R< AMMING

2% v

EE}ITED BY MARK DEI.DUR'&

GameGems ||

Converted by Borz

borzpro @yahoo.com
2002.12.01

Optimization for C++ Games

Andrew Kirmse, LucasArts Entertainment
ark@alum.mit.edu

el-written C++ games are often more maintainable and reusable than their
plain C counterparts are—but is it worth it? Can complex C++ programs hope
to match traditional C programs in speed?

With a good compiler and thorough knowledge of the language, it is indeed pos-
sible to create efficient games in C++. This gem describes techniques you can use to
speed up games in particular. It assumes that you're already convinced of the benefits
of using C++, and that you're familiar with the general principles of optimization (see
Further Investigations for these).

One general principle that merits repeating is the absolute importance of profil-
ing. In the absence of profiling, programmers tend to make two types of mistakes.
Firgt, they optimize the wrong code. The great magjority of a program is not perfor-
mance critical, so any time spent speeding it up is wasted. Intuition about which code
is performance critical is untrustworthy—only by direct measurement can you be
sure. Second, programmers sometimes make "optimizations' that actualy dow down
the code. This is particularly a problem in C++, where a deceptively simple line can
actually generate a significant amount of machine code. Examine your compiler's out-
put, and profile often.

Object Construction and Destruction

The creation and destruction of objects is a central concept in C++, and is the main
area where the compiler generates code "behind your back." Poorly designed pro-
grams can spend substantid time calling constructors, copying objects, and generat-
ing costly temporary objects. Fortunately, common sense and a few simple rules can
make object-heavy code run within a hair's breadth of the soeed of C.

» Deday construction of objects until they're needed.
The fastest code is that which never runs, why create an object if you're not
going to use it? Thus, in the following code:

void Function(int arg)
{

Section 1 General Programming

Object obj;
if (arg *= 0)
return;

}

even when argis zero, we pay the cogt of calling Object's constructor and destruc-
tor. Ifargis often zero, and especidly if Object itsdlf alocates memory, this waste
can add up in a hurry. The solution, of course, is to move the declaration of obj
until after the //check.

Be careful about declaring nontrivial objects in loops, however. Ifyou delay con-
struction of an object until it's needed in a loop, you'll pay for the construction
and destruction of the object on every iteration. It's better to declare the object
before the loop and pay these costs only once. If a function is cdled insde an
inner loop, and the function creates an object on the stack, you could instead cre-
ate the object outside the loop and pass it by reference to the function.
Useinitiaizer ligts.

Consider the following class

class Vehicle

éublic:. , _
Vehi cl e(const std::string &ane) // Don't do this!

mName = nane;
i -
private:

std: : stringmNane;
};

Because member variables are constructed before the body of the constructor is
invoked, this code cdls the congtructor for the string mName, and then cdls the
= operator to copy in the object's name. What's particularly bad about this exam-
pleisthat the default constructor for string may well alocate memory — in fact,
more memory than may be necessary to hold the actual name assigned to the
variable in the constructor for Vehicle. The following code is much better, and
avoids the cdl to operator=. Further, given more information (in this case, the
actuad string to be stored), the nondefault string constructor can often be more
efficient, and the compiler may be able to optimize away the Vehicle constructor
invocation when the body is empty:

class Vehicle

{

public: _
Vehi cl e(const std::string &ane) : nmiName(nane)
{

private:

1.1 Optimization for C++ Games 7

std::string mName;
};

* Prefer preincrement to postincrement.

The problem with writingx =y++ is that the increment function has to make a
copy of the origind vaue ofy, incrementy, and then return the origina vaue.
Thus, postincrement involves the construction of a temporary object, while
preincrement doen't. For integers, therés no additiond overhead, but for user-
defined types, this is wasteful. You should use preincrement whenever you have
the option. You dmost dways have the option infor loop iterators.

¢ Avoid operators that return by value.
The canonical way to write vector addition in C++ is this.

Vector operator+(const Vector &vl, const Vector &v2)

This operator must return anew Vector object, and furthermore, it must return
it by value. While this dlows useful and readable expressonslikev=v 1+ z>2, the
cost of atemporary construction and a Vector copy is usually too much for some-
thing caled as often as vector addition. It's sometimes possible to arrange code so
that the compiler is able to optimize away the temporary object (this is known
as the "return vaue optimization™), but in generd, it's better to swalow your
pride and write the dightly uglier, but usualy faster:

void Vector::Add(const Vector &v1, const Vector &v2)

Note that operator+= doesn'thsuffer from the same problem, as it modifies its
first argument in place, and doesn't need to return atemporary. Thus, you should
use operators like += instead of + when possible.

» Use lightweight constructors.

Should the congtructor for the Vector dass in the previous example initiaize its
elements to zero? This may come in handy in a few spots in your code, but it
forces every cdler to pay the price of the initialization, whether they use it or not.

~ In particular, temporary vectors and member variables will implicitly incur the
extra cost.

