

GameGems II
Converted by Borz
borzpro @yahoo .com
2002.12.01

Optimization for C++ Games

Andrew Kirmse, LucasArts Entertainment
ark@alum.mit.edu

Well-written C++ games are often more maintainable and reusable than their
plain C counterparts are—but is it worth it? Can complex C++ programs hope

to match traditional C programs in speed?
With a good compiler and thorough knowledge of the language, it is indeed pos-

sible to create efficient games in C++. This gem describes techniques you can use to
speed up games in particular. It assumes that you're already convinced of the benefits
of using C++, and that you're familiar with the general principles of optimization (see
Further Investigations for these).

One general principle that merits repeating is the absolute importance of profil-
ing. In the absence of profiling, programmers tend to make two types of mistakes.
First, they optimize the wrong code. The great majority of a program is not perfor-
mance critical, so any time spent speeding it up is wasted. Intuition about which code
is performance critical is untrustworthy—only by direct measurement can you be
sure. Second, programmers sometimes make "optimizations" that actually slow down
the code. This is particularly a problem in C++, where a deceptively simple line can
actually generate a significant amount of machine code. Examine your compiler's out-
put, and profile often.

Object Construction and Destruction

The creation and destruction of objects is a central concept in C++, and is the main
area where the compiler generates code "behind your back." Poorly designed pro-
grams can spend substantial time calling constructors, copying objects, and generat-
ing costly temporary objects. Fortunately, common sense and a few simple rules can
make object-heavy code run within a hair's breadth of the speed of C.

• Delay construction of objects until they're needed.
The fastest code is that which never runs; why create an object if you're not

going to use it? Thus, in the following code:

void Function(int arg)

5

G

1.1
m "'

Section 1 General Programming

Object obj;
if (arg *= 0)

return;

even when arg is zero, we pay the cost of calling Object's constructor and destruc-
tor. If arg is often zero, and especially if Object itself allocates memory, this waste
can add up in a hurry. The solution, of course, is to move the declaration of obj
until after the //check.

Be careful about declaring nontrivial objects in loops, however. If you delay con-
struction of an object until it's needed in a loop, you'll pay for the construction
and destruction of the object on every iteration. It's better to declare the object
before the loop and pay these costs only once. If a function is called inside an
inner loop, and the function creates an object on the stack, you could instead cre-
ate the object outside the loop and pass it by reference to the function.

Use initializer lists.
Consider the following class:

class Vehicle
{
public:

Vehicle(const std::string &name) // Don't do this!
{

mName = name;
}

private:
std: : string mName;

Because member variables are constructed before the body of the constructor is
invoked, this code calls the constructor for the string mName, and then calls the
= operator to copy in the object's name. What's particularly bad about this exam-
ple is that the default constructor for string may well allocate memory — in fact,
more memory than may be necessary to hold the actual name assigned to the
variable in the constructor for Vehicle. The following code is much better, and
avoids the call to operator =. Further, given more information (in this case, the
actual string to be stored), the nondefault string constructor can often be more
efficient, and the compiler may be able to optimize away the Vehicle constructor
invocation when the body is empty:

class Vehicle
{
public:

Vehicle(const std::string &name) : mName(name)
{
}

private:

1.1 Optimization for C++ Games

std::string mName;

Prefer preincrement to postincrement.
The problem with writing x = y++ is that the increment function has to make a

copy of the original value of y, increment y, and then return the original value.
Thus, postincrement involves the construction of a temporary object, while
preincrement doesn't. For integers, there's no additional overhead, but for user-
defined types, this is wasteful. You should use preincrement whenever you have
the option. You almost always have the option in for loop iterators.

Avoid operators that return by value.
The canonical way to write vector addition in C++ is this:

Vector operator+(const Vector &v1, const Vector &v2)

This operator must return a new Vector object, and furthermore, it must return
it by value. While this allows useful and readable expressions like v = v 1 + z>2, the
cost of a temporary construction and a Vector copy is usually too much for some-
thing called as often as vector addition. It's sometimes possible to arrange code so
that the compiler is able to optimize away the temporary object (this is known
as the "return value optimization"), but in general, it's better to swallow your
pride and write the slightly uglier, but usually faster:

void Vector::Add(const Vector &v1, const Vector &v2)

Note that operator+= doesn't suffer from the same problem, as it modifies its
first argument in place, and doesn't need to return a temporary. Thus, you should
use operators like += instead of + when possible.

Use lightweight constructors.
Should the constructor for the Vector class in the previous example initialize its

elements to zero? This may come in handy in a few spots in your code, but it
forces every caller to pay the price of the initialization, whether they use it or not.
In particular, temporary vectors and member variables will implicitly incur the
extra cost.

A good compiler may well optimize away some of the extra code, but why take
the chance? As a general rule, you want an object's constructor to initialize each of
its member variables, because uninitialized data can lead to subtle bugs. However,
in small classes that are frequently instantiated, especially as temporaries, you
should be prepared to compromise this rule for performance. Prime candidates in
many games are the Vector and Matrix classes. These classes should provide medi-
ods (or alternate constructors) to set themselves to zero and the identity, respec-
tively, but the default constructor should be empty.

Section 1 General Programming

As a corollary to this principle, you should provide additional constructors to
classes where this will improve performance. If the Vehicle class in our second
example were instead written like this:

class Vehicle
{ .
public:

Vehicle ()

void SetName(const std: :string &name)
{

mName = name;

private:
std: : string mName;

we'd incur the cost of constructing mName, and then setting it again later via Set-
Name(). Similarly, it's cheaper to use copy constructors than to construct an
object and then call operator=. Prefer constructing an object this way — Vehicle
vl(v2) — to this way — Vehicle vl; vl = v2;.

If you want to prevent the compiler from automatically copying an object for
you, declare a private copy constructor and operator= for the object's class, but
don't implement either function. Any attempt to copy the object will then result
in a compile-time error. Also get into the habit of declaring single-argument con-
structors as explicit, unless you mean to use them as type conversions. This pre-
vents the compiler from generating hidden temporary objects when converting
types.

Preallocate and cache objects.
A game will typically have a few classes that it allocates and frees frequently, such

as weapons or particles. In a C game, you'd typically allocate a big array up front
and use them as necessary. With a little planning, you can do the same thing in
C++. The idea is that instead of continually constructing and destructing objects,
you request new ones and return old ones to a cache. The cache can be imple-
mented as a template, so that it works for any class, provided that the class has a
default constructor. Code for a sample cache class template is on the accompany-
ing CD.

You can either allocate objects to fill the cache as you need them, or preallocate
all of the objects up front. If, in addition, you maintain a stack discipline on the
objects (meaning that before you delete object X, you first delete all objects allo-
cated after X), you can allocate the cache in a contiguous block of memory.

1.1 Optimization for C++Games 9

Memory Management —•

C++ applications generally need to be more aware of the details of memory manage-
ment than C applications do. In C, all allocations are explicit though mallocQ and
freeQ, while C++ can implicitly allocate memory while constructing temporary
objects and member variables. Most C++ games (like most C games) will require their
own memory manager.

Because a C++ game is likely to perform many allocations, it must be especially
careful about fragmenting the heap. One option is to take one of the traditional
approaches: either don't allocate any memory at all after the game starts up, or main-
tain a large contiguous block of memory that is periodically freed (between levels, for
example). On modern machines, such draconian measures are not necessary, if you're
willing to be vigilant about your memory usage.

The first step is to override the global new and delete operators. Use custom imple-
mentations of diese operators to redirect the game's most common allocations away
from mallocQ and into preallocated blocks of memory. For example, if you find that you
have at most 10,000 4-byte allocations outstanding at any one time, you should allocate
40,000 bytes up front and issue blocks out as necessary. To keep track of which blocks
are free, maintain a. free list by pointing each free block to the next free block. On allo-
cation, remove the front block from the list, and on deallocation, add the freed block to
the front again. Figure 1.1.1 illustrates how the free list of small blocks might wind its
way through a contiguous larger block after a sequence of allocations and frees.

used free used used
t
free free

_ _ A .
~ .~ T

FIGURE 1.1.1 A linked free list.

You'll typically find that a game has many small, short-lived allocations, and thus
you'll want to reserve space for many small blocks. Reserving many larger blocks
wastes a substantial amount of memory for those blocks that are not currently in use;
above a certain size, you'll want to pass allocations off to a separate large block alloca-
tor, or just to mallocQ.

Virtual Functions

Critics of C++ in games often point to virtual functions as a mysterious feature
that drains performance. Conceptually, the mechanism is simple. To generate a virtual
function call on an object, the compiler accesses the objects virtual function table,

10 Section 1 General Programming

retrieves a pointer to the member function, sets up the call, and jumps to the member
function's address. This is to be compared with a function call in C, where the com-
piler sets up the call and jumps to a fixed address. The extra overhead for the virtual
function call is die indirection to die virtual function table; because the address of the
call isn't known in advance, there can also be a penalty for missing the processor's
instruction cache.

Any substantial C++ program will make heavy use of virtual functions, so the idea
is to avoid these calls in performance-critical areas. Here is a typical example:

class BaseClass
{
public:

virtual char *GetPointer() = 0;
};
class Class"! : public BaseClass
{

virtual char *GetPointer();
>;
class Class2 : public BaseClass
{

virtual char *GetPointer();
}|

void Function(BaseClass *pObj)
{

char *ptr = pObj->GetPointer();
}

If FunctionQ is performance critical, we want to change die call to GetPointer
from virtual to inline. One way to do this is to add a new protected data member to
BaseClass, which is returned by an inline version of GetPointerQ, and set the data
member in each class:

class BaseClass
{
public:

inline char *GetPointerFast()
{

return mpPointer;
}

protected:
inline void SetPointer(char *pData)
{

mpData = pData;
}

private:
char *mpData;

1.1 Optimization for C++Games , . 11

// classl and class2 call SetPointer as necessary
//in member functions

void Function(BaseClass *pObj)
{

char *ptr = pObj->GetPointerFast();
}

A more drastic measure is to rearrange your class hierarchy. If Classl and Class2
have only slight differences, it might be worth combining them into a single class,
with a flag indicating whether you want the class to behave like Classl or Class2 at
runtime. With this change (and the removal of the pure virtual BaseClass), the Get-
Pointer function in the previous example can again be made inline. This transforma-
tion is far from elegant, but in inner loops on machines with small caches, you'd be
willing to do much worse to get rid of a virtual function call.

Although each new virtual function adds only the size of a pointer to a per-class
table (usually a negligible cost), the yzrtf virtual function in a class requires a pointer to
the virtual function table on a pet-object basis. This means that you don't want to have
any virtual functions at all in small, frequently used classes where this extra overhead
is unacceptable. Because inheritance generally requires the use of one or more virtual
functions (a virtual destructor if nothing else), you don't want any hierarchy for small,
heavily used objects.

Code Size

Compilers have a somewhat deserved reputation for generating bloated code for C++.
Because memory is limited, and because small is fast, it's important to make your exe-
cutable as small as possible. The first thing to do is get the compiler on your side. If
your compiler stores debugging information in the executable, disable the generation
of debugging information. (Note that Microsoft Visual C++ stores debugging infor-
mation separate from the executable, so this may not be necessary.) Exception handling
generates extra code; get rid of as much exception-generating code as possible. Make
sure the linker is configured to strip out unused functions and classes. Enable the com-
piler's highest level of optimization, and try setting it to optimize for size instead of
speed—sometimes this actually produces faster code because of better instruction
cache coherency. (Be sure to verify that intrinsic functions are still enabled if you use
this setting.) Get rid of all of your space-wasting strings in debugging print statements,
and have the compiler combine duplicate constant strings into single instances.

Inlining is often the culprit behind suspiciously large functions. Compilers are
free to respect or ignore your inline keywords, and they may well inline functions
without telling you. This is another reason to keep your constructors lightweight, so
that objects on the stack don't wind up generating lots of inline code. Also be careful
of overloaded operators; a simple expression like ml = m2 * m3 can generate a ton of

12 Section 1 General Programming

inline code if m2 and m3 are matrices. Get to know your compiler's settings for inlin-
ing functions thoroughly.

Enabling runtime type information (RTTI) requires the compiler to generate
some static information for (just about) every class in your program. RTTI is typically
enabled so that code can call dynamic_cast and determine an object's type. Consider
avoiding RTTI and dynamic_cast entirely in order to save space (in addition,
dynamic_cast is quite expensive in some implementations). Instead, when you really
need to have different behavior based on type, add a virtual function that behaves dif-
ferently. This is better object-oriented design anyway. (Note that this doesn't apply to
static_cast, which is just like a C-style cast in performance.)

The Standard Template Library

The Standard Template Library (STL) is a set of templates that implement common
data structures and algorithms, such as dynamic arrays (called vectors), sets, and
maps. Using the STL can save you a great deal of time that you'd otherwise spend
writing and debugging these containers yourself. Once again, though, you need to be
aware of the details of your STL implementation if you want maximum efficiency.

In order to allow the maximum range of implementations, the STL standard is
silent in the area of memory allocation. Each operation on an STL container has cer-
tain performance guarantees; for example, insertion into a set takes O(log n) time.
However, there are no guarantees on a container's memory usage.

Let's go into detail on a very common problem in game development: you want
to store a bunch of objects (we'll call it a list of objects, though we won't necessarily
store it in an STL list). Usually you want each object to appear in a list only once, so
that you don't have to worry about accidentally inserting the object into the collection
if it's already there. An STL set ignores duplicates, has O(log n) insertion, deletion,
and lookup—the perfect choice, right?

Maybe. While it's true that most operations on a set are O(log n), this notation
hides a potentially large constant. Although the collection's memory usage is imple-
mentation dependent, many implementations are based on a red-black tree, where
each node of the tree stores an element of the collection. It's common practice to allo-
cate a node of the tree every time an element is inserted, and to free a node every time
an element is removed. Depending on how often you insert and remove elements, the
time spent in the memory allocator can overshadow any algorithmic savings you
gained from using a set.

An alternative solution uses an STL vector to store elements. A vector is guaran-
teed to have amortized constant-time insertion at the end of the collection. What this
means in practice is that a vector typically reallocates memory only on occasion, say,
doubling its size whenever it's full. When using a vector to store a list of unique ele-
ments, you first check the vector to see if the element is already there, and if it isn't,
you add it to the back. Checking the entire vector will take O(n) time, but the con-
stant involved is likely to be small. That's because all of the elements of a vector are

1.1 Optimization for C++Games 13

typically stored contiguously in memory, so checking the entire vector is a cache-
friendly operation. Checking an entire set may well thrash the memory cache, as indi-
vidual elements of the red-black tree could be scattered all over memory. Also
consider that a set must maintain a significant amount of overhead to set up the tree.
If all you're storing is object pointers, a set can easily require three to four times the
memory of a vector to store the same objects.

Deletion from a set is O(log n), which seems fast until you consider that it prob-
ably also involves a call to free(). Deletion from a vector is O(n), because everything
from the deleted element to the end of the vector must be copied over one position.
However, if the elements of the vector are just pointers, the copying can all be done in
a single call to memcpyO, which is typically very fast. (This is one reason why it's usu-
ally preferable to store pointers to objects in STL collections, as opposed to objects
themselves. If you store objects directly, many extra constructors get invoked during
operations such as deletion.)

If you're still not convinced that sets and maps can often be more trouble than
they're worth, consider the cost of iterating over a collection, specifically:

for (Collection::iterator it = collection.begin();
it != collection.end(); ++it)

If Collection is a vector, then ++it is a pointer increment—one machine instruc-
tion. But when Collection is a set or a map, ++it involves traversing to the next node
of a red-black tree, a relatively complicated operation that is also much more likely to
cause a cache miss, because tree nodes may be scattered all over memory.

Of course, if you're storing a very large number of items in a collection, and doing
lots of membership queries, a set's O(log n) performance could very well be worth the
memory cost. Similarly, if you're only using the collection infrequently, the perfor-
mance difference may be irrelevant. You should do performance measurements to
determine what values of n make a set faster. You may be surprised to find that vectors
outperform sets for all values that your game will typically use.

That's not quite the last word on STL memory usage, however. It's important to
know if a collection actually frees its memory when you call the clear() method. If not,
memory fragmentation can result. For example, if you start a game with an empty
vector, add elements to the vector as the game progresses, and then call clear() when
the player restarts, the vector may not actually free its memory at all. The empty vec-
tor's memory could still be taking up space somewhere in the heap, fragmenting it.
There are two ways around this problem, if indeed your implementation works this
way. First, you can call reserveQ when the vector is created, reserving enough space for
the maximum number of elements that you'll ever need. If that's impractical, you can
explicitly force the vector to free its memory this way:

vector<int> v;
// ... elements are inserted into v here
vector<int>().swap(v); // causes v to free its memory

14 Section 1 General Programming

Sets, lists, and maps typically don't have this problem, because they allocate and
free each element separately.

Advanced Features

Just because a language has a feature doesn't mean you have to use it. Seemingly sim-
ple features can have very poor performance, while other seemingly complicated fea-
tures can in fact perform well. The darkest corners of C++ are highly compiler
dependent — make sure you know the costs before using them.

C++ strings are an example of a feature that sounds great on paper, but should be
avoided where performance matters. Consider the following code:

void Function (const std: :string &str)

Function ("hello");

The call to FunctionQ invokes a constructor for a string given a const char *. In
one commercial implementation, this constructor performs a mallocQ, a strlenQ, and
a memcpyO, and the destructor immediately does some nontrivial work (because this
implementation's strings are reference counted) followed by a freeQ- The memory
that's allocated is basically a waste, because the string "hello" is already in the pro-
gram's data segment; we've effectively duplicated it in memory. If FunctionQ had
instead been declared as taking a const char *, there would be no overhead to the call.
That's a high price to pay for the convenience of manipulating strings.

Templates are an example of the opposite extreme of efficiency. According to the
language standard, the compiler generates code for a template when the template is
instantiated with a particular type. In theory, it sounds like a single template declara-
tion would lead to massive amounts of nearly identical code. If you have a vector of
Classl pointers, and a vector of Class2 pointers, you'll wind up with two copies of vec-
tor in your executable.

The reality for most compilers is usually better. First, only template member
functions that are actually called have any code generated for them. Second, the com-
piler is allowed to generate only one copy of the code, if correct behavior is preserved.
You'll generally find that in the vector example given previously, only a single copy of
code (probably for vector<void *>) will be generated. Given a good compiler, tem-
plates give you all the convenience of generic programming, while maintaining high
performance.

Some features of C++, such as initializer lists and preincrement, generally increase
performance, while other features such as overloaded operators and RTTI look
equally innocent but carry serious performance penalties. STL collections illustrate
how blindly trusting in a function's documented algorithmic running time can lead
you astray. Avoid the potentially slow features of the language and libraries, and spend

1.1 Optimization for C++Games 15

some time becoming familiar with the options in your profiler and compiler. You'll
quickly learn to design for speed and hunt down the performance problems in your
game.

Further Investigations
Thanks to Pete Isensee and Christopher Kirmse for reviewing this gem.
Gormen, Thomas, Charles Leiserson, and Ronald Rivest, Introduction to Algorithms,

Cambridge, Massachusetts, MIT Press, 1990.
Isensee, Peter, C++ Optimization Strategies and Techniques, www.tantalon.com/

pete/cppopt/main.htm.
Koenig, Andrew, "Pre- or Postfix Increment," The C++ Report, June, 1999.
Meyers, Scott, Effective C++, Second Edition, Reading, Massachusetts: Addison-

Wesley Publishing Co., 1998.
Sutter, Herb, Guru of the Week #54: Using Vector and Deque, www.gotw.ca/

gotw/054.htm.

1.2

Inline Functions Versus Macros

Peter Dalton, Evans & Sutherland
pdalton@xmission.com

ien it comes to game programming, the need for fast, efficient functions cannot
be overstated, especially functions that are executed multiple times per frame.

Many programmers rely heavily on macros when dealing with common, time-critical
routines because they eliminate the calling/returning sequence required by functions
that are sensitive to the overhead of function calls. However, using the tfdefine directive
to implement macros diat look like functions is more problematic than it is worth.

Advantages of Inline Functions

Through the use of inline functions, many of the inherent disadvantages of macros
can easily be avoided. Take, for example, the following macro definition:

#define max(a,b) ((a) > (b) ? (a) : (b))

Let's look at what would happen if we called the macro with die following para-
meters: max(++x, y). If x = 5 and j/ = 3, the macro will return a value of 7 rather than
the expected value of 6. This illustrates the most common side effect of macros, the
fact that expressions passed as arguments can be evaluated more than once. To avoid
this problem, we could have used an inline function to accomplish die same goal:

inline int max(int a, int b) { return (a > b ? a : b); }

By using the inline method, we are guaranteed that all parameters will only be
evaluated once because they must, by definition, follow all the protocols and type
safety enforced on normal functions.

Another problem that plagues macros, operator precedence, follows from die
same problem presented previously, illustrated in the following macro:

#define square(x) (x*x)

If we were to call this macro with the expression 2+1, it should become obvious
that die macro would return a result of 5 instead of the expected 9. The problem here
is that the multiplication operator has a higher precedence than the addition operator

16

1.2 Inline Functions Versus Macros 17

has. While wrapping all of the expressions within parentheses would remedy this
problem, it could have easily been avoided through the use of inline functions.

The other major pitfall surrounding macros has to deal with multiple-statement
macros, and guaranteeing that all statements within the macro are executed properly.
Again, let's look at a simple macro used to clamp any given number between zero and
one:

#define clamp(a) \
if (a > 1.0) a = 1.0; \
if (a < 0.0) a = 0.0;

If we were to use the macro within the following loop:

for (int ii = 0 ; ii < N; ++ii)
clamp(numbersToBeClamped[ii]);

the numbers would not be clamped if they were less than zero. Only upon termina-
tion of the for loop when « == N would the expression if(numbersToBeClamped[ii] <
0.0) be evaluated. This is also very problematic, because the index variable « is now
out of range and could easily result is a memory bounds violation that could crash the
program. While replacing the macro with an inline function to perform the same
functionality is not the only solution, it is the cleanest.

Given these inherent disadvantages associated with macros, let's run through the
advantages of inline functions:

• Inline functions follow all the protocols of type safety enforced on normal func-
tions. This ensures that unexpected or invalid parameters are not passed as
arguments.

• Inline functions are specified using the same syntax as any other function, except
for the inline keyword in the function declaration.

• Expressions passed as arguments to inline functions are evaluated prior to enter-
ing the function body; thus, expressions are evaluated only once. As shown previ-
ously, expressions passed to macros can be evaluated more than once and may
result in unsafe and unexpected side effects.

• It is possible to debug inline functions using debuggers such as Microsoft's Visual
C++. This is not possible with macros because the macro is expanded before the
parser takes over and the program's symbol tables are created.

• Inline functions arguably increase the procedure's readability and maintainability
because they use the same syntax as regular function calls, yet do not modify para-
meters unexpectedly.

Inline functions also outperform ordinary functions by eliminating the overhead
of function calls. This includes tasks such as stack-frame setup, parameter passing,
stack-frame restoration, and the returning sequence. Besides these key advantages,
inline functions also provide the compiler with the ability to perform improved code

18 Section 1 General Programming

optimizations. By replacing inline functions with code, the inserted code is subject to
additional optimizations that would not otherwise be possible, because most compil-
ers do not perform interprocedural optimizations. Allowing the compiler to perform
global optimizations such as common subexpression elimination and loop invariant
removal can dramatically improve both speed and size.

The only limitation to inline functions that is not present within macros is the
restriction on parameter types. Macros allow for any possible type to be passed as a
parameter; however, inline functions only allow for the specified parameter type in
order to enforce type safety. We can overcome this limitation through the use of inline
template functions, which allow us to accept any parameter type and enforce type
safety, yet still provide all the benefits associated with inline functions.

When to Use Inline Functions
jĵ .,,.,..̂™,...,....,,,..,...........,,,...........,..,.„.,_,.,_.....„,,„„,.,....„„...._„„..,,..,...„„_.„„„,,„,„,„„..,.....,,„.,„ .,..,...,.„.,„., ,,,̂;„„..,,,....,.....™?i[.̂ ,,.,.,.,..„,..,... ;.,..,̂ ,:rr,.„,..-,,,...,,„,.,. ...s^ •.•..-"!••!

Why don't we make every function an inline function? Wouldn't this eliminate the
function overhead for the entire program, resulting in faster fill rates and response
times? Obviously, the answer to these questions is no. While code expansion can
improve speed by eliminating function overhead and allowing for interprocedural
compiler optimizations, this is all done at the expense of code size. When examining
the performance of a program, two factors need to be weighed: execution speed
and the actual code size. Increasing code size takes up more memory, which is a pre-
cious commodity, and also bogs down the execution speed. As the memory require-
ments for a program increase, so does the likelihood of cache misses and page faults.
While a cache miss will cause a minor delay, a page fault will always result in a major
delay because the virtual memory location is not in physical memory and must
be fetched from disk. On a Pentium II 400 MHz desktop machine, a hard page fault
will result in an approximately 10 millisecond penalty, or about 4,000,000 CPU
cycles [Heller99].

If inline functions are not always a win, then when exactly should we use them?
The answer to this question really depends on the situation and thus must rely heav-
ily on the judgment of the programmer. However, here are some guidelines for when
inline functions work well:

• Small methods, such as accessors for private data members.
• Functions returning state information about an object.
• Small functions, typically three lines or less.
• Small functions that are called repeatedly; for example, within a time-critical ren-

dering loop.

Longer functions that spend proportionately less time in the calling/returning
sequence will benefit less from inlining. However, used correctly, inlining can greatly
increase procedure performance.

1.2 Inline Functions Versus Macros 19

When to Use Macros

Despite the problems associated with macros, there are a few circumstances in which
they are invaluable. For example, macros can be used to create small pseudo-languages
that can be quite powerful. A set of macros can provide the framework that makes cre-
ating state machines a breeze, while being very debuggable and bulletproof. For an
excellent example of this technique, refer to the "Designing a General Robust AI
Engine" article referenced at the end of this gem [RabinOO]. Another example might
be printing enumerated types to the screen. For example:

tfdefine CaseEnum(a) case(a) : PrintEnum(#a)
switch (msg_passed_in) {

CaseEnum(MSG_YouWereHit);
ReactToHit();
break;

CaseEnum(MSG_GameReset);
ResetGameLogic();
break;

}

Here, PrintEnumQ is a macro that prints a string to the screen. The # is the
stringizing operator that converts macro parameters to string constants [MSDN].
Thus, there is no need to create a look-up table of all enums to strings (which are usu-
ally poorly maintained) in order to retrieve invaluable debug information.

The key to avoiding the problems associated with macros is, first, to understand
the problems, and, second, to know the alternative implementations.

Microsoft Specifics

Besides the standard inline keyword, Microsoft's Visual C++ compiler provides sup-
port for two additional keywords. The inline keyword instructs the compiler to
generate a cost/benefit analysis and to only inline the function if it proves beneficial.
The forceinline keyword instructs the compiler to always inline the function.
Despite using these keywords, there are certain circumstances in which the compiler
cannot comply as noted by Microsoft's documentation [MSDN].

References

[Heller99] Heller, Martin, Developing Optimized Code with Microsoft Visual C++ 6.0,
Microsoft MSDN Library, January 2000.

[McConnell93] McConnell, Steve, Code Complete, Microsoft Press, 1993.
[MSDN] Microsoft Developer Network Library, http://msdn.microsoft.com.
[Myers98] Myers, Scott, Effective C++, Second Edition, Addison-Wesley Longman,

Inc., 1998.
[RabinOO] Rabin, Steve, "Designing a General Robust AI Engine," Game Program-

ming Gems. Charles River Media, 2000; pp. 221-236.

1.3

Programming with
Abstract Interfaces

Noel Llopis, Meyer/Glass Interactive
nllopis@mgigames.com

The concept of abstract interfaces is simple yet powerful. It allows us to completely
separate the interface from its implementation. This has some very useful

consequences:

• It is easy to switch among different implementations for the code without affect-
ing the rest of the game. This is particularly useful when experimenting with dif-
ferent algorithms, or for changing implementations on different platforms.

• The implementations can be changed at runtime. For example, if the graphics
Tenderer is implemented through an abstract interface, it is possible to choose
between a software Tenderer or a hardware-accelerated one while the game is
running.

• The implementation details are completely hidden from the user of the interface.
This will result in fewer header files included all over the project, faster recompile
times, and fewer times when die whole project needs to be completely recompiled.

• New implementations of existing interfaces can be added to the game effortlessly,
and potentially even after it has been compiled and released. This makes it possi-
ble to easily extend the game by providing updates or user-defined modifications.

Abstract Interfaces
In C++, an abstract interface is nothing more than a base class that has only public
pure virtual functions. A pure virtual function is a type of virtual member function
that has no implementation. Any derived class must implement those functions, or
else the compiler prevents instantiaton of that class. Pure virtual functions are indi-
cated by adding = 0 after their declaration.

The following is an example of an abstract interface for a minimal sound system.
This interface would be declared in a header file by itself:

//In SoundSystem.h
class ISoundSystem {
public:

20

1.3 Programming with Abstract Interfaces 21

virtual ~ISoundSystem() {};
virtual bool PlaySound (handle hSound) = 0;
virtual bool StopSound (handle hSound) = 0;

The abstract interface provides no implementation whatsoever. All it does is
define the rules by which the rest of the world may use the sound system. As long as
the users of the interface know about ISoundSystem, they can use any sound system
implementation we provide.

The following header file shows an example of an implementation of the previous
interface:

/ / I n SoundSystemSoftware.h
#include "SoundSystem.h"

class SoundSystemSoftware : public ISoundSystem {
public:

virtual -SoundSystemSoftware () ;
virtual bool PlaySound (handle hSound) ;
virtual bool StopSound (handle hSound) ;

// The rest of the functions in the implementation
};

We would obviously need to provide the actual implementation for each of those
functions in the corresponding .cpp file.

To use this class, you would have to do the following:

ISoundSystem * pSoundSystem = new SoundSystemSoftware () ;
// Now we' re ready to use it
pSoundSystem->PlaySound (hSound);

So, what have we accomplished by creating our sound system in this roundabout
way? Almost everything that we promised at the start:

• It is easy to create another implementation of the sound system (maybe a hard-
ware version). All that is needed is to create a new class that inherits from
ISoundSystem, instantiate it instead of SoundSystemSoftwareQ, and everything else
will work the same way without any more changes.

• We can switch between the two classes at runtime. As long as pSoundSystem
points to a valid object, the rest of the program doesn't know which one it is
using, so we can change them at will. Obviously, we have to be careful with spe-
cific class restrictions. For example, some classes will keep some state information
or require initialization before being used for the first time.

• We have hidden all the implementation details from the user. By implementing
the interface we are committed to providing the documented behavior no matter
what our implementation is. The code is much cleaner than the equivalent code

22 Section 1 General Programming

full of //"statements checking for one type of sound system or another. Maintain-
ing the code is also much easier.

Adding a Factory

There is one detail that we haven't covered yet: we haven't completely hidden the spe-
cific implementations from the users. After all, the users are still doing a new on the
class of the specific implementation they want to use. The problem with this is that
they need to #include the header file with the declaration of the implementation.
Unfortunately, the way C++ was designed, when users #include a header file, they can
also get a lot of extra information on the implementation details of that class that they
should know nothing about. They will see all the private and protected members, and
they might even include extra header files that are only used in the implementation of
the class.

To make matters worse, the users of the interface now know exactly what type of
class their interface pointer points to, and they could be tempted to cast it to its real
type to access some "special features" or rely on some implementation-specific behav-
ior. As soon as this happens, we lose many of the benefits we gained by structuring
our design into abstract interfaces, so this is something that should be avoided as
much as possible.

The solution is to use an abstract factory [Gamma95], which is a class whose sole
purpose is to instantiate a specific implementation for an interface when asked for it.
The following is an example of a basic factory for our sound system:

/ / I n SoundSystemFactory.h
class ISoundSystem;

class SoundSystemFactory {
public:
enum SoundSystemType {
SOUND_SOFTWARE,
SOUND_HARDWARE,
SOUND_SOMETH I NGE LSE

};
static ISoundSystem * CreateSoundSystem(SoundSystemType type);

//In SoundSystemFactory. cpp
^include "SoundSystemSof tware . h"
^include "SoundSystemHardware . h"
#include "SoundSYstemSomethingElse . h"

ISoundSystem * SoundSystemFactory: :CreateSoundSystem (SoundSystemType
_type)
{
ISoundSystem * pSystem;

1.3 Programming with Abstract Interfaces 23

switch (type) {
case SOUND_SOFTWARE:

pSystem = new SoundSystemSoftwaref);
break;

case SOUND_HARDWARE:
pSystem = new SoundSystemHardwareO;
break;

case SOUND_SOMETHINGELSE:
pSystem = new SoundSystemSomethingElse();
break;

default:
pSystem = NULL;

return pSystem;

Now we have solved the problem. The user need only include SoundSystemFac-
tory. h and SoundSystem.h. As a matter of fact, we don't even have to make the rest of
die header files available. To use a specific sound system, the user can now write:

ISoundSystem * pSoundSystem;
pSoundSystem = SoundSystemFactory::CreateSoundSystem

(SoundSystemFactory::SOUND_SOFTWARE);
// Now we're ready to use it
pSoundSystem->PlaySound (hSound);

We need to always include a virtual destructor in our abstract interfaces. If
we don't, C++ will automatically generate a nonvirtual destructor, which
will cause the real destructor of our specific implementation not to be called
(and that is usually a hard bug to track down). Unlike normal member

functions, we can't just provide a pure virtual destructor, so we need to create
an empty function to keep the compiler happy.

Abstract Interfaces as Traits

A slightly different way to think of abstract interfaces is to consider an interface as a
set of behaviors. If a class implements an interface, that class is making a promise that
it will behave in certain ways. For example, the following is an interface used by
objects that can be rendered to the screen:

class IRenderable {
public:
virtual -IRenderable() {};
virtual bool Render () = 0;

We can design a class to represent 3D objects that inherits from IRenderable and
provides its own method to render itself on the screen. Similarly, we could have a

Section 1 General Programming

terrain class that also inherits from IRenderable and provides a completely different
rendering method.

class GenericSDObject : public IRenderable {
public:

virtual ~Generic3DObject() ;
virtual bool Render();

// Rest of the functions here
};

The render loop will iterate through all the objects, and if they can be rendered,
it calls their RenderQ function. The real power of the interface comes again from hid-
ing the real implementation from the interface: now it is possible to add a completely
new type of object, and as long as it presents the IRenderable interface, the rendering
loop will be able to render it like any other object. Without abstract interfaces, the
render loop would have to know about the specific types of object (generic 3D object,
terrain, and so on) and decide whether to call their particular render functions. Cre-
ating a new type of render-capable object would require changing the render loop
along with many other parts of the code.

We can check whether an object inherits from IRenderable to know if it can be
rendered. Unfortunately, that requires that the compiler's RTTI (Run Time Type
Identification) option be turned on when the code is compiled. There is usually a per-
formance and memory cost to have RTTI enabled, so many games have it turned off
in their projects. We could use our own custom RTTI, but instead, let's go the way of
COM (Microsoft's Component Object Model) and provide a Querylnterface function
[Rogerson97] .

If the object in question implements a particular interface, then Querylnterface
casts the incoming pointer to the interface and returns true. To create our own Query-
Interface function, we need to have a base class from which all of the related objects
that inherit from a set of interfaces derive. We could even make that base class itself an
interface like COM's lUnknown, but that makes things more complicated.

class GameObject {
public:

enum GamelnterfaceType {
IRENDERABLE,
IOTHERINTERFACE

virtual bool Querylnterface (const GamelnterfaceType type,
void ** pObj) ;

// The rest of the GameObject declaration

The implementation of Querylnterface for a plain game object would be trivial.
Because it's not implementing any interface, it will always return false.

1.3 Programming with Abstract Interfaces 25

bool GameObject: :QueryInterface (const GamelnterfaceType type,
void ** pObj) {

return false;

The implementation of a 3D object class is different from that of GameObject,
because it will implement the IRenderable interface.

class 3DObject : public GameObject, public IRenderable {
public:

virtual -3DObject();
virtual bool Querylnterface (const GamelnterfaceType type,

void ** pObj) ;
virtual bool Render();
// Some more functions if needed

bool SDObject: :QueryInterface (const GamelnterfaceType type,
void ** pObj) {

bool bSuccess = false;
if (type == GameObject:: IRENDERABLE) {

*pObj = static_cast<IRenderable *>(this);
bSuccess = true;

}
return bSuccess;

It is the responsibility of the 3DObject class to override Querylnterface, check for
what interfaces it supports, and do the appropriate casting.

Now, let's look at the render loop, which is simple and flexible and knows noth-
ing about the type of objects it is rendering.

IRenderable * pRenderable;
for (all the objects we want to render) {

if (pGameObject->QueryInterface (GameObject: : IRENDERABLE,
(void**)&pRenderable))

{
pRenderable->Render () ;

Now we're ready to deliver the last of the promises of abstract interfaces listed at
the beginning of this gem: effortlessly adding new implementations. With such a ren-
der loop, if we give it new types of objects and some of them implemented the IRen-
derable interface, everything would work as expected without the need to change the
render loop. The easiest way to introduce the new object types would be to simply re-
link the project with the updated libraries or code that contains the new classes.
Although beyond the scope of this gem, we could add new types of objects at runtime
through DLLs or an equivalent mechanism available on the target platform. This
enhancement would allow us to release new game objects or game updates without

26 Section 1 General Programming

the need to patch the executable. Users could also use this method to easily create
modifications for our game.

Notice that nothing is stopping us from inheriting from multiple interfaces. All it
will mean is that the class that inherits from multiple interfaces is now providing all
the services specified by each of the interfaces. For example, we could have an IColl-
idable interface for objects that need to have collision detection done. A 3D object
could inherit from both IRenderable and ICollidable, but a class representing smoke
would only inherit from IRenderable.

A word of warning, however: while using multiple abstract interfaces is a power-
ful technique, it can also lead to overly complicated designs that don't provide any
advantages over designs with single inheritance. Also, multiple inheritance doesn't
work well for dynamic characteristics, and should rather be used for permanent char-
acteristics intrinsic to an object.

Even though many people advise staying away from multiple inheritance, this is a
case where it is useful and it does not have any major drawbacks. Inheriting from at
most one real parent class and multiple interface functions should not result in the
dreaded diamond-shaped inheritance tree (where the parents of both our parents are
the same class) or many of the other usual drawbacks of multiple inheritance.

Everything Has a Cost

So far, we have seen that abstract interfaces have many attractive features. However, all
of these features come at a price. Most of the time, the advantages of using abstract
interfaces outweigh any potential problems, but it is important to be aware of the
drawbacks and limitations of this technique.

First, the design becomes more complex. For someone not used to abstract inter-
faces, the extra classes and the querying of interfaces could look confusing at first
sight. It should only be used where it makes a difference, not indiscriminately all over
the game; otherwise, it will only obscure the design and get in the way.

With the abstract interfaces, we did such a good job hiding all of the private
implementations that they actually can become harder to debug. If all we have is a
variable of type IRenderable*, we won't be able to see the private contents of the real
object it points to in the debugger's interactive watch window without a lot of tedious
casting. On the other hand, most of the time we shouldn't have to worry about it.
Because the implementation is well isolated and tested by itself, all we should care
about is using the interface correctly.

Another disadvantage is that it is not possible to extend an existing abstract inter-
face through inheritance. Going back to our first example, maybe we would have
liked to extend the SoundSystemHardware class to add a few functions specific to the
game. Unfortunately, we don't have access to the class implementation any more, and
we certainly can't inherit from it and extend it. It is still possible either to modify the
existing interface or provide a new interface using a derived class, but it will all have to
be done from the implementation side, and not from within the game code.

1.3 Programming with Abstract Interfaces 27

Finally, notice that every single function in an abstract interface is a virtual func-
tion. This means that every time one of these functions is called through the abstract
interface, the computer will have to go through one extra level of indirection. This is
typically not a problem with modern computers and game consoles, as long as we
avoid using interfaces for functions that are called from within inner loops. For exam-
ple, creating an interface with a DrawPolygonQ or SetScreenPointQ function would
probably not be a good idea.

Conclusion

Abstract interfaces are a powerful technique that can be put to good use with very lit-
tle overhead or structural changes. It is important to know how it can be best used,
and when it is better to do things a different way. Perfect candidates for abstract inter-
faces are modules that can be replaced (graphics Tenderers, spatial databases, AI
behaviors), or any sort of pluggable or user-extendable modules (tool extensions,
game behaviors).

References

[Gamma95] Gamma, Eric et al, Design Patterns, Addison-Wesley, 1995.
[Lakos96] Lakos, John, Large Scale C++ Software Design, Addison-Wesley, 1996.
[Rogerson97] Rogerson, Dale, Inside COM. Microsoft Press, 1997.

1.4

Exporting C++ Classes from DLLs

Herb Marselas, Ensemble Studios
hmarselas@ensemblestudios.com

Exporting a C++ class from a Dynamic Link Library (DLL) for use by another
application is an easy way to encapsulate instanced functionality or to share

derivable functionality without having to share the source code of the exported class.
This method is in some ways similar to Microsoft COM, but is lighter weight, easier
to derive from, and provides a simpler interface.

Exporting a Function

At the most basic level, there is little difference between exporting a function or a class
from a DLL. To export myExportedFunction from a DLL, the value _BUILDING_
MY_DLL is defined in the preprocessor options of the DLL project, and not in the
projects that use the DLL. This causes DLLFUNCTION to be replaced by
__decbpec(dllexport) when building the DLL, and __deckpec(dllimport) when build-
ing the projects that use the DLL.

#ifdef _BUILDING_MY_DLL
tfdefine DLLFUNCTION _declspec(dllexport) // defined if building the

// DLL
#else
tfdefine DLLFUNCTION _declspec(dllimport) // defined if building the

// application
#endif

DLLFUNCTION long myExportedFunction(void);

Exporting a Class

Exporting a C++ class from a DLL is slightly more complicated because there are sev-
eral alternatives. In the simplest case, the class itself is exported. As before, the DLL-
FUNCTION macro is used to declare the class exported by the DLL, or imported by
the application.

28

1.4 Exporting C++ Classes from DLLs 29

tfifdef _BUILDING_MY_DLL
tfdefine DLLFUNCTION _declspec(dllexport)
#else
tfdefine DLLFUNCTION _ declspec(dllimport)
tfendif

class DLLFUNCTION CMyExportedClass
{

public:
CMyExportedClass(void) : mdwValue(O) { }

void setValue(long dwValue) { mdwValue = dwValue; }
long getValue(void) { return mdwValue; }
long clearValue(void) ;

private:
long mdwValue;

If the DLL containing the class is implicitly linked (in other words, the project
links with the DLL's lib file), then using the class is as simple as declaring an instance
of the class CMyExportedClass. This also enables derivation from this class as if it were
declared directly in the application. The declaration of a derived class in the applica-
tion is made normally without any additional declarations.

class CMyApplicationClass : public CMyExportedClass
{

public:
CMyApplicationClass (void)

There is one potential problem with declaring or allocating a class exported from
a DLL in an application: it may confuse some memory-tracking programs and cause
them to misreport memory allocations or deletions. To fix this problem, helper func-
tions that allocate and destroy instances of the exported class must be added to the
DLL. All users of the exported class should call the allocation function to create an
instance of it, and the deletion function to destroy it. Of course, the drawback to this
is that it prevents deriving from the exported class in the application. If deriving an
application-side class from the exported class is important, and the project uses a
memory-tracking program, then this program will either need to understand what's
going on or be replaced by a new memory-tracking program.

30 Section 1 General Programming

#ifdef _BUILDING_MY_DLL
#define DLLFUNCTION _declspec(dllexport)
#else
#define DLLFUNCTION _declspec(dllimport)
#endif

class DLLFUNCTION CMyExportedClass
{

public:
CMyExportedClass(void) : mdwValue(O) { }

void setValue(long dwValue) { mdwValue = dwValue; }
long getValue(void) { return mdwValue; }
long clearValue(void);

private:
long mdwValue;

};
CMyExportedClass *createMyExportedClass(void) {

return new CMyExportedClass; }
void deleteMyExportedClass(CMyExportedClass *pclass) {

delete pclass; }

Exporting Class Member Functions

Even with the helper functions added, because the class itself is being exported from
the DLL, it is still possible that users could create instances of the class without calling
the createMyExportedCLtss helper function. This problem is easily solved by moving the
export specification from the class level to the individual functions to which the users
of the class need access. Then the application using the class can no longer create an
instance of the class itself. Instead, it must call the createMyExportedCLtss helper func-
tion to create an instance of the class, and deleteMyExportedClass when it wishes to
destroy the class.

class CMyExportedClass
{

public:
CMyExportedClass(void) : mdwValue(O) { }

DLLFUNCTION void setValue(long dwValue) { mdwValue = dwValue; }
DLLFUNCTION long getValue(void) { return mdwValue; }
long clear-Value (void);

private:
long mdwValue;

};

CMyExportedClass *createMyExportedClass(void) {
return new CMyExportedClass; }

void deleteMyExportedClass(CMyExportedClass *pclass) {
delete pclass; }

1.4 Exporting C++ Classes from DLLs 31

It should also be noted that although CMyExportedClass::clearValue is a public
member function, it can no longer be called by users of the class outside the DLL, as
it is not declared as dllexported. This can be a powerful tool for a complex class that
needs to make some functions publicly accessible to users of the class outside the
DLL, yet still needs to have other public functions for use inside the DLL itself. An
example of this strategy in practice is the SDK for Discreet's 3D Studio MAX. Most
of the classes have a mix of exported and nonexported functions. This allows die user
of the SDK to access or derive functionality as needed from the exported member
functions, while enabling the developers of the SDK to have their own set of inter-
nally available member functions.

Exporting Virtual Class Member Functions

One potential problem should be noted for users of Microsoft Visual C++ 6. If you
are attempting to export the member functions of a class, and you are not linking
with the lib file of the DLL that exports the class (you're using LoadLibrary to load
the DLL at runtime), you will get an "unresolved external symbol" for each function
you reference if inline function expansion is disabled. This can happen regardless of
whether the function is declared completely in the header. One fix for this is to
change the inline function expansion to "Only inline" or "Any Suitable." Unfortu-
nately, this may conflict with your desire to actually have inline function expansion
disabled in a debug build. An alternate fix is to declare the functions virtual. The vir-
tual declaration will cause the correct code to be generated, regardless of the setting of
the inline function expansion option. In many circumstances, you'll likely want to
declare exported member functions virtual anyway, so that you can both work around
the potential Visual C++ problem and allow the user to override member functions as
necessary.

class CMyExportedClass
{

public:
CMyExportedClass(void) : mdwValue(O) { }

DLLFUNCTION virtual void setValue(long dwValue) { mdwValue =
dwValue; }

DLLFUNCTION virtual long getValue(void) { return mdwValue; }
long clearValue(void);

private:
long mdwValue;

};

With exported virtual member functions, deriving from the exported class on the
application side is the same as if the exported class were declared completely in the
application itself.

32 Section 1 General Programming

class CMyApplicationClass : public CMyExportedClass
{

public:
CMyApplicationClass (void) { }

virtual void setValue(long dwValue);
virtual long getValue(void) ;

Summary

Exporting a class from a DLL is an easy and powerful way to share functionality with-
out sharing source code. It can give the application all the benefits of a structured C++
class to use, derive from, or overload, while allowing the creator of the class to keep
internal functions and variables safely hidden away.

1.5

Protect Yourself from DLL Hell
and Missing OS Functions

Herb Marselas, Ensemble Studios
hmarselas@ensemblestudios.com

Dynamic Link Libraries (DLLs) are a powerful feature of Microsoft Windows.
They have many uses, including sharing executable code and abstracting out

device differences. Unfortunately, relying on DLLs can be problematic due to their
standalone nature. If an application relies on a DLL that doesn't exist on the user's
computer, attempting to run it will result in a "DLL Not Found" message that's not
helpful to the average user. If the DLL does exist on the user's computer, there's no
way to tell if the DLL is valid (at least as far as the application is concerned) if it's
automatically loaded when the application starts up.

Bad DLL versions can easily find their way onto a system as the user installs and
uninstalls other programs. Alternatively, there can even be differences in system DLLs
among different Windows platforms and service packs. In these cases, the user may
either get the cryptic "DynaLink Error!" message if the function being linked to in the
DLL doesn't exist, or worse yet, the application will crash. All of these problems with
finding and loading the correct DLL are often referred to as "DLL Hell." Fortunately,
there are several ways to protect against falling into this particular hell.

Implicit vs. Explicit Linking

The first line of defense in protecting against bad DLLs is to make sure that the nec-
essary DLLs exist on the user's computer and are a version with which the application
can work. This must be done before attempting to use any of their functionality.

Normally, DLLs are linked to an application by specifying their eponymous lib
file in the link line. This is known as implicit DLL loading, or implicit linking. By link-
ing to the lib file, the operating system will automatically search for and load the
matching DLL when a program runs. This method assumes that the DLL exists, that
Windows can find it, and that it's a version with which the program can work.

Microsoft Visual C++ also supports three other methods of implicit linking. First,
including a DLL's lib file directly into a project is just like adding it on the link line.
Second, if a project includes a subproject that builds a DLL, the DLL's lib file is

33

34 Section 1 General Programming

automatically linked with the project by default. Finally, a lib can be linked to an
application using the #pragma comment (lib "libname") directive.

The remedy to this situation of implicit linking and loading is to explicitly load
the DLL. This is done by not linking to the DLL's lib file in the link line, and remov-
ing any #pragma comment directives that would link to a library. If a subproject in
Visual C++ builds a DLL, the link property page of the subproject should be changed
by checking the "Doesn't produce .LIB" option. By explicitly loading the DLL, the
code can handle each error that could occur, making sure the DLL exists, making sure
the functions required are present, and so forth.

LoadLibrary and GetProcAddress

When a DLL is implicitly loaded using a lib file, the functions can be called directly
in the application's code, and the OS loader does all the work of loading DLLs and
resolving function references. When switching to explicit linking, the functions must
instead be called indirectly through a manually resolved function pointer. To do this,
the DLL that contains the function must be explicitly loaded using the LoadLibrary
function, and then we can retrieve a pointer to the function using GetProcAddress.

HMODULE LoadLibrary(LPCTSTR IpFileName);
FARPROC GetProcAddress(HMODULE hModule, LPCSTR IpProcName);
BOOL FreeLibrary(HMODULE hModule);

LoadLibrary searches for the specified DLL, loads it into the applications process
space if it is found, and returns a handle to this new module. GetProcAddress is then
used to create a function pointer to each function in the DLL that will be used by the
game. When an explicitly loaded DLL is no longer needed, it should be freed using
FreeLibrary. After calling FreeLibrary, the module handle is no longer considered valid.

Every LoadLibrary call must be matched with a FreeLibrary call. This is necessary
because Windows increments a reference count on each DLL per process when it is
loaded either implicitly by the executable or another DLL, or by calling LoadLibrary.
This reference count is decremented by calling FreeLibrary, or unloading the exe-
cutable or DLL that loaded this DLL. When the reference count for a given DLL
reaches zero, Windows knows it can safely unload the DLL.

Guarding Against DirectX

One of the problems we have often found is that the required versions of DirectX
components are not installed, or the install is corrupt in some way. To protect our
game against these problems, we explicitly load the DirectX components we need. If
we were to implicitly link to Directlnput in DirectX 8, we would have added the din-
putS.lib to our link line and used the following code:

1.5 Protect Yourself from DLL Hell and Missing OS Functions 35

IDirectlnputS *pDInput;
HRESULT hr = DirectInput8Create(hInstance, DIRECTINPUT_VERSION,

IID_IDirectInput8,
(LPVOID*) & pDInput, 0);

if (FAILED(hr))
{

// handle error - initialization error
}

The explicit DLL loading case effectively adds two more lines of code, but the
application is now protected against dinput8.dll not being found, or of it being cor-
rupt in some way.

typedef HRESULT (WINAPI* DirectInput8Create_PROC)
(HINSTANCE hinst, DWORD dwVersion, REFIID riidltf,
LPVOID* ppvOut,
LPUNKNOWN punkOuter);

HMODULE hDInputLib = LoadLibrary("dinput8.dll") ;
if (! hDInputLib)
{

// handle error - DInput 8 not found. Is it installed incorrectly
// or at all?

DirectInput8Create_PROC diCreate;
diCreate = (DirectInput8Create_PROC)
GetProcAddress(hDInputLib, "DirectlnputSCreate") ;

if (! diCreate)
{

// handle error - DInput 8 exists, but the function can't be
// found.

HRESULT hr = (diCreate) (hlnstance, DIRECTINPUT_VERSION,
I ID_IDirect Inputs,
(LPVOID*) &mDirectInput, NULL);

if (FAILED(hr))
{

// handle error - initialization error

First, a function pointer typedef is created that reflects the function Direct-
lnputSCreate. The DLL is then loaded using LoadLibrary. If the dinput8.dll was
loaded successfully, we then attempt to find the function DirectlnputSCreate using
GetProcAddress. GetProcAddress returns a pointer to the function if it is found, or
NULL if the function cannot be found. We then check to make sure the function
pointer is valid. Finally, we call DirectlnputSCreate through the function pointer to
initialize Directlnput.

36 Section 1 General Programming

If there were more functions that needed to be retrieved from the DLL, a func-
tion pointer typedefand variable would be declared for each. It might be sufficient to
only check for NULL when mapping the first function pointer using GetProcAddress.
However, as more error handling is usually not a bad thing, checking every Get-
ProcAddress for a successful non-NULL return is probably a good thing to do.

Using OS-Specific Features _

Another issue that explicit DLL loading can resolve is when an application wants to
take advantage of a specific API function if it is available. There is an extensive num-
ber of extended functions ending in "Ex" that are supported under Windows NT or
2000, and not available in Windows 95 or 98. These extended functions usually pro-
vide more information or additional functionality than the original functions do .

An example of this is the CopyFileEx function, which provides the ability to can-
cel a long file copy operation. Instead of calling it directly, kernel32.dll can be loaded
using LoadLibrary and the function again mapped with GetProcAddress. If we load
kernel32.dll and find CopyFileEx, we use it. If we don't find it, we can use the regular
CopyFile function. One other problem that must be avoided in this case is that Copy-
FileEx is really only a #define replacement in the winbase.h header file that is replaced
with CopyFileExA or CopyFileExW if compiling for ASCII or wide Unicode charac-
ters, respectively.

typedef BOOL (WINAPI *CopyFileEx_PROC) (LPCTSTR IpExistingFileName,
LPCTSTR IpNewFileName , LPPROGRESS_ROUTINE IpProgressRoutine, LPVOID
IpData, LPBOOL pbCancel, DWORD dwCopyFlags) ;

HMODULE hKerne!32 = LoadLibrary("kernel32.dH") ;
if (!hKerne!32)
{

// handle error - kernel32.dll not found. Wow! That's really bad
}

CopyFileEx_PROC pfnCopyFileEx;
pfnCopyFileEx = (CopyFileEx_PROC) GetProcAddress(hKernel32,

"CopyFileExA") ;

BOOL bReturn;
if (pfnCopyFileEx)
{

/ / use CopyFileEx to copy the file
bReturn = (pfnCopyFileEx) (pExistingFile, pDestinationFile, ...);

else

// use the regular CopyFile function
bReturn = CopyFilefpExistingFile, pDestinationFile, FALSE);

1.5 Protect Yourself from DLL Hell and Missing OS Functions 37

The use of LoadLibrary and GetProcAddress can also be applied to game DLLs.
One example of this is the graphics support in a game engine currently under devel-
opment at Ensemble Studios, where graphics support for Direct3D and OpenGL has
been broken out into separate DLLs that are explicitly loaded as necessary. If
Direct3D graphics support is needed, the Direct3D support DLL is loaded with
LoadLibrary and the exported functions are mapped using GetProcAddress. This setup
keeps the main executable free from having to link implicitly with either dddS.lib or
opengl32.lib.

However, the supporting Direct3D DLL links implicitly with dddS.lib, and the
supporting OpenGL DLL links implicitly with opengl32. lib. This explicit loading of
the game's own DLLs by the main executable, and implicit loading by each graphics
subsystem solves several problems. First, if an attempt to load either library fails, it's
likely that that particular graphics subsystem files cannot be found or are corrupt. The
main program can then handle the error gracefully. The other problem that this
solves, which is more of an issue with OpenGL than Direct3D, is that if the engine
were to link explicitly to OpenGL, it would need a typedef and function pointer for
every OpenGL function it used. The implicit linking to the support DLL solves this
problem.

Summary

Explicit linking can act as a barrier against a number of common DLL problems that
are encountered under Windows, including missing DLLs, or versions of DLLs that
aren't compatible with an application. While not a panacea, it can at least put the
application in control and allow any error to be handled gracefully instead of with a
cryptic error message or an outright crash.

1.6

Dynamic Type Information

Scott Wakeling, Virgin Interactive
scott@chronicreality.com

As developers continue to embrace object orientation, the systems that power
games are growing increasingly flexible, and inherently more complex. Such sys-

tems now regularly contain many different types and classes; counts of over 1000 are
not unheard of. Coping with so many different types in a game engine can be a chal-
lenge in itself. A type can really mean anything from a class, to a struct, to a standard
data type. This gem discusses managing types effectively by providing ways of query-
ing their relations to other types, or accessing information about their type at runtime
for query or debug purposes. Toward the end of the gem, an approach for supporting
persistent objects is suggested with some ideas about how the method can be
extended.

Introducing the Dynamic Type Information Class

In our efforts to harness the power of our types effectively, we'll be turning to the aid
of one class in particular: the dynamic type information (DTI) class. This class will
store any information that we may need to know about the type of any given object or
structure. A minimal implementation of the class is given here:

class dtiClass
{
private:

char* szName;
dtiClass* pdtiParent;

public:
dtiClass();
dtiClass(char* szSetName, dtiClass* pSetParent);
virtual -dtiClass();

const char* GetName();
bool SetName(char* szSetName);

dtiClass* GetParent();
bool SetParent(dtiClass* pSetParent);

38

1.6 Dynamic Type Information 39

In order to instill DTI into our engine, all our classes will need a dtiClass as a sta-
tic member. It's this class that allows us to access a class name for debug purposes and
query the dtiClass member of the class's parent. This member must permeate the class
tree all the way from the root class down, thus ensuring that all game objects have

'~^J^__J) access to information about themselves and their parents. The implementation ofdti-
ONTHICO Class can be found in the code on the accompanying CD.

Exposing and Querying the DTI

Let's see how we can begin to use DTI by implementing a very simple class tree as
described previously. Here is a code snippet showing a macro that helps us define our
static dtiClass member, a basic root class, and simple initialization of the class's type
info:

#define EXPOSE_TYPE \
public: \

static dtiClass Type;

class CRootClass
{
public:

EXPOSE_TYPE;
CRootClass() {};
virtual -CRootClass() {};

};

dtiClass CRootClass::Type("CRootClass", NULL);

By including the EXPOSE_TYPE macro in all of our class definitions and initial-
izing the static Type member correctly as shown, we've taken the first step toward
instilling dynamic type info in our game engine. We pass our class name and a pointer
to the class's parent's dtiClass member. The dtiClass constructor does the rest, setting
up the szName and pdtiParent members accordingly.

We can now query for an object's class name at runtime for debug purposes of
other type-related cases, such as saving or loading a game. More on that later, but for
now, here's a quick line of code that will get us our class name:

// Let's see what kind of object this pointer is pointing to
const char* szGetName = pSomePtr->Type.GetName();

In the original example, we passed NULL in to the dtiClass constructor as the
class's parent field because this is our root class. For classes that derive from others, we
just need to specify the name of the parent class. For example, if we were to specify a
child class of our root, a basic definition might look something like this:

class CChildClass : public CRootClass
{

EXPOSE TYPE;

40 Section 1 General Programming

// Constructor and virtual Destructor go here
};

dtiClass CChildClass::Type("CChildClass", &CRootClass::Type);

Now we have something of a class tree growing. We can access not only our class's
name, but the name of its parent too, as long as its type has been exposed with the
EXPOSE_TYPE macro. Here's a line of code that would get us our parent's name:

// Let's see what kind of class this object is derived from
char* szParentName = pSomePtr->Type.GetParent()->GetName();

Now that we have a simple class tree with DTI present and know how to use that
information to query for class and parent names at runtime, we can move on to
implementing a useful method for safeguarding type casts, or simply querying an
object about its roots or general type.

Inheritance Means "IsA"

Object orientation gave us the power of inheritance. With inheritance came polymor-
phism, the ability for all our objects to be just one of many types at any one time. In
many cases, polymorphism is put to use in game programming to handle many types
of objects in a safe, dynamic, and effective manner. This means we like to ensure that
objects are of compatible types before we cast them, thus preventing undefined
behavior. It also means we like to be able to check what type an object conforms to at
runtime, rather than having to know from compiler time, and we like to be able to do
all of these things quickly and easily.

Imagine that our game involves a number of different types of robots, some
purely electronic, and some with mechanical parts, maybe fuel driven. Now assume
for instance that there is a certain type of weapon the player may have that is very
effective against the purely electronic robots, but less so against their mechanical
counterparts. The classes that define these robots are very likely to be of the same
basic type, meaning they probably both inherit from the same generic robot base
class, and then go on to override certain functionality or add fresh attributes. To cope
with varying types of specialist child classes, we need to query their roots. We can
extend the dtiClass introduced earlier to provide us with such a routine. We'll call the
new member function IsA, because inheritance can be seen to translate to "is a type
of." Here's the function:

bool dtiClass::IsA(dtiClass* pType)
{

dtiClass* pStartType = this;
while(pStartType)
{

if (pStartType == pType)

1.6 Dynamic Type Information 41

return true;

else

pStartType = pStartType->GetParent();

return false;

If we need to know whether a certain robot subclass is derived from a certain root
class, we just need to call IsA from the object's own dtiClass member, passing in the
static dtiClass member of the root class. Here's a quick example:

CRootClass* pRoot;
CChildClass* pChild = new CChildClass();
if (pChild->Type.IsA(&CRootClass::Type))

pRoot = (CRootClass*)pChild;

We can see that the result of a quick IsA check tells us whether we are derived,
directly or indirectly, from a given base class. Of course, we might use this fact to go
on and perform a safe casting operation, as in the preceding example. Or, maybe we'll
just use the check to filter out certain types of game objects in a given area, given that
their type makes them susceptible to a certain weapon or effect. If we decide that a
safe casting operation is something we'll need regularly, we can add the following

-̂—_1-̂ function to the root object to simplify matters. Here's the definition and a quick
example; the function's implementation is on the accompanying CD:

// SafeCast member function definition added to CRootClass
void* SafeCast(dtiClass* pCastToType);

// How to simplify the above operation
pRoot = (CRootClass*)pChild->SafeCast(&CRootClass::Type);

If the cast is not safe (in other words, the types are not related), dien the value will
evaluate to nothing, and pRoot will be NULL.

Handling Generic Objects

Going back to our simple game example, let's consider how we might cope with so
many different types of robot effectively. The answer starts off quite simple: we can
make use of polymorphism and just store pointers to them all in one big array of
generic base class pointers. Even our more specialized robots can be stored here, such
as CRobotMech (derived from CRobof), because polymorphism dictates that for any
type requirement, a derived type can always be supplied instead. Now we have our
vast array of game objects, all stored as pointers to a given base class. We can iterate

42 Section 1 General Programming

over them safely, perhaps calling virtual functions on each and getting the more spe-
cialized (overridden) routines carried out by default. This takes us halfway to han-
dling vast numbers of game objects in a fast, safe, and generic way.

As part of our runtime type info solution, we have the IsA and SafeCast routines
that can query what general type an object is, and cast it safely up the class tree. This
is often referred to as up-casting, and it takes us halfway to handling vast numbers of
game objects in a fast, safe, and generic way. The other half of the problem comes
with down-casting—casting a pointer to a generic base class safely down to a more spe-
cialized subclass. If we want to iterate a list of root class pointers, and check whether
each really points to a specific type of subclass, we need to make use of the dynamic
casting operator, introduced by C++.

The dynamic casting operator is used to convert among polymorphic types and is
both safe and informative. It even returns applicable feedback about the attempted
cast. Here's the form it takes:

dynamic_cast< type-id >(expression)

The first parameter we must pass in is the type we wish expression to conform to
after the cast has taken place. This can be a pointer or reference to one of our classes.
If it's a pointer, the parameter we pass in as expression must be a pointer, too. If we pass
a reference to a class, we must pass a modifiable l-value in the second parameter. Here
are two examples:

// Given a root object (RootObj), on pointer (pRoot) we
// can down-cast like this
CChildClass* pChild = dynamic_cast<CChildClass*>(pRoot);
CChildClass& ChildObj = dynamic_cast<CChildClass&>(RootObj);

To gain access to these extended casting operators, we need to enable embedded
runtime type information in the compiler settings (use the /GR switch for Microsoft
Visual C++). If the requested cast cannot be made (for example, if the root pointer
does not really point to anything more derived), the operator will simply fail and the
expression will evaluate to NULL. Therefore, from the preceding code snippet,

(f :,js*:*:*'% pChild would evaluate to NULL IfpRoot really did only point to a CRootClass object.
ON me a> If the cast of RootObj failed, an exception would be thrown, which could be contained

with a try I catch block (example is included on the companion CD-ROM).
The dynamic_cast operator lets us determine what type is really hidden behind a

pointer. Imagine we want to iterate through every robot in a certain radius and deter-
mine which ones are mechanical models, and thus immune to the effects of a certain
weapon. Given a list of generic CRobot pointers, we could iterate through these and
perform dynamic casts on each, checking which ones are successful and which resolve
to NULL, and thus exacting which ones were in fact mechanical. Finally, we can now
safely down-cast too, which completes our runtime type information solution. The

1.6 Dynamic Type information 43

/ c -., code on the companion CD-ROM has a more extended example of using the
on m CD dynamic casting operator.

Implementing Persistent Type Information

Now that our objects no longer have an identity crisis and we're managing them effec-
tively at runtime, we can move on to consider implementing a persistent object solu-
tion, thus extending our type-related capabilities and allowing us to handle things

,- c ") such as game saves or object repositories with ease. The first thing we need is a bare-
mtmco bones implementation of a binary store where we can keep our object data. An exam-

ple implementation, CdtiBin can be found on the companion CD-ROM.
There are a number of utility member functions, but the two important points

are the Stream member function, and the friend « operators that allow us to write
out or load die basic data types of the language. We'll need to add an operator for each
basic type we want to persist. When Stream is called, the data will be either read from
the file or written, depending on the values of m_bLoading and m_bSaving.

To let our classes know how to work with the object repositories we need to add
the Serialize function, shown here:

virtual void Serialize(CdtiBin& ObjStore);

Note that it is virtual and needs to be overridden for all child classes that have
additional data over their parents. If we add a simple integer member to CRootClass,
we would write the Serialize function like this:

void CRootClass::Serialize(CdtiBin& ObjStore)
{

ObjStore « iMemberlnt;
}

We would have to be sure to provide the friend operator for integers and CdtiBin
objects. We could write object settings out to a file, and later load them back in and
repopulate fresh objects with die old data, thus ensuring a persistent object solution
for use in a game save routine. All types would thus know how to save themselves,
making our game save routines much easier to implement.

However, child classes need to write out their data and that of their parents.
Instead of forcing the programmer to look up all data passed down from parents and
adding it to each class's Serialize member, we need to give each class access to its par-
ent's Serialize routine. This allows child classes to write (or load) their inherited data
before their own data. We use the DECLAREJSUPER macro for this:

#define DECLARE_SUPER(SuperClass) \
public: \

typedef Superclass Super;

44 Section 1 General Programming

class CChildClass

DECLARE_SUPER(CRootClass);

This farther extends our type solution by allowing our classes to call their imme-
diate parents' versions of functions, making our class trees more extensible.

CRootClass doesn't need to declare its superclass because it doesn't have one, and
thus its Serialize member only needs to cope with its own data. Here's how CChild-
Class::Serialize calls CRootClass:Serialize before dealing with some of its own data
(added specifically for the example):

void CChildClass::Serialize(CdtiBin& ObjStore)
{

Super::Serialize(ObjStore);

ObjStore « fMemberFloat « iAnotherlnt;
}

A friend operator for the float data type was added to support the above. Note
that the order in which attributes are saved and loaded is always the same. Code
showing how to create a binary store, write a couple of objects out, and then repopu-
late the objects' attributes can be found on the companion CD-ROM.

As long as object types are serialized in the same order both ways, their attributes
will remain persistent between saves and loads. Adding the correct friend operators to
the CdtiBin class adds support for basic data types. If we want to add user-defined
structures to our class members, we just need to write an operator for coping with that
struct. With this in place, all objects and types in the engine will know precisely how
to save themselves out to a binary store and read themselves back in.

Applying Persistent Type Information to a Game
Save Database

As mentioned previously, objects need to be serialized out and loaded back in the
same order. The quickest and easiest method is to only save out one object to the
game saves, and then just load that one back in. If we can define any point in
the game by constructing some kind of game state object that knows precisely how to
serialize itself either way, then we can write all our game data out in one hit, and read
it back in at any point. Our game state object would no doubt contain arrays of
objects. As long as the custom array type knows how to serialize itself, and we have all
the correct CdtiBin operators written for our types, everything will work. Saving and
loading a game will be a simple matter of managing the game from a high-level, all-
encompassing containment class, calling just the one Serialize routine when needed.

1.6 Dynamic Type Information 45

Conclusion

There is still more that could be done than just the solution described here. Support-
ing multiple inheritance wouldn't be difficult. Instead of storing just the one parent
pointer in our static dtiClass, we would store an array of as many parents a class had,
specifying the count and a variable number of type classes in a suitable macro, or by
extending the dtiClass constructor. An object flagging system would also be useful,
and would allow us to enforce special cases such as abstract base classes or objects we
only ever wanted to be contained in other classes, and never by themselves ("con-
tained classes").

References

[Meyers98] Meyers, Scott D., Effective C++ 2ndEdition, Addison-Wesley, 1998.
[Wilkie94] Wilkie, George, Object-Oriented Software Engineering, Addison-Wesley,

1994.
[EberlyOO] Eberly, David H., 3D Game Engine Design, Morgan Kauffman,

1999-2000.
[WakelingOl] Wakeling, Scott J., "Coping with Class Trees," available online at

www.chronicreality.com/articles, March 12, 2001.

1.7

A Property Class for Generic
C++ Member Access

Charles Cafrelli
skywise@iquest.net

Practically every game has a unique set of game objects, and any code that has to
manipulate those objects has to be written from scratch for each project. Take,

for example, an in-game editor, which has a simple purpose: to create, place, display,
and edit object properties. Object creation is almost always specific to the game, or
can be handled by a class factory. Object placement is specific to the visualization
engine, which makes reuse difficult, assuming it is even possible to visually place an
object on the map. In some cases, a generic map editor that can be toggled on and off
(or possibly superimposed as a heads-up display) can be reused from game to game.
Therefore, in theory, it should be possible to develop a core editor module that can be
reused without having to rewrite the same code over and over again for each project.
However, given that all games have unique objects, how does the editor know what to
display for editing purposes without rewriting the editor code?

What we need is a general object interface that allows access to the internals of a
class. Borland's C++ Builder provides an excellent C++ declaration type called ^prop-
erty that does this very thing, but alas, it is a proprietary extension and unusable out-
side of Borland C++. Interestingly enough, C#, Microsoft's new programming
language developed by the creator of Borland C++ Builder, contains the same feature.
Microsoft's COM interface allows runtime querying of an object for its members, but
it requires that we bind our objects to the COM interface, making them less portable
than straight C++. This leaves a "roll-your-own" solution, which can be more light-
weight than COM, and more portable than proprietary extensions to the C++ lan-
guage. This will allow code modules such as the in-game editor to be written just
once, and used across many engines.

The Code
The interface is broken into two classes: a Property class and a PropertySet class. Prop-
erty is a container for one piece of data. It contains a union of pointers to different
data types, an enumeration for the type of data, and a string for the property name.
The full source code can be found on the companion CD.

46

1.7 A Property Class for Generic C++ Member Access 47

class Property
{
protected:

union Data
{

int* m_int;
float* m_float;
std::string* m_string;
bool* m_bool;

enum Type
{

INT,
FLOAT,
STRING,
BOOL,
EMPTY

Data m_data;
Type m_type;
std:: string m_name;

protected:
void EraseType() ;
void Register(int* value);
void Registerffloat* value);
void Registerfstd: :string* new_string);
void Registerfbool* value);

public:
Property () ;
Property(std: :string const& name);
Property(std: :string const& name, int* value);
Property (std :: string const& name, float* value);
Property (std :: string const& name, std::string* value);
Property (std :: string const& name, bool* value);
-Property () ;

bool SetUnknownValue(std: :string const& value);
bool Set (int value) ;
bool Set(float value);
bool Set(std: :string const& value);
bool Set(bool value);

void SetNamefstd: :string const& name);
std:: string GetName() const;

int Getlnt();
float GetFloatf);
std:: string GetString();
bool GetBool() ;

48 Section 1 General Programming

The example code shows basic data types being used and stored, although these
could be easily expanded to handle any data type. Properties store only a pointer back
to the original data. Properties do not actually declare their own objects, or allocate
their own memory, so manipulating a property's data results in the original data's
memory being handled. Setting a value via the Set function automatically defines the
type of the property.

Properties are constructed and manipulated through a PropertySet class. The
PropertySet class contains the list of registered properties, the registration methods,
and the lookup method.

class PropertySet
{
protected:

HashTable<Property>m_properties;

public:
PropertySet();
virtual -PropertySet();

void Register(std::string const& name, int* value);
void Register(std::string const& name, float* value);
void Register(std::string const& name, std::string* value);
void Register(std::string const& name, bool* value);

// look up a property
Property* Lookup(std::string const& name);

// get a list of available properties
bool SetValue(std::string const& name, std::string* value);
bool Set(std::string const& name, std::string const& value);
bool Set(std::string const& name, int value);
bool Set(std::string const& name, float value);
bool Set(std::string const& name, bool value);
bool Set(std::string const& name, char* value);

};

The PropertySet is organized around a HashTable object that organizes all of the
stored properties using a standard hash table algorithm. The HashTable itself is a tem-
plate that can be used to hash into different objects, and is included on the compan-

ONIHfCD • f^r-~.ion UJ.
We derive the game object from the PropertySet class:

class GameObject : public PropertySet
{

int m_test;
};

Any properties or flags that need to be publicly exposed or used by other objects
should be registered, usually at construction time. For example:

Register("test_value",&m_test);

1.7 A Property Class for Generic C++ Member Access 49

Calling objects can use the Lookup method to access the registered data.

void Update(PropertySet& property_set)
{

Property* test_value_property=
property_set.Lookup("test_value");

int test_value = test_value_property->GetInt();
// etc

}

As all of the game objects are now of type PropertySet, and as all objects are usu-
ally stored in a master update list, it is a simple matter of handing the list pointer off
to the in-game editor for processing. New derived object types simply have to register
their additional properties to be handled by the editor. No additional coding is neces-
sary because the editor is not concerned with the derived types. It is sometimes help-
ful to specify the type in a property name (such as "Type") to assist the user when
visually editing the object. It's also useful to make the property required, so that the
editor could, for example, parse the property list into a "tree" style display.

This process also provides the additional benefit of decoupling the data from its
name. For instance, internally, the data may be referred to as m_colour, but can be
exposed as "color."

Additional Uses

These classes were designed around a concentric ring design theory. The PropertySet
cannot be used without the Property class. However, the Property class can be used on
its own, or with another set type (for example, MultiMatrixedPropertySef) without
rewriting the Property class itself. This is true of the HashTable inside the PropertySet
class as well. Smaller classes with distinct and well-defined purposes and uses are much
more reusable than large classes with many methods to handle every possible use.

The Property class can also be used to publicly expose methods that can be called
from outside code via function pointers. With a small amount of additional coding,
this can also be used as a save state for a save game feature as well. It could also be used
for object messaging via networks. With the addition of a Send(std::string xml) and
Receive(std::stringxml), the PropertySet could easily encode and decode XML messages
that contain the property values, or property values that need to be changed. The
Property!PropertySet classes could also be rewritten as templates to support different
property types.

Isolating the property data using "get" and "set" methods will allow for format
conversion to and from the internal stored format. This will free the using code from
needing to know anything about the data type of the property, making it more versa-
tile at the cost of a small speed hit when the types differ.

50 Section 1 General Programming

Additional Reading

Fowler, Martin, Kent Beck, John Brant, William Opdyke, Don Roberts, Refactoring,
Addison-Wesley, ISBN: 0201485672.

Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch, Design
Patterns, Addison-Wesley, ISBN: 0201633612.

Lakos, John, Large-Scale C++ Software Design, Addison-Wesley, ISBN: 0201633620.
McConnell, Steve C., Code Complete: A Practical Handbook of Software Construction,

Microsoft Press, ISBN: 1556154844 (anything by McConnell is good).
Meyers, Scott, Effective C++: 50 Specific Ways to Improve Your Programs and Design

(2ndEdition), Addison-Wesley, ISBN: 0201924889.
Meyers, Scott, More Effective C++: 35 New Ways to Improve Your Programs and

Designs, Addison-Wesley, ISBN: 020163371X.

1.8

A Game Entity Factory

Frangois Dominic Laramee
francoislaramee@videotron.ca

In recent years, scripting languages have proven invaluable to the game development
community. By isolating the elaboration and refinement of game entity behavior

from the core of the code base, they have liberated level designers from the code-
compile-execute cycle, speeding up game testing and tweaking by orders of magni-
tude, and freed senior programmers' time for more intricate assignments.

However, for the data-driven development paradigm to work well, the game's
engine must provide flexible entity construction and assembly services, so that the
scripting language can provide individual entities with different operational strategies,
reaction behaviors, and other parameters. This is the purpose of this gem: to describe
a hierarchy of C++ classes and a set of techniques that support data-driven develop-
ment on the engine side of things.

This simple framework was designed with the following goals in mind:

• A separation of logical behavior and audio-visual behavior. A single Door class
can support however many variations of the concept as required, without concern
for size, number of key frames in animation sequences, etc.

• Rapid development. Once a basic library of behaviors has been defined (which
takes surprisingly little time), new game entity classes can be added to the frame-
work with a minimum of new code, often in 15 minutes or less.

• Avoiding code duplication. By assembling bits and pieces of behavior into new
entities at runtime, the framework avoids the "code bloat" associated with script-
ing languages that compile to C/C++, for example.

Several of the techniques in this gem are described in terms of patterns, detailed
in the so-called "Gang of Four's" book Design Patterns [GoF94].

Components

The gem is built around three major components: flyweight objects, behavioral
classes and an object factory method. We will examine each in turn, and then look at
how they work together to equip the engine with the services required by data-driven
development. Finally, we will discuss advanced ideas to make the system even more

51

52 Section 1 General Programming

flexible (at the cost of some code complexity) if a full-fledged scripting language is
required by the project.

Flyweight, Behavior, and Exported Classes

Before we go any further, we must make a distinction between the three types of
"classes" to which a game entity will belong in this framework: its flyweight, behav-
ioral, and exported classes.

• The flyweight class is the look and feel of the entity. In the code, the relationship
between an entity and its flyweight class is implemented through object composi-
tion: the entity owns a pointer to a flyweight that it uses to represent itself audio-
visually.

• The behavioral class defines how the object interacts with the rest of the game
world. Behavioral classes are implemented as a traditional inheritance hierarchy,
with class Entity serving as abstract superclass for all others.

• The exported class is how the object represents itself to the world. More of a con-
venience than a requirement, the exported class is implemented as an enum con-
stant and allows an entity to advertise itself as several different object classes
during its lifetime.

Let us now look at each in turn.

Flyweight Objects

[GoF94] describes flyweights as objects deprived of their context so that they can be
shared and used in a variety of situations simultaneously; in other words, as a template
or model for other objects. For a game entity, the flyweight-friendly information con-
sists of:

• Media content: Sound effects, 3D models, textures, animation files, etc.
• Control structure: Finite state machine definition, scripts, and the like.

As you can see, this is just about everything except information on the current
status of the entity (position, health, FSM state). Therefore, in a gaming context, the
\&iv\ fly weight is rather unfortunate, because the flyweight can consume megabytes of
memory, while the context information would be small enough to fit within a crip-
pled toaster's core memory.

SAMMy, Where Are You?

Much of a game entity's finite state machine deals with animation loops, deciding
when to play a sound byte, and so forth. For example, after the player character is
killed in an arcade game, it may enter the resurrecting state and be flagged as invulner-
able while the "resurrection" animation plays out; otherwise, an overeager monster

1 .8 A Game Entity Factory 53

might hover about and score another kill during every frame of animation until the
player resumes control over it. I call the part of the flyweight object that deals with
this the State And Media Manager, or SAMMy for short:

class StateAndMediaManager
{

// The various animation sequences available for the family
//of entities
AnimSequenceDescriptionStruct * sequences;
int numAnimSequences;

// A table of animation sequences to fire up when the entity's FSM
// changes states out of SAMMy 's control
int * stateToAnimTransitions;
int numStateToAnimTransitions;

public:
// Construction and destruction
// StateAndMediaManager is always constructed by its owner entity,
// which is in charge of opening its description file. Therefore,
// the only parameter the constructor needs is a reference to an
// input stream from which to read a set of animation sequence
// descriptions.
StateAndMediaManager () : sequences(0), numAnimSequences (0),

numStateToAnimTransitions (0), stateToAnimTransitions (0) {}
StateAndMediaManager (istream & is) ;
virtual -StateAndMediaManager () ;
void Cleanup() ;

// Input-output functions
void Load(istream & is) ;
void Save(ostream & os) ;

// Look at an entity's current situation and update it according
// to the description of its animation sequences
void FC UpdateEntityStatef EntityStateStruct * state);

// If the entity's FSM has just forced a change of state, the media
// manager must follow suit, interrupt its current animation
// sequence and choose a new one suitable to the new FSM state
void FC AlignWithNewFSMState(EntityStateStruct * state);

};

Typically, SAMMy is the product of an entity-crafting tool, and it is loaded into
(-*-^_^ the engine from a file when needed. The sample on the companion CD-ROM is built
ON mat

SAMMy can be made as powerful and versatile as desired. In theory, SAMMy
could take care of all control functions: launching scripts, changing strategies, and so
forth. However, this would be very awkward and require enormous effort; we will
instead choose to delegate most of the high-level control structure to the behavioral
class hierarchy, which can take care of it with a minute amount of code. (As a side

54 Section 1 General Programming

effect of this sharing of duties, a single behavioral class like SecurityGuard, Door or
ExplosionFX will be able to handle entities based on multiple related flyweights, mak-
ing the system more flexible.)

Behavioral Class Hierarchy

These are the actual C++ classes to which our entities will belong. The hierarchy has
(at least) two levels:

• An abstract base class Entity that defines the interface and commonalities
• Concrete subclasses that derive from Entity and implement actual objects

Here is a look at Entity's interface:

class Entity
{

// Some application-specific data

// Flyweight and Exported Class information
int exportedClassID;
StateAndMediaManager * sammy;

public:
// Constructors

// Accessors
int GetExportedClass() { return exportedClassID; }
StateAndMediaManager * GetFlyweight() { return sammy; }
void SetExportedClass(int newval) { exportedClassID = newval; }
void SetFlyweight(StateAndMediaManager * ns) { sammy = ns; }

// Factory method
static Entity * EntityFactory(int exportedClassRequested);

virtual Entity * CloneEntityO = 0;
virtual bool Updateself()
{
//Do generic stuff here; looping through animations, etc.
return true;

}

virtual bool Handlelnteractions(Entity * target) = 0;
};

As you can see, adding a new class to the hierarchy may require very little work:
in addition to constructors, at most three, and possibly only two, of the base class
methods must be overridden—and one of them is a one-liner.

• Clone () is a simple redirection call to the copy constructor.
• UpdateSelf () runs the entity's internal mechanics. For some, this may be as sim-

ple as calling the corresponding method in SAMMy to update the current anima-
tion frame; for others, like the player character, it can be far more elaborate.

1.8 A Game Entity Factory 55

• Handlelnteractions() is called when the entity is supposed to determine
whether it should change its internal state in accordance to the behaviors and
positions of other objects. The default implementation is empty; in other words,
the object is inert window-dressing.

'\^_^J The companion CD-ROM contains examples of Entity subclasses, including one
m m co of a player character driver.

Using the Template Method Pattern for
Behavior Assignment

If your game features several related behavioral classes whose differences are easy to
circumscribe, you may be able to benefit from a technique known as the Template
Method pattern [GoF94]. This consists of a base class method that defines an algo-
rithm in terms of subclass methods it calls through polymorphism.

For example, all types of PlayerEntity objects will need to query an input device
and move themselves as part of their UpdateSelf () method, but how they do it may
depend on the input device being used, the character type (a FleetingRogue walks
faster than a OneLeggedBuddha), and so forth. Therefore, the PlayerEntity class may
define UpdateSelf () in terms of pure virtual methods implemented only in its sub-
classes.

class PlayerDevice : public Entity
{

// ...
void UpdateYourself();
void QuerylnputDeviceO = 0; // No implementation in PlayerDevice

};

class JoystickPlayerDevice : public PlayerDevice
{

// ...
void QuerylnputDeviceO;

};

void PlayerDevice::UpdateYourself()
{
//do stuff common to all types of player devices
QuerylnputDeviceO;

//do more stuff
}

void JoystickPlayerDevice::QueryInputDevice()
{
//Do the actual work

}

Used properly, the Template Method pattern can help minimize the need for the
dreaded cut-and-paste programming, one of the most powerful "anti-patterns" leading
to disaster in software engineering [Brown98]!

56 Section 1 General Programming

Exported Classes

The exported class is a convenience trick that you can use to make your entities' inter-
nal state information transparent to the script writer. For example, let's say that you
are programming Pac-Man's Handlelnteractions() method. You might start by look-
ing for a collision with one of the ghosts; what happens if one is found then depends
on whether the ghost is afraid (it gets eaten), returning to base after being eaten
(nothing happens at all), or hunting (Pac-Man dies).

void PacMan: :HandleInteractions(Entity * target)
{

if (target ->GetClass() == GHOST && target ->GetState() == AFRAID)
{

score += 100;
target ->SendKillSignal() ;

However, what if you need to add states to the Ghost object? For example, you
may want the ghost's SAMMy to include a "Getting Scared" animation loop, which is
active for one second once Pac-Man has run over a power pill. SAMMy would handle
this cleanly if you added a GettingScared state. However, you would now need to add
a test for the GettingScared state to the event handler.

void PacMan: :HandleInteractions(Entity * target)
{

if (target ->GetClass() == GHOST &&
(target->GetState() == AFRAID ||

target ->GetState() == GETTINGSCARED))

This is awkward, and would likely result in any number of updates to the event
handlers as you add states (none of which introduce anything new from the outside
world's perspective) to SAMMy during production. Instead, let's introduce the con-
cept of the exported class, a value that can be queried from an Entity object and
describes how it advertises itself to the world. The value is maintained within Update -
Self () and can take any number of forms; for simplicity's sake, let's pick an integer
constant selected from an enum list.

enum { SCAREDGHOST, ACTIVEGHOST, DEADGHOST };

There is no need to export any information on transient, animation-related states
like GettingScared. To Pac-Man, a ghost can be dead, active, or scared — period.
Whether it has just become scared two frames ago, has been completely terrified for a
while, or is slowly gathering its wits back around itself is irrelevant. By using an
exported class instead of an actual internal FSM state, a Ghost object can advertise

1.8 A Game Entity Factory 57

itself as a dead ghost, scared ghost, or active ghost, effectively shape-shifting into three
different entity classes at will from the outside world's perspective, all for the cost of
an integer. Pac-Man's interaction handler would now look like this:

void PacMan: :HandleInteractions(Entity * target)
{
if (target ->GetExportedClass() == SCAREDGHOST)
{
score += 100;
target->SendKillSignal() ;

The result is cleaner and will require far less maintenance work, as the number of
possible exported classes for an Entity is usually small and easy to determine early on,
while SAMMy's FSM can grow organically as new looks and effects are added to the
object during development.

The Entity Factory

Now that we have all of these tools, it is time to put them to good use in object creation.
A level file will contain several entity declarations, each of which may identify the

entity's behavioral class, flyweight class, exported class, starting position and velocity,
and any number of class-specific parameters (for example, hit points for monsters, a
starting timer for a bomb, a capacity for the players inventory, etc.) To keep things
simpler for us and for the level designer, let's make the fairly safe assumption that,
while a behavioral class may advertise itself as any number of exported classes, an
exported class can only be attached to a single behavioral class. This way, we eliminate
the need to specify the behavioral class in the level file, and isolate the class hierarchy
from the tools and level designers. A snippet from a level file could therefore look like:

<ENTITY Blinky>
<EXPORTEDCLASS ActiveGhOSt>
<XYZ_POSITION ...>
PARAMETERS ...>
</ENTITY>

Now, let's add a factory method to the Entity class.
A factory is a function whose job consists of constructing instances of any num-

ber of classes of objects on demand; in our case, the factory will handle requests for all
(concrete) members of the behavioral class hierarchy. Programmatically, our factory
method is very simple:

• It owns a registry that describes the flyweights that have already been loaded into
the game and a list of the exported classes that belong to each behavioral class.

• It loads flyweights when needed. If a request for an instance belonging to a fly-
weight class that hasn't been seen yet is received, the first order of business is to
create and load a SAMMy object for this flyweight.

58 Section 1 General Programming

• If the request is for an additional instance of an already-loaded flyweight class, the
factory will clone the existing object (which now serves as a Prototype; yes, another
Gang of Four pattern!) so that it and its new brother can share flyweights effec-
tively.

Here is a snippet from the method:

Entity * Entity::EntityFactory(int whichType)
{
Entity * ptr;
switch(whichType)
{
case SCAREDGHOST:

ptr = new Ghost(SCAREDGHOST);
break;

case ACTIVEGHOST:
ptr = new Ghost(ACTIVEGHOST);
break;

return ptr;

Simple, right? Calling the method with an exported class as parameter returns a
pointer to an Entity subclass of the appropriate behavioral family.

Entity * newEntity = Entity::EntityFactory(ACTIVEGHOST);

The code located on the companion CD-ROM also implements a simple trick
used to load levels from standard text files: an entity's constructor receives the level file

uimca ^ an jstream parameter, and it can read its own class-specific parameters directly from
it. The factory method therefore does not need to know anything about the internals
of the subclasses it is responsible for creating.

Selecting Strategies at Runtime

The techniques described so far work fine when a game contains a small number of
behavioral classes, or when entity actions are easy enough to define without scripts.
However, what if extensive tweaking and experimentation with scripts is required?
What if you need a way to change an entity's strategy at runtime, without necessarily
influencing its behavioral classmates? This is where the Strategy pattern comes into
play. (It's the last one, I promise. I think.)

Let's assume that your script compiler produces C code. What you need is a way
to connect the C function created by the compiler with your behavioral class (or indi-
vidual entity). This is where function pointers come into play.

1.8 A Game Entity Factory

Using Function Pointers within C++ Classes

The simplest and best way to plug a method into a class at runtime is through a func-
tion pointer. A quick refresher: A C/C++ function pointer is a variable containing a
memory address, just like any other pointer, except that the object being pointed to is
a typed function defined by a nameless signature (in other words, a return type and a
parameter list). Here is an example of a declaration of a pointer to a function taking
two Entity objects and returning a Boolean value:

bool (*interactPtr) (Entity * source, Entity * target);

Assuming that there is a function with the appropriate signature in the code, for
example:

bool TypicalRabbitInteractions(Entity * source, Entity * target)

then the variable interactPtr can be assigned to it, and the function called by deref-
erencing the pointer, so that the following snippets are equivalent:

Ok = TypicalRabbitInteractions(BasilTheBunny, BigBadWolf);

and

interactPtr = TypicalRabbitlnteractions;
Ok = (*interactPtr) (BasilTheBunny, BigBadWolf);

Using function pointers inside classes is a little trickier, but not by much. The key
idea is to declare the function generated by the script compiler to be a friend of the
class, so that it can access its private data members, and to pass it the special pointer
this, which represents the current object, as its first parameter.

class SomeEntity : public Entity
{
// The function pointer
void (* friendptr)(Entity * me, Entity * target);

public:
// Declare one or more strategy functions as friends,
friend void Strategy! (Entity * me, Entity * target);

// The actual operation
void Handlelnteractions(Entity * target)
{

(*friendptr) (this, target);

60 Section 1 General Programming

Basically, this is equivalent to doing by hand what the C++ compiler does for you
when calling class methods: the C++ viable secretly adds "this" as a first parameter to
every method. Because any modern compiler will inline the function calls, there
should be no performance differential between calling a compiled script with this
scheme and calling a regular method.

