
within computer graphics and gaming. Height maps are a conceptually simple
representation, easy to visualize, and simple to create. Furthermore, there is a large body
of research [19] into the manipulation and rendering of such data. However, there are
also serious limitations that result from this rather simplistic representation, such as the
inability to support caves and overhangs.

In this article, we take the concept of two-dimensional height maps and show how
they can be extended to fully three-dimensional volumes. This is a representation that
naturally and consistently handles the kind of geological structures mentioned
previously. It also allows easy real-time modification, and as such can be used to create
powerful terrain editors or unique game play opportunities.

To this end, the concept of volumetric environments has been successfully
employed in several commercial games to date. The game Worms 3D found it to be an
appropriate way to bring the highly destructible but two-dimensional levels from the

54 Game Engine Gems

earlier Worms games into the third dimension [1]. The Crysis sandbox editor utilized
voxels during terrain modeling, and these were turned into traditional static meshes for
runtime use. And the upcoming game MinerWars uses the concept to allow players to
dig through asteroids in real time.

Throughout this article we will consider the modeling and rendering of complex
terrains to be the main application of the described technology. None the less, we do
believe the technology can have direct application to manmade or otherwise artificial
environments if appropriate game play mechanics and artistic styles are in place. In fact,
the use of voxels for non-terrain environments has been a core research area of our own
experimental Thermite3D game engine [15], upon which this gem is largely based.

Figure 3.1shows a variety of environments that are represented using the
volumetric approach described in this article.

Figure 3.1: Volumetric representations can be used for many different types of environments. In (a)
we see a complex terrain with two primary levels and numerous overhangs [5]. (Image courtesy of
Thomas Schöps.) The Earth in (b) has been cut away to illustrate that the interior is also modeled
[15]. Manmade structures with many different materials (c) can also be represented [15], while (d)

javascript:PopImage('IMG_9','fig62_01_0_0.jpg','823','499')

Chapter 3 Volumetric Representation of Virtual Environments 55

shows a mining ship inside an asteroid, destroying it in real time [8]. (Image courtesy of Keen
Software House.)

[1]Although based on the concepts described in this article, Worms actually uses a
much lower resolution volume than that which we present here but allows for lattice
deformations to achieve their desired artistic style.

3.2 Overview

The core data structure within our system is that of the volume. A volume is a
regular three-dimensional grid of values, each of which is known as a voxel.
Conceptually, this is analogous to the way a bitmap image is a regular two-dimensional
grid of pixels. It is also possible to think of a volume as consisting of a number of two-
dimensional slices stacked on top of each other. This is shown in Figure 3.2(a). We
define the concept of a cell as being a group of eight neighboring voxels that form a cube,
again as illustrated in Figure 3.2(b).

Figure 3.2: (a) This volume consists of an 8×8×8 grid of voxels, though real volumes are
considerably larger. The corner is cut away to show how voxels also model the interior of an
object. (b) Each group of 2×2×2 voxels forms a cell. Note that voxels and volumes are the only
types that are stored explicitly within our system, as edges and cells are implicit constructs that
we build by looking at a voxel's neighbors.

javascript:PopImage('IMG_10','fig63_01_0_0.jpg','751','241')

56 Game Engine Gems

The volume is sized and positioned so as to cover the entire virtual environment
that we wish to represent. Each voxel then encodes a representation of what exists at its
location. The exact data that constitutes a voxel will be discussed shortly, but for now it
can be considered to be a single bit indicating whether that location is solid material or
empty space. Naturally this representation is very easy to modify in real time, because
adding or removing material simply becomes a case of setting the values of the voxels.
This is significantly easier than the complex CSG operations that might be required for
other representations.

While the direct rendering of such volumes is an active research area [12], modern
GPU hardware is highly tuned to the efficient rendering of triangle meshes. Therefore,
although the volumetric representation is very useful for editing and deforming the
environment, it is desirable to transform it into a triangle mesh for the purpose of
visualization.

This process is known as surface extraction, and there are a number of algorithms
that are able to perform it. The Marching Cubes algorithm [7] is one of the earliest and
most widely used—it is popular due to its simplicity, speed of execution, and good
locality of reference. Further developments have addressed ambiguities in the original
algorithm, worked around (now expired) patent issues, or provided adaptive
triangulation.

The Marching Cubes algorithm operates on a single cell at a time. For each corner
of the cell, it classifies the voxel as being either inside or outside of the surface according
to its value. This gives 256 possible combinations which can be grouped into the 18
equivalence classes illustrated in Figure 3.3. Each class represents the set of rotationally
symmetric cases, and some classes include inverses as well. The last three classes in
Figure 3.3 are additions to the original Marching Cubes algorithm that must be used
instead of the inverted triangles in order to avoid holes.

Chapter 3 Volumetric Representation of Virtual Environments 57

Figure 3.3: The set of triangles generated by the Marching Cubes algorithm for each of the 18
possible cell configurations. The numbers indicate how many times each configuration occurs.
Solid circles represent voxels containing solid material, while hollow circles represent voxels
containing empty space. In most cases the inverse configuration generates the same set of
triangles, with the exception of the last three cases (which are inverses of earlier cases but with
different triangles to avoid holes).

A lookup table is used to map the combination of voxels to a particular set of
triangles that locally represents the surface. This process is applied to every cell in the
volume (though cells with identical voxel values generate no triangles and can be
trivially skipped) in order to reconstruct the complete surface. We will not be describing
this process in much detail as it is already well covered by existing literature and
numerous implementations are available online.

javascript:PopImage('IMG_11','fig64_01_0_0.jpg','828','483')

58 Game Engine Gems

3.3 Data Structures

Having developed an understanding of the core principles, it is now possible to
think carefully about the data structures involved in our volumetric representation.

Although each voxel can be represented by a simple inside/outside bit as described
previously, in practice this does not provide much flexibility. Instead, our engine stores
an 8-bit material ID for each voxel. A value of 0 represents empty space, while each of
the 255 non-zero values represents a different material (rock, soil, wood, etc.). Naturally
each of these materials will have a different visual appearance, but it is possible to attach
different physical properties to them as well (perhaps some cannot be destroyed in-
game, for example). This material ID will later be passed down the graphics pipeline for
use in shading calculations.

Additionally, the use of a simple in/out decision when classifying the corners of a
cell tends to lead to a mesh with a very jagged appearance. Depending on the application
(and certainly in the case of terrain) it can be useful to replace this binary volume with
a density field. In this case we assign each voxel a numerical value and we define the
surface of our environment to be the set of all points that have a particular isovalue.
When running the Marching Cubes algorithm on a given cell we classify each corner as
being above or below the isovalue, and use linear interpolation to position any resulting
vertices at the correct location along the edge. [2]

Using a density field rather than a binary volume means more control is afforded
over the shape of the mesh. By modifying the voxel values such that the isovalue is not
exactly halfway between them, the resulting vertex can be pushed closer to one voxel or
the other. The consequence of this is that the resulting mesh tends to be a lot smoother.

Having defined the contents of a voxel we can now create a three dimensional grid
of them to form our volume. A naive approach would be to store a simple three-

Chapter 3 Volumetric Representation of Virtual Environments 59

dimensional array of voxels such that they form a continuous layout in memory.
However, given what we know so far, we can outline some desirable properties that we
would like our volume data structure to exhibit:

• Compression. Using two bytes per voxel (for material ID and density) means that
our volume will occupy 2×width×height×depth bytes of memory using the simple
contiguous approach. This quickly becomes unacceptable for reasonably sized
volumes, and so it is useful to instead use a data structure that exploits the high
spatial coherence that volumes tend to exhibit.

• Fast read access. This is crucial firstly for implementing the surface extraction
algorithm efficiently, and also for implementing picking and collision detection
directly against the volume (rather than the extracted mesh).

• Fast write access. Allowing the real time modification of the volumes is one of the
core requirements of our system. To do this we need to allow fast modification of
voxels. While a structure such as an octree is likely to do very well at satisfying our
compression requirement, it is likely to have a higher modification overhead as
changes may have to be propagated up the tree.

• Fast access to neighbors. Accessing a voxel's neighbors is required when running
the Marching Cubes algorithm (as this operates on a per-cell basis) and also for
computing surface normals directly from the volume data (see Section 3.4). To
achieve this we wish to make our data structure cache-friendly, such that voxels that
are nearby spatially are also likely to be nearby in memory.

There is a large body of research on storage techniques that meet the requirements
above, but we have chosen to use the approach presented by Grimm et al. [1]. Essentially
the volume is broken down into a collection of cubic blocks, and the volume is
represented as a list of reference-counted pointers to these blocks. See Figure 3.4.

60 Game Engine Gems

Figure 3.4: The volume with dimensions 8×8×8 voxels at the top of the figure contains four
different material IDs represented by colors (see figure on accompanying CD). It is split into 8
blocks, each of which have dimensions 4×4×4 voxels. The four top blocks and the two lower
left blocks (one of which is hidden at the back) are homogeneous and so can share copies of
the actual data. The reference counts are indicated at the bottom of the figure. Explicitly storing
block data for only four out of the eight blocks gives us a memory saving of 50% in this overly
simplistic example.

Compression in this system arises because, if two blocks have identical contents,
then we are able to have both entries in the block list pointing to the same block data.
This occurs frequently with blocks that are completely homogeneous. It is of course also
possible that two heterogeneous blocks also happen to be identical, but this is
sufficiently rare that it is not worth the computational overhead involved in checking
for it.

An obvious question is why we bother to store a homogeneous block at all, rather
than simply setting a flag to indicate that it is homogeneous and then storing its value.

javascript:PopImage('IMG_12','fig66_01_0_0.jpg','734','453')

Chapter 3 Volumetric Representation of Virtual Environments 61

This is a perfectly valid approach and does save a little more memory, but it means that
each time a voxel is accessed, we must add some additional logic to determine whether
we should follow a pointer to some block data or just use the homogeneous value.

Our system adds an extra layer of indirection when accessing voxels because we
must first determine in which block a voxel is located, follow the pointer, and then
access the voxel. However, we have also already emphasized the importance of having
fast access to the neighboring voxels, and these are also likely to lie within the same
block as each other. Hence, we have found it useful to introduce the concept of a volume
sampler object which, once pointed at a voxel, will cache the block lookup in order to
speed up access to other voxels in its locality.

When writing to voxels there are a couple of scenarios for which we need to watch
out. First, the block to which we are writing might currently be shared. We must check
the reference count of the block and duplicate the data if necessary. Second, the act of
modifying the data may cause the block to become homogeneous and therefore eligible
for sharing. This is costly to verify as it potentially involves reading and comparing
every voxel in the block. So instead we mark the block as being potentially homogeneous
and provide a garbage collection routine that can be called whenever there is spare
processing time (e.g., the CPU is stalled waiting on some other task).

Lastly, we need to take some care to choose an appropriate block size and there are
several factors that can influence this:

• Smaller blocks have a greater chance of being homogeneous, and therefore of
being shared. On the other hand, this means there will be a greater number of
blocks and so the block list will be longer. The effect this has on memory usage
can be seen in Table 3.1.

• Larger blocks have a smaller proportion of voxels on the faces of the block. This
means the volume sampler is more effective because it is less likely to need to look
at neighboring blocks during voxel neighborhood operations.

62 Game Engine Gems

• Blocks are required to have a side length that is a power of two, in order to allow
addressing operations to be implemented using bit manipulation.

• Blocks should be small enough to fit into the CPU cache.

Table 3.1: The memory required to store our example volumes varies depending on the block size.

Volume Dimensions Uncomp.memory
Block

size
No. of
blocks Comp.memory Comp.ratio

Castle 256×256×256 16 MB 16×16×16 4096 1.66 MB 89.6%

256×256×256 16 MB 32×32×32 512 2.87 MB 82.1%

256×256×256 16 MB 64×64×64 64 4.51 MB 71.9%

Mountain 512×512×256 64 MB 16×16×16 16384 12.98 MB 79.8%

512×512×256 64 MB 32×32×32 2048 21.95 MB 65.8%

512×512×256 64 MB 64×64×64 265 34.51 MB 46.1%

Earth 512×512×512 128 MB 16×16×16 32768 19.27 MB 84.9%

512×512×512 128 MB 32×32×32 4096 39.34 MB 69.3%

512×512×512 128 MB 64×64×64 512 68.51 MB 46.5%

Given the above constraints, Grimm et al. found that a block size of 32×32×32 gave
the best overall performance. Our experimental results in Table 3.1 show that we can
expect about a 70% compression rate in this scenario.

[2]The current version of our engine does not use a density value (only a material
ID) for each voxel. This is because we have been focused upon representing other
structure beyond terrain. However, there is a fork of our codebase [5] that has had this

Chapter 3 Volumetric Representation of Virtual Environments 63

functionality added.

3.4 Surface Extraction

We have already introduced the principles of the Marching Cubes algorithm (and
we suggest the reader consult [7] for a more detailed explanation). In this section we
examine some of the practicalities of implementing the algorithm with respect to our
specific application. These include:

• Allowing the data to be modified in real time, and intelligently regenerating the
surface for the modified part without running the algorithm over the entire volume
again.

• Outputting the resulting surface mesh in a format that is suitable for GPU rendering
or for further processing.

To aid with the above, we break our volume down into adjacent and non-
overlapping cubic regions. This means that every cell is in only one region, but voxels
on the face, edge, or corner of a region also belong to neighboring regions. Each of these
regions is assigned separate vertex and index buffers to hold the mesh data
corresponding to the surface that is contained in that region. Additionally, each region
keeps a dirty flag that indicates whether the triangle data in the buffers matches the
current volume data for that region.

Although this may sound similar to the breaking down into blocks discussed
earlier, it is important to realize that the two concepts of regions and blocks serve entirely
different purposes. Blocks are a data representation used to provide efficient storage and
fast access to the voxels, where as regions are used to restrict the execution of the
Marching Cubes algorithm to the parts of the volume that have changed, and also for
the purpose of visibility culling.

64 Game Engine Gems

After the volume is set to its initial value, the Marching Cubes algorithm is
executed to update the mesh data for each region, and the dirty flag is cleared. Further
attempts to write to the volume result in the regions containing the affected voxels being
marked as dirty. A trivial check is performed to ensure that voxels are not being set to
their current value. Also, remember that most voxels only belong to a single region, but
those on the face, edge, or corner of a region are shared by neighboring regions as well.
Hence, modifying a single voxel can cause multiple dirty flags to be set.

Any dirty region will need to have its mesh regenerated, but this should not happen
immediately because it is an expensive operation, and it is likely that other nearby voxels
(probably in the same region) are also about to be updated as a result of the user's
current action. Regeneration should instead be delayed until all volume modifications
for the current frame are complete.

As with the block size, there are a number of factors to take into account when
choosing an appropriate region size:

• Smaller regions mean more regions, resulting in a higher batch count. For each
region that contains a surface, we generate at least one batch (possibly more than
one batch if we split materials as described in Section 3.5.2). Batch count is one of
the limiting factors in the performance of modern GPUs.

• Smaller regions offer the opportunity for finer-grained occlusion culling (see Section
3.5).

• Smaller regions will typically enclose a modified part of the volume more tightly,
meaning fewer cells have to be processed by the Marching Cubes algorithm.

• Large regions take longer to regenerate.

• Large regions may contain more than 65,536 vertices, which will then require 32-
bit indices. This has some memory overhead, and may not be supported on older
hardware.

Chapter 3 Volumetric Representation of Virtual Environments 65

• Matching the region size to the block size makes it easier to implement the Marching
Cubes algorithm in a cache-friendly manner.

As a guideline, we break our volume down into 8×8×8=512 regions.

In addition to generating the vertex positions, we also require vertex normals to
perform shading calculations. There are several known approaches [17] to computing
these normals from the mesh data but these can suffer from mismatches on the region
boundaries. An alternative is to generate the normals directly from the volume data by
computing the gradient vector.

An approximation of the gradient vector can be found using the central difference
operator [12]. For a voxel at integer position(x, y, z), the central difference gradient can
be found by examining the density value of neighboring voxels as follows:

∇𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =
1
2

 �
𝑓𝑓(𝑥𝑥 + 1, 𝑦𝑦, 𝑧𝑧) − 𝑓𝑓(𝑥𝑥 − 1, 𝑦𝑦, 𝑧𝑧)
𝑓𝑓(𝑥𝑥, 𝑦𝑦 + 1, 𝑧𝑧) − 𝑓𝑓(𝑥𝑥, 𝑦𝑦 − 1, 𝑧𝑧)
𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 + 1) − 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 − 1)

�

If a smother gradient is required then the Sobel operator [12] may be used instead,
but in general the central difference operator will be sufficient for our purpose. The
gradient at an arbitrary point in the volume can be found by interpolating the gradients
from the corners of the corresponding cell. When finding the gradient at a given vertex
position, a one-dimensional interpolation is sufficient because a generated vertex will
always lie on a cell edge.

Output of the Algorithm

For each region, the algorithm generates a single vertex and index buffer pair. In
the case that the region does not contain a surface, the buffers will be empty and need
not be uploaded to the GPU. As mentioned, the indices may be either 16 or 32 bits
depending on the number of vertices, and the vertices contain the following
information:

66 Game Engine Gems

struct Vertex

{

 float position[3];

 float normal[3];

 float materialId;

 float alpha;

}

The material ID is stored as a float for compatibility with Shader Model 3.0
hardware. If you are targeting a more modern GPU, then you may want to use an
integral type for direct use as an index into a texture array (see Section 3.5.1). The alpha
value is used to blend between different materials and will be discussed further in
Section 3.5.2.

Although we have not yet implemented it, one useful optimization when rendering
geometry that is represented by buffers is to adjust the order in which primitives are
rendered in order to effectively utilize the GPU vertex cache. Primitives that are close
together spatially should also be close together in the buffer, such that when rendering
there is an increased likelihood that a cached vertex can be reused rather than the vertex
shader being executed.

Both Nvidia and ATI provide offline tools for this job but we require something
that runs quickly on meshes generated at run time. There are some possible candidates
for this [16], but it remains to be seen if their performance is sufficient for our
application.

Level of Detail

Another important technique for improving the rendering performance of our
system is to implement some kind of level-of-detail (LOD) mechanism such that
regions that are distant from the camera are represented with fewer triangles than those
that are close to it.

Chapter 3 Volumetric Representation of Virtual Environments 67

Within our engine, we implemented LOD directly on the volume, rather than on
the generated triangle surfaces. That is, we build a mip pyramid where each level has
half the width, height, and depth of the level below it. (This is conceptually similar to
texture mipmaps used on graphics cards.) We keep the same number of regions such
that each region also has half the dimensions of its predecessor in the pyramid.

We then run the surface extraction on the appropriate mip level based on the
distance of the region from the camera. As the camera moves around regions can have
their surface regenerated at a different resolution, with the previous surface either being
discarded or cached for possible later use. The threading system that handles this
automatic regeneration in the background is discussed in Section 3.4.3.

To actually generate the mip pyramid it is necessary to be able to derive the value
of a voxel from the eight voxels in the preceding mip level. If we are storing density
components for our voxels then these can simply be averaged. If we are storing a
material ID then it does not make sense to average these (the combination of two
different materials should be one of those two, rather than a third material). In our
system we take the minimum, although the most frequently occurring value (the
statistical mode) could also be chosen.

One drawback of our LOD mechanism is that there tend to be rather large cracks
between adjacent regions using different LOD levels. This is a classic problem in terrain
rendering and has been the focus of significant research for the 2D height map scenario,
but it is vastly more difficult in three dimensions. Lengyel [6] has solved this problem
using a more sophisticated set of equivalence classes that consider both the higher and
lower resolution data when generating triangles.

In addition to the discrete LOD system outlined above, we also have an early
version of a progressive LOD system based on the work of [11] and [18]. It is little more
than a vanilla implementation of the techniques described in these papers, with the

68 Game Engine Gems

exception that we modify the edge collapse heuristic to not collapse edges that lie on
material boundaries or on the boundaries of regions. This eliminates the cracks between
regions but the system is significantly slower than the discrete LOD approach. In
particular, generating a low level-of-detail mesh with the progressive system takes at
least as long as generating a high-resolution mesh, plus the time taken to perform the
simplification. In contrast, our current discrete approach can generate a low LOD in
much less time than the higher LOD.

Threading the Algorithm

Interactive volume editing is crucial for allowing designers to build their 3D worlds,
and within our engine we like to think of it as a game play feature as well. Therefore, it
is essential that the regeneration of a dirty region's surface is performed as quickly as
possible. Efficiently threading the algorithm can go a long way in helping us achieve this
goal.

Our system is illustrated in Figure 3.5 and works as follows. Our main game thread
handles logic and rendering and is the only one to have both read and write access to
the volume. Voxels are modified based on user input and in-game events, and the
region's dirty flag is set. We periodically collect dirty regions and populate a simple
TaskData structure with the region, the required LOD level, and a priority. This priority
is based upon the region's distance from the camera, such that nearby regions will be
regenerated sooner. The task data is added to a prioritized queue of tasks that need to
be processed. If the task is already in the queue then there is no need to add it again, as
the corresponding region is already scheduled for an update.

Chapter 3 Volumetric Representation of Virtual Environments 69

Figure 3.5: A small number of background threads continuously process the queue of regions
that have been modified and regenerate the surface geometry. The main thread retrieves the
results and uploads the geometry to the GPU.

A small number (1–4) of surface extraction threads run in the background and
wait for the priority queue to contain task data to process. When a TaskData instance
is available, a surface extraction thread will remove it from the priority queue and
perform the Marching Cubes algorithm on its specified region. If other mesh processing
tasks such as normal computation (Section 3.4) or splitting by material (Section 3.5.2)
are necessary, then they are also performed by the surface extraction thread. The
resulting vertex and index buffer pair is then assigned to the TaskData instance, which
in turn is added to a queue of completed tasks.

The main thread is the only one that can copy the data to the GPU (at least on

70 Game Engine Gems

current generation hardware), and so this takes responsibility for removing items from
the queue of completed tasks and uploading them to the graphics card. Semaphores are
used to control access to the queues and to provide thread synchronization.

In order to give an indication of how well our threaded surface extractor performs,
we ran each of our three test volumes through the surface extractor using between one
and four threads. In each case, we measured the amount of time actually spent
performing surface extraction. Time spent performing other tasks such as loading the
volume from disk and uploading the meshes into GPU memory is omitted from these
results, which can be seen in Table 3.2.

Table 3.2: Some typical timings for our threaded surface extractor running on a quad-core 2.33 GHz
CPU with 2 GB of memory.

 No. of
threads

Thread 1
time (ms)

Thread 2
time (ms)

Thread 3
time (ms)

Thread 4
time (ms)

Average
time (ms)

Sum of
times
(ms)

No. of
regions

Time per
region
(ms)

Castle

1 1094 - - - 1094 1094 64 17

2 501 589 - - 545 1090 64 17

3 360 439 344 - 381 1143 64 18

4 281 280 265 322 287 1148 64 18

Mountain

1 5292 - - - 5292 5292 256 21

2 2717 2683 - - 2700 5400 256 21

3 1960 1888 1955 - 1912 5736 256 22

4 1438 1340 1314 1518 1402 5610 256 22

Earth
1 9062 - - - 9062 9062 512 18

2 4439 4455 - - 4447 8894 512 17

Chapter 3 Volumetric Representation of Virtual Environments 71

Table 3.2: Some typical timings for our threaded surface extractor running on a quad-core 2.33 GHz
CPU with 2 GB of memory.

 No. of
threads

Thread 1
time (ms)

Thread 2
time (ms)

Thread 3
time (ms)

Thread 4
time (ms)

Average
time (ms)

Sum of
times
(ms)

No. of
regions

Time per
region
(ms)

3 2926 3063 3045 - 3011 9034 512 18

4 2549 2501 2510 2537 2524 10097 512 18

There are several things we can observe from this data. First, we can see that with
several threads running the workload is split fairly evenly among them. A direct result
of this is that the average time spent in a thread decreases as the number of threads
increases. It's not quite a linear relationship, but it is pretty close, as shown by the
"Average time" column. Second, we can see that the time to regenerate a region
(64×64×64 in all these cases) is consistently around 20 ms. This means we would
typically expect to pick up the results of modification 1–2 frames after is has occurred,
and it makes 64×64×64 the largest region size we can practically use for real time
modification. Lastly, we see that the time required to process a complete volume is
typically just a few seconds.

3.5 Rendering

For the purpose of rendering, a bounding volume hierarchy is built with our
region's geometry as the leaves. The bounding box of each piece of leaf geometry is at
most the size of a region, but is usually smaller and it takes relatively little effort to trim
the bounding box to the size of the actual mesh. Each internal node of the hierarchy is
built from the eight nodes below it.

Because of the highly dynamic nature of our environments we do not perform any

72 Game Engine Gems

kind of precomputed visibility calculations. Visibility culling is currently handled
simply by intersecting the view frustum with the bounding volume hierarchy, and
rendering each piece of geometry whose bounding box is at least partly inside. This is a
fast and efficient method for culling large amounts of geometry, but it is not an optimal
solution for scenes with a high depth complexity. For these we are investigating the use
of image-space methods such as Coherent Hierarchal Culling [4], but we do not yet
know how well these will perform.

Lighting and shadowing algorithms are also fully dynamic, as the ability to modify
the volume at any time makes the use of precomputed illumination very difficult.
Normals for lighting are usually provided with the vertices (as discussed in Section
3.4.1), but in some cases it is possible to generate them on the fly. So far, we have applied
only local illumination models, but some of the current research on real time global
illumination may also be applicable. One of the many variants of the popular shadow
mapping algorithm can be used to generate the real-time and dynamic shadows.

The Material System

When a surface is rendered, it is almost always desirable to provide additional
surface detail to the object though the use of texture mapping. One of the key problems
with generating geometry on the fly is that there is no opportunity for an artist to define
the UV parameterization that specifies how these texture maps should be applied.
Instead we need an automatic way of generating texture coordinates.

One of the most useful approaches (demonstrated in real time by Nvidia in their
Cascades demo [3]) is known as triplanar texturing. This is performed in the fragment
shader and uses blend weights derived from the surface normal to interpolate between
three textures projected along the x, y, and z axes. That is, the first texture is sampled
using the (y z) components of the fragment's world-space position and modulated by
the x component of the normal, the second texture is sampled using the (x, z)

Chapter 3 Volumetric Representation of Virtual Environments 73

components of the fragment's world-space position and modulated by the y component
of the normal, and so forth. A fragment's world-space position can be determined by
interpolating it from the vertices, and the components of a normal vector can be made
to sum to one by squaring them. The snippet of Cg fragment shader code in Listing 3.1
demonstrates this process.

Listing 3.1: Triplanar texturing can project textures onto arbitrary geometry. This code receives
textures, a normal, and a world position as input and computes the resulting color. Note that in order
to preserve texture handedness, one of the UV coordinates must be negated whenever the dominant
normal component is -x, +y, or -z. This is particularly important when working with normal maps but is
not shown for simplicity.

// Interpolation means normals may not be unit length

normal = normalize(normal);

// Squaring a unit vector makes the components add to one.

float3 blendWeights = abs(normal * normal);

// For each axis, sample the texture and multiply by the blend weights.

float4 colorMapValueYZ = tex2D(colorMapX, worldPos.yz) * blendWeights.x;

float4 colorMapValueXZ = tex2D(colorMapY, worldPos.xz) * blendWeights.y;

float4 colorMapValueXY = tex2D(colorMapZ, worldPos.xy) * blendWeights.z;

// Combine the results

float4 colorMapValue = colorMapValueXY + colorMapValueYZ +

 colorMapValueXZ;

...

Triplanar texturing works particularly well when applied to terrain, and when
natural textures (rock, grass, etc.) are used. It does not respond particularly well to
manmade textures containing sharp edges or other high frequency detail, as these do

74 Game Engine Gems

not blend well with each other. Variations on this idea are also possible, such as using
six textures instead of three, or using one texture for all four lateral surfaces and
different textures for the top and bottom.

An alternative method is to use the normal directly to lookup into a cube map
texture. This is what was done for the surface of the Earth in Figure 3.1(b). In this case,
the normals which were used for the lookup were generated on the fly by normalizing
a vector from the center of the Earth to the vertex on the surface. This gave better results
than using the normals generated by the methods in Section 3.4.

However, the conceptually simplest way to perform the parameterization is to use
three-dimensional texture coordinates. In this case, the texture coordinates can be
derived directly from the fragment's world-space position. Storing 3D textures on the
GPU quickly becomes impractical because of their high memory requirements, but the
3D texture coordinates can easily be used as inputs into procedural texture generation
routines. Referring again to Figure 3.1(b), the lava in the Earth's core is generated by
using several octaves of Perlin noise running on the GPU [10].

Note that whichever technique is used to generate the texture coordinates, it is still
possible to perform texture transformations by applying an appropriate texture matrix.

Using Multiple Materials

If our voxels include a material ID, then this will have been passed to the GPU as
part of our vertex definition (see Section 3.4.1). One simple way in which we can use
this material ID is to identify the texture (or set of textures for triplanar texturing) that
should be applied. Modern GPUs provide direct support for this through texture arrays,
which allow a single 2D texture to be indexed in an array of textures using the rounded
value of a floating-point input. Older hardware can make use of a texture atlas [14] to
obtain a similar result, but special measures must be taken to avoid filtering artifacts
when textures repeat.

Chapter 3 Volumetric Representation of Virtual Environments 75

Although simple in principle, there are some additional issues to be wary of if you
wish to blend smoothly from one material to another. For example, a triangle on the
boundary of two or more materials will have a different material ID at each of its vertices.
It does not make sense to simply interpolate these material IDs across the face of the
triangle, as this would yield values which did not exist at any of the three vertices.

Within our system we handle this scenario by splitting our input mesh in two. One
of the resulting meshes contains only those triangles that have the same material at each
vertex (we will call these uniform triangles). The other nonuniform triangles are
replaced with new triangles that have a material ID of zero at each vertex. During
shading, we ensure that material zero is drawn as black by either setting the zeroth slot
of our texture atlas to black, or by putting in an explicit check and return at the
beginning of our fragment program.

The second mesh that results from our splitting procedure contains the non-
uniform triangles. Actually, each non-uniform triangle gets duplicated three times [3] to
create three uniform triangles, one for each of the materials in the non-uniform version
(see Figure 3.6). We set the alpha values of the vertices such that one corner is fully
opaque while the other two are fully transparent.

76 Game Engine Gems

Figure 3.6: A single input mesh containing multiple material IDs, represented by different
colors (see figure on accompanying CD), is split into two meshes. In the uniform triangle mesh,
all the components are spatially adjacent and are only split up in the figure to aid visualization.
In the nonuniform triangle mesh, the three parts are drawn on top of each other such that the
alpha values blend correctly.

Rendering is performed by first drawing the uniform triangles with the blending
mode set to replace the current contents of the frame buffer. As well as drawing the
uniform triangles, this also serves to ensure that the background behind the non-
uniform triangles is set to black. The blending mode is then set to additively blend with

Chapter 3 Volumetric Representation of Virtual Environments 77

the existing frame buffer contents, and the mesh containing the non-uniform triangles
is drawn. This results in a smooth transition from one material to another. If we follow
a single triangle such as the one marked X in the figure, we can see that it is drawn first
in black and then once again using each of the materials.

Note that this triangle duplication on material boundaries is currently performed
on the CPU after the meshes have been generated by the Marching Cubes algorithm.
This is done for compatibility with older hardware, but it would be interesting to
investigate whether it could instead be handled by the geometry shader on more
modern GPUs.

It is possible that the material represented by the material IDs differ by more than
just the textures that are applied. In fact, the entire shaders and/or pipeline state might
need to be different for some materials. Figure 3.1(b) is again a good example of this, as
it uses a cube map projection for the surface of the Earth, triplanar texturing for the
rock, and GPU Perlin noise for the magma.

If the mesh corresponding to a single region does need to cater for such a diverse
range of materials, then we split the mesh into several pieces, up to the number of
different materials. For example, if a mesh consists of three different materials, of which
two are based on triplanar texturing and the third is procedurally generated, then we
split the vertices for the third material, but leave the first two materials in the same mesh.
We then render the first mesh using our triplanar texturing shader (choosing among
textures based on the material ID) and then render the second mesh using our
procedural shader. This splitting into materials is in addition to the splitting described
earlier for blending among materials. This means that if a region contains n different
materials, then it may end up in at most 2n pieces after all splitting is complete. However,
this is a worst case scenario, and in practice many region's meshes do not need to be
split at all.

78 Game Engine Gems

Our system benefits here from being built on the Ogre3D graphics engine [9], as
we can simply pass our meshes into Ogre's render queue and the sorting by texture
changes, render state changes, etc., is handled automatically. Most graphics engines will
provide some similar functionality.

[3]Actually there is some room for improvement here as triangles containing two
materials should only be duplicated twice, rather than duplicating all non-uniform
triangles three times. We intend to change this as triangles consisting of three different
materials are quite rare, and so a lot of extra triangles are currently generated to support
this worst-case scenario.

3.6 Physics

Integration of a physics solution (in our case Bullet [2]) into our engine was
relatively straightforward, as for the most part, the geometry generated by the Marching
Cubes algorithm can be treated the same as any other. A physics mesh is constructed
for each region from the vertex and index buffers, and the same bounding volume
hierarchy that we used for view frustum culling can be used for the broad-phase
collision detection.

During simulation, we found that the sheer number of triangles did put the physics
system under a lot of strain, and that an effective LOD system becomes essential for
volumes with dimensions over about 2563 (of course, this varies wildly depending on
the complexity of the volume). Our existing LOD system is not particularly suitable for
this purpose due to the mismatches between LOD level alignment discussed in Section
3.4.2. Simplifying the original high-resolution meshes would likely be an improvement
here.

Dynamically updating the meshes as voxels are removed was a lot more
straightforward than initially anticipated. Simply replacing one mesh with another

Chapter 3 Volumetric Representation of Virtual Environments 79

between simulation time steps seemed to cause the physics engine no problems at all.
Dynamically adding voxels is a lot more complex because an object can suddenly find
itself penetrating a surface that it was previously not close to. More work is required to
decide how or if this scenario should best be handled.

One additional point worth noting is that while all collision detection is currently
performed against the surface meshes, there is potential for doing it directly against the
voxel volume. Hit testing and picking is currently performed in this way, and testing
whether a point is inside an object or not becomes a simple case of checking the value
of the voxel at that location.

3.7 The Future

Most of the techniques described in this chapter have been implemented in our
experimental Thermite3D game engine [15], with the exception of the "density voxels"
which are available in the Forever War spin-off project [5]. The techniques are
appropriate for integration into other game engines running on current generation
hardware. However, our project is currently at an early stage, and there are a number
of features we would like to add in the near future.

First, we would like to increase the size of the volumes that we can load and render.
This will require further work on our LOD system, particularly with the aim of
determining how the progressive LOD approach compares to the current discrete
system. Second, we would like to investigate the use of streaming as a mechanism for
reducing the amount of data held in memory at a time. Our current block volume
structure is likely to provide a strong basis for this as blocks can be stored in a
compressed format on disk, and loaded into memory on demand. We may also want to
save blocks back to disk so that changes made to the environment can be persistent.

80 Game Engine Gems

In addition, we need to give some thought to the issue of content creation. At
present we have tools to convert existing height maps into volumetric representations
so they can be destroyed in real time, and we also have a tool that will convert a triangle
mesh from a standard 3D modeling package into a volume (this was used to create the
castle in Figure 3.1(c), for example). But there is a lot of potential for generating
environments procedurally, such as a terrain built from Perlin noise with an
underground network of caves built using Voronoi cells.

It is also important to consider how the use of volumetric environments can be
used as a game play element. The ability to destroy parts of the environment in response
to explosions is an obvious example, but the representation also lends itself naturally to
allowing parts of the environment to be slowly eroded away, perhaps in response to fire
or acid. If a game scenario required it, it would also be possible to slowly heal geometry
back to its initial state. Lastly, the development of a powerful and intuitive interface for
editing could also help its adoption as a game-play device.

Finally, if we look beyond our own project, it is worth noting a significant amount
of research on other methods of rendering these kinds of environments. id software is
probably the most high profile of these with talk of a "Sparse Voxel Octree" being used
to represent geometry in their id Tech 6 engine [13]. As GPUs become increasingly
general purpose, it is becoming practical to implement other volume rendering
approaches such as ray casting or point splatting. For now, the surface extraction
approach described in this chapter is the only approach to have seen use in real games,
but it will be interesting to see where the future leads.

Acknowledgements

I would like to thank Matthew Williams and Jaz Wilson for their contributions to
the Thermite 3D Engine, and the developers of Ogre3D and Bullet for their valuable
libraries. Thomas Schöps and Marek Rosa granted permission to use their images in

Chapter 3 Volumetric Representation of Virtual Environments 81

this gem, while Tobias Tropper provided useful feedback on early versions of the gem.

References

[1] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Meister Eduard Gröller."A
Refined Data Addressing and Processing Scheme to Accelerate Volume Raycasting".
Computers & Graphics, Volume 28, Number 5 (October 2004), pp. 719–729.
http://www.cg.tuwien.ac.at/research/publications/2004/grimm-2004-arefined/

[2] Erwin Coumans.Bullet Physics Library. http://bulletphysics.com/

[3] Ryan Geiss and Michael Thompson."NVIDIA Demo Team Secrets—Cascades", Game
Developers Conference 2007.
http://developer.download.nvidia.com/presentations/2007/gdc/CascadesDemoSecrets.zip

[4] Oliver Mattausch, Jiří Bittner, and Michael Wimmer."CHC++: Coherent Hierarchical
Culling Revisited". Computer Graphics Forum (Proceedings Eurographics 2008),
Volume 27, Number 2 (April 2008), pp. 221–230.
http://www.cg.tuwien.ac.at/research/publications/2008/MATTAUSCH-2008-CHC/

[5] Thomas Schöps and Oliver Schneider.Forever War. http://foreverwar.sourceforge.net/

[6] Eric Lengyel."Voxel-Based Terrain for Real-Time Virtual Simulations". Ph.D. diss.,
University of California, Davis, 2010.

[7] William E. Lorensen and Harvey E. Cline."Marching cubes: A high resolution 3D
surface construction algorithm". ACM SIGGRAPH Computer Graphics, Volume 21,
Number 4 (July 1987).

[8] Keen Software House. Miner Wars. http://www.minerwars.com

[9] Steve Streeting. Object-Oriented Graphics Rendering Engine. http://www.ogre3d.org

82 Game Engine Gems

[10] Simon Green."Implementing Improved Perlin Noise". GPU Gems 2, Addison-
Wesley, 2005. http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html

[11] Stan Melax."A Simple, Fast, and Effective Polygon Reduction Algorithm". Game
Developer Magazine, November 1998. http://www.melax.com/polychop

[12] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and Daniel
Weiskopf.Real-Time Volume Graphics. AK Peters, 2006. http://www.real-time-volume-
graphics.org/

[13] Jon Olick."Current Generation Parallelism In Games". Beyond Programmable
Shading, Siggraph 2008. http://s08.idav.ucdavis.edu/olick-current-and-next-generation-
parallelism-in-games.pdf

[14] Nvidia. "Improve Batching Using Texture Atlases". July 2004.
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_
Whitepaper.pdf

[15] David Williams.Thermite3D Game Engine. http://www.thermite3d.org/

[16] Gang Lin, and Thomas P.-Y. Yu,"An Improved Vertex Caching Scheme for 3D Mesh
Rendering". IEEE Transactions on Visualization and Computer Graphics, Volume 12,
Number 4 (July 2006). http://www.ecse.rpi.edu/~lin/K-Cache-Reorder/

[17] Shuangshuang Jin, Robert R. Lewis, and David West."A comparison of algorithms
for vertex normal computation". The Visual Computer, Volume 21, Numbers 1–2
(February 2005), pp. 71–82.
http://www.tricity.wsu.edu/cs/boblewis/pdfs/2003_vertnorm_tvc.pdf

[18] Tom Forsyth."Comparison of VIPM Methods". Game Programming Gems 2, Charles
River Media, 2001.
http://home.comcast.net/~tom_forsyth/papers/gem_vipm_webversion.html

[19] "Virtual Terrain Project". http://www.vterrain.org/

4

Chapter 4 High-Level Pathfinding

Daniel Higgin

Lunchtime Studios, LLC

Overview

Today's gamers demand spectacular pathfinding. If it isn't amazing, don't ship it.
Otherwise, prepare for an assault of angry gamers mobbing the developer's studios,
torches ablaze and pitchforks in hand. Simply put, pathfinding is one of the most
important pieces of technology to get right in a game, especially in the real-time strategy
genre. Besides the pressure of perfection, pathfinding programmers need a thick skin.
These brave souls should assume that gamers don't compliment path-finding, they roast
it. Gamers latch on to almost any game or AI imperfection and blame it on the
pathfinding system. In truth, they used to be right. The old generation of pathfinding
engines resulted in actors looking like knuckleheads as they found less than optimal
paths and often failed to find a valid path altogether when one existed.

Apart from the impact pathfinding has on gameplay, it also has an enormous effect
on performance. Game lag should never be the result of pathfinding, but sadly, it
happens all too often. What gamers don't realize is that behind the scenes, poor
pathfinding results in a restricted game world. These restrictions keep gamers from
experiencing a game designer's true vision, which is never a good thing. Certainly not
all genres need fast pathfinding, but for those with large worlds or many actors,

84 Game Engine Gems

pathfinding must be accurate and optimized. Like many of the cleverly designed
usability features of modern software, pathfinding that goes unnoticed by the user is a
success.

There are many options for optimizing pathfinding. We can optimize our code,
time-slice pathfinding calculations, reuse paths, group paths, and even avoid pathing all
together when we can get away with it. One optimization however, really stands out,
and that is to reduce the search space a pathfinder works with. High-level pathfinding
is a great technique to achieve this reduced search space, and is the focus of this gem.
Besides dramatically improving performance, high-level pathfinding offers us the
opportunity to perfect pathfinding. Once pathfinding performance is no longer an issue,
we can force our pathfinding engines to never give up, and always find a path when a
valid one exists.

4.1 Terms

Before we dive into how high-level pathfinding works, let's review some terms.

• Actor. Any significant object within a game's world that serves a purpose beyond
ambience.

• RTS. Short for "real-time strategy", a genre of strategy games that focuses on unit
production, resource management, and for some, combat. Its typically high actor
count and large world area strain traditional pathing algorithms, which are designed
for smaller datasets.

• Tile. A square area of a world (such as 1 × 1 meters) that holds properties for that
given world space. In a typical RTS game, tiles are laid out in a grid pattern and can
be located with integer coordinates.

• Path. A sequence of points through which an actor can legally move to get from one
location to another.

Chapter 4 High-Level Pathfinding 85

• Detailed path. Exact tiles an actor will navigate to get to their destination. This path
avoids all obstacles.

• Path rule. A game rule that dictates a movement restriction for a given actor type,
such as whales not being allowed on land. These rules determine what tile types are
"legal" for an actor's movement.

• Path region. A collection of contiguous tiles that share the same path rules.

• Beacon point. The path region's point closest to the region's center of mass.

• Fuzzy pathing. Fuzzy pathing is another way of saying high-level pathing. It
indicates that a non-detailed path is being created that is legal, but without many of
the movement details that make paths look good and avoid all obstacles. Another
way to think of a fuzzy path is that it indicates there is a guaranteed way to the
destination via this route, but it may have some unknown and navigable obstacles
along the way.

• Terrain analysis. A term for computing knowledge of a game world [3]. It's data
we compute about a world and organize in a way so that, from within a game, the
pathfinder can approximate a human-like awareness of the environment. Examples
include computing ocean tiles and shapes, recognition of a bay, a river, marshlands,
forests, beaches, etc.

4.2 Start Your Engines

For the best understanding of this article, knowledge of pathfinding isn't essential,
but is strongly recommended. What is contained within this article is a skeleton view of
what's required in a high-level pathfinding system. While reading, it's critical to
remember that even with brilliant designers and genius programmers, there will be
frequent revisions to the path rules to handle special cases until pathfinding is perfect
and feature freeze occurs.

Truly, the best way to build a high-level pathfinding system is to make it as generic

86 Game Engine Gems

as possible with known and isolated customization points. This is a perfect time to
either buy, or dust off those design pattern books. Be ready to utilize patterns such as
factories, strategies, prototypes, and policies. Isolate the customization points, because
those will be frequently modified, and we don't want tons of special case code floating
around the engine.

4.3 Why High-Level Pathfinding?

Imagine we have a world that contains over a million tiles. In this world, there is a
battle raging in the North at the walls of an enemy city as seen in Figure 4.1. Our heroic
army is trying to take the walled in city by force, but needs reinforcements. Let's help
our army by moving a siege ram, a man-at-arms, and naval galley north to the battle.

Figure 4.1: A world map, with tile markings.

javascript:PopImage('IMG_16','fig85_01_0_0.jpg','569','569')

Chapter 4 High-Level Pathfinding 87

A million or more tiles is a great distance to navigate, especially with obstacles such
as forests and towering enemy walls. Odds are that during a battle, CPUs are busy with
animations, projectiles, physics, AI, and graphics. The effort of calculating detailed
paths for an army across a huge map will adversely affect game performance; however,
if our world was only a few thousand tiles, we could achieve this without any noticeable
impact on the frame rate.

To accomplish this we need to reduce the search space to navigate our maps. High-
level pathfinding achieves this through a several-phase process. First, our preprocess
phase must identify each tile in the world as being of one, and only one, path type. With
those types defined, we need to analyze the world and build up a knowledge base of
terrain information before the game begins, which we accomplish by performing
terrain analysis [3]. The second phase involves using the data stored in our world
knowledge base to find a fuzzy, non-detailed path between two points using an
algorithm such as A*. Our final phase involves the actor refining the fuzzy path to plan
the exact route to their destination.

Sound like more than a few days of work? It should. Implementing high-level
pathfinding can consume a significant amount of development time, but is well worth
the effort.

4.4 Preprocess Phase

The preprocessing phase has two main parts—design and terrain analysis. In the
design portion of this phase, we focus on identifying unique path tile types. This step is
done without any coding, and it relies on full knowledge of actors and their movement
rules. Designers should be prepared to define every actor rule such as prohibiting
submarines from approaching shore lines, or declaring that only ninjas can climb walls.
A rule only needs to be added only if it has a significant affect on an actor. For example,

88 Game Engine Gems

if movement on grass and movement on sand are the same for all actors in terms of
pathfinding, then there is no need to define them as different region types. If, however,
sand is illegal for a unicycle, then it needs to be its own path type.

The last part of this phase is terrain analysis, and this is where the creation of path
regions occur. For an in-depth explanation of terrain analysis and it's many uses, it's
strongly recommended that "Terrain Analysis in an RTS—The Hidden Giant" [3] is
read before beginning any actual coding.

Design Time

Prior to coding, it's crucial to categorize each tile into a unique pathfinding type.
For example, a water tile is rarely just a water tile. A given water tile may be best
classified as being part of a river, bay, deep ocean, or coral reef. To identify these regions,
we determine if all actors have the same restriction for traversing or avoiding the tile. If
any actor is designed with a constraint that modifies their passage across the tile, we
make a new path type. Perhaps it's a difference in terrain type, or maybe there's a special
rule for large actors. When this occurs, we may turn the special case rule into a unique
type.

Let's see a few examples. In our effort to reinforce the army to the North, each of our
soldiers has very different pathfinding restrictions. Our rules are as follows:

• Siege Ram. Big and bulky, this actor must move on roads or grasslands. What makes
this actor unique is that while pathfinding, it can move through enemy walls and
gates if it doesn't mind attacking them first. Siege rams also cannot cross rivers
without using a bridge.

• Man-At-Arms. Our plated soldier can be in group formations or act independently
as a scout. Unbound by the restrictions of using a horse, when alone, our knight can
move through the woods if needed.

Chapter 4 High-Level Pathfinding 89

• Galley. This warship is large, and used primarily in ship to ship combat or to
bombard the coast from a distance. River warfare is out of the question. Even
approaching near to the coast could risk it running aground and is forbidden. As a
result, it must stay in deep water at all times.

Already, we can see a need for different types of water and recognize that we need
to separate walls, gates, forests, and bridges into separate types. It's essential to go
through each type of actor that can pathfind and determine its movement rules. It's a
good idea to establish an enumeration of path tile types and a function for computing
them, as shown in Listing 4.1.

Listing 4.1: This is a function used to determine the path type of a tile. The order of rules here is very
important. This function is a special case and will be frequently modified during development.

namespace PathTileType

{

 typedef unsigned long Type;

 enum

 {

 Unknown = 0,

 Grass = 1,

 DeepWater = 2,

 Forest = 3,

 Wall = 4,

 Gate = 5,

 ShoreLine = 6,

 Shallows = 7,

 Bridge = 8

 };

 // Helper used to determine a tile's path type.

90 Game Engine Gems

 extern Type ComputeTileType(const Tile *inTile);

}

// This function takes a tile and determines its path type.

// Every tile must be determined to be of one and ONLY one type.

PathTypeType::Type PathTypeType::ComputeTileType(const Tile *inTile)

{

 // Assume asserts for tile validity, etc...

 // Is this a type of water?

 if (inTile->IsWater())

 {

 // Is there a bridge here?

 if (inTile->HasActorTypeOnTile(kActorTypeBridge))

 return PathTileType::Bridge;

 // Is it shallow water?

 if (inTile->GetWaterDepth() <= 1.0)

 return PathTileType::Shallows;

 // Close to shore?

 if (inTile->GetDistanceToShore() <= 2.0)

 return PathTileType::ShoreLine;

 // Must be a deep water tile.

 return PathTileType::DeepWater;

 }

 if (inTile->HasActorTypeOnTile(kActorTypeTree))

 return PathTileType::Forest;

 if (inTile->HasActorTypeOnTile(kActorTypeWall))

 return PathTileType::Wall;

Chapter 4 High-Level Pathfinding 91

 if (inTile->HasActorTypeOnTile(kActorTypeGate))

 return PathTileType::Gate;

 return PathTileType::Grass;

}

Notice how in Listing 4.1 the order is significant. If a tile has water on it, it's more
important to know if it has a bridge on it than whether it's over shallow water. If the
type of water under a bridge also mattered, the type could be BridgeShoreLine, or
BridgeDeepWater. It's likely there are many permutations of types, but in the end,
ensure each tile belongs to only one path tile type.

It's easy to get carried away in this phase and unnecessarily define every possible
variation of a similar region, so be careful. Examine the differences between the
following two cases. If there are two types of bridges in the world, a draw bridge and a
foot bridge, should we create unique path types for them? A draw bridge allows large
ships to pass beneath them, while a foot bridge does not. An argument could be made
either way, but this situation isn't so unique that it needs to be handled with a new type.
It's simple enough for a ship to ask a region what type of bridge it contains.

To find an example where a unique rule is warranted, let's examine the case of
ladders in the RTS game, Rise & Fall: Civilizations at War. Ladders are mobile, meaning
they could be packed up and moved to other sections of wall. Ladders also have a strict
requirement of allowing only humans. While horses could charge up ramps to fight on
top of walls, ladders were strictly horse-free zones. Path regions also presented us with
the opportunity to solve the issue of positioning actors directly in front of a ladder prior
to climbing. We solved this by making the tile in front of the ladder's base a one tile
large path region. This ensured an actor would walk to the tile in front of the ladder
before climbing. Ladders, therefore, qualified as not only a unique area, but also created

92 Game Engine Gems

the opportunity for a separate path region that we used to handle actor positioning for
ladder climbing.

Terrain Analysis

Once we have our design established, we use it in the next portion of the preprocess
phase, terrain analysis. Knowledge of a game world is incredibly useful to AI
programmers, and terrain analysis is vital to gaining it. It is a collection of algorithms
that execute before a game begins and are refined at run time in order to first analyze,
then organize, game world data. Programmers then use it creatively to imply that actors
have a human-like understanding of their world.

Path regions are created by iterating through each tile, categorizing, and then
clumping contiguous tile types together. These clumps are then labeled by their path
types and defined as a path region. It is then necessary to provide an indicator of a
region's location in the world. To accomplish this, we position a beacon point at the
center of mass of the path region. Remember that regions aren't necessarily nice and
neat rows of tiles. A connected forest of trees could spiral out like a spider web full of
sparse, but connected trees. Thus, the true center of mass for the region could be a point
inside another region. In that case the beacon point is positioned by finding the closest
point inside our region to that center.

These regions, or clumps of contiguous tiles, are easy for us to visualize and
understand, but there is a problem: if a path region is too large, using algorithms like
A* will have difficulty producing good high-level paths. Consider a path region
comprising an ocean that surrounds an island. When we want to move a ship from one
side of the world to the other around the island, we have to communicate to the engine
that just because it's the same ocean doesn't mean it's a simple path. If the ocean was
one region, there would be nothing to navigate. The low-level pathfinder would think
its start and end destination was the same region, so it must be a simple path. Not so.

Chapter 4 High-Level Pathfinding 93

We would want there to be regions that took our ship around the island, regardless of
it being the same ocean. The key to doing this is to divide up the regions using a world
grid, which effectively normalizes the size of all regions.

Using our path region clumps, some of which are gigantic and some of which are
small, we lay a grid over the world. Large and small regions alike get subdivided by this
grid, making many of the regions split at least once. Choosing the size of the grid takes
some experimentation, most likely, after the entire high-level path-finding system is
complete. For the sake of starting somewhere, let's use a map that is 1000 × 1000 tiles,
and a grid resolution that is 10 × 10 Given a flat map of just grass, we would have many
grass regions that contained 100 tiles each. That isn't an aggressive size, and it's likely a
million tile map would have larger regions, but it's a starting point. Be certain to play
with the resolution numbers, adjusting them up and down depending on map size,
complexity, or performance. Also, it's important to store the world grid position (black
lined squares in Figure 4.2) within the path region as we'll find multiple uses for it later,
such as during the fuzzy pathing phase or when recomputing path areas due to world
changes.

Why don't we just make the resolution such that we have huge regions? If the
number is too large, as we saw from the ocean and island example, we'll miss some
navigation improvements and performance gains. The key to this system is the one-two
punch of first high-level (fuzzy) paths followed by detailed level paths. Since detailed
paths are more computationally expensive in large search spaces, giant regions wouldn't
save us as much CPU time during the detailed pathfinding phase. Conversely, if the grid
forces tiny regions, then performance gains are reduced be cause the search space again
grows. There is always a sweet spot—don't discount the importance of finding it.

94 Game Engine Gems

Figure 4.2: Path regions with a world grid overlay and IDs for each path region. Notice how
the world grid boxes contain multiple regions inside them, and that regions like the ocean are
divided up by the world grid into many separate regions.

The grid, as illustrated in Figure 4.2, shows how we can predict, within some small
error amount, the distance between regions. No region spans half the map. We know
the largest size, and we can make cost estimates in pathfinding based on these
assumptions. If one region was gigantic and the others were small, it would be difficult
to know if one was traversing a small portion of the gigantic region or traversing the
longest possible distance across it. Keeping path regions sliced into a controlled grid
size keeps the unknown traversal cost so low that we can predict the approximate path
planning performance impact.

Adjacent Regions

In order to use all the path regions (as shown in Figure 4.2) to navigate the map,
we first need to tie them together in a graph. This is done by iterating through every tile,

javascript:PopImage('IMG_17','fig91_01_0_0.jpg','390','518')

Chapter 4 High-Level Pathfinding 95

finding the tile's region, and finding the regions left, right, up, and down from the tile.
If the region on any of the sides does not match the tile's region, we create an adjacency
structure for both regions. That's fairly straightforward for left, right, up, and down, but
we also need to handle diagonal connections.

Diagonals require a special adjacency rule because movement through them
actually traverses neighboring tiles. Notice in Figure 4.3 that to move from region 2 to
region 1, most actors would have some portion of them travel through 3 and 4 on the
way. If region 3 or 4 is invalid for the actor, this diagonal must be off limits. Since we
don't know what actors are going to use the connection, we need to store them
somewhere and check them during high-level pathing.

Figure 4.3: Example of diagonal connections between regions.

We don't necessarily always want to store diagonal connections. We only want to
store them if the only connection between two adjacent regions is through a diagonal
move. Since regions could be oddly shaped with multiple connection points to adjacent
regions, there may be more than one diagonal connection point from region 2 to region
1. We need to store each instance of the diagonal connections so that pathfinding can
check the boundary regions to see if the move is legal.

Do not keep any diagonal connections between two regions if a non-diagonal
connection is available. Diagonal connections are only a last-case connection situation
since they factor in surrounding regions during the pathing of actors. Again, even if

96 Game Engine Gems

diagonal connections have been found between regions 2 and 1, then a non-diagonal
connection between regions 2 and 1 is found, the diagonal connection information
must be thrown out.

Each region should contain some structure per adjacency such as that shown in
Listing 4.2.

Listing 4.2: Regions should contain a list of adjacent regions with data indicating if the connection
is a diagonal, and which regions border the diagonal connection.

struct PathRegionConnection

{

 PathRegionConnection(PathRegionID inToRegion,

 PathRegionID inDiagonalFirst = kInvalidRegionID,

 PathRegionID inDiagonalSecond = kInvalidRegionID);

 PathRegionID mToRegion;

 PathRegionID mDiagonalA; // kInvalidRegionID if no diagonal exists

 PathRegionID mDiagonalB; // kInvalidRegionID if no diagonal exists

};

A World of Change

What about a dynamic world? What happens when gates fall or walls are built? We
must incorporate these changes into our world's knowledge. There is no avoiding this
during run time. To reduce the impact of this reanalysis, we can leverage our world grid.
Given a change in the world that should affect pathfinding, we find the world grid in
which the change occurred and queue it for reanalysis. Soon after, we run through all
our queued world grid regions, destroy all the old path regions within these square areas,
and then recompute them. When a world grid is queued for reprocessing, it's good to
wait for a few moments before reprocessing since it's likely one wall built in an area will
be followed soon after by another. Waiting to reprocess sections is fine when buildings

Chapter 4 High-Level Pathfinding 97

are constructed, but not when buildings are destroyed. Imagine a ram knocks down a
wall, a king then issues a charge into the city, and the men begin walking in the wrong
direction because they don't realize the wall no longer blocks their entry. Not good!

With all our path regions subdivided using a grid, as shown in Figure 4.2, and all
adjacent region connections (including diagonals) having been identified, we can begin
moving our actors north to the battle during our fuzzy pathing phase.

4.5 Fuzzy Pathing Phase

We have an actor, a starting point, and a destination point, and now it's time to
path! First, we need to determine the path region of our actor and that of the destination.
From there, we hand this data over to a high-level (or fuzzy) pathfinding engine that
computes a list of connected beacon points indicating the regions an actor must traverse
to get to his destination. Luckily, this is not difficult if you're familiar with A*.

Fuzzy pathfinding engines work just like low-level pathfinding engines. In the case
of A*, the algorithm finds the lowest cost route from a starting point to an ending point
by examining adjacent regions, computing the costs for traversal, and flooding outward
until a path is found. There are a few important differences, but overall, much of the A*
engine design can use the same storage mechanisms [1], design [2], and optimizations
[4] used in low-level A* engines. The big difference is that a path region's "neighbors"
are not at the guaranteed left, right, up, down, and diagonal positions of a path region.
Instead, they are all of a path region's adjacent neighbors. Think of regions as being
nodes in a graph since a given region could contain ten regions on its right, and only
one on its left.

Listing 4.3 demonstrates an A* engine update, and we see the adjacency iteration
loop used in the A* machine [1]. We get the path region from the current A* node,

98 Game Engine Gems

iterate over its adjacent regions, and if RegionIsOpen() method returns true, then we
know our actor can legally move from the current region into the adjacent region. If the
move is indeed legal, then the CheckNeighbor() method computes the costs of moving
from one region to the other and places that node on the appropriate A* list.

Listing 4.3: Primary adjacency update loop for fuzzy pathing A* engine.

// Given our current node, get the path region from our A* node

theCurRegion = mCurrentAStarNode->GetPathRegion();

// Shown as foreach, insert your favorite loop iteration technique

foreach (PathRegion *theAdjacent, theCurRegion->GetAdjacents())

{

 // make sure this is not the same parent node.

 if (RegionIsOpen(theAdjacent, theCurRegion))

 CheckNeighbor(mCurrentAStarNode, theAdjacent);

}

Paths generated by A* are controlled primarily from two methods. First, the
RegionIsOpen() method is used to determine if it's legal to traverse from one region
to another. It handles not only the detection of path type validity, but checks diagonal
movement as well. Lastly, the GetRegionCost() method indicates the cost of traversing
from one region to another. This cost method has an enormous impact on path
aesthetics and performance.

RegionIsOpen

Determining if an actor can move in a region goes back to our original design of
path types. If a region is a forest, only our man-at-arms can move within it. If the region
is an enemy wall, only our siege ram is valid. And as for our galley, it can only move in
deep water.