A good compiler may well optimize away some of the extra code, but why take
the chance? As agenera rule, you want an object's constructor to initialize each of
its member variables, because uninitialized data can lead to subtle bugs. However,
in small dasses that are frequently instantiated, especidly as temporaries, you
should be prepared to compromise this rule for performance. Prime candidatesin
many games are the Vector and Matrix classes. These classes should provide medi-
ods (or aternate condtructors) to set themsdves to zero and the identity, respec-
tively, but the default constructor should be empty.

e oo TRGeneraliFrodramiming

As a corallary to this principle, you should provide additional congtructors to
classes where this will improve performance. If the Vehicle class in our second
example were instead written like this:

cl ass Vehicle

éubl ic:
Vehicl e()
{
}

voi d SetNange(const std: :string &nane)

mName = name;
}

private: ,
std: : string m\ame;
¥

wed incur the cost of constructing mName, and then setting it again later via Set-
Name(). Similarly, it's cheaper to use copy constructors than to construct an
object and then cal operator=. Prefer constructing an object this way — Vehicle
vl(v2) —tothisway — Vehicleul; vl = v2;.

If you want to prevent the compiler from automaticaly copyi ng an object for
you, declare aprivate copy constructor and operator= for the object's class, but
don't implement either function. Any attempt to copy the object will then result
in acompile-time error. Also get into the habit of declaring single-argument con-
structors as explicit, unless you mean to use them as type conversons. This pre-
vents the compiler from generating hidden temporary objects when converting

types

Predllocate and cache objects.

A gamewill typicaly have afew cassesthat it dlocates and freesfrequently, such
asweapons or particles. In aC game, you'd typicaly alocate abig array up front
and use them as necessary. With alittle planning, you can do the same thing in
C++. The ideais that instead of continually constructing and destructing objects,
you request new ones and return old ones to a cache. The cache can be imple-
mented as atemplate, so that it works for any class, provided that the class has a
default constructor. Code for a sample cache dass template is on the accompany-
ing CD.

You can ether dlocate objects to fill the cache as you need them, or predlocate
all of the objects up front. If, in addition, you maintain a stack discipline on the
objects (meaning that before you delete object X, you first delete al objects alo-
cated after X), you can alocate the cache in a contiguous block of memory.

11 Optlmlzatlon forC++Games - _ 9

Memory Management _ —

.................................. R p—— SS—

C++ applications generdly need to be more aware of the details of memory manage-
ment than C applications do. In C, dl alocations are explicit though mallocQ and
freeQ, while C++ can implicitly alocate memory while constructing temporary
objects and member variables. Most C++ games (like most C games) will require their
OWN memory manager. '

Because a C++ gameis likely to perform many dlocations, it must be especialy
careful about fragmenting the heap. One option is to take one of the traditional
approaches: either don't alocate any memory at dl after the game starts up, or main-
tain alarge contiguous block of memory that is periodicdly freed (between levels, for
example). On modern machines, such draconian measures are not necessary, if you're
willing to be vigilant about your memory usage.

Thefirst step isto override the globa new and delete operators. Use custom imple-
mentations of diese operators to redirect the gameés most common alocations away
from mallocQ and into preall ocated blocks of memory. For example, if you find that you
have at most 10,000 4-byte dlocations outstanding at any one time, you should alocate
40,000 bytes up front and issue blocks out as necessary. To keep track of which blocks
are free, maintain a. freelist by pointing each free block to the next free block. On dlo-
cation, remove the front block from the list, and on dedllocation, add the freed block to
the front again. Figure 1.1.1 illustrates how the free ligt of smal blocks might wind its
way through a contiguous larger block after a sequence of alocations and frees.

"
|
T
used free used used free free

FIGURE 1.1.1 Alinkedfreelist.

Youll typicaly find that a game has many small, short-lived alocations, and thus
youll want to reserve space for many smal blocks. Reserving many larger blocks
wastes a substantial amount of memory for those blocks that are not currently in use;
above acertain size, you'll want to pass allocations off to a separate large block aloca
tor, or just to mallocQ. :

Vlrtual Functlons

Critics of C++ in games often pomt to V|rtua| functlons as a mysterious feature
that drains performance. Conceptually, the mechanism is simple. To generate avirtua
function cdl on an object, the compiler accesses the objects virtual function table,

retrieves a pointer to the member function, sets up the cal, and jumps to the member
function's address. This is to be compared with a function cdl in C, where the com-
piler sets up the call and jumps to a fixed address. The extra overhead for the virtual
function cdl is die indirection to die virtua function table, because the address of the
cdl isn't known in advance, there can dso be a penalty for missing the processor's
instruction cache.

Any substantial C++ program will make heavy use of virtual functions, so the idea
is to avoid these cdls in performance-critical areas. Hereis atypica example:

class Based ass
éublip: .
virtual char *GetPointer() = 0;
class Qass"! : public Based ass
virtual char *GetPointer();

!
class dass2 : public Based ass

virtual char *GetPointer();
H

void Function(Based ass *pQhj)

{ char *ptr = pOhj ->Cet Pointer();

If FunctionQ is performance critica, we want to change die cdl to GetPointer
from virtual to inline. One way to do this is to add a new protected data member to

BaseClass, which is returned by an inline verson of GetPointerQ, and st the data
member in each dass:

class Based ass

S
public:
inline char *GetPointerFast()

returnnpPoi nter;

}

protected: .
inline void SetPointer(char *pData)
{ npData = pDat a;

private:

char *npDat a;

11

Qtimzation for Ct+Games oo 1

}
Il classl and class2 cal|l SetPointer as necessary
I'l'i n menber functions

voi d Function(Based ass *pQhj)

char *ptr = pObj->GetPointerFast();
}

A more drastic measure is to rearrange your dass hierarchy. If Classl and Class2
have only dight differences, it might be worth combining them into a single class,
with aflag indicating whether you want the dass to behave like Class or Class2 at
runtime. With this change (and the remova of the pure virtual BaseClass), the Get-
Pointer function in the previous example can again be made inline. This transforma-
tion is far from elegant, but in inner loops on machines with small caches, you'd be
willing to do much worse to get rid of avirtual function cal.