Note that picking and choosing strategies at runtime through function pointers is
also a good way to reduce the number of behavioral classes in the hierarchy. In
extreme cases, a single Entity class containing nothing but function pointer derefer-
ences for strategy elements may even be able to replace the entire hierarchy. This,
however, runs the risk of obfuscating the code to a point of total opacity—proceed
with caution.

Finally, if an entity is allowed to switch back and forth between several alternative
strategies depending on runtime considerations, this scheme allows each change to be
implemented through a simple pointer assignment: clean, fast, no hassles.

Final Notes

In simple cases, the techniques described in this gem can even provide a satisfactory
alternative to scripting altogether. Smaller projects that do not require the full power
of a scripting language and/or cannot afford the costs associated with it may be able to
get by with a set of hard-coded strategy snippets, a simple GUI-based SAMMy editor,
and a linear level-description file format containing key-value tuples for the behaviors
attached to each entity.

<EntityName BasilTheBunny>
<ExportedClass Rabbit>
<StrategyVsEntity BigBadWolf Avoid>
<HandleCollision BigBadWolf Die>
• i •

The companion CD-ROM contains several component classes and examples of
the techniques described in this gem. You will, however, have to make significant

ON THE co modifications to them (for example, add your own 3D models to SAMMy) to turn
them into something useful in your own projects.

Finally, the text file formats used to load SAMMy and other objects in the code
are assumed to be the output of a script compiler, level editor, or other associated
tools. As such, they have a rather inflexible structure and are not particularly human
friendly. If they seem like gibberish to you, gentle readers, please take a moment to
commiserate with the poor author who had to write and edit them by hand. ;-)

References

[Brown98] Brown, W.H., Malveau, R.C., McCormick III, H.W., Mowbray, T.J.,
Anti Patterns: Refactoring Software, Architectures and Projects in Crisis, Wiley Com-
puter Publishing, 1998.

1.8 A Game Entity Factory 61

[GoF94] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994), Design Patterns:
Elements of Reusable Object—Oriented Software, Addison-Wesley, 1994.

[Rising98] Rising, L. ed., The Patterns Handbook: Techniques, Strategies and Applica-
tions, Cambridge University Press, 1998.

1.9

Adding Deprecation Facilities
to C++

Noel Llopis, Meyer/Glass Interactive
nllopis@mgigames.com

*
uring the lifetime of a piece of software, function interfaces are bound to change,
become outdated, or be completely replaced by new ones. This is especially true

for libraries and engines that are reused across multiple projects or over several years.
When a function that interfaces to the rest of the project changes, the game (or tools,
or both!) may not compile any more. On a team working on a large project, the situa-
tion is even worse because many people could be breaking interfaces much more often.

Possible Solutions

There are different ways of dealing with this situation:

• Don't do anything about it. Every time something changes, everybody has to
update the code that calls the changed functions before work can proceed. This
might be fine for a one-person team, but it's normally unacceptable for larger teams.

• Don't change any interface functions. This is not usually possible, especially in
the game industry where things change so quickly. Maybe the hardware changed,
maybe the publisher wants something new, or perhaps the initial interface was
just flawed. Trying to stick to this approach usually causes more harm than good,
and ends up resulting in functions or classes with names completely unrelated to
what they really do, and completely overloaded semantics.

• Create new interface versions. This approach sticks to the idea that an interface
will never change; instead, a new interface will be created addressing all the issues.
Both the original and the new interface will remain in the project. This is what
DirectX does with each new version. This approach might be fine for complete
changes in interface, or for infrequent updates, but it won't work well for frequent
or minor updates. In addition, this approach usually requires maintaining the full
implementation of the current interface and a number of the older interfaces,
which can be a nightmare.

In modern game development, these solutions are clearly not ideal. We need
something else to deal with this problem.

62

1.9 Adding Deprecation Facilities to C++ 63

The Ideal Solution

What we really want is to be able to write a new interface function, but keep the old
interface function around for a while. Then the rest of the team can start using the
new function right away. They may change their old code to use the new function
whenever they can, and, after a while, when nobody is using it anymore, the old func-
tion can be removed.

The problem with this is how to let everybody know which functions have
changed and which functions they are supposed to use. Even if we always tell them
this, how are they going to remember it if everything compiles and runs correctly?
This is where deprecating a function comes in. We write the new function, and then
flag the old function as deprecated. Then, every time the old function is used, the
compiler will generate a message explaining that a deprecated function is being called
and mentioning which function should be used in its place.

Using and Assigning Deprecated Functions

Java has a built-in way to do exactly what we want. However, most commercial games
these days seem to be written mostly using C++, and unfortunately C++ doesn't con-
tain any deprecation facilities. The rest of this gem describes a solution implemented
in C++ to flag specific functions as deprecated.

Let's start with an example of how to use it. Say we have a function that every-
body is using called FunctionAQ. Unfortunately, months later, we realize that the
interface of FunctionAQ has to change, so we write a new function called NeivFunc-
tionAQ. By adding just one line, we can flag FunctionAQ as deprecated.

int FunctionA (void)
{

DEPRECATE ("FunctionA()", "NewFunctionA()")
// Implementation

}

int NewFunctionA (void)
{

// Implementation
}

The line DEPRECATE("FunctionA()", "NewFunctionAQ") indicates that Func-
tionAQ is deprecated, and that it has been replaced with NewFunctionAQ.

The users of FunctionAQ don't have to do anything special at all. Whenever users
use FunctionA() they will get the following message in the debug window when they
exit the program:

WARNING. You are using the following deprecated functions:
- Function FunctionA() called from 3 different places.

Instead use NewFunctionA().

64 Section 1 General Programming

Implementing Deprecation in C++

Everything is implemented in one simple singleton class [Gamma95]: Deprecation-
Mgr. The full source code for the class along with an example program is included on

(^rs*- >^; j the companion CD-ROM. In its simplest form, all DeprecationMgr does is keep a list
onma> of the deprecated functions found so far. Whenever the singleton is destroyed (which

happens automatically when the program exits), the destructor prints out a report in
the debug window, listing what deprecated functions were used in that session.

class DeprecationMgr
{
public:
static DeprecationMgr * Getlnstance (void) ;
-DeprecationMgr (void);

bool AddDeprecatedFunction (const char * OldFunctionName,
const char * NewFunctionName,
unsigned int CalledFrom) ;

// Rest of the declaration here

Usually, we won't have to deal with this class directly because the DEPRECATE
macro will do all of the work for us.

#ifdef _DEBUG
#define DEPRECATE (a, b) { \

void * fptr; \
_asm { mov fptr, ebp } \
DeprecationMgr: :GetInstance()->AddDeprecatedFunction(a, b, fptr);

\
}
#else
#define DEPRECATE(a,b)
#endif

Ignoring the first few lines, all the DEPRECATE macro does is get an instance to
the DeprecationMgr and add the function that is being executed to the list. Because
DeprecationMgr is a singleton that won't be instantiated until the GetlmtanceQ func-
tion is called, if there are no deprecated functions, it will never be created and it will
never print any reports at the end of the program execution. Internally, Deprecation-
Mgr keeps a small structure for each deprecated function, indexed by the function
name through an STL map collection. Only the first call to a deprecated function will
insert a new entry in the map.

The DeprecationMgr class has one more little perk: it will keep track of the num-
ber of different places from which each deprecated function was called. This is useful
so we know at a glance how many places in the code we need to change when we
decide to stop using the deprecated function. Unfortunately, because this trick uses
assembly directly, it is platform specific and only works on the x86 family of CPUs.
The first two lines of the DEPRECATE macro get the EBP register (from which it is
usually possible to retrieve the return address), and pass it on to AddDeprecatedFunc-

1.9 Adding Deprecation Facilities to C++ 65

tionQ. Then, if a function is called multiple times from the same place (in a loop for
example), it will only be reported as being called from one place.

There is a potential problem with this approach for obtaining the return address.
Typically, the address [EBP-4] contains the return address for the current function.
However, under some circumstances the compiler might not set the register EBP to its
expected value. In particular, this happens under VC++ 6.0, when compiler optimiza-
tions are turned on, for particularly simple functions. In this case, trying to read from
[EBP-4] will either return an incorrect value or crash the program. There will be no
problems in release mode, which is when optimizations are normally turned on,
because the macro does no work. However, sometimes optimizations are also used in
debug mode, so inside the function AddDeprecatedFunctionQ we only try to read the
return address if the address contained in [EBP-4] is readable by the current process.
This is accomplished by either using exception handling or calling the Windows-
specific function IsBadReadPtrQ. This will produce an incorrect count of functions
that deprecated functions were called from when optimizations are turned on, but at
least it won't cause the program to crash, and all the other functionality of the depre-
cation manager will still work correctly.

What Could Be Improved?

One major problem remains: the deprecation warnings are generated at runtime, not
at compile or link time. This is necessary because the deprecated functions may exist
in a separate library, rather than in the code that is being compiled. The main draw-
back of only reporting the deprecated functions at runtime is that it is possible for the
program to still be using a deprecated function that gets called rarely enough that it
never gets noticed. The use of the deprecated function might not be detected until it
is finally removed and the compiler reports an error.

Acknowledgments

I would like to thank David McKibbin for reviewing this gem, and for identifying the
problems caused by compiler optimizations and finding a workaround.

References
[Gamma95] Gamma, Eric, et al, Design Patterns, Addison-Wesley. 1995.
[Rose] Rose, John, "How and When to Deprecate APIs," available online at

java.sun.com/products/jdk/1.1 /docs/guide/misc/deprecation/deprecation.html.

1.10

A Drop-in Debug Memory
Manager

Peter Da/ton, Evans & Sutherland
pdalton@xmission.com

W ith the increasing complexity of game programming, the minimum memory
requirements for games have skyrocketed. Today's games must effectively deal

with the vast amounts of resources required to support graphics, music, video, anima-
tions, models, networking, and artificial intelligence. As the project grows, so does the
likelihood of memory leaks, memory bounds violations, and allocating more memory
than is required. This is where a memory manager comes into play. By creating a few
simple memory management routines, we will be able to track all dynamically allo-
cated memory and guide the program toward optimal memory usage.

Our goal is to ensure a reasonable memory footprint by reporting memory leaks,
tracking the percentage of allocated memory that is actually used, and alerting die pro-
grammer to bounds violations. We will also ensure that die interface to die memory
manager is seamless, meaning that it does not require any explicit function calls or class
declarations. We should be able to take diis code and effortlessly plug it into any other
module by including die header file and have everything else fall into place. The disad-
vantages of creating a memory manager include die overhead time required for die man-
ager to allocate memory, deallocate memory, and interrogate die memory for statistical
information. Thus, this is not an option that we would like to have enabled for the final
build of our game. In order to avoid these pitfalls, we are going to only enable the mem-
ory manager during debug builds, or if the symbol ACTIVATE_MEMORY_MANAGER
is defined.

Getting Started

The heart of the memory manager centers on overloading the standard new and delete
operators, as well as using #define to create a few macros that allow us to plug in our
own routines. By overloading the memory allocation and deallocation routines, we
will be able to replace the standard routines with our own memory-tracking module.
These routines will log the file and line number on which the allocation is being
requested, as well as statistical information.

66

1.10 A Drop-in Debug Memory Manager 67

The first step is to create the overloaded new and delete operators. As mentioned
earlier, we would like to log the file and line number requesting the memory alloca-
tion. This information will become priceless when trying to resolve memory leaks,
because we will be able to track the allocation to its roots. Here is what the actual
overloaded operators will look like:

inline void*
operator new(size_t size, const char *file, int line);

inline void*
operator new[](size_t size, const char *file, int

line);
inline void operator delete(void *address);

inline void operator delete[](void *address);

It's important to note that both the standard and array versions of the new and
delete operators need to be overloaded to ensure proper functionality. While these dec-
larations don't look too complex, the problem that now lies before us is getting all of
the routines that will use the memory manager to seamlessly pass the new operator the
additional parameters. This is where the #define directive comes into play.

#define new new(FILE , LINE)
tfdefine delete setOwner(_FILE_,_LINE_) .false ? setOwner("",0)

: delete
#define malloc(sz) AllocateMemory(_FILE_,_LINE_,sz,MM_MALLOC)
tfdefine calloc(num,sz)

AllocateMemory(_FILE_1_LINE_,sz*num,MM_CALLOC)
#define realloc(ptr,sz) AllocateMemory(FILE , LINE , sz,

MM_REALLOC, ptr)
tfdefine free(sz) deAllocateMemory(FILE , LINE , sz,

MM_FREE)

The #define new statement will replace all new calls with our variation of new that
takes as parameters not only the requested size of the allocation, but also the file and
line number for tracking purposes. Microsoft's Visual C++ compiler provides a set of
predefined macros, which include our required __FILE_ and LINE__ symbols
[MSDN]. The #define delete macro is a little different from the #define new macro. It
is not possible to pass additional parameters to the overloaded delete operator without
creating syntax problems. Instead, the setOwnerQ method records the file and line
number for later use. Note that it is also important to create the macro as a condi-
tional to avoid common problems associated with multiple-line macros [DaltonOl].
Finally, to be complete, we have also replaced the mallocQ, callocQ, reallocQ, and the
freeO methods with our own memory allocation and deallocation routines.

The implementations for these functions are located on the accompanying CD.
t I The AllocateMemoryO and deAllocateMemoryO routines are solely responsible for all

on m CD memory allocation and deallocation. They also log information pertaining to the
desired allocation, and initialize or interrogate the memory, based on the desired

68 Section 1 General Programming

action. All this information will then be available to generate the desired statistics to
analyze the memory requirements for any given program.

Memory Manager Logging

Now that we have provided the necessary framework for replacing the standard mem-
ory allocation routines with our own, we are ready to begin logging. As stated in the
beginning of this gem, we will concentrate on memory leaks, bounds violations, and
the actual memory requirements. In order to log all of the required information, we
must first choose a data structure to hold the information relevant to memory alloca-
tions. For efficiency and speed, we will use a chained hash table. Each hash table entry
will contain the following information:

struct MemoryNode
{
size_t actualSize;
size_t reportedSize;
void *actualAddress;
void *reportedAddress;
char sourceFile[30];
unsigned short sourceLine;
unsigned short paddingSize;
char options;
long predefinedBody;
ALLOC_TYPE allocationType;
MemoryNode *next, *prev;
};

This structure contains the size of memory allocated not only for the user, but
also for the padding applied to the beginning and ending of the allocated block. We
also record the type of allocation to protect against allocation/deallocation mis-
matches. For example, if the memory was allocated using the new[] operator and deal-
located using the delete operator instead of the delete[] operator, a memory leak may
occur due to object destructors not being called. Effort has also been taken to mini-
mize the size of this structure while maintaining maximum flexibility. After all, we
don't want to create a memory manager that uses more memory than the actual appli-
cation being monitored.

At this point, we should have all of the information necessary to determine if
there are any memory leaks in the program. By creating a MemoryNode within the
AllocateMemoryO routine and inserting it into the hash table, we will create a history
of all the allocated memory. Then, by removing the MemoryNode within the deAllo-
cateMemoryO routine, we will ensure that the hash table only contains a current list-
ing of allocated memory. If upon exiting the program there are any entries left within
the hash table, a memory leak has occurred. At this point, the MemoryNode can be
interrogated to report the details of the memory leak to the user. As mentioned previ-
ously, within the deAllocateMemoryO routine we will also validate that the method

1.10 A Drop-in Debug Memory Manager 69

used to allocate the memory matches the deallocation method; if not, we will note the
potential memory leak.

Next, let's gather information pertaining to bounds violations. Bounds violations
occur when applications exceed the memory allocated to them. The most common
place where this happens is within loops that access array information. For example, if
we allocated an array of size 10, and we accessed array location 11, we would be exceed-
ing the array bounds and overwriting or accessing information that does not belong to
us. In order to protect against this problem, we are going to provide padding to the front
and back of the memory allocated. Thus, if a routine requests 5 bytes, the AllocateMem-
oryO routine will actually allocate 5 + sizeofllong)*2*paddmgSize bytes. Note that we are
using longs for the padding because they are defined to be 32-bit integers. Next, we must
initialize the padding to a predefined value, such as OxDEADCODE. Then, upon deal-
location, if we examine the padding and find any value except for the predefined value,
we know that a bounds violation has occurred. At this point, we would interrogate die
corresponding MemoryNode and report die bounds violation to the user.

The only information remaining to be gathered is the actual memory require-
ment for the program. We would like to know how much memory was allocated, how
much of the allocated memory was actually used, and perhaps peak memory alloca-
tion information. In order to collect this information we are going to need another
container. Note that only the relevant members of the class are shown here.

class MemoryManager
{
public:

unsigned int m_totalMemoryAllocations;
unsigned int m_totalMemoryAllocated; / / I n bytes
unsigned int m_totalMemoryUsed; / / I n bytes
unsigned int m_peakMemoryAllocation;

}|

Within the AllocateMemoryO routine, we will be able to update all of the Memo-
ryManager information except for the m_totalMemory Used variable. In order to deter-
mine how much of the allocated memory is actually used, we will need to perform a
trick similar to the method used in determining bounds violations. By initializing the
memory within the AllocateMemoryO routine to a predefined value and interrogating
the memory upon deallocation, we should be able to get an idea of how much mem-
ory was actually utilized. In order to achieve decent results, we are going to initialize
the memory on 32-bit boundaries, once again, using longs. We will also use a prede-
fined value such as OxBAADCODE for initialization. For all remaining bytes that do
not fit within our 32-bit boundaries, we will initialize each byte to OxE or
static_cast<char>(OxBAADCODE). While this method is potentially error prone
because there is no predefined value to which we could initialize the memory and
ensure uniqueness, initializing the memory on 32-bit boundaries will generate far bet-
ter results than initializing on byte boundaries.

70 Section 1 General Programming

Reporting the Information

Now that we have all of the statistical information, let's address the issue of how

we should report it to the user. The implementation that is included on the CD
records all information to a log file. Once the user has enabled the memory manager
and run the program, upon termination a log file is generated containing a listing of
all the memory leaks, bounds violations, and the final statistical report.

The only question remaining is: how do we know when the program is terminat-
ing so that we can dump our log information? A simple solution would be to require
the programmer to explicitly call the dumpLogReport() routine upon termination.
However, this goes against the requirement of creating a seamless interface. In order
to determine when the program has terminated without the use of an explicit func-
tion call, we are going to use a static class instance. The implementation is as follows:

class Initialize
{ public: Initialize() { InitializeMemoryManager(); } };

static Initialize InitMemoryManager;

bool InitializeMemoryManager() {
static bool hasBeenlnitialized = false;
if (sjnanager) return true;
else if (hasBeenlnitialized) return false;
else {

s_manager = (MemoryManager*)malloc(sizeof(MemoryManager));
s_manager->intialize();
atexit(releaseMemoryManager);
hasBeenlntialized = true;
return true;

}
}
void releaseMemoryManager() {

NumAllocations = sjnanager->m_numAllocations;
s_manager->release(); // Releases the hash table and calls
free(sjnanager); // the dumpLogReport() method
sjnanager = NULL;

}

The problem before us is to ensure that the memory manager is the first object to
be created and the very last object to be deallocated. This can be difficult due to the
order in which objects that are statically defined are handled. For example, if we cre-
ated a static object that allocated dynamic memory within its constructor, before the
memory manager object is allocated, the memory manager will not be available for
memory tracking. Likewise, if we use the ::atexit() method to call a function that is
responsible for releasing allocated memory, the memory manager object will be
released before the ::atexit() method is called, thus resulting in bogus memory leaks.

In order to resolve these problems, the following enhancements need to be added.
First, by creating the InitMemoryManager object within the header file of the memory
manager, it is guaranteed to be encountered before any static objects are declared.

1.10 A Drop-In Debug Memory Manager 71

This holds true as long as we #include that memory manager header before any static
definitions. Microsoft states that static objects are allocated in the order in which they
are encountered, and are deallocated in the reverse order [MSDN]. Second, to ensure
that the memory manager is always available we are going to call the InitializeMemo-
ryManager() routine every time within the AllocateMemoryO and DeallocateMemoryQ
routines, guaranteeing that the memory manager is active. Finally, in order to ensure
that the memory manager is the last object to be deallocated, we will use the ::atexit()
method. The ::atexit() method works by calling the specified functions in the reverse
order in which they are passed to the method [MSDN1]. Thus, the only restriction
that must be placed on the memory manager is that it is the first method to call the
::atexit() function. Static objects can still use the ::atexit() method; they just need to
make sure that the memory manager is present. If, for any reason, the InitializeMem-
oryManagerQ function returns false, then this last condition has not been met and as a
result, the error will be reported in the log file.

Given the previous restriction, there are a few things to be aware of when using
Microsoft's Visual C++. The ::atexit() method is used extensively by internal VC++
procedures in order to clean up on shutdown. For example, the following code will
cause an ::atexit() to be called, although we would have to check the disassembly to
see it.

void Foo() { static std::string s; }

While this is not a problem if the memory manager is active before the declara-
tion of s is encountered, it is worth noting. Despite this example being completely
VC++ specific, other compilers might differ or contain additional methods that call
::atexit() behind the scenes. The key to the solution is to ensure that the memory
manager is initialized first.

Things to Keep in Mind

Besides the additional memory and time required to perform memory tracking, there
are a few other details to keep in mind. The first has to deal with syntax errors that
can be encountered when #induding other files. In certain situations, it is possible to
generate syntax errors due to other files redefining the new and delete operators. This
is especially noticeable when using STL implementations. For example, if we #include
"MemoryManager.h"a.nd then #include <map>, we will generate all types of errors. To
resolve this issue, we are going to be using two additional header files: new_on.h and
new_off.h. These headers will simply #define and #undefine the new!'delete macros that
were created earlier. The advantage of this method includes the flexibility that we
achieve by not forcing the user to abide by a particular #include order, and avoids the
complexity when dealing with precompiled headers.

tfinclude "new_off.h"
#include <map>

72 Section 1 General Programming

^include <string>
#include <A11 other headers overloading the new/delete operators>
#include "new_on.h"

^include "MemoryManager.h" // Contains the Memory Manager Module
tfinclude "Custom header files"

Another issue we need to address is how to handle libraries that redefine the new
and delete operators on their own. For example, MFC has its own system in place for
handling the new and delete operators [MSDN2]. Thus, we would like to have MFC
classes use their own memory manager, and have non-MFC shared game code use our
memory manager. We can achieve this by inserting the #indude "new_off.h" header
file right after the #//2&/'created by the ClassWizard.

#ifdef _DEBUG
^include "new_off.h" // Turn off our memory manager
tfdefine new DEBUG_NEW
tfundef THIS_FILE
static char THIS_FILE[] = _FILE__;
#endif

This method will allow us to keep the advantages of MFC's memory manager,
such as dumping CC%>rt-derived classes on memory leaks, and still provide the rest
of the code with a memory manager.

Finally, keep in mind the requirements for properly implementing'the setOwnerQ
method used by the delete operator. It is necessary to realize that the implementation
is more complicated than just recording the file and line number; we must create a
stack implementation. This is a result of the way that we implemented the delete
macro. Take, for example, the following:

File 1: line 1: class B { B() {a = new int;} ~B() {delete a;} };
File 2: line 1: B *objectB = new B;
File 2: line 2: delete objects;

The order of function calls is as follows:

1. new(objects, File2, 1
2. new(a, Filel, 1
3. setOwner(File2, 2);
4. setOwner(Filel, 1);
5. delete(a);
6. delete(objects);

As should be evident from the preceding listing, by the time the delete operator is
called to deallocate objectB, we will no longer have the file and line number informa-
tion unless we use a stack implementation. While the solution is straightforward, the
problem is not immediately obvious.

1.10 A Drop-in Debug Memory Manager 73

Further Enhancements

, c , Within the implementation provided on the CD accompanying this book, there are
on m CD several enhancements to the implementation discussed here. For example, there is the

option for the user to set flags to perform more comprehensive memory tests.
Options also exist for setting breakpoints when memory is deallocated or reallocated
so that the programs stack can be interrogated. These are but a few of the possibilities
that are available. Other enhancements could easily be included, such as allowing a
program to check if any given address is valid. When it comes to memory control, the
options are unlimited.

References

[DaltonOl] Dalton, Peter, "Inline Functions versus Macros," Game Programming
Gems II, Charles River Media. 2001.

[McConnell93] McConnell, Steve, Code Complete, Microsoft Press. 1993.
[MSDN1] Microsoft Developer Network Library, http://msdn.microsoft .com/

Iibrary/devprods/vs6/visualc/yclang/_pluslang_initializing_static_objects.htm
[MSDN2] Microsoft Developer Network Library, http://msdn.microsoft

.com/library/devprods/vs6/visualc/vccore/core_memory_management_with_mf
c.3a_.overview.htm

[Myers98] Myers, Scott, Effective C++, Second Edition, Addison-Wesley Longmont,
Inc. 1998.

1.11
A Built-in Game Profiling Module

JeffEvertt, Lithtech, Inc.
jeff@evertt.com

This gem describes the architecture and implementation of a profiling module for
low-overhead, real-time analysis that supports performance counter organization

so that many consumers can work together in harmony. It is designed from a game
engine perspective, with many of its requirements specifically pertaining to things
typically found in games. At the time of this writing, the described module is in use
by a commercially available game engine.

Profiling the performance of a game or engine is one of those things that everyone
agrees is important, but just as often as not guesswork or quick hacks are substituted
for a real game system that can gather solid data. In the long run, the time it takes to
implement a clean profiling system is a wise investment. And, as with everything else,
the earlier we plan for it, the easier it will be.

Profiling Basics

The basic profiling mechanism is simple: take a timestamp at the beginning of the
code of interest and again at the end. Subtract the first from the second, and voila,
that's how long the code took to run. We need a high-resolution counter - the Win-
dows multimedia timer and its millisecond resolution will not cut it. If the platform
is Windows on a PC, there are two high-resolution API calls we can use: QueryPerfor-
manceCounter and QueryPerformanceFrequency. However, because the overhead of
these functions is fairly high, we will roll our own, which only requires a few lines of
inline assembly:

void CWin32PerfCounterMgr::GetPerfCounter(
LARGE_INTEGER SdCounter) {

DWORD dwLow.dwHigh;
asm {

rdtsc
mov dwLow, eax
mov dwHigh, edx

}
iCounter.QuadPart = ((unsigned int64)dwHigh « 32)

| (unsigned int64)dwLow; }

74

1.11 A Built-in Game Profiling Module

To convert this number into seconds, we need to know the counter frequency. In
this case it is equal to the CPU cycles per second. We can measure it once when the
counters are enabled — take a time sample, sleep for at least 500ms, and then take
another sample. Note that similar counters are available if the target platform is a
game console.

Commercially Available Tools

Performance tuning is definitely a case where choosing the right tool for the job can
make all the difference. There are many time-tested commercial tools available for the
PC that sample an application as it runs, then offline allow profile data to be viewed
module-by-module, function-by-function, and just about any other imaginable way.
Intel® VTune™ and Metrowerks® Analysis Tools both make use of the built-in
CPU hardware counters to generate post-processed profiles of runtime sections of a
game. Tuning assembly code by instruction ordering or pairing prediction is defi-
nitely a strength of VTune™.

The Intel® Graphics Performance Toolkit (GPT) provides some powerful scene
analysis tools. It hooks in and snoops traffic at the layer between your application and
Direct3D/OpenGL. Knowing exactly what is being drawn can at times be very help-
ful. Changing the order or the way in which the game renders can sometimes signifi-
cantly affect performance. However, the GPT is written to a specific version of
DirectX, so its releases usually trail that of DirectX. Also, taking any significant scene
data will slow down the application, so relying on the performance characteristics of
data taken when using the GPT can be dangerous.

Statistics-gathering drivers for graphics cards and hardware counters can be
invaluable. Nvidia releases special drivers and a real-time data viewing application
that hooks all of the function entry points of the drivers. If the graphics driver is tak-
ing a significant percentage of CPU time, this application will allow us to look inside
and break it down further. Intel® provides counters in its drivers and hardware for its
i740 chip, allowing optimization for stalls all the way down to the graphics chip level.
Some of the game consoles also provide this ability. It can be very useful, as it is the
only way to break down performance at this low level. It does, however, require a fair
amount of knowledge about how the drivers and chips operate, and what the counters
really mean.

Why Roll Our Own?

Reason one: frame-based analysis. Games typically have a fairly high frame-to-frame
coherency, but in just a matter of seconds can drastically change. Imagine a 3D
shooter—a player starts facing a wall, runs down a long corridor, then ends it all in a
bloody firefight with five Al-driven enemies. The game engine is running through
many potentially different bottlenecks that can only really be identified with a frame-
by-frame analysis. Looking at a breakdown of an accumulated sample over the entire

76 Section 1 General Programming

interval gives an inaccurate view of what is really going on. Frame-based analysis
allows focusing on one problem at a time.

Reason two: it can be done anytime and anywhere. At the end of a PC game
development cycle, someone will probably be faced with performance problems that
only manifest themselves on someone's brother's machine, on odd Tuesdays. There
are typically a significant number of these types of problems. They can cost a lot of
time and can very easily slip the release date. Although this type of problem is unique
to PC games, console games still have to deal with the "shooting a missile in the cor-
ner of level three grinds the game to a slow crawl" types of problems. Once the prob-
lem is understood, figuring out the solution is usually the easy part. If we could walk
over to that test machine and pop up a few counter groups, we would quickly nail
down the culprit.

Reason three: customizability. Modern game engines are complicated. The ability
to ignore all the other modules in the engine except for the one being working on is
powerful. In addition, the only person that can organize the data exactly how they
want it is the engineer actually doing the work.

Profile Module Requirements

Requirement one: allow users to quickly and accurately profile the application.
Requirement two: be non-obtrusive (that is, have very low overhead). When the

cost for taking samples and displaying the results becomes a significant portion of die
frame time, it can actually change the application's behavior within the system. In gen-
eral, slowing down the CPU will tend to hide stalls caused by graphics cards. While
even a very small percentage can in some rare cases drastically change game perfor-
mance, as a general rule, when the profiler is enabled, it should take less than five per-
cent of the total CPU cycles. When disabled, it should be much less dian one percent.

Requirement three: allow multiple users to work independently on their respec-
tive systems without having to worry about other engine modules.

Requirement four: when it's not needed, it should be well out of the way.

Architecture and Implementation

A performance counter manager (IPerfCounterMan) keeps track of all active and inac-
tive counters. The counters are organized into groups of similar type (for example,
model render, world render, AI, physics) that are enabled and disabled together. This
supports the notion of multiple groups working independently in an easy to under-
stand grouping concept. Groups are useful for two reasons: for quickly determining if
a counter needs to be sampled, and for enabling and disabling groups of counters to
be displayed. We will make use of four-character codes (FourCC's) for the group ID
and full text strings for counter names.

The entire system is organized into a module with an interface to the rest of the
system. The basic component is a counter that is identified by a group ID (its

1.11 A Built-in Game Profiling Module J77

FourCC) and its string name. Each counter is given an integer ID on creation that
uniquely identifies it. In typical usage, the game code creates counters on initializa-
tion and puts start/stop counter calls around the code to be profiled.

The basic functional unit interface for the module is as follows:

class IPerfCounterMan {
public:
// Add new counter (returns the ID, 0 is failure)

int32 AddCounter(uint32 CounterGroup,
const char* szCounterName);

// Forget your counter's ID? (Zero is failure)
int32 GetCounterID(uint32 CounterGroup,

const chan* szCounterName);

// Delete the counter
bool DeleteCounter(uint32 Counter-ID);

// Start and Stop a counter.
void StartCounter(uint32 Counter-ID);
void StopCounter(uint32 CounterlD);

// Draw the Counters onto the Screen (to be called once
// per frame near the end of the scene)

void DrawCounters();
};

StopCounter calculates the difference between the StartCounter and StopCounter
calls and keeps a running total. On DrawCounters, all the running counters are
cleared. A maximum value is also maintained and is set at the end of the frame in
DrawCounters. Let's assume that our engine has a debug console that accepts text
commands. It is a very convenient way to enable and disable counter groups and to
allow customization of the display.

It is very helpful to allow as much configuration in the counter display as possi-
ble. We will most likely not want to refresh the counter display every frame (updates
every 30 frames should be sufficient), but depending on what is being debugged, the
ability to customize the refresh time can be very handy. In addition, displaying both
the current percentage and the maximum percentage since last displayed is useful.

A bar graph is a good way to display the result. It gives the consumer a quick feel
for the numbers and isn't hard to code. The ability to switch from percentage to actual
time (in milliseconds), display the time or percentage as text values, and auto-scale the
axes is also very useful. Be careful about switching the axis scale very often, especially
without some kind of warning, because it will likely just confuse people.

78 Section 1 General Programming

Implementation Details

The interface to the performance counter manager should be flexible and easy to use.
Consumers of the profile manager will often find it easier to simply call Add-
Counter(...) with the full string, get the ID, and start it up all at once instead of sav-
ing the counter ID at some one-time initialization point. Providing this mechanism
can help out when doing some quick profiling. However, it's not as efficient, and call-
ing it many times in a frame will add up quickly. Also, supplying a class that can be
placed at the beginning of a function that calls StartCounter in the constructor and
StopCounter in the destructor (when it goes out of focus) can be a handy way to
instrument the counters.

When writing the profiling manager, it's best to provide some kind of #define
macro that completely removes the profiler. When it comes down to getting peak per-
formance out of a game, profiling code is often one of the first things to go. We need
to provide macros for AddCounter, StartCounter, and StopCounter that completely
compile out on an #ifdefdnan%t.

Also, it's best to use colors for visual cues. When the counters are being displayed,
it's easier to read if we use different colors on each line.

Data Analysis

Be sure to profile the release build, because it can have a very different set of bottle-
necks from the debug version. If the target platform is the PC, it is also a good idea to
pick two or three typical system configurations (low to high end) and profile each of
them. Bottlenecks can vary greatly across system configurations.

The game should be profiled in the areas that have performance problems as well
as during typical game play. We must break the problem down, try to focus on one
thing at a time, and focus on the areas that will give the biggest bang for the buck. Just
because a function is called the most often or takes the most CPU time doesn't mean
it is the only place we should focus our efforts. Often, the only thing we can compare
our cycle times with is our expectations, and realistic expectations are usually gained
only through experience.

The profiler itself should also be profiled. If the act of profiling is intrusive, it
changes the behavior of your game. There should be a counter around the profiler's
draw routines.

Implementation Notes

The described module has been implemented across multiple platforms. However,
parts of it require platform-dependent functions. The actual timestamp query and the
draw functions will mostly likely need to be implemented in platform-dependent
code, so it's best to design a level of abstraction around those functions. The described
implementation uses a set of debug geometry and text (which has a platform-

1.11 A Built-in Game Profiling Module _ 79

dependent implementation) in the draw code so that it can be platform independent.
You may need to write a macro to create your four character code values, as many
compilers do not have support for them.

This same system can be used to take long running profiles of a game server to
detect problems. All the counters go through one source, so data can easily be filtered
down and saved to disk.

1.12

Linear Programming Model for
Windows-based Games
Javier F. Otaegui, Sabarasa Entertainment
jJavier@sabarasa.com.ar

In the past, when DOS ruled the earth, we programmed our games in a mostly lin-
ear fashion. Then it was time to port our creations from DOS to DirectX, and this

was a big jump because of the Windows message pump. Its architecture is simply not
adequate for game programming. In this gem, we will cover an effective way to encap-
sulate the message pump, provide a linear programming model and, as a very desir-
able side effect, allow correct "alt-tab" application switching. We will also cover
correct recovery of lost surfaces.

If you have previously programmed linearly, you will easily understand the
importance of the method introduced in this gem. If your experience in game
programming started with Windows, then you might find the message pump
a natural environment for game programming, but once you try linear pro-
gramming, you will never go back to the message pump. It is far clearer and
easier to follow and debug than a huge finite state machine is. You can save a
lot of design, programming, debugging time, and thinking if you start work-
ing in a more linear way.

Updating the World

Modern games often have some sort of UpdateWorld function, located in the heart of
the application in the message pump, and invoked whenever it is not receiving any
messages. In a first attempt, coding an UpdateWorld function can be very simple: all
the application variables, surfaces, and interfaces have already been initialized, and
now we just have to update and render them. That should be an easy task, but only if
we plan that our game will have only one screen, no cut-scenes, no menus, and no
options.

The problem is that UpdateWorld must eventually finish and return to the mes-
sage pump so we can process messages from the system. This prevents us from staying
in a continuous for loop, for example. As old DOS games didn't have to return con-
stantly to a message pump to process system requests, we could linearly program

80

1.12 Linear Programming Model for Windows-based Games 81

them, and our subroutines could have all the loops they needed, or delays, or cut-
scenes. We simply had to insert the corresponding code into the subroutine. Now,
however, with the message pump, which requires constant attention, we must return
on every loop. As stated previously, the problem of returning in every single loop is
when attempting to maintain several game screens.

The way to work around this is to make every subroutine of the application a
finite state machine. Each subroutine will have to keep track of its internal state, and,
according to this state, it must invoke several other subroutines. Each of these other
subroutines is also a finite state machine, and when it finishes its execution (that is, it
has no more states to execute), it must return a value to inform the invoking subrou-
tine that it can proceed with its own following state. Of course, each subroutine,
when it finishes, must reset its state to 0, to allow the application to invoke it again.

Now if we imagine 30 or 40 of these subroutines, each with a couple dozen states,
we will be facing a very big monster. Trying to debug or even follow this code will be
difficult. This finite-state programming model is far more complicated that the sim-
ple model achieved by old linear DOS programs.

The Solution: Multithreading

Here is a simple multithreading model that frees the game programmer from the mes-
sage pump and its potentially undesirable finite-state programming model.

Windows supports multithreading, which means that our application can run
several threads of execution simultaneously. The idea is very simple - put the message
pump in one thread and the game into another one. The message pump will remain
in the initial thread, so we can take out the UpdateWorld function from the message
pump and return it to its simplest form (a linear programming scheme). Now we just
need to add to the dolnit function the code necessary to initiate the game thread.

HANDLE hMainThread; // Main Thread handle

static BOOL
dolnit(...)
{

... // Initialize DirectX and everything else

DWORD tid;

hMainThread=CreateThread(0,
0,
&MainThread,
0,
0,
&tid);

return TRUE;
}

MainThread is defined by:

82 Section 1 General Programming

DWORD WINAPI
MainThread(LPVOID argl)
{

RunGame() ;
PostMessage(hwnd, WM_CLOSE, 0, 0);
return 0;

Main Thread will invoke our RunGame function, and when it is finished, we just
post a WM_CLOSE message to tell the message pump thread to finish execution.

Initialization Code

Now we must choose whether to include initialization code (including the DirectX
initialization code) in the dolnit function or directly into our RunGame function. It
may be more elegant to include it in the dolnit function, as long as we include all ter-
minating code in the response to WM_CLOSE in our message handler. On the odier
hand, we could include all the initialization code in the RunGame function, which
means that we will handle all of the important parts of the code directly in our new
linear game-programming function.

The "Alt-Tab" Problem
Making a game truly multitasking under Windows is perhaps one of the most hazardous
issues in game programming. A well-behaved application must be able to correcdy switch
to other applications. This means allowing the user to alt-tab away from the application,
which some games attempt to disallow, but we will try to make things work correcdy.

We could try using the standard SuspendThread and ResumeThread functions, but
it's nearly impossible to get this to work properly. Instead, we will use a multithreaded
communication tool: events. Events work like flags that can be used to synchronize
different threads. Our game thread will check if it must continue, or if it must wait for
the event to be set.

On startup, we must create a manual-reset event. This event should be reset
(cleared) when the program is deactivated, and set when the program is reactivated.
Then, in the main loop, we just have to wait for the event to be set.

To create the event, we need this global:

HANDLE task_wakeup_event;

To create and set the event, we need to include the following code during initial-
ization:

task_wakeup_event =
CreateEvent(

NULL, / / N o security attributes
TRUE, // Manual Reset ON
FALSE, // Initial state = Non signaled
NULL // No name

1.12 Linear Programming Model for Windows-based Games 83

Most games have a function in their main loop that is called every time the game
needs to render a new screen; this is typically where DirectX is asked to flip the pri-
mary and back buffers. Because this function is called constantly, this is an ideal loca-
tion to make the thread wait for the event in an idle state, using this code:

WaitForSingleObject(task_wakeup_event, INFINITE);

We must suspend the thread every time the operating system switches the active
application. To do this, we must have our WindowProc function, and upon receiving
an APP_ACTIVATE message, check whether the application is active. If the applica-
tion has gone to an inactive state, we must suspend the game execution, which
requires this call:

ResetEvent(task_wakeup_event);

and to resume it:

SetEvent(task_wakeup_event);

With this simple implementation, when the user hits alt-tab, the game will tem-
porarily stop execution, freeing all the processor's time to enable die user to do other
tasks. If the world update must continue executing even if the application loses focus,
then we can just suspend the rendering pipeline, and continue updating the world.
This event model can be used with any number of threads that the application may
require, by inserting new events for each new thread.

Handling Lost Surfaces
If we use video memory surfaces, we will face the problem of losing the surface infor-
mation when the application loses focus. The problem that we now face is that with
our new linear programming model, a program can be caught in the middle of a sub-
routine with all its surfaces lost.

There are many possible solutions to this situation, one of which is the Com-
mand pattern [GoF94]. Unfortunately, it obscures our code, and the main goal of this
gem is to make things more clear. We can use a global stack of pairs of callback func-
tions and If Voids, which will be called when the surfaces need to be reloaded. When
we need to restore the surfaces, we would invoke callback_function(IpVoid). The
If Void parameter can include pointers to all the surfaces that we need, so we can keep
the surfaces local to our new linear subroutines.

Let's suppose that we have a subroutine called Splash that displays a splash screen
in our game, which is a surface loaded from a file. If the user hits alt-tab while the
splash screen is displayed and then comes back, we want our application to show the
splash screen again (let's assume that the surface was lost while the application was
inactive). Using our proposed method, we must do something like this:

int LoadSplashGraphi.es (Ipvoid Params)

Section 1 General Programming

Surface *pMySurface;
pMySurface = (Surface *) Params;

// (load the graphic from the file)

return 1;

int Splash()

Surface MySurface;

// Push the function
gReloadSurfacesStack.Push(&LoadSplashGraphics, &MySurface);

/ / D o not forget to load graphics for the first time
LoadSplashGraphics(&MySurface);

// ... the subroutine functionality.

// Pop the function
gReloadSurfaceStack.Pop();

}

We are using a stack so that each nested subroutine can add all the surface load-
ing and generation code that it might need. The implementation could easily be
changed to another collection class, but this is a classic stack-oriented problem due to
its nested functionality, and so a stack works best here.

References

[GoF94] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994), Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. 1994.

Otaegui, Javier E, "Getting Rid of the Windows Message Pump," available online at
www.gamedev.net/reference/articles/articlel249.asp.

1.13

Stack Winding

Bryon Hapgood, Kodiak Interactive
bryonh57@hotmail.com

Stack winding is a powerful technique for assembly programmers that allows us to
modify an application's stack to do weird and wonderful things that can be

extended into C/C++ with very little work. While the days of writing every line of
game code in hand-optimized machine language are over, sometimes it is worth the
effort to dip into the realm of the arcane to get that extra bit of speed and elegance in
a game.

In this gem, we cover one particular type of stack winding that I call the "tempo-
rary return." This is the bare minimum form that we will build upon in subsequent
examples until we have a thunked temporary return. The code examples have been
tested with Microsoft's MASM and Visual C++ compiler. I have personally used stack
winding in a number of projects for the GameBoy Color, PC, and Xbox.

Simple TempRet

Stack winding, as its name implies, is a technique for modifying the stack to make it
do unexpected things. The term stack winding comes from the idea of inserting values
in an existing stack frame to change its normal and expected behavior.

Listing 1.13.1 The TempRet routine
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

.586

.model flat

.data
buffer dd ?
file_handle
filesize dd
.code

_TempRetEg:

call
call
)

dd ?
?

fnO
fn1

; before
j
pop edx

85

Section 1 General Programming

16
17
18
19
20
21
22
23
24
25
26
27 end

call edx
1

; after
»
call fn2
call fn3
ret

A: call _TempRetEg
ret

In Listing 1.13.1, we see the first building block of stack winding: the TempRet rou-
tine. Let's take a function (call it MyFunc) and say it calls _TempRetEg. The latter
then calls two functions: fnO and fnl. It then hits the lines:

pop edx
call edx

Now we know that the way the CPU handles the assembly CALL instruction on
line 24 is to push the address of the next line (25) and execute a JUMP to line 8. Line
15 pops that address off the stack and stores it in a CPU register. Now we CALL that
address. This pushes line 20 onto the stack and executes a JUMP to line 25. The lat-
ter does nothing but execute a CPU return, which pops an address off the stack and
jumps there.

The rest of _TempRetEg then continues and when it returns, we do not return to
MyFunc but to whatever function called MyFunc in the first place. It is an interesting
little trick, but why would it be important? The power comes when we consider the
functions FNO through FN3.

Let's say that FNO opens a file, FN1 allocates a buffer and reads the file into
memory, FN2 frees that memory, and FN3 closes the file. Thus, MyFunc no longer
has to worry about the release steps. It doesn't have to close the file or worry about
freeing up the memory associated with the file. Functionally the process of opening a
file, reading it into memory, freeing that memory, and closing the file is all contained
within a single block of code. MyFunc only has to call _TempRetEg, use the buffer,
and return.

TempRet Chains

The TempRet example comes of age when we chain functions together. Let's take a
classic problem: the initialization and destruction of DirectX 7. This usually takes a
number of steps, but it's incredibly important to release the components of DX in
reverse order, which can sometimes become horribly complicated.

So, let's expand our first example to illustrate this:

1.13 Stack Winding 87

Listing 1.13.2 Winding multiple routines onto the stack
0 .586
1 .model flat
2 .code
3
4 TempRet macro
5 pop edx
6 call edx
7 TempRet endm
8
9 createWindow:
10 ; open the window
11 TempRet
12 ; close it
13 net
14 setCooperativeLevel:
15 ; set to exclusive
16 TempRet
17 ; restore
18 ret
19 changeDisplayMode:
20 ; set 640x480 16 bpp
21 TempRet
22 ; restore
23 ret
24 createSurfaces:
25 ; create primary surface
26 ; get attached back
27 TempRet
28 ; release primary
29 ret
30 _SetupDX7:
31 call createWindow
32 call setCooperativeLevel
33 call changeDisplayMode
34 call createSurfaces
35 jmp _SomeUserRunFunc
36
37
38 end

By performing numerous TempRets in succession we effectively have wound four
routines onto the stack so that when _SomeUserRunFunc returns, we will bounce
back through createSurfaces, changeDisplayMode, setCooperativeLevel, and cre-
ateWindow at the line after the TempRet in reverse order.

So far, we've been using assembly language, but it's not necessary to write assem-
bly modules to use this technique. We will cover two mechanisms in Microsoft's
Visual C++ in the final section that aid us in stack winding: inline assembly and
naked functions.

88 Section 1 General Programming

Thunking

The ideas discussed so far need to be translated into C/C++. As stated previously, Visual
C++ has a handy mechanism for doing diis, but what about other compilers? If naked
functions are not supported, then we will have to dip into assembly language because
the presence of a stack frame really complicates things. It is not impossible, just difficult.

Thunking is a technique popularized by Microsoft for slipping a piece of code
between two others. In effect, program flow is hurtling along through our code until
thunk!—it crashes into that layer. Thunks are a great way of implementing a stack-
winding paradigm in C++. Let's look at an example that performs the same task of set-
ting up DirectX as we saw earlier:

Listing 1.13.3 Visual C++ example using TempRet
#define TempRet\
_ asm{pop edx}\
__ asm{call edx}

tfdefine NAKED void _ declspec(naked)
tfdefine JUMP _ asm jmp
tfdefine RET _ asm ret

static NAKED createWindow(){
// open the window
TempRet
// close it
RET

static NAKED setCooperativeLevel(){
// set to exclusive
TempRet
// restore
RET

static NAKED changeDisplayMode(){
// set 640x480 16 bpp
TempRet
// restore
RET

static NAKED createSurfaces(){
// create primary surface
// get attached back
TempRet
// restore
RET

1.13 Stack Winding 89

NAKED SetUpDX7(){
createWindow();
setCooperativeLevel();
changeDisplayMode();
createSurfaces();
JUMP run

Recursion

As a final example of the power of stack winding, we will explore a solution for a clas-
sic problem with recursive searching: how to roll back die recursion. In regular C we
would simply return repeatedly, walking back through the stack until we reach the
top. If our recursion is over 100 calls deep, however, this might take a little time. To
fix this, here is a pair of utility functions called SafeEnter. Incidentally, the code works
just as well from a C++ object as a global function.

Listing 1.13.4 The SafeEnter and SafeExit functions that aid
recursion

.586

.model flat

.code

public SafeEnter,SafeExit

; struct SAFE{
; void*_reg[8];
; void* ret;
I }

; assembly for SafeEnter routine

_SafeEnter:

pop edx ; return address
mov eax,[esp] ; safe

mov [eax].safe. ret,edx
mov [eax].safe. ebx.ebx
n)ov [eax].safe. ebp,ebp
mov [eax].safe. esp,esp
mov [eax].safe. esi,esi
mov [eax].safe. edi.edi

pop eax ; safe pointer
pop edx ; call function
push eax ; safe pointer

90 Section 1 General Programming

mov ebp,eax
call edx
mov eax,ebp
jmp sex

_SafeExit:

pop edx ; return
pop eax ; regs context

mov edi,[eax].safe. edi
mov esi,[eax].safe. esi
mov esp,[eax].safe. esp
mov ebp,[eax].safe. ebp
mov ebx,[eax].safe. ebx
mov edx,[eax].safe. ret
mov eax,[eax].safe. eax

jmp edx

end

SafeEnter works by saving off to a SAFE structure a copy of crucial CPU regis-
ters. It then calls our recursive function. As far as the function is concerned, no extra
work is necessary. Now the cool part comes when we find the piece of data we're look-
ing for. We simply call SafeExit() and pass it the register context we built earlier. We
are instantly transported back to the parent function.

Now, if the unthinkable happened and the search routine did not meet its search
criteria, then the function can simply return in the normal way, all the way up the chain.

Listing 1.13.5 Recursive example using SafeEnter and SafeExit
static void search(SAFE&safe,void*v){

if(<meets_requirement>)
SafeExit(safe);

// do stuff
search(safe,v);
return;

}

int main(){
SAFE safe;
SafeEnter(
safe,
search,
<some_pointer>)

1.14

Self-Modifying Code

Bryon Hapgood, Kodiak Interactive
bryonh57@hotmail.com

Self-modifying code, also known as "RAM-code," is a fascinating technique that
actually allows a program to alter its own code as it executes. It has been used in

everything from genetic algorithms to neural networks with amazing results. In games
it can be used as a powerful optimization technique. Recently I used this technique on
a GameBoy Color title Test Drive Cycles to decompress artwork on the fly at 60 fps,
decode 14 palettes of color information (instead of the standard eight), and enable
multiple levels of parallax scrolling. In this gem, we will cover how to write self-
modifying applications.

The Principles of RAM-Code

RAM-code is a simple idea, but one that can take an inordinate amount of time to get
just right. It is written for the most part in hexadecimal and can be difficult to debug.
Let's look at a very simple case. We want to load a pointer from a 16-bit variable
stored somewhere in RAM.

getjil:
Id hl,ptr_var Load HL register with the address ptr_var
Id a,(hli)

Id h,(hl)
Id l,a

Load A register with low byte
and increment HL
Load L register with high byte of ptr_var
Save low byte into L

ret ; Return

This example can be improved by writing it as:

getjil:
db $2a ; Id hi,...

ptr_var
dw $0000 ; ...ptr_var
ret

These two routines are logically no different from each other, but can you see the
difference? The second example is stating the variable that stores the address to be
loaded in HL as an immediate value! In other words, instead of physically going out
and loading an address, we just load HL. It's quicker to load an immediate value than

91

92 Section 1 General Programming

to access main memory, and because there are fewer bytes to decode, the code runs
much faster. We can take that idea much further when it comes to preserving regis-
ters. Instead of pushing and popping everything, which can be expensive, we simply
write the value ahead into the code. For example, instead of writing:

get_hl: :
Id hl,ptr_var
Id a,(hli)
Id l,(hl)
Id h,a
Id a,(hi)
push af ; Save A register
j
; do something with A
j
pop af ; Restore A register

ret

this code can be optimized down to:

getjil:
db $2a ; Id hi,...

ptr_var
dw ptr_var ; ...ptr_var
Id a,(hi)
Id (var1),a
i
; do something with A

db $2F ; Id a, . . .
varl db $00 ; ...saved register value

ret

This is not a huge saving, but it illustrates the point.

A Fast Bit Blitter

In many games, it is often crucial to convert from one pixel format to another, such as
from 16-bit (565) RGB to 24-bit RGB. Whether this is done in some offline tool or
within the game itself can be satisfied with this one routine. We can define a structure
(call it BITMAP) that contains information about an image. From this, our blitter
can then use RAM-code techniques to construct an execute-buffer—a piece of code
that has been allocated with malloc and filled with assembly instructions.

The blitter works by taking a routine that knows how to read 16-bit (565) RGB
pixels and convert them to 32-bit RGBA values, and a routine that knows how to
write them in another format. We can paste these two functions together, once for
images with odd widths, or multiple times in succession to effectively unroll our loop.
The example shown next takes the former approach.

So, let's define our bitmap structure and associated enumerated types.

1.14 Self-Modifying Code 93

enum Format{
RGB_3x8=0 ,
RGB_565=4,
RGB_555=8,
RGB_4x8=12,
RGB_1x8=16

struct BITMAP{
void *pixels;
u32 w, h, depth;
TRIPLET *pal;
Format pxf;
u32 stride;
u32 size;

- BITMAP();
BITMAP (int , int , int , Format , int n=1) ;
void draw(int , int , BITMAP&, int , int , int , int) ;
operator bool(){

return v!=NULL;

Now, it's really important that we have the same structure defined on the assem-
bly side of things.

BITMAP
pixels
w
h
depth
pal
pxf
stride
size

struct
dd ?
dd ?
dd ?
dd ?
dd ?
dd ?
dd ?
dd ?

BITMAP ends

PF_BGR_3x8 =
PF_BGR_565 =
PF_BGR_555 =
PF_BGR_4x8 =
PF BGR 1x8 =

OOh
04h
08h
OCh
10h

The next step is to define our execute buffer.

execute_buffer db 128 dup(?)

For this code to work in C++, we must use a mangled C++ name for the member
function BITMAP: :draw. After that comes some initialization code:

?draw@BITMAP@<aQAEXHHAAU1 @HHHH@Z:

push
lea

ebp
ebp,[esp+8] get arguments address

94 Section 1 General Programming

push ebx
push edi
push esi

mov edi,ecx ;dst bitmap
mov esi,[ebp+8] ;src bitmap
mov eax,[esi].bitmap.pxf

The first thing we must decide is whether we need to do a conversion at all.
Therefore, we test to see if the two pixel formats of the bitmap objects are the same. If
so, we can further ask whether they are the same size. If that is the case, we can just do
a fast string copy from one to the other. If not, but they're the same width, then we
can still do the string copy. If the two have different widths, then we can do string
copies line by line.

mov edx,[edi].bitmap.pxf
cmp eax,edx
jne dislike

like copy

mov ecx,[esi].bitmap._size
cmp ecx,[edi].bitmap._size
je k3

mov ecx,[edi].image.stride
mov edx,[esi].image.stride
cmp edx,ecx
jne @f

)
; same w different h
i
mov edx,[edi].image.h
mov eax,[esi].image.h
cmp eax,edx
jl k2

mov eax,edx
k2: mul ecx
mov ecx,eax
k3: mov esi,[esi].image.Ifb
mov edi,[edi].image.Ifb
shr ecx,2
rep movsd
jmp ou

,
; find smallest h -> ebx
j
mov eax,[edi].image.h
mov ebx,[esi].image.h
cmp ebx,eax
jl @f

mov ebx,eax

; calc strides

1.14 Self-Modifying Code 95

add ebp,12
mov eax, [ebp].rectangle.w
mul [esi].image.depth; edx corrupts
mov edx,[esi].image.stride
sub ecx,eax
sub edx,eax
i
; calc offsets with intentional reg swap

push
push
push
call
pop
pop
pop

eax
ecx
edx
calc_esdi
edx
eax
ecx

ou:

shr
mov
rep
lea
lea
mov
dec
jne
pop
pop
pop
pop
ret

edx=dest pad

ecx, 2
ebp,ecx
movsd
edi,[edi+eax]
esi,[esi+edx]
ecx,ebp
ebx
@b
esi
edi
ebx
ebp
1ch

If the two bitmaps have completely different pixel formats, we have no choice but
to convert every single pixel from one format to the other. The following code shows
this in action. There's another way to further improve this routine by unrolling the
loop—this would be as simple as repeating the build step four or more times.

dislike :lea
add
push
push
push
push
push
mov
mov

eax,execute_buffer
ebp,12
ou
eax
edi
esi
ebp
ebx,edi
edi,eax

destination image

write "mov ebx,h"

mov al,OBDh
stosb
mov eax,[ebp].rectangle.h

96 Section 1 General Programming

stosd
»
; write "mov ecx.w"

mov al,OB9h
stosb
mov eax,[ebp].rectangle.w
stosd

; get read

mov
mov
mov
mov
lodsd
mov
add
rep

;
mov
mov
lodsd
mov
add
rep

edx
ebp
eax
esi

ecx
edx

,22
,esi;
,[ebp]

source
. image. pf

, rtbl_conv[eax]

, eax
,ecx

movsb

put

eax
esi

ecx
edx

write

,[ebx] . image. pf
,wtbl_conv[eax]

, eax
,ecx

movsb

; write tail

mov
push
sub
neg
shl
or
mov
stosd
mov
push
mov
mul
sub
JZ

ecx
edx
dl,
dl
edx
edx
eax

eax
eax
ecx

,[esp]

19

,16
,08D007549h
, edx

,[ecx]

,[ebp]

. rectangle. w

.image. stride
[ebp] .image. depth
ecx
@f
mov

,eax

al,OB6h
stosb
mov eax, ecx
stosd
jmp pq

; modify outer branch

dec
mov

edi
eax,[esp+4]

start of exec_tail
args

source

1.14 Self-Modifying Code

pq:

97

pr:

sub
mov
pop
mul
mov
sub
jz

pop
sub
inc
neg
shl
or

eax,6
[esp+4] ,eax
eax
[ebx] .image. depth
ecx, [ebx] .image. stride
ecx, eax
@f
mov ax,OBF8Dh
stosw
mov eax, ecx
stosd
pop eax
jmp pr
eax
eax, 6
al
al
eax, 16
eax,OC300754Dh
stosd
pop ebp
pop esi
pop edi

dest

Another important step in this blitter is to correctly calculate the x and y offsets
into the source and destination images. This routine does exactly that.

calc esdi:
; Destination
j
mov eax,[ebp-12].point.x
mul [edi].image.depth
mov ecx,eax
mov eax,[ebp-12].point.y
mul [edi].image.stride
mov edi,[edi].image.Ifb
add edi,ecx
add edi,eax

Source

mov eax,[ebp].rectangle.x
mul [esi].image.depth
mov ecx,eax
mov eax,[ebp].rectangle.y
mul [esi].image.stride
mov edx,[esi].image.pal
mov esi,[esi].image.Ifb
add esi,ecx
add esi,eax
ret

get dx
multiply by d
store result
get dy
multiple by stride
get target pixels
add x
add y

get sx
multiply by d
store result
get sy
multiple by stride
palette info
get target pixels
add x
add y

98 Section 1 General Programming

For this whole RAM-code idea to work, we need some initialization that gets
placed at the top of the RAM-code buffer. It simply loads the ECX register with the
number of scan lines to copy.

exec head dd
db OB9h,OOOh,OOOh,OOOh,OOOh

(size)
mov ecx,0

The next few routines are the actual read and write routines (RC and WC). The
first byte tells us how many bytes make up the code in each subroutine.

RC_BGR_1x8 dd 18
db 033h,OCOh
db OACh
db 08Bh,OD8h
db 003h,OCOh
db 003h,OC3h
db 003h,OC2h
db 08Bh,OOOh
db 025h,OFFh,OFFh,OFFh,OOOh

RC_BGR_3x8 dd 7
db OADh
db 025h,OFFh,OFFh,OFFh,OOOh
db 04Eh

(size)
xor eax,eax
lodsb
mov ebx.eax
add eax,eax
add eax,ebx
add eax,edx
mov eax, [eax]
and eax, -1

(size)
lodsd
and eax, -1
dec esi

RC BGR 4x8

RC BGR 565:

RC BGR 555:

dd
db

1
OADh

dd 1
lodsw

dd 1
lodsw

I (size)
; lodsd

; (size)

; (size)

WC_BGR_3x8 dd 6
db OAAh
db OC1h,OE8h,008h
db 066h,OABh

WC_BGR_555 dd 28
db 033h,ODBh
db OCOh,OE8h,003h
db OCOh,OECh,003h
db 08Ah,ODCh
db 066h,OC1h,OE3h,005h
db OOAh,OD8h
db OC1h,OE8h,013h
db 066h,OC1h,OEOh,OOAh
db 066h,OOBh,OC3h
db 066h,OABh

WC_BGR_565 dd 28
db 033h,ODBh

(size)
stosb
shr eax,8
stosw

(size)
xor ebx,ebx
shr al,3

ah, 3
bl.ah
bx,5
bl.al
eax,l3h
ax,OAh
ax,bx

shr
mov
shl
or
shr
shl
or
stosw

(size)
xor ebx,ebx

1.14 Self-Modifying Code 99

WC_BGR_4x8

Finally, we have a

BITMAP: :pf.

rtbl_conv

wtbl_conv

db
db
db
db
db
db
db
db
db

dd
db

table

dd
dd
dd
dd
dd

dd
dd
dd
dd
dd

OCOh,OE8h,003h
OCOh,OECh,002h
08Ah , ODCh
066h,OC1h,OE3h,005h
OOAh,OD8h
OC1h,OE8h,013h
066h,OC1h,OEOh,OOBh
066h,OOBh,OC3h
066h , OABh

1
OABh

that tells us which routine

RC BGR 3x8
RC BGR 565
RC_BGR_555
RC BGR 4x8
RC_BGR_1 x8

WC BGR 3x8
WC BGR 565
WC BGR 555
WC BGR 4x8
?

; shr al,3
; shr ah, 2
; mov bl.ah
; shl bx,5
; or bl,al
; shr eax,13h
; shl ax.OBh
; or ax.bx
; stosw

! (size)
; stosd

to use for every pixel format in

1.15

File Management Using
Resource Files

Bruno Sousa, Fireworks Interactive
gems2@fireworks-interactive.com

A s games increase in size (I think the grand prize goes to Phantasmagoria with
seven CDs), there is a need for organization of the game data. Having 10 files in

the same directory as the executable is acceptable, but having 10,000 is not. More-
over, there is the directory structure, sometimes going five or more levels deep, which
is a pain to work with. Because our games will hardly resemble Windows Explorer, we
need to find a clean, fast way to store and organize our data. This is where resource
files come into play. Resource files give us the power to encapsulate files and directo-
ries into a single file, with a useful organization. They can also take advantage of
compression, encryption, and any other features we might need.

What Is a Resource File?

We already use resource files all the time in our daily work—examples of these are
WinZip, the Windows installer, and backup programs. A resource file is nothing
more than a representation of data, usually from multiple files, but stored in just one
file (see Listing 1.15.1). Using directories, we can make a resource file work just like a
hard drive's file system does.

Listing 1.15.1 Resource file structure.
Signature = "SEALRFGNU" + '\0'
Version = 1.0
Number of Files = 58
Offset of First File = 19

[File 1]
[File 2]
[File 3]
[File .]
[File .]
[File .]
[File Number Of Files - 1]
[File Number Of Files]

100

1.15 File Management Using Resource Files 101

Each lump (we will start calling files "lumps" from now on) in the resource file
has its own structure, followed by all of the data (see Listing 1.15.2).

Listing 1.15.2 File lump structure.
File Size = 14,340
Filename = "/bmp/Bob.bmp" + '\0'
Flags = COMPRESSED
Flagslnfo = OxF34A400B
[Byte 1]
[Byte 2]
[Byte 3]
[Byte .]
[Byte .]
[Byte .]
[Byte File Size - 1]
[Byte File Size]

Before we do anything else, we'll need to name our resource system. We can then use
the name to give each component a special naming scheme, one that will differentiate
it from the other parts of the game. Let's call this system the "Seal Resource File Sys-
tem," abbreviated to SRFS, and use "si" for class prefixes.

First, we need a resource file header. By looking at Listing 1.15.1, it's easy to see
that we are keeping our system simple. However, that doesn't mean it isn't powerful, it
means that it was designed to accommodate the most-needed features and still retain
a fairly understandable syntax and structure.

Our resource file header gives us all the relevant information about the system.
Multiple file types are used in games, and for each type, there is usually a file header
that contains something unique to differentiate it from other file types. SRFS is no
different, so the first data in its header is the file signature. This is usually a 5- to 10-
character string, and is required so that we can identify the file as a valid Seal resource
file. The version information is pretty straightforward—it is used to keep track of the
file's version, which is required for a very simple reason: if we decide to upgrade our
system by adding new features or sorting the lumps differently, we need a way to ver-
ify if the file being used supports these new features, and if so, use the latest code.
Otherwise, we should go back to the older code—backward compatibility across ver-
sions is an important design issue and should not be forgotten. The next field in the
header is for special flags. For our first version of the file system, we won't use this, so
it must always be NULL (0). Possible uses for this flag are described in the For the
Future section. Following this is the number of lumps contained in the resource file,
and the offset to the first lump. This offset is required to get back to the beginning of
the resource file if we happen to get lost, and can also be used to support future ver-
sions of this system. Extra information could be added after this header for later ver-
sions, and the offset will point to the first lump.

102 Section 1 General Programming

We now move to our lump header, which holds the information we need to start
retrieving our data. We start with the lump size in bytes, followed by name and direc-
tory, stored as a fixed-length, NULL-terminated string. Following this is the flags
member, which specifies the type of algorithm(s) used on the lump, such as encryp-
tion or compression. After that is information about the algorithm, which can con-
tain a checksum for encryption or dictionary information for compression (the exact
details depend on the algorithms). Finally, after all of this comes the lump informa-
tion stored in a binary form.

Our system has only two modules: a resource file module and a lump module. To
be able to use a lump, we need to load it from the resource file and possibly decrypt or
decompress it into a block of memory, which can be accessed normally. Some systems
prefer to encapsulate all functionality into the resource file module, and even allow
direct access to lump data from within this module. This approach certainly has
advantages, but the biggest disadvantage is probably that we need to have the whole
resource in memory at once, unless we use only raw data or complicated algorithms to
dynamically uncompress or decrypt our lump data to memory. This is a difficult
process and beyond the scope of this gem.

We need functions to open the resource file, read the header, open individual
lumps, read information from lumps, and get data from lumps. These are covered in
the Implementation section.

Implementation
The sample code included in the CD is written in C++, but for the text, we will use
pseudocode so it will be easy to implement in any language.

The sICLump Module

Our lump module is similar to file streams in C++ or other language implementations
of files in that we can write to it. Unfortunately, updating the resource file with a
lump is very troublesome due to the nature of C++ streams. We can't add data to the
middle of the stream—we can only replace it—and we can't modify the parent
resource file.

DWORD dwLumpSize;
STRING szLumpName;
DWORD dwLumpPosition;
BYTE [dwLumpSize] abData;

The variable dwLumpSize is a double word (32 bits) that specifies the size of the
lump, szLumpName is a string describing die lump's name, dwLumpPosition keeps the
lump's pointer position, and abData is an array of bytes with the lump information.

Here are the sICLump module functions:

DWORD GetLumpSize (void);
STRING GetLumpName (void);

1.15 File Management Using Resource Files 103

DWORD Read (BYTE [dwReadSize] abBuffer, DWORD dwReadSize);
DWORD Write (BYTE [dwReadSize] abBuffer, DWORD dwWriteSize);
DWORD Seek (DWORD dwSeekPosition, DWORD dwSeekType);
BOOLEAN IsValid (void);

GetLumpSizeO retrieves the lump's size, and GetLumpName() retrieves the lump's
name. Read () reads dwReadSize bytes into sbBuffer, and Write () does the exact
opposite, writing dwWriteSize bytes to sbBuffer. Seek() moves the lump's pointer by
a given number from a seek position, and I sValid () verifies if the lump is valid.

The sICResourceFile Module

This module has all the functionality needed to load any lump inside the resource.
The module members are nearly the same as those in the resource file header.

DWORD dwVersion;
DWORD dwFlags;
DWORD dwNumberOfLumps;
DWORD dwOffset;
STRING szCurrentDirectory;
FILE fFile;

The use of these members has already been described, so here is a brief definition
of each. dwVersion is a double word that specifies the file version, dwFlags is a double
word containing any special flags for the lump, dwNumberOfLumps is the number of
lumps in the resource, dwOffiet gives us the position in bytes where the first lump is
located, szCurrentDirectory is the directory we are in, and fFile is the actual C++
stream.

Now for the real meat of our system, the sICResourceFile functions—those that
we use to access each lump individually.

void OpenLump (STRING szLumpName, slCLump inOutLump);
void IsLumpValid (STRING szLumpName);
void SetCurrentDirectory (STRING szDirectory);
STRING GetCurrentDirectory (void);

Each of these functions is very simple. IsLumpValid () checks to see if a file with a
given szLumpName exists in the resource. SetCurrentDirectory () sets the resource file
directory to szDirectory. This directory name is prepended to each lump's name
when accessing individual lumps within the resource file. GetCurrentDirectory()
returns the current directory.

Now for our Open function. This function opens a lump within the resource file,
and the logic behind the algorithm is described in pseudocode.

Check flags of Lump
if Compressed

OpenLumpCompressed (szLumpName, inOutLump)
if Encrypted

104 Section 1 General Programming

OpenLumpEncrypted (szLumpName, inOutLump)
if Compressed and Encrypted

OpenLumpCompressedEncrypted (szLumpName, inOutLump)
else

OpenLumpRaw (szLumpName, inOutLump)
end if

Depending on the lump type, the appropriate function to open the lump is
called, thus maintaining a nice design and simple code. The source of each function is
included in the CD.

Last Words about the Implementation

Some support functions that are used to open the file or to keep track of information
that can't be called directly are not represented in the preceding text. It is advisable to

^ c^ 5? check the source code on the CD, which is well commented and easy to follow The
ON me ca algorithms for compression and encryption are simple RLE compression and bit-wise

encryption, the actual implementations of which are beyond the scope of this gem
and must be researched separately. Information about useful public domain algo-
rithms is at [WotsitOO], [WheelerOO], and [Gillies98].

Conclusion

This system can be easily upgraded or adapted to any project. Some possibilities
include supporting date and time validation, copy protection algorithms, checksums,
a data pool, and better compression and encryption algorithms. There is no limit.

References

[Hargrove98] Hargrove, Chris, "Code on the Cob 6," available online at
www.loonygames.com/content/1.11/cote/, November 2-6, 1998.

[TownerOO] Towner, Jesse, "Resource Files Explained," available online at
www.gamedev.net/reference/programming/features/resfiles/, January 11, 2000.

[WheelerOO] Wheeler, David J, et al, "TEA, The Tiny Encryption Algorithm," avail-
able online at www.cl.cam.ac.uk/ftp/users/djw3/tea.ps.

[WotsitOO] Wotsit.org, "The Programmer's File Format Collection: Archive Files,"
available online atwww.wotsit.org, 1996—2000.

[Gillies98] Gillies, David A. G., "The Tiny Encryption Algorithm," available online
at http://vader.brad.ac.uk/tea/tea.shtml, 1995-1998.

1.16

Game Input Recording and
Playback

Bruce Dawson, Humongous Entertainment
bruced@humongous.com

The eighteenth-century mathematician and physicist Marquis Laplace postulated
that if there was an intelligence with knowledge of the position, direction, and

velocity of every particle of the universe, this intelligence would be able to predict by
means of a single formula every detail of the total future as well as of the total past
[ReeseSO]. This is determinism.

Chaos theory, Heisenberg's uncertainty principle, and genuine randomness in
quantum physics have combined to prove determinism wrong. However, in the sim-
plified universe of a game, Laplace's determinism actually works. .

If you carefully record everything that can affect the direction of your game uni-
verse, you can replay your record and recreate what happened.

What Exactly Is Input Recording Useful For?

Game input recording is useful for more things than many people realize: reproduc-
ing rare bugs, replaying interesting games, measuring optimizations, or creating game
movies.

Reproducing Bugs

Computer programs are deterministic and completely predictable, yet we frequently
hear about people encountering bugs that are difficult to reproduce, and therefore dif-
ficult to fix. If computers are deterministic, how can bugs be difficult to reproduce?

Occasionally, the culprit is the hardware or OS. The timing of thread switching
and the hard drive is not completely consistent, so race conditions in your code can
lead to rare crashes. However, the rare crashes are most frequently caused by a partic-
ular combination of user input that happens to be very rare. In that case, the bug is at
least theoretically reproducible, if only we can reproduce the exact input sequence
again.

Videotaping of testing helps track some of these bugs, but it doesn't help at all if
the timing is critical. Why don't we put that computer predictability to work, by hav-
ing the computer program record all input and play it back on demand?

105

Section 1 General Programming

The crucial step here is that if we are to use input recording to track bugs, we have
to make sure that the input is recorded even when the game crashes—especially when
the game crashes! On Win32, this is typically quite easy. By setting up a structured
exception handler [Dawson99], we can arrange for our input buffer to be saved when-
ever the game crashes.

If we add an option to our game engine to "fast-forward" through game input
(only rendering a fraction of the frames), we can get to the crash more quickly. If we
also add an option to render frames at the exact same points in the game update loop,
we can easily reproduce what are likely to be the relevant portions of the crash
scenario.

Reproducing bugs is the one time when you will want to record and playback all
of the user input, including the interactions with menu screens. Menu code is not
immune to tricky bugs.

Replaying Interesting Games

The most common use of game input recording is for players to record interesting
games. These recordings are used to demonstrate how to play the game, to make tuto-
rials, to test the performance of new computer hardware, or to share games.

The most important thing about recording games for users to play back later is
that the recording must always be enabled. It is unrealistic to expect users to decide at
the beginning of the game whether they want to record the game for posterity; they
should be asked at the end whether they want to permanently store the recorded
game.

Measuring Optimizations

The most important thing to do when optimizing is to measure the actual perfor-
mance, both before and after. Failing to do this leads to a surprisingly frequent ten-
dency to check in "optimizations" that actually slow the code.

Measuring the performance of a game is tricky because it varies so much. Polygon
count, texture set, overdraw, search path complexity, and the number of objects in the
scene all affect the frame rate. Timing any single frame is meaningless, and a quick
run-through is hopelessly unscientific.

Game input playback is a great solution. If you run the same playback multiple
times, recording detailed information about game performance, you can chart your
progress after each change to see how you're doing and where you still need work.
Recording the average and worst-case frame rate and the consistency of the frame rate
becomes easier and much more meaningful.

Testing optimizations with game input playback doesn't always work because
your changes might affect the behavior—your wonderful new frame rate might just
mean the player has walked into a closet. Therefore, when using game input playback
for optimization testing, it is crucial that you record critical game state and check for
changes on playback.

1.16 Game Input Recording and Playback 107

Creating Game Movies

To create a demo reel, you can hook a VCR up to a video capable graphics card and
play the game; however, the results will not be pretty. The VCR, the video encoder,
and the variable frame rate of the game will lead to a blurry, jerky mess.

With game input recording, it's trivial to record an interesting game, and then
play it back. With some trivial modifications to the engine you will be able to tell the
game engine when you are at an interesting part of the playback, at which point you
can switch from real-time playback to movie record playback. In this mode, the
engine can render precisely 60 frames for each second of game play, and record each
one to disk. The frame rate may drop to an abysmal two frames per second, but it
doesn't matter because the canned inputs will play back perfectly.

Implementing Multiplayer

A number of games—X-Wing vs. TIE Fighter, and Age of Empires—have used input
recording and playback for their networking model [Lincroft99]. Instead of transmit-
ting player status information, they just transmit player input. This works particularly
well for strategy games with thousands of units.

What Does ItJTake?

Game input recording is simple in theory, and can be simple in practice as well. How-
ever, there are a few subtleties that can cause problems if you're not careful.

Making Your Game Predictable

For game input recording and playback to work, your game must be predictable. In
other words, your game must not be affected by anything unpredictable or unknow-
able. For example, if your game can be affected by the exact timing of task switching,
then your game is unpredictable.

Many games use variably interleaved update and render loops. Input is recorded
at a set frequency. A frame is rendered and then the game update loop runs as many
times as necessary to process the accumulated set of inputs.

This model implies that the number of times that the game update loop is run for
each frame rendered is unpredictable; however, this needn't make the game itself
unpredictable. If you are tracking down a bug in the Tenderer, then you may need to
know the exact details of how the render loop and update loop were interleaved, but
the rest of the time it should be irrelevant. It is worthwhile to record how many
updates happened for each frame, but this information can be ignored on playback
unless you are tracking a Tenderer bug.

However, if the render function does anything to change the state of the game,
then the variably interleaved update loop and render function do make the game
unpredictable, and input recording will not work. One example of this is a render
function that uses the same random number generator as the update loop. Another

Section 1 General Programming

example can be found in Total Annihilation. In this game, the "fog of war" was only
updated when the scene was rendered. This was a reasonable optimization because it
reduced the frequency of this expensive operation. While it ensured that the user only
ever saw accurate fog, it made the game's behavior unpredictable. The unit AI used
the same fog of war as the Tenderer; the timing of the render function calls would sub-
tly affect the course of the game.

Another example of something that can make a game unpredictable is uninitial-
ized local variables or functions that don't always return results. Either way, your
game's behavior will depend on whatever happened to be on the stack. These are bugs
in your code, so you already have a good reason to track them down.

One tricky problem that can lead to unpredictability is sound playback. This can
cause problems because the sound hardware handles them asynchronously. Tiny vari-
ances in the sound hardware can make a sound effect occasionally end a bit later. Even
if the variation is tiny, if it happens to fall on the cusp between two frames, then it can
affect your game's behavior if it is waiting for the sound to end.

For many games, this is not a problem because there is no synchronization of the
game to the end of these sounds. If you do want this synchronization, then there is a
fairly effective solution: approximation. When you start your sound effect, calculate
how long the sample will play—number of samples divided by frequency. Then,
instead of waiting for the sound to end, wait until the specified amount of time has
elapsed. The results will be virtually identical and they will be perfectly consistent.

Initial State

You also need to make sure that your game starts in a known state, whether starting a
new game or loading a saved one. That usually happens automatically. However, each
time you recompile or change your data you are slightly changing the initial state.
Luckily, many changes to code and data don't affect the way the game will unfold. For
instance, if you change the size of a texture, then the frame rate may change, but the
behavior should not—as long as the game is predictable. If changing the size of that
texture causes all other memory blocks to be allocated at different locations, then this
should also have no effect—as long as your code doesn't have any memory overwrite
bugs.

An example of a code or data change that could affect how your game behaves
would be changing the initial position of a creature or wall, or slightly adjusting the
probability of a certain event. Small changes might never make a difference, but they
destroy the guarantee of predictability.

Floating-point calculations are one area where your results may unexpectedly
vary. When you compile an optimized build, the compiler may generate code that
gives slightly different results from the unoptimized build—and occasionally, these
differences will matter. You can use the "Improve Float Consistency" optimizer set-
ting in Visual C++ to minimize these problems, but floating-point variations are an
unavoidable problem that you just have to watch for.

1.16 Game Input Recording and Playback 109

Random Numbers

Random numbers can be used in a deterministic game, but there are a few caveats.
The reason random numbers can be used is that rand() isn't really random. rand()

is implemented using a simple algorithm—typically a linear congruential method—
that passes many of the tests for random numbers while being completely repro-
ducible. This is called a pseudo-random number generator. As long as you initialize
rand() with a consistent seed, you will get consistent results. If having the randomness
in your game different each time is important, then choose a seed for srandQ based on
the time, but record the seed so that you can reuse it if you need to reproduce the
game.

One problem with rand() is that it produces a single stream of random numbers.
If your rendering code and your game update code are both using rand()—and if the
number of frames rendered per game update varies—then the state of the random
number generator will quickly become indeterminate. Therefore, it is important that
your game update loop and your Tenderer get their random numbers from different
locations.

Another problem with rand() is that its behavior isn't portable. That is, the behav-
ior is not guaranteed to be identical on all platforms, and it is unlikely that it will be.

The third problem with rand() comes if you save a game and continue playing,
and then want to reload the saved game and replay the future inputs. To make this
work predictably, you have to put the random number generator back to the state it
was in when you saved the game. The trouble is, there's no way to do this. The C and
C++ standards say nothing about the relationship between the numbers coming out
of rand() and the number you need to send to srand() to put it back to that state.
Visual C++, for instance, maintains a 32-bit random number internally, but only
returns 15 of those bits through rand(), making it impossible to reseed.

These three problems lead to an inescapable conclusion: don't use rand(). Instead,
create random number objects that are portable and restartable. You can have one for
your render loop, and one for your game update loop.

When implementing your random number objects, please don't invent your own
random number algorithm. Random number generators are very subtle and you are
unlikely to invent a good one on your own. Look at your C runtime source code, the
sample code on the CD, Web resources [Coddington], or read Knuth [KnuthSl].

Inputs

Once you have restored your game's initial state, you need to make sure that you can
record and play back all of the input that will affect your game. If your game update
loop is calling OS functions directly to get user input—such as calling the Win32
function GetKeyState(VK_SHIFT) to find out when the Shift key is down—then it
will be very hard to do this. Instead, all input needs to go through an input system.
This system can record the state of all of the input devices at the beginning of each
frame, and hand out this information as requested by the game update loop. The

110 Section 1 General Programming

input system can easily record this information to disk, or read it back from disk,
without the rest of the game knowing. The input system can read data from Direct-
Input, a saved game, the network, or a WindowProc, without the update loop know-
ing the difference. As a nice bonus, isolating the game input in one place makes your
game code cleaner and more portable.

Programmers have a habit of breaking all rules that are not explicitly enforced, so
you need to prevent them from calling OS input functions directly. You can use the
following technique to prevent programmers from accidentally using "off-limits"
functions.

#define GetKeyState Please do not use this function
tfdefine GetAsyncKeyState Please do not use this function either

Another important input to a multiplayer game is the network. If you want to be
able to replay your game, dien you need to record the incoming network data
together with the user's input stream. This will allow you to replay the game, even
without a network connection. The network data stream is the one type of data that
can actually get quite large—a game running on a 56K modem could easily receive
many megabytes of network data per hour. While this large data stream does make
the recording more unwieldy, it is not big enough to be really problematic. The ben-
efits of recording this stream are enormous, and the costs are quite small.

The final "input" that a game might use is time. You may want certain events to
happen at a specific time, and it is important that these times are measured in game
time, not in real time. Whenever your game needs to know the time—except for pro-
filing purposes—it should ask the game engine for the current game time. As with the
other input functions, it is a good idea to use the preprocessor to make sure that
nobody accidentally writes code that calls timeGetTimeO or other OS time functions.

It is a good idea to record inputs throughout the game. That lets you use input
playback to track down bugs anywhere in the game, even in the pre-game menus.
However, for many purposes you will want to store the record of the input during the
game separately, so that you can play it back separately.

Testing Your Input Recording

Game input recording should work on any well-written game. Even if your game is a
multiplayer game, if you record every piece of input that you receive on your
machine, then you should be able to reproduce the same game.

However, if your game playbacks are failing to give consistent results, it can be
difficult to determine why. A useful option in tracking down these problems is record-
ing part of the game state along with die input—perhaps the health and location of all
of the game entities. Then, during playback, you can check for changes and detect
differences before they become visible.

1.16 Game Input Recording and Playback 111

Conclusion

Game input recording and playback is a valuable part of a game engine with many
benefits. If it is planned from the beginning, then it is easy to add, and leads to a
better-engineered and more flexible game engine. Here are some rules to follow:

• Route all game input, including keyboard, mouse, joystick, network, and time,
through a single input system, to ensure consistency and to allow recording and
saving of all input. This input should always be recorded. It should be stored per-
manently in case the game crashes or the user requests it at the end of the game.

• Watch for floating-point optimizations or bugs in your code that can occasionally
lead to behavior that is different or unpredictable in optimized builds.

• The randQ function should be avoided; use random number objects instead.
• Never change the game's state in rendering functions.
• Store some of your game state along with the input so you can automatically

detect inconsistencies. This can help detect race conditions, unintended code
changes, or bugs.

The sample code on the CD includes an imput system and a random number
class.

References

[ReeseSO] Reese, W.L., Dictionary of Philosophy and Religion. Humanities Press, Inc.
1980. p. 127.

[KnuthSl] Knuth, Donald, The Art of Computer Programming, Second Edition, Vol-
ume 2, Seminumerical Algorithms.

[Coddington] Coddington, Paul, "Random Number Generators," available online at
www.npac.syr.edu/users/paulc/lectures/montecarlo/node98.html.

[Dawson99] Dawson, Bruce, "Structured Exception Handling," Game Developer
magazine (Jan 1999): pp. 52-54.

[Lincroft99] Lincroft, Peter, "The Internet Sucks: What I Learned Coding X-Wing
vs. TIE Fighter," 1999 Game Developers Conference Proceedings, Miller Free-
man 621-630.

1.17

A Flexible Text Parsing System

James Boer, Lithtech, Inc.
jimb@lithtech.com

Nearly every modern game requires some sort of text parser. This gem, along with
the sample code on the CD, demonstrates a powerful but easy-to-use text pars-

ing system designed to handle any type of file format.
Text files have a number of advantages when representing data:

oNiHfco . They aj-e easy to reacj and efat using any standard text editor. Binary data usually
requires a custom-built tool that must be created, debugged, and maintained.

• They are flexible—the same parser can be used for simple variable assignment or
a more complex script.

• They can share constants between code and data (more on this later).

Unfortunately, text data has a few drawbacks as well:

• Unlike most binary formats, text must first be tokenized and interpreted, slowing
the loading process.

• Stored text is not space efficient; it wastes disk space and slows file loading.

Because many game parameters only need to be tweaked during development, it
may be practical to use a text-based format during development, and then switch to a
more optimized binary format for use in the shipping product. This provides the best
of both worlds: the ease of use of text files, and the loading speed of binary data. We'll
discuss a method for compiling text files into a binary format later in the gem.

The Parsing System

Here's what our parser will support:

• Native support for basic data types: keywords, operators, variables, strings, inte-
gers, floats, boots, and GUIDs

• Unlimited user-definable keyword and operator recognition
• Support for both C (block) and C++ (single-line) style comments
• Compiled binary read and write ability
• Debugging support, able to point back to a source file and line number in case of

error

1.17 A Flexible Text Parsing System 113

• #include file preprocessing support
• #define support for macro substitution

Most of the preceding items are self-explanatory, but #indude files and #define
support may seem a bit out of place when discussing a text parser. We'll discuss how
these features can greatly simplify scripts, as well as provide an additional mechanism
to prevent scripts and code from getting out of sync.

Macros, Headers, and Preprocessing Magic

Preprocessing data files in the same manner as C or C++ code can have some wonder-
ful benefits. The concept is perhaps best explained by a simple example. Let's assume
that we wish to create a number of unique objects using a script file, which will pro-
vide the necessary data to properly initialize each object and create unique handles for
use in code. Here's what such a script might look like:

CreateFoo(l) { Data = 10 }
CreateFoo(2) { Data = 20 }
CreateFoo(3) { Data = 30 }
CreateBar(4) { Foo = 1 }

Assuming that the CreateFooQ keyword triggers the creation of a Foo object in
code, we now have three Foo objects in memory, each with unique member data, cre-
ated by a script. Also, assuming that we're referencing these objects with handles, we
can now access these objects in code with the values of 1, 2, and 3 as unique handles.
Note that in our example, the script can also use these numeric handles. The Bar class
requires a valid Foo object as a data member, and so we use a reference to the first Foo
object created when creating our first Bar object.

It could get easy to lose track of the various handle values after creating several
hundred of them. Any time an object is added in the script, the programmer must
change the same values in code. There are no safeguards to prevent the programmer
from accidentally referencing the wrong script object. This problem has already been
solved in C and C++ through the use of header files in which variables and other com-
mon elements can be designed for many source files to share. If we think of the text
script as simply another source file, the advantages of a C-like preprocessor quickly
become apparent. Let's look again at our example using a header file instead of magic
numbers.

- Header File -

// ObjHandles.h
// Define all our object handles
tfdefine SmallFoo 1
tfdefine MediumFoo 2
#define LargeFoo 3
#define SmallBar 4
#define FooTypeX 10

114 Section 1 General Programming

#define FooTypeY 20
tfdefine FooTypeZ 30

- Script File -

/ /
// Directs the parser to scan the header file
înclude "ObjHandles.h"

CreateFoo(SmallFoo) { Data = FooTypeX }
CreateFoo(MediumFoo) { Data = FooTypeY }

CreateFoo(LargeFoo) { Data = FooTypeZ }
CreateBar(SmallBar) { Foo = SmallFoo }

In addition to this being much easier to read and understand without the magic
numbers, both the text script and source code share the same header file, so it's impos-
sible for them to get out of sync.

Because we're already performing a simple preprocessing substitution with
#define, it's just one more step to actually parse and use more complex macros. By rec-
ognizing generic argument-based macros, we can now make complex script opera-
tions simpler by substituting arguments. Macros are also handy to use for another
reason. Because macros are not compiled in code unless they are actually used (like a
primitive form of templates), we can create custom script-based macros without
breaking C++ compatibility in the header file.

Note diat although we're processing macros and #defines, the parser does not rec-
ognize other commands such as #ifdef, #ifndef, and #endif.

The Parsing System Explained

There are five classes in our parsing system: Parser, Token, TokenList, TokenFile, and
Macro. The Macro class is a helper class used internally in Parser, so we only need to
worry about it in regard to how it's used inside Parser. TokenFile is an optional class
used to read and write binary tokens to and from a standard token list. This leaves the
heart of the parsing system: Parser, Token, and TokenList. Because Token is the basic
building block produced by the parser, let's examine it first.

The Token Class

The basic data type of the parsing system is the Token class. There are eight possible
data types represented by the class: keywords, operators, variables, strings, integers,
real numbers, Booleans, and GUIDs. Keywords, operators, variables, and strings are
all represented by C-strings, and so the only real difference among them is semantic.
Integers, real numbers, and Booleans are represented by signed integers, doubles, and
booh. For most purposes, this should be sufficient for data representation. GUIDs, or
Globally Unique IDentifiers, are also given native data type status, because it's often
handy to have a data type that is guaranteed unique, such as for identifying classes to
create from scripts.

1.17 A Flexible Text Parsing System 115

The Token class is comprised of a type field and a union of several different data
types. A single class represents all basic data types. Data is accessed by first checking
what type of token is being dealt with, and then calling the appropriate GetQ func-
tion. Asserts ensure that inappropriate data access is not attempted.

Each of the data types has a role to play in the parser, and it's important to under-
stand how they work so that script errors are avoided. In general, the type definitions
match similar definitions in C++. All keywords and tokens are case sensitive.

Keyword
Keywords are specially defined words that are stored in the parser. Two predefined
keywords are include and define. User-defined keywords are used primarily to aid in
lexicographical analysis of the tokens after the scanning phase.

Operator
An operator is usually a one- or two-character symbol such as an assignment operator
or a comma. Operators are unique in the fact that they act like white space regarding
their ability to separate other data types. Because of this, operators always have the
highest priority in the scanning routines, meaning that the symbols used in operators
cannot be used as part of a keyword or variable name. Thus, using any number or
character as part of an operator should be avoided. Operators in this parsing system
also have an additional restriction: because of the searching method used, any opera-
tor that is larger than a single character must be composed of smaller operators. The
larger symbol will always take precedence over the smaller symbols when they are not
separated by white space or other tokens.

Variable
A variable is any character-based token that was not found in the keyword list.