Chapter 4 High-Level Pathfinding 99

The RegionIsOpen() method shown in Listing 4.4 not only needs to check if the
new region is valid for the pathing actor, but whether, in the case of a diagonal move,
the corners of the diagonal leap (Figure 4.3) are also valid.

Listing 4.4: This method determines whether an actor can move between regions.

bool AStarGraph::RegionIsOpen(PathRegion *inTo, PathRegion *inFrom)

{

 // If our actor can't walk in the new region, return false

 // this takes into account things such as...

 // The tile type is a gate, but it's locked. If that is the case,

 // it returns false.

 if (!mActor->CanMoveOnType(inToRegion->GetType())

 {

 return false;

 }

 // Ask our current region to get the correct diagonals.

 // Note: there may be 2 or more juncture diagonal points

 // all with different regions at their diagonal edges.

 std::vector<std::pair<PathRegion *, PathRegion *> > diags;

 inTo->GetDiagonalBlockingRegions(inFrom->GetID(), diags);

 // If there are no blocks, it's passable.

 if (theBlocks.empty())

 {

 return true;

 }

 // See if this is a blockage.

 for (int i = (int) theBlocks.size() - 1; i >= 0; i--)

100 Game Engine Gems

 {

 // Can our actor walk on BOTH regions that are at the edges?

 // In other words, can it hop the diagonal legally by stepping

 // into the other regions momentarily?

 if (!(mActor->CanMoveOnType(diags[i].first->GetType()) &&

 mActor->CanMoveOnType(diags[i].second->GetType())))

 {

 return false;

 }

 }

 return true;

}

GetRegionCost

If an actor can move from one region to another, A* needs us to determine the
traversal cost for the move. We're using oddly shaped regions, which could be a problem
except that we normalized the sizes by using a world grid. For a basic cost, we use the
world's grid. Notice that in Figure 4.3, we have grid sections with many regions within
them. If we consider each black-bordered box has an (x, y) grid position, we'll use that
to get the relative position for pathfinding. Listing 4.5 demonstrates how we compute
the cost of traveling from a region to an adjacent region. Often, there are specific costs
such as making it expensive (or less desirable) for an actor to move from land into a
river.

Chapter 4 High-Level Pathfinding 101

Listing 4.5: Cost method for our A* fuzzy pathing engine.

unsigned long AStarGraph::GetRegionCost(PathRegion *inTo,

 PathRegion *inFrom)

{

 unsigned long theBasicCost = 0;

 // Special case for walls.

 if (inTo->GetType() == PathTileType::Wall)

 theBasicCost = 100;

 // If it's the same parent grid, we'll make the cost really low.

 if (inTo->GetGridPosition() == inFrom->GetGridPosition())

 return theBasicCost + 1;

 // Non-diagonal movement costs less than diagonal.

 if (inTo->GetGridPosition().

 IsDiagonalFrom(inFrom->GetGridPosition()))

 {

 return theBasicCost + 10;

 }

 // Diagonal movement costs more.

 return theBasicCost + 14;

}

Once the high-level pathfinder is done, we have a list of path regions. We should
iterate through each one, extract the beacon points, and prepare our actor for low-level
pathfinding.

High-level paths computed, our reinforcements are ready to move! Of course, if
we followed the path points exactly as seen in Figure 4.4, our paths may not be as perfect

102 Game Engine Gems

as we would like. Corners won't be rounded, and actors will end up moving a lot farther
overall than they should if computing only a low-level path. The next step is to take
these paths and convert them into a real, detailed set of tiles our soldiers can use to reach
the battle.

Figure 4.4: High-level, fuzzy paths have been computed for each of our actors. Note our beacon
points, identified as footprints. We use these beacon points in the detailed pathing phase.

4.6 Detailed Paths Phase

Now that our soldiers know how to get to their destination legally, it's time to get
them moving. We could path between each point, rounding the paths to be prettier, but
what if our soldiers got cold feet and decided they preferred to do something other than
fight? We would have done a lot of pathfinding that was unnecessary.

The key to producing aesthetically pleasing paths while avoiding waste is to

Chapter 4 High-Level Pathfinding 103

incrementally path along the way. When an actor approaches a beacon point, the actor
paths to the next beacon point before arriving at the actual beacon point. If we displayed
lines showing an actor's path, we would frequently see him cutting off the end of each
beacon path while he moved and pathing ahead to the next beacon. That distance is
something that a programmer must experiment with, as it affects both the time at which
a low-level path calculation occurs (performance) and the overall aesthetics of a path.
To give an example threshold for a grid resolution of 10 × 10, we must meet one of two
criteria to path to the next beacon: an actor must either enter a path region where his
current beacon point exists, or he must be within 12 tiles of that beacon point. If one of
those conditions is true, then we path the actor to the next beacon using our detailed
path engine.

What we end up with is a nicely rounded path. Actors won't be walking to the
middle of regions, only to turn and head in an unnatural angle to the next beacon.
Simply put, we get a natural look, as shown in Figure 4.5. To the player, there is no
evidence of a high-level grid-based path.

Figure 4.5: Beacon points serve as a guide to the detailed pathing engine. Note how the detailed
path (round path with an arrowhead) does not go all the way to the beacon points.

javascript:PopImage('IMG_20','fig99_01_0_0.jpg','405','410')

104 Game Engine Gems

4.7 Why Go Through All This Trouble?

One of the big advantages of our high-level path is in the constraints we can apply
in low-level pathfinding. The A* algorithm is well known to suffer horribly from
flooding problems. It often searches in the wrong direction and into concave spaces,
and it ultimately checks many tiles that are unnecessary. Using our high-level path
information, we can constrain our low-level pathfinder to only consider tiles inside our
beacon-point (or their adjacent) regions. This keeps the low-level pathfinder from
flooding outwards and backwards into areas that we know, at a high level, it doesn't
need to check. This saves a huge percentage of A* loop iterations over the lifetime of
the path.

The key to this optimization is its one-two punch of first using a high-level, fuzzy
path to determine the correct, but ugly, route to an actor's destination. This first punch
delivers incredible performance, something crucial for today's path-finding. Follow this
up with our second punch, a series of low-level, detailed paths between beacon points.
Suddenly, our ugly beacon-point paths look beautiful and intelligent. Separately, these
path techniques have major strengths and weaknesses; however combined, strengths
cancel each others weaknesses, and our pathfinding becomes unstoppable.

Acknowledgements

Special thanks to Rick Bushie for drawing our actors.

References

[1] Daniel F. Higgins."Generic A* Pathfinding". AI Game Programming Wisdom, Charles
River Media, 2002.

Chapter 4 High-Level Pathfinding 105

[2] Daniel F. Higgins."Pathfinding Design Architecture". AI Game Programming Wisdom,
Charles River Media, 2002.

[3] Daniel F. Higgins."Terrain Analysis in an RTS—The Hidden Giant". Game
Programming Gems 3, Charles River Media, 2002.

[4] Daniel F. Higgins."How to Achieve Lightning Fast A*". AI Game Programming
Wisdom, Charles River Media, 2002.

5

Chapter 5 Environment Sound Culling

Simon Franco

The Creative Assembly

Overview

Each generation of game hardware brings with it new and exciting challenges for
developers to tackle. One constant challenge with each hardware iteration is how to
process data efficiently in real time. This must be done optimally to maximize hardware
performance and deliver competitive results.

A number of techniques have been developed to efficiently handle spatial data for
various systems. These include techniques such as using space partitioning structures
to cull geometry that is not visible to the camera and using different AI complexity levels
to reduce the processing time spent on distant or hidden characters.

A problem that receives less attention, however, is that of determining how to
select and process real-time audio within a scene. There may be hundreds or thousands
of permanent environmental sound sources in a scene in addition to the many transient
sound sources that occur during gameplay, but only a small subset of them can actually
be playing at any one time for performance reasons. This gem discusses a technique for
efficiently reducing the complete set of sounds to the active set that is audible to the
player.

108 Game Engine Gems

5.1 The Problem

As our game environments increase in graphical detail, so too must our levels of
audio detail to match the graphical representation of the game world. Numerous sounds
are commonly layered to construct a game's environmental ambiance. This supersedes
earlier techniques, which would have played a single stereo file to achieve the same goal.
The advantage to playing multiple sounds, rather than a single audio clip, is that the
sound closely matches the player's surroundings. For example, if the player was inside
an old haunted house, there could be a grandfather clock, a television showing static,
and wind howling through open windows. As the player moves through the house, the
ambiance changes as the player goes from room to room. The player could change the
ambiance by closing the windows or smashing the grandfather clock.

Environmental sounds to be played are selected from those near the listener. The
listener represents a position and orientation in the game world from which the player
is listening. Usually, this is either attached to the camera rendering the player's view of
the world, or it uses some variation of the player's position and the camera's orientation.

The problem we must address is how to handle the multitude of sounds positioned
within the game world. These sounds range from statically positioned continuous
sounds such as fires and rivers, to more complex and dynamic audio events such as a
crowd cheering on a fight, or a character interacting with a piece of animated geometry
such as a lever.

All of these cases require that a sound emitter is placed within the world, either
manually by a designer or as part of an automated process. Sound emitters are used to
control how and when the sound is triggered, and most have a position from which the
sound is triggered.

A sound emitter also contains a pointer to a sound event. Sound events are objects

Chapter 5 Environment Sound Culling 109

containing information about how to play a sound, such as which wave file to play,
volume, audible distance, pitch settings, and a priority. Priority checks are used as a
method to select which audio channels are made available to the newly-requested sound
event when there are no free channels available. If there are no channels available with
a lower priority, then the requested sound event is not played.

While the game is running, each active sound emitter checks whether the listener
is within audible distance (see Figure 5.1). If this test succeeds, and there are no free
sound channels available, then a priority check against all currently playing sounds is
performed. If both tests are passed, then the emitter can finally start playing its sound.
The number of tests being performed each frame has increased as the number of sound
emitters has risen in a typical game. Therefore, we need a fast method for rapidly
rejecting large numbers of unsuitable sound emitters.

Figure 5.1: All sound emitters testing against the listener.

javascript:PopImage('IMG_21','fig103_01_0_0.jpg','555','379')

110 Game Engine Gems

5.2 A Sound Culling Solution

We need to find a way to efficiently cull sound emitters that are not within an
audible distance of the listener. We also need to cull any remaining sound emitters
whose priority is too low to consider playing. The solution presented here involves the
construction of a sound grid as a means of rapidly culling large numbers of sound
emitters positioned within the game world. The sound grid is a two-dimensional grid
parallel to the x-y plane that encompasses the entire game world. The grid is made up
of equal-sized cells, and each cell contains an array of sound emitter lists. Each list
within the array represents a different priority value, starting with the highest priority
taking index 0 in the array. All sound emitters within a list have the same priority,
matching that represented by the array's index. The sound emitters stored in these lists
are those that are within audible range of that grid cell.

Since each grid cell contains lists of audible sound emitters, we only need to
determine which cell contains the listener in order to know which sound emitters
should be playing. This avoids having to perform complex searches for suitable sound
emitters in real time.

We use a fixed cell size, rather than dividing up the space unequally, due to the
nature of sound emitters. Sound emitters may be in physical proximity to each other,
but have wildly differing audible distances. These different audible distances would
cause any form of grouping to be potentially less efficient and result in more processing
being used to determine which sound emitters are audible. Having a fixed cell size also
allows for optimizations when determining which grid cell is occupied by the listener.
The size of a grid cell can vary depending on your application, but too small of a size
can lead to performance problems.

We take advantage of being able to group the sound emitters into priority lists, as

Chapter 5 Environment Sound Culling 111

most applications will only use a limited priority range, typically between 5 and 10
different priority levels for environmental sounds.

Using a culling system such as a sound grid allows the audio system to rapidly cull
thousands of potential sound emitting objects very quickly by only storing what can be
heard within a given area of the world. By storing the sound emitters in matching
priority lists, we can start by processing the highest priority list and quickly bail out of
our sound emitter processing if we have run out of free sound channels and have
reached a priority level that is too low.

Listing 5.1 shows an example sound grid cell along with an example sound emitter
and linking class used to bind them. We use instances of the SoundEmitterLink class
within the SoundEmitter class to form the linked list connecting up sound emitters of
matching priority within a cell. The SoundEmitter class contains the
m_cells_touched_array member, which is an array of SoundEmitterLink objects.
The array's size is set on constructing the sound emitter object, and should be the
maximum number of cells that could be touched by that SoundEmitter.

Listing 5.1: This pseudocode shows an example sound grid cell and sound emitter.

struct Cell

{

 SoundEmitterLink *m_emitter_list[MAX_PRIORITY_LEVELS];

};

struct SoundEmitterLink

{

 Cell *m_cell;

 SoundEmitter *m_parent;

 SoundEmitterLink *m prev;

112 Game Engine Gems

 SoundEmitterLink *m_next;

};

struct SoundEmitter

{

 Vector m_pos;

 SoundEvent m_sound_event;

 SoundHandle *m_sound_handle;

 SoundEmiiterLink *m_cells_touched_array;

 int m_num_cells_touched;

 bool m_active;

};

5.3 Constructing the Sound Grid

The sound grid is constructed using data from both static and dynamically moving
game objects. A game object is an object created by the game that has information about
the sound event it wants to play and where the sound should be positioned.

The sound grid is first constructed using the static game objects. We process each
static game object present within the game world only once when the game's level is
loading. We use the audible distance and position of each game object to determine
which grid cells its sound emitter touches (see Figure 5.2). We construct a single sound
emitter for that game object and setup its m_cells_touched_array member for the
number of cells within audible distance. For each of those grid cells within audible range,
we use a free element in the m_cells_touched_array member to form a link between
that cell's appropriate priority list and the newly constructed emitter. We return the
pointer for the newly-constructed sound emitter object back to the game object to
optionally store in case it needs to later make modifications to the emitter's state.

Chapter 5 Environment Sound Culling 113

Figure 5.2: Sounds emitters using their audible distance to determine which grid cells they
touch.

Some sound emitters do not occupy a single fixed position in the game world. For
example, you may have a spline representing a river that is to have a sound emitter
placed at the position nearest to the listener on the spline. Another example may be that
the game world contains a forested region inside of which you wish to play a bird
chirping sound at a randomly determined position. For these cases, we construct the
sound emitter as with static sounds, but do not add it to any grid cells. We treat these
as dynamic sound emitters, which will be changing which grid cells they belong to as
the game progresses.

javascript:PopImage('IMG_22','fig105_01_0_0.jpg','588','585')

114 Game Engine Gems

5.4 Processing the Sound Grid

Once per frame, the listener's position is converted from a world-space position to
the particular cell covering that space within the sound grid. This is so we can retrieve
from that cell the lists of audible sound emitters, which we'll need to try playing. The
sound grid retains a copy of the sound emitters selected from the cell visited on the
previous frame. This list is referred to as the active list, as it contains the list of all sound
emitters that should be actively playing. The active list has a fixed maximum size,
matching the maximum number of sounds that can be played at any one time.

Listing 5.2 shows the process for building up the active list. The first processing
phase is to mark all sound emitters in the active list for removal. Each element in the
cell's emitter list, up to the maximum number of playable sounds, is checked against the
active list of emitters. If an emitter in the cell's list points to the same emitter in the
active list, then that emitter's removal flag is cleared. We only test up to this number of
elements as additional elements could not be played.

Listing 5.2: This pseudocode shows how we build the active list and stop playing invalid sounds.

void SoundGrid::buildActiveList()

{

 // phase 1.

 set_all_active_list_emitters_for_removal()

 for (priority = 0; priority < MAX_PRIORITY_LEVELS; ++priority)

 {

 for each emitter in the cell.m_emitter_list[priority]

 {

 for each active_emitter in the active_emitter_list

 {

Chapter 5 Environment Sound Culling 115

 if (emitter == active_emitter)

 {

 emitter.set_unremoved()

 break

 }

 else if (emitter.m_priority > active_emitter.m_priority)

 {

 // Emitter can't be on the active emitter list as

 // we've gone past its priority.

 break

 }

 }

 }

 }

 // phase 2.

 for each active_emitter in the active_emitter_list

 {

 if (emitter.is_removed()) emitter.stop_any_playing_sounds()

 }

 // Finally copy the cell's emitter list to the active emitter list.

 // Start with the highest priority list and progress to the lowest

 // priority list until we run out of sound emitters or fill up

 // active_emitter_list

 copy_list_to_active_list(active_emitter_list, cell_emitter_list)

}

The second phase is to then run through the active list and stop playing any
emitters that are still marked for removal.

Now, the only sounds currently being played are those that are in the cell's emitter

116 Game Engine Gems

list and that were in the active playing list. We finally copy the cell's emitter list into the
active list. Again here we only copy up to the maximum number of playable sounds to
avoid redundant data.

Once per frame, we process the active list of emitters to see if any of them are either
in an "on" state but not playing, or are in an "off" state but are playing. This is shown in
Listing 5.3. In Figure 5.3, we show how only one sound emitter is valid when using a
sound grid.

Figure 5.3: The cell occupied by the listener is only within the radius of one sound emitter.

javascript:PopImage('IMG_23','fig109_01_0_0.jpg','581','584')

Chapter 5 Environment Sound Culling 117

Listing 5.3: This pseudocode demonstrates how the active emitter list is processed.

void SoundGrid::updateEmitters()

{

 for each active_emitter in the active_emitter_list

 {

 if (emitter.is_on())

 {

 if (emitter.not_playing())

 {

 if (engine.sound.get_num_channels_free() > 0)

 {

 emitter.play_sound()

 }

 else if (emitter.m_priority >

 engine.sound.lowest_priority())

 {

 emitter.play_sound()

 }

 }

 else

 {

 emitter.update_sound()

 }

 }

 else if (emitter.is_playing())

 {

 emitter.stop_sound()

 }

 }

}

118 Game Engine Gems

More on Sound Emitters

As mentioned earlier, a pointer to the newly-constructed sound emitter object is
returned once a game object has had its sound emitter constructed. The purpose of this
is to allow the game to play or stop a sound emitter by changing its "on" flag. This flag
is a required part of a sound emitter, as not all game objects require that their sound
emitter play continuously. Examples of this are when the player has set fire to an object
or the game object is coordinating the sound being played during particular frames of
an animated piece of geometry.

How to Handle Dynamic Sounds

Some game objects need to perform an update once per frame on the position of
their sound emitter. For example, you may have a sound that moves along a predefined
path and need to update where it is on that path each frame. To achieve this, we take
advantage of the sound grid's structure to allow for dynamic sounds. During each frame,
a game object such as a car can move its sound emitter. To do this, it must first have the
sound emitter remove itself from all the grid cells it was previously touching. The sound
emitter is then moved to its new location in the world and re-added to the sound grid.
This must happen before the sound grid is processed and the active emitter list is built.
Listing 5.4 shows an example algorithm for inserting the sound emitter's link to the
head of a cell's emitter list, and Listing 5.5 shows the matching removal algorithm.

Listing 5.4: Sample insertion routine for dynamic sounds.

/*

 * This inserts the SoundEmitter to the head of the corresponding

 * priority emitter list for this cell.

 */

void SoundEmitter::add_emitter_to_cell(cell)

{

Chapter 5 Environment Sound Culling 119

 int index = m_num_cells_touched

 int priority_level = m_sound_event.m_priority

 ++m_num_cells_touched

 m_cells_touched[index].m_cell = cell

 m_cells_touched[index].m_prev = null

 // Set the next element to what the first element (if any)

 // was pointed to in the cell's list.

 m_cells_touched[index].m_next = cell.m_emitter_list[priority_level]

 // Was there something at the head of the emitter list? If so,

 // have its prev link point to this entry.

 if (cell.m_emitter_list[priority_level])

 {

 cell.m_emitter_list[priority_level].m_prev =

 m_cells_touched[index]

 }

 // Finally set the head of the cell's emitter list

 // to be this sound emitter link.

 cell.m_emitter_list[priority_level] = m_cells_touched[index]

}

Listing 5.5: Sample removal routine for dynamic sounds.

// This removes the SoundEmitter from all cells its touched.

void SoundEmitter::remove_emitter_from_cells()

120 Game Engine Gems

{

 int priority_level = m_sound_event.m_priority

 for (index = 0; index < m_num_cells_touched; index++)

 {

 if (m_cells_touched[index].m_next)

 {

 m_cells_touched[index].m_next->m_prev =

 m_cells_touched[index].m_prev

 }

 if (m_cells_touched[index].m_prev)

 {

 m_cells_touched[index].m_prev->m_next =

 m_cells_touched[index].m_next

 }

 // Check if this was the head node of the linked list. If so

 // change the head node to point to the next node (if any).

 cell = m_cells_touched[index].m_cell

 if (cell.m_emitter_list[priority_level] =

 m_cells_touched[index])

 {

 cell.m_emitter_list[priority_level] =

 cell.m_emitter_list[priority_level].m_next

 }

 // Clean this SoundEmitterLink up.

 emitter.m_cells_touched[index].m_cell = null

 emitter.m_cells_touched[index].m_prev = null

 emitter.m_cells_touched[index].m_next = null

 }

 emitter.m_num_cells_touched = 0

}

Chapter 5 Environment Sound Culling 121

5.5 Supporting Multiple Listeners

Some games need to support more than one player using the same television or
monitor. This requires that the display is split in some fashion to show both players'
view of the world. As well as having both players' view being processed by the same
game console, we must also divide up the sound channels to represent what each player
is hearing. The sound grid can be modified to support this with a few changes to the
way the active list is built:

• We first construct an active list for each listener present in the game.

• Once this has been done for all listeners, we copy the highest priority sounds from
each list into the master active list.

• We then make sure any sounds that were in any of the listeners' active lists and didn't
make it into the master active list are not playing.

5.6 Extensions

The sound grid is one possible solution to culling sounds occupying known world
positions. While the implementation discussed in this gem only constructs a two-
dimensional grid, this technique should work without change for most types of game
worlds. If your game contains a high number of vertical sounds occupying a nearby
space in x and y, then the process can be extended to allow for culling sound emitters
in the z dimension. Either you may wish to have multiple sound grids, with each one at
a different z height, or expand into a 3D sound grid.

Additional future work can be performed on the sound grid, such as embedding
additional information about the grid cell or sound emitters, such as which reverb
effects to apply to the emitters, or whether we need to apply a filter (due to an

122 Game Engine Gems

obstruction between the sound emitter and listener). Dynamically generated sounds,
such as gunfire, may also be able to use information contained in the sound grid to
calculate any filtering that needs to be applied, avoiding the need to perform expensive
tests in real time. Also, additional optimizations could be made to the sound emitter
linked lists. We could, for example, add a head and tail node to each linked list and thus
remove the conditional tests surrounding the insertion and removal of a sound emitter
to a grid cell.

6

Chapter 6 A GUI Framework and Presentation Layer

Adrian Hirst

Weaseltron Entertainment Limited

Overview

Graphical user interface (GUI) design is an often overlooked and under-resourced
part of game development, yet it is responsible for the look and feel of a game to the
user as well as its all important first impressions. The user interface needs to be quickly
and dramatically adapted continuously throughout a product's development cycle in
order to reflect modifications to virtually any other part of the game.

Relatively little literature exists for GUI presentation code, and finding samples of
rigorously tested source code is difficult. This gem provides a brief introduction to GUI
systems and documents a proven, current, flexible, and working system that can
provide the first step for in-game and tools-based systems. Drop-in source code is
provided and should prove instantly useful for everyone from the student to the
seasoned professional.

6.1 GUI Systems

Like many in-game systems, the difficulty of arriving at the finished product is in

124 Game Engine Gems

being flexible enough to respond to constant changes. The iterative nature of game
development means that a game is constantly changing. For every change to scoring
systems, game mode, or indeed any gameplay element, a subsequent change is most
often required to the presentation layer, ensuring that the user is still clearly presented
the relevant and required information they need to play the game. Iterative game design
impacts many aspects of a game throughout its development, all of which needs to be
fed back to the user, a task that falls to the presentation layer.

A common and sensible approach is built around creating a set of solid, stable
controls, or components that can be used and combined over and over in various ways.
When requests come in to the presentation team for a new screen, or there's a new
gameplay mechanic that requires a screen to be rewritten, a familiar set of text boxes,
buttons, menus etc. can be dropped into place.

A GUI system should include an editor for artists to create and position
components, textures, and text in the best way. Too often, and particularly on smaller
projects, rather than creating an editor for this task, the job of positioning these screen
elements falls to a programmer, who has to type the coordinates by hand into a text file.
This is unacceptable for anything but the smallest of games and interfaces.

Localization issues always create their own problems in user interface design.
Translation of games to multiple languages inevitably leads to text strings of varying
length, often occupying more screen space than initially allocated. Even seemingly
innocent changes in the wording of key phrases, or even simple modifications in
capitalization or grammar, can cause text strings to overlap the area of screen
designated. The new word is likely to be longer in another language—the German
language generally being the most verbose. An essential feature of using an editor to
design presentation screens is being able to preview static text in all languages to check
for such issues.

Chapter 6 A GUI Framework and Presentation Layer 125

Console platform holders typically have their own set of technical requirements
that must be fulfilled before the game is accepted. Without going into too much detail,
these range from new screens, game modes, network requirements, controller
configurations, and menu options to screen resolutions, drawable areas of the screen,
and issues of text legibility.

Existing Solutions

Several middleware solutions exist for creating front ends that provide full feature
sets, including WYSIWYG editors, runtime components, custom animation, scripting,
and Adobe Flash support. These prove compelling where the budget allows. Such tools
provide support that empowers artists and designers to create the best looking and most
advanced GUI systems with as little programmer involvement as possible.

Support for these features comes at a cost, though, and some implementations can
add significant memory and CPU overhead, with some Adobe Flash implementations
in particular being typically resource-heavy. Smaller-scale products, however, often do
not require such feature-rich implementations and can trade features for performance
and flexibility.

6.2 Design Patterns: Model View Controller (MVC)

A common problem, particularly evident with GUI systems, is that over time, last
minute hacks and "temporary" bug fixes lead to strongly coupled code, leaving changes
to one area of the system to cause unintended effects elsewhere and also making it
difficult to refactor. The model-view-controller (MVC) design pattern aims to ensure
only a loose coupling of elements by separating the framework into three distinct
constituent parts to be maintained independently:

126 Game Engine Gems

• The model refers to the actual data that we represent on the screen. For example, this
could be the game time or the number of lives remaining.

• The view concerns itself only with the visual representation and rendering of that
object. In our previous example, perhaps we might display an analogue clock to
represent the time remaining or an icon for every life remaining.

• The controller refers to how the object interacts with the game, user input, and
general state, system, or game logic.

MVC has gained popularity, now being a major contributing concept in many of
the larger GUI and system frameworks, from Cocoa to Qt, MFC, and the current
Windows Presentation Foundation.

Taking our previous timer example, the controller would refer to our game update
loop; being responsible for determining the current time and passing a TimerUpdate
message to the timer model object, which in turn updates its internal representation.
The view will typically have its own internal description, but will update that based on
information inside the model itself.

Implementing MVC does require a change in thinking, as the three constituent
parts are unaware of the others' inner workings and unable to alter each other's data so
communication relies on sending messages. This could just take the form of calling a
function on another object. In larger systems, though, it is beneficial to ensure a greater
distinction between components by using event queues and traditional message passing
systems.

Depending on the technique used, this message passing can add a substantial
amount of overhead to the system, reducing its flexibility. Choosing the correct method
by which these messages are passed is crucial, and worthy of its own Gems topic.

Chapter 6 A GUI Framework and Presentation Layer 127

6.3 A GUI Design

The goal of this gem is to present a simple and extensible drop-in GUI module
whose target audience ranges from the student or smaller indie studio to the
experienced professional wanting to quickly add some user interface interaction to their
game without devoting too much of their time to reinventing the wheel. Therefore, the
system must exhibit the following attributes:

• Modular. As a drop-in replacement, it must have the minimum possible number of
external API dependencies.

• Lightweight and flexible. It should be adaptable to as many platforms as possible,
have bindings to specific areas such as various input types, and rendering or audio
code should be kept as minimal as possible. This guarantees the highest level of
portability.

• Both programmer and artist-driven. For many smaller products, it is often
feasible (if not fun) to hand-code our own front end design. While this exposes us to
the dangers of localization, minor font changes, and rewordings, it can sometimes
be the quickest way of creating a usable GUI. This system allows programmatically
created GUI screens where necessary, and it leaves scope for data-driven designs
from an external tool at a later date.

• Extensible. The code provided should give the user a solid base from which further,
more advanced controls may be produced with the least amount of effort.

• Object oriented. Object-oriented programming tends to lend itself particularly well
to GUI objects with inheritable behaviors and data sets.

• Localization-ready. All text rendering must be able to handle international
character sets.

• "Boilerplate code"-minimizing. It should encapsulate common programming tasks
so the user can concentrate on adding content rather than repetitive functionality.

128 Game Engine Gems

A Little Code [1]

First, let's look at the basic GuiComponent class shown in Listing 6.1. This is the
base class from which all other GUI components are derived, and it contains very little
specific information or functionality other than it is an object, it has a visual
representation that exists somewhere in a hierarchy, and it has a little information about
whether it is active and whether it is visible.

Listing 6.1: Our GuiComponent base class.

class GuiComponent

{

public:

 GuiComponent();

 virtual ~GuiComponent();

 virtual TypeId GetTypeId() const = 0;

 static TypeId GetStaticTypeId();

 uint32_t GetId() const;

 void SetupGuiComponent(const String& name, bool active = true);

 void SetVisual(Visual *visual, bool makeVisible = true);

 void SetPosition(const Vec3& pos);

 virtual void Update(Time& timeDelta) = 0;

 virtual void Render(Renderer *renderer);

private:

 static TypeId s TypeId;

Chapter 6 A GUI Framework and Presentation Layer 129

 String m_Name;

 uint32_t m_Id;

 Frame m_Frame;

 Visual *m_Visual;

 // Is the GuiComponent taking input and being updated etc.?

 bool m_Active;

 // Default to invisible false until we have a valid GFX::Visual.

 bool m_Visible;

};

The GuiComponent class contains two simple boolean variables that determine
whether the object is considered active and whether it is visible. The distinction here is
that an object could be visible on screen, but not active in that it does not respond to
input or update itself. Likewise, an object could be actively being processed, but not
visible on-screen.

A string is stored to keep a human-readable name for the object. This is largely
used for debugging, but also used to generate the CRC of this name, which is stored in
the m_Id variable for fast access and comparison/finding. This can also be used by tool
editors and loaders for referencing objects.

The GuiComponent also contains a Frame node that specifies a local translation to
apply to this object, as well as its position inside a hierarchy. This allows us to attach
together GuiComponents into groups which can then be moved together as a whole.

The model contains a single pointer to a Visual object containing rendering
information. I consider this to be a loose abstraction of the model and view of the object,
but it serves our design goal of being quick and flexible well, meaning that it abstracts
much of the rendering code away while still allowing us to have an entry point for

130 Game Engine Gems

patching any rendering information, such as state or material changes, where necessary,
for those last-minute fixes. For medium-sized or larger systems, the coupling between
the model and view side of the object would need to be looser. The Render() function
can simply make the following call:

renderer->Render(m_Visual);

This can be overridden via virtual function in derived classes where required.

This GuiComponent class allows us to extend trivially to create a basic GuiSprite
class, as shown in Listing 6.2. This simplest of examples just adds an instance of a
VisualSprite class and calls the renderer to draw it. Here, the VisualSprite itself
contains most of the information required to render the sprite, which is set up inside
the GuiSprite::SetupGuiSprite() function. Calling the GuiComponent::

SetVisual(&m_Sprite) function inside the SetupGuiSprite() function ensures that
the base class render function performs all of the rendering required for objects of this
type.

Listing 6.2: A sprite class.

class GuiSprite : public GuiComponent

{

public:

 void SetupGuiSprite(const Vec3& pos, Texture *texture,

 Color& sprite, float width = 0.0F, float height = 0.0F);

 virtual void Update(Time& delta);

private:

 VisualSprite m_Sprite;

};

Chapter 6 A GUI Framework and Presentation Layer 131

Likewise, a GuiTextItem class can be derived that stores a pointer to text and
rendering parameters, as shown in Listing 6.3. In the full code sample on the
accompanying CD, a BMFont class stores glyph-based information and texture data
loaded from files exported from the AngelCode BMFont library [2].

Listing 6.3: The GuiTextItem class.

class GuiTextItem : public GuiComponent

{

public:

 void SetupGuiTextItem(wchar_t *text, FONT::BMFont *font);

 float GetTextWidth() const;

 float GetTextHeight() const;

 void SetText(wchar_t *text);

 void SetAlignment(GuiTextHAlign hAlign, GuiTextVAlign vAlign);

 void SetColor(const Color& color);

 virtual void Update(Time& delta);

private:

 float m_xScale;

 float m_yScale;

 VisualText m_VisualText;

};

Note that the GuiTextItem class only accepts wide character strings to display text.
These multi-byte characters enable us to display characters from multiple languages,

132 Game Engine Gems

though various platforms may endian-swap the order of the bytes. Two functions get
the calculated width and height of the text based on the text and the font. This becomes
useful when we want to allow a piece of text to be selected with a pointing device.

Extending our System

Unfortunately, GUI systems are required to perform more than simply displaying
sprites and text, so let's look at adding another important class, GuiSelectable. Shown
in Listing 6.4, the GuiSelectable class is a parent class to menu items, clickable icons,
selectable text, and anything else that might be highlighted and/or selected. The purpose
of this class is to provide an interface that responds to two major activities—being
highlighted (for example, when a user points their mouse, stylus, or other pointing
device over the component) and being selected (for example, when the pointing device
is clicked on this item or the "select" button is pressed). The device type being used is
irrelevant, as highlighting and selecting are actions common to on-screen navigation,
whether by keyboard, joypad, stylus/touch-screen controllers, remote pointing devices,
etc.

Listing 6.4: A base class for selectable components.

class GuiSelectable : public GuiComponent

{

public:

 bool IsSelectable() const;

 virtual void SetSelectable(bool selectable);

 bool IsHighlightable() const;

 virtual void SetHighlightable(bool highlightable);

 GuiHotSpot *GetHotSpot();

Chapter 6 A GUI Framework and Presentation Layer 133

 void SetHotSpot(GuiHotSpot *hotSpot);

 // Process what to do when the users focus is

 // in the specified position.

 virtual bool SetFocus(float x, float y);

 // Test to see if the specified position is within the HotSpot.

 virtual bool IsInHotSpot(float x, float y);

 // Virtual function called when the item is selected and returns

 // whether it is possible to select this item.

 virtual bool OnSelect();

 // The GuiSelectable is highlighted

 // (mouseover, menu item selected).

 virtual bool OnHighlight(bool highlighted);

 virtual void Update(Time& delta);

private:

 GuiHotSpot *m_HotSpot;

 bool m_Highlightable;

 bool m_Selectable;

};

A GuiSelectable object contains a reference to a GuiHotSpot item, which holds
information about the area of the screen that, when clicked on, makes the
GuiSelectable object active. Typically, this is a rectangular region roughly the same
size as the icon or text of the item itself. Derived classes can describe their own circular
or polygonal areas as long as the IsInside() virtual function is overridden.
GuiHotSpot objects retain a pointer to a Frame object so that the object tracks with the

134 Game Engine Gems

GuiComponent object itself.

For pointer-based devices, determining the highlighted status of a GuiSelectable
object is achieved by passing the current on-screen cursor coordinates to the SetFocus()
function. If, after querying the m_HotSpot variable, it's determined that the highlighted
state should change, then the virtual OnHighlighted() function is called with the new
desired value. Again, we can override this virtual function in derived classes to update
its own state, and therefore, its visual representation.

For button-based controllers (primarily keyboards and joypads/sticks), the focus
is likely to be more bespoke, perhaps being transferred by tabbing through the various
highlightable components, or in the case of menus, using the directional pad on an
input device. We revisit this topic later.

GuiSelectable objects can be told that they are not highlightable. While in this
state, they are not able to become active like other GuiComponent objects unless
explicitly made highlightable again. This is most likely to be used for components that
are either just not available or are not available yet. For example, there may be a
currently hidden game mode option.

Likewise, it may not be possible to actually select some items, even though they are
highlightable. Perhaps, for example, moving our cursor over the currently unavailable
last level on a level select screen highlights or animates that component, but the user is
still not able to select it. Objects being selected have the OnSelect() virtual function
called on them, which returns whether the selection succeeded. This is then handled by
the current state.

But What About the Menus?

Okay, so we've got the ability to place objects around the screen wherever we like,
but wouldn't it be nice to put a collection of these items into a menu? Enter the
GuiSelectableGroup class, shown in Listing 6.5. A GuiSelectableGroup object can

Chapter 6 A GUI Framework and Presentation Layer 135

be thought of as a menu, with a collection of pointers to GuiSelectable objects that
make up its menu items. This allows us to move common code for highlighting and
selecting groups of objects into a single interface. At its simplest, the
GuiSelectableGroup class allows us to highlight objects by array index, by
GuiComponent name, or by ID. It also allows us to simply highlight the next or previous
item in the current group, skipping unhighlightable items and wrapping around the list,
if required.

Listing 6.5: A GuiSelectableGroup handles the selection of many GuiSelectable objects.

class GuiSelectableGroup : public GuiSelectable

{

public:

 // Add item and set the attached item's m_Frame's parent to us?

 virtual void AddItem(GuiSelectable *item, bool attachFrame);

 // Remove all items from list and detach any attached Frames.

 virtual void Clear();

 // Highlight the next/previous item skipping any unhighlightable

 // items and wrapping where necessary.

 virtual bool HighlightNext();

 virtual bool HighlightPrevious();

 // Highlight an item in the list by index, component name

 // or Id (name CRC).

 virtual bool HighlightIndex(int index);

 virtual bool HighlightItem(const String& name);

 virtual bool HighlightItem(uint32_t id);

136 Game Engine Gems

 // Find an item in the GuiSelectableGroup either by name

 // or Id (name CRC)

 virtual int FindItemIndex(uint32_t id);

 virtual int FindItemIndex(const String& name);

 virtual GuiSelectable *FindItem(uint32_t id);

 virtual GuiSelectable *FindItem(const String& name);

 // Get the currently highlighted object (if there is one).

 GuiSelectable *GetHighlighted();

 virtual bool SetFocus(float x, float y);

 // Test to see if the specified position is within

 // the GuiComponent's HotSpot.

 virtual bool IsInHotSpot(float x, float y);

 // Virtual function called when item is selected and activated.

 virtual bool OnSelect();

 // Virtual function called when the GuiSelectable is highlighted

 // (mouseover, menu item selected).

 virtual bool OnHighlight(bool highlighted);

 // Update all the items in this GuiSelectableGroup.

 virtual void Update(Time& delta);

private:

 // A static-sized array of pointers to GuiSelectable items.

 GuiSelectable *m_Selectables[GUI_SELECTABLEGROUP_MAXITEMS];

 int m_NumSelectables;

Chapter 6 A GUI Framework and Presentation Layer 137

 int m_Highlighted;

 bool m_Wrapped;

};

Adding an item to a GuiSelectableGroup object is done via the AddItem()
function, which provides the option of automatically attaching the new item's Frame to
this one. If used as a menu, this attachment means that all items in the menu can be
moved together, perhaps animated onto or off of the screen just by animating the x
component of the root node matrix. Note also, that after adding items to an empty list,
if we want one highlighted, we still want to manually do that, or call HighlightNext()
to highlight the first available. This is typical for a console or keyboard-based control
system.

This class conforms to the composite design pattern, as the GuiSelectableGroup
class itself derives from the GuiSelectable class. This straightforward, but powerful
distinction means that it inherits the ability to be selected, to be highlighted, and
importantly, to be included in a list inside another GuiSelectableGroup object. This
is useful for a number of situations—for example, with an options screen where the
main items run vertically, selected by up/down on the joypad, but where some items
provide multiple options to choose from, such as selecting low, medium, or high for
graphics detail, stereo or mono for sound, etc., which run horizontally.

In conforming to the composite design pattern, the GuiSelectableGroup class is
responsible for managing calls through the GuiSelectable virtual functions too.
Update() and Render() calls are passed through to all contained GuiSelectable
objects, the OnSelect() function determines the currently highlighted item and (if
present and active) calls the relevant OnSelect() function only on that item. Functions
such as OnHighlighted() and SetActive() follow a similar pattern, though it is
worth browsing the code to see the details of when objects become active or not.

138 Game Engine Gems

An Example in Use

The code excerpt shown in Listing 6.6 uses a type GuiSelectableText. This is a
GuiSelectable object containing just a GuiTextItem object. It shows how quickly the
class structure can create an on-screen menu. A RenderComponents() function
trivially reduces to just the following:

Menu.Render(renderer);

Listing 6.6: Setting up and updating of an example state.

GuiSelectableText MenuItems[MENUITEM_COUNT];

GuiSelectableGroup Menu;

void SetupComponents()

{

 Menu.SetPosition(Vec3(512.0F, 480.0F, 0.0F));

 for (int item = 0; item < E_MENUITEM_COUNT; ++item)

 {

 MenuItems[item].SetupGuiComponent(s_ComponentNames[item]);

 MenuItems[item].SetupGuiSelectableText(s_ComponentText[item],

 Resource_GetFont());

 MenuItems[item].SetPosition(menuItemPos[item]);

 Menu.AddItem(&MenuItems[item], true);

 }

 MenuItems[E_MENUITEM_UNLOCK_ME].SetHighlightable(false);

#ifndef CONTROLLED_BY_POINTER_ONLY

 Menu.HighlightNext();

#endif

Chapter 6 A GUI Framework and Presentation Layer 139

}

// The update loop then reduces to this:

void UpdateState(Time& delta)

{

 Menu.Update(delta);

#ifdef CONTROLLED_BY_POINTER_ONLY

 if (m_Menu.SetFocus(pointerX, pointerY))

 { // If we're only using the mouse, and we're not over any

 // other item, unhighlight the currently selected one.

 m_Menu.HighlightIndex(GUI_SELECTABLEGROUP_UNHIGHLIGHTED);

 }

#else

 m_Menu.SetFocus(x, y);

 // Now loop through all the controllers checking their actions.

 for (all active controllers)

 {

 if (Controller.IsPressed(DPAD_UP))

 Menu.HighlightPrevious();

 else if (Controller.IsPressed(DPAD_DOWN))

 Menu.HighlightNext();

 if (Controller.IsPressed(SELECT) && Menu.OnSelect())

 ProcessSelect();

 }

#endif // CONTROLLED_BY_POINTER_ONLY

}

140 Game Engine Gems

Adding virtual functions SetupComponents(),UpdateComponents(),

RenderComponents(), and UpdateInput() to the base state system helps build a
framework that can be extended and keeps a common interface throughout the GUI
screens as well as separate the GUI components code from other state-based code. This
also helps to distinguish the model, view, and controller portions of the code. This can
be seen better in the source code on the accompanying CD, though a full explanation is
outside the scope of this gem.

[1]Note that the code in this gem is a shortened version of the full code available on
the accompanying CD. Simple Get() or Set() and other ancillary functions have been
removed for the sake of brevity.

6.4 And Finally

The objects presented in this gem forms just the beginning of a GUI system.
Included on the accompanying CD is an example test application implementing these
and other GUIComponent objects by demonstrating a variety of example states. Also
included is a workable StateMachine class, a very basic OpenGL renderer built upon
SDL, test font library, input library, basic MATHS components and various foundation,
or utility classes and anything else needed to put together an implementation of a basic
GUI framework.

To take this work a step further, an element of data-driven design needs
implementing. In particular, we need an editor for artists to take control over the look
and feel of the presentation.

An up-to-date version of the code is available on the Weaseltron website at
http://www.weaseltron. com/WeaselGui. The code is distributed under the LGPL
license, meaning it's free to use in commercial products.

Chapter 6 A GUI Framework and Presentation Layer 141

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns—
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[2] AngelCode BMFont. http://www.angelcode.com/products/bmfont/

7

Chapter 7 World's Best Palettizer

Jason Hughes

Steel Penny Games, Inc.

7.1 Palettes? Whatever for?

Back in the old days of fixed-function graphics cards and limited VRAM,
palettized textures were one of the earliest forms of compression, at the cost of color
accuracy. However, as VRAM increased on video cards, and graphics chipsets began
moving toward programmable shaders, palettized images gave way to S3TC/DXTC
(and better) compression that generally give the same memory savings with better
performance and color depth.

So, why use palettes? Perhaps you've heard of its highbrow cousin, vector
quantization? It may seem like a crazy thing to need in this day and age, but
quantization codebooks (palettes) are useful in many contexts, not just with images.
Some examples: S3TC/DXTC is not a good choice for all images, particularly
cartoonlike graphics with large regions of solid color divided by sharp edges. Finely
detailed pixel art ends up as a blocky mess. Also, some GPUs support individually
indexed vertex attributes such as normals, colors, and so on, but are limited to either 8-
bit or 16-bit indices. This is effectively a palette of values. Similarly, with shaders on
modern systems, textures could be used to replace certain vertex attributes to simplify

144 Game Engine Gems

the number of vertex formats involved in setting up a flexible engine, and compression
of those textures could be effective with a smaller 1D lookup table texture having a
limited set of values. Normal maps might also be good candidates for palettizing,
depending on the complexity of the surface. S3TC/DXTC block artifacts can show up
in lighting on some surfaces whereas palettized versions would at worst show banding,
but not blocking artifacts.

Finally, there are the occasional obscure but amazing palette tricks that old game
dogs know. One such trick put palettized vertex colors to excellent use. The general idea
was to vertex-light the world in N different phases of day and night, then compute a
3N-dimensional palette where each "color" in the source image was effectively a stack
of N RGB triplets. Every vertex in the world was given one vertex color palette index
that was the stacked color in the final palette. So, without changing any vertex data,
simply by interpolating the colors inside the palette from one set of RGB to the next,
vertices appear to go through a smooth change in time of day.

For reference, Figure 7.1 shows how the WBP compares to Photoshop, with error
diffusion disabled so we can clearly see the quality of the color choices.

Chapter 7 World's Best Palettizer 145

Figure 7.1: (See also Color Plates.) (a) Flowers source image using 100,162 colors. (b)
Photoshop, 256 colors. (c) Photoshop, 16 colors. (d) WBP, 256 colors. (e) WBP, 16 colors. (©
Dundanim/Dreamstime.com)

146 Game Engine Gems

7.2 Understanding Quantization

For such a simple concept, reduce the cardinality of a dataset from M samples to a
fixed number N that minimizes error, there are a surprising number of tough lessons to
be learned when designing a quantizer. Some interrelated questions have to be
answered that vary with the data and the situation to which they're applied:

• How do you compute a representative value for multiple samples?

• What is a good metric for measuring error between samples and their representative
values?

• Are all aspects of the input data equivalent, or is there a need for weighting some
channels or computing error differently for them?

• Is it better to start with M representative values and merge them?

• Is it better to start with one and subdivide until reaching N?

• What about stochastic processes that gradually improve the fit until some measure
is satisfied?

If you study the research on palettizing algorithms and vector quantization, there
are many trade-offs that various approaches make, such as tools performance against
runtime quality, code complexity against ease of implementation, perceptible error
against numerical error, etc. What is important is that you understand that this is
effectively a k-means clustering problem, which is NP-hard even for finding two palette
entries for a data set, much less N [1]. So, for any algorithm to be practical, there will be
assumptions made, and possibly inadequate results for specific inputs. It is therefore
important to try not to solve too general a problem and only worry about large sources
of error as long as the results are positive.

Chapter 7 World's Best Palettizer 147

7.3 Hard-Earned Lessons

The best experiences (in programming) are those of failure. As Charles Kettering
once said, "One fails forward toward success." Here are a few observations after
designing several algorithms that did not produce satisfactory results. Others may have
better luck or better ideas, but the following were important lessons I learned:

• Colors and other attributes can be unified nicely by converting them all to floating
point numbers and passing them around as arrays or std::vector<float>. There
is no loss in generality and it simplifies code to do this.

• Color spaces are important when determining the quality of a color sample, and
ideally the measurement of two samples can be meaningfully performed by
Euclidean distance formula. R′G′B′ colors (as computer-generated art and digital
photography typically is) are in a nonlinear gamma-corrected space, and slight errors
in any one component may be very noticeable. (There is a tremendous rabbit hole
here, where you may be tempted to spend a lot of time learning about color spaces.
Color encoding and representation is a deep field with mountains of research. Dive
in if you must [2].) I found that moving R′G′B′ gamma-corrected colors to linear
RGB space had the effect of oddly characterizing samples as both closer and farther
(at different points along the gamma curve) from each other than they appeared. In
short, I found that leaving colors in gamma-corrected space is best. The samples in
this article are quantized directly from your standard, run-of-the-mill R′G′B′.

• An obvious optimization is to reduce the number of input samples to only unique
values. However, it is worth mentioning that if you do this, make sure each unique
sample also carries a weight that is proportional to the number of samples that it
represents from the source data. Otherwise, the palettizer will not be able to know
how relatively important each sample is, and in general will provide poor fits for
highly redundant data sets.

• I tried starting with M different representative values and merging them down to N.
The problem is intractable, though, because M may be huge, and the act of finding

148 Game Engine Gems

"close" values to merge together is O(n2). This is why very little research exists using
this approach.

• Most of the algorithms that start with more than one entry do so by selecting a
random set of N representative values for their palette and nudging them around until
good values are found. I saw no clear guidance as to how to select these initial values.
Seeing as how the initial selection of values greatly influences the number of
iterations required to find an optimal fitting, and that it's quite hard to know if the
values are stuck in a local minima or are actually good representations, I abandoned
these approaches. In tools, I personally prefer to get near-optimal results (by some
criteria) in a deterministic number of iterations.

• Once decided upon the strategy of partitioning clusters until N is reached, I still had
issues with cycles in the algorithm. Thinking that it would yield tighter clusters, I
recomputed the representative value of each partition, then reassigned every sample
to the closest value in the palette. This was fine, except that occasionally a cluster
would end up with no samples assigned to it. Naturally, I just deleted the value and
continued. Don't. This sometimes causes infinite loops when a set of samples cycles
between two or three extreme values. In the end, I found that I'd compute the centroid
of a set, then find the closest sample in that set and force it to stay associated with
the value. At least this way, there is no possibility of an infinite loop. As a further
improvement, at the end of an iteration, any cluster that has only one sample assigned
to it changes its value to be exactly that sample's value, to be a perfect fit.

• During the reassignment phase, I also experimented with updating the centroid of
clusters dynamically. This sounded like a good idea, but it has negative feedback
loops based on the ordering of samples. For example, if values are spread out along
the number line and there are two values A=0 and B=1000, assigning a sample 499
to value A will move its centroid to 249.5. Suddenly, the next sample 501 will be
closer to A than B, and further skews the cluster positioning. Order dependency is a
terrible way to build robust tools and will give highly variable results, so this kind
of adaptive behavior is to be avoided at all costs.

Chapter 7 World's Best Palettizer 149

7.4 Algorithm Overview

Okay, here's the view from orbit:

1. Initialize the cluster set.

2. Find the cluster with the largest error and divide it into two clusters.

3. Reassign all samples to the closest cluster.

4. Repeat from Step 2 until all cluster errors are zero or the target of N palette entries
is reached.

The mental model I work with is that a palette is a bunch of points in space, and
each original sample gets mapped to one of those points in space. These are little clouds,
or clusters, of samples surrounding each representative value in the palette. Here's a
simplified way of writing this in C++:

typedef CVector3 RepValue;

typedef CVector3 Sample;

typedef std::vector<Sample> Samples;

typedef std::map<RepValue, Samples> Clusters;

typedef std::map<Sample, int> Frequency;

typedef std::vector<float> AxisWeights;

Clusters clusters;

Samples origSamples;

Frequency sampleFreq;

AxisWeights weights;

Step 1 — Initializing the Cluster Set

Reducing the set of samples to a unique set should be done as a preconditioning
step for performance reasons. A consequence of doing so is that importance

150 Game Engine Gems

calculations will need to consider a secondary field that describes the population that
each sample represents and is carried through centroid calculations as a weighting
factor. Reduction is not complicated, but it is tedious and not required for this
algorithm to work correctly. For testing purposes, assign a frequency for each sample
in Frequency to 1.0.

Initializing the cluster set is accomplished by computing a representative value,
RepValue, which is the centroid of a set of samples, then populating the Clusters map
with a single entry having all the samples assigned to it. This is done as follows:

RepValue const repValue = ComputeCentroid(origSamples, sampleFreq);

clusters[repValue] = origSamples;

Computing a single representative value from many samples is trivial if and only
if the numerical space of the samples is linear. For example, colors in a perceptually
uniform space can be computed as a simple centroid. Note that since in-put samples xi
have been reduced to only unique entries, a weight factor wxi proportional to its original
frequency must be applied whenever considering a sample for computing its
contribution to centroid C:

𝐶𝐶 =
∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑥𝑥𝑥𝑥
𝑛𝑛
𝑖𝑖=1

Listing 7.1: Computing the centroid for a set of samples looks complicated because we allow for a
reduced set of samples with associated frequencies. It's really just an average.

RepValue ComputeCentroid(const Samples& x, const Frequency& w)

{

 int totalFrequency = 0;

 RepValue repValue(0, 0, 0);

 for (size_t samp = 0; samp < x.size(); samp++)

Chapter 7 World's Best Palettizer 151

 {

 int const sampleFrequency = w[x[samp]];

 repValue += x[samp] * sampleFrequency;

 totalFrequency += sampleFrequency;

 }

 repValue /= (float) totalFrequency;

 return (repValue);

}

Step 2 — Subdivide the Worst Fitting Cluster

Determining the cluster to split is relatively easy, once you have defined the error
metric. Iterate over all clusters and compute the sum of errors between the
representative value and all its assigned samples, again weighted by the sample's original
frequency in the source data. The cluster with the greatest computed error is selected
for partitioning. It should be noted that FindWorstCluster is the naive
implementation, which recomputes the error even for clusters that have not changed.
This implementation is simple for clarity's sake, not for performance.

Listing 7.2: This computes the error for each cluster's samples relative to the centroid chosen for
it. The cluster with the greatest error is returned for subdivision.

RepValue FindWorstCluster(const Clusters& clusters,

 const Frequency& freq, const AxisWeights& aw)

{

 RepValue worstValue(FLT_MAX, FLT_MAX, FLT_MAX); // nonsense value

 float worstError = 0.0F;

 for (Clusters::const_iterator cluster = clusters.begin();

 cluster != clusters.end(); ++cluster)

152 Game Engine Gems

 {

 const float err = ComputeError(cluster->first,

 cluster->second, freq, aw);

 if (err > worstError)

 {

 worstError = err;

 worstValue = cluster->first; // remember the worst fit,

 // so we can split it

 }

 }

 return (worstValue);

}

Measuring Error in a Cluster

Computing the quantization error between a sample and its representative value v
can be done in a couple of ways if your data forms a vector field. RGB colors and (x, y,
z) points are vectors in space that form a metric space, meaning we can use simple
distance formulas. You have a choice of simple linear error or squared error. Linear
error allows for total deviation ɛ to be limited, without regard to how well distributed
the errors are across the axes of the sample. It seems too lenient, but is fast to compute.

𝜀𝜀 = �|𝑣𝑣 − 𝑥𝑥𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

𝑤𝑤𝑥𝑥𝑥𝑥

Interestingly, 4-component RGBA colors do not effectively act as a vector field
during rendering because a linear change in the alpha may cause unpredictable,
nonlinear changes to the final color due to blending. Alpha is not linearly independent
of RGB, in other words. That means simple Euclidean distances lose their meaning for
the alpha component. The best way I have found to deal with this is to give each scalar

Chapter 7 World's Best Palettizer 153

component a weight that is applied during the squared error analysis.

Even so, this technique is helpful because it affords greater control over the fitting
of data. Squared error strongly limits the deviation per axis, so that you can control the
importance of each scalar within a sample by weighting the deviation on each individual
with a factor si. This can be used to more heavily weight the Y′ luma component rather

than chrominance (CrCb), or to improve the z component of normals at the expense of
x and y. As you can see, squared error is a little more expensive to compute as well:

𝜀𝜀 = � ���𝑣𝑣𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑥𝑥�2 𝑠𝑠𝑥𝑥
2

2

𝑥𝑥=0

�
𝑛𝑛

𝑖𝑖=1

 𝑤𝑤𝑥𝑥𝑥𝑥

(Here, xij is the component j of the sample i.)

Listing 7.3: This function computes a squared error between the representative value of a cluster
and all of its samples, with a weight per component.

float ComputeError(const RepValue& v, const Samples& x,

 const Frequency& w, const AxisWeights& s)

{

 float err = 0.0F;

 for (size_t samp = 0; samp < x.size(); samp++)

 {

 // compute the error of a single sample

 float squaredErr = 0.0F;

 for (size_t j = 0; j < 3; j++)

 {

 const float linearErr = (v[j] - x[samp][j]) * s[j];

 squaredErr += linearErr * linearErr;

154 Game Engine Gems

 }

 const int sampleFrequency = w[x[samp]];

 err += squaredErr * sampleFrequency;

 }

 return (err);

}

Splitting a Cluster in Twain

At this point, we've identified the worst-fitting cluster. How do we go about trying
to split it? Ideally, the end result will be two clusters with roughly half the samples from
the original cluster in each new cluster. Also, we'd like to know that we're splitting the
cluster along its longest axis, so that when we divide it in half, it'll be bisecting the
longest line we can draw through the data points. This should separate the samples
naturally into two groups that are farthest apart from each other.

First, we need a way to determine the principle axis of a set of vectors. Principle
component analysis is the class of mathematical tools we're interested in. If we were
searching for a fully orthogonal set of axes, there are methods we could implement like
eigenvalue decomposition or singular value decomposition. However, this is more work
than necessary, since we're never looking for more than the primary axis of a cluster.
The primary axis of a set of points is the largest eigenvector of its covariance matrix,
which can be easily produced using the power method. This is basically done by
continually multiplying a vector against a matrix, normalizing it, and repeating the
process until it stops changing direction. The result is the dominant axis of the data in
the matrix.

Chapter 7 World's Best Palettizer 155

Listing 7.4: This computes a covariance matrix for the samples in this cluster.

// Power Method for eigenvectors is taken from

void SplitCluster(const RepValue& v, const Samples& x,

 const Frequency& w, const AxisWeights& s, Clusters& clusters)

{

 // compute cluster center based on the samples and their frequency

 RepValue center = ComputeCentroid(x, w);

 // count how many pixels this cluster represents

 uint numSamplesRepresented = 0;

 for (size_t i = 0; i < x.size(); i++)

 numSamplesRepresented += w[x[i]];

 // compute covariance matrix of samples

 float covMatrix[3][3] = {{0,0,0}, {0,0,0}, {0,0,0}};

 for (size_t outer = 0; outer < 3; outer++) // rows

 {

 for (size_t inner = 0; inner < 3; inner++) // cols

 {

 // only compute the upper part and diagonals, simply reflect

 // to the bottom part since the covariance matrix is symmetric

 if (inner >= outer)

 {

 // compute the covariance of each channel relative to each

 // other, across all samples.

 float deltaSum = 0.0F;

 for (size_t loop = 0; loop < x.size(); loop++)

 // weight by number of pixels this represents

 deltaSum += (x[loop][inner] - center[inner]) *

 (x[loop][outer] - center[outer]) * w[x[loop]];

156 Game Engine Gems

 const float covariance = deltaSum / numSamplesRepresented;

 covMatrix[inner][outer] = covariance;

 covMatrix[outer][inner] = covariance; // symmetry

 }

 }

 }

The above code computes a covariance matrix, which is required to perform the
power method for producing the first eigenvector of the data set. There are situations
where the power method will not converge—most specifically when the initial
eigenvector guess is orthogonal to the real dominant axis. In practice, this doesn't seem
to be a very common problem, and if it bothers you, change it to a better method. The
appeal in using the power method is that it's simple to implement and understand, and
it works pretty well [3].

Listing 7.5: This uses the power method with up to 10 iterations to determine the dominant axis of
the cluster.