Although each new virtua function adds only the Sze of a pointer to a per-class
table (usually anegligible cost), theyzrtf virtual function in aclass requires apointer to
the virtual function table on a pet-object basis. This means that you don't want to have
any virtual functions at dl in small, frequently used classes where this extra overhead
is unacceptable. Because inheritance generally requires the use of one or more virtual
functions (avirtual destructor if nothing else), you don't want any hierarchy for small,
heavily used objects.

Code Size

Because memory is limited, and because small is fast, it's important to make your exe-
cutable as smal as possible. The first thing to do is get the compiler on your side. If
your compiler stores debugging information in the executable, disable the generation
of debugging information. (Note that Microsoft Visud C++ stores debugging infor-
mation separate from the executable, so this may not be necessary.) Exception handling
generates extra code; get rid of as much exception-generating code as possible. Make
sure the linker is configured to strip out unused functions and dasses. Enable the com-
piler's highest level of optimization, and try setting it to optimize for sze instead of
speed—sometimes this actually produces faster code because of better instruction
cache coherency. (Be sure to verify that intrinsic functions are still enabled if you use
this setting.) Get rid of dl of your space-wasting strings in debugging print statements,
and have the compiler combine duplicate constant strings into single instances.
Inlining is often the culprit behind suspicioudy large functions. Compilers are
free to respect or ignore your inline keywords, and they may well inline functions
without telling you. This is another reason to keep your constructors lightweight, so
that objects on the stack don't wind up generating lots of inline code. Also be careful
of overloaded operators; a smple expression like ml = m2 * m3 can generate a ton of

12 Section 1 General Programming

inline code if M2 and m3 are matrices. Get to know your compiler's settings for inlin-
ing functions thoroughly.

Enabling runtime type information (RTTI) requires the compiler to generate
some static information for (just about) every dassin your program. RTTI istypicaly
enabled so that code can cdl dynamic_cast and determine an object's type. Consider
avoiding RTTI and dynamic_cast entirely in order to save space (in addition,
dynamic_cast is quite expensive in some implementations). Instead, when you redly
need to have different behavior based on type, add avirtual function that behaves dif-
ferently. Thisis better object-oriented design anyway. (Note that this doesn't apply to
static_cast, whichisjust like aC-style cast in performance.)

The Standard Template L|brary

T B R s s st i

The Standard Template Library (ST L) isa set of templ ateﬁ that implement common
data structures and agorithms, such as dynamic arrays (cdled vectors), sets, and
maps. Using the STL can save you a great deal of time that you'd otherwise spend
writing and debugging these containers yourself. Once again, though, you need to be
aware of the details of your STL implementation if you want maximum efficiency.

In order to dlow the maximum range of implementations, the STL standard is
silent in the area of memory allocation. Each operation on an STL container has cer-
tain performance guarantees, for example, insertion into a set takes O(log n) time.
However, there are no guarantees on a container's memory usage.

Let's go into detail on avery common problem in game development: you want
to store a bunch of objects (well cal it alist of objects, though we won't necessarily
store it in an STL list). Usualy you want each object to appear in alist only once, so
that you don't have to worry about accidentdly inserting the object into the collection
if it's already there. An STL set ignores duplicates, has O(log n) insertion, deletion,
and lookup—the perfect choice, right?

Maybe. While it's true that most operations on a set are O(log n), this notation
hides a potentially large constant. Although the collection's memory usage is imple-
mentation dependent, many implementations are based on a red-black tree, where
each node of the tree stores an element of the collection. It's common practice to alo-
cate a node of the tree every time an element is inserted, and to free anode every time
an dement is removed. Depending on how often you insert and remove dements, the
time spent in the memory dlocator can overshajow any algorithmic savings you
gained from using a set.

An dternative solution uses an STL vector to store elements. A vector is guaran-
teed to have amortized constant-time insertion at the end of the collection. What this
means in practice is that a vector typically reallocates memory only on occasion, say,
doubling its size whenever it's full. When using a vector to store a list of unique ee-
ments, you first check the vector to see if the element is already there, and if it isn't,
you add it to the back. Checking the entire vector will take O(n) time, but the con-
stant involved is likely to be small. That's because dl of the elements of a vector are

11 Optimization for C++Games 13

typicaly stored contiguoudy in memory, so checking the entire vector is a cache-
friendly operation. Checking an entire set may well thrash the memory cache, asindi-
vidual elements of the red-black tree could be scattered al over memory. Also
consider that a set must maintain a significant amount of overhead to set up the tree.
If all you're storing is object pointers, a set can easily require three to four times the
memory of avector to store the same objects.