String
A string must be surrounded by double quotes. This parser supports strings of lengths
up to 1024 characters (this buffer constant is adjustable in the parser) and does not
support multiple-line strings.

Integers
The parser recognizes both positive and negative numbers and stores them in a signed
integer value. It also recognizes hexadecimal numbers by the Ox prefix. No range
checking is performed.

Floats
Floating-point numbers are called floats and are represented by a double value. The
parser will recognize any number with a decimal point as a float. It will not recognize
scientific notation, and no range checking is performed on the floating-point number.

Booleans
Boolean values are represented as a native C++ booltype, and true and false are built-
in keywords. As with C++, these values are case sensitive.

116 Section 1 General Programming

QUIDs
By making use of the macro-expansion code, we can support GUIDs without too
much extra work. Note that unless the macro is expanded with ProcessMacrosQ, the
GUID will remain a series of separate primitive types. This function is described later.

The TokenLlst Class

The TokenList class is publicly derived from a standard STL list of Tokens. It acts
exactly like a standard STL list of tokens, and has a couple of additional features. The
TokenList class allows viewing of the file and line number that any given token comes
from. This is exclusively an aid for debugging, and can be removed with a compile-
time flag.

The Parser Class

This is the heart of the parsing functionality. We first create a parser object and call
the CreateQ function. Note that all functions return a boot value, using true for success
and false for failure. Next, we must reserve any additional operators or keywords
beyond the defaults required for the text parsing.

After this comes the actual parsing. The parsing phase is done in three passes,
handled by three functions. Splitting the functionality up gives the user more control
over the parsing process. Often, for simple parsing jobs, #include file processing and
macro substitution are not needed. The first pass reads the files and translates the text
directly into a TokenList using the function ProcessSource(). The next function,
ProcessHeadersQ, looks for any header files embedded in the source, and then parses
and substitutes the contents of those headers into the original source. The third func-
tion, ProcessMacrosQ, performs both simple and complex C-style macro substitution.
This can be a very powerful feature, and is especially useful for scripting languages.

Let's see what this whole process looks like. Note that for clarity and brevity's
sake, we are not doing any error checking.

/ / W e need a Parser and TokenList object to start
TokenList toklist;
Parser parser;

// Create the parser and reserve some more keywords and tokens
parser.Create();
parser.ReserveKeyword("special_keyword");
parser.ReserveOperator("[");
parser.ReserveOperator("]");

// Now parse the file, any includes, and process macros
parser.ProcessSource("data\scripts\somescript.txt", &toklist);
parser.ProcessHeaders(&toklist);
parser.ProcessMacros(&toklist);

1.17 A Flexible Text Parsing System 117

The TokenFile Class

Because parsing and processing human readable text files can be a bit slow, it may be
necessary to use a more efficient file format in the shipping code. The TokenFile class
can convert processed token lists into a binary form. This avoids having to parse the
text file multiple times, doing #include searches, macro substitutions, and so forth.
Character-based values, such as keywords, operators, and variables, are stored in a
lookup table. All numeric values are stored in binary form, providing additional space
and efficiency savings. In general, this binary form can be expected to load five to ten
times as fast as the text-based form.

Using the TokenFile class is simple as well. The WriteQ function takes a TokenList
object as an argument, and creates the binary form using either the output stream or
filename that was specified. The class can also store the file in either a case-sensitive or
case-insensitive manner. If both the variable "Foo" and "foo" appear in the script,
turning the case sensitivity off will merge them together in the binary format, provid-
ing further space savings. It defaults to off.

Reading the file is performed with the Read() function. Here's how it looks in
code:

TokenFile tf;

// Write a file to disk
tf.Write("somefile.pcs", &toklist);

//Or read it
tf.Read("somefile.pcs", &toklist);

Wrapping Up

Text file processing at its simplest level is a trivial problem requiring only a few lines
of code. For anything more complex than this, however, it's beneficial to have a com-
prehensive text-parsing system that can be as flexible and robust as the job demands.

1.18

A Generic Tweaker

Lasse Staff Jensen, Funcom
lasse@funcom.com

(uring game development, one of the most frequent tasks we perform is tweaking
variables until the game has just the right balance we need. In this gem, we

will cover an easy-to-use "tweaker" interface and the design issues behind the
implementation.

Requirements Analysis

One of the primary goals of a generic tweaker interface is to make it as transparent
and easy to use as possible. The user in this case is the programmer who exposes vari-
ables to be tweaked. Further requirements to emphasise are the size in memory, the
ability to tweak a variable without too much added overhead, and the speed of actu-
ally tweaking a variable (because in some cases the tweaker will be used in the release
build as well).

Let's try to break down the requirements in more detail, and see what the imple-
mentation really needs to do:

• It should be transparent to the coder, meaning that the variables we want to
tweak shouldn't contain any additional data and/or functionality, and that the
usage of these variables shouldn't need to know about the tweaker at all.

• It should be simple to use, meaning that the user should be able to define vari-
ables to be tweaked in less than 10 lines of code, and be able to tweak and get
variables from a common database in typically two or three lines of code.

Implementation

Design
Figure 1.18.1 contains the UML diagram of the classes to be presented in a bottom-
up fashion in the rest of this gem. The type information and the tweakable hierarchy
are the essence of this design.

118

"*"'1' l;l"wfer

Tweaker_c

^Tweakables: TweakableBase_c

*AddTweakable()
*TweakValue()

TweakerlnstanceDB^c

^Categories: Tweaker_c
^Instances: Tweaker_c

*AddTweaker()

FIGURE 1.18.1 Overview of the tweaker classes.

TweakableTypeRange_c

: void
: void

^TypelD_c*: void

*GetMax()
*GetMin()
*GetStoredType()

lntTypelD_c

*GetType()

FloatTypelD_c

*GetType()

BoolTypelD_c

*GetType()

(O

Section 1 General Programming

Type Information

We will use template specialization to provide type information that we can store in a
uniform way. First is our base class TypelDjc that defines the interface for our type
information class with a virtual function that returns a string with the type name:

class TypeID_c {
public:

virtual const char* GetTypeNameO const { return "Unknown"; }
};

Next, we create a template class that we can use to retrieve the correct type when
given the variable. In this class, we add a member to get the pointer to our TypeID_c
instance that can be tested directly for the stored pointer address.

template <class T>
class Identifier_c {

public:
static const TypeID_c* const GetType();

Now that we have this class declared, we will use template specialization to define
each unique type. Each subclass of TypeID_c will exist as a singleton, and the pointer
to that instance serves as the identifier of the type. For simplicity, all of these will be
placed in the global scope through static members. We can make sure that the actual
instances exist, if called from other static functions, by receiving the pointer from the
Getldentification method. The full implementation for float values follows:

class floatID_c : public TypeID_c {
public:

virtual const char* GetTypeNameO const { return "float"; }
static TypeID_c* const Getldentification () ;

} 5

template <>
class Identifier_c<float> {
public:

static const TypeID_c* const GetType() {
return floatID_c: :GetIdentification() ;

TypeID_c* const floatID_c: :GetIdentification() {
static floatID_c clnstance;
return &clnstance;

To use these classes for type information, we can simply store the base pointer:

float vMyFloat;

const TypeID_c* const pcType = TweakableBase_c: :GetTypeID(vMyFloat) ;

1.18 A Generic Tweaker 121

Here, the TweakableBase_c (more on this class later) has a template member that
calls the correct Identifier^ specialization. Then we can test the address of the
pointer:

if(Identifier_c<float>::GetType() == pcType) {
// We have a float!

}

There are two macros for defining user types in the code on the accompanying
CD, so all that's required for support of a new data type is to place a call to
DECLARE_DATA_TYPE in the header and DEFINE_DATA_TYPE in the imple-
mentation file, and then recompile. (In addition, one might want to add a call to the
macro DUMMY_OPERATORS () in case one doesn't want to support range checking.)

TweakableBase_c

We have a clean and easy way to store type info, so let's continue by creating the base
class to hold the pointer to the tweakable variable. This class also contains the tem-
plate member for getting the type info mentioned earlier. Because one of our require-
ments is to keep memory overhead to a minimum, we will use RTTI for checking
which specific types of tweakables we have stored in memory. We therefore make sure
the class is polymorphic by adding a virtual function to get the type info stored (or
NULL if none). Here is the implementation:

class TweakableBase_c {
public:

TweakableBase_c(void* i_pData) : m_pData(i_pData) {;}
-TweakableBase_c() { /*NOP*/;}

virtual const TypeID_c* const GetStoredType() const { return NULL; }

template <class T>
static const TypeID_c* const GetTypeID(const T& i_cValue) {

return Identifier_c<T>::GetType();
}

protected:
void* m_pData;

}; // TweakableBase_c

Now that we have the base class, we can create subclasses containing additional
data such as type information, limits for range checking, a pointer for a call-back func-
tion, and any other data we might need to attach to the various tweakables, while keep-
ing die memory to a minimum. Here is how one of the specific tweakable classes looks:

template <class T>
class TweakableType_c : public TweakableBase_c {

122 Section 1 General Programming

public:

TweakableType_c(T* i_pxData, const TypeID_c* i_pcType) :
TweakableBase_c(reinterpret_cast<void*>(i_pxData)),
m_pcType(i_pcType) { /*NOP*/; }

const TypeID_c* const GetDataType() const { return m_pcType; }
virtual const TypeID_c* const GetStoredType() const {

return m_pcType; }

private:
const TypeID_c* const m_pcType; :

}; // TweakableType_c

The great thing about this code is that the subclasses are implemented as tem-
plates, even though the base class was defined without them. This way, we can pass in
the pointer to the actual data type, hiding the casting to void horn the interface.

Tweakerje
We finally have all the building blocks we need to create the tweaker class itself. This
class will store all of our tweakables and give the user functionality for tweaking the
stored values. We will use an STL map to hold all of the pointers to our tweakables,
using the name of each tweakable as the key. Simple template members provide all the
functionality. An example of this is the TweakValue member:

template<class Value_x>
TweakError_e TweakValue(const std::string& i_cID, const Value_x&

i_xValue) {
TweakableBase_c* pcTweakable;
iTweakableMap_t iSearchResult = m_cTweakable_map.find(i_cID);
if(iSearchResult == m_cTweakable_map.end()) {

return e_UNKNOWN_KEY; }
pcTweakable = (*iSearchResult).second;

#ifdef _DEBUG
TweakableType_c<Value_x>* pcType;
if(pcType = dynamic_cast< TweakableType_c<Value_x>* >(

pcTweakable)) {
assert(pcTweakable->GetTypeID(i_xValue) ==

pcType-»GetDataType());
}

#endif

TweakableTypeRange_c<Value_x>* pcTypeRange;
if (pcTypeRange = dynamic_cast< TweakableTypeRange_c<Value_x>* >(

pcTweakable))
{
assert(pcTweakable->GetTypeID(i_xValue) ==

pcTypeRange->GetDataType());

if(i_xValue < pcTypeRange->GetMin()) { return e_MIN_EXCEEDED; }
if(i_xValue > pcTypeRange->GetMax()) { return e_MAX_EXCEEDED; }

1.18 A Generic Tweaker 123

(reinterpret_cast<Value_x>(pcTweakable->m_pData)) = i_xValue;
return e_OK;

} // TweakValue

Because the member is a template, we can cast back to the given value directly,
thereby completely hiding the ugly void casting. Note that if users decide to not store
the type information, they could easily force us to do something bad, since we have
no way of checking the origin of the reinterpret_casA

TweakerinstanceDB_c
In order to support grouping of tweakables and the ability to store several instances of
a given variable, we have an instance database to hold different tweakers. The imple-
mentation is straightforward—an STL multimap holding all of the instances of differ-
ent tweakers, and an STL map of these multimaps where the category is the key.

Let's test our implementation against the requirements to verify that we have reached
our goals. Defining a variable to be tweakable requires us to create a tweaker and add
it to the tweakable instance database.

Tweaker_c* pcTweaker = TweakerInstanceDB_c::AddTweaker("Landscape",
TWEAKER_CREATE_ID(this), "Graphics");

Here we create a tweaker for the class Landscape (inside the constructor, for exam-
ple) and put it in the Graphics category. The TWEAKER_CREATE_ID macro takes
the this pointer and makes sure that each instance of the class Landscape gets a unique
ID. Then, we simply add each variable to this (and other tweakers we make) by:

pcTweaker->AddTweakable(&m_vShadowmapScaleTop, "Shadowmap scale",
O.OF, 68.OF);

Here we have added a variable, constrained it to the interval [0, 68], and called it
"Shadowmap scale." It's vital to note that because of the template nature of the
AddTweakable method, we must pass correct types to all of the arguments (for exam-
ple, use O.OF and not just 0). Defining a variable to be tweakable takes two lines of
code, and is totally hidden from the users of the variable in question.

For tweaking this variable, all we need is the name, data type, and desired
instance. Usually, we have the pointer to the tweaker instance itself, but in the GUI
code, one would typically do something like:

TweakerInstanceDB_c::iConstCategoryMap_t iCategory =
TweakerInstanceDB_c::GetCategory("Graphics");

Tweaker_c* pcTweaker =
GetTweaker(iCategory->second, "Landscape", TWEAKER_CREATE_ID(

pcLandscape)) ;

124 Section 1 General Programming

Here we first get all of the instance maps that are stored under the "Graphics" cat-
egory label. Then we search for the correct instance of the Landscape class (we assume
the pointer pcLandscape points to the instance in question). Changing the value of a
specific value is straightforward.

Tweaker_c::TweakError_e eError;
eError = pcTweaker->TweakValue("Shadowmap scale", 20.OF);

So, tweaking a variable is one line of code, with additional lines for error handling
(or simply asserting the return value). Receiving the stored value is done similarly:

float vShadowmapScale;
eError = pcTweaker->GetValue("Shadowmap scale", &vShadowmapScale);

Graphical User Interface

GUIs tend to be specific to each project, so I have left a general discussion of this
topic out of this gem, although I will describe an existing implementation as a source
for ideas. In Equinox, Funcom's next-generation 3D engine, we have implemented a
directory structure, as shown in Figure 1.18.2, that can be browsed in a console at the
top of the screen.

For tweaking values, we have defined input methods that can be assigned to the
tweakables. That way, we can create specialized input methods such as the angle
tweaker seen in Figure 1.18.3.

For saving and loading, in addition to the binary snapshots, we can save all of the
tweakables in #define statements directly into h files. Because the number of instances
of a variable could change over the lifetime of the application, we only save the first
instance into the header file. This feature gives us the capability to add variables to be
tweaked only in debug builds, and we then #indude the header file to initialize the

Tweaker: Application
[. . , .]„ ._ ,

"Fog density""""" '" " "' "•' "™"™" """ —••*•->• .-.•-.-••«
Fog end
Fog start
Linear fog
Physical water
Show Equinox logo
Show caustics
Show fog
Show landscape
Show sky
Show water
Table fog

FIGURE 1.18.2 Screen shot from our GUI. The user can move up and down in the
directories (categories in the code) and choose values to be tweaked.

1.18 A Generic Tweaker 125

Tweaker: Graphics
Tweaker instance name: GraphicsTestInstance
AngleTweak 1/2
Type: float

Ualue = 56.649902
Limited to range <45.080000, 120.800008>
step = 8,758006, use +/—/spaee to modify

FIGURE 1.18.3 This specialized input gives the user the possibility to visually tweak
angles in an intuitive way.

variables to the latest tweaked value in the release build. Here is a sample of how this
works for our ShadowmapScale variable:

landscape_tweakables.h:

tfdefine SHADOWMAP_SCALE 43.5

landscape.cpp:

tfinclude "landscape_tweakables.h"

m_vShadowmapScale = SHADOWMAP_SCALE;

It is possible to use the RTTI typeidQ to replace the type information code detailed
previously. There are pros and cons to using our type information code.

Pros:

• It takes up less space for the type information, since it is only required for classes
that use it.

• One can add specific information to the TypeID_c class; for example, a way to
load and store the type or a pointer to the GUI control.

Cons:

We have to use macros for each unique type, while RTTI provides the type infor-
mation automatically.

126 Section 1 General Programming

Acknowledgment

I would like to thank Robert Golias for invaluable help and suggestions, and for
implementing the Equinox tweaker GUI that was an excellent test of how simple the
interface actually turned out!

1.19

Genuine Random Number
Generation

Pete Isensee, Microsoft
pkisensee@msn.com

Computer games use random numbers extensively for rolling dice, shuffling cards,
simulating nature, generating realistic physics, and performing secure multi-

player transactions. Computers are great at generating pseudo-random numbers, but
not so good at creating genuine random numbers. Pseudo-random numbers are num-
bers that appear to be random, but are algorithmically computed based on the previ-
ous random number. Genuine, or real, random numbers are numbers that not only
appear random, but are unpredictable, nonrepeating and nondeterministic. They are
generated without the input of the previous random number. This gem presents a
method of creating genuine random numbers in software.

Pseudo-Randomness

Pseudo-random number sequences eventually repeat themselves and can always be
precisely reproduced given the same seed. This leads to distinct problems in gaming
scenarios. Consider the common case of a game that initializes its random number
generator (RNG) with the current tick count - the number of ticks since the machine
was booted up. Now assume the player turns on their gaming console every time they
begin playing this game. The level of randomness in the game is gated by the choice
of seed, and the number of bits of randomness in the seed is unacceptably small.

Now consider the use of a pseudo-RNG to create secret keys for encrypting
secure multiplayer game transmissions. At the core of all public key cryptographic sys-
tems is the generation of unpredictable random numbers. The use of pseudo-random
numbers leads to false security, because a pseudo-random number is fully pre-
dictable—translate: easily hacked—if the initial state is known. It's not uncommon
for the weakest part of crypto systems to be the secret key generation techniques
[Kelsey98].

Genuine Randomness

A genuine random number meets the following criteria: it appears random, has
uniform distribution, is unpredictable, and is nonrepeating. The quality of

127

128 Section 1 General Programming

unpredictability is paramount for security purposes. Even given full knowledge of the
algorithm, an attacker should find it computationally infeasible to predict the output
[Schneier96].

The ideal way of creating genuine random numbers is to use a physical source of
randomness, such as radioactive decay or thermal noise. Many such devices exist; see
[Walker(a)] for one example. However, PCs and video game consoles do not typically
have access to these types of devices. In the absence of a hardware source, the tech-
nique recommended by RFC 1750 [Eastlake94] is "to obtain random input from a
large number of uncorrelated sources and mix them with a strong mixing function."
By taking input from many unrelated sources, each with a few bits of randomness,
and thoroughly hashing and mashing them up, we get a value with a high degree of
entropy—a truly random number.

Random Input Sources

Examples of random input available on many PCs and game consoles include:

• System date and time
• Time since boot at highest resolution available
• Username or ID
• Computer name or ID
• State of CPU registers
• State of system threads and processes
• Contents of the stack
• Mouse or joystick position
• Timing between last N keystrokes or controller input
• Last N keystroke or controller data
• Memory status (bytes allocated, free, etc.)
• Hard drive state (bytes available, used, etc.)
• Last N system messages
• GUI state (window positions, etc.)
• Timing between last N network packets
• Last N network packet data
• Data stored at a semi-random address in main memory, video memory, etc.
• Hardware identifiers: CPU ID, hard drive ID, BIOS ID, network card ID, video

card ID, and sound card ID

Some of these sources will always be the same for a given system, like the user ID
or hardware IDs. The reason to include these values is that they're variable across
machines, so they're useful in generating secret keys for transmitting network data.
Some sources change very little from sample to sample. For instance, the hard drive
state and memory load may only change slightly from one read to the next. However,
each input provides a few bits of randomness. Mixed together, they give many bits of
randomness.

1.19 Genuine Random Number Generation 129

The more bits of entropy that can be obtained from input sources, the more ran-
dom the output. It's useful to buffer sources such as mouse positions, keystrokes, and
network packets over time in a circular queue. Then the entire queue can be used as
an input source.

Hardware Sources

Some gaming platforms have access to physical sources of randomness. When these
sources are available, they make excellent input sources. Examples of physical sources
include:

• Input from sound card (for example, the microphone jack) with no source
plugged in

• Input from a video camera
• Disk drive seek time (hard drive, CD-ROM, DVD)
• Intel 810 chipset hardware RNG (a thermal noise-based RNG implemented in

silicon) [Intel99]

Mixing Function

In the context of creating genuine random numbers, a strong mixing function is a
function where each bit of the output is a different complex and nonlinear function of
each and every bit of the input. A good mixing function will change approximately
half of the output bits given a single bit change in the input.

Examples of strong mixing functions include:

• DES (and most other symmetric ciphers)
• Diffie-Hellman (and most other public key ciphers)
• MD5, SHA-1 (and most other cryptographic hashes)

Secure hashing functions such as MD5 are the perfect mixers for many reasons:
they meet the basic requirements of a good mixing function, they've been widely ana-
lyzed for security flaws, they're typically faster than either symmetric or asymmetric
encryption, and they're not subject to any export restrictions. Public implementations
are also widely available.

Limitations

Unlike generating pseudo-random numbers, creating genuine random numbers in
software is very slow. For the output to be truly random, many sources must be sam-
pled. Some of the sampling is slow, such as reading from the hard drive or sound card.
Furthermore, the sampled input must be mixed using complex algorithms.

Game consoles have a more limited selection of input sources compared to PCs,
so they will tend to produce less random results. However, newer consoles often have
disk drives of some sort (CD-ROM, DVD, hard disk) that can be used as good hard-
ware sources of entropy.

Section 1 General Programming

The randomness of the results depends solely on the level of entropy in the input
samples. The more input samples and the more entropy in each sample, the better the
output. Keep in mind that the more often this algorithm is invoked in quick succes-
sion, the less random the output, because the smaller the change in the input bits. To
sum up, this technique is not a replacement for pseudo-RNG. Use this technique for
the one-time generation of your RNG seed value or for generating network session
keys that can then be used for hours or days.

Implementation

A C++ example of a genuine random number generator is provided on the accompa-
nying CD. Any implementation of this algorithm will naturally be platform depen-
dent. This particular version is specific to the Win32 platform, but is designed to be
easily extensible to other platforms. It uses hardware sources of randomness, such as
the Intel RNG and sound card input, when those sources are available. In the inter-
ests of efficiency and simplicity, it does not use all of the examples listed previously as
input, but uses enough to produce a high level of randomness.

The primary functionality resides in the GenRand object within the TrueRand
namespace. Here is an example use of GenRand to create a genuine seed value:

#include "GenRand. h" // Genuine random number header
unsigned int nSeed = TrueRand: :GenRand() .GetRandInt() ;

Here's another example showing the generation of a session key for secure net-
work communication. The Buffer object is a simple wrapper around stof: :toasic__
string<unsigned char>, which provides the functionality we need for reserving
space, appending data, and tracking the size of the sample buffer:

TrueRand: : GenRand randGen;
TrueRand: : Buffer bufSessionKey = randGen. GetRand();

The Get/tend () function is the heart of the program. It samples the random
inputs, and then uses a strong mixing function to produce the output. This imple-
mentation uses MD5 hashing, so the resulting buffer is the length of an MD5 hash
(16 bytes). The mCrypto object is a wrapper around the Win32 Crypto API, which
includes MD5 hashing.

Buffer GenRand: :GetRand()
{

// Build sample buffer
Buffer randlnputs = GetRandomlnputsO ;

// Mix well and serve
return mCrypto.GetHash(CALG_MD5, randlnputs);

1.19 Genuine Random Number Generation 131

The GetRandomlnputsf) function is the input sampler. It returns a buffer with
approximately 10K of sampled data. This function can easily be modified to include
more or less input as desired. Because the time spent in the function varies according to
system (drive, sound card) access, we can use the hardware latency as a source of random
input; hence, the snapshot of the current time at the beginning and end of the function.

Buffer GenRand: :GetRandomInputs()
{

// For speed, preallocate input buffer
Buffer randln;
randln. reserve (GetMaxRandInputSize());

GetCurrTime(randln); // append time to buffer
GetStackState(randln); // stack state
GetHardwareRng(randln); // hardware RNG, if avail
GetPendingMsgs(randln); // pending Win32 msgs
GetMemoryStatus(randln); // memory load
GetCurrMousePos(randln); // mouse position

// . . . etc.

GetCurrTime(randln); // random hardware latency

return randln;
}

Finally, here's one of the input sampling functions. It extracts the current time,
and then appends the data to the mRandlnputs buffer object. QueryPerformance-
Counter() is the highest resolution timer in Windows, so it provides the most bits of
randomness. We can ignore API failures in this case (and many others), because the
worst that happens is that we append whatever random stack data happens to be in
Perf Counter if the function fails.

void GenRand: :GetCurrTime(Buffer& randln)
{

LARGE_INTEGER Perf Counter;
QueryPerformanceCounter(&PerfCounter); // Win32 API
Append(randln, PerfCounter);

How Random Is GenRand?

There are many tests for examining the quality of random numbers. One test is the
^ c """) publicly available program ENT [Walker(b)], included on the accompanying CD,
mm CD which applies a suite of tests to any data stream. Tests of GenRand () without using any

sources of hardware input (including hard drive seek time), and generating a file of
25,000 random integers using GetRandInt() gives the following results:

• Entropy = 7.998199 bits per byte.
• Optimum compression would reduce the size of this 100,000-byte file by 0 percent.

132 Section 1 General Programming

• Chi square distribution for 100,000 samples is 250.13, and randomly would
exceed this value 50 percent of the time.

• Arithmetic mean value of data bytes is 127.4918 (127.5 = random).
• Monte Carlo value for Pi is 3.157326293 (error 0.50 percent).
• Serial correlation coefficient is 0.000272 (totally uncorrelated = 0.0).

These results indicate that the output has a high degree of randomness. For
instance, the chi square test—the most common test for randomness [Knuth98]—
indicates that we have a very random generator.

References

[Callas96] Callas, Jon, "Using and Creating Cryptographic-Quality Random Num-
bers," available online at www.merrymeet.com/jon/usingrandom.html, June
1996.

[Eastlake94] Eastlake, D., Network Working Group, et al, "Randomness Recommen-
dations for Security," RFC 1750, available online at www.faqs.org/rfcs/
rfcl750.html, December 1994.]

[Kelsey98] Kelsey, J., et al, "Cryptanalytic Attacks on Pseudorandom Number Gener-
ators," available online at www.counterpane.com/pseudorandom_number .html,
March 1998.

[Intel99] Intel Corporation, "Intel Random Number Generator," available online at
http://developer.intel.com/design/security/rng/rng.htm, 1999.

[Knuth98] Knuth, Donald, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithmsi Third Edition. Addison-Wesley. 1998.

[Schneier96] Schneier, Bruce, Applied Cryptography, Second Edition. John Wiley &
Sons. 1996.

[Walker(a)] Walker, John, "HotBits: Genuine Random Numbers Generated by
Radioactive Decay," available online at www.fourmilab.ch/hotbits/.

[Walker(b)] Walker, John, "ENT: A Pseudorandom Number Sequence Test Pro-
gram," available online at www.fourmilab.ch/random/.

1.20

Using Bloom Filters to
Improve Computational
Performance

Mark Fischer, Beach Software
beach@beachsoftware.com

Imagine the desire to store Boolean information in a bit array—a very simple
premise. Simply assign each element in the bit array to a specific meaning, and then

assign it a value. In this scenario, it takes 1 bit in the array to store 1 bit of stored
information. The bit array faithfully represents its relative value with 100-percent
accuracy. This, of course, works best when the stored data is array oriented such as a
transient over time or space. However, what if the data is not a linear transient-
oriented data set?

Bloom's Way

In 1970, Burton H. Bloom published a simple and clever algorithm [Bloom70] in the
"Communications of the ACM." In his publication, Bloom suggests using a "Hash
Coding with Allowable Errors" algorithm to help word processors perform capitaliza-
tion or hyphenation on a document. This algorithm would use less space and be faster
than a conventional one-to-one mapping algorithm. Using this example, a majority of
words (90 percent, for example) could be checked using a simple rule, while the
smaller minority set could be solved with an exception list used to catch the instances
where the algorithm would report a word as simply solvable when it was not. Bloom's
motivation was to reduce the time it took to look up data from a slow storage device.

Possible Scenarios

A Bloom Filter can reduce the time it takes to compute a relatively expensive and rou-
tinely executed computation by storing a true Boolean value from a previously executed
computation. Consider the following cases where we'd like to improve performance:

• Determine if a polygon is probably visible from an octree node.
• Determine if an object probably collides at a coordinate.
• Determine if a ray cast probably intersects an object at a coordinate.

133

134 Section 1 General Programming

All of these cases fit into a general scenario. Each case involves an expensive com-
putation (CPU, network, or other resource) where the result is a Boolean (usually false)
answer. It is important to note that that the word probably is used in each case because
a Bloom Filter is guaranteed to be 100-percent accurate if the Bloom Filter test returns
a false (miss), but is, at best, only probably true if the Bloom Filter returns true (hit).

A Bloom Filter can store the true result of any function. Usually, the function
parameter is represented as a pointer to a byte array. If we wish to store the result of a
function that uses multiple parameters, we can concatenate the parameters into a sin-
gle function parameter. In cases where 100-percent accuracy is needed, we must com-
pute the original expensive function to determine the absolute result of the expensive
function, if a Bloom Filter test returns true.

How It Works

There are two primary functions in a Bloom Filter: a function for storing the Boolean
true value returned from an expensive function, and a function for testing for a previ-
ously stored Boolean true value. The storing function will accept input in any form
and modify the Bloom Filter Array accordingly. The testing function will accept input
in the same form as the storing function and return a Boolean value. If the testing
function returns false, it is guaranteed that the input was never previously stored using
the storing function. If the function returns true, it is likely that the input was previ-
ously stored using the storing function. A false positive is a possible result from the
test. If 100-percent accuracy is desired, perform the original expensive function to
determine the absolute value. A conventional Bloom Filter is additive, so it can only
store additional Boolean true results from an expensive function and cannot remove
previously stored values.

Definitions

The high-quality operation of a Bloom Filter requires a high-quality hash function
that is sometimes referred to as a message digest algorithm. Any high-quality hash
function will work, but I recommend using the MD5 message digest algorithm
[RSA01] from RSA Security, Inc., which is available in source code on the Net, and is
also documented in RFC 1321. The MD5 hash function takes N bytes from a byte
array and produces a 16-byte (128-bit) return value. This return value is a hash of the
input, which means if any of the bits in the input change (even in the slightest),
the return value will be changed drastically. The return of the hash function, in
Bloom terminology, is called the Bloom Filter Key.

Bloom Filter Indexes are obtained by breaking the Bloom Filter Key into blocks
of a designated bit size. If we choose a Bloom Filter Index bit size of 16 bits, a 128-bit
Bloom Filter Key can be broken into eight complete 16-bit segments. If there are
remaining bits left over from breaking the Key into complete segments, they are
discarded.

1.20 Using Bloom Filters to Improve Computational Performance 135

The number of Bloom Filter Phases used in a Bloom Filter is the number of
Bloom Filter Indexes used to store the Boolean value from the expensive function. For
example, three phases might be used from a 128-bit key using a Bloom Filter Index
bit size of 16 bits. The remaining five indexes will be discarded, in this example.

A Bloom Filter Array is used to store the expensive function's Boolean value. For
example, if the Bloom Filter Index bit size is 16 bits, the Bloom Filter Array will be 216

bits long, or 64K bits (8K bytes). The larger the array, the more accurate the Bloom
Filter test.

The Bloom Filter Saturation of the Bloom Filter Array is the percentage of bits set
to true in the bit array. A Bloom Filter Array is optimal when saturation is 50 percent,
or half of the bits are set and half are not.

Example 1

For an example, we will store the function parameter ("Mikano is in the park") using
three phases with an index bit size of 16 bits into an array 64k bits long (8k bytes). In
this instance, the expensive function was used to determine if Mikano was truly in the
park and the result was yes (true). Although we used a string variable, in this case, any
variable format will work. The format of the stored expensive function parameter data
is independent of the Bloom Filter performance, accuracy, or memory usage.

First, the hash function is computed from the expensive function parameter data.
Let's assume that the hash function returned the 128-bit value Oxl0027AB30001BF
7877AB34D976A09667. The first three segments of 16-bit indexes will be 0x1002,
0x7AB3, and 0x0001. The remaining segments are ignored.

The Bloom Filter Array starts out reset (all false bits), before we begin to populate
the bit array with data. Then, for each of these indexes, we will set the respective bit
index in the Bloom Filter Array to true regardless of its previous value. As the array
becomes populated, sometimes we will set a bit to true that has already been set to
true. This is the origin of the possible false positive result when testing the Bloom Fil-
ter Array (Figure 1.20.1).

When we wish to examine the Bloom Filter Array to determine if there was a pre-
viously stored expensive function parameter, we proceed in almost the same steps as a
store, except that the bits are read from the Bloom Filter Array instead of written to
them. If any of the read bits are false, then the expensive function parameter was
absolutely never previously stored in the Bloom Filter Array. If all of the bits are true,
then the expensive function parameter was likely previously stored in the Array. In the
case of a true result, calculate the original expensive function to accurately determine
the Boolean value (Figure 1.20.2).

Tuning the Bloom Filter

Tuning the Bloom Filter involves determining the number of phases and the bit
size of the indexes. Both of these variables can be modified to change the accuracy and
capacity of the Bloom Filter. Generally speaking, the larger the size of the bit array

136 Section 1 General Programming

void store_bloom_data("Mikano is in the park")

128 Bloom Key divided
into 8 16-bit segments

3 phase, 16-bit (8K Byte)

Bloom Filter

Hash

0x1002

OX7AB3

0x0001

OxBF78

Ox77AB

Ox34D9

Ox76AO

0x9667

jwrite

write

jwrite

only 3
phase so
ignore the

rest

boolean test_bloom_data("Mikano is in the park")

read

Bit Value

boolean test_bloom_data("Mikano is in the office ")

"Mikanq is in
the office"

Hash

OxFFFF

0x7 AB3

OxFFFC

0x7063

Ox691E

OxB269

0x0110

OxCOOl

j-ead

)

(potential false positive) ,

(not set so return false)

r-J

•w

\s

•w

If OxFFFC was also set,
then a false positive would

be returned.

Bit Index

0x0000

0x0001

0x0002

0x0003

0x1001

0x1002

0x1003

OX7AB3

0x7 AB4

OxFFFC

OxFFFD

OxFFFE

OxFFFF

return true

False Positive

FIGURE 1.20.1 Flow of a Bloom Filter.

1.20 Using Bloom Filters to Improve Computational Performance 137

// returns a pointer to 16 bytes of data that represent the hash
void * compute_hash (pData, nDataLength);

// returns the integer value for the bits at nlndex for nBitLength long
int get_index_value(void * pData, int nBitlndex, int nBitLength);

// tests a bit in the Bloom Filter Array.
// returns true if set otherwise returns false
boolean is_bit_index_set(int nlndexValue);

// sets a bit in the Bloom Filter Array
void set_bit_index(int nlndexValue);

void store_bloom_data(void * pData, int nDataLength)
{

void *pHash;
int nPhases = 3, nPhaselndex = 0, nBitlndexLength = 16;

// returns pointer to 16 bytes of memory
pHash = compute_hash(pData, nDataLength);

// now set each bit
while { nPhaselndex < m nPhases)

Theoretically, a different input
parameter could return the same

value but that is unprobable.
Either way, the algorithm will

still work.

nlndexValue = get_index_value(pHash, nPhaselndex, nBitlndexLength);

// if bit is not set, we have a miss so return false
set_bit_index(nlndexValue) ;

nPhase!ndex++;

boolean test_bloom_data(void * pData, int nDataLength)

void *pHash;
int nPhases = 3, nPhaselndex = 0, nBitlndexLength =. 16;

// returns pointer to 16 bytes of memory
pHash = compute_hash(pData, nDataLength); 4-

// now test each bit
while (nPhaselndex < m nPhases)

compute_hash will always
return the same 16 bytes of
data when called with the
same input parameters.

nlndexValue = get_index_value(pHash, nPhaselndex, nBitlndexLength

// if bit is not set, we have a miss so return false
if (!is_bit_index_set(nlndexValue)) return(false);

nPhase!ndex++; *s.

// all bits are set so we have a probably hit.
return(true);

Return false as soon as we
find a false bit. At this point,

the expensive function has
definitely not been previously

stored.

FIGURE 1.20.2 Basic use of a Bloom Filter.

Section 1 General Programming

(N) and the more phases, the less likely a false positive response will occur. Bloom
asserted that the optimum performance of this algorithm occurs when saturation of
the bit array is 50 percent. Statistically, the chance of a false positive can be deter-
mined by taking the array saturation and raising it to the power of the number of
phases. Other equations are available to tune the Bloom filter algorithm.

The equation to calculate the percentage of false positives is:

percent_false_pdsitive = saturationnumb"-°f-fhases

or expressed as a function of percent_false_positive:

number_of_j>hases = Logsaturation(percentjalse_fositive)

By assuming that the Bloom Filter Array is operating at optimum capacity of 50-
percent saturation, Table 1 .20. 1 can be computed from the preceding formulas.

For example, if we want the false positive rate below half a percent (0.5 percent),
eight phases must be used, which will return a worst-case scenario of 0.39-percent
false positives.

Next, we calculate the Bloom Filter Array bit size.

array_bit_size = (number_of_phases * max_stored_input

The array_bit_size is usually rounded up to the nearest value where array_bit_size
can be expressed as 2 to the power of an integer.

array _bit_size = .2*

Finally, compute the index_bit_size from the array_bit_size.

array <_bit_size = 2>ndex-bit-"z*

Table 1.20.1 Percentage of False Positives Based on Number of Phases Used

percent_false_positive number_of_phases

50.00%
25.00%
12.50%
6.13%
3.13%
1.56%
078%
0.39%

1.20 Using Bloom Filters to Improve Computational Performance 139

Example 2

Suppose we want to store a maximum of 9000 expensive function parameters
with at least 95-percent accuracy when the Bloom Filter Array test returns true. From
Table 1.20.1, we can determine that five phases will be necessary to obtain an accu-
racy of equal to or greater than 95 percent and a false positive of less than or equal to
5 percent.

5 phases * 9000 expensive function parameters / -ln(0.5) = 64,921 bits

Rounding up to the nearest 2n gives us 64K bits (8K bytes), and because 216 =
64K, the index_bit_size will be 16 bits.

Final Notes

One way to improve performance is to use an exception list to prevent executing
the expensive function, as Bloom did in his algorithm. An exception list contains all
of the false positive cases that can be returned from testing a Bloom Filter. This can be
computed at parameter storage or dynamically when false positives are detected (Fig-
ure 1.20.3).

Another way to improve performance is to dynamically build a Bloom Filter
Array. If the range of expensive function parameters is too great, Bloom Filters can be
calculated dynamically and optimized for repetitive calls to test the bit array. By
dynamically building a Bloom Filter Array, the commonly tested expensive function
parameters are calculated once, and untested function parameters do not waste space
in the bit array.

Standard Bloom Filter Test Code

if (test_bloom_data(c))

boolean bSuccess = false;

if (in_exception_list (c)) return (bSuccess) ; f*

bSuccess = expensive_f unction (c) ;

if (ibSuccess) add_to_excepti

return (bSuccess) ;

else

if (expensive_f unction (c))

store_bloom_data (c) ;
return true;

return false;

/ i -.

Optional Code

Exception List Test

Dynamically computed
Exception List

Dynamically computed
Bloom Filter

FIGURE 1.20.3 Bloom Filter configurations.

140 Section 1 General Programming

Here are some interesting Bloom Filter characteristics:

• Two Bloom Filter Arrays can be merged together by bitwise ORing them.
• Bloom Filter Arrays can be shared among parallel clients.
• Optimized Bloom Filter Arrays are not compressible.
• Underpopulated Arrays are very compressible.
• Memory corruption in the array can be mended by setting unknown bits to true.

Conclusion

Bloom Filters offer a method of improving performance of repeatedly called expensive
functions at the expense of memory. While this method has been documented for a
long time, it remains a relatively unused technique, although exceptions exist, such as
Bloom Filter usage in the very popular Web-caching program Squid (www.squid-
cache.org/) by Duane Wessels. Adding a Bloom Filter algorithm to a program can
usually be done in less that 20K bytes of code. As with most performance-enhancing
tricks, it is a good idea to add Bloom Filters to a project during the optimization stage,
after the main functionality is finished.

References
[BeachOl] Beach Software, "Bloom Filters," available online at http://

beachsoftware.com/bloom/, May 10, 2000.
[RSA01] RSA Security, "What Are MD2, MD4, and MD5," available online at

www.rsasecurity.com/rsalabs/faq/3-6-6.html, March 4, 2001.
[FlipcodeOl] Flipcode, "Coding Bloom Filters," available online at "www.flipcode

.com/tutorials/tut_bloomfilter.shtml, September 11, 2000.
[Bloom70] Bloom, Burton H., "Space/Time Trade-Offs in Hash Coding with Allow-

able Errors," Communications of the ACM, Vol. 13, No.7 (ACM July 1970): pp.
422-426.

1.21

3ds max Skin Exporter and
Animation Toolkit

Marco Tombesi
tombesi@infinito.it

We have seen wonderful special effects in modern films that have taken glorious
monsters such as dinosaurs and made them move smoothly. We know how

they did it (using software such as LightWave, 3ds max, Maya, etc.), but how do we
use the same animation technology for our games?

This gem is intended as an introduction to a full toolset for that purpose, starting
just after the creation of the animated character in 3ds max (and Character Studio),
and ending with that object smoothly animating in a game's real-time scenes. Along
the way, it passes through the export plug-in and is stored in a custom data format. In
this gem, we will go into depth only about the export aspect; the rest is well explained
by the code on the accompanying CD.

Let's talk about the necessary steps:

1. The animation is done with 3ds max 3.1 (hereafter simply called MAX) and
Character Studio 2.2, using Biped and/or bones and the Physique modifier. It
should be noted that although newer versions of these tools will become
available, the algorithms required for any new versions should be similar.

2. The export plug-in creates a custom format file (.MRC), which consists of:
• Mesh information (vertices, normals).
• Skeletal structure (the bone tree).
• Influence values (weighting) of each bone to vertices of the mesh (one

vertex may be influenced by multiple bones).
• Bone animation: For each bone, this consists of a set of translation and

rotation keys (using quaternions), including the exact time in millisec-
onds from the animation start to when the transformation should be
performed.

3. To read the .MRC file, we have a reusable DLL available, provided with full
source code.

4. The Tenderer interpolates (linearly or better) between the sample keys and
calculates the current transformation matrix to be applied to each bone.

141

142 Section 1 General Programming

This is done using the time elapsed from the animation start, obtaining a
smooth and non-hardware-dependent animation.

5. At each frame, the Tenderer recalculates the position of each vertex and its
normal. The calculation is based on the current transformation matrix and
influence value that each bone has on a particular vertex. Most matrix oper-
ations can be done using the graphics hardware transformation and lighting
features if they exist (for example, on the GeForce and Radeon cards).

The process of exporting the animation data with a plug-in for MAX is not well
documented. While there are many Web pages covering skinning techniques, few
actually address the issue of exporting the data. Read and study the source code as
well as all Readme.txt files in the project directories for this gem on the CD. More
information is also available on the authors Web page [TombesiOl], where updates
for MAX 4 will be available when it is released.

This gem is based on a hierarchical bone structure: a bone tree or a Biped, created
using Character Studio 2.2. Build a low polygon mesh (about 5000 triangles). The
mesh should be a single selectable object in MAX. Deform the mesh using the
Physique modifier, based on the Biped previously created. The character animation
should be created on the Biped.

Exporting

First, we need a file format specification.

The MRC File Format

This is a simple file format for the purposes of this gem. It supports normals, bones,
vertex weights, and animation keys. See Figure 1.21.1 for a self-explanatory
schematic, and check the code on the CD for technical clarification.

Exporting to MRC with the MAX SDK

If you are new to plug-in development and don't know how MAX works, be
sure to refer to the MAX SDK documentation. In particular, study the fol-
lowing sections before proceeding:

• DLL, Library Functions, and Class Descriptors
• Fundamental Concepts of the MAX SDK
• Must Read Sections for All Developers
• Nodes
• Geometry Pipeline System
• Matrix Representations of 3D Transformations

FILE
VSTART/

boneOfs

FILE
END

£
O

CO
CD

I

43
(G
T3
LUz
o
CO

}
vertCnt

normCnt

faceCnt

t_h
d

childCnt

influencedVertexCnt

keyCnt

boneCnt

FIGURE 1.21.1 MRC file format description.

143

144 Section 1 General Programming

Working with Nodes
In our export plug-in, we must derive a class from SceneExport and implement some
virtual methods, one of which is the main export routine.

class MRCexport : public SceneExport {
public:

// Number of extensions supported
int ExtCount() {return 1;}

// Extension ("MRC")
const TCHAR * Ext (int n) {return _T("MRC");}

// Export to an MRC file
int DoExport(const TCHAR *name,

Explnterface *ei,
Interface *i,
BOOL suppressPrompts=FALSE,
DWORD options=0);

//Constructor/Destructor
MRCexport () ;
-MRCexport();

Accessing scene data requires an Interface passed by MAX to the main export rou-
tine (the entry point of the plug-in). For every object in MAX, there is a node in the
global scene graph, and each node has a parent (except RootNode) and possibly some
children. We can access the root node and then traverse the hierarchy, or we can
directly access a node if the user has selected it in MAX before exporting.

INode* pNode = i->GetSelNode(0) ;
INode* const pRoot = i->GetRootNode() ;

To navigate the node structure, we have these methods:

Int count = pNode->NumberOfChildren() ;
INode* pChNode = pNode->GetChildNode(i) ;

A node could represent anything, so we need to discriminate among object types
via the node's class identifier (Class_ID or SuperClassID), and then appropriately cast
the object. For our purposes, we need to check if a node is a geometric object (a mesh)
or a bone (a Biped node or a bone).

bool IsMesh(INode *pNode)
{

if(pNode == NULL) return false;
ObjectState os = pNode->EvalWorldState(0) ;
if(os.obj->SuperClassID() == GEOMOBJECT_CLASS_ID)

return true;
return false;

1.21 3ds max Skin Exporter and Animation Toolkit 145

bool IsBone(INode *pNode)
{

if(pNode == NULL)return false;
ObjectState os = pNode->EvalWorldState(0) ;
if (los.obj) return false;

if(os.obj->ClassID() == Class_ID(BONE_CLASS_ID, 0))
return true;

if(os.obj->ClassID() == Class_ID(DUMMY_CLASS_ID, 0))
return false;

Control *cont = pNode->GetTMController() ;
//other Biped parts

if(COnt->ClassID() == BIPSLAVE_CONTROL_CLASS_ID ||
//Biped root "Bip01"
COnt->ClassID() == BIPBODY_CONTROL_CLASS_ID

) return true;
return false;

The previous example explains how to navigate MAX's nodes and check what
they represent. Once we get a mesh node, we need to acquire the desired vertex data.

Getting Mesh Data
For convenience later on, we'll store all vertex data in global coordinate space. MAX
object coordinates are in object space, so we need a transformation matrix to be
applied to each vertex and normal of the mesh.

We can grab this global transformation matrix at any time during the animation
using GetObjectTM(TimeValue time). This matrix is used to transform vectors from
object space to world space and could be used, for example, if we want to get the
world space coordinate of one mesh vertex. We could do this by taking the vertex
coordinate in object space and multiplying it (post-multiply in MAX) by the matrix
returned from this method. We are interested in mesh data at the animation start, so
TimeValue is zero.

Matrix3 tm = pNode->6etObjectTM(0)

MAX uses row vector 1x3 and 4x3 matrices, so to transform a vector, we
mustpremultiply it by the matrix.

Mart

Vertices and other data are not statically stored, but dynamically calculated each
time. To access data, we must first perform the geometry pipeline evaluation, specify-
ing the time at which we want to get the object state.

146 Section 1 General Programming

MAX has a modifier stack system, where every object is the result of a modifica-
tion chain. Starting from a simple parametric primitive (such as a box) that is the base
object, the final object is built, applying modifiers in sequence along the stack. This is
the object pipeline and we will work with the result. The resulting object is a Derived-
Object and has methods to navigate the stack of modifiers.

To get the result at a specified animation time, we must first retrieve an Object-
State, which is done by invoking the method EvalWorldState on the node. This makes
MAX apply each modifier in the pipeline from beginning to end.

ObjectState os = pNode->EvalWorldState(0);

ObjectState contains a pointer to the object in the pipeline and, once we have this
object, we can finally get the mesh data. To do this, we must cast the generic object to
a geometric one, which has a method to build a mesh representation.

Mesh& mesh = *(((GeomObject*)os.obj)->GetRenderMesh(0, pNode, . . .));

Now it is easy to access the mesh members and finally put vertices, faces, and normals
in memory, ready to be written to a file. These methods are available to accomplish this:
Mesh::getNumVerts(), Mesh::getNumFaces(), Mesh::getVert(i), anAMesh::getNormal(i).

Listing 1.21.1 illustrates how to export mesh data to a file.

Getting the Bone Structure
Now we need a way to write the skeleton's hierarchical structure to an output data file.
Starting from the root node, we traverse depth-first through the tree, and for each
bone, we need to get several things. First, we assign an index to any direct child and to
the bone's parent, and then we grab the bone orientation matrix.

tm = pNode->GetNodeTM(0);
tm.Invert();

Although very similar, the preceding matrix isn't the object matrix, but is
related to the node's pivot point, which may not be the object's origin. Check

3̂ ,, with the SDK documentation to find a precise description. We will use this
MOTt • r i / , , , , imatrix to transform every mesh vertex from world space to related bone space,

so it can move with the bone. Since we have to multiply any vertex by the
inverse of this matrix, we can invert it now and save rendering time.

Getting the Bone Influences
Now we are at the most exciting part of this gem: getting the vertex bone assignment
and influence value (weighting). The weighting is important when two or more bones
influence the same vertex and the mesh deformation depends on both (see [Wood-
landOO] for the theory). These assignments should be done using the Physique modi-
fier in Character Studio 2.2. Note to the reader: Study the Phyexp.h header that comes
with Character Studio for modifier interface help.

1.21 3ds max Skin Exporter and Animation Toolkit 147

First, we must find the Physique modifier on the object's node that we wish to
export (this is the same node we used earlier to get the mesh vertex data). We do this
by accessing the referenced DerivedObject and then scanning each applied modifier on
the stack until we find the Physique modifier (using a Class_ID check).

Modifier* GetPhysiqueMod(INode *pNode)
{

Object *pObj = pNode->GetObjectRef();
if(lpObj) return NULL;

// Is it a derived object?
while(pObj->SuperClassID() == GEN_DERIVOB_CLASS_ID)
{

// Yes -> Cast
IDerivedObject *pDerivedObj =

static_cast<IDerivedObject*>(pObj);

// Iterate over all entries of the modifier stack
int ModStacklndex = 0;
while(ModStacklndex < pDerivedObj->NumModifiers())
{

// Get current modifier
Modifier* pMod = pDerivedObj->

GetModifier(ModStacklndex);

//Is this Physique?
if(pMod->ClassID() ==

Class_ID(PHYSIQUE_CLASS_ID_A,
PHYSIQUE_CLASS_ID_B))

return pMod;

// Next modifier stack entry
ModStackIndex++;

}
pObj = pDerivedObj->GetObjRef();

}
// Not found
return NULL;

}

Now we enter the Bone assignment phase (see Listing 1.21.2; a code overview
follows). Once we have the Physique modifier, we get its interface (IPhysiqueExpori)
and then access the Physique context interface (IPhyContextExporf) for the object.
This owns all of the methods with which we need to work. Each vertex affected by a
modifier has an interface IPhyVertexExport. Grab this interface to access its methods,
calling GetVertexInterface(i) on the Physique context interface.

We must check to see if a vertex is influenced by one or more bones (RIGID_TYPE
or RIGID_BLENDED_TYPE, respectively). In the former case, the weight value is 1 and we
have to find just a single bone (calling GetNode on the i-th vertex interface). In the lat-
ter case, we have to find every bone assigned to the vertex, and for each bone we must

Section 1 General Programming

get its proper weight value by invoking GetWeightQ) on the i-th vertex interface,
where j is the j-th bone influencing it. In addition, note that at the end, we must
remember to release every interface.

Now we are ready for the last phase: bone animation data acquisition.

Getting Bone Animation Keys
This is a simple step. At selected time intervals (default 100 milliseconds), grab the
transformation matrix of each bone. In the MAX SDK, time is measured internally in
"ticks," where there are 4800 ticks per second, so we must perform a conversion.
Then we use this method:

tm = pNode->GetNodeTM(timeTicks);

It's more efficient to not store the complete matrix (16 floats), but instead only
the translation (3 floats) and rotation data (4 floats), so we extract a position vector
and a unit quaternion from the matrix.

Points pos = tm.GetTrans();
Quat quat(tm);

Once we have all the data collected in memory, we store everything to disk using
the MRC file format. Now it is time to see how to use it all to perform smooth ani-
mation in our games.

Put It to Use: The Drawing Loop

In our application, for each frame displayed, we should perform the following steps in
sequence.

Get the Exact Time
To make the animation very smooth and not processor dependent, getting the system
time is necessary. We update the skeleton structure by cycling through the bone tree
and, for each bone, work out the current transformation matrix by linearly interpo-
lating between two sample keys. To find out which sample keys to interpolate
between, we require the current real animation time (in milliseconds) from animation
start.

Moving the Skeleton
We determine actual bone position and rotation by linear (or better) interpolation
and by quaternion interpolation (SLERP or better) between selected sample keys
(sample times should enclose the current time). Then, given these data, you can build
the current bone animation matrix from the translation and rotation. The math
involved, especially in the quaternion calculations, is explained well in the previous
Game Programming Gems book [ShankelOO]. To take better advantage of graphics
hardware, we perform all matrix calculations using OpenGL functions. This way we

1.21 3ds max Skin Exporter and Animation Toolkit 149

can exploit any advanced hardware features such as transformation and lighting, and
performance will be much better!

Recalculate the Skin
Once the skeleton is moved, it is time to deform the mesh accordingly, with respect to
vertex weight assignments. See [WbodlandOO] for a good overview of this topic. It is
convenient to check the vertices in bone-major order, traversing depth-first through
the bone tree and doing the following passes for each bone. For each vertex influenced
by the bone, we refer it to the bone's local coordinate system (multiplying by the bone
inverse orientation matrk), and then transform it via the current bone animation
matrk. Then, we multiply the vertex coordinates by the influence value (weight) this
bone exerts on it. We add the result to the corresponding vertex value stored in a tem-
porary buffer. Now this buffer contains the current vertex coordinates for the skin, at
this point in the animation. To finish, we draw the computed mesh using vertex
arrays (or better) to gain even more performance.

Listing 1.21.1: Exporting the Mesh to a File

bool ExportMesh (iNode* pNode, FILE *out)
{

MRCmesh_hdr mHdr;
MatrixS tm = pNode->GetObjectTM(0) ;
ObjectState os = pNode->EvalWorldState(0) ;
int needDelete;
Mesh& mesh = *(((GeomObject*) os.obj)->GetRenderMesh (

0, pNode, ...));

// write the mesh vertices
mHdr.vertCnt = mesh.getNumVerts() ;
forfint i = 0; i < mHdr.vertCnt; i++)
{

Points pnt = mesh.getVert(i) * tm; //premultiply in MAX

// write vertex normals
mesh.buildNormalsO ;
mHdr.normCnt = mesh.getNumVerts() ;
for(i = 0; i < mHdr.normCnt;

Points norm = Normalize(mesh.getNormal(i)) ;

// build and write faces
mHdr.faceCnt = mesh.getNumFaces() ;
for(i = 0; i < mHdr.faceCnt;

150 Section 1 General Programming

MRCface_hdr fHdr;
fHdr.vert[0] = mesh.faces[i] .v[0];
fHdr.vert[1] = mesh.faces[i] .v[1];
fHdr.vert[2] = mesh.faces[i] .v[2];

Listing 1.21.2: Reading Bone Assignments

bool GetPhysiqueWeights(INode *pNode, INode *pRoot,
Modifier *pMod, BoneData_t *BD)

{
// create a Physique Export Interface for given Physique Modifier
IPhysiqueExport *phylnterface = (IPhysiqueExport*)

pMod->Get!nterface(I_PHYINTERFACE);
if (phylnterface)
{

// create a ModContext Export Interface for the specific
// node of the Physique Modifier
IPhyContextExport *modContext!nt = (IPhyContextExport*)

phyInterface->GetContext!nterface(pNode) ;

// needed by vertex interface (only Rigid supported by now)
modContext!nt->ConvertToRigid(TRUE) ;

// more than a single bone per vertex
modContextInt->AllowBlending(TRUE) ;
if (modContextlnt)
{

int totalVtx = modContextlnt ->GetNumberVertices() ;
for(int i = 0; i < totalVtx; i

IPhyVertexExport *vtxlnterface = (IPhyVertexExport*)
modContext!nt->GetVertexInterface(i) ;

if (vtxlnterface)
{

int vtxType = vtxInterface->GetVertexType() ;
if(vtxType == RIGID_TYPE)
{

INode *boneNode = ((IPhyRigidVertex*)vtxInterface)
-> GetNode();

int boneldx = GetBoneIndex(pRoot, boneNode);
Insert

// Build vertex data
MRCweightJidr wdata;
wdata.vertldx = i;
wdata. weight = 1 .Of ;

//Insert into proper bonedata
BD[boneldx] . weight sVect .push_back(wdata) ;

// update vertexWeightCnt for that bone

1.21 3ds max Skin Exporter and Animation Toolkit 151

BD[boneIdx] .Hdr.vertexCnt
= BD[boneIdx] .weightsVect.size() ;

}
else if(vtxType == RIGID_BLENDED_TYPE)

{
IPhyBlendedRigidVertex *vtxBlended!nt =

(IPhyBlendedRigidVertex*)vtxInterface;
for(int j = 0; j < vtxBlendedInt->GetNumberNodes()

INode *boneNode = vtxBlendedInt->GetNode(j) ;
int boneldx = GetBoneIndex(pRoot, boneNode);

// Build vertex data
MRCweightJidr wdata;
wdata.vertldx = i;
wdata. weight = vtxBlendedInt->GetWeight(j) ;

// check vertex existence for this bone
bool notfound = true;
for (int v=0; notfound

&& v < BD[boneIdx] .weightsVect.size() ;

// update found vert weight data for that
// bone
if (BDfboneldx] .weightsVectfv] .vertldx

== wdata.vertldx)
{

BD[boneIdx] .weightsVect[v] .weight
+= wdata. weight;

notfound = false;

if (notfound)
{

// Add a new vertex weight data into proper
// bonedata
BD[boneIdx] .weightsVect.push_back(wdata) ;

// update vertexweightCnt for that bone
BD[boneIdx] .Hdr.vertexCnt

= BD[boneIdx] .weightsVect.size() ;

phyInterface->ReleaseContextInterface(modContextInt) ;
}
pMod->Release!nterface(I_PHYINTERFACE, phylnterface) ;

}
return true;

152 Section 1 General Programming

References

SDK documentation file:
[DiscreetOO] Max SDK Plug-in development documentation: SDK.HLP

Web links:
[TombesiOl] Tombesi, Marco's Web page: http://digilander.iol.it/baggior/

Books:
[WoodlandOO] Woodland, Ryan, "Filling the Gaps—Advanced Animation Using

Stitching and Skinning," Game Programming Gems. Charles Raver Media 2000;
pp. 476-483.

[ShankelOO] Shankel, Jason, "Matrix-Quaternion Conversions" and "Interpolating
Quaternions," Game Programming Gems. Charles River Media 2000; pp.
200-213.

1.22

Using Web Cameras in
Video Games

Nathan d'Qbrenan, Firetoad Software
nathand@firetoads.com

Iost games nowadays have multiplayer capabilities; however, the only interaction
that goes on among online gamers is the occasional text message. Imagine hav-

ing the ability to see the expression on your opponent's face when you just pass them
before reaching the finish line, or when they get fragged by your perfectly placed
rocket. Web cams allow you that functionality, and with high-speed Internet slowly
becoming standard, it's becoming feasible to send more data to more clients.

This gem demonstrates a straightforward approach to implementing Web cam
methodologies into a game. We'll be using Video for Windows to capture the Web
cam data, so Windows is required for the Web cam initialization function. We will
cover numerous approaches for fast image culling, motion detection, and a couple of
image manipulation routines. By die end, we will have a fully functional Web cam
application tliat can be run and interacted widi at reasonable frame rates.

Initializing the Web Cam Capture Window

The following code demonstrates how to use Video for Windows to set up a Web
C^ l̂>3 camera window in an application. Note to die reader: when dealing with video drivers

ONTHICD from hardware vendors: You can never have too much error checking and handling
code (review source code on CD for a more thorough implementation).

// Globals
HWND hWndCam = NULL;
BOOL cam_driver_on = FALSE;
int wco_cam_width = 160, wco_cam_height = 120;
int wco_cam_updates = 400, wco_cam_threshold = 120;

// WEBCAM_INIT
void webcam_init(HWND hWnd)
{

// Set the window to be a pixel by a pixel large
hWndCam = capCreateCaptureWindow(appname,

WS_CHILD | WS_VISIBLE |
WS_CLIPCHILDREN |
WS_CLIPSIBLINGS,

153

154 Section 1 General Programming

0,0,
1,1,
hwnd,
0);

if(hwndCam)
{

// Connect the cam to the driver
cam_driver_on = capDriverConnect(hWndCam, 1);

// Get the capabilities of the capture driver
if(cam_driver_on)
{
capDriverGetCaps(hWndCam, &caps, sizeof(caps));

// Set the video stream callback function
capSetCallbackOnFrame(hWndCam, webcam_callback);

// Set the preview rate in milliseconds
capPreviewRate(hWndCam, wco_cam_updates);

// Disable preview mode
capPreview(hWndCam, FALSE);

// Initialize the bitmap info to the way we want
capwnd.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
capwnd.bmiHeader.biWidth = wco_cam_width;
capwnd.bmiHeader.biHeight = wco_cam_height;
capwnd.bmiHeader.biPlanes = 1;
capwnd.bmiHeader.biBitCount = 24;
capwnd.bmiHeader.bicompression = BI_RGB;
capwnd.bmiHeader.biSizelmage =wco_cam_width*wco_cam_height*3;
capwnd.bmiHeader.biXPelsPerMeter = 100;
capwnd.bmiHeader.biYPelsPerMeter =100;

if(capSetVideoFormat(hWndCam, icapwnd,
Sizeof(BITMAPINFO)) == FALSE)

{
capSetCallbackOnFrame(hwndCam, NULL);
DestroyWindow(hWndCam);
hWndCam = NULL;
cam_driver_on = FALSE;

}
else
{ // Assign memory and variables
webcam_set_vars();
{
glGenTextures(1, &webcam_tex.gl_bgr);
glBindTexture(GL_TEXTURE_2D, webcam_tex.gl_bgr);
glTex!mage2D(GL_TEXTURE_2D, 0, 3, webcam_tex.size,

webcam_tex.size, 0, GL_BGR_EXT,
GL_UNSIGNED_BYTE, webcam_tex.bgr);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);

1.22 Using Web Cameras in Video Games 155

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GLJ.INEAR);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glGenTextures(1, &webcam_tex.gl_grey);
glBindTexture(GL_TEXTURE_2D, webcam_tex.gl_grey);
glTex!mage2D(GL_TEXTURE_2D, 0, 1, webcam_tex.size,

webcam_tex.size, 0, GLJ.UMINANCE,
GL_UNSIGNED_BYTE, webcam_tex.greyscale);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

else
{
cam_driver_on = FALSE;

The above function retrieves the handle to the Web cam window we're capturing
from through the function capCreateCaptureWindow(). We then initialize it with win-
dows properties such as its size, and whether it should be visible. In our case, we do
want it to be visible; however, we're only going to set the window to a 1x1 pixel, so it's
basically invisible. This is required because we don't actually want to display the image
subwindow, but we want to receive the data updates from Windows through the call-
back function.

We then retrieve driver information, set the callback function (more on this
later), the number of times per second we want to refresh the Web cam, and then reset
all our variables. The driver is then tested to see if it can handle returning the stan-
dard bitmap information in which we are interested. Upon success, we initialize all
the memory for all our movement buffers, as well as the OpenGL texture. We pull a
little trick when deciding how big to make this texture, which will come in handy
later on. Based on whatever height we set up our Web cam window to be, we find and
allocate our memory to the next highest power of 2. Even though we are allocating a
bigger buffer than the Web cam image, we save ourselves an expensive texture resize
operation, by just doing a memcpyQ right into the larger buffer — at the cost of some
small precision loss in the Web cam image.

156 Section 1 General Programming

Retrieving Data

Once we have our video window initialized, we need a way to retrieve the data from
the Web cam every frame. To let Windows know which callback function it should
send the data to, we must call capSetCallbackOnFrameQ with the address of the call-
back function. When Windows decides it's time to update the Web cam, it will pass
us the bitmap information inside the VIDEOHDR structure.

In our case, we'll make the callback function process all the Web cam data to
decide if we want to create a texture out of it. We can pass all of that data to the web-
cam_calc_movement () function for further processing, which will determine if enough
data has changed since die last frame, after which, we can update the texture.

// WEBCAM_CALLBACK
// Process video callbacks here
LRESULT WINAPI webcam_callback(HWND hwnd, LPVIDEOHDR videojidr)
{

// Calculate movement based off of threshold
if(webcam_calc_movement(video_hd r,

webcam_tex.delta_buffer,
wco_cam_width,
wco_cam_height,
webcam^tex.size,
wco_cam_threshold))

{
webcam_make_texture(videojidr, wco_cam_rendering);

}

return TRUE;
}

Windows defines the LPVIDEOHDR structure as:

typedef struct videohdr_tag
{

LPBYTE IpData; // pointer to locked data buffer
DWORD dwBufferLength; // Length of data buffer
DWORD dwBytesllsed; // Bytes actually used
DWORD dwTimeCaptured; // Milliseconds from start of stream
DWORD dwUser; // for client's use
DWORD dwFlags; // assorted flags (see defines)
DWORD dwReserved[4]; // reserved for driver

} VIDEOHDR, NEAR *PVIDEOHDR, FAR * LPVIDEOHDR;

Windows saves the Web cam data in the buffer called If Data. This is the primary
variable we are interested in, but dwTimeCaptured and some of the flags may prove
useful as well. Now that we've captured the data from the Web cam, let's test it to see
if it's useful.

1.22 Using Web Cameras in Video Games 157

Motion Detection

We now want to weed out any unnecessary frames which have barely changed so we
can avoid unnecessary updates to our texture. Updating textures is a notoriously slow
operation in a 3D API such as OpenGL.

The following source code compares delta buffers, and returns true or false if the
given threshold has been breached. Note that returning early when the threshold has
been exceeded could optimize this function further; however, that would hamper
us from using the delta buffer later on. Ectosaver [FiretoadOO] uses these unsigned
bytes of delta movement to calculate the amplitude of the waves it causes, and to
determine when there is no one moving around.

// GLOBALS
unsigned char wco_cam_threshold=128; // This is a good amount (0-255)

// WEBCAM_CALC_MOVEMENT
// This is a simple motion detection routine that determines if
// you've moved further than the set threshold
BOOL webcam_calc_movement(LPVIDEOHDR video_hdr,

unsigned char *delta_buff,
int webcam_width, int webcam_height,
int gl_size, unsigned char thresh)

{
unsigned char max_delta=0;
int i=0, j=0;
int length;
unsigned char *temp_delta = (unsigned char *)malloc(

sizeof(unsigned char)* webcam_width * webcam_height);

length = webcam_width * webcam_height;

webcam_tex.which_buffer = webcam_tex.which_buffer 7 0 : 1 ;

if(!video_hdr->lpData)
return FS_TRUE;

for(i=0; i<length; i++)
{
// Save the current frames data for comparison on the next frame
// NOTE: Were only comparing the red channel (IpData is BGR), so
//in theory if the user was in a solid red room, coated in red
// paint, we wouldn't detect any movement....chances are this
//isn't the case :) For our purposes, it this test works fine
webcam_tex.back_buffer[webcam_tex.which_buffer][i]
= video_hdr->lpData[i*3];

// Compute the delta buffer from the last frame
// If it's the first frame, it shouldn't blow up given that we
// cleared it to zero upon initialization
temp_delta[i] =
abs(webcam_tex.back_buffer[webcam_tex.which_buffer][i] -

webcam_tex.back_buffer[!webcam_tex.which_buffer][i]);

158 Section 1 General Programming

//Is the difference here greater than our threshold?
if (temp_delta[i] > max_delta)
max_delta = temp_delta[i] ;

// Fit to be inside a power of 2 texture
for(i=0; i<webcam_height ;

memcpy(&delta_buff [i*(gl_size)] ,
&temp_delta[i*(webcam_width)] ,
sizeof (unsigned char)*webcam_width) ;

f ree(temp_delta) ;

if(max_delta > thresh)
return TRUE;

else
return FALSE;

Manipulating Web Cam Data

Get the BGR Pixels

Once we've performed all our testing and culling, we are ready to manipulate the data
we were sent from Windows. For this, we will simply copy the pixels from die
VIDEOHDR data struct (the native format Windows returns is BGR) into a buffer
that we've allocated to have a power of 2. Note that this technique avoids resizing the
texture data's pixels, as it simply copies the pixels straight over, preserving the pixel
aspect ratio. The only drawback to this technique is that it will leave some empty
space in our texture, so we're left with a bar of black pixels at the top of the image. We
can eliminate that bar by manipulating texture coordinates (once mapped onto 3D
geometry) or resizing the texture.

// WEBCAM_MAKE_BGR
void webcam_make_bgr(unsigned char *bgr_tex, unsigned char *vid_data,
int webcam_width, int webcam_height, int glsize)
{
int i;

for(i=0; i<webcam_height; i++)
{

memcpy(&bgr_tex[i*(glsize*3)],
&vid_data[i*(webcam_widtn*3)],
sizeof(unsigned char)*webcam_width*3);

1.22 Using Web Cameras in Video Games 159

Convert to Grayscale

Once we've captured the BGR data, we could convert it to grayscale. This would result
in an image that is one-third the size of our regular textures, which would be practical
for users who have slow Internet connections, but still want to transmit Web cam data.

Here is a function that multiplies each RGB component in our color buffer by a
scalar amount, effectively reducing all three color channels to one:

// WEBCAM_MAKE_GREYSCALE
void webcam_make_greyscale(unsigned char *grey,

unsigned char *color, int dim)
{

int i, j;

// Greyscale = RED * 0.3f + GREEN * 0.4f + BLUE * 0.3f
for(i=0, j=0; j<dim*dim; i+=3,

grey[j] = (unsigned char)float_to_int(0.30f * color[i] +
0.40f * color [i+1] +
O.SOf * color[i+2]);

Real-Life Cartoons
Once we've successfully converted all our data to grayscale, we can manipulate the
data to draw the picture in a cartoon-like fashion. This method splits the image into
five different levels and six different colors, coloring different ranges of pixel values
with solid values. All we have to do is perform some simple comparisons and evaluate
each pixel based on our heat intensity constants.

The final result is compared against a lookup from either the grayscale buffer or
our delta buffer. If we want to see the image every frame (single buffer), we will need
to compare against the grayscale. To give different results, we'll assign random color
intensities for each pixel based on our heat intensity constants.

// WEBCAM_INIT_CARTOON
void webcam_init_cantoon(cartoon_s *cartoon_tex)
{
char i;

for(i=0; i<3; i++)
{

// Pick random colors in our range
cartoon_tex->bot_toll_col[i] = rand()%255;
cartoon_tex->min_toll_col[i] = rand()%255;
cartoon_tex->low_toll_col[i] = rand()%255;
cartoon_tex->med_toll_col[i] = rand()%255;
cartoon_tex->high_toll_col[i] = rand()%255;
cartoon_tex->max_toll_col[i] = rand()%255;

tfdefine MIN CAM HEAT 50

160 Section 1 General Programming

tfdefine LOW_CAM_HEAT 75
#define MED_CAM_HEAT 100
#define HIGH_CAM_HEAT 125
#define MAX_CAM_HEAT 150

// WEBCAM_MAKE_CARTOON
void webcam_itiake_cartoon(unsigned char *cartoon,

cartoon_s cartoon_tex,
unsigned char *data, int dim)

{
int i, j, n;

for(i=0, j=0; j<dim*dim; i+=3,
{

if(data[j] < MIN_CAM_HEAT)

for(n=0; n<3;
cartoon[i+n] = cartoon_tex.bot_toll_col[n] ;

}
if(data[j] > MIN_CAM_HEAT && data[j] < LOW_CAM_HEAT)

for(n=0; n<3;
cartoon [i+n] = cartoon_tex.min_toll col[n];

}
if(data[j] > LOW_CAM_HEAT && data[j] < MED_CAM_HEAT)

for(n=0; n<3;
cartoon[i+n] = cartoon_tex.low_toll_col[n] ;

}
if(data[j] > MED_CAM_HEAT && data[j] < HIGH_CAM_HEAT)

for(n=0; n<3;
cartoon[i+n] = cartoon_tex.med_toll_col[n] ;

}
if (data[j] > HIGH_CAM_HEAT && data[j] < MAX_CAM_HEAT)

for(n=0; n<3;
cartoon [i+n] = cartoon_tex.high_toll_col[n] ;

}
if(data[j] > MAX_CAM_HEAT)

for(n=0; n<3;
cartoon[i+n] = cartoon_tex.max_toll_col[n] ;

Uploading the New Texture

Now, all that's left is uploading the texture to OpenGL. The first step is to get the
color values from Video for Windows. Once the new color values are calculated,
we can go on to converting it to grayscale, and then go on to our cartoon Tenderer.
Once all the image manipulation is finished, we call glTexSubImage2D() to get it into
the appropriate texture. It is then ready for use in a 3D application as a texture.

1.22 Using Web Cameras in Video Games 161

// WEBCAM_MAKE_TEXTURE
void webcam_make_texture(LPVIDEOHDR video, webcam_draw_mode mode)
{

// Build the color first
webcam_make_bgr(webcam_tex.bgr,

video->lpData,
wco_cam_width,
wco_cam_height ,
webcam_tex.size) ;

if (mode == GREYSCALE || mode == CARTOON)
webcam_make_greyscale (webcam_tex . greyscale ,

webcam_tex.bgr, webcam_tex.size) ;

// Note: Could also pass in the delta buffer instead of
// the greyscale
if (mode == CARTOON)
webcam_make_cartoon (webcam_tex . bgr ,

webcam_tex . cartoon ,
webcam_tex. greyscale,
webcam_tex.size) ;

// Upload the greyscale version to OpenGL
if (mode == GREYSCALE)
{
glBindTexture(GL_TEXTURE_2D, webcam_tex.gl_grey) ;
glTexSub!mage2D(GL_TEXTURE_2D, 0,0,0,

webcam_tex . size , webcam_tex . size ,
GL_LUMINANCE,
GL_UNSIGNED_BYTE, webcam_tex. greyscale) ;

}
// Upload the color version to OpenGL
else
{
glBindTexture(GL_TEXTURE_2D, webcam_tex.gl_bgr) ;
glTexSub!mage2D(GL_TEXTURE_2D, 0,0,0,

webcam_tex . size , webcam_tex . size ,
GL_BGR_EXT, GL_UNSIGNED_BYTE, webcam_tex.bgr) ;

Destroy the Web Cam Window

After we're done using the Web cam, we need to destroy the window and set our call-
back function to NULL, so Windows knows to stop sending messages to it. In addi-
tion, we must free up all the memory we previously allocated to our color, grayscale,
and delta buffers.

// WEBCAM_DESTROY
void webcam_destroy(void)
{
if (cam_driver_on)

162 Section 1 General Programming

capSetCallbackOnFrame(hWndCam, NULL);
DestroyWindow(hWndCam) ;
hWndCam = NULL;

if (webcam_tex . bgr)
f ree(webcam_tex.bgr) ;

if (webcam_tex . grayscale)
free(webcam_tex. grayscale) ;

if (webcam_tex . delta_buf f er)
f ree(webcam_tex.delta_buffer) ;

if (webcam_tex.back_buffer[0])
f ree(webcam_tex.back_buffer[0]) ;

if (webcam_tex.back_buffer[1])
f ree(webcam_tex.back_buffer[1]) ;

Conclusion

Web cams have a lot of untapped potential that game developers may not realize.
They have the ability to be used as input devices, as in the way a mouse is used, by
tracking color objects and translating their rotations from 2D to 3D [Wu99] . It's even
possible to replace your standard mouse using a Web cam, by performing data
smoothing and color tracking algorithms on the input frames.

References
Microsoft Developer Network Library http://msdn.microsoft.com/library/devprods/

vs6/visualc/vcsample/vcsmpcaptest.htm.
[FiretoadOO] Firetoad Software, Inc., Ectosaver, 2000 www.firetoads.com.
[Wu99] Wu, Andrew, "Computer Vision REU 99" www.cs.ucf.edu/-vision/reu99/

profile-awu.html.

2.1

Floating-Point Tricks:
Improving Performance with
IEEE Floating Point

Yossarian King, Electronic Arts Canada
yking@ea.com

Overview

Integers have fixed precision and fixed magnitude. Floating-point numbers have a
"floating" decimal point and arbitrary magnitude. Historically, integers were fast and
floats were slow, so most game programmers used integers and avoided floats. Integer
math was cumbersome for general calculations, but the performance benefits were
worth the effort. Hardware costs have come down, however, and todays PCs and
game consoles can do floating-point add, subtract, multiply, and divide in a few
cycles. Game programmers can now take advantage of the ease of use of floating-point
math.

Although basic floating-point arithmetic has become fast, complex functions are
still slow. Floating-point libraries may be optimized, but they are generally imple-
mented for accuracy, not performance. For games, performance is often more impor-
tant than accuracy.

This gem presents various tricks to improve floating-point performance, trading
accuracy for execution speed. Table lookup has long been a standard trick for integer
math; this gem shows generalized linear and logarithmic lookup table techniques for
optimizing arbitrary floating-point functions.

The following sections discuss:

• The IEEE floating-point standard
• Tricks for fast float/int conversions, comparisons, and clamping
• A linear lookup table method to optimize sine and cosine
• A logarithmic method to optimize square root
• Generalized lookup table methods to optimize arbitrary floating-point functions
• The importance of performance measurement

167

168 Section 2 Mathematics

IEEE Floating-Point Format

The IEEE standard for floating-point numbers dictates a binary representation and
conventions for rounding, accuracy, and exception results (such as divide by zero).
The techniques outlined in this article rely on the binary representation, but are gen-
erally not concerned with the rounding and exception handling. If a computer or
game console uses the standard binary representation, then these tricks apply, regard-
less of whether the floating-point handling is fully IEEE compliant. The Pentium III
Streaming SIMD Extensions (SSE) and PS2 vector unit both implement subsets of
the IEEE standard that do not support the full range of exception handling; however,
since the binary representation follows the standard, die tricks in this gem will work
with these instruction sets.

The IEEE standard represents floating-point numbers with a sign bit, a biased
exponent, and a normalized mantissa, or significand. Single precision, 32-bit floating-
point numbers (a "float" in C) are stored as shown in Figure 2.1.1.

s f i r f r ljeg fTijrnrri mm m m m |m m m m mm m m m mm m m m m
31 30 " " 23 22 ~ " "' " " " 0

s = sign
e = biased exponent
m = normalized mantissa

floating point number is s x 1 .m x 2'6-127)

FIGURE 2.1.1 IEEE 32-bit floating-point format has a 1-bitsign, 8-bit exponent, and
23-bit mantissa.

The exponent is stored as a positive number in biased form, with 127 added to
the actual exponent (rather than the more familiar two's complement representation
used for integers). The mantissa is usually stored in normalized form, with an implied
1 before the 23-bit fraction. Normalizing in this way allows maximum precision to be
obtained from the available bits.

A floating-point number thus consists of a normalized significand representing a
number between 1 and 2, together with a biased exponent indicating the position of
the binary point and a sign bit. The number represented is therefore:

n = sxl.mx2 (e-1 2 7)

For example, the number -6.25 in binary is -110.01, or -1 X 1.1001 x 22. This
would be represented with s=l,e = 2+l 27= 10000001, m = [1.] 1001, as shown in
Figure 2.1.2.

Some additional "magic values" are represented using the exponent. When e =
255, m encodes special conditions such as not-a-number (NaN), undefined result, or
positive or negative infinity. Exponent e = 0 is used for denormalized numbers—
numbers so tiny that the range of the exponent overflows 8 bits.

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 169

s=1
-6.25 decimal "-110.01 binary * -1 x [1.]1001 x 22 + 6 = 2 + 127 = 10000001

m= 1001000...
I

FIGURE 2.1.2 The number -6.25 as stored in memory in 32-bit IEEE floating-point
format.

Double precision 64-bit floating-point numbers are stored using the same basic
format, but with 11 bits for the exponent and 52 for the significand. The exponent is
biased by 1023, rather than 127. Double precision numbers require twice the storage
space and may be slower to load from memory and to process. For these reasons, dou-
ble precision should generally be avoided in game code. This gem uses only single-
precision floats.

Floating-Point Tricks

Before getting to the lookup table techniques, this section discusses some useful
floating-point tricks that help explain the games you can play with the bit patterns of
floating-point numbers.

Float/lnt Conversions

The lookup table techniques that follow convert a floating-point number to an inte-
ger to generate lookup table indices. This operation can be slow; on a Pentium II, for
example, casting a float to an int with "(int)f' takes about 60 cycles. This is because
the ANSI C standard dictates that casting a float to an int should truncate the frac-
tion, but by default, the FPU rounds to the nearest integer. Casting to an int becomes
a function call to a routine that changes the FPU rounding mode, does the conver-
sion, and then changes the rounding mode back. Nasty.

Note that the cost of casting between ints and floats is dependent on the compiler
and processor with which you are working. As with all optimizations, benchmark this
conversion trick against a regular typecast and disassemble the code to see what's actu-
ally happening.

The conversion can be performed much faster by simply adding 1 x 223 to the
floating-point number and then discarding the upper exponent bits of the result.
We'll look at the code first, and then analyze why it works.

To do this, it is helpful to define the following union, which lets us access a 32-bit
number as either an integer or a float.

170 Section 2 Mathematics

typedef union
{

int i;
float f;

} _INTORFLOAT;

The INTORFLOAT type is used in code snippets throughout this gem. Note that
it makes access to the bit pattern of numbers look very simple—in practice, the com-
piler may be generating more code than you expect. On a Pentium II, for example,
floating-point and integer registers are in separate hardware, and data cannot be moved
from one to the other without going through memory; for this reason, accessing the
members of the INTORFLOAT union may require additional memory loads and
stores.

Here is how to convert a float to an int:

INTORFLOAT n; // floating-point number to convert
INTORFLOAT bias; // "magic" number

bias.i = (23 + 127) « 23; // bias constant = 1 x 2*23
n.f = 123.456f; // some floating-point number

n.f += bias.f; // add as floating-point
n.i -= bias.i; // subtract as integer
// n.i is now 123 - the integer portion of the original n.f

Why does this work? Adding 1 x 223 as a floating-point number pushes the man-
tissa into the lower 23 bits, setting the exponent to a known value (23 + 127). Sub-

floating-point

43.25= 1 0 1 0 1 1.0 1
1 x 223 = + 1 0 . 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 . 0 1

[1 .]00000000000000000101011 01 x 223

oTv.i ojoj tTi|? |i jctl o I o I o] o I o I o I o I o I o I o I o I o I o I o [o I o I o 111 o J11 o 11 h~|
31 30 23 22 0

— o I:'F'l'*ril-'i-'f' o
1 0 1 0 1 1 =43

integer

FIGURE 2.1.3 The number 43.25 is converted to an integer by manipulating the floating-point
format. The underlined bits in the mantissa do not fit in memory and are discarded (with rounding).

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 171

tracting the known exponent as an integer removes these unwanted upper bits, leav-
ing the desired integer in the low bits of the result. These steps are illustrated in Fig-
ure 2.1.3 for the number 43.25.

On a Pentium II (with everything in cache), this reduces the conversion time
from 60 cycles to about 5. Note that it is also possible to write inline assembly code to
get the FPU to convert from float to int without changing the rounding mode—this
is faster than typecasting, but generally slower than the biasing trick shown here.

This trick works as long as the floating-point number to be converted does not
"overlap" the bias constant being added. As long as the number is less than 223, the
trick will work.

To handle negative numbers correctly, use bias = ((23 + 127) « 23) + (1 «
22)—the additional (1 « 22) makes this equivalent to adding 1.5 x 223, which causes
correct rounding for negative numbers, as shown in Figure 2.1.4. The extra bit is
required so that the subtract-with-borrow operation does not affect the most signifi-
cant bit in the mantissa (bit 23). In this case, 10 upper bits will be removed instead of
9, so the range is one bit less than for positive numbers—the number to be converted
must be less than 222.

To convert from a float to a fixed-point format with a desired number of frac-
tional bits after the binary point, use bias = (23 - bits + 127) « 23. Again, to handle
negative numbers, add an additional (1 « 22) to bias. This is illustrated in Figure
2.1.5, which shows the conversion of 192.8125 to a fixed-point number with two
fractional bits.

Note that you can use the "inverse" of this trick to convert from integer to float-
ing-point.

floating-point

-43-25 = - 1 0 1 0 1 1.0 1
1.5x223= + 1 0.0 D _

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0.1 1

[1 .]0111111111111111101010011 x 22

31 30 23 22 0

— o SJ'SWfM-¥X§;Q o
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 =-44

integer

FIGURE 2.1.4 To convert a negative float to an integer is slightly different than for positive numbers.
Here we see the conversion of-43.25. Observe how the rounding applied when the underlined bits
are discarded yields the correct negative integer.

172 Section 2 Mathematics

floating-point

192.8125= 1 1 0 0 0 0 0 0.1 1 0 1
1x22 3~2 = + 1 0.0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0.1 1 0 1

[1J00000000000001100000011 01 x 223

o] j I fi} •o|iT€f iTTil oToToToJoToJo I oj o I o [o I o I o I o 1 1 1 1 |o I o I o I o I o I o 11 h
31 30 23 22 0

~~ ° 33"I"CT1-rP£ o 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o
1 1 0 0 0 0 0 0.1 1 =192.75

21.2 fixed-point

FIGURE 2.1.5 Fractional bits can be preserved during the conversion from float to integer. Here,
192.8125 is converted to a fixed-point number with two bits after the binary point.

n.i = 123; // some integer

n.i += bias.i; // add as integer
n.f -= bias.f; // subtract as floating-point
// n.f is now 123.0 - the original n.i converted to a float

Usually, int-to-float conversions using typecasts are fast, and thus less in need of a
performance-optimizing trick. >

Sign Test

Because the sign bit of a floating-point number is in bit 31, the same as for integers,
we can use the integer unit to test for positive or negative floating-point numbers.
Given a floating-point number f, the following two code fragments are (almost)
equivalent:

if (f < O.Of) // floating-point compare

INTORFLOAT ftmp;
ftmp.f = f;
if (ftmp.i < 0) // integer compare

Although they are equivalent, the integer compare may run faster due to better
pipelining of the integer instruction stream. Try it and see if it helps your code.
("Almost" equivalent because negative 0 will behave differently.)

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 173

Comparisons

Since the floating-point format stores sign, exponent, mantissa in that bit order, we
can use the integer unit to compare floating-point numbers—if the exponent of a is
greater than the exponent of b, then a is greater than b, no matter what the mantissas.
The following code fragments may be equivalent:

if (a < b) // floating-point compare

INTORFLOAT atmp, btmp;
atmp.f = f; btmp.f = b;
if (atmp.i < btmp.i) // integer compare

Again, the integer comparison will usually pipeline better and run faster. Note
that this breaks down when a and b are both negative, because the exponent and man-
tissa bits are not stored in the two's complement form that the integer comparison
expects. If your code can rely on at least one of the numbers being positive, then this
is a faster way to do comparisons.

Clamping

Clamping a value to a specific range often comes up in games programming, and
often we want to clamp to a [0,1] range. A floating-point value /can be clamped to 0
(i.e., set/= 0 if/< 0) by turning the sign bit into a mask, as in the following code
snippet:

INTORFLOAT ftmp;
ftmp.f = f;
int s = ftmp.i » 31; // create sign bit mask
s = -s; // flip bits in mask
ftmp.i &= s; // ftmp = ftmp & mask
f = ftmp.f;

s is set to the bits of/shifted right by 31—sign extension replicates the sign bit
throughout all 32 bits. NOT-ing this value creates a mask of 0 bits if/was negative, or
1 bits if/was positive. AND-ing/with this value either leaves/unchanged or sets/to
0. Net result: if/was negative, then it becomes 0; if it was positive, it is unchanged.

This code runs entirely in the integer unit, and has no compares or branches. In
test code, the floating-point compare and clamp took about 18 cycles, while the in-
teger clamp took less than five cycles. (Note that these cycle times include loop
overhead.)

Clamping positive numbers to 0 (set/= 0 if/> 0) is less useful but even easier,
since we don't need to flip the bits in the mask.

INTORFLOAT ftmp;
ftmp.f = f;
int s = ftmp.i » 31; // create sign bit mask

174 Section 2 Mathematics

ftmp.i &= s; // ftmp = ftmp & mask
f = ftmp.f;

Clamping to 1 (set/= 1 if/> 1) can be done by subtracting 1, clamping to 0, and
then adding 1.

INTORFLOAT ftmp;
ftmp.f = f - 1.0f;
int s = ftmp.i » 31; // create sign bit mask
ftmp.i &= s; // ftmp = ftmp & mask
f = ftmp.f + 1.Of;

Note that using conditional load instructions in assembly will generally increase
the speed of clamping operations, as these avoid the need for branching, which kills
the branch prediction logic in the instruction pipeline.

Absolute Value

This one's easy: since floating-point numbers do not use two's complement, taking
the absolute value of a floating-point number is as simple as masking the sign bit to 0.

INTORFLOAT ftmp;
ftmp.f = f;
ftmp.i &= Ox7fffffff;
f = ftmp.f;

Note that this is much faster than using a compare to determine if/is less than 0
before negating it.

Linear Lookup Tables for Sine and Cosine

Trigonometry is often useful in games—for calculating distances and angles, stepping
along a circle, or animating a water mesh. The standard math library has all the nor-
mal trig functions, but they are slow, and they work on doubles, so they use more
memory than needed. In a game, a low-precision calculation is often sufficient.

To efficiently compute sine and cosine, we can use a lookup table. A common
approach is to use fixed-point math, with angles represented on an integer scale, say, 0
to 1023 to cover the full circle. However, this means that the game programmer needs
to understand the library implementation of sine and cosine, and represent his or her
angles in the format it requires. By using floating-point tricks for efficient indexing,
we can create floating-point trig functions that use standard radians and do not
require the programmer to know about implementation details.

sin

Let's implement:

float fsin(float theta);

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 175

This can easily be done with a lookup table. A 256-entry table, covering the range
of angles 0 to 271, is initialized as:

sintable[i] = (float)sin((double)i * 2.0*3.14159265/256.0)

which simply converts i in the range 0-256 to floating-point radians in the range 0 to
2n and takes the sine of the resulting angle.

Given this table, the jsin function could be implemented as follows:

float fsin(float theta)
{

i = (unsigned int)(theta * 256.Of/
(2.0f*3.14159265f));return table[i];

}

However, this has two problems: first, it uses the slow float-to-int typecast, and
second, if theta is outside the range [0,2Jl), then the function will index out of the
table.

Both of these problems are solved with this implementation:

#define FTOIBIAS 12582912.Of // 1.5 * 2*23
#define PI 3.l4l59265f

float fsin(float theta)
{

int i;
INTORFLOAT ftmp;
ftmp.f = theta * (256.Of/(2.0f*PI)) + FTOIBIAS;
i = ftmp.i & 255;
return table[i];

}

This implementation uses the floating-point biasing trick described previously
for fast conversion from floating-point to integer. It masks the integer with 255 so
that the table index wraps around, always staying in the 0-255 range. Note that if/
exceeds 222, then the float-to-integer conversion trick will fail, so it's still necessary to
periodically reduce/to the valid [0,27l) range.

This implementation of jsin takes about 10 cycles on a Pentium II (assuming all
code and data is in primary cache), as compared with almost 140 cycles for the stan-
dard math library implementation of sin (even though sin uses the hardware sine
instruction in the FPU).