// Power Method for producing the first eigenVector

float eigenVector[3] = {1.0F, 1.0F, 1.0F};

float tempVector[3];

float lastScalar = 0.0F;

// generally converges in ~3 iterations

for (size_t iteration = 0; iteration < 10; iteration++)

{

 // vector-matrix multiply the eigenVector into tempVector

 for (size_t multiI = 0; multiI < 3; multiI++)

 {

 // store this into the temp vector until the multiply is done

 tempVector[multiI] = 0;

Chapter 7 World's Best Palettizer 157

 for (size_t multiJ = 0; multiJ < 3; multiJ++)

 tempVector[multiI] +=

 eigenVector[multiJ] * covMatrix[multiI][multiJ];

 }

 // normalize the eigenvector (which is not the same as vector

 // normalization - a normal eigenvector has a max component of 1)

 float maxComponent = 0.0F;

 // find the maximum component in the new eigenVector

 for (size_t i = 0; i < 3; i++)

 if (fabsf(tempVector[i]) > maxComponent)

 maxComponent = fabsf(tempVector[i]);

 // perform the normalization and store into eigenVector

 for (size_t i = 0; i < 3; i++)

 eigenVector[i] = tempVector[i] / maxComponent;

 // figure out if we've converged or not

 const float absoluteRelativeError =

 fabsf((lastScalar - 1.0F / maxComponent) * maxComponent);

 if (absoluteRelativeError < 0.001F)

 break; // if our direction has not changed, stop iterating

 // move on to another iteration, and remember what the

 // eigenvalue was last iteration

 lastScalar = 1.0F / maxComponent;

}

Once the dominant axis has been determined, project all samples onto this axis
and split the set into samples on one side or the other of the plane perpendicular to the
dominant axis. In other words, assign all samples based on which side of the midpoint

158 Game Engine Gems

along the primary axis each sample falls. I suppose we could try using a more
sophisticated binning method here, but that would assume we have a realistic
representative value in each cluster worth measuring error against. We don't, and the
selection of such a sample is NP-hard—the problem of selecting a representative value
for a cloud of samples is essentially palettization! At this point, all that matters is that
the clusters are roughly equal in size and split along the dominant axis. These new
entries are placeholders—samples will be globally repositioned, and new representative
values will be computed shortly.

Listing 7.6: This code splits the cluster at the mid-section along the dominant axis, binning half the
samples into each new cluster.

// Taking any sample, subtract the centroid to get a relative vector

// from the center of the data. Then, take the dot with respect to

// the eigenvector. This results in a value that indicates how far

// along the dominant axis the point is.

Samples positiveSamples, negativeSamples;

for (size_t i = 0; i < x.size(); i++)

{

 // Since the dominant axis fits the largest range of samples,

 // and the centroid is generally in the center of the samples,

 // splitting there makes sense as a first step.

 float dotProduct = 0.0F;

 for (size_t j = 0; j < 3; j++)

 dotProduct += (x[i][j] - center[j]) * eigenVector[j];

 // Let's bin them out to positive and negative lobes.

 if (dotProduct > 0.0F) positiveSamples.push_back(x[i]);

Chapter 7 World's Best Palettizer 159

 else negativeSamples.push_back(x[i]);

}

RepValue palPositive, palNegative;

// compute the centers of the two new lobes

RepValue palPositive = ComputeCentroid(positiveSamples, w);

RepValue palNegative = ComputeCentroid(negativeSamples, w);

// stick both new palette entries into the clusters map

clusters[palPositive] = positiveSamples;

clusters[palNegative] = negativeSamples;

// make sure we get rid of the cluster that we've just split, too

clusters.remove(v);

}

So, there you have it! The above code will partition a set of data into two pieces
very well. Still, refinement is required to get a good global fitting to the data. Also, be
aware that the data structures shown are for educational purposes only—you can do far
better than O(logN) lookups everywhere.

Step 3 — Reassigning All Samples

Now that we have two smaller clusters where one large, poorly fitted cluster used
to be, there is no guarantee that every sample in these two clusters are closest to their
centroids. Mathematically speaking, they will be closest to one of the two centroids.
Further, samples that previously belonged to other clusters may be attracted to these
shiny new centroids because they're a closer fit than their current one. Global sample
allocation refinement reduces the measurable sample error, yielding a better palette.
Also, future iterations will measure the quality of clusters based on how "well-liked"

160 Game Engine Gems

they are by their samples. A cluster partitioner that never reallocated samples would
end up splitting the wrong cluster eventually, and overall would not fit the data well.

So, first, we clear out all the samples from their clusters. Then, to avoid infinite
loops, the first thing we do is iterate over all the empty clusters and find the closest
unallocated sample (using the error metric function) and assign it to the cluster. This
associates something with every palette entry, so we don't end up with unused spaces in
the palette.

Second, we iterate over all the samples and bin them out one-by-one to the closest
cluster, using the error metric devised above. At the end, we recompute the centroid of
each cluster so that the representative value is ideal for the samples it represents. This
process of reassignment could be repeated if desired, as it should be quite stable if the
algorithm is implemented correctly. If samples migrate to a couple of clusters, it
probably indicates a slightly imbalanced error metric.

Step 4 — Termination

Whenever the cluster count reaches the desired number of palette entries, stop
iterating. A final reassignment is effectively the final palettization of the data. In case
there are fewer unique samples than palette entries, the error metric should return zero
because there is a palette entry for every possible input. Another simple check is that
the cluster count did not change over the last iteration. In any of these cases, the
algorithm has completed, and the palette and palettized data can be written out.

7.5 Future Work

Error diffusion is an interesting technique that drastically helps heavily
compressed images. While definitely not appropriate for non-image data sets, when
using error diffusion, one might tweak the algorithm to intentionally reduce to 2N

Chapter 7 World's Best Palettizer 161

colors in the palette, then start attempting to find pairs of colors in the palette that
interpolate at 25%, 50%, and 75% to other colors in the palette. Those colors that can
easily be interpolated from existing palette entries could be removed from the palette
easily and induce relatively little error. Some care would need to be taken to ensure that
samples are kept with preference for those that appear most frequently in the source
image.

It is plausible that converting the colors to a more meaningful color space, one that
interprets the color channels differently by separating important data into one channel,
and less important data into other channels, the quantizer could be guided to prefer
accuracy on one axis more than others. One such specific color space is Y′CbCr . For

instance, the chrominance values Cb and Cr can be given lower weighting than the luma
value Y′, which is more perceptually relevant. This should help the overall contrast

and brightness control of the final image, at some expense to color range. In theory, it
sounds like a good idea and is a simple convolution applied to the input data.

7.6 Results

Figures 7.2 and 7.3 illustrate the differences between palettization using Photoshop
and palettization using the technique presented in this gem.

162 Game Engine Gems

Figure 7.2: (See also Color Plates.) (a) Grasshopper source image using 136,945 colors. (b)
Photoshop, 256 colors. (c) Photoshop, 16 colors. (d) WBP, 256 colors. (e) WBP, 16 colors. (©
Picstudio/Dreamstime.com)

Chapter 7 World's Best Palettizer 163

Figure 7.3: (See also Color Plates.) (a) Child source image using 112,024 colors. (b) Photoshop, 256
colors. (c) Photoshop, 16 colors. (d) WBP, 256 colors. (e) WBP, 16 colors. (© Pavla
Zakova/Dreamstime.com)

164 Game Engine Gems

References

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat."NP-hardness of
Euclidean sum-of-squares clustering". Machine Learning, Volume 75, Number 2 (May
2009), pp. 245–248.

[2] Charles Poynton."Color FAQ". http://www.poynton.com/ColorFAQ.html

[3] E. Garcia."Power Method (Vector Iteration)". http://www.miislita.com/information-
retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html#power-method

8

Chapter 8 3D Stereoscopic Rendering: An Overview of
Implementation Issues

Anders Hast

UPPMAX, Uppsala University

Overview

In recent years, there has been an increasing interest in the field of 3D display
technologies from the entertainment industry. Today, the movie industry is moving in
at a wide front as thousands of 3D stereoscopic movie theaters are being installed
worldwide and movie production companies produce their films also in 3D. In fact, a
new job title has emerged, the stereoscopist, in charge of making sure that the scenes can
be viewed without problems by the audience. Some of the things the stereoscopist must
deal with are explained in this gem. At the same time, many products for the home
audience have been developed at an affordable price range and sold to a growing
number of customers, including stereo capable TV sets and computer screens. This
gives the games industry a user base that will be familiar with watching 3D stereoscopic
content and who, in the future, might also be expecting their favorite games to be
released in stereoscopic 3D. This gem deals with the far most common type of
stereoscopic display, the plano-stereoscopic display. In contrast to other types of
stereoscopic displays, these are displays that work with two planar surfaces in order to

166 Game Engine Gems

achieve the impression of depth. We base the discussion around the importance of
designing the content to fit for a stereoscopic display and the different kinds of viewing
conditions that must be considered. Moreover, we discuss the mathematics that help us
compute these viewing conditions in order to be able to view the content without any
problems. And finally, we provide an overview of different types of display techniques.

We start by briefly familiarizing the reader with the field of stereoscopy and
different depth cues, covering some implementation details. We then iterate over some
issues that can arise when integrating stereoscopic display support into a game engine.
Even though most terms are explained herein, it might be valuable for the reader to use
the online glossary provided by [6].

8.1 Mechanisms of Plano-Stereoscopic Viewing

The concept behind plano-stereoscopic displays can be seen quite simply as the
creation of two planar views of the game, one for the left eye and one for the right. Then,
it is important to make sure that each eye sees only the view intended for that eye. The
processes involved can be seen as coding and decoding processes. In scientific
visualization, one says that stereoscopic images are aimed to help the viewer form a 3D
mental image of the data set. In video games, on the other hand, the aim is to give the
player a richer visual experience.

In order to create the sense of depth in a normal rendered game (i.e., a monoscopic
rendering), monocular depth cues are used in contrast to the binocular depth cues
discussed later. Some examples of monocular depth cues are the following:

• Occlusion occurs when objects closer to the viewer occlude objects that are further
away, and this is handled by the depth buffer algorithm.

• Parallax is an effect caused by the motion of the observer, and it creates the illusion
that objects close to the observer are moving by faster than objects further away. For

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 167

instance, to someone looking out the window of a moving train, trees in the
foreground appear to move by much faster than a distant hillside.

• The size of an object varies depending on the distance from the viewer due to the
perspective projection, where parallel lines converge at the horizon.

• Texture detail levels provide information about the distance to an object.

• Atmospheric effects such as scattering or haze make objects appear more gray in
relation to the distance between them and the viewer.

• Shading and shadows tell us about curvature and inter-object relationships.

• The proximity to the horizon also provides a depth cue since we know that the
horizon is far away, and objects close to the line of the horizon are thus perceived as
being far away.

What a stereoscopic display adds to these cues are the three binocular depth cues
known as accommodation, convergence, and retinal disparity. Convergence occurs when
we focus our view at an object in real life by rotating our eyes so that their lines of sight
intersect at the point of interest. At the same time, we apply pressure to the lenses in the
eyes in order to focus, and this is called accommodation. Under normal natural viewing
conditions, both accommodation and convergence correspond and are habitual, but
can be voluntarily put out of function by crossing the eyes. The third cue is retinal
disparity, and this pertains to the fact that we have two retinal images that fall on
different points of the two retinas. These are then merged by the brain and perceived as
a single image.

The virtual space that we define is divided by the screen into two regions called
view space and screen space. The volume between the viewer and the display is the view
space and the volume behind the display is called screen space. If we look at a point
lying at the same depth as the display surface onto which it projects, as shown in the left
image of Figure 8.1, then the homologous points on the display have zero parallax

168 Game Engine Gems

because they have no lateral displacement. The homologous points are identical features
in the stereo pair; thus, the same point in space is located on different places in the left
and right stereo image for nonzero parallax. Points that are lying in either view space
or in screen space have a lateral displacement and are then said to have either negative
or positive parallax. All three cases are shown in Figure 8.1. Converging at a point
behind the display surface causes the homologous points on the display to have positive
parallax. This point is said to be in screen space. Similarly, converging at a point in front
of the display surface causes the homologous points on the display to have negative
parallax, and this point is said to be in view space.

Figure 8.1: Three different types of parallax that can occur, from left to right— zero parallax,
negative parallax, and positive parallax.

Converging the eye's axes upon a virtual point at distance Dc supports the fusion
of the parallax image and stereopsis as shown in Figure 8.2, where stereopsis is the
mental and psychological process in visual perception leading to the sensation of depth
from two slightly different projections of the world onto each eye [1]. Keeping the visual
structure on-screen in focus requires accommodation at screen distance Ds. Usually,
accommodation is dominant, and for unaided viewing, we see one planar double image

javascript:PopImage('IMG_31','fig147_01_0_0.jpg','502','307')

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 169

in focus. With some training (crossing the eyes) we can converge at Dc and see a fused
3D image out of focus. Stereographic devices such as stereo glasses greatly support
image fusion and stereopsis at the cost of suppressed accommodation.

Figure 8.2: Convergence and accommodation in plano-stereoscopic displays.

Scale Considerations for 3D Stereo Images

To be able to create comfortable stereo images, we need to calculate the correct
perspective for the given setup and make sure that we stay within those limits [8]. Some
new situations arise from using a stereoscopic display. Mainly, scale considerations are
important when modeling the virtual view volume and creating the actual stereo pair.

When converging on objects at some certain distance, a point at a different
distance in the scene appears at the retina with some lateral disparity, independent of
convergence, as shown in Figure 8.3. The inter-pupillary distance (IPD) is the distance
between the eyes measured from the center of the pupils in each eye. The retinal
disparity is, according to Kalawsky [12], computed as the difference of the two angles
shown in the figure:

170 Game Engine Gems

• disp=θ1-θ2.

Figure 8.3: The two angles used to compute the retinal disparity.

A retinal disparity of more than 10° causes diplopia (double vision) and should, of
course, be avoided at all times.

The projection in stereoscopic displays does not scale linearly. The projection of
the two points that we fuse in our brain is very dependent on how far away we sit from
the screen and how big the screen is. As this point is projected onto our eyes, the
distance between our eyes is also a big impact factor. An average person has an eye
separation around 6.5 cm. In a more uncommon case, we can find people with up to 7.5
cm between their eyes, and the largest audience or user group, youngsters, can have as
few as 4.5 cm between their eyes. And it should be remembered that there is a great
variation among people, particularly on different continents [4]. Some good advice
would probably be for the IPD to be an adjustable variable set by the player in order to
give a comfortable stereo depth.

The physical limit on our depth perception is around 200 yards. This comes from

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 171

the fact that beyond this point, we don't get any convergence information at all since
our line of sight is more or less parallel. This important fact must be considered when
we create our virtual space, which we must design before we start to place objects in it.

Another practical issue in stereo graphics is that one should not exceed parallax
values of more than 1.5° visual angle in order to not feel uncomfortable [13], as shown
in Figure 8.4. The on-screen parallax (osp), measured in centimeters for different
viewing distances D, is shown in Table 8.1.

Figure 8.4: Parallax values greater than 1.5° visual angle should not be exceeded.

Table 8.1: Practical examples for on-screen parallax values.

D (cm) On-screen-parallax (cm)

50 1.31

75 1.96

100 2.62

200 5.24

300 7.86

400 10.47

Let us now look at some practical examples of how the virtual space depth is
limited due to the distance to the observer and the osp for a negative parallax situation,
as shown in Figure 8.5, where d is the virtual spatial depth. We have

javascript:PopImage('IMG_34','fig150_01_0_0.jpg','612','180')

172 Game Engine Gems

Figure 8.5: Negative parallax.

and solving for d gives us

𝑑𝑑 =
𝐷𝐷

𝐼𝐼𝐼𝐼𝐷𝐷/𝑜𝑜𝑠𝑠𝑜𝑜 − 1

Similarly, we can compute how the virtual space depth d is limited due to the
distance D to the observer and the osp for a situation with positive parallax as shown in
Figure 8.6. Tables 8.2 and 8.3 show some example values for the cases of negative and
positive parallax.

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 173

Figure 8.6: Positive parallax.

Table 8.2: Example for IPD=6.5 cm, for negative parallax.

D (cm) osp (cm) d d/D

50 1.31 8.38 0.17

75 1.96 17.40 0.23

100 2.62 28.72 0.29

200 5.24 89.24 0.45

300 7.86 164.17 0.55

400 10.47 246.83 0.62

javascript:PopImage('IMG_38','fig151_02_0_0.jpg','341','571')

174 Game Engine Gems

Table 8.3: Example for IPD=6.5 cm, for positive parallax.

D (cm) osp (cm) d d/D

50 1.31 12.61 0.25

75 1.96 32.47 0.43

100 2.62 67.47 0.67

200 5.24 829.45 4.15

300 5.76 1714.7 7.79

400 6.42 18612.4 75.97

Before you go ahead and work out the math for your game, there are some things
worth mentioning. First, one should notice that values for maximum allowable
disparity in the literature are expressed in different terms such as angular disparity, on-
screen parallax, etc. These values sometimes apply only as a rule of thumb. Lipton's
values appear to work for many VR applications, but they do not generally apply for all
viewing conditions. According to Lipton, compositing stereoscopic images is an art, not
a science. In the end what matters is that it looks and feels good!

The Basic Setup

Several propositions have been made on how to setup and render graphics for
stereoscopic displays as efficiently as possible. One way is to let the graphics driver
handle it. Some of the major graphics vendors have native support for stereoscopic
displays in their drivers where it creates the stereo pair. This does require that the game
is compatible with stereoscopic display in the form that the content is conformed for
these kinds of systems. And this limits your game to be used only for these specific
graphics card vendors in order to make your game work in stereo. The second, less
common alternative in the context of the game industry is to make a graphics command

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 175

interceptor [3]. This is an application that pretends to be the graphics driver and
intercepts all the graphics sent from an application. This can be stored and then in
theory be used to create the two stereo pairs. It is still required that the game create
content that is suitable for stereoscopic displays.

Usually, we would use the following simple approach to create the game in stereo.
while (user wants to play)

 doGameLogic()

 setupProjectionForLeftEye()

 render()

 setupProjectionForRightEye()

render()

In our game, we must set the virtual cameras to focus on the point of interest, as
shown in Figure 8.7, using the previously described math in order to ensure that the
parallax do not exceed the values for the allowable virtual space depth.

Figure 8.7: Camera setup for the 3D stereoscopic game.

javascript:PopImage('IMG_39','fig153_01_0_0.jpg','403','389')

176 Game Engine Gems

8.2 Stereo Techniques

Today, there are three different popular techniques of viewing graphics in stereo
on the market: anaglyph stereo (a.k.a. red/green stereo) [2], temporal multiplexing, and
polarization. We give a brief overview of these techniques and mention some pros and
cons as well as examine the coding and decoding process for each of them. An
important concept discussed is ghosting [14], which should be avoided as much as
possible. Ghosting means that one eye sees some of the content meant for the other eye.

Anaglyph Stereo

Anaglyph stereo is the simplest and cheapest way of delivering stereoscopic game
content to the players. Here, the left and right views are separated using wavelength
separation. The left view is simply encoded in the red channel and the right view is
encoded with complementary colors such as the green channel or both blue and green
(cyan). The player needs to wear the well-known red/green glasses in order to separate
the two images so that each eye sees only the image meant for it. Hence, the color of the
lenses in the glasses corresponds to the color channels that encode the picture, and this
is the reason for its name. The source is encoded into one image, which means that this
method can be used for a lot of different media, even in printed form.

The benefit of using this technique for games is that it does not require any special
display system, just a pair of cheap red/green glasses in order to be able to view the effect.
You've probably gotten a pair of cardboard glasses with acrylic lenses for free when you
bought you favorite comic magazine that had a special 3D centerfold issue.

One pitfall using this technique is that the player must calibrate the screen so that
the color matches the filtered glasses. Otherwise, the player sees a lot of ghosting with a
bad quality stereo effect. There is also a noticeable loss of color, as a lot of the color
information is being filtered out.

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 177

A more sophisticated version, sometimes called the super anaglyph technique, uses
spectral multiplexing, more often referred to as Interference Light Technology
(INFITEC) [9]. Spectral multiplexing works by dividing the visual spectra into six
narrow bands, two bands for each of the primary colors red, green, and blue. These
bands are then separated by filters and divided so that one band of each color reaches
each eye. That is, half of the red spectra reaches the left eye, and the other half reaches
the right eye, and so on. This system requires that two such filters of different type
performing this spectral multiplexing are mounted onto two projectors for the display,
as well as a pair of lightweight glasses that the player wears with one type for each eye.
Hence, the viewer clearly sees, if he shuts one of his eyes, that the color information
reaching the eye is slightly different compared to looking at the display using only the
other eye. Nonetheless, the color differences are less than that seen when using the
red/green glasses. Finally, the brain merges these two images into one without a
problem, and the picture looks as expected.

Temporal Multiplexing

This technique encodes the stereo pair by interleaving them time-wise. Hence, one
frame is being shown for the left eye while the right eye is being occluded by an active
shutter. Similarly, the next frame is visible to the right eye while the left eye is being
occluded. If this procedure is performed fast enough, the player perceives the
interleaved images as one continuous stream of images and gets the stereopsis right.
This technology cuts the effective frame rate in half, as it is necessary to render twice as
many images to get the same update rate. The occluding is performed by a pair of active
shutter glasses, usually a pair of LCD screens that is synchronized to the display. While
the display system shows a new frame, it sends a signal to the glasses to make the
shuttering. It is clear that this technique requires glasses that cost a lot more than the
simple red/green glasses. Furthermore, it cannot be used for printed media since, clearly,

178 Game Engine Gems

the display system has to have two sources for the output.

Polarized Light

Image separation can also be achieved by encoding each image using polarization.
The two images are superimposed onto the screen by the display system through a pair
of orthogonal polarizing filters. The viewer also wears a pair of glasses with
corresponding filters, which are relatively cheap compared to the active shutter glasses.
The polarization directions in the glasses correspond to those on the source. Thus, no
extra hardware is needed in the glasses, but once again it is necessary to have two
sources of light, and this technique cannot be used for printed media. The viewer must
not tilt his head when using this technique, as it results in severe ghosting. Alternatively,
circular polarization can be used in an attempt to avoid this problem. In all cases,
polarized filters dim the brightness of the source because the original content is filtered.

Summary

All three techniques previously mentioned (with the exception of the INFITEC
variation of anaglyph stereo) have become mainstream for playing stereo games. A pair
of anaglyph glasses has a very low price and does not require the player to invest in any
additional hardware to enjoy stereo games, but it produces the worst color
representation of the three mentioned techniques. However, the frame rate does not
have to be increased as for temporal multiplexing. Temporal multiplexing requires that
the player acquires the actual glasses and also has a source that can preferably emit 120
Hz, since the actual frame rate is cut in half with this technique. The current trend is
that more of this type of display and TV are coming out. The polarized light technique
is realized either as an actively polarized display or by having two projectors for the
really luxurious players. Regardless, the glasses are passive and thus generally cheaper.

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 179

8.3 Design Considerations for 3D Scenes

What really differs when creating content for a stereoscopic game engine
compared to a monoscopic one? There are some approximations that can look very bad
or very flat when ported to a stereoscopic display. We discuss some of them in this
section. It is also important to avoid some situations that can be unpleasant for the
player [10].

Culling can be a problem in the sense that we have two frusta to clip against.
Clipping against the monoscopic frustum would yield erroneous results, as this is
smaller than the combination of the left and right frusta. This problem can be handled
in at least two ways, either clip against the joint frusta from left and right at once or clip
separately against both frusta.

Stereoscopic rendering in its naive form, by rendering the scene twice from two
different perspectives, occurs at around twice the cost. Some effects do not need to be
calculated twice, for example, those that are view point independent. Some of the
shortcuts that are normally made in monoscopic rendering do not work in stereoscopic
rendering. If these visual effects are not gameplay critical, like glows around objects,
they can be turned off or replaced by similar object-based effects.

The offscreen buffers only need to be duplicated if they have some view-dependent
effect. This applies to shadow mapping and to those variants where the shadow map is
based on the setup of the view frustum. Many of the often used screen-space post
processing effects do not look good in stereo. One thing to be careful with is high
dynamic range (HDR) rendering. The contrast between left and right view is very
important, and if we apply tone mapping separately to left and right eye, we can
introduce a shift in contrast that induces strain to the player.

Billboarding is another commonly used effect that does not port well to

180 Game Engine Gems

stereoscopic displays. Billboards, which are 2D objects that always face the viewer, look
under certain conditions like two planar objects and not like a volumetric object as they
were intended. The same applies to impostors—they must be made eye-dependent to
not look completely flat on a stereoscopic display. This also incurs a performance
penalty since twice as many impostors must be rendered.

Backgrounds must, on a stereoscopic display, be placed at the proper depth so that
they appear to be as far away as backgrounds usually are. This is especially important
with skyboxes and skydomes, as they otherwise appear to be placed too close to the
player as if the sky is part of the ceiling. This also relates to the depth range in your scene.
If techniques are used that require different depth ranges, these also destroy the
stereoscopic sensation. Different depth ranges imply different depth in stereo, and
objects end up in unexpected places in the virtual room, causing them to look deformed.

The same effect can be seen with overlays such as graphical user interfaces (GUIs),
which are normally rendered in screen space without depth information. However, in
stereo this gives contradicting depth cues because the menu can be drawn over an object
that lies in view space, but the occluding cue implies that we should see the object. The
GUI should lie behind the object, but as consequence of the screen-space rendering, lies
at the wrong depth. One solution to this problem is to always put the GUI closest to the
player. Depending on how the virtual room is set up, this solution might shove the GUI
into the player's face so it must be done with great caution.

Other effects that traditionally take place in screen space, such as text labels, must
also be placed in the game world at the proper depth. This now means that they can also
be covered by objects in front of them, which might change how the actual game plays.
In combination with GUI and text labels, we often also have some kind of
representation of input devices. The standard mouse cursor rendered by the operating
system can often cause anomalies in different ways. If we are rendering the content to a
side-by-side buffer, which is a common technique to render 3D content, we only see the

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 181

cursor in one eye since both eyes share the same buffer. Seeing an object with only one
eye that should be seen by both eyes is really annoying and should always be avoided!

Thus, we have the same problems as with the GUI when the pointer is rendered in
screen space. It is therefore advisable to create a software cursor that is placed as an
object with depth in the world.

It is really tiring for the eyes, and the viewer even loses the 3D effect for a short
while, if the focus from one scene to another changes dramatically. If an object appears
very close to the viewer in one scene, then it can be dragged back a bit before the scene
changes, or rather, the focus needs to be pulled back to the place of focus for the next
scene. This is something that traditional games usually never bother with, but will
probably be a great challenge for stereo game developers. A similar problem occurs for
stereo films with subtitles, as they will definitely make the viewer tired since the focus
needs to be changed repeatedly. The viewer will probably end up concentrating on the
film without even bothering to read the subtitles.

Situations with contradicting depth cues in relation to occlusion can also arise
when objects move off the screen in view space. Now, the depth cue tells the player that
the object is in front of the screen, but when it comes close to the right or left edge of
the screen it disappears behind it. To make this so-called edge conflict a bit less apparent,
we can move the object slowly off screen or introduce virtual borders on the screen.
These would be two guard bands lying in depth closest to the viewer to prevent the
contradicting depth cues. This solution is known as floating windows and was used as
early as the 1950s [15]. It has so far not been used for computer games, but was recently
used for the Pixar film Up.

We also see a need for a greater lower bound of the accepted frame rate in a game
when migrating to stereo. People tend to experience jerkiness if the frame rate drops
below 60 FPS when viewing it in stereo, a far greater number than with monoscopic

182 Game Engine Gems

displays. Depending on what type of viewing device the player uses, we can also
experience problems with frame-sequential delivery of stereographical content.

8.4 Outlook

Using stereoscopic displays is a great way to increase the gameplay value in the
form of immersion. This is still somewhat of an unexplored field even though
stereoscopic displays have been used for a longer period of time in other fields such as
scientific visualization. The film industry has more experience than the game industry
with stereoscopic displays, and we are now starting to see more and more movies
created for these types of displays. When will the game industry follow in those
footsteps and release more games that are directly catered for stereo enabled devices?
So far, the majority of the games that are stereo capable are ports from monoscopic
games. The step from monoscopic to stereoscopic also gives us game developers a new
dimension to create more interesting games design-wise. After all, 3D stereoscopy is
regarded by the film makers as yet another important storytelling technique. The future
will hold many new design approaches, both from a pure rendering perspective and also
from a gameplay perspective. An interesting approach is to render the scene from one
virtual camera position and use the information in the depth buffer to generate a stereo
pair using Depth-Image-Based Rendering (DIBR) [7]. A simple example of a unique
gameplay experience available only in stereo could be the sniper scope common in
many games involving guns. The standard way of handling this is to render a circle in
the middle of the screen where the player sees the zoomed-in piece of the world. The
stereoscopic version could then, when the player zooms with the scope, black out one
eye and the player would also loose the stereopsis, giving more realism and immersion.

The future also holds other types of stereoscopic displays called auto-stereoscopic
displays. These displays function without glasses, but must render many more than two

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues 183

views [11, 5]. Even though the technique has been around for a long time, it still has not
been widely accepted because it has some drawbacks such as ghosting. Making sure that
your game engine is adopted for plano-stereoscopic displays is a step towards making
them work smoothly with auto-stereoscopic displays, and the guidelines presented in
this gem will help you to achieve this as a game engine designer.

Acknowledgements

The author wishes to thank Stefan Seipel, Uppsala University, and Martin Ericsson,
UPPMAX, Uppsala University, for contributing their material for this gem.

References

[1] Akiyuki Anzai, Izumi Ohzawa, and Ralph D. Freeman,"Neural Mechanisms for
Processing Binocular Information". Journal of Neurophysiology, Volume 82, Number 2
(August 1999), pp. 891–908.

[2] Anaglyph. http://en.wikipedia.org/wiki/Anaglyph_image

[3] Chromium. http://chromium.sourceforge.net/

[4] Neil A. Dodgson."Variation and extrema of human interpupillary distance".
Proceedings of SPIE Stereoscopic Displays and Virtual Reality Systems XI, 2004, pp. 36–
46.

[5] Neil A. Dodgson, J. R. Moore, and S. R. Lang."Multi-view autostereoscopic 3D
display". IBC (International Broadcasting Convention) 1999, pp. 497–502.

[6] International Stereoscopic Union. "International Stereoscopic Union: A Glossary of
Stereoscopic Terms". http://www.stereoscopy.com/isu/glossary-index.html

184 Game Engine Gems

[7] Julien C. Flack, Hugh Sanderson, Steven I. Pegg, and Simon Kwok."Optimising 3D
image quality and performance for stereoscopic game drivers". Proceedings of SPIE
Stereoscopic Displays and Applications XX, 2009.

[8] Graham R. Jones, Delman Lee, Nicolas S. Holliman, and David Ezra,"Controlling
perceived depth in stereoscopic images", Proceedings of SPIE Stereoscopic Displays and
Virtual Reality Systems VIII, 2001, pp. 42–53.

[9] Helmut Jorke and Markus Fritz."INFITEC—A New Stereoscopic Visualisation Tool
by Wavelength Multiplex Imaging". Journal of Three Dimensional Images, Volume 19,
Number 3 (September, 2005), pp. 50–56.

[10] Jukka Häkkinen, Monika Pölönen, Jari Takatalo, and Göte Nyman."Simulator
sickness in virtual display gaming: a comparison of stereoscopic and non-stereoscopic
situations". ACM International Conference Proceeding Series, Volume 159 (2006), pp.
227–230.

[11] Ken Perlin, Salvatore Paxia, and Joel S. Kollin."An Autostereoscopic Display",
Proceedings of the 27th Annual Conference on Computer graphics and Interactive
Techniques, 2000, pp. 319–326.

[12] Roy S. Kalawsky.The Science of Virtual Reality and Virtual Environments. Addison-
Wesley, 1993.

[13] Lenny Lipton.The CrystalEyes Handbook. StereoGraphics Corporation, 1991.

[14] Bernard Mendiburu. 3D Movie Making: Stereoscopic Digital Cinema from Script to
Screen. Focal Press, 2009.

[15] Raymond Spottiswoode and Nigel Spottiswoode.The Theory of Stereoscopic
Transmission and its Application to the Motion Picture. University of California Press,
1953.

9

Chapter 9 A Multithreaded 3D Renderer

Sebastien Schertenleib

Sony Computer Entertainment Europe

Overview

The 3D renderer remains one of the main components in most modern video
games. Usually, 3D rendering engines handle both the software and hardware pipelines
that are being exposed through 3D graphics APIs such as DirectX, OpenGL, or libgcm.
Nowadays, multi-core CPUs are widely available through game consoles and PCs. In
order to ensure that the GPU is continuously fed with data to process, it is critical that
3D renderers take full advantage of this new programming scheme by utilizing the
available processing cores. The workflow involved in creating a 3D picture on the screen
relies on preparing a list of commands that the GPU can interpret and execute.

Different approaches can be taken to decouple the CPU from the GPU. For
instance, one common technique consists of using a double buffer or triple buffer
scheme where the CPU builds the commands in frame N and where the GPU consumes
them in frame N+1, as illustrated in Figure 9.1. Alternatively, the GPU can consume the
data within the same frame in order to reduce the latency, as shown in Figure 9.2. One
potential drawback is that it might be difficult to avoid some GPU stalls early in the
frame. On the other hand, the memory footprint is much smaller compared to a double
buffering method, and this is particularly important on embedded systems with

186 Game Engine Gems

restricted amounts of memory.

Figure 9.1: In a double-buffering scheme, the GPU consumes the data a frame later than it is
generated by the CPU.

Figure 9.2: In this scheme, the GPU consumes the data soon after it is generated by the CPU.

9.1 The Memory Model

Regardless of how the display lists get created, a renderer might ultimately be
restricted by memory access speed, particularly when the graphics commands are
generated through a single thread. In recent years, the increasing performance gap
between GPU processing power and memory latencies has made it harder to feed the
GPU due to expensive data accesses in system memory, as shown in Figure 9.3. A typical
frame is subdivided into passes which handle, for instance, rendering shadow maps,
rendering the main scene, and rendering fullscreen post-processing effects. A unit of

javascript:PopImage('IMG_40','fig161_01_0_0.jpg','712','192')
javascript:PopImage('IMG_41','fig162_01_0_0.jpg','735','197')

Chapter 9 A Multithreaded 3D Renderer 187

work during rendering is often referred to as a batch and combines a set of render states,
shaders, and geometry elements as exemplified by the following listing:

//setting up a batch

setRenderStates(...);

bindTextures(...);

setShaders(...);

setShaderConstants(...);

setVertexBuffer(...);

setIndexBuffer(...);

drawCall(...);

Figure 9.3: Both the render thread and the graphics API are likely to access data in various
locations in memory.

Setting up a batch consists mostly of setting the addresses of various resources
needed to render an object. In the process of creating batches, the rendering code has

javascript:PopImage('IMG_42','fig163_01_0_0.jpg','551','426')

188 Game Engine Gems

to traverse the scene graph and is likely to access data in various locations throughout
main memory. This leads to a large number of cache misses. With inorder CPUs such
as the PowerPC chips found in the Xbox 360 and PlayStation 3 game consoles, this
could stall the processor for hundreds of cycles each time a cache miss occurs, greatly
impacting performance. This problem can be mitigated with out-of-order CPUs
because other instructions can potentially be executed while previous instructions are
waiting for data to be ready.

One may argue that it might be possible to reorganize the data structures to avoid
many of the cache-miss penalties. Indeed, adopting cache-aware or cache-oblivious
algorithms [2] helps, especially for the scene graph management, but unfortunately, the
graphics library also needs to access and manipulate some data on its own. Large
structures such as vertex buffers and index buffers are generally stored in the GPU's
local memory and so do not cause a problem, but many types of rendering state, such
as shader constants and texture configurations, need to be copied to the command
buffer each frame. Therefore, alternative solutions are needed to overcome the cache
limitations.

9.2 Building the Display Lists in Parallel

To ensure that the display lists are created in the shortest amount of time and in a
way that minimizes memory bandwidth limitations, our solution uses multiple threads,
and each is responsible for creating a subset of the rendering commands. However, this
is only possible when the 3D graphics library exposes such a level of granularity.
Thankfully, this is the case for Xbox 360, PlayStation 3, and DirectX 11 developers. In
the PlayStation 3 case, the Synergistic Processing Units (SPUs) of the Cell Broadband
Engine, being purely vector processors, excel with geometric processing. This means
they can easily perform graphical operations that help offload work from the GPU when

Chapter 9 A Multithreaded 3D Renderer 189

necessary. To create the display lists in parallel, a commonly found paradigm is to have
the primary command buffer reference display lists created inside secondary command
buffers. Those display lists are created in parallel on different execution units as shown
in Figure 9.4. Often, those secondary buffers handle a subset of the frame, and the
granularity could be anything from a single draw call to an entire pass.

Figure 9.4: The primary command buffer references multiple secondary command buffers,
each of which handles a subset of the frame.

By distributing the creation of the draw calls and their graphics states to multiple
command buffers in parallel, the overall latency for creating the display lists is
considerably reduced, which is particularly useful when using the scheme shown in
Figure 9.2. Moreover, this makes the 3D renderer more scalable to various
configurations of multi-core architectures and helps generate the thousands of draw
calls commonly found in modern video games.

javascript:PopImage('IMG_43','fig164_01_0_0.jpg','751','402')

190 Game Engine Gems

9.3 Parallel Models

3D renderers are strong candidates for parallelization because each draw call can
usually be treated as a standalone unit of work. Each of these tasks pairs a chunk of data
with some logic to operate on that data as shown in the following code listing.

int TaskMain(...)

{

 const int sourceAddr = ...; // source address of data

 const int count = ...; // number of elements

 const int dataSize = count * sizeof(gfxObject);

 // On some platforms like the PS3,

 // you may have to keep the data local to the executing unit

 gfxObject *buffer = (gfxObject *) Allocate(dataSize);

 DmaGet(buffer, sourceAddr, dataSize);

 DmaWait(...); // barrier to wait for the data

 // let's do some work

 for (int i = 0; i < count; ++i)

 {

 buffer[i]->update();

 }

 // On some platforms like the PS3,

 // you may have to store back the data to system memory

 DmaPut(buffer, sourceAddr, dataSize);

 DmaWait(....); // barrier to wait for the data

}

This model provides an efficient parallel paradigm, where each task can be queued
and consumed by available processing units, as shown in Figure 9.5. This also avoids

Chapter 9 A Multithreaded 3D Renderer 191

some of the issues of a more standard multithreaded approach, as the tasks provide a
more fine-grained subdivision and can cope more easily with uneven computation,
while a multithreaded architecture might end up waiting on a particular subsystem to
complete its tasks.

Figure 9.5: Tasks are stored in a queue and are consumed by available processing units.

9.4 Synchronizing the GPU and CPU

Synchronizing the GPU and CPU is more difficult to handle in a multithreaded
environment since multiple processing units might potentially want to access the same
data. To avoid any inconsistencies and race conditions, there is a need to employ
synchronization primitives such as mutexes or atomics. Usually, the GPU can report its
progress in a specific memory area. For instance, when a particular command has been
finished on the GPU, it can write a specified value, or "report", to a CPU-accessible

javascript:PopImage('IMG_44','fig166_01_0_0.jpg','672','407')

192 Game Engine Gems

location to indicate completion. Depending on the architecture, the CPU can either poll
for the report value or receive a system callback of some kind. Table 9.1 presents some
possible configurations.

Table 9.1: Synchronizing the GPU and the CPU.

CPU CPU Report Comments

… WaitReport(22) 0 GPU waits for report to be set

SetReport(22) WaitReport(22) 22 GPU is now unlocked

… … 22

WaitReport(33) CPU wait for report to be set

WaitReport(33) SetReport(33) 33 GPU set the report & unlock CPU

… … 33

SetReport(12) SetReport(15) ? Race condition

WaitReport(33) WaitReport(22) ? Deadlock

As with any multithreaded environment, special care is needed to avoid potential
race conditions or deadlocks since both the CPU and the GPU can generate and
consume data with unpredictable timing patterns.

9.5 Using Additional Processing Resources

In many games, the processing load is not fully balanced among the available
processing units. In these cases, it can be worthwhile to move some operations that are
ordinarily performed on the main CPU to other units that may have idle time each
frame. For instance, less intensive graphics applications can employ GPGPU (general
purpose GPU) code to offload physics or AI simulations from the CPU using
technologies such as CUDA. On the other hand, games willing to push the boundaries

Chapter 9 A Multithreaded 3D Renderer 193

of real-time 3D graphics might want to use spare CPU cores to perform some graphical
operations. If it so happens that those cores provide an interesting ISA (instruction set
architecture) with SIMD instructions such as the SPUs on the Cell processor, then it
becomes possible to offload the GPU for several kinds of operations such as the
following:

• Geometric processing, including procedural algorithms for creating terrain, trees,
decals, or subdivision surfaces.

• Physics and particle system updates.

• View frustum object culling or occlusion culling.

• Software rendering, in particular for occlusion queries and post-processing effects.

9.6 Reducing the Pressure on the Memory Bandwidth

The performance of both the CPU and GPU is improving at a very fast pace, but
memory speed is not following the same curve, and consequently, memory bandwidth
becomes more and more of a significant bottleneck. Therefore, it is important to
consider any technique that would help minimize the requirements on the memory
systems, even if it means using more CPU or GPU cycles. Some techniques that can be
used include packing the shader input and output attributes or using the tessellation
units of the GPU when available. On the CPU side, special geometry culling can avoid
sending up to 70% of primitives that end up being discarded by the GPU (backfacing,
off-screen, zero-size, and degenerate primitives). Another technique is to generate a
coarse depth buffer in software to perform occlusion queries instead of relying on the
GPU [1], as the latter can involve reading back from video memory, which is often a
slow path.

194 Game Engine Gems

9.7 Performing Graphical Operations in Parallel

So far, we have discussed some techniques that help to improve overall
performance, but we can go a step further and allow different processing units to work
in parallel to create the final image for a frame. Modern games use multiple render
targets within a single frame, and some of them are not accessed simultaneously by the
GPU. For instance, it is often possible to access a back buffer with another processing
unit such as an SPU to perform some post-processing effects while the GPU starts
rendering the next frame. This gives up to a full frame to render the effects, while
keeping the same frame rate, but at the expense of an additional frame of latency (see
Figure 9.6).

Figure 9.6: While the helper thread computes the post-effects, the GPU starts rendering the
next frame.

javascript:PopImage('IMG_45','fig168_01_0_0.jpg','789','459')

Chapter 9 A Multithreaded 3D Renderer 195

References

[1] Johan Andersson."The Intersection of Game Engines and GPUs: Current & Future".
Graphics Hardware 2008.

[2] Sebastien Schertenleib."An Effective Cache-Oblivious Implementation of the ABT
Tree". Game Programming Gems 5, Charles River Media, 2005.

10

Chapter 10 Camera-Centric Engine Design for Multithreaded
Rendering

Colt McAnlis

Blizzard Entertainment

Overview

Modern graphics APIs grant the ability to render in parallel by allowing the
creation of drawing commands on separate threads. As such, an advanced engine
design must have the ability to scale practically in order to take advantage of increased
core count for rendering. In order to accomplish this, an engine must solve the problem
of how to properly break up rendering tasks to be computed in parallel, but in order to
do that, it must first consider what the rendering subsystem is actually doing.

Modern graphics engines require multiple renderings of the same scene to aid in
the overall appearance of the final image. For instance, separate renders of a scene are
required to compute shadow mapping, run-time reflections, screen tiling (for
antialiasing on some game consoles), imposter generation, and offscreen particles. As
such, it makes logical sense that the 'camera' is the coarsest form of scene organization
directly tied to the visibility of an environment, given that in order to visualize any of
the concepts above, you must first define a view position, view direction, and eventually
a render target in which to store the results. As most views of the scene can be rendered

198 Game Engine Gems

independently of each other, we submit that grouping rendering workload by camera
view offers the best rendering workload organization to take advantage of multi-core
rendering.

In this gem, we present an engine design that scales to multi-core systems by using
the concept of a camera to separate parallel rendering jobs. To accomplish this, we
present two concepts. The first is an API-independent method of creating recordable
command buffers, a process that enables us to use parallel rendering on any device. The
second is an observation of how to distribute the creation of command buffers to
separate threads based upon the camera with which it will be used. Using these two
simple, yet powerful concepts can enable your engine to take advantage of multiple
cores for rendering with the least amount of pain possible.

10.1 Uses of Multi-Core in Video Games

With the boom of multi-core system availability, there's a mad dash to fill extra
cores with proper amounts of work to enhance the look of our products. The downside,
though, is that for developers on platforms where the hardware configuration can
change between two users (or even the same user), decisions must be made about how
to accurately scale out visual features and workloads on lower-end processors.

Typically, we run in parallel things such as particles, animations, physics, etc.,
which can have level-of-detail (LOD) built into them for low-end machines. This
concept, however, doesn't directly translate to the act of submitting commands to the
graphics API, a process which can easily incur a great deal of performance overhead.
APIs such as DirectX 9 and DirectX 10 suffer greatly from this, as it's not uncommon
for frequent calls of basic API functions to become a performance burden. This typically
causes the rendering phase to delay the processing of other systems in the architecture,
which if highly dependent on refresh rate, could cause problems. The cause of this issue

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 199

is the fact that we are required to submit commands to the device on the thread that
owns the device, which for most games, is the same thread on which the simulation
logic is run. For an in-depth examination of this process, please refer to [2], which
provides many significant and properly documented examples.

Figure 10.1: A standard game usage of parallel processing. Notice that only the update
information tends to be multithreaded.

Figure 10.1 displays an example frame setup for a given game engine. In this
example, the rendering device is owned by the primary thread, and as such, rendering
a scene blocks the frequency of simulation updates. As described, the only two systems
that use the thread pool are particles and animations, namely because of their ability to
be updated without memory contention, and the concept of scaling back accuracy or
LOD for these systems is trivial. The end of our frame goes through the process of
rendering shadow maps, reflections, the main view, and finally post-processing.

200 Game Engine Gems

Because of the fact that we must submit commands to the device on the thread that
owns it, most of the rendering commands are interwoven with logic-based operations
such as scene traversals, update logic, and the like. This type of rendering architecture
can make it difficult to maintain your engine and port it to other platforms.

To be fair, modern engines are not architected as poorly as shown in Figure 10.1,
and on average make much better use of thread pool availability. Some excellent
alternative threading architectures for various genres of video games, most of which
operate by offloading the render device ownership to a separate thread, are listed in [2].
This follows the observation that the simulation code is not required to update at the
same frequency as the graphics rendering, and offloading the rendering to a different
thread allows the simulation to continue on to process the next frame after submitting
a draw request.

Although this architecture is more common now, it is still far from ideal. Even
with the device submission being offloaded to a different thread, it would be beneficial
to have the ability to modify the drawing part of a frame such that it could make better
use of thread pool availability, thus balancing out your thread utilization more evenly.

10.2 Multithreaded Command Buffers

Modern rendering APIs operate internally with a data structure known as a
command buffer containing rendering information needed to process draw commands
at the device level. Typically, these command buffers are filled on your behalf by the
exposed rendering API and inserted into a command queue that is executed at a later
time. Because of this, the thread on which the rendering APIs are called incurs the
overhead of filling the command buffer, often absorbing CPU cycles in a way that has
historically been a common problem for modern games.

At the time of the writing of this gem, a few APIs allow the ability to create dynamic

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 201

command buffers or command lists on a thread separate from the one that owns the
device, a process that allows us to distribute the overhead of filling the command buffers
across the entire system. This represents an important step forward for rendering
engines, as we now possess the ability to more finely control the workload of our
rendering engine across our threading systems. The negative side, however, is that older
APIs do not have the same abilities, causing issues for engines that aim to be compatible
with multiple hardware levels.

To address this issue, Scheib [1] provided research showing a manner in which to
create an overloaded DX9 device that would mimic the same recording ability as the
newer APIs. To accomplish this, they overload the device APIs for the standard DX9
interface, and reroute them to their own system to composite a custom data structure
that resembles an internal command buffer. They then submit this command buffer to
the API on the primary thread owning the device using standard DX9 calls. On the
primary thread, we are still incurring the overhead of submitting API calls, however due
to the batched state, the overhead of API calls on the primary thread is reduced
significantly, providing additional performance increases. Scheib shows that even with
the overhead of submitting the buffer to traditional APIs, they still gain a significant
performance increase by compositing the rendering command data on a separate
thread.

10.3 Device-Independent Command Buffers

For legacy titles that would like to reduce the amount of API performance
overhead without too much code rework, the method of [1] works quite well, allowing
a drop-in solution that can benefit performance. For those titles with the luxury of
analysis and not being bound by crunch deadlines, it's worth pointing out that the
presented method can be considered overkill in terms of complexity, and short-sighted

202 Game Engine Gems

in terms of API differentiation. Analysis of your rendering systems will prove that a
subset of device APIs are often used, and more so that most of them occur in frequently
predictable patterns. As such, when generating an API wrapper to the device, you waste
time by offering support for functions that are not used by your title.

Logically, API calls should be hidden behind a wrapper interface, anyway, in order
to minimize the amount of code that would need to be reworked to support multiple
platforms and rendering APIs; as such, it makes sense that API calls for dynamic
command buffer recording should also be hidden. In this context, the presented method
of [1] is lacking, and a custom API-independent solution is required.

RenderCommand Structure

To this end, we present the concept of a RenderCommand, which contains the least
amount of information required to submit a draw call to the API in a device-
independent fashion. In effect, our RenderCommand structure is designed to mimic the
draw commands that modern APIs use internally, containing information about which
vertex buffer to use, the shading states, and how many polygons to draw. Depending on
the needs of your graphics engine, the layout and members of this structure can vary
greatly; however, in the interest of memory throughput, it's a good idea to keep this
structure as small as possible by quantizing as much state data as you can. The code in
Listing 10.1 shows an example of this process in that, rather than listing out explicit
states for blending, a single enumerated state is used.

Listing 10.1: A simple RenderCommand structure that contains basic information for a draw call.

struct RenderCommand

{

 ResourceHandle VertexBufferHandle;

 uint32 VertexDeclEnumIndex;

 uint32 NumTriangles;

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 203

 uint32 NumVerts;

 enum PrimType

 {

 kTriList = 0,

 kTriStrip

 };

 PrimType PrimitiveType;

 enum BlendType

 {

 kBlend_None = 0,

 kBlend_Standard,

 kBlend_Additive,

 kBlend_Subtractive

 };

 BlendType BlendType;

 // and so on...

}

The code in Listing 10.1 is a very stripped down, simplified version of what a full
production RenderCommand structure would look like. For bonus points in the memory
category, you could make a dynamically resizable version of this structure that holds
only delta states that change between this draw call and the previous one. In effect, this
matches closer to what the APIs use internally, but for the complexity involved, the
simple version presented above will suffice for the descriptive purposes of this article.

Device-Independent Resource Handles

By design, the RenderCommand structure must contain handles to device resources
that it will reference when executing the draw command. This exhibits a problem in

204 Game Engine Gems

that directly exposing device handles to the rest of the systems makes it difficult to port
the engine to other platforms, often causing rendering code to be spread out across the
entire project. As such, it's often useful to create managers that hold the actual device-
specific resource handles and offer a wrapped handle to the rest of the systems. These
ResourceHandle objects can help the process of porting the code to other platforms
and also grant you a buffer interface for doing asynchronous asset loading. A full
discussion regarding the issues of multithreaded resource creation and management is
beyond the scope of this gem. For more information, we refer the reader to [1] as an
introduction to the topic.

Filling a RenderCommand Structure

A given RenderCommand structure simply references device information that it
needs to execute. It does not, in contrast, actually load or own the device resources itself.
As such, another class, which we will call a RenderObject, is responsible for managing
the lifetime of a given resource (the actual resource itself should be owned by the
manager responsible for it at a lower level, as described previously). Before filling in a
RenderCommand structure, we assume that a given RenderObject structure has already
been loaded into your engine and has communicated with the device in such a way to
acquire proper rendering resources (such as vertex buffers).

Listing 10.2 describes the straightforward process of filling in a RenderCommand
structure with the information contained in a RenderObject structure. As described,
the RenderObject structure must contain information about how it needs to render,
and in our simple example, it copies its state over to the RenderCommand structure based
upon internal types and logic.

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 205

Listing 10.2: Filling a command buffer using generic handles. This is a great place to do additional
logic related to rendering setup, since it will be executed on the thread pool.

void RenderObject::fillCommandBuffer(RenderCommand *RC)

{

 // make sure we're running on the threadpool

 ThreadAssert(ThreadPoolThread);

 if (ObjectType == kTypeOpaqueMesh)

 {

 RC->VertexBufferHandle = mVBHandle;

 RC->VertexDeclEnumIndex = kVD_Mesh;

 RC->PrimitiveType = kTriList;

 RC->BlendType = kBlend_None;

 RC->NumTriangles = numTrisFromPrimType();

 RC->NumVerts = mNumVerts;

 }

 else if (ObjectType == kTypeTransparentMesh)

 {

 // and so on...

 }

}

It's worth noting here that we're not computing new state for the RenderObject
structure at this point; we're simply copying over state information relative to rendering
and assigning it into the structure. This is a highly critical point when discussing the
filling of these buffers on multiple threads, as this assignment pattern lends itself to
being free of memory contention. That being said, the fillCommandBuffer() function
is typically where your RenderObject structure would contain logic deciding how to
fill in a RenderCommand structure properly. This includes things like checking the
material to determine if we need to render with alpha blending. These types of logic and

206 Game Engine Gems

data access patterns can get complex at times, which is why moving them off to a
separate thread frees up cycles on your device thread.

Submitting a RenderCommand to the API

The act of submitting our custom RenderCommand structure to the API is overly
verbose, yet direct in execution. Since we are filling in our commands on other threads,
we must eventually resign ourselves to submitting the commands on the thread that
owns the device. In practice, this relates to converting the data in our RenderCommand
structure to information that we pass on to the rendering device APIs for execution. For
more recent APIs that support command buffer creation, the act of submitting to the
device requires a conversion from our custom command buffer to the desired device's
format before submission; whereas for older APIs that do not directly support
command buffer creation, the data must be directly fed to the device through API calls.
Listing 10.3 describes the executeDrawCommand*() function, which at this point is the
only function we've described that actually has direct access to the low-level rendering
device. We present here the DirectX 9 version of the command, where we must call the
API directly with our abstracted data types. It's worth noting that proper logic to
determine which version of executeDrawCommand*() to call is a higher-level engine
concept that is beyond the scope of this article; simple versions include a pointer to the
proper function to call, while more advanced versions overload the RenderControl
class entirely.

Listing 10.3: Submitting a RenderCommand structure to the API. This snippet of code is the only
function that can actually communicate directly with the device.

void renderControl::executeDrawCommandDX9(const RenderCommand *params)

{

 ThreadAssert(DeviceOwningThread);

 // Set vertex stream

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 207

 const VertexBufferContainer *vbc =

 mManagedVBs.getElement(params->vbHandle);

 DX9Dev->SetStreamSource(0,

 (IDirect3DVertexBuffer9 *) vbc->devicehandle, 0,

 vbc->perVertSizeInBytes);

 SetShaderData(params);

 SetRenderStates(params);

 // We use lookup tables for these mappings because it's faster.

 DX9Dev->SetVertexDeclaration(StaticVDeclHandles[params->vDecl]);

 D3DPRIMITIVETYPE type = PrimTypeMappingLUT[params->PrimitiveType];

 // do draw

 DX9Dev->DrawPrimitive(type, 0, params->NumTriangles);

}

Because our RenderCommand structure wraps up data and information in an
abstracted fashion, submitting that data to the API has to include redirection from the
ResourceHandle types to API handles that can be sent to the device. Listing 10.3 below
shows this process directly, where the vertex buffer manager must be given a
ResourceHandle object in order to receive the proper device handle.

10.4 A Camera-Centric Design

As we've discussed, a camera is the coarsest form of batching container used to
gather work for rendering. So far, we've described a system that allows us to fill in single
command buffers in a device-independent manner and submit them to the render
device at a later time. Now, we need to describe the proper manner of creating container
classes to aid with this process of batching RenderCommand objects as well as a larger

208 Game Engine Gems

engine design to scale easily with multiple threads.

Balancing Rendering Across Multiple Threads: Everything's a Camera

With the ability to render across multiple threads, the next step is properly utilizing
this feature and applying it to your threading system. This means you need to figure out
how to create job packets that represent rendering work to be done by filling in the
RenderCommand structures. At the most direct level, it makes sense to simply create one
job packet for each draw call that would occur in your scene, thus creating one
RenderCommand object per job. There are some issues with this, the foremost being that
modern engines typically group many draws together into a single command buffer so
that it minimizes API submission overhead and also takes advantage of things like
redundant render state filtering. Creating the draw commands independently of each
other robs us of the ability to take advantage of this optimization as the commands are
being created.

As such, it makes sense that we still need to create draw commands in such a way
to take advantage of state filtering by batching them sequentially. The difficult part
about this process is determining how to properly batch up your RenderCommand
objects to take advantage of this. Typically, most engine designs embrace command
buffer generation for objects being rendered into the primary view, but not for
subsequent things like rendering shadow maps. This results in an unbalanced
throughput with your rendering pipeline, being that submission of some draw
commands in one section are significantly faster than in others.

As an alternate view on the rendering process, a given frame of rendering in a game
can be described as a grouping of cameras that all contribute their view data to the final
scene. GPU-based shadow mapping is a great example of this concept in action, as it
defines the same camera and render-target system that your primary view does, dealing
with the same culling, redundant state overhead, and LOD. Reflective render targets,

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 209

offscreen particle buffers, and tiled antialiasing systems all exhibit the same
characteristics as well and can be described using the same concepts.

This effectively solves a problem for us. Because our scene can be described in
terms of cameras, we can use that idea to batch our RenderCommand generation, since
objects that render to the same target typically share some sort of similar state data (for
instance, shadow mapping requires all objects to use a different set of shaders).

Dividing our recording work by camera also provides us with a simple heuristic
for scaling back workflow based upon hardware features. For instance, if we know the
hardware is not fast enough to handle real-time reflections, cube-map cameras can be
avoided and not processed. Another example is tiled antialiasing, a process in which
subregions of the primary camera are used to generate larger images for portions of the
screen, which are then downsampled and combined to generate the final image. By
viewing each subregion as another camera render target, changes between antialiasing
levels simply result in addition or removal of cameras from the system.

Figure 10.2 shows how a given rendering pipeline can change by breaking up
command buffer generation by grouping them across cameras. Notice that the amount
of work done across multiple threads increases (decreasing our overall processing time
on the primary thread), but we add an additional API submit phase on the thread that
owns the device.

210 Game Engine Gems

Figure 10.2: A camera-centric design. We make better usage of the thread pool for additional
processing of rendering jobs.

For modern APIs, it's worth pointing out that the RenderCommand submit phase
in Figure 10.2 is significantly smaller because the command buffers are simply copied
from main memory to the device. This is possible due to the fact these APIs have their
own command buffer formats, and a translation from our custom RenderCommand
structure to the APIs version can be trivial. For older APIs that do not support
command buffers, you cannot simply translate the command buffer data to the device
format. Instead, you must communicate with the API through standard function calls
as you normally would, using the data in the RenderCommand structure, as shown in
Listing 10.3.

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 211

RenderView Structure

At this point, we seek to fill RenderCommand structures by logically dividing them
into rendering bins based upon the cameras to which they are visible. This is beneficial
to us, because it will allow us to group together these draw commands, which typically
will share some sort of state data (at the very least, they will all share the same camera
transform matrix).

A RenderView object defines a structure that contains a linkage between a camera
and its render target. More importantly, a RenderView object describes how a given
render target is filled, meaning it must contain a list of all objects that are to be rendered
to that given render target.

Listing 10.4 shows the comparison between a Camera structure and our
RenderView structure. Notice that in general, our render view is a superset of a camera,
taking into account additional graphics-related properties. In addition, note that we still
contain wrapped ResourceHandle objects to represent our destination render targets.
The RenderView structure also contains a list of RenderCommand pointers, which are
filled in by the RenderObject objects that are visible to this view.

Listing 10.4: Comparison between a Camera structure that the simulation would use, and a
RenderView structure.

struct Camera

{

 Float3 at, up, right;

 float aspectRatio;

};

struct RenderView

{

 Camera ViewCamera;

212 Game Engine Gems

 Frustum Frust;

 RenderTargetHandle DestColorRTT;

 RenderTargetHandle DestDepthRTT;

 List<RenderCommand *> RenderCommands;

 // this enumeration is very important as it defines the

 // order in which we submit render views to the API

 enum ViewType

 {

 kVT_ShadowMap = 0,

 kVT_ReflectionMap,

 kVT_MainCamera,

 kVT_PostProcessing,

 kVT_Count

 };

 viewType ViewType;

}

It's worth taking a moment to discuss the ViewType member of the RenderView
structure. Although we're compositing view information on multiple threads, we still
require a specific resource dependency as we're submitting primitives to the API. For
instance, we need to composite all the shadow map data before the primary view so that
objects that use those resources can rest assured that they are available for use. To
accomplish this, we must tag each RenderView object with a type so that later on, we
can submit the render views to the API in a proper, serial manner. We cover the
implementation of this process in more detail below.