Deletion from a set is O(log n), which seems fast until you consider that it prob-
ably dso involves a cdl to free(). Deletion from a vector is O(n), because everything
from the deleted element to the end of the vector must be copied over one position.
However, if the elements of the vector are just pointers, the copying can dl be done in
asingle cal to memcpyO, which is typicaly very fast. (Thisis one reason why it's usu-
aly preferable to store pointers to objects in STL collections, as opposed to objects
themselves. If you store objects directly, many extra constructors get invoked during
operations such as deletion.)

If you're till not convinced that sets and maps can often be more trouble than
they're worth, consider the cost of iterating over a collection, specificaly:

for (Collection::iterator it = collection.begin();
it != collection.end(); ++it)

If Collection is avector, then ++it is apointer increment—one machine instruc-
tion. But when Collection is aset or amap, ++itinvolves traversing to the next node
of ared-black tree, arelatively complicated operation that is aso much more likely to
cause a cache miss, because tree nodes may be scattered al over memory.

Of course, if you're storing avery large number of items in a collection, and doing
lots of membership queries, aset's O(log n) performance could very well be worth the
memory cos. Similarly, if youre only using the collection infrequently, the perfor-
mance difference may be irrelevant. You should do performance measurements to
determine what values of n make a set faster. Y ou may be surprised to find that vectors
outperform sets for dl values that your game will typically use.

That's not quite the last word on STL memory usage, however. It's important to
know if a collection actually frees its memory when you cdl the clear() method. If not,
memory fragmentation can result. For example, if you start a game with an empty
vector, add elements to the vector as the game progresses, and then call clear() when
the player restarts, the vector may not actually free its memory at al. The empty vec-
tor's memory could gill be taking up space somewhere in the heap, fragmenting it.
There are two ways around this problem, if indeed your implementation works this
way. First, you can call reserveQ when the vector is created, reserving enough space for
the maximum number of elements that you'll ever need. If that's impractical, you can
explicitly force the vector to free its memory thisway:

vector<int> v; . _
Il ... elenents are inserted into v here
vector<int>().swap(v); // causes v to free its nenory

. = SR . Q1) GEDCAL POgramming

Sets, lists, and maps typically don't have this problem, because they allocate and
free each element separately.

Advanced Features

Just because alanguage has a feature doesn't mean you have to use it. Seemingly sim-
ple features can have very poor performance, while other seemingly complicated fea-
tures can in fact perform well. The darkest corners of C++ are highly compiler
dependent — make sure you know the costs before using them.

C++ dtrings are an example of afeature that sounds great on paper, but should be
avoided where performance matters. Consider the following code:

void Function (const std: :string &str)
{
}

Function ("hello");

The cdl to FunctionQ invokes a constructor for a string given a const char *. In
one commercia implementation, this constructor performs amallocQ, astrlenQ, and
a memcpyO, and the destructor immediately does some nontrivial work (because this
implementation’s strings are reference counted) followed by afreeQ- The memory
that's allocated is basically a waste, because the string "hello” is aready in the pro-
gram's data segment; weve effectively duplicated it in memory. If FunctionQ had
instead been declared as taking a const char *, there would be no overhead to the cdl.
That's ahigh price to pay for the convenience of manipulating strings.

Templates are an example of the opposite extreme of efficiency. According to the
language standard, the compiler generates code for a template when the template is
instantiated with a particular type. In theory, it sounds like a single template declara-
tion would lead to massve amounts of nearly identical code. If you have a vector of
Clasdl pointers, and avector of Class2 pointers, you'll wind up with two copies of vec-
tor in your executable.

The redlity for most compilers is usually better. First, only template member
functions that are actually caled have any code generated for them. Second, the com-
piler is dlowed to generate only one copy of the code, if correct behavior is preserved.
You'll generdly find that in the vector example given previoudly, only asingle copy of
code (probably for vector<void *>) will be generated. Given a good compiler, tem-
plates give you dl the convenience of generic programming, while maintaining high
performance.

Some features of C++, such asinitializer lists and preincrement, generally increase
performance, while other features such as overloaded operators and RTTI look
equally innocent but carry serious performance penalties. STL collections illustrate
how blindly trusting in a function's documented agorithmic running time can lead
you astray. Avoid the potentially dow features of the language and libraries, and spend

11 OptinZalon Oy e CamIeS e R e s e

some time becoming familiar with the options in your profiler and compiler. Youlll

quickly learn to design for speed and hunt down the performance problems in your
game.

Further Investlgatlons

Thanks to Pete Isensee and Chrlstopher Kirmse for reviewi ng this gem.

Gormen, Thomas, Charles Leiserson, and Ronald Rivest, Introduction to Algorithms,
Cambridge, Massachusetts, MIT Press, 1990.

Isensee, Peter, C++ Optimization Strategies and Techniques, www.tantalon.com/
pete/cppopt/main.htm.

Koenig, Andrew, "Pre- or Postfix Increment," The C++ Report, June, 1999.

Meyers, Scott, Effective C++, Second Edition, Reading, Massachusetts: Addison-
Wedey Publishing Co., 1998.