A 256-entry floating-point table takes IK, which should easily stay within cache
for the duration of your inner loops. Accuracy is basically eight bits, as constrained by

('"c>?''\ t"ie l°°kuP table size. The worst-case error can easily be determined from analyzing
^-—--^ the lookup table (as is demonstrated in the code on the CD). Larger lookup tables

increase the accuracy of your results, but will hurt cache performance.

176 Section 2 Mathematics

cos
The cosine function could be implemented in exactly the same way, with its own
lookup table, but we can take advantage of the fact that cos(0) = sin(9 + n/2), and use
the same lookup table. To do this, we just need to add 256/4 (since adding n/2 means
we're adding a quarter of a circle to the angle) to the lookup table index, which we can
do at the same time as biasing the exponent. This yields the following implementation:

float fcos(float theta)
{

int i;
INTORFLOAT ftmp;
ftmp.f = theta * (256. Of /(2.0f*PI)) + FTOIBIAS + 64f;
i = ftmp.i & 255;
return table[i] ;

Depending on the application, it is often useful to get both sine and cosine at the
same time. This can be done more efficiently than computing each separately — sim-
ply look up sin, and then add 64 to the index and mask by 255 to look up cos. If you
need to compute several sines or cosines at once, you can write custom code to inter-
leave the calculations and make it faster still.

Logarithmic Optimization of Square Root

Square roots are useful in games for operations such as computing distances, normal-
izing vectors, and solving quadratic equations. Despite the presence of a square root
instruction built into the FPU, the sqrt function in the standard C library still
takes about 80 cycles on a Pentium II CPU, making it another good candidate for
optimization.

Square root optimization is an interesting use of floating-point bit fiddling,
because the logarithmic, multiscale nature of square root allows us to decompose the
square root calculation and manipulate the mantissa and exponent separately. Con-
sider the square root of a floating-point number:

sqrrtf) = sqrl{\.m x 2')
= sqrt(l.m)x2'n

So, to compute the square root off, we compute the square root of the mantissa
and divide the exponent by 2. However, the exponent is an integer, so if the exponent
is odd, then dividing by 2 loses the low bit. This is addressed by prepending the low
bit of the exponent to the mantissa, so we have:

sqrtff) = sqrt(\.m-x. 2">) x 2 ['/2j

where e0 is the low bit of the exponent.

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 177

This is implemented with a 256-entry table for the square root of the truncated
mantissa and some additional tweaking for the exponent calculation, as follows:

float fsqrt(float f)

INTORFLOAT ftmp;
unsigned int n, e;

ftmp.f = f;
n = ftmp.i;
e = (n » 1) & Ox3f800000; // divide exponent by 2
n = (n » 16) & Oxff; // table index is eO+m22-m16

ftmp.i = sqrttable[n] + e; // combine results

return ftmp.f;

The table index is simply the upper bits of the mantissa and the low bit of the
exponent (e0). The lookup table contains the mantissa of the computed square roots.

The exponent of the square root is computed by shifting the exponent of /by 1
to divide by 2. Since the exponent is biased, this divides the bias by 2 as well as the
exponent, which is not what we want. This is compensated for by adding an addi-
tional factor to the entries otsqrttable to re-bias the exponent.

This fcqrt function takes about 16 cycles on a Pentium II CPU—about five times
^~-_i^ faster than the C library implementation. Again, this is assuming that everything is in

mma> cache.
The algorithm is explained in more detail in the code on the CD.

Optimization of Arbitrary Functions

Consider an arbitrary floating-point function of one variable:

The techniques just discussed reveal two basic methods for table-based optimiza-
tions of general functions. For sine and cosine, the value of x was linearly quantized
over a known range and used as a table index to look up y. For square root, the value
of x was logarithmically quantized and used as a table index to look up a value. This
value was scaled by a function of the exponent of x to get the final value of y.

The linear approach rescales a floating-point number and converts it to an integer
to generate a lookup table index via linear quantization. This is a simple technique very
similar to integer lookup tables, the only wrinkle being die efficient conversion of a
floating-point value into an integer index. The logarithmic approach uses the floating-
point bit pattern directly as a table index, to achieve logarithmic quantization.

Both of these techniques can be generalized to the case of arbitrary functions.
Depending on the function, the linear or logarithmic approach may be more
appropriate.

Section 2 Mathematics

Linear Quantization

The fiin function in the previous section can be used as a template for optimiz-
ing general functions via linear quantization. Suppose we know that the function
will only be used over a limited range x e [A, S). We can build a lookup table
that uniformly covers this range, and efficiently calculate the correct index into the
table for values of x within the range. The optimized function f is then imple-
mented as:

tfdefine FTOIBIAS 1258291 2. Of // 1.5 * 2"23
tfdefine TABLESIZE 256
tfdefine INDEXSCALE ((float) TABLESIZE / (B - A))

float flut(float x)
{

int i;
INTORFLOAT ftmp;
ftmp.f = x * INDEXSCALE + (FTOIBIAS - A * INDEXSCALE);
i = ftmp.i & (TABLESIZE - 1);
return ftable[i] ;

The lookup table is initialized with:

ftable[i] = f((float)i / INDEXSCALE + A);

where /is the full-precision floating implementation of the function. The y?«J compu-
tation requires two floating-point operations (multiply and add), one integer bitwise
mask, and a table lookup. It takes about 10 cycles on a Pentium II CPU.

Note that additional accuracy can be obtained for a few more cycles by linearly
interpolating the two closest table entries. An API supporting this optimization for
general functions is provided on the CD, including optional linear interpolation to
increase accuracy.

Logarithmic Quantization

The linear method treats the range [A,B) uniformly. Depending on the function, a
logarithmic treatment may be more appropriate, as in the square root optimization.
The basic idea is that the bits of the floating-point representation are used directly as
a lookup table index, rather than being manipulated into an integer range. By extract-
ing selected bits of the sign, exponent, and mantissa, we can massage the 1:8:23 IEEE
floating-point number into our own reduced precision format with as many bits as we
like for the sign, exponent, and mantissa.

In the square root example, we extracted 8 bits to give a logarithmically quantized
0:1:7 representation. We used 1 bit of the exponent and 7 bits of the mantissa. The
sign bit was discarded, since the square root of a negative number is undefined. The
0: 1 :7 format represents an 8-bit mantissa (remember the implied 1 in the IEEE rep-

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 179

resentation) and a 1-bit exponent, so it can represent numbers between [1]. 0000000
x 2° and [1] . 1 1 1 1 1 1 1 x 21, which covers the range [1 ,4).

The square root function was decomposed into an operation on the 0:1:7 quan-
tized number (a table lookup) and an independent operation on the exponent (divide
by 2). Additional trickery was employed to optimize the two independent operations
and combine the mantissa and exponent into a 32-bit floating-point result.

Other functions can benefit from this method of logarithmic quantization. The
IEEE format makes it easy to extract the least significant bits of the exponent with the
most significant bits of the mantissa in a single shift and mask operation. To extract
ebits of the exponent and mbits of the mantissa, simply do this:

bits = (n » (23 - mbits)) & ((1 « (ebits + mbits)) - 1)

This shifts the number n to the right so that the desired bits of the mantissa and
exponent are the rightmost bits in the number, and then masks off the desired num-
ber of bits.

The sign bit can be handled with some extra bit fiddling, depending on the func-
tion with which you are working. If you know that you are only dealing with positive
numbers (for example, square root), or that your function always returns a positive
result, then you can ignore the sign. If the sign of your result is the same as the sign of
the input number (in other words, f(-x) = -f(x)), you can simply save and restore the
sign bit.

For functions with a limited range of input values, masking out selected bits of
the exponent and mantissa can give you a direct table index. For example, if you only
care about your function over the range [1,16), then you can use 2 bits of exponent
and 4 bits of mantissa (for example). This 0:2:4 representation stores binary numbers
between 1 .0000 x 2° and 1 . 1 1 1 1 x 23, or decimal 1 .0 to 1 5 . 5 . Mask out these bits and
use the bits directly as an index into a precomputed 64-entry table. This requires very
few cycles and is computationally fast. However, as you add more precision, the table
grows and may become prohibitively large, at which point cache performance will
suffer.

An alternative is to decompose the exponent and mantissa calculations, as was
done in the square root example. If your function f(x) can be decomposed as:

then you can, for example, approximate fl with a 256-entry lookup table, using 8 bits
of the mantissa m, and perform the calculation of f2 directly, as an integer operation
on the exponent e. This is essentially the technique used by the square root trick.

Logarithmic quantization is a powerful tool, but often requires function-specific
bit fiddling to optimize a particular function. Fully general techniques are not always
possible, but the methods described in this section should be helpful when tackling
your specific optimization problem.

180 Section 2 Mathematics

Performance Measurement

When optimizing code, make sure you measure performance carefully before and
after making the optimization. Sometimes an optimization that looks good on paper
causes trouble when implemented, due to cache behavior, branch mispredictions, or
poor handling by the compiler. Whenever you make changes, be sure that you are
improving your performance—never assume.

Make sure compiler optimizations are enabled. Use inline functions where appro-
priate. Again, test your results when using inline functions or tweaking the compiler
settings.

When benchmarking code, take care that compiler optimization isn't getting in
the way of your tests. Disassemble your code and step through it to be sure it's run-
ning what you expected. When timing things, it's often helpful to run something in a
loop—but if the body of your loop gets optimized out, then your timing won't be
very accurate!

On Pentium computers, you can use the rdtsc (read time stamp counter) instruc-
tion to get the current CPU cycle count. Intel warns that this instruction should be
executed a couple times before you start using the results. Intel also recommends
using an instruction such as cpuid that will flush the instruction cache, so that you get
more consistent timing results. To get absolute times, the cycle counts can be con-
verted to seconds by dividing by the execution speed (MHz) of the processor.

Cycle counters are the most reliable way to measure fine-grain performance.
Other tools such as VTune and TrueTime (on the PC) are useful for higher level pro-
filing. For any benchmarking, make sure that memory behavior is realistic, as mem-
ory bottlenecks are one of the most serious impediments to high performance on
modern processors. Be aware of how your benchmark is using the cache, and try to
simulate the cache behavior of your game. For a benchmark, the cache can be
"warmed up" by running the algorithm a couple of times before taking the timing
measurements. However, a warm cache may not emulate the behavior of your
game—best is to benchmark directly in the game itself. Disable interrupts for more
reliable results, or take measurements multiple times and ignore the spikes.

All the cycle times reported in this gem are from an Intel Pentium II 450-MHz
machine. Each operation was repeated 1000 times in a loop, with the instruction and
data cache warmed by running the test multiple times. Cycle counts include loop
overhead. See the code on the CD for actual benchmarks used.

The lookup table techniques described in this article are appropriate if the lookup
table remains in cache. This is probably true within the inner loop of your rendering
pipeline or physics engine, but it's probably not true if you are calling these functions
randomly throughout the code. If the lookup tables cannot be kept in cache, then
techniques that use more computation and fewer memory accesses are probably more
appropriate—methods such as polynomial approximation (see [EdwardsOO] for a
good overview).

2.1 Floating-Point Tricks: Improving Performance with IEEE Floating Point 181

Conclusions

This gem scratched the surface of floating-point optimization. Lookup tables are the
primary method explored, and they often produce significant speedups. However, be
aware of cache behavior, and always benchmark your results. Sometimes you can
achieve the same result faster by using more computation but touching memory
less—techniques such as polynomial approximation may be appropriate. The tricks
shown here can be extended in a variety of ways, and many other tricks are possible.
As a popular book title suggests, there is a Zen to the art of code optimization, and a
short overview like this can't hope to cover all possibilities.

References
[Abrash94] Abrash, Michael, Zen of Code Optimization, Coriolis Group, 1994.
[EdwardsOO] Edwards, Eddie, "Polynomial Approximations txp Trigonometric Func-

tions," Game Programming Gems, Charles River Media, 2000.
[IntelOl] Intel Web page on floating-point unit and FPU data format. Good for PCs,

but relevant to any IEEE-compliant architecture. Available at http://developer
.intel.com/design/intarch/techinfo/Pentium/fpu.htm.

[Lalonde98] Lalonde, Paul, and Dawson, Robert, "A High Speed, Low Precision
Square Root," Graphics Gems, Academic Press, 1998.

2.2

Vector and Plane Tricks

John Olsen, Microsoft
infix@xmission.com

Your collision detection routine is running flawlessly now, returning a surface
point and a normal back when you feed it a position and velocity vector. Now

what? Actually, there are quite a few things you can do based on the data you have.
In general, you may want to have your collision routine generate the actual colli-

sion point, but the methods in this gem show how to handle collision results that
show only the plane of intersection. Since a plane can be fully specified with a surface
normal and any point on the plane, you can work your way through the math to find
everything you need from there.

Data that goes into your collision code would be an initial point Pt and a final
point Pf, and the output in the case of a collision would be a plane that is defined by
a unit vector surface normal TV and a point on the surface Ps. The point need not be
the actual intersection point as long as it is on the plane.

For optimization purposes, you will probably want to build a subset of these cal-
culations back into your collision code. Much of the information you need will have
already been calculated during the collision tests. It will be much faster to reuse the
already known information rather than recalculate it from scratch.

The plane equation Ax + By + Cz + D = 0 maps onto the supplied data, where x,
y, and z are the components of the normal vector N, and D is the dot product N* Ps.

Altitude Relative to the Collision Plane

One of the most commonly used pieces of data when checking collisions is the alti-
tude of one of your data points. If the altitude is positive, the point is above the sur-
face and has not collided yet. If it is negative, you have collided and penetrated the
surface.

Typical collision testing code will only return a hit if one of your test points is on
each side of the test surface. This means that if you want to predict collisions, you
need to pass along a position with an exaggerated velocity vector. That way, the exag-
gerated vector will intersect much earlier than your actual movement would allow.

Once you have tricked your collision code into returning a surface point and nor-
mal, you can get your altitude relative to that surface by using your initial position.
The final position is not used for this altitude calculation.

182

2.2 Vector and Plane Tricks 183

FIGURE 2.2.1 Determining the altitude.

As shown in Figure 2.2.1, we want to find the length of the vector (Ps - Pt) when
it is projected onto the surface normal N. This gives us the distance of the shortest
line from the point to the surface. This shortest vector is by definition perpendicular
to the surface. This is exactly what the dot product gives us, so we are left with the
scalar (nonvector) distance to the surface Ds as shown:

Nearest Point on the Surface

Once we have the distance to the surface, it takes just one more step to get the point
on the surface PH that is closest to the initial point Pf as also shown in Figure 2.2. 1 . We
already know the point is distance Ds from die starting point, and that distance is
along the surface normal TV. That means die point can be found with the following:

Ptt = P,-DsN

The normal vector is facing the opposite direction of the distance we want to
measure, so it needs to be subtracted from the starting point.

Pinning Down the Collision Point

When you have one point on each side of a test surface, your vector must at some
point intersect with it. Finding this intersection point Pc will tell you where your vec-
tor pierces die surface. If your collision detection code has not already provided you
with the exact point, here is how you would find it.

You know that the collision point must lie somewhere along the line. Knowing in
advance that there is a collision makes it possible to take some shortcuts since we
know there actually is a solution to the equation. If the test ray is parallel to the sur-
face, the ratio cannot be calculated since it results in a divide by zero. We can take
advantage of the calculation for Ds in finding die collision point Pc. Figure 2.2.2
shows the information needed for this calculation.

184 Section 2 Mathematics

FIGURE 2.2.2 Finding the collision pointPc.

Since we know the collision is between the two points, we can find it by calculat-
ing how far it is along the line from P/ to Pf. This ratio can be written as:

R = ((Pi - P,) • N) I ((% - Pf) • N)

Or, using our already computed Ds, it becomes:

R = D,I ((P,. - Pf) • N)

The two line segments are arranged to both point in the same direction relative to
the surface normal, which guarantees that our ratio will be non-negative. Once we
have this ratio, we can use it to multiply the length of the vector from P, to Pyto tell
how far from P, the collision occurs. In the special case of R = 1, you can avoid the cal-
culation since it results in the point Pf For R = 0, the point is P,-. Otherwise, the fol-
lowing equation is used:

Pe=Pf + R(Pf - P^

Distance to the Collision Point

Although similar to Ds, this differs from the distance from the collision plane because
the distance is calculated along the path of travel rather than along the surface normal.
In the case of travelling near the surface but nearly parallel to it, your distance to col-
lision will be very large when compared to your altitude.

This is the type of calculation you would want to use when calculating altitude
for an aircraft, since you cannot guarantee the direction of a surface normal on the
ground below. Rather than sending your actual velocity for a collision test, you would
send your current position and a very large down vector, long enough to guarantee
that it will intersect the ground. This works in the case of intersecting a small polygon

2.2 Vector and Plane Tricks 185

FIGURE 2.2.3 Calculating distance to the collision point.

that happens to be aligned nearly perpendicular to the test vector. In that case, the
altitude relative to the collision plane Pn as calculated earlier would give a very small
number.

Once you have the actual collision point, it's very easy to calculate the distance
using Euclid's equation to find how far it is from the starting point to the collision
point. Figure 2.2.3 shows the elements required. The distance to the collision point,
Dc, is the magnitude of the vector from our starting point /J to the collision point Pe

that was calculated earlier:

Another way to describe the magnitude of this vector is that it is the square root
of the sum of the squares of the differences of each component of the vector. Most
vector libraries include a function call to find the magnitude or length of a vector.
Vector magnitudes are never negative.

Another possible shortcut can be used when you know the ratio R used to find
the collision point as described in the previous section. The distance to the collision
point is the length of the full line (which you may already have lying around) multi-
plied by the already computed ratio.

D. = RPf-Pi

Reflecting Off the Collision Plane

The usual result of a collision is to bounce. The interesting part is figuring out the
direction and position once you have rebounded off a surface. Figure 2.2.4 shows
the elements used in calculating the reflected vector. The first two cases will perfectly

Section 2 Mathematics

2N((Ps-Pf)-N)

P.

P.-Pf

FIGURE 2.2.4 Calculating the reflected vector.

preserve the magnitude of the velocity. In both cases, the result of the bounce will be
the same distance from the plane as Pf.

One of the simplest ways to visualize reflecting a point relative to a plane is to
imagine a vector from the below-ground destination point back up to the surface
along the surface normal. The new reflected location is found by continuing that line
an equal distance to the other side of the plane. You obtain the new location
by adding to the final point twice the distance from the final point to the surface.
Reusing our equation to find the distance perpendicular to the plane, we come up
with the following. The distance is multiplied by the surface normal to turn it back
into a vector since you cannot add a simple scalar value such as Ds to a vector.

The original and reflected vectors will have the same angle relative to the plane.
Another way of looking at this is that if you normalize the vectors from your collision
point going out to both your original start point and your reflected point, then find a
dot product of each with your surface normal; they will be equal.

Vectors are normalized by dividing the vector by its length or magnitude, so the
statement about reflected vectors in the previous paragraph can be written as:

p~p,
P.-P.

p - p-±c ±.N

P.-P;

Any point on the plane could be substituted for Pc (Ps works, for instance) in the
preceding equation and the same result would hold since all we are saying here is that
the ends of the unit vectors are the same distance from the plane.

A complication with reflections is that the newly determined end point needs to
be tested all over again with your collision code to see if you have been pushed
through some other surface. If you repeat the collision test, but with a vector from
your collision point Pc to the newly reflected point Pr, you will get a possible new col-
lision. You will need to repeat this process until no collision occurs. At each pass, your

2.2 Vector and Plane Tricks 187

vector will be smaller as it is chewed up by bouncing, as long as you do not try to
bounce between two coincident planes.

There is one degenerate case you should also watch out for when chaining colli-
sions together. Should you hit exactly at the intersection of two planes, your second
test will be made with an initial point on the edge of the surface. This is easy to han-
dle if you know about this problem and allow for it in advance by assuming anything
exactly at the surface (or on the edge) has not yet collided, and is counted as above the
surface for collision purposes. Collisions are reserved for penetration distances greater
than zero.

Once you have completed your final reflection, a new velocity vector can be com-
puted by normalizing the direction from the last collision to the final reflected loca-
tion and multiplying it by the original velocity like this:

V =
(Pr - PcPt - Pf

P.-P.

Kickback Collision

Sometimes, rather than reflect off the collision plane, you want to kick the player
back the way he or she came as shown in Figure 2.2.5. The calculations for this are
simple once you have the collision point. Since this collision also preserves velocity, it
is also perfectly elastic.

The point to which you are kicked back, /^, is obtained by calculating the vector
from your final point Pf back to your collision point Pe and adding it to the collision
point.

We can combine terms to get:

Pk = 2Pc - Pf

FIGURE 2.2.5 Calculating a kickback vector.

188 Sections Mathematics

You can run into the same problems with kickback collisions as with reflections
where the destination point leads to an additional collision. However, there is an early
way out of the loop for kickback collisions in some cases. If the collision point is more
than halfway from the initial point to the final point, the resulting kickback point will
occur in an area that has already been checked for collisions, so no additional check is
necessary.

Collisions with Damping

Should you want to perform a collision with some sort of friction or damping, you
will need to be careful of how you handle the vectors. You will need a scalar value
S that will be used as a multiplier to change your velocity at each impact. It will
typically range from zero (the object stops on impact) to one (a completely elastic
collision preserving velocity). Energy can be injected into the system by increasing
the scalar above one. A kickback collision is the same as using a scalar of negative
one.

To properly handle nonelastic collisions, you must scale only the portion of the
vector from the collision point Pe to the reflected point Pr as shown in Figure 2.2.6,
since that is the only portion of the flight that will have been slowed due to the
impact. The following equation relies heavily on the earlier equations to determine
what your new slowed point would be.

In coordination with this, you would need to multiply any separately stored
velocity vector by the same scalar value, or your object will resume its full speed the
next frame. In the case of a collision putting your point into another immediate colli-
sion as discussed earlier, this scale factor should be applied at each pass to simulate the
damping effect of multiple bounces in a single frame.

FIGURE 2.2.6 Calculating a damped reflection vector.

2.2 Vector and Plane Tricks 189

Interpolation Across a Line or Plane

An interesting side note about lines and planes is that a weighted average interpola-
tion between any set of points occupies the space defined by those points. For
instance, starting with a line, you can assign weights to the end points where the
weights sum to one, and all possible resulting points are on the line defined by
the points. Adding another point to build a plane extends the rule so the sum of the
three weights must equal one in order for the weighted sum to remain on the plane
defined by the three points. Additional points on the plane may be added, and addi-
tional dimensions may also be added should you have need for a point on an
n-dimensional plane.

This trick is related in a roundabout way to the reason we can often use Ps and Pc

interchangeably in several of the previous equations. Either point is sufficient to fill
the needs of the plane equation.

It's also interesting to note that the individual weights don't need to be between
zero and one. They just need to all sum up to the value one, which allows the result-
ing point to be outside the line segment or polygon defined by the points while still
being on the extended line or plane.

Sphere-to-Plane Collision

Colliding a ball with a surface is a little bit more complex than colliding a point against
the surface. One way to approach it is through ratios. If you draw a line from
the start point P± to the line-based collision point Pc of the vector against the plane, die
ball center Ph will be somewhere on that line when the ball begins to intersect the
plane.

When the ball just touches the surface, we can compare the line from Pf to Pc to
the line Pf to Pn to gain the information we need. If you project the first line onto the
second, the ball center is off the surface by exactly the ball radius r on the line Pj to Pn.
Since the length of that line is known to be Ds, we can get a ratio of how far the ball
is along the line. This is similar to the way we used a ratio to find the surface collision
point Pc. This ratio is the same when applied to the line from P{ to Pc, which leads to
the equation:

(Pe ~ Pi) D
S

The equation can be solved for the location of the ball /^, resulting in:

p -p V<-Pi*
Pb-lC ~

Section 2 Mathematics

FIGURE 2.2.7 Colliding with a sphere.

Figure 2.2.7 shows the relation graphically, indicating where the sphere is in rela-
tion to the vectors. Care must be taken to notice that the ball does not actually reach
Pc as the ball touches the surface unless the line from Pf to Pc is perpendicular to the
surface. As the vector conies closer to being parallel to the plane, the ball will be far-
ther from Pc when it touches the plane.

2.3

Fast, Robust Intersection of
3D Line Segments

Graham Rhodes, Applied Research Associates
grhodes@sed.ara.com

The problem of determining the intersection of two line segments comes up from
time to time in game development. For example, the line/line intersection prob-

lem can be beneficial in simple collision detection. Consider two objects in three-
dimensional space that are moving in time. During a time step or animation frame,
each object will move from one point to another along a linear path. The simplest
check to see if the objects collide during the time step would be to see how close the
two linear paths come to crossing, and if they are within a certain distance of each
other (in other words, less than the sum of the radii of bounding spheres of the
objects), then process a collision. Other common applications for line segment inter-
sections include navigation and motion planning (for example, when combined with
an AI system), map overlay creation, and terrain/visibility estimation.

This gem describes a robust, closed form solution for computing the intersection
between two infinite lines or finite-length line segments in three-dimensional space, if
an intersection exists. When no intersection exists, the algorithm produces the point
along each line segment that is closest to the other line, and a vector between the two
nearest points.

What Makes This Algorithm Robust?

The algorithm presented here is robust for a couple of reasons. First, it does not carry
any special requirements (for example, the line segments must be coplanar). Second,
it has relatively few instances of tolerance checks. The basic algorithm has only two
tolerance checks, and these are required mathematically rather than by heuristics.

The Problem Statement

Given two line segments in three-dimensional space, one that spans between the points
j4i = [Alx Aiy Alz]

r and A2 = [A^ A2y A2z\
T and one that spans between the

points Bl = [5lx Biy Blz\
 rand B2 = [B^ B2y B2z]

T, we would like to find the true
point of intersection, P=[PX Py PZ]T, between the two segments, if it exists. "When

191

Section 2 Mathematics

FIGURE 2.3.1 Two line segments in three-dimensional space. A) An intersection exists. B)
No intersecton.

no intersection exists, we would like to compromise and find the point on each seg-
ment that is nearest to the other segment. Figure 2.3.1 illustrates the geometry of this
situation.

The nearest points, labeled C and D respectively, can be used to find the shortest
distance between the two segments. This gem focuses on finding the nearest points,
which are identical to the true intersection point when an intersection exists.

Observations

Before delving into how to solve the line intersection problem, it can be useful to
make a few observations. What are the challenges to solving the problem correctly?

Consider an arbitrary, infinite line in space. It is likely that the line will intersect
an arbitrary plane (if the line is not parallel to the plane, then it intersects the plane);
however, it is unlikely that the line will truly intersect another line (even if two three-
dimensional lines are not parallel, they do not necessarily intersect). From this obser-
vation, we can see that no algorithm designed to find only true intersections will be
robust, capable of finding a result for an arbitrary pair of lines or line segments, since
such an algorithm will fail most of the time. The need for a robust algorithm justifies
the use of an algorithm that finds the nearest points between two lines, within a real-
time 3D application such as a game.

Since every student who has taken a basic planar geometry class has solved for the
intersection of lines in a two-dimensional space, it is useful to consider the relationship
between the three-dimensional line intersection problem and the two-dimensional
intersection problem. In two-dimensional space, any two nonparallel lines truly inter-
sect at one point. To visualize what happens in three-dimensional space, consider a
plane that contains both defining points of line A, and die first defining point of line

2.3 Fast, Robust Intersection of 3D Line Segments 193

B. Line A lies within the plane, as does the first defining point of line B. Note that die
point of intersection of die two lines lies on die plane, since diat point is contained on
line A. The point of intersection also lies on line B, and so two points of line B lie
widiin die plane. Since two points of line B lie in the plane, the entire line lies in the
plane.

The important conclusion here is diat whenever there is a true intersection of
two lines, those two lines do lie widiin a common plane. Thus, any time two three-
dimensional lines have a true intersection, the problem is equivalent to a two-
dimensional intersection problem in die plane diat contains all four of the defining
points.

NaTve Solutions

A naive, and problematic, solution to die intersection problem is to project the two
segments into one of the standard coordinates planes (XY, YZ, or XZ), and then solve
the problem in the plane. In terms of implementation, the primary difficulty widi diis
approach is selecting an appropriate plane to project into. If neither of the line seg-
ments is parallel to any of the coordinate planes, dien the problem can be solved in
any coordinate plane. However, an unacceptable amount of logic can be required
when one or both segments are parallel to coordinate planes. A variation on diis
approach, less naive but still problematic, is to form a plane equation from three of
the four points, Aly A2, Bl3 and B2, project all four points into the plane, and solve the
problem in the plane. In the rare case that there is a true intersection, this latter
approach produces the correct result.

One key feature that is completely lacking from the basic two-dimensional pro-
jected intersection problem is the ability to give a direct indication as to whether a
three-dimensional intersection exists. It also doesn't provide the three-dimensional
nearest points. It is necessary to work backwards to produce diis vital information.

The biggest problem with either variation on the projected solution arises when
the two lines pass close to one anodier, but do not actually intersect. In this case, the
solution obtained in any arbitrary projection plane will not necessarily be the correct
pair of nearest points. The projection will often yield completely wrong results! To
visualize this situation (which is difficult to illustrate on a printed page), consider the
following mind experiment. There are two line segments floating in space. Segment A
is defined by die points (0, 0, 0) and (1, 0, 0), and segment B is defined by (1, 0, 1)
and (1, 1, 1). When the lines are viewed from above, equivalent to projecting the lines
into the XY plane, the two-dimensional intersection point is (1, 0, 0), and the three-
dimensional nearest points are (1, 0, 0) and (1, 0, 1). These are the correct nearest
points for the problem. However, if those two lines are viewed from different arbitrary
angles, the two-dimensional intersection point will move to appear anywhere on the
two line segments. Projecting the two-dimensional solution back onto the diree-

C_^l^_^ dimensional lines yields an infinite number of "nearest" point pairs, which is clearly
ONTHCCO incorrect. The test code provided on the companion CD-ROM is a useful tool to see

194 Section 2 Mathematics

this problem, as it allows you to rotate the view to see two line segments from differ-
ent viewing angles, and displays the three-dimensional nearest points that you can
compare to the intersection point seen in the viewport.

In the next section, I derive a closed-form solution to the calculation of points C
and D that does not make any assumptions about where the two line segments lie in
space. The solution does handle two special cases, but these cases are unavoidable
even in the alternative approaches.

Derivation of Closed-Form Solution Equations

Calculating the Nearest Points on Two Infinite Lines

The equation of a line in three-dimensional space can be considered a vector function
of a single scalar value, a parameter. To derive a closed-form solution to the nearest-
point between two 3D lines, we first write the equation for an arbitrary point,
C = [Cx Cy CJr, located on the first line segment, as Equation 2.3.1.

C = Al+sLA, where LA = (A2 - 4) (2.3.1)

Notice that Equation 2.3.1 basically says that the coordinates of any point on the
first segment are equal to the coordinates of the first defining point plus an arbitrary
scalar parameter s times a vector pointing along the line from the first defining point
to the second defining point. If s is equal to zero, the coordinate is coincident with the
first defining point, and if s is equal to 1, the coordinate is coincident with the second
defining point. We can write a similar equation for an arbitrary point, D = [Dx Dy

DJT, located on the second line segment, as Equation 2.3.2:

D = 5; + tLB, where LB = #, - B (2.3.2)

Here, t is a second arbitrary scalar parameter, with the same physical meaning as s
with respect to the second line segment. If the parameters s and t are allowed to be
arbitrary, then we will be able to calculate points C and D as they apply to infinite
lines rather than finite segments. For any point on a. finite line segment, the parame-
ters s and t will satisfy 0 < s,t < 1 . We'll allow s and t to float arbitrarily for now, and
treat the finite length segments later.

The two 3D line segments intersect if we can find values of s and t such that
points C and D are coincident. For a general problem, there will rarely be an intersec-
tion, however, and we require a method for determining s and t that corresponds to
the nearest points C and D. The remainder of the derivation shows how to solve for
these values of; and t.

First, subtract Equation 2.3.2 from Equation 2.3.1 to obtain the following equa-
tion for the vector between points C and D:

2.3 Fast, Robust Intersection of 3D Line Segments 195

C-D = -AB + sLA - tLB = [o 0 OJr

where AB = Bl - Al (2.3.3)

Here, since we would like for points C and D to be coincident, we set the vector
between the points to be the zero vector. The right side of Equation 2.3.3 can then be
represented by the following matrk equation:

s*

LA. -L,

ABy

AB.

(2.3.4)

There are three rows in Equation 2.3.4, one for each coordinate direction, but
only two unknowns, the scalar values s and t. This is a classic over-determined or
under-constrained system. The only way there can be an exact solution is if the coef-
ficient matrix on the left side turns out to have rank 2, in which case the three equa-
tions are equivalent to just two independent equations, leading to an exact solution
for s and t. Geometrically, when there is an exact solution, the two lines have a true
intersection and are coplanar. Thus, two arbitrary lines in three-dimensional space
can only have a true intersection when the lines are coplanar.

The difference between the left side and right side of Equation 2.3.4 is equal to
the vector representing the distance between C and D. It is also the error vector of
Equation 2.3.4 for any arbitrary values of s and t. We determine the nearest points by
minimizing the length of this vector over all possible values of s and t.

The values of s and t that minimize the distance between C and D correspond to
a linear least-squares solution to Equation 2.3.4. Geometrically, the least-squares solu-
tion produces the points C and D. When we have the case of the segments being
coplanar but not parallel, then the algorithm will naturally produce the true intersec-
tion point. Equation 2.3.4 can be written in the form:

M? = b, where 7 = I s t\ (2.3.5)

One method for finding the least-squares solution to an over-determined system
is to solve the normal equations instead of the original system [Golub96]. The normal
equations approach is suitable for this problem, but can be problematic for general
problems involving systems of linear equations. We generate the normal equations by
premultiplying the left side and right side by the transpose of the coefficient matrk
M. The normal equations for our problem are shown as Equation 2.3.6.

MTM? = MT£ , where Mris the transpose of M. (2.3.6)

196 Section 2 Mathematics

Equation 2.3.6 has the desired property of reducing the system to the solution of
a system of two equations, exactly the number needed to solve algebraically for values
of / and t. Let's carry through the development of the normal equations for Equation
2.3.4. Expanding according to Equation 2.3.6 , the normal equations are:

LAX LAy L^

~~JLiD., ~~"-L>O,. -t-'D™

~L

By
-Ax -Ay -Az

LBz

ABX

ABy

AB.
(2.3.7)

Carrying through the matrix algebra:

LA -LA

\-LA-LB -LS-AB_
(2.3.8)

Or, simplifying by defining a series of new scalar variables:

(2.3.9)

This is a simple 2x2 system, and to complete this section we will solve it alge-
braically to form a closed-form solution for s and t. There are a number of ways to
solve Equation 2.3.9, including Cramer's rule [O'Neil87] and Gaussian elimination
[Golub96]. Cramer's rule is theoretically interesting, but expensive, requiring approx-
imately («+!)! multiply and divide operations for a general-sized problem. Gaussian
elimination is less expensive, requiring «3/3 multiply and divide operations. There are
other approaches to solving systems of linear equations that are significantly more
reliable and often faster for much larger systems, including advanced direct solution
methods such as QR factorizations for moderate-sized systems, and iterative methods
for very large and sparse systems. I will derive the solution using Gaussian elimina-
tion, which is slightly less expensive than Cramer's rule for the 2x2 system. Here, we
perform one row elimination step to yield an upper triangular system. The row elim-
ination step is as follows. Modify row 2 of Equation 2.3.9 by taking the original row
2 and subtracting row 1 times Ll2/Ln. to yield Equation 2.3.10.

A,
Aa

Ai j Aa Aa T
MI Ai

rn -
Aa

Ai

(2.3.10)

Simplify Equation 2.3.10 and multiply the new row 2 by Lu to yield the upper
triangular system shown in Equation 2.3.11.

2.3 Fast, Robust Intersection of 3D Line Segments 197

i;K \ 1*• I I / *• / r \
l/J L^ifB Ml^J

Al ^ . 1 * 1 = 1 '^ I (2-3.11)
o AiA2-A2

2

Equation (2.3.11) immediately yields a solution for t,

t = AI^B ~ LUTA (2.3.12)
*i 1-̂ 22 ~~ A£

and then, for 5,

s = TA ~ Lnt (2.3.13)
Ai

It is important to note that Equations 2.3.12 and 2.3.13 fail in certain degenerate
cases, and it is these degenerate cases that require that we use tolerances in a limited
way. Equation 2.3.13 will fail if line segment A has zero length, and Equation 2.3.12
will fail if either line segment has zero length or if the line segments are parallel. These
situations lead to a divide-by-zero exception. I provide more discussion later in the
section titled Special Cases.

In terms of computational expense for the 2x2 problem, the only difference
between solving for s and t using Gaussian elimination and Cramer's rule, for this
case, is that the computation of s requires one multiply, one divide, and one subtrac-
tion for Gaussian elimination, but four multiplies, one divide, and two subtractions
for Cramer's rule.

To summarize from the derivation, given line segment A from point Al to A2 and
line segment B from point Bl to B2, define the following intermediate variables:

LA = (A, - 4); ls = (B2 -B,)- ~AB = BI-AI (2.3.14)
and

•HI = ^A • LA; L22 = LB • LB; Z^ = — LA • LB

Compute the parameters ^ and t that define the nearest points as,

t = LU}"B ~ ^2[A (2.3.16)
AiAi ~ Ai

and

s = (2.3.17)

198 Section 2 Mathematics

The point where the first segment comes closest to the second segment is then
given by:

C = AL+ sLA (2.3.18)

and the point where the second segment comes closest to the first segment is
given by:

£> = #!+ tLB (2.3.19)

We can consider a point located halfway between the two nearest points to be the
single point in space that is "nearest" to both lines/segments as:

P = (C + D)/2 (2.3.20)

Of course, when the lines do intersect, point P will be the intersection point.

Special Cases

When we talk about the nearest points of two infinite lines in space, there are only
two possible special cases. The first case occurs when one or both lines are degenerate,
defined by two points that are coincident in space. This occurs when point A^ is coin-
cident with A2, or when B\ is coincident with B2. We'll call this the degenerate line spe-
cial case. The second case occurs when the two lines are parallel, called $\<z parallel tine
special case.

It is easy to relate the degenerate line special case to the equations developed pre-
viously. Note that variable Ln, defined in Equation 2.3.15, is equal to the square of
the length of line segment A, and L22 is equal to the square of the length of segment
B. If either of these terms is zero, indicating that a line is degenerate, then the deter-
minant of the matrix in Equation 2.3.9 is zero, and we cannot find a solution for s
and t. Note that when either Ln or L22 is zero, then L12 is also zero.

One standard test to check and decide if line A is degenerate is the following,

bool line_is_degenerate = Ln < e2 ? true : false;

Here, e is a small number such as perhaps 10"6. It is wiser to choose a value for £
such as 10"6 rather than a much smaller number such as machine epsilon.

When segments A and B are both degenerate, then point C can be selected to be
equal to point A, and point D can be selected to be equal to point B^. When segment
A alone is degenerate, then point Cis equal to A\> and point D is found by computing
the point on segment B that is nearest to point C. This involves computing a value for
parameter tonly, from Equation 2.3.21.

-LBt = AB (2.3.21)

2.3 Fast, Robust Intersection of 3D Line Segments 199

Equation 2.3.21 is a simplification of Equation 2.3.4 for the case where segment
A is degenerate, and again it requires that we find a least-squares solution. The least-
squares solution, shown here using normal equations without derivation, is:

(2.3.22)

Point D can be calculated using Equation 2.3.2.
When segment B alone is degenerate, then point D is set equal to B\, and point C

is found by computing the point on segment A that is nearest to point D. This
involves computing a value for parameter s only, from Equation 2.3.23, which is anal-
ogous to Equation 2.3.21.

LA* = AB (2-3.23)

Solving for s yields:

s = -p- (2.3.24)
Ai

Note that Equation 2.3.24 is identical to Equation 2.3.13 with fset equal to zero.
Since t equals zero at point Blt our derivation here is consistent with the derivation for
nondegenerate lines.

Certainly, a nice way to handle the cases where only one segment is degenerate is
to write a single subroutine that is used both when segment A alone is degenerate and
when B alone is degenerate. It is possible to do this using either Equation 2.3.22 or
Equation 2.3.24, as long as the variables are treated properly. The implementation

(^CBj5| provided on the companion CD-ROM uses Equation 2.3.24 for both cases, with
mm a parameters passed in such that the degenerate line is always treated as segment B, and

the nondegenerate line is always treated as segment A.
It is also easy to relate die parallel line special case to the equations developed pre-

viously, although it is not quite as obvious as the degenerate case. Here, we have
to remember that L12 is the negative dot product of the vectors LA and LB, and
when the lines are parallel, the dot product is equal to the negative of the length of LA

times the length of LB. The determinant of the matrix in Equation 2.3-9 is given by
LnL22 - Lu, and this is equal to zero when L12 is equal in magnitude to the length of
LA times the length of LB. Thus, when the line segments are parallel, Equation 2.3.9
is singular and we cannot solve for s and t.

In the case of infinite parallel lines, every point on line A is equidistant from line
B. If it is important to find the distance between lines A and B, simply choose C to be
equal to Alt and then use Equations 2.3.22 and 2.3.2 to find D. Then, the distance
between C and D is the distance between the two segments. We'll look at how to han-
dle finite length segments in the next section.

200 Section 2 Mathematics

Coding Efficiency

For coding efficiency, you should check first for degenerate lines, and then for parallel
lines. This approach eliminates the need to calculate some of the convenience
variables from Equations 2.3.14 and 2.3.15 when one or both of the lines are degen-
erate.

Dealing with Finite Line Segments

The previous two sections treated infinite lines. This is useful; however, there are per-
haps many more situations in game development when it is required to process finite
line segments. So, how do we adjust the results shown previously to deal with finite-
length line segments?

Line Segments that Are Not Parallel

If Equations 2.3.12 and 2.3.13 generate values of s and t that are both within the
range [0,1], then we don't need to do anything at all, since the finite length line seg-
ment results happen to be identical to the infinite line results. Whenever one or both
of s and rare outside of [0,1], then we have to adjust the results. For nonparallel lines,
there are two possibilities: 1) s or t is outside of [0,1] and the other is inside [0,1]; and
2) both s and rare outside of [0,1]. Figure 2.3.2 illustrates these two cases.

For the case when just one of s or t is outside of [0,1], as in Figure 2.3.2a, all we
need to do is:

1. Clamp the out-of-range parameter to [0,1].
2. Compute the point on the line for the new parameter. This is the nearest

point for the first segment.
3. Find the point on the other line that is nearest to the new point on the first

line, with the nearest point calculation performed for a finite line segment.
This is the nearest point for the second segment.

In the last step, just clamp the value from Equation 2.3.22 to [0,1] before calcu-
lating the point on the other segment.

For the case when both s and t are outside of [0,1], as in Figure 2.3.2b, the situa-
tion is slightly more complicated. The process is exactly the same except that we have
to make a decision about which segment to use in the previous process. For example,
if we selected line segment^ in Figure 2.3.2b, step 2 would produce point A2. Then,
step 3 would produce point 5ls the nearest point on segment B to point A2. The pair
of points, A2 and BI clear jv are not the correct points to choose for Cand D. Point Bl

is the correct choice for D, but there is a point on segment A that is much closer to
segment B than A2. In fact, the point generated by step 3 will always be the correct
choice for either C or D. It is the point from step 2 that is incorrect. We can compute
the other nearest point by just using the result from step 3. The process for both s and
t outside of [0,1] then becomes:

2.3 Fast, Robust Intersection of 3D Line Segments 201

Infinite Line Result

Infinite Line Result „ _.£__ ,
"2 , 1

B7
 B2

Finite Line Result

Finite Line Result

0 -I.......Q

FIGURE 2.3.2 Finite-length line segments. A) Either sortis outside of[0,1]. B) Both s
and t are outside of[0,1].

1. Choose a segment and clamp its out-of-range parameter to [0,1].
2. Compute the point on the line for the new parameter. This is not guaran-

teed to be the nearest point for the first segment!
3. Find the point on the other line that is nearest to the new point on the first

line, with the nearest point calculation performed for a finite line segment.
This is the nearest point for the second line segment.

4. Find the point on the first line segment that is nearest to the point that
resulted from step 3. This is the nearest point for the first line segment.

If we select segment B in Figure 2.3.2b as our initial segment to correct, we would
immediately select point 5;, and step 3 would give the point between Al and A2. In
this case, step 4 is not required. The implementation provided here does not bother to
check for this situation.

Line Segments that Are Parallel

There are two basic possible scenarios when the two segments are parallel, both of
which are illustrated in Figure 2.3.3. First, there might be a single unique pair of near-
est points, shown in Figure 2.3.3a. This always occurs when the projection of both
segments into a line parallel to both do not overlap. Second, there might be a locus of
possible nearest point pairs, shown in Figure 2.3.3b. Here, we could choose the two

^*-^5 nearest points to be any pair of nearest points between the two vertical gray lines. The
ON me co implementation provided on the accompanying CD-ROM selects the nearest points

for finite length, overlapping parallel line segments to be halfway between the gray
lines; that is, at the midpoint of the overlapping portion of each segment.

It is important to note that when the two segments are parallel, or almost parallel,
the nearest points computed by this algorithm will often move erratically as the lines

Section 2 Mathematics

A B

FIGURE 2.3.3 Parallel line segments. A) Unique nearest point pair. B) Locus of nearest
pointpairs.

are rotated slightly. The algorithm will not fail in this case, but the results can be con-
fusing and problematic, as the nearest points jump back and forth between the ends
of the segments. This is illustrated in Figure 2.3.4.

Shown in Figure 2.3.4a, the nearest points will stay at the far left until the lines
become exactly parallel, at which point the nearest points will jump to the middle of
the overlap section. Then, as the lines continue to rotate past parallel, the nearest
points will jump to the far right, shown in Figure 2.3.4b. This behavior may be prob-
lematic in some game applications. It is possible to treat the behavior by using a dif-
ferent approach to selecting the nearest point when lines are parallel or near parallel.
For example, you could implement a rule that arbitrarily selects the point nearest A\
as the nearest point on segment A when the segments are parallel within, say, 5
degrees of each other. To avoid the erratic behavior at the 5-degree boundary, you
would need to blend this arbitrary nearest point with an algorithmically generated
nearest point between, say, 5 and 10 degrees, with the arbitrary solution being 100%
at 5 degrees and 0% at 10 degrees. This solution will increase the expense of the algo-
rithm. There are certainly other approaches, including ones that may be simpler,
cheaper, and more reliable. The implementation provided on the companion CD-

*'**"* ROM does not attempt to manage this behavior.

A B

FIGURE 2.3.4 Erratic movement of nearest points for nearly parallel line segments. A)
Nearest points at the left. B) Nearest points at the right.

Implementation Description

The implementation includes four C-language functions, contained in the files
lineintersect_utils.h and lineintersect_utils.cpp. The primary interface is the function
IntersectLineSegments, which takes parameters defining the two line segments, and
returns points C, D, and P, as well as a vector between points Cand D. The function

2.3 Fast, Robust Intersection of 3D Line Segments 203

also takes a parameter indicating whether you want the line segments to be treated as
infinite lines, and a tolerance parameter to be used to check the degenerate and paral-
lel line special cases. The vector between C and D can be used outside of the imple-
mentation to determine a distance between the lines. It is important to note that the
vector is not necessarily normal to either of the line segments if the lines are finite. If
the lines are infinite and at least one is not degenerate, the vector will be normal to the
nondegenerate line(s). The supporting functions are as follows:

• FindNearestPointOnLineSegment calculates the point on a line segment that is
nearest to a given point in three-dimensional space.

• FindNearestPointOjParallelLineSegments calculates representative (and possibly
unique) values for Cand D for the case of parallel lines/segments.

• AdjustNearestPoints adjusts the values of C and D from an infinite line solution to
a finite length line segment solution.

The code is documented with references to the text.
,,— -,„ A test program is also provided, called line_intersection_demo. The demo requires
-̂ll-̂ that you link to the GLUT library for OpenGL. Project files are present for Microsoft

Visual C++ 6.0 for Windows. It should not be too difficult to port this to other sys-
tems that support OpenGL and GLUT.

Opportunities to Optimize

The implementation source code was written carefully, but without any attempt to
optimize for a particular processor or instruction set. There are a number of opportu-
nities in every code to optimize the implementation for a given platform. In this case,
perhaps the biggest opportunity is in the area of vectorization. There are numerous
operations in this code that require a multiply or addition/subtraction operation on
all three elements of a vector. These are prime opportunities to vectorize. Addition-
ally, if you have an instruction set that supports high-level operations such as dot
products, take advantage when evaluating Equation (2.3.15), for example. To truly
maximize the performance, I strongly recommend that you use a professional code
profiling utility to identify bottlenecks and opportunities for your target platform(s).

I i§£% The text presented here and the implementation provided on the accompanying
ONWCD CD-ROM is rigorous, and treats every conceivable situation. The code is generally

efficient, but in the case where the infinite lines intersect outside of the range of the
finite segments (in other words, one or both ofs and t are outside of [0,1]), the true
nearest points are not necessarily cheap to compute. In fact, the nearest point problem
we've solved here is a minimization problem, and as is the case in general, the cost
increases when constraints are applied to minimization problems. Beyond proces-
sor/platform-specific optimizations, it is certainly possible to remove parts of the
implementation that are not required for your application. For example, if you do not
need to treat finite length segments, remove everything that deals with finite length

204 Section 2 Mathematics

segments. Just have the main function return a bool that is true when the nearest
point is found between the finite segment endpoints, and false when the nearest point
is found outside the finite segment endpoints.

Conclusions
The algorithm discussed here is rigorous and capable of handling any line intersection
problem without failing. Depending on your particular use of line intersections, you
may need to adjust the algorithm; for example, to manage the idiosyncrasies that arise
when two finite segments are nearly parallel, or to remove the processing of finite seg-
ments when you only deal with infinite lines. I sincerely hope that some of you will
benefit from this formal discussion of line and line segment intersections, along with
ready-to-use source code.

References
[Golub96] Golub, Gene H., and Charles F. van Loan, Matrix Computations, Third

Edition, The Johns Hopkins University Press, 1996.
[O'Neil87] O'Neil, Peter V., Advanced Engineering Mathematics, Second Edition,

Wadsworth Publishing Company, 1987.

2.4

Inverse Trajectory
Determination

Aaron Nicholls, Microsoft
aaron feedback@hotmail.com

Aproblem frequently faced in the development of games is that of calculating tra-
jectories. In the most common case, we have a velocity and a direction for a pro-

jectile, and need to determine the location at a given time, and whether the projectile
has collided with any other entities. This is a simple iterative problem, but it is not all
that is required for most games. In many cases, we also need to solve the inverse of this
problem; namely, given a number of constants (gravity, starting position, intended
destination), we must calculate the proper yaw, pitch, and/or initial velocity to propel
the projectile between the two points. In addition, once we have a solution for this
problem, we can use this as a framework for solving more complex variants of the
same problem.

This gem expects that the reader is familiar with fundamental 2D/3D transfor-
mations, basic integral calculus, and trigonometry.

Simplifying the Problem at Hand

There are several ways to simplify the problem, and we can begin by reducing a three-
dimensional problem to a two-dimensional one. Given an initial velocity and direc-
tion for a projectile, if the only acting force is gravity (which can usually be assumed
to be constant), the trajectory of the projectile will be parabolic and planar. Therefore,
by transforming this planar trajectory into two dimensions (x and_y), we can simplify
the problem significantly. In addition, by translating the starting point to the origin,
we can remove the initial x and y values from most of the equations, focusing on the
destination coordinates. A sample trajectory, rotated into the xy plane and translated
to the origin, is shown in Figure 2.4.1.

In addition, we need to determine exactly what the problem is that we wish to
solve. In this case, our variables are initial velocity, angle of elevation, and distance in
x and y between the points. In the case where we know three of the four values (and
thus have one unknown), our goal is to produce an equation that defines the value of
the unknown in terms of the three known values.

205

206 Section 2 Mathematics

Source

Destination (x, y)

v, = Vj cos 6

FIGURE 2.4.1 Trajectory between two points in two dimensions.

However, it is very common to have to deal with multiple unknowns. In that
case, the best solution is typically to get rid of some of the variables by setting their
values to constants. For instance, we often know the locations of the two points, but
need to provide an initial velocity and angle of elevation. In this case, we can elimi-
nate initial velocity as a variable by setting it to the maximum possible velocity vmac

By doing so, we only have one unknown, and we simply need to determine the angle
of elevation 6 in terms of v ,-, x, and y. This technique and guidelines for using it are
discussed in further detail later in this gem, under Solving for Multiple Variables.

Defining Position and Velocity as a Function of Time

Now that we have reduced the problem to two dimensions, we can identify the veloc-
ity and acceleration working in each dimension. Starting with initial velocity vf, angle
of elevation ?, and gravity g, we can express initial velocity along the x and y axes as
follows:

vyi = Vf sinO

Since the only force acting upon this system is gravity, we can assume that verti-
cal velocity (v,) stays constant, while gravity is acting upon horizontal velocity (vy).
The two can be expressed as follows:

vx = v{ cosO (2.4.1)

v = v/ sin 0 — gt (2.4.2)

Next, we integrate the velocity equations to determine the position at a given
time (assuming the origin as the starting point).

2.4 Inverse Trajectory Determination 207

x = \vt cos 9 dt

-> x = vf cos 9 (2.4.3)

y = J (»,- sin 0- gt]dt

y = vf sin 0 £t2 (2.4.4)

A Special Case:

Both Points at the Same Elevation

Before tackling the general case of this problem, let's examine a simpler case, which
will give us insight into solving the more general problem. One of the common spe-
cial cases is that in which both the start and end points have the same y value. An
example of this might be a game where the ground is flat, and a cannon on the ground
is firing at a ground target. In this case, we know that y, the horizontal displacement
between the two points, is zero. Therefore, we can simplify the horizontal position
equation by setting y=0. This allows us to simplify Equation 2.4.4 to solve for time t,
initial velocity vt, or angle of elevation 9 as follows:

y = vf sin 9 -- gf2 =0

2v • sin 6
-> t = — '- -

g

Ft
-» V; = —& -

2 sin 0

In addition, this leads to a simplified formula for calculating x for this special case:

ix = v\ — '- - - cos0
I g)

2v sin 9 cos 9
x = — '- -

g

208 Section 2 Mathematics

Using the trigonometric identity sin 9 cos 0 = sin 29, we can simplify further as
follows:

2v; sin 29 . . .
x = —'- (2.4.5)

g

In addition, in the previous case where a ground-based cannon is firing at ground
targets on flat terrain, this equation can be used to determine the maximum horizon-
tal range of a cannon at angle of elevation 0, given maximum projectile velocity v^:

Range =
,2sin29

g
(2.4.6)

Solving for Angle of Elevation

Now that we have defined the equations that define the projectile's movement and
solved for a special case, we can continue to solve for the more general case. First, we
will analyze the case in which both points may not be at the same altitude, and
we must determine the angle of elevation or velocity required to propel a projectile
between the two points. Since we have expressed x and y in terms of t, we can begin
by removing t from the equation and defining x and^ in terms of each other.

n X

x = v-t cos 9 —» t =
vf cos 9

Next, we replace t with x I v, cos 9 in the equation for y to remove t from the
equation.

y = vitsm9--gt2

i vf cos 9

-> y = x tan 9 -- —
2vf cos2 9

We then use the trigonometry identity I/cos2 9 = tan2 9 + 1 to reduce further.

") T '

2v cos2 9

2.4 Inverse Trajectory Determination 209

. me2 (tan2 0 + 1)
y = x tan 0 - &—

2V;

xtan0 y = 0 (2.4.7)

As odd as this final equation may look, it serves a purpose: this version of the
equation fits into the quadratic equation as follows:

tan0 =

where

-b ± V£2 - 4ac

2a

Plugging the preceding values of a, b, and c into the quadratic equation and solv-
ing for 9, we obtain the following:

6 = tan

,-x±

s
V-

y

-> 9 = tan

-x±
V;

•\\

(2.4.8)

210 Section 2 Mathematics

The quadratic form provides us with a way to solve for G, given a known initial
velocity vf, horizontal displacement x, and vertical displacement y. If (b2 - 4ac) is
positive, we have two possible solutions, and if it is negative, there are no solutions for
the given parameters. In addition, if the initial velocity is zero, we know that the tra-
jectory is entirely vertical, so 6 is irrelevant.

When dealing with two trajectories, it is important to remember that the flatter
trajectory will yield a faster route to the target, and is thereby preferable in most cases.
If both angles are between -7C/2 and 7t/2, the angle closer to zero will yield the flatter
trajectory for a given vf. A case with two valid angles of elevation to reach a given tar-
get is shown in Figure 2.4.2. Here, Trajectory 2 is the fastest.

Trajectory 1

Source

Trajectory 2

Destination (x, y)

FIGURE 2.4.2 Two angle of elevation solutions OC and§ for a given Vj.

Solving for Initial Velocity

Now that we have the problem solved for the case where 0 is unknown, we can change
Equation 2.4.7 slightly to solve for initial velocity vt, given a known angle of elevation
9, horizontal displacement x, and vertical displacement y as follows:

2 _ 2
2- tan 9 - x tan 0 + &— + 7 = 0

2vs

2v:

6 + £—r = x tan 6 - y

-> ̂ -(tan2 0 + 1) = xtanfl - y
2v

We then multiply both sides by V; /(x tan Q -y), thereby isolating initial velocity.

2.4 Inverse Trajectory Determination 211

-(tan20
2(x tan 9 -

Solving for vf, we get the following:

— y)

Again, we can choose to use the trigonometric identity I/cos2 6 = fan2 6 + 1 to
simplify the square root.

(2A10)

Again, since we are dealing with a square root, there are some cases that have no
solution. An example would be when the slope of the initial trajectory is less than the
slope to the target. One special case is where 6=n/2 (straight upward), since there can
be two solutions.

Calculating Maximum Height for a Trajectory

Solving for peak height of a trajectory is straightforward: vertical peak is defined as
the point where vertical velocity vy=0, given 9>0. Therefore, we simply solve the ver-
tical velocity equation as follows:

vy(t) = vi sin0 - gt = 0

Solving for t, we get the following:

v sin 6

g

Now, to determine the maximum altitude, we substitute the preceding value for t
in the vertical position equation as follows:

-

v] sin2 9 g\vi sin 9 |

v] sin2 9
— - - (2.4.11)

212 Section 2 Mathematics

As mentioned previously, this depends on &>0. If the angle of elevation 6 is neg-
ative (pointing downward), the vertical peak will be a.ty=0, since the projectile's initial
downward velocity is only increased by gravity. This is somewhat of a special case,
since vertical velocity is not necessarily zero at the vertical peak in this case.

Calculating Flight Time

In order to determine time to destination, we can simply rewrite the horizontal posi-
tion from Equation 2.4.3 in terms of?.

x(t) = vf cos 6 —» t =
vi cos d

However, in the case where v^ = 0 or cos 6 = 0, t is undefined if expressed in terms
of x In addition, in this case, x will always be zero, and no solutions exist in this case
if the two points are not at the same x value. In implementation, these boundary cases
are worth testing, since a mistake here can cause an engine to crash or behave errati-
cally at times.

To solve for t when vt = 0 or cos 6 = 0, we can use the vertical position equation
from Equation 2.4.4 instead.

y(t) = vf sin 0 - - gt2

If Vi = 0, we can use the following equation to express t in terms of/ and g.

y - — & -> t =
i

However, if cos 6 = 0 and v{>0, there can be one or two solutions (the latter hap-
pens only ifd>0, since vf >0 in practice). In addition, we know that if cos 6 = 0, sin 6
= ±1. This reduces the problem further, but we still need to express this in terms of t
as follows:

y = vitsine--gt2

-> - gt2 - Vft sin 6 + y = 0 (2.4.12)

This is a quadratic in terms of t, and the solution thereof is left to the reader.

Solving for Multiple Variables

As mentioned near the start of this topic, it is very common that two or more values
are unknown or need to be determined, usually 9 and vf (since both points are usually

2.4 Inverse Trajectory Determination 213

known). In multivariate cases, the set of possible solutions expands greatly, so in order
to solve the problem, the fastest approach is to eliminate some of the unknowns. In
the most common case, we are given two points and a maximum initial velocity vmax,
and need to solve for both v-t and G.

When reducing variables in order to simplify to a single-variable problem, it is
important to reduce in a manner that does not overly restrict possible solutions. In the
previous case in which both 6 and vt are unknown, restricting 6 greatly reduces the
number of solutions, and is undesirable. On the other hand, setting vf = vmax and
varying 6 preserves a larger set of landing points. This same logic can be extended to
other forms of this problem, although there is not space to elaborate further within
the scope of this gem.

Optimizing Implementation

When implementing the previous equations in code, there are a few optimizations
that can make a substantial difference in performance. This is because trigonometric
functions have a very high overhead on most systems.

Avoid Oversimplification

When deriving mathematical calculations, there is a tendency to reduce formulae to
their simplest mathematical form, rather than the simplest or most optimal algo-
rithm. For instance, in solving for initial velocity vf, we came across Equations 2.4.9
and 2.4.10 as follows:

v- = x

x £

The tendency from a mathematical point of view would be to prefer the latter
form, since it reduces the equation; however, in implementation, it is more efficient to
precalculate tan 9 and use it twice in the first equation, rather than calculating both
tan 9 and cos 9 as is done in the latter formula. In addition, even if we choose to use
the second equation (and not simplify to terms of tan Q), leaving cos 9 outside of the
square root bracket means that two divisions need to be done: one inside the bracket
and one outside. To optimize, one can either place the cos 9 inside the divisor within
the bracket as cos2 9, or multiply x by II cos 9.

214 Section 2 Mathematics

Reduce Trigonometric Functions to
Simpler Calculations

Rather than using the provided functions for sin, cos, and tan, it is much more effi-
cient to use pregenerated lookup tables or take advantage of known relations between
other variables. For instance, to calculate tan 9, you can simply divide the initial value
of vy by t>x, since they are defined in terms of sin 6 and cos 9, respectively, and are likely
precomputed.

In addition, there is additional room for optimization—The purpose here is sim-
ply to alert the reader to the high computational cost involved with trigonometric cal-
culation and the importance of optimization.

Summary

Efficient trajectory production can enhance perceived AI quality and engine perfor-
mance. Although the derivation can be math intensive, the resulting equations are rel-
atively simple and easy to understand. In addition, once the process involved in
deriving and simplifying the previous formulae is understood, it is easy to apply that
knowledge to more complicated situations, such as moving targets, nonvertical accel-
eration, and other related problems.

2.5

The Parallel Transport Frame

Carl Dougan
Carl.dougan@gte.net

Iany tasks in computer games require generating a suitable orientation as an
object moves through space. Let's say you need to orient a camera flying along a

looping path. You'd probably want the camera to turn with the path and point along
the direction of travel. When the path loops, the orientation of the camera should
change appropriately, to follow the loop. You wouldn't want it to suddenly flip or
twist, but turn only to match the changes of the path. The parallel transport frame
method can help provide this "steady" orientation.

You can also use this technique in the generation of geometry. A common opera-
tion in 3D modeling is lofting, where a 2D shape is extruded along a path curve, and
multiple sections made from the shape are connected together to produce 3D geome-
try. If the 2D shape was a circle, the resulting 3D model would be a tube, centered on
the path curve. The same criteria apply in calculating the orientation of the shape as
did with the camera—the orientation should "follow" the path and shouldn't be sub-
ject to unnecessary twist.

The parallel transport method gets its stability by incrementally rotating a coor-
dinate system (the frame) as it is translated along a curve. This "memory" of the pre-
vious frame's orientation is what allows the elimination of unnecessary twist—only
the minimal amount of rotation needed to stay parallel to the curve is applied at each
step. Unfortunately, in order to calculate the frame at the end of a curve, you need to
iterate a frame along the path, all the way from the start, rotating it at each step. Two
other commonly used methods of curve framing are the Frenet Frame and the Fixed
Up method [EberlyOl], which can be calculated analytically at any point on the
path, in one calculation. They have other caveats, however, which will be described
later.

The Technique

A relatively simple numerical technique can be used to calculate the parallel transport
frame [Glassner90]. You take an arbitrary initial frame, translate it along the curve,
and at each iteration, rotate it to stay as "parallel" to the curve as possible.

215

216 Section 2 Mathematics

Given:
a Curve C
an existing frame Fl at t-1
a tangent Tl at t-1 (the 1st derivative or velocity of C at t-1)
a tangent T2 at t

a new frame F2 at the next time t can be calculated as follows:
F2s position is the value of C at t.
F2s orientation can be found by rotating Fl about an axis A with angle Ot, where
A = Tl X T2 and
a = ArcCos((Tl •T2)/(|T1||T2|))

If the tangents are parallel, the rotation can be skipped (i.e., if Tl X T2 is zero)
(Figure 2.5.1).

A

FIGURE 2.5.1 The frame at t-1 is rotated about A by Of to calculate the frame at t.

The initial frame is arbitrary. You can calculate an initial frame in which an axis
lies along the tangent with the Fixed Up or the Frenet Frame method.

In some cases, you may find it desirable to use parallel transport to generate
frames at a coarse sampling along the curve, and then achieve smooth rotation
between the sample frames by using quaternion interpolation. Using quaternions is
desirable anyway, since there is an efficient method of generating a quaternion from a
rotation axis and angle [EberlyOl]. You can use the angle and axis shown previously to
generate a rotation quaternion, and then multiply it with the previous frame's quater-
nion to perform the rotation.

Moving Objects

You can orient a moving object with a single parallel transport rotation each time the
object is moved, presumably once per frame. We need three pieces of information: the
velocity of the object at the current and previous locations, and the orientation at the pre-
vious location. The velocities correspond to the tangents Tl and T2 shown previously.

For some tasks, the parallel transport frame may be too "stable." For example, an
aircraft flying an S-shaped path on the horizontal plane would never bank. To achieve

2.5 The Parallel Transport Frame 217

realistic-looking simulation of flight, you may need to use a different solution, such as
simulating the physics of motion. Craig Reynolds describes a relatively simple, and
thus fast, technique for orienting flocking "boids" that includes banking [Reynolds99].
Reynolds' technique is similar to parallel transport in that it also relies on "memory" of
the previous frame.

Comparison

The details here show how the parallel transport method we have looked at so far
compares with the Frenet Frame and Fixed Up methods of curve framing.

The Frenet Frame
The Frenet Frame is built from three orthogonal axes:

• The tangent of the curve
• The cross-product of the tangent, and the second derivative
• Another vector generated from the cross-product of the prior two vectors

The Frenet Frame is problematic for the uses already discussed because it cannot
be calculated when the second derivative is zero. This occurs at points of inflection
and on straight sections of the curve [Hanson95]. Clearly, not being able to calculate
a frame on a straight section is a big problem for our purposes. In addition, the frame
may spin, due to changes in the second derivative. In the case of an S-shaped curve,
for example, the second derivative points into the curves, flipping sides on the upper
and lower halves. The resulting Frenet Frames on the S-shaped curve will flip in con-
sequence. Figure 2.5.2 shows what this means graphically; instead of continuous

FIGURE 2.5.2 Second derivative on an S-shaped curve, and Frenet Frame generated tube
from the same curve.

218 Section 2 Mathematics

geometry, we have a discontinuity where the second derivative switches sides. If this
was a flock of birds, they would suddenly flip upside down at that point.

The Fixed Up Method
In the case of the Fixed Up method, the tangent T and an arbitrary vector V (the
Fixed Up vector) are used to generate three axes of the resulting frame, the direction
D, up U, and right R vectors [EberlyOl].

D = T / |T|
R = DxV/ |DxV|
U = RxD

A problem with the Fixed Up method occurs when the tangent and the arbitrary
vector chosen are parallel or close to parallel. When T and V are parallel, the cross-
product of D and V is zero and the frame cannot be built. Even if they are very close,
the twist of the resulting vector relative to the tangent will vary greatly with small
changes in T, twisting the resulting frame. This isn't a problem if you can constrain
the path—which may be possible for some tasks, like building the geometry of free-
ways, but may not be for others, like building the geometry of a roller coaster.

Figure 2.5.3 shows a comparison of a tube generated using parallel transport with
one using the Fixed Up method. In the upper and lower sections of the curve, the
cross-product of tangent and the Fixed Up vector is coming out of the page. In the
middle section, it is going into the page. The abrupt flip causes the visible twist in the
generated geometry.

Fixed Up Parallel Transport

FIGURE 2.5.3 Comparison of Fixed Up and parallel transport.

2.5 The Parallel Transport Frame 219

Conclusion
For unconstrained paths—for example, flying missiles or looping tracks—parallel
transport is one method that you can use to keep the tracks from twisting and the
missiles from flipping.

References
[Glassner90] Bloomenthal, Jules, "Calculation of Reference Frames Along a Space

Curve," Graphics Gems, Academic Press, 1990: pp. 567-571.
[EberlyOl] Eberly, David H., 3D Game Engine Design, Academic Press, 2001.
[Hanson95] Hanson, Andrew)., and Ma, Hui, Parallel Transport Approach to Curve

Framing, Department of Computer Science, Indiana University, 1995.
[Reynolds99] Reynolds, Craig, "Steering Behaviors for Autonomous Characters,"

available online at www.red3d.com/cwr/steer/gdc99/index.html.

2.6

Smooth C2 Quaternion-based
Flythrough Paths

Alex Vlachos, ATI Research;

and John Isidore
alex@Vlachos.com and jisidoro@cs.bu.edu

In this gem, we describe a method for smoothly interpolating a camera's position and
orientation to produce a flythrough with C2 continuity. We draw on several known

methods and provide a C++ class that implements the methods described here.

Introduction

Smoothly interpolating the positions of a flythrough path can easily be achieved by
applying a natural cubic spline to the sample points. The orientations, on the other
hand, require a little more attention. We describe a method for converting a quater-
nion in S3 space (points on the unit hypersphere) into R4 space (points in 4D space)
[Johnstone99]. Once the quaternion is in R4 space, any 4D spline can be applied to
the transformed data. The resulting interpolated points can then be transformed back
into S3 space and used as a quaternion. In addition, a technique called selective nega-
tion is described to preprocess the quaternions in a way that produces the shortest
rotation path between sample point orientations.

Camera cuts (moving a camera to a new location) are achieved by introducing
phantom points around the camera cut similar to the way an open spline is padded.
These additional points are needed to pad the spline to produce smooth results near
the cut point. The code provided describes cut points as part of a single fly path and
simplifies the overall code. Internally to the C++ class, the individual cut segments are
treated as separate splines without the overhead of creating a spline for each segment.

Position Interpolation

Let's now discuss position interpolation.

Sample Points

There are two common ways to specify sample points. The first is to have each segment
between control points represent a constant time (for example, each control point rep-

220

2.6 Smooth C2 Quaternion-based Flythrough Paths 221

resents one second of time). The second is to use the control points only to define the
shape of the camera path, and to have the camera move at a constant speed along this
path. The code provided with this gem assumes a constant time between control points,
although this code could easily be modified for the constant speed technique.

Natural Cubic Spline

A natural cubic spline is chosen due to the high degree of continuity it provides,
namely C2. However, it's important to note that any spline may be used in place of the
natural cubic spline. Code for implementing this spline is widely available, including
Numerical Recipes In C [Press97]. The sample code provided is modeled after this.

A natural cubic spline is an interpolating curve that is a mathematical representa-
tion of the original drafting spline. One important characteristic of this spline is its
lack of local control. This means that if any single control point is moved, the entire
spline is affected. This isn't necessarily a disadvantage; in fact, this functionality may
be desirable. As you begin to use this spline, you'll see the advantages it has in smooth-
ing out the camera movement when you sample the spline at a higher frequency.

It is important to differentiate between open and closed splines. In the case of a
closed spline, the spline is specified such that the last point is the same as the first
point. This is done to treat the camera path as a closed loop. To work around any pos-
sible discontinuities in the spline at the loop point, simply replicate the last four
points of the spline to the beginning of the array, and the first four sample points to
the end of the array. In practice, we've found that using four points was sufficient to
eliminate any visual artifacts.

This replication eliminates the need for modulus arithmetic and also simplifies
our preprocessing of the camera path. This is even more important when dealing with
orientations using the selective negation method as described later (Figure 2.6.1).

2,12

-2,8
FIGURE 2.6.1 Replicating points for a closed spline.

222 Section 2 Mathematics

FIGURE 2.6.2 Creating phantom points for an open spline.

In contrast, an open spline has a different beginning and end point. In order to
sample the spline, you need to pad the spline with several "phantom" points at both
the beginning and end of the open spline (Figure 2.6.2). A constant velocity is
assumed for the phantom points before and after the open spline path. At the begin-
ning of the spline in Figure 2.6.2, the vector V^Pj-Po is subtracted from P0 to get the
resulting point P_j. Similarly, V0 is subtracted from P_j to create P_2, and so on. The
trailing phantom points are calculated in a similar way.

Orientation Interpolation

Sample Points
Unit quaternions are used as the orientation data at the sample points. Quaternions
can be very useful for numerous applications. The beauty of quaternions is that, for
rotations, they take the form of a normalized 4-element vector (later referred to as a 3-
element vector and a scalar component). This is exactly enough information to repre-

2.6 Smooth C2 Quaternion-based Flythrough Paths 223

sent an axis of rotation and an angle of rotation around that axis [GPG1]. Quater-
nions give us everything we need to represent a rotation and nothing more.

For orientation, however, there is an ambiguity in using quaternions. Orientation
can be thought of as a rotation from a base orientation. When using quaternions,
there are two possible rotations that will bring you to the same orientation. Suppose
there is a counterclockwise rotation 9 about an axis w that gives you the desired ori-
entation. A rotation by 360°-0 about the axis —w also results in the same orientation.
When converted into a quaternion representation, the second quaternion is simply
the negation of the first one.

Direction of Rotation and Selective Negation

When performing quaternion interpolation, there is one small nuance that needs to
be considered. When representing an orientation, either a quaternion or its negation
will suffice. However, when interpolating orientations (for example, performing a
rotation), the positive and negative quaternions result in vastly different rotations and
consequently different camera paths. If the desired result is to perform the smallest
possible rotation between each pair of two orientations, you can preprocess the
quaternions to achieve this.

Taking the dot product of two quaternions gives the cosine of half the angle of
rotation between them. If this quantity is negative, the angle of rotation between the
two quaternions is greater than 180 degrees. In this case, negating one of the orienta-
tion quaternions makes the angle between the two quaternions less than 180 degrees.
In terms of interpolation, this makes the orientation spline path always perform the
shortest rotation between the orientation key frames. We call this process selective
negation.

The technique of selectively negating orientation quaternions can be incorpo-
rated as a preprocessing step for a camera flythrough path. For the preprocessing step,
traverse the flythrough path from start to end, and for each quaternion q,on the path,
negate it if the dot product between it and its predecessor is negative (in other words,
if (qt- q,.j)<0). Using selective negation as a preprocessing step makes spline interpo-
lation much more efficient by not requiring the selective negation math for every
sample.

To preprocess a closed spline path, it is necessary to replicate the first four points
of the spline path and append them to the end of the path prior to the selective nega-
tion. Note that the replicated points may have different signs than the original points.
When dealing with an open spline, you need to create phantom quaternions (corre-
sponding to the phantom control points) to pad the spline. The concept is similar
in that you want to linearly interpolate the difference between the two quaternions
closest to the beginning or end of the path. However, linearly interpolating quater-
nions doesn't suffice. Instead, we use the spherical linear interpolation (slerp) algo-
rithm. Given quaternions q0 and qt, we need to generate four phantom
quaternions—q.j, q_2, and so on— to pad the beginning of an open spline. We use the

224 Section 2 Mathematics

slerp function (spherical linear interpolation) to slerp from q, to q0 with a slerp value
of 2.0. This effectively gives us a linear change in rotation at our phantom points.

Once we have preprocessed our entire list of orientation quaternions for interpo-
lation, it is straightforward to perform smooth spline-based quaternion interpolation
techniques.

Spline Interpolation for Quaternions

As seen for positional interpolation, splines can be used to give us much smoother
interpolation than linear interpolation can. However, spline interpolation for quater-
nions is not so straightforward, and there are several techniques that can be used. One
technique simply interpolates the raw quaternion values, and then renormalizes the
resulting quaternion. However, this technique does not result in a smooth path and
produces bizarre changes in angular velocity. Another idea is to use techniques based
on the logarithms of quaternions. SQUAD (spherical quadrangle interpolation)
[Shoemake91] is an example of this. A performance limitation is incurred when using
these techniques because they require transcendental functions (sin, cos, log, pow, and
so on). Other techniques involve blending between great 2-spheres laying on the unit
quaternion hypersphere [Kim95], or involve some sort of iterative numeric technique
[Neilson92]. While many of these techniques provide decent results, most of them do
not provide C2 continuity or are computationally prohibitive to use, especially when
many flythrough paths are used (for game characters or projectiles, as an example).

However, there is a technique for quaternion spline interpolation that gives very
good results and obeys derivative continuity requirements. This uses an invertible
rational mapping Qohnstone99] M between the unit quaternion 4-sphere (S3) and
another four-dimensional space (R4). In the following equations, a, b, and c are the
components of the vector portion of the quaternion, and s is the scalar portion.

The transformation M-/ from S3 — >R4 is:

x = a/sqrt(2(l-s))
y = b/sqrt(2(l-s))
z = c/sqrt(2(l-s))
w=(l-s) /sqrt(2(l-s))

The transformation M from R4 — > S3 is:

a = 2xu> I (y? + y2 + z? + iv2)
b = 2yw / (x2 + y2 + z2 + ui2)
c = 2zw I (x2 + y2 + z2 + iv2)

To use this for quaternion spline interpolation is straightforward. First, selective
negation should be applied to the control quaternions to assure the shortest possible
rotation between control points. After this, apply M ; to all the control quaternions to
get their resulting value in R4. This can be done as a preprocessing step and can be

2.6 Smooth C2 Quaternion-based Flythrough Paths 225

done in the flythrough-path building or loading stage of a program. This way, die
square root does not have to be calculated when die flythrough path is being evaluated.

Next, the resulting 4-vectors can be interpolated using the spline of your choice.
Because this is a continuous rational mapping, the continuity of the interpolated S3

quaternion path has the same continuity as die spline used for interpolation in R4

space.
In our application, we use natural cubic splines [Hearn94] [Press97] for the inter-

polation in R4 space.
This gives us C2 continuous orientation interpolation as well. The qualitative

effect of this is that die camera path does not have any sharp changes in angular
acceleration.

After the desired point on the spline in R4 is found, it can be converted back into
a quaternion using M.

However, there is one mathematical nuance in using this technique that needs to
be addressed.

Singularity in the Rational Mapping

If your flythrough path contains orientation quaternions close or equal to (1,0,0,0), it
will cause numerical instability when interpolated through in R4 space, as M~;(l,0,0,0)
= C00,00,00,00). There are a few ways to handle diis singularity. One possible option is to
ignore it, and surprisingly, this is feasible in many cases. For example, if the z-axis of the
world is pointing up, and you know the camera will never point straight up with the
camera's up-vector pointing up the y-axis, the orientation quaternion (1,0,0,0) will
never occur in the flythrough path, and die problem is solved.

If this is not the case, another option is to find a quaternion ^that is not within
30 degrees of any of the orientation quaternions, and use gy-to rotate all of the quater-
nions into "safe" orientations that are not near the singularity Qohnstone 99]. The
basic idea behind this is to perform the spline interpolation on a rotated version of
your flythrough path, and then rotate die interpolated orientations back into their
original coordinate frame. All that has to be done is to multiply all your orientation
quaternions by q^ after the selective negation step. Following, you transform the
quaternions from S3 space into R4 space, apply the natural cubic spline, and transform
the resulting R4 values back into S3 space. After this, we add the additional step of
rotating each resulting quaternion by qj1 before using it.

An easy way to find gy-is to randomly generate unit length quaternions, until you
find one that is not within 30 degrees of any of the selectively negated orientation
quaternions.

Camera Cuts

A camera cut is defined as moving the camera from one point in your scene to another.
You can't just introduce a cut in the middle of a spline, and you can't simply step over

226 Section 2 Mathematics

14

FIGURE 2.6.3 Creating phantom points for a path cut segment.

Code

a segment of the spline. Instead, you segment your spline into two separate splines at
a cut point, and process these splines as separate open splines. This is done simultane-
ously for both the position- and orientation-based splines. The code we supply deals
with camera cuts in such a way that you don't need to explicitly create a separate path
(see Figure 2.6.3).

The code accompanying this gem is a C++ class that implements most of the tech-
niques explained in this article. It has member functions for creating and editing the
control points manually, reading and writing path files, dealing with cut points, sam-
pling the spline at a given time, and setting up vertex and index buffers for drawing
the spline. The class assumes there is a constant time between control points as
opposed to a constant velocity. In addition, the code does not solve the singularity
problem, since we never saw the singularity in our project. Please see the source files
for more information.

2.6 Smooth C2 Quaternion-based Flythrough Paths 227

References

[Press97] Press, William H., et al, Numerical Recipes in C, Cambridge University
Press, 1997.

[Hearn94] Hearn, Donald, Baker, M. Pauline, Computer Graphics Second Edition,
Prentice Hall, Inc. 1994.

[Johnstone99] Johnstone, J. K., Williams, J. P., "A Rational Quaternion Spline of Arbi-
trary Continuity," Tech Report: www.cis.uab.edu/info/faculty/jj/cos.html, 1999.

[GPG1] Edited by Mark DeLoura, Game Programming Gems, Charles River Media,
2000.

[Shoemake91] Shoemake, K., Quaternion Calculus for Animation, Math for SIG-
GRAPH (ACM SIGGRAPH '91 Course Notes #2), 1991.

[Neilson92] Neilson, G., and Heiland, R., "Animating Rotations Using Quaternions
and Splines on a 4D Sphere," English Edition, Programming and Computer Soft-
ware, Plenum Pub., New York. 1992.

[Kim95] Kim, M.S. and Nam, K.W., Interpolating Solid Orientations with Circular
Blending Quaternion Curves, Computer-Aided Design, Vol. 27, No. 5, pp.
385-398,1995.

2.7

Recursive Dimensional
Clustering: A Fast Algorithm
for Collision Detection

Steve Rabin, Nintendo of America
steve rabin@hotmail.com

> asic collision detection can be a costly operation. The simplest method relies on
'treating each object as a sphere and comparin n2 distances. Listing 2.7.1 shows

the code for this simple brute-force comparison algorithm. However, a new technique
called Recursive Dimensional Clustering (RDC) can take the typical case from O(rf)
to something close to O(nlog2n).

Listing 2.7.1 Brute-force comparison algorithm
// Slightly optimized 0((n*2-n)/2) time complexity
for(i=0; i<num_objects; i++) {

for(j=i+l; j<num_objects; j++) {
if(Distance(i, j) < Radius(i) + Radius(j)) {

//in collision

The practical difference between RDC and the brute-force method is shown in
Table 2.7.1. These times were calculated on a Pentium II 400 MHz with data con-
taining only one collision. Note that the brute-force O(r^) algorithm was fully opti-
mized to run at O((rf-n)/2) as in Listing 2.7.1 and compared positions using distance
squared in order to avoid the costly square root operation.

What's interesting about Table 2.7. 1 is that RDC increases almost linearly, while
the brute force method increases exponentially. Although the results are remarkable,
RDC only becomes useful if you are dealing with large numbers of objects that are
usually not in collision.

228

2.7 Recursive Dimensional Clustering 229

Table 2.7.1 The Difference between RDC and the Brute-Force Method

Objects

10
50
100
200
300
400
500
1000
2000
5000
10000

RDC

< 1 ms
2 ms
4ms

7 ms
Urns
15 ms
19ms
38ms
81 ms
222ms
478ms

Brute Force

< 1 ms
6 ms
18ms
67 ms
150ms
263ms
406ms
1596ms (1.6 seconds)
6335 ms (6.3 seconds)
39380 ms (39.4 seconds)
157621 ms (2 minutes, 37.6 seconds)

Other Applications

One of the benefits of RDC is that it naturally finds groups of objects rather than sin-
gle collision pairs. A group is a collection of objects that touch each other or are
within a certain radius of each other. This definition also includes groups such that if
A touches B and B touches C, then A, B, and C are all in the same group, meaning
that every group member is not required to touch every other group member. Thus,
RDC can be used to find simultaneous collisions of several objects or even groups of
enemies on a battlefield.

One interesting application of RDC involves identifying metaball clusters in
order to speed up geometry generation (Marching Cubes algorithm). In this use, RDC
finds the clusters and then calculates the minimal axis-aligned bounding boxes
(AABB) around those clusters. Minimal bounding boxes are critical for the Marching
Cubes algorithm. This is because the computational speed is proportional to the vol-
ume of the boxes, which equates to an algorithm with O(n?) time complexity. Color
Plate 1 shows an example.

The RDC Algorithm

In order to understand how RDC works, the first step is to follow how it recognizes
groups of objects in collision along a single dimension. Figure 2.7.1 shows a one-
dimensional example with three objects.

As you can see, objects B and C overlap, while object A is by itself. Thus, a clus-
tering algorithm would find two groups: one group containing A, and a second group
containing both B and C. Although it's easy to figure this out visually, we need a sys-
tematic algorithm that achieves the same result.

The basic idea of this algorithm is to mark the boundaries of each object and then
find groups of overlapping objects using that data. This is done by looping through all
entities and storing the beginning and ending boundaries for a given dimension in a

Section 2 Mathematics

B

-H-H-

10 20 25

FIGURE 2.7.1 Three objects along one dimension.

linked list. For example, the first object A has a left boundary of 7 and a right bound-
ary of 13. In order to make this apply to any dimension, we can think of these bound-
aries in terms of brackets and label them open and close, instead of left and right.
Figure 2.7.2 shows the resulting linked list created from the three objects.

A
open
pos 7

-+
A

close
pos 13

-*-
E

open
pos 17

-»•
B

close
pos 23

-*•
C

open
pos 22

-*•
C

close
pos 28

FIGURE 2.7.2 The boundary list.

With the boundary list complete, the next step is to sort the list from lowest to
highest position using your favorite sorting algorithm, such as quicksort. The sorted
list is shown in Figure 2.7.3. In this example, only two elements were swapped.

Now that we have the sorted list of boundaries, we can find the groups. The
algorithm for finding the groups is very similar to parser algorithms for matching
brackets. The pseudocode in Listing 2.7.2 will go through the sorted list and extract
each "bracketed" group.

A
open
pos 7

— *

A
close

pos 13
— *•

B
open

pos 17
-*•

C
open

pos 22
-*

B
close

pos 23
-*•

C
close

pos 28

FIGURE 2.7.3 The list after sorting.

Listing 2.7.2 Algorithm for finding groups along one dimension
int count = 0;
Clear(currentGroup);
for(element in list)
{

if(element is an "open bracket") {
count++;
Add entity to currentGroup;

2.7 Recursive Dimensional Clustering 231

else { //element is a "closed bracket"
count- - ;
if(count == 0) { //entire group found

Store(currentGroup);
Clear(currentGroup);

assert(count == 0) ;

At this point, you may have noticed that the algorithm arbitrarily groups objects
that share boundaries. For example, if object A has a closed boundary at position 10,
and object B has an open boundary at position 10, then any simple sorting algorithm
would not distinguish between them. The result is that the algorithm in Listing 2.7.2
would inconsistently group these types of cases. However, there are many solutions to
this problem. The easiest is to use floating-point values and to make sure that objects
don't snap to integer locations. Another solution involves "puffing out" each object
radius by a very tiny amount, thus causing identical boundaries to be offset from each
other. You could also fix the problem in the sorting function; however, that would
introduce extra overhead and increase the running time.

RDC in Higher Dimensions
Clearly, this algorithm works well for finding groups along one dimension. How-

ever, it would only be useful if it worked in two or three dimensions. The trick for
multiple dimensions is to first find groups along one axis, and then send each newly
formed group to the next axis to be subdivided further.

Figure 2.7.4 shows a set of four objects in two dimensions. Again, it's easy to spot
the groups visually, but this example will show how the algorithm determines groups
in multiple dimensions.

The ordered linked list for Figure 2.7.4 along the x-axis is shown in Figure 2.7.5.

(6, 16,rad3)
(14, 14,rad3)

(19, Il,rad4)

(22, 3,rad2)

I I I I I II I I I I I I I ITTTT

FIGURE 2.7.4 Two-dimensional example of four objects.

Section 2 Mathematics

D
open
pos 3

— *•
D

close
pos 9

-*•
E

open
pos 11

open
pos 15

E
close

pos 17
open

pos 20

F
close

pos 23

G
close

pos 24

FIGURE 2.7.5 The sorted boundary list for Figure 2.7.4.

The groups in the x-axis are:

Groupo = { D }, Groupl = { E, F, G }

We've now determined that there are at least two groups. The first group contains
object D, and the second group contains E, F, and G. With the x-axis done, each new
group is sent to the y-axis to be divided further. Since object Ds group has only one
member, it doesn't need to be divided anymore and will simply be its own group.
However, objects E, F, and G must now be analyzed along the y-axjs. Figure 2.7.6
shows the ordered linked list for Group, along the y-axis.

G
open
pos 1

->
G

close
pos 5

->•
F

open
pos 7

-*•
E

open
pos 11

-*•
F

close
pos 15

-+
E

close
pos 17

FIGURE 2.7.6 The Groupi y-axis sorted boundary list.

The groups in the y-axis are:

Group1a = { G }, Group1b = { E, F }

Now that we've gone through each dimension once, the final groups are:

Group0 = { D }, Group1a = { G }, Group1b = { E, F }

Figures 2.7.7s. and 2.7.7b graphically show the boundaries of each object in each
diniension and the resulting groups. When this algorithm is expanded to three
dimensions, the groups are simply analyzed in one more dimension; namely, the
z-axis. Following is a summary of the steps involved in the RDC algorithm.

RDC Steps:

1. Start with the x-axis.
2. Construct a linked list of object boundaries in this dimension.
3. Sort that list by boundary position, from lowest to highest.
4. Find groups using the open/close "bracket matching" algorithm in Listing

2.7.2.

5. For each group found in that dimension, repeat steps 2-5 in the next
dimension.

2.7 Recursive Dimensional Clustering 233

1 1

H

Group o

1

n'.i.\ •'•*';
•";•

1 1 !

\

\

1

4-
it

""f

1 1

Group

1

1

1 1

A

Group!

•i:Group

B

FIGURE 2.7.7 A) Groups found in thex-axis. B) Group, subdivided in they-axis.

A Flaw in the Algorithm

Unfortunately, the algorithm described so far has a fatal flaw. When grouping objects
along one axis, objects can get sucked into groups that aren't later separated by other
dimensions. Figure 2.7.8 points out a problem configuration.

NTT

Group Ob

Group Oa

I I I I

Group 0

A B C

FIGURE 2.7.8 A) Flaw example. B) Groups in thex-axis. C) Group 0 subdivided in they-axis.

Figure 2.7.8b shows the first pass along the x-axis and finds that all three objects
overlap. Thus, they are all assigned to the same group. Then the single group is ana-
lyzed along the y-axis, as in Figure 2.7.8c. This results in two groups being found, but
it understandably fails to put object A and object C in separate groups.

The correct solution would be for each object to be in its own group. However,
the result of the algorithm was only partially correct. The fix is to send the new groups
found along the y-axis back to be analyzed again along the x-axis. When this is done,
the correct groups are finally found.

This solution can be generalized in order to permanently correct the algorithm.
The algorithm needs the following rule:

234 Section 2 Mathematics

When a group is subdivided along one dimension,
the resulting subgroups must be reanalyzed along all other dimensions.

In the 2D case, a group that is broken up along the y-axis must be reanalyzed in
the x-axis, and vice versa. In 3D, a group that is broken up along the y-axis must be
reanalyzed in both the x-axis and the z-axis. This fix finally explains the recursive ele-
ment of RDC. Following are the revised steps for RDC algorithm.

RDC steps (revised):
1. Start with the x-axis.
2. Construct a linked list of object boundaries in this dimension.
3. Sort that list by boundary position, from lowest to highest.
4. Find groups using the open/close "bracket matching" algorithm in Listing

2.7.2.
5. For each group found in that dimension, repeat steps 2-5 in the other

dimension(s) until the group no longer gets subdivided and all dimensions
have been analyzed for that unique group.

Finding Pairs in Collision

As presented so far, RDC only identifies groups or clusters of objects that touch each
other. The effect is that a group can contain members who may or may not directly
touch every other member in the group. While this has many great uses (simultane-
ous collisions, grouping info), general collision detection usually requires pairs that
are in collision.