Filling a Render View Structure

Creating and filling the render views is a very simple process, but still requires a
bit of understanding in the realm of threading, or at least an understanding of thread

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 213

pools. We refer back to a concept that a large portion of your environment can be
represented as a camera view, and as such, we must iterate over those object containers
to create our render views.

Listing 10.5 below covers the process of creating a new RenderView structure for
each camera type in your scene. This includes primary cameras, shadow maps,
reflection maps, etc. Once the views have been created, we create jobs for the thread
pool that fill in a given render view. At this point, the order in which the RenderView
objects are assembled is trivial since the data access patterns should already be thread
safe.

Listing 10.5: Creating all the render views for a given frame.

void renderControl::CreateRenderViews()

{

 List<RenderView *> currentViews;

 // for each primary camera (this includes portal cameras)

 for (int i = 0; i < mCameras.size(); i++)

 {

 currentViews.add(new RenderView(mCameras[i], kVT_MainCamera));

 }

 // for each shadow map!

 for (int i = 0; i < mLights.size(); i++)

 {

 if (mLights[i].IsShadowCasting())

 {

 currentViews.add(new RenderView(mLights[i].getShadowCamera(),

 kVT_ShadowMap));

 }

 }

214 Game Engine Gems

 // for each reflective target, etc...

 // now fill our render views with visible objects in a

 // threaded environment.

 for (int i = 0; i < currentViews.size(); i++)

 {

 Thread pool.QueueWork(procThreadedFillRenderView,

 currentViews[i]);

 }

 Thread pool.waitForWorkToFinish();

}

Once we've created our render views, we need to move forward with determining
what objects to render. To do this, we must first cull the environment against the
frustum of the camera owned by the render view, and then create a RenderCommand
structure for each object that's visible to this camera. These RenderCommand objects can
reside in a list structure that can be submitted sequentially to the API at a later time.
Listing 10.6 covers this process by describing the internals of a thread procedure that
creates the RenderCommand objects for a given render view. We assume that your object
manager has some ability to perform frustum culling, from which you then gather the
visible objects and have each one create a new RenderCommand structure.

Listing 10.6: Filling in RenderCommand structures should occur in a thread-safe manner, on a
separate thread.

void renderControl::procThreadedFillRenderView(void *DataPacket)

{

 RenderView *currView = (RenderView *) DataPacket;

 List<RenderObject *> objects =

 gObjectManager.giveFrustumCollision(currView->frustum);

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 215

 for (int q = 0; q < objects.size(); q++)

 {

 RenderCommand *RC = new RenderCommand();

 Objects[q]->fillCommandBuffer(RC);

 currentViews[i].RenderCommands.add(RC);

 }

}

It's once again important to point out that your data access model at this point
needs to be a read-only system that is thread safe. This means that while traversing your
object hierarchy to cull against a camera frustum, you should be doing so in a manner
that does not corrupt memory for code accessing the same data in other threads.

For the sake of thread safety and memory coherence, we allocate a new
RenderCommand structure for each instance of an object for each camera to which it is
visible. Our particular example uses this allocation metric for a few reasons, of which
one is the assumption that you will submit your RenderCommand objects in a thread
separate from the one they are allocated in, requiring frame-coherent memory. This can
be a very performance-heavy process, and as such, you should keep an eye on it in case
you need to implement a custom container that has faster allocation/deallocation speed.
If this does not match your particular threading system, then you may be able to get by
with a less dynamic model of RenderCommand allocation.

Submitting a Render View to the API

Submitting a render view is a fairly straightforward process. We must simply bind
the render target we're drawing to and then submit each of the commands that we have
in our list to the API for drawing. Listing 10.7 shows this process, and it adds an
additional set of data to indicate whether the render target should be cleared.

216 Game Engine Gems

Listing 10.7: Serializing render views requires us to resolve them in a manner that satisfies
dependencies.

void renderControl::serializeRenderViews(List<RenderView *> Views)

{

 for (int viewType = 0; viewType < Count; viewType++)

 {

 for (int i = 0; i < views.size(); i++)

 {

 if (Views[i].mViewType != viewType) continue;

 BindRenderTarget(Views[i]->renderTarget,

 Views[i]->DepthTarget);

 if (Views[i]->clearTargets)

 {

 ClearTarget(Views[i]->clearFlags,

 Views[i]->clearColor, Views[i]->clearDepths);

 }

 for (int k = 0; k < Views[i]->commands.size(); k++)

 executeDrawCommand(Views[i]->commands[k]);

 }

 }

}

In addition, Listing 10.7 highlights a very important aspect of serialization of
RenderView objects, namely that some RenderView objects are dependent on others,
so even though we're compositing them in multiple threads, we must still submit them
in a particular order to the API. For instance, you need to composite shadow maps
before you can use them in subsequent draw commands.

Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering 217

10.5 Future Work

We've presented in this article a means in which to offload the overhead of creating
command buffers to separate threads in a device API agnostic manner and use a
camera-centric design to ensure proper load balancing across multiple threads. As we
continue to take greater advantage of our rendering APIs for general purpose
computing, the ability to properly break up work based upon packets of rendering data
will continue to be important.

There are many project- and system-specific issues that are related to this process
that are beyond the scope of this article. For completeness however, we briefly describe
them here and leave the nitty-gritty details as an exercise for the reader.

Sorting and Instancing

RenderCommand objects provide excellent dynamic primitives for instancing
evaluation. Once all the objects for a render view have been culled and added to a
RenderCommand buffer, it is trivial at that point to define multiple types of sorting
operations that can organize the RenderCommand objects in the buffer in various ways.
Sorting by material index, vertex data, and object type often lends itself to a sorting
process that combines objects in the command buffer in such a manner that multiple
draw commands can be removed and a single command that uses instancing can be
used. And if you're generating your RenderCommand structures dynamically, you can
easily remove the original commands and insert the new instanced version. On some
hardware, this may be a more performance friendly method of sorting by data, as your
RenderCommand can take better usage of processor caches and reduce memory traversal
that would normally be required when walking your object list.

218 Game Engine Gems

Better Load Balancing

For those of you who are more proficient at threaded architectures, it's worth
noting that there's a modification to this process that can take greater advantage of your
threading architecture. The practical observation is that most camera-specific
RenderCommand generation processes exhibit uneven processing times. For instance,
smaller viewports or different types of API commands cause less work to be done. As
such, you can often wind up wasting processing time waiting for these unbalanced
threads to finish.

A more advanced solution is to modify your thread procedure to create one thread
job for each draw call, allowing each to be created on a separate thread, yet filling in the
camera data structure atomically. This usually means that your visibility culling for each
camera would need to occur on the primary thread so that you can ensure proper
allocation of space in your RenderCommand list. In order to take advantage of render-
state filtering, sorting, or instancing, you must perform these processes once all the
individual RenderCommand objects have been properly created.

The benefit of this modification is that you've now created smaller job packets that
can maximize your thread utilization over the course of your frame. This is very useful
on platforms where your thread operations can be interrupted by OS events. For a
further discussion on issues related to small-job packets in video games, please refer to
[3].

References

[1] Vincent Scheib."Practical Parallel Rendering with DirectX9 and 10". GameFest 2008.

[2] Lindberg, et al."Studies of threading success in popular PC games". Game Developers
Conference, 2008.

[3] Randall Turner."Saints Row Scheduler". Game Developers Conference, 2007.

11

Chapter 11 A GPU-Managed Memory Pool

Jeremy Moore

Black Rock Studio

Overview

The PlayStation 3 and Xbox 360 game consoles both contain unified memory
architectures in which the GPU can directly read to and write from CPU-accessible
memory. The graphics APIs on these consoles allow graphics data to be placed
anywhere in memory and provide the ability to directly create and manipulate GPU
resources such as textures or vertex buffers. With this low level of control, it is natural
to consider the construction of streaming systems in which we dynamically load, move,
and unload the resources that the GPU renders.

Streaming systems require that data is copied into memory where it can be
accessed by the GPU for rendering. One implementation option is to manage all data
copying with the CPU through a traditional memcpy() style API. Since the CPU and
GPU run concurrently, we need to take care to ensure that any data is in place when the
GPU is ready to read it. However, dealing with the synchronization overhead in
achieving this can be complex and error prone.

In this gem, we describe an alternative solution that uses the GPU to manage the
data copying. This approach ensures that the complexity and overhead of

220 Game Engine Gems

synchronizing GPU operations and data movement are vastly reduced. In addition, this
approach removes the CPU costs for data copying and, on our target platforms, allows
us to achieve higher data copying bandwidths.

To illustrate this approach, we outline the design of the GPU-managed memory
pool used for the streaming system implemented at Black Rock Studio. This system was
written for use on our racing game Split/Second.

Note that the ideas outlined here are mainly relevant for our target console
platforms that give a high degree of control over GPU resources. This isn't the case on
the PC platform where the graphics API necessarily abstracts such details away from us.

11.1 Background

Streaming Requirements

The game worlds in Split/Second are large and richly detailed. We cannot fit all of
the graphics resources used to render them within the fixed memory space of our target
console platforms. The solution for this problem is to dynamically stream into memory
only the resources needed to render the part of the world nearest to the camera.

Any streaming system consists of a number of components, such as the system to
load resources efficiently from disc or the logic for deciding which resources should be
loaded for a given camera position. In this gem, we concentrate only on the component
that manages the memory used to store loaded resources.

Resource Types

There are a number of graphics resource types that we use when rendering. In
decreasing order of typical size, some examples are textures, vertex buffers, index
buffers, shaders, and constant buffers. On current consoles, these resources are each
made up of two parts. First, there is a small fixed size component that is read by the

Chapter 11 A GPU-Managed Memory Pool 221

CPU, which we will call the "header". Second, there is a larger variable-sized component
that is read by the GPU, which we will call the "data". When submitting rendering
commands, the CPU parses the header to create entries in the GPU command buffer.
The command buffer then contains references to the data that the GPU reads when
executing the rendering commands.

In this gem, we only consider the management of the data that is read directly by
the GPU. The management of the header is a simpler problem. It generally involves
fixed sized objects for which a fixed sized object memory pool [2] is a common
approach.

Design Requirements

When gathering the requirements for the streaming system in Split/Second, we
decided that it should be able to dynamically load and unload any GPU resource from
disc. We wanted to avoid overly complex code for synchronizing the GPU with the
streamed resources. We also wanted to avoid the issues that can occur with memory
fragmentation when resources are continually allocated and deallocated.

11.2 The Memory Pool

At the core of our streaming implementation is the memory pool class. We define
our memory pool to be a block of contiguous memory along with the logic for
dynamically managing it. We use one or more memory pool objects to manage the
memory in which we store the GPU data resources for rendering.

A simple design choice would be to split the memory in our pool into a number of
blocks with predetermined but variable sizes. Each new allocation in the memory pool
would then use one of these blocks. This technique sidesteps fragmentation issues and
reduces the memory management logic to simply finding an appropriately sized empty

222 Game Engine Gems

block in which to place each asset.

This might be a good approach if we want to store only texture data, since textures
tend to take one of a finite combination of sizes and surface types. However, it would
waste memory when we cannot predict with good accuracy what range of block sizes
we need to support. Our design requirements state that we want to support other
resources in our memory pool such as vertex and index buffers. These have a large
potential range of data sizes. We therefore choose to avoid any assumptions about
resource size and do not use the fixed block approach to memory management.

Instead, our memory pool is made up of dynamically sized data "chunks". These
chunks can be of any size, and may contain data or be empty "free chunks". Although a
chunk may contain more than one item of data, each item of data is guaranteed to live
within a single chunk. This means that chunks can be moved around the memory pool
without breaking the internal consistency of the data that they hold.

Chunks need to be kept aligned according to platform restrictions. For example,
on one target platform, all vertex buffer data may need to be aligned to 128-byte address
boundaries. Often, there are different alignment restrictions for different resource types.
For simplicity, all chunks can be aligned to the size of the platform's maximum data
alignment restriction. For example if our target platform also requires that textures need
to be 1 kB aligned, then we might chose to align all chunks, including those containing
only vertex buffers, to 1 kB.

A memory pool starts out with no data in it and so contains a single empty chunk
that spans the entire memory in the pool. When we add new data to the memory pool,
we find an empty chunk that it fits inside. If the size of the new data is less than the size
of the empty chunk then we break the chunk in two. One chunk now contains the new
data, and the other is a free chunk containing any remaining unused memory. When
we remove a chunk from the memory pool, we mark it as empty and merge the resulting

Chapter 11 A GPU-Managed Memory Pool 223

free chunk with any adjacent free chunks. A typical sequence of operations is illustrated
in Figure 11.1.

Figure 11.1: A memory pool layout shown as it undergoes a number of allocate and free
operations. Note that each data chunk is kept to the alignment shown by the dotted lines. Also
note that after only a few operations, we have a fragmented memory pool.

11.3 Synchronization Issues

On our target platforms, the GPU executes a single command buffer stream
created by the CPU. The serial execution of these commands is the key to the memory
pool data movement remaining synchronized with GPU usage.

Consider the case where we have a texture in the memory pool that we use for
rendering, and then wish to move it within the memory pool before using it for
rendering a second time. This is a typical sequence of operations if we wish to support
defragmentation of the memory pool. If we use the CPU to manage memory copying,
then the CPU is forced to wait for any rendering that uses the texture to complete before
moving the texture. This is difficult to synchronize correctly and efficiently. It is also
intrusive in that we need to keep track of when the texture is used. Figure 11.2 shows
how this approach is executed on the CPU and GPU sides.

javascript:PopImage('IMG_48','fig192_01_0_0.jpg','705','266')

224 Game Engine Gems

Figure 11.2: Sequence diagram of memory movement within our memory pool using the CPU.
Note how the CPU needs to wait for an indeterminate length of time before moving the texture
data in the memory pool.

In contrast, if we use the GPU to manage memory copying, then the GPU executes
each movement of data in the memory pool as one action in a well-ordered stream of
commands. This guarantees that any rendering from the texture is complete by the time
we move the data. Conversely, it guarantees that the movement of texture data is
complete by the time that it is next used for rendering. Figure 11.3 shows how this
approach is executed on the CPU and GPU sides.

javascript:PopImage('IMG_49','fig193_01_0_0.jpg','652','452')

Chapter 11 A GPU-Managed Memory Pool 225

Figure 11.3: Sequence diagram of memory movement within our memory pool using the GPU.
Note that no complex synchronization is now needed between the CPU and the GPU and that
the CPU can queue the data transfer immediately.

11.4 The Staging Buffer

We have shown how the GPU can control memory movement within the memory
pool. We also need to deal with the case of moving new data into the memory pool.
When adding new data into the memory pool, we first search for a free chunk to place
it in. A chunk labeled as free in the memory pool may be in one of two states. It may be
genuinely empty or it may contain valid data that has been scheduled to be moved by
the GPU. In the latter case, any data copying into the chunk by the CPU would
potentially corrupt the data already in the memory pool. For this reason, only the GPU
should copy new data into the memory pool. To accomplish this, we initially load any
new data into a CPU-managed staging buffer and then use the GPU to copy this data

javascript:PopImage('IMG_50','fig193_02_0_0.jpg','654','449')

226 Game Engine Gems

into the memory pool.

This approach still requires some straightforward synchronization between the
CPU and GPU. In our implementation, the staging buffer is a ring buffer structure. The
ring buffer contains blocks of data that are awaiting upload to the memory pool. We
can only clear each ring buffer entry when the GPU has completed copying it to the
memory pool. To track the progress of copies into the memory pool, we use a fence
synchronization primitive to determine when the GPU has completed processing an
operation. The fence primitive is named and implemented slightly differently on
different platforms. On Xbox 360 and in OpenGL, it is called a fence, but in DirectX it
is called an event, and on PlayStation 3 it is called a label. On each of these platforms,
we can push a fence to the GPU command buffer and poll to see whether it has been
processed by the GPU. So for each ring buffer entry in our staging buffer, we place a
GPU fence after the GPU copy operation. Once per frame, we check the fences to
determine which copies are complete and clear the ring buffer entries accordingly. This
usage is illustrated in Figure 11.4.

Figure 11.4: Staging buffer usage illustrating the use of fences to determine when a GPU copy
is complete.

javascript:PopImage('IMG_51','fig194_01_0_0.jpg','804','326')

Chapter 11 A GPU-Managed Memory Pool 227

This staging buffer is part of the system that throttles data movement into the
memory pool. In our implementation, we stream new data into the staging buffer using
a background loading thread. If the data transfer into the memory pool stalls, either
because of lack of space or slow defragmentation, then the staging buffer fills up and
the background loading thread sleeps until space becomes available again.

11.5 Memory Pool Defragmentation

Since our memory pool contains many flexibly-sized chunks that are added to and
removed from the pool in no fixed order, it is prone to fragmentation. Using the GPU
to manage our memory pool frees us from concerns about multiprocessor
synchronization. This makes any defragmentation system simpler to implement.

In their GDC presentation Balestra and Engstad [1] briefly describe a very simple
algorithm that they employ to defragment streamed textures. Our initial
defragmentation logic used the same approach. First, we scan through the memory pool
from beginning to end until we find a free chunk. Then the next non-free chunk is
moved down to fill this free chunk. The free chunk created by the move is then
consolidated with any adjacent empty chunks and the scan is continued. This
defragmentation pass is run once per frame. To avoid high GPU workload in
pathological situations an upper limit is set on the total size of the data that each
defragmentation pass can copy.

The advantage of this algorithm is that given a sufficient data transfer budget, we
are guaranteed to tend towards a fully defragmented pool. A disadvantage is that
defragmenting a single empty block at the start of an otherwise full memory pool
requires an expensive copy of almost the entire memory pool.

In our naive implementation, we occasionally saw small spikes in the time it took

228 Game Engine Gems

to load data into the memory pool. These generally corresponded to the poor
defragmentation performance in the pathological case outlined above. A simple
solution that reduced these issues to a manageable level was to break the memory pool
into a number of regions. The defragmentation pass was then run for each region, but
it never defragmented across region boundaries. The region size was tuned by testing
to find the size that gave the best performance. This approach is illustrated in Figure
11.5.

Figure 11.5: Memory pool layout shown over a number of defragmentation passes. The shaded
areas represent allocated memory chunks. Splitting the memory pool into regions can reduce
the number of memory copies required during defragmentation.

11.6 Memory Pool Eviction

When the memory pool is oversubscribed in our streaming system, we often need
to select a candidate for eviction. Our memory pool logic implements this by assigning
each resource in the streaming system an "eviction metric". The calculation of this

javascript:PopImage('IMG_52','fig196_01_0_0.jpg','707','396')

Chapter 11 A GPU-Managed Memory Pool 229

eviction metric is determined solely by application-specific logic. Once per frame, we
evict the items in the memory pool with eviction metrics higher than the lowest eviction
metrics of resources that are not in the memory pool. Because the GPU serializes all
movement in the memory pool, eviction is simply a case of marking the evicted items'
chunks as being free and therefore ready for reuse.

When calculating a sensible eviction metric, it is important to consider the
possibility of cache thrashing. For an excellent summary of cache replacement
algorithms suitable for a streaming memory pool see [3].

11.7 Platform-Specific Considerations

PlayStation 3

The PlayStation 3 memory architecture is split into main (CPU) and local (GPU)
memory. The CPU has slow access to local memory, so it is important to place the
staging buffer in main memory even if the memory pool is placed in local memory.

The PlayStation 3 has a very straightforward API for carrying out GPU memory
copies. An important consideration is that some small care needs to be taken to ensure
that a GPU memory copy of a resource is fully complete before that resource is used for
rendering.

Xbox 360

The Xbox 360 has a unified memory architecture within which the GPU can be
used to copy memory using its memexport API. However, when using memexport, the
size of the memory pool that can be created and used is limited to 64 MB. Using the
GPU to copy memory on the Xbox 360 has the advantage of having a significantly
higher data throughput than when using the CPU. The GPU copies do bypass the CPU
caches, however, so care needs to be taken to ensure that coherency is maintained with

230 Game Engine Gems

any memory that the CPU directly accesses. For example, the staging buffer should
either be in some form of non-cacheable memory, or when writing to the staging buffer,
we should explicitly flush the cache lines down to memory.

11.8 Future Work

Multithreading Considerations

On our target platforms, an efficient method to balance the load of render call
submission across multiple processing cores is to generate one or more command
buffers per core that are combined and submitted to the GPU from a single main
rendering thread. When doing this and using a GPU-managed memory pool, we need
to take care that each core maintains a consistent view of the contents of the memory
pool. This should be straightforward if the memory pool is updated on the main
rendering thread at a time when no multithreaded submission is taking place, such as
at the start or end of a frame.

Non-GPU Extensions

The pattern used in this gem might be extended to other processors that have the
ability to move data in memory, but which operate concurrently with the CPU. The
PlayStation 3 SPU is an example use case. This group of high performance processors
can copy memory using a DMA and can be driven using an ordered queue of jobs. Many
PlayStation 3 graphics engines use resources that are read only by the SPU to create
input data for the GPU. The SPU could also be used to manage any memory pool
containing these resources so that streaming and defragmentation logic is simplified.

Better Defragmentation

Although the defragmentation system outlined here is effective for our purpose, in
the future, it would be worth researching the efficiency of other defragmentation

Chapter 11 A GPU-Managed Memory Pool 231

algorithms. A more efficient algorithm would have the advantage of reducing GPU
memory bandwidth and removing potential stalls when loading data into the memory
pool.

Acknowledgements

I'd like to acknowledge Balor Knight and Clément Dagneau, who both helped
develop and integrate some of the ideas in this article. I'd also like to remember my
colleague and friend Marek Romanowski who collaborated on some of these ideas, but
who sadly passed away during the period in which I wrote this gem.

References

[1] Christophe Balestra and Pål-Kristian Engstad."The Technology of Uncharted: Drake's
Fortune". Game Developers Conference, 2008.

[2] Paul Glinker."Fight Memory Fragmentation with Templated Freelists". Game
Programming Gems 4, Charles River Media, 2004.

[3] Colt McAnlis."Efficient Cache Replacement Using the Age and Cost Metrics". Game
Programming Gems 7, Charles River Media, 2008.

12

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid
Dynamics

Khalid Djado and Richard Egli

Centre Moivre, Université de Sherbrooke

This gem describes a method for simulating 3D fluid dynamics by using a
precomputed velocity field. First, we present a method for building the fluid velocity
field by using fluid dynamics. The fluid velocity field is computed on a fixed grid in the
fluid domain. Second, we present a method for simplifying the fluid dynamics by using
the precomputed velocities and some heuristics. The advantage to using a precomputed
velocity field is that it reduces the fluid dynamic computation time. The greater part of
the fluid dynamic computation is included in the velocity field computation process,
which can be performed offline.

12.1 Introduction

In recent years, much effort has been devoted to integrating real physics into
virtual worlds like those found in video games. Some of these techniques, such as
collision detection, are now very familiar to game developers and have been widely
integrated into game physics engines. This is not the case for fluids. Simulating fluid
dynamics well in virtual environments is generally a challenge. The primary difficulty

234 Game Engine Gems

is that there is no analytic solution to the Navier-Stokes equations describing the fluid
dynamics. In general, the computer graphics community uses a grid or particle system
to simulate a fluid. This gem uses an Eulerian 3D method on a grid to compute the fluid
velocity field.

One of the first studies on simulating fluids in computer graphics was done by
Foster and Metaxas [2]. Their work is based on a paper published by Harlow and Welch
[3]. A great summary of work on fluids can be found in a recent book [1]. We have
implemented the method of Foster and Metaxas [2] to compute the fluid dynamics, so
the fluid domain is discretized into voxels. The velocity field computation process is as
follows:

• The velocity source (or an exterior force), which we call the blower, is placed
inside the fluid domain (for example, on a selected face of a voxel).

• The fluid velocity on all voxel faces in the fluid domain is calculated by solving
the Navier-Stokes equations. These velocities can be stored in a file for future use,
or precomputed before the simulation starts.

The use of fluid dynamics in video games is very expensive in terms of computing
time. For greater performance, we precompute the physics of the fluid. The key idea is
to precompute the steps that take a long time. Once the time-consuming steps in the
calculation have been done, we use these data to simulate the fluid as if performing all
calculations in real time. The method is thus fast, while yielding realistic and acceptable
results for interactive applications such as video games. The opportunities afforded by
the approach used in this article are:

• Computation of the fluid velocity anywhere in the fluid domain using the
precomputed velocities.

• Simulation of a new velocity field using the precomputed velocities and heuristics
when the blower changes intensity and direction.

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics 235

• Simulation of the presence of a new object or the motion of an existing object in
the fluid domain using the precomputed velocities and heuristics. This allows
interaction between fluid and objects.

12.2 Velocity Field Computation

The velocity field represents the fluid velocity anywhere in the simulation domain.
To obtain the velocity field, we start by computing the velocity on faces and then the
velocity on voxels. Each voxel has six faces. The velocities on a voxel are shown by the
red lines and the velocities of faces by the green lines in Figure 12.1. We use the finite
difference method described in [2] to compute the fluid velocities on faces and voxels.
The blue line in Figure 12.1 represents the blower velocity introduced in the domain.
The Navier-Stokes equations are

(12.1)

∂𝑢𝑢
∂𝑡𝑡

+ 𝑢𝑢
∂𝑢𝑢
∂𝑥𝑥

+ 𝑣𝑣
∂𝑢𝑢
∂𝑦𝑦

 + 𝑤𝑤
∂𝑢𝑢
∂𝑧𝑧

 =
∂𝐼𝐼
∂𝑥𝑥

+ g𝑥𝑥 + 𝑣𝑣 �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2�

∂𝑣𝑣
∂𝑡𝑡

+ 𝑢𝑢
∂𝑣𝑣
∂𝑥𝑥

+ 𝑣𝑣
∂𝑣𝑣
∂𝑦𝑦

 + 𝑤𝑤
∂𝑣𝑣
∂𝑧𝑧

 =
∂𝐼𝐼
∂𝑦𝑦

+ g𝑦𝑦 + 𝑣𝑣 �
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑧𝑧2�

∂𝑤𝑤
∂𝑡𝑡

+ 𝑢𝑢
∂𝑤𝑤
∂𝑥𝑥

+ 𝑣𝑣
∂𝑤𝑤
∂𝑦𝑦

+ 𝑤𝑤
∂𝑤𝑤
∂𝑧𝑧

=
∂𝐼𝐼
∂𝑧𝑧

+ g𝑧𝑧 + 𝑣𝑣 �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑧𝑧2 �

(12.2)
∂𝑢𝑢
∂𝑥𝑥

+
∂𝑣𝑣
∂𝑦𝑦

+ 𝑣𝑣
∂𝑤𝑤
∂𝑧𝑧

= 0

236 Game Engine Gems

Figure 12.1: (See also Color Plates.) Voxel and face velocities.

Using Equation (12.1), Equation (12.2), and the product rule, we obtain

(12.3)

∂𝑢𝑢
∂𝑡𝑡

+
∂

∂𝑥𝑥
(𝑢𝑢2) +

∂
∂𝑦𝑦

(𝑢𝑢𝑣𝑣) +
∂

∂𝑧𝑧
(𝑢𝑢𝑤𝑤) = −

∂𝐼𝐼
∂𝑥𝑥

+ g𝑥𝑥 + 𝑣𝑣 �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2�

∂𝑣𝑣
∂𝑡𝑡

+
∂

∂𝑥𝑥
(𝑣𝑣𝑢𝑢) +

∂
∂𝑦𝑦

(𝑣𝑣2) +
∂

∂𝑧𝑧
(𝑣𝑣𝑤𝑤) = −

∂𝐼𝐼
∂𝑦𝑦

+ g𝑦𝑦 + 𝑣𝑣 �
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑧𝑧2�

∂
∂𝑡𝑡

+
∂

∂𝑥𝑥
(𝑤𝑤𝑢𝑢) +

∂
∂𝑦𝑦

(𝑤𝑤𝑣𝑣) +
∂

∂𝑧𝑧
(𝑤𝑤2)

= −
∂𝐼𝐼
∂𝑧𝑧

+ g𝑧𝑧 + 𝑣𝑣 �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑧𝑧2 �

These equations were used in Foster [2] and for implementation in this paper. The
quantities appearing in the equations are summarized as follows:

• u, v, and w are the velocities of the fluid on a face or a voxel in the x-, y-, and z-axis
directions, respectively.

mk:@MSITStore:C:%5CUsers%5Cgqmei%5CDesktop%5CeBooks%5CGame%5CGame%20Engine%20Gems%201%5CGame%20Engine%20Gems,%20Volume%20One.chm::/103.html%23ch12eq01
mk:@MSITStore:C:%5CUsers%5Cgqmei%5CDesktop%5CeBooks%5CGame%5CGame%20Engine%20Gems%201%5CGame%20Engine%20Gems,%20Volume%20One.chm::/103.html%23ch12eq02CE05F886-8BD5-4AFF-BB59-4958FAF30B3D

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics 237

• P is the internal pressure of the fluid (formally, P is the pressure divided by the
density of the fluid [4]).

• v is the kinematic viscosity.

• g is the acceleration of gravity.

Solving Equation (12.3) by the finite difference method gives the new velocity on
each face of the fluid domain, like the velocities in green shown in Figure 12.1. These
solutions can be found in [2] and in the source code provided with this gem. Note that
the components of the velocity for faces perpendicular to the three axes (x, y, and z) are
computed separately. Equation (12.2) is used to compute the null divergence of the fluid
velocity. This process leads to fluid velocity correction and, finally, the pressure update.

To ensure the stability of the solver, the time step Δt and velocities need to satisfy
the condition

(12.4) 𝑚𝑚𝑎𝑎𝑥𝑥 �𝑢𝑢
∆𝑡𝑡
∆𝑥𝑥

, 𝑣𝑣
∆𝑡𝑡
∆𝑦𝑦

, 𝑤𝑤
∆𝑡𝑡
∆𝑧𝑧

 � < 1

The steps taken by the solver are summarized in Listing 12.1.

Listing 12.1: Pseudocode of the full solver.

1 Simulate(const float& deltaT)

2 {

3 // Reset Velocities (Boundary and Blower)

4 ResetBoundaryAndBlower();

5 // Compute New Face Velocities on each voxel with Equation (12.3)

6 for (int voxelID = 0; voxelID < m_voxelNumber; voxelID++)

7 {

8 UofFaceVelocity(voxelID, deltaT);

9 VofFaceVelocity(voxelID, deltaT);

238 Game Engine Gems

10 WofFaceVelocity(voxelID, deltaT);

11 }

12 // Null Divergence step using Equation (12.2)

13 float maxDivergence = s_epsilon;

14 while (maxDivergence >= s_epsilon)

15 {

16 float currentMaxDivergence = -INFINITE;

17 for (int voxelID = 0; voxelID < m_voxelNumber; voxelID++)

18 {

19 float divergence = 0.0F;

20 ComputeDeltaPressure(voxelID, deltaT, &divergence);

21 if (divergence >= currentMaxDivergence)

22 {

23 currentMaxDivergence = divergence;

24 }

25 }

26 maxDivergence = currentMaxDivergence;

27 // Pressure Update

28 UpdatePressure();

29 }

30 // Compute Voxel velocities by interpolation

31 ComputeVoxelVelocities();

32 }

To simplify the fluid dynamics, we precompute the velocities of each face for a
single blower in different directions such as the positive x direction (see Figure 12.1).
These precomputed velocities can be stored in memory before using the simplified
simulation with heuristics. They could also be saved on disk and then loaded into
memory when needed.

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics 239

12.3 Physics Simplification

Using the full fluid dynamics solver as presented in Section 12.2, we can change
blower direction and move an object. In this section, we present heuristics that allow us
to simulate the presence and motion of an object and also to change the blower velocity
direction without using the full solver. We have two kinds of heuristics: the "obstacle
heuristic" and the "blower heuristic".

Obstacle Heuristic

With full calculation, an obstacle such as the black box shown in Figure 12.2
requires us to recalculate all quantities (velocities and pressure) in the fluid domain at
each time step. The presence of an obstacle in the fluid domain entails a distortion in
the velocity field. We simplify the full solver by not computing lines 4 to 11 in Listing
12.1 and by setting the number of iterations for the null divergence step. In fact, the
divergence minimization process from lines 16 to 29 is in some cases performed more
than 10 times when we set s_epsilon to 0.0001. In the case of the "obstacle heuristic" we
set the number of iterations to around 2 to make the process faster.

Figure 12.2: Images of the velocity field—(a) from the full solver; (b) from the obstacle
heuristic.

240 Game Engine Gems

The new velocity is computed by the interpolation described below. Let V be the
current velocity on a face, let Vp be the precomputed velocity on the same face, and let
c be a constant that is set to determine how fast the velocity field is returned to the
precomputed state when an obstacle is removed. Δt is the time step. The interpolation
is calculated using

(12.5) 𝐕𝐕 ← (1 − 𝑐𝑐∆𝑡𝑡)𝐕𝐕 + (𝑐𝑐∆𝑡𝑡)𝐕𝐕p

The computation of a null divergence field allows velocity modification around
the obstacle. Null divergence means that the fluid flowing in equals the fluid flowing
out. In fact, the velocities on the faces of the obstacle are zero, so the null divergence
ensures that the fluid on the neighboring voxels gets around the obstacle.

The "obstacle heuristic" steps are summarized in Listing 12.2.

Listing 12.2: Pseudocode of the obstacle heuristic.

1 SimulateObstacleHeuristic(const float& deltaT)

2 {

3 // Update Velocities using the Precomputation

4 // for each face of each voxel

5 FaceVelocity = (1.0F - cstObstacle * deltaT) * FaceVelocity

6 + (cstObstacle * deltaT) * PreCompFaceVelocity;

7

8 // Null divergence step in Precomputed Version

9 PreCompDivergence(deltaT);

10

11 // Compute Voxel velocities by averaging

12 ComputeVoxelVelocities();

13 }

The main advantage of using the "obstacle heuristic" is that we are able to add and

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics 241

move objects in the fluid domain, starting from the precomputed velocity field without
any obstacle. The results obtained with the heuristic (see Figure 12.2(b)) are similar to
those of the full Navier-Stokes solver (see Figure 12.2(a)), the advantage being that the
process is at least twice as fast.

Blower Heuristic

In the fluid simulation, any change in the blower velocity direction means all
quantities (velocities and pressure) need to be recalculated in the fluid domain at each
time step. We simplify the full solver to be able to simulate a dynamic blower.

By observing fluid simulation and changes in velocity, we notice that the velocity
is linear with the norm of the blower velocity. This means that if we double the velocity
for the blower, the resultant velocities on the other voxels are also doubled. We also
notice that when the blower changes direction, each velocity of a voxel changes
direction. To be able to simulate the same effect, we use precomputed velocities by
aiming the blower in the directions of the positive and negative coordinate axes. In this
article, we use blower directions only in two dimensions along the x- and y-axes, but
the method can be generalized to three dimensions. We have to precompute the velocity
field for the blower in directions(1,0,0), (-1,0,0), (0,1,0), (0, -1,0). Let θ be the angle
between the new blower direction and the vector (1,0,0). For θ between θ1 and θ2, we
proceed as follows:

• We identify θ1 and θ2 according to θ. For example, θ1 = 0 and θ2 = 90 if θ is between
0 and 90 degrees.

• We compute the interpolation weight f = (θ - θ1)/(θ2 - θ1).

• Vp1 is the precomputed face velocities for θ1.

• Vp2 is the precomputed face velocities for θ2.

• Each face velocity V is computed by V = (1 - f)Vp1 + fVp2.

242 Game Engine Gems

This heuristic is an approximation of the velocities yielded by the full solver
version. Figure 12.3 shows a comparison of velocities from the "blower heuristic" and
the full solver. The simulation using the heuristic is more than twice as fast as the full
solver.

Figure 12.3: Images of the velocity field—(a) from the full solver; (b) from the blower
heuristic.

12.4 Results and Discussion

To visualize the fluid velocity field, the velocities on voxels can be displayed as
vectors. We are also able to visualize the velocity field using unit vectors for the
direction and colors for the magnitude. For example, the velocity can be depicted in
blue for a high magnitude or red for a low magnitude. It is also possible to visualize the
velocity field with particles moving in the fluid domain. The Figure 12.4 shows
examples of visualization methods.

Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics 243

Figure 12.4: (See also Color Plates.) Images of the velocity field visualization using
heuristics—(a) with vectors without an obstacle; (b) with vectors with an obstacle; (c) with
unity vectors for the direction and color for the amplitude with an obstacle; (d) with an obstacle
and particles.

244 Game Engine Gems

To illustrate how the heuristics work, an implementation is provided on the
accompanying CD. The program is written in C++ and uses OpenGL to display the 3D
scene. The user must set the resolution of the fluid domain in terms of number of voxels.
In the case of Figure 12.4, the fluid domain has 17×17×17 voxels and the blower (in
blue) is at the voxel position (8, 8, 8). The grid in Figure 12.4 represents only the voxels
with z = 8 in the fluid domain since it is not easy to visualize the velocities with vectors
when all 17×17×17 voxels are displayed in a still image.

The full solver frame rate is around 172 FPS on a laptop equipped with an Intel
CPU T2400 at 1.83 GHz (dual core), with no parallelism in the simulation and
visualization processes. The same scene using "blower heuristic" (see Figure 12.4(a))
allows a frame rate around 392 FPS. We get 331 FPS with the two heuristics (see Figure
12.4(b)).

Some other optimizations are possible in a game physics context. For example, we
don't have to update the velocity field when the blower doesn't change and the obstacle
doesn't move for a certain time. The heuristics of this article can be simply added to an
existing game physics engine. The velocities can be precomputed at setup or loaded
from a file.

References

[1] R. Bridson.Fluid Simulation for Computer Graphics. AK Peters, 2008.

[2] N. Foster and D. Metaxas. "Realistic animation of liquids". Graphical Models and
Image Processing, Volume 58, Number 5 (September 1996), pp. 471–483.

[3] F. H. Harlow and J. E. Welch. "Numerical calculation of time-dependent viscous
incompressible flow". Physics of Fluids, Volume 8, Number 12 (1965), pp. 2182–2189.

[4] L. Quartapelle. Numerical Solution of the Incompressible Navier-Stokes Equations.
Springer, 1993.

13

Chapter 13 Mesh Partitioning for Fun and Profit

Jason Hughes

Steel Penny Games, Inc.

Overview

There are many situations in which an entire mesh is too much data to process—
whether it's a CPU, SPU, or GPU, there are performance limitations to consider. In
general, artists can do this work by hand, but human variability being what it is, a good
algorithm is faster and more reliable, and it improves artist productivity. A key trait of
a solid tools pipeline is its ability to free the artists from such burdens anyway. There is
a situation in almost any 3D game in which one mesh really would work better as many
smaller chunks that can be uniquely identified by the CPU and processed independently
from others.

Specifically, what kind of limitations do real-world games run up against?

• Rendering limitations, such as 8-bit or 16-bit indices limiting the number of vertices
that can be put into a mesh.

• Skinning limitations, such as the number of matrices a particular graphics chip is
able to express with shader constants, or perhaps older fixed function pipelines that
have a hard limit for the number of matrix indices per render call.

• Vertex unit bottlenecks, where a mesh has a few visible triangles but the majority
are being transformed and rejected by the clipping or backfacing unit. The

246 Game Engine Gems

bandwidth for transferring vertex data to the GPU is significant on certain
architectures, and the vertex shader is potentially a bottleneck as well.

• Virtually any other operation that has a per-triangle component could potentially be
improved by partitioning a mesh, especially if there are trivial rejections that could
be performed on those partitioned mesh fragments as a whole.

13.1 Desirable Algorithm Properties

Now that we have some understanding of when splitting meshes into reasonable-
sized chunks if helpful, is any partitioning mechanism good? If not, what are the ideal
properties of a battle-hardened mesh partitioner? The following is an unorganized list
of properties that I have determined through experimentation. Other properties may
exist for certain kinds of games. Certain differences in hardware may shift the
importance of some properties. Use your best judgement. Once you have a set of
properties, you can define an objective fitness metric for how well the algorithm is
performing. A fitness metric is crucial during the experimentation phase of algorithm
design because otherwise, determining whether changes are beneficial, detrimental, or
irrelevant is very time consuming and subjective.

Partitions Should Have Relatively Same-Sized Bounding Columes

Rationale: This improves culling performance since regularly sized partitions have
a more predictable overhead per partition. It also means a rasterized set of triangles is
likely to have a more consistent pixel throughput per draw call, allowing you to balance
per-partition work versus per-triangle work by adjusting the maximum bounding
volume.

Partitions Should Have Relatively the Same Number of Triangles and
Vertices

Rationale: This improves predictability of bandwidth and transfer times to

Chapter 13 Mesh Partitioning for Fun and Profit 247

dedicated processing units like the SPU by simplifying buffer management. It also
smoothes out performance spikes that may otherwise occur. It's good for leveling out
DMA transfer performance and improving the culled-to-rendered vertex ratio, which
reduces total bandwidth to the GPU.

The Number of Partitions Should Be Minimized Overall

Rationale: Management costs per partition are often high, so reducing the number
of partitions can only improve CPU performance. However, if this property is
overemphasized, you end up with a single partition containing all the geometry—no
partitioning at all.

The Number of Triangles Per Vertex in Each Partition Should Be Maximized

Rationale: A triangle requires three vertices. If you insert an adjacent triangle
(sharing an edge) in the same partition, the new triangle only adds one vertex. However,
the same adjacent triangle placed in a different partition creates three vertices.
Obviously, you want to ensure as much sharing of vertex data as possible. Some
duplication of vertex data is unavoidable because partitions naturally separate adjacent
triangles along their borders. Another way to describe this is minimizing the number of
borders between partitions, but that is more complicated to measure.

The Partitioner Should Guarantee a Solution With the Previously Described
Properties in Predictably Bounded Time

Rationale: As a practical matter, it is unacceptable for a partitioning to take more
than a few seconds because it hurts artists' ability to iterate. This demands a few data
structures, some diligence about avoiding any possibility of infinite loops, and some
thought to worst case scenarios that can "never happen".

248 Game Engine Gems

13.2 Lessons Learned

My experience with building mesh partitioners over several years led me down
many dead ends. Here are the biggest mistakes that I made, in no particular order, and
what made them poor choices.

• Mesh data is not to be trusted from any source. The likelihood of any assumption
regarding triangular mesh conditioning will be proven erroneous asymptotically
approaches certainty near important milestones. You can never have enough asserts
in your code to help diagnose these issues. In the end, my partitioner generated a
completely different topological representation of the triangle data to be used solely
for partitioning.

• Adding a triangle to an existing partition may add between zero and three new
vertices. Partitions hold references to triangles, which imply vertices. Do not try to
build partitions out of vertices, and construct the triangle set from them. You end up
with duplicated triangles, heavily disproportionate partitions, and all manner of other
issues. Since the important measurement of a partition is how many vertices are
inside it (and whether a new triangle adds any new vertices), you must compute final
vertex sharing before entering the partitioner.

• Do not build a partitioner that ever subdivides and merges the same partition in
alternation. Do one or the other, or do them in sequence, but do not alternate between
them. There are unforeseeable infinite loops, no matter how you craft the logic to
prevent it from happening.

• Merging partitions seems like a good idea, at first. Initializing one partition per
triangle and merging nearest neighbors was one method I discarded quickly. It is
essentially Kruskal's minimum spanning tree algorithm [1]. However, Kruskal's
approach cannot deal with user-defined limits for partitions, and breaks down
quickly once you have an entire population of partitions that are 51% of your
threshold. At this point, merging any two together means you have tiny leftovers that
need to be put somewhere else—this means merging and partitioning in alternation,

Chapter 13 Mesh Partitioning for Fun and Profit 249

causing infinite loops. Alternatively, you can leave those abandoned triangles for a
final partition, which invariably violates every important property described above.

• Assure that the fitness metric, a function responsible for measuring the current
"fullness" of a partition, is monotonically increasing as triangles are added. To
explain further, one algorithm I attempted worked by stealing triangles from
neighboring partitions when the neighbor was larger. The function that selects which
partition to steal from neglected to test the fitness of source and target partitions after
transferring a triangle. Certain parts of the data was compressed, and the size of the
compressed data depended on the range of values present in the data itself. Most of
the time, removing data from a partition caused its compiled packet size to shrink,
but occasionally, it would grow. As a result, a situation would occur where A steals
from B, then B steals from A, because whichever direction the triangle moved, the
sizes of final data packets would flip-flop.

• Design for clear termination conditions and steady performance. I tried partitioning
in which I randomly assigned triangles to partitions, then "shoved" poorly connected
triangles to adjacent partitions that would mutually benefit both partitions, either in
bounding volume reductions, packet size, or other metrics. It eventually degenerated
to a pseudo-linked list traversal per triangle, where one triangle is pushed to a
neighbor who is now violating some metrical limit and now must push a different
triangle to another adjacent partition, and so on. Even when marking a path behind
you to prevent loops, this tends to create huge linked list traversals through all
partitions and slows down dramatically as the partitions begin to converge.

• Use appropriate data structures, and find ways to cache or reduce lookups for
relationships that are costly to determine. My favorite is the simple adjacency list
representation for graphs. It is trivial to implement and very easy to use when
debugging algorithms.

• Ask the right question. For partitioning, that question is "Which triangle should I put
in the current partition now?". Many of my attempts were trying to decide "Which
triangle would be better to move from partition A to partition B?", "Which partition
should grow?", or "Which partition should shrink?". Involving relative decisions

250 Game Engine Gems

about the quality of partitions never materialized into a concrete and usable system
for partitioning.

• Always select the least-connected triangle as the starting point for new partitions.
This discourages your final partition from including a large number of scattered
"loner" triangles that no other partition wanted. The bounding sphere of such a
partition would be very large and the rendering very inefficient. This same rule
applies for triangle stripping algorithms, for the same reasons.

• Graph theory helps. Read up on Prim's algorithm [2]. It is a template for how this
mesh partitioner works. However, do not be tempted to follow Prim's algorithm
exactly as described. It suggests a priority queue for candidate edges, but does not
allow for reprioritizing adjacent nodes in the queue. Mesh partitions have potentially
shared data between triangles, so it is likely that each additional triangle added to a
partition changes the cost calculation for every candidate triangle. Placing triangles
into a queue with a fixed priority clearly does not work for this kind of problem.
This means you must scan the candidate triangle list every iteration and recompute
the cost to find the best candidate.

• It is very hard to come up with a local metric for packing faces into tight clusters. If
you put no restrictions on the closeness of triangles, you get long strips with large
bounding spheres that poorly approximate the partition. If you measure relative to a
centroid of faces, you get partitions that are very densely packed, but may not share
vertices well (imagine three parallel planes intersecting a sphere, where triangles
inside the sphere are close together, but have a lot of boundary vertices that are only
used once). Just after I'd solved this problem, I read a paper [3] that expressed the
same solution only a couple of years earlier. As with most discoveries, in retrospect,
the solution is obvious: minimize the distance between related triangle centers.

13.3 When Greedy Is Good

Since there are so many choices that can be made while writing a mesh partitioner,
it's surprising how simple a good one can be. Although the following is a greedy
algorithm, the results are initially good, and a simple refinement step afterwards can

Chapter 13 Mesh Partitioning for Fun and Profit 251

improve the partition efficiency by two to three percent. This section describes what I
found to work well.

Core Algorithm Overview

1. Select the least connected [1] unassigned triangle and initialize a new partition with
it. If no triangle is unassigned, partitioning is complete.

2. Collect all the unassigned triangles that are related [2] to the partition into a candidate
list. If no related triangles exist, perform an exhaustive search to find all minimally
connected triangles in the unassigned mesh, and consider them all to be candidates.

3. Iterate over the candidate list of triangles, temporarily adding each one to the
partition, and compute the fitness metric of the partition using an objective metric
function. Immediately reject any candidate triangle that causes a hard threshold limit
to be exceeded, e.g., vertex count limit, final packet size [3], maximum bounding
sphere.

4. If at least one candidate triangle was not rejected, select the triangle that yielded the
best fitness score for the partition and add it to the partition. Repeat from Step 2.

5. Otherwise, there are no triangles that can be added to the partition without exceeding
some threshold (bytes, number of triangles, bounding sphere, etc.). Consider this
partition full and start a new one. Repeat from Step 1.

Refinement

After all triangles have been assigned to partitions, the last partition is, on average,
half the size of the others. Even if this is acceptable, you might want to perform a
refinement on the partitions. You can typically run the refinement multiple times to
level out some of the partitions and reduce the total size of the solution. To refine, follow
these steps for each partition:

1. Determine if any triangle can be moved from partition A to partition B, where A
loses some vertices and B gains none. This is a clear win for memory and
performance, but may distort bounding volumes or cause the triangle counts across

252 Game Engine Gems

partitions to become unbalanced. This is demonstrated in step 14 of the graphical
walkthrough at the end of this gem.

2. Determine if any triangle can move from partition A to partition B, where B has
fewer triangles, even if the number of vertices remains the same in both partitions.
This balances the triangle count between partitions, but can be done to improve the
bounding volume or triangle count balance.

3. As a last resort, determine if any one vertex can be moved from partition A to
partition B, possibly moving several triangles to B in the process, so that A has fewer
vertices and triangles, and B has more. This is particularly useful when filling out
the final partition, because the final partition is on average half the size of the others.

[1]Least connected, in this context, means the unassigned triangle that has fewest
shared vertices with other unassigned triangles. This is a dynamic property of a triangle
during partitioning, and cannot be precomputed.

[2]Related, as defined for partitioning, is the statement that vertex data within a
partition could be shared with adjacent unassigned triangles. This property forms the
basis of candidate triangles for inclusion in a growing partition.

[3]In most modern graphics engines, a single batch of geometry sent to the GPU is
called a packet. The size of this packet is often hard-limited at a specific number of bytes
dictated by hardware or engine software design constraints.

13.4 Future Work

There are many interesting applications that a partitioner can be used for, once
you have it. What kinds of rapid backface culling could you do on a large mesh if you
partitioned it into triangles that all have relatively the same face normal with minor
deviations? The speedup from bulk triangle rejection could be dramatic, without having
to even transmit the triangles to the GPU.

Chapter 13 Mesh Partitioning for Fun and Profit 253

Similarly, there is value in extending the partitioner to pay attention to the size of
packets generated so that they fit inside a fixed memory size. This fixed size might make
data management simpler and faster because less bookkeeping is necessary, particularly
for an architecture like the PlayStation 3 where SPU memory is tight and double-
buffering DMA is mandatory for best performance. Dynamically managing memory is
slower and more complicated than using fixed buffers, so leaving room in your
implementation to extend the fitness function of a partition in arbitrary ways is valuable.

It is relatively straightforward to convert a partitioner into a hill-climbing
partitioner by remembering the order that faces were selected for inclusion in partitions,
perturbing that order slightly, and re-evaluating the results. By recording the best
sequence, you can use that as the basis for perturbations. It is unlikely to perform
significantly better than the core algorithm, but as slight as the improvements may be,
if squeezing out the absolute best performance and smallest memory footprint is your
objective, it may be worth doing.

13.5 Graphical Walkthrough

Here follows a simple graphical walkthrough that shows a partitioning into two
equal parts. The diagrams show unassigned triangles, assigned triangles, and candidate
triangles for inclusion in different shadings for clarity.

Step 1. A simple input mesh. Triangulation is not strictly
necessary, but your implementation will be far simpler, and
likely have fewer bugs and better performance as a result.

254 Game Engine Gems

Step 2. The top-left corner is one of the least connected
triangles in the mesh. We initialize the first partition with it.
Next, we discover the candidate triangles that have vertices in
common with the current partition. This is easily done by
creating a map of shared vertices to related triangles.

Step 3. Next, one of the candidates is selected based on
minimum bounding radius, distance between the candidate
triangle and its related triangle in the partition (related
through the sharing over vertices, not edge connectivity), or
other factors.

Step 4. Note how candidate triangles may not have edges in
common with the current partition.

Step 5. The newly added triangle was a good choice because
it minimized the bounding volume of the current partition
and only added one vertex.

Step 6. Let's pretend that we cannot add any new triangles
because some threshold has been reached. So, we search all
unassigned triangles, not necessarily for one that is near the
current partition, but for one that is least connected to the
remaining unassigned triangles in the mesh.

Chapter 13 Mesh Partitioning for Fun and Profit 255

Step 7. Here, we have selected a triangle that has only two
related triangles. Every other unassigned triangle is related to
at least three others. Remember, relationship is determined
by vertex data sharing, not edges.

Step 8. Two vertices are shared with this triangle, so adding it
only costs one new vertex.

Step 9. This triangle only requires one new vertex.

Step 10. This triangle increases the bounding sphere
minimally, and only adds one new vertex.

Step 11. This triangle adds one new vertex, and is closer,
measured by distance between face centers, to the related
triangle than the similar triangle not selected above.

256 Game Engine Gems

Step 12. This triangle adds one new vertex.

Step 13. We've run out of triangles to assign. They aren't
perfectly balanced, so let's run a refinement step to improve
the balance.

Step 14. During the refinement process, both partitions are
examined for triangles that would prefer to be somewhere
else, at no cost. Since that situation does not occur, the only
way to balance the partitions is to move Vertex 6 to the first
partition along with the triangle indices for Triangle 4.
Provided neither resulting partition fails to fit under their
thresholds (bounding radius, vertex count, triangle count,
etc.), this is done.
Note that Triangle 7 now can be moved freely between the
partitions without changing the vertex count. In this case,
there's no reason to do so since the partitions are balanced
and vertex count cannot be reduced.

References

[1] J. B. Kruskal."On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem". Proceedings of the American Mathematical Society, Volume 7,
Number 1 (February, 1956), pp. 48–50.

Chapter 13 Mesh Partitioning for Fun and Profit 257

[2] R. C. Prim."Shortest connection networks and some generalizations". Bell System
Technical Journal, Volume 36 (1957), pp. 1389–1401.

[3] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe."MultiChart
Geometry Images". Proceedings of the 2003 Eurographics Symposium on Geometry
Processing, 2003.

14

Chapter 14 Moments of Inertia for Common Shapes

Eric Lengyel

Terathon Software

Overview

The moment of inertia is an important quantity in rigid body dynamics. It's the
rotational analog of mass, and it describes how difficult it is to change the angular
velocity of an object. The formula used to calculate the moment of inertia I about a
particular axis is the integral

(14.1) 𝐼𝐼 = � 𝑟𝑟2𝑑𝑑𝑚𝑚
𝑣𝑣

14.1 Center of Mass

In a rigid body simulation, it is most useful to know the moment of inertia for an
object about its center of mass because that is the point about which the object naturally
rotates. In order to calculate the center of mass for an object, we first need to be able to
calculate the object's mass. If we consider an object to be composed of a large number
of particles, then it's total mass m is simply the sum of the masses mk of those particles:

260 Game Engine Gems

(14.2) 𝑚𝑚 = � 𝑚𝑚𝑘𝑘 .
𝑘𝑘

The center of mass C is found by taking the product of each particle's mass mk and
its position rk, summing over all particles, and then dividing by the total mass as follows:

(14.3) 𝐂𝐂 =
 ∑ 𝑟𝑟𝑘𝑘𝑚𝑚𝑘𝑘 .𝑘𝑘

∑ 𝑚𝑚𝑘𝑘𝑘𝑘

For a continuous volume, these summations become integrals. The mass m of an
object is found by integrating the object's density over its volume as follows:

(14.4) 𝑚𝑚 = � 𝜌𝜌(𝐫𝐫)𝑑𝑑𝑣𝑣 .
𝑣𝑣

Here, ρ(r) is a function that gives the density of the object at any point r inside its
volume, and dv = dx dy dz is a differential volume element. The density is often a
constant that we can move out of the integral, so we drop the function notation and
simply write it as ρ:

(14.5) 𝑚𝑚 = 𝜌𝜌 � 𝑑𝑑𝑣𝑣 .
𝑣𝑣

The center of mass C for an object is found by integrating the product of the
differential mass and its position and dividing the result by the total mass as follows:

(14.6) 𝐂𝐂 =
𝜌𝜌 ∫ 𝐫𝐫𝑑𝑑𝑣𝑣𝑣𝑣

𝜌𝜌 ∫ 𝑑𝑑𝑣𝑣𝑣𝑣

 .

Chapter 14 Moments of Inertia for Common Shapes 261

14.2 The Inertia Tensor

In a given coordinate system, every rigid body has three moments of inertia (one
for each of the coordinate axes) and three products of inertia. These six quantities form
what is called the inertia tensor for the rigid body. The inertia tensor is ordinarily
expressed as a 3×3 matrix, but it is symmetric, so there are only six distinct entries. For
a set of particles, the inertia tensor I is given by the formula

(14.7) 𝐈𝐈 = � 𝑚𝑚𝑘𝑘 �
𝑦𝑦𝑘𝑘

2 + 𝑧𝑧𝑘𝑘
2 −𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘 −𝑥𝑥𝑘𝑘𝑧𝑧𝑘𝑘

−𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘 𝑥𝑥𝑘𝑘
2 + 𝑧𝑧𝑘𝑘

2 −𝑦𝑦𝑘𝑘𝑧𝑧𝑘𝑘

−𝑥𝑥𝑘𝑘𝑧𝑧𝑘𝑘 −𝑦𝑦𝑘𝑘𝑧𝑧𝑘𝑘 𝑥𝑥𝑘𝑘
2 + 𝑦𝑦𝑘𝑘

2
�

𝑘𝑘

 .

where the k-th particle has mass mk and is located at the point (xk,yk,zk) [1]. This
formula can also be expressed as

(14.8) 𝐈𝐈 = � 𝑚𝑚𝑘𝑘
𝑘𝑘

(𝑟𝑟𝑘𝑘
2𝐄𝐄3 − 𝐫𝐫𝑘𝑘 ⊗ 𝐫𝐫𝑘𝑘) ,

where E3 is the 3×3 identity matrix, rk=(xk,yk,zk), and the operation ⊗ is the tensor
product giving

(14.9) 𝐫𝐫𝑘𝑘 ⊗ 𝐫𝐫𝑘𝑘 = �
𝑥𝑥𝑘𝑘

2 𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘 𝑥𝑥𝑘𝑘𝑧𝑧𝑘𝑘

𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘 𝑦𝑦𝑘𝑘
2 𝑦𝑦𝑘𝑘𝑧𝑧𝑘𝑘

𝑥𝑥𝑘𝑘𝑧𝑧𝑘𝑘 𝑦𝑦𝑘𝑘𝑧𝑧𝑘𝑘 𝑧𝑧𝑘𝑘
2

� .

The diagonal entries of the inertia tensor are the moments of inertia, and the off-
diagonal entries are the products of inertia. It is always possible to find a coordinate
system in which the products of inertia are all zero, and we call the axes of such a

262 Game Engine Gems

coordinate system the principal axes of inertia for a rigid body. In this gem, we only
compute the inertia tensor in a coordinate system aligned to the principal axes. The
orientation of these axes are usually evident due to symmetry in the object being
examined.

For a continuous volume in a coordinate system aligned to the principal axes of
inertia, the diagonal entries of the inertia tensor I are given by the integrals

(14.10)

𝐼𝐼11 = 𝜌𝜌 � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑣𝑣
𝑣𝑣

𝐼𝐼22 = 𝜌𝜌 � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑣𝑣
𝑣𝑣

𝐼𝐼33 = 𝜌𝜌 � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑣𝑣
𝑣𝑣

Transformations

Given an invertible 3×3 transformation matrix M that transforms points from one
coordinate system to another coordinate system with the same origin, an inertia tensor
I is transformed according to the formula

(14.11) 𝐈𝐈′ = 𝐌𝐌𝐈𝐈𝐌𝐌−1 .

It's useful to think of this product as first transforming in reverse from the new
coordinate system to the original coordinate system using M-1, applying the inertia
tensor I in that coordinate system, and then transforming back into the new coordinate
system using M.

To transform an inertia tensor into a coordinate system with a different origin, we
can use a formula known as the parallel axis theorem. Let s be an offset vector

Chapter 14 Moments of Inertia for Common Shapes 263

representing the difference between the new origin and the old origin. Then, starting
with the formula for the inertia tensor given in Equation (14.8), we replace r with r+s
to obtain

(14.12) 𝐈𝐈′ = � 𝑚𝑚𝑘𝑘[(𝐫𝐫𝑘𝑘 + 𝐬𝐬)2𝐄𝐄3 − (𝐫𝐫𝑘𝑘 + 𝐬𝐬) ⊗ (𝐫𝐫𝑘𝑘 + 𝐬𝐬)]
𝑘𝑘

 .