Sutter, Herb, Guru of the Week #54: Using Vector and Deque, www.gotw.cal
gotw/054.htm.

e e

Inline Functions VVersus Macros

Peter Dalton, Evans & Sutherland
pdalton@xmission.com

ien it comes to game programming, the need for fast, efficient functions cannot

be overstated, especidly functions that are executed multiple times per frame.
Many programmers rely heavily on macros when dealing with common, time-critical
routines because they eliminate the calling/returning sequence required by functions
that are sengtive to the overhead of function cdls. However, using the tfdefine directive
to implement macros diat look like functions is more problematic than it is worth.

Advantages of Inllne Functlons

16

T PERT I P E LT T -

Through the use of inline funct| ons, many of the mherent disadvantages of macros
can easily be avoided. Take, for example, the following macro definition:

#define max(a,b) ((a) > (b) ? (a) : (b))’

Let's look at what would happen if we cdled the macro with die following para
meters: max(++x,Yy). Ifx = 5andj/ = 3, the macro will return avalue of 7 rather than
the expected value of 6. This illustrates the most common side effect of macros, the
fact that expressions passed as arguments can be evaluated more than once. To avoid
this problem, we could have used an inline function to accomplish die same god:

inline int max(int a, int b) { return (a > b ? a : b); }

By using the inline method, we are guaranteed that al parameters will only be
evaluated once because they must, by definition, follow al the protocols and type
safety enforced on normal functions.

Another problem that plagues macros, operator precedence, follows from die
same problem presented previoudy, illustrated in the following macro:

#define square(x) (x*x)
If we were to cdl this macro with the expression 2+1, it should become obvious

that die macro would return aresult of 5 instead of the expected 9. The problem here
is that the multiplication operator has a higher precedence than the addition operator

1.2 Inline Functiqg§_\/__(_a___r___sus_Macros) - _ 17

has. While wrapping dl of the expressons within parentheses would remedy this
problem, it could have easily been avoided through the use of inline functions.

The other major pitfall surrounding macros has to ded with multiple-statement
macros, and guaranteeing that al statements within the macro are executed properly.
Again, let's look at asimple macro used to clamp any given number between zero and
one:

#define clamp(a) \
if (@>1.0) a=10; \
if (a <0.0) a=0.0;

If we were to use the macro within the following loop:

for (int ii =0; ii < N; ++ii)
clamp(numbersToBeClamped]ii]);

the numbers would not be clamped if they were less than zero. Only upon termina-
tion of thefor loop when « == Nwould the expression if(numbersToBeClamped[ii] <
0.0) be evaluated. This is dso very problematic, because the index variable « is now
out of range and could easily result is amemory bounds violation that could crash the
program. While replacing the macro with an inline function to perform the same
functionality is not the only solution, it is the cleanest.

Given these inherent disadvantages associated with macros, let's run through the
advantages of inline functions:

« Inline functions follow &l the protocols of type safety enforced on normal func-
tions. This ensures that unexpected or invaid parameters are not passed as
arguments.

« Inline functions are specified using the same syntax as any other function, except
for the inline keyword in the function declaration.

» Expressions passed as arguments to inline functions are evaluated prior to enter-
ing the function body; thus, expressions are evaluated only once. As shown previ-
oudy, expressons passed to macros can be evauated more than once and may
result in unsafe and unexpected side effects.

* |tispossible to debug inline functions using debuggers such as Microsoft's Visua
C++. Thisis not possible with macros because the macro is expanded before the
parser takes over and the program's symbol tables are created.

« Inline functions arguably increase the procedure's readability and maintainability
because they use the same syntax as regular function cals, yet do not modify para-
meters unexpectedly.

Inline functions also outperform ordinary functions by eliminating the overhead
of function cals. This includes tasks such as stack-frame setup, parameter passing,
stack-frame restoration, and the returning sequence. Besides these key advantages,
inline functions dso provide the compiler with the ability to perform improved code

o — i — O —=ncla o gEE)

optimizations. By replacing inline functions with code, the inserted code is subject to
additional optimizations that would not otherwise be possible, because most compil-
ers do not perform interprocedural optimizations. Allowing the compiler to perform
globa optimizations such as common subexpression elimination and loop invariant
removal can dramatically improve both speed and size.

The only limitation to inline functions that is not present within macros is the
restriction on parameter types. Macros dlow for any possible type to be passed as a
parameter; however, inline functions only dlow for the specified parameter type in
order to enforce type safety. We can overcome this limitation through the use of inline
template functions, which adlow us to accept any parameter type and enforce type
safety, yet dill provide dl the benefits associated with inline functions.

When to Use Inllne Functlons

Why don't we make every function an inline functlon’7 Wouldnt this eliminate the
function overhead for the entire program, resulting in faster fill rates and response
-times? Obvioudy, the answer to these questions is no. While code expansion can
improve speed by eliminating function overhead and dlowing for interprocedura
compiler optimizations, thisis dl done at the expense of code size. When examining
the performance of a program, two factors need to be weighed: execution speed
and the actual code size. Increasing code size takes up more memory, which is apre-
cious commodity, and aso bogs down the execution speed. As the memory require-
ments for a program increase, so does the likelihood of cache misses and page faults.
While a cache misswill cause aminor delay, a page fault will dways result in amajor
dday because the virtual memory locetion is not in physicad memory and must
be fetched from disk. On a Pentium I 400 MHz desktop machine, a hard page fault
will result in an approximately 10 millisecond pendty, or about 4,000,000 CPU
cycles [Heller99].