To find collision pairs, each final cluster group from RDC must be sent to the
brute-force comparison algorithm. Hopefully, the clusters have very few objects at
this point so that the O((n2-n)f2) algorithm runs sufficiently fast.

One way to find collision pairs even faster is to use the brute-force algorithm once
a collision cluster gets below a certain number; for example, less than 10 objects. At
this point, it would be simply faster to compare all of the objects rather than attempt-
ing to subdivide the group further with continued recursive calls.

The RDC Implementation

As described, the algorithm is basically recursive and attempts to break groups up
until the minimum clusters are found. The tricky part is designing a recursive func-
tion that chooses which dimensions to subdivide and when to end the recursion. In
3D, the function must at least try to subdivide the group along all three dimensions.
However, if any of those dimensions results in subdivision, each subdivided group
must then be sent recursively to the other two dimensions.

The easiest way to accomplish this is to let a recursive function take three argu-
ments that determine which dimensions still need to be considered. When the func-

2.7 Recursive Dimensional Clustering 235

tion first gets called, all three dimensions appear as arguments. As each dimension is
analyzed and not subdivided, the dimension argument list shrinks to zero and the
recursion halts. However, it is mandatory for a subdivided group to be called recur-
sively with two arguments (the other two dimensions). The complete function can be
found in Listing 2.7.3.

Listing 2.7.3 RDC algorithm (pseudocode)

void RDC(Pairs& pairs, Group& group,
Axis axisl, Axis axis2, Axis axisS)

{
//"pairs" holds all final pairs that are in collision
//"group" is the current group of objects to analyze
//"axisl" is the axis to analyze within this function
//"axis2", "a3" will be analyzed in recursive calls

if(Size(group) < 10 || axisl == INVALID_AXIS)
{ //end recursion and test for collisions
BruteForceComparisonf pairs, subGroup);

}
else {

//for this group, find the boundaries and sort them
OpenCloseBoundaryList boundaries;
FindOpenCloseBoundaries(axisl, group, boundaries);
SortOpenCloseBoundaries(boundaries); //O(nlogn)

Group subGroup;
unsigned int count = 0;
Axis newAxisI = axis2;
Axis newAxis2 = axisS:
Axis newAxis3 = INVALID_AXIS;
bool groupSubdivided = false;

//subdivide the group if possible and call recursively
for(every curBoundary in boundaries list)
{
if(curBoundary is "open bracket")
{ //this entity lies within a cluster group
count++;
AddToGroup(subGroup, curBoundary->entity);
}
else
{
count-;
if(count == 0)
{ //found the end of a cluster group - take subgroup

//and call recursively on remaining axis'

if(curBoundary != GetLastBoundary(boundaries))
{ //this group is being subdivided - remember
groupSubdivided = true;

236 Section 2 Mathematics

if(groupSubdivided)
{ //reconsider all other axis'

if (axisl == X_AXIS) {
newAxisI = Y_AXIS;
newAxis2 = Z_AXIS;

}
else if (axisl == Y_AXIS) {

newAxisI = X_AXIS;
newAxis2 = Z_AXIS;

}
else if(axisl == Z_AXIS) {

newAxisI = X_AXIS;
newAxis2 = Y_AXIS;

//recursive call
RecursiveClustering(pairs, subGroup,

newAxisI, newAxis2, INVALID_AXIS);
Clear(subGroup); //clear the subGroup for the next group

As you examine the RDC function, note that it has been augmented to find col-
lision pairs. When the recursion halts and a minimal cluster is found, it then sends
that cluster to the brute-force comparison function. It will also halt the recursion
should a cluster fall below 10 members. At this point, it immediately compares the
members with the brute-force function.

Time Complexity

At first glance, this algorithm looks fairly time intensive. Your gut feeling probably
tells you that it's an O(r?) algorithm — and you'd be pretty close. However, because of
the physical restrictions of 3D space, certain worst-case configurations are extremely
rare. Instead, the algorithm takes on average O(nlog2n), as long as most objects aren't
in collision.

RDC performs badly in two extreme cases. One is when the objects' configura-
tion causes RDC to recurse very deeply — this is the worst case o^O(n2log2n). The
other is when the objects are all in collision with each other, in which case RDC does
almost no work and the brute-force algorithm must be used with Q(t£).

In the worst case, recursion gets very deep. Functionally, this happens when the
object set is split completely asymmetrically, with one object in one group, and n-1
objects in the other. The larger group is then sent to the function recursively. If this
happens at each level of recursion, we get a total of n-1 calls to the function. (This
analysis applies to one dimension only. In three dimensions, we can get up to
3 + 2(n-l) calls. In all cases, this is O(n)).

2.7 Recursive Dimensional Clustering 237

For these calls, the average group size m is equal to n/2. The most complex part of
the function is the sort that we assume to be O(mlog2m) or O(nlog2n). This gives the
total time complexity of the worst case as O(n) * O(nlog2n), or O(n2log2n).

Figure 2.7.8 shows the near worst-case scenario for time complexity (a true worst-
case scenario might not be physically possible). Since Figure 2.7.9 is such an unlikely
configuration, the worst-case time complexity of O(n2log2n) is somewhat misleading.
Interestingly, this particular configuration results in an actual time complexity of
O(nL78log2n). In practice you should never expect anything nearly that bad, since this
particular case is humorously rare and contrived.

A more likely bad case for RDC occurs when all objects are in collision with each
other. In this situation, each dimension would be tested, and only one group would
be found. This would take O(3nlog2n) time. Then the entire group would be sent to
the brute-force comparison algorithm in order to find the final collision pairs. This
would make the actual worst case be O(3nlog2n + (r£-n)f2), or simply O(rf). Given
that this time complexity is identical to the brute-force method and that no objects
will ever be in collision with all other objects, it's almost always faster to use RDC.

T M i r i 1 1 1 1 1 M i M n 1 1 M i

FIGURE 2.7.9 Near worst-case configuration for RDC (24 objects).

Conclusion

Although Recursive Dimensional Clustering (RDC) isn't a complete collision detec-
tion solution, it's an impressive first-pass filter for determining groups of objects that
might be in collision. It works with blazing speed, dramatically outperforming brute-
force methods. While partitioning of the world space is the standard solution for
speeding up collision detection, RDC has remarkable performance in the absence of
such techniques. However, for practical purposes, RDC is best suited for analyzing
large numbers of objects (25+) for collision, perhaps even after other partitioning
algorithms have reduced the testable set.

238 Section 2 Mathematics

References
[Blow97] Blow, Jonathan, "Practical Collision Detection," Proceedings, (Computer

Game Developers Conference 1997), also available online at http://l42.104.104
.232/eCOW/projects/Resources/practical_collision_detection.html.

[BobicOO] Bobic, Nick, "Advanced Collision Detection Techniques," available online
at www.gamasutra.com/features/20000330/bobic_pfV.htm, March 30, 2000.

[Roberts95] Roberts, Dave, "Collision Detection," Dr. Dobb's Sourcebook (May/June
1995): pp. 7-11.

Programming Fractals

Jesse Laeuchli
jesse@laeuchli.com

Today, many 3D games and applications display randomized landscapes. Often,
fractals are used to create these landscapes. Such landscapes are known for their

quality and realism, but only recently has the computer power become available in
game machines to play with them in real time.

There are a number of reasons why you might use fractals to make a landscape. If
you created a completely random landscape, setting the heights of the valleys and hills
to any height, it would look random, and unlike any real-life landscape. On the other
hand, if you assigned the landscape heights with an orderly function—for example,
sin—you would get a completely regular and predictable landscape, something not
possible in real life. It is possible to use fractals to get a mix between the two: a land-
scape where there will not be impossibly wild mountains and valleys, or evenly spaced
hills, but more life-like scenes that match the qualities of the physical landscapes we
see around us.

A good non-mathematical definition of a fractal is something regular that has
randomness added in a controlled way. Things modeled with fractals are not com-
pletely random, but they are not entirely orderly either. Fractals are most often used as
textures, or to create geometric models. Things that are complex, but do not have any
regularity (such as people) cannot be directly modeled with fractals.

This gem looks at the more useful fractals, and examines how they are used. Not
all types of fractals will be examined, as many of them are highly mathematical and
have little use in game programming currently. In games, fractals are usually stored as
height-maps: a rectangular grid with numbers in each cell representing the fractal's
value at that point. In the case of a fractal landscape, the value represents the height;
in the case of a fractal cloud, it might represent the density. The value can be inter-
preted in many ways, some of which (no doubt) have yet to be invented, however,
since height is the most frequent case, I shall refer to the "height" of a fractal at a
point, rather than using the rather bland word value.

239

240 Section 2 Mathematics

The Plasma Fractal
One of the most common fractals is the plasma fractal. This is very easy to program,
the sort of thing demo writers love to optimize, and you have probably seen hundreds
of them (Figure 2.8.1).

FIGURE 2.8.1 A small plasma fractal.

To create a plasma, we create an empty height-map and assign heights to the four
corners. Then, for each side, we linearly interpolate between each pair of corners. The
center squares height is the arithmetic mean of the four corners' heights. We then
repeat the process for each of the four squares we have defined with these new ver-
tices, and recurse. This interpolation scheme generates a smooth curved surface
between the four corners; in fact, it can be used alone to smoothly interpolate a
height-map.

To make a fractal from this simple curved surface, we introduce a new step at
each level of recursion. After generating the center vertex, we add or subtract a ran-
dom amount from its height. At the next level of recursion, we do the same thing, but
we reduce the range of the random numbers by a number H. Note that this factor is
the only control available over the fractal. If H is 0, the height-map varies wildly; as H
gets larger, die height-map gets less varied.

The main advantages of die plasma fractal are that it is extremely easy to understand
and runs very fast. Unless speed is more important than results, though, this fractal
should be avoided for two reasons. First, very litde control is available over die fractal.
Second, this fractal has very bad artifacts—very pronounced ridges along the edges.

The Fault Fractal
Another common fractal is the fault fractal. This is also quite easy to program, but
much slower than the plasma fractal. The fault fractal very roughly simulates the
effect of severe earthquakes along random "fault lines."

To create this fractal, we again create an empty height-map. Then, we apply a
series of "earthquakes" as follows: create a random line through the height-map, raise
every cell on one side of the line up a small amount, and move every odier cell down
a small amount. This process is repeated until the landscape looks good enough.

This technique can create some very good fractals, but generating them is a slow
process. Generally, 1000 to 10,000 fault lines are required before you get acceptable

2.8 Programming Fractals 241

results. Therefore, the fractal cannot be done in real time! However, for offline pro-
cessing, this fractal is very easy to implement and does not suffer from the same alias-
ing effects as subdivision fractals such as the plasma.

The fault fractal is one of the few fractals that work on a sphere. The lines become
great circles on the sphere that split the sphere into two hemispheres. Then, each
hemisphere is moved slightly on their common plane.

Fault fractals have no control parameters, other than the sequence of random
numbers used, so it is difficult to generate them artistically.

Fractal Brownian Motion

The methods given so far are rather ad hoc approaches to generating fractals. Fractal
brownian motion (FBM) fractals have a more rigorous mathematical background and
have very good mathematical properties, which makes them simple to work with.

An FBM fractal is a combination of noise functions, but each noise function is
special. The key to this technique is understanding the different types of noise.

First, we have white noise, which is completely random. The static on a television
not picking up a signal is akin to white noise. The heights in white noise change
wildly, and are not related to the heights nearby.

Second, we have pink noise, which has a limit on how much its heights change
from one point to another.

In computer graphics, when the term noise is used it usually means pink noise
unless otherwise specified. Ken Perlin was the first to use pink noise in computer
graphics, when he wrote his now-famous noise() function (known as Perlin Noise).
He was also the first graphics programmer to win an Academy Award—for the afore-
mentioned function. (I look forward to winning my Oscar for best call to fopenQ!)

While we usually think of noise as a ID function (e.g., sound) or a 2D function
(e.g., a height-map), it can be generated in 3D, 4D, and even higher dimensions. This
can be useful when one wishes to introduce a time component to an animating tex-
ture (which can simulate fire) or to an animating 3D density function (which can
simulate boiling clouds).

To create pink noise, you take a regular grid (or higher-dimension array) and
store random values in each cell. The fractal is then generated at every point on the
surface by interpolating between these values. The defining feature of any such noise
function is then the frequency, which is the inverse of distance between the grid
points. The higher the frequency, the closer the pink noise gets to white noise.

Once you have created pink noise of various frequencies, it is easy to create an
FBM fractal by mixing the heights returned by the noise function. The simplest case
is just adding the noise functions together, but they can be multiplied or combined in
other ways.

The FBM has a few more parameters than noise alone. In addition to the fre-
quency, there are the octave, amplitude, and //parameters. The octave variable sets how
many noises are added together. The amplitude is a variable that adjusts the overall

242 Section 2 Mathematics

height of the noise. H controls how much the amplitude changes over each octave. The
frequency of each slice of noise must be chosen as well. To understand the effects of fre-
quency on an FBM, we can consider fractal landscapes. When adding noises together,
the lower frequency noise is responsible for hills and mountains, and the higher fre-
quency noise creates roughness. This gives a tremendous amount of control over
exacdy how the fractal looks. In addition, it is possible to make the amount that you
change the frequency differ from section to section of the noise function. This makes it
possible to have some areas of your fractal rougher than others, so you could have a
landscape that is rougher in the mountains, and smoother in the deserts.

It is also possible to multiply the noise functions instead of adding them together.
Doing this will create more variety in your fractal. Multiplying noises together has the
effect of damping out the lower parts of the noise, and accentuating the higher parts.
If the resulting heightmap is used for a landscape, it will have planes, mountains, and
foothills—if you just add the noises together, the landscape will have a uniform look.
It is necessary to be careful when multiplying noises together, as it is easy to go to
extremes and dampen and accentuate things too much, leaving just a flat plane with
spikes in it!

Implementation

Now that we have examined the theory of creating FBMs, the next step is to imple-
ment a noise generator. To generate noise, a source of random numbers to be interpo-
lated has to be generated. The following is the code for my random number
generator:

float random (int x , int y)
{

int n=x+y*57;
n=(n«13)*n;
float ret;
ret= (1 - ((n * (n * n * 19417 + 189851) + 4967243) & 4945007) /

3354521.0);
return ret;

}

This function just multiplies, adds, and subtracts prime numbers from your
numbers, and returns a pseudo-random value between —1 and 1. This is not the only
way to generate random numbers, of course. Some systems use pregenerated random
numbers. That method gives a small performance improvement, but then you must
store large amounts of random numbers. With this method, all that needs to be
remembered is the seed to regenerate the random numbers that were used.

Next, we need a function that interpolates these random values. A simple lerping
function would work, and it would be fast, but it does not provide very good results.
While some use spline interpolation, this is the slowest and most complex option.
This article uses cosine interpolation to build our noise function. This has good qual-

2.8 Programming Fractals 243

ity, it is fast, and it is easy to understand. Note that this is not the only noise function
possible, and it differs from Perlin Noise (which is much more complex). For a more
complete list, see [Ebert98].

Here is some code for cosine interpolation:

double cosineinterpolation(double number-1 .double number2,double x)
{

double ft;
double f;
double ret;
ft = x * 3.1415927;
f = (1 - cos(f t)) * .5;
ret=number1*(1-f) + number2*f;
return ret;

}

Now that there is a random number function, and an interpolation function, it is
possible to create a noise function by creating random numbers and interpolating diem.

float noise(float x, float y)
{

int xinteger=x;
float fractionx=x-xinteger;
int yinteger=y;
float fractiony=y-yinteger;
float v1,v2,v3,v4,i1,i2;
float ret;
v1= randomnumber (xinteger, yinteger);
v2= randomnumber (xinteger + 1, yinteger);
v3= randomnumber (xinteger, yinteger +1);
v4= randomnumber (xinteger + 1, yinteger +1);
i1= cosineinterpolation (v1,v2,fractionx);
i2= cosineinterpolation (v3,v4,fractionx);
ret= cosineinterpolation (i1,i2,fractiony);
return net;

}

The preceding function takes two variables. Normally, the function is called for
each point on the heightmap or grid in which you wish to store the results. Note that
this is two-dimensional noise.

In some cases, it is better to smooth the noise. Smoothing reduces the frequency
of your noise, and makes it look less square. It is pointless to smooth ID noise, as the
same effect is achieved by just reducing the frequency. If you want to smooth your
noise, call smoothrandom instead of randomnumber in the noise function.

float smoothrandom(int x,int y)
{

float corners=(randomnumber(x-1,y-1)+randomnumber(x+1,y-
1)+randomnumber(x-1,y+1)+randomnumber(x+1,y+1))/16;

float sides = (randomnumber(x-1, y)+randomnumber(x+1,
y)+randomnumber(x, y-1)+randomnumber(x, y+1)) / 8;

244 Section 2 Mathematics

float center = randomnumber(x, y) / 4;
float ret=corners+sides+center;
return ret;

This is equivalent to doing integration on the nine points around the center
point.

After a noise function has been constructed, it is quite easy to create an FBM.
This is how it is done:

float FBM(float x, float y, float octaves, float amplitude, float
frequency, float h)
{

float ret=0;

for(int i=0;i<(octaves-1) ;i

ret +=(noise (x* frequency, y* frequency)* amplitude);
amplitude*=h;

}
return ret;

While the way the values change over each octave in this noise may work fine in
many cases, sometimes it may be useful to change them. You can change the amount
the frequency and amplitude change over each octave. You can even skip octaves. This
control is another advantage to using FBMs (Figure 2.8.2).

A slight variation on FBMs are multifractals. Multifractals are like FBMs, except
that instead of adding noise, noise is multiplied together. Here is how they are made:

1

FIGURE 2.8.2 A) An FBM of just a few octaves. B) The same FBM after several more
octaves.

2.8 Programming Fractals 245

float Multi-fractal (float x, float y, float octaves, float amplitude
float frequency, float h, float offset)

float ret=1;

for(int i=0;i<(octaves-1);i++)
{

ret *=(offset)*(noise (x* frequency, y* frequency)*
amplitude);

amplitude*=h;
}
return ret;

}

The offset variable gives some control over the multiplication of the noise. You
will notice that the resulting fractal has dififerent kinds of hills and mountains, as well
as planes.

Using FBM

Let's learn how to make clouds with FBMs.

Clouds

Clouds are quite easy to make with FBMs. You generate an FBM, then you interpret
all the heights over zero as white, and assign them an alpha value greater than zero. To
all heights lower than zero, assign an alpha value of zero. Map this texture to a quad or
sphere, colored the way the sky would be at the time of day being modeled. Figure
2.8.3 shows some example cloud textures. See clouds.cpp for more details.

The example program uses OpenGL to map this texture to a quad. While it looks
less realistic on a qua4 than on a sphere, it demonstrates the theory.

A B

FIGURE 2.8.3 (A-C) Clouds generated with FBMs of decreasing frequency.

246 Section 2 Mathematics

Landscapes

FBMs are also useful for creating landscapes; in fact, FBMs can create excellent land-
scapes. Just interpret the heightmap as heights for the landscape (hence, the name!).
To render it, create a flat plane out of triangles, and at each triangle vertex, use a
height from the heightmap (Figures 2.8.4 and 2.8.5). See Iandscape2.cpp for the
complete listing.

A B C

FIGURE 2.8.4 Various fractal heightmaps: the ground texture is a height-frequency FBM colored by
height. A) Generated with a small frequency, small octave, and small amplitude. B) The same
landscape with a much higher amplitude. C) Generated with a high frequency.

A B

FIGURE 2.8.5 Two multifractal landscapes. Note how there are valleys, plains, hills, and tall
mountains all in the same landscape.

References

[Ebert98]. David S. Ebert, et al. Texturing and Modeling. San Diego: Academic Press,
1998.

3.1

Strategies for Optimizing Al

Steve Rabin, Nintendo of America
steve rabin@hotmail.com

^Sophisticated AI requires significant computational power. The problem worsens
%^when dozens or hundreds of autonomous agents must intelligently roam the
world simultaneously. Yet this isn't your average optimization problem. Many
domains within games deal with scalability, but AI has the extra wrinkle of supporting
imaginary parallelism. This parallelism comes from each AI agent running its own
piece of code with the illusion of all agents thinking at the same time.

As it turns out, parallelism is one of AI's greatest exploitable assets. This paral-
lelism, along with other unique attributes of AI agents, can be manipulated to opti-
mize most AI systems. As you read through the following optiinization strategies,
keep in mind a mental picture of hundreds of AI agents all having unique actions and
agendas. When you consider this magnitude, it's more obvious why certain strategies
make sense.

Strategy f 1: Use Event-Driven Behavior Rather than Polling

Ideally, autonomous agents should continuously monitor their world and react accord-
ingly. Every frame they might poll the world for events or objects to which they should
respond. This means everything from collision detection to noticing interesting things
to look at. The problem with diis approach is that it promotes an enormous amount of
redundant computation. As a rule, individual polling is usually wasteful.

The alternative is to employ event-driven techniques whenever possible. For
example, in a baseball game when the ball is initially hit, the ball could simply tell the
fielders that it was hit. This is extremely more efficient than each fielder polling the
situation to detect when the batter has hit the ball. Granted, this is an obvious use of
event-driven behavior, but it still shows the magnitude of processing that can be saved
by using an event-driven strategy.

Another example would be of an arrow flying through a battlefield. Normally, the
arrow would be checking for collisions with characters. If the arrow strikes a character,
it would then notify the character of the collision as well as the location. The charac-
ter could then react appropriately, responding to where the arrow pierced him. While
this is starting to be event driven, nothing too spectacular has happened yet.

251

252 Section 3 Artificial Intelligence

Now consider if you wanted the character to anticipate the impact of the arrow,
or even try to avoid the arrow. A polling solution would involve each character inter-
mittently looking for nearby arrows. Conversely, the event-driven solution is to have
the arrow predict future collisions, as part of its collision detection routine, and notify
any characters that might get hit in the future. The characters can then do whatever
they want with that info, including running away, ducking, or bracing for impact.
The result is very deep behavior without the need to poll for every contingency.

A good example of an event-driven AI system can be found in the first Game Pro-
gramming Gems book, in the article "Designing a General Robust AI Engine"
[RabinOOa].

Strategy #2: Reduce Redundant Calculations

The goal of this strategy is to reduce redundant calculations by sharing the results
between several AI agents. Many times agents will individually recalculate the same
information, even though they could have calculated it once and shared it. This is an
easy optimization that can often save many cycles.

A simple example of this strategy is apparent in collision detection. If every object
were to run its own simplistic collision checks, there would be O(rf-n) tests, or 9900
calculations for 100 objects. However, since a given pair of objects only needs to be
tested once, an optimized collision algorithm would have only O((rf-n)/2) tests, or
4950 calculations for 100 objects. The savings come directly from eliminating redun-
dant work.

Another example of reducing redundant computation is found in pathfinding.
When a player grabs a bunch of units and orders them to all move to the other side of
the map, each unit might expect to separately find a path. Instead, a faster and simpler
solution is to let one unit find a path and then let the other units roughly follow him.
This avoids the virtually identical path requests that would have normally taken place,
thus saving a considerable number of cycles.

Strategy #3: Centralize Cooperation with Managers

Agents often need to cooperate with other agents, whether they comprise a crack
commando squad or a sports team. Cooperation among multiple agents can be made
faster and simpler by having a manager entity make the complex decisions. These
complex decisions usually determine each member's role, while the agent is left to
autonomously execute that role.

For example, imagine a SWAT team that is infiltrating a building. The team
needs to cooperate very tightly in order to secure each position and move on. If mem-
bers had to determine their actions individually, it would be quite difficult to coordi-
nate and would require an enormous amount of inter-member communication.
Instead, a manager entity can plan out each step of the operation and instruct indi-
vidual members as to their immediate goal. This simpler approach results in a more

3.1 Strategies for Optimizing Al 253

robust and efficient design. An example of how a manager can simplify the game of
baseball can be found in [Rabin98].

It's important to remember that with this strategy, managers don't need to be rep-
resented on-screen. Usually these managers are just fictitious entities that organize the
complex cooperation among AI agents. You can even imagine transient managers that
dynamically form around groups of monsters that have banded together. If that group
then divides or combines with another group, each newly formed group can be
assigned its own manager. With these monster managers, individual monsters can
be coordinated so that optimal targets are chosen and everyone doesn't mob the same
enemy.

Strategy #4: Run the Al Less Often

Rarely do AI agents need to run through all of their decision-making routines every
frame. Many times, agents can run portions of code every couple frames or even every
couple seconds. Since real creatures have reaction times, it's not unreasonable for AI
agents to have less than lightning reflexes. This results in a handy way to cut down on
AI processing.

Using an agent architecture that supports arbitrary timer callbacks is a great way
to implement this strategy. If an agent can easily set a timer and be notified when it
expires, flexible systems can be built that are easily tunable. The first Game Program-
ming Gems book has a gem "Designing a General Robust AI Engine" [RabinOOa] that
discusses a timer messaging system that is well suited for this strategy.

One problem with this strategy is the possibility of AI processing peaks. This
would occur if a majority of the agents became synchronous in their callback execu-
tions, simultaneously executing every TV seconds or so. The simple solution is to ran-
domize the window of processing for each agent. For example, an agent might execute
his invader-detection code every 0.3 to 0.5 seconds, randomly picking a new delay
within that window after each callback. This random window of execution virtually
guarantees that agents won't become synchronous with each other, accidentally caus-
ing a processing peak.

Strategy #5: Distribute the Processing over Several Frames

Typically, A* pathfinding is one of the dreaded algorithms that can eat up CPU
cycles. Since situations rarely change much over a couple frames, it's possible for an
agent to spread a pathfinding calculation over several frames. By saving the results
from each frame and resuming the next frame, a path can be found over 2-4 frames.
This results in a lower per-frame processing load. Any algorithm that can take an
unspecified amount of time can be broken up in this manner.

This strategy can be implemented as a special case in a module, like a pathfinding
module, or it can be part of an AI operating system. The next gem in this book,
"Micro-Threads for Game Object AI," by Bruce Dawson, explains how you can

254 Sections Artificial Intelligence

implement a micro-thread strategy in order to minimize AI loads. This particular
architecture makes it easier for an AI agent to spread calculations over many frames
and can help keep processing loads under control. Following Bruce's gem is "Manag-
ing AI with Micro-Threads" by Simon Carter, which describes how to best structure
your AI within a micro-thread environment.

Strategy #6: Employ Level-of-Detail AI

The level-of-detail (LOD) concept is a clever optimization that has many uses outside
of graphics. Currently, most game engines use graphical LODs in order to quickly
render objects that are far off in the distance. The idea is to use a low polygon count
model when an object is far from the camera, and use a high polygon count model
when it's close. The effect is that the rendering time is greatly sped up with little or no
visual loss to the game. An important realization is that the level-of-detail concept can
also be applied to other game programming areas, such as AI.

Practically, the level-of-detail technique for AI comes down to three strategies. The
first is to vary the processing frequency of an agent by how close it is to the camera,
player, or action. The second is to vary the complexity of an agent's algorithms based
on relevance, by doing things such as eliminating precise pathfinding when an agent is
offscreen. The third is to represent multiple agents in a single simulation algorithm as
their individual importance decreases to the player. An extreme example of the third
variation is to simulate the outcome of a far-off military battle with a simple formula,
while battles close to the player might simulate every single soldier and bullet.

Level-of-detail is all about trying to get away with less work without the player
noticing. If the player can tell something is wrong or different, then the optimization
needs to be scaled back, just as it would be with graphical LODs that visually "pop."

Strategy #7: Solve Only Part of the Problem

When given a large problem, sometimes it suffices to only solve the part that you need
right away. The rest of the solution can then be computed in the future when you
actually need it. It might even be the case that the situation changes enough that the
rest of the problem is irrelevant and never needs to be computed anyway. This strat-
egy is extremely similar to lazy evaluation.

The best example of this strategy in action is probably hierarchical pathfinding. In
hierarchical pathfinding, the path is found in two phases. First, the character's high-
level, room-to-room path to the goal is calculated. Once that is computed, the micro
path to get the character to the next room, toward the goal, can be computed as each
new room is entered. If for some reason the character gets redirected, the remaining
path is thrown away and never computed. This on-demand pathfinding results in a
tremendous speed improvement that is critical for games that have large areas to navi-
gate. See [RabinOOb] for a complete description of hierarchical pathfinding issues and
implementation.

3.1 Strategies for Optimizing Al 255

Strategy #8^ Do the Hard Work Offline

Sometimes, a problem is so difficult that you don't even have the CPU time to solve
it. In the early years of game development, problems such as finding the cosine of an
angle simply took too much time. This resulted in programmers precalculating cosine
for a range of values and simply indexing a look-up table to get the answer. While
today that technique is no longer relevant, the basic strategy is as useful as ever. .

Current incarnations of this strategy can be found in precomputed BSPs, pfe-
analyzed terrains, and carefully trained neural nets. Later, you'll find three gems that
exemplify this strategy: "Terrain Reasoning for 3D Action Games" by William van
der Sterren, "Expanded Geometry for Points-of-Visibility Pathfinding" by Thomas
Young, and "Using a Neural Network in a Game: A Concrete Example" by John
Manslow. Each gem exploits the bountiful offline time that can be used to analyze,
refine, and store specialized information that can then be used at a moment's notice
during runtime. This is surely one of the most powerful optimization strategies, since
it can cram thousands of hours of wisdom into a few kilobytes of data and a trivial
amount of CPU cycles.

Strategy #9: Use Emergent Behavior to Avoid Scripting

This strategy has the opposite problem of the last strategy. Often, you don't have
enough offline time to create the behavior or scripts for hundreds of background AI
entities that might populate your world. The solution is to come up with very simple
rules that result in intelligent, emergent behavior. Later in this book, the gem "Flock-
ing with Teeth: Predators and Prey" by Steven Woodcock details how flocking can help
create wonderfully complex behavior that is unscripted, yet interesting and lifelike.

Unfortunately, this strategy is a double-edged sword. While it cuts down on the
amount of offline work, it has the potential for unintended consequences. In his gem,
Steven describes a world full of creatures that feed off each other. This sometimes
results in the predators completely wiping out the population of prey, causing the
entire ecosystem to collapse. By its very nature, emergent behavior is unpredictable
and can be hard to thoroughly test. Consequently, it might be best suited for noncrit-
ical AI entities that aren't pivotal to the progress or completion of a game, such as
background wildlife.

Strategy #10: Amortize Query Costs with
Continuous Bookkeeping

Sometimes a lot of data needs to be collected in order to make an intelligent decision.
If that data is gathered right when it's needed, then it might take an unacceptable
amount of time to calculate. The solution is to continuously update a data structure
with this data as it changes. Although more time and memory is spent keeping track of
data, it's amortized over many, many frames. The result is that a simple query of the
data no longer causes a hit to the frame rate.

256 Section 3 Artificial Intelligence

Influence maps are an excellent example of this strategy at work. Influence maps
are used to analyze general strategic patterns, and in doing so, speed up AI decisions.
As a game progresses, the units keep their info updated within the influence map as
they move, evolve, or disappear. This way, when a general strategic AI wants to ana-
lyze the world, the data is already available. This results in quick queries to the influ-
ence map without any significant speed hit. Further in this book, you'll find the gem
"Influence Mapping" by Paul Tozour that explains influence maps and has some
unique insights into making them even more powerful.

This strategy is also key in a later gem written by Matt Pritchard entitled "A
High-Performance Tile-Based Line-of-Sight and Search System." In his gem, Matt
uses this strategy of continuous bookkeeping to maintain the line-of-sight data for
hundreds of agents in real time, which is not a simple task. Many RTS games fail to
achieve this frame-by-frame accuracy for their fog-of-war, mini-map, and general
intelligence; however, Matt fully explains the techniques and strategies that give the
Age of Empires series that extra edge.

Strategy #11; Rethink the Problem

Michael Abrash is well known as an optimization guru within the game development
community, as well as one of the leading figures in graphics research. On many occa-
sions, both in presentations and in print [AbrashOO], he has stressed the importance
of rethinking a problem in order to speed up code by orders of magnitude. His main
premise is that optimizing specific sections of code will always result in marginal
gains. The real way to optimize is to attack the problem from a slightly different per-
spective, with an alternate approach or algorithm.

This strategy is well illustrated later in the book by Michael Zarozinski in his gem
"Imploding Combinatorial Explosion in Fuzzy Systems." In this gem, Michael
explains an alternate algorithm, called the Combs Method, which completely circum-
vents the exponential nature of traditional fuzzy systems. Although the method
doesn't produce identical results, the output is very comparable and sufficient for
most purposes. In addition, it simplifies fuzzy logic implementation and planning to
the point where anyone can easily incorporate it into a game.

Rethinking a problem from a different perspective is probably the best advice
anyone can give for optimization. It's the seed from which every other optimization
grows. Only through the process of redefining or abstracting the problem, creating an
analogy, or changing your perspective, can you make the leaps that will allow you to
truly optimize your code. While leaps don't come very often, you can learn from
other's leaps by simply reading and learning as much as you can about how they
solved similar problems.

3.1 Strategies for Optimizing Al 257

Conclusion

It takes a slightly different perspective to optimize the problems that face AI systems.
Don't be afraid to scan the list of strategies the next time you're faced with trying to
speed up a seemingly unoptimizable system. With so many ways to view a problem, it
helps to refresh your memory and contemplate how each strategy applies to your
unique situation. Here is a recap of all the strategies:

1. Use event-driven behavior rather than polling.
2. Reduce redundant calculations.
3. Centralize cooperation with managers.
4. Run the AI less often.
5. Distribute the processing over several frames.
6. Employ level-of-detail AI.
7. Solve only part of the problem.
8. Do the hard work offline.
9. Use emergent behavior to avoid scripting.

10. Amortize query costs with continuous bookkeeping.
11. Rethink the problem.

As you read the gems that follow, consider how these optimization strategies have
been applied and exploited within each. While there are a wide variety of strategies,
it's quite amazing how disparate problems can often be solved with the same strategy.
The genius is in seeing those connections.

References

[AbrashOO] Abrash, Michael, "It's Great to Be Back! Fast Code, Game Programming,
and Other Thoughts from 20 (Minus Two) Years in the Trenches," Conference
Proceedings, (Game Developers Conference 2000). Text available online at
www.gamasutra.com/features/20010117/abrash_01.htm. Video also available
online at www.gamasutra.com/features/index_video.htm.

[Rabin98] Rabin, Steve, "Making the Play: Team Cooperation in Microsoft Baseball
3D," Conference Proceedings, (Computer Game Developers Conference 1998).

[RabinOOa] Rabin, Steve, "Designing a General Robust AI Engine," Game Program-
ming Gems, Charles River Media, 2000: pp. 221-236.

[RabinOOb] Rabin, Steve, "A* Aesthetic Optimizations," and "A* Speed Optimiza-
tions," Game Programming Gems, Charles River Media, 2000.

3.2

Micro-Threads for Game
Object Al

Bruce Dawson, Humongous Entertainment
bruced@humongous.com

Writing good AI can be very difficult. It took many years and millions of dollars
before a computer program was able to beat the world's best chess players.

Game AI doesn't have to play championship chess, but it does have to update many
game objects per frame, in very little CPU time.

Adding to the essential complexity of writing good AI is the "accidental complex-
ity" [Brooks95] introduced by the common methods of implementing AI for game
objects.

As an example of accidental complexity in most games' code, let's say we want to
make a "Janitor" object that wanders around our world cleaning up. This janitor's
routine is very simple: choose a target, move toward it, dispose of it when you get
close enough, and then repeat. Of course, since this is for a game we want to do it in
small steps, one per update loop. Some C++ style pseudocode — without accidental
complexity — might look like this:

void Janitor: :Process() {
while (true) {

GameObject* target = GetNewTarget(this) ;
while (Distance(this, target) > k_collisionTolerance) {

WaitOneFrameO ;
MoveABitTowards(this, target);

}
Dispose(this, target);

However, that doesn't work very well in a game because it doesn't share the CPU
other entities in the world. Therefore, the traditional way to implement such a

janitor object would be as a Janitor class with a virtual function that is called every
frame, like this code, taken from the sample on the CD:

Janitor: :Janitor()
: m_target(0) , m state (k_NeedsGoal) {

258

3.2 Micro-Threads for Game Object Al 259

void Janitor: :ProcessFrame(){
switch (m_state) {

case k_NeedsGoal:
m_target = GetNewTarget(this) ;
if (Distance(this, m_target) <= k_collisionTolerance)

m_state = k_DisposeObject;
ProcessFrame() ; // Call ourselves.
return;

}
m_state = k_MovingTowardsTarget;
// Intentionally missing break.

case k_MovingTowardsTarget :
MoveABitTowards(this, m_target);
if (Distance(this, m_target) > k_collisionTolerance)

break;
else

m_state = k_DisposeObject;
// Intentionally missing break.

case k_DisposeObject:
Dispose (this, m_target);
m_state = k_NeedsGoal;
break;

What a mess! Our AI code has gone from simple and elegant to a huge and unread-
able state machine. Modifying the second version of die code will clearly be much more
complex, and die state machine cannot be reused widi anodier class, because it requires
m_state and m_target. That's accidental, or nonessential complexity.

Central to die problem is that all of die state now has to be stored in die object.
This is a profound change. In the first version of the code the "target" variable was
declared as a local variable. It was created exactly when it was needed and fell out of
scope when its job was done. Now, the target has to be recorded in the object. We also
added another member variable to our Janitor class, m_state. Where did this variable
come from? Why wasn't it needed in our first version of this routine?

In the first version of Process () , die state is implied by which line of code is exe-
cuting. It's stored in the program counter. The program counter keeps track of die
current state, the stack pointer points at the current set of variables, and life is easy.
When we implement AI with callbacks, we have to simulate the instruction pointer
and stack pointer and the benefits they bring us.

A Simpler Method

At this point, it should seem obvious that using callbacks for our entity code is messy.
Therefore, how do we turn our simple version of die janitor code into something that
actually works? To do that we need to let the rest of the game loop and die other
objects have some CPU time, and we need to synchronize the objects so they do
exacdy one update per frame. To do this we need to put each game entity into a

260 Section 3 Artificial Intelligence

separate thread and have the WaitOneFrame () function switch to the next thread. With
such a system, the pseudocode of the first example can be compiled and run perfectly!

We could start an OS thread for each object. This lets each thread pretend that it
owns the CPU, while the operating system manages the magic of swapping things
around to change the CPU state. The WaitOneFrame () function would do the neces-
sary work to switch to the next thread—see the sample code for details.

This sort of strategy works well for Web servers and other multi-threaded apps,
but it's a poor option for games. Many games run in environments where there is no
operating system support for threads—or no operating system at all. Even if there are
threads, they are frequently too expensive for game purposes. Switching threads on
Win32 takes thousands of machine cycles, and each thread uses up a minimum of 8
KB of memory—4 KB for the Thread Information Block and 4 KB for the smallest
possible stack. Both allocations take 4 KB because, in order to keep threads indepen-
dent and allow for stack growth, their allocations are put on separate memory man-
agement pages, and this forces a 4K granularity.

On Win32, there is also the option of using fibers—cooperatively multitasking
threads. Fibers are a bit better for our purposes because the context switching is much
faster and more easily controlled. However, the stack still takes at least 4 KB, and
fibers don't work at all on Win95. On Win98, each fiber stack takes a minimum of 8
KB, making its memory footprint as bad as for regular threads.

Micro-Threads

Let's step back and think about precisely what we want. We want to be able to write
AI or other object-updating code that can pretend that it owns the CPU. After exe-
cuting the code for one time slice update, we want to be able to call WaitOneFrame()
to give the rest of the game some CPU time. When WaitOneFrame () returns we want
execution to continue where it left off, one time slice later. We want this to be fast,
and we want minimal memory overhead.

What do we have to do to switch from one thread of execution to another? The
instruction pointer in a CPU is a register that points at the next instruction to be exe-
cuted. If we were to write some code that changed the instruction pointer, we could
easily jump from one thread to another. Changing the instruction pointer is easy-
CPUs have many instructions for doing that. In a few lines of assembly language you
can get the current instruction pointer, store it somewhere, and then jump to a new
location. This will give die desired effect of jumping back into a previously running
piece of code—but if that's all you do, you will be terribly disappointed.

The instruction pointer is not the only piece of state in a CPU and it is not the
only thing that determines what function you are executing. Another important piece
of the puzzle is the stack pointer. All of the local variables of a function are stored rel-
ative to the stack pointer (or the stack frame pointer, but let's ignore that for now). In
fact, the stack pointer is even more important than the instruction pointer, because
function return addresses—instruction pointers—are stored on the stack.

3.2 Micro-Threads for Game Object Al 261

Let's imagine that we've written a piece of code that pushes the instruction
pointer onto the stack, then changes the stack pointer, and then pops the instruction
pointer off of the stack. Since the new instruction pointer is popped off of the new
stack, changing the stack pointer has also changed the instruction pointer—voilfr,
we've changed threads. In fact, since calling a function pushes the instruction pointer,
and returning from a function pops the instruction pointer, our thread switching
function is just two instructions—move a new value into the stack pointer, then
return!

Okay, it's not quite that easy. First, CPUs have more registers than just the stack
pointer and the instruction pointer. No problem—we'll deal with them the same way.
Push them all onto the stack at the beginning, change the stack pointer, and then pop
them all at the end. It just works. The exact details vary from CPU to CPU, but any
CPU that has enough flexibility in where you point the stack pointer can implement
this system. Micro-threads have even been implemented on a Nintendo GameBoy!
On an x86 CPU, a complete thread switch can be implemented in 12 assembly lan-

V_lli' guage instructions. In the micro-thread sample programs on the CD, that is all the
ONmca> assembly language that is used. Here is a sample SwapThreads() routine:

SwapThreads
// Preserve all of the registers that VC++ insists we preserve.
// VC++ does not care if we preserve eax, ecx and edx.
push ebx
push ebp
push esi
push edi

// Swap stack pointers
itiov eax, esp
mov esp, s_globalStackPointer
mov s_globalStackPointer, eax

// Restore all of the registers that we previously preserved.
// Yes, they're coming off of a different stack - they were
// carefully placed there earlier.
pop edi
pop esi
pop ebp
pop ebx
ret

Is that all there is to it? That depends. On some CPUs, you may have to preserve
floating-point or multimedia registers as well. On the Intel architecture, because of
the, umm, peculiar arrangement of the floating-point registers, it is impractical for
compilers to preserve them over function calls, so compilers always make sure that all
floating-point numbers have been written to memory before calling any function,
including your WaitOneFrame() function. You also don't need to preserve all of the
integer registers, because compilers don't expect all of them to be preserved over func-
tion calls—consult your compiler documentation for details.

262 Section 3 Artificial Intelligence

Stack Management

But what, exactly, are we assigning to our stack pointer when we change threads?
When we start an OS thread we are implicitly allocating and initializing a stack—now
we have to do it ourselves. On Win32, the operating system allocates a 4 KB page of
memory for each stack. It also reserves some extra address space—1 MB by default—
so that the stack can grow. If you declare a large array in a function, or have deeply
recursive function calls, the operating system automatically allocates more 4 KB pages
of memory. If you go beyond the address space that was reserved, it stops you with a
page fault.

We're trying to avoid allocating 4 KB of stack for each thread, so how much
should we allocate? We might decide that we want to allocate no more than 100 bytes
of stack per object; after all, we want to have hundreds or thousands of these things.
We could use malloc or new to allocate 100-byte blocks and then, with a bit of care-
ful array initialization, set up this stack so that we can switch to it with
SwapThreads(). This method will work, but it's rather dangerous. If you write any
game entity code that uses a bit too much stack, terrible things will happen. You will
corrupt whatever block of memory conies before the thread stack, and your game will
crash. If you decide to use this system, be sure to put some sort of marker at the far
end of the stack, and check these markers after every thread switch to see if they have
been overwritten. At least that way you will know when you have trashed memory.

A slightly different implementation of micro-threads can avoid these strict stack
size limits. In this variation a large stack is allocated that all micro-threads share.
When a micro-thread goes to sleep, the thread manager copies the contents of the
stack to a resizable backup buffer. This buffer only needs to be reallocated when the
thread's stack size increases, so the buffer allocation time is negligible. Therefore,
the only additional overhead of this method is copying the contents of the stack back
and forth. Interestingly enough, this copying is virtually free, because it primes the
CPU caches and prepares them for running the thread.

So far, stack copying probably doesn't seem any better than allocating a fixed
stack for each thread. However, the advantage with stack copying is that the stack
usage only needs to be small when you switch threads. If your AI entities need to call
a complex BSP pathfinding routine, a debug print function, or some other function
that uses a lot of stack, they can do this with stack copying micro-threads. The tem-
porarily large stack usage is harmless as long as you don't call WaitOneFrame() from
deep within these utility functions. With fixed-stack micro-threads you can never use
large amounts of stack—not even temporarily.

This is a huge advantage. If your AI routines are forced to use a tiny little stack
with not much depth, you may end up with AI that has a tiny little brain with not
much depth.

3.2 Micro-Threads for Game Object Al 263

Complications

Loading and Saving Games

Compilers will sometimes generate stack frames for each function, which are used for
easier addressing of local variables and parameters. These stack frames are tied
together in a linked list on the stack. In other words, a typical stack contains pointers
to itself. Therefore, the stack image cannot be used in a different location.

Stacks also contain return addresses—pointers to code. Therefore, if you save a
stack buffer to disk you cannot load it up and expect it to work if you have recompiled
your code—all of the code bytes will have moved.

Even if you deal with the problems of micro-thread stacks containing pointers to
themselves and to code, the stacks will contain local variables, some of which will
be pointers. When you have pointers in a structure you can still save and restore the
structure if you are careful, but with micro-thread stacks, you don't know where the
pointers are. Careful use of C++ pointer objects can manage this problem, but it is
complicated.

Therefore, loading and saving of games that use micro-thread stacks is problem-
atic. This may restrict their usage to games that don't need to load and save, or to con-
sole machines where the exact memory layout can be restored when saving.

Structured Exception Handling

Win32 structured exception handling is a critical part of a debugging strategy, as it
ensures that detailed crash information is recorded. It is also used to implement C++
exception handling. However, if you aren't careful, structured exception handlers will
not get called for exceptions that happen inside micro-threads. That's because the OS
handler that walks the linked list of exception handlers (another linked list on the
stack) gives up if it notices an implausible pointer, such as a stack pointer outside of
the current OS thread's known stack range [Pietrek97].

This can be avoided if you locate your temporary stack somewhere in the address
range of your real stack, well below what you're actually using. Remember that it has
to be in a fixed location because the linked lists on the stack won't work if it moves,
and you have to make sure that your main thread's stack never goes down far enough
to be overwritten by the micro-thread stacks.

OutputDebugString

On Windows NT, if you call OutputDebugString () from a micro-thread when you're
not running under a debugger, your program may exit, due to the structured excep-
tion handling problem mentioned earlier. This is easily fixed by placing your stack

C ĵ2i5 appropriately or by using the OutputDebugStringW95() function on the companion
ON m a> CD-ROM, which detects whether you are running under a debugger and only uses

OutputDebugString () when it is safe. It also looks for DBWin32, the freely available
debug output monitoring program, and talks to it directly whenever possible.

264 Section 3 Artificial Intelligence

Conclusion

Threads are a simpler method of writing AI code for many independent entities.
Micro-threads let us implement our game entities using threads without die high
memory or CPU cost of other threading methods. Micro-threads can be easily imple-
mented on any CPU architecture, with very little assembly language [KeppelOl].

A sample implementation of micro-threads for Win32 is on the companion CD-
ROM. Also included is a simple game that uses micro-threads, and a test application

«,««« £or comparmg micro-threads to Fibers and OS threads.
Micro-direads have also been implemented in several scripting languages used in

games, such as Lua [LuaOl], SCUMM (a proprietary Lucas Arts engine also used by
Humongous Entertainment), and Python [TismerOl].

A micro-thread janitor can clean up your game code.

References
[Brooks95] Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software

Engineering, Anniversary Edition, Addison-Wesley, 1995.
[KeppelOl] Keppel, David, "QuickThreads distribution," available online at http://

www.mit.edu/afs/sipb/project/scheme/src/guide-1.3/qt/, June5, 2001.
[LuaOl] "The Programming Language Lua," available online at www.tecgraf.puc-rio.

br/lua/about.html, February 22, 2001.
[Pietrek97] Pietrek, Matt, "A Crash Course on the Depths of Win32 Structured

Exception Handling," Microsoft Systems Journal (Jan 1997).
[TismerOl] Tismer, Christian, "Stackless Python," available online at www.stackless.

com/, February 23, 2001.

3.3

Managing Al with Micro-
Threads

Simon Carter, Big Blue Box Studios
scarter@bigbluebox.com

As discussed in the previous gem, AI in games is generally implemented through
some form of state machine. State machine architecture has a number of advan-

tages for AI. Most notably, the system can be suspended at any particular state, a facil-
ity that is critically important for any game that intends to have more than one AI
entity. However, traditional implementations of state machines tend to be messy,
unintuitive, pro'ne to bugs, difficult to debug, and hard to read. Micro-threads offer a
far more elegant way of implementing state machines and can lead to a very robust
and extensible AI system. This gem attempts to give an idea of how to implement
such a system and take full advantage of its flexibility.

Piece by Piece

Micro-threads allow us to code up state machines using normal, everyday program-
ming practices. Most of the "magic" goes on in the background, leaving us free to
design our AI system as elegantly as we wish, without having to pander to background
architecture issues. Although this is very liberating, it can be difficult to know where
to start when so many restrictions are lifted.

Good artificial intelligence in games is all about organizing what can become a
very complex system into manageable chunks, and to make these "modules" as intu-
itive and reusable as possible. An important design decision is the granularity of this
modularization. By way of example, classic state machines by necessity tend to make
each individual state a module, and it is this very low-level granularity that makes the
system awkward. Micro-threads allow us to choose the granularity of our modules
ourselves, and choose the level that makes the most sense conceptually.

From a design standpoint, it is far better to break complex AI into units of
"behavior." In this context, "behavior" is the full set of tests and actions that are used
to model an entity's responses to particular stimuli; for example, being hungry, being
in a fight, being scared, and so forth. The more behaviors a particular entity has, the
more rich and varied its resulting AI will appear to be. An ideal design scenario would
be to have the ability to attach different suites of behaviors to different entities. In

265

266 Section 3 Artificial Intelligence

addition, it would be great to be able to reuse certain common behaviors between dif-
ferent types of entities, and hence minimize the amount of replicated code.

A system based on behavioral units will allow us to construct flexible AI out of
these different modules, allowing us to rapidly build up different entity "brains" from
reusable behaviors.

Good Behavior

Here's how a general interface for a behavior module might look:

class CAIBehavior
{

CAIEntity* PEntity;
public:

CAIBehavior(CAIEntity* pentity);
virtual bool IsRunnable(void) = 0;
virtual void Update(void) = 0;
virtual void OnActivate(void) = 0;
virtual void Cleanup(void) = 0;

};

The IsRunnable method is responsible for stating whether the correct conditions
are present for the behavior to run; for example, is there food nearby and is the entity
hungry, for a "hunger" behavior. OnActivate is called whenever a particular behavior
becomes "active." Cleanup is called whenever a behavior is deactivated and is respon-
sible for making sure that the entity is put back cleanly into whatever state it was in
before the behavior was activated.

Don't worry about these too much, as they are only necessary when we want to
organize multiple behaviors later. For the moment, the most important method
for our single unit of behavior is Update, as this is the method that performs the meat
of our AI.

In general, a particular module of AI behavior will simply be a tree of conditional
tests, which will resolve into different actions. For example, think about what a hun-
gry creature might do.

CFood* pfood = FindPFood(PEntity->GetPos());
if(pfood!=NULL){

//Move toward the food until we are near it
while(!PositionsAdjacent(PEntity->GetPos(), pfood->GetPos())

PEntity->MoveOneStepTowardsPos(pfood->GetPos());
PEntity->EatFood(pfood); //Eat the food.

}

Here, the creature looks for food and, if it finds it, moves toward it one step at a
time until it is adjacent. When it is near the food, it eats it. Unfortunately, if we ran
this code, the game would freeze in the while loop; this is where micro-threads come
in to save the day. Assuming this behavior class is being run in a micro-thread, all we
have to do is add one magical line:

3.3 Managing Al with Micro-Threads 267

while (!PositionsAdjacent(PEntity->GetPos() , pfood->GetPos()){
PEntity->MoveOneStepTowardsPos(pfood->GetPos()) ;
MicroThreadSleepO ; // a call to suspend the micro thread.

}
PEntity->EatFood(pfood) ;

Suddenly, our simple AI process is a state machine! Now, after every step, the AI
will suspend its processing, returning control to the main game.

It's All in the Mind

Although it may not seem like we've achieved much yet, we are now able to construct
a single module of AI behavior. In order to make an entity's life rich and varied, how-
ever, we need some way of organizing and prioritizing multiple, conflicting behaviors
in such a way that only one is active at a time. This is where the brain class comes in.

class CAIBrain
{

MicroThreadlnfo* PMicroThread;
std: :list<CAIBehavior> Behaviors;
std: :list<int> BehaviorPriorities;
CAIBehavior* PActiveBehavior;
int ActiveBehaviorPriority;

public:
void AddBehavior(int priority, CAIBehavior& behavior);
void Update (void) ;

Each AI entity in our game will have its own brain, and each brain has a micro-
thread. Using the AddBehavior method, different types of entities can add different
behaviors to the suite of possibilities. In addition, each behavior is given a priority,
which can be used to help choose the behavior to run. It is the responsibility of the
Update method of the brain to keep switching control to the micro-thread, which will
in turn keep pumping the Update method of the active behavior.

Before that, however, we must make sure that there is an active behavior. When
our entity has nothing to do, we need to run through all the available behaviors and
choose the one with the highest priority that succeeds in the IsRunnable test. We take
that chosen behavior, call OnActivate on it in case it has any special initialization
code, and set it as our active behavior. Once that behavior has finished, we call
Cleanup on it to run any uninitialization routines it may have, and then do the whole
thing again.

In this way, a brain will make sure it always keeps an appropriate active behavior
running. In practice, it is usually a good idea to give all entities some type of fallback
idling behavior that will always pass the IsRunnable test, just so that it always looks
like it is doing something.

There is a slight additional complication to this. Say our entity has decided it
wants to go and run its Sleep behavior for a couple of minutes, because everything is

268 Sections Artificial intelligence

quiet and its Def endSelf behavior, despite having a higher priority, has found no
aggressors in the IsRunnable method. Unfortunately, while it is sleeping, the entity is
attacked by some unscrupulous enemies. Using the system described previously, our
sleeping AI character will be brutally murdered in his sleep, because he would only
choose another active behavior when his current one finished.

What we need to do is periodically check our behavior list for an entry that suc-
ceeds on IsRunnable and is of a higher priority than the active behavior. If we find
one, we unplug whatever is currently running—in this case, our Sleep behavior—and
slap in our new, higher priority system—Def endSelf. In this particular instance, it
would probably be the job of the Cleanup method of the Sleep behavior to ensure that
the entity is awake, before the new and rather more violent behavior is plugged in.
The code for the basics of this system is shown here:

void Update()
{

CAIBehavior* pending = NULL;
if(PActiveBehavior) {

pending = FindNextBehavior(ActivePriority);
}

if(Spending && !PActiveBehavior)
pending = FindNextBehavior(-1);

if(pending){
if(PActiveBehavior)

TerminateActiveBehavior();
PActiveBehavior = pending;
PActiveBehavior->OnActivate();

}
if(PActiveBehavior)

SwitchToMicroThread(PMicroThread);
}

void FindNextBehavior(int priority)
{
//Find a higher priority behavior that passes IsRunnable
}

static void MicroThreadFunction(void* pcontext)
{

CAIBrain* pthis = (CAIBrain*)(pcontext);
while(!pthis->TerminateThread){

if(pthis->PActiveBehavior){
pthis->ActiveBehaviorRunning = true;
pthis->PActiveBehavior->Update();
pthis->ActiveBehaviorRunning = false;

}
MicroThreadSleep();

3.3 Managing AI with Micro-Threads 269

Complications

Dying Considerately

All of this so far has been deceptively simple. Brains run micro-threads, which in turn
call update methods in behaviors. However, distributing processing across game turns
has a number of important ramifications with which we need to deal. If we return to
the simple hunger code we looked at earlier, there are a couple of hidden difficulties.
First is the issue of tracked entity death; because the code is now spread across multi-
ple game turns, somebody else may eat the food we are tracking by the time we reach
it. If our food had simply been deleted from the game when it had been eaten, the
code would crash since our pointer would be tracking invalid data.

Depending on how we handle entity deaths in our game, there are a number of
ways to deal with this. Fundamentally, we have to make sure that any handles we have
on game entities will be valid between game turns. In addition, we should be able to
inquire whether the entity we are tracking has died. One solution is to force our per-
sistent handles to be identifier numbers instead of pointers, unique to every entity
that gets allocated in our game. That way, when an entity dies, our game code can
simply tell us that our handle is invalid. Unfortunately, whenever we wish to access
any part of the entity, we have to turn our handle into a reference to the actual data,
which can result in bloated, inefficient code.

A better method is to write a special smart pointer system that deals with all of
these issues automatically; a good set of guidelines for writing smart pointers is given
by Scott Meyers [Meyers96]. Classic smart pointers conceptually have a degree of
ownership over the objects they point to, through reference counting of some sort.
What we want is the reverse, a pointer that passes ownership of itself to the special
type of object at which it is pointing. Whenever a tracking pointer is pointed at one
of our objects, it registers itself with it. Then, when the object dies, it can inform any
tracking pointers that refer to it about its death and set them to a null value. Once we

- ,, have this working, all we have to do in our AI code is make sure we check that the
V_l2ss^ pointer is non-null before we use it. Example code on how to implement this "track-

ing pointer" system is provided on the companion CD-ROM.

Dying Cleanly

There is another issue with which we have to deal. What happens if the object whose
AI we are running dies or is interrupted? If this occurs, then the active behavior needs
to stop, all the objects we created on the heap need to be deleted, and we have to exit
our AI code as quickly as possible. Again, depending on your preferences, there are a
number of ways to handle this.

An elegant method is to use the C++ exception language facility. When an excep-
tion is thrown, behind-the-scenes C++ magic cleans up the stack and moves control
back up the execution hierarchy, which is exactly the functionality we want. All the

270 Section 3 Artificial Intelligence

brain class needs to do is catch the exception and call the behaviors cleanup method.
However, this is a fairly heavyweight approach, and some micro-thread implementa-
tions don't deal too kindly with exceptions.

A simpler approach, although rather more invasive, is to periodically check for
whether we have been terminated, and return if we have. This does require some care-
ful structuring of the AI code, but it is also a very lightweight solution. With some
thought, this can even be packaged up to be only minimally invasive. In most cases, to
be on the safe side, the brain will keep polling the micro-thread until it receives noti-
fication that the behavior has indeed stopped running, a technique with which you
are familiar if you have used threads before.

void CAIBrain: :TerminateActiveBehavior()
{

if (PActiveBehavior){
PActiveBehavior->SetTerminateFlag() ;
while (Act iveBehaviorRunning)

SwitchToMicroThread(PMicroThread) ;
PActiveBehavior->Cleanup() ;
PActiveBehavior->ClearTerminateFlag() ;

Actions Speak Louder

Taking all these modifications on board, let's see how our earlier example "hunger"
behavior code might now look.

void Update ()
{

CTrackingPointer<CFood> pfood;
pfood = FindPFood(PCreature->GetPos()) ;
if(pfood!=NULL){

if (ActionMoveTowardsFood(pfood)==AI_OK)
PEntity->EatFood(pfood) ;

EAIReturn ActionMoveTowardsFood(CSmartPointer<CFood> pfood)
{

while (pfood!=NULL && !PositionsAdjacent(PEntity, pfood-
>GetPos()){

if (TerminatedO)
return (AI_TERMINATE) ;

PEntity->MoveOneStepCloserToPos(pf ood->GetPos()) ;
MicroThreadSleepO ;

}
if(pfood!=NULL)

return (AI_OK);

return (AI_FAIL);

3.3 Managing Al with Micro-Threads 271

A special tracking pointer is used to track the food in case it dies. The Action-
MoveTowardsFood method asks the brain to suspend the micro-thread after every step
it takes toward the food. If die action finds that it has been "terminated" by the
behavior's brain, it returns a value that lets the calling AI behavior know that it should
cleanly exit. Likewise, if the food dies, it returns a code telling the behavior as much.
In addition, all the code that deals with the problems of distributing the process across
game turns has been packaged into a separate method. Structuring our code in this
way has a number of important advantages:

• AI is effectively a tree of conditional tests that ultimately resolve into actual diings
to do. These "actions" are the only pieces of code that need to be distributed across
game turns; hence, it makes sense to isolate them from die rest of the system.

• Since only actions need to suspend processing, only they need to do any testing
for termination. Keeping the suspension and termination code together keeps
things tidy and reduces the chances of forgetting to do one or die odier.

• Action functions can be put into the behavior base-class and reused between dif-
ferent behaviors.

Extensions

The system described here has been kept purposefully loose, as I have simply
attempted to give an idea of the elegant architecture that micro-threads can provide
for AI. Any number of favored AI tricks can be added, including:

• Giving each behavior a string name, which can be displayed for debugging pur-
poses.

• Allowing brains to be assembled using an external data scripting language, to
allow nonprogrammers to create and specialize entities. See Scott Bilas' excellent
gem in this book on the topic.

• Using the "message" system described in Game Programming Gems to allow AI
entities to enquire and send information about interesting events in the world
[RabinOO].

Conclusion
Micro-direads allow an enormous amount of flexibility for writing AI. Using this free-
dom properly, it is possible to create convincing, fast, lightweight, bug-free AI quickly
and easily. Particular advantages that this system has over other methods include:

• Behaviors are grouped intuitively into modules. They can be reused between dif-
ferent types of entities trivially by adding them to different brains.

• There is no arbitrary jumping around spaghetti links between states, common in
other state machine implementations. As such, when debugging, you can see the
entire conditional tree that led to a particular problem, without having to trace
through disparate states.

272 Section 3 Artificial Intelligence

• Programmers can code using their favored programming techniques, without
having to pander to a rigid architecture.

• Data specific to an entity and its behavior can be stored naturally between game
turns in the behavior class.

References
[Meyers96] Meyers, Scott, "Smart Pointers," More Effective C++, Addison Wesley,

1996.
[RabinOO] Rabin, Steve, "Designing a General Robust AI Engine," Game Program-

ming Gems, Charles River Media, 2000.

3.4

An Architecture for RTS
Command Queuing

Steve Rabin, Nintendo of America
steve rabin@hotmail.com

[eal-time strategy games have a unique method of user interaction. Using a
mouse, the player is able to assign multiple orders to individual units or groups

of units. This interaction has matured over the years, with each new RTS building
and improving on previous designs. One of the most evolved designs is a technique
called command queuing. This gem describes how this method of interaction works,
and how it can be directly woven into the underlying AI architecture.

RTS Commands

The basic user interface for an RTS game involves selecting units and commanding
them to do some task, such as attack an enemy or move to a particular spot. This is a
fairly simple concept that doesn't require any great AI architecture to implement.
However, it's important to first consider the range of simple commands that are avail-
able in most RTS games before discussing more complex combinations. The follow-
ing is a list of common RTS commands.

• Attack a creature or building
• Build a structure or weapon
• Move to a spot
• Patrol to a spot
• Collect a resource (food, raw material, energy)
• Research a skill
• Repair a unit or building
• Reclaim a unit (recycle dead unit's material/energy)
• Guard a unit or building (attack anyone who attacks it)
• Hold position (attack anything in range but don't move)
• Stop
• Self-destruct

273

274 Sections Artificial Intelligence

Command Queuing

While playing an RTS game, you spend much of your time telling units where to
move. Unfortunately, the pathfinding in most games isn't perfect and it often helps
when the player assists in planning paths by setting waypoints. Waypoints are simply
successive move commands that are queued up within a unit. The player queues up
the move commands by holding some special button (like the Shift key) while click-
ing on the ground for each waypoint.

Waypoint queuing was an important step that has opened the door for a more pow-
erful interface system. If you can queue waypoints, why not let the player queue any
combination of commands? In effect, you could tell a unit to attack a creature, repair a
wall, and then build a gun turret, all widiout waiting for any of the tasks to be com-
pleted. In addition, the player could decide, at a slighdy later time, to queue even more
commands onto the end of those. Generally, this idea is known as command queuing.

The trick is to think of every command as a task and to think of a unit's brain as
a queue of tasks. The unit will always process the task that's at the front of the queue.
Once that task is completed, it's destroyed and the next task is started. When there are
no more tasks to process, a unit should have a default idle task. Figure 3.4.1 is an
example of a unit's brain queue.

Figure 3.4.1 shows the result of queuing the commands attack, repair, and move.
It also shows that each task has data associated with it, such as what to attack or where
to move. New tasks to be queued are placed at the end of the list, but before the
default task. The default task must always be the last task and it never completes and
is never destroyed.

If the player commands a unit to do a new task without holding the "queuing"
button, all tasks are destroyed and the new task is put in the queue. Thus, queued
tasks can easily be replaced by a single, new command.

Brain Queue
(front of queue)

Current
active task enemy 24

j-v -s .J^- •: i .&*&?#.&£&&* •• -\ ' Ulill T-^
Queued

non-active
tasks

pos

. Insert additional
queued tasks here

Default task
—' 9

(never completes)

FIGURE 3.4.1 An AItask list in the form of a brain queue.

3.4 An Architecture for RTS Command Queuing 275

With this architecture, a common behavior is to allow the player to "see" the
command queue by selecting the unit and holding the "queuing" button. The on-
screen result is that arrows show where the unit is planning to go and what they
intend to do, such as build a structure. The elegant way to implement this is to let
each task draw its contribution onto the screen. This allows the player to quickly see
what's queued up in the unit and what additions might be appropriate.

This simple architecture is also blind to who put the commands in the queue.
Obviously, the player can put commands there, but the game can also preload com-
mands for a NPC (Non-Player Character) that might be patrolling or guarding a spot.
The AI can also make high-level decisions about which units to attack by simply
putting those commands in the queue. Even packets from over a network can be
allowed to place commands in a unit's queue. It's a very elegant system that allows a
lot of flexibility.

Cyclic Commands

Patrolling is a cyclic command that presents some interesting consequences for the
system described so far. When a player takes a unit and tells it to Patrol to a spot, the
unit will remember his original spot and then walk back and forth between the two,
indefinitely (or until an enemy is in sight). The player could also queue up several
Patrol waypoints and the unit would similarly cycle through the waypoints forever.
Figure 3.4.2 shows a three-point patrol that was initiated with two mouse clicks.

Original Character Position First Patrol Click

Second Patrol Click

FIGURE 3.4.2 Patrol path for a unit.

Queuing the First Patrol Point

The first Patrol click from a player actually ends up placing two patrol commands on
the queue. This is because the intent of the player is for the character to move to the
position of the mouse click, and then move back to his original spot, repeating the
cycle over and over again. Figure 3.4.3 shows the brain queue after just one Patrol
command was issued by the player.

Section 3 Artificial Intelligence

pos 1

FIGURE 3.4.3 The brain queue after a single Patrol command was issued.

Interestingly, a Patrol command is identical to a Move command, except that it
gets cycled to the back of the queue. Therefore, our queuing system will work per-
fectly if a simple "cyclic" flag is set within a Move task in order to make it a Patrol
task. When the Patrol task completes, rather than being destroyed (like a Move task),
it's put onto the back of the queue (but before the default task). Figure 3.4.4 shows
several iterations of the three-point patrol sequence from Figure 3.4.2.

train Queu<
nitial pos 1

liP" /S|i| ill I• . - :-".«..i^a:. ;• .: ._

isiilIgSflS iki;!
- . . : • - . '-:-i

X' •"„''>~.-Mc

ISEiel
".".:.-;':" . "v. 1

~;Sg«Hillr-.,;i»^.

ill

J E
) (P
^pos2

cyclic

pos 3
cyclic

_^pos 1
cyclic

lime —

train Queui
os 2 reache

'?'.:',:.^: ^^Bffe^

fliif|:

||i|i|i

s-SV.^
1
.".:-.

1
"

1
.
1
:?";?;^:^.;;

1

2 E

d) (p

_^pos 3
cyclic

r-Kpos l

cyclic

_^pos2
cyclic

*•

train Queue
os 3 reache*

K|i3v*fl

'iiiii:i

"^^IHftifr^-., . . v«^>.'-^>tef. . , ; • . • ; :

pos 1
cyclic

pos 2
cyclic

pos 3
cyclic

FIGURE 3.4.4 Three iterations of a patrol path.

Queuing Additional Commands

Some tricky issues arise when the player wants to queue extra commands when Patrol
tasks exist in the queue. While the following might be slightly subjective, experimen-
tally it's very close to what most players expect.

3.4 An Architecture for RTS Command Queuing 277

The first issue is where to put additional Patrol commands that are to be queued
up. The player who is adding these extra Patrol points will probably expect that
they're put after the first set of Patrol points (regardless of where the unit currently is
in the brain queue). This is an important point since the unit could be anywhere
along the patrol when the second set of Patrol commands are queued.

The solution is to mark the last Patrol command ever queued. This allows new
Patrol commands to get queued after it. Once new Patrol commands are added, the
"last" marker is moved. Figure 3.4.5 shows an example of three Patrol commands
being queued successively.

Brain Queue
(first Patrol click)

Brain Queue
(second Patrol click)

Brain Queue
(third Patrol click)

pos 2

pos 1
cyclic

pos 2
cyclic

pos 3
• cyclic
last

pos 1
cyclic

pos 2
cyclic

_^_iis~l pos 1
cyclic

FIGURE 3.4,5 Three Patrol commands being queued in order.

The second issue with queued Patrol commands involves queuing additional
non-Patrol commands. In general, the player expects the command to be executed
immediately after the current Patrol waypoint is achieved. This is tricky since the new
commands must be placed after the current Patrol command, if there is one, and after
any other noncyclic commands. Figure 3.4.6 shows a case of queuing several new
non-Patrol commands.

As shown, Patrol commands throw several wrenches into the command queuing
concept. The trick is to implement what the user expects to happen. The user will
typically have a model in his or her head of how the system will work. Uncovering
that model is not an easy task, but it will give you good insight into how to design the
interaction and behavior of the command queuing system.

However, dealing with the users' mental model is a two-way street. It's also
important to give the players immediate feedback, letting them know the result of

278 Section 3 Artificial Intelligence

Brain Queue
(Patrol Issued)

TV- a P<>s2
| Move !->• cyclic

3 last

Brain Queue
(Build Issued)

pos 2

Brain Queue
(Repair Issued)

house
pos (4, 7)

house
pos (4, 7)

unit 42

FIGURE 3.4.6 Queuing additional commands with Patrol tasks already queued.

their input and how it was interpreted. That way, if the users' model is incorrect or
flawed, they can quickly reconcile it with the correct model. A wonderful book that
discusses the subject of mental models is "The Design of Everyday Things" by Don-
ald Norman [Norman90].

Conclusion
Command queuing is now a standard power feature that no RTS game can do with-
out. By using the brain queue architecture to store tasks, many of the complexities of
a command queuing system go away. In addition, you can think of the brain queue as
a simple task list, or you can turn each task into its own neatly wrapped AI system
that knows how to accomplish its job. Either way, your players should be able to
queue up whatever they wish, and easily manage hundreds of units with this simple,
yet powerful interface.

References
[Norman90] Norman, Donald, A., The Design of Everyday Things, Currency/Double-

day, 1990.

3.5

A High-Performance Tile-
based Line-of-Sight and
Search System

Matt Pritchard, Ensemble Studios
mpritchard@ensemblestudios.com

In the realm of strategy games, the concepts of Line-of-Sight (LOS) and Fog-of-War
(FOW) for target identification and acquisition are often encountered. In tradi-

tional turn-based strategy games, using the brute-force approach of completely rebuild-
ing a player's explored and visible maps has generally proven to be adequate. However,
using the same approaches in a Real-Time Strategy (RTS) game quickly reveals perfor-
mance issues, especially as the size of the game world or number of units increases. Still,
many commercial RTS games, some very successful, have used this rebuild-all approach.
Unfortunately, they have to make performance compromises such as forgoing the FOW
altogether or not updating it every game turn, thus allowing inaccuracies to appear in
the display. This gem presents an efficient implementation of a player visibility system
for tile-based games that minimizes the performance impact, while providing support
for fast searching as well as other game features.

Overview

The first assumption is that internal to the program, sections of the game world area
are represented by small chunks or tiles, which correspond to a two-dimensional
array. Most real-time strategy games have rectangular game maps, but this implemen-
tation is easy to adapt to a hex-based world layout.

The goals of our player visibility system are as follows:

• The game's explored, visible, and fogged tiles must be fully accurate at all times.
• Units must be able to search very fast for other units or objects of interest, with

respect to FOW and visibility.
• The system must support up to 16 players at a time, allowing for arbitrary infor-

mation sharing between players.
• The system must scale well with respect to more units, larger maps, and larger

search radii.

279

280^ jSection 3 Artificial Intelligence

Definitions

Tile. The smallest discrete square- or hexagon-shaped portion of the game world.
World. The total area in which the game takes place; internally a 2D array of tiles,

also called the map.
Player. A human or computer entity who controls a population of units. Each

player has a unique set of visibility information.
Unit. Any game entity that is owned or controlled by a player. It does not have to be

movable.
Line-of-Sight (LOS). The area around a unit that is currently visible because of its

presence.
LOS Radius. The range of a units LOS area, measured in tiles.
Unexplored Tile. A tile that the player's units have never seen within their LOS.
Fogged Tile. A tile that has been explored but is not currently in the LOS of any of

the player's units.
Visible Tile. A tile that is currently in the LOS of one or more of the player's units.
Fog of War (FOW). The concept that if an explored tile is not currently in the LOS

of a player's unit, then the player can't see other players' units on that tile.

In an RTS, we assume that for each player, the map starts out unexplored. As tiles fall
into a unit's LOS, those tiles become explored for the player who owns that unit.
When an explored tile is no longer in a unit's LOS, the tile becomes fogged for that
player, yet will never revert to being unexplored. It's important to note that die tile
states of unexplored, explored, and fogged are unique for each player.

Component #1: Individual Player Visibility Maps

The first component of the player visibility system that needs to be implemented is a
visibility count map for each player in the game. This is a rather simple structure: a
2D byte array with a one-to-one correspondence to the tile layout. Each array element
contains a count of how many of the player's units can see that tile (in other words,
how many units' LOS contain that tile).

Updating the visibility map is simple. When a unit is first created or moved into
a new tile position, all of the visibility counts are incremented by one for the tiles in
the unit's line of sight. When the unit is deleted, destroyed, or moves off a tile, all of
the visibility counts are decremented by one for the tiles in the unit's LOS. The value
in each visibility map element is nonzero if the tile is visible to the player. However, it
is unclear if a zero value means an unexplored tile or a fogged tile. To solve this, we
designate zero to mean fogged, and -1, or 255 in byte storage, to mean unexplored.

Unfortunately, when an unexplored tile is incremented for the very first time, the
value will wrap to zero, which incorrectly means the tile is fogged. However, we can
catch this special case and ensure that an increment that results in zero gets incre-
mented again. This also provides a convenient place to add code for additional one-
time processing on the explored tile, such as adding it to a mini-map, recording its

3.5 A High-Performance Tile-based Line-of-Sight and Search System 281

type, or searching it for resources. Since most games do not ever revert a tile to unex-
plored, this special case will not appear in the decrement code. It's worth noting that
the storage element size—in this case, a byte—sets an upper limit to the number of
units that can see a specific tile at one time, which in this case is 254.

Component #2: LOS Templates

In most strategy games, a unit's LOS is defined as a circular area around the unit, with
the radius measured in the number of tiles. The simplest way to compute this shape,
which many games have done, is to take a radius-sized box of tiles around the unit's
position and see if the distance from each tile is less than the unit's LOS radius. How-
ever, from a performance standpoint, this is horribly inefficient. Given that this oper-
ation can be called a huge number of times each turn, this function begs for major
optimization.

One of the best ways to optimize this is to precompute the LOS area for each pos-
sible LOS radius that is used in the game. This shape information can then be stored
in a template structure with different templates used to represent different LOS radii.

The best implementation I have found is to store the LOS area as a series of hor-
izontal strips, with start, stop, and vertical displacements relative to the unit's posi-
tion, starting from the top and working down. The templates are processed
horizontally under the assumption that elements in that axis of the array are stored
linearly in memory, thus minimizing the number of cache accesses during processing.
For units at the edges, clipping the LOS template shape to the game map just requires
clamping the start and stop values in the outer loop. The following code shows a
function to add a unit's LOS template to the visibility count map.

// This routine "explores" the game map in an area around the
// specified unit position using a line of sight template
// The template span data is an array of structs with 3 offset elements:
// {vertical position, horizontal start, horizontal end}

void VisibilityMap::AddLOSTemplate(int XPosition, int YPosition,
LOSTemplate *template)
{

int n, x, y, xStart, xEnd; *

for (n = 0; n < template->number_of_vertical_lines; n++)
{

y = Yposition + template->SpanData[n].Yoffset;
if (y >= map_y_min_coord && y <= map_y_max_coord)
{
xStart = max(XPosition + template->lines[n].XStartOffset,

map_x_min_coord);
xEnd = min(XPosition + template->lines[n].XEndOffset,

map_x_max_coord);

for (x = xStart; x <= xEnd; x++)
{
if ((VisibleMap[y][x]++) == 0)

282 Section 3 Artificial Intelligence

ExploreTileForFisrtTimeHandler(x, y);
VisbleMap[y][x] = 1;

When a player's unit is removed from the game world, the game decrements the
visibility count of its LOS area. If none of the player's other units have the tile in their
LOS, it will be zero, indicating that the tile is no longer visible for the player, and is
now fogged.

When a unit moves from one tile to an adjacent tile, which is normally a very
common operation, it removes its LOS from the old position and adds it back in at
the new position. Since this pair of function calls will be often made in tandem from
the unit's movement code, another optimization is to combine the two operations
into a single function. This new function takes both the old and new positions and
only updates the portions of the player's visibility map where the increment and the
decrement do not overlap. Another situation is when a unit's LOS radius changes. In
that case, the remove LOS function is called with the old radius, followed by the add
LOS function with the new radius. Properly written, the optimized update function
should handle this case as well.

There are additional advantages to using LOS templates. The first is that differ-
ent shapes can be created for different-sized objects with the same LOS radius. While
a small game unit may occupy a single tile, larger units, such as immobile structures,
might occupy several adjacent tiles and possibly even be nonsquare, such as rectangu-
lar or elliptical. An LOS template that appears centered on a one-tile unit would
appear off center when used on the larger unit. Figure 3.5.1 shows a set of LOS tem-
plate shapes for two different-sized objects, both with a radius of three tiles.

Another advantage of using templates is that nonsymmetrical LOS shapes can be
made. Figure 3.5.2 shows an example of two rotations of a directional searchlight

Tiles occupied
by a unit

B:l

Visible tiles

Fogged or un-
explored tiles

FIGURE 3.5.1 LOS shapes with the same radius for units of different size.

3.5 A High-Performance Tile-based Line-of-Sight and Search System 283

Tiles occupied
by a unit

Visible tiles

Fogged or un-
explored tiles

FIGURE 3.5.2 Noncircular LOS areas with two rotations of a searchlight pattern.

shape. With a full set of rotated LOS templates, the searchlight unit could be easily
animated to sweep a full circle, producing a cool game effect with very little special-
ized programming.

Component #3: The Combined Visibility Map

So far, what's been implemented is more efficient, but it doesn't help with some of the
other goals. This next component, called the combined visibility map, will tie the other
structures together. This data structure will be accessed the most by the rest of the
game code and will provide a big boost to the searching functions.

Like the individual player maps, the combined visibility map is a 2D array, sized
the same as the tile grid. The difference is that there is only one combined visibility
map for the entire game, and its elements are 32-bit DWORDs instead of bytes.
Given its usage, it could be a good idea to make this globally available to the program.

The purpose of the combined visibility map is to contain all of the up-to-date vis-
ibility information in a single place for all of the players in the game. This is done by
using just 2 bits per element for each player. One bit is to indicate that a player has
explored the tile, and the other bit is used to indicate if the tile is currently visible to
the player. This gives room for 16 players' worth of data in each DWORD.

The organization of the individual bits in a combined visibility map element is
up to the user to implement. This should have no relevance on performance, as all
updates should consist of a single binary OR, AND, or XOR operation on the entire
32-bit element, using mask values precomputed for each player.

In practice, the combined visibility map is initialized to all tiles as unexplored and
fogged. It is then updated when any of the following events occurs for any player:

284 Sections Artificial Intelligence

• A tile is explored for the first time.
• A tile transitions from unexplored or fogged to visible.
• A tile transitions from visible to fogged.

During the display of the game world or other structure such as a radar map, each
player has a visibility mask value that contains the explored and visibility bits shifted
into the correct position for that player. As each tile location is traversed by the vari-
ous functions, the combined visibility map value for that location is ANDed with the
current player's visibility mask. The result gives the visibility and explored status of
that tile for the specified player, on which the code can then operate.

The first benefit of using the combined visibility map is that the player's visibility
masks can be combined. This allows for various game effects such as sharing lines-of-
sight and visibility with teammates, as well as spying on other players. The effects for
each player can be added or removed at any time by simply updating the player's visi-
bility mask and refreshing the display.

Improved Searching

The direct approach to searching involves looking at the occupants of each tile in the
searching unit's LOS area. As more units are added into the game, the number of
searches each turn increases. In addition, as the radius for each search increases, such
as with ranged units or LOS upgrades, the number of tiles searched rises very quickly.
For example, a single ranged attack unit with a search radius of 10 tiles would have an
area of about 350 tiles to be searched. Therefore, this direct approach results in a per-
formance drop proportional to the number of tiles scanned.

Probably the biggest benefit of using the combined visibility map comes with this
task of searching in a unit's LOS for enemy targets or other objects of interest. Rather
than search the individual tiles, it's better to keep a running list of the other player's
units in a given player's total combined LOS. This is where the combined visibility
map comes into play. Each unit in the game accesses the combined visibility map
entry for the tile it occupies. With this data, each unit knows which players can cur-
rently see that unit. By saving this information from the previous turn, a unit knows
when it moves into and out of the LOS of every other player in the game, even if it is
not moving. In addition, when a change occurs, the unit can add or remove itself
from a list of units visible to the other player. The update overhead is only a single
DWORD check per unit per turn, except for when the unit has actually transitioned
in or out of another player's combined line-of-sight.

The list that the units add and remove themselves from can then be broken down
further depending on what the unit represents to the player (for example, teammate,
combat unit, infrastructure, etc.) The result is that each player will have a series of
very small lists, often even empty, containing pointers to other players' units that are
currently in the player's total LOS.

Once the lists are maintained, there is no longer a need to search large numbers of
tiles, most of which probably won't contain possible targets. Instead, searching

3.5 A High-Performance Tile-based Line-of-Sight and Search System 285

becomes a process of scanning a far smaller list that contains only possible targets.
The search code can be simplified and the lists will cache better. The performance
improvement can be an order of magnitude better, especially in situations that involve
many long-range units.

The following code shows how a unit's update would process the changes in LOS
visibility. This code determines for which players its visibility status has changed, and
subsequently how to change them.

void GameUnit: :TurnllpdateProcess(. . .)
{

// Game specific unit processing code...

// Now we check to see if we've gone in or out of anyone's LOS
DWORD CurrentlyVisibleTo =

CombinedVisibilityMap[Yposition] [Xposition] ;

if (CurrentlyVisibleTo != LastVisibleToValue)
{

// Get only the bits that have changed
DWORD VisibilityChanges = CurrentlyVisibleTo A

LastVisibleToValue ;
LastVisibleToValue = CurrentlyVisibleTo; // Save new value

for (int playerNo = 0; player-No < theGame->numOfPlayers;
playerNo++)

{
DWORD PlayerMask = 0x0001 « playerNo; // bit mask for
player

// Check to see if our visibility for this player has
changed

if ((VisibilityChanges & PlayerMask) != 0)
{

if ((CurrentlyVisibleTo & PlayerMask) != 0)
AddUnitToPlayersVisibleList (playerNo , self) ;

else
RemoveUnitFromPlayersVisibleList (playerNo , self) ;

// Continue with game processing
}

Another benefit of this method is that the searches will respect the player's total
visibility and don't need to be restricted in range to the unit's LOS radius. As illus-
trated in Figure 3.5.3, each of the player's units at the bottom performs a target search
with a search radius greater than its own LOS radius and finds the enemy units visible
to the player on the upper-left side. However, they also failed to find the two enemy
units in the upper right because they are on tiles that are currently fogged to the
player. By respecting the combined LOS and using a search radius not tied to their
LOS radius, more intelligent and humanlike AI decisions can be made.

286 Section 3 Artificial Intelligence

Visible tiles

Fogged or un-
explored tiles

Tiles occupied
by a Player's unit

Tiles with player's
. units searching
for enemies

Tiles with enemy
units on them

Figure 3.5.3 Demonstration of which enemy units can be seen by the player. By
respecting the total LOS, the searching units will only see the enemy units on the left, even
though the units in the FOWare closer.

The same processing code can be used for large units that occupy more than one die in
the game world. The only difference is that the current visibility value is made by
ORing together the combined visibility map values for each tile occupied, instead of
taken from a single tile's value. This also makes it easy to do things like revealing the
entire map area occupied by the unit, even if the player's LOS only falls on a corner of it.

Mirages are another game capability that the combined visibility map makes easy
to implement. Mirages are ghost representations of units that appear visually in
another player's fogged area, representing what that player last saw when he or she
explored the area. Units that can generate mirages do so when they have transitioned
out of another player's LOS. Also, the mirages know to remove themselves from the
game when they detect that they are again fully visible to the other player, by check-
ing the combined visibility map values.

Conclusion

It never hurts to rethink a situation, even when it appears simple and straightforward.
The development of this approach was the result of asking "why" and seeing how
seemingly unrelated systems could lend each other a hand. The greatly improved
searching capability is made possible because of the presence of the combined visibil-
ity map. This only works because the individual player visibility maps are always kept
up to date, every game tick. Therefore, while the individual systems do their specific
jobs, when joined together, more capabilities are exposed and greater optimizations
are achievable.

3.6

Influence Mapping

Paul Tozour
gehn29@yahoo.com

We consider a game AI agent to be "intelligent" if it consistently makes decisions
that we consider appropriate in a given context. Thus, we can say that the core

of intelligent game AI is decision-making.
Everyday experience teaches that the key to effective decision-making is not

merely having the best data, but presenting the data in the right way. Raw data is use-
less until converted to contextual information. An appropriate representation of the
data will force the relevant underlying patterns to reveal themselves.

This and the subsequent gem on strategic assessment present techniques for giv-
ing AI agents a well-informed tactical and strategic perspective on the character of the
game world and the current game state. We also discuss techniques relevant to differ-
ent game genres and virtual environments.

Influence Maps

Influence mapping is an invaluable and proven game AI technique for performing
tactical assessment. Influence maps have been used most often in strategy games, but
are also useful for many other types of games that require an aspect of tactical analy-
sis. The general concepts of influence mapping are an essential part of any AI devel-
oper's toolkit.

An influence map is a spatial representation of an AI agent's knowledge about the
world. It allows a computer player to develop a tactical perspective of the current
game state layered on top of the underlying physical/geographical representation of
the game environment. An influence map indicates where a computer player's forces
are deployed, where the enemy is located or is most likely to be found, where the
"frontier" between players lies, what areas remain to be explored, where significant
battles have occurred, and where its enemies are most likely to attack it in the future.
The structure of the influence map also makes it possible to make intelligent infer-
ences about the characteristics of different locations in the environment. Influence
maps can pick out areas of high strategic control, pinpoint weak spots in an oppo-
nent's defenses, identify prime "camping" locations or strategically vulnerable areas,
find choke points on the terrain, and identify other meaningful features that human
players would choose through intuition or practice.

287

288 Section 3 Artificial Intelligence

There is no single, standard algorithm for creating influence maps, nor any single
way to apply the technique. This gem describes several of the more popular influence
mapping concepts, but it is only a starting point. The way you construct and employ
influence maps will depend heavily on the specific strategic and tactical needs of your
particular game and the design of the game world that your AI agents inhabit.

A Simple Influence Map

An influence map can operate in almost any type of game world topography—a
square grid, a hexagonal grid, or a fully 3D environment. For the sake of simplicity,
most of this gem assumes a 2D grid, which is applicable to most strategy games. The
final section of this gem discusses applications in more complex environments.

We begin with a set of square cells superimposed on our game world. All the cells
are initialized with a value of zero. For each cell, we add a certain type of "influence"
we wish to consider. For the sake of this example, we'll compute an estimate for "com-
bat effectiveness." We'll add a positive value for each friendly unit, and a negative
value for each enemy unit.

The specific value we add or subtract will be an estimate of the unit's combat
effectiveness. For the moment, we'll assume that each unit has an effectiveness rating
of 1, as shown in Figure 3.6.1.

The next step is to spread the influence of each cell to nearby cells. For now, let's
assume that we propagate each cell's influence such that each time the influence is
spread to a neighboring cell, it is diminished by 50 percent. Therefore, a value of 4
would add two points to each adjacent cell, one point to each cell two squares away,
then 1/2, and so on.

Figure 3.6.2a shows how the influence of our two bugs spreads across the influ-
ence map. The influence of our two opponents—the sinister and nefarious agents of

-1

-1

FIGURE 3.6.1 Initial influences.

3.6 Influence Mapping 289

the dreaded Ford Motor Company—will propagate in a similar way (not shown), but
their influence values will be negative because we hate them.

When we combine the influences of all the cars and bugs, we end up with Figure
3.6.2b. It should be immediately clear that this gives us an excellent sense of where
each player wields influence. Darker cells belong to us; lighter cells belong to our
opponent. More importantly, we can now trace a contour for the "frontier" between
friendly and hostile assets. The frontier is defined as any part of the grid where two
adjacent cells shift between negative and non-negative values. This is shown as an out-
lined white line in Figure 3.6.2b.

+0.7

+1

+0.7

+0.35

+1

+2^

*
+1

+0.5

+0.7

+1

+0.7

+0.35

+0.35

+0.5

+0.35

+0.24

FIGURE 3.6.2 A) Influence propagation. B) The final influence map.

We can use this frontier to determine where to place our forces for offense or
defense. By weighting the enemy's forces more heavily than our own (using a multi-
plier greater than one), we can pull the frontier closer to our own forces for a more
defensive posture. If we weight our own forces more heavily, we push the frontier for-
ward and develop toward a more aggressive posture.

Influence Map Cell Data

The preceding example is clearly trivial. An influence map in a real game is consider-
ably more sophisticated. Rather than simply containing a number, each of the influ-
ence map's "cells" is a repository for some amount of data about the game world. Each
cell is, in effect, a miniature database of relevant data for all the units and resources
that occupy that cell. Following are examples of some of the types of statistics that a
cell will typically contain.

290 Section 3 Artificial Intelligence

• Combat strength. This is the estimated combat effectiveness of the units cur-
rently in the cell. This should take into account factors such as attack/defense
strength, current health or hit points, attack range, rate of fire, and so on. It may
also be advisable to break units into categories in a manner appropriate to the
design of your particular game; for example, to account for the relative strengths
of ranged versus melee, infantry versus cavalry, or flying versus land-based versus
aquatic units.

• Vulnerable assets. This is an estimate of the value of a player's current assets in
the cell, such as a part of a village or military base in a typical strategy game.

• Area visibility. This is a number indicating how long the area has been visible or
invisible to the player.

• Body count. Indicates how many units have died in the cell in the past, and
when.

• Resources. The total resources still available for exploitation—gold, lumber, etc.
• Passability. An estimate of the difficulty of moving through the cell, possibly

broken down by movement type (flying, walking, tracked, etc.) This value is
used to more accurately propagate a cell's influence to neighboring cells, and can
factor into the cell's desirability for a given decision. A good variant is to sepa-
rately store eight passability values, one for each of the directions exiting the cell.

An influence map will typically track these variables for each player in die game
separately. Think of this as maintaining multiple parallel influence maps: each player
updates an influence map for its own assets, plus an additional influence map to repre-
sent its own knowledge of every other player. This is useful as it allows you to distin-
guish the particular strengths and weaknesses of specific opponents, or to blend any set
of friendly or enemy influences together as desired. Be warned, however, that perfor-
mance can quickly get out of hand with more than three or four competing AI players.