Expanding this summation, we have

(14.13)

𝐈𝐈′ = � 𝑚𝑚𝑘𝑘𝑟𝑟𝑘𝑘
2𝐄𝐄3

𝑘𝑘

+ �2 �� 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘
𝑘𝑘

� ∙ 𝐬𝐬� 𝐄𝐄3 + �� 𝑚𝑚𝑘𝑘
𝑘𝑘

� 𝑠𝑠2𝐄𝐄3

− � 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘⨂𝐫𝐫𝑘𝑘 − �� 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘
𝑘𝑘

� ⨂𝐬𝐬 − 𝐬𝐬⨂ � 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘
𝑘𝑘𝑘𝑘

− �� 𝑚𝑚𝑘𝑘
𝑘𝑘

� 𝐬𝐬⨂𝐬𝐬

This equation contains the two terms from original summation given by Equation
(14.8) for I, so we can substitute I for these terms to get

(14.14)

𝐈𝐈′ = 𝐈𝐈 + �2 �� 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘
𝑘𝑘

� ∙ 𝐬𝐬� 𝐄𝐄3 + �� 𝑚𝑚𝑘𝑘
𝑘𝑘

� 𝑠𝑠2𝐄𝐄3 − �� 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘
𝑘𝑘

� ⨂𝐬𝐬

− 𝐬𝐬⨂ � 𝑚𝑚𝑘𝑘𝐫𝐫𝑘𝑘
𝑘𝑘

− �� 𝑚𝑚𝑘𝑘
𝑘𝑘

� 𝐬𝐬⨂𝐬𝐬 .

Now, if the origin of the coordinate system coincides with the center of mass, then
the summation ∑kmkrk is equal to the point (0,0,0). This allows us to make a tremendous
simplification because all of the terms in Equation (14.14) containing this summation

264 Game Engine Gems

vanish. We therefore can use the formula

(14.15) 𝐈𝐈′ = 𝐈𝐈 + 𝑚𝑚(𝑠𝑠2𝐄𝐄3 − 𝐬𝐬⨂𝐬𝐬) .

to transform an inertia tensor from a coordinate system in which the center of
mass lies at the origin to another coordinate system in which the new origin lies at the
point s in the original coordinate system.

It's important to understand that Equation (14.15) can only be applied once to an
inertia tensor in order to move it away from the center of mass. After the inertia tensor
has been moved, it no longer uses a coordinate system in which the origin coincides
with the center of mass, but that condition must be true for Equation (14.15) to be valid.
However, it is possible to recover the inertia tensor I from the offset inertia tensor I′

if the vector s is known, once again

14.3 Derivation of Moments of Inertia

In this section, we derive the centers of mass and the moments of inertia for a
variety of common solid shapes. The inertia tensors are always expressed in a
coordinate system in which the origin lies at the center of mass and the coordinate axes
are parallel to the shape's principal axes of inertia.

Evaluating integrals of the type presented in this section by hand can be a very
tedious exercise. We recommend using a symbolic computation package such as
Mathematica to perform these calculations, should the reader feel so inclined.

Box

There are two common ways to describe the dimensions of a box, as shown in
Figure 14.1. One way is to place the origin at one corner and identify the full extents of
the box in all three directions by its length l, its width w, and its height h. The second

Chapter 14 Moments of Inertia for Common Shapes 265

way is to place the origin at the center of the box and identify the perpendicular
distances a, b, and c from the center to the faces in all three directions. We provide
formulas for both cases.

Figure 14.1: A box.

In the case that the box is described by the dimensions l, w, and h, the total mass is
m = plwh, and the center of mass is located at (l/2,w/2,h/2) The moments of inertia are
then given by the integrals

(14.16)

𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑙𝑙/2

−𝑙𝑙/2

𝑤𝑤/2

−𝑤𝑤/2

ℎ/2

−ℎ/2

=
1

12
𝜌𝜌𝜌𝜌𝑤𝑤ℎ(𝑤𝑤2 + ℎ2),

𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑙𝑙/2

−𝑙𝑙/2

𝑤𝑤/2

−𝑤𝑤/2

ℎ/2

−ℎ/2

=
1

12
𝜌𝜌𝜌𝜌𝑤𝑤ℎ(𝜌𝜌2 + ℎ2),

𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑙𝑙/2

−𝑙𝑙/2

𝑤𝑤/2

−𝑤𝑤/2

ℎ/2

−ℎ/2

=
1

12
𝜌𝜌𝜌𝜌𝑤𝑤ℎ(𝜌𝜌2 + 𝑤𝑤2).

266 Game Engine Gems

Substituting the mass m, this gives us the inertia tensor

(14.17) 𝐈𝐈box =

⎣
⎢
⎢
⎢
⎢
⎡

1
12

𝑚𝑚(𝑤𝑤2 + ℎ2) 0 0

0
1

12
𝑚𝑚(𝜌𝜌2 + ℎ2) 0

0 0
1

12
𝑚𝑚(𝜌𝜌2 + 𝑤𝑤2)⎦

⎥
⎥
⎥
⎥
⎤

 .

In the case that the box is described by the dimensions a, b, and c, the total mass is
m = 8ρabc, and the center of mass coincides with the origin. The moments of inertia are
then given by the integrals

(14.18)

𝐼𝐼11 = 𝜌𝜌 � � �(𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧
𝑎𝑎

−𝑎𝑎

𝑏𝑏

−𝑏𝑏

𝑐𝑐

−𝑐𝑐

=
8
3

𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐(𝜌𝜌2 + 𝑐𝑐2),

𝐼𝐼22 = 𝜌𝜌 � � �(𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧
𝑎𝑎

−𝑎𝑎

𝑏𝑏

−𝑏𝑏

𝑐𝑐

−𝑐𝑐

=
8
3

𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐(𝑎𝑎2 + 𝑐𝑐2),

𝐼𝐼33 = 𝜌𝜌 � � �(𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧
𝑎𝑎

−𝑎𝑎

𝑏𝑏

−𝑏𝑏

𝑐𝑐

−𝑐𝑐

=
8
3

𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐(𝑎𝑎2 + 𝜌𝜌2).

Substituting the mass m, this gives us the inertia tensor

(14.19) 𝐈𝐈box =

⎣
⎢
⎢
⎢
⎢
⎡
1
3

𝑚𝑚(𝜌𝜌2 + 𝑐𝑐2) 0 0

0
1
3

𝑚𝑚(𝑎𝑎2 + 𝑐𝑐2) 0

0 0
1
3

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)⎦
⎥
⎥
⎥
⎥
⎤

 .

Chapter 14 Moments of Inertia for Common Shapes 267

Cylinder

The dimensions of a cylinder are described by its height h and the two semi-axis
lengths a and b of its base, as shown in Figure 14.2. If the cylinder is circular, then a =
b.

Figure 14.2: A cylinder.

The center of mass lies at the point (0, 0, h/2), and the total mass of the cylinder is
m = ρπabh. The moments of inertia are then given by the integrals

(14.20)

𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎�1−𝑦𝑦2/𝑏𝑏2

−𝑎𝑎�1−𝑦𝑦2/𝑏𝑏2

𝑏𝑏

−𝑏𝑏

ℎ/2

−ℎ/2

= 𝜋𝜋𝜌𝜌𝑎𝑎𝜌𝜌ℎ �
1
4

𝜌𝜌2 +
1

12
𝑐𝑐2�,

𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎�1−𝑦𝑦2/𝑏𝑏2

−𝑎𝑎�1−𝑦𝑦2/𝑏𝑏2

𝑏𝑏

−𝑏𝑏

ℎ/2

−ℎ/2

= 𝜋𝜋𝜌𝜌𝑎𝑎𝜌𝜌ℎ �
1
4

𝑎𝑎2 +
1

12
ℎ2�,

𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎�1−𝑦𝑦2/𝑏𝑏2

−𝑎𝑎�1−𝑦𝑦2/𝑏𝑏2

𝑏𝑏

−𝑏𝑏

ℎ/2

−ℎ/2

=
𝜋𝜋
4

𝜌𝜌𝑎𝑎𝜌𝜌ℎ(𝑎𝑎2 + 𝜌𝜌2).

268 Game Engine Gems

Substituting the mass m, this gives us the inertia tensor

(14.21) 𝐈𝐈box =

⎣
⎢
⎢
⎢
⎢
⎡
1
4

𝑚𝑚𝜌𝜌2 +
1

12
𝑚𝑚ℎ2 0 0

0
1
4

𝑚𝑚𝑎𝑎2 +
1

12
𝑚𝑚ℎ2 0

0 0
1
4

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)⎦
⎥
⎥
⎥
⎥
⎤

 .

Pyramid

The dimensions of a rectangular pyramid are described by its height h and the
perpendicular distances a0 and b0 from the center of the base to two adjacent edges of
the base, as shown in Figure 14.3.

Figure 14.3: A rectangular pyramid.

In order to calculate the total mass and center of mass, we need to be able to express
the lengths a and b of a cross-section of the pyramid at any z-coordinate. Functions a(z)
and b(z) producing the base lengths at z = 0 and linearly tapering to zero at the apex
where z = h are given by

Chapter 14 Moments of Inertia for Common Shapes 269

(14.22)
 𝑎𝑎(𝑧𝑧) = 𝑎𝑎0

ℎ − 𝑧𝑧
ℎ

𝜌𝜌(𝑧𝑧) = 𝜌𝜌0
ℎ − 𝑧𝑧

ℎ
 .

The total mass is then given by integrating rectangular areas over the entire height
of the pyramid:

(14.23) 𝑚𝑚 = 4𝜌𝜌 � 𝑎𝑎(𝑧𝑧)𝜌𝜌(𝑧𝑧)𝑑𝑑𝑧𝑧 = 4𝜌𝜌
𝑎𝑎0𝜌𝜌0

ℎ2 �(ℎ − 𝑧𝑧)2𝑑𝑑𝑧𝑧 =
4
3

𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ
ℎ

0

ℎ

0

 .

The center of mass clearly lies on the z-axis, and we can calculate its z-coordinate
by multiplying a factor of z into the integrand for the mass to obtain

(14.24) 𝑚𝑚𝐶𝐶𝑧𝑧 = 4𝜌𝜌
𝑎𝑎0𝜌𝜌0

ℎ2 �(ℎ − 𝑧𝑧)2𝑧𝑧𝑑𝑑𝑧𝑧 =
1
3

ℎ

0

𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ2 .

After dividing by m, we find the center of mass to be located at the point (0,0, h/4).

Since the moment of inertia is best calculated in the coordinate system for which
the origin coincides with the center of mass, it is useful to consider a pyramid that
extends from -h/4 to 3h/4 in the z direction and redefine the functions a(z) and b(z) as

(14.25)
 𝑎𝑎(𝑧𝑧) =

𝑎𝑎0

ℎ �
3
4

ℎ − 𝑧𝑧�

𝜌𝜌(𝑧𝑧) =
𝜌𝜌0

ℎ �
3
4

ℎ − 𝑧𝑧�

270 Game Engine Gems

The moments of inertia are then given by the integrals

(14.26)

 𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧)

−𝑎𝑎(𝑧𝑧)

𝑏𝑏(𝑧𝑧)

−𝑏𝑏(𝑧𝑧)

3ℎ
4

−ℎ
4

= 𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ �
4

15
𝜌𝜌0

2 +
1

20
ℎ2�,

𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧)

−𝑎𝑎(𝑧𝑧)

𝑏𝑏(𝑧𝑧)

−𝑏𝑏(𝑧𝑧)

3ℎ/4

−ℎ/4

= 𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ �
4

15
𝑎𝑎0

2 +
1

20
ℎ2�,

𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧)

−𝑎𝑎(𝑧𝑧)

𝑏𝑏(𝑧𝑧)

−𝑏𝑏(𝑧𝑧)

3ℎ/4

−ℎ/4

=
4

15
𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ(𝑎𝑎0

2 + 𝜌𝜌0
2),

Substituting the mass m, this gives us the inertia tensor

(14.27) 𝐈𝐈pyramid =

⎣
⎢
⎢
⎢
⎢
⎡
1
5

𝑚𝑚𝜌𝜌0
2 +

3
80

𝑚𝑚ℎ2 0 0

0
1
5

𝑚𝑚𝑎𝑎0
2 +

3
80

𝑚𝑚ℎ2 0

0 0
1
5

𝑚𝑚(𝑎𝑎0
2 + 𝜌𝜌0

2)⎦
⎥
⎥
⎥
⎥
⎤

 .

Cone

The dimensions of a cone are described by its height h and the two semi-axis
lengths a0 and b0 of its base, as shown in Figure 14.4. If the cone is circular, then a0=b0.

Chapter 14 Moments of Inertia for Common Shapes 271

Figure 14.4: A cone.

As with the pyramid, we use the functions a(z) and b(z) given by Equation (14.22)
to express the dimensions of a cross-section of the cone at a height z above the base. We
can calculate the total mass of the cone by integrating elliptical disk areas over the entire
height of the cone:

(14.28) 𝑚𝑚 = 𝜌𝜌𝜋𝜋 � 𝑎𝑎(𝑧𝑧)𝜌𝜌(𝑧𝑧)𝑑𝑑𝑧𝑧 = 𝜌𝜌𝜋𝜋
𝑎𝑎0𝜌𝜌0

ℎ2 �(ℎ − 𝑧𝑧)2𝑑𝑑𝑧𝑧 =
𝜋𝜋
3

𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ
ℎ

0

ℎ

0

.

The center of mass clearly lies on the z-axis, and we can calculate its z-coordinate
by multiplying a factor of z into the integrand for the mass to obtain

(14.29) 𝑚𝑚𝐶𝐶𝑧𝑧 = 𝜌𝜌𝜋𝜋
𝑎𝑎0𝜌𝜌0

ℎ2 �(ℎ − 𝑧𝑧)2𝑧𝑧𝑑𝑑𝑧𝑧 =
𝜋𝜋

12
𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ2

ℎ

0

.

After dividing by m, we find the center of mass to be located at the point (0,0,h/4).

It is no coincidence that the centers of mass for the pyramid and cone are equal.
The same point is obtained for any two-dimensional base shape that linearly tapers to
a point at a height h. To calculate the moments of inertia in a coordinate system having
the origin at the center of mass, we again redefine the functions a(z) and b(z) as in

272 Game Engine Gems

Equation (14.25) and integrate from -h/4 to 3h/4. The moments of inertia are then given
by the integrals

(14.30)

 𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧)2

−𝑎𝑎(𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧)2

𝑏𝑏(𝑧𝑧)

−𝑏𝑏(𝑧𝑧)

3ℎ/4

−ℎ/4

= 𝜋𝜋𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ �
1

20
𝜌𝜌0

2 +
1

80
ℎ2�,

 𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧)2

−𝑎𝑎(𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧)2

𝑏𝑏(𝑧𝑧)

−𝑏𝑏(𝑧𝑧)

3ℎ
4

−ℎ
4

= 𝜋𝜋𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ �
1

20
𝑎𝑎0

2 +
1

80
ℎ2�,

 𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧)2

−𝑎𝑎(𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧)2

𝑏𝑏(𝑧𝑧)

−𝑏𝑏(𝑧𝑧)

3ℎ/4

−ℎ/4

=
𝜋𝜋

20
𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ(𝑎𝑎0

2 + 𝜌𝜌0
2).

Substituting the mass m, this gives us the inertia tensor

(14.31) 𝐈𝐈cone =

⎣
⎢
⎢
⎢
⎢
⎡

3
20

𝑚𝑚𝜌𝜌0
2 +

3
80

𝑚𝑚ℎ2 0 0

0
3

20
𝑚𝑚𝑎𝑎0

2 +
3

80
𝑚𝑚ℎ2 0

0 0
3

20
𝑚𝑚(𝑎𝑎0

2 + 𝜌𝜌0
2)⎦

⎥
⎥
⎥
⎥
⎤

 .

Chapter 14 Moments of Inertia for Common Shapes 273

Ellipsoid

The dimensions of an ellipsoid are described by the three semi-axis lengths a, b, and c, as shown in
Figure 14.5. In the case of a sphere, a=b=c. The center of mass is clearly located at the center of the
ellipsoid, and that is where we place the origin as well. The total mass of the ellipsoid is 𝑚𝑚 =
4
3

𝜋𝜋𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐

Figure 14.5: An ellipsoid.

To make the integrals simpler, we remap an ellipsoid to a sphere of radius one
using the following substitutions:

(14.32)

𝑢𝑢 =
𝑥𝑥
𝑎𝑎

𝑑𝑑𝑢𝑢 =
1
𝑎𝑎

𝑑𝑑𝑥𝑥

𝑢𝑢 =
𝑦𝑦
𝜌𝜌

𝑑𝑑𝑣𝑣 =
1
𝜌𝜌

𝑑𝑑𝑦𝑦

𝑢𝑢 =
𝑧𝑧
𝑐𝑐

𝑑𝑑𝑤𝑤 =
1
𝑐𝑐

𝑑𝑑𝑧𝑧

The moments of inertia for an ellipsoid are then given by the integrals

(14.33)
 𝐼𝐼11 = 𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐 � � � (𝜌𝜌2𝑣𝑣2 + 𝑐𝑐2𝑤𝑤2)𝑑𝑑𝑢𝑢 𝑑𝑑𝑣𝑣 𝑑𝑑𝑤𝑤

√1−𝑣𝑣2−𝑤𝑤2

−√1−𝑣𝑣2−𝑤𝑤2

√1−𝑤𝑤2

−√1−𝑤𝑤2

1

−1

=
4𝜋𝜋
15

𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐(𝜌𝜌2 + 𝑐𝑐2),

274 Game Engine Gems

𝐼𝐼22 = 𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐 � � � (𝑎𝑎2𝑢𝑢2 + 𝑐𝑐2𝑤𝑤2)𝑑𝑑𝑢𝑢 𝑑𝑑𝑣𝑣 𝑑𝑑𝑤𝑤
√1−𝑣𝑣2−𝑤𝑤2

−√1−𝑣𝑣2−𝑤𝑤2

√1−𝑤𝑤2

−√1−𝑤𝑤2

1

−1

=
4𝜋𝜋
15

𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐(𝑎𝑎2 + 𝑐𝑐2),

𝐼𝐼33 = 𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐 � � � (𝑎𝑎2𝑢𝑢2 + 𝜌𝜌2𝑣𝑣2)𝑑𝑑𝑢𝑢 𝑑𝑑𝑣𝑣 𝑑𝑑𝑤𝑤
√1−𝑣𝑣2−𝑤𝑤2

−√1−𝑣𝑣2−𝑤𝑤2

√1−𝑤𝑤2

−√1−𝑤𝑤2

1

−1

=
4𝜋𝜋
15

𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐(𝑎𝑎2 + 𝜌𝜌2).

Substituting the mass m, this gives us the inertia tensor

(14.34) 𝐈𝐈ellipsoid =

⎣
⎢
⎢
⎢
⎢
⎡
1
5

𝑚𝑚(𝜌𝜌2 + 𝑐𝑐2) 0 0

0
1
5

𝑚𝑚(𝑎𝑎2 + 𝑐𝑐2) 0

0 0
1
5

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)⎦
⎥
⎥
⎥
⎥
⎤

 .

Dome

The dimensions of a dome, or ellipsoidal hemisphere, are described in the same
way as a complete ellipsoid: by the semi-axis lengths a, b, and c, as shown in Figure 14.6.

Figure 14.6: A dome, or ellipsoidal hemisphere.

Chapter 14 Moments of Inertia for Common Shapes 275

The total mass of a dome is 𝑚𝑚 = 2
3

𝜋𝜋𝑎𝑎𝜌𝜌𝑐𝑐, and the z-coordinate of the center of mass can be calculated

using the integral

(14.21) 𝑚𝑚𝐶𝐶𝑧𝑧 = 𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐2 � � � 𝑤𝑤 𝑑𝑑𝑢𝑢 𝑑𝑑𝑣𝑣 𝑑𝑑𝑤𝑤
√1−𝑣𝑣2−𝑤𝑤2

−√1−𝑣𝑣2−𝑤𝑤2

√1−𝑤𝑤2

−√1−𝑤𝑤2

1

0

=
𝜋𝜋
4

𝑎𝑎𝜌𝜌𝑐𝑐2,

where we have again made the substitutions given in Equation (14.32). After
dividing by m, we find the center of mass to be located at the point (0,0,3c/8).

To calculate the moments of inertia for a dome, we can use a trick that makes the
integrals simpler. Instead of calculating the inertia tensor I about the center of mass, we
calculate the inertia tensor I′ about the origin at the center of the dome's base and

then use Equation (14.15) to find I when the offset is s=(0,0,-3c/8). The moments of
inertia about the origin for a dome are given by the integrals

(14.36)

𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑙𝑙/2

−𝑙𝑙/2

𝑤𝑤/2

−𝑤𝑤/2

ℎ/2

−ℎ/2

=
1

12
𝜌𝜌𝜌𝜌𝑤𝑤ℎ(𝑤𝑤2 + ℎ2),

𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑙𝑙/2

−𝑙𝑙/2

𝑤𝑤/2

−𝑤𝑤/2

ℎ/2

−ℎ/2

=
1

12
𝜌𝜌𝜌𝜌𝑤𝑤ℎ(𝜌𝜌2 + ℎ2),

𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑙𝑙/2

−𝑙𝑙/2

𝑤𝑤/2

−𝑤𝑤/2

ℎ/2

−ℎ/2

=
1

12
𝜌𝜌𝜌𝜌𝑤𝑤ℎ(𝜌𝜌2 + 𝑤𝑤2).

Substituting the mass m, this gives us the inertia tensor

276 Game Engine Gems

(14.37) 𝐈𝐈dome
′ =

⎣
⎢
⎢
⎢
⎢
⎡
1
5

𝑚𝑚(𝜌𝜌2 + 𝑐𝑐2) 0 0

0
1
5

𝑚𝑚(𝑎𝑎2 + 𝑐𝑐2) 0

0 0
1
5

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)⎦
⎥
⎥
⎥
⎥
⎤

 .

This is identical to the inertia tensor for an ellipsoid, but the mass m has been cut
in half. In order to obtain the inertia tensor dome Idome about the center of mass, we
must calculate

(14.38) 𝐈𝐈dome = 𝐈𝐈dome
′ + 𝑚𝑚(𝑠𝑠2𝐄𝐄3 − 𝐬𝐬⨂𝐬𝐬) .

With s=(0,0,-3c/8), we have

(14.39) 𝑠𝑠2𝐄𝐄3 − 𝐬𝐬⨂𝐬𝐬 =

⎣
⎢
⎢
⎢
⎡

9
64

𝑐𝑐2 0 0

0
9

64
𝑐𝑐2 0

0 0 0⎦
⎥
⎥
⎥
⎤
 ,

and so

(14.40) 𝐈𝐈dome =

⎣
⎢
⎢
⎢
⎢
⎡
1
5

𝑚𝑚𝜌𝜌2 +
19

320
𝑚𝑚𝑐𝑐2 0 0

0
1
5

𝑚𝑚𝑎𝑎2 +
19

320
𝑚𝑚𝑐𝑐2 0

0 0
1
5

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)⎦
⎥
⎥
⎥
⎥
⎤

 .

Capsule

The dimensions of a capsule are described by the height h of a central cylinder, the

Chapter 14 Moments of Inertia for Common Shapes 277

two semi-axis lengths a and b of the cylinder's base, and a third semi-axis length c
representing the extent of each hemispherical end cap in the direction perpendicular to
the cylinder's base, as shown in Figure 14.7.

Figure 14.7: A capsule.

The total mass mcapsule is given by the sum

(14.41) 𝑚𝑚capsule = 𝑚𝑚cylinder + 2𝑚𝑚dome ,

where mcylinder=ρπabh is the mass of the central cylinder, and 𝑚𝑚dome = 2
3

𝜌𝜌𝜋𝜋𝑎𝑎𝜌𝜌𝑐𝑐 is

the mass of a single hemispherical end cap. Due to symmetry, it is clear that the center

of mass lies at the center of the cylindrical portion of the capsule.

We can calculate the inertia tensor capsule Icapsule by combining the inertia tensors
of the cylinder and dome in the proper manner. With respect to an origin located at the
capsule's center of mass, the centers of mass for the hemispherical end caps lie at the z-
coordinates

(14.42) 𝑧𝑧cap = ± �
ℎ
2

+
3
8

𝑐𝑐� .

278 Game Engine Gems

Using the offset formula given by Equation (14.15) with s = (0, 0, zcap), we can
transform the inertia tensor for a dome into the capsule's coordinate system to obtain

(14.43) 𝐈𝐈cap = 𝐈𝐈dome + 𝑚𝑚dome

⎣
⎢
⎢
⎢
⎡

9
64

𝑐𝑐2 +
3
8

ℎ𝑐𝑐 +
1
4

ℎ2 0 0

0
9

64
𝑐𝑐2 +

3
8

ℎ𝑐𝑐 +
1
4

ℎ2 0

0 0 0⎦
⎥
⎥
⎥
⎤
 .

Doubling this to account for both end caps and adding it to the inertia tensor for
a cylinder gives us

(14.44)

 �𝐈𝐈capsule�
11

=
2
5

𝑚𝑚dome(𝜌𝜌2 + 𝑐𝑐2) +
3
4

𝑚𝑚domeℎ𝑐𝑐 +
1
2

𝑚𝑚domeℎ2

+
1
4

𝑚𝑚cylinder𝜌𝜌2 +
1

12
𝑚𝑚cylinderℎ2

 �𝐈𝐈capsule�
22

=
2
5

𝑚𝑚dome(𝑎𝑎2 + 𝑐𝑐2) +
3
4

𝑚𝑚domeℎ𝑐𝑐 +
1
2

𝑚𝑚domeℎ2

+
1
4

𝑚𝑚cylinder𝑎𝑎2 +
1

12
𝑚𝑚cylinderℎ2

 (𝐈𝐈capsule)33 =
2
5

𝑚𝑚dome(𝑎𝑎2 + 𝜌𝜌2) +
1
4

𝑚𝑚cylinder(𝑎𝑎2 + 𝜌𝜌2) .

These moments of inertia are given in terms of the overall mass of the capsule in
the summary at the end of this gem.

Truncated Pyramid

A truncated pyramid is a pyramid that has been cut off at some height h above the
base by a plane parallel to the base. As with a pyramid, we describe the dimensions of
the base by the perpendicular distances a0 and b0 from the center of the base to two
adjacent edges of the base, as shown in Figure 14.8. We introduce a factor r representing
the ratio of the length of an edge on the top face to the length of the corresponding edge

Chapter 14 Moments of Inertia for Common Shapes 279

on the bottom face (the base). The dimensions of the top face are then described by the
perpendicular distances ra0 and rb0 from the center to the edges. Where r = 0, all of the
formulas for a truncated pyramid reduce to those for a complete pyramid.

Figure 14.8: A truncated pyramid.

In order to calculate the total mass and center of mass, we express the lengths a
and b as functions of the z-coordinate as follows:

(14.45)
𝑎𝑎(𝑧𝑧) = 𝑎𝑎0 �1 +

𝑟𝑟 − 1
ℎ

𝑧𝑧�

𝜌𝜌(𝑧𝑧) = 𝜌𝜌0 �1 +
𝑟𝑟 − 1

ℎ
𝑧𝑧�.

The total mass is then given by integrating rectangular areas over the range of z-
coordinates between the bottom and top faces of the truncated pyramid:

(14.46) 𝑚𝑚 = 4𝜌𝜌 � 𝑎𝑎(𝑧𝑧)𝜌𝜌(𝑧𝑧)𝑑𝑑𝑧𝑧
ℎ

0

=
4
3

𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ(𝑟𝑟2 + 𝑟𝑟 + 1) .

The center of mass clearly lies on the z-axis, and we can calculate its z-coordinate
by multiplying a factor of z into the integrand for the mass to obtain

280 Game Engine Gems

(14.47) 𝑚𝑚𝐶𝐶𝑧𝑧 = 4𝜌𝜌 � 𝑎𝑎(𝑧𝑧)𝜌𝜌(𝑧𝑧)𝑧𝑧 𝑑𝑑𝑧𝑧
ℎ

0

=
1
3

𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ2(3𝑟𝑟2 + 2𝑟𝑟 + 1) .

After dividing by m, we find the z-coordinate of the center of mass to be located at

(14.48) 𝐶𝐶𝑧𝑧 =
3𝑟𝑟2 + 2𝑟𝑟 + 1
4(𝑟𝑟2 + 𝑟𝑟 + 1)

ℎ .

We place the origin at the center of mass by shifting the range of z-coordinates
downward by Cz and adding this shift back when evaluating the functions a(z) and b(z).
The moments of inertia are then given by the integrals

(14.49)

 𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)

𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

ℎ−𝐶𝐶𝑧𝑧

−𝐶𝐶𝑧𝑧

=
4

15
𝜌𝜌𝑎𝑎0𝜌𝜌0

3ℎ(𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1)

+ 𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ3 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1
20(𝑟𝑟2 + 𝑟𝑟 + 1)

 ,

𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)

𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

ℎ−𝐶𝐶𝑧𝑧

−𝐶𝐶𝑧𝑧

=
4

15
𝜌𝜌𝑎𝑎0

3𝜌𝜌0ℎ(𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1)

+ 𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ3 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1
20(𝑟𝑟2 + 𝑟𝑟 + 1)

 ,

Chapter 14 Moments of Inertia for Common Shapes 281

𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)

𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

ℎ−𝐶𝐶𝑧𝑧

−𝐶𝐶𝑧𝑧

=
4

15
𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ(𝑎𝑎0

2 + 𝜌𝜌0
2)(𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1).

Substituting the mass m, this gives us the inertia tensor

(14.50)

�𝐈𝐈trunc−pyramid�
11

=
1
5

𝑚𝑚𝜌𝜌0
2 𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1

𝑟𝑟2 + 𝑟𝑟 + 1

+
1

80
𝑚𝑚ℎ2 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1

(𝑟𝑟2 + 𝑟𝑟 + 1)2

�𝐈𝐈trunc−pyramid�
22

=
1
5

𝑚𝑚𝑎𝑎0
2 𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1

𝑟𝑟2 + 𝑟𝑟 + 1

+
1

80
𝑚𝑚ℎ2 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1

(𝑟𝑟2 + 𝑟𝑟 + 1)2

 �𝐈𝐈trunc−pyramid�
33

=
1
5

𝑚𝑚(𝑎𝑎0
2 + 𝜌𝜌0

2)
𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1

𝑟𝑟2 + 𝑟𝑟 + 1
 .

Truncated Cone

A truncated cone is a cone that has been cut off at some height h above the base by
a plane parallel to the base. As with a cone, we describe the dimensions of the base by
the semi-axis lengths a0 and b0, as shown in Figure 14.9. We introduce a factor r
representing the ratio of a semi-axis length of the top face to the corresponding semi-
axis length of the bottom face (the base). The dimensions of the top face are then
described by the semi-axis lengths ra0 and rb0. When r = 0, all of the formulas for a

282 Game Engine Gems

truncated cone reduce to those for a complete cone.

Figure 14.9: A truncated cone.

In order to calculate the total mass and center of mass, we express the lengths a
and b as functions of the z-coordinate using the same formulas given by Equation (14.45)
for the truncated pyramid. The total mass is then given by integrating elliptical disk
areas over the range of z-coordinates between the bottom and top faces of the truncated
cone:

(14.51) 𝑚𝑚 = 𝜋𝜋𝜌𝜌 � 𝑎𝑎(𝑧𝑧)𝜌𝜌(𝑧𝑧)𝑑𝑑𝑧𝑧
ℎ

0

=
𝜋𝜋
3

𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ(𝑟𝑟2 + 𝑟𝑟 + 1) .

We can then calculate the z-coordinate of the center of mass by multiplying a
factor of z into the integrand for the mass to obtain

(14.52) 𝑚𝑚𝐶𝐶𝑧𝑧 = 𝜋𝜋𝜌𝜌 � 𝑎𝑎(𝑧𝑧)𝜌𝜌(𝑧𝑧)𝑑𝑑𝑧𝑧
ℎ

0

=
𝜋𝜋

12
𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ2(3𝑟𝑟2 + 2𝑟𝑟 + 1) .

After dividing by m, we find the z-coordinate of the center of mass to be located at

Chapter 14 Moments of Inertia for Common Shapes 283

(14.53) 𝐶𝐶𝑧𝑧 =
3𝑟𝑟2 + 2𝑟𝑟 + 1
4(𝑟𝑟2 + 𝑟𝑟 + 1)

ℎ .

just as it is for the truncated pyramid. The moments of inertia are then given by
the integrals

(14.54)

 𝐼𝐼11 = 𝜌𝜌 � � � (𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)2

−𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)2

𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

ℎ−𝐶𝐶𝑧𝑧

−𝐶𝐶𝑧𝑧

=
𝜋𝜋

20
𝜌𝜌𝑎𝑎0𝜌𝜌0

3ℎ(𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1)

+ 𝜌𝜌𝜋𝜋𝑎𝑎0𝜌𝜌0ℎ3 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1
80(𝑟𝑟2 + 𝑟𝑟 + 1)

 ,

 𝐼𝐼22 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑧𝑧2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)2

−𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)2

𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

ℎ−𝐶𝐶𝑧𝑧

−𝐶𝐶𝑧𝑧

=
𝜋𝜋

20
𝜌𝜌𝑎𝑎0𝜌𝜌0

3ℎ(𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1)

+ 𝜌𝜌𝜋𝜋𝑎𝑎0𝜌𝜌0ℎ3 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1
80(𝑟𝑟2 + 𝑟𝑟 + 1)

 ,

𝐼𝐼33 = 𝜌𝜌 � � � (𝑥𝑥2 + 𝑦𝑦2)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧

𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)2

−𝑎𝑎(𝑧𝑧+𝐶𝐶𝑧𝑧)�1−𝑦𝑦2/𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)2

𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

−𝑏𝑏(𝑧𝑧+𝐶𝐶𝑧𝑧)

ℎ−𝐶𝐶𝑧𝑧

−𝐶𝐶𝑧𝑧

=
𝜋𝜋

20
𝜌𝜌𝑎𝑎0𝜌𝜌0ℎ(𝑎𝑎0

2 + 𝜌𝜌0
2)(𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1) .

284 Game Engine Gems

Substituting the mass m, this gives us the inertia tensor

(14.55)

(𝐈𝐈trunc−cone)11

=
3

20
𝑚𝑚𝜌𝜌0

2 𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1
𝑟𝑟2 + 𝑟𝑟 + 1

+
1

80
𝑚𝑚ℎ2 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1

(𝑟𝑟2 + 𝑟𝑟 + 1)2

(𝐈𝐈trunc−cone)22

=
3

20
𝑚𝑚𝑎𝑎0

2 𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1
𝑟𝑟2 + 𝑟𝑟 + 1

+
1

80
𝑚𝑚ℎ2 𝑟𝑟4 + 4𝑟𝑟3 + 10𝑟𝑟2 + 4𝑟𝑟 + 1

(𝑟𝑟2 + 𝑟𝑟 + 1)2

 (𝐈𝐈trunc−cone)33 =
3

20
𝑚𝑚(𝑎𝑎0

2 + 𝜌𝜌0
2)

𝑟𝑟4 + 𝑟𝑟3 + 𝑟𝑟2 + 𝑟𝑟 + 1
𝑟𝑟2 + 𝑟𝑟 + 1

 .

14.4 Summary

The mass, the center of mass, and inertia tensor for each of the shapes examined
in the previous section are summarized in Table 14.1.

Chapter 14 Moments of Inertia for Common Shapes 285

Table 14.1: This table lists the mass m, the center of mass (CM) C, and the entries of the inertia
tensor I for a variety of solid shapes. The inertia tensor is always given in the coordinate system for
which the origin coincides with the center of mass. Each shape is considered to be solid with a
constant density ρ.

Shape Mass and CM Inertia Tensor

Box

𝑚𝑚 = 8𝜌𝜌𝑎𝑎𝜌𝜌𝑐𝑐
𝑪𝑪 = (0,0,0)

𝐼𝐼11 =
1
3

𝑚𝑚(𝜌𝜌2 + 𝑐𝑐2)

𝐼𝐼22 =
1
3

𝑚𝑚(𝑎𝑎2 + 𝑐𝑐2)

𝐼𝐼33 =
1
3

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)

Cylinder

𝑚𝑚 = 𝜌𝜌𝜋𝜋𝑎𝑎𝜌𝜌ℎ

𝑪𝑪 = (0,0,
ℎ
2

)

𝐼𝐼11 =
1
4

𝑚𝑚𝜌𝜌2 +
1

12
𝑚𝑚ℎ2

𝐼𝐼22 =
1
4

𝑚𝑚𝑎𝑎2 +
1

12
𝑚𝑚ℎ2

𝐼𝐼33 =
1
4

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)

Pyramid

𝑚𝑚 =
4
3

𝜌𝜌𝜋𝜋𝑎𝑎0𝜌𝜌0ℎ

𝑪𝑪 = (0,0,
ℎ
4

)

𝐼𝐼11 =
1
5

𝑚𝑚𝜌𝜌0
2 +

3
80

𝑚𝑚ℎ2

𝐼𝐼22 =
1
5

𝑚𝑚𝑎𝑎0
2 +

3
80

𝑚𝑚ℎ2

𝐼𝐼33 =
1
5

𝑚𝑚(𝑎𝑎0
2 + 𝜌𝜌0

2)

Cone
𝑚𝑚 =

1
3

𝜌𝜌𝜋𝜋𝑎𝑎𝜌𝜌ℎ

𝑪𝑪 = (0,0,
ℎ
4

)

𝐼𝐼11 =
3

20
𝑚𝑚𝜌𝜌0

2 +
3

80
𝑚𝑚ℎ2

𝐼𝐼22 =
3

20
𝑚𝑚𝑎𝑎0

2 +
3

80
𝑚𝑚ℎ2

𝐼𝐼33 =
3

20
𝑚𝑚(𝑎𝑎0

2 + 𝜌𝜌0
2)

286 Game Engine Gems

Table 14.1: This table lists the mass m, the center of mass (CM) C, and the entries of the inertia
tensor I for a variety of solid shapes. The inertia tensor is always given in the coordinate system for
which the origin coincides with the center of mass. Each shape is considered to be solid with a
constant density ρ.

Shape Mass and CM Inertia Tensor

Ellipsoid

𝑚𝑚 =
4
3

𝜌𝜌𝜋𝜋𝑎𝑎𝜌𝜌𝑐𝑐

𝑪𝑪 = (0,0,0)

𝐼𝐼11 =
1
5

𝑚𝑚(𝜌𝜌2 + 𝑐𝑐2)

𝐼𝐼22 =
1
5

𝑚𝑚(𝑎𝑎2 + 𝑐𝑐2)

𝐼𝐼33 =
1
5

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)

Dome

𝑚𝑚 =
2
3

𝜌𝜌𝜋𝜋𝑎𝑎𝜌𝜌𝑐𝑐

𝑪𝑪 = (0,0,
3𝑐𝑐
8

)

𝐼𝐼11 =
1
5

𝑚𝑚𝜌𝜌2 +
19

320
𝑚𝑚𝑐𝑐2)

𝐼𝐼22 =
1
5

𝑚𝑚𝑎𝑎2 +
19

320
𝑚𝑚𝑐𝑐2

𝐼𝐼33 =
1
5

𝑚𝑚(𝑎𝑎2 + 𝜌𝜌2)

References

[1] Jerry B. Marion and Stephen T. Thornton.Classical Dynamics, 3rd edition. Sauders
College Publishing, 1988.

Part II

Part II Rendering Techniques

15

Chapter 15 Physically-Based Outdoor Scene Lighting

Frank Kane

Sundog Software, LLC

Overview

Adventure games, role-playing games, and "serious" training and simulation
games often need to render the same scene under various times of day. This gem
provides a physically-based approach for generating realistic direct and diffuse ambient
skylight for any given time and location, together with a tone-mapping operator to
account for human perception. (See Figure 15.1.) This gives games with outdoor scenes
a greater level of realism, and provides the physically accurate lighting required by
training systems that might use your engine.

Figure 15.1: (See also Color Plates.) An outdoor scene with physically-based lighting at dusk
(left) and at night (right). (Images courtesy of Emergent Game Technologies and Sundog
Software, LLC.)

290 Game Engine Gems

15.1 Positioning the Sun and Moon

Natural light comes primarily from the sun and moon, so the first step in lighting
an outdoor scene is to know where to place these light sources. To do this, you will need
an ephemeris model to compute the location of the sun and moon for a given time and
location. Since this is a game engine book and not an astronomy book, we don't go into
the details here, but refer you instead to the Ephemeris class in the code included on
the accompanying CD. Understanding this class does require a few key concepts, which
we describe here.

Numerical approximations of the position of astronomical objects are generally
done in ecliptic coordinates for a given epoch time. Our Ephemeris class starts by
computing the location of the sun, moon, and visible planets in ecliptic coordinates,
which are just latitudes and longitudes relative to the plane defined by the path the sun
takes across the sky. As a result, the ecliptic latitude of the sun is always zero. The
algorithms used take as input Greenwich Mean Time expressed as the number of
centuries elapsed since the year 2000; this is the epoch time for epoch 2000. Our
LocalTime class will handle converting times in hours, minutes, and seconds for a given
day to epoch centuries for you. While we are computing the location of the moon, we
also compute the phase of the moon, which is important for nighttime lighting.

Ecliptic coordinates are not terribly useful for rendering, so you will need to
transform the ecliptic polar coordinate system to a Cartesian coordinate system relative
to your local horizon. Fortunately, this can be done with just a couple of 3 × 3 rotation
matrices. Our code starts by taking the ecliptic coordinates of the sun or moon together
with its distance from the Earth, and transforming that into a 3D vector in ecliptic space
from the center of the Earth. Then, we rotate this vector into equatorial coordinates,
which is a system defined by the plane of the Earth's equator instead of the plane of the
Earth's revolution around the sun; doing this requires computing the Earth's tilt for the

Chapter 15 Physically-Based Outdoor Scene Lighting 291

simulated time. Finally, we transform the equatorial coordinates into horizon
coordinates for the location on Earth that you wish to simulate. As a finishing touch, we
also apply atmospheric refraction to the horizon coordinates, which affects the
perceived location of the sun and moon as they approach the horizon.

Care must be taken that this final transformation is consistent with your engine's
coordinate system conventions; if your users might define "north" and "up" as any
arbitrary axis, you'll want to provide a means for them to influence this final
transformation into local coordinates. The sun rising in the West instead of the East is
an embarrassing bug that is very easy to slip through testing. You may also want to
expose geographic coordinates for the sun and moon; instead of being relative to a
specific location on the surface of the Earth, these coordinates are relative to the center
of the Earth. Flight simulators that can cover large distances frequently use this
coordinate system, and our Ephemeris class will compute this for you as well.

These same matrices are useful for transforming things such as star fields in the
sky. It may sound like overkill, but having accurately positioned stars in your scenes
could be important to someone creating, for example, a navigation training application.

All this work pays off when your engine's sun and moon rise at exactly the right
time for the location being simulated. Got a game that takes place in the winter

15.2 Computing Natural Sunlight

Now that we know where the sun is in the sky, we can simulate what happens to
its light as it passes through the atmosphere; this is called atmospheric transmittance
and atmospheric scattering, and it is simulated by the Spectrum class in the included
source code. Our approach uses a modified "Bird simple spectral model", named after
Dr. Richard Bird who developed it at the Solar Energy Research Institute (now the

292 Game Engine Gems

National Renewable Energy Laboratory) in 1984 [1]. It is relatively simple compared to
other models, yet amazingly accurate. This code is what will turn sunlight red near
sunset, for example.

Our Spectrum class operates over a full visible spectrum, and starts with data from
NASA on the spectrum of the sun from outside of the atmosphere as input. (This
spectrum is inside our SolarSpectrum class.) It also takes in the angle between the sun
and the top of the sky dome (the zenith angle), your altitude, and the atmospheric
turbidity, which is essentially a measure of how polluted the air is. A reasonable value
for turbidity is around 2.2; going lower than 1.8 or higher than 20.0 will cause the math
to start breaking down. This class will reward you with spectra of the direct irradiance
of the sunlight transmitted through the atmosphere (this will become the diffuse
component of your light source for the sun) and the scattered irradiance (which will
become the ambient component of your light source).

The meat of the simulation is in Spectrum::ApplyAtmosphericTransmittance.
This method iterates over samples of the visible spectrum from 380 nm to 720 nm. For
each wavelength, we simulate the effects of several components of the atmosphere on
how that wavelength is transmitted and scattered by the atmosphere. We can multiply
together the transmittances from each component to arrive at a final transmittance for
the given wavelength, and multiply that by the sun's irradiance at that wavelength. The
scattered components are added together and then multiplied by the sun's irradiance.
Once we're done with all of the wavelengths of the visible spectrum, we can convert this
spectrum into RGB values for direct and ambient natural light.

It starts by computing the air mass for the given solar angle, which represents how
much atmosphere the sunlight needs to pass through before it gets to the camera. The
air mass M for a given solar zenith angle Z (in degrees) is given by

𝑀𝑀 =
1.0

𝑐𝑐𝑜𝑜𝑠𝑠 𝑍𝑍 + 0.50572(93.885 − 𝑍𝑍)−1.6364

Chapter 15 Physically-Based Outdoor Scene Lighting 293

The lower the sun is, the more air will scatter its sunlight. We multiply the air mass
by the isothermal effect, which is a fancy way of saying that the higher you are, the less
atmosphere there is. As your altitude increases, lower air masses will result in less light
being scattered and more direct light reaching you; modeling this may yield effects such
as the sky darkening as you start to enter space. The isothermal effect is given by e-

a/H ,where a is the altitude above sea level, and H is the "pressure scale height" of 8435
meters.

Then, various components of the atmosphere are treated independently and their
effects combined together at the end. The main component is Rayleigh scattering which
is caused by the molecules of air itself; it is the reason the sky is blue, and your scattered
light will be a bit blue as a result. The light transmitted by Rayleigh scattering TR for a
given wavelength λ in micrometers is given by

𝑇𝑇𝑅𝑅 = 𝑒𝑒
−𝑀𝑀

𝜆𝜆4(115.6406−1.335/𝜆𝜆2)

Next comes the effect of aerosols, or larger particulate matter—this is affected by
the turbidity T you passed in; more aerosols mean redder sunsets. The light transmitted
by aerosols TA is given by

𝛽𝛽 = 0.4608𝑇𝑇 − 0.04586

𝐶𝐶1 = 𝛽𝛽(2𝜆𝜆−𝑎𝑎)

𝑇𝑇𝐴𝐴 = 𝑒𝑒−𝐶𝐶1𝑀𝑀 .

The value of α may be set to 1.140 for rural environments. For better accuracy, it's
really 1.0274 for wavelengths less than 500 nm, and 1.2060 otherwise.

We have computed the amount of light transmitted by Rayleigh and aerosol effects
for each wavelength, which will give us our direct sunlight. For ambient sunlight, we
also need to compute the scattered light. Scattered sunlight is a little trickier. First, we

294 Game Engine Gems

need to compute an aerosol scattering transmission term TAs, an aerosol absorption
transmission term TAa, the log of an aerosol asymmetry factor A, a constant FS and a
constant C2:

Ω = 0.945𝑒𝑒−0.095 log (𝜆𝜆/4)2

𝑇𝑇𝐴𝐴𝐴𝐴 = 𝑒𝑒−Ω𝐶𝐶1𝑀𝑀

𝑇𝑇𝐴𝐴𝑎𝑎 = 𝑒𝑒(Ω−1.0)𝐶𝐶1𝑀𝑀

𝐶𝐶2 = 𝑇𝑇𝐴𝐴𝑎𝑎 cos 𝑍𝑍

𝐴𝐴 = log 0.35

𝐴𝐴𝐹𝐹𝐹𝐹 = 1.459𝐴𝐴 + 0.1595𝐴𝐴2 + 0.4129𝐴𝐴3

𝐵𝐵𝐹𝐹𝐹𝐹 = 0.0783𝐴𝐴 − 0.3824𝐴𝐴2 − 0.5874𝐴𝐴3

𝐹𝐹𝐹𝐹 = 1 −
1
2

𝑒𝑒−𝐴𝐴𝐹𝐹𝐹𝐹 cos 𝑍𝑍−𝐵𝐵𝐹𝐹𝐹𝐹 cos2 𝑍𝑍 .

The scattered light term ray Dray for Rayleigh scattering is then given by

𝐷𝐷ray =
𝐶𝐶2(1 − 𝑇𝑇𝑅𝑅

0.95)
2

 .

The scattered term Daer for aerosols is

𝐷𝐷aer = 𝐶𝐶2𝑇𝑇𝑅𝑅
1.5(1 − 𝑇𝑇𝐴𝐴𝐴𝐴)𝐹𝐹𝐴𝐴 .

The total scattered irradiance can then be derived by adding Dray and Daer

multiplying it by the sun's irradiance for the given wavelength. Modeling Rayleigh and
aerosol effects will be accurate enough for most applications. The sample code also
models the effects of water vapor, ozone, mixed gas, reflection from the ground, and
some effects specific to wavelengths under 450 nm, but these effects are all small during
daytime. However, simulating ozone scattering will improve the realism of your sunsets.

An important limitation of these equations is that they break down at zenith angles

Chapter 15 Physically-Based Outdoor Scene Lighting 295

over 90 degrees—that is, as soon as the sun drops below the horizon. Civil twilight is
defined as the point where the sun is 6 degrees below the horizon, so to avoid a
discontinuity at 90 degrees, you'll want to interpolate the direct and scattered sunlight
between its value at 90 degrees and 0 at 96 degrees. Light doesn't really fall off linearly
during this time; better implementations would use a lookup table based on
experimental data of twilight luminance for given solar angles below the horizon. The
nautical almanac [5] listed in the references is one source of this data.

The resulting spectra for transmitted and scattered sunlight are then converted to
a CIE XYZ color. You will need to know a little about color theory to know what's going
on here, but the important thing is that XYZ contains chromaticity information as well
as luminance information. As such, it may represent "high dynamic range" colors, and
the sun certainly qualifies as a high lighting value. We will map this light down to
something displayable on a monitor, but first we also need to add in the light from the
moon.

15.3 Moonlight and Other Nighttime Light Sources

Moonlight gets scattered through the atmosphere in exactly the same way as
sunlight; the only difference is that instead of starting with a fixed spectrum of the
extraterrestrial solar light source, we must generate the moon's spectrum
algorithmically, since it varies depending on its phase and its distance from the Earth.

Fortunately, our Ephemeris class will give us that information. Moonlight consists
of two components: light reflected from the Earth off the moon ("Earthshine") and light
reflected from the sun off the moon. Both depend on the phase of the moon, as
expressed by its phase angle Φ. Earthshine is given by

𝐸𝐸𝑒𝑒𝑒𝑒 = 0.095 �1 − 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋 − 𝜑𝜑

2
 𝑡𝑡𝑎𝑎𝑠𝑠

𝜋𝜋 − 𝜑𝜑
2

 𝜌𝜌𝑠𝑠 �𝑐𝑐𝑜𝑜𝑡𝑡
𝜋𝜋 − 𝜑𝜑

4
�� .

296 Game Engine Gems

This value becomes a component of the expression for computing the total
moonshine irradiance seen from the Earth:

𝐸𝐸𝑒𝑒 =
2𝐶𝐶𝑟𝑟𝑒𝑒

2

3𝑑𝑑2 �𝐸𝐸𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐴𝐴𝑒𝑒 �1 − 𝑠𝑠𝑠𝑠𝑠𝑠
𝜑𝜑
2

 𝑡𝑡𝑎𝑎𝑠𝑠
𝜑𝜑
2

 𝜌𝜌𝑜𝑜𝑙𝑙 �𝑐𝑐𝑜𝑜𝑡𝑡
𝜑𝜑
4

��� .

Here, d is the distance from the Earth to the moon returned from our Ephemeris
class, rm is the radius of the moon (1738.1×103 m), Esm is the irradiance of the sun at the
moon (1905 W/m2), and C is the average albedo of the moon (0.072).

To turn this into a spectrum that you can pass through the Bird spectral model,
first convert W/m2 from the equation above to cd/m2 using the approximate conversion
factor of 683.0/3.14. Then, linearly scale this value from 0.7 at the low end of the visible
spectrum to 1.3 at the high end, normalizing the results to ensure the resulting spectrum
adds up to the lunar irradiance you computed above. From there, you can treat
moonlight just like sunlight, and model the moon as a second light source in the same
manner as the sun.

Even when there is no moon out at night, there are sources of ambient illumination.
Light from bright planets, zodiacal light, starlight, airglow, galactic light, and cosmic
light can all be modeled, but are negligible (~2×10-6 W/m2) compared to artificial light
pollution in all but the most remote areas. To preserve some visibility on moonless
nights, you will want to add an arbitrary light pollution term to your ambient
illumination.

15.4 Tone-Mapping the Light

Now that you have the direct and scattered irradiance from the sun and moon
expressed as XYZ colors, the challenge is to map these down to RGB values for lighting
your scene.

Chapter 15 Physically-Based Outdoor Scene Lighting 297

The difference in luminance between a moonless night and high noon in the
summer is more than ten orders of magnitude and cannot be directly displayed by any
display device. Tone-mapping is required to capture the fact that your eyes adapt to the
ambient light, allowing you to see on a moonlit night while not being blinded during
the day. During the day, the cones in your eye create what is known as photopic vision.
At night, your rods are responsible for scotopic vision. At dawn and dusk, both may be
active to provide mesopic vision. Perceptual tone mapping works differently in each case.
For example, things appear to look a little blue at night, which is an effect we can capture.
Fortunately, this is a solved problem. Frédo Durand and Julie Dorsey at MIT presented
a simple tone-mapping operator for this purpose in 2000, which we'll summarize here.

Perceptual tone-mapping requires knowledge of both the average luminosity of
the scene (this is the adaptation luminosity that your eyes are adapted to), and the
maximum luminance of the display device. The adaptation luminosity may be
approximated by the Y component of the sum of the sun and moon's scattered light.
The display's luminosity is generally set to 100 cd/m2.

The Durand operator treats tone mapping independently for rods and cones; we'll
use the same notation used in Durand's paper [3]. The adaptation luminosity for cones
LwaC is simply the Y component of the scene's scattered light, as mentioned above. The
display threshold for rods LwaR may be approximated by

𝐿𝐿𝑤𝑤𝑎𝑎𝑅𝑅 = −0.702𝑋𝑋 + 1.039𝑌𝑌 + 0.433𝑍𝑍,

where X, Y, and Z are the XYZ components of the scene's scattered light, which is
the sum of the scattered light from the sun and the moon. The display luminosities LdaC
and LdaR are set to 100 cd/m2, but may be adjusted for brighter or darker scenes. The rod
and cone thresholds from the scene are then mapped to rod and cone thresholds for the
display, using a technique called threshold mapping. For both rods and cones, photopic,
mesopic, and scotopic conditions are treated separately; the rod threshold is given by

298 Game Engine Gems

ɛR and the cone threshold by ɛc:

𝜌𝜌𝑜𝑜𝑙𝑙 𝜀𝜀𝑅𝑅(𝐿𝐿𝑎𝑎𝑅𝑅) �
−2.86, 𝑠𝑠𝑓𝑓 𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝑅𝑅 ≤ −3.94 ;

𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝑅𝑅 − 0.395, 𝑠𝑠𝑓𝑓 𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝑅𝑅 ≥ −1.44 ;
(0.405 𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝑅𝑅 + 1.6)2.18 − 2.86, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒.

𝜌𝜌𝑜𝑜𝑙𝑙 𝜀𝜀𝐶𝐶(𝐿𝐿𝑎𝑎𝐶𝐶) �
−0.72, 𝑠𝑠𝑓𝑓 𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝑅𝑅 ≤ −2.6 ;
𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝐶𝐶 − 1.255, 𝑠𝑠𝑓𝑓 𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝑅𝑅 ≥ 1.9 ;

(0.249 𝜌𝜌𝑜𝑜𝑙𝑙 𝐿𝐿𝑎𝑎𝐶𝐶 + 0.65)2.7 − 0.72, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒.

What we really need is to compute two scaling values, one for rods (mR) and one
for cones (mC):

𝑚𝑚𝑅𝑅 =
𝜀𝜀𝐶𝐶(𝐿𝐿𝑑𝑑𝑎𝑎𝐶𝐶)
𝜀𝜀𝑅𝑅(𝐿𝐿𝑤𝑤𝑎𝑎𝑅𝑅)

𝑚𝑚𝐶𝐶 =
𝜀𝜀𝐶𝐶(𝐿𝐿𝑑𝑑𝑎𝑎𝐶𝐶)
𝜀𝜀𝐶𝐶(𝐿𝐿𝑤𝑤𝑎𝑎𝑅𝑅)

We also need a scaling value k which is used to interpolate between full color
perception from cones and blue-shifted monochromatic perception from rods in
mesopic conditions. With the value σ set to 100 cd/m2,

𝑘𝑘 =
3
4 𝜎𝜎𝐿𝐿𝑤𝑤𝑎𝑎𝑅𝑅

𝜎𝜎 + 𝐿𝐿𝑤𝑤𝑎𝑎𝑅𝑅

Finally, we have everything we need to map the raw XYZ values of the direct and
scattered light to something displayable. For the raw lighting value L, the tone-mapped
value lighting value L′ is given by

𝑹𝑹 = −0.702𝑳𝑳𝑥𝑥 + 1.039𝑳𝑳𝑦𝑦 + 0.433𝑳𝑳𝑧𝑧

𝑺𝑺 = (0.3, 0.3, 0.4)𝑹𝑹

𝑳𝑳′ =
𝑳𝑳(1 − 𝑘𝑘)𝑚𝑚𝐶𝐶 + 𝑺𝑺(𝑘𝑘𝑚𝑚𝑅𝑅)

𝐿𝐿𝑑𝑑𝑎𝑎𝐶𝐶

Chapter 15 Physically-Based Outdoor Scene Lighting 299

The intermediate value S above represents the scotopic color from the rods (with
a perceptual blue-shift), which is blended with the full color L from the cones.

The final step is to convert the tone-mapped XYZ value into an RGB value. You
may perform this conversion with many matrices found online that assume different
white points. Here is one with good results (this is the HDTV rec. 709 matrix):

[𝑅𝑅 𝐺𝐺 𝐵𝐵] = [𝑋𝑋 𝑌𝑌 𝑍𝑍] �
3.240479 −0.969256 0.055648
−1.53715 1.875991 −0.204043
−0.49853 0.041556 1.057311

�

Unless you're working in HDR space, you'll want to clamp the results to [0,1] for
each color component.

The algorithms above are implemented in the class LuminanceMapper in the
included sample code on the CD.

15.5 Implementation Notes

Although the computations described above can execute pretty quickly, there is no
need to compute them every frame. The resulting light values should be cached until
the time of day or location changes, and may even be precomputed for the range of
zenith angles for a given location at load time.

With physically-based light sources, it becomes important that the materials on
your scene's objects are also accurate. If the materials on your objects are set to 100%
brightness for diffuse or ambient light, they will look too bright when using these
techniques. Real-world materials do not reflect 100% of the incoming light, unless they
are perfect mirrors. Work with your art staff to ensure your materials are reasonable.

These algorithms all assume a clear sky at the camera's location; for cloudy
conditions, you'll need to attenuate the results. Since the amount of attenuation depends

300 Game Engine Gems

on the thickness of the clouds, how much is really up to you. For really thick clouds,
you may want to reduce the amount of direct light and increase the ambient, since the
clouds will scatter the sunlight further.

Strictly speaking, scattered sunlight and moonlight is not really ambient light—it
is more accurately modeled as directional light radiating perpendicular to the surface
of the sky dome. Without some sort of global illumination scheme, however, your
objects will likely appear too dark if the scattered light does not reflect between objects
on the ground, and treating it as an ambient term will yield better results. There is
certainly nothing to stop you from doing something more sophisticated with the
resulting direct and scattered light that these techniques produce.

References

[1] R. E. Bird and C. Riordan."Simple Solar Spectral Model for Direct and Diffuse
Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless
Atmospheres". Technical Report No. SERI/TR-215-2436, Solar Energy Research
Institute, 1984.

[2] Peter Duffett-Smith.Practical Astronomy with your Calculator. Cambridge University
Press, 1988.

[3] Frédo Durand and Julie Dorsey."Interactive Tone Mapping". Proceedings of the
Eurographics Workshop on Rendering Techniques 2000, pp. 219–230.

[4] Henrik Wann Jensen, Frédo Durand, Julie Dorsey, Michael M. Stark, Peter Shirley,
and Simon Premože."A Physically-Based Night Sky Model". Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques, 2001, pp. 399–
408.

[5] Nautical Almanac Offices of the United Kingdom and the United States of America.
Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and
Nautical Almanac. Her Majesty's Stationary Office, 1961.

16

Chapter 16 Rendering Physically-Based Skyboxes

Frank Kane

Sundog Software, LLC

Overview

Simple, GPU-friendly algorithms exist for rendering realistic skyboxes in real time
for any given time and location. This gem reviews the Preetham et al. model [3] for
accurately distributing luminance throughout a sky, with some extensions to ensure
natural-looking results. When paired with the gem "Physically Based Outdoor Scene
Lighting", outdoor scenes with lighting that perfectly matches the sky become possible.
Algorithms for procedurally generating realistic skyboxes are surprisingly simple, and
enable continuous time of day effects in your engine.