If inline functions are not dways awin, then when exactly should we use them?
The answer to this question really depends on the situation and thus must rely heav-
ily on thejudgment of the programmer. However, here are some guidelines for when
inline functions work well:

» Smadl methods, such as accessors for private data members.
» Functions returning state information about an object.
» Smadll functions, typicdly three lines or less.

« Smadl functions that are called repeatedly; for example, within atime-critica ren-
dering loop.

Longer functions that spend proportionately less time in the calling/returning
sequence will benefit less from inlining. However, used correctly, inlining can greatly
increase procedure performance.

1.2 Inline Functlons Versus Macros 19

When to Use Macros

Despite the problems assooated Wlth Macros, there are afew circumstances in which
they areinvaluable. For example, macros can be used to create small pseudo-languages
that can be quite powerful. A set of macros can provide the framework that makes cre-
ating state machines a breeze, while being very debuggable and bulletproof. For an
excellent example of this technique, refer to the "Designing a Genera Robust Al

'Engine" article referenced at the end of this gem [RabinOO]. Another example might
be printing enumerated types to the screen. For example:

tfdefine CaseEnum(a) case(a) : PrintEnum(#a)
switch (msg_passed_in) {
CaseEnum(MSG_YouWereHit);
ReactToHit();
break;
CaseEnum(MSG_GameReset);
ResetGamelogic();
break;

}

Here, PrintEnumQ is a macro that prints a string to the screen. The # is the
stringizing operator that converts macro parameters to string constants [MSDN].
Thus, there is no need to create alook-up table of al enums to strings (which are usu-
ally poorly maintained) in order to retrieve invaluable debug information.

The key to avoiding the problems associated with macros is, firgt, to understand
the problems, and, second, to know the alternative implementations.

Microsoft Specrflcs

Besides the standard |nI|ne keyword Mlcrosofts Vlsud C++ compiler provides sup-
port for two additional keywords. The __inline keyword instructs the compiler to
generate a cost/benefit analysis and to only inline the function if it proves beneficial.
The__ forceinline keyword instructs the compiler to aways inline the function.
Despite using these keywords, there are certain circumstances in which the compiler
cannot comply as noted by Microsoft's documentation [MSDN].

References

[HeIIeng] HeIIer Martin, Developlng Optlmlzed Code vvrth Mlcrosoft Visual C++ 6.0,
Microsoft MSDN Library, January 2000.

[McConnell93] McConnell, Steve, Code Complete, Microsoft Press, 1993.

[MSDN] Microsoft Developer Network Library, http://msdn.microsoft.com.

[Myers98] Myers, Scott, Effective C++, Second Edition, Addison-Wedey Longman,
Inc., 1998.

[RabinOO] Rabin, Steve, "Designing a General Robust Al Engine," Game Program-
ming Gems. Charles River Media, 2000; pp. 221-236.

1.3

Programming with
Abstract Interfaces

Noel Llopis, Meyer/Glass Interactive

nllopis@mgigames.com

he concept of abstract interfaces is simple yet powerful. It dlows us to completely
separate the interface from its implementation. This has some very useful
consequences:

 Itiseasy to switch among different implementations for the code without affect-
ing the rest of the game. This is particularly useful when experimenting with dif-
ferent dgorithms, or for changing implementations on different platforms.

» The implementations can be changed a runtime. For example, if the graphics
Tenderer is implemented through an abstract interface, it is possble to choose
between a software Tenderer or a hardware-accelerated one while the game is
running.

» The implementation detalls are completely hidden from the user of the interface.
This will result in fewer header filesincluded al over the project, faster recompile
times, and fewer times when die whole project needs to be completely recompiled.

» New implementations of existing interfaces can be added to the game effortlesdy,
and potentially even after it has been compiled and released. This makes it possi-
ble to easily extend the game by providing updates or user-defined modifications.

Abstract Interfaces

..... T ——— N T ——

In C++, an abstract mterface is nothlng more than abase class that has only public
pure virtua functions. A pure virtual function is a type of virtual member function
that has no implementation. Any derived class must implement those functions, or
else the compiler prevents instantiaton of that class. Pure virtua functions are indi-
cated by adding = 0 after their declaration.

The following is an example of an abstract interface for a minimal sound system.
This interface would be declared in a header file by itsdf:

/11 n SoundSystemh
class | SoundSyst em {
publ i c:

1.3 Programming with Abstract Interfaces 21

virtual ~ISoundSystem() {};
virtual bool PlaySound (handle hSound)
virtual bool StopSound (handle hSound)

b

The abstract interface provides no implementation whatsoever. All it does is
define the rules by which the rest of the world may use the sound system. Aslong as
the users of the interface know about | SoundSystem, they can use any sound system
implementation we provide. '

The following header file shows an example of an implementation of the previous
interface: '

/lIn SoundSystemSoftware.h
#include "SoundSystem.h"

class SoundSystemSoftware : public ISoundSystem {
public:
virtual -SoundSystemSoftware () ;
virtual bool PlaySound (handle hSound) ;
virtual bool StopSound (handle hSound) ;

/I The rest of the functions in the implementation

b

Wewould obviously need to provide the actual implementation for each of those
functions in the corresponding .cpp file.
To use this class, you would have to do the following:

ISoundSystem * pSoundSystem = new SoundSystemSoftware () ;
/I Now we're ready to use it
pSoundSystem->PlaySound (hSound);

So, what have we accomplished by creating our sound system in this roundabout
way? Almost everything that we promised at the start:

* |t is easy to create another implementation of the sound system (maybe a hard-
ware version). All that is needed is to create a new class that inherits from
| SoundSystem, instantiateit instead of SoundSystemSoftwar eQ, and everythingelse
will work the same way without any more changes.