Of course, you could also just keep a single influence map for everyone, and let
every AI player access it. In a game with any kind of hidden map or fog-of-war
(FOW), this constitutes "cheating," and it could produce suboptimal behaviors in
some situations.

Computing Desirability Values

Rather than using the basic statistics for each cell directly as a basis for decision-
making, it's more useful to combine them into a "desirability value." This is a com-
puted value which estimates the cell's "value" with regard to a certain decision. By
comparing the desirability values of different cells, we can construct a ranking of
which cells appear to be "better" for the task than others.

The most useful formula for desirability is often a simple weighted sum. Pick the
variables from each cell that you consider relevant for the decision at hand, multiply
each by a coefficient that roughly indicates that factor's relative utility in making the
decision, and add the resulting values to determine desirability.

3.6 Influence Mapping 291

The specific parameters you select to calculate different desirability values will
depend strongly on the particular needs of your game and the unique characteristics
of your game design. The choice of appropriate coefficients is also subjective and is
best achieved through careful tweaking and tuning. Simulated annealing or competi-
tive evolutionary approaches are feasible, but probably not desirable. Be forewarned
that you will also need to compensate for the different units of measurement that you
use for statistics such as unit health/hit points, rate of fire, attack strength, and so on.

A short list of sample desirability values follows.

• Attack and defense desirability. We can typically compute a single "vulnerabil-
ity" score to represent defense and attack capabilities for this player and his ene-
mies, respectively. A high vulnerability score for an enemy means we can damage
the assets in that area easily, so we should consider attacking the enemy in that
cell; a high vulnerability score for this AI player means that we have significant
assets in the cell that are susceptible to attack, and we should defend them more
carefully.

Vulnerable areas are typically those with many assets and key resources but
minimal opposing military units nearby. Therefore, if an enemy player has a value
of 80 for "assets" in a given cell (representing its base buildings and resources) and
an enemy offensive value of 60 (representing the enemy forces that could poten-
tially defend it), the final "vulnerability" rating is 20.

• Exploration. For strategy games that use a hidden map or FOW, a good AI
player will dispatch scouts on a regular basis to refresh its view of the battlefield.
A good heuristic for exploration is to rank the influence map cells that have gone
unseen the longest as the most desirable for exploration. Other good factors in
this decision are the enemy influence in a cell and the area's estimated passability
(so your scouts can escape if attacked).

• Defensive asset placement. Immobile defensive assets should be placed in areas
close to lots of vulnerable assets. They should be in areas vulnerable enough to be
worth defending, but not so vulnerable that they can't be constructed.

Choke points are also good spots for defensive assets. Terrain choke points can
be easily identified on die influence map using precomputed passability values;
choke points will be high-passability influence map cells that connect other high-
passability areas but are surrounded by low-passability cells.

• Resource-collection asset placement. Assets that serve as resource collection
points (Town Centers) are typically most effective in easily defensible areas that
are as close as possible to the largest amounts of exploitable resources.

• Unit-producing asset placement. Unit-producing assets (such as a Barracks)
should typically be placed in defensible areas closest to enemy forces.

• Vulnerable asset placement. Assets that need to be protected should be placed in
the most defensible areas, and the farthest from potential threats. It's also usually
a good idea to place such assets in less accessible areas to shield them from attack.
For flat, rectangular game worlds, it's also often a good idea to consider that map

292 Sections Artificial Intelligence

corners have fewer avenues of approach and so are often less vulnerable, so you
can weight the desirability values higher at the sides and corners of the map.

Determining Optimal Cell Size

The size of the influence map cells is somewhat arbitrary. It's a trade-off between accu-
racy and efficiency. With cells that are too large, your influence maps will have a dif-
ficult time identifying small features, such as terrain choke points or weak spots in
enemy defenses. If the cells are too small, things will get out of hand fast; you'll end
up doing a lot of redundant computation and possibly using a lot of memory as well.

In practice, it's usually best to make the cells fairly large. Avoid the temptation to
assume that smaller cells will make the AI smarter. For a typical strategy game, I rec-
ommend (as a starting point) making each cell large enough to fit 10—20 of your
game's standard "units" side by side along the width or height of the cell, and carefully
tune the cell size from there to obtain the best results in gameplay.

Some readers may note that the arbitrary positioning of the cells over the map
could be problematic. A unit straddling two neighboring influence map cells will have
a different effect depending on which of the two cells receives its influence. This will
usually not be an issue due to the "influence propagation" described in the next sec-
tion. However, a good way to handle the problem is to modulate the (X, Y) world-
space offset of the entire influence map on a regular basis (perhaps each time you
recalculate the influence map), using either a random or periodic offset. This is akin
to a fishing net floating on the ocean that is washed back and forth by the waves.

Influence Propagation

Once you have calculated an initial value for each cell of the influence map, the next
step is to propagate the value of each cell to some number of nearby cells, as in the
earlier example. This process is also referred to as smoothing or blurring as it has a lot
in common with standard 2D image blurring techniques (see [EvansOl]).

Influence propagation gives us a much more accurate picture of the current tacti-
cal situation. We don't care only about where units are and what they're doing; we care
about what they might do—what areas they potentially "influence." If we have a pair
of Archers in the field flanked by large battalions of Plasma Tanks on either side, we
want our AI to perceive that the area the Archers occupy is really "owned" by the
enemy. We need to propagate the Tanks' influence to the cell the Archers occupy.

Propagation is just a matter of spreading the influence of each cell to neighboring
cells using a "falloff rule" that determines how the influence of a given cell decreases
with distance as it spreads across the map. The selection of a particular falloff rule is
subjective and there is no single accepted technique—-as always, you will need to
tweak and tune for optimal results. I typically find exponential falloff the most useful:
pick a falloff constant between 0 and 1 (typically 0.6 < n < 0.8), and each time you
spread influence to a neighboring cell, use this constant as a multiplier. Given a falloff
constant of 0.75 (=75%), a neighboring cell will have 0.75 = 75% of the original

3.6 Influence Mapping 293

value. A cell two squares away will have (0.75)2 ~ 0.56 = 56% of the original value, a
cell three squares away will have (0.75)3 ~ 0.42 = 42%, and so on. The falloff constant
should be proportional to the cell size: smaller influence map cells require a larger
falloff value to spread the influence the same distance.

Other useful falloff rules include linear falloff (in which a cell's influence
decreases by a constant value each time it spreads to a neighboring cell) and Gaussian
filters (see [EvansOl]).

Note that if you use floating-point numbers, your propagated influence values
will never actually reach zero regardless of how far you spread them. This means that
each cell will end up spreading its influence to every other cell in the entire influence
map. The literature consistently refers to this phenomenon as "a bad thing." The sim-
plest solution is to terminate propagation at a certain minimum influence value (usu-
ally a value beneath which the smoothed influence would be too tiny to make a
difference anyway). This cutoff constant is best determined by experimentation.

Note, however, that it's usually a good idea to spread a cell's influence a fair dis-
tance. If your influence map consists of many small cells and the cells' influence is not
propagated very far, you will likely end up with a lot of empty space (in other words,
a lot of zeroes) in the influence map, and it will be difficult to determine exactly where
the frontier lies. Use big cells, and spread their influence a good distance.

There is also an interesting alternative influence propagation technique based on
quadtrees. All cells' values are passed up the quadtree to each higher layer, so higher-
level quadtree cells can be used to obtain approximate "smoothed" values for their
child cells. Unfortunately, this approach spreads cells' influence in a somewhat arbi-
trary fashion. The distance that a cell's influence is propagated is tightly bound to the
structure of the quadtree, and influence might be propagated far more in some direc-
tions than others. I find this technique less flexible and often less accurate than the
propagation technique described earlier.

Accounting for Terrain

The propagation technique described here does not necessarily paint an accurate pic-
ture in all situations. Imagine that a powerful enemy wizard has a fortress on one side
of a mountain range. The propagation technique will spread the influence of the
fortress over the mountains even if the wizard has no way to attack us over the moun-
tains, and cannot navigate any of his units over or around them.

There are several ways to account for the impact of terrain on the influence map.
Probably the simplest is to use a precomputed passability value for each cell and use
this as a multiplier for falloff values, as shown in Figure 3.6.3. Each cell contains
either a single passability estimate or a set of four or eight passability values in the car-
dinal directions exiting the cell. We then spread the influence from the cell in a man-
ner similar to a breadth-first search or the flood-fill algorithm. Although Figure 3.6.3
does not show it, this can also handle cells where influence is merely diminished and
not blocked entirely.

294 Section 3 Artificial Intelligence

FIGURE 3.6.3 Spreading around terrain.

A second technique involves precomputing all possible paths between nearby
neighbors (Figure 3.6.4). For each cell, we perform a pathfinding step during map
preprocessing that determines the shortest path from that cell to all neighbor cells up
to a maximum path distance away. We can then store the computed distance to each
target cell and use this as the actual "distance" to the neighboring cell when perform-
ing the propagation step. We consider a cell to be unavailable for influence propaga-
tion if no path exists.

FIGURE 3.6.4 Precomputedpropagation.

3.6 Influence Mapping 295

The advantage of this technique is that it provides very accurate influence propa-
gation. If there is an easy way to navigate around the mountain range, such as a pass
through the center of the mountains, the influence map propagation will accurately
reflect the fact that the mountains are not a significant tactical obstacle.

Unfortunately, this technique is difficult to apply to dynamic environments. If
your game world allows players to build extended walls or to block off mountain
passes, the precomputed propagation values no longer reflect reality, and it may be
very difficult to update your influence map in real time. This method can also poten-
tially require a lot of preprocessing time, as it requires us to perform pathfinding from
each cell in the influence map to potentially dozens or hundreds of other cells.

Special Considerations

Terrain will have different effects on different units. Flying units will not be stopped
by mountains, and seafaring units will spread their influence over water but not over
land. Therefore, it's important that each influence map cell track such different unit
types separately (for example, track "flying" vs. "nonflying" assets in each cell), and
propagate their values differently according to the terrain type.

Quite often, certain units will have very long firing ranges, and if a unit can fire a
certain distance, then it can also fire that distance from any point to which it can move.
A good way to account for this is for each influence map cell to separately track ranged-
fire units according to the distance they can fire (possibly categorized as multiples of
the width of an influence map cell). After spreading the influence for these ranged dis-
tance categories using propagation, we then spread the influence an extra TV cells from
each influenced cell without diminishing the value. This way, we can account for a bat-
tleship's ability to strike far into the shore, even though it can't go on land.

You may also find it useful to add mobile units to the map based on their pro-
jected future positions rather than their current positions. This makes the influence
map a bit more accurate, particularly if you don't recalculate the influence map very
often. The simplest approach is dead reckoning—estimate each unit's position per-
haps 5—10 seconds from now based on its velocity vector. Since you're presumably
writing the AI, you might also simply look up each unit's future position if the unit is
performing pathfinding (although of course this may constitute cheating if an AI
player looks at other players' chosen routes).

Refreshing the Influence Map

If your AI needs to analyze large portions of the influence map on a regular basis, it
may make sense to recompute the entire influence map on a regular basis, perhaps
every 1-10 seconds. Considering the pace of a typical strategy game, a faster refresh
rate will probably not produce a more effective AI. Once the influence map is com-
puted, you can then use it to perform many calculations extremely quickly.

A second approach is demand-based refreshing, a sort of lazy evaluation technique.
This is a more flexible approach, and is more efficient when you need to perform less

296 Section 3 Artificial Intelligence

extensive influence map analysis. With this variant, you compute the values in a given
cell only when the cell is actually queried, searching all the neighboring cells within a
given maximum distance to see how their values propagate back to the original cell.
This technique has the added advantage that you can specify the propagation parame-
ters and desirability value coefficients at query time.

Influence Maps in 3D Environments

This gem has focused thus far on applications in 2D environments. However, influ-
ence mapping and related approaches are also broadly applicable to more complex
environments such as the 3D environments of typical action games.

Using a 2D grid for 3D influence mapping is usually a bad idea, as it will not
accurately reflect the topography of our game environment. Fortunately, AI pathfmd-
ing in 3D environments is usually (though, alas, not always!) based on a navigation
mesh approach (see [SnookOO]). A navigation mesh consists of a graph of intercon-
nected convex polygons that describe where characters can move in the game world.
We can use each polygon of the navigation mesh as an influence map cell. The links
between polygons can describe the avenues for influence propagation. Influence
decreases according to the length "traveled" along each mesh node.

Because 3D game worlds are more topographically complex than 2D worlds and
the emphasis is usually on individual combatants, terrain assessment is typically more
important than the real-time player-versus-player tactical assessment that an influence
map can provide. It's critical that our AI agents can pick out the tactical significance of
different areas. The following list explains some of these tactical assessment factors.

• Vulnerability ("cover"). 3D action games typically involve firing powerful
weapons over large distances, so it's critical to take into account the range of pos-
sible fire locations to and from each cell of the influence map. AI agents often
need to determine the degree of "cover" in a given cell. A simple approach is to
calculate an estimate for the degree of cover for each of the six faces of a cube pro-
jected from each influence map node.

However, we often want to know whether a given cell (potential destination)
can shoot or be shot from another cell (enemy position). A good line-of-fire rep-
resentation would list the set of nodes that are "attackable" from any given
node—but this could quickly get out of hand for large and highly interconnected
environments that approach an N2 degree of interconnectivity. A good solution is
to package groups, of influence map nodes into "zones," such that all nodes in a
given zone are in the same "room" or "portal," and use this representation to
determine which zones are potentially vulnerable from other zones.

• Visibility. This is similar to vulnerability, except that it disregards weapon dis-
tances, takes illumination levels into account, and can pass through certain sur-
faces that weapons fire cannot, such as reinforced glass. This calculation becomes
tricky when dynamic lighting is used, and lights can be turned on and off.

3.6 Influence Mapping 297

• Passability. As before, this is an estimate of the difficulty of moving through an
area. Tight passages are usually more difficult to move through, and elevators, lad-
ders, and odier such routes cause slow movement and thus have low passability.

• Height advantage. Locations with a high elevation relative to surrounding loca-
tions are usually tactically superior for both offense and defense, particularly if
the game features hand grenades.

These are the basic precalculated statistics in our influence map cells. We can now
whip out a few coefficients and compute desirability values.

The best locations for offense are typically those with high passability, high cover,
and low visibility, but which also have a good line-of-fire to many areas of high visi-
bility (and, ideally, low passability). Good offensive locations also usually have good
cover locations nearby in case the agent comes under fire.

The best defensive locations are those with the highest cover and lowest visibility,
and for which all the potential attacking locations have high visibility.

More to the point, if we precalculate these desirability values for all the nodes, we
then can propagate these values to their neighbors using our standard influence map-
ping techniques and end up with a complete tactical assessment of the level.

Finally, note that we can also use the influence map to make inferences about our
opponents—we can determine their respective levels of cover, visibility, passability,
and height advantage. We can use this to select the best opponent to attack at any
given moment, or to search for a destination that has an advantage over any or all of
our opponents.

Another useful extension is to estimate opponents' most likely positions in the
near future by finding the most desirable destinations available to them. This will
allow us to prepare for our enemies' actions, and have the ambush already prepared.

References and Additional Reading

[comp.ai.games95] The seminal 1995 "influence mapping" thread on comp.ai.games
(various authors) is reprinted at www.gameai.com/influ.thread.html.

[EvansOl] Evans, Alex. "Four Tricks for Fast Blurring in Software and Hardware,"
available online at www.gamasutra.com/features/20010209/evans_01.htm.

[PottingerOO] Pottinger, Dave. "Terrain Analysis in Realtime Strategy Games," avail-
able online at www.gdconf.com/archives/proceedings/2000/pottinger.doc.

[SnookOO] Snook, Greg. "Simplified 3D Movement and Pathfinding Using Naviga-
tion Meshes" from Game Programming Gems I (Ed. Mark DeLoura, Charles River
Media, 2000).

[SterrenOl] van der Sterren, William. "Terrain Reasoning for 3D Action Games."
[Zobrist69] Zobrist, Albert L. "A Model of Visual Organization for the Game of Go."

The seminal article on influence mapping. Proc. AFIPS 1969 Spring Joint Com-
puter Conf. 34: pp. 103-112.

3.7

Strategic Assessment
Techniques

Paul Tozour
gehn29@yahoo.com

This gem describes a suite of useful techniques for strategic decision-making.
Where the previous gem on influence mapping provided a means for tactical

assessment on a geographical level, these data structures provide an AI agent or player
with a means of assessing the current game state on a strategic and functional level.

These techniques are most clearly applicable to games that involve some aspect of
economic management, resource-allocation decisions, and/or technological advance-
ment, such as strategy games, economic simulations, and "god games." However,
there are doubtless many potential applications to other genres as well.

The Resource Allocation Tree

The resource allocation tree is a tree structure that represents the specific functional
purpose of all the assets under a player's control. The tree breaks down all of the units
and resources currently in play into a hierarchy of functional categories.

The usefulness of this representation derives from its ability to allow an AI player
to evaluate the strategic strengths and weaknesses of all of the players in the game,
itself included. The tree also provides an excellent basis for a wide variety of economic
production and resource-allocation decisions. For example, it provides an immediate
basis for determining what types of new units to produce and how to reallocate exist-
ing units into different functional roles.

At the top of the tree is a root node that represents a player's total assets. Directly
beneath the root is a breakdown of the major different categories of assets available in
the game.

Let's imagine we break this down into Military, Economic, and Intelligence. Each
of these is broken down further into subcategories. Military might be broken down
into Offense and Defense, for example, and each of these could be broken down into
Ballistic, Ranged, and Melee to indicate different functional roles for military units.
Economic would likely be broken down into Resource Gathering, Unit Production,
Base Construction, Tech Advancement, and so on down the tree. Figure 3.7.1 illus-
trates a small slice of the resource allocation tree.

298

3.7 Strategic Assessment Techniques 299

(...) (...)

(...)

FIGURE 3.7.1 The resource allocation tree.

The leaves of the tree are the specific types of units available. For example, "Pike-
men" sits in Root/Military/Offense/Melee/Pikemen. The Pikemen node itself would
likely include various statistics on all the Pikemen we've dedicated to an offensive
capacity, such as the total quantity, total hit points, total number of Pikemen killed in
combat, and so on.

Just as with an influence map, an AI player should maintain a separate instance of
this data structure for each player in the game, including itself. The graphs for the

300 Section 3 Artificial Intelligence

other players will represent this player's current knowledge and best estimates of the
functional breakdown of each player's current strategic assets.

A Pikeman is primarily a defensive unit, but it could also be used for attack or
exploration. This raises the question of how to categorize a single species of unit that
can participate in multiple functional roles.

An AI player will typically dedicate a given unit to only one functional role at any
given moment, so I recommend categorizing units in terms of their current functional
employment rather than attempting to split a single Pikeman into, say, 10% Explo-
ration, 60% Defense, and 30% Offense. The Pikeman nodes beneath Offense,
Defense, and Exploration should represent the Pikemen that are currently allocated to
each of those functional roles.

It's also important to note that at any given moment, the resource allocation tree
contains only those assets that I actually possess or am currently capable of producing.
If I have no Mage Towers and can't currently build one, there is no reason to include
it as a node in the tree.

Calculating Desired Allocation

The structure of the resource allocation tree provides us with a very simple and nat-
ural means for determining appropriate resource allocation. We can rank the intended
priority of each node in the tree by proceeding down the graph from the root.

Begin with a value of 1.0 at the root, indicating a desired 100% resource alloca-
tion. At each node, we split the current value into an appropriate fraction of the
desired allocation for each child node. Starting from 1.0, we break this value down
into Military = 0.3, Intelligence = 0.1, and Economic = 0.6. Under "Military," we
break this 0.3 down further into 67% Defense and 33% Offense (Defense = 0.2 and
Offense = 0.1). This process continues down the tree so that we calculate a "desired
allocation" value for each tree node.

The algorithm for determining the numeric breakdown at each node will depend
on the design of your game. Each nonleaf node will require custom logic code to con-
tinuously update the distribution to its child nodes in response to the evolving state of
the game world. This is a matter of tweaking and tuning to achieve optimal results.
Initially it's often a good idea to simply take a few guesses and use predetermined con-
stants until you get a good sense of what specific factors should cause the computer
player to change these weights as a given game session unfolds.

Determining Current Allocation
«m:::.:~: :::-::-:-::--::™::::'::~:̂ :̂ :::-:~;::-::Tr::":::v::":-::'::":::̂ ::-:--:':̂ ^

Simultaneously, we can use the tree to calculate a "current allocation" value for each
node. This gives us a breakdown of the assets we actually possess.

This calculation proceeds in the opposite direction, from the bottom of the tree
up to the root. We iterate over all the Pikemen currently allocated to Defense, for
example, and calculate some value indicating every defensive Pikeman's estimated

3.7 Strategic Assessment Techniques 301

value (say, by multiplying an attack strength value for Pikemen by that specific Pike-
man's current hit points). We then add all these Pikemen's scores together and mark
this as the current allocation value of the Pikeman node beneath Defense/Melee. We
then pass this number up to the parent node (Melee), which adds together all of
the numbers it receives from its children (such as all the Spearmen and Footmen we've
allocated to Defense) and forwards this number up to its parent (in this case,
Defense). Ultimately, the root node receives input from all of its children, and we end
up with a fat floating-point number at the root that indicates the total current assets
of all our possessions in the game world.

Once we've generated this value for "total assets," we can renormalize to values
between 0 and 1. Revisit each node in the tree and divide its "current allocation" value
by the root node's value, so that the root node again has a value of 1.0.

At this point, it should be obvious that we can directly compare the current allo-
cation value in each tree node to the desired allocation value to trivially determine how
far we are over or under budget in any particular capacity.

Strategic Decision-Making

It should be apparent that the final allocation tree representation instantly provides us
with an excellent way of organically maintaining the balance of our forces. If I'm in a
battle and I lose all 20 of my Elephants, the Elephant node and all its parent nodes are
now under-allocated relative to their desired allocation.

Of course, this won't necessarily mean that I replace all my Elephants with new
Elephants. As the parent node of Elephant receives the resources it needs to fill in new
child nodes, it may decide that the best course of action is to build a battalion of
Plasma Tanks now that it's uncovered the requisite technologies.

The resource allocation tree is useful primarily for deciding which new units to
construct and how to allocate existing units to the most appropriate roles. The first
priority is usually to find those nodes that are most desperately in need of additional
allocation, and then determine whether this is more appropriately addressed by real-
locating existing units or by creating new ones.

The resource allocation tree also gives us a good way to design unique player per-
sonalities. Developing an expansionist, military-oriented "Genghis Khan," an eco-
nomically obsessive capitalist, or a research-oriented technocrat is just a matter of
tweaking the coefficients for the appropriate parts of the tree to favor or disfavor spe-
cific nodes. With a little tweaking at different parts of the tree, AI players can be made
to favor individual species of units, different balances of growth versus defense, spe-
cific strategic categories of assets, or overall play styles.

Where combat is concerned, it's often a good idea to keep a precomputed "com-
bat balancing table" of relative unit strengths, and use this for making decisions under
the Military branch of the tree. This is essentially a 2D lookup table that allows you
to determine the general effectiveness of any unit in combat against any other. By ana-

302 Sections Artificial Intelligence

lyzing the functional asset tree that represents your knowledge of a particular enemy,
you can determine the composition of his forces and emphasize the production of the
assets that will be most effective against them.

Finally, the resource allocation tree is an excellent place to store all types of addi-
tional statistics. Several of the factors we would typically track in an influence map
cell are also appropriate to a functional asset tree node.

It's also often a good idea to track which nodes in the tree have proven effective in
the past, and which nodes have been attacked by enemy players. In die former case, it
would allow me to detect that my Pikemen have served me well against another
player, and to use this to direct my growth and development toward the functional
roles that made my Pikemen victorious. In the latter case, it will allow me to detect
that my enemy has a proclivity for attacking my resource-gathering units (for exam-
ple), and to take additional steps to protect them in the future.

Measuring Value

Probably the most significant challenge with this technique is finding an appropriate
way to measure each unit's value in its particular branch of the tree. The numeric
units used in each node need to be commensurate with all other units' values in their
respective branches. Values under the Military branch should represent units' contri-
butions in combat, and should take into account attack strength, rate of fire, move-
ment speed, armor value, current hit points, and any other appropriate parameters.
Values in the Intelligence branch should take into account factors appropriate for
each unit's exploration ability, such as visibility range and movement speed, but prob-
ably not attack strength or hit points. Nodes in Resource Collection (under Eco-
nomic) should take into account how quickly each resource-gatherer can collect
resources, drop them off at the depot, and get back to the resources again. Finding an
appropriate way to correlate these values is, like so much else in game AI, a matter of
experimentation to find the optimal solution for your particular game.

Another potential challenge is handling economic systems with multiple resources.
In games where different units cost different amounts of, say, gold, energy, and
tiberium to produce, a single allocation value does not translate directly into a single
resource. The potential solutions to this problem are beyond the scope of this gem.

The Dependency Graph

The dependency graph is a data structure that models all the dependencies between the
different types of assets in the game. The dependency graph encompasses all depen-
dency-based relationships, such as a game's "tech tree" and "building tree."

The primary dependency type is a creational dependency. This indicates some
number of conditions that must exist before a given species of asset can be con-
structed. For example, you must possess a Barracks before you can build a Pikeman.
You must construct a Castle before you can reach the Imperial Age.

3.7 Strategic Assessment Techniques 303

FIGURE 3.7.2 The dependency graph.

Creational dependencies can also include resource dependencies and other, more
abstract dependencies. A Barracks requires gold and lumber. Gold and lumber come
from the labors of peasants. Peasants get the gold from a gold mine and lumber from
the forest.

Figure 3.7.2 shows a tiny sample dependency graph comprised solely of cre-
ational dependencies. A peasant can create Barracks and Archery Ranges, but the
Archery Range can only be constructed after reaching the Medieval Age.

The second type of dependency is a support dependency. A Mage unit might
require mana, which can only be generated by a Shrine. Without a shrine, the Mage
will be essentially useless, as he cannot cast spells without a Shrine to feed him his pre-
cious mana.

As with the previously discussed data structures, an AI player should maintain
several parallel dependency graphs, one for itself and one for each of the other players.

Dependency Graph Nodes

A given node in a dependency graph will typically contain several different types of
data. Useful categories include the total number of units of that type that the player
currently possesses (or is believed to possess, if we are looking at another player); the
total estimated value of those units; and the number of those assets currently in pro-
duction (being created by a Barracks, for example). Given the overlap between their

304 Sections Artificial Intelligence

concerns, it may be possible for a "node" in the dependency graph to be similar to a
"node" in the functional asset tree, or even be the same physical data structure. The
main difference between the two is that the resource allocation tree tracks only the
currently available assets, while the dependency graph tracks all possible assets.

Economic Planning

The first and most obvious use for a dependency graph is building toward a goal. A
computer player can use the dependency graph to determine what it needs to build in
order to be able to produce a given asset. "I know I want to build a Wizards' Tower
eventually, so to get there, I need to build a Library, and then secure a suitable source
of mana, and then start building a Mage Hall

The choice of which dependencies to fill in first is a trade-off between reacting to
the present and planning for the future. A purely reactive AI will use the resource allo-
cation tree to rank all the assets it can potentially create immediately and pick the best
available node. A more planning-oriented AI will analyze all the nodes in the graph to
find a long-term goal worth pursuing, query the functional asset tree to determine
which dependencies are likely to be the most valuable, and build toward the most
promising technology, however deep in the graph it may be.

Note that this process becomes tricky when there are several possible ways to ful-
fill a dependency—when either A or B will allow C. This seldom happens in practice,
as game designers wisely avoid these types of dependencies. In a situation in which
there are so many optional dependencies that the best route to a given node isn't obvi-
ous, any standard search algorithm should solve the problem quickly.

Finding Vulnerable Dependencies

A dependency graph can be used to analyze strengths and weaknesses in a player's
forces, and to pinpoint its opponents' most vulnerable dependencies. In Red Alert 2,
the enemy AI will usually destroy my Barracks after taking out my War Factory. This
is a clever and potentially devastating strategy as it forces me to spend precious time
and money rebuilding the Barracks before I can consider rebuilding my War Factory.

There are three factors that generally determine whether a given node in the
dependency graph is "vulnerable."

• Intrinsic value. Some assets are valuable of their own accord. A Nuclear Silo is
valuable because it can attack the enemy directly. Assets deeper in the graph (far-
ther along in the tech tree) usually have much higher intrinsic values.

• Strong child dependencies. Some assets are worth targeting because of what
they can create or support. A War Factory can create tanks and other vehicles. A
Library allows me to create the Mage Hall, which will eventually lead to Mages. A
Fusion Plant supplies lots of electricity to a player's base (a support dependency).

• Weak parent dependencies. We can also eat away at parent dependencies, as
with the Barracks destroyed after the War Factory. Graph nodes whose parents are

3.7 Strategic Assessment Techniques 305

relatively weak (few instances of each supporting asset) and easy to attack (poorly
defended) are more vulnerable to this type of attack.

We can use the same heuristic for both attack and defense. For attack, we often
want to select the most valuable opposing player dependencies, and go after the War
Factory first and the Barracks second. In defense, we use the graph to prepare for that
exact possibility—we increase our defense and build duplicate buildings as backup.

Strategic Inference

One subtle advantage of the dependency graph is that it provides a basis for making
inferences about other players' current assets and likely strategies based on incomplete
observations. For example, if I know my enemy has a Barracks, I can be confident that
he either has Pikemen already or is capable of creating them in the near future. Simi-
larly, if I see an enemy Pikeman, I can be 100-percent certain that he has a Barracks
somewhere about (or at least, that he did when Pikeman unit was created—there's
always the chance that the Barracks was destroyed after he created the Pikeman).

Inference works in two directions: forward and backward.
With forward inference, we know that the player in question possesses a given

unit or resource, and we can project the likelihood that he will then fill in the child
dependency. Each Barracks we observe makes the existence of Pikemen more likely.

With backward inference, we go back up the chain and assert that a given unit
makes its dependencies nearly certain. Seeing a Pikeman makes us very confident of a
Barracks, even if we've never observed it directly.

This kind of dependency-based inference can go a long way. If I see an enemy
Grand Mage, I can assume there's a high probability that he also has a Mages'
Arcanum building, High Magic upgrade, a Wizards' Tower, a Sages' Guild, a Library,
and all the other dependencies leading up to the Grand Mage unit. Furthermore, I
can then turn around and use forward inference on each of these nodes with their new
probabilities. Since the Grand Mage allowed me to infer the existence of a Sages'
Guild, I can assume that the player is probably capable of producing a Sage.

This process is a form of probabilistic inference and is broadly similar to a popu-
lar inference technique known as a "Bayes network" [see the References for details].

Interestingly, it's also possible to use inference to make certain nodes less probable.
If we set an upper bound on the maximum possible size of a player's economy at a
given point during the game—either on account of the amount of time he's had avail-
able to build up, or by reasoning based on inferences using data from the influence
map—then certain dependencies make others less likely. Four minutes into the game,
I know that the best player can build a Red Dragon Roost or a Nuclear Silo, but not
both. Therefore, the presence of either makes the other less likely.

Of course, this is all a lot of work, and you can just as easily cheat and look at the
other players' assets directly. As always, I leave this decision to your conscience and
your opinion of how this decision would affect the entertainment value of your
game.

306 Sections Artificial Intelligence

Player Personality

As with the functional asset tree, we can use the dependency graph to give AI players
distinct personalities.

The vulnerability values for the various nodes in the dependency graph are a
prime candidate for tweaking. By exaggerating or deflating the vulnerability values for
different nodes, we cause our AI players to deflate or overvalue the significance of
those assets. If we tweak the values on the dependency graphs we maintain for oppos-
ing players, we change the likelihood diat we will target certain enemy assets rather
than others. If we tweak the values on our dependency graph of our own assets, we
change the way our economy develops and the specific technologies we embrace.

One simple technique for setting initial priorities is to pick a set of ultimate
"goals" for a given AI player. Look at all the rightmost (deepest) nodes in the graph,
find a suitable algorithm to rank these final dependencies by desirability, and come up
with good final desirability values. You can then propagate these desirability values
back toward the left side of the graph, and this will give the AI player a very clear indi-
cation of which technologies it should generally favor.

Putting It All Together

Most of AI is decision-making, and a good representation of the game state can make
an AI player's decisions vastly easier to make.

This gem and the previous one have described data structure foundations for this
type of decision-making. Although not every game will be able to use all of these data
structures, there are endless opportunities for intercommunication between whichever
of these data structures you use for shared strategic and tactical decision-making.
When the Influence Map, die Resource Allocation Tree, and the Dependency Graph
communicate and share their data, we end up with a whole diat is more than die sum
of its parts. The Influence Map tells you where the enemy is, die Resource Allocation
Tree tells you what you need to hit him with, and the Dependency Graph tells you
how to build it and how to keep it full of gas once you're up and rolling.

References and Additional Reading
[Ferber99] Ferber, Jacques, Multi-Agent Systems, Addison-Wesley, London, England,

1999. A useful perspective is to consider the cells/nodes of the data structures
described here as hierarchical "agents" in a multi-agent system.

[PearlSS] Pearl, Judea, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Influence, Morgan Kaufman, San Francisco, CA, 1988. A must-read intro-
duction to Bayes nets and probabilistic reasoning systems as they relate to AI.

[Russell95] Russell, Stuart and Norvig, Peter, Artificial Intelligence: A Modern
Approach, Prentice Hall, Upper Saddle River, NJ, 1995. A comprehensive intro-
duction to AI techniques—trie "AI bible."

3.8

Terrain Reasoning for 3D
Action Games

William van der Sterren, CGF-AI
william@cgf-ai.com

ft I ocation! Location! Location!" This decree not only holds for real estate, but
•̂i also for the virtual worlds in 3D action games. There, locations play a key role

as sniper spots, strongholds, avenues of attack, bottlenecks, or "red armor" power-up
areas. When locations are important in a game, they had better be important in the
game AI as well.

This gem presents a technique for reasoning about locations and their role in the
game. It shows how to translate location concepts to algorithms, so that the AI can
compute and grasp these concepts. This helps the AI in picking good locations for its
actions and in understanding the positions that other actors occupy. It literally puts
the AI in a better position to assist or challenge the player.

First, we pick a terrain representation that the AI can handle efficiently: waypoint
graphs. To illustrate waypoint-based reasoning, an example problem is introduced.
Then, we identify tactical attributes and relate them to waypoint properties. We con-
struct formulas to compute these waypoint properties, using static data such as the
world geometry, and dynamic data such as actor activity. Finally, we discuss how to
integrate terrain reasoning in our game and we look at various other applications of
waypoint-based terrain reasoning.

Representing Terrain to Reason About It

Reasoning about locations would be easy if there were only a few locations. However,
today's game worlds feature tens of thousands of accessible polygons. In a game, mul-
tiple AI actors take into account both visible and invisible locations. If this were done
in terms of raw polygons, that effort would probably consume more resources than
the 3D graphics rendering.

To complicate matters further, the value of a location isn't so much determined by
its own characteristics as it is its relationship with the surrounding locations. For exam-
ple, is it easy to access the location? Is die location observable by many odier locations?
Are there any power-ups nearby? In addition, actual gameplay matters a lot: some loca-
tions (for example, near an objective) are frequendy visited, whereas other areas are not.

307

308 Section 3 Artificial Intelligence

Thus, to reason effectively and efficiently about terrain, we had better pick a rep-
resentation that approximates the terrain using far less detail than the raw polygonal
geometry. That representation should express relations between locations easily, and
support capturing of location-based game activity. Ideally, the representation allows
us to use precomputed intermediate results, leaving us some CPU time for more
advanced AI or a faster game.

Waypoints

Most 3D game AIs already have a terrain representation that is easy to handle. They
use waypoints, or similar navigation aids such as grids, or cells (see [SnookeOO],
[RabinOO], [ReeceOO]). These waypoints represent the most relevant part of the ter-
rain: the terrain that is accessible to the game actors. Each waypoint is a sample, an
approximation, of its immediate surroundings. The number of waypoints is typically
in the order of 250 to 2500.

Reasoning in terms of waypoints is attractive because many game AIs already use
these waypoints to move around, to find paths, to mark the presence of special items
and obstacles, and to receive hints from the level designer. Because the AI performs
many of its actions with waypoints in mind, and because it thinks of players as being
near waypoints, capturing gameplay data per waypoint is easy and almost free.

Before we start reasoning about the waypoint-based terrain representation, that
representation needs to approximate the terrain and relevant properties well enough.
The network of waypoints should be sufficiently dense to represent all relevant loca-
tions as well as any cover and concealment present. Typically, that means a larger
number of waypoints than required for AI navigation and pathfinding.

Terrain reasoning often deals with other inter-waypoint relations than shortest
path and movement. The need for these additional relations and the reasoning about
waypoints are best illustrated using an example.

Example Terrain and AI Needs

To illustrate waypoint-based terrain reasoning, let's look at the following example: in
the area depicted in Figure 3.8.1, we want our AI actors to pick solid offensive and
defensive tactical positions, both before and during a fight.

To support the AI in efficiently picking and visiting strong positions, we compute
for each waypoint and for a number of directions, the offensive and defensive value of
that waypoint. This value is computed using the waypoint graph and world geometry
and improved with captured gameplay "experience." Such a "tactical"' understanding
of each waypoint can be input for pathfinding, for flocking, to pick guard positions
overlooking an objective, and so forth.

The example area features one objective and two entrances, and is populated by a
dense grid of waypoints. Note that just the waypoints themselves (in Figure 3.8.1 cen-
ter) already give you a good clue of the level's architecture.

3.8 Terrain Reasoning for 3D Action Games 309

distribution of waypoint
w's line-of-sight relation

x' 4;
sectors being used to
aggregrate relations

FIGURE 3.8.1 (left) A top view of the example terrain, featuring two entrances!exits, and
one objective o. The terrain is covered by a good number ofwaypoints, including
waypoint w. (center) The waypoints in the example terrain, and the valid lines of sight
from waypoint w to other waypoints. (right) The distribution of lines of sight from w,
and the proposed sectors to aggregate them.

Tactical Analysis

In assessing the tactical value of a location, many factors need to be considered. A
large number of these factors can be translated to properties of a waypoint, which in
turn can be computed. Let's consider the example area from both a Quake-style
capture-the-flag game and from a tactical simulation perspective.

In a fast capture-the-flag game, characterized by rapid movement, power-ups,
nonlethal weapons, and rocket launchers, the tactical value of a location is largely
determined by the following characteristics:

• Locations that provide for fast movement and freedom to move in any direction
are essential for attackers.

• Locations near power-ups are valuable.
• Locations susceptible to rocket blasts aren't that attractive.
• Locations overlooking the path to the flag while being hard to spot when rushing

to the flag make for good defensive positions.

In a tactical simulation, characterized by lethal weapons, slow movement, cover,
stealth, and sniping, other characteristics become key.

• Nearby cover is important for offensive and defensive actions. Even partial cover
or reduced visibility at a location can be a serious advantage.

310 Section 3 Artificial Intelligence

• Locations where movement is slow or predictable (near the entrance, for exam-
ple) make for bad offensive spots, whereas the locations overlooking them
become more attractive for defense.

• As within the capture-the-flag game, locations that overlook the objective, and
locations overlooking the main paths to and from the objective are important as
well.

From Tactical Values to Waypoint Properties

Now that we have identified a number of tactical characteristics that largely determine
the offensive and defensive values of a location, we need to turn them into an evalua-
tion function and output.

First, we look at the waypoint properties that we can use to express tactical char-
acteristics. Figure 3.8.2 illustrates the different types of waypoint properties available.

A waypoint has properties that are local, such as the light level and the presence of
a power-up or door. Another category of properties is determined by the waypoints'
membership in a larger terrain representation (typically a group of waypoints). For
example, the waypoint may be part of a room, a street, or a roof. Note that both the
local properties and the group membership properties are nondirectional.

The relations between waypoints, however, are directional. For example, way-
point w (in Figure 3.8.1) can see almost all waypoints to its east, and it will be hard to
approach waypoint w from the east without being observed. In a 3D world, height
differences often cause a waypoint to be easily accessed from one direction, and much
harder (read: taking a longer path and more time) from other directions.

A last, but essential, aspect is the distribution of the waypoints relations. For
example, if a waypoint overlooks many other locations in primarily one direction, the
player or AI is able to focus on that direction and see all visible activity instandy, with-
out having to worry about attacks from other directions. The concentration of rela-
tions in a sector is called focus.

0

O © €> C

€> C» i

FIGURE 3.8.2 Waypoint properties: (from left to right) local properties, group membership, relations
with other waypoints, and focus.

3.8 Terrain Reasoning for 3D Action Games 311

Computing Way point Properties

To compute a useful offensive or defensive rating for a given waypoint and direction,
we need to implement each applicable tactical characteristic as a function of waypoint
properties.

Many tactical characteristics can be decomposed into primitive functions about
the waypoint graph, in effect dealing with linear distance, travel time, line-of-sight,
line-of-fire, objectives, and obstacles. For example, an important characteristic of a
good attack position is that it provides for rapid movement at that position. A "water"
position does not allow rapid movement locally. A waypoint with a "water" local
property should rate low in enabling rapid movement.

In small rooms and tunnels, it is difficult to dodge rockets and avoid the blast
from a rocket or grenade. Locations that are more spacious thus offer an advantage. If
a waypoint is part of an area (represented by a group of waypoints) that is a small
room or tunnel, it should rate lower in being "open." Thus, the waypoint's group
membership can be used to compute a tactical characteristic.

In the following code, two tactical characteristics are computed using a local way-
point property and a group membership property, respectively.

float GetLocalRapidMovement(waypointid wp)
{ // result in [0 .. 1], higher values meaning higher speeds

return (GetActorMovementSpeedAtWaypoint(wp)
/ GetMaxActorMovementSpeed());

}
float GetOpenAreaMembership (waypointid wp)
{ // result in [0 .. 1], higher values meaning more open

return 1.0 - max(IsPartOfSmallRoom(wp),
IsPartOfTunnel(wp));

}

It is more complicated to compute a directional relation for a waypoint. A spe-
cific relation for waypoint w, such as the availability of nearby cover from another
waypoint wu that has a line of sight on w, is computed in the following function.

312 Sections Artificial Intelligence

float GetCoverFromThreatsInDirection(waypointid w) {
float property [kMaxDirections];
unsigned int entry[kMaxDirections];

// set all property and entry values to 0

// pass one: collect and interpret relations
for (waypointid w_to = 0; w_to < kMaxWaypointld; w_to++) {

direction dir = GetDirectionForWaypoints(w, w_to);

// check for line-of-fire from w_to to w
if ((w_to != w) && (HasLineOfFire(w_to, w))) {

entry[dir]++;

// get value for relation (value in [0. .1])
float value = GetCoverFromThreatsAt(w, w_to);
property [dir} += value;

// pass two: level result into [0 .. 1] range
for (direction dir = 0; dir < kMaxSectors; dir++) {

if (entry [dir] > 0) {
property [dir] /= entry [dir];

float GetCoverFromThreatsAt (waypointid w, waypointid w_at) {
for (waypointid w_n = 0; w_n < kMaxWaypointld; w_n++) {

// check for lack of line-of-fire to neighbor of w
if (IsNeighborOf (w, w_n) && (!HasLineOfFire(w_at, w_n))

return 1 .0;
}
return 0; // no cover found

In a first iteration over all waypoints, solely those waypoints with a line of fire to
w are considered. For each of these waypoints, the number of w's relations is incre-
mented, and the value of the nearby cover available is accumulated.

In a second "iteration, the amount of "nearby cover" is divided by the number of
relations, to return a value between 0 and 1 . Rather than using the number of rela-
tions here, we will use the focus () function to deal with the concentration of relations
in a certain direction. This focus () function is explained later.

In a function such as GetCoverFromThreatsAt () (the second function at bottom
of the previous code listing), a very simple approximation is made. A more advanced
approximation might use fuzzy logic to deal with such issues as the travel time to the
nearest cover, the amount of cover available, and the weapon effectiveness over the
distance between the waypoints.

3.8 Terrain Reasoning for 3D Action Games 313

focus() =

3 x front

left + rear + right

FIGURE 3.8.3 Simple computation of the focus values for waypoint ~w in the example
terrain. All relations are projected on a 2D dish with four 90-degree sectors. The focus of
a sector is a weighted ratio of its relations versus the relations in other sectors.

The focus of a waypoint reflects the concentration of relations over the various
directions. Focus is particularly valuable in defense and when survival is important. In
these cases, it is not sufficient for a location to offer great sniping opportunities in one
direction. The location also needs to offer flank and rear protection; that is, have few
line-of-sight/fire relations to the sides and to the rear.

The function focus (w, d) expresses the distribution of relations in one direction
relative to the distribution in other directions. The exact implementation of focus ()
depends on the number of different directions considered (the sectors) and the type of
relation for which the concentration is considered (often the line-of-sight). Figure 3.8.3
illustrates an implementation of focus for waypoint w in our example terrain, using sim-
ply four sectors to represent die various directions possible in a 3D sphere. When deter-
mining the focus, you should also deal widi the exceptional case of a waypoint having
relations solely in a single sector. Then, a default maximum should be used.

The focus() function assumes a more or less uniform distribution of waypoints
across the terrain. However, the function is largely robust against moderate deviations
in that distribution. When we have expressed every tactical characteristic in a number
of waypoint property computations, we can combine them as follows:

rating(w, d) = Z k± x local_propertyi(w)
+ £ kj x group_membershipj(w)
+ focus(w, d) x I ki x relation^ w, d)

Note that for focus () to correcdy emphasize or dampen the results from the rela-
t ionx() functions, these relation*() should all return positive values. This rating
expresses the AI's a-priori understanding of a location and its role in the game. This
rating, the tactical value of a location, is based on die waypoint graph and world geom-
etry, and implicitly uses some static game constants such as actor movement speeds,
weapon performance, and power-up locations. For the example area discussed, we are
now able to automatically annotate each waypoint with its offensive and defensive val-
ues in a given direction (given some time for experimentation and tuning).

314 Sections Artificial Intelligence

Learning from Gameplay Experience

Obviously, not every value will be fully correct. Our terrain sampling, by means of
waypoints, is an approximation, and so are the evaluation functions used to compute
the values.

In addition, we have been ignoring actual gameplay. That mistake, however, is
easily turned into an advantage.

Because the AI uses waypoints for its actions, and thinks of the players as being
near waypoints, we can record their activity at a waypoint with little effort. We can
use that information in two ways. We can use it to correct the outcome of our com-
putations, and we can use it as additional input in the computations.

We can improve, for example, the defensive value of a waypoint in a direction by
adding the damage done by an actor, and subtracting the damage received by an actor
at that waypoint. In other words, we add a little reinforcement learning to the AI's
understanding of the locations. That will correct part of the error present in our
results. More importantly, it leads to an AI that will vary and adapt its choice of loca-
tion based on its past successes and failures!

The captured gameplay data can also be input for our waypoint properties. For
example, the more "hostile traffic" waypoints that can be seen from a location, the
more useful that location will be for defense. Such a relation can be computed easily,
if the required traffic data is available. When using gameplay data as input for the
computations, the AI actually gains tactical understanding of the terrain.

Putting Terrain Reasoning in the Game

So, our AI can analyze the example area by a series of computations, using geometry
data, travel time, shortest paths, line-of-sight, line-of-fire, and waypoint-related
gameplay data. These computations have O(n 3) time complexity, because in comput-
ing some of the waypoint-to-waypoint relations, other nearby waypoints are also con-
sidered. In practice, the computations take some tens of seconds. This kind of
waypoint reasoning is best done when preprocessing a level and possibly between mis-
sions, as a background thread.

Few resources are used by the results from the terrain reasoning algorithm. Typi-
cally, they consist of several tables per waypoint, each table containing a small number
of bytes. The tables can quickly be read and contain knowledge about the terrain that
would otherwise be almost impossible to obtain. In addition, the reinforcement learn-
ing based on gameplay data enables some varying and adaptive AI behavior at negligi-
ble costs.

In general, waypoint-based reasoning need not be CPU intensive. Terrain reason-
ing is quite feasible during gameplay, provided the AI considers a small set of way-
points, and has intermediate reasoning results available. Using small look-up tables
for each waypoint to store both the nearby waypoints and the visible waypoints, the
AI can, for example, efficiently plan paths that avoid locations under fire from threats.

3.8 Terrain Reasoning for 3D Action Games 315

Dynamic game terrain and entities, such as doors, vehicles, destructible terrain,
and smoke do complicate the terrain reasoning, because these dynamics partially
invalidate precomputed results. Notably the line-of-sight, line-of-fire, and paths will
be affected by dynamic terrain. Nevertheless, it often remains attractive to use pre-
computed intermediate results. It is often more intelligent and efficient to use these
results and try to correct for any dynamics than to use no reasoning at all.

The terrain reasoning discussed here is a set of heuristics. It takes a number of
experiments and some analysis to find the right ingredients and weights for your AI
terrain reasoning. To effectively tune and verify your algorithm, visualization of the
(intermediate) reasoning output is essential. The output can be interpreted easily
when projected onto the terrain within the game. Alternatively, you can export the
results to a spreadsheet for further analysis.

Other Applications

Waypoint-based terrain reasoning is presented here using a simple example, precom-
puting the offensive and defensive values of the game locations. The ideas behind the
reasoning have a much wider use than that example. The idea of dissecting tactical
guidelines and expressing them as evaluation functions per location is an approach
that will work for many games where the AI needs to reason about locations.

Just ask yourself the question:

"If I were to defend this base (or whatever the AI needs to do), why would I prefer
location x over location y, and what does distance, travel time, line-of-fire, the type of area,
(or whatever terrain property or game item you can come up with) have to do with it?"

Waypoints, if placed in a sufficiently dense graph across the terrain, serve many
more purposes than just navigation. Together with a few small lookup tables for
nearby waypoints and visible waypoints, they enable the AI to predict out-of-sight
opponent movement, and to find a nearby location providing a new line-of-sight.

Waypoints are a handy means to "host" additional costs for A* pathfinding. If
we tag all waypoints that are visible from the assumed threat positions with extra
costs, the A* pathfinder provides us a path offering cover from the threats where
available. If we also tag all waypoints that restrict our movement, the path returned
will be even more "tactical." These are just two of the many examples of waypoint-
based reasoning. You can probably think of a few more that will put your AI in a
strong position.

Conclusion

Waypoint graphs provide an easy-to-use representation of the game terrain. You can
translate many of the terrain-related tactics in your game to waypoint-related proper-
ties. As an example, this gem shows how to build a per-waypoint evaluation function
that expresses the value of a location for general offense, general defense, or a parti-

316 Section 3 Artificial Intelligence

cular tactic such as ambushing or sniping. This will provide your AI with a good
understanding of the terrain.

You can extend and improve that evaluation function with captured gameplay
data, resulting in an AI that becomes more varied and adaptive. There are many other
ways your AI can reason about terrain using waypoints. Just try to relate the tactical
guidelines to waypoint properties (that fit in a look-up table).

References and Additional Reading

[PottingerOO] Pottinger, Dave, "Terrain Analysis in Realtime Strategy Games," Pro-
ceedings of Computer Game Developer Conference, 2000.

[RabinOO] Rabin, Steve, "A* Speed Optimizations," Game Programming Gems,
Charles River Media, 2000: pp. 272-287.

[ReeceOO] Reece, Doug, et al, "Tactical Movement Planning for Individual Combat-
ants," Proceedings of the 9th Conference on Computer Generated Forces and
Behavioral Representation, 2000. Also available online at www.sisostds.org/
cgf-br/9th/.

[SnookOO] Snook, Greg, "Simplified 3D Movement and Pathfinding Using Naviga-
tion Meshes," Game Programming Gems, Charles River Media, 2000: pp.
288-304.

3.9

Expanded Geometry for
Points-of-Visibility Pathfinding

Thomas Young
thomas.young@bigfoot.com

In Game Programming Gems, Bryan Stout and Steve Rabin described "points-of-
visibility" pathfinding [StoutOO], [RabinOO]. This is essentially a way to find the

shortest path around polygonal obstacles.
As Steve pointed out, there are big advantages to the method. It enables you to

create a minimal representation of the search space, resulting in very fast searches. In
addition, paths found are perfectly direct.

In this gem I explain how to automate construction of expanded geometry from
polygonal obstacles, and how to use this to implement points-of-visibility pathfinding.
By using expanded geometry, we overcome most of the disadvantages of the technique.

• Points of visibility can be extracted directly from the expanded geometry without
designer assistance.

• It is possible to support dynamic objects (such as characters, doors, moving
blocks, and so on) by generating and integrating expanded geometry for those
objects on the fly.

• The expansion can be parameterized to support characters of different sizes and
formations.

For many games, pathfinding is fundamental to the AI. It is up to the pathfinder
to guarantee certain aspects of character behavior. It is essential, for example, that AI
characters do not get stuck against obstructions. Characters must not fail to find a
path around obstacles when that path looks obvious to the player. When collision
against obstructions is complicated, even these capabilities are difficult to guarantee.

If we accept some limitations on the collision model for character movement, we
can use exactly the same model for both collision and pathfinding. By using expanded
geometry we can build a pathfinding system that is exactly correct for this collision
model. This system is guaranteed to understand correctly any position a character can
reach, and returns paths that are guaranteed to be unobstructed, so characters can't get
stuck.

Higher-level AI built on a "perfect" pathfinding system is much easier to code
because you don't need to catch those tricky situations, such as a character getting

317

318 Sections Artificial Intelligence

stuck because no path can be found from its current position. By depending com-
pletely on the results of the pathfinding system, it is possible to build sophisticated
movement-related AI with far fewer lines of code. It is also much more fun.

Defining a Collision Model

A collision model precisely specifies character collision against the environment. We
build our collision model around a "collision shape" for each character. The collision
shape is a convex polygon chosen to best represent the shape and size of that charac-
ter. The shape translates with the characters origin when the character moves, but
doesn't rotate when it turns. The character is obstructed for positions where its colli-
sion shape overlaps the environment.

The environment is represented polygonally and can be comprised of convex and
nonconvex polygons that mark obstructed areas, 2D meshes to represent unob-
structed areas, or some combination of these representations (Figure 3.9.1).

: -(-Obstructed

, j .-tt'nobstructed

FIGURE 3.9.1 Collision shapes in polygonal environments.

Polygonal Pathfinding

Now that we have specified a collision model, it is the job of the pathfinder to find
paths for a character that are unobstructed for this model. For simplicity, I consider
only the traditional pathfinding constraint; that is, to find the shortest path from the
start position to a given goal position. The problem can be restated as finding the
shortest set of unobstructed line sections connecting start to goal.

Expand and Conquer

The trick is to build an expanded geometry that combines our collision shape with
the shape of the obstacles in the environment. This representation greatly simplifies
the queries we require for our pathfinding system.

3.9 Expanded Geometry for Points-of-Visibility Pathfinding 319

The expansion we use is a Minkowski sum of planar sets. Specifically, our
expanded geometry will be a Minkowski sum between the environment and the
negated collision shape. This is sometimes called a Minkowski difference.

The Minkowski sum of two sets A and B is the set of values that can be generated
by adding some member of set A to some member of set B. A polygon can be viewed
as a planar set; that is, the set of points inside that polygon.

Our expanded geometry represents the set of points that can be generated by sub-
tracting some offset in our collision shape from some point inside the environment.
This means that for each position in our expanded geometry, some point in the colli-
sion shape overlaps the environment. Therefore, our expanded geometry represents the
set of points where our character will be obstructed (Figure 3.9.2).

Coll

Doesn't Collide \^~ Doesn't Collide

FIGURE 3.9.2 Collision shape in polygonal environment, point in expanded environment.

Collision between a collision shape and the original polygonal environment is
identical to collision between a point and the expanded geometry. To find out if a
character can be placed at a position, we test whether that position is inside our
expanded geometry. To find out if a line section is obstructed for a character, we sim-
ply test whether the line collides against our expanded geometry.

For points-of-visibility pathfinding, the set of convex corners in our expanded
geometry gives us our points of visibility. Two points can be connected if the line
between the points doesn't collide against our expanded geometry.

Minkowski Sum of Convex Polygons

To build our geometry, we start by looking at the simpler case of a single convex poly-
gon obstruction. The negated collision shape is also a convex polygon, so we must
construct a Minkowski sum of two convex polygons.

For convex polygons C and O, this sum can be visualized as the space swept out
by dragging the center of C around the perimeter of O (Figure 3.9.3a). This space will
be bounded by a larger convex polygon. The sum can also be visualized as the shape

320 Section 3 Artificial Intelligence

A B

FIGURE 3.9.3 A) Sum of convex polygons. B) Alternative visualization.

enclosed by the center of the (non-negated) collision shape as it slides around touch-
ing the perimeter of O (Figure 3.9.3b).

Edges in the expanded polygon are generated in three ways (see Figure 3.9.3B):

1. Directly from an edge in C, when C is placed at a corner of O.
2. By a corner of C as C moves along an edge in O.
3. By an edge in C as C moves along a parallel edge in O.

When there are no parallel edges, each edge in C and O is used exactly once, giv-
ing us a limit for edges in our expanded polygon equal to die edges in C plus the edges
in O. This is useful for us to allocate space in advance for the expanded polygon.

It is fairly easy to build the expanded polygon. Vertices in C are numbered in a
clockwise direction (Figure 3.9.4a). For each edge in O, we determine which of these
vertices is used to expand the start and end points of that edge (Figure 3.9.4b). This

A B

FIGURE 3.9.4 A) Vertices in C. B) Stan and end points, interpolated vertices.

3.9 Expanded Geometry for Points-of-Visibility Pathfinding 321

start=2 end=2
end=3 start=l

end=2

A B

FIGURE 3.9.5 Ordering by edge vectors, start and end expansion for an edge.

gives us our type (2) or type (3) edges. Type (1) edges are constructed where the end
point of one of these edges does not connect to the start point of the next, by inter-
polating vertices in C, if required, and adding edges (also Figure 3.9.4B). Interpola-
tion is just a case of counting through vertices in C until we reach the vertex that
expands the start of the next edge.

So, how do we determine the start and end expansions for each edge in the first
place? We can define a circular ordering on vectors, based on the directions of die edges
in C (Figure 3.9.5). For each edge in O, position in this ordering tells us which vertices
in C expand the start and end points of diat edge (also Figure 3.9.5). For a bit of extra
speed, this position can be tracked incrementally as we loop through edges in O.

Expanding Nonconvex Geometry

Now that we can expand a convex polygon, there is a straightforward way to extend
this to a nonconvex polygon. We simply split the nonconvex polygon into convex
parts and expand each part separately (Figure 3.9.6a). However, this can result in a
large number of overlapping polygons with a lot of unnecessary edges and corners.

To make a well-formed Minkowski sum, we should detect intersections between
expanded polygons and connect them together to make a single expanded shape. A
fundamental problem with this approach is the fact that intersections may not fall
exactly on points representable by the numbers we are using for coordinates. More-
over, if we use approximate points at intersections, then our padifinder no longer cor-
responds exacdy to our collision model, although this may not matter if our collision
engine will also be built around the same expanded representation.

A good solution is to make a "lazy man's Minkowski sum." Here we are not con-
cerned with the set of obstructed points, but rather with transitions from unob-
structed areas into obstructed areas. This approach is more appropriate for external
boundaries that can't be decomposed, as such, into convex polygons. This will also be

322 Section 3 Artificial Intelligence

more relevant if we need to make extensions in the fixture to support features such as
overlapping geometry.

To build a "lazy man's Minkowski sum," we can use virtually the same method we
used to expand a convex polygon. The difference is that we do not interpolate points
at a concave corner. If the end point for the edge before the corner is not same as the
start point for the edge after the corner, then we get an intersection and a discontinu-
ity in the expanded edge list (Figure 3.9.6b).

This process is a lot easier to code and a lot faster than generating a true
Minkowski sum. For a start, we don't have to perform any triangulation or detect
intersections. For large collision shapes, we can still end up with unnecessary edges
and corners, but this is usually not a big problem.

A B

FIGURE 3.9.6 A) Nonconvexpolygon expanded as convex subparts. B) Lazy man's
Minkowski sum.

Choosing a Collision Shape

The fact that our collision shape doesn't rotate is a major limitation for our collision
model. Because the characters in our games will almost certainly need to rotate, we
will want to use rotationally symmetrical collision shapes in order to get the most con-
sistent collision behavior. A circle would be the best approximation, but we can't use a
circle because the resulting expanded geometry would have no corners and hence no
points of visibility. Instead, we must use an N-sided regular polygon to approximate a
circle.

In general, the more edges we use in our collision shape, the more edges and cor-
ners we get in the resulting expanded geometry. With more edges and corners,
pathfinding becomes more expensive (sometimes exponentially). Squares and
octagons are obvious choices because they are relatively simple and because they can
be aligned with the coordinate axes.

In the past, it was important to use axis-aligned collision shapes for performance
reasons. For vector comparisons against horizontal, vertical or 45-degree lines,

3.9 Expanded Geometry for Points-of-Visibility Pathfinding 323

multiplication can often be avoided. Nowadays, branch prediction issues mean that it
is better to simply go ahead and perform the same multiplications for all cases, so
there is no longer any performance reason to only use axis-aligned shapes. For some
platforms, avoiding multiplication may still be an important issue, however.

Conclusion

I have shown how a pathfinding system can be constructed that is precise with respect
to a reasonably interesting polygonal collision model. There is a trade-off to be made
between sophisticated collision systems and collision systems that characters can
"understand." For games where you are able to use this model for both character col-
lision and pathfinding, there can be a big payback in reduced debugging and simpli-
fied AI.

References

[RabinOO] Rabin, Steve, "A* Speed Optimizations," Game Programming Gems,
Charles River Media, 2000.

[StoutOO] Stout, Bryan, "The Basics of A* for Path Planning," Game Programming
Gems, Charles River Media, 2000.

3.10

Optimizing Points-of-Visibility
Pathfinding

Thomas Young
thomas.young@bigfoot.com

The "points of visibility" pathfinding method has a number of advantages (see Steve
Rabin's article in Game Programming Gems, [RabinOO]). Also, with expanded geom-

etry we can make this an exact mediod to guarantee correct paths with respect to a given
polygonal obstruction set (see "Expanded Geometry for Points-of-Visibility Pathfind-
ing" in tins volume.) Complexity is independent of scale, so it is possible to efficiently
compute paths over long distances, and by precalculating the network of connections
between points of visibility, an extremely fast pathfinder can be constructed.

As map complexity increases, and with it the number of points of visibility, we
find that the number of connections between these points can increase exponentially,
particularly on maps with large open areas. Memory can become an issue, especially
on console platforms. In addition, the need for interesting AI demands that pathfind-
ers must support dynamic features such as moving objects, characters, doors, and so
on. To support dynamic features such as these, we need to work with points of visi-
bility that are generated on the fly, and obstacles that can move to invalidate connec-
tions. If we are not careful, the overhead for calculating visibility with these dynamic
features can also increase exponentially.

I present some optimizations that enable us to quickly discard many potential
paths and to greatly reduce the size of our network of connections. This results in
faster searches and less overhead for dynamic objects. With these optimizations, our
algorithm will scale better to handle increasingly complicated maps.

Points-of-Visibility Pathfinding

For this gem, I assume that the pathfinding agent can be considered as a point agent
in a polygonal environment. Section 3.9 explains how a more interesting collision
model can be converted to this form.

Our pathfinder uses an A* algorithm with a set of points of visibility as possible
intermediate states between start and goal. The points of visibility are derived directly
from the convex corners in our polygonal environment. For an explanation of the A*
algorithm, see Bryan Stout's article in Game Programming Gems [StoutOO].

324

3.10 Optimizing Points-of-Visibility Pathfinding 325

Storing the Shortest Path to Each Point

An important first step to prevent exponential growth of our search tree is to ensure
that only the shortest path to any intermediate point is retained for further consider-
ation. This is not a specific optimization for points-of-visibility pathfinding as it
should probably be standard behavior for any A* implementation. This needs to be
stressed, however, because it makes a big difference to scalability.

In Bryan Stout's article, he describes the use of an open list and a closed list. At
each step of the A* algorithm, these lists are searched to find any other paths that also
end at the current point under consideration.

One important difference between tile-based pathfinding and points-of-visibility
pathfinding is the number of potential intermediate locations we need to consider.
Since we only consider the convex corners in our environment, this will tend to be an
order of magnitude less than the number of tiles required to represent the same map
for tile-based pathfinding.

This means that it is feasible to use an array (with one entry per point of visibil-
ity) to keep a record of the shortest path found so far to each point. Instead of search-
ing through open and closed lists, we need only make a single lookup into this array.
In fact, this means that there is no longer any need for a closed list at all.

The array must be cleared before each use, but on most platforms, there will be a
fast memory clear routine readily available, so the time this takes is usually irrelevant.
If there is a very large number of points and you expect to only use a small number of
these for each search, then it might be worth keeping the closed list as a record of
which points must be cleared after the search is complete.

Connecting the Corners

Each step in the A* algorithm involves taking the best partial path found so far and
generating a set of successor paths. Each successor is formed by connecting the end of
the partial path to another point with a line section. The point can be either a point
of visibility or the goal point. The straightforward approach is to generate a successor
for every point in the world for which the line section will be unobstructed.

By preprocessing collision between all pairs of points of visibility and building a
(possibly large) table, we can determine very quickly at runtime which other points of
visibility can be reached from some source point of visibility. The start and goal posi-
tions will change at runtime, so line sections to and from these points cannot be pre-
processed. The same is true for any points of visibility resulting from dynamic
obstacles.

Optimization #1: Only Consider Paths to Silhouette Points

As seen from some source point, each other point in the world can be classified as left
silhouette, right silhouette, or not a silhouette (Figure 3.10.1).

326 Sections Artificial Intelligence

ilhouette corner can
Point be cut

Source Point Source Point

FIGURE 3.10.1 Silhouette points.

This optimization is based on the observation that we don't need to consider path
sections that connect to nonsilhouette points. Any path section going to a nonsilhou-
ette point will result in a corner that can be cut to make a shorter path. (This is true
unless that point coincides exactly with the goal point, or with another silhouette
point. In both cases, there will be an alternative mechanism to generate that path.)

The optimization applies when we are generating the set of successors to a partial
path. I will refer to the point at the end of this partial path as the current point. The
points we consider using to extend the path are potential next points. We can simply
discard any of these points that are not silhouettes as seen from the current point.

We discard nonsilhouette points because the resulting path can always be short-
ened by cutting a corner. To better visualize what is going on here, it is useful to
understand that the shortened path will be realized as the search continues. This will
happen either by connection directly from the current point or by connecting to a sil-
houette on a blocking object.

If we are using a visibility graph, then this optimization can also be applied
directly to the connections in our visibility graph. Any connection can be removed
from the graph where the destination point is not a silhouette from the source point.

Optimization #2: Only Consider Paths that Go
Around the Corner

This optimization is also applied when generating successors to a partial path.
For this optimization, we are interested in the line section at the end of our par-

tial path. When generating successors for the first time, from the start position, the
partial path is empty so this optimization does not apply. I will refer to the point at
the start of this line section as the previous point. The point at the end of the partial
path is our current point. As a result of our first optimization, the current point will
always be a silhouette point as seen from the previous point.

The reasoning behind this optimization is similar to die reasoning behind die first
optimization. Any path diat does not go around the silhouette point will result in a cor-
ner that can be cut to make a shorter path. Figure 3.10.2 shows a silhouette point, a set

3.10 Optimizing Points-of-VisibilityPathfinding 327

of path sections that go around that point, and one example of a path that can be dis-
carded. Again, the shortened path will be realized either by a direct connection from the
previous point, or via another silhouette point if the direct connection is obstructed.

To implement this optimization, we use the vector from the previous point to the
current point and the vector from the current point to the potential next point under
consideration. At a left silhouette, the next vector must be on the right of the previous
vector and to the left of the obstacle. At a right silhouette, the next vector must be on
the left of the previous vector and to the right of the obstacle (Figure 3.10.2).

Goal

Start

FIGURE 3.10.2 The path must go around each corner.

Silhouette Zones

For implementation, it is useful to define two zones relating to each point of visibility
(Figure 3.10.3). Each point of visibility is positioned at a convex obstruction corner.
The zones are formed by extension of the obstruction edges before and after that cor-
ner. The zones classify this point of visibility as seen from some arbitrary point. If that
point is in the left silhouette zone, then our point of visibility is classified as left sil-
houette, and vice versa.

To go "around" the silhouette point, the next point must be in the opposite zone
to the previous point, but it must also be inside the set of valid destinations bounded
by the extension of the axis from the previous connection.

We can apply the second optimization to the connections in our visibility graph.
Each connection in our graph has a source point and a destination point. When gen-
erating successors, these correspond to the current and next points, but there is no
information in a simple visibility graph about the position of the previous point. This
means that when we apply this optimization to the visibility graph, we must allow for

328 Section 3 Artificial Intelligence

I 1 4
I" ~'f" Right Silhouette

Left

FIGURE 3.10.3 Silhouette zones at a corner.

all possible positions for the previous point. This just means that our set of valid des-
tinations becomes the set of points in either of our silhouette zones.

So, to apply this optimization to our visibility graph, we also discard connections
where the destination point is not in one of the source point's silhouette zones. When
we retrieve a connection from the visibility graph, we know the position of the previ-
ous point so we can make a more specific test to possibly discard that connection.

Environment 1
Environment 2

Points Connections before
21 231
96 1638

Connections after
98

568

Figure 3.10.4 shows two examples of obstruction environments. The table above
shows the number of connections in our visibility graph before and after using sil-
houette optimizations to discard connections.

FIGURE 3.10.4 Environment 1, Environment 2.

3.10 Optimizing Points-of-Visibility Pathfinding 329

Using Silhouette Zones with Spatial Partitioning

The optimizations I have described enable us to reduce the number of connections in
our visibility graph, and to reduce the size of our search tree. For dynamic points, we
still need to test for connection to and from every other point in the world. We can
quickly discard many of these connections, but connections that cannot be discarded
need to be tested for collision.

The next step is to build a representation to quickly determine a minimal set of
points that can potentially connect to or from a given dynamic point. Silhouette
zones are a good starting point for building this representation. The zones for a given
point of visibility give us an area within which dynamic points can potentially con-
nect to that point of visibility. The exact nature of this representation should vary for
different types of obstruction environments.

In maps with low visibility, built from rooms connected by portals, silhouette
zones can be projected through portals to determine which rooms can potentially see
the corresponding point of visibility.

For a more general system, silhouette zones can be clipped against the polygonal
environment to determine the area in which a given point is visible. The resulting shapes
can then be entered into some general spatial partitioning system. If the shape for one of
these areas is represented exacdy, then there is no need for any collision checking once it
is known diat a dynamic point is inside that shape. (Note that exact representation of the
clipped area may depend on using an exact representation for line intersections.)

Conclusion

There are many more details involved in building an efficient points-of-visibility
pathfinding system. I have described some techniques for quickly discarding many
connections and therefore reducing the total number of paths that must be consid-
ered. This is a good first step.

I have briefly mentioned how silhouette zones can be used with spatial partition-
ing to handle dynamic points efficiently. To support the addition of dynamic obsta-
cles efficiently, a good spatial partitioning system is essential.

A final detail is the problem of testing for connection from one dynamic point to
another. For the case with no dynamic obstacles, this only needs to be done once, for
the potential connection from start point to goal point. With dynamic obstacles, this
test may need to be performed a large number of times, so an efficient implementa-
tion becomes important.

References
[RabinOO] Rabin, Steve, "A* Speed Optimizations," Game Programming Gems,

Charles River Media, 2000.
[StoutOO] Stout, Bryan, "The Basics of A* for Path Planning," Game Programming

Gems, Charles River Media, 2000.

3.11

Flocking with Teeth: Predators
and Prey

Steven Woodcock
ferretman@gameai.com

Flocking (sometimes called swarming or herding) is a technique first put forth by
Craig Reynolds in a 1987 paper he did for SIGGRAPH entitled "Flocks, Herds,

and Schools: A Distributed Behavioral Model" [Reynolds87]. In this paper, Reynolds
defined the three basic rules (or steering behaviors) for flocking and explained how
they interacted to give lifelike group behavior to creatures he called boids. In Game
Programming Gems, I wrote a short gem introducing the subject [WbodcockOO] and
added another steering behavior to make what I called the "Four Rules of Flocking."

• Separation: Steer to avoid crowding local flockmates.
• Alignment: Steer toward the average heading of local flockmates.
• Cohesion: Steer to move toward the average position of local flockmates.
• Avoidance: Steer to avoid running into local obstacles or enemies.

What's interesting about these four simple behavioral rules is how lifelike the
resulting behavior of the boids can seem. Watching the original demo from the first
book (also provided on the companion CD-ROM files for this chapter), one can see
groups of boids coalesce and move in ripples around their world. When they

ON THE CD approach boids belonging to another flock, they flee, breaking apart into smaller
flocks, if necessary, to avoid contact with anybody not belonging to their flock. If
split from their original flocks, individual boids eventually find fellows and form a
new flock, which in turn would eventually find other flocks to join.

Another interesting aspect of flocking is that the movement algorithm itself is
stateless—no information is maintained from movement update to movement
update. Each boid reevaluates its environment at every update cycle. Not only does
this reduce memory requirements that might otherwise be needed to provide a simi-
lar behavior using approaches besides flocking, it also allows the flock to react in real
time to changing environmental conditions. As a result, flocks exhibit elements of
emergent behavior—no one member of the flock knows anything about where the
flock is going, but the flock moves as one mass, avoids obstacles and enemies, and
keeps pace with one another in a fluid, dynamic fashion.

330

3.11 Flocking with Teeth: Predators and Prey 331

This technique has proven to be a valuable one for video games, having uses in
everything from unit formations in an RTS, to realistic behavior of crowds in RPGs.

This gem builds on the original article in a number ways, borrowing from some
of the suggested enhancements outlined there, together with one or two suggestions
received by readers. I'll expand on the original demo, adding some features that
somewhat individualize the boids, giving each boid a new feature—hunger. The
world itself will be made a bit more difficult to navigate through the introduction of
obstacles. I'll then introduce a new discriminator that gives our boids a reason to flee
each other—some will be predators that actually feed on the others! Boids will now
come in three flavors: hawks, sparrows, and flies. To this end, we'll be adding a "Fifth
Rule":

• Survival: Steer to eat as needed, or to avoid being eaten if a predator is seen.

A Whole New World

The original cube-shaped world of the first demo is a boring, empty place; nothing
exists in that realm but the boids themselves. Left to itself (and assuming it didn't run
into a boid from another flock), a given boid would pretty much fly around forever,
wandering aimlessly. The only flocking-related code that might otherwise have influ-
enced a boid's motion was a minor function I added to the flocking algorithm (in
CBoid:: Cruising ()) , and even that didn't contribute much. The world wrap code
(which teleported boids flying off one side of the world to the other side) could screw
up flocks a bit, but they always eventually found each other again.

More variety is needed if we're to make the lives of our creations more interesting
and to provide an environment closer to one that might be found in an actual game.
To help give our boids more to think about this time around, we've got to give them
something new to deal with—obstacles.

Obstacles

An obstacle is pretty much what it sounds like—something that's in the way. A new
class of object called CObstacle has been added to create these. A CObstacle object
forms an impenetrable cone-shaped barrier that all boids will try to avoid during their
travels.

This class gives us a simple way to make the world a bit more interesting and pro-
vides them with some interesting navigational challenges. Obstacles can be created
anywhere within the world with any arbitrary orientation, using either specified val-
ues or randomly determined ones. The CObstacle: :GetPosition () method has been
added to help us with collision detection and in determining if an obstacle is in the
line of sight of a given boid, while Cobstacle: :GetRelativeDiameter() will return the
relative size of the obstacle at the boid's cruising altitude.

332 Section 3 Artificial Intelligence

Critters of All Kinds

Figure 3.11.1 shows how boids now come in three flavors, arbitrarily named hawks,
sparrows, and flies, as they are all flying creatures. Each serves an important role in the
ecology of our gem by hunting and feeding on each other.

- Moves quick - Moves average - Moves slow
- Sees further - Sees average - Can't see far
- Hunts Sparrows - Hunts Flies - Hunts nothing

- Randomly reproduces

FIGURE 3.11.1 Types of boids.

Every Boid Is a Bit Different

The original Simple Flocking demo initialized all boids with various parameters—range
of sight, maximum speed of flight, etc.—which were identical for all boids anywhere in
the world. There were no particular discriminators to distinguish one boid from
another, beyond the flock to which it belonged. Boids belonging to other flocks were
automatically enemies and avoided like the plague (if that switch was turned on).

The Predators and Prey flocking demo individualizes each boid a bit by allowing a
randomized component upon boid creation. A boid thus created (via a new construc-
tor added to the CBoid class) will now have some "personality," making each one a
little bit different from its fellows. Some won't see well, while others will see farther
than their brothers. Still others will want to maintain more distance from their fellows
than the norm. Some will be hungrier than others, and so on.

Why do this? There are a couple of reasons, both of which add to the lifelike
behavior of the creatures in our little world. First, providing each boid with slightly
different capabilities is simply more realistic than an endless army of clones. Second,
the differences will combine to provide some novel forms of emergent behavior as our
boids interact, again providing what in the end is a more realistic representation of a
group of creatures moving en masse. The tug and pull of two boids in the same flock,
one of which wants to maintain a cohesion much tighter than its fellow, will make for
some interesting group dynamics, as will a boid that can see an oncoming predator
just a bit farther than any of his flockmates.

Additionally, the new demo adds some finer control over what types of boids
are considered "enemies" and what types aren't. A new parameter has been added to
the CBoid constructor that allows specification of that boid's type. This allows for sim-
ple tests to be added to the CBoid:: SeeEnemies () and CBoid:: FindFood () methods to
compare types and determine if a given boid is a predator to be avoided or prey to be
hunted.

3.11 Flocking with Teeth: Predators and Prey 333

Does this all add some overhead? Yes, though it's not much. The needs of die par-
ticular implementation, of course, will drive any such design decisions. For example,
in an RTS game, every unit of archers might well be fairly generic, while in an FPS
game, every squad-mate is an individual with unique characteristics.

Feeding the Flock

It follows that if we're going to have classes of boids that feed on one another, we're
going to need something to control that hunger. Nothing outside of the Jaws movies
has an insatiable appetite, and our boids are no exception.

To represent this, both hawks and sparrows have a hunger rating that decrements
a little each update cycle. "When it reaches zero, our boid will become hungry and will
begin to actively seek out prey to satisfy that hunger. In our demo, hawks hunt for
sparrows, of course, while sparrow boids will seek out flies. Flies are at the bottom of
the food chain and don't eat anything, but they will reproduce if there are enough of
them in one flock. Each time a hawk or a sparrow eats, a random test will determine
if it's still hungry by comparing its current hunger rating to its starting hunger rating.
For example, if a hawk starts out with 10 hunger points and has eaten four sparrows,
there's a 40-percent chance it will be satisfied and stop eating.

Since it isn't my desire to build a complicated feeding simulator, both hawks and
sparrows "eat" when they successfully collide with their favorite food. A hawk will
attempt to close with any sparrow boid it sees, while a sparrow boid will deliberately
steer to intercept the nearest fly. Anything eaten is, of course, removed from the
world.

There's Always Another Fly

Since hawks feed on sparrows and sparrows feed on flies, flies are both at the low end
of the food chain and arguably the most important members of it. If they die off,
every other boid will too, sooner or later. To prevent this, flies have one feature that
no other type of boid has—they can reproduce. To do this, I've added a Reproduction
parameter to the CBoid class that controls the creation of new flies. When enough flies
congregate in a flock, they can reproduce, creating a new fly boid every few seconds.

Dinner on the Go

As mentioned previously, feeding is a pretty straightforward affair. When a hawk or
sparrow is hungry (in other words, its Hunger rating has decremented down to zero),
it will look for the nearest food it sees and try to collide with it. Any hawk that suc-
cessfully intercepts a sparrow will gain one hunger point and then check to determine
if it's eaten enough. The sparrow, on the other hand, is immediately removed from the
world. Sparrows hunt flies in a similar fashion.

Since hawks are normally faster than sparrows, and sparrows are normally faster
than flies, about the only thing that will prevent a given sparrow or fly from being
eaten is a failure on the part of the predator to catch its prey. Each boid will, of course,

334^ _ Section 3 Artificial Intelligence

automatically try to avoid any and all predators it sees, and so that natural motion
will help somewhat. Interestingly, the biggest single frustrating factor for predators are
the obstacles we'll be scattering about the world. Avoiding collision with them will
often slow down a predator enough for an individual target to get away—for a while,
anyway.

Flocking with Teeth

The results of all this effort can be seen in the Flocking with Teeth demo on the CD.
The demo maintains the same control features of the original, with the user being

ON me a> abje to pan jmj zoorn as desired, turn on bounding bubbles to better visualize boid
sight, avoidance, and cohesion distances, and so forth.

A few hawks (the larger delta-shaped objects) prowl in a world filled with obsta-
cles of all sizes. Groups of sparrows (the medium-sized delta-shaped objects) flit
between masses of flies (the masses of pixel-sized objects), eating them nearly as fast as
they can reproduce. Every so often, a hawk becomes hungry and swoops towards the
nearest flock of sparrows, causing them to scatter in all directions to avoid being
eaten. Often an obstacle will frustrate either predator or prey, preventing capture or
escape. Scattered flocks of sparrows and flies will seek the safety of others and form
new flocks, and the whole cycle starts over again.

Depending on how the demo is set up, and to some degree blind luck, most
demos end in one of two ways. The most likely outcome is what amounts to ecologi-
cal disaster—the sparrows eat all the flies or the hawks eat all the sparrows. If all the
flies die off, the sparrows also eventually die too from lack of food, and the hawks (left
foodless) will follow soon after. If the sparrows all die because the hawks are just a bit
too good at what they do, the hawks will eventually die as well, leaving a world filled
with nothing but flies and obstacles. This seemed to happen quite a bit in most of
my tests.

Another possibility is a sort of stasis between the sparrows and flies. The hawks
might all die off dirough bad luck and not finding any sparrows to eat. If this hap-
pens, the sparrows will live on, feeding on the flies for an indefinite period. They
might eventually kill off flies, which puts us back into the first scenario described ear-
lier, but a balance is also possible, with the flies reproducing just fast enough to keep
all the sparrows fed and happy.

If sparrows and hawks are allowed to reproduce (not the demo default, but
an easy exercise for the reader), just about any outcome is possible. This is the most
realistic way to configure the simulation, but it's also the most difficult to balance
properly.

Limitations and Potential Improvements

Although overall I'm fairly happy with the performance of the demo for the purposes
of this gem, there are several improvements and enhancements that suggest them-

3.11 Flocking with Teeth: Predators and Prey 335

selves, particularly if one were to try to adopt this code for a game. Although only flies
can reproduce in the demo, it's a simple matter to allow both sparrows and hawks to
do so. Another potential improvement that could help "close the loop" ecology-wise
might be to give the flies something to feed on as well, perhaps hawk feathers.

Vision is still handled very basically, with all boids having perfect 360-degree
vision that enables them to see infinitely in any direction. In reality, most predators
have rather keen and far-sighted forward vision, while most prey animals are fairly
near-sighted with vision to the sides (compare the wolf to the sheep, for example). It
wouldn't be too difficult to make vision in the demo more realistic and force hawks to
actually search for sparrows rather than simply stumbling across them, although the
additional overhead associated with limiting vision (line-of-sight tests, angle-of-vision
tests, etc.) can add a lot of math overhead.

Acknowledgments and Other Resources

Again, I'd like to thank Christopher Kline (Mitre Corporation) for his excellent
method for computing roll/pitch/yaw (liberally adapted here), originally published in
his C+ + Boids implementation (available on his Web site [Kline96]). Another must-
see site is the one maintained by the "father of flocking," Craig Reynolds
[ReynoldsOO], where there are nearly a hundred pointers to uses of flocking in gaming
and film, along with a huge resource of research on the topic. The author's Web site
[WoodcockOl] also maintains a number of pointers to flocking articles and pages.

One reader of the original Game Programming Gems built a great litde flocking
app that allows you to vary the influence of each steering behavior in real time
[GrubOl]. This is a great way to study how these behaviors affect the flock on an indi-
vidual basis, and how their combination causes the emergent behavior that makes
flocking so interesting.

Finally, an excellent book that addresses the topic of artificial life in general, in
addition to discussing both flocking and boids, is Steven Levy's Artificial Life
[Levy93].

References
[GrubOl] Grub, Tom, "Flocking Demo," www.riversoftavg.com/flocking.htm,

March 6, 2001.
[Kline96] Kline, Christopher, maintains one of several excellent pages on flocking,

together with many demos and sample code, at www.media.mit.edu/-ckline/
cornellwww/boid/boids.html, August 14, 1996.

[Levy93] Levy, Steven, Artificial Life: A Report from the Frontier Where Computers
Meet Biology, Vintage Books, 1993.

[Reynolds87] Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behav-
ioral Model, in Computer Graphics, 21(4) (SIGGRAPH '87 Conference Pro-
ceedings) pp. 25-34.

[ReynoldsOO] Reynolds, Craig, maintains an extensive reference on flocking and
steering behavior at www.red3d.com/cwr/boids/ and has presented a wide variety

336 Section 3 Artificial Intelligence

of papers at various conferences discussing the progress he's made in exploring
and perfecting uses of this technology, December 6, 2000.

[WoodcockOO] Woodcock, Steven, "Flocking a Simple Technique for Simulating
Group Behavior," Game Programming Gems, Charles River Media, 2000.

[WoodcockOl] Woodcock, Steven, maintains a page dedicated to game AI at
www.gameai.com, 2001.

3.12

A Generic Fuzzy State
Machine in C++

Eric Dybsand
edybs@ix.netcom.com

Fuzzy logic was ably presented in the original Game Programming Gems article
titled "Fuzzy Logic for Video Games" by Mason McCuskey [McCuskeyOO]. Like-

wise, a generic Finite State Machine was introduced in that same book, in the article
"A Finite-State Machine Class" written by me [DybsandOO]. This gem will serve to
marry these two concepts into a generic Fuzzy State Machine (FuSM) C++ class that
you can use in your games, and to provide you with an additional overview of fuzzy
logic, as well as some ideas on how to use fuzzy logic in your games.

First, let's briefly review the FAQ definition of fuzzy logic:

"Fuzzy logic is a superset of conventional (Boolean) logic that has been
extended to handle the concept of partial truth—truth values between
"completely true" and "completely false" [FAQ97]."

Thus, instead of the states of ON and OFF, or TRUE and FALSE, a fuzzy state
machine can be in a state of almost ON or just about OFF, or partially TRUE or sort
of FALSE. Or even both ON and OFF or TRUE and FALSE, but to various degrees.

What does this mean to a game developer? It means that a Non-Player Character
(NPC), for instance, does not have to be just AMD at a player, but that the NPC can
be almost MAD, or partly MAD, or really MAD, or raging MAD at a player. In other
words, by using a FuSM (implementing fuzzy logic), a game developer can have mul-
tiple degrees of state assigned to a character (or a concept within the game—more on
this later). This could also mean that states in a game do not have to be specific and
discrete (often referred to in the fuzzy logic world as crisp), but can be, well, fuzzy (less
determined). The real advantage to this is discussed in the next section.

Status in a FuSM is typically represented internally using the range of real num-
bers from 0.0 to 1.0; however, that is not the only way we can represent a fuzzy value.
We can choose literally any set of numbers, and consider them fuzzy values. Continu-
ing the NPC attitude example [DybsandOO], let us consider how to maintain the "dis-
like portion" of the attitude of an NPC toward a player within a FuSM. We could use
the range of integers from 1 to 25 to indicate that an NPC has a variable feeling of

337

338 Sections Artificial Intelligence

99

These values could even overlap

i V1 Annoyed > 30

FIGURE 3.12.1 A) Fuzzy values for dislike attitudes toward player. B) Fuzzy values that
overlap.

ANNOYANCE toward a player, and the range of integers from 26 to 50 may reflect an
NPC's variable feeling of MAD toward a player, while the range of integers from 51 to
99 may indicate the NPC's variable feeling of RAGE. Thus, within each type of atti-
tude toward a player, the NPC may possess various degrees of dislike such as
ANNOYANCE, MAD or RAGE (Figure 3.12.1).

Before we leave this brief introduction to FuSMs, let's clear up one common mis-
conception often associated with fuzzy logic: there is no specific relationship between
fuzzy values and probability. Fuzzy logic is not some new way to represent probability,
but instead represents a degree of membership in a set. In probability, the values must
add up to 1.0 in order to be effective. Fuzzy logic values have no such requirement (note
the overlap example just presented). This does not mean that fuzzy logic values can't
happen to add up to 1.0, it just means that they don't have to for a FuSM to be effective.

Why Use a FuSM In a Game?

In this author's opinion, the number-one reason to use FuSMs in a computer game is
that it is an easy way to implement fuzzy logic, which can broaden the depth of rep-
resentation of the abstract concepts used to represent the game world and the rela-
tionships between objects in the game.

In essence, to increase gameplay!
How do FuSMs increase gameplay, you ask? FuSMs increase gameplay by provid-

ing for more interesting responses by NPCs, by enabling less predictable NPC behav-
ior, and by expanding the options for choices to be made by the human player.

Thus, a player does not encounter an NPC that is just MAD or not MAD about
being attacked by the player. Instead, the player must deal with an NPC that can be

3.12 A Generic Fuzzy State Machine in C++ 339

various degrees of being MAD. This broader array of considerations increases game-
play by adding to the level of responses that can be developed for the NPC, and seen
by the human player.

Another effect of adding FuSMs to computer games is to increase the replayabil-
ity of the game. By broadening the range of responses and conditions that the player
may encounter in given situations during the game, the player will be more likely to
experience different outcomes in similar situations.

How To Use FuSMs in a Game

Actually, various forms of FuSMs have been used a lot in computer games!
One example of where a FuSM has been used in computer games is for the health

or hit points of an NPC or agent. Instead of the agent simply being healthy or dead
(finite states), using a range of hits points can reflect the agent being anything from
completely healthy to partially healthy to almost dead to totally dead (fuzzy states).
Another example of using a FuSM in a computer game can be found in the control
process for accelerating or braking an Al-controlled car in a racing game. Using a
FuSM in this case would provide various degrees of acceleration or braking to be cal-
culated in lieu of the finite states of THROTTLE-UP or THROTTLE-DOWN and
BRAKE-ON or BRAKE-OFF actions. And as our ongoing example of representing an
attitude shows, a FuSM is perfect for representing NPC emotional status and attitude
toward the player or other NPCs.

Applying fuzzy logic to states in a computer game is relatively straightforward, as
noted in the previous examples. Those decision processes that can be viewed as having
more than two discrete outcomes are perfect candidates for the application of fuzzy
logic, and there are many of those processes to be found.

Now let's consider putting fuzzy logic into a generic C++ class, a FuSM.

Review of Game Programming Gems' Generic
Finite State Machine in C++

The original Generic FSM in C++ [DybsandOO] consisted of two classes: FSMclass
and FSMstate. The FSMclass class object encapsulated the actual finite state machine
process, maintained the current state of the FSM, supported the container for the var-
ious FSMstate class objects, and provided control for the state transition process.

The FSMstate class object encapsulated a specific state and maintained the arrays
of input and output states for which a transition could be performed for the state of
the object.

Inputs to the FSM were presented to FSMclass: :StateTransition(), which
determined the appropriate FSMstate object that was to handle the input (based on
the current state), and then the input was passed to FSMstate:: GetOutput () to obtain
the new output state.

340 Sections Artificial Intelligence

The new output state was returned to the FSM user process by FSMclass::State -
Transition () and was also made the new current state of the FSMclass object. Thus,
the generic FSM provided a crisp and discrete state transition in response to an input.

Adapting the Generic FSM in C++ to FuSM in C++

There are only a few changes needed to transform the Generic FSM into a FuSM. The
first is to add support to the FSMclass class object for multiple current states. The next
change is to modify the FSMstate class to support degrees of being in a state. Finally, we
need to modify the state transition process within both class objects to support a tran-
sition to multiple states and a degree of being in the new state. During this refinement
process, we will morph FSMclass into FuSMclass and the FSMstate class into the
FuSMstate class.

The reader is invited to review the Fuzzy/Finite State Machine project found on
,-ke companion CD-ROM, and to follow along in that project code as the various
classes are referenced.