16.1 Generating and Drawing the Skybox

First, some skybox basics: a skybox is just that—a cube that is always rendered
around the camera's location such that it moves and rotates with the camera, which is
colored to look like a sky. You may properly position it by simply zeroing out the
translation components of your view matrix before drawing it.

Intuition would tell us to render the skybox as the first thing in your frame, as it's

302 Game Engine Gems

infinitely distant and everything else will be drawn in front of it. You could just disable
depth buffer reads and writes, draw the skybox instead of clearing the depth buffer, and
go about rendering your scene. This simple approach, however, is not the most optimal,
since you'll end up spending time filling your color buffer with a bunch of sky that will
end up being overdrawn by your scene. In reality, you won't save anything on modern
hardware by not clearing the depth buffer along with your color buffer at the beginning
of the frame—in fact, it may hurt performance. A better approach is to keep clearing
your color and depth buffer together, then draw your skybox as the last thing in your
frame, with depth buffer reads enabled to prevent drawing parts of the sky that are not
visible. If you use an infinite projection matrix while rendering the skybox, drawing the
skybox last instead of first will render correctly and can gain you some performance.

Figure 16.1: (See also Color Plates.) Physically-based skybox generated for (left) late morning
and (right) twilight. (Images courtesy of Sundog Software, LLC.)

For procedurally generated skyboxes, we'll use a vertex program to render the sky
just using vertex colors (disable texturing and enable smooth shading). This implies that
the geometry of the skybox warrants some effort; you need to have enough vertices in
the skybox to achieve convincing results, but too many may impact performance. In the
images shown in Figure 16.1, each face of the skybox cube consists of a 40×40 grid. You
may choose to have a higher vertex density near the horizon, as this is where sky colors

Chapter 16 Rendering Physically-Based Skyboxes 303

change more quickly; you may also choose to have higher vertex density vertically
rather than horizontally, as the sky color changes less rapidly as you look around the
horizon than as you look up toward the sky's zenith.

If you're certain that the bottom of your skybox will never be visible, you may omit
this face—but as an engine developer, you shouldn't make this assumption. Your users
might end up rendering the Earth from space using your skybox for a star-field and
wonder why nothing is drawn underneath it. You may also want to allow your users to
shift the skybox down by some amount instead of drawing it perfectly centered with the
camera position; if the terrain in the scene doesn't actually extend all the way to the
horizon, this is a simple way to cover up that fact.

The techniques in this gem will work just as well with a sky dome. However, a box
is simpler, allows us to easily cull faces of the box that are not visible, and since we're
using vertex colors instead of texture mapping, the corners of the box are not at all
perceptible.

Using a conventional projection matrix, the size of the skybox must be chosen with
care; you need to ensure that it falls within the near and far clipping planes of your view
frustum. This becomes especially problematic with engines that dynamically adjust the
near and far clip planes based on the scene's bounding volumes to maximize depth
buffer resolution. An elegant way around this problem is to render the skybox using an
infinite projection matrix and with w-coordinates of zero, assuring the far clip plane is
irrelevant and the skybox is drawn at maximum depth. Care must be taken with this
technique to avoid round-off error artifacts [1].

16.2 Computing the Skybox Vertex Colors

Back in 1993, Perez et al. developed a simple model for distributing luminance

304 Game Engine Gems

across the sky, by fitting equations to experimental data [2]. In 1999, Preetham et al.
extended this method to work in full color in a paper presented at Siggraph. The only
input required is the position of the sun (or moon) in the sky, and the turbidity of the
atmosphere. Turbidity is a measure of the particulate matter in the atmosphere; a
reasonable value for realistic-looking scenes is around 2.2. Higher values imply more
polluted skies, and will result in more dramatic sunsets.

The position of the sun or moon is specified in polar coordinates. θS is the angle
from the up axis to the light source, and φS is the angle from the South axis (positive is
toward East.) The Ephemeris class introduced in "Physically-Based Outdoor Scene
Lighting" is useful for computing the position of the sun and moon for a given time and
location.

The Perez model for distributing luminance across the sky is given by

𝐹𝐹 (𝜃𝜃, 𝛾𝛾) = (1 + 𝐴𝐴𝑒𝑒𝐵𝐵/𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐)(1 + 𝐶𝐶𝐷𝐷𝐷𝐷 + 𝐸𝐸𝑐𝑐𝑜𝑜𝑠𝑠 2𝛾𝛾).

We refer to this equation as the "Perez function". Here, θ is the angle of the skybox
vertex from the up axis, and γ is the angle between the vertex and the sun or moon—
your vertex program will compute these angles given the position of each skybox vertex.
We'll discuss the constants A through E shortly.

To arrive at an actual luminance value YP for a given vertex, you need to compute
the above function once for the vertex's position, and again for the position of the sun
or moon (this only needs to be computed when the time of day changes, then cached):

𝑌𝑌𝑝𝑝 = 𝑌𝑌𝑍𝑍
𝐹𝐹(𝜃𝜃, 𝛾𝛾)
𝐹𝐹(0, 𝜃𝜃𝐴𝐴)

 .

You'll also need the zenith luminance YZ—although Preetham et al. provides a
function for computing this in their paper, we've gotten better results by using the Y
component of the tone-mapped scattered sunlight or moonlight derived in the gem
"Physically-Based Outdoor Scene Lighting". Divide that luminance by 1000, since the

Chapter 16 Rendering Physically-Based Skyboxes 305

constants we're using here are in units of kcd/m2.

Computing the luminance YP for the skybox vertex is nice, but you want a color,
not just a luminance. The trick is to work in xyY color space—this is a means of
representing colors where the values x and y represent the color's chromaticity, and Y
represents its luminance. For each vertex, you compute the function above three
times—once for x, once for y, and once for Y, and then convert the resulting xyY color
to RGB.

This means you'll need an xyY value for the zenith YZ. If you have the zenith color
in XYZ form, you'll need to convert XYZ to xyY using the relationship

𝑥𝑥 =
𝑋𝑋

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍

𝑦𝑦 =
𝑌𝑌

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍
 .

The constants A, B, C, D, and E in the Perez function are themselves functions of
the turbidity value T, and are different depending on whether you're computing the
Perez function for x, y, or Y. These constants are given by

⎣
⎢
⎢
⎢
⎡
𝐴𝐴𝑌𝑌
𝐵𝐵𝑌𝑌
𝐶𝐶𝑌𝑌
𝐷𝐷𝑌𝑌
𝐸𝐸𝑌𝑌⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0.1787
−0.3554
−0.0227
0.1206

−0.0670⎦
⎥
⎥
⎥
⎤

𝑇𝑇 +

⎣
⎢
⎢
⎢
⎡
−1.4630
0.4275
5.3251

−2.5771
0.3703 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝐴𝐴𝑥𝑥
𝐵𝐵𝑥𝑥
𝐶𝐶𝑥𝑥
𝐷𝐷𝑥𝑥
𝐸𝐸𝑥𝑥 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−0.0193
−0.0665
−0.0004
−0.0641
−0.0033⎦

⎥
⎥
⎥
⎤

𝑇𝑇 +

⎣
⎢
⎢
⎢
⎡
−0.2592
0.0008
0.2125

−0.8989
0.0452 ⎦

⎥
⎥
⎥
⎤

306 Game Engine Gems

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴𝑦𝑦
𝐵𝐵𝑦𝑦
𝐶𝐶𝑦𝑦
𝐷𝐷𝑦𝑦
𝐸𝐸𝑦𝑦⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−0.0167
−0.0950
−0.0079
0.0441

−0.0109⎦
⎥
⎥
⎥
⎤

𝑇𝑇 +

⎣
⎢
⎢
⎢
⎡
−0.2608
0.0092
0.2102

−1.6537
0.0529 ⎦

⎥
⎥
⎥
⎤

These values only need to be recomputed if the simulated turbidity level changes,
and should be passed into your vertex program as uniform parameters. The result of
the Perez function for the sun position and the zenith xyY color should also be uniform
parameters, as well as the position of the sun (or moon).

With these values and the position of each vertex in your skybox, you have
everything you need for your physically-based skybox vertex program to compute xyY
values for each sky vertex. The last step is to map this result to RGB values. To do this,
first convert the xyY value to XYZ:

𝑋𝑋 = 𝑥𝑥
𝑌𝑌
𝑦𝑦

𝑍𝑍 = (1 − 𝑥𝑥 − 𝑦𝑦)
𝑌𝑌
𝑦𝑦

 .

If the zenith color you're using is already tone mapped, then further tone mapping
is optional. The same tone mapping technique described in "Physically-Based Outdoor
Scene Lighting" may be applied at this point, however, and will result in effects such as
a warm glow surrounding a full moon in the sky.

Then, convert XYZ to RGB using your favorite conversion matrix. We use

[𝑅𝑅 𝐺𝐺 𝐵𝐵] = [𝑋𝑋 𝑌𝑌 𝑍𝑍] �
3.240479 −0.969256 0.055648
−1.53715 1.875991 −0.204043
−0.49853 0.041556 1.057311

�

Other matrices tend to make the sky look a little green, which looks quite unnatural.
If you're not working in HDR space, you'll want to scale down the resulting RGB values

Chapter 16 Rendering Physically-Based Skyboxes 307

to fit within [0,1] if necessary.

The final tweak to the RGB value is important and often overlooked: gamma-
correcting the color for the display. Your sky will appear too dark otherwise. Simply
raise the final RGB color to the power of 1/γ. A gamma value of 1.8 provides satisfying
results.

A simple vertex program written in Cg that implements much of this algorithm is
available with the book's sample code. Potential extensions of this program would
include handling two light sources simultaneously (the sun and the moon) instead of a
single dominant light source, incorporating volumetric fog effects into the sky,
simulating overcast conditions, and the tone-mapping described above.

16.3 Integrating the Skybox with Your Scene

One challenge a physically-based skybox presents is that it becomes difficult to
blend your distant scenery with the skybox, since the sky's colors may vary about the
horizon. The usual trick of fogging distant terrain to blend into the sky may produce a
visible seam, since the sky is not a constant color.

Preetham et al. describe an involved means for implementing physically-based
atmospheric perspective effects on terrain that will match the skybox perfectly, but from
a real-time performance standpoint this is impractical for dynamic scenes with complex
geometry.

One solution is to blend the skybox itself to a fixed fog color at and below the
horizon. If this fog color is chosen wisely, the sky/terrain boundary will be seamless, but
you will lose some of the more dramatic effects at dawn and dusk with this approach.

Another solution is to sample the skybox color at the horizon directly in front of
the camera every frame, and set your terrain's fog color to match it. The result won't be

308 Game Engine Gems

perfectly seamless, but this is a good compromise for reasonable fields of view.

16.4 Embellishing Your Skybox

After drawing the skybox itself, you'll want to draw billboards representing the sun
and the moon (preferably in the correct phase) in their proper locations. Both the sun
and moon, by an amazing coincidence, cover a half a degree of the sky. However, if you
render them at their physically accurate size, they'll seem much too small due to psycho-
perceptual issues and typical fields of view that are unrealistically large—go ahead and
draw them at whatever size looks right to you. Users also expect to see a large glare effect
surrounding the sun, which will also help it to look bigger.

Another dramatic effect is rendering the stars and planets as part of your skybox.
If you draw them as points with an additive blending mode, they'll start to emerge at
dusk. Using the matrices in our Ephemeris class, your stars will move across the sky in
a realistic manner. Data on the positions, magnitudes, and colors of the visible stars are
readily available, and integrating this data into your skybox is a fun project.

This gem will render clear skies for any time of day and location, but clear skies
are not the norm. Adding some clouds to the scene adds an extra level of realism.
Rendering properly lit 3D volumetric clouds is a challenging task, but even a single large
quad high in the sky with a cirrus cloud texture on it will go a long way.

References

[1] E. Lengyel."Projection Matrix Tricks". Game Developer's Conference 2007.
http://www.terathon.com/gdc07_lengyel.ppt

[2] R. Perez, R. Seals, and J. Michalsky."An All-Weather Model for Sky Luminance
Distribution". Solar Energy, Volume 50, Number 3 (March 1993), pp. 235–245.

Chapter 16 Rendering Physically-Based Skyboxes 309

[3] A. J. Preetham, Peter Shirley, and Brian Smits. "A Practical Analytic Model for
Daylight", Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, 1999, pp. 91–100.

17

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer

Eric Lengyel

Terathon Software

Highlights

Motion blur adds a significant amount of realism to a rendered scene since our
eyes are accustomed to seeing it when we look at moving objects in the real world. There
are several techniques for producing motion blur in computer graphics, and they vary
widely in both rendering speed and image quality. Temporal supersampling, in which
multiple frames are rendered and then combined to form one image, can produce very
accurate results, but its extreme rendering expense makes it impractical for real-time
applications like games. Techniques using an accumulation buffer of some kind to store
previous frames to be combined with the current frame are fast, but produce terrible
results in terms of image quality.

There is a class of motion blur techniques that are based on calculating perpixel
velocities and using them to collect many samples from the color buffer along the
direction of motion. These techniques generally produce good results, but many of
them produce a particular artifact that manifests itself as a fuzzy halo around
foreground objects when the pixels behind them are moving quickly. The technique
described in [1] makes no attempt to eliminate or reduce the appearance of this artifact.
The method presented in [2] eliminates the artifact, but also eliminates some cases of

312 Game Engine Gems

correct motion blur, and it comes with some significant limitations.

There is but one method that is both fast and capable of producing high-quality
images, and it involves the use of a velocity buffer in conjunction with a post-processing
shader to render a directional blur for pixels belonging to moving objects. A basic
implementation of this concept produces adequate results for some applications, but it
also produces the fuzzy halo artifact. This gem discusses an improvement to this motion
blur technique that eliminates halo artifacts without also affecting cases where motion
blur would be correctly rendered, producing images of much higher quality than is
possible with other techniques. The method described here was originally implemented
in the C4 Engine [3], and that is the source of the images shown in this gem.

17.1 Technique Overview

The technique described in this gem requires that a dedicated four-channel
velocity buffer be allocated by the rendering system. For each frame we render, we fill
this velocity buffer with information about the two-dimensional screen-space velocity
of pixels belonging to each object to which we want to apply the motion blur effect. This
is typically done early in the rendering process for a particular frame, and it happens
independently of any previously rendered frames.

When rendering to the velocity buffer, there are three sources of motion that we
need to consider. First, we must take the motion of the camera into account, and this
motion affects all objects in the scene. Second, we must consider the motion that
individual objects have as a whole. An object may be moving through space or rotating,
and this motion can be captured by considering the object's transformation matrix for
both the current frame and the preceding frame. Third, it's possible that the vertices
composing an object's triangle mesh are themselves in motion. This frequently occurs
with skinned character models, soft bodies, and cloth. Examples of motion blur arising

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 313

from camera movement and object movement are shown in Figure 17.1. An example
of motion blur due to vertex movement within a single mesh is shown in Figure 17.2.

Figure 17.1: (See also Color Plates.) In the left image, motion blur resulting only from camera
movement is shown. Notice how the ground and trees closer to the camera are blurred much
more than distant objects. In the right image, motion blur resulting from rigid objects moving
in the scene is shown. Both translational and rotational motion are visible in this still image.
(Images courtesy of Terathon Software LLC.)

Figure 17.2: Motion blur resulting from vertex movement on a skinned character model.
(Image courtesy of Terathon Software LLC.)

314 Game Engine Gems

At the end of the rendering process for a single frame, we apply to the entire screen
a post-processing shader that generates the motion blur effect using the data stored in
the velocity buffer. This shader can usually be combined with other post-processing
effects such as glow, distortion, and color matrix application. The shader that generates
the motion blur reads the screen-space velocity for each pixel from the velocity buffer
and uses it to choose a set of sample points at which the color buffer is then read. These
color samples are distributed along the direction of the velocity, and they are spread
over a larger distance for higher velocities. After the color samples are collected, they
are combined to generate the final color for each pixel.

It is not always the case that we want to use all of the color samples for a particular
pixel. In particular, if a fast-moving object passes behind a slow-moving or stationary
object with respect to the camera, then the motion blur applied to pixels belonging to
the background object should not sample pixels belonging to the foreground object. To
prevent this from occurring, we must be able to determine when pixels belong to the
same object and when they don't, while the post-processing shader is collecting color
samples. This can be accomplished by storing additional information about the depth
and the slope of surfaces in the velocity buffer.

In the two remaining available channels of the velocity buffer, we store the depth
z of each pixel in camera space, and we store the magnitude of the two-dimensional
gradient of the depth. These values give us the ability to calculate the minimum depth
zmin that a sample location must have in order to be considered part of the same surface
as the pixel being blurred. The formula is

(17.1) 𝑧𝑧min = 𝑧𝑧 − 𝑟𝑟|∇𝑧𝑧|,

where r is the distance from the sample location to the pixel being blurred. Color
samples lying closer to the camera than this minimum depth are discarded. Figure 17.3
demonstrates how this technique eliminates artifacts that appear if the depth and

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 315

gradient are not considered.

Figure 17.3: (See also Color Plates.) In these two images, the camera is rotating around the
character, causing the ground to move across the screen while the character is almost
completely still. In the left image, the depth and gradient information in the velocity buffer is
not considered, and all color samples along the direction of the velocity are used. Notice the
ghosting of the glowing parts of the character's armor and the fuzzy halo surrounding his legs.
In the right image, the depth and gradient information in the velocity buffer is considered, and
the rejection of the appropriate color samples eliminates the artifacts. (Images courtesy of
Terathon Software LLC.)

17.2 Rendering to the Velocity-Depth-Gradient Buffer

At some point in time before post-processing is performed, we must fill a dedicated
velocity-depth-gradient buffer with the information that will be used to generate the
motion blur effect. Many modern engines render a depth-only pass at the beginning of
a frame in order to maximize the effectiveness of hierarchical depth buffering
capabilities built into the graphics hardware. This gives us a convenient place to also
render our velocity information without having to pass vertex data through the
rendering pipeline a second time. Since many engines also require a linear depth value

316 Game Engine Gems

to be generated and stored early in the frame in order to render some types of special
effects, it is doubly convenient that such a depth is one of the values we must calculate
and store in the velocity buffer.

We render out velocity, depth, and gradient values into a floating-point buffer having 16
bits per channel. It is possible to implement the technique described in this gem using a
conventional integer buffer with 8 bits per channel, but the small amount of available
precision for the depth value in that case limits the practical range for which we can
eliminate motion blur artifacts to an unacceptably short distance in front of the camera.

To calculate a two-dimensional screen-space velocity, we determine the screen-
space positions for each vertex over two consecutive frames, subtract them, and then
multiply by a normalizing scale factor. The homogeneous screen-space position Pscreen
of a vertex is given by

(17.2) 𝐏𝐏screen = 𝐌𝐌viewport𝐌𝐌project𝐌𝐌camera𝐌𝐌model𝐏𝐏model ,

where Pmodel is the model-space vertex position, Mmodel is the matrix that transforms
model-space points into world space, Mcamera is the matrix that transforms worldspace
points into camera space, Mproject is the projection matrix for the camera, and Mviewport is
the viewport transformation. The values of Mviewport and Mproject are ordinarily constant
from one frame to the next, but the values of Mcamera, Mmodel, and Pmodel can change. Thus,
it is necessary to store the Mcamera matrix used by the camera during the preceding frame,
and it is necessary to store the Mmodel matrix used by each model during the preceding
frame. If the model-space vertex positions can change for a particular model (for
example, on a skinned character), then the entire array of vertex positions used by that
model during the preceding frame must also be stored.

When rendering an object into the velocity buffer, we calculate the product of the
four matrices in Equation (17.2) to construct the matrix Mmotion for both the preceding

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 317

frame and the current frame as follows:

(17.3)
𝐌𝐌motion

A = 𝐌𝐌viewport𝐌𝐌project𝐌𝐌camera
A 𝐌𝐌model

A ,

𝐌𝐌motion
B = 𝐌𝐌viewport𝐌𝐌project𝐌𝐌camera

B 𝐌𝐌model
B .

The superscript A indicates a matrix belonging to the preceding frame, and the
superscript B indicates a matrix belonging to the current frame. The two products
𝐌𝐌motion

A and 𝐌𝐌motion
B are sent to the GPU as parameters that can be accessed by the

vertex shader. As shown in Listing 17.1, these matrices are used in the vertex shader to
calculate two homogeneous screen-space positions for each vertex and store them in
texture coordinates that are interpolated as triangles are rasterized. The vertex shader
shows the same position being transformed for both frames A and B, but in the case
that Pmodel is not constant, a second vertex position array must be specified and used
when calculating the position for frame A.

Listing 17.1: This GLSL vertex shader first transforms the vertex position for the current frame to
homogeneous clip-space coordinates in the ordinary manner using the model-view-projection
(MVP) matrix. The shader then transforms the vertex position into screen space for both the
preceding frame using the matrix motionA and the current frame using the matrix motionB. The
resulting positions are output as texture coordinates that will be read by the fragment shader.

uniform mat4 mvp, motionA, motionB;

void main()

{

 // Transform the position using the ordinary MVP matrix.

 gl_Position = mvp * gl_Vertex;

 // Transform the position into screen space using the motion matrix

318 Game Engine Gems

 // from the preceding frame (A) and the current frame (B).

 gl_TexCoord[0] = motionA * gl_Vertex;

 gl_TexCoord[1] = motionB * gl_Vertex;

}

The matrix multiplications performed by the vertex shader produce two four-
dimensional homogeneous screen-space positions. It is important that these positions
be interpolated in homogeneous form and that the perspective divide by the w-
coordinate occurs in the fragment shader. Otherwise, the interpolated positions in the
interiors of triangles would be incorrect, especially for triangles having vertices that lie
behind the camera.

In the fragment shader used when rendering to the velocity buffer, we obtain two-
dimensional screen-space positions for frames A and B by dividing the homogeneous
interpolated positions 𝐏𝐏screen

A and 𝐏𝐏screen
B by their w-coordinates, as shown in Listing

17.2. Subtracting these positions then produces a screen-space velocity V through the
formula

(17.4) 𝐕𝐕 =
𝐏𝐏screen

B

(𝐏𝐏screen
B)𝑤𝑤

−
𝐏𝐏screen

A

(𝐏𝐏screen
A)𝑤𝑤

,

where only the x and y components of the velocity are calculated.

Listing 17.2: This GLSL fragment shader calculates the screen-space velocity and writes it to the
red and green components of the output color. The velocityScale parameter holds the value of
s/rmax shown in Equation (17.6). The depth is taken directly from the w-coordinate of the current
position and is written to the blue component of the output color. The gradient of the depth is
calculated using the hardware derivative functions, and the larger of its components is written to
the alpha component of the output color.

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 319

uniform vec2 velocityScale;

void main()

{

 // Divide by the w-coordinates to get 3D positions.

 vec2 posA = gl_TexCoord[0].xy / gl_TexCoord[0].w;

 vec2 posB = gl_TexCoord[1].xy / gl_TexCoord[1].w;

 // Subtract the positions and scale to get velocity.

 vec2 veloc = (posB.xy - posA.xy) * velocity_scale;

 // Clamp the velocity to a max magnitude of 1.0.

 float vmax = max(abs(veloc.x), abs(veloc.y));

 gl_FragColor.xy = veloc / max(vmax, 1.0);

 // Pass the current depth through.

 gl_FragColor.z = gl_TexCoord[1].w;

 // Calculate the max component of the depth gradient.

 vec2 grad = vec2(ddx(gl_TexCoord[1].w), ddy(gl_TexCoord[1].w));

 gl_FragColor.w = max(abs(grad.x), abs(grad.y));

}

The magnitude of the velocity V is unbounded, but we can only read a limited
number of color samples per pixel in the post-processing phase, and we don't want them
to be too far away from the pixel being processed. Thus, to ensure a smooth blur, we
need to impose some kind of bounds on the velocity's size. We first divide the velocity
by the maximum distance rmax that we want to allow between a pixel's location and any
color sample used to blur it. The value 1/rmax is a constant that is passed to the fragment
shader as a parameter by which the velocity is multiplied. We can also include in this
parameter a normalization factor s that accounts for the time in between two frames

320 Game Engine Gems

and adjusts the overall intensity of the motion blur effect. We define s as

(17.5) 𝑠𝑠 =
𝑡𝑡0

∆𝑡𝑡
𝑚𝑚 ,

where t0 is the target time interval between frames, ∆t is the actual time between
the preceding frame and the current frame, and m is an adjustable factor that controls
the motion blur intensity. The scaled screen-space velocity V’ is given by

(17.6) 𝐕𝐕′ =
𝑠𝑠

𝑟𝑟𝑒𝑒𝑎𝑎𝑥𝑥
𝐕𝐕 .

After applying this scale factor, we clamp the velocity's magnitude to the range [0,1]
using the following formula to preserve its direction:

(17.7) 𝐕𝐕final =
𝐕𝐕′

𝑚𝑚𝑎𝑎𝑥𝑥�|𝑉𝑉𝑥𝑥
′|, �𝑉𝑉𝑦𝑦

′� , 𝟏𝟏�
 .

The x and y components of the velocity Vfinal are stored in the red and green
channels of the color output to the velocity buffer.

What remains is to write the depth and gradient information to the blue and alpha
channels of the velocity buffer. The linear camera-space depth is supplied by the w-
coordinate of the position for the current frame, and it is simply copied to the blue
channel of the output color. To obtain the gradient of the depth, we query the hardware
for the derivatives of the position's w-coordinate in both the x and y screen directions.
To achieve slightly higher performance, we output the larger absolute value of the two
derivatives in the alpha channel instead of computing the actual magnitude of the
gradient. (That is, we compute the maximum norm instead of the Euclidean norm.) In
the fragment shader shown in Listing 17.2, the gradient magnitude g stored in the alpha
channel is given by

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 321

(17.8) g = 𝑚𝑚𝑎𝑎𝑥𝑥 ��
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

� , �
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

�� .

17.3 Rendering the Post-Processing Effect

At the end of a frame, the motion blur effect is generated for the final image by
rendering a post-processing shader over the entire screen. This shader uses the
information in the velocity-depth-gradient buffer to select a set of sample locations
from which the color buffer is read. All of the color samples that satisfy the minimum
depth requirement are averaged together to produce the final color for each pixel. Since
the sample locations are derived from the magnitude and direction of the velocity that
a pixel possesses, the result is an image containing convincing motion blur.

The fragment shader shown in Listing 17.3 performs the motion blur operation. It
starts by sampling the color buffer at the pixel location being rendered, which we call
the "center pixel", and initializing the number of valid samples to one. The number of
valid samples is stored in the w component of the color, and the sample at the center
pixel is always valid. This particular implementation takes eight additional equally
weighted samples from the color buffer at equally spaced intervals in the direction
parallel to the velocity. There is some freedom in choosing the number of samples and
their weights, and some implementations may even decide to take a variable number of
color samples based on the magnitude of the velocity.

Listing 17.3: This GLSL fragment shader applies the motion blur effect in the post-processing pass.
The nine color samples are accumulated in the x, y, and z components of the color vector, and the
number of valid samples is stored in the w component of the color vector. The value of minDepth
is calculated using Equation (17.9), and only samples having a depth at least this far from the
camera plane are used to generate the final blurred pixel.

322 Game Engine Gems

#extension GL_ARB_texture_rectangle : require

uniform sampler2DRect colorTexture;

uniform sampler2DRect velocityTexture;

void main()

{

 vec4 color, sample;

 // Read the center sample from the color buffer.

 color.xyz = texRECT(colorTexture, gl_FragCoord.xy).xyz;

 color.w = 1.0;

 // Read the velocity buffer at the current pixel.

 float4 velo = texRECT(velocityTexture, gl_FragCoord.xy);

 // Calculate the minimum depth for other color samples.

 float minDepth = velo.z - max(velo.w, 0.001) * 7.0;

 // Initialize constant sample weight.

 sample.w = 1.0;

 // Calculate coordinates for first sample on either side.

 vec4 coord = velo.xyxy * vec4(1.75, 1.75, -1.75, -1.75) +

 gl_FragCoord.xyxy;

 // Read a color and depth at the sample location.

 sample.xyz = texRECT(colorTexture, coord.xy).xyz;

 float depth = texRECT(velocityTexture, coord.xy).z;

 // Add the sample to the final color if it's depth is great enough.

 if (depth >= minDepth) color += sample;

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 323

 // Grab the sample on the opposite side of the center pixel.

 sample.xyz = texRECT(colorTexture, coord.zw).xyz;

 depth = texRECT(velocityTexture, coord.zw).z;

 if (depth >= minDepth) color += sample;

 // Calculate coordinates for second pair of samples.

 coord = velo.xyxy * vec4(3.5, 3.5, -3.5, -3.5) + gl_FragCoord.xyxy;

 sample.xyz = texRECT(colorTexture, coord.xy).xyz;

 depth = texRECT(velocityTexture, coord.xy).z;

 if (depth >= minDepth) color += sample;

 sample.xyz = texRECT(colorTexture, coord.zw).xyz;

 depth = texRECT(velocityTexture, coord.zw).z;

 if (depth >= minDepth) color += sample;

 // Calculate coordinates for third pair of samples.

 coord = velo.xyxy * vec4(5.25, 5.25, -5.25, -5.25) +

 gl_FragCoord.xyxy;

 sample.xyz = texRECT(colorTexture, coord.xy).xyz;

 depth = texRECT(velocityTexture, coord.xy).z;

 if (depth >= minDepth) color += sample;

 sample.xyz = texRECT(colorTexture, coord.zw).xyz;

 depth = texRECT(velocityTexture, coord.zw).z;

 if (depth >= minDepth) color += sample;

 // Calculate coordinates for fourth pair of samples.

 coord = velo.xyxy * vec4(7.0, 7.0, -7.0, -7.0) + gl_FragCoord.xyxy;

 sample.xyz = texRECT(colorTexture, coord.xy).xyz;

 depth = texRECT(velocityTexture, coord.xy).z;

 if (depth >= minDepth) color += sample;

 sample.xyz = texRECT(colorTexture, coord.zw).xyz;

324 Game Engine Gems

 depth = texRECT(velocityTexture, coord.zw).z;

 if (depth >= minDepth) color += sample;

 // Total weight of used color samples is in the w-coordinate.

 // Divide by it to get the final averaged color.

 gl_FragColor.xyz = color.xyz / color.w;

}

The velocity-depth-gradient buffer is read at the location of the center pixel, and
the minimum depth required for all color samples is calculated as

(17.9) 𝑧𝑧min = 𝑧𝑧 − 𝑟𝑟max max{ g ,0.001 } ,

where z is the depth stored in the blue channel of the buffer, g is the depth gradient
given by Equation (17.8) stored in the alpha channel of the buffer, and rmax is the largest
distance between the center pixel and a sample location. This is a little different from
Equation (17.1) because we use the maximum sample distance rmax to compute a single
minimum depth zmin that is used for all sample values. We clamp the minimum value of
the gradient to 0.001 so that precision errors don't prevent the motion blur effect from
working on surfaces that are nearly perpendicular to the view direction.

The value of rmax is 7.0 in the fragment shader shown in Listing 17.3, and color
samples are taken at offsets given by the velocity vector multiplied by the values 1.75,
3.5, 5.25, and 7.0. At each sample location, the velocity buffer is read, but only to fetch
the depth at that sample location and compare it to zmin. (Velocity and gradient
information is only used at the center pixel.) For any sample satisfying z≥zmin, we add
the color sample to the final color and add one to the number of valid samples (in the
w component of the color). After all samples have been taken, we divide the final color
by the number of valid samples that have been accumulated and output the result.

Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer 325

17.4 Grid Optimization

The fragment shader presented in Listing 17.3 produces very precise results, but it
can be unnecessarily expensive for large parts of the scene. When it is known that a
region of the screen contains pixels that are all moving at similar speeds relative to the
camera, a simpler shader that does not consider depth can be used in order to increase
overall performance. The use of the full implementation can be limited to those areas
of the screen in which slow-moving foreground objects are expected to appear.

Figure 17.4: (See also Color Plates.) In this image, the viewport is partitioned into a grid of
16×12 cells. The depth and gradient information is only used in the highlighted cells
surrounding the character since that is where foreground objects are likely to be moving slowly
relative to the background. (Image courtesy of Terathon Software LLC.)

In Figure 17.4, we have divided the screen into a 16×12 grid of rectangular cells.

326 Game Engine Gems

Before rendering the post-processing shader, we determine whether any foreground
objects might be slow moving relative to the background and mark cells covered by
those objects as requiring the full-blown shader. This would typically be done when
objects are being rendered into the velocity buffer near the beginning of the frame. In
the post-processing phase, we apply the simpler, faster shader to cells that have not been
marked.

References

[1] Gilberto Rosado."Motion Blur as a Post-Processing Effect". GPU Gems 3, Addison-
Wesley, 2008.

[2] Ben Padget."Efficient Real-Time Motion Blur for Multiple Rigid Objects". ShaderX7.
Charles River Media, 2009.

[3] C4 Engine. http://www.terathon.com/c4engine/

18

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect
Lighting

László Szirmay-Kalos, Balázs Tóth, and Tamás Umenhoffer

Budapest University of Technology and Economics

18.1 Introduction

A physically correct approach to rendering would be the solution of the rendering
equation, but it is too expensive computationally when dynamic scenes are processed
in real time. Thus in practice, we prefer approximations that can be efficiently evaluated.
A usual simplification is the local illumination model, which computes only the direct
contribution of the light sources and adds a constant ambient term for the missing
indirect illumination. However, constant ambient lighting ignores the geometry of the
scene, which results in plain and unrealistic images. We need better compromises
between the rendering equation and the classical ambient model.

Local approaches examine only a neighborhood of the shaded point during
illumination calculation. The obscurances method [10, 2], which is also called the
ambient occlusion [1, 6] computes just how "open" the scene is in the neighborhood of
a point, and scales the ambient light accordingly. To compute occlusions in real time,
the method called screen-space ambient occlusion [5] examines the height field defined

328 Game Engine Gems

by the current content of the depth buffer instead of the real scene's geometry. Thus,
when a point is shaded, the required geometric information about the rest of the scene
is fetched from a depth texture. The classical ambient occlusion approach assumes that
no illumination comes from nearby occluders. However, using the albedo or the color
of these points, local indirect lighting can also be approximated [10, 8].

In this article, we present a simplified illumination model that is derived from the
rendering equation. The model consists of two parts, the ambient occlusion part
describing the influence of the distant part of the scene, and the indirect illumination
part, which is responsible for local interactions. Both parts are directional integrals,
which would need many discrete samples for an accurate estimation. In order for the
efficient evaluation, we transform these integrals. The ambient occlusion integral is first
transformed to a volumetric integral, which is first evaluated along the depth coordinate
analytically, then the remaining integral over the disk perpendicular to the viewing
direction is obtained numerically. The indirect lighting integral is expressed from the
stable ambient occlusion estimate. Thus, our method is more general than [10] since it
also takes into account the one-bounce of the direct lighting, and it is more robust than
[8] since it does not include infinite variation form factors in the approximation.

The proposed method falls into the category of screen-space techniques since we
assume that the depth buffer is the sampled representation of the scene geometry and
the color buffer stores the radiance values of the represented surfaces. However, we
work in camera space rather than in screen space to obtain correct distance and angle
values.

The input of our rendering method includes the textures of camera-space depth
values, normal vectors of the visible points, and the color buffer storing the radiances
due to direct lighting. From these input textures, a deferred shading algorithm
computes the radiances of the visible points, taking into account ambient occlusion and
local indirect illumination.

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 329

18.2 A General Ambient Illumination Model

Let us assume that the surfaces are diffuse. According to the rendering equation,
the reflected radiance Lr at a shaded point s can be obtained as an integral of directions
ω running over the unit hemisphere Ω above the surface:

𝐿𝐿𝑟𝑟(𝒔𝒔) = � 𝐿𝐿𝑖𝑖𝑛𝑛

𝛺𝛺
(𝒔𝒔, 𝝎𝝎)

𝑎𝑎(𝒔𝒔)
𝜋𝜋

(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝝎𝝎 .

where a is the albedo of the diffuse surface, Ns is the unit normal at the shaded
point, and Lin (s,ω) is the incident radiance of the shaded point from direction ω.

If an occluder point o is visible from s in the direction ω (see Figure 18.1) and the
space is not filled with participating media, then the incident radiance is equal to exiting
radiance Lr (o). If no surface is seen, then shaded point s is said to be open in this
direction, and the incident radiance is ambient intensity La. However, this does not meet
our intuition and everyday experience that the effect of distant surfaces is replaced by
their average. This experience is due to the fact that the actual space is not empty but is
filled with a participating medium. If its extinction coefficient is σ and its albedo is 1,
then the radiance along a ray of direction ω changes according to the volumetric
rendering equation

𝐿𝐿𝑖𝑖𝑛𝑛(𝒔𝒔, 𝝎𝝎) = 𝑒𝑒−𝜎𝜎𝐷𝐷𝐿𝐿𝑟𝑟(𝒐𝒐) + (1 − 𝑒𝑒−𝜎𝜎𝐷𝐷)𝐿𝐿𝑎𝑎 ,

where D is the distance between the shaded and the occluder points. Note that in
this equation factor μ(D)=1-e-σD and its complement 1-μ(D)=e-σD express the effects of
the ambient lighting and of the occluder on the shaded point, respectively. The effect of
the occluder diminishes with the distance. The function μ is a fuzzy measure that defines
how strongly direction ω belongs to the set of open directions based on distance D of
the occlusion at this direction.

330 Game Engine Gems

Figure 18.1: The shaded point s is the center of the neighborhood sphere. The radius of the
sphere is R. Those directions ω where there is no intersection closer than R are called open.
Point o is an intersection closer than R.

The exponential function derived from the physical analogy of participating media
has a significant drawback [2]. As it is nonzero for arbitrarily large distances, very
distant surfaces need to be considered that otherwise have a negligible effect. Thus, for
practical fuzzy measures we use functions that are nonnegative, monotonically
increasing from zero, and reach one at the finite distance R. This allows the
consideration of only those occlusions that are nearby, i.e., in the neighborhood sphere
of radius R. The particular value of R can be set by the application developer. When we
increase this value, shadows due to ambient occlusions get larger and softer.

To define the fuzzy measure that increases from zero to one in [0, R], we can use a

javascript:PopImage('IMG_181','fig273_01_0_0.jpg','604','577')

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 331

simple polynomial

𝜇𝜇(𝐷𝐷) = �
𝐷𝐷
𝑅𝑅�

𝑎𝑎

 .

Using this fuzzy measure, the reflected radiance of the shaded point can be
expressed in the following way:

𝐿𝐿𝑟𝑟(𝒔𝒔) = 𝑎𝑎(𝒔𝒔) �
𝐿𝐿𝑎𝑎

𝜋𝜋
� 𝜇𝜇

𝛺𝛺
(𝐷𝐷)(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝝎𝝎 +

1
𝜋𝜋

� (1 − 𝜇𝜇
𝛺𝛺

(𝐷𝐷)𝐿𝐿𝑟𝑟(𝒐𝒐)(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝝎𝝎�

= 𝑎𝑎(𝒔𝒔)[𝐿𝐿𝑎𝑎𝑂𝑂(𝒔𝒔) + 𝐼𝐼(𝒔𝒔) .]

The first term of this expression is the ambient occlusion of the shaded point:

𝑂𝑂(𝒔𝒔) =
1
𝜋𝜋

� 𝜇𝜇
𝛺𝛺

(𝐷𝐷(𝝎𝝎))(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝝎𝝎 .

The second term is the irradiance due to nearby indirect lighting:

𝐼𝐼(𝒔𝒔) =
1
𝜋𝜋

� [1 − 𝜇𝜇(𝐷𝐷(𝝎𝝎))]
𝛺𝛺

𝐿𝐿𝑟𝑟(𝒐𝒐)(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝝎𝝎 .

This integral is traced back to the ambient occlusion. Replacing occluder radiance
Lr (o) by the average of surface radiance values in the neighborhood of the shaded point
𝐿𝐿�𝑟𝑟(𝐬𝐬) , we can express the irradiance as

𝐼𝐼(𝒔𝒔) ≈
1
𝜋𝜋

� �1 − 𝜇𝜇�𝐷𝐷(𝝎𝝎)��
𝛺𝛺

𝐿𝐿�𝑟𝑟(𝒔𝒔)(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝝎𝝎 = 𝐿𝐿�𝑟𝑟(𝒔𝒔)�1 − 𝑂𝑂(𝒔𝒔)�.

332 Game Engine Gems

18.3 Screen-Space Representation of the Scene

In global illumination computations, we need to know the geometry of other parts
of the scene and the radiance values of points visible from the currently shaded point.
However, GPUs are built according to the concept of local illumination and prefer
shading each point independently of other parts of the scene. The only additional
information that can be used is stored in textures.

Screen-space techniques assume that the height field defined by the current
content of the depth buffer is an appropriate representation of the screen geometry, and
the color buffer stores the radiance values of the represented points. Of course, the
content of these buffers represents only the surfaces visible from the camera, but for
local methods like ambient occlusion, this restriction is usually acceptable. In screen
space, viewing rays are parallel to the z-axis, which greatly simplifies calculations.
However, the transformation to this space is not angle and distance preserving (it is not
even affine); thus, this space is not appropriate for angle and distance computation.

If we need to compute angles and distances, we should rather work in camera space,
which means that we store camera-space z values and also the camera-space normal
vectors of the visible points in textures. The transformation from world space to camera
space is angle and distance preserving since it is basically a translation and a rotation;
thus, these spaces are equivalent when distances and angles are computed. The
disadvantage of camera space is that in the case of a perspective camera, the viewing
rays are not parallel, but rather intersect each other at the origin of the coordinate
system.

Thus, to solve the distortion problem of screen space and also keep the advantages
of parallel rays, we work in camera space but use a quasi-orthogonal approximation.
When large scale information is obtained, we follow the structure of camera space.

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 333

However, when smaller neighborhoods are explored, which happens during the
evaluation of the ambient occlusion integral, we assume that in each small
neighborhood, the viewing rays are parallel with the z-axis. This is an approximation,
but is a reasonable compromise between accuracy and simplicity.

Indirect illumination computation requires those points that are visible from the
shaded point, which can usually be obtained with ray tracing. Unfortunately, ray tracing
is quite expensive computationally even for height fields, so we replace it by a simple
test. As the shaded point belongs to the set of points that are visible from the camera,
we require that the occluder point also be visible from the camera. Two points are visible
from each other if the ray originating at one of the points has no intersection with any
surfaces before it arrives in the other point. The requirement of being in the visible part
of the height field, on the other hand, means that the ray intersects the surface zero, two,
four, etc., times. If the neighborhood is small, and at most one intersection is possible,
then the two criteria are similar.

18.4 Volumetric Ambient Occlusion

In order to find an efficient method for the evaluation of the ambient occlusion
integral, we express it as a three-dimensional (i.e., volumetric) integral. First, the fuzzy
measure is written as the integral of its derivative:

𝜇𝜇(𝐷𝐷) = �
𝑑𝑑𝜇𝜇(𝑟𝑟)

𝑑𝑑𝑟𝑟

𝐷𝐷

0

𝑑𝑑𝑟𝑟

Substituting this integral into the ambient occlusion formula, we get

𝑂𝑂(𝒔𝒔) =
1
𝜋𝜋

� �
𝑑𝑑𝜇𝜇(𝑟𝑟)

𝑑𝑑𝑟𝑟
(𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝑟𝑟 𝑑𝑑𝝎𝝎

𝐷𝐷

0𝛺𝛺
 .

334 Game Engine Gems

Realizing that r2drdω = dV is a differential volume, the ambient occlusion can also
be expressed as a volumetric integral

𝑂𝑂(𝒔𝒔) =
1
𝜋𝜋

�
𝑑𝑑𝜇𝜇(𝑟𝑟)

𝑑𝑑𝑟𝑟
1
𝑟𝑟2 (𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝑉𝑉

𝐴𝐴
 ,

where S contains those points of the solid hemisphere that are visible from the
shaded point, and therefore also visible from the camera.

In our case, the occluder surface is a height field defined by the content of the depth
buffer. Thus a point (x,y,z) belongs to the visible region if its z-coordinate is less than
the value z* stored in the depth buffer for the same (x,y) coordinates.

We compute the volumetric integral with differential elements having dz height
and dA = dxdy base area at the point (x,y) of the disk C of radius R and perpendicular
to z-axis (see Figure 18.2) as

𝑂𝑂(𝒔𝒔) =
1
𝜋𝜋

� �
𝑑𝑑𝜇𝜇(𝑟𝑟)

𝑑𝑑𝑟𝑟
1
𝑟𝑟2 (𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝑧𝑧 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥,𝑦𝑦∈𝐶𝐶

=
1
𝜋𝜋

� ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛, 𝑧𝑧𝑒𝑒𝑎𝑎𝑥𝑥)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝑥𝑥,𝑦𝑦∈𝐶𝐶

 ,

where h is the integral over z given by

ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛, 𝑧𝑧𝑒𝑒𝑎𝑎𝑥𝑥) = �
𝑑𝑑𝜇𝜇(𝑟𝑟)

𝑑𝑑𝑟𝑟
1
𝑟𝑟2 (𝑵𝑵𝐴𝐴 ∙ 𝝎𝝎)𝑑𝑑𝑧𝑧

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

= �
𝑑𝑑𝜇𝜇(𝑟𝑟)

𝑑𝑑𝑟𝑟
1
𝑟𝑟2

(𝒐𝒐 − 𝒔𝒔) ∙ 𝑵𝑵𝐴𝐴

𝑟𝑟
𝑑𝑑𝑧𝑧

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

 .

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 335

Figure 18.2: Evaluation of the volumetric integral in the visible part of the neighborhood sphere.

Recall that we are free to set the exponent of the fuzzy membership function.
Classical ambient occlusion used a non-fuzzy measure, which corresponds to α = ∞.
Mendez [4] examined several exponents and concluded that α = 1/2 is a good choice.
Our criterion for setting the exponent will be the ease of the evaluation of the ambient
occlusion integral. This integral can be evaluated analytically if we define the fuzzy
membership function as μ(r)=(r/R)α with α=4. The center of the sphere is the shaded
point whose coordinates are denoted by (xs,ys,zs). In this case,

javascript:PopImage('IMG_192','fig277_01_0_0.jpg','733','658')

336 Game Engine Gems

ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛, 𝑧𝑧𝑒𝑒𝑎𝑎𝑥𝑥) =
4

𝑅𝑅4 � (𝒐𝒐 − 𝒔𝒔) ∙ 𝑵𝑵𝐴𝐴 𝑑𝑑𝑧𝑧

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

=
4

𝑅𝑅4 �𝑧𝑧 �(𝑥𝑥 − 𝑥𝑥𝐴𝐴)𝑁𝑁𝐴𝐴
𝑥𝑥 + (𝑦𝑦 − 𝑦𝑦𝐴𝐴)𝑁𝑁𝐴𝐴

𝑦𝑦� +
(𝑧𝑧 − 𝑧𝑧𝐴𝐴)

2
𝑁𝑁𝐴𝐴

𝑧𝑧�
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

 .

The integral over the disk is evaluated with numerical quadrature. The total
volume of the visible part of the hemisphere is approximated by the sum of the volume
of pipes. The axes of these pipes are parallel to the z-axis. The pipes are inside the
hemisphere and may be limited by the height field of the depth buffer. To define the
pipes, we sample n uniformly distributed points (xi, yi) in the disk of radius R. Thus,
each pipe has the same cross section area ΔA=R2π/n.

A line crossing the i-th sample point and being parallel with the z-axis enters the
sphere at

𝑧𝑧𝑖𝑖
𝑒𝑒𝑖𝑖𝑛𝑛 = 𝑧𝑧𝐴𝐴 − �𝑅𝑅2 − (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝐴𝐴)2 − (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝐴𝐴)2 ,

exits it at

𝑧𝑧𝑖𝑖
𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒 = 𝑧𝑧𝐴𝐴 + �𝑅𝑅2 − (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝐴𝐴)2 − (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝐴𝐴)2 ,

and crosses the tangent plane of the shaded point at

𝑧𝑧𝑖𝑖
𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒 =

𝑁𝑁𝐴𝐴
𝑥𝑥(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑖𝑖) + 𝑁𝑁𝐴𝐴

𝑦𝑦(𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑖𝑖) + 𝑁𝑁𝐴𝐴
𝑧𝑧𝑧𝑧𝐴𝐴

𝑁𝑁𝐴𝐴
𝑧𝑧 ,

The points on this line belong to the visible region when their z-coordinates are
less than z𝑖𝑖

max = min�𝑧𝑧𝑖𝑖
∗, 𝑧𝑧𝑖𝑖

𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒 , 𝑧𝑧𝑖𝑖
𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒� and are greater than z𝑖𝑖

min . The contribution of
the pipes to the volumetric integral of the ambient occlusion is

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 337

𝑂𝑂(𝒔𝒔) =
1
𝜋𝜋

� ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛, 𝑧𝑧𝑒𝑒𝑎𝑎𝑥𝑥)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 ≈
𝑅𝑅2

𝑠𝑠𝑥𝑥,𝑦𝑦∈𝐶𝐶
� ℎ�𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖

𝑒𝑒𝑖𝑖𝑛𝑛, 𝑚𝑚𝑠𝑠𝑠𝑠�𝑧𝑧𝑖𝑖
∗, 𝑧𝑧𝑖𝑖

𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒 , 𝑧𝑧𝑖𝑖
𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒��

𝑛𝑛

𝑖𝑖=1

 .

This quadrature is an approximation, and its error decreases if new sample points
are added. However, computing the formula with many sample points reduces
rendering speed. Thus, we consider two techniques, including weighted uniform
sampling and interleaved sampling, that reduce the computation error without
performance degradation.

Weighted uniform sampling [7] exploits the fact that if there is no occlusion in the
neighborhood sphere, then ambient occlusion factor should be equal to one. If it is not,
then the difference is due to the approximation error. So we compute not only the
ambient occlusion from the samples but also the estimate of this factor assuming no
occlusion at all. Ignoring occlusions, this factor is

1 ≈
𝑅𝑅2

𝑠𝑠
� ℎ�𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖

𝑒𝑒𝑖𝑖𝑛𝑛, 𝑚𝑚𝑠𝑠𝑠𝑠�𝑧𝑧𝑖𝑖
∗, 𝑧𝑧𝑖𝑖

𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒, 𝑧𝑧𝑖𝑖
𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒��

𝑛𝑛

𝑖𝑖=1

 .

Dividing the formula for ambient occlusion by this approximation, we can
compensate for the quadrature error; thus, a better estimate of ambient occlusion is

𝑂𝑂(𝒔𝒔) ≈
 ∑ ℎ�𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖

𝑒𝑒𝑖𝑖𝑛𝑛, 𝑚𝑚𝑠𝑠𝑠𝑠�𝑧𝑧𝑖𝑖
∗, 𝑧𝑧𝑖𝑖

𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒, 𝑧𝑧𝑖𝑖
𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒��𝑛𝑛

𝑖𝑖=1

∑ ℎ�𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖
𝑒𝑒𝑖𝑖𝑛𝑛, 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑧𝑧𝑖𝑖

𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒 , 𝑧𝑧𝑖𝑖
𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒��𝑛𝑛

𝑖𝑖=1
 .

Interleaved sampling [3] takes advantage of the estimates in neighboring pixels.
The method discussed so far has some error in each pixel, depending on the particular
samples used. If we took different random numbers in neighboring pixels, dot noise
would be present. Using the same random numbers in every pixel would make the error
correlated and replace dot noise with stripes. Unfortunately, both stripes and pixel noise

338 Game Engine Gems

are quite disturbing. Interleaved sampling uses different sets of samples in the pixels of
a 4×4 pixel pattern. The errors in the pixels of a 4×4 pixel pattern are uncorrelated,
which can be successfully reduced by a lowpass filter of the same size. When
implementing the low-pass filter, we also check whether the depth difference between
the current and neighboring pixels exceeds a given limit. If it does, we do not include
the neighboring pixels in the averaging operation.

18.5 Indirect Lighting of the Near Geometry

The second part of the reflected radiance depends on the average radiance values
of nearby surface points. As we calculate the ambient occlusion with random points in
the neighborhood of the shaded point, the color of the frame buffer at these random
points can be used to obtain the average reflected radiance. By inspecting the camera-
space normal, we can also check whether the surface is oriented toward the shaded point,
and ignore it in the average otherwise.

18.6 Implementation

The discussed algorithm is implemented as a fragment shader run in a deferred
shading pass, as shown in Listing 18.1. For the sake of simplicity, we omitted parts
related to interleaved sampling. The program receives the fragment position in texture
space (wPos) and in 2D clipping space (hPos) as interpolants. By fetching from the
texture map containing normal vectors and depth values (depthMapSampler) with the
texture-space position, we obtain the camera-space normal vector and the depth value.
The 2D clipping-space coordinates are also transformed back to camera space using the
camera-space depth, which results in the shaded point s.

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 339

Listing 18.1: This fragment shader implements the algorithm discussed in this gem.

float4 psAO(float2 wPos : TEXCOORD0, float2 hPos : TEXCOORD1) : COLOR0

{

 wPos += pixelsize * 0.5; // Texture coordinates in [0,1]

 float3 N = tex2D(depthMapSampler, wPos).xyz; // Camera-space normal

 float depth = tex2D(depthMapSampler, wPos).a; // Camera-space depth

 // Compute camera-space position

 float4 pcamera = mul(float4(hPos, 0, 1), projMatrixInverse);

 pcamera.xyz /= pcamera.w;

 float3 s = pcamera.xyz * depth / pcamera.z; // Shaded point

 float O = 0; // Enumerator of ambient occlusion

 float Denom = 0; // Denominator of ambient occlusion

 float3 I = 0; // Irradiance

 for (int sampleidx = 0; sampleidx < sampleCount; sampleidx++)

 {

 float2 sample = AO_RAND[sampleidx].xy * R;

 float3 o = s + float3(sample.x, sample.y, 0); // Occluder

 pcamera = mul(float4(o, 1), projMatrix);

 float2 texCoord = pcamera.xy / pcamera.w;

 texCoord.y *= -1.0;

 texCoord = (texCoord + 1) / 2;

 float zstar = tex2D(depthMapSampler, texCoord).a;

 o.z = zstar; // Occluder’s depth

 float d = sqrt(R * R - dot(sample.xy, sample.xy));

340 Game Engine Gems

 float zmin = s.z - d;

 float zexit = s.z + d;

 float zplane = s.z - dot(o.xy - s.xy, N.xy) / N.z;

 zplane = max(zplane, zmin);

 zexit = min(zplane, zexit);

 float zmax = zexit;

 Denom += (zmax - zmin) * (dot(o.xy - s.xy, N.xy) +

 (zmax + zmin - 2 * s.z) / 2 * N.z);

 if (zstar < zmin - R) zstar = zexit; // silhouette elimination

 zmax = min(zexit, zstar);

 zmax = max(zmax, zmin);

 O += (zmax - zmin) * (dot(o.xy - s.xy, N.xy) +

 (zmax + zmin - 2 * s.z) / 2 * N.z);

 if (zmax < zexit) // Occlusion happened?

 {

 float3 No = tex2D(depthMapSampler, texCoord).xyz;

 if (dot(s - o, No) > 0)

 I += tex2D(colorMapSampler, texCoord).rgb;

 }

 }

 O /= Denom;

 I *= (1.0 - O) / sampleCount;

 return float4(I, O);

}

Then the enumerator and denominator of the ambient occlusion formula and the
irradiance are computed in variables O, Denom, and I in the loop executed sampleCount
times. A single occluder sample o is generated from prepared 2D points uniformly

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 341

distributed in the unit disk (AO_RAND[k]). The depth map is fetched using the direction
of the occluder, which results in occluder depth zstar. This depth is compared to the
entry depth of the sphere zmin, exit depth zexit, and that of the intersection with the
tangent plane zplane, determining the zmin-zmax interval where the function h is
evaluated. In parallel, another integral is computed in Denom that describes the
unoccluded case. This integral will be used for error compensation. Note that we also
check whether the occluder is much closer to the eye than the shaded point and ignore
such occlusions, which would otherwise result in false silhouette edges. If near occlusion
happens and, according to the occluder's surface orientation, it can illuminate the
shaded point, then the occluder's color is inserted into the average color used for
indirect illumination. This fragment shader returns with the average indirect
illumination and the ambient occlusion of the fragment, which is then composited with
the previously calculated direct illumination result.

As the compiler unrolls loops that contain tex2D calls, we may run out of registers
when the sample number is high (it is greater than 12 in the specified hardware). If more
samples are needed, the tex2D calls should by replaced by tex2Dlod, which does not
force loop unrolling. Surprisingly, this replacement does not degrade the performance.

18.7 Results

The proposed methods have been implemented in DirectX/HLSL environment,
and their performance has been measured on an Nvidia GeForce 8800 GTX GPU at
800×600 resolution. The rendering results of the harbor scene are shown in Figure 18.3.
This scene can be rendered at 170 FPS if only directional light is computed. Taking 16
samples per pixel, the ambient occlusion and indirect lighting computation runs over
100 FPS. With 32 samples per pixel, the rendering speed drops to 60 FPS.

342 Game Engine Gems

Figure 18.3: (See also Color Plates.) Rendering results of the harbor scene— (First column)
direct lighting, (second column) direct lighting plus ambient occlusion, and (third column)
direct lighting plus ambient occlusion and indirect lighting.

javascript:PopImage('IMG_241','fig384_01a_0_0.jpg','787','1000')

Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting 343

References

[1] H. Landis."Production-ready global illumination". SIGGRAPH Course notes 16, 2002.
http://www.debevec.org/HDRI2004/landis-S2002-course16-prodreadyGI.pdf

[2] A. Iones, A. Krupkin, M. Sbert,and S. Zhukov."Fast realistic lighting for video
games". IEEE Computer Graphics and Applications, Volume 23, Number 3 (May 2003),
pp. 54–64.

[3] A. Keller and W. Heidrich."Interleaved sampling". Rendering Techniques 2001
(Proceedings of the 12th Eurographics Workshop on Rendering), 2001, pp. 269–276.

[4] A. Méndez, M. Sbert,and J. Catá."Real-time obscurances with color bleeding". SCCG
'03: Proceedings of the 19th Spring Conference on Computer Graphics, ACM, 2003, pp.
171–176.

[5] M. Mittring."Finding next gen — CryEngine 2". Advanced Real-Time Rendering in 3D
Graphics and Games course, SIGGRAPH 2007, pp. 97–121.

[6] M. Pharr and S. Green."Ambient occlusion". GPU Gems, Addison-Wesley, 2004.

[7] M. Powell and J. Swann."Weighted Uniform Sampling—a Monte-Carlo Technique for
Reducing Variance". Applied Mathematics, Volume 2, Number 3 (September 1966), pp.
228–236.

[8] T. Ritschel, T. Grosch,and H.—P. Seidel."Approximating Dynamic Global
Illumination in Image Space". Proceedings ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (I3D), 2009, pp. 75–82.

[9] P. Shanmugam and O. Arikan."Hardware accelerated ambient occlusion techniques on
GPUs". Proceedings of the 2007 Symposium on Interactive 3D Graphics, 2007, pp. 73–80.

[10] T. Umenhoffer, B. Tóth,and L. Szirmay-Kalos."Efficient Methods for Ambient
Lighting". Spring Conference on Computer Graphics, 2009, pp. 99–106.

344 Game Engine Gems

[11] S. Zhukov, A. Iones,and G. Kronin."An ambient light illumination model".
Proceedings of the Eurographics Rendering Workshop, 1998, pp. 45–56.

19

Chapter 19 Real-Time Character Dismemberment

Aurelio Reis

id Software

Overview

Modern games utilize a number of tricks to convey a realistic and intriguing world.
In only a few years, realistic physics and destructible environments have garnered
widespread industry adoption, yet despite this, few games attempt to model heavy
damage on game characters. One of the main reasons for this is the complexity of
decomposing the topology of a 3D mesh dynamically with real-time performance.

In this gem, we introduce an efficient general-use technique for character
dismemberment that can be easily incorporated into an existing skeletal animation
system. This implementation is perfectly suitable for games, real-time applications like
military simulations, and other "serious games" where the accuracy of the damage
modeling does not need to be precise (as in medical simulations).

While many games don't have the subject matter appropriate for dismemberment,
when presented in a cartoonish way it's possible to approach gore and dismemberment
such that it is relevant to the gameplay experience as opposed to being used purely for
shock value or gimmick. Movies such as Evil Dead 2 and Kill Bill have approached gore
in a comedic way that rivets audiences. As zombie and monster games gain popularity,

346 Game Engine Gems

it's likely that they will have the most to gain from character dismemberment.