* We can switch between the two dasses a runtime. As long as pSoundSystem
points to a vaid object, the rest of the program doesn't know which one it is
using, so we can change them at will. Obvioudy, we have to be careful with spe-
cific dassrestrictions. For example, some classeswill keep some state information
or require initialization before being used for thefirst time.

* We have hidden dl the implementation details from the user. By implementing
the interface we are committed to providing the documented behavior no matter
what our implementation is. The code is much cleaner than the equivalent code

O e e eseasm e SECTON 1 General Programming

full of //"statements checking for one type of sound system or another. Maintain-
ing the code is dso much easier.

Addlng a Factory

There isone detal that we havent covered yet we ha/ent completely hidden the spe-
cific implementations from the users. After al, the users are till doing a new on the
dass of the specific implementation they want to use. The problem with this is that
they need to #include the header file with the declaration of the implementation.
Unfortunately, theway C++ was designed, when users #include a header file, they can
aso get alot of extrainformation on the implementation details of that class that they
should know nothing about. They will see dl the private and protected members, and
they might even include extra header filesthat are only used in the implementation of
the dass.

To make matters worse, the users of the interface now know exactly what type of
dass their interface pointer points to, and they could be tempted to cast it to its red
type to access some "specid features' or rely on some implementati on-specific behav-
ior. As soon as this happens, we lose many of the benefits we gained by structuring
our design into abstract interfaces, so this is something that should be avoided as
much as possible.

The solution is to use an abstract factory [Gamma95], which is a dass whose sole
purposeis to instantiate a specific implementation for an interface when asked for it.
The following is an example of a basic factory for our sound system:

/'I'l'n SoundSyst enfactory. h
class | SoundSystem

class SoundSystenfactory {
public:
enum SoundSyst enType {
SOUND_SCOFTWARE,
SOUND_HARDWARE,
SOUND_SOMVETHI NGELSE

b

static |SoundSystem * Creat eSoundSyst en(SoundSyst enfype type);
};

/1"l n SoundSyst enfact orP/ cpp
A nclude "SoundSyst enfof tware. h"
A ncl ude " SoundSyst enHar dwar e . h
#i ncl ude " SoundSYst enSonet hi ngH se. h"

| SoundSyst em * SoundSyst enfact ory: : O eat eSoundSyst em (SoundSyst enflype
_type)

| SoundSystem * pSystem

L B O S A S

switch (type) {
case SOUND_SOFTWARE:
pSystem = new SoundSystemSoftwaref);
break;
case SOUND_HARDWARE:
pSystem = new SoundSystemHardwareO;
break;
caseSOUND_SOMETHINGELSE:
pSystem = new SoundSystemSomethingElse();
break;
default:
pSystem = NULL;
}

return pSystem,;

}

Now we have solved the problem. The user need only include SoundSystemFac-
tory. h and SoundSystem.h. As a matter of fact, we don't even have to make the rest of
die header filesavailable. To use a specific sound system, the user can now write:

ISoundSystem * pSoundSystem;
pSoundSystem = SoundSystemFactory::CreateSoundSystem

(SoundSystemFactory::SOUND_SOFTWARE);
/I Now we're ready to use it
pSoundSystem->PlaySound (hSound);

We need to always include a virtual destructor in our abstract interfaces. If
we don't, C++ will automatically generate a nonvirtual destructor, which
will cause the real destructor of our specific implementation not to be called
(andthat is usually a hard bug to track down). Unlike normal member
functions, wecan'tjust provideapurevirtual destructor, soweneedtocreate
an emptyfunction to keep the compiler happy.

Abstract Interfaces as TraltvsP

B N P T

A dightly different way to thi nk of abstract mterfac& is to consder an interface as a
st of behaviors. If adassimplements an interface, that class is making a promise that

it will behave in certain ways. For example, the following is an interface used by
objects that can be rendered to the screen:

class |Renderable {
public:
virtual -1Renderable() {};
virtual bool Render () = 0;
b

We can design aclass to represent 3D objects that inherits from | Renderable and
provides its own method to render itsdf on the screen. Similarly, we could have a

Section 1_General Programming

terrain cdass that dso inherits from IRenderable and provides a completely different
rendering method.

class GenericSDODbject : public IRenderable {
public:
virtual ~Generic3DObject() ;
virtual bool Render();

/I Rest of the functions here

¥

The render loop will iterate through dl the objects, and if they can be rendered,
it cdls their RenderQ function. The red power of the interface comes again from hid-
ing the real implementation from the interface: now it is possible to add a completely
new type of object, and as long as it presents the |Renderable interface, the rendering
loop will be able to render it like any other object. Without abstract interfaces, the
render loop would have to know about the specific types of abject (generic 3D object,
terrain, and so on) and decide whether to cdl their particular render functions. Cre-
ating a new type of render-capable object would require changing the render loop
along with many other parts of the code.