The adaptation process begins with the FuSMclass class that, while similar to
FSMclass, is now capable of supporting multiple current states (the new FuSMclass
and FuSMstate class members are shown in bold.) This capability is provided by the
FuzzyState_List m_list member, which is an STL list object that contains pointers
to FuSMstate objects. A pointer to any active fuzzy state (based on the current input
value) object is saved in this list. This way, multiple current states can be supported.
As in FSMclass before, FuSMclass also maintains an STL map object (the Fuzzy -
State_Map m_map member) for containing pointers to all possible FuSMstate objects
that could be considered by FuSMclass.

We continue the adaptation process by developing an access member function
(called GetNextFuzzyStateMember()) that will provide an accessing service to the
FuSMclass object. The GetNextFuzzyStateMember() member function maintains a
pointer to the next FuSMstate pointer in the FuzzyStateJ-ist m_list, so that all
active current states can be accessed by processes outside of FuSMclass. Thus, this ser-
vice is how you can get access to the active current states by your program. By contin-
uing to call GetNextFuzzyStateMember() until you receive a NULL pointer, your
program can determine all the active fuzzy states.

The next step in the adaptation process is to modify the FuSMstate class to sup-
port various degrees of membership. This support is provided by adding the new
member variables of int m_iLowRange and int m_iHighRange. For simplicity, this
design views the fuzzy membership range as whole positive numbers, and could be
easily adapted to view membership as a set of real numbers. For convenience, this
adaptation also maintains two additional attributes of the FuSMstate object: the value
of membership in the set for this FuSMstate object (int m_iValueOf Membership), and
the degree of membership in the set (int m_iDegreeOfMembership).

Notice that the biggest difference between the finite state object (FSMstate) and
our new fuzzy state object (FuSMstate) is that a state transition array is no longer

3.12 A Generic Fuzzy State Machine in C++ 341

needed. This is because in fuzzy logic, it is possible to be in one or more states at the
same time; while in finite logic, it is possible only to be in one state at a time.

Concluding the adaptation process involves modifying the state transition
process in both the FuSMclass and FuSMstate objects to support the possibility of
multiple current states and to support various degrees of membership within a given
state. For FuSMclass, this means modifying StateTransition() to process the Fuzzy-
State_Map m_map member containing all possible states, giving each FuSMstate object
an opportunity to effect a transition based on the accumulated input value (the int
m_iCurrentInput member found in the FuSMclass). Those FuSMstate objects that do
transition have their pointers saved off in the FuzzyState_List m_list member, thus
indicating that the FuSMstate object is an active current state.

For the FuSMstate class object, the adaptation process involves replacing FSM-
state: :GetOutput () (from the FSM) with a new transition function. The new FuSM-
state: :DoTransition() member function accepts the input value maintained by
FuSMclass and considers the degree of membership this input value represents. If
membership within the fuzzy state exists, the member function returns a TRUE and
maintains the status of membership for any future access.

This completes the adaptation process. For more details and the code listings, see
tne FuSM project on the companion CD-ROM.

Now Fuzzy Up Your Games!

Using the FuSMclass and FuSMstate classes as a guide, you are now ready to start mak-
ing your games more fuzzy! Doing so will enrich the gameplay experience of your
players and broaden your own understanding of how to deploy one of the more flexi-
ble forms of artificial intelligence tools available to game developers.

References
[DybsandOO] Dybsand, Eric, "A Generic Finite State Machine in C++," Game Pro-

gramming Gems, Charles River Media, 2000.
[FAQ97] "What is fuzzy logic?" FAQ: Fuzzy Logic and Fuzzy Expert Systems 1/1

Monthly Posting, www.faqs.org/faqs/fuzzy-logic/partl/, 1997.
[McCuskeyOO] McCuskey, Mason, "Fuzzy Logic for Video Games," Game Program-

ming Gems, Charles River Media, 2000.

3.13

Imploding Combinatorial
Explosion in a Fuzzy System

Michael Zarozinski, Louder Than
A Bomb! Software
michaelz@LouderThanABomb.com

Fuzzy logic, when you come right down to it, is just a bunch of "if-then" state-
ments. One of the biggest problems in using fuzzy logic is that the number of "if-

then" statements grows exponentially as you increase the number of fuzzy sets you
"if" together. This is called combinatorial explosion, and can make fuzzy systems slow,
confusing, and difficult to maintain. In games, speed is essential, and combinatorial
explosion can make the use of fuzzy logic impractical.

For an introduction to fuzzy logic see "Fuzzy Logic for Video Games" by Mason
McCuskey in the first Game Programming Gems [McCuskeyOO]. For this gem, we'll
provide some definitions, as there is little agreement on fuzzy logic terminology.

• Variable. A fuzzy variable is a concept such as "temperature," "distance," or
"health."

• Set. In traditional logic, sets are "crisp"; either you belong 100 percent to a set or
you do not. A set of tall people may consist of all people over six feet tall, anyone
less than six feet is "short" (or more appropriately, "not tall"). Fuzzy logic allows
sets to be "fuzzy" so anyone over six feet tall may have 100-percent membership
in the "tall" set, but may also have 20-percent membership in the "medium
height" set.

The Problem

Table 3.13.1 shows the effects of combinatorial explosion as more variables and/or
sets are added to the system.

This exponential growth in the number of rules can bring any system to its knees
if every possible rule must be checked on each pass.

342

3.13 Imploding Combinatorial Explosion in a Fuzzy System 343

Table 3.13.1 The Effects of Combinatorial Explosion

Number of Variables Sets Per Variable Number of Rules

2
3
4
5
6
7
8
9

10

5
5
5
5
5
5
5
5
5

52 =

53 =
54 =
55 =
56 =
57 =
58 =
59 =
510 =

25
125
625
3,125
15,625
78,125
390,625
1,953,125

= 9,765,625

The Solution

William E. Combs, an engineer at Boeing, developed a method for turning the expo-
nential growth shown above into linear growth known, appropriately enough, as the
"Combs Method." This results in a system with 10 variables and 5 sets per variable
having only 50 rules, as opposed to 9,765,625 rules.

It is important to note that the Combs Method is not an algorithm for convert-
ing existing "if-then" rules to a linear system. You should start from the bottom up,
creating rules that fit in with the Combs Method.

If you're interested in the theory behind the Combs Method, see the proof at the
end of this gem.

The Real World

To bring this theory into the real world, we'll look at a trivial system for calculating
the aggressiveness of a unit in a game. For now, we'll consider a one-on-one battle with
three variables, ignoring any surrounding units (friend or foe):

• Our health
• Enemy health
• Distance between us and the enemy

The health variables have three sets: Near death, Good, and Excellent.
The distance variable has three sets: Close, Medium, and Far.
Finally, our output (aggressiveness) has three sets: Run away, Fight defensively,

and All-out attack!.

Traditional Fuzzy Logic Rules

If we were using a traditional fuzzy logic system, we'd start creating rules in a spread-
sheet format as shown in Table 3.13.2.

Section 3 Artificial Intelligence

Table 3.13.2 Some Traditional Fuzzy Logic Rules

Our Health

Excellent
Excellent
Excellent
Excellent
Excellent
Excellent
Excellent
Excellent
Excellent

Enemy Health

Excellent
Excellent
Excellent
Good
Good
Good
Near death
Near death
Near death

Distance

Close
Medium
Far
Close
Medium
Far
Close
Medium
Far

Aggressiveness

Fight defensively
Fight defensively
All-out attack!
Fight defensively
All-out attack!
All-out attack!
All-out attack!
All-out attack!
All-out attack'

Good Good Close Fight defensively
Good Near death Close Fight defensively

Near death
Near death
Near death

Excellent
Excellent
Excellent

Close
Medium
Far

Run away
Run away
Fight defensively

Note that Table 3.13.2 only shows 14 of the 27 possible rules. While a trivial
example such as this is fairly manageable, combinatorial explosion quickly conies into
play. In a game, we may need to take into account more variables such as the relative
health of our forces and the enemy forces that may join in the battle. If we were to
represent these two additional variables (bringing the total number of variables to
five), the table would grow from 27 rules to 243 rules. This can quickly get out of
hand. Fortunately, the Combs Method only needs 15 rules to deal with the same five
variables.

Combs Method of Fuzzy Logic Rules

Building rules in the traditional system, we look at how the combination of input sets
relates to the output. To build rules using the Combs Method, we look at each indi-
vidual set's relationship to the output and build the rules one variable at a time (Table
3.13.3).

In a Combs Method system, it is recommended that all variables have the same
number of sets as the output variable. This is not an absolute rule, but it gives each
output set the chance to be paired with an input set for each variable.

3.13 Imploding Combinatorial Explosion in a Fuzzy System 345

Table 3.13.3 Each Individual Set's
Relationship to the Output

Our health

Excellent

Aggressiveness

All-out attack!
Good Fight defensively
Near death Run away

Enemy health

Excellent

Aggressiveness

Run away
Good Fight defensively
Near death All-out attack!

Distance

Close

Aggressiveness

Fight defensively
Medium Fight defensively

Far All-out attack!

Concrete Example

To test the system, we'll use the following values:

• Our health: 76.88
• Enemy health: 20.1
• Distance: 8.54

Figures 3.13.1 through 3.13.3 show the "Degree of Membership," or DOM, for
the input values in the system (note that the DOMs for a variable do not have to sum
to 100 percent).

r.O;

FIGURE 3.13.1 Our Health>r a value of 76.88. Near death:
Excellent: 53%.

346 Section 3 Artificial Intelligence

fear, death
1:0

FIGURE 3.13.2 Enemy Healthy»rd value of 20.1. Near death: 60%, Good: 17%,
Excellent: 0%.

Figures 3.13.1 through 3.13.4 were taken from the Spark! fuzzy logic editor,
which allows you to visually create a fuzzy logic system, integrate it into your game,
and change the AI in real time without having to recompile.

FIGURE 3.13.3 Distance fir a value of 8.54. Close: 83%, Medium: 0%, Far:

Concrete Example with the Traditional System

Using the rules we created earlier, the rules listed in Table 3.13.4 are activated in the
traditional system.

The DOM of the input sets are ANDed together to get the output set's DOM. The
ANDing is logically equivalent to taking the MINIMUM of the three input values.

The denazification method we're using—center of mass—takes the MAXIMUM
value for the output set then finds the center of mass for the output sets (Figure
3.13.4).

3.13 Imploding Combinatorial Explosion in a Fuzzy System 347

Table 3.13.4 These Rules Are Activated in the Traditional System

Our Health Enemy Health Distance Aggressiveness

Excellent (53%)
Excellent (53%)
Good (18%)
Good (18%)

Good (17%)
Near death (60%)
Good (17%)
Near death (60%)

Close (83%)
Close (83%)
Close (83%)
Close (83%)

Fight defensively (17%)
All-out attack! (53%)
Fight defensively (17%)
Fight defensively (18%)

:.AI.oyl

.23

o;6o

SO

m I

FIGURE 3.13.4 Traditional system output. Fight defensively: 18%; All-out attack: 53%;
Aggressiveness: 68.66.

Concrete Example Using the Combs Method

Using the same input values, the Combs Method rules are listed in Table 3.13.5.
The Combs Method result of 60.39 is not exactly the same as the traditional

method (68.66), but we wouldn't expect it to be as we're using a different inference
method. The Combs Method is ORing the values together, which is the same as
taking the MAXIMUM (Figure 3.13.5). Traditional fuzzy logic ANDs values
together, which takes the MINIMUM; hence, the difference in the fight defensively
output sets.

Note that (in this case) if we took the MINIMUM of the output sets (and there
is no rule saying we can't) we would get the exact same result as the traditional fuzzy
logic method. This is a result of the rules we selected for the Combs Method. Since
there is not an algorithm to convert traditional fuzzy logic rules to the Combs
Method, we cannot say that by simply taking the MINIMUM you will always get the
same results as in the traditional method.

The Proof

It is not essential that you understand why the Combs Method works in order to use
it. Formal logic can be confusing, so this proof is provided for the reader who wishes
to have a deeper understanding of the theory behind the Combs Method. The Combs

348 Section 3 Artificial Intelligence

Table 3.13.5 Combs Method system output. Fight defensively: 83%;
All out attack: 53%; Aggressiveness: 60.39.

Our Health

Excellent (53%)
Good (18%)

Enemy Health

Good (17%)
Near death (60%)

Distance

Close (83%)

Aggressiveness

All-out attack! (53%)
Fight defensively (18%)

Aggressiveness

Fight defensively (17%)
Fight defensively (60%)

Aggressiveness

Fight defensively (83%)

iJilli.iiisl'-spgs'̂ ?!
""H *

ft 00

FIGURE 3.13.5 Combs Method system output. Fight defensively: 83%, All out attack:
53%. Aggressiveness: 60.39.

Method is based on the fact that the logical proposition (p and q) then r is equivalent
to (p then r) or (q then r).

Since fuzzy logic is a superset of formal logic, we can ignore "fuzziness" and just
prove the equivalence of the Combs Method to the traditional method. In Table
3.13.6, p and q are antecedents and r is the consequence. The antecedents are state-
ments such as "if Jim is tall" or "if Jim is healthy." The consequence is a potential
result such as "Jim can play basketball".

This proof is straightforward, except for the x thenjy type clauses. These are stan-
dard formal logic propositions, but their truth table is confusing—especially when x
and y are false but the proposition is true. See [aiGuruOl] for some examples that will
help clarify this proposition's truth table.

3.13 Imploding Combinatorial Explosion in a Fuzzy System

Table 3.13

P..__J7 _.,.
T T
T T
T F
T F
F T
F T
F F
F F

349

.6 Antecedents and Consequences

pandq

T
T
F
F
F
F
F
F

T Ip and q) then r

T T
F
T
F
T
F
T
F

F
T
T
T
T
T
T

p then r

T
F
T
F
T
T
T
T

q then r (p then r) or (Q then r)

T T
F
T
T
T
F
T
T

F
T
T
T
T
T
T

If you need visual proof, the Venn diagrams are shown in Figures 3.13.6 and
3.13.7. Since Venn diagrams can only show AND, OR, and NOT relationships, the
following conversions are made by material implication:

• Traditional Logic: (p and q) then r is equivalent to (not (p and q)) or r
• Combs Method: (p then r) or (q then r) is equivalent to ((not/>) or r) or ((not q)

or r)

p and q not (p and q) (not (p and q)) or r

FIGURE 3.13.6 Venn diagram for Traditional Logic.

(not p) or r (not q) or r ((not p) or r) or ((not q) or r)

FIGURE 3.13.7 Venn diagram for Combs Method.

350 Sections Artificial Intelligence

Conclusion

If forced to make a choice between fast and intelligent game AI, fast will win almost
every time (ignoring turn-based games). The Combs Method allows you to create AI
that is not only fast, but also complex enough to result in rich, lifelike behavior, thus
providing a more engaging experience for the player.

Next time you're faced with creating a complex behavior system, give the Combs
Method a try. You may be surprised by the depth of the behavior you can get with
such a small number of rules.

References

[aiGuruOl] Zarozinski, Michael, "if p then q?" available online at
www.aiGuru.com/logic/if_p_then_q.htm, March 5, 2001.

[Andrews97] Andrews, James E., "Taming Complexity in Large-Scale Fuzzy Sys-
tems," PC AI (May/June 1997): pp.39-42.

[Combs99] Combs, William E., The Fuzzy Systems Handbook 2nd Ed, Academic
Press, 1999.

[McCuskeyOO] McCuskey, Mason, "Fuzzy Logic for Video Games," Game Program-
ming Gems, Charles River Media, 2000.

3.14

Using a Neural Network in a
Game: A Concrete Example

John Manslow, Neural

Technologies Limited
jfm96r@ecs.soton.ac.uk

The original Game Programming Gems book included a contribution that gave a
broad and comprehensive overview of the field of neural networks [LaMotheOO].

This gem complements that by providing a concrete illustration of the application of
one of the most useful and widely applied neural networks, the multiplayer percep-
tron (MLP). In so doing, it describes how to identify problems that can be solved by
the MLP, and highlights the steps required to produce a solution.

The Game _._
To provide a concrete illustration of the application of the MLP for this gem, it was
necessary to construct an application that was sufficiently simple that the role of the
neural network was clear, but not so trivial as to have any obvious alternative solution.
The application that was settled upon was a simple tank game where two tanks are
placed on a randomly generated side-view landscape, with the leftmost tank con-
trolled by the player, and the rightmost tank by the computer.

The tanks take turns firing at each other, and the first one to score a hit is
declared the winner. Each tank aims by adjusting the inclination of its barrel—a task
made especially difficult because the tank's shell decelerates as it travels (due to drag)
and is affected by wind (which, for simplicity, maintains a constant speed and direc-
tion for the duration of the shell's flight). The main challenge for the AI is thus how
to set the inclination of its tank's barrel to hit the enemy tank. This gem will show
how an MLP can be taught, by example, to solve this problem.

The Multilayer Perceptron

The MLP is a type of neural network that became popular in the mid-1980s as a
result of the discovery of a particularly efficient way of teaching it. Since then, the
technique has grown rapidly in popularity and is currently one of the most widely

351

352 Section 3 Artificial Intelligence

applied neural network architectures in industry, and has even been used in a number
of games (such as Codemasters' Colin McRae Rally 2.0).

Although more advanced techniques are now common in academia, the MLP
remains popular because it is one of the easiest to understand, easiest to code, easiest
to apply, and offers robust performance even in the hands of relatively inexperienced
users. The MLP is thus a good starting point for people new to the field of neural net-
works and a powerful tool for more experienced users.

A neural network such as an MLP is really just a complex nonlinear function with
a number of adjustable parameters that can be changed to control its shape. The
process of teaching the network (or training it, as it is more commonly called) is sim-
ply one of adjusting its parameters so that the function it represents takes on a desired
shape. Although polynomials and splines can be used to address similar problems to
the MLP, the structure of the MLP makes it particularly robust.

The shape of the function to be learned is indicated by pairs of input-output sam-
ples and thus neural network training consists of nothing more than curve fitting-—
adjusting the parameters in the network so that it fits roughly tJirough the samples.
This process will be familiar to many readers from science class, where it was often
necessary to draw smooth curves through data collected from experiments.

Since neural networks often represent quite complex equations, they are fre-
quently visualized in terms of directed graphs. For example, Equation 3.14.1 is the
formula for the output j/ of an MLP with one linear output, N inputs, Xj to x//, and M
hidden neurons, and Figure 3.14.1 is its graphical representation. Although the MLP
is represented by a directed graph, arrows are usually omitted from the network dia-
gram since information flow is always in the direction of input to output.

Input neurons

Hidden neurons

MN

M

Output neuron

FIGURE 3.14.1 The graphical representation of the MLP in Equation 3.14.1. The
ellipses indicate that the number of inputs and hidden neurons can vary.

3.14 Using a Neural Network in a Game: A Concrete Example 353

y-
(3.14.1)

The adjustable parameters of the network are the w's (weights) and b's (biases),
the distinction being that weights connect neurons together, whereas the biases excite
or inhibit individual neurons even in the absence of other activity in the network. The
biases are not shown in Figure 3.14.1 since each can be considered to be part of the
internal make-up of an individual neuron. A detailed examination of the structure of
neural networks is given in [LaMotheOO] and [Haykin94] and will not be repeated
here.

For the purposes of diis gem, it is sufficient to understand that an MLP represents
the function given in Equation 3.14.1, and that that function will be used to calculate
die inclination of die AI tank's barrel that is required to hit die player's tank. The w's
and b's in Equation 3.14.1 are adjustable parameters that we can use to fit the MLP to
a set of samples diat illustrate how the inclination of the barrel should be set, and that
those parameters are found using some curve-fitting procedure, otherwise known as
training.

So, in order to train the MLP, we need a set of samples that consists of input-
output pairings that are examples of how the AI tank's barrel should be set to hit the
player's tank. Clearly, from the problem we're trying to solve, we want the network's
output to be the inclination of die AI tank's barrel, but what should die inputs be?
This often complex question is considered in the next section.

Input Selection

Before the input-output samples that are required to train the network can be col-
lected, it is necessary to decide what inputs the MLP is going to need. Clearly, the
inputs must contain the information necessary for die MLP to calculate the correct
output; in diis case, die inclination of the tank's barrel that is required to hit the
player's tank.

The selection of inputs is often difficult in practice, since a wide range of informa-
tion can usually be extracted from the game world, and the problem being solved is
often too complex or poorly understood to specify exactly what information is useful.
In this case, much time can be spent training many different networks with different
combinations of input variables to see which perform best. To minimize the effort
required to find good combinations, the following guidelines should be followed:

• Use prior knowledge about the problem you're trying to solve. Make educated
guesses about what information in die game world is likely to be relevant. If you

354 Section 3 Artificial Intelligence

think the network output should depend on a particular function of variables,
add that function into the set of network inputs.

• Abstract variables derived as a function of much simpler ones often provide more
precise information than any of their constituent parts. For example, in a strategy
game, a single indicator of enemy strength may be more useful than lots of indi-
vidual indicators relating to different aspects of it.

• Use variables that provide as different information about the game world as pos-
sible, because this lets you convey the same amount of information with fewer
inputs. For example, no benefit would be gained in giving the relative positions of
the players tank and the AI tank in both polar and Cartesian coordinates since
they contain no unique information.

• Try using combinatorial search algorithms to look for good combinations of
inputs. For example, forward selection takes a large set of candidate inputs and
repeatedly adds single inputs to the network, at each stage adding the one that
improves performance the most. Such techniques require minimal human inter-
vention, but are slow and may fail to find the best combination.

Although it is tempting to avoid the laborious process of input selection by pro-
viding the network with access to all variables that may be of relevance, this is likely to
result in a network that performs poorly and in unpredictable ways. Input selection is
the most labor-intensive part of developing a neural network application, and finding
a small set of inputs that is rich in relevant information is crucial to success.

Fortunately, our prior knowledge is sufficient to say exactly what information is
required to work out the inclination of the AI tank's barrel—the displacement
between the tanks (expressed, say, as two inputs, x-displacement and^-displacement),
and the wind speed and direction (expressed as a single signed input). The drag on the
shell is fixed, and hence the network does not need to be told the strength of drag, but
will learn its effect during training. Now that it has been decided what inputs to use,
it is possible to collect the samples that will be used during training.

Collecting Data

The simplest and most obvious way to generate samples that show how to set the
inclination of the AI tank's barrel is for a player to control the AI tank, and to record
the selected input variables (relative positions of the tanks and wind speed) and the
inclination of the AI tank's barrel every time the player controlling the AI tank scores
a hit. This process is repeated until a sufficiently large set of samples is available for
training. Since a human player typically hits the enemy tank only in around one in
five shots, the many hundreds or thousands of samples required for training can take
a long time to collect.

To generate the samples used in this gem, the data collection process was auto-
mated by performing simple random searches for the correct inclination. This was
done by setting the AI tank's barrel to random inclinations until, by chance, it scored

3.14 Using a Neural Network in a Game: A Concrete Example 355

a hit. At this point, the relative positions of the tanks, the wind speed, and the incli-
nation that achieved the hit were recorded, and the process repeated for new, ran-
domly placed tanks and a random wind speed.

Although this was highly inefficient, it required no human intervention and was
left running until a sufficiently large data set had been generated. In addition, the
simulation of the game world need not be run at normal speed and may be acceler-
ated by, for example, disabling rendering, provided that this does not change its
behavior. Overnight, this process achieved around 1200 hits and hence created a data
set of roughly 1200 samples.

One important question that needs to be asked when collecting data is, "How
much data should I collect?" Unfortunately, there is no simple answer to this, because
it depends on the complexity of the problem you're trying to solve. In practice, pro-
vided that the number of hidden neurons is kept small (the 10 used in this gem would
normally be considered quite a large number), good performance can be achieved
with as few as 107 training samples for a network with 7 inputs.

One important hazard in developing neural network solutions is that the last-
minute tweaking of a game engine that is often done to fine-tune game play can, if it
changes the behavior of the game world, cause the neural network to perform poorly.
This can be overcome by repeating the data collection and training processes to pro-
duce a new set of parameters for the network. Provided that the changes in the behav-
ior of the game weren't too drastic, the difficult problem of input selection will not
normally have to be repeated. Now that we've decided what the network is going to
control and the inputs it needs, and we've collected some training data to show it
what to do, we're ready to train it.

Training the MLP

As has already been described, the MLP is a nonlinear function that is fit to a series of
samples by adjusting its parameters. This training process is achieved by using an
optimization algorithm to search for the parameters that minimize a measure of the
error with which the MLP reproduces each output sample given their associated
input. The mean squared error is the most commonly used error measure and is cal-
culated from the sum of the squares of the differences between the MLP s outputs and
the corresponding outputs in the samples, divided by the number of samples.

Although the gradient descent optimization algorithm is usually used to fit an
MLP to the training samples, this article uses a rarely applied technique called the
perturbation search because it is easier to code, easier to understand, and easier to
apply (for example, it is guaranteed to be stable). In addition, the perturbation search
does not require gradient information,

• Making it easy to experiment with a wide range of network structures, nonlinear-
ities, and error functions.

• Eliminating common bugs that result from the incorrect calculation of gradient
information or propagation of that information through the network structure.

356 Section 3 Artificial Intelligence

• Allowing integer versions of networks (aimed at low-end platforms) to be opti-
mized directly, avoiding some spurious behaviors that can result from the conver-
sion of floating-point networks to integer form.

• Permitting the inclusion of discontinuous functions in the network.

The basic perturbation search can be summarized as follows: Measure die perfor-
mance of the MLR Perturb the MLP's parameters by adding a small amount of
random noise to each one, and remeasure its performance. If its performance deterio-
rated, restore the parameters to dieir original values. Repeat this process until some
stopping criterion is met.

Since all of the techniques that can be used to train an MLP will indefinitely
improve its performance (if only incrementally), some decision must be made as to
when to stop training. To this end, the MLP's performance should periodically be
evaluated in the game, and training should stop either when the measured perfor-
mance is adequate, or when further training fails to improve performance.

When evaluating the performance of the MLP in the game, great care must be
taken to exercise the game in a way that is representative of how the game will actually
be played. This ensures that the environment that the MLP is presented with during
this testing phase is similar to the one that it will encounter once the game has
shipped, and hence guarantees that the measured performance is a useful guide to the
how the MLP will perform in the final product. If the MLP's performance in the
game fails to reach a useful level, consider the following causes:

• The optimization algorithm has hit a plateau or a local minimum [Bishop95].
Try restarting training from a random set of parameters.

• The input samples contain insufficient information about their associated out-
puts for the network to reproduce them. Repeat the input selection process to
find new inputs that contain more relevant information.

• The network is too simple to learn the relationship between the inputs and out-
puts in die sample data. Consider transformations of the inputs that might sim-
plify the relationship, or increase the number of hidden neurons in the network
(but keep them to an absolute minimum).

• The samples are not representative of the environment that the network encoun-
ters in game. The behavior of the game world must not change after the training
samples have been collected, and the samples must contain everything that the
network will encounter in-game in the right proportions.

Computational Issues

Since game AI operates in an environment in which CPU time is at a premium, it is
important to consider the computational cost associated with neural networks.
Unfortunately, training an MLP is processor intensive, making the MLP poorly
suited to in-game learning and, in most cases, much simpler learning mechanisms can
almost always be employed. In contrast, computing the output of a trained MLP

3.14 Using a Neural Network in a Game: A Concrete Example 357

requires very little processor time, particularly since all internal quantities can be
modeled using integers and nonlinear functions replaced by look-up tables. Such
optimizations have allowed the MLP to be used in several real-time titles on the PC
and Playstation.

Results

Following the steps outlined in the preceding sections, an MLP was created that had
three inputs, two consisting of a Cartesian representation of the relative positions of
the player's tank and the AI tank, and one representing wind speed. We collected
1207 examples of successful shots, and the MLP was trained for around two-and-a-
half hours on a PC with a 500MHz Intel Celeron processor. At this time, training was
stopped because the MLP's performance was as good as was required, achieving a 98-
percent hit rate in the game.

Conclusion

This gem described the steps taken to produce the neural network AI that is used in
C e>% the simple tank game that is included on the CD. The interested reader is strongly
on me CD encouraged to pursue important issues such as input selection and overfitting in refer-

ences such as [Haykin94] and [Bishop95], which are able to provide both a broader
introduction and greater detail than is possible here. Finally, there is no substitute for
practical experience—experiment with the MLP class that accompanies this article
and apply it to your own problems. Follow the development process that was out-
lined, and you'll discover neural networks to be a flexible and powerful tool.

References
[Bishop95] Bishop C. M., Neural Networks for Pattern Recognition, Oxford University

Press Inc., 1995.
[Haykin94] Haykin S., Neural Networks: A Comprehensive Foundation, Macmillan

College Publishing Company, 1994.
[LaMotheOO], LaMothe, A., Game Programming Gems, Edited by DeLoura, M.,

Charles River Media, Inc, 2000.
[SarleOl] Sarle, W. S., "Neural Network FAQ" available online at www.ci.tuwien

.ac.at/docs/services/nnfaq/FAQ.html, February 15, 2001.

4.1

Comparison of VIPM Methods

Tom Forsyth, Mucky Foot Productions
tomf@muckyfoot.com

View-Independent Progressive Meshing (VIPM) has moved from the status of an
interesting research project, to promising new technology, to sensible addition to

all the best engines, and now into the Direct3D graphics API itself. It is now becom-
ing almost required for any engine, and its inclusion in the Direct3DX library means
that one form of VIPM is relatively easy to add.

However, in an effort to push the performance of VIPM, and in particular to
drive the hardware as efficiently as possible, several new forms have been developed,
each with their own tradeoffs and characteristics. This gem is intended as a guide to
some of the more promising versions, and should help people decide which of the
many variants to use in particular situations.

This gem does assume a basic familiarity with VIPM, and there is no space for a
thorough introduction here. However, there are several good guides both in print and
online. The two best known are Jan Svarovsky's gem in Game Programming Gems
[SvarovskyOO] and Charles Bloom's Web site [BloomOl], both of which have excellent
step-by-step guides to implementations of the "vanilla" VIPM method. All of the
methods discussed here use the same basic collapse/split algorithm, but implement it
in different ways.

Considerations

There are a few main points on which the various methods need to be judged. Differ-
ent situations demand different choices, and the different ways each object type in a
game is used may mean that different methods of VIPM are used. Things to consider
include:

• Global memory cost. How much memory is taken up just by the mesh repre-
sentation of the model? This memory is shared between all onscreen instances.

• Instance memory cost. How much memory is used for each instance of the
object drawn onscreen? This memory is duplicated for each instance and cannot
be shared.

• Streaming or referenced memory cost. This is the amount of data actually ref-
erenced on each frame. There may be a large amount of existing data for an

363

Section 4 Geometry Management

object that is mainly left on CD or swapped out to a hard drive by virtual mem-
ory. However, on each frame the actual amount of data referenced may be small,
allowing the data to be streamed and/or handled efficiently by the virtual mem-
ory system. This is especially important for consoles that typically have limited
memory.

• CPU cost. How many clock cycles does the algorithm take, in terms of user code?
This includes both single-frame rendering costs and the cost of changing the level
of detail from frame to frame.

• API interface efficiency. How many CPU cycles are used in driver and API
interfaces getting data down to the graphics card?

• Bus bandwidth. How much data must be sent to the graphics card? On a PC,
this means the AGP bus bandwidth.

• Vertex—cache coherency. Modern graphics cards try to fetch, transform, and
light each vertex only once, even though the vertex will be used by multiple tri-
angles. To do this, they have a vertex cache that holds the most recently used ver-
tices, and applications need to try to use vertices in this cache as often as possible
to get maximum performance. An algorithm that uses more triangles than
another may still be faster because it has a higher vertex cache hit rate.

Vertex cache coherency will be quoted in terms of the number of vertices loaded
or processed per triangle drawn, or "vertices per triangle." Current triangle reordering
algorithms for static (i.e., non-VIPM) meshes using modern vertex caches of around
16 entries can get numbers down to around 0.65. For an example, see [Hoppe99].
This gives suitable benchmark figures to compare efficiencies when the mesh is con-
verted to a VIPM one. Also note that when calculating the vertices per triangle using
triangle strips, only drawn triangles should be counted, not degenerate ones. The
degenerate triangles are a necessary evil—they add nothing to the scene.

Algorithms that are good at streaming allow the application to draw huge worlds
that are mostly stored on disk, and to degrade image quality gracefully if the stream-
ing of data hits a limit somewhere along the way, such as available disk bandwidth or
available memory on the machine.

This also helps systems with virtual memory; if the data is accessed linearly, the
virtual memory manager can swap out data that has yet to be accessed, or has not
been accessed for a long time. Static data can be optimized even further and made
into a read-only memory-mapped file. This also ensures that irritating "loading level"
messages are no more tedious than absolutely necessary. The object data does not all
need to be loaded at the beginning; the player can start playing the level with low-
resolution data and as the detailed models are needed, they will be loaded.

All the methods discussed here are based around implementations of the same
fundamental algorithm. Single operations are done that collapse a single vertex onto
another vertex along one of its triangle edges. No new "average" vertex is generated,
and no collapses between vertices that do not share an edge are allowed. These are
worth looking into; however, the current consensus is that they involve a higher run-

4.1 Comparison of VIPM Methods 365

time cost for equivalent error levels on most current hardware. Of course, things
change, and new algorithms are always being invented.

A note on the terminology used: The resolution of a mesh is proportional to the
number of triangles in it. Thus, a high-resolution mesh undergoes edge collapses and
becomes a lower-resolution mesh. The opposite of an edge collapse is an edge split,
where a single vertex splits into two separate vertices. For a given edge collapse, there
is a kept vertex and a binned vertex. The binned vertex is not used in any lower-
resolution meshes, whereas the kept vertex is. For a given edge collapse, there are two
types of triangles. Those that use the edge being collapsed will not be in any lower-
resolution mesh and are binned. For a typical collapse, there are two binned trian-
gles, although there may be more or less for complex mesh topologies. Those that
are not binned but use the binned vertex are "changed" triangles, and changed so
that they use the kept vertex instead of the binned vertex. When performing an
edge split, the previously binned vertex and triangles are "new," although they are
often still called binned because there are typically no split data structures, just col-
lapse data structures that are done in reverse. Most of the perspective is in the col-
lapsing direction, so words like first, next, before, and after are used assuming
collapses from a high-triangle mesh to a low-triangle mesh. Again, splits are done by
undoing collapses.

This gem will be talking in a very PC and DirectX-centric way about CPUs, AGP
buses, graphics cards ("the card"), system/video/AGP memory, index, and vertex
buffers. This is generally just a convenience—most consoles have equivalent units and
concepts. Where there is a significant difference, it will be highlighted. The one term
that may be unfamiliar to the reader is the AGP bus; this is the bus between the main
system memory (and the CPU) and the graphics card with its memory. There are var-
ious speeds, but this bus is typically capable of around 500Mbytes/sec, which makes
it considerably smaller than the buses between system memory and the CPU, and
between the graphics chip and its video memory. Some consoles have a similar bottle-
neck; others use a unified memory scheme that avoids it. In many cases, this is the
limiting factor in PC graphics.

Vanilla VIPM

This is the best-known version of VIPM, and the version used by the Direct3DX8
library. It has a global list of static vertices, arranged in order from last binned to first
binned. Each time a collapse is done, the vertex being binned by the collapse is the
one at the end of the list, and the number of vertices used is decremented by one. This
ensures that the used vertices are always in a single continuous block at the start of the
vertex buffer, which means that linear software T&L pipelines always process only
the vertices in use.

The triangles are also ordered from last binned to first binned. Each edge collapse
generally removes two triangles, although they may actually remove anywhere from
zero upward for meshes with complex topologies.

Section 4 Geometry Management

Triangles that are not binned but are changed during a collapse simply have the
index to the binned vertex changed to that of the kept vertex. Since the index list
changes as the level of detail changes, the triangle index buffer is stored as per-instance
data. The index buffer is comprised of indexed triangle lists (each triangle defined by
three separate indices), rather than indexed triangle strips.

Each record of collapse data has the following format:

struct VanillaCollapseRecord
{

// The offset of the vertex that doesn't vanish/appear.
unsigned short wKeptVert;
// Number of tris removed/added.
unsigned char bNumTris;
// How many entries in wlndex0ffset[] .
unsigned char bNumChanges;
// How many entries in wlndex0ffset[] in the previous action.
unsigned char bPrevNumChanges;
// Packing to get correct short alignment.
unsigned char bPadding[1];

// The offsets of the indices to change.
// This will be of actual length bNumChanges,
// then immediately after in memory will be the next record.
unsigned short wlndex0ffset[] ;

This structure is not a fixed length — wlndexOf f set [] grows to the number of ver-
tices that need changing. This complicates the access functions slightly, but ensures
that when performing collapses or splits, all the collapse data is in sequential memory
addresses, which allows cache lines and cache prefetching algorithms to work .effi-
ciently. It also allows the application to stream or demand-load the collapse data off a
disk very easily. Because it is static and global, it can also be made into a read-only
memory-mapped file, which under many operating systems is extremely efficient.

Although at first glance bPrevNumChanges doesn't seem to be needed for collapses,
it is needed when doing splits and going back up the list — the number of wlndexOff -
set[] entries in the previous structure is needed so they can be skipped over.
Although this makes for convoluted-looking C, the assembly code produced is actu-
ally very simple.

To perform a collapse, the number of vertices used is decremented since the
binned vertex is always the one on the end. The number of triangles is reduced by
bNumTris; again, the binned triangles are always the ones on the end of the list.

The changed triangles all need to be redirected to use the kept vertex instead of
the binned one. The offsets of the indices that refer to the binned point are held in
wlndexOff set[]. Each one references an index that needs to be changed from the
binned vertex's index (which will always be the last one) to the kept vertex's index —
wKeptVert.

4.1 Comparison of VIPM Methods 367

VanillaCollapseRecord *pVCRCur = the current collapse;
iCurNumVerts-;
iCurNumTris -= pVCRCur->bNumTris;

unsigned short *pwlndices;
// Get the pointer to the instance index buffer.
p!ndexBuffer->Lock (&pwlndices);
for (int i = 0; i < pVCRCur->bNumChanges; i++)
{

ASSERT (pwIndices[pVCRCur->w!ndexOffset[i]] ==
(unsigned shortJiCurNumVerts);

pwIndices[pVCRCur->w!ndexOffset[i]] = pVCRCur->wKeptVert;
}
// Give the index buffer back to the hardware.
p!ndexBuffer->Unlock();
// Remember, it's not a simple ++
// (though the operator could be overloaded).
pVCRCur = pVCRCur->Next();

Note that reading from hardware index buffers can be a bad idea on some archi-

tectures, so be careful of exactly what that ASSERT () is doing—it is mainly for illustra-

tion purposes (Figure 4.1.1).

Index list VanillaCollapseRecord

wKeptVert = 4
bNumTris = 2
bNumChanges = 3
bPrevNumChanges = -1
wlndexOffset [3] = {
1,
5,
12}

Index list

148
846

FIGURE 4.1.1 An edge collapse with before and after index lists and the VanillaCollapseRecord.

368 Section 4 Geometry Management

Doing a split is simply a matter of reversing the process.

VanillaCollapseRecord *pVCRCur = the current collapse;
pVCRCur = pVCRCur->Prev();
unsigned short *pwlndices;
p!ndexBuffer->Lock (&pwlndices);
for (int i = 0; i < pVCRCur->bNumChanges; i++)
{

ASSERT (pwIndices[pVCRCur->w!ndexOffset[i]] ==
pVCRCur->wKeptVert);

pwIndices[pVCRCur->w!ndexOffset[i]] =
(unsigned shortJiCurNumVerts;

}
iCurNumTris += pVCRCur->bNumTris;
iCurNumVerts++;

plndexBuffer->Unlock();

Note that in practice, and for arbitrary historical reasons, in the sample code the
VertexCollapseRecords are stored last first, so the Prev() and Next () calls are swapped.

Vanilla VIPM is simple, easy to code, and has decent speed. It should probably be
the first version used for any evaluation of VIPM, because it is so simple, and even
this will give good scalability, streaming, and so on.

The good thing about vanilla VIPM is that it streams very well. Collapse infor-
mation and index buffer data is completely linear in memory and ordered by collapse,
so implementing a streaming system with fallbacks for when data is not immediately
available is extremely easy.

However, there are many bad things about vanilla VIPM. Vertex cache coherency
is poor. Because triangle order is strictly determined by collapse order, there is no
way to reorder triangles for better vertex caching.

Another problem is the relatively large per-instance memory use. The whole
index data chunk needs to be replicated for each instance. This can be reduced by
only allocating as many indices as are actually currently being used, and growing or
shrinking as needed (along with a bit of hysteresis to prevent calling malice () and
f ree() all the time), but it is still large if there are lots of objects onscreen.

Finally, vanilla VIPM only works with indexed triangle lists, which can be a poor
choice for hardware that prefers strips.

Skip Strips

Skip strips is a slightly overloaded name. It was borrowed from a paper on View-
Dependent Progressive Meshing (VDPM) [El-Sana99]. VDPM is significantly more
complex and requires some fairly extensive data structures to achieve good efficiency,
and a skip list is one of those data structures. However, the section that inspired this
VIPM method was the bit that noted that to bin a triangle, it does not have to fall off
the end of the index list, as in vanilla. There is not much wrong with simply making
it degenerate by moving one of its vertices (usually the binned vertex) to another one

4.1 Comparison of VIPM Methods 369

(usually the kept vertex), and leaving it in the list of drawn triangles. Hardware is very
good at spotting degenerate triangles, and throws them away very quickly without
trying to draw any pixels.

This means that the order of triangles is no longer determined by collapse order;
they can be ordered using some other criteria. The cunning thing that the original
skip strips paper pointed out is that triangles can now be ordered into strip order, and
indeed converted into strips. This is great for hardware that prefers its data in strip
order. Since this VIPM method was inspired by the paper, it inherited the name,
despite it being somewhat inaccurate.

The ability to reorder triangles increases vertex cache coherency. Strips are natu-
rally good at this—they have an implicit 1.0 vertices per triangle efficiency (for long
strips with no degenerates), and with the right ordering and a decent-sized vertex
cache, they can get much lower values.

One cunning thing about the implementation is that the collapse/split routines
and data structures are virtually identical to vanilla VIPM. The only change is that the
number of drawn triangles does not change with collapses and splits. Triangles simply
become degenerate; they do not fall off the end of the list.

However, this shows a big problem with skip strips. After many collapses, there
are many degenerate triangles in the list. Although they are rejected by the hardware
quickly, they still take some time to reject, and their index data still has to be sent to
the card. This eats into the bus bandwidth, and lowers the visible triangle throughput
in triangles/second.

After many collapses, the vertex cache efficiency also drops. The nice neat strips
will have been bent and broken by the collapses, which disrupts the cache efficiency.
Moreover, as triangles become degenerate, the number of indices referring to one of
the remaining vertices increases. A collapse that bins that vertex must change all the
indices that refer to it, including the degenerate triangles. Therefore, the more col-
lapses that are done, the more expensive each collapse becomes, because the size of
wlndexOffsett] grows. This does not scale with the number of triangles drawn,
which is no good since that is the whole point of VIPM—things at lower detail
should take less time to render.

Multilevel Skip Strips

Fortunately, there is a solution to most of skip strip's woes. After a certain number of
collapses, simply stop, take the current geometry with all of its collapses done, throw
away the degenerate triangles, and start making a completely new skip strip from
scratch. Continue collapses with this new skip strip until it too becomes inefficient,
and so on.

When creating each new skip strip level, all of the degenerate triangles are thrown
away, which reduces the number of triangles (both visible and degenerate) that are
sent to the card. The triangles are also reordered to make lists that are again vertex-
cache optimal. New collapses don't need to change lots of degenerate triangle indices

Section 4 Geometry Management

each time, each instance only needs to copy the skip strip level that it actually uses,
and they become shorter with decreasing detail.

The different index lists can be stored globally since when switching to a new list,
a new copy is taken and then refined with collapses to exactly the number of triangles
wanted. Therefore, the fact that there are now multiple index lists is not too bad—its
global data. This also restores some of the nice streaming friendliness that the vanilla
method has. The granularity is a bit coarser; the whole of an index list must be
grabbed before anything can be rendered using that level, but at least it's no longer an
all-or-nothing thing, and the lower-resolution index lists are actually very small.

For a bit more efficiency, two versions of the index lists can be stored in global
space: fully collapsed (before switching to a lower-resolution list, that is) and fully
uncollapsed. This means that a single-collapse oscillation across the boundary
between two index lists is still fairly efficient. If only the uncollapsed versions are held,
each time the level of detail increases, the higher-resolution index list must be copied,
and then all of its collapses need to be performed to draw the next frame. Having the
collapsed versions stored as well means that a change in the level of detail of n col-
lapses only actually requires n collapses (and sometimes fewer).

The actual collapse/split code and structures are the same as for standard skip
strips, except that there is a global array of structures holding the premade index lists,
the collapse lists for each one, and the number of collapses in each. Before doing any
collapses or splits, the code checks to see if it needs to change levels, and if so, copies
the new level's index list and starts doing collapses/splits until it reaches the right level
of detail within that level.

So, this has fixed all the bad things about skip strips when compared to vanilla in
exchange for an increase in global (but easily streamed or swapped) memory.

Skip strips also have an equivalent using triangle lists instead of triangle strips.
The principle is exactly the same, but use a different primitive. Some algorithms
require lists rather than strips, and some vertex cache routines can obtain slightly
higher caching rates with lists than strips. No separate implementation was done in
the sample code, because they are so similar.

Mixed-Mode VIPM

One of the problems with the types of VIPM mentioned so far is that the whole index
list needs to be copied for each instance of the object. This can be quite a burden in
some cases, especially on machines with limited memory, notably consoles, where
everything has to be shoehorned into memory that is usually half the size that the pro-
grammers would like, even before VIPM is mentioned. It would be excellent if some
of this index list could be moved to global (i.e., static and shared between instances)
memory instead of having to be copied for each instance.

On a multilevel skip strip, many of the triangles are not affected, even when that
level is fully collapsed. Therefore, there is no need to copy those triangles per instance;

4.1 Comparison of VIPM Methods 371

they can be global and shared between instances. In fact, for this algorithm, indexed
lists are used—the indexed strip case will be discussed later as a variant. At each level,
the triangles are split into four lists:

• The triangles that are not affected by any collapses.
• The triangles that are binned by collapses, but not modified by any before they

are binned.
• The triangles that are modified by collapses, but not binned.
• The triangles that are first modified by one or more collapses and then binned.

Lists 2 and 4 are each sorted by bin order, just as for vanilla VIPM. Lists 1 and 3
are sorted into whatever order gives the highest vertex cache efficiency. Then list 2 is
appended to list 1, and the combined list is put into a global index buffer that is sta-
tic and shared by all instances. List 4 is appended to list 3, and the combined dynamic
list is copied into instances when they use that level. This list is then modified at run-
time using exactly the same modification algorithm as vanilla VIPM.

To draw the mesh, the required collapses and splits are done to the dynamic per-
instance list, and the list is drawn. Then the associated level's static list is drawn, with
the only modification being that the number of triangles drawn will change as static
triangles are collapsed.

The code and structures needed are based on the multilevel skip list, except that
for each level there are two lists: the copied dynamic one and the shared static one.
The other change is that there are two triangle counts, one for each list, and a collapse
may alter either or both of these numbers. Therefore, the bNumTris member is
replaced by bNumStaticTris and bNumDynamicTris, and the appropriate increments
and decrements are added.

This means that a large proportion of each mesh is being drawn from a static
index buffer that is tuned for vertex cache coherency (list 1). It is not quite as good as
it could be, since the triangles in this list only make up part of the object. There will
be "holes" in the mesh where triangles have been moved to the other three lists, and
this decreases both the maximum and the actual vertex per-triangle numbers that are
obtained. Some of the dynamic buffer is also ordered for optimal vertex cache behav-
ior (list 3), although collapses can interfere with this efficiency, and the mesh for list 3
is usually far from usefully connected, so there is a limit to what any reordering
can do.

Like all multilevel methods, it is streaming friendly; although in this case, since
the lists are ordered by collapse order, the granularity is even finer at the triangle level,
not just the list level. Whether this is terribly exciting is a different question—the
finer control is probably not going to make much of a difference in performance.

This does require two DrawIndexedPrimitive() calls to Direct3D (or equivalent
API), although on most platforms, this is not a bottleneck and does not affect render-
ing speed. It may be important for very low-triangle meshes, and for these, switching
to another method may be appropriate.

372 Section 4 Geometry Management

Mixed-Mode Skip Strips

Mixed-mode skip strips are identical to mixed-mode lists, except that strips are used,
and instead of the dynamic list being done with vanilla VIPM, it is done using the
skip strips algorithm. As with skip strips, using strips means that ordering by collapse
order is too inefficient, and diis means that list 2 triangles now have to be binned by
being made degenerate. This forces them to become dynamic instead of static, and
they join lists 3 and 4. The triangles from these three lists are merged and treated as a
skip strips —reordered for optimal vertex cache efficiency, copied for each instance,
and modified by collapse information.

The disadvantages with this method are that there is now more data being copied
for each instance, and because the triangles are ordered by strip order and not collapse
order, triangles cannot be binned entirely by simply dropping them off the end of the
index list. However, both these factors are only mildly worse than the list version, and
if the hardware needs to be fed strips, this is still an excellent method.

Sliding Window

Sliding window VIPM introduces the idea of fully static and global index buffers,
with no editing of indices, and therefore a tiny amount of per-instance memory.

Sliding window notes that when a collapse happens, there are two classes of trian-
gles: binned triangles and modified triangles. However, there is no real need for the
modified triangles to actually be at the same physical position in the index buffer
before and after the collapse. The old version of the triangles could simply drop off
the end of the index buffer along with the binned triangles, and the new versions
added on at the other end.

Therefore, instead of an example collapse binning two triangles and editing three
others, it actually bins five triangles and adds three new ones. Both operations are per-
formed by just changing the first and last indices used for rendering—sliding a "ren-
dering window" along the index buffer (Figure 4.1.2).

The index buffer is split into three sections. At the beginning are triangles added
as a result of changes, in reverse collapse order. In the middle are triangles not affected
by collapses, in any (vertex cache-optimal) order. At the end are triangles binned or
changed by collapses, again ordered in reverse collapse order—first collapse at the
end. Note that a triangle modified as the result of a collapse cannot then be involved
(either binned or changed) in another collapse. To be modified by a second collapse
would mean that triangle would have to fall off the end of the index buffer. It has
already been added to the beginning so it cannot then also fall off the end—the
chance of the ordering being just right to allow this are incredibly slim.

Once a triangle has been modified by a collapse, the only way it can be involved
in another collapse is if a new index buffer is started that has all the same triangles as
the previous (collapsed) one. The ordering of this new one is not constrained by the
previous collapses, and so can be sorted by new collapses. Again, the multilevel con-

4.1 Comparison of VIPM Methods 373

Index List SlidingWindowRecord

dwFirstlndexOf fset = 0,
wNumTris = 7,
wNum Verts = 8

dwFkstlndexOffset =9,
wNumTris = 9,
wNum Verts = 9

FIGURE 4.1.2 A collapse showing the index list and the two windows.

cept is used, but in this case because further collapses cannot happen without it, not
simply for efficiency.

The problem with this at face value is that algorithms such as QEM give an
ordering for collapses. If this ordering is strictly followed, the QEM frequently wants
to do a new collapse that involves a triangle that has already been modified by a pre-
vious collapse. This forces a new level to be made, and the index buffer needs to be
copied. Since only a few collapses have been done, this copy is almost as big as the
original. If only a few collapses are done before having to make a copy, the memory
used for all the index buffers is going to be huge.

However, there is actually no need to strictly follow the order of collapses that
QEM decides. Progressive meshing is not an exact science, since it ignores everything
but the distance of the camera from the object, and the whole point is to simply be
"good enough" to fool the eye. Therefore, diere is no real need to precisely follow the
collapse order that QEM decides—it can be manipulated a bit.

The way to do this is to follow the QEM collapse order until it decides to do a
collapse that involves triangles that have already been modified. Doing this collapse
would force a new level, and so this is put off for as long as possible. For the moment

374 Section 4 Geometry Management

this collapse is ignored, and the best one that can be done without creating a new level
is found. The errors of the two collapses are compared, and if they are within a certain
tolerance, then doing them out of strict order is not going to affect visual quality all
that much, and the collapse that will not force a new level is done.

Once the difference in error levels is too great, then doing the wrong collapse first
is going to affect image quality significantly, and the algorithm bites the bullet and
creates a new level. There have now been a decent number of collapses done before
this copy happens, the triangle count has been significantly reduced, and thus far,
fewer levels are needed before they collapse down to the minimum level of detail.

The sample code uses a fairly small tolerance level of 10 percent of the average
collapse error, and even this small tolerance reduces the number of levels dramatically.
Using a larger error tolerance can reduce the memory use even more, although only to
a point. After a while, the algorithm simply runs out of triangles that have not already
been involved in a collapse. Most meshes can only lose around 20 percent of their tri-
angles before this happens, but this still keeps memory use at sensible levels.

Since no runtime modification is made to the index or vertex lists, all the data can
be made global, and there is almost zero per-instance memory use. There is also
almost zero CPU time used to change level of detail—each time, a simple table look-
up is made to decide the index list to use, the start and end index to draw from that
index list, and how many vertices are used. In practice, the index lists are concate-
nated together, so that the first index also implies the index list to use. The table is
composed of this structure:

struct SlidingWindowRecord
{

unsigned int dwFirstlndexOffset;
unsigned short wNumTris;
unsigned short wNumVerts;

};

Although the number of triangles and vertices is known to be less than 64k (this
is a limit in all currently known hardware), because the index list is a concatenation of
many lists, it may easily be greater than 64k indices in length, so 32 bits are required
for it. This does mean that the structure is nicely padded to 8-byte alignment,
though. The rendering code is amazingly simple:

SlidingWindowRecord &pswr = swrRecords[iLoD];
d3ddevice->DrawIndexedPrimitive (

D3DPT_TRIANGLELIST, // Primitive type
0, // First used vertex
pswr->wNumVerts, // Number of used vertices
pswr->dwFirst!ndexOffset,// First index
pswr->wNumTris); // Number of triangles

There is no code to do splits or collapses as with all the other methods—the cur-
rent level of detail is just looked up in die SlidingWindowRecord table each time the

4.1 Comparison of VIPM Methods 375

object is rendered. This also means that with hardware transform and lighting cards,
the CPU time required to render objects is fixed and constant per object, whatever
their level of detail. The phrase "constant time" is always a good one to find lurking in
any algorithm.

The major problem with sliding window VIPM is that it forces the ordering of
the triangles at the beginning and end of each level's index lists. This has two effects:
it makes strips hard to use—only triangle lists really handle fixed ordering well—and
vertex cache efficiency is affected.

Fortunately, it is not as bad as it first seems. When an edge collapse is performed,
all of the triangles that use the binned vertex are removed, so they all go on the end of
the triangle list. This is typically from five to seven triangles, and they form a triangle
fan around the binned vertex. Then the new versions of the triangles are added. These
need to go together at the beginning of the index list, there are typically three to five of
them, and they form a triangle fan around the kept vertex. These fans can be ordered
within themselves to get the best cache coherency. The middle of the index list that is
not affected, and thus has no set order, can be reordered for the vertex cache. This gets
much better cache coherency than vanilla. Although it is still quite a bit short of the
theoretical ideal, it is not unreasonably poor.

Vertex cache coherency can be raised by having a larger middle index list section
in each level—by having fewer collapses per level. This takes more memory, but the
extra performance may be worth it, especially as it is global memory.

Hardware that requires strips rather than lists can still use this method, although
it does require many degenerate triangles to join the different parts. In practice, this
does not increase the number of indices required, it actually reduces it—strips have
one index per triangle, compared to a list's three. The vertex cache efficiency per
drawn triangle is exactly the same. The raw triangle throughput is increased a lot
(roughly doubled), but since all of these extra triangles are just degenerate, most hard-
ware will reject them very quickly. If there is a choice, which of the two primitives
used depends on whether the hardware is limited by index bandwidth (in which case,
strips are optimal) or triangle throughput (in which case, lists are optimal).

Summary

VIPM seems to be coming of age. It is now mainstream, it has been incorporated into
a major API, and for discrete objects it has beaten off VDPM and static level of detail
methods for the most visual bang for the CPU buck (although it is worth noting that
VDPM methods are still challengers for large landscapes, especially regular-height-
field ones). In addition, it now has a plethora of methods from which to choose, each
with its own advantages and disadvantages. Innovation certainly won't stop there—
there are already some interesting paths for future investigation, but this roundup
should give a fairly good guide to some of the issues and options when choosing
which VIPM method to implement.

376 Section 4 Geometry Management

Table 4.1.1 Summary of Strengths and Weaknesses of Each VIPM Method

Vertex cache use
Global memory use
Instance memory use
LoD-change CPU cost
API efficiency
List efficiency

Vanilla

Poor
Low
High
Medium
Good
Poor

Skip Strips

Excellent
Medium
High
Medium
Good
Excellent

Mixed-Mode

Good
Medium
Medium
Medium
Good
Good

Sliding Window

Good
High
Low
Tiny
Excellent
Good

Table 4.1.1 shows the results of each method with their relative strengths and
weaknesses. Note that "skip strips" refers to multilevel skip strips—the single-level
version is not actually a sensible method in practice, for the reasons given.

References
[SvarovskyOO] Svarovsky, Jan, "View-Independent Progressive Meshing," Game Pro-

gramming Gems, Charles River Media, 2000, pp. 454-464.
[BloomOl] Bloom, Charles, VIPM tutorial, and various VIPM thoughts gathered

from many sources, www.cbloom.com/3d/index.html.
[Hoppe99] Hoppe, Hugues, "Optimization of Mesh Locality for Transparent Vertex

Caching," Computer Graphics (SIGGRAPH 1999 proceedings) pp. 269-276.
See also www.research.microsoft.com/-hoppe/.

[El-Sana99] J. El-Sana, F. Evans, A. Varshney, S. Skiena, E. Azanli, "Efficiently Com-
puting and Updating Triangle Strips for View-Dependent Rendering," The Jour-
nal of Computer Aided Design, vol. 32, no. 13, pp. 753-772. See also
www.cs.bgu.ac.il/-el-sana/publication.html.

Simplified Terrain Using
Interlocking Tiles

Greg Snook
gregsnook@home.com

With recent advancements in 3D rendering hardware, it seems that everyone is
bringing his or her game to the great outdoors. Far horizons and mountainous

landscapes, once hidden by fog and far clipping planes, are now an obtainable reality.
Game programmers once consumed with the BSP tree and span-based rendering
methods are now trading in tired old buzzwords for shiny new acronyms like ROAM
and VDPM.

ROAM (Real-time Optimally Adapting Meshes) [Duchaineau] and VDPM (View
Dependent Progressive Meshes) [Hoppe98] are outlined elsewhere in great detail (see
the References), so I'll just give them a quick overview here. Both of these methods do
an amicable job of reducing the polygon count (and therefore the rendering load) on
those parts of the terrain that do not require a great deal of geometry, such as reason-
ably flat plains or areas far off in the distance. In turn, they allow more detailed terrain
to exist closer to the camera, or on very rough surfaces, where additional polygons are
needed. Essentially, they are two rather complex ways to achieve the same simple goal:
more polygons where you need them, less where you don't.

The trouble for some applications is that methods such as ROAM and VDPM
tend to rely on procedurally generated geometry to achieve a smooth transition from
low- to high-detail areas. ROAM uses a binary tree of triangle intersections to con-
struct the actual terrain geometry from a given height field. VDPM achieves a similar
effect by using a coarse mesh to represent the low-detail terrain and applying a set of
successive vertex splits to further divide the terrain polygons where necessary. In most
cases, these continuous triangulations disrupt the speed advantage of hardware trans-
form and lighting, which relies on static geometry for optimum speed.

The main reason for this is that diese methods work almost too well. They have the
power to analyze die terrain down to the poly level, hand-picking tliose that stay and
those that get collapsed. This can result in many minute changes to the terrain geome-
try over time, and requires reprocessing of the entire method should the terrain change.
By sacrificing that finite level of control over the geometry, we can remain hardware
friendly by working over larger areas of static geometry and remain flexible to changes in
the terrain over time.

377

378 Section 4 Geometry Management

What this gem proposes is a far simpler method that most applications can
take advantage of with a minimal amount of coding. It is not intended to wrestle with
the visual quality that ROAM or VDPM methods can produce; instead, it serves to
create a simple terrain with the benefits of dynamically adapting detail levels and ani-
mation flexibility. It does this while maintaining a data system that is perfectly suited
for hardware transform and lighting.

Tiles Revisited

Many moons ago, game programmers used 2D tiles to represent the playfield. This
was done for one simple reason: less artwork was easier to create and manage. Early
games simply did not have the memory to afford a large amount of pixel data, so
smaller pictures were tiled to create the illusion of a larger area. These small tiles were
also easier to draw and push around, so smooth-scrolling 2D games could easily be
created out of little 32x32 pixel tiles.

The terrain method presented here works on the same basic principle by dividing
the terrain into smaller, reusable tiles. The same advantages apply: smaller bits of data
are easy to push around, drawing can be optimized, and memory is used more effi-
ciently. The obvious difference is that we are no longer dealing with pixel data within
the tiles. The terrain tiles are represented as index buffers that link together the ver-
tices of the terrain.

Think of the 3D tiles as a grid being projected down on the landscape from
above. Each grid square represents a single tile in the terrain system. On the surface, it
may not appear as if the terrain tiles ever repeat, given that terrain is a pretty random
set of geometry. The truth is the terrain may never repeat on the surface, but behind
the scenes, there is ample data to tile and reuse.

Consider each terrain tile in the form of a vertex and index buffer. While each tile
may contain a unique set of vertex data, the index buffers used to draw the tiles can be
made to repeat rather frequently. In fact, by careful planning of the vertex data, we can
create a finite set of index buffer "tiles" to use throughout the entire terrain.

We do this by taking advantage of a few refinements in the geometry of our tiles.
First, each tile must contain an identical number of vertices, sharing the edge vertices
with its neighbors. These vertices represent the highest level of detail possible for the
tile. Second, the vertices of the tile are arranged in a regular grid on the x-y plane,
using z to represent the vertices' height above sea level. Last, we store the vertices of
each tile in an identical order so our index buffers can be used on any tile. Have a look
at the sample tile shown in Figure 4.2.1. Here we have a 17x17 vertex tile showing
the grid-aligned positioning of each vertex, each of which has a unique height value
sampled from the terrain bitmap.

The reason for this vertex organization is simple. Since the vertex data always
appears in a regular grid and in an identical order, a fixed set of index buffers can be
created for the entire terrain. Using the proper index buffer, a given tile can be ren-
dered at any level, ranging from full detail down to a simple pair of triangles. Index

4.2 Simplified Terrain Using Interlocking Tiles 379

£ -:.^^"^'-^.x-' ?f'iXm$K'm f *- -«-•*. --' ~ g-wii-z-z?,

,

gli|M*MW^ills

C*; KrKifp^ r- TM '̂̂ fe'ip' |Ssff

liKf̂ ;Sf|;̂ -;'SlP^4

FIGURE 4.2.1 A sample terrain tile of 17x17 vertices.

buffers that use more of the available vertices create a higher detailed representation of
the tile. Similarly, index buffers using less vertices render tiles with reduced triangle
counts. Figure 4.2.2 illustrates this by showing a sample tile rendered at different
detail levels.

FIGURE 4.2.2 Using index buffers to create two separate detail levels from the same set of
vertices.

Map Making

In order to create the landscape tiles, we need a set of source data from which to pull.
A common method is to read elevation data from a height map. This map is simply a
grayscale bitmap of the terrain, where the luminance of the pixel is used to represent
the elevation at a given position. The height map has the added advantage that it is

380 Section 4 Geometry Management

already arranged in a regular grid, so it can be easily translated into terrain vertex data.
It can also serve as an animation resource, adjusting the pixel values to afTect the ter-
rain height at different locations.

Creating the tile vertices is simple. Since each tile vertex has a known 2D position
on the x-y grid, all that remains is to sample the corresponding height pixel from the
terrain bitmap and translate it to a z value for the terrain vertex. For each terrain tile, a
corresponding block of pixels in the height map can be sampled to create a unique
vertex buffer for the tile. In the case of an animating height map, this process must be
repeated periodically to update the terrain vertices.

Tile Templates

The index buffer can be thought of as a drawing template cast over the tile vertices. As
we saw in Figure 4.2.2, the index buffer defines how we pull triangles out of the tile,
controlling how detailed a version of it we draw. Following our key rules, each tile's
vertex buffer has been laid out in an identical order so the index buffers can be used
interchangeably. For an example 9x9 vertex tile, we can create a global set of index
buffers to draw all possible detail levels for any 9x9 set of vertices, skipping vertices in
the grid to create the level geometry. The top-level index buffer uses all 81 vertices to
draw 128 triangles, while the lowest level uses only the four corner vertices to draw a
two-triangle quad. In addition, there are two additional detail levels representing 32
and 8 triangles, respectively.

The next requirement is a method to determine which of our four detail levels
each tile needs to use when being drawn. This determination can range from a simple
function of the distance between the tile and the camera, to a full heuristic taking into
account die viewing angle and perceived roughness of the tile. The best method to use
depends on die game terrain and camera movement. Hugues Hoppe's paper on the
VDPM mediod [Hoppe] sheds more light on heuristic ideas that can be used to select
detail levels for each terrain location. The sample application on the companion CD-
ROM, SimpleTerrain, uses the distance from the tile to die camera for simplicity. Once
the detail level is known, drawing is a simple matter of sending die tile's vertex buffer
along widi die desired index buffer into your chosen rendering API for drawing.

Ugly, Ugl* Ugly
We have the basic terrain system in place, but it is by no means a smooth terrain.
What we have now is a terrain that changes abruptly as tiles of different detail levels
are drawn side by side. In addition to that, seams can appear in the gaps created by
two tiles of different detail levels. In short, we have made a mess, but there is still
hope.

The key to this method is having tiles that interlock. That is, creating tiles that
mesh together perfectly, regardless of the differences in detail levels between neigh-
boring tiles. To do this, a different set of index buffers is required to merge tiles of dif-
ferent levels together without gaps and seams. These index buffers can be broken into

4.2 Simplified Terrain Using Interlocking Tiles 381

FIGURE 4.2.3 The 16 basic tile bodies. Unshaded areas show where linking pieces must
be placed.

two groups: bodies and links. Bodies represent a major portion of a tile at a given
detail level, with areas removed to provide space for linking pieces. Links, as the name
suggests, link the bodies of different detail levels together seamlessly.

Figure 4.2.3 shows the 16 possible body types for a tile of any given detail level.
To keep things under control, we specify that tiles only link downward, meaning that
tiles at higher detail levels must use link pieces to fit together with lower-detail neigh-
bors. Looking at Figure 4.2.3, the unshaded areas of each body type then represent
spaces where links are required to connect to a neighbor tile at a lower detail level.

Linking pieces are smaller index buffers that fit into the spaces left vacant by the
body tiles. These index buffers arrange triangles to step down from a tile using a
higher number of vertices to an adjacent one using less. Figure 4.2.4 shows an exam-
ple link tile used to connect two body tiles. Since we only link downward in detail lev-
els, each detail level needs enough link pieces to connect to the details levels below it.
For the example 9x9 vertex tile, we would need three linking pieces for each side of
our highest-detail level, since it must be able to link to three lower-detail levels. Our
lowest-detail level, the simple quad tile, needs no linking pieces, since all higher-detail
levels must do the work to link down to it.

FIGURE 4.2.4 An example link piece used to join two tiles of different detail levels.

382 Section 4 Geometry Management

Table 4.2.1 All Index Buffers Required for Our Sample of Four Detail Levels

Detail Level Body Pieces Required + Linking Pieces Required = Total

4 16
3 16
2 15
1 1 '

3 for each side 28
2 for each side 24
1 per side 19
0 1

Grand Total: 72

Given our example of a 9x9 vertex tile with four detail levels, we can calculate
that the total number of index buffers required amounts to a grand total of 48 "body"
pieces and 24 "linking" pieces. Table 4.2.1 shows the full table of index buffers
required to smooth out our terrain. As can be seen, increasing the number of detail
levels increases the index buffer count, but since these are relatively small in size and
can be used throughout the entire terrain, they still remain rather efficient.

Better, Faster, Stronger

Using the new body and linking pieces means we need to change our rendering
method. For each tile, we now need to examine the tile's neighbors. We choose a body
tile that contains a notched side for each neighbor that is at a lower detail level than
the current tile. Then, we select the necessary linking pieces that fill the notches and
connect us with the adjacent tiles. Each of these index buffers is then sent to the ren-
dering API along with the tile's vertex buffer for drawing. In the worst case, we send
five index buffers per tile (one body, four linking), but in the best case, we still send
only one (the full body tile).

Organizing the index buffers into triangle strips and fans can further optimize the
method. For larger tiles (33x33 vertices and up), this will greatly reduce rendering
time. In addition, the order of the vertices in the tile can be adjusted for better cache
performance when rendering. The exact order will depend on which index buffers the
tile will be rendered with most often.

Conclusion

Figure 4.2.5 shows the final output of the rendering method. The sample program
SimpleTerrain demonstrates the method using DirectX 8.0. Full source code for the

^-•~ij:'-s%, sample program is available on the companion CD-ROM. In this image, the wire-
frame of the terrain is exposed to show the various body tiles and linking tiles in use.

ONJHCCP I I J f J U- l -Ground textures have been removed tor readability.
The intent of this gem was to provide an alternative to the popular procedural

methods for rendering dynamic terrain while fully enabling hardware transform and
lighting. By using this method, a dynamic terrain system can be up and running
quickly without severely impacting the application's frame rate. While the final ter-
rain may not rival that of a well-written ROAM or VDPM system, it does provide the

4.2 Simplified Terrain Using Interlocking Tiles 383

FIGURE 4.2.5 Sample output of the SimpleTerrain^rograzwz showing tiles and linking
pieces in use.

same basic advantages of those methods with the potential of greater rendering speed
in hardware.

References
[Duchaineau] Duchaineau, M., Wolinski, M., Sigeti, D., Miller, M., Aldrich, C., and

Mineev-Weinstein, M., "ROAMing Terrain: Real-time Optimally Adapting
Meshes" (www.llnl.gov/graphics/ROAM).

[Hoppe98] Hoppe, H. "Smooth View-Dependent Level-of-Detail Control and Its
Application to Terrain Rendering" IEEE Visualization 1998, October 1998, pp.
35-42. (www.research.microsoft.com/'-hoppe).

4.3

Sphere Ttees for Fast Visibility
Culling, Ray Tracing, and
Range Searching

John W. Ratcliff, Sony Online Entertainment
jratcliff@verant.com

\JLJfcile there are many data structures for storing static 3D objects, including
Wlf quadtrees, octrees, and BSP trees, they are not always ideal for large numbers of

dynamic objects. This gem presents an algorithm and demonstration application that
manages thousands of objects in motion that are continuously maintained as a collec-
tion of hierarchical bounding spheres in a SphereTree.

The design goal for this algorithm has been to make the 99-percentile case spend
almost no CPU time updating an object in motion within the tree structure. Queries
against the SphereTree perform more tests than other data structures, but this is mit-
igated by the fact that the tree can be maintained using very little CPU time. This
data structure is ideally suited for gross culling of massive numbers of moving objects
in a large world space. It doesn't matter if the objects are moving at widely disparate
speeds, or even if many of them are not in motion at all. It also has a very low cost
when objects are inserted and removed from the tree with great frequency.

Bounding Spheres

There are certain limitations when using a bounding sphere as a culling primitive. A
bounding sphere does not necessarily fit very tightly around an object, especially if it
is tall and thin. On the other hand, this over-described bounding sphere can be seen
as a feature, not necessarily a limitation. A bounding sphere must encompass the
complete extent of an object in all orientations. This includes taking into considera-
tion all possible animation poses that might be applied. Additionally, this bounding
sphere is presumed to encompass all child objects that are attached to the parent. This
allows for the assumption that whatever the visibility state of the parent is also con-
sidered true for its children. Another advantage of an over-described bounding sphere
is that it can be used to cull animations, shadows, and other associated effects. This
extra slop around an object can be an effective tool to determine when to treat an

384

4.3 Sphere Trees for Fast Visibility Culling, Ray Tracing, and Range Searching 385

object, its children, and its associated effects as active or inactive. Culling shadows,
animations, and special effects are just as critical as culling geometry alone.

Using Sphere Trees

Every object in the simulation, whether it is in motion or not, uses the class
SpherePack to maintain itself inside a valid SphereTree. When an object changes posi-
tion using the method NewPos(), SpherePack simply computes the squared distance
between the new position and the center of the parent node. If it is still contained
within the radius of the parent sphere, which is designed to be true almost all of the
time, the routine immediately returns. This method is implemented inline for maxi-
mum performance. This is the only calculation performed for the vast majority of all
objects in motion, even if there are thousands of them. For static objects, nothing is
done beyond their initial insertion into the tree.

When a new position would cause an object to pierce the skin of its parent
sphere, then that child is removed from the parent and inserted into the root node of
the tree. This involves only a couple of pointer swaps to instantly maintain a com-
pletely valid tree. When a child node is detached from its parent, it is placed into the
reintegration FIFO queue. The parent is added to the recomputation FIFO queue to
maintain an optimally balanced tree. At each frame, the simulation performs the
process method on the SpherePackFactory so that the reintegration and recomputa-
tion FIFO queues can be flushed.

One problem with a quadtree or an octree is that it is possible for a single leaf
node to be contained in multiple nodes of the tree. If an object crosses a quadtree
boundary, it needs to be represented in both nodes. The SphereTree does not have
this property. No leaf node can ever be contained in more than one SuperSphere.
What is true for the SuperSphere is automatically true for all children. If a Super-
Sphere is outside the view frustum, then all of its children are outside the view frus-
tum as well. The same is true for range tests and ray trace tests.

This makes the sphere tree an ideal data structure for these kinds of queries.
When performing visibility culling with a sphere tree, each node keeps track of the
state it was in on the previous frame. Callbacks occur only when a node undergoes a
state change, which allows the simulation to efficiently maintain a list of only those
objects in the view frustum.

Demonstration Application

This algorithm is demonstrated in the Windows application SphereTest.exe.
SphereTest.exe will create a SphereTree containing 1000 spheres in motion. Even
though this demonstration application is in 2D, the SphereTree is a completely 3D
data structure. The rather large SphereTree displayed runs at a low frame rate since
rendering all of this data is fairly slow under Windows. The SphereTest application

386 Section 4 Geometry Management

apt
<~3**

ON THE CO

demonstrates building a SphereTree and performing a variety of high-speed queries
against it while running a simulation that models the type of situations seen in
games.

The number of spheres created by the simulation can be passed as a command-
line argument. With fewer spheres, it will be much easier to visualize the SphereTree
that is built. If a SphereTree of 5000 to 10,000 items is created, queries will still be
seen taking place very quickly, with most of the CPU time burned just calling Win-
dows graphics routines to render the results. If the application is begun with a very
large number of items, there will be a pause while the initial tree is built and balanced,
after which it will run fairly quickly.

The example simulation models the type of situations one would see in an actual
game. In this simulation, 25 percent of the objects are in stasis, and the other 75 per-
cent are always attempting to clump toward one of 16 different attraction points. In
an actual game, objects are not usually evenly distributed across the address space.
The example simulation demonstrating the use of the SpherePackFactory class is con-
tained in the files Circle.cpp and Circle.h on the companion CD-ROM.

Figure 4.3.1 shows the class diagram for the SpherePack system.
To use the SpherePack system in a simulation, we simply instantiate a

SpherePackFactory class with the maximum number of spheres, the size of the root
node, the size of the leaf node, and the amount of gravy around each SuperSphere.
The gravy factor acts as a bit of slop in our coordinate space to prevent objects from
detaching from their parent SuperSphere too frequently. For each object in the simu-
lation, we call the AddSphere () method to create a SpherePack instance. Whenever an
object changes position, we invoke the NewPos () method. If the object changes both
position and radius, we invoke the NewPosRadiusO method. When an object in the

SpherePack System

•'•'•-•';: ^Interface./ :,i£jf!

SpherefacKallback

FIGURE 4.3.1 The SpherePack system class diagram.

4.3 Sphere Trees for Fast Visibility Culling, Ray Tracing, and Range Searching 387

simulation is destroyed, we invoke the RemoveQ method on the SpherePackFactory
class.

The SpherePackFactory class maintains the complete SphereTree hierarchy and
contains the two integration FIFO queues. When performing queries, an interface
called SpherePackCallback is used to extract information from the SphereTree. The
leaf node SpherePack inherits the properties of a Sphere class.

Compressed Axis-Aligned
Bounding Box Trees

Miguel Gomez, Lithtech
miguel@lithtech.com

The axis-aligned bounding box (AABB) tree structure has proven to be very useful
for accelerating intersection queries on sets of geometry. The data structure is

easy to implement, the built structure is numerically well conditioned, and like all
binary trees, they have O(log n) search time [Sedgewick90]. This gem explains several
techniques that can be used to lower the overall memory footprint of an AABB tree to
11 bytes per triangle.

A Brief Survey of Hierarchical Sorting Methods

This section covers quadtrees, k-d trees, BSP trees, bounding volume trees, and
axis-aligned bounding boxes, data structures for sorting three-dimensional sets of
triangles.

Quadtrees, k-d Trees, and BSP Trees

Some of the most popular data structures for sorting three-dimensional sets of trian-
gles are the octree, k-d tree, and BSP tree. While the octree is probably the simplest to
implement, the more sophisticated k-d and binary space partitioning (BSP) trees
adapt better to specific sets of geometry. All of these structures use planes to separate
space into convex regions, which leads to some serious side effects. First, any triangle
that straddles a separating plane must either be split into two pieces, which increases
the set of data and can create problematic "slivers," or included in multiple nodes,
which removes any upper bound on the size of the node structure. Second, octrees
and k-d trees do not separate geometry adaptively, so they may need arbitrary thresh-
olds to terminate a recursive build algorithm. For example, if many triangles share the
same vertex, the octree recursion may never achieve one triangle per node and will
have to be terminated based on tree depth. This can lead to unnecessarily deep trees.
BSP trees that adaptively use the planes of individual triangles for separation do not
have this problem, but they still can have problems introduced by splitting.

388

4.4 Compressed Axis-Aligned Bounding Box Trees 389

Bounding Volume Trees

Bounding volume trees approach the problem differently. Instead of dividing space,
bounding volume trees recursively divide a set of triangles into two subsets and find
a bounding volume that encloses each subset. This approach avoids having to split tri-
angles or include them in multiple nodes, and building a tree simply stops when a
subset has only one remaining triangle. For more information on bounding volume
trees, see [vandenBergen99].

Axis-Aligned Bounding Boxes

An axis-aligned bounding box has a position (its center) and extents. As its name
implies, the sides of an AABB are parallel to the x-,y-, and z-axes. Figure 4.4.1 shows
how an AABB fits a single triangle.

FIGURE 4.4.1 The sides of an AABB are parallel to the coordinate axes.

AABB Trees

The bounding boxes in an AABB can and often do overlap. Figure 4.4.2 shows a shal-
low tree for a set of two connected triangles, L and R. Notice that die left and right
AABBs overlap.

390 Section 4 Geometry Management

(a) (b)

FIGURE 4.4.2 A) The AABBs for two connected triangles will always intersect. B) The
AABB tree structure for this particular geometry.

Building AABB Trees

An AABB tree is built to by successively dividing a set of triangles into two subsets
until each subset contains only one triangle. The basic algorithm for building an
AABB tree is:

• Find the AABB that encloses the entire set.
• Divide the set into two subsets. This can be done by classifying the centroid of

each triangle along the major (longest) axis of this AABB. If one subset is empty,
arbitrarily create two subsets of approximately equal size.

• If a subset contains only one triangle, create a leaf.
• Otherwise, repeat the same process on each subset.

Compressing AABB Trees

In most applications, 4-byte floats have sufficient precision (seven digits) for specify-
ing box extents, requiring 6 X 4 = 24 bytes at each node. Any binary tree requires
exactly 2n - 1 nodes to sort n elements, allowing an array of nodes to be allocated
before building the tree. If the data set is large, it might be necessary to specify the
indices of the child nodes with 4-byte unsigned integers. To avoid having to store yet
another 4-byte integer for a triangle index at each node, we can exploit the fact that
the 0th node (the root) is never referenced by another node. Therefore, if one of the
child node indices is zero, we can consider the node a leaf, and the other integer must
index a triangle. This trick gives us a grand total of 32 bytes per node, or about 64
bytes per triangle as n becomes large. If we are willing to limit our triangle count to
215 (giving a node count of 216 - 1), unsigned 2-byte integers can be used for child
node indices. This reduces the footprint to 28 bytes per node, or about 56 bytes per
triangle. Since most applications can divide triangle sets into chunks of 215, 56 bytes
per triangle will be used as a reference value.

There are two important properties of AABB trees that can be exploited to mini-
mize storage. First, child AABB nodes are fully contained by their parent. This allows
us to store child extent values as unsigned 8-bit integer offsets relative to their parent's

4.4 Compressed Axis-Aligned Bounding Box Trees 391

extents. Second, at most, six extent values of the child nodes are not identical to those
of the parent node. This means diat we only need to store six values to fully describe
the two children.

Approximating Extents

In order to use unsigned bytes as relative extent values for nodes, we must keep track
of the floating-point extent values of the parent as the tree is built. By scaling the child
extents relative to the parent AABB and then truncating to an integer value, we get a
conservative estimate for the child AABB extents (Figure 4.4.3).

exact max truncated max

truncated min exact min

FIGURE 4.4.3 When approximating extents with unsigned 8-bit integers, min values are
measured from the left, while max values are measured from the right.

The error of any extent value relative to its parent is never more than 1/255 ~
4 X 10~3. To put this in perspective, if the extents of the parent node are one meter on
each side, we get a resolution of about four millimeters for the child extents. Keep in
mind that these numbers scale as the nodes become smaller. The equations for calcu-
lating relative offset values are:

= trunc 255-
Mid - mm

parent

255-

W^e [0,255].

Using 1 byte instead of 4 bytes to store an extent value immediately brings the
memory consumption down to 10 bytes per node, or 20 bytes per triangle.

392 Section 4 Geometry Management

Exploiting Redundancy

In order to store only six extent values for both children, we must take a bold step and
store both the left and the right child information within one node structure. In this
structure, a bit field is used to indicate which extent belongs to which child. A true bit
means that the unique extent value belongs to the left child (so the parent's extent
value belongs to the right child), and a. false bit indicates the opposite situation. This
requires only 6 bits, so the other 2 bits are used to indicate which nodes are leaves.
When information for both children is stored at a single node, the node only con-
sumes 11 bytes (Figure 4.4.4).

flags (1 byte)

extents (6 bytes)

left node/triangle
index

(2 bytes)

right node/triangle
index

(2 bytes)

FIGURE 4.4.4 The compressed AABB node structure consumes only 11 bytes per node.

In addition, only n nodes (including the root) are required to sort n triangles, so
the tree now needs only 11 bytes of storage per triangle. (Some architectures may
require a 12-byte structure for alignment.) This is almost 50 percent less than if rela-
tive values were used alone, and about one-fifth the storage of our reference value. As
an added bonus, we can now keep track of twice as many triangles (216 - 1 instead of
215) (Figure 4.4.5).

In practice, the root node is a separate data type that specifies the floating-point
extents of the entire triangle set and is not part of the actual node array, which con-
tains « - 1 nodes.

FIGURE 4.4.5 For a set of four triangles, the uncompressed tree requires seven nodes,
whereas the tree on the right requires only four.

4.4 Compressed Axis-Aligned Bounding Box Trees 393

Runtime Efficiency

The runtime cost of converting the 8-bit values back to floating-point values is mini-
mal. An experiment in which a line segment was tested for possible intersection with
16K randomly distributed triangles showed that the compressed structure was about
10 percent slower than the full floating-point representation. It seems that the ability
of the significantly smaller data set to fit in the cache nearly compensates for the over-
head of converting integers to floating point values.

Future Work

The compressibility of AABB trees gives them a clear advantage over other structures;
however, it may be possible to apply the same techniques to compress other bounding
volume tree structures, such as OBB trees. The fact that child AABB nodes are fully
contained by their parent volume allows us to easily scale and share extent values. This
same property does not hold for OBB trees [Gottschalk96]. The lack of this property
may make it impossible to share redundant extent values; however, it may still be pos-
sible to store scaled 8-bit extent values and 8-bit orientation values for OBB trees by
propagating the expanded dimensions back up the tree to the root node.

References

[Gottschalk96] Gottschalk, S., Lin, M. C., and Manocha, D., "OBBTree: A Hierar-
chical Structure for Rapid Interference Detection," SIGGRAPH Proceedings,
1996, pp. 171-180.

[Sedgewick90] Sedgewick, Robert, Algorithms in C, Addison-Wesley, 1990.
[vandenBergen99] van den Bergen, G., Collision Detection in Interactive 3D Computer

Animation, Ph.D. Thesis, Eindhoven University of Technology, 1999.

4.5

Direct Access Quadtree
Lookup

Matt Pritchard, Ensemble Studios
mpritchard@ensemblestudios.com

Quadtrees are versatile and well-known constructs for spatially managing large
amounts of two-dimensional data. In games programming, they are a favorite

for managing object locations in a game world, offering good search performance and
flexible implementation possibilities. In cases where the game data is static, quadtrees
can be precalculated, and from a performance standpoint, they are quite efficient.

But what about a highly dynamic case, such as in a real-time strategy (RTS) game
when large numbers of objects are constantly in motion and coming into and out of
existence in the game world (quadtree)? During the implementation and subsequent
profiling of such a scenario, I found that my quadtree update routines were showing
up surprisingly high on the list of CPU-consuming code. This behavior for a con-
stantly updating data set led me to ask where the time was actually going, and to look
for more efficient ways to get the same job done. The result is the technique that I
present here.

This technique is a general-purpose optimization for quadtree access that
improves performance in three ways over the traditional implementations: 1) by elim-
inating node traversal and the unnecessary cache-misses it causes, 2) by requiring
fewer instructions and CPU cycles overall vs. a best case traditional approach, and 3)
by doing so in a compact amount of time and with minimal memory accesses regard-
less of what depth in the tree the target node resides in. Because it is general purpose
in nature, many ways can be found to tweak and adapt this technique to suit the par-
ticular uses that may arise.

Where the Performance Goes

Examining my original quadtree traversal routines (similar to those in Listing 4.5.1)
showed almost no fat in the code itself after the compiler optimizations. The search rou-
tine was just a few lines of code that checked die bounding box of each child node and
called itself recursively if necessary. Generating a CPU cycle count estimate of the num-
ber of calls assuming the worst case where it would recurse to the bottom level of die
quadtree every time, didn't even begin to add up to die time that the profiles indicated.

394

4.5 Direct Access Quadtree Lookup 395

It turns out that the performance drag was much the result of modern computer
architecture. The code was constandy touching data through pointers, and then mov-
ing on to other data that wasn't adjacent in memory. The result of this was an
extremely high cache miss rate. If all of the quadtree updates were queued up sequen-
tially, most of the upper nodes toward the root node of the quadtree would eventually
be in the CPU cache. When the updates weren't queued together, much of the previ-
ously cached quadtree node data would be flushed between calls.

To further degrade performance, the code in Listing 4.5.1 is comprised almost
entirely of comparison functions which, when compiled, result in a large number of
branch, jump, and call instructions, and a large number of possible data paths for
each iteration. On modern CPUs, this stalls the instruction pipeline every time a
branch or jump is mispredicted. Due to the nature of the data, this happens more
often than one might think because, unlike most loops, the branch chosen in a previ-
ous iteration has no relevance to the likelihood of it being taken again.

Eliminating the Middlemen

Basically, the compact C++ code in Listing 4.5.1 was spending more time waiting on
data and instructions than actually executing. Upon further reflection, the vast major-
ity of the data actually being looked at was not needed other than to be eliminated
from consideration. Therefore, the question became: how to get the resultant
quadtree node without actually examining the quadtree nodes themselves?

It is the asking of, or more specifically the answering of, this question that would
eliminate most of the performance hit on the quadtree access routines. Of course, the
implementation counts too, and what is presented here is an interesting and very effi-
cient way to calculate the answer, but it is by no means the only possible solution.

Conditions and Requirements

There are two limitations to this technique. First, the quadtree has to be regular;
that is, each node is split exactly in the middle on each axis, making all nodes at a
particular depth in the tree represent the same size area. Fortunately, most quadtrees
are implemented this way. Second, the program has to select in advance the maxi-
mum depth (number of subdivisions) of the quadtree. Again, this is not unusual.
Considering these limitations, one might conclude that the area represented by the
quadtree then needs to be perfectly square, but that's not the case as will be explained
later.

The only requirement is that the program needs to have array ordered access to
the nodes at each level in the tree. This means that either all of the quadtree node
pointers are placed in a linear array ordered by their spatial position, or if the quadtree
node elements themselves are a fixed size, then they are stored in an array. Put another
way, given the x and y node coordinates on a specific level, the address of the quadtree
data can be obtained without having to traverse through other nodes.

396 Section 4 Geometry Management

Determining the Tree Level
The first step in directly finding the target quadtree node is determining at what level
in the tree the target resides. Once that is known, the coordinates of the search object
will provide the row and column at which to directly look up the target node. For the
rest of this gem, when we talk about objects, we are usually referring to their bound-
ing volumes.

Consider that an object will reside in the root node of a quadtree if its volume
crosses the nodes midline for either axis. If it doesn't touch the midlines, it can there-
fore be wholly contained in one of the node's children (Figure 4.5.1). It is assumed
that it already passed the root volume area contain test. The process is repeated until
either it gets to the bottom level of the quadtree, or it finds a node where the object
crosses the midlines. The area check never has to worry about the outer edges, because
they were the previous level's midlines and other edges.

Consider just one axis of the area represented by the quadtree if the total length was
an exact power of 2, say 256.0 for example, and had nine levels where the lowest leaf
nodes represented an area 1.0 by 1.0. The midline of the root node would be at 128.0,
the midlines of the next level nodes would be at 64.0 and 192.0. Level 3 midlines would
be 32.0, 96.0, 160.0, and 224.0. See a pattern here? The transition point for each level
is at a different power of 2 that direcdy corresponds to the level depth on the tree.

Now take the same axis of the search object's bounding area, which gives a line
segment (x1; x2). What we want to know is the largest power of 2 that it spans,
because that indicates the lowest level of the quadtree in which it can be wholly con-
tained. Now, "spanning" a power of 2 simply means that the range from xl to x2 tran-
sitions from below the power of 2 value to greater than (or equal to) the value. Since
our storage requirement is that the object be fully contained inside a quadtree node,
the quadtree level to store the object is actually one level higher than the level where
the node area size is the specific power of 2 that is crossed.

A B

FIGURE 4.5.1 A) Objects that cross the node's midlines cannot be stored in child nodes. B)
Objects that don't cross the midlines are stored in child nodes.

4.5 Direct Access Quadtree Lookup 397

Since the spanning of the value can be represented as a binary transition from 0 to
1, the program quickly can determine where the spanning occurs by taking the integral
portions of our range (#1; x2) and XORing them together. Each bit in the result indi-
cates that the range crosses a point at the corresponding power of 2, returning 1 if there
was a transition at that position. The lower the position of the first "1" bit of the result,
the lower (deeper) in the quadtree the span can be stored. If a zero result occurs (i.e., no
"1" bits in the result), then the range can be stored at the very lowest level in the
quadtree. Therefore, the bit position of the highest "1" bit indicates how many levels
above the bottom of the quadtree the range (xl} x2) can first be properly placed.

Here are some examples using a nine-level, 256.0-length axis that illustrate this
power of 2 property. Figure 4.5.2 shows a 2D representation of each example, using
the x-axis.

128.0 160.0 192.0

1̂1J

_

I
r

j

1

Example #1
(127.8 to 128.3)

Example #2
(128.3 to 128.8)

Example #3
(155.4 to 166.1)

FIGURE 4.5.2 Illustration of the examples. Example boxes not to scale for illustrative

purposes.

Example #1

Object bounding line (127.8, 128.3). This object is sitting in the middle of the root
node and only fits at the top level. Integer values for (x1; x2) are (127, 128).

X1 =
X2=

127 = 0 1 1 1 1 1 1 1
128 = 10000000

XOR result 255 = 11111111

The first "1" in the result is bit 7 (27) or the 8th position. 9-8 (number of tree
level minus position) gives us 1, or the first level (root level) in the quadtree.