19.1 What is Character Damage Modeling?

A character in this context is roughly defined as any animated figure in the shape
of a creature using a bipedal skeleton and keyframed animations for its motion. In the
game world, a character is represented as an entity that is capable of moving around
using some scripted or autonomous behaviors with animations that coincide with this
motion. As the character moves throughout the world, it may come in contact with a
number of interactive elements that can affect the character in one way or another. In a
first-person shooter, for instance, a character may move about, be influenced in some
way by the environment (like when riding an elevator), and may shoot or be shot by
other characters (player or non-player).

When a character is killed, the results are usually presented using some kind of
pre-canned animation sequence with special effects like blood and gore strewn about.
In most modern games, it is common practice to use "ragdoll" physics once the
character is completely dead to add an additional sense of realism. In addition, some
games go so far as to create bloody chunks and body parts, so-called "gibs" (for giblets).
Combined, these elements result in character damage modeling that makes the game
world more believable to the player. Games, after all, are about consequences, and
realistic character deaths add to that realism.

While most games are able to get away with this degree of damage modeling, some
games require more precise detail. Additional elements like projected decals and
character scarring adds a lot, but the most dramatic change would be in the shape of the
character itself. The effects of severe blunt force or impact trauma on a humanoid is
enough to dismember most major limbs with ease, and it is this particular subset of
damage modeling on which this gem focuses.

Chapter 19 Real-Time Character Dismemberment 347

19.2 Methods of Mutilation

There are a number of ways to approach character dismemberment. The easiest
and most straightforward solution would be to explicitly model the character as an
articulated collection of body parts. Whenever a limb's bounding volume is hit,
everything below that body part in the hierarchy can be manually detached. This
technique, while incredibly simple, can be difficult to tune because model seams
become prominent at the body part boundaries. Aesthetically, the quality is quite poor,
although it can be hidden by clever modeling tricks (e.g., placing a gorget at the
character's neck seam). In addition, this technique would require a large number of
body parts to work well, which means additional draw calls that can result in reduced
performance.

The extreme opposite of this would be to use computational geometry.
Constructive solid geometry (CSG) boolean operations can be used to remove chunks
of a character by dynamically splitting and removing polygons from the mesh. The
uniform character mesh is a great advantage, but unfortunately this technique requires
heavy CPU processing both in pre-transforming the animated mesh to the proper pose
and in the required geometric operations. This technique can also result in a highly
triangulated mesh with an unpredictable number of polygons that can become both a
memory and performance concern.

Another possible method would be similar to the one used in the Soldier of Fortune
series of games made by Raven Software. In their approach, they used what they called
"gore zones" to represent up to 26 areas that can be toggled off on a given animated
biped. The character models were created in such a way that every gore zone was
completely capped, sealed and internally textured. This allowed them the flexibility to
represent internal cavities such as the skull where the brain could become detached due

348 Game Engine Gems

to heavy trauma. The obvious downsides are a heavily triangulated model and a draw
call for each gore zone—26 draw calls per character model. This can be avoided by
consolidating gore zone geometry into a massive draw batch, but since this requires
touching GPU memory, it can come at an expensive cost.

It's also possible to remove limbs by using geometry morphing. In this method, a
blend shape is used to move the vertices of the limb to a desired final position, i.e., a
stump or cap. This technique is easily hardware accelerated, although older hardware is
only able to handle a few blend shapes. Because of this, dismembering multiple limbs at
the same time requires modifying a vertex buffer where a morph scale is specified. In
order to determine whether to apply the vertex position deltas to get the dismembered
geometry location, this scale is modified at run time. Like the previous technique, this
method suffers from having to modify a buffer in GPU memory.

Ultimately, each of these techniques has its own set of potential benefits and pitfalls.
Ideally, what we want is a system that works with a uniform mesh because of the
inherent performance benefits of a single draw call. In addition, our solution should be
able to take advantage of commodity graphics hardware like that in the current
generation of game consoles. This system also needs to be flexible enough to allow for
any number of user-defined body parts (within reason) to be severed, generating a new
and separate object that is able to coexist with the original model. Finally, it should
require as little artist intervention as possible, allowing for arbitrary break points based
on user-defined data that is easily modifiable.

19.3 Bone Matrix Flattening

The solution presented in this gem works like so. Given a 3D mesh and a matching
skeletal hierarchy, a user-defined damage zone is created for every breakable body part.
Each damage zone contains a bounding volume that defines its area, the joint to which

Chapter 19 Real-Time Character Dismemberment 349

it is attached, the surface area it encompasses (more on this later), and the list of joints
below the main joint (see Listing 19.1). The bounding volume should be as tight-fitting
as possible. An oriented bounding box works quite well since most limbs on a human
biped are longer than they are wide although a sphere may also be sufficient (depending
on the underlying geometry). Figure 19.1 shows an example of a damage zone
configuration.

Figure 19.1: The limb damage zones.

Listing 19.1: The damage zone class definition.

class CArDamageZone : public CArHitBox

{

public:

 CArDamageSurface m_Surface;

 // The next damage zone below this one in the skeletal hierarchy.

 CArDamageZone *m_Next;

350 Game Engine Gems

 // The joints below this damage zone's joint

 vector<int> ChildJointList;

 // The largest joint index in the limb hierarchy.

 int m_JointRange;

 CArDamageZone() : m_Next(NULL), m_iJointRange(INVALID_JOINT) {}

 ~CArDamageZone() {}

 void GatherChildJoints(const SMD5Skeleton& Skel);

};

When a hit is registered on a body part's damage zone, every child joint below the
joint to which it is attached is traversed, and each one of these joints is moved to the
position of the main joint. In addition to this, each matrix for the child joints is flattened,
that is, scaled down to zero to form a degenerate matrix. This effectively creates a stump
as the vertices reduce to a singular point.

The process for creating the dismembered piece is very similar. The same damage
zone joint is now used as the origin of all the joints above it in the hierarchy and their
transforms are also flattened as in the previous step. The detached limb can now
function as a separate entity where it can come under control of the physics system, i.e.,
go into ragdoll mode.

19.4 Improvements

While this technique's results can be utilized immediately, there are a number of
things that can be improved. First, while the end caps formed by the matrix flattening
don't look that bad, they don't really convey any kind of localized damage. To remedy
this, it's possible to use "gore caps" and "blood flowers". These artist created models can

Chapter 19 Real-Time Character Dismemberment 351

be attached to the end of a damage zone joint to create the appearance of bone shards
or bloody entrails. Since they are defined per damage zone, it is possible to provide a
unique context-specific gore cap for any given break point. It's also possible to detect
whether a matrix has been flattened within a shader and react accordingly, possibly
blending between a damage texture created with procedural texture coordinates or
fading out the polygons completely to show interior surfaces. In coordination with
particle systems for effects like blood, a very rich visual presentation can be created.

Figure 19.2: A limb is removed by transforming the vertices associated with its joints by a
skinning matrix that makes those vertices degenerate. The detached limb is formed by
performing the process in reverse.

Another area of improvement has to do with how detached limbs are rendered.
While degenerate triangles that have no pixels generated save on fill rate, the vertices
still have been processed. This has the potential to waste quite a bit of vertex throughput
on the GPU. To fix this, we can scan all the vertices in the model and store the ones that
belong to the child joints of a particular damage zone as a continuous "damage surface".
The generated surfaces can then be recombined to form a new mesh that has its vertices

352 Game Engine Gems

prearranged by limb order. When it comes time to render a detached limb, only the
range of vertices and triangle indices defined for a given damage zone need to be
rendered. The different color coded damage zone surfaces are shown in Figure 19.3.

Figure 19.3: (See also Color Plates.) The color coded damage zone surface groups.

It's possible to skip this decomposition step by prearranging all the model
geometry to be contained within a mesh for each damage surface. In this way, the only
processing needed would be to recombine the individual meshes into one uniform
mesh in order to gain the benefits of a single render batch.

While this technique works well for drawing isolated triangles for detached limbs,
it does not work for the base character model, as any number of possible limbs can be
broken off. This means it's impractical to create vertex group configurations that could

Chapter 19 Real-Time Character Dismemberment 353

accommodate rendering of only specific subsets of the model without adding additional
draw batches. Also, the limb break points don't need to lie at the origin of a damage
zone joint as was described earlier. By means of projecting the actual hit location along
a line connecting the damage zone joint and its immediate child, it is possible to create
a break that is more precise. Another enhancement worth exploring would be adding
mirrored joints in the model's skeleton to allow rendering of the main character body
and the dismembered limb in the same draw call.

Lastly, while the technique described here was described in the context of a bipedal
creature, it can be used for any object with discrete "limbs", such as tree (branches), light
poles, or even non-bipedal creatures.

19.5 Demo

A demo of the technique described in this gem can be found on the accompanying
CD. The MD5 format was chosen for the model and animations since they cover the
bases on most skeletal animation needs. The core logic for the damage zone surface
generation can be found in the CArBaseModel::GenerateDamageSurfaces()

function in Model.cpp. The logic and definition of the damage zone is in
BoundingVolume.h/.cpp. The logic that calculates the animated skeleton along with
the flattened joints for the limb and body is in the CArAnimator::Update() function
in Animator.cpp.

20

Chapter 20 A Deferred Decal Rendering Technique

Jan Krassnigg

University of Aachen, Germany

Overview

Rendering decals is a common method used to apply more detail to 3D worlds
dynamically. Decals are often used to add bullet holes, blood stains, tire marks, and
similar items to a world as events occur in a game, but they can also be used by level
designers to enrich the environment with wear and tear textures, dirt textures, signs on
walls, etc.

This gem presents a decal rendering technique that uses deferred shading to
produce scenes like the one shown in Figure 20.1. The technique is entirely shader based,
extremely lightweight on the CPU, does not need to dynamically generate triangles, and
is a straightforward addition to most 3D engines.

356 Game Engine Gems

Figure 20.1: Decals applied to complex geometry.

20.1 The Problem

There are several things that a good decal system should solve:

1. The system should integrate well with lighting. Decals should not only change the
color, but also change the normal, specular factors, and any other surface parameters
such that they become indistinguishable from all other geometry.

2. Decals should work convincingly on all surfaces, static and dynamic.

3. Decals need to clip properly to geometry boundaries, and possibly even wrap around
corners.

4. The system needs to work with geometry that might be very different from the
geometry used for collision detection.

javascript:PopImage('IMG_207','fig293_01_0_0.jpg','471','471')

Chapter 20 A Deferred Decal Rendering Technique 357

Item 1 in this list is easily solvable when the graphics engine includes deferred
rendering capabilities [2]. For forward renderers, the system in this gem can still be used,
but some modifications will be necessary. For a thorough explanation of deferred
shading, please refer to [3,4,5,6].

Item 2 can be solved if we can get our hands on a free 8-bit channel in the G-buffer.
If not, we can at least make it work on static geometry. This is discussed in Section 20.5.

Item 3 is where the real problems begin. The decal needs to follow the surface to
which it is applied, even if that surface is highly tessellated. Some existing decal
rendering techniques generate a triangle representation for a decal on such a surface [1],
but this can be computationally expensive. Furthermore, the raw mesh is often not
available at all on the CPU since the mesh data is loaded into a vertex buffer accessible
only by the GPU at a reasonable speed.

Item 4 is an issue because today's games often use very complex meshes for
rendering, but a less detailed mesh might be used for collision detection. The difficulty
is that the point of intersection that a ray cast returns might differ quite a bit from the
location where the decal must be rendered.

20.2 The General Idea

The basic solution afforded by our technique is to project a decal onto a surface
using a special fragment shader applied to the decal's bounding volume instead of
rendering new decal polygons on top of the scene geometry. The only information
required to achieve this consists of the position and orientation of the decal, the decal's
size, and a texture containing depth values for the viewport being rendered. This
information allows all computation to be done in the vertex and fragment shaders.

When rendering a decal, it is natural for us to work in "decal space", where the x-

358 Game Engine Gems

and y-axes lie in the tangent plane to the underlying surface at the decal's center, and
the z-axis is parallel to the surface's normal vector at the decal's center. In order to move
data into the decal's local coordinate system, the shader needs to be supplied with the
inverse of the decal's transformation matrix.

The code in Listing 20.1 first fetches the depth from the G-buffer at the fragment
position and uses it to reconstruct the 3D world-space position of the fragment. The
worldToDecal constant is the inverse of the transformation matrix for the decal that we
are currently rendering. With this matrix, we can transform the fragment's position into
the local space of the decal. This local position can then be used to compute texture
coordinates at which the decal texture is sampled. In this first version, we are using the
(x,y) position only, which simply projects the decal along its local z-axis onto the
underlying geometry, as shown in Figure 20.2.

Figure 20.2: Using a simple projection onto the local x-y plane causes decals to be smeared in
the direction of the local z-axis.

javascript:PopImage('IMG_208','fig296_01_0_0.jpg','819','405')

Chapter 20 A Deferred Decal Rendering Technique 359

Listing 20.1: This code determines the decal-space coordinates for the fragment being rendered
and transforms them into texture coordinates for the decal. The RT_Depth texture contains depth
values for the viewport, the worldToDecal constant is the inverse of the decal's 4×4 matrix
transform from decal space to world space, and the recipDecalSize constant is 1/s, where s is the
size of the decal in the scene.

// Sample the depth at the current fragment

float pixelDepth = texture2DRect(RT_Depth, gl_FragCoord.xy).x;

// Compute the fragment's world-space position

vec3 worldPos = ComputeWorldSpacePosition(gl_FragCoord.xy, pixelDepth);

// Transform into decal space

vec3 decalPos = worldToDecal * worldPos;

// Use the xy position of the position for the texture lookup

vec2 texcoord = decalPos.xy * recipDecalSize * 0.5 + 0.5;

// Fetch the decal texture color

gl_FragColor = texture2D(diffuseDecalTexture, texcoord);

20.3 Geometry Rendering

Now that we have some code that calculates basic texture coordinates, we must
consider what kind of geometry we actually need to render. Each fragment rendered
with the decal shader acts like a "window" through which we can possibly see our decal.
So we could just render a surface-aligned quad corresponding to the size and position
of the decal. However, we want our decal to have depth, so we instead render a bounding
cube as shown in Figure 20.3. This allows us to see the decal from any direction, and it
will allow us to add a wrap-around feature later on.

360 Game Engine Gems

Figure 20.3: A bounding cube centered on a decal can be rendered to ensure that we capture
the decal's influence from any viewpoint.

As an optimization for scenes containing a large number of decals, it can be
advantageous to render decals through hardware instancing [7]. Therefore, it is a good
idea to simply render a unit cube and transform it to the correct size and position in the
vertex shader, as demonstrated in Listing 20.2. Note that we can easily extend the
uniform constants decalSize and decalToWorld to arrays and use gl_InstanceID to
render a batch of decals through instancing.

Listing 20.2: This vertex shader scales a unit cube to the actual size of the decal and translates it to
the decal's world-space position.

javascript:PopImage('IMG_209','fig297_01_0_0.jpg','533','536')

Chapter 20 A Deferred Decal Rendering Technique 361

uniform float decalSize;

uniform mat4 decalToWorld;

// scale the unit cube and position it in world space

vec4 worldPos = decalToWorld *

 vec4(gl_Vertex.xyz * decalSize, gl_Vertex.w);

// output the position in homogeneous clip space

gl_Position = gl_ModelViewProjectionMatrix * worldPos;

For small decals, this technique works very well. However, when a cube is rendered
with backface culling enabled and the depth test set to GL_LESS, the decal disappears
the moment the camera enters the cube. One solution to this problem is to cull front
faces and set the depth test to GL_GREATER. This way, only fragments whose world
positions are actually behind surfaces are rendered, but it causes many fragments to be
rendered unnecessarily when they are occluded by geometry closer to the camera.

Another solution is to find the corner of the cube that is closest to the camera and
render a camera-aligned quad at that depth that is large enough to enclose the entire
cube. If the closest corner is in front of the near plane, a full-screen quad should be
rendered at the near plane instead.

20.4 Fade Out And Wrap-Around

We have a basic vertex shader and fragment shader in place, but our projection is
infinite along the decal's z-axis, producing the smearing shown in Figure 20.2. There
are two methods we can use to fix this problem. The simpler method is to use the
distance from the fragment's position to the decal plane as a fade-out parameter. This
distance is already available in decalPos.z, and we just have to scale it to the size of the
decal as demonstrated in Listing 20.3.

362 Game Engine Gems

Listing 20.3: The absolute value of the decal-space z-coordinate of the fragment position is scaled
to the size of the decal and used as a fade-out parameter for the decal color. As before, the
recipDecalSize constant is 1/s, where s is the size of the decal in the scene.

// compute the distance of the fragment to the decal's plane

float distance = abs(decalPos.z);

// scale the distance into the [0,1] range

// according to the size of the decal

float scaledDistance = max(distance * recipDecalSize * 2.0, 1.0);

// somehow use that scaled distance to fade out

// here: simple linear fade out

float fadeOut = 1.0 - scaledDistance;

vec4 diffuseColor = texture2D(diffuseDecalTexture, texcoord);

gl_FragColor = vec4(diffuseColor.rgb, diffuseColor.a * fadeOut);

This method is useful when a decal is supposed to be flat without wrapping around
geometry. The exact formula used to fade out a decal can be varied to produce the best
look for different decals, and it is advisable to make this configurable within the engine.

A more interesting method for handling the smearing problem is to make a decal
wrap around corners and follow the curvature of complex surfaces. This is especially
useful for blood stains and other liquids that splatter because it is much more
convincing if such a decal covers an entire surface independently of its curvature.

This is quite easy to achieve. All we need is the surface normal at the position of
each fragment in the decal. If we rotate that normal into decal space, its (x y)
components give us the gradient of the surface relative to the decal plane. We can use
this gradient and the fragment's distance to the decal plane to modify the texture
coordinates. In areas with no relative slope, the texture lookup remains unchanged, but

Chapter 20 A Deferred Decal Rendering Technique 363

in areas with a large slope (for example, at corners), the texture coordinates move
outward according to the distance to the decal plane. This technique is illustrated in
Listing 20.4, and the result is shown in Figure 20.4.

Figure 20.4: The decals wrap around corners based on the surface normals, and they fade out
based on the distance from the decal plane.

Listing 20.4: This code demonstrates how the normal of the underlying surface can be used to
adjust texture coordinates in such a way that a decal wraps around curves and corners. The
RT_Normal texture contains normal vectors for the viewport encoded in the RGB channels.

// get the world-space normal at the fragment position

vec3 worldNormal = texture2DRect(RT_Normal, gl_FragCoord.xy).xyz;

// rotate it into the local space of the decal

vec3 decalNormal = (worldToDecal * vec4(worldNormal.xyz, 0.0)).xyz;

vec2 texcoord = decalPos.xy;

javascript:PopImage('IMG_210','fig300_01_0_0.jpg','821','404')

364 Game Engine Gems

// use the distance and gradient to modify the texture lookup

texcoord -= decalPos.z * decalNormal.xy;

// scale and center the texture coordinates

texcoord += vec2(decalSize);

texcoord *= recipDecalSize * 0.5;

gl_FragColor = texture2D(diffuseDecalTexture, texcoord);

For the finishing touch, we add color fading that depends on the distance to the
decal plane. We also need to account for the angle between the decal plane's normal and
the underlying surface normal, since otherwise, decals appear on the back side of thin
walls. A complete example shader with more details can be found on the accompanying
CD.

20.5 Surface Clipping

The technique we have described works by applying decals in viewport space and
does not differentiate among surfaces onto which it is projected. By using the projection
and wrap-around method, it is possible to attach decals to any kind of surface, even to
animated characters. However, a decal is never clipped, meaning that a decal attached
to a box also projects onto the ground on which the box is resting. If the box moves and
carries the decal along with it, then the projection on the ground moves as well.

There are two possible solutions to this problem. One solution is to restrict decal
rendering to pixels covered by static geometry only. In this case, we need to render all
static geometry first, then apply decals, and only afterward, render dynamic objects.

The second solution requires that an additional channel in the G-buffer be used to
hold a "decal ID" for every distinct object that is rendered. In the rendering pass that
fills the G-buffer, we write each object's decal ID along with the diffuse color, normal,

Chapter 20 A Deferred Decal Rendering Technique 365

etc., so that we have a per-pixel mask identifying to which object each pixel belongs.
When a decal is applied to an object, we look up the object's ID and associate it with the
decal. When the decal is rendered, we pass this ID along as an additional uniform
constant and compare it to the ID read from the G-buffer. If the two match, then we
know that the pixel belongs to the object to which the decal is attached, and we render
normally. Otherwise, we discard the fragment because it would be drawn outside the
set of pixels covered by the object.

If no distinction needs to be made among static geometries, then they can all share
the same ID, such as zero. All dynamic objects should have different IDs, but those IDs
don't need to be unique. All we need to do is make it very improbable that two dynamic
objects near each other have the same ID. It then suffices to use an 8-bit channel and
simply give the dynamic objects random IDs from the range [1,255].

This kind of object ID management could also be done using the stencil buffer.
However, testing stencil values prevents us from using instancing to render the decals
due to the fact that we cannot pass the stencil compare value as a uniform constant to
the shader and change the stencil test on a per-fragment basis.

20.6 Limitations

There are a few limitations one should be aware of. This technique does not
magically create volumetric decals. It only improves a 2D projection so that it looks
more realistic in many situations. The wrap-around feature uses the normal of the
underlying surface to change the texture coordinates inside a decal. The results shown
in Figure 20.4 look much better than in Figure 20.2, but there is still a clearly visible cut
at the edge of the vertical column. To prevent such artifacts, one would need to use truly
volumetric decals. Figure 20.5 shows a decal applied to a more complex object. In the
left image, the object uses face normals, and in the right image, it uses smooth normals.

366 Game Engine Gems

In both images, no normal mapping is considered. Obviously, the normal of the
underlying surface has a big effect on the appearance of the decal. Consequently,
surfaces with strong normal mapping tend to distort the decal, sometimes causing
visual artifacts. For some kinds of decals, this is less of an issue, though, because a blood
stain usually still looks like a blood stain no matter how distorted it becomes when
applied to a surface.

Figure 20.5: (Left) Wrap-around based on face normals. (Right) Wrap-around based on
smoothly interpolated vertex normals.

A word about performance: It is easy to cull decals by testing bounding volumes,
and the GPU can render decals in large batches through instancing. However, you
should be careful not to have many decals layered on top of each other because doing
so can easily consume all available fragment-rendering power. You can try to prevent
such situations by removing decals after a certain amount of time or by restricting the
number of decals on screen at once. The latter approach allows us to keep many decals

javascript:PopImage('IMG_211','fig302_01_0_0.jpg','820','407')

Chapter 20 A Deferred Decal Rendering Technique 367

in the world as long as they are not visible at the same time. Most games simply clean
up the scene by removing decals after a fixed amount of time, but lose a lot of immersive
quality in the process. The game Max Payne places a limit on the number of decals
created in a single area, which has the great effect that if the player comes back to a room
where he was previously, all the blood stains and bullet holes are still there.

20.7 Additional Features

Since we are already rendering the decals into the G-buffer before any lighting
occurs, we can not only change the diffuse color, but can also replace (or modify) the
normal, gloss, and other data as we wish. Computing the tangent and bitangent vectors
for the decal is very straightforward in the vertex shader, and no additional vertex
attributes are needed. For more information, see the example shader on the
accompanying CD.

References

[1] Eric Lengyel."Applying Decals to Arbitrary Surfaces". Game Programming Gems 2,
Charles River Media, 2001.

[2] Joris Mans and Dmitry Andreev."An Advanced Decal System". Game Programming
Gems 7. Charles River Media, 2008.

[3] Oles Shishkovtsov."Deferred Shading in S.T.A.L.K.E.R.". GPU Gems 2. Addison-
Wesley, 2005.

[4] Frank Puig Placeres."Fast Per-Pixel Lighting with Many Lights". Game Programming
Gems 6. Charles River Media, 2006.

[5] Rusty Koonce."Deferred Shading in Tabula Rasa". GPU Gems 3. Addison-Wesley,
2008.

368 Game Engine Gems

[6] Dean Calver."Deferred Lighting on PS 3.0 with High Dynamic Range". ShaderX3.
Charles River Media, 2005.

[7] Francesco Carucci."Inside Geometry Instancing". GPU Gems 2. Addison-Wesley,
2005.

Part III

Part III Programming Methods

21

Chapter 21 Multithreaded Object Models

Jon Parise

Electronic Arts

Overview

Many simulation games are constructed around a core model in which everything
in the game world is represented by an object. Each object is a data container,
maintaining self-consistent state for an in-game entity. Objects can be defined using a
type hierarchy or a composition pattern, and they can be organized spatially (as in a
scene graph) or in flat collections.

One challenge common to all of these implementation schemes is how to represent
consistent object state in a multithreaded environment. For example, a game engine
could update the simulation state on one thread, render the game on a second thread,
and perform animation and physics work on additional threads. Data synchronization,
consistency, and conflict resolution quickly become problems.

This gem discusses four approaches to solving these problems:

• Explicit locking

• Message-based updates

• Multiple thread contexts

• Buffered state changes

372 Game Engine Gems

Each approach varies in its complexity, flexibility, and performance. To that end,
there is no one perfect solution for all game engines, but the information provided in
this article should facilitate choosing the most appropriate architecture to match a
known set of requirements.

21.1 Explicit Locking

The most common approach to multithreaded data contention is to add explicit
locking using operating system synchronization primitives, such as critical sections and
mutex locks. Locks are generally used to protect concurrent access to shared, centralized
data resources, such as message queues or device state, and for these types of use cases,
they are a good way to ensure data consistency across multiple threads. Synchronization
primitives are generally well-supported, the interlocked scopes are explicit, and the
initial implementation cost tends to be low.

While locks are often easy to implement, they should be used with care. First, locks
introduce blocking behavior into a multithreaded application, and the potential for
blocking (or worse, deadlock) increases with the number of locks in the system. Second,
many synchronization primitives consume operating system resources (such as kernel
handles under Windows). Third, there is no point at which an object's state (or multiple
objects' states) can be considered consistent. Last, it is generally difficult to verify the
correctness of large lock-based systems without using advanced analysis tools and
frequent code audits.

In the specific case of object models, each object could potentially require one or
more locks in order to support multithreaded access. Depending on the size of the
game's simulation, this could result in a large amount of overhead, potentially
compromising game performance. Given that, the fine-grained, explicit locking
approach seldom scales to large, complex simulation games.

Chapter 21 Multithreaded Object Models 373

21.2 Message-Based Updates

A message queue can be used to serialize updates from multiple "writing" threads.
Each message in the queue describes an object-related state change. The queue is
protected by a single lock that each writer must acquire in order to write a message. A
single "reading" thread periodically processes the queue's contents by acquiring the lock,
playing back the individual messages, and applying the state updates to their associated
game objects.

In this model, all object modifications ultimately occur from the single processing
thread, so protecting individual objects becomes unnecessary. Reading object data from
multiple threads is still problematic, however, because there are no data consistency
guarantees for threads other than the one performing the message processing.

There are three measurable forms of overhead associated with this approach. The
first involves the memory overhead of the message queue itself. Second, state changes
are delayed for as long as their associated message is in the queue waiting to be
processed. And third, all writing threads must block while waiting to acquire the queue's
lock, which could be held by other writers or by the processing thread. The processing
thread does not necessarily need to block if it fails to acquire the lock immediately, but
waiting until its next attempt will further delay the enqueued updates, and there is still
no guarantee it will be able to acquire the lock without blocking.

Given these considerations, a message-based approach is most appropriate for
engines that distribute work from a single primary thread to multiple worker threads.
It provides a nice mechanism for serializing the results of those jobs and then applying
them in the context of the primary update thread. Synchronization is limited to a single
lock protecting the message queue, which reduces complexity and aids debugging.

374 Game Engine Gems

21.3 Multiple Thread Contexts

Another solution explicitly identifies the object data fields that need to be accessed
concurrently. These fields are duplicated and partitioned into per-thread context
structures. Each thread effectively gets its own "private" version of the fields that it can
access without using locking primitives, enabling asynchronous reading and writing.
The fields' contexts are periodically synchronized to update all threads' views of the data.

Methods that access these fields select the appropriate context structure using the
current thread ID. If a method modifies the field's value, it must also make a record of
the change, such as updating the field's assigned bit in the object's per-thread "modified
fields mask". This allows individual changes to be tracked, which drive the
synchronization process.

At the end of each frame, all modifications are merged: the changes made by one
thread are copied to the other thread's context, and vice-versa. This process can be
optimized by using a per-thread "change list" to track unresolved objects (in
conjunction with the "modified fields mask" mentioned above).

In the event that both threads have modified the same field independently, the
merge is ambiguous. In these cases, one thread is considered authoritative, and the
opposing thread's modified value is overwritten. In a properly organized system,
however, this should rarely, if ever, happen. Most fields will only be modified by one
thread while being read by many.

The merge operation is performed by an explicit synchronization step at the end
of a rendering frame (at the vertical blank, for example) when both threads enter a
common barrier. This effectively ties the non-rendering threads to the rendering
thread's update rate, but ideally the other threads are performing time-sliced work that
is compatible with this timing model. Alternatively, synchronization could be based on

Chapter 21 Multithreaded Object Models 375

a non-rendering thread's update rate (such as simulation updates), but then the
rendering thread could not be locked to a specific visual refresh schedule.

This architecture can be extended to support additional per-thread context
structures containing thread-local fields that are not synchronized. This allows thread-
specific code to store object-specific data using the existing object system. For example,
the rendering system could store scene culling information on each object that would
only be accessible through that thread's context.

The memory cost associated with this approach scales with the number of
duplicated contexts. The minimum number of contexts is two, so this architecture
could potentially halve the number of objects that can fit in memory at one time,
assuming all object fields needed to be synchronized. There are also runtime costs
associated with selecting the active thread, tracking modified fields, and merging
contexts.

This approach has the advantage that all thread synchronization is centralized
within the object system. Code that works with objects can remain ignorant of the
underlying synchronization system and will never block outside the explicit
synchronization barrier, which is predictable. It also guarantees a consistent view across
all object data from each thread's perspective, as long as all data access respects the per-
thread context partitioning scheme.

21.4 Buffered State Changes

The final approach presented here is fairly strict and complex, but it also has a lot
to offer in terms of features and architectural cleanliness. The implementation centers
on a dedicated command queue that buffers multiple frames of state changes from one
thread to another. This effectively splits the engine into two halves: a dedicated

376 Game Engine Gems

simulation thread, which produces the state changes, and a rendering thread, which
presents the simulation state to the player.

Another way to think about this separation is in networking terms: the simulation
thread acts like a network server, the command queue fulfills the role of the network
transport layer, and the rendering thread is similar to a network client application that
presents the buffered state changes.

The command queue is designed to hold multiple frames of simulation state. The
simplest possible implementation uses two frames in a traditional double-buffering
scheme: while one frame is being written by the simulation thread, the other frame is
presented by the rendering thread.

Frame swaps are controlled by a single lock. The simulation thread holds the lock while it
writes its state into a new frame, forcing the rendering thread to continue rendering its
current frame until the new frame is made available by the simulation. Rendering is
therefore never stalled by the simulation, but it is forced to represent the same simulation
state over multiple rendering frames when it is running at a faster update rate than the
simulation.

Because it is quite common for the renderer to run at a faster rate, a better
command queue implementation uses three or more frames of simulation state. This
layout allows the renderer to consider multiple frames of simulation state, interpolating
between them based on timing information embedded within the frames. Each
additional frame of data in the queue adds latency and memory overhead, however, so
the ideal layout for many engines uses three frames.

In order to facilitate interpolation, each frame includes a timestamp indicating
when the data was written by the simulation. Also, each entity within a frame, such as
an object, is assigned a unique handle. When an entity is serialized, both its current
handle and its handle from the previous frame are written. This allows the renderer's

Chapter 21 Multithreaded Object Models 377

interpolation logic to match an entry in one frame to its corresponding entry in the
previous frame. Handles are generally represented as indexes or offsets into the frame's
buffer.

In addition to buffered, interpolative state, the command queue can also handle
discrete events. Frame events are triggered by the simulation and have some associated
visual effect, such as starting or stopping a particle system. When one of these events is
written by the simulation, it becomes associated with the simulation's current frame.
Buffered events won't be executed by the renderer until it is also ready to evaluate that
frame's serialized state as well. This rule maintains visual consistency between object
state changes and events.

There are three clear advantages to using a frame-based dependency queue. First,
it results in a clean separation between the simulation and rendering systems. Second,
communication between simulation and rendering is one-way, removing any potential
for ambiguity concerning the state of the world. Lastly, timing and thread
synchronization are explicit, allowing the threads to run at different update rates.

This type of architecture does carry some heavy costs, however, particularly in
terms of memory usage. The size of each frame in the queue can be significant, and,
depending on the game data and serialization requirements, frame sizes might vary
from one to the next, making it difficult to anticipate the peak memory size required by
the queue. There are run-time processing costs associated with serializing, unpacking,
and interpolating buffered state, and there is the cost of delaying state changes while
they're buffered in the queue. Lastly, in terms of overall engine design, separating
systems into rendering and simulation "halves" can be a challenge.

378 Game Engine Gems

21.5 Selecting the Best Approach

Four different approaches to synchronizing object state in a multithreaded game
engine have been presented. All of them have been used successfully in many shipping
titles, but selecting the most appropriate architecture for a specific engine requires
careful evaluation of that game's requirements. In addition, it is entirely possible to
implement hybrid schemes, perhaps on a per-system basis, but care must be taken to
avoid introducing additional data consistency problems as a result.

It's important to emphasize the weight that engine and gameplay requirements
should have in this decision. For example, if the game embeds a scripting language, the
implementation details of the scripting system may dictate additional requirements
with regard to how script interacts with the game's object system. The scripting
environment could even host the entire object system itself, further influencing how the
object system is connected to the rest of the game engine. Alternatively, the gameplay
may not tolerate input delays, in which case some of the buffering-based approaches
discussed above may introduce unacceptable latency.

It's also important to consider external libraries when designing this aspect of the
game engine's architecture. Many middleware packages have specific requirements with
regard to data access patterns. For example, DirectX on the PC requires that
multithreading support be explicitly enabled, and it comes with a measurable
performance penalty, so engines that target the PC platform generally restrict rendering
operations to the main application thread.

With hardware and software trends clearly embracing parallel execution
environments, dealing with concurrent data access problems is becoming an
increasingly common problem. Game engines must be designed with both runtime and
developer efficiency in mind, and the concurrency challenges put even more emphasis

Chapter 21 Multithreaded Object Models 379

on establishing solid architectural foundations. Hopefully, the material presented in this
gem has contributed some useful techniques to that aspect of game engine development

.

22

Chapter 22 Holistic Task Parallelism for Common Game
Architecture Patterns

Brad Werth

Intel Corporation

22.1 Tasks Versus Threads in Games

Parallel programming in games has typically relied upon the use of threads to
provide concurrent execution of work. Threads are independent processing streams
that are given execution time based upon a scheduling algorithm in the host operating
system. This system works well as long as there are enough hardware resources (CPU
cores) to run the available threads. However, modern games run on a variety of
platforms, with very different core topologies. Predetermining a specific number of
threads for a fixed amount of work is no longer a viable strategy.

A popular alternative strategy is to define a thread pool, with a number of threads
scaled to fit the available hardware resources. Parallel work is divided into tasks and
assigned to the threads for execution. These tasks differ from threads in that they should
never block while waiting on other computation. When the task is started, it is run to
completion and cannot be swapped out for the purpose of running another task. So the
challenge of coordinating the activity of multiple threads is changed into the effort of

382 Game Engine Gems

determining how to divide work into tasks and under what conditions those tasks
should be run. The second half of this gem demonstrates methods for breaking down
typical parallel game patterns of work into tasks.

Figure 22.1(a) shows an example of how some sample work can be divided into
tasks. The total work has an initial period of uninterrupted work A, but then needs to
wait on the occurrence of some event E before proceeding with additional work B. This
dependency on the event E effectively splits this section of work into two tasks, A and
B. Later, work C is a section that could be split into pieces and run concurrently (a data
decomposition). If it is split into pieces, work D must wait for all of those pieces to
complete before it can proceed. This means that the rest of the work can be split into
some number of tasks C1,C2.…,Cn and the remaining task D. The final task breakdown
is shown in Figure 22.1(b).

Figure 22.1: (a) Work to be divided into tasks. (b) The work expressed as dependent tasks.

Taken alone, this transformation from threads to tasks can seem underwhelming.

javascript:PopImage('IMG_212','fig312_01_0_0.jpg','450','413')

Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns 383

The real power of this approach becomes evident when a game architecture is able to
leverage large amounts of parallel work at once. In that case, the tasks can be packed
into the threads in the pool with very few gaps of inactivity. Mapping all the tasks to the
thread pool in an efficient fashion is the responsibility of a task scheduler, the other
focus of this gem.

22.2 The Task Scheduler

There are only a few features that must be implemented in a task scheduler. At a
minimum, it must be possible to dispatch and wait on tasks. Dispatched tasks are
assigned to a thread in the thread pool, the size of which can be specified at initialization
time. Although this can be done simply with a single shared task queue, most task
scheduler implementations have a more complicated internal architecture for
performance reasons.

The key performance improvement is the use of per-thread task queues. This
eliminates the synchronization chokepoint when one shared task queue is used. If a task
spawns additional tasks, the new tasks are added to the current thread's queue. This
introduces the possibility of queue size imbalance, which is typically resolved by the use
of work stealing. Work stealing allows a thread that has emptied its own task queue to
take work from another thread's queue. Advanced task schedulers may use heuristics to
determine which thread to steal from and which task to steal, and this may help cache
performance. Together, these improvements eliminate significant synchronization
overhead in the task scheduler.

Even though the minimal feature set is so simple, it can be daunting to create a
task scheduler from scratch because of the difficulty of writing correct multithreaded
code. Thankfully, there are existing examples to use or study: Nulstein [1] is a small and
simple free source task scheduler for Windows, and Intel Threading Building Blocks [2]

384 Game Engine Gems

is a highly optimized scheduler with both a proprietary and an open source license
available for Windows, OS X, and Linux. The open source version has also been ported
to the Xbox 360. Intel Threading Building Blocks is used for the code samples in this
gem, but any task scheduler will work as long as it has the minimum feature set:
dispatching and waiting on tasks in a scalable thread pool.

22.3 Decomposing Game Patterns into Tasks

A task scheduler can efficiently execute tasks, but parallel games don't typically use
tasks directly. Instead, there are a number of patterns that have emerged in game
architectures for handling parallel work. Conveniently, it's not difficult to transform
these patterns into task-based patterns. These transformations are described for those
creating a task scheduler as well as for those working with an existing task scheduler.
The patterns can be implemented in either case, but it is often more efficient to extend
the task scheduler to support the patterns that your game actually uses.

The examples below describe each pattern and show an excerpt of the complete
source code that accompanies this gem on the CD. You will need to examine the
complete source code to see the whole pattern in action.

Callbacks and Futures

Games frequently have a need to run some work in parallel to the main work. This
parallel work is sometimes structured as a function that sets a flag when complete. This
flag can be checked later to determine when the parallel work has finished. This is an
example of a callback system, and it maps directly into a task-based pattern by using the
dispatch method of the task scheduler:

Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns 385

TaskManager::JobResult result;

bool flag = false;

taskManager->dispatch(&result, (TaskManager::JobFunction) doCallback,

 &flag);

The obvious improvement that can be made to this system is to allow the
dispatching thread to wait on the completion of the function pointer. This is called the
future pattern and is supported by the task scheduler's dispatch and wait methods:

taskManager->dispatch(&result, (TaskManager::JobFunction) doFuture,

 NULL);

taskManager->wait(&result);

A well-designed task scheduler will ensure that waiting on a task is an active wait;
instead of sleeping, the "waiting" thread will execute parallel work if there is work
available. The full code for this example is "Callback and Future Sample" on the
accompanying CD.

Independent Loops and Splittable Tasks

Loops appear frequently in game architectures, and some of those loops contain
large amounts of computation. If the iterations of a loop are logically independent and
the number of iterations is known at the start of the loop, then subsets of iterations can
be grouped into a task. This is typically done by defining the body of a loop as a function
that takes a single parameter, the context object. The context object encapsulates all the
data needed by the original loop, which includes at least the start and end indices over
which to iterate. The task scheduler is given a function pointer and an array of context
objects that have been initialized with index subranges to cover the original loop's
iteration range. The task scheduler method prototype looks like this:

386 Game Engine Gems

void dispatchMultiple

 (

 JobResult *result, // structure to track completion

 JobFunction func, // pointer to task function

 void *params, // array of context objects for tasks

 size_t paramSize, // size of one context object

 unsigned int count // number of tasks to create

);

Although this approach is effective, it requires the game code to allocate an array
of context objects, to decide ahead of time how many tasks to split the loop into, and to
initialize the context objects with the appropriate subranges. To avoid these constraints,
the task scheduler can provide a method to dispatch splittable tasks. A splittable task
has a function pointer with three parameters: in addition to the context object, it is also
passed the start and end indices. The scheduler passes the parameters to the task's
function pointer, but it must also determine if a task's index range should be split into
subranges assigned to subtasks. An additional function pointer is needed to determine
whether and how to split a range in two pieces. With all of these elements in place, the
game code can transform an independent loop into tasks without allocating arrays of
context objects or predetermining the number of tasks to create. The task scheduler
method prototype looks like the following. (The full code for this example is "Loop
Sample" on the accompanying CD.)

void dispatchSplittable(

 JobResult *result, // structure used to track completion

 JobRangeFunction rangeFunc, // pointer to task function

 JobSplitFunction splitFunc, // function that splits a range

 void *param, // context object for tasks

 unsigned int start, // beginning of range

 unsigned int end // end of range

);

Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns 387

Long, Low-Priority Operations

Games occasionally rely on computation that needs to run continuously, but not
at the expense of other more immediate work. Level loading, asset decompression, and
AI pathfinding are common examples. The low-priority operation runs continuously
and provides periodic output to the main work of the game architecture. On its surface,
this seems like a pattern that is fundamentally at odds with task parallelism. However,
if the continuous computation can be changed into an iterative algorithm, then each
iteration of the algorithm can be treated as a task.

Once the transformation is complete, the next challenge is to ensure that these
tasks are given a low priority relative to other tasks in the task scheduler. Task
schedulers can handle this in a few ways: the task queues for each thread can be changed
into priority heaps, or the low-priority task can be inserted into the task queue in a
location that makes it less likely to be run immediately (an implementation-specific
detail). If you are using an existing task scheduler without this capability, you can
dispatch low-priority tasks opportunistically when other tasks are being dispatched:

void ourDispatch(TaskManager::JobResult *result,

 TaskManager::JobFunction func, void *param)

{

 TaskManager *taskManager = TaskManager::getTaskManager();

 // Before we dispatch the func task, we check to see if we should

 // dispatch a low-priority task.

 if(g_lowPriorityTaskFlag)

 {

 // It's time to dispatch a low-priority task

 taskManager->dispatch(&g_lowPriorityResult,

 (TaskManager::JobFunction) doLowPriorityCallback,

 &g_lowPriorityTaskFlag);

388 Game Engine Gems

 }

 // Now we dispatch whatever we were asked to dispatch.

 taskManager->dispatch(result, func, param);

}

This workaround is effective since most task schedulers assign tasks to threads in
last-in-first-out order. If the most recently added task spawns additional parallel work,
tasks inserted earlier will generally not be started until the new parallel work has been
started. The full code for this example is "Low-Priority Sample" on the accompanying
CD.

Synchronized Callbacks

Occasionally, games need to do per-thread initialization before running parallel
work. This is useful when interacting with some threaded middleware packages. When
you create the task pool directly, it is trivial to ensure that each thread makes the
necessary calls. But when your thread pool is managed by a task scheduler, it can be
more complicated. As long as your task scheduler uses work stealing, you can dispatch
a number of tasks equal to the number of threads in the pool, and use synchronization
primitives to prevent those tasks from completing until all have been assigned to threads:

tbb::task *TaskManager::SynchronizedTask::execute()

{

 ASSERT(m_func != NULL);

 m_func(m_param);

 (*m_atomicCount)--;

 while (*m_atomicCount > 0)

 {

 // yield while waiting

 TaskManager::yield();

Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns 389

 }

 return NULL;

}

If your task scheduler does not use work stealing and does not allow you to directly
assign tasks to threads, then another option is to define your tasks to do a just-in-time
check for per-thread initialization when they are run. The full code for this example is
"Synchronized Sample" on the accompanying CD.

Directed Acyclic Graphs

Earlier in this gem, we looked at how an arbitrary piece of parallel work could be
split into tasks, resulting in a directed acyclic graph (see Figure 22.1). Many games
conceive of their parallel work this way and would like to submit tasks to a task
scheduler preceded by a list of ancestors. The trick to implementing this pattern is to
encapsulate the tasks in objects that can manage the dependency relationships and
actually dispatch the tasks when appropriate. When a task completes, it notifies the
dependency-tracking objects, which may trigger more tasks being dispatched to the task
scheduler as follows. (The full code for this example is "Graph Sample" on the
accompanying CD.)

void doDAGTaskFunction()

{

 // First, we call our function pointer.

 m_func(m_param);

 // Now we tell our children that we're done.

 tbb::concurrent_vector<DAGTask *>::iterator it = m_children.begin();

 while (it != m_children.end())

 {

 (*it)->parentDone(this);

390 Game Engine Gems

 it++;

 }

}

22.4 The Future of Task Parallelism in Games

Established habits of game development have been disrupted by the installed base
of multi-core CPUs. In the same way, game development will be disrupted again by the
introduction and evolution of powerful many-core processors that require special
programming techniques in order to be used effectively. With the techniques discussed
in this gem, you'll be able to create task parallelism abstractions that will get your game
running quickly in any parallel hardware environment.

References

[1] Jérôme Muffat-Méridol."Do-it-yourself Game Task Scheduling". Intel Software
Network, 2009. http://software.intel.com/en-us/articles/do-it-yourself-game-task-
scheduling/

[2] Intel Threading Building Blocks. http://www.threadingbuildingblocks.org/

23

Chapter 23 Dynamic Code Execution Hierarchies

Martin Linklater

Sony Studio Liverpool

Overview

As hardware becomes more complex and powerful, the software that they run
becomes larger and more complex. As software grows, the number of programmers
needed to write and maintain the software increases. As anyone who has experienced
large programming teams will tell you, the more programmers you have working on
one product, the more time you need to spend policing the code structure and
managing its complexity.

As different programmers create and modify game systems, it is easy for the code
to become a mismatch of different patterns and styles. Programmers also tend to have
their own personal preferences when it comes to object creation, initialization, updating,
and deletion.

Inter-object communication, if not tightly regulated, can become a spaghetti of
code dependencies and object graph traversals. As programmers build objects that
require data from other objects, it is all too easy to create monolithic dependency graphs
and be forced to navigate awkward and non-intuitive object linkages. It is also too easy
to create header file dependencies that have nothing to do with the actual job you are

392 Game Engine Gems

trying to accomplish, but are required so you can connect to other objects in the code.

Keeping track of code construction can become a full-time job, and modifying the
code during the latter stages of a project can become error prone and dangerous. Fragile
code is difficult to bug-fix without causing more bugs.

This gem discusses code execution hierarchies (CEH) as a way of controlling these
problems and visualizing your code when things get confusing.

23.1 What are Code Execution Hierarchies?

Code execution hierarchies provide a framework for code construction and
updating. You use a simple base class for all of your major game components, and define
the update order by way of a manager class with an internal tree structure. Rather than
create objects and add them manually to the main loop, as in Figure 23.1(a), you create
your objects and attach them to the execution tree relative to an already existing object.
Conceptually, the structure is similar to a scene graph in graphics programming where
each object has a parent, and the object's location in the scene is always defined relative
to its parent. When you move or update a node in the graph, all of its children are
automatically moved with it, maintaining the parent-child relationships. The main loop
using a code execution hierarchy is shown in Figure 23.1(b).

Explicitly defining the parent-child and sibling relationships of your code modules
not only forces people to think before adding an object to the update system (always a
good thing), but also helps protect your code from structural changes in the future. If a
code module needs to be updated somewhere else during the frame, you move the
parent, and the child objects are automatically moved along with it.

Chapter 23 Dynamic Code Execution Hierarchies 393

Figure 23.1: (a) Traditional update loop. (b) Code execution hierarchy.

A simple base class is used for execution objects so that the manager class has a
consistent interface for your objects. This base class also defines the API for object
creation, initialization, updating, and deletion. Runtime type identification systems
provide a simple way for objects to identify themselves within the hierarchy. This is
used when objects need to find objects of a certain type within the hierarchy. A simple

javascript:PopImage('IMG_213','fig321_01_0_0.jpg','673','737')

394 Game Engine Gems

base class may look like that shown in Listing 23.1. Objects can be created and added to
the hierarchy as shown in Listing 23.2. Rather than building your code explicitly and
defining your update order in the main loop, you are creating code objects and inserting
them into the code execution hierarchy.

Listing 23.1: Example base class.

class CEHBase

{

public:

 CEHBase();

 virtual ~CEHBase();

 virtual void Init(void);

 virtual void Update(float dt);

 virtual void ... grab the latest code and prune the good bits

protected:

 m_classID;

};

Listing 23.2: Example game code.

MyObj *obj = new MyObj;

obj->Insert(kAsChildOf, kRootNode);

obj->Init();

OtherObj *other = new OtherObj;

other->Insert(kAsSiblingAfter, obj);

other->Init();

Chapter 23 Dynamic Code Execution Hierarchies 395

23.2 Design Features

Tree Structure

The object hierarchy itself is a tree structure. There is one root node, owned by the
manager class. Each object has one and only one parent. Each object has zero or more
siblings, and each object can have one child link. Once you have your tree structure,
there are two relationships that are required to be maintained when parsing the tree:

• Parents are always updated before their children.

• Siblings are always updated in the same order, first to last.

Given these two relationships, there are two ways to traverse the tree and update
your objects: depth first and breadth first. Which one you choose depends on your
requirements, but due to memory access patterns and performance I favor the breadth-
first traversal. Figures 23.2 and 23.3 show a simple graph and the update orders for both
systems. As you can see, the two rules above are maintained for both traversal systems—
previous siblings are processed before next siblings, and parents are processed before
children. A real-world example of a CEH might look like that shown in Figure 23.4.

Figure 23.2: Simple graph.

javascript:PopImage('IMG_214','fig322_01_0_0.jpg','407','351')

396 Game Engine Gems

Figure 23.3: Update orders.

Figure 23.4: Example CEH Graph.

Time Deltas

You may have noticed that the Update() method in the base takes a floating-point
dt parameter. This is used to tell your object how much time has elapsed since the last
call to Update(). Making your code flexible regarding update frequencies and
decoupling objects from V-sync events can have great benefits, as long as you are willing

javascript:PopImage('IMG_215','fig323_01_0_0.jpg','719','219')
javascript:PopImage('IMG_216','fig323_02_0_0.jpg','626','412')

Chapter 23 Dynamic Code Execution Hierarchies 397

to do the extra work to make your object internals robust for varying dt values.

Adding awareness of time also gives your CEH the potential to deal with varying
timing requirements for its objects. For instance, it is simple to build basic timer
functionality into the manager class, allowing you to specify how often various objects
require updating. If you have an object that only needs to be updated approximately
once each second, then that object can tell the manager that its desired update interval
is only every second. The manager class can then handle the update call for you.

Dynamic Structure

Since the update hierarchy is built at run time, it can be treated as a dynamic data
structure. Update order is not hardwired into your code, but can be modified and
altered as required. If network code does not need to be updated due to there being no
network connection, you simple omit it from the update graph. This can be much
cleaner than placing the following if statements all over your code.

if (networkActive)

{

 ...blah...

}

It also allows you to define your update graph via a data file, allowing runtime
behavior to change without recompiling your code.

Introspection

By building an introspection system into your CEH base class you allow for much
more flexible code construction. I'm sure we've all been in the position of needing to get
a handle on a certain class instance and being forced to navigate a lot of run-time linkage
to get at the object. The alternative is to make the desired object global, rarely a good
thing. As an example, in Figure 23.2, for object E to get a pointer for object G, it could

398 Game Engine Gems

be required that E goes through code like this:
ptrG = GetD()->GetA()->GetB()->GetF()->GetG();

This is rather clunky, and if the linkage of intermediate classes changes, say objects
A and B are swapped, all of the code that manually navigates the linkages needs to be
updated.

Using a CEH with introspection, the call could look like this:
ptrG = GetFirst<G>();

This code does not need to be altered if the hierarchy changes since the CEH
manager does all the work of locating the first instance of class G and returning a
pointer to it. This is how using CEHs can make your code more resilient to code
restructuring. The introspection system can also provide APIs that deal with vectors of
objects and filtering of objects based on relative location (above, below, etc.). Object
linkage is no longer explicit in code, but dynamic at run time.

Visualization

Visualizing the execution of your code can be a great help in debugging and
bringing new members of your team up to speed with your code. Using a CEH can help
make this visualization consistent and useful. Since the calling graph and actual call
order are controlled by your manager class, you can get the manager to output data
about your execution behavior for you. A handy format that I use is to output the
execution graph in DOT file format [1], and then run this file through GraphViz to get
a snapshot of how the code is linked and executed.

Deferred Operations

There are certain operations that are very dangerous to perform while you are mid-
way through the graph traversal. Any operation that modifies the graph (delete, move,
create) during the update phase can have disastrous effects since you are altering the

Chapter 23 Dynamic Code Execution Hierarchies 399

same tree you are traversing. To shield against this, dangerous operations can be queued
until the end of the update phase. These deferred housekeeping tasks can catch you out
if you are expecting the modifications to happen immediately, but the added layer of
bug protection it gives you is worth the trouble.

23.3 Benefits & Pitfalls

Moving your execution control over to a data driven, dynamic system like code
execution hierarchies has both benefits and pitfalls. The benefits include:

• Code is constructed with a consistent pattern (Init, Update, Destroy, etc.).

• Update order is easier to modify since the order is dynamic rather than hardcoded.

• Introspection can make finding object instances easier than manually navigating
class linkages.

• Introspection allows the layout of objects to change without the need to maintain
manual linkage code.

• It is simple to visualize the execution order and hierarchy of your code. This aids
debugging and teaching of programmers new to the team.

There are, of course, a few pitfalls and caveats that come with the use of code
execution hierarchies. These include:

• It is difficult to see what is happening by just looking at the code. Since the update
order is dynamic and built at run time, manual inspection of the source code doesn't
help much.

• Some code simply doesn't fit. Even though CEHs provide a simple and flexible
structure, there are still pieces of functionality that don't fit into the framework. You
still have to deal with these systems manually and take care of object linkage by
hand.

400 Game Engine Gems

• You need to be careful with your granularity. Putting game systems and substantial
game objects into the CEH can be very useful. Placing every particle in a particle
system is overkill, and you will waste lots of CPU cycles and memory to unnecessary
CEH overhead. You need to use your judgement.

• Modifying the execution tree while you are traversing it can cause lots of
catastrophic but difficult-to-find bugs. You need to be very careful when altering the
tree or defer all modification operations until after the update phase has completed.

Code execution hierarchies are a huge topic for discussion. I have worked with
code that uses explicit execution order, linear lists or queues of update functions, and
deeply embedded tree hierarchies, and they all have their good and bad points. My hope
is that this gem has introduced a new way of thinking about code execution to those
who have not used dynamic systems before and has possibly provided some food for
thought for those currently using dynamic execution systems. Game code inevitably
becomes complex, and new ways of looking at how we construct code are always useful.
Using consistent and flexible methods like those I have described can help ease the pain
and provide much needed abstractions.

References

[1] DOT file format. http://www.graphviz.org/doc/info/lang.html

[2] GraphViz. http://www.graphviz.org/

24

Chapter 24 Key-Value Dictionary

Martin Linklater

Sony Studio Liverpool

Overview

This gems presents a design for a flexible, observable repository for game
configuration data. The key-value dictionary (KVD) is a data structure inspired by the
key-value observing [1] technology used in Mac OS X Cocoa frameworks. When used
sensibly, the KVD can simplify your code.

The KVD is designed to be flexible, easy to use, and have few external
dependencies. It is not designed to be blisteringly fast, or to be used for frequently
modified data. The KVD is well suited for storing game state information that is read
often, but modified rarely. The KVD code on the accompanying CD is written in C++
and uses the standard template library (STL) for internal storage containers. The KVD
is lightweight (about 350 lines of C++) and simple to integrate into an existing game
engine.

24.1 Design

Apple's OS X relies heavily on Objective-C and the Cocoa frameworks. One of the

402 Game Engine Gems

fundamental mechanisms of Cocoa that binds the frameworks together is called "key-
value observing" (KVO). Apple describes KVO as follows:

Key-value observing provides a mechanism that allows objects to be notified of
changes to specific properties of other objects. [1]

KVO is a mechanism that, once you get used to it, becomes almost invaluable.
Code does not have to repeatedly poll a value to detect whether it has changed; rather,
the code registers its interest in learning when a value changes and is notified when the
value does change. The code is notified of the new value by way of a callback. Since
Apple's KVO mechanism requires Objective-C and Cocoa, but we write games
primarily in C++, I have created the KVD, a simple C++ data repository that mimics
simple KVO behavior.

The KVD can take data of any type, with each piece of data having multiple
observers. Observers are notified of changes immediately upon the value changing. The
KVD also checks that a value has actually changed before sending notifications, so
setting a variable to the same value it currently holds will not trigger any notifications.

24.2 Using the KVD

As mentioned in the introduction, the KVD is designed to be used with general
game state data that is read often, but changed relatively infrequently. Traditionally,
game state data is repeatedly polled by lots of different systems. For example, the current
screen resolution is a piece of data that changes very infrequently, but which is polled
by a number of different systems. If you use the KVD to store the screen resolution, you
don't need to poll for its value each frame, but you are instead told when the value
changes and what the new value is.

Using an intermediary data store like the KVD can help decouple your classes and

Chapter 24 Key-Value Dictionary 403

reduce header file dependencies. As in the previous example, if you were to store the
current screen resolution inside the rendering system, every piece of code which is
required to read or set this value needs to include the header file for the rendering
system, and that could itself pull in other headers as illustrated in Figure 24.1, increasing
compile times.

Figure 24.1: A polling model for accessing information often creates additional header
dependencies.

Pulling the screen resolution out of the rendering system and into an intermediary
would stop your game code from having to include the rendering system header (and
all the headers the rendering header includes), but would add a dependency on the
intermediary. As long as this intermediary header has fewer dependencies, you have
simplified the header file dependency chain as shown in Figure 24.2, and this will speed
up compile times.

javascript:PopImage('IMG_217','fig328_01_0_0.jpg','625','447')

404 Game Engine Gems

Figure 24.2: The header dependency graph is simplified by moving information into an
intermediary header.

24.3 Code Details

The key-value dictionary has a relatively small API and only has external
dependencies on the STL. To use the KVD, you first need to create a KVD object by
declaring it as follows:

KeyValueDictionary myKVD;

Once created, the KVD is ready to accept values and notifications. Setting a value
in the KVD is as simple as this:

myKVD.Set<int>(std::string("myInteger"), 1);

myKVD.Set<MyStruct>(std::string("myStruct"), myStructInstance);

javascript:PopImage('IMG_218','fig329_01_0_0.jpg','735','409')

Chapter 24 Key-Value Dictionary 405

Notifications happen through a function callback mechanism. The callback
functions take the following form:

void NotificationFunc(void *newValue, void *userData)

{

 // react to new value

}

To add a notification to the KVD, you need to tell the KVD which function to call
when the value changes (the first parameter), and which value you want to watch (the
second parameter). The third parameter is optional and will be passed to the callback
function as the userData parameter. This can be set to null or set to a pointer to your
own user data associated with the callback notification.
myKVD.AddNotification(NotificationFunc, std::string("myInteger"), 0);

The callback function is passed two values: the first is a pointer to the new value,
and the second is a pointer to the user data that was set when the notification was added.
Since the callback isn't told the type of the data, you have to cast the newValue pointer
to the appropriate type. You have to make sure that the type used is consistent for a
given key. Mixing types can cause difficult-to-find bugs or crashes.

Once you have set a notification, whenever the value is changed using the Set()
method, your notification is called. You can add however many notifications you want
to each key value—they will all be called whenever the value changes. Notifications can
be removed using the RemoveNotification() method:

myKVD.RemoveNotification(NotificationFunc, std::string("myInteger"));

You can get the value for a key manually, if you so wish, with the following call:
int myValue;

myKVD.Get<int>(std::string("myInteger"), &myValue);

406 Game Engine Gems

Internally, the primary storage container for the KVD is an STL map. Each map
element is indexed by the key string hash, and contains the value encoded as a std::string,
a lock, and a std::list of notification callbacks. Each notification callback contains a
pointer to the callback function, and the user data value, as illustrated in Figure 24.3.

Figure 24.3: The data stored in a KVD.