We can check whether an object inherits from IRenderable to know if it can be
rendered. Unfortunately, that requires that the compiler's RTTI (Run Time Type
I dentification) option be turned on when the code is compiled. Thereisusualy aper-
formance and memory cost to have RTTI enabled, so many games have it turned off
in their projects. We could use our own custom RTTI, but instead, let's go the way of
COM (Microsoft's Component Object Model) and provide a Queryinterface function
[Rogerson97].

If the object in question implements a particular interface, then Querylnterface
casts the incoming pointer to the interface and returns true. To create our own Query-
Interface function, we need to have a base class from which al of the related objects
that inherit from aset of interfaces derive. We could even make that base class itsdlf an
interface like COM's lUnknown, but that makes things more complicated.

class GameObject {
public:
enum GamelnterfaceType {
IRENDERABLE,
IOTHERINTERFACE

b
virtual bool Querylnterface (const GamelnterfaceType type,
void ** pObj);
/I The rest of the GameObject declaration
b

The implementation of Querylnterface for a plain game object would be trivid.
Because it's not implementing any interface, it will aways return false.

1.3 Programmingwith AbstractInterfaces R -

bool Game(hj ect: : Querylnterface (const Ganel nterfaceType type,
void ** pQbj) {
return fal se;
}

The implementation of a 3D object class is different from that of GameObject,
because it will implement the | Renderableinterface.

classbl?gDObject . public GameObject, public IRenderable {
public:
virtual -3DObject();

virtual bool Querylnterface (const Ganel nterfaceType type,
void ** pQoj) ;

virtual bool Render();
/1 Some more functions if needed
};

bool SDObject: :Qijerylnterface (const GamelnterfaceType type,

void ** pObj) {
bool bSuccess = false;
if (type == GameObject:: IRENDERABLE 2 {
*nObj = static_cast<IRenderable *>(this);
bSuccess = true;

%eturn bSuccess;
}

Itis the responsibility of the 3DObject class to override Querylnterface, check for
what interfaces it supports, and do the appropriate casting.

Now, let's look at the render loop, which is smple and flexible and knows noth-
ing about the type of objects it is rendering.

IRenderable * pRenderable;
- for % al the objects we want to render) {

if (pGameObject- >Quer?llnterface (GameObject: : IRENDERABLE,
8/0|d**)&pRenderable)

t pRenderable->Render () ;
}
}

Now were ready to ddiver the last of the promises of abstract interfaces listed at
the beginning of this gem: effortlessy adding new implementations. With such a ren-
der loop, if we give it new types of objects and some of them implemented the IRen-
derableinterface, everything would work as expected without the need to change the
render loop. The easest way to introduce the new object types would be to simply re-
link the project with the updated libraries or code that contains the new classes
Although beyond the scope of this gem, we could add new types of objects at runtime
through DLLs or an equivalent mechanism available on the target platform. This
enhancement would alow us to release new game objects or game updates without

Sectlon 1 General Programmmg

the need to patch the executable. Users could aso use this method to easily create
modifications for our game.

Notice that nothing is stopping us from inheriting from multiple interfaces. All it
will mean is that the dass that inherits from multiple interfaces is now providing dl
the services specified by each of the interfaces. For example, we could have an [Coll-
idable interface for objects that need to have collison detection done. A 3D object
could inherit from both IRenderable and ICollidable, but a dass representing smoke
would only inherit from IRenderable.

A word of warning, however: while using multiple abstract interfaces is a power-
ful technique, it can dso lead to overly complicated designs that don't provide any
advantages over designs with single inheritance. Also, multiple inheritance doesn't
work wel for dynamic characterigics, and should rather be used for permanent char-
acterigtics intrinsic to an object.

Even though many people advise staying away from multiple inheritance, thisisa
cae where it is useful and it does not have any major drawbacks. Inheriting from at
most one real parent class and multiple interface functions should not result in the
dreaded diamond-shaped inheritance tree (where the parents of both our parents are
the same class) or many of the other usua drawbacks of multiple inheritance.

Everythlng Has a Cost

=TT T X

So far, we have seen that abstract mterfaces have many attractlvefeatures However, al
of these features come at a price. Mot of the time, the advantages of using abstract
interfaces outweigh any potential problems, but it is important to be aware of the
drawbacks and limitations of this technique.

First, the design becomes more complex. For someone not used to abstract inter-
faces, the extra classes and the querying of interfaces could look confusing at first
sight. It should only be used where it makes a difference, not indiscriminately al over
the game; otherwise, it will only obscure the design and get in the way.

With the abstract interfaces, we did such a good job hiding al of the private
implementations that they actualy can become harder to debug. If dl we have is a
variable of type |Renderable*, we won't be able to see the private contents of the rea
object it points to in the debugger's interactive watch window without a lot of tedious
casting. On the other hand, most of the time we shouldn't have to worry about it.
Because the implementation is well isolated and tested by itself, all we should care
about is using the interface correctly.

Another disadvantage is that it is not possible to extend an existing abstract inter-
face through inheritance. Going back to our first example, maybe we would have
liked to extend the SoundSystemHardware