STL was chosen due to its good performance characteristics, common availability,
and robust nature. If your implementation of KVD requires different container
characteristics, you are free to change the source to suit your needs.

Each entry in the KVD map has a lock flag. Whenever a key value changes, the lock
is set before the notification phase begins and cleared after notifications have completed.
This lock is checked before a key value is modified, to make sure that recursive change

javascript:PopImage('IMG_219','fig331_01_0_0.jpg','664','500')

Chapter 24 Key-Value Dictionary 407

notifications don't happen. Recursive change notifications are a bad thing because they
can blow the stack and crash your program. Consider the case where a key is altered
within the call graph of its notification function. Each change in value would trigger a
notification, which would change the value, triggering the notification, etc. The locking
mechanism stops this from happening. Since locks are present for each individual entry
in the KVD, however, you are allowed to alter a different KVD entry from inside a
callback.

24.4 Caveats

The code presented in this article is not perfect and is meant as a starting point for
you to modify as you see fit. There are a number of issues that I have not tackled on
purpose, since requirements will differ among uses:

• Thread safety. The code is not thread-safe. If you require thread safety, you will
need to add whatever your mechanism of choice is to the code. If your game code is
quite traditional and keeps all the KVD logic on one thread, you can ignore this issue.

• Performance. Although the KVD is reasonably fast, you may have specific
performance requirements affecting the details of which containers and mechanisms
are used. For general use cases though, the code should perform adequately as is.

• Memory allocation. The internal storage for the KVD is handled via the STL default
allocator. This could cause fragmentation issues in your code. If you need to keep a
firm handle on memory usage, you will need to either write your own container code
or override the default allocator for the STL containers that are used.

References

[1] "Key-Value Observing Programming Guide".
http://developer.apple.com/mac/library/DOCUMENTATION/Cocoa/Conceptual/KeyValu
eObserving/Concepts/Overview.html

25

Chapter 25 A Basic Scheduler

John Bolton

Netflix

Highlights

Many games have a need to execute tasks at regular intervals. Threads are a
possible solution, but they can be a poor choice due to their nondeterministic nature,
the complexities of their interactions, and the high overhead of context switching. On
the other hand, a scheduler can be implemented to run in a single thread and execute
tasks at a specific point in the frame. Its tasks will execute in a single context under full
control of the application.

This gem presents a basic lightweight object-oriented scheduler that implements
limited cooperative multitasking between tasks in a single thread. Possible applications
of this scheduler include AI, audio, and environmental effects. The complete code for
the scheduler described here is available on the accompanying CD.

25.1 Overview

The scheduler implemented here is designed to execute a list of tasks one at a time
at a particular point in a frame or time step. Each task has a timer maintained by the

410 Game Engine Gems

scheduler, and all tasks whose timers have expired are queued to be executed in that
frame. Tasks are executed serially by the scheduler in the scheduler's thread, and each
task runs to completion. Thus, tasks are never interrupted by the scheduler or by other
tasks, and there is no need for synchronization among tasks.

Order of execution within a frame is arbitrary in this implementation, but the
order can be controlled by implementing a priority system. Other additional features,
such as load balancing, are not implemented here, but are described later.

25.2 Task Functionality

The task as seen by the scheduler is very simple. There is an initialization function,
a cleanup function, and a function to execute the task. To provide the interface for this
functionality, tasks are derived from the base class Task, which has the virtual functions
Start(), Stop(), and Execute().

The Start() function is called immediately after the task is added to the
scheduler's task list. Its purpose is to allow the task to initialize itself before it begins any
execution. It is safe (as far as the scheduler is concerned) to remove the task from the
scheduler's task list in the Start() function.

The Stop() function is called immediately after the task is removed from the task
list. Its purpose is to allow the task to clean itself up. Once the Stop() function is called,
the scheduler no longer references the task, so it is safe (as far as the scheduler is
concerned) to destroy the task anytime during or after the call to the Stop() function. It
is also safe to re-add the task to the scheduler's task list from inside the Stop() function.

The Execute() function is called periodically by the scheduler according to the
task's period. The timer is maintained by the scheduler. When a task is finished
executing, it returns one of the following values that the scheduler uses to manage the

Chapter 4 A Basic Scheduler 411

task:

• ACTIVE. If this result is reported, the task is requeued for execution again according
to its period. This is the normal result.

• AGAIN. If this result is reported, the task is requeued to run again in the next frame,
regardless of its period. This result is intended to indicate that the task could not
finish successfully and should be executed again as soon as possible. It could also
be used to force the task to be executed every frame, but it is better to set the period
appropriately instead.

• INACTIVE. If this result is reported, the task is removed from the scheduler's task list.
The scheduler removes all references to the task and then calls the task's Stop()
function.

25.3 Scheduler Functionality

The scheduler class maintains a list of tasks and schedules them for execution
according to their periods. There can be more than one instance of the scheduler class,
though for the sake of simplicity, instances cannot be copied or assigned in this
implementation, and tasks do not keep track of which scheduler is executing them. In
order to determine when tasks are to be executed, the scheduler maintains a timer for
each class. Each frame, the timers are updated, and all tasks whose timers have expired
are executed in an arbitrary order. The scheduler also provides the ability to suspend
and resume executions of tasks and to change the period of a task.

Tasks are added to a scheduler's execution list by the Add() function. The Add()
function also specifies how often the task is executed. If the task being added is already
in the scheduler's task list, an error is returned. Tasks may be added at any time,
including while tasks are being executed. The task's timer is initialized when the task is
added. As described above, a task's Start() function is called after it is added.

412 Game Engine Gems

Tasks are removed from the scheduler's execution list by the Remove() function.
Tasks can be removed at any time. If the task being removed is not in the scheduler's
task list, an error is returned. Tasks are not executed once they are removed, even if they
are removed during a frame in which they are scheduled to be executed. As described
above, a task's Stop() function is called after it is removed.

When the ExecuteTasks() function is called, all tasks that are ready to run are
executed serially in an arbitrary order. The deltaTime parameter to the ExecuteTasks()
function indicates the amount of time that has passed since the last time the function
was called. This value is used to update the tasks' timers in order to determine when
tasks become ready to be executed. The ExecuteTasks() function is intended to be
called once per frame, but it is possible to call as often as desired. As long as the
deltaTime variable is accurate or at least reasonable, the tasks will execute with the
intended period. The exceptions are tasks with a period of PERIOD_EVERY_FRAME and
tasks that return the value AGAIN. These tasks are executed whenever ExecuteTasks()
is called.

Tasks are suspended and resumed using the Suspend() and Resume() functions.
Suspended tasks are not executed and their timers are not updated. If the task being
suspended or resumed is not in the scheduler's task list, an error is returned. This differs
from Add() and Remove() in that the task remains in the scheduler's task list, the task's
Start() and Stop() functions are not called, and the task's time is frozen until
Resume() is called.

The period of a task can be changed by the SetPeriod() function. If the task is
not in the scheduler's task list, PERIOD_INVALID is returned. When a task's period is
changed, its timer is reset. A period of PERIOD_EVERY_FRAME causes the task to execute
every frame. Calling SetPeriod() with an invalid period (less than 0), does not change
the period and returns the value PERIOD_INVALID.

Chapter 4 A Basic Scheduler 413

25.4 Implementation

The data structure used by the scheduler is very straightforward. A pointer to each
task along with a timer and some state information is stored in a vector. An STL
container is chosen in order to simplify the implementation. A fixed-size array would
alleviate memory allocation issues, but then additional logic would be necessary in
order to prevent overflow.

Other container types might be considered depending on how the scheduler is
used. The tasks are not sorted because it is assumed that sorting the tasks would be more
time-consuming than simply scanning all entries to find tasks to execute. If there are a
very large number of tasks and only a few are executed each frame, then it might pay to
sort the tasks.

Task execution is performed in three phases. First, the timer for each task is
decremented according to the amount of time that has passed. Then, for each task, if
the timer is less than or equal to zero, the task is executed (unless it is suspended or
marked for removal), and the timer is reset to its period. Finally, all tasks marked for
removal are removed. The purpose of the three phases is to avoid problems that might
arise when one task modifies another task, or adds or removes tasks from the scheduler.

25.5 Additional Functionality

Some additional features are not implemented here for the sake of simplicity. In
this implementation, tasks are run during each frame in an arbitrary order. It might be
advantageous to give tasks a priority so that they can be executed in a certain order with
respect to the other tasks that are executed in the same frame. In order to accomplish
this, the priorities of the tasks are stored in the task list and the tasks can be sorted by

414 Game Engine Gems

priority or stored in a data structure that supports a priority scheme.

In some situations, the amount of time available for executing tasks might be
limited or budgeted. In this case, the ExecuteTask() function could have an additional
parameter specifying the budgeted time, and the scheduler would execute tasks until
the budget is used up. The task's Execute() function could have an additional
parameter specifying the time remaining, allowing the task itself to limit the amount of
time it uses. Budgeting time could also work in conjunction with task priorities,
reducing the latency of higher priority tasks. However, it must be noted that this simple
scheduling algorithm can become inadequate in some situations.

26

Chapter 26 The Game State Observer Pattern

Ron Barbosa

Revelex Corporation

Overview

With today's high-powered graphics and audio hardware, developing a game is
becoming more akin to producing a blockbuster movie. Real-time ragdoll physics are
the new stunt men, and particle systems are the new pyrotechnics. With so many sexy
components required to bring a game engine together, it's not surprising that little
treatment is given to the management of game state.

When the user clicks the mouse button or presses the left analog stick of a gamepad,
the state of the game is what determines whether the user intended to fire his avatar's
weapon or select the "Quit" option from the menu. The game state determines whether
the graphics hardware should render the game screen or the inventory menu. Whether
NPCs should execute their next animation frame or just wait around for the next game
loop iteration is due in large part to the game's state.

Game state management can be made streamlined and elegant using an
implementation of the observer design pattern. [1] The observer pattern provides a way
for instances of classes (subjects) to be "observed" by other objects (observers) in the
application. Each observer subscribes to the subject, and when the subject's data is

416 Game Engine Gems

changed, it sends notification to all registered observers, providing each subscriber a
reference to the subject. The observers can then query any public data or call any public
methods of the subject to determine what has changed and how it affects the observer.

Combining the observer pattern with a game state manager would allow the game
state manager to notify all interested software components of what the game state is in
real time. So if the user hits the "Pause" option, the game state can be set to paused. The
state manager would then notify the avatar manager that the game is paused, and it can
stop processing controller input until further notice. The state manager would
simultaneously notify the menu manager that the game is paused, and the menu
manager could begin rendering the pause menu and responding to controller input to
select menu options.

The real-time notification mechanism simplifies the code by encapsulating the
effect of state change on an individual module in the software. Without a proper state
management mechanism, developers will often use arbitrary or artificial conditions to
determine what should be done during the game loop. Consider the following
pseudocode for an avatar's game loop processor.

public void Update([arguments])

{

 // Determine if the input should be processed

 if (GamePad[0].active)

 {

 // Process avatar movement if the first game pad is active

 }

 else if (GameObject.gamePaused)

 {

 // Check if the player is trying to unpause the game

 }

 else if (GameObject.menuActive)

 {

Chapter 26 The Game State Observer Pattern 417

 // Process input for menus

 }

 else if (GameObject.numberOfActivePlayers == 0)

 {

 // Game Over. Perform cleanup.

 }

}

public void Draw([arguments])

{

 // Determine if the avatar should be drawn

 if (GameObject.numberOfActivePlayers > 0 &&

 !GameObject.gamePaused &&

 !GameObject.gameOver)

 {

 // Draw the avatar

 }

}

This doesn't seem so bad for now, but what happens when the player tries to start
the game from the second controller? The developer then has to go back into the code
and determine why the gamepad seems to have gone dead. When the game's producer
decides that the "Game Over" screen should paint the game map and all visible
characters, the developer will need to update the Draw() method and add consideration
for the "Game Over" state.

The update and draw methods start to get ugly the more advanced the application
gets, because typically once the game elements are created and the game enters its
processing loop, the frame-to-frame calls to methods like Update() and Draw() are
usually what triggers the game elements to perform whatever processing and rendering
needs to be done. As features evolve and the code becomes more complex, defensive

418 Game Engine Gems

coding techniques start to creep into play, and large sections of functionality become
wrapped in conditional blocks so that they only take effect in certain state conditions.

Using the game state observer pattern, the individual elements of the game can be
immediately notified of state changes and respond to them at the time of state change
as opposed to waiting for the next call to Update(). Game elements can also exclude
themselves from rendering when the game state no longer requires or allows them to
be drawn, saving valuable processing power.

The benefits of proper state management and a robust state change notification
mechanism become immediately evident once you begin to use them in your own
application. In the upcoming sections of this gem, we take a more in-depth look at the
various software components that are required to put the game state observer pattern
to work for you.

[1]This gem also makes use of the singleton design pattern, but it is outside the scope
of this gem. For more information regarding this and other design patterns, refer to [1].

26.1 Creating a Game State Manager

To begin using the game state observer pattern, we first need a class to represent
the game state, such as the GameState class shown in Listing 26.1. Since a game should
only ever be in one state, we'll employ another design pattern for the GameState
implementation—the singleton design pattern.

Listing 26.1: GameState class implementation in C#.

class GameState

{

 // This enumerated type is where all valid game states are defined

 public enum State

Chapter 26 The Game State Observer Pattern 419

 {

 Initializing,

 StartMenu,

 Tutorial,

 InPlay,

 GameOver,

 Paused,

 BetweenLevels,

 GameEnded,

 ConfirmExit,

 GameOptionsMenu,

 DemoMode

 };

 // Define the one and only instance of the GameState class.

 // This is the Singleton

 private static GameState _instance;

 // This data member will store the current state.

 private State _currentState;

 // This private constructor can only be called from within this

 // class. This is how the Singleton pattern ensures that only

 // one instance of this class will ever exist.

 private GameState()

 {

 }

 // This public accessor gives the outside world access to the

 // Singleton instance of GameState.

 public static GameState instance

 {

420 Game Engine Gems

 get

 {

 // If the instance has not been defined, create a new

 // instance.

 if (GameState._instance == null)

 {

 GameState._instance = new GameState();

 }

 // Return the instance

 return GameState._instance;

 }

 }

 // These accessors allow the current state to be queried and

 // set by the outside world.

 public State currentState

 {

 get { return this._currentState; }

 set { this._currentState = value; }

 }

}

The inline comments in Listing 26.1 tell most of the story, but let's examine the
moving parts.

• The enumerated State subtype (GameState.State) contains the "master list" of all
valid game states.

• The _instance data member is marked as private, keeping accessibility to the data
under the control of the class itself. This data member is also marked static, meaning
it belongs to the class and not to the instance.

• The _currentState data member is also private. It stores the value of the current
game state, as allowed by the GameState.State enumerated type.

Chapter 26 The Game State Observer Pattern 421

• The only constructor provided for the GameState class is also marked private,
meaning the class can only be instantiated from within itself.

• The instance accessor parameter allows the outside world to get a reference to the
singleton instance of GameState. The retrieval mechanism first checks to see if the
class has been instantiated. If not, it creates a new instance of GameState and stores
a reference to it in the static _instance member. Once a valid instance has been
created and stored, a reference to it is returned.

• The currentState accessor parameters are used to set and retrieve the current game
state. While the implementations shown here are quite simple, more complex logic
can be employed to ensure that all state transitions are legal.

At this point, we have a fairly simple, but functional game state manager. It has
everything it needs to be a useful addition to a game or game engine project. In its
current state, it can be used to establish and update the current game state, and it can
be queried by other software modules that need to know the state of the game in order
to function properly.

By providing other software modules with a single access point to set and retrieve
the game's state, managing input processing and rendering becomes a function of the
game's current state, rather than artificial conditions such as whether or not a given
controller is active or has a pressed button.

The avatar Update() method being called in the game loop can be simplified such
that the avatar only processes updates when the game is in a state that is meaningful to
the avatar:

public void Update([arguments])

{

 if (GameState.instance.currentState != GameState.State.InPlay)

 {

 // Do nothing if the game is not in play

 return;

422 Game Engine Gems

 }

 // Process this update

}

Making the operations performed by each software module functions of the
current game state reduces processing overhead by allowing the modules to determine
if there is any need for them to perform given the current game state.

This formalized state management is helpful, but there is a great deal of room for
improvement. Each game module still needs to query the game state in order to know
what the current state is. Another thing to consider is that the software only has access
to the current state. There is, as yet, no way for a module to be notified that the state has
changed.

Some software modules may need to perform a set of operations when the game
transitions from one state to another. For example, an automatic game save system
might need to know that the player has just completed some stage of the game and has
transitioned to the "stats" screen. This could be done by changing the game state from
InPlay to BetweenLevels and using the game state observer pattern to notify the
automatic game save mechanism to update the player's stats and inventory.

26.2 The Interfaces of the Game State Observer Pattern

In this section, we begin the process of turning the GameState into an "observable"
object and create the foundation that will provide the communication path between the
GameState and the other modules of your game.

In order for the software in your game engine to treat the GameState as the subject
of observation, we need to create an interface that tells the rest of the game's software
that GameState can be observed. The IObservable interface shown in Listing 26.2

Chapter 26 The Game State Observer Pattern 423

provides a way to do this. As you can see, there's very little to this interface, as it only
defines the two methods Subscribe() and Unsubscribe(). Some implementations
of the observer pattern also define a NotifySubscribers() method in the
IObservable interface, but since all interface methods must be defined as public, that
would allow other software modules to force observation subjects to notify subscribers
even if no change has been made. The game state observer pattern allows the GameState
class to decide when to notify its subscribers of a change.

Listing 26.2: The IObservable and INotifiable interfaces.

interface IObservable

{

 void Subscribe(INotifiable observer);

 void Unsubscribe(INotifiable observer);

}

interface INotifiable

{

 void ProcessNotification(IObservable subject);

}

Both the Subscribe() and Unsubscribe() methods take exactly one parameter.
This parameter has the type INotifiable, meaning it is an instance of a class that
implements the INotifiable interface shown in Listing 26.2. The INotifiable interface
defines only one method, ProcessNotification(). This method accepts one
argument of type IObservable, meaning it is any instance of a class that implements
the IObservable interface.

Since any class can implement an interface, you as the developer can decide which
modules in your software can observe and/or be observed. To implement the interface,
the class definition must first be modified to indicate that it implements a given

424 Game Engine Gems

interface. Then it must provide an implementation for every method that the interface
defines.

26.3 Making GameState Observable

To make our GameState class observable, we change its class declaration to read
as follows: [2]

class GameState : IObservable

Now that we have tagged the GameState class as observable, we must provide the
public methods necessary to satisfy the interface's requirements. But before we move
on to the method implementation, let's take a brief look at how observation works in
the game state observer pattern:

• The subject of observation (the IObservable) contains a list of subscribers.

• Any object capable of processing notifications (the INotifiable interface) can call
the subject's Subscribe() method and be added to the list of subscribers.

• When the subject is modified in a way that requires notification to be sent out, the
subscriber iterates over the list of observers and calls each observer's
ProcessNotification() method.

• If an observer wants to stop receiving updates from the subject, the observer can call
the subject's Unsubscribe() method to be removed from the list of subscribers.

The GameState class needs a data member in which to store its list of observers,
so we add the following line of code to the GameState class definition under the
definition of the currentState member:

private List<INotifiable> _observers = new List<INotifiable>();

This creates a List object called _observers that will be used to store references
to INotifiable objects.

Chapter 26 The Game State Observer Pattern 425

Now, the subscription mechanism must be created. The Subscribe() method is
fairly simple, as shown in Listing 26.3, and can be added at the end of the GameState
class implementation. What this method effectively does is ensure that the observer
requesting notifications is not already in the observer list, and if not, then it is added to
the list.

Listing 26.3: The Subscribe() and Unsubscribe() methods of the GameState class.

public void Subscribe(INotifiable observer)

{

 if (!this._observers.Contains(observer))

 {

 this._observers.Add(observer);

 }

}

public void Unsubscribe(INotifiable observer)

{

 if (this._observers.Contains(observer))

 {

 this._observers.Remove(observer);

 }

}

With the subscription method in place, we need a method to unsubscribe as well.
The Unsubscribe() method can be added beneath the Subscribe() method in the
GameState class with the implementation shown in Listing 26.3. In the same fashion as
the Subscribe() method, the Unsubscribe() method checks to see if the observer
requesting removal is in the list, and the observer is only removed from the list if it is
found.

At this point, we have an observable GameState class. Subscribers throughout the

426 Game Engine Gems

game application can register with the GameState instance to be informed of
modifications to the state, but there's still some work left to do.

The GameState class we have so far does not yet notify its subscribers. It simply
manages a list of interested software components. We still need to provide the
GameState class with a method that notifies its observers of state changes. The
_NotifySubscribers() method shown in Listing 26.4 can be added to the bottom of
the GameState class implementation to take care of this. The _NotifySubscribers()
method iterates over the list of observers, and for each one calls its
ProcessNotification() method with a reference to the singleton GameState
instance (this).

Listing 26.4: The _NotifySubscribers() method of the GameState class.

private void _NotifySubscribers()

{

 foreach (INotifiable observer in this._observers)

 {

 observer.ProcessNotification(this);

 }

}

The GameState class now has a method for notifying its observers, but the method
isn't being called anywhere. The next step is to update the state modification accessor
method to call _NotifySubscribers() when the game state is changed, as shown in
Listing 26.5. The new accessor to set the current state only does something when state
is actually changing, and it calls _NotifySubscribers() to send all the observers the
update.

Listing 26.5: The set implementation for the currentState member of the GameState class.

Chapter 26 The Game State Observer Pattern 427

public State currentState

{

 get { return this._currentState; }

 set

 {

 if (this._currentState != value)

 {

 this._currentState = value;

 this._NotifySubscribers();

 }

 }

}

That's about all there is for the game state manager's role in its own observation.
The ball is now in the observer's court. Having received an update, it must be able to
take action based on the data it has received.

[2]This is a C# implementation, and a C++ implementation is similar. Other
languages provide keywords such as implements or extends to indicate relationships
among various structures. Be sure to use the appropriate syntax for the programming
language your game uses.

26.4 Creating Observers

Any class in your game engine library can be made into an observer, and thus can
be made to observe game state. To turn an existing class into an observer, you must first
declare that it implements the INotifiable interface, and then you must provide the
implementation for the ProcessNotification() method defined in the INotifiable
interface, as exemplified by Listing 26.6. In its minimalist form, SomeGameComponent is
an observer. It defines no useful functionality, stores no data, and does nothing with

428 Game Engine Gems

any notifications it receives, but it has all the moving parts needed to be classified as an
observer.

Listing 26.6: A sample observer implementation.

class SomeGameComponent : INotifiable

{

 // Define class data members here

 public void ProcessNotification(IObservable subject)

 {

 // Query the subject for any meaningful changes

 }

}

In Listing 26.6, the argument received by the ProcessNotification() method is
of type IObservable. This means that any instance of any class that implements the
IObservable interface can be passed into this method. However, it also means that
only the methods defined in the IObservable interface can legally be called without
explicitly casting the argument to a known type. In other words, we cannot query
GameState properties or call methods of the GameState class without casting subject
to be of type GameState, as shown in Listing 26.7.

Listing 26.7: Accessing an observer by its native type. [3]

public void ProcessNotification(IObservable subject)

{

 // Cast the instance to its native type

 GameState gsSubject = (GameState) subject;

 // Use the qualified reference to access its data and methods

 GameState.State currentGameState = gsSubject.currentState;

Chapter 26 The Game State Observer Pattern 429

}

The implementation for the ProcessNotification() method is functional, but
somewhat limiting. Suppose you have a game component in your library that needs to
observe multiple subjects of various types. The above implementation would fail if
subject is not of type GameState. To manage this situation, we can provide a
switchboard mechanism within ProcessNotification() that doesn't handle the
heavy lifting, but simply identifies the best method for the job.

Listing 26.8 shows how a switchboard mechanism could be used to funnel
notification processing through type-specific methods so that any class that implements
INotifiable can observe multiple subjects, regardless of the subject's native type.
When the type is identified, processing is handed off to a purpose-built method capable
of handling update notifications for that type of class. SomeObservable, in the example
above, can be thought of as some other class that implements the IObservable
interface. The ProcessNotification() method could get a bit unwieldy, but in
practical cases, it's uncommon to observe subjects of more than a handful of types.

Listing 26.8: Supporting multiple subject types.

public void ProcessNotification(IObservable subject)

{

 // Determine the best method to handle this update

 if (subject.GetType() == typeof(GameState))

 {

 this._ProcessNotification((GameState) subject);

 }

 else if (subject.GetType() == typeof(SomeObservable))

 {

 this._ProcessNotification((SomeObservable) subject);

430 Game Engine Gems

 }

}

protected void _ProcessNotification(GameState subject)

{

 // Process notifications for instances of GameState

}

protected void _ProcessNotification(SomeObservable subject)

{

 // Process notifications for instances of SomeObservable

}

 [3]Listing 26.7 shows how to cast an observable subject to its native type so that its
data members and methods can be accessed. Bear in mind that the syntax for reference
casting may be different in the programming language you are using. In C++, you
would normally use static_cast to perform the cast to the derived class type.

26.5 Managing Functionality by Game State

In a real game application, we'd want our objects and game entities to react in
meaningful ways when a notification of change has been received. When working with
game state this typically means the game needs to react differently to controller input
or render a different scene or menu. Imagine a game engine with a series of queues that
provide different functionality. For example, modules that want to process controller
input could be placed in the "input queue", and models or sprites that need to be drawn
could be placed in the "render queue". These queues can provide methods to allow
objects to be added and removed from them.

Upon receipt of notification of a state change, a game module can add or remove

Chapter 26 The Game State Observer Pattern 431

itself from the above queues proactively. The avatar management code can stop
processing input when the game is in a paused state, and the menu management
software can stop rendering menus when the game is in play.

A full example of such a mechanism is well beyond the scope of this gem, but a
simple example can be found on the accompanying CD. The example, called
observerSample, is a small XNA project that shows how the modification of game state
can be communicated to all the interested modules of a game application to manage
which components process input and render to the screen.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

27

Chapter 27 Fast Trigonometric Operations Using Cordic Methods

John Bolton

Netflix

Overview

Trigonometric functions are required to display 3D and rotating 2D graphics, but
these functions are generally not well-supported on some game platforms such as
handheld devices and cellular phones. On platforms without a floating-point processor,
trigonometric functions may instead be implemented by emulating floating-point
number representations and operations, and performance can be very poor as a result.
In contrast, CORDIC methods implement standard trigonometric functions using
simple integer math and bit shifting, and this can be extremely fast.

CORDIC methods were invented by Jack Volder [2] in the late 1950s as a way to
compute trigonometric functions in hardware for use in avionics. CORDIC stands for
COordinate Rotation DIgital Computer. Later, the methods were extended by John
Walther [3] and others to related functions (hyperbolic and exponential functions, for
example).

434 Game Engine Gems

27.1 Rotation Mode Algorithm

The CORDIC methods are based on iteratively rotating a point by fixed angles
until a desired rotation is achieved. The equations for rotating a point (x,y) about the
origin in two dimensions are

x′ = xcosθ - ysinθ

y′ = xsinθ + ycosθ,

and these are equivalent to

x′ = cosθ(x - ytanθ)

y′ = cosθ(y + xtanθ).

The main concept behind the CORDIC methods is to iteratively rotate the point
by angles whose tangent is a power of two until the desired angle is reached using the
formula

xi+1=Ci(xi - diyi·2-i)

yi+1=Ci(yi + dixi·2-i),

where

𝐶𝐶𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑠𝑠(𝑡𝑡𝑎𝑎𝑠𝑠−1 2−𝑖𝑖) =
1

�1 + 2−2𝑖𝑖

Choosing a power of two allows the multiplication by tanθ to be replaced with a
shift operation.

Chapter 27 Fast Trigonometric Operations Using Cordic Methods 435

Because the values of Ci are constant, the multiplication by Ci in each iteration can
be moved out of the iteration process, and the result can be adjusted by doing a single
accumulated multiplication instead (when necessary). This optimization step reduces
each iteration to a few arithmetic and shift operations plus an indexed look-up into an
array of angle values.

𝐶𝐶 = 𝐶𝐶0𝐶𝐶1 ⋯ 𝐶𝐶𝑛𝑛−1 = �
1

�1 + 2−2𝑖𝑖

𝑛𝑛−1

0

The value of C is approximately 0.60725 as the number of iterations approaches
infinity, though the actual value is based on a finite number of iterations.

In each iteration, the point is rotated by successively smaller amounts. A third
iterated value ai holds the difference between the accumulated rotation angle and the
desired rotation angle, and is used to determine if the next iteration should rotate the
point clockwise or counterclockwise. a0 is initialized to the input angle, and ai
approaches zero. The direction of rotation is determined by the sign of the difference
and is represented here by the value di:

𝑎𝑎0 = 𝜃𝜃

𝑎𝑎𝑖𝑖+1 = 𝑎𝑎𝑖𝑖 − 𝑑𝑑𝑖𝑖 𝑡𝑡𝑎𝑎𝑠𝑠−1 2−𝑖𝑖

𝑑𝑑𝑖𝑖 = �−1, 𝑠𝑠𝑓𝑓 𝑎𝑎𝑖𝑖 < 0 ;
+1, 𝑠𝑠𝑓𝑓 𝑎𝑎𝑖𝑖 ≥ 0 .

As mentioned earlier, the point is rotated by successively smaller amounts. The
iteration continues until the amount of rotation is too small to be represented by the
chosen fixed-point format. Using fewer iterations is possible, but produces less accurate
results. The number of iterations is 25 when using an 8.24-bit fixed-point format and
measuring angles in radians.

436 Game Engine Gems

This basic algorithm is called the "rotation" mode and can be used to rotate an
arbitrary 2D vector. It can also compute the sine and cosine of an angle simply by
rotating the point (1,0) by that angle and returning the resulting values. It is important
to note that this algorithm requires the input angle to be in the range [-π/2,π/2]. For
angles outside of this range, the point is first rotated by 2π and π as necessary until the
angle is in the proper range.

In summary, the values of the last iteration of the rotation mode algorithm are
given by

xn = x0cosθ - y0sinθ

yn = x0sinθ + y0cosθ

αn = 0

27.2 Vectoring Mode Algorithm

A second related algorithm iteratively rotates a given point towards the x-axis. This
is called the "vectoring" mode. In this algorithm, the point is rotated by successively
smaller amounts until the value of the y-coordinate is zero. As in the rotation mode, the
direction of rotation is represented by the value di, but this is instead determined by the
sign of the y-coordinate, rather than the angle:

𝑑𝑑𝑖𝑖 = �−1, 𝑠𝑠𝑓𝑓 𝑦𝑦𝑖𝑖 ≥ 0 ;
+1, 𝑠𝑠𝑓𝑓 𝑦𝑦𝑖𝑖 < 0 .

Again, it is important to note that this algorithm requires the angle of the input
vector to be in the range [-π/2,π/2]. For angles outside of this range, the point is first
rotated by 2π and π as necessary until it is in the proper range.

After completion, the accumulated angle is the angle between the initial point and
the x-axis, and the value of the x-coordinate is the distance to the point from the origin.

Chapter 27 Fast Trigonometric Operations Using Cordic Methods 437

In summary, the values of the last iteration of the vectoring mode algorithm are given
by

𝑥𝑥𝑛𝑛 = �𝑥𝑥0
2 + 𝑦𝑦0

2

𝑦𝑦𝑛𝑛 = 0

𝑎𝑎𝑛𝑛 = 𝑡𝑡𝑎𝑎𝑠𝑠−1(
𝑦𝑦0

𝑥𝑥0
) .

27.3 Applications

The following table summarizes the computations that can be done by these two
algorithms, given an initial vector(x0,y0) and an angle θ:

Operation Mode Input Results

Sine/cosine rotation (1,0), θ cosθ = xn

sinθ = yn

Arctangent vectoring (x0,y0), θ tan-1(y0/x0)+θ = αn

2D vector rotation rotation (x0,y0), θ (x′,y′) = (xn,yn)

Vector length vectoring (x0,y0) ||(x0,y0)||=xn

27.4 Implementation

The following code listings show implementations of all the algorithms and
functions listed above. In these implementations, the fixed-point format is assumed to
use an 8-bit whole part and 24-bit fraction part.

The code in Listing 27.1 implements the two algorithms. Note that the

438 Game Engine Gems

multiplication by C is not present here and must be handled elsewhere. In some cases,
multiplication by C is not necessary because either the scale of the result is irrelevant or
because there is a more efficient way to apply the value. Refer to each application in the
listings that follow to see how the value of C is applied.

Listing 27.1: Rotation and vectoring mode implementations.

// Returns 0 if n >= 0, and -1 if n < 0

inline int32 S(int32 n)

{

 return n >> (sizeof(int32) * 8 - 1);

}

// Returns n if d == 0, and -n if d == -1

inline int32 CONDITIONAL_NEG(int32 n, int32 d)

{

 return (n ^ d) - d;

}

void RotationMode(int32 x, int32 y, int32 a, int32 *rx, int32 *ry)

{

 for (int i = 0; i < NUMBER_OF_ITERATIONS; ++i)

 {

 int32 d = S(a); // (a >= 0) ? 0 : -1;

 int32 xi = x;

 int32 yi = y;

 x = x - CONDITIONAL_NEG(yi >> i, d);

 y = y + CONDITIONAL_NEG(xi >> i, d);

 a -= CONDITIONAL_NEG(angles[i], d);

 }

 *rx = x;

Chapter 27 Fast Trigonometric Operations Using Cordic Methods 439

 *ry = y;

}

void VectoringMode(int32 x, int32 y, int32 a, int32 *rl, int32 *ra)

{

 for (int i = 0; i < NUMBER_OF_ITERATIONS; ++i)

 {

 int32 d = S (y); // (y >= 0) ? 0 : -1;

 int32 xi = x;

 int32 yi = y;

 x = x + CONDITIONAL_NEG(yi >> i, d);

 y = y - CONDITIONAL_NEG(xi >> i, d);

 a += CONDITIONAL_NEG(angles[i], d);

 }

 *rl = x;

 *ra = a;

}

In rotation mode, the input angle must be in the range [-π/2,π/2]. The function
shown in Listing 27.2 rotates the input vector by multiples of 2π and π, adjusting the
input angle accordingly.

Listing 27.2: Normalizing the input range.

void Normalize(int32& x, int32& y, int32& a)

{

 while (a >= FIXED_TWO_PI) a -= FIXED_TWO_PI;

 while (a <= -FIXED_TWO_PI) a += FIXED_TWO_PI;

 while (a > FIXED_PI_OVER_2)

 {

 x = -x;

440 Game Engine Gems

 y = -y;

 a -= FIXED_PI;

 }

 while (a < -FIXED_PI_OVER_2)

 {

 x = -x;

 y = -y;

 a += FIXED_PI;

 }

}

The table of angles is built by computing the values of tan-1 2-i in the appropriate
fixed-point format until the value is zero. The number of iterations in the rotation and
vectoring mode algorithms is simply the number of entries in the table. This table can
be precomputed as it is not likely to vary. The code in Listing 27.3 shows how this is
done.

Listing 27.3: Angle table generation.

vector<int32> angles;

int i = 0;

for (;;)

{

 double a = atan(pow(2.0, -i));

 int32 fixed_a = int32(a * 0x01000000 + 0.5);

 if (fixed_a <= 0) break;

 angles.push_back(fixed_a);

 ++i;

}

int NUMBER_OF_ITERATIONS = angles.size();

Chapter 27 Fast Trigonometric Operations Using Cordic Methods 441

The code in Listing 27.4 shows how the value of C is computed. This value can be
precomputed, as it is not likely to vary.

Listing 27.4: Computation of C.

double k = 1.0;

for (int i = 0; i < NUMBER_OF_ITERATIONS; ++i)

{

 k *= sqrt(1.0 + pow(4.0, -i));

}

int32 C = int32(1.0 / k * 0x01000000 + 0.5);

Sine and Cosine

The code in Listing 27.5 uses the rotation mode to compute the sine and cosine of an
angle.

Listing 27.5: Sine and cosine implementation.

void SineCosine(int32 a, int32& s, int32& c)

{

 c = C; // Pre-multiply (1, 0) by C

 s = 0;

 Normalize(c, s, a); // Adjust angle to the range [-pi/2, pi/2]

 RotationMode(c, s, a, &c, &s);

}

Arctangent

The code in Listing 27.6 uses the vectoring mode to compute the arctangent of a value.

Listing 27.6: Arctangent implementation.

442 Game Engine Gems

int32 ArcTangent(int32 m)

{

 int 32 angle, length;

 VectoringMode(0x01000000, m, 0, &length, &angle);

 return a;

}

2D Vector Rotation

The code in Listing 27.7 uses the rotation mode to rotate a vector by a given angle.

Listing 27.7: Vector rotation implementation.

void Rotate(int32& x, int32& y, int32 a)

{

 Normalize(x, y, a); // Adjust angle to the range [-pi/2, pi/2]

 RotationMode(x, y, a, &x, &y);

 // The vector must be scaled by C

 x = int32((int64(x) * int64(C)) >> 24);

 y = int32((int64(y) * int64(C)) >> 24);

}

Vector Length

The code in Listing 27.8 uses the vectoring mode to compute the length of a vector.

Listing 27.8: Vector length implementation.

int32 Length(int32 x, int32 y)

{

 int32 angle, length;

Chapter 27 Fast Trigonometric Operations Using Cordic Methods 443

 x = abs(x); // Put the vector into the range [-pi/2, pi/2]

 VectoringMode(x, y, 0, &length, &angle);

 // The length must be scaled by C

 return int32((int64(length) * int64(C)) >> 24);

}

27.5 Considerations

When using a fixed-point format, overflow and precision are a constant concern.
The following considerations must be taken into account when using these functions:

1. The length of the vector(xi,yi) will grow as it is rotated by a factor of approximately
1.65. You must constrain the input values to ensure that this will not cause an
overflow.

2. Certain optimizations in the code presented here are done in order to eliminate
branching and multiplication. Optimizations such as these can be tailored to the
target platform.

3. The code implemented here assumes that the compiler implements the shift operator
on signed types using an arithmetic shift. In C/C++, the precise behavior of the shift
operator on signed integer types is defined by the compiler implementation. The
compiler may or may not use an arithmetic shift in this case. For example, the result
of shifting the value -1 right by one bit may be 0x7FFFFFFF or 0xFFFFFFFF,
depending on the compiler.

27.6 Extensions

The hyperbolic equivalents, as well as the inverses of the functions presented above,
can also be computed using similar methods. In addition, functions such as tangent,
hyperbolic tangent, ex, natural log, and square root can be derived from the basic

444 Game Engine Gems

functions. Andraka [1] and Walther [3] describe the implementation of these
extensions.

References

[1] Ray Andraka. "A survey of CORDIC algorithms for FPGA based computers".
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, 1998, pp. 191–200.

[2] Jack E. Volder."The CORDIC Trigonometric Computing Technique". IRE
Transactions on Electronic Computing, Volume EC-8 (September 1959), pp. 330–334.

[3] John S. Walther."A Unified Algorithm for Elementary Functions". Spring Joint
Computer Conference Proceedings, Volume 38 (1971), pp. 379–385.

28

Chapter 28 Inter-Process Communication Based on Your Own RPC
Subsystem

Kurt Pelzer

Piranha Bytes

Overview

The remote procedure call (RPC) technique is a powerful tool for constructing
distributed applications. It implements a client/server based system without requiring
that callers be aware of the underlying network. That is, the programmer would write
essentially the same code whether the procedure is local to the executing program or
remote. RPC isolates the application from the physical and logical elements of the data
communications mechanism and allows the application to use a variety of transports
(e.g., TCP/IP or UDP/IP).

When an application is combined with an RPC subsystem, it is able to interact with
a second application (e.g., editor and game), and it transparently makes remote calls
through a local procedure interface. The two processes may be on the same system as
in Figure 28.1(a), or they may be on different systems with a network connecting them
as in Figure 28.1(b).

446 Game Engine Gems

Figure 28.1: Two applications connected via RPC—Client and server applications on (a) the
same or (b) different machines.

Because of its transport independence, RPC makes the client/server model of
computing more powerful and easier to program. It is based on extending the notion of
conventional, or local, procedure calling so that the called procedure need not exist in
the same address space as the calling procedure. Implementing your own RPC system
is useful because it enables you to connect different systems like PCs and multimedia

javascript:PopImage('IMG_225','fig362_01_0_0.jpg','594','719')

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 447

game consoles such as the PlayStation 3 or Xbox 360. It is easy to use RPC in your own
application, so it makes sense to integrate it into your engine and development tools.

28.1 History of Remote Procedure Call

The idea of the remote procedure call goes back to 1976, when it was described in
RFC 707 [1] as an inter-process communication (IPC) technology. An IPC is a set of
techniques for the exchange of data among multiple threads in one or more processes
that may be running on one or more computers connected by a network. IPC
techniques are divided into methods for message passing, synchronization, shared
memory, and remote procedure calls. One of the first business uses of RPC was by
Xerox under the name "Courier" in 1981 [2].

The first popular implementation of RPC was Sun's RPC, now called ONC RPC.
It is still widely used today on several platforms [3, 4]. Another early implementation
was Apollo Computer's NCS (Network Computing System). It was used as the
foundation of DCE/RPC. A decade later (in the mid 1990s), Microsoft adopted
DCE/RPC as the basis of Microsoft RPC (MSRPC), and implemented DCOM atop it.

28.2 How RPC Works: Internal Architecture of RPC

An RPC is initiated by the client sending a request message to a known remote
server in order to execute a specified procedure using supplied parameters. A response
is returned to the client where the application continues along with its process. While
the server is processing the call, the client is blocked—it waits until the server has
finished processing before resuming execution.

Figure 28.2 shows the flow of activity that takes place during an RPC call between
two networked systems. Like a function call, when an RPC is made, the calling

448 Game Engine Gems

arguments are passed to the remote procedure, and the caller waits for a response to be
returned from the remote procedure. The steps are the following:

1. The client makes a procedure call that sends a request to the server and waits. The
thread is blocked from processing until either a reply is received or the RPC times
out.

2. When the request arrives, the server calls a dispatch routine that prepares the
requested service.

3. The requested service is performed on the server.

4. The server sends the result to the client.

5. After the RPC is completed, the client program continues.

Figure 28.2: Steps during an RPC call, initiated by the client sending a request to the server.

javascript:PopImage('IMG_226','fig364_01_0_0.jpg','730','505')

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 449

An important difference between remote procedure calls and local calls is that
remote calls can fail because of unpredictable network problems. Also, callers generally
must deal with such failures without knowing whether the remote procedure was
actually invoked.

Note that in this remote procedure call model, only one of the two processes is
active at any given time. However, this scenario is given only as an example. The RPC
protocol makes no restrictions on concurrency, and other scenarios are possible. For
example, an implementation may choose to have asynchronous RPC calls so the client
may do useful work while waiting for the reply from the server. Another possibility is
to have the server create a separate task to process an incoming request so the server
can be free to receive other requests.

Code that calls remotely makes use of a low-level subsystem. The encoding and
decoding of procedure calls is handled in a special stub module (see Figure 28.3). That
RPC stub module handles the procedure identification and the marshalling of the
supplied procedure parameters inside a message that has to be sent or has been received.
The RPC protocol is independent of transport protocols; that is, RPC does not care how
a message is passed from one process to another — the protocol is concerned only with
the specification and interpretation of messages. For example, RPC may be
implemented on top of TCP/IP or UDP/IP. Also, the act of binding a client to a server
is not part of the RPC subsystem. This function is left to some higher-level software
module.

450 Game Engine Gems

Figure 28.3: Encoding and decoding of procedure calls in special stub modules.

A remote procedure is uniquely identified by the following three pieces of
information:

A. The program number.

B. The version number.

C. The procedure number.

The program number A identifies a group of related remote procedures, each of
which has a unique procedure number. A program may consist of one or more versions,
and each version consists of a collection of procedures that are available to be called
remotely. The version number B enables multiple versions of an RPC protocol to be

javascript:PopImage('IMG_227','fig365_01_0_0.jpg','735','589')

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 451

available simultaneously. Each version contains a number of procedures that can be
called remotely, and each procedure has a procedure number C.

28.3 How to Build Your Own RPC Subsystem

We have seen that the RPC technology must allow a computer program to cause a
procedure to execute in another address space (commonly on another computer on a
shared network) without the programmer explicitly coding the details for this remote
interaction. That means that the RPC stub modules have to handle a number of tasks.
On the client side, the stub has to hide the fact that the called procedure is going to run
in a different process (on the same machine or on a different machine). On the server
side, the stub has to hide that the procedure call was initiated in a different (client)
process and that the result is going to be sent back. These tasks the stubs have to handle
lead to a list of points that should be kept in mind when you start to implement your
own RPC subsystem.

The remote procedure call mechanism must behave similarly to that of the local
procedure call model. With the local model, the caller places arguments to a procedure
in a well-specified location (such as in particular registers or on the stack) and transfers
control to the procedure. When the caller eventually regains control, it extracts the
result of the procedure from the well-specified location and continues execution.

With respect to the remote procedure call paradigm, a client calls the stub version
of the wanted procedure to initiate the processing of the wanted calculations. Now, the
called function in the client RPC stub module has to encode all needed information in
a data packet to be able to force the remote processing of the wanted procedure by
sending this packet to a server. This means that the procedure identification and all
function parameters have to be encoded in this data packet. On the server side, a process
is waiting for the arrival of a client message. When a call message arrives, the server runs

452 Game Engine Gems

a dispatch routine in its RPC stub that extracts the procedure identification and its
parameters, performs the requested procedure to compute the results, encodes these
results in a new data packet, and sends it back to the client. Then the server waits for
the arrival of the next call message. The resulting packet of the procedure call returns
to the client where it has to be dispatched. Finally, the procedure that initiated the
processing of the wanted calculations regains control, continues execution, and can
handle the result (see Figure 28.4).

We have already seen that the identification of the wanted remote procedure must
be encoded in the client RPC stub in a set of three numbers: the program number A,
the version number B, and the procedure number C. That information enables the
receiving and decoding RPC stub module in the server application to identify the
function that must be processed. Beside this procedure identification, the client/server
stub modules have to handle the marshalling of the procedure parameters. There are
three different solutions for passing the parameters:

• A parameter can be passed by value—this means a local value that can be modified.

• A parameter can be passed by reference—this means the parameter is a pointer to a
value that must be handled via call-to-copy/restore.

• A parameter can be a pointer to a complex data structure such as a list, tree, etc. The
server could read structure elements from the client one at a time, but this would be
very inefficient. A better way is to copy the complete data structure to the server
address space.

With respect to possible different representation of integer and float values,
characters, and other data on client and server machines, you have to be able to handle
system-specific issues, especially the mixing of little endian and big endian byte
ordering. You have to encode information about the data format of the packed
parameters, or you have to use a machine-independent transfer format for data.

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 453

Figure 28.4: RPC stub modules handling the procedure identification and the marshalling of
the supplied procedure parameters.

The simple code fragments shown in Listing 28.1 should give you an idea of how
to implement the stub functions for client and server machines.

javascript:PopImage('IMG_228','fig367_01_0_0.jpg','735','801')

454 Game Engine Gems

Listing 28.1: Example stub functions for the client and server.

// IN THE CLIENT RPC STUB

// example of a client stub version of "procedureA"

// client application calls this local procedure to run

// "procedureA" in the server application

int ClientRPCStub::procedureA(int parameter)

{

 // encode a data packet

 Pack outPacket(getProcID(this), getMshParams(parameter));

 // send packet to server

 getComModul().send(outPacket);

 // wait for server response

 ResultPack resultPacket = waitForResult();

 // dispatch the result and return to caller

 return resultPacket.getReturnValue();

}

// IN THE SERVER RPC STUB

// function to handle client requests in the server app

void ServerRPCStub::handle(Pack& inPacket)

{

 // dispatch a data packet

 ProcID procID(inPacket);

 ParamBlock params(inPacket);

 // call dispatch function to process the wanted procedure

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 455

 ResultPack resultPacket = run(procID, params);

 // send result to caller

 getComModul().send(resultPacket);

}

// dispatch function in the server application

Pack ServerRPCStub::run(ProcID& procID, Block& params)

{

 // detect the wanted procedure and extract the parameters

 ...

 // call the local version of wanted "procedureA"

 int result = procedureA(parameter);

 // encode the packet that has to be returned to client

 return ResultPack(procID, result);

}

28.4 Why RPC is Useful for Game Engines

Since the RPC technology enables you to connect running processes on different
systems like PC and game consoles (e.g., Xbox 360 or PlayStation 3), the possibility of
distributed processing leads to many useful cases that let your engine and development
tools interact at runtime. The following are some useful cases of interacting applications:

• An advanced log tool, as shown in Figure 28.5(a). This tool could be able to output
the text messages (events, warnings, errors) for the sending game and additionally
support an integrated console to send back commands from the tool to the game.
Enabling the tool to cheat or to switch modes in the running game from outside, this
is a useful application of RPC especially on game consoles that don't support

456 Game Engine Gems

keyboards. This is also useful in the case of a long distance between the system
running the log tool and the system running the game connected via TCP/IP and the
local intranet or the internet.

Figure 28.5: (a) A log tool connected to a running game. (b) An editor application connected
to two instances of a game.

• External editing tools connected to separate runtime applications—applications that
make use of connected runtime processes to be able to send instructions and receive
real-time feedback. This is useful for light source placement or cutscene editing in
the running game from outside with a connected tool. It is also useful for editors that

javascript:PopImage('IMG_229','fig370_01_0_0.jpg','668','670')

Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem 457

need to run system-dependent processes and calculations on other machines to be
able to detect specific restrictions and issues.

• An editor connected to several platforms at the same time (see Figure 28.5(b)). It
can be useful to be able to get rendered screen views from different machines at the
same time. That enables you to display the screens of multiple instances of a running
game sent from connected PCs and multimedia consoles on your PC and detect
machine-dependent differences in quality and performance.

• Advanced precalculations on multiple machines. You can use the computer systems
connected to your intranet for distributed computations in expensive precomputation
steps, for example, to calculate the static lighting and ambient occlusion in high-
detailed game worlds, etc.

References

[1] James E. White."A High-Level Framework for Network-Based Resource Sharing".
Augmentation Research Center, Stanford Research Institute.
http://tools.ietf.org/html/rfc707

[2] Andrew D. Birrell and Bruce Jay Nelson."Implementing Remote Procedure Calls".
Xerox Palo Alto Research Center, 1984.
http://www.cs.yale.edu/homes/arvind/cs422/doc/rpc.pdf

[3] "Remote Procedure Call—OMC RPC Protocol Specification Version 1". Sun
Microsystems, 1988. http://tools.ietf.org/html/rfc1057

[4] "Remote Procedure Call—OMC RPC Protocol Specification Version 2". Sun
Microsystems, 2009. http://tools.ietf.org/html/rfc5531

	Introduction
	Contributor Biographies
	About the Editor
	Part I Game Engine Design
	Chapter 1 What to Look for When Evaluating Middleware for Integration
	1.1 Middleware, How Do I Love Thee?
	1.2 Integration Complexity and Modularity
	1.3 Memory Management
	1.4 Mass Storage I/O Access
	1.5 Logging
	1.6 Error Handling
	1.7 Stability and Performance Consistency
	1.8 Custom Profiling Tools
	1.9 Customer Support
	1.10 Demands on the Maintainers
	1.11 Source Code Availability
	1.12 Quality of Source Code
	1.13 Platform Portability
	1.14 Licensing Requirements
	1.15 Cost

	Chapter 2 The Game Asset Pipeline
	2.1 Asset Pipeline Overview
	Source Assets
	Final Assets
	Build Process
	Manifest
	Fast Path
	Intermediate Assets
	The Pipeline

	2.2 Asset Pipeline Design
	Game Engine Editor

	2.3 Push or Pull Pipeline Model
	2.4 COLLADA, A Standard Intermediate Language
	The <source> Element
	The <accessor> Element
	Geometry and the <mesh> Element
	Conclusion

	2.5 OpenCOLLADA
	2.6 User Content
	The Future

	Chapter 3 Volumetric Representation of Virtual Environments
	3.1 Introduction
	3.2 Overview
	3.3 Data Structures
	3.4 Surface Extraction
	Output of the Algorithm
	Level of Detail
	Threading the Algorithm

	3.5 Rendering
	The Material System
	Using Multiple Materials

	3.6 Physics
	3.7 The Future

	Chapter 4 High-Level Pathfinding
	4.1 Terms
	4.2 Start Your Engines
	4.3 Why High-Level Pathfinding?
	4.4 Preprocess Phase
	Design Time
	Terrain Analysis
	Adjacent Regions
	A World of Change

	4.5 Fuzzy Pathing Phase
	RegionIsOpen
	GetRegionCost

	4.6 Detailed Paths Phase
	4.7 Why Go Through All This Trouble?

	Chapter 5 Environment Sound Culling
	5.1 The Problem
	5.2 A Sound Culling Solution
	5.3 Constructing the Sound Grid
	5.4 Processing the Sound Grid
	More on Sound Emitters
	How to Handle Dynamic Sounds

	5.5 Supporting Multiple Listeners
	5.6 Extensions

	Chapter 6 A GUI Framework and Presentation Layer
	6.1 GUI Systems
	Existing Solutions

	6.2 Design Patterns: Model View Controller (MVC)
	6.3 A GUI Design
	A Little Code [1]
	Extending our System
	But What About the Menus?
	An Example in Use

	6.4 And Finally

	Chapter 7 World's Best Palettizer
	7.1 Palettes? Whatever for?
	7.2 Understanding Quantization
	7.3 Hard-Earned Lessons
	7.4 Algorithm Overview
	Step 1 — Initializing the Cluster Set
	Step 2 — Subdivide the Worst Fitting Cluster
	Measuring Error in a Cluster
	Splitting a Cluster in Twain
	Step 3 — Reassigning All Samples
	Step 4 — Termination

	7.5 Future Work
	7.6 Results

	Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues
	8.1 Mechanisms of Plano-Stereoscopic Viewing
	Scale Considerations for 3D Stereo Images
	The Basic Setup

	8.2 Stereo Techniques
	Anaglyph Stereo
	Temporal Multiplexing
	Polarized Light
	Summary

	8.3 Design Considerations for 3D Scenes
	8.4 Outlook

	Chapter 9 A Multithreaded 3D Renderer
	9.1 The Memory Model
	9.2 Building the Display Lists in Parallel
	9.3 Parallel Models
	9.4 Synchronizing the GPU and CPU
	9.5 Using Additional Processing Resources
	9.6 Reducing the Pressure on the Memory Bandwidth
	9.7 Performing Graphical Operations in Parallel

	Chapter 10 Camera-Centric Engine Design for Multithreaded Rendering
	10.1 Uses of Multi-Core in Video Games
	10.2 Multithreaded Command Buffers
	10.3 Device-Independent Command Buffers
	RenderCommand Structure
	Device-Independent Resource Handles
	Filling a RenderCommand Structure
	Submitting a RenderCommand to the API

	10.4 A Camera-Centric Design
	Balancing Rendering Across Multiple Threads: Everything's a Camera
	RenderView Structure
	Filling a Render View Structure
	Submitting a Render View to the API

	10.5 Future Work
	Sorting and Instancing
	Better Load Balancing

	Chapter 11 A GPU-Managed Memory Pool
	11.1 Background
	Streaming Requirements
	Resource Types
	Design Requirements

	11.2 The Memory Pool
	11.3 Synchronization Issues
	11.4 The Staging Buffer
	11.5 Memory Pool Defragmentation
	11.6 Memory Pool Eviction
	11.7 Platform-Specific Considerations
	PlayStation 3
	Xbox 360

	11.8 Future Work
	Multithreading Considerations
	Non-GPU Extensions
	Better Defragmentation

	Chapter 12 Precomputed 3D Velocity Field for Simulating Fluid Dynamics
	12.1 Introduction
	12.2 Velocity Field Computation
	12.3 Physics Simplification
	Obstacle Heuristic
	Blower Heuristic

	12.4 Results and Discussion

	Chapter 13 Mesh Partitioning for Fun and Profit
	13.1 Desirable Algorithm Properties
	Partitions Should Have Relatively Same-Sized Bounding Columes
	Partitions Should Have Relatively the Same Number of Triangles and Vertices
	The Number of Partitions Should Be Minimized Overall
	The Number of Triangles Per Vertex in Each Partition Should Be Maximized
	The Partitioner Should Guarantee a Solution With the Previously Described Properties in Predictably Bounded Time

	13.2 Lessons Learned
	13.3 When Greedy Is Good
	Core Algorithm Overview
	Refinement

	13.4 Future Work
	13.5 Graphical Walkthrough

	Chapter 14 Moments of Inertia for Common Shapes
	14.1 Center of Mass
	14.2 The Inertia Tensor
	Transformations

	14.3 Derivation of Moments of Inertia
	Box
	Cylinder
	Pyramid
	Cone
	Ellipsoid
	Dome
	Capsule
	Truncated Pyramid
	Truncated Cone

	14.4 Summary

	Part II Rendering Techniques
	Chapter 15 Physically-Based Outdoor Scene Lighting
	15.1 Positioning the Sun and Moon
	15.2 Computing Natural Sunlight
	15.3 Moonlight and Other Nighttime Light Sources
	15.4 Tone-Mapping the Light
	15.5 Implementation Notes

	Chapter 16 Rendering Physically-Based Skyboxes
	16.1 Generating and Drawing the Skybox
	16.2 Computing the Skybox Vertex Colors
	16.3 Integrating the Skybox with Your Scene
	16.4 Embellishing Your Skybox

	Chapter 17 Motion Blur and the Velocity-Depth-Gradient Buffer
	17.1 Technique Overview
	17.2 Rendering to the Velocity-Depth-Gradient Buffer
	17.3 Rendering the Post-Processing Effect
	17.4 Grid Optimization

	Chapter 18 Fast Screen-Space Ambient Occlusion and Indirect Lighting
	18.1 Introduction
	18.2 A General Ambient Illumination Model
	18.3 Screen-Space Representation of the Scene
	18.4 Volumetric Ambient Occlusion
	18.5 Indirect Lighting of the Near Geometry
	18.6 Implementation
	18.7 Results

	Chapter 19 Real-Time Character Dismemberment
	19.1 What is Character Damage Modeling?
	19.2 Methods of Mutilation
	19.3 Bone Matrix Flattening
	19.4 Improvements
	19.5 Demo

	Chapter 20 A Deferred Decal Rendering Technique
	20.1 The Problem
	20.2 The General Idea
	20.3 Geometry Rendering
	20.4 Fade Out And Wrap-Around
	20.5 Surface Clipping
	20.6 Limitations
	20.7 Additional Features

	Part III Programming Methods
	Chapter 21 Multithreaded Object Models
	21.1 Explicit Locking
	21.2 Message-Based Updates
	21.3 Multiple Thread Contexts
	21.4 Buffered State Changes
	21.5 Selecting the Best Approach

	Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns
	22.1 Tasks Versus Threads in Games
	22.2 The Task Scheduler
	22.3 Decomposing Game Patterns into Tasks
	Callbacks and Futures
	Independent Loops and Splittable Tasks
	Long, Low-Priority Operations
	Synchronized Callbacks
	Directed Acyclic Graphs

	22.4 The Future of Task Parallelism in Games

	Chapter 23 Dynamic Code Execution Hierarchies
	23.1 What are Code Execution Hierarchies?
	23.2 Design Features
	Tree Structure
	Time Deltas
	Dynamic Structure
	Introspection
	Visualization
	Deferred Operations

	23.3 Benefits & Pitfalls

	Chapter 24 Key-Value Dictionary
	24.1 Design
	24.2 Using the KVD
	24.3 Code Details
	24.4 Caveats

	Chapter 25 A Basic Scheduler
	25.1 Overview
	25.2 Task Functionality
	25.3 Scheduler Functionality
	25.4 Implementation
	25.5 Additional Functionality

	Chapter 26 The Game State Observer Pattern
	26.1 Creating a Game State Manager
	26.2 The Interfaces of the Game State Observer Pattern
	26.3 Making GameState Observable
	26.4 Creating Observers
	26.5 Managing Functionality by Game State

	Chapter 27 Fast Trigonometric Operations Using Cordic Methods
	27.1 Rotation Mode Algorithm
	27.2 Vectoring Mode Algorithm
	27.3 Applications
	27.4 Implementation
	Sine and Cosine
	Arctangent
	2D Vector Rotation
	Vector Length

	27.5 Considerations
	27.6 Extensions

	Chapter 28 Inter-Process Communication Based on Your Own RPC Subsystem
	28.1 History of Remote Procedure Call
	28.2 How RPC Works: Internal Architecture of RPC
	28.3 How to Build Your Own RPC Subsystem
	28.4 Why RPC is Useful for Game Engines