398 Section 4 Geometry Management

Example #2

Object bounding line (128.3, 128.8). The object in Example #1 has been nudged just
off the centerline and should fall all the way down to a leaf node (level 9). Integer val-
ues for (#1, x2) are (128, 128).

X1= 128 = 10000000
X2= 128 = 10000000

XOR result 0 = 00000000

There is no "1" bit in the result, so we get 0 for the position. 9-0 = 9* level in
the quadtree.

Example #3

Object bounding line (155.4, 166.1). This is a very big object centered at about 60
percent of the range. Because of its size compared to the smallest node, it will be at
least four levels above the bottom nodes (level 9). Integer values for (#j, x2) are (155,
166).

X1= 155 = 10011011
X2= 166 = 10100110

XOR result 61 = 00111101

The first "1" is at bit position 6. 9 - 6 = 3rd level in the quadtree.

Mapping to the Situation

Now that we know how to determine the level for a one-dimensional tree, moving the
process to two dimensions is as simple as repeating the process for each axis and
choosing the highest level (in the quadtree) result.

While the preceding examples work because they assume the storage range is a
power of 2, in most situations the area represented by a quadtree is not going to be an
even power of 2, and the smallest nodes are not going to just happen to represent an
area 1.0 by 1.0 in size. Fortunately, the solution is as simple as transforming coordi-
nate values from the game or applications measuring system to a scale that represents
the quadtree's dimensions. This can be accomplished by computing a scale factor for
each axis during initialization, and multiplying the coordinates by the scale before
converting them to integers. For the quadtree scale, 1.0 represents the size of the leaf
nodes on each axis. (Note that each axis can be independently scaled, allowing rectan-
gular areas to map to a square node). Thus, the scaled coordinates for an n level
quadtree will be in the range 0 to 2"~1 for each axis.

After scaling and converting the coordinates to integers, we XOR together the
start and end positions of each axis. There are several ways to determine which bit

4.5 Direct Access Quadtree Lookup 399

position contains the highest" 1" bit. The simplest and most portable is a shift loop to
count the bits, but a look-up table may work better for quadtrees with six or fewer
levels. Even better, there are platform-specific solutions such as the Pentium's BSR
instruction and the PowerPC's cntlzw instruction that bit-scan a value, removing
looping and branching in the process. See Listing 4.5.2 for an example of code that
determines the quadtree level using this method and a while loop.

Determining the Location

Once the level in the quadtree has been determined, the only step remaining is to take
the scaled coordinates and extract the row and column positions of the target node. If
the target node is on the bottom level, no scaling will be necessary. For each level
up the tree, the target coordinates have to be scaled down by 2 to reflect the smaller
number of nodes on that level. This scaling can be done simply by right-shifting the
integer coordinates by the number of levels the target is from die bottom level. This
gives the row and column positions to plug into the array lookup for nodes on that level
of the quadtree. Listing 4.5.3 shows an example function that puts all of this together.

Traversing the Quadtree

If, after locating the search node, there still is a need to traverse the quadtree, all that
is required is to save the tree level and array row and column positions. By shifting the
position values right or left, a program can go up and down the tree levels, and by
incrementing and decrementing die array positions, it can move adjacently on die
current tree level.

Tuning the Quadtree

Here are a couple of quick tips for getting the most out of a quadtree that apply to any
quadtree access implementation.

The first is to make sure that items are being positioned as far down in die tree as
possible. Improper edge boundary conditions can cause items to be placed much
higher than they should be. In the example used of a 256 by 256 tree, an object that
spanned position 128.0 would be placed in a root node. However, what about objects
that only touch, but don't actually span, such as 1.0 sized "tiles" that sit at 127.0 to
128.0? In this case, switching ">=" or "<=" for ">" or "<" or tweaking the object coor-
dinates with a tiny value can make the difference between root node placement and
leaf node placement.

The next tip is to make sure that the program picks the correct number of levels
for the quadtree. If it picks too few, the nodes will be overloaded with items to be
searched, when the whole idea is to reduce the size of the search set in the first place.
Too many tree levels can be just as bad. Many nodes may go empty, wasting space,
and too much node traversal may be taking place during various operations. It's a

400 Section 4 Geometry Management

good idea to add performance counters and statistics to the nonrelease versions of a
quadtree implementation, and analyze the results using real data, as the optimal set-
tings will be dependent on the actual data that is encountered.

Finally, I don't see any reasons why this technique couldn't be adapted to octrees.
Perhaps someone out there will try this and let me know how well it works.

Listing 4.5.1 Simple implementation of quadtree search
// Two C++ classes, one to represent the QuadTree and one to
// Represent each individual node.
// all variables are class members unless defined

QuadNode* QuadTree: :GetNodeContaining(const rect &ObjBounds)
{

if (RootNode->Contains(ObjBounds))
return(RootNode->GetNodeContaining(ObjBounds)) ;

else
return(NULL);

}

QuadNode* QuadNode: : Get NodeContaining(const rect &0bj Bounds)
{

if (lisLeafNode)
{
if (ULNode->Contains(ObjBounds)

return(ULNode->GetNodeContaining(ObjBound)) ;

if (URNode->Contains(ObjBounds)
return(URNode->GetNodeContaining(ObjBound)) ;

if (LLNode->Contains(ObjBounds)
return(LLNode->GetNodeContaining(ObjBound)) ;

if (LRNode->Contains(ObjBounds)
return(LRNode->GetNodeContaining(ObjBound)) ;

}
return(this);

bool QuadNode: : Contains (const rect &0bj Bounds)
{

return (Obj Bounds. top >= y1 && ObjBounds.left >= x1 &&
Ob j Bounds. bottom <= y2 && Obj Bounds. right <= x2);

4.5 Direct Access Quadtree Lookup 401

Listing 4.5.2 Code to determine the level of the target quadnode
int Quadtree::GetNodeLevelContaining(const rect &ObjBounds)

int xResult = ((int) (ObjBounds.left * QuadXScale)) A

((int) (ObjBounds.right * QuadXScale));

int yResult = ((int) (ObjBounds.top * QuadYScale)) *
((int) (ObjBounds.bottom * QuadYScale));

int NodeLevel = NumberOfTreeLevels;

while (xResult + yResult != 0) //Count highest bit position

xResult »= 1;
yResult »= 1;
NodeLevel--;

return (NodeLevel);
}

Listing 4.5.3 Code to determine the level of the target quadnode
QuadNode* QuadTree::GetNodelContaining(const rect &0bjBounds)

int x1 = (int) (ObjBounds.left * QuadXScale);
int y1 = (int) (ObjBounds.top * QuadYScale);

int xResult = x1 " ((int) (ObjBounds.right * QuadXScale));
int yResult = y1 A ((int) (ObjBounds.bottom * QuadYScale));

int NodeLevel = NumberOfTreeLevels;
int shiftCount = 0;

while (xResult + yResult != 0) //Count highest bit position

xResult »= 1;
yResult »= 1;
NodeLevel--;
ShiftCount++;

// Now lookup the node pointer in a 2D array stored linearly

x1 »= shiftCount; // Scale coordinates for
y1 »= shiftCount; // quadtree level

QuadNode** nodes = NodeLevelPointerArray[NodeLevel];

return (nodes[y1«(NodeLevel-1)+x1]);

4.6

Approximating Fish Tank
Refractions

Alex Vlachos, ATI Research
alex@vlachos.com

This gem briefly explains a method for approximating the refraction effect seen
when looking through the side of a fish tank. The majority of this gem explains

how to construct the transformation matrix that will be applied to the geometry
inside the tank to simulate the refraction effect.

Fish Tank Observations

Have you ever had a long wait at a seafood restaurant and spent any time staring at
the fish tanks by the lobby? If so, you probably noticed the unique way in which the
internal shape of the tank seems to change. Through observation, you'll notice that as
you walk by the tank from one side to the other, the back wall of the tank seems to
shear in the left and right directions. Simultaneously, the tank seems to flatten almost
to a 2D image when you're at the far left or far right of the tank. Further observations
(and common sense) show that the height of your head also affects the appearance of
the internal shape of the tank in a similar way. An obvious way to simulate diis move-
ment is to concatenate a shear and scale matrix to simulate these observations.

Although there are surely more mathematically savvy methods using Snell's Law
for computing refraction rays and so on, this gem focuses on approximating this
visual effect based solely on empirical observation. It is important to note that this
gem refers to fish tanks instead of shark tanks, the difference being the size of the tank
relative to the viewer. This algorithm assumes that the viewer is, for the most part, not
standing extremely close to the front of the glass. The phrase "extremely close" is obvi-
ously a relative one. If you imagine a fish tank that is approximately 3 feet by 2 feet, a
person walking by that tank is the scale at which this gem is aimed. If you picture that
same person walking in front of a shark tank measuring 30 feet by 10 feet, you'll real-
ize that the person is spending most of his or her time directly in front of the tank rel-
atively close to the glass. Although this algorithm doesn't break down, the visual
effects are best noticed when the viewer is moving relative to the glass as opposed to
standing directly in front of it. Environment mapping makes a similar assumption, so
this is nothing new to real-time graphics.

402

4.6 Approximating Fish Tank Refractions 403

Preeomputations

Given a fish tank whose front face has dimensions width and height, the transforma-
tion matrix that places the center of the front face of the tank at the origin in a certain
orientation can be precomputed (e.g., back of the tank extends down the positive z-
axis with the positive j/-axis as the up vector). The reason the center of the front face
is placed at the origin is to facilitate the scale and shear transformations. Once the
transformation matrix has been generated, the position of the camera can be trans-
formed into the space of the fish tank with a simple matrix multiply. This will allow
all of the computations to happen in that common space (tank space). It's important
to note that this method is based solely on the position of the camera relative to the
tank. The view direction of the camera does not affect the visual results.

Scale Factor

The scale factor for the tank needs to be computed per frame, which can be visualized
by bringing the far face of the tank toward the near face (the face through which the
viewer is looking). When the viewer is standing directly in front of the glass, no scal-
ing should take place. When the viewer is standing off to the side of the tank looking
across the face of the glass, the tank is scaled in quite a bit. The effect of this left to
right motion is shown in Figure 4.6.1.

Given the viewer s position in tank space and the center of the glass, the angle to
the surface of the tank is computed while taking into account the ratio of the width

FIGURE 4.6.1 Three shearing and scaling examples based on the viewer's position. The
user clip planes are created based on the viewer's position and the edges of the tank glass.

404 Section 4 Geometry Management

and height of the tank's glass. If the glass dimensions aren't taken into account, the
results across different shapes of glass will be inconsistent.

The scale factor is computed using the following method:

1. Transform the viewer's position into fish tank space. This puts the center of
the tank's glass at the origin.

2. Calculate the vector from the center of the glass (the origin) to the camera,
but do not normalize it.

3. Divide the x- and y-coordinates of the vector by the width and height of the
glass, respectively.

4. Divide the z-coordinate of the vector by the depth of the tank (distance
from near to far glass).

5. Normalize the vector.
6. Compute the dot product of this vector and the face normal of the glass in

tank space (0, 0, -1). This scalar value clamped 0.0 to 1.0 will serve as the
scale factor.

Assuming the tank was transformed to the origin as explained previously, the
scale would take place along the .zr-axis.

Shear Factor

The shear factor must also be computed per frame. Two separate shear values need to
be generated: one for the x-axis and one for the y-axis. For the shear along the x-axis,
we create a 2D vector composed of the x- and z-coordinates of the vector computed
for the scale factor and normalize it. The x-component of the normalized 2D vector is
used for the shearing along the x-axis. Similarly, we create a 2D vector composed of
the y- and z-coordinates, normalize it, and use the x-component of the normalized
2D vector for the shearing along the y-axis. Experimentation has shown that limiting
the shear values in x to 0.75 and in y to 0.25 helps reduce unwanted effects.

Composing the Matrix

The scale and shear factors can be placed into a single matrix:

1 0 shearx 0

0 1 sheary 0

0 0 scale 0

0 0 0 1

User Clip Planes and the Stencil Buffer

When visualizing what happens to the geometry after the shear and scale transforma-
tions are applied, it becomes apparent that the geometry ends up touching pixels that

4.6 Approximating Fish Tank Refractions 405

were never intended to be modified. To solve this problem, if the fish tank glass is rec-
tangular in shape, enabling four user clip planes from the position of the viewer to the
four borders of the glass will solve the problem (Figure 4.6.1). This will clip all of
the sheared geometry that could otherwise be seen from the outside of the tank. If the
glass is circular or some other nonrectangular shape, the stencil buffer will need to be
used in place of user clip planes to stencil out the pixels that don't belong to the fish
tank glass.

Improving the Reality

So far, this method describes how to make the geometry on the inside of the tank look
as if it's filled with water. There is still much room for improvement. The first
improvement that can be done is to apply caustic textures. In short, caustics are the
patterns of light that appear on the bottom of a water-filled volume. These patterns
are caused by light refracting as it passes from outside the tank through the surface of
the water at the top. While it is nice to have caustic effects that correspond roughly to
the simulation of the water surface, acceptable caustics can be created by simply
scrolling two caustic textures across all of the geometry in the tank using projective
textures.

The next obvious visual cue that is missing is making the outside of the glass
reflective. A simple way to get nice reflections on glass is to render the reflected geom-
etry of the glass into a renderable texture and then texture from that to give the illu-
sion of a transparent reflective surface.

To give the viewer the ability to see through the water at the top of the tank, we
could use another renderable texture to render what could be seen if there were no
water in the tank. We could then apply environment-mapped bump mapping (or any
other applicable pixel shader that uses dependent texture reads) to that renderable tex-
ture to give the illusion of animated water.

Obviously, this algorithm can be applied to each separate face of the fish tank. In
addition, higher order culling can be performed if the vertices defining each side of
the glass are outside the current view frustum. This method for culling large groups of
polygons can be applied to each individual pane of glass.

Conclusion

Simulating refractions through a planar surface can be very simple to fake. When
combined with other real-time rendering techniques, it is possible to create a very
convincing approximation to the real world.

4.7

Rendering Print Resolution
Screenshots

Alex Vlachos and Evan Hart,
ATI Research
alex@vlachos.com and ehart@ati.com

With the recent advances in real-time graphics technology, games have become
fantastically rich in visual quality. While these images are great for display on a

computer monitor that is typically 72 dots per inch (dpi), they are somewhat less
appealing when displayed in print. Print resolution is typically a minimum of four
times finer than monitor resolution in each dimension. Thus, a one-to-one mapping
of the screen pixels to the dots on the printed page results in postage-stamp-sized
screenshots. One solution to this problem is to enlarge the source image in the page
layout software, but this results in blocky images that sell the original content short.

The simple solution to this problem is to take the screen shots at a higher frame
buffer resolution. Naturally, the larger buffer can be an offscreen surface, so that it is
not tied to the monitor's supported resolutions. This still poses problems, as most
accelerators are only designed to render to the maximum resolution of monitors, leav-
ing the programmer with at best a 2048 by 2048 screenshot. Although this resolution
may sound sufficient, it won't cover a full magazine page at 300 dpi. This approach
also takes up 32MB of graphics memory for a single color buffer and a depth buffer.

The solution proposed here is to break the task into the rendering of several
smaller subimages. These subimages can then be pasted together to form a screen shot
of arbitrary resolution. This gem focuses on the projection matrix tricks required to
do this seamlessly.

Basic Algorithm

Since current graphics hardware cannot render the resolutions required for print, the
desired final image must be divided into a grid of subimages and pasted together. In
the example code later in this gem, the dimensions for each of the subimages are
assumed to be equal to the frame buffer dimensions. Although the subimages must
be a supported rendering resolution by the graphics hardware, setting the viewport

406

4.7 Rendering Print Resolution Screenshots 407

size to anything smaller than the frame buffer will allow this method to handle arbi-
trary dimensions.

Figure 4.7.1 shows how an image can be segmented into a grid of subimages. Six
frustum planes define a projection matrix: near, far, left, right, top, and bottom. For
each subimage, new left, right, top, and bottom planes are computed that will define
a unique projection matrix for rendering that subimage.

Taking the screen shot involves three steps:

1. Calculate the frustum planes.
2. Determine the intermediate planes.
3. Render each subimage using its own frustum composed of the intermediate

planes.

First, the frustum planes for the projection matrix are computed as six scalars.
The near and far values are simply the distance from the eye to the near and far
planes, while the left, right, top, and bottom values are defined by the points at which
planes intersect the near plane. Section 3.5 of Real-Time Rendering has an excellent
description of the meaning of these values [Moller99].

Next, the intermediate plane values Hn and Vn are computed by linearly interpolat-
ing the top and bottom values and the left and right values, respectively.

Finally, the frustum for each subimage is composed of the bordering Hn and Vn

values for the left, right, top, and bottom. The projection matrix can be generated by

h
3072 Pixels

FIGURE 4.7.1 Segmentation of the image.

H

PaneO

1
ffi
00

1024 Pixels

top

2*top/

H2

top/3 +

H3

V0 V, V2 V3
 bottom

eft 2*left/3 + right/3 left/3 + 2*right/3 right

408 Section 4 Geometry Management

calling either glFrustum() or D3DXMatrixPerspectiveOffCenter(). When rendering
into each of the subimages, the entire scene is rendered normally.

Following is a simple code example for manually building the projection matrix
for both OpenGL and Direct3D for a 3x3 grid of subimages.

const float GPG_PI = 3.14159265f;
inline float GpgDegToRad(float D) { return ((D) * (GPG_PI/180.0f)); }
void GpgPerspective (double fovy, double aspect, double Near, double

Far, int subrect)
{

double fov2, left, right, bottom, top;

fov2 = GpgDegToRad(fovy) * 0.5;

top = Near/(cos(fov2)/sin(fov2));
bottom = -top;
right = top*aspect;
left = -right;

if (subrect == -1) //Regular full screen
GpgFrustum (left, right, bottom, top, Near, Far);

else if (subrect == 0) //UL
GpgFrustum(left, left/3.0, top/3.0, top, Near, Far);

else if (subrect == 1) //UC
GpgFrustum(left/3.0, right/3.0, top/3.0, top, Near, Far);

else if (subrect == 2) //UR
GpgFrustum(right/3.0, right, top/3.0, top, Near, Far);

else if (subrect == 3) //ML
GpgFrustum(left, left/3.0, bottom/3.0, top/3.0, Near, Far);

else if (subrect == 4) //MC
GpgFrustum(left/3.0, right/3.0, bottom/3.0, top/3.0, Near, Far);

else if (subrect == 5) //MR
GpgFrustum(right/3.0, right, bottom/3.0, top/3.0, Near, Far);

else if (subrect == 6) //BL
GpgFrustum(left, left/3.0, bottom, bottom/3.0, Near, Far);

else if (subrect == 7) //BC
GpgFrustum(left/3.0, right/3.0, bottom, bottom/3.0, Near, Far);

else if (subrect == 8) //BR
GpgFrustum(right/3.0, right, bottom, bottom/3.0, Near, Far);

}

void GpgFrustum (double left, double right, double bottom, double
top, double zNear, double zFar)

{
float matrix[16] = { 1.0f, O.Of, O.Of, O.Of,

0.Of, 1.Of, 0.Of, 0. Of,
O.Of, O.Of, 1.0f, O.Of,
0. Of, 0. Of, 0. Of, 1 . Of } ;

#ifdef GPG_OPENGL_API
matrix[0] = (float)(2.0*zNear/(right-left));
matrix[5] = (float)(2.0*zNear/(top-bottom));

matrix[8] = (float)((right+left)/(right-left));

4.7 Rendering Print Resolution Screenshots 409

matrix[9] = (float) ((top+bottom)/ (top-bottom));
matrix[10] = (float) (-(zFar+zNear)/(zFar-zNear));
matrix[11] = (float) (-1 .0) ;

matrix[14] = (float) (-(2.0*zFar*zNear)/(zFar-zNear)) ;
#else //DirectSD

matrix[0] = (float) (2. 0*zNear/ (right-left j) ;
matrix[5] = (float) (2. 0*zNear/ (top-bottom));

matrix[8] = (float) ((right+left)/(right-left)) ;
matrix[9] = (float) ((top+bottom) /(top-bottom));
matrix[10] = (float) (- (zFar) / (zFar-zNear)) ;
matrix[11] = (float) (-1 .0) ;

matrix[14] = (float32) (-(zFar*zNear)/(zFar-zNear)) ;
#endif

//Now set this matrix as the current projection matrix

Caveats and Concerns

As with any rendering algorithm, the programmer must pay attention to how this
technique interacts with any special tricks performed by the graphics engine. The pro-
grammer should be aware that the utilization of multiple images to create the screen
shot could affect Gouraud shading in the case of very large polygons in the scene. Due
to the multiple projections, large polygons can possibly be clipped at all the subimage
boundaries, resulting in lighting artifacts. Additionally, the programmer should
take care to handle any special effects that require rendering into textures. The resolu-
tion for these images may also need to be increased for optimal results. Of course, if
anything in the scene is animated, one should make sure that the same exact time is
used in the animation when each of the subimages is rendered.

While we have referred to the Direct3D and OpenGL graphics APIs directly and
implied the use of PC hardware, this technique would work equally well on game
consoles where the screen shot problem is the worst. On these devices especially, gam-
ing magazines are forced to jump through all sorts of hoops to get terrible screen grabs
from NTSC signals.

Is this technique cheating? No. This method is equivalent to running your game
at a higher resolution. You're not misrepresenting your work by providing large print-
resolution screenshots to a gaming magazine. We have used this technique for color
plates in Real-Time Rendering and Game Programming Gems and have been very
pleased with the results.

Conclusion

We have presented a technique for rendering print-resolution screenshots using
graphics hardware. Since it is not possible to directly render the high-resolution
images required for print, we have shown how to divide the desired final image into a

410 Section 4 Geometry Management

grid of subimages that are rendered separately. This allows content developers to show
their games in the best light in print media.

References
[Moller99] Moller, Tomas, and Eric Haines, Real-Time Rendering, AK Peters, 1999.

4.8

Applying Decals to Arbitrary
Surfaces

Eric Lengyel, C4 Engine
Iengyel@c4engine.com

I any games need to render special effects such as scorch marks on a wall or foot-
prints on the ground that are not an original part of a scene, but are created dur-

ing gameplay. These effects are commonly implemented by creating a new object,
which we will call a decal, which coincides with an existing surface, and rendering it
using some type of depth offset technique (for example, see [LengyelOO]). Applying a
decal to the interior of a planar surface is simple, but difficulties arise when applying
decals to the more complex surfaces used in today's games to represent curved objects
and terrain patches. This gem presents a general method for applying a decal to an
arbitrarily shaped surface and concurrently clipping the decal to the surface s boundary.

The Algorithm

We begin with a point P that lies on an existing surface and a unit normal direction N
that is perpendicular to the surface at diat point. The point P represents die center of
the decal and may be the point at which a projectile has impacted the surface or the
point where a character s foot has stepped on the ground. A unit tangent direction T
must also be chosen in order to determine die orientation of the decal. This configu-
ration is illustrated in Figure 4.8.1.

FIGURE 4.8.1 Configuration of a decal.

411

412 Section 4 Geometry Management

Given the point P and the directions N and T, we have an oriented plane that is tan-
gent to the surface geometry at P. We can carve a rectangle out of this plane that rep-
resents the area of our decal by constructing four boundary planes that are parallel to
the normal direction N. Let w and h be the width and height of the decal. Then the
4D vectors corresponding to the four border planes are given by

w I
right = -T, — + T • P

bottom = B, B • P

top = [-B, - + B • P | (4.8.1)

where B = N X T. We will generate a triangle mesh for the decal object by clipping
nearby surfaces to the four boundary planes. We also want to clip to front and back
planes to avoid bleeding through to parts of the same surface mesh that may be inside
the boundary planes, but far in front of or behind the point P. The 4D vectors corre-
sponding to the front and back planes are given by

front = (-N, d + N • P)

back = (N, d - N • P) (4.8.2)

where d is the maximum distance that any vertex in the decal may be from the tan-
gent plane passing through the point P.

The algorithm proceeds as follows. First, we identify which surfaces in the world
may potentially be affected by the decal. This may be determined by locating any sur-
faces whose bounding volume reaches within a certain distance of the point P. For
each potentially affected surface, we individually examine each triangle in the surface's
mesh. Let M denote the unit normal direction corresponding to the plane of a trian-
gle in the mesh. We throw out any triangles for which N • M < £ for some fixed posi-
tive value E, since these triangles are facing away from the decal s normal direction N.
Remaining triangles are clipped to the planes given by Equations 4.8.1 and 4.8.2 and
stored in a new triangle mesh.

When a triangle overlaps any of the planes and needs to be clipped, we interpo-
late the normal vectors as well as the vertex positions so that we can later apply color-
ing to the clipped vertices that reflects the angle between each vertex's normal and the
deed's normal direction. This has the effect of smoothly fading the decal texture in

4.8 Applying Decals to Arbitrary Surfaces 413

relation to each triangle's orientation relative to the plane of the decal. We assign an
alpha value to each vertex using the equation

N ' R
- e

R
alpha = (4.8.3)

where R is the (possibly unnormalized due to interpolation) normal corresponding to
the vertex. This maps the dot product range [e,l] to the alpha value range [0,1].

Texture mapping coordinates are applied to the resulting triangle mesh by mea-
suring the distance from the planes passing through the point P and having normal
directions T and B. Let Q be the position of a vertex in the decal's triangle mesh.
Then the texture coordinates s and t are given by

w 2

B • (Q - P) !
t = — - + -

h 2 (4.8.4)

Triangle Clipping

Each triangle belonging to a surface that is potentially affected by the decal is treated
as a convex polygon and is clipped to each of the six boundary planes one at a time.
Clipping a convex polygon having n vertices to a plane results in a new convex poly-
gon having at most n + 1 vertices. Thus, polygons that have been clipped against all
six planes may possess as many as nine vertices. Once the clipping process is complete,
each polygon is treated as a triangle fan and added to the decal's triangle mesh.

To clip a convex polygon against an arbitrary plane, we first classify all of the ver-
tices belonging to the polygon into two categories: those that lie on the negative side
of the plane, and those that lie on the positive side of the plane or on the plane itself.
If all of the polygon's vertices lie on the negative side of the plane, the polygon is dis-
carded. Otherwise, we visit every pair of neighboring vertices in the polygon looking
for edges that intersect the clipping plane. As shown in Figure 4.8.2, new vertices are
added to the polygon where such intersections occur, and vertices lying on the nega-
tive side of the plane are removed.

Suppose that the vertex V, lies on the positive side of the clipping plane C, and
that the vertex V2 lies on the negative side of C. A point V3 lying on the line segment
connecting Vj and V2 can be expressed as

V3 = V1 + t(V2-V1) (4.8.5)

Section 4 Geometry Management

FIGURE 4.8.2 Clipping a polygon against a plane.

where the parameter t satisfies 0 < t < 1. We would like to know for what value of t the
point v3 lies on the plane C. If we treat the V, as a homogeneous vectors having w-
coordinates of one, then we simply need to find the value of t for which the 4D dot
product C • V3 is zero. Plugging in the right side of Equation 4.8.5 for V3 and solving
for t gives us

t =
O V,

o(v,-v2)
(4.8.6)

(Note that the difference V\ — V2 has a zf-coordinate of zero.) Substituting this
value of t back into Equation 4.8.5 gives us our new vertex.

Implementation

The source code on the companion CD-ROM demonstrates the algorithm presented
in this article through the implementation of a C++ class called Decal. The construc-
tor of this class takes the decal center P, the normal direction N, and the tangent direc-
tion T as parameters, as well as the width, height, and depth of the decal. After
calculating the boundary planes using Equations 4.8.1 and 4.8.2, the constructor
clips all potentially affected surfaces to these planes and stores the resulting mesh in a
new triangle array. Vertex colors and texture mapping coordinates are then assigned
using Equations 4.8.3 and 4.8.4. The source code generated the scorch marking decal
shown in Figure 4.8.3.

4.8 Applying Decals to Arbitrary Surfaces 415

I*»s»«3iS(g3t8««»*8K

FIGURE 4.8.3 A scorch mark decal applied to a curved surface.

References

[LengyelOO] Lengyel, Eric, "Tweaking a Vertex's Projected Depth Value," Game
Programming Gems, Charles River Media, 2000, pp. 361-365.

4.9

Rendering Distant Scenery
with Skyboxes

Jason Shankel, Maxls
shankel@pobox.com

Consider a game that takes place on a Tibetan mountaintop. In the distance, we
can see the ridge of the Himalayas, clouds in the sky, and a village down in the

valley. Or, consider a game in deep space, with the Eagle and Orion nebulae shining
from light-years away. Such imagery can heighten the beauty and sense of immersion
of a 3D game.

Rendering distant scenery in 3D can be accomplished with skyboxes. This gem
explains the principle of skyboxing and describes alternative means for rendering a
skyboxed scene.

Basic Technique

The idea behind a skybox is very simple. Distant scenery is rendered onto six textures,
each of which is applied to one side of a cube. The camera is placed at the center of
the cube. The camera can rotate freely within, but never move from the center of this
cube. When the scene is rendered, the images projected on the walls of the skybox
give the impression of distant scenery much in the same way images projected onto
the ceiling of a planetarium give the impression of the night sky (Figure 4.9.1).

Skybox Resolution

Ideally, one texel in die skybox object should map to one pixel on the screen. The fol-
lowing formula can be used to determine the ideal skybox resolution for a given
screen resolution

screenRes
skyboxRes =

tan.(fov/z)

where skyboxRes is the resolution of one side of the skybox in texels, screenRes is the
width of the screen in pixels, andyof is the angle of the horizontal field of view. For
example, a scene with a 90-degree field of view running at 640x480 would have an
ideal skybox resolution of 640 texels.

416

4.9 Rendering Distant Scenery with Skyboxes 417

FIGURE 4.9.1 Skybox as seen from above: distant terrain is rendered on the sides of the
box, and the camera is placed at the center.

Some 3D systems limit texture resolution to 256x256 texels. This means that the
skybox textures may be stretched noticeably when rendered to the screen. For some
applications, this stretching may be acceptable. Others may wish to subdivide each
skybox face to increase texture resolution (Figure 4.9.2).

FIGURE 4.9.2 Subdividing the skybox's faces will improve image quality at the cost of
increased texture memory and polygon count. Upper left) One texture per side. Upper
right) Four textures per side. Lower left) Sixteen textures per side.

418 Section 4 Geometry Management

Skybox Size

Because the camera is always at the center, it does not matter how big we make the
skybox as long as it falls within the viewing frustum. As the size of the skybox
increases, its walls become proportionally more distant, keeping the same portion in
frame.

The skybox dimensions should be chosen so that the farthest points, the corners,
are closer to the camera than the far clipping plane. The following formula can be
used to calculate the maximum skybox size:

skyboxWidth <

where skyboxWidth is the length of one edge of the skybox in world units, and zf aP. is
the distance to the far clipping plane in world units.

Rendering the Scene

The simplest technique for drawing a skybox is to render an ordinary textured cube,
aligned to the world axes and centered on the camera's world position. The skybox
should be the first thing rendered. There is no need to clear the color buffer first, as
the skybox will always fill the entire screen.

When rendering a skybox, both depth testing and depth writing should be dis-
abled, as the skybox geometry will not intersect properly with the other geometry in
the scene. Lighting, fogging, and any other similar effects should also be disabled.
The skybox images should be rendered without any atmospheric modification.

As noted earlier, a simple one-texture-per-face cube may produce significant tex-
ture stretching. Texture filtering can be used to reduce the effect of this stretching.
Texture filtering reduces the jagginess of stretched images by sampling neighboring
texels and blending them together.

Texture filtering may cause seams to appear along the edges of the skybox, where
two textures meet. These seams are caused by improper texture wrapping. Texture
wrapping determines how the texture filter decides which texels "neighbor" the texels
at the edge of a texture. If texture wrapping is set to repeat (GL_REPEAT in OpenGL),
texels on one edge will be combined with texels on the opposite edge, causing seams
between textures to stand out.

In OpenGL, texture wrapping should be set to GL_CLAMP_TO_EDGE_EXT, if possi-
ble. This will clamp filtering to the edge the texture, eliminating interference from
border texels. GL_EXT_texture_edge_clamp is an OpenGL extension, so it might
not be available on all systems. If the GL_CLAMP_TO_EDGE_EXT mode is not available,
texture filtering should be set to GL_CLAMP, which combines edge texels with the tex-
ture's constant border color.

4.9 Rendering Distant Scenery with Skyboxes 419

Cube Environment Mapping

Cube environment mapping is an alternative to traditional skybox rendering. Cube
environment mapping combines all six sides of a skybox into a single texture.

Traditionally, texture coordinates are specified as offsets into a two-dimensional
texture map, with (0,0) being one corner of the texture, and (1,1) being the opposite
corner. In cube environment mapping, six textures are combined to form a cube, and
texture coordinates are specified as three-dimensional vectors, pointing outward from
the center of the cube to a point on its surface (Figure 4.9.3).

Cube environment mapping can be used to render distant scenery, and to cast
reflections of the skybox on nearby shiny objects.

Cube environment mapping limits skyboxes to one 2D texture per face, so subdi-
viding faces to increase resolution is not possible. Fortunately, most cube environ-
ment mapping systems support texture resolutions above 256x256.

FIGURE 4.9.3 Texture coordinates for cube environment maps are specified as vectors
pointing to the surface of a cube centered on the origin.

Generating Skybox Textures

Some software packages provide direct support for generating skyboxes. For those
that don't, manually generating skybox images is simple.

The size of the output image should be set to texture resolution (e.g., 256x256)
and the camera's field of view set to 90 degrees. Six renderings are generated, with the
camera looking up and down each of the three cardinal axes (left, right, up, down, for-
ward, and back).

420 Section 4 Geometry Management

Conclusion

A sense of place is critical to most 3D games. Rendering distant scenery not only
increases visual beauty, it also provides players with a means of orienting themselves in
the virtual environment. Skyboxes provide an economical and effective way to render
distant scenery.

Source Code

Sample source code is provided using OpenGL and GLUT. The sample program
demonstrates both 2D and cube environment map rendering.

Cube environment mapping is supported in OpenGL via the GL_ARB_texture_
cube_map extension. The sample code checks for the presence of this extension at
startup. In cube environment map mode, a shiny object is placed in the camera's view,
demonstrating reflectance.

Skybox textures were generated with Terragen (Copyright © 1997—2000 Planet-
side Software).

4.10

Self-Shadowing Characters

Alex Vlachos, David Gosselin, and
Jason L. Mitchell; ATI Research
alex@vlachos.com, gosselin@ati.com,
jasonm@ati.com

Rendering self-shadowing characters is an important visual cue missing from most
real-time games. This gem presents a projective texture approach, which enables

self-shadowing of convex subsections of characters in real time. After breaking the
character into convex subsections, the subsections are rendered into a texture with
varying alpha values from the point of view of the light source. When the character is
rendered from the viewer's point-of-view, this texture is projected back onto the con-
vex subsegments of the character, simulating the occlusion of each subsegment with
respect to the light source. Being map based rather than stencil-volume based, this
technique requires no additional work to be compatible with higher-order surface tes-
sellation techniques.

Previous Work

Projective techniques for shadowing started with [Williams78] and have been refined
in many papers. This gem breaks with the depth-based shadow mapping and uses a
technique similar to the priority buffers of [Hourcade85]. [LengyelOO] also uses a
similar segmented technique.

Segmenting Character Geometry

The first step in this algorithm is grouping the character geometry. The artist tags
bones to form groups of geometry that will shadow the other groups of geometry.
These groups should be selected to reduce the segmenting of the model but retain the
shadowing relationships. During preprocessing, the dominant bone for each polygon
will be determined by finding the bone that has the largest blending weight. The tag
will then be extracted from this bone and the polygon will be placed in the appropri-
ate group. See Figure 4.10.1 for an example of a segmented model.

421

422 Section 4 Geometry Management

FIGURE 4.10.1 Segmented model.

Rendering the Texture

Once the character has been logically divided into convex subsegments, these groups
are sorted from front to back with respect to the light source. Since there are usually a
relatively small number of groups in a given character, this sorting is an insignificant
computational burden. The character in Figure 4.10.2, for example, has only six
groups to sort. Then a view matrix is computed from the light's point of view such
that is centered on the center of the bounding box surrounding the object. A perspec-
tive projection matrix is also generated to have the character fill as much of the ren-
derable texture as possible.

The basic steps are:

1. Compute light matrix.
2. Clear renderable texture with (255, 255, 255, 255).
3. Draw each of the subsegments into the alpha texture from front to back

(from the light's point of view) with increasing alpha values: 0, 1, 2, 3,4,...
254. (255 is reserved as the alpha clear color.)

Note that the rate of increasing the alpha values can be spread out to cover the
entire range of alpha values available based on the number of groups being rendered.
This will help to remove rendering artifacts, which is explained in the next section.

4.10 Self-Shadowing Characters 423

Rendering the Character

Once the shadow map is created, the next step is to render the character into the
frame buffer using the shadow map. In a brute-force approach, this is accomplished in
three passes. The first pass renders a fully lit character into the frame buffer. The sec-
ond pass renders each of the subsegments of the character with an alpha test of less
than the alpha value that was used to draw the subsegment into the shadow buffer.
This is done for two reasons/The first reason is to use only those parts of the shadow
buffer that would be shadowing the character. Since the shadow buffer was segmented
using the alpha values, setting the alpha test of less than retrieves the shadows of all
the previous groups (the ones closer to the light). The second reason for using the
alpha test is to effectively shrink the shadows by half a pixel in order to avoid pulling
unwanted alpha values in from bilinear texture fetching. The texture matrix is set to
take the world space position of the object and transform it by the light's view and
projection matrix tliat was calculated when rendering to the texture. The pixels
that pass the alpha test are drawn in black, effectively masking out the lighting in the
first pass. The final pass draws the character with its base color modulated by a small
ambient term to brighten the areas in shadow by an ambient term. Figure 4.10.2
shows the results of this rendering over several frames of animation. This is obviously
a brute-force approach and can be optimized using pixel shaders.

FIGURE 4.10.2 Character rendered, with shadows from three different angles.

Conclusion

We presented a way to render animated characters with self-shadowing using a pro-
jective texture technique. By segmenting the character into convex subsegments, we
avoided the aliasing found in purely depth-based approaches. The approach is also
general enough to be used by any graphics hardware that supports rendering to tex-
tures and projective texture mapping.

424 Section 4 Geometry Management

References
[Hourcade85] Hourcade, J. C., and Nicolas, A., "Algorithms for Antialiased Cast

Shadows," Computers and Graphics, vol. 9, no. 3, pp. 259-264.
[LengyelOO] Lengyel, Jerome E., "Splatting for Soft-Edged Shadows," Microsoft

Technical Report, 2000.
[Williams78] Williams, Lance, "Casting Curved Shadows on Curved Surfaces,"

Computer Graphics (SIGGRAPH 78 Proceedings), vol. 12, no. 3, 1978, pp.
270-274.

4.11

Classic Super Mario 64
Third-Person Control and Animation

Steve Rabin, Nintendo of America
steve rabin@hotmail.com

The classic Super Mario 64 control scheme has easily become one of the most intu-
itive ways to control a 3D character from a third-person perspective. While the

game Super Mario 64 didn't invent the technique, it did manage to polish it and pop-
ularize it with millions of gamers. It's routinely used as the measuring stick of an
extremely playable control scheme. However, the real beauty is that it makes sense to
even a first-time player, which is no small accomplishment.

This gem will deal with the basic issues of controlling and animating a character
from a third-person perspective. While it seems straightforward enough (just copy
Super Mario 64), it's not as trivial as it first appears. There are many small nuggets of
wisdom that can often take weeks of trial and error to discover.

The Setup

The classic Super Mario 64 control incorporates a free-floating camera that follows the
character around wherever he may go. Imagine the camera hovering behind him
attached by a bungee cord to his body. As the character moves from a stand to a run,
the camera smoothly accelerates toward the character trying to maintain a fixed dis-
tance from him. As the character turns, the camera gently circles around trying to stay
behind him.

The key to this control scheme is that the character will go whichever way we tell
him, as if we were sitting inside the camera. Therefore, if we press up on the con-
troller, the character will move away from the camera. If we press right, the character
moves rightward from the camera's perspective. The tricky part is that the camera is
always moving and that this camera-oriented control needs to be mapped onto the
world's coordinate system, where the character actually moves around.

Converting the Controller Input

The basic programming problem involves converting the player's input (up, down,
right, left) from the camera's perspective to the world orientation. In order to do this,

425

426 Section 4 Geometry Management

we need a vector that corresponds to the camera's forward direction, and a vector that
corresponds to the cameras rightward direction.

These vectors become useful because any up/down controller movements get
directly mapped into translations along the camera's forward vector. Similarly, any
right/left controller movements get mapped into translations along the camera's right
vector. However, since the character basically moves on a flat plane, these camera vec-
tors shouldn't contain any height information (traditionally represented by the/-axis).
Figure 4.11.1 shows how we can think of the controller input in relation to the cam-
era and the character.

Top Down View

Down
1 T

Right

FIGURE 4.11.1 Controller relationship to character with respect to the camera.

The forward vector of the camera is easy to find since it's simply the direction the
camera is facing. Once we have it, we zero out the vertical axis and renormalize it.
Now we can get the camera's right vector with the following relationship:

right.x = forward.z
right.z = -fonward.x
night.y = 0 . 0

Since controller input traditionally comes in the form of numbers, a brief expla-
nation is necessary. We can expect that the user input on an analog stick will basically
vary from -1.0 to 1.0 along each axis. In reality, most input schemes use integers
and vary from -128 to 127 or -32768 to 32767, but for our purposes, we'll need to
convert those to a floating-point number within the -1.0 to 1.0 range. However, its
important to realize that Up and Right are both positive. The layout of a controller is
shown in Figure 4.11.2.

(Up)
+1.0

(Left)-1.0 •*—{)—*+1.0 (Right)

-1.0
(Down)

FIGURE 4.11.2 Values from an analog controller.

4.11 Classic Super Mario 64 Third-Person Control and Animation 427

Armed with the camera's forward and right vectors, we can now remap the input
from the controller to get the final world vector. The following relationship gives the
direction the character should move, in world coordinates.

final.x = (inputLtRt * right.x) + (inputUpDn * forward.x)
final.z = (inputLtRt * right.z) + (inputUpDn * forward.z)
final.y = 0

Once this final vector is normalized, it can be applied to the character so that he
moves in the proper direction. It's important to remember that for every frame, a new
forward and right vector must be calculated, since the camera can move at any time.

Rotating the Character

The user input at any instant gives a desired direction. By sampling the magnitude of
the directions over time, the speed of the character can be determined. A simple
model for moving the character is to maintain both a direction and a speed separately.
It helps to keep them separate, instead of representing both as a single vector, so that
a speed of zero still retains a direction. Obviously, bad things would happen if we try
to orient the character using a zero vector.

As the input is sampled over time, the character's direction should converge on
the user's desired direction. For example, if the character is facing north and the player
turns him east, the character should turn toward the east using some kind of damp-
ening. A very pleasing dampening effect comes from simply adding a proportion of
the desired direction to the current direction, based on frame rate. In Figure 4.11.3,
notice how the character initially rotates quickly and then slowly dampens toward the
final desired direction over a short period of time.

The soft dampening shown in Figure 4.11.3 results in a smooth, responsive feel
when controlling the character. The rate at which it converges on the desired direc-
tion can be carefully tuned to get the desired feel. The dampening function in Figure
4.11.3 can be represented by the following formula:

new_dir = (old_dir * 0.5) + (desired_dir * 0.5)
Normalize(new_dir)

By taking into account frame rate, the dampening function can be made to be
fairly resilient to frame rate fluctuations. Unfortunately, wild frame rate fluctuations

Angle: 90° 45° 22.5° 12.3° 6.1° 3.0° 1.5°~* 0°

Time: 0 1 2 3 4 5 6 7

FIGURE 4.11.3 Character rotation over time with exponential dampening.

428 Section 4 Geometry Management

of 100 percent or so are not dealt with properly. The following is a dampening for-
mula that is semi-resilient to frame rate changes (within a certain window).

new_ratio = 0.9 / FPS
old_ratio = 1.0 - new_ratio
new_dir = (old_dir * old_ratio) + (desired_dir * new_ratio)
Normalize(new_dir)

This new dampening formula will now rotate the character 90 percent toward the
desired direction after one second, regardless of frame rate. The percentages need to
be tuned, but whatever frame rate it's tuned to becomes the center of our frame rate
window. However, as the frame rate wanders too far from that center, the "feel" will
slowly distort and become either too sensitive or too sluggish. If the frame rate varies
too much, we can consider decoupling this calculation with the graphics update in
order to maintain a steady rate.

When a character is told to move 180 degrees from the current direction, smooth
rotation is not always the best solution. Since there is such a large angle to cover, it
results in an extended rotation that can feel clunky and unnatural. Instead, it's better
to use a transition animation to make large changes in direction. In Super Mario 64,
this occurs when Mario is at a full run and told to go in the opposite direction. This
results in a skidding stop followed by a seamless 180-degree in-place turn. However,
during this process, there's a speed penalty that stalls him for a split second before he
can move again.

The method of rotation described up to this point is fairly touchy feely and is
ultimately susceptible to frame rate issues, even though they have been reduced. For
example, if you record a player's input and feed it back to the game at a slightly dif-
ferent frame rate, the result will be slightly different. This has grave consequences if
you record a game, using input alone, and plan to replay it back from a different cam-
era angle (perhaps causing the frame rate to vary). The solution is either to lock the
simulation rate or use a highly controlled method of rotation, such as clamping to a
particular angular velocity. However, this would give up some of the smooth accelera-
tion effects in return for higher predictability.

Translating the Character
•lim,f.-............ ...,„.,.... ..,.,........„.._„„.......-*....,....,~...................... -::~p~.~~:™wr™~:~^~ -;-•;•::-/ -.".>s;i^-"-.."&^;::-~ —;;:••:-• :•--• ̂ .\.̂ ..:':"-:̂ ::*

With the character smoothly turning, we now need to actually move the character.
This is done by taking the character's current direction and translating him forward
by the current speed. The smooth rotation of the character basically points the hips in
the proper direction, and the current speed moves him forward.

We'll want some type of dampening function, just like with the rotation, to con-
trol the speed. However, the speed needs to be clamped to a top speed, unlike the
rotation. We'll also want to penalize the current speed for 180-degree turns and turns
in general. The dampening function should quickly converge (faster than I/10th of a
second) to the desired speed in order to make the control feel responsive.

4.11 Classic Super Mario 64 Third-Person Control and Animation 429

Responsiveness is a funny thing. Ideally, a character should respond instanta-
neously to a player's input. However, this is both unrealistic and abrupt. By adding an
exponential dampening, the edge is taken off transitions while maintaining respon-
siveness. Note that this implies that there are no physics taking place. Characters have
tremendous control over their movement and actually don't accelerate and decelerate
like a car or rocket ship. Figure 4.11.4 shows the speed of a character under controller
input. Notice how responsiveness equates to quickly advancing to the desired speed
and then smoothly converging on it.

Control Stick
0.0 •1.0Magnitude

FIGURE 4.11.4 Character speed based on controller input with exponential dampening.

Animating the Character

The simplest animation scheme is to have two different animation loops: standing
and running. When the character's speed is zero, play the stand animation. When the
character's speed is above zero, play the running animation. Obviously, most charac-
ters should have more elaborate animations, but this is a good starting place.

Here are some tricks to making the animation look reasonable:

1. Match the speed of the animation (the movement of the feet) with the top
speed of the character. When moving, the character will spend most of the
time at the top speed, so the loop should look the best at this speed. At this
speed, the feet should meet the ground and appear to stick until they're
lifted back up.

2. The speed of the animation can be changed to match the speed of the char-
acter, but most animations only look reasonable at a tiny range of speeds.
There is a little room to vary the speed, but not the full range from 0 to 8
m/s for a decent run. A run can usually be varied from 5 to 8 m/s, a trot can
be varied from 3 to 5 m/s, and a walk can vary from 1 to 3 m/s. Actual
ranges can only be found experimentally with the actual animation data
and are extremely subjective.

3. When the character is turning sharply at high speeds, die character should
algoridimically lean into the turn. This helps emphasize speed and looks more

430 Section 4 Geometry Management

natural. Another turning enhancement is to have the character algorithmically
rotate his head slighdy in the direction of the turn. This further adds to the
realism, since characters generally anticipate and look toward future positions.

4. Transition animations (stand to run, walk to run) are tricky to implement.
Usually they tend to get in die way of responsiveness. A simple, clean solu-
tion is to algorithmically construct a single in-between frame when transi-
tioning. This takes the edge off transitions without getting in the way of the
look or feel. Calculating in-between frames is a well-known problem that
can be referenced in many animation programming books.

5- The transition from a stand to a walk or run can be virtually seamless by
designing the walk or run loop correctly. Figure 4.11.5 shows what the first
frame of the loop should look like. Notice how the left foot is on the
ground while the right foot is barely being lifted into the air. This particular
keyframe minimizes the jar when changing animations from a stand to the
walk or run. However, since a moving character can potentially stop at any
time, this doesn't help smooth the transition to a stand. Transitioning to a
stand can be dealt with by quickly interpolating die character to the stand
position, paying careful attention not to let the feet pierce the ground.

6. A more elaborate transition system can be devised where there are actual
transition animations, such as a stand-to-run and a run-to-stand. When the
player commands the character to start moving, the stand-to-run animation
is played and then followed by the run loop. When the player tells the char-
acter to stop, the character must somehow transition smoodily to the run-
to-stop animation regardless of the current frame of the run loop. A simple
way to solve this is to have two different run-to-stand animations, each
beginning with a different foot in front. This way, the run loop at most

1R

Stand Walk Run

FIGURE 4.11.5 First frame for smooth transitions.

4.11 Classic Super Mario 64 Third-Person Control and Animation 431

needs to play out half the run cycle before it can seamlessly transition into
the run-to-stand animation. Unfortunately, some responsiveness is sacri-
ficed if animations are forced to play out longer than necessary in order to
line up transitions. Also, transition animations need to be lightning quick
or else responsiveness is compromised even further. Depending on the
desired look and feel of the game, it will take experimentation with both
canned and algorithmic transitions in order to find the proper mix.

Super Mario 64 Animation Analyzed

The following tables list the animation behavior that can be found in Super Mario 64.
This info was created by observing the game without any knowledge of actual imple-
mentation. Certainly, any game can be analyzed in this way in order to deconstruct
the control and animation techniques.

Speed

Stand
Medium

Fast
Very Fast

Transitions

Animation

Several idle animations
Trot
Run with forward lean
Run with pronounced forward lean

Animation

Stand to Tip-toe
Stand to Trot
Stand to Run
Tip-toe to Stand
Trot to Stand

Run to Stand
Tip-toe to Trot
Trot to Run
Trot to Tip-toe

Run to Tip-toe
Run to Trot

Action

Any turn during Stand
180° turn during Tip-toe
180° turn during Trot
180° turn during Run

< 180° turn during Tip-toe
< 180° turn during Trot
< 180° turn during Run
Turning during Run

Single Walk cycle followed by Tip-toe
Pop into Trot
Pop into Run with puff of smoke
Pop into Stand
Pop into Stand
Pop into skidding stop, then seamlessly into Idle

Pop into Trot
Pop into Run (matching the foot cycle) with puff of smoke

Pop into Tip-toe
Pop into Tip-toe
Pop into Trot (matching the foot cycle)

Resulting Behavior

Pop into direction
Smooth tight u-turn
Smooth tight u-turn
Skid to stop with smooth about-face
Smooth rotation
Smooth rotation
Smooth rotation

Lean into turn

432 Section 4 Geometry Management

Conclusion

Undoubtedly, many great games have implemented the classic Super Mario 64 third-
person control, even before Super Mario 64 ever existed. However, before trying to
code something, find an example to model and become intimately familiar with it.
Try to notice every nuance of what happens under different controller inputs. Notice
the transitions, the acceleration/deceleration of the motion/rotation, the different
speeds of walks/trots/runs, the shallow and sharp turns, and the decay after com-
pletely letting go of the controller. Having a good example to model is important so
that you have a stable target to copy and ultimately improve upon.

References

[Maestri99] Maestri, George, Digital Character Animation 2: Essential Techniques,
New Riders Publishing, July 1999.

5.1

Inker

Cartoon Rendering: Real-time
Silhouette Edge Detection and
Rendering

Carl S. Marshall, Intel Architecture Labs
carl.s.marshall@intel.com

Silhouette detection and rendering is a key component for adding a stylized look
to 3D cartoon rendering. The basic concept of silhouette edge detection is to find

the important edges that depict the outline of a model. Many cartoon animators illus-
trate these silhouettes by tracing a black outline around the borders of a model. This
cartoon rendering gem describes several silhouette edge detection techniques: an
edge-based detection method, a programmable vertex shader technique, and an
advanced texturing technique. The advantages and disadvantages of each technique
are highlighted.

The terms inking and painting come from the artist's traditional cartoon eel creation
process. Inking a eel is the process of drawing the outlines of the characters and
objects in the scene, while painting is the process of coloring or filling in the interior
of the outlines. This gem focuses on the inking process of cartoon rendering. Adam
Lake's gem on "Cartoon Rendering Using Texture Mapping and Programmable Ver-
tex Shaders" covers the painting process. Together, these two techniques form a com-
plete cartoon rendering engine. Figure 5.1.1 demonstrates the inking and painting
process on a 3D duck model.

The general inking process is comprised of two parts. The first part is the detec-
tion of the silhouettes, and the second is the rendering of the silhouettes. This gem
describes this inking process using several techniques that can all be performed in real
time on both manifold and nonmanifold meshes.

5.1 Cartoon Rendering: Real-time Silhouette Edge Detection and Rendering 437

FIGURE 5.1.1 A gouraud-shaded duck (left), inked duck with faces colored as
background (center), and a flat-shaded duck using the painter (right).

Important Edges

Silhouette edge detection (SED) is the main component of the inker. Along with the
detection and rendering of silhouettes, there are other important edges of the model
that artists tend to highlight: the crease and boundary edges. As described in the intro-
duction, silhouette edges are the edges that form the outline of a model, but can also
contain some internal edges, as shown in Figure 5.1.2. One aspect that is very impor-
tant to silhouette edge detection is that silhouettes are view dependent. This means
that the silhouettes have to be re-detected and rendered with each change in the
movement of the camera or model. Crease angle edges are those edges whose angle

Back-facing polygon
\

Front-facing polygon

Camera's View Vector Silhouettes from Camera View

FIGURE 5.1.2 Shows the silhouettes detected from a camera facing the first step (left).
(Right) shows the silhouettes from the camera's view of the stairs.

438 Section 5 Graphics Display

between its two neighboring faces is within a given threshold. This is called the dihe-
dral angle. A user-defined threshold is used to detect crease angles. The boundary
edges are edges that border a discontinuity in the mesh. A discontinuity in the mesh
occurs where two faces that border an edge contain the same vertices for that edge but
have one of the following differences: texture coordinates, materials, or normals.

Silhouette Edge Detection Techniques

Why are there so many different silhouette edge techniques? For starters, there are
several rendering APIs that have certain advantages and disadvantages as far as render-
ing performance, features, and functionality on various video cards. This gem
describes a summary of experiments on many of the inking methods. Texture map-
ping features, line segment rendering, and polygon offsetting are just a few of the fea-
tures that vary dramatically across hardware and APIs.

Edge-based Inking

The term edge-based is used to describe a technique that analyzes the edges of the
polygons of the model to detect and render its important edges. The full silhouette of
the model along with accurate silhouettes and crease edges are guaranteed with this
method. Other inking techniques imply silhouette and crease edges through an esti-
mation of surface curvature. The edge-based technique consists of two parts: a pre-
process part and a run-time part.

Preprocess

The first step in the preprocess is to allocate and find a unique edge list for the model.
The three edges of each face of the model are examined individually and inserted into
a hash table if they have not previously been stored. Once the hash table is complete,
a compacted array can be stored with only the unique edges. An edge entry includes
two vertex indices, two face indices, and a flag entry. The flag entry describes the edge
as a silhouette, crease angle, boundary, and/or an unimportant edge.

To detect silhouettes accurately, face normals have to be computed. If the model
is static (nonanimating), then these normals can be precomputed along with the
crease angle edges. For nonprogressive meshes, the boundary edges can be processed
at authoring or load time. The trade-off for accurate silhouettes at runtime for ani-
mating objects is the recomputation of the face normals every frame.

Runtime

Runtime consists of detecting and rendering the important edges of the model. V
refers to the viewing vector, and Nj and N2 are the face normals of the triangles that
share the edge in consideration.

5.1 Cartoon Rendering: Real-time Silhouette Edge Detection and Rendering 439

Runtime Inking
1. If animating geometry, recalculate face normals.
2. For each edge in the unique edge list,

• Compute V by subtracting the viewing vector position from one of the
edge vertex positions.

• Set boundary flag if edge has one neighboring face or two neighboring
faces with discontinuities.

• If animating geometry, set crease flag if the dihedral angle between the
two neighboring faces exceeds a given threshold.

• Detect silhouette using (A/i • V) X (N2 • V) < 0 and set silhouette flag.
3. Iterate over edge list and render edges whose edge flag is set. Creating sepa-

rate silhouette, crease, and boundary edge lists can optimize the rendering
of the edges since each edge list can be rendered in a single API call. If the
API you are using supports polygon offsetting and line thickness, they both
give added visual appeal to the final rendering.

Step 2 is the core to the silhouette detection algorithm. By calculating the dot
products between the face normal and the view vector for each of the edge's neigh-
boring faces, highly accurate silhouettes are detected. Vertex normals could be used as
an optimization, but this technique would miss silhouettes much like many of the
vertex and pixel shader-based approaches. See Listing 5-1.1 for a code example.

Advantages
• Cross-platform solution.
• Completely accurate silhouette edge detection.
• Artists can choose threshold for crease angle edges.
• Visibility of edges is solved via the z-buffer.

Disadvantages
.• Line thickness is only available under certain APIs.
• Must compute face normals for silhouette edge detection.
• An offset needs to be applied to the lines to avoid the model occluding the line.

Listing 5.1.1 Edge-based silhouette edge detection
// Detect silhouettes
Edge *pEdge;

// Iterate over all edges
for(unsigned int i=0; i < numEdges; i++){

pEdge = &m_pEdgel_ist[i];

//Calculate vector from eye
pEdgeVertexPosition =

pMesh->GetVertexPosition(pEdge->GetVertexIndex(0));

440 Section 5 Graphics Display

// Subtract eyeposition from a vertex position on the edge
viewVector = pEyePosition - pEdgeVertexPosition;
view/Vector. normalize () ;

// Calculate the dot products from the face normal and
// the view vector
uDotProductl = DotProduct(viewVectpr, *pFaceNormalA);
uDotProduct2 = DotProduct(viewVector, *pFaceNormalB);

if((uDotProductl * uDotProduct2) <= 0.0f){
// The edge is a silhouette edge
AddEdgeToRenderEdges(pEdge, uNumfienderedVertices);

Programmable Vertex Shader Inking

A programmable vertex shader is an extremely flexible graphics API for modern
graphics architectures. Why is a programmable vertex shader able to help with inking?
Since we have shown that inking relies on the dot product of a normal with the view
vector, we can pass the view vector and normals to the graphics hardware to find
silhouettes.

Programmable Vertex Shader Inking Runtime

1. Set up texture pipeline via the graphics API. This requires the creation
or loading of a one-dimensional texture. It works fine to load a two-
dimensional texture, but only the first row will be used. In setting up the
texture, the color may be varied when moving across the texture from the
silhouette color, usually black, to any color desired. A 1x32 or 1x64 texture
with only a few black pixels near u=0 progressing to the surface material
color for the rest of the texels is recommended.

2. Load the registers of the programmable vertex shader. What you need to
load may depend on your specific application and where you are doing your
transformations, but normally you need to send the world to eye and projec-
tion matrix. Next, the vertex position and vertex normal should be sent and
transformed. Then, the eye position is sent and used to compute texture
coordinates. Since new texture coordinates are computed, they do not need
to be passed to the card. However, remember to make sure that the graphics
unit expects texture coordinates to be generated for the model.

3. Perform the transformation of the vertex position from model to homoge-
nous clip space.

4. For each vertex, create a view vector by subtracting the vertex position in
world space from the eye vector. Compute the dot product between the ver-
tex normal and the view vector, N* V, shown in Listing 5.1.2. Make sure
the normal and view vector are in the same coordinate frame or the results

5.1 Cartoon Rendering: Real-time Silhouette Edge Detection and Rendering 441

will be incorrect. This can be done on the graphics unit or the CPU before
being loaded into the constant registers of the vertex shader.

5. Store the result of step 4 as the texture coordinate for the u texture
coordinate.

Another silhouette programmable vertex shading technique is a two-pass tech-
nique that first extrudes the vertex along its normal. Then the depth buffer is disabled
and the model is rendering in the desired silhouette color. Next, the depth buffer is
reenabled and die model is rendered in its normal state.

Advantages

• Fast. All silhouette detection processing is placed on graphics card.
• Varying line thickness.

Disadvantages:
• Less accurate. Relies on vertex normals that depend on the object's shape.
• Does not detect crease or boundary edges without special variables.
• Requires programmable vertex shader API support.

Listing 5.1.2 Silhouette shader for DirectX 8.0
vertex programmable shading

t_ _
; Constants specified by the application
; c8-c11 = world-view matrix
; c12-c15 = view matrix
; c32 = eye vector in world space
i
; Vertex components (as specified in the vertex DECL)
; vO = Position
; v3 = Normal

; Vertex transformation
t . _ _-.....-.-. --..-.
; Transform to view space (world matrix is identity)
; m4x4 is a 4x4 matrix multiply
m4x4 r9, vO, c8
; Transform to projection space
m4x4 n10, r9, c12
; Store output position
mov oPos, r10

; Viewing calculation eye dot n
t - . --. _ _ __. - . .
;first, make a vector from the vertex to the camera
;value in r9 is in world space (see vertex xform above)

442 Sections Graphics Display

sub r2, c32, r9 ;make vector from vertex to camera
; now normalize the vector
; dp3 is a dotproduct operation
mov r3, r2 ;make a temp
dp3 r2.x, r2, r2 ;r2A2
rsq r2.x, r2.x ;1/sqrt(r2A2)
mul r3, r2.x, r3 ;(1/sqrt(r2A2))*r3 = r3

•',. dp3 oTO.x, r3, v3 ; (eye2surface vector) dot surface normal

Inking with Advanced Texture Features

An innovative technique that can be performed fully on the graphics processor is
described in detail in [DietrichOO]. This method uses a per-pixel Ndot Vto calculate
and obtain the silhouette. An alpha test is used to clamp the values to a black outline,
and a per-primitive alpha reference value is used to vary the line thickness. The basic
steps are listed next, but for more details, see the reference.

Basic Steps

1. Create a normalizing cube map texture. Effectively, this creates a single tex-
ture that contains the six square faces. Each face contains a per-pixel RGB
normal that represents the direction of that point on the unit cube from the
origin.

2. Use view space normal texture coordinates as a lookup into the cube map
texture. This outputs a RGB-encoded vector representing A .̂

3. Use view space position texture coordinates as a lookup into the cube map
texture. This outputs a RGB-encoded vector representing V.

4. Set the Alpha compare mode to LESS_EQUAL.
5. Set the Alpha reference value to 0 for thin lines, higher for thicker lines.
6. Perform the dot product on the color values from steps 2 and 3, performing

NdotV.
7. Perform one pass with the alpha test LESS_EQUAL for the silhouettes, and

then another pass with alpha test set to GREATER for the shaded object.

Advantages
• Very fast with appropriate hardware.
• Allows line thickness to vary.

Disadvantages
• Less accurate. Relies on vertex normals that depend on the object's shape.
• Requires specific thresholds for detecting crease angles, and specific alpha refer-

ence values for boundary edges.
• Requires specific hardware for speed.

5.1 Cartoon Rendering: Real-time Silhouette Edge Detection and Rendering 443

Conclusion

The inking and painting techniques used to cartoon render a scene are just a couple of
techniques in a larger domain called nonphotorealistic rendering (NPR). There are
many other stylized rendering techniques in the NPR field with which to experiment.
A few of these techniques are pencil sketching, water coloring, black-and-white illus-
trations, painterly rendering, and technical illustrations. Inking is a fundamental tool
and is a great place to start building your NPR library. This library will help you dis-
tinguish your game from others by giving you the flexibility of alternate rendering
styles that will potentially broaden the appeal of your game.

References

[DietrichOO] Dietrich, Sim. "Cartoon Rendering and Advanced Texture Features of
the GeForce 256 Texture Matrix, Projective Textures, Cube Maps, Texture Coor-
dinate Generation and DOTPRODUCT3 Texture Blending.' Available online
at: www.nvidia.com/Marketing/Developer/DevRel.nsf/WhitepapersFrame. 2000.

[GoochOl] Gooch, Bruce, and Amy Gooch. Non-Photorealistic Rendering, A.K.
Peters, Ltd., 2001.

[IntelOO] Intel's Graphics and 3D Technologies Web page. Available online at:
http://developer.intel.com/ial/3dsoftware. 2000.

[LakeOO] Lake, Adam, Carl Marshall, Mark Harris, and Mark Blackstein. "Stylized
Rendering Techniques of Real-Time 3D Animation." Non-Photorealistic Anima-
tion and Rendering Symposium, pp. 13-20. 2000. ftp://download.intel.com/
ial/3dsoftware/toon.pdf.

[Markosian97] Markosian, Lee, Michael Kowalski, et al. "Real-Time Nonphotorealis-
tic Rendering." In Proceedings of ACM SIGGRAPH 97, pp. 113-122. 1997.

5.2

Cartoon Rendering Using
Texture Mapping and
Programmable Vertex Shaders

Adam Lake, Intel Architecture Labs
adam.t.lake@intel.com

Cartoon rendering is a stylistic rendering technique that can give a 3D scene the
look and feel of a cartoon environment. The techniques described in this gem

take advantage of modern real-time graphics capabilities, including texture mapping
and programmable vertex shading. The basic idea is to simulate a limited color palette
using textures. To do this, we modify the standard diffuse shading equation to create
a highlight and shadow color, and use these colors to create a small texture map for
each material to be used as a lookup table at runtime. Additionally, these techniques
require no additional markup information from the artist—this gem describes the
creation of the texture maps and texture coordinates for each material.

Cartoon Shading

Cartoon shading is achieved by mimicking the process of fainting And inking eels used
for animation. This gem covers the painting algorithm. Carl Marshall has a gem, "Car-
toon Rendering: Real-time Silhouette Edge Detection and Rendering," that covers the
inking of the eel used for animation. Inking creates the outlines, or silhouettes, of the
models that are "filled" by the painting pass of the Tenderer. It does diis by detecting
the silhouettes, creases, and material boundaries of the surface. For more details on the
inking technique, see Carl Marshall's gem. The painter examines the material proper-
ties of the object along with the lighting, and calculates a texture map to be used for
rendering of each mesh. The painter also calculates texture coordinates for the surface.
Each gem can be used alone to achieve its own effect, or they can be used in combina-
tion to simulate the complete painting and inking method used by animators.

Painting

The painting process can be broken down into two phases, the preprocess and the run-
time. In the preprocess, each material is assigned a texture map that is created based

5.2 Cartoon Rendering Using Texture Mapping and Programmable Vertex Shaders 445

on lighting and material properties. In the runtime phase, this texture map is set as
the active texture, and the texture coordinates are generated based on the result of the
angle between the vertex normal and the light vector. For positional lights, the surface-
to-light vector needs to be computed per vertex; therefore, an expensive normalize per
vertex is computed since the surface to light vector is different for each vertex. For
directional lights, the light comes from the same direction at all points in the scene;
therefore, the direction is the same and the surface-to-light vector doesn't require
recomputation for each vertex. When performance is an issue, use directional light-
ing. In most cases in cartoon shading, the additional realism provided by positional
lights is of little benefit.

Preprocess

The preprocess consists of three steps for each material. First, calculate the illumi-
nated diffuse color. Next, calculate the shadowed diffuse color. Finally, create a texture
for each material based on these colors. In this example, only a one-dimensional tex-
ture is needed, but using a two-dimensional texture works just as well and probably is
better suited to the fast path with most graphics hardware and graphics APIs.

In the following process, C,- refers to the illuminated diffuse color, Cs refers to the
shadowed diffuse color, Aff refers to the global ambient light, and Am and Af refer to
the ambient color for materials and lights, respectively.

Preprocess Cartoon Shade:

1 . Calculate the illuminated diffuse color.

+ D;X Dm

2. Calculate the shadowed diffuse color.

Cs = AgxAm+Al xAm

3. For each material, create and store a one-dimensional texture map with two
texels containing the results of steps 1 and 2. Assuming the texture uses the
texture coordinate u, store C;at the u=l end of the texture and Cs at u=0.

Runtime

Runtime consists of setting up the texture pipeline with the preprocess texture, com-
puting a dot product per vertex, and using this value to determine texture coordinates
for each vertex. L refers to the light vector and n refers to the vertex normal in the
steps that follow.

Runtime Cartoon Shades

1. Set up texture pipeline to make the texture computed in the preprocess
the active texture. Set the texture coordinate mode to clamp the texture

446 Section 5 Graphics Display

coordinates generated. In general, we are not interested in multitexturing in
this step, so we set the texture combining function to replace.

2. For each vertex, compute the dot product between the vertex normal and
the light direction vector, L • n. We also want to clamp the value so we do
not allow negatives, so the resultant equation is max/Z • n, 0}. See Listing
5.2.1 and Figure 5.2.1.

3. Disable lighting.
4. Enable texture mapping.
5. Render model.

Listing 5.2.1 Function for computing Toon texture coordinates
SetTextureCoordinates(Mesh *pMesh, Light *pLight)

//grab the light.
//If there are multiple light source in the scene return the
//greatest contributor
pLight->GetLightToWorldMatrix(&lightToWorldMat);

//convert light direction in light space to light direction in
//world space
vector4 lightDir!nLightSpace.set(0,0,-1,0);
vector4 lightDirlnWorldSpace;
lightDirlnWorldSpace = lightToWorldMatrix * lightDirlnLightSpace;

//convert light direction in world space to light direction in
//model space
matrix4x4 *meshToWorldMatrix = pMesh->GetMeshToWorldMatrix();
vector4 lightDirlnModelSpace;
lightDirlnModelSpace = meshToWorldMatrix->inverse() *
lightDirlnWorldSpace;
lightDirlnModelSpace.normalize();

int iNumVerts = pMesh->GetNumVerts();

//for demonstration, we assume directional lights, point lights
//would need a vector pointed from eye to vertex for each
//dotproduct.

for(int iVert=0;iVert>iNumVerts;iVert++)

vectors vert = mesh->GetVert(iVert);
vectors normal = mesh->GetNormal(iVert);
float fTexU.fTexV;

//only negate if the light points from light to object
fTexU = -normal->dotproduct(lightDir!nModelSpace);
//max(L.n,0)
if(texU < 0) texU = 0.0;
fTexV = 0.0;

5.2 Cartoon Rendering Using Texture Mapping and Programmable Vertex Shaders 447

N:

u=0 u=l

FIGURE 5.2.1 In this figure Nj, N2, #WN3 are the normal vectors at the surface. L
represents the directional light vector. Note that when N; • L=0, where i= 1, we are at
u=0 in the texture; when N; • L=.5, i=2, the transition point or hard boundary in the
texture occurs. This is when the transition occurs between the highlight and shadow
color. Finally, when N; • L=l, n=3 and the texture coordinate \i=\is reached.

mesh ->SetTextu reCoord(iVe rt, fTexU,fTexV);

Alternatives

The preceding description details the typical cartoon shading style of two colors, one
in highlight and one for shadow. Many alternatives can be used to achieve a variety of
effects. For example, one can create a texture map with any number of colors to sim-
ulate the available color palette. As an extreme case it is even possible to approximate
Gouraud shading by using several colors in the texture, which we call gradient shad-
ing. Also, the texture can be filled with only black and white texels for a black-and-
white shading style. Furthermore, you can adjust C, and Cs using a weighting factor to
brighten or darken the texture color for even more effects.

Using multitexturing it is possible to increase the flexibility of the algorithm
described previously. Multitexturing allows us to apply other textures with the base
cartoon shading texture. For example, one may be creating an anime-style game with
cartoon shading, but the characters are wearing camouflage pants. With multitextur-
ing, you can set up one texture to be the cartoon shading and the other texture to be
the camouflage texture for the character (Figure 5.2.2).

448 Section 5 Graphics Display

FIGURE 5.2.2 In this figure, the duck model has been shaded with the technique
described previously and given in Listing 5.2.1.

Programmable Vertex Shaders

Modern graphics hardware and graphics APIs are evolving at an amazing pace. With
this new power comes performance that can be utilized effectively in implementing a
cartoon shader. Programmable vertex shading provides two important benefits. One,
it allows us to replace the lighting equation. In legacy graphics pipelines, the vertex-
based lighting equation was hard-wired into the API. This allowed hardware to be
optimized for the specific lighting equation. Modern graphics architectures are being
developed that allow programming of the vertex shader. This allows us to replace the
traditional lighting equations with any lighting calculation we like. Obviously, there
are hardware restrictions that will depend on the card for the size of the instruction
cache, number and type of registers, instruction sets, and so forth. Hopefully, stan-
dards will exist to provide consistency among hardware vendors. Software implemen-
tations of vertex shaders are optimized to take advantage of SSE and SSE2
instructions on Intel CPUs.

Given that we have programmable vertex shaders, how does this help us with car-
toon shading? If the hardware exists, we are able to effectively move the runtime tex-
ture coordinate calculation off to the graphics unit. The preprocessing steps are the
same as before. We modify the runtime piece to load the registers on the graphics unit
with the normal and light information, and perform the dot product calculation on
the card. Finally, we load the texture coordinates computed into the appropriate tex-
ture register.

5.2 Cartoon Rendering Using Texture Mapping and Programmable Vertex Shaders 449

Programmable Vertex Shader Runtime:

1. Set up texture pipeline to make the texture computed in the preprocess the
active texture. Since we are using the programmable vertex shader, we do not
need to be concerned about setting up the texture coordinate generation
modes—we will do this on the graphics unit.

2. Load the registers of the programmable vertex shader. What you need to
load may depend on your specific application and where you are doing
your transformations, but normally you need to send the world to eye and
projection matrix. You also need to send down the vertex position to be
translated as well as the vertex normal. Also, you need to send down the
light position to be used to compute texture coordinates. Since we are com-
puting new texture coordinates, they do not need to be passed to the card.
However, remember to make sure that the graphics unit expects texture
coordinates to be generated for the model. This can be mistakenly over-
looked when dealing with models that previously did not have texture
coordinates.

3. Perform the transformation of the vertex position from world to screen
space.

4. For each vertex, compute the dot product between the vertex normal and
the light direction vector, Z,- • N. Make sure the normal and light vector are
in the same coordinate frames or the results will be incorrect. The simplest
way to do this is to transform the light vector from light space to model
space. This can be done on the graphics unit or the CPU before being
loaded into the constant registers of the vertex shader.

5. Store the result of step 4 as the texture coordinate for the u texture coordinate.

Listing 5.2.2 DirectX 8.0 cartoon programmable vertex shader
mm '-••••••••••^-"•"••••"-•~—"-' -.-- <••< •• -"i"™:-;;: :;• •*:: —.•:.-.:. ::•:-'--—•-•-• •l~:~l::l"" -̂:::i«::•- ;• ..•...,„.„.., :™ .,„...,,.,,...,.,,.....,.,.... ,„..,„. •••»••_•_••_ ••••'••'.:"--•."-. :••:- ";•••••••••;— ;•••;;•; -.-.,...,...,,.,...:s

vs.1.0

Constants specified by the app-must be loaded using
dxSDevice->SetVertexShaderConstant(reg,&vector,nVectors)
cO = (0, 0, 0, 0)
c8-c11 = world-view matrix
c12-c15 = view matrix
c20 = light direction (in model space)

Vertex components (as specified in the vertex DECL)
vO = Position
v3 = Normal
Instructions
m4x4 = 4x4 matrix translation, same as 4 dp3s
mov = moves values from right to left operator
dp3 = dot product

450 Section 5 Graphics Display

; Vertex transformation
j--..-.---.., - _ __ . - _ _ _ _
; Transform to view space (world matrix is identity)
m4x4 r9, vO, p8
; Transform to projection space
m4x4 r10, r9, c12
; Store output position
mov oPos, r10
s .. _ - - - _ - - - . _ _ - .
; Lighting calculation - calculate texture coordinate
t..-.. - _ - _ , . - _ _ - . _ - _ _ _ _ .
; light vector dot vertex normal
; no max? Texturing mode set to CLAMP which clamps for us.
dp3 oTO.x, c20, v3;

Conclusion

Two methods have been presented for cartoon shading, as well as the core techniques
in the underlying algorithms. These techniques, combined with the "Inker" gem, can
be used to create cartoon environments for a unique look and feel in your game or
immersive experience. A variety of other effects can be achieved using different tex-
turing techniques, including digital engraving, wood carving, limestone, marble,
newsprint, and more. Many can be made to run in real time by using the fundamen-
tal approaches presented in this gem; namely, texture mapping and programmable
shaders. With new hardware and APIs empowering us in new ways, computer graphi-
cists will no doubt have fun in the coming years of PC evolution. If you are interested
in exploring other rendering methods, see the References. [DietrichOO] discusses tech-
niques using DirectX, [LakeOO] has a more elaborate list of academic references,
[Gooch98] discusses a technique for technical illustration, and [Mark97] discusses a
statistical approach to inking. Good luck!

References

[DietrichOO] Dietrich, Sim, "Cartoon Rendering and Advanced Texture Features of
the GeForce256 Texture Matrix, Projective Textures, Cube Maps, Texture Coor-
dinate Generation and DOTPRODUCT3 Texture Blending," available online at
www.nvidia.com/Marketing/Developer/DevRel.nsf/WhitePapersFramePOpen-
Page, 2000.

[Gooch98] Gooch, Amy, Bruce Gooch, Peter Shirley, and Elizabeth Cohen. "A Non-
Photorealistic Lighting Model for Automatic Technical Illustration." In Proceed-
ings ofACMSIGGRAPH98, pp. 447-452, 1998.

[GoocnOl] Gooch, Bruce, and Amy Gooch. Non-Photorealistic Rendering, A.K.
Peters, Ltd., 2001.

[IntelOO] www.intel.com/ial/3dsoftware/doc.htm. Contains presentations, papers,
and other references to Cartoon Shading, Multi-Resolution Meshes, Subdivision,
and Character Animation. There is also an application that demonstrates cartoon
shading, pencil sketching, and other NPR techniques, all running on animated
multiresolution meshes.

5.2 Cartoon Rendering Using Texture Mapping and Programmable Vertex Shaders 451

[LakeOO] Lake, Adam, Carl Marshall, Mark Harris, Marc Blackstein, "Stylized Ren-
dering Techniques for Scalable Real-Time 3D ACM Animation," In Symposium
of Non-Photorealistic Animation and Rendering (NPAR) 2000, pp. 13-20, 2000.

[Mark97] Markosian, Lee, Michael Kowalski, Samuel Trychi, Lubomir Bourdev,
Daniel Goldstein, and John Hughes. Real-Time Nonphotorealistic Rendering. In
Proceedings of ACM SIGGRAPH 97, pp. 113-122, 1997.

5.3

Dynamic Per-Pixel Lighting
Techniques

Dan Ginsburg and Dave Gosselin,

ATI Research
ginsburg@alum.wpi.edu and gosselin@ati.com

Acommon method of performing dynamic lighting effects in games is to use
vertex-based lighting techniques. A significant shortcoming of vertex-based

lighting is that the geometry must be highly tessellated in order to even approach the
quality of per-pixel lighting. This article presents several techniques that can be used
to perform dynamic lighting effects on a per-pixel basis. These methods have the
advantage that they don't require highly tessellated geometry, and can often be per-
formed at little performance cost on multitexturing graphics hardware.

3D Textures for Dynamic Lightmapping

The first method of dynamic lighting we will examine is using a 3D texture for
dynamic lightmapping. 3D textures can best be explained through their relation to
2D textures. In traditional 2D texturing, two texture coordinates are present in each
vertex and are interpolated across the face. Each of the two texture coordinates (s, t)
refers to the distance along one of the texture map dimensions (width and height). 3D
textures expand upon 2D textures by adding a third texture coordinate (r) that refers
to the depth of the texture. A 3D texture can be thought of as depth number of slices
of 2D textures (see Figure 5.3.1). The texture coordinate r is used to select which

w

A B
FIGURE 5.3.1 A) 2D texture. B) 3D texture.

452

5.3 Dynamic Per-Pixel Lighting Techniques 453

FIGURE 5.3.2 Cross-section of the 3D lightmap. This actual lightmap is monochrome;
this picture rises color-coding to clearly show the mapfalloff. Red is highest intensity and
blue is least. See color version in insert.

of the 2D maps to access, and then coordinates (s, t) are used as normally in a 2D
texture.

A natural use for 3D textures is in dynamic lightmapping. A typical application
of dynamic lightmapping in games is having a moving light source that illuminates
the geometry in the scene. For example, a rocket fired from the player would dynam-
ically light the static game world geometry. A light of any shape can be created in a
3D texture. A simple case would be a sphere light with linear falloff from the center.
In our example, a sphere light with quadratic falloff (Figure $.3.2) is used.

The 3D lightmap was generated with the following code:

Listing 5.3.1 Code to generate 3D lightmap with quadratic falloff

for(r = 0; r < MAP_SIZE; r++)
for(t = 0; t < MAP_SIZE; t++)

for(s = 0; s < MAP_SIZE; s++)
{

float DistSq = s * s + t * t + r * r ;

if(DiStSq < RADIUS_SQ)
{

float FallOff = (RADIUS_SQ - DistSq) /
RADIUS_SQ;

FallOff *= FallOff;

LightMapfr * MAP_SIZE * MAP_SIZE + t *
MAP_SIZE + S] =
255.Of * FallOff;

Section 5 Graphics Display

else

LightMap[r * MAP_SIZE * MAP_SI2E + t
MAP_SIZE + s] = 0;

The 3D lightmap itself can be specified in OpenGL using the EXT_texture3D
extension (part of OpenGL 1.2.1). The 3D texture is sent to OpenGL using glTexIm-
age3D(), which behaves much like giTexImage2D(). The only difference is that the
depth of the image is specified, and the texel array contains width X height 'X depth texels.

The geometry in our example will be textured with a basemap (b) and will be
modulated with a moving light source (/) represented by the 3D lightmap texture.
The texture blending we wish to achieve is:

Result = b * 1

The texture environment can be configured to perform this operation through
OpenGL using ARB_multitexture as follows:

// 3D texture lightmap on stage 0
glActiveTextureARB(GL_TEXTUREO ARB) ;
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE) ;

// Basemap to be modulated by 3D texture
glActiveTextureARB(GL_TEXTURE1_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE , GL_MODULATE) ;

Given the light position (/) and radius (Ir), the texture coordinate at each vertex
(v) to look up into the 3D lightmap can be calculated as follows:

s = (v.x - 1.x) / Ir
t = (v.y - l.y) / Ir
r = (v .z - l.z) / Ir

Fortunately, this texture coordinate equation can be easily calculated in
OpenGL using the texture matrix. First, the texture coordinate for each vertex is
specified to be the same as its position (s = v.x, t = v.y, r = v.z). Next, each texture
coordinate must be put into the space of the light by subtracting the light position.
The texture matrix can be used to perform this operation by adding a translation to
the texture matrix of minus the light position (— /). The texture coordinate now
needs to be divided by the radius of the light. The texture matrix can be used to per-
form this operation by scaling the texture matrix by the reciprocal of the light radius
(1/lr) in s, t, and r. The following block of code configures the texture matrix as
described using a uniform scale.

glMatrixMode(GL_TEXTURE) ;
glLoadldentityO ;

5.3 Dynamic Per-Pixel Lighting Techniques 455

glScalef(1 / lr, 1 / lr, 1 / lr);
glTranslatef(-1.x, -l.y, -l.z);

Note that by using a nonuniform radius, the shape of the light could be modified
to produce shapes other than a sphere without needing to modify the texture. For
example, making the scale in x larger than in y and z, the light would be shaped as an
ellipsoid.

Given this setup, each polygon is rendered with its basemap modulated by the
3D lightmap. Figure 5.3.3 shows the effect achieved by this 3D lightmapping
technique. ' "

Note that while 3D textures are a natural method for performing dynamic per-
pixel point lights, 3D textures are not the most memory-efficient technique. In Game
Programming G^-—"Attenuation Maps," Dietrich presents a method for performing
per-pixel point lights using only 2D and ID textures.

FIGURE 5.3.3 Basemap modulated by the 3D lightmap. See color version in insert.

456 Section 5 Graphics Display

Dot3 Bump Mapping

The effect presented in the previous section using a 3D texture as a dynamic lightmap
will now be improved by adding per-pixel light perturbations to the surface. Several
available graphics cards provide this functionality through Dot3 bump mapping. In
OpenGL, Dot3 bump mapping is exposed through the EXT_texture_env__dot3
extension. This extension simply adds a new blend equation to the blend modes sup-
ported by EXT_texture_env_combine (GL_MODULATE, GLJNTERPOLATE,
etc.). The GL_DOT3_RGB equation performs the following computation:

Dest.r = Dest.g = Dest.b =4 * ((AO.r - 0.5) * (A1.r - 0.5) +
(AO.g - 0.5) * (A1.g - 0.5) +
(AO.b - 0.5) * (A1.b - 0.5))

This blend equation performs a dot product between the (r, g, b) vectors of any
two color sources.

In order to allow for color values to represent vector components in the range
[-1, 1], the color values are made signed by subtracting .5 from each component.
However, by performing this subtraction and multiplying each component, the out-
going color value is not scaled properly. In order to place the result of the dot product
in the proper scale, it is multiplied by 4.

Using this equation, the normal vector (N) at each texel can be encoded into the
(r, g, b) values of a texture. The light vector (L) in texture space can be encoded into
the (r, g, b) values of another source. The resultant dot product performed at blend
time yields the equation TV * L at each texel. This is the fundamental calculation that
is needed for per-pixel bump mapping.

The texture map used for bump mapping will contain normals that will perturb
the light vector over the surface. In order to generate the bump map, a grayscale image
representing a heightfield of the original base map is authored. From this heightfield,
the bump map can be generated by calculating the change in texel height in each
direction.

The height differences can be calculated using a Sobel filter. The Sobel filter pro-
vides two image filters that detect vertical and horizontal change.

dx = I 0 0 0 I dy
r 1 o ii
I -2 0 2 I

|_ 1 ° 1J

The normal at each texel is then equal to (-dx, -dy, 1). This vector is normalized
and placed into the color components at the texel in the bump map. Figure 5.3.4
shows the bump map generated in the example.

At each vertex, the light vector will be stored in the primary color component.
With smooth shading on, this vector will be linearly interpolated across the face. The
interpolated vector will be used in each per-pixel dot product. This vector must be

5.3 Dynamic Per-Pixel Lighting Techniques 457

FIGURE 5.3.4 Dot3 bump map texture generated from the beightfield using the Sobel
filter. See color version in insert.

transformed into the space of the bump map texture on each polygon before it can
be used in the dot product. For point lights, the world space light vector at each ver-
tex is calculated by subtracting each vertex position from the center position of the
3D light. In our case, anytime the 3D lightmap or the geometry moves, the tangent
space light vector must be recalculated. Note that to use Dot3 bump mapping with a
static directional light, the tangent space light vector can be precalculated because the
per-vertex light vector doesn't change.

In order to rotate the light vector into the space of the texture (known as tangent
space), a local coordinate system at each vertex is constructed. Three vectors define
this coordinate system: the vertex normal (N), a tangent to the surface (T), and the
binormal (B). The vertex normal is determined by taking the average of all the nor-
mals to the faces that contain the vertex. The tangent vector is calculated by deter-
mining the direction of increasing s or t texture coordinates along the face in the
object's coordinate system. The binormal is then calculated by taking the cross

458 Section 5 Graphics Display

product of the vertex normal and tangent vector. Given this coordinate basis, the light
vector can be rotated into the space of the bump map using the following rotation
matrix:

[T.x T.y T.z (Tl
B.X B.y B.z 0 I
N.X N.y N.Z 0 I
0 0 0 1 J

Finally, this tangent space light vector is stored in the primary color component
of the vertex.

Given the Dot3 texture map (dotmap), the tangent space light vector (tl), the
basemap (b), and the 3D lightmap (/), we wish to perform the following texture
blending:

Result = (dotmap DOT3 tl) * b * 1

Assuming hardware that has three orthogonal texture units, this can be achieved
by configuring the texture environment as follows (in practice, this may need to be
done on multiple passes on many graphics cards):

// dotmap DOTS tl on stage 0
glActiveTextureARB(GL_TEXTUREO_ARB);
g!TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE ENV_MODE, GL_COMBINE_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINEJ1GB_EXT, GL_DOT3_RGB_EXT) ;
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB_EXT,
GL_PRIMARY_COLOR_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB_EXT, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);

// previous * basemap on stage 1
glActiveTextureARB(GL_TEXTURE1_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE);
g!TexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB_EXT, GL_PREVIOUS_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB_EXT, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);

// previous * lightmap on stage 2
glActiveTextureARB(GL_TEXTURE2_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE);
g!TexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB_EXT, GL_PREVIOUS_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB_EXT, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);

Figure 5.3.5 shows the results of this technique.

5.3 Dynamic Per-Pixel Lighting Techniques 459

FIGURE 5.3.5 Base map modulated by 3D lightmap with Dot3 bump mapping.
See color version in insert.

Cubemap Normalizer

We now have a bump-mapped object dynamically lit on a per-pixel basis. However,
there is one major shortcoming with the method presented. The tangent space light
vector calculated at each vertex used in the Dot3 blend stage was stored in the pri-
mary color component. By storing the light vector in the color component with
smooth shading enabled, the vector is linearly interpolated across the face. Unfortu-
nately, the linearly interpolated vector will often fail to maintain its length of 1 across
the face. Figure 5.3.6 shows an example of two linearly interpolated 2D vectors. VI
and V2 both have a length of 1, but when linearly interpolated, the resultant vector
has a length less than 1. This failure to maintain normalization results in decreased
visual quality, particularly when the geometry is not highly tessellated.

In order to correct this problem, a cubic environment map will be used to keep
the light vector normalized. The contents of the cube map at each texel will be the
same as the normalized texture coordinate used to look up into it. Instead of storing
the tangent space light vector in the primary color component, it will be stored as a
texture coordinate that will be used to look up into the cubemap. Since each texel in

460 Section 5 Graphics Display

FIGURE 5.3.6 The linear interpolation of two normalized vectors resulting in a vector
whose length is less than 1.

the map contains the normalized vector of the texture coordinate, the light vector will
stay normalized when interpolated across the face.

The Dot3 operation using the cubemap can be done using two texture units by
configuring the texture environment as follows:

// Cubmap normalizer on stage 0, just pass it through
glActiveTextureARB(GL_TEXTUREO_ARB);
g!TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_COMBINE_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL~SOURCEO_RGB_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB_EXT, GL_SRC_COLOR);

// dotmap DOT3 cubemap on stage 1
glActiveTextureARB(GL_TEXTURE1_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_COMBINE_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT,

GL_DOT3_RGB_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB_EXT,

GL_PREVIOUS_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB_EXT, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR) ;

Figure 5.3.7 shows the improved results by using the cubemap normalizer.

Per-Pixel Spotlights

In addition to per-pixel point lights as we have implemented using a 3D lightmap,
another useful dynamic lighting technique is per-pixel spotlights. Instead of using a
3D lightmap, we will use 2D texture to represent the light and project it onto each
face. The contents of the 2D texture will be a cross-section of the spotlight cone con-
taining the attenuation falloff from the center. As with point lights, a tangent space
light vector from the spotlight will be placed in the color component of the vertex. A
falloff factor based on the distance from the tip of the cone to the vertex is placed in
the alpha channel. The tangent space light vector will be Dot3'd with the vectors in

5.3 Dynamic Per-Pixel Lighting Techniques 461

FIGURE 5.3.7 Base map modulated by 3D lightmap with Dot3 bump mapping and
cubemap normalizes See color version in insert.

the normal map. The interpolated alpha in the vertex color is modulated with the
color to perform the distance attenuation.

The result of this Dot3 calculation now need to be modulated by the projected
spotlight texture. The spotlight can be projected onto the face by configuring the tex-
ture matrix to perform the projection. The texture matrix is first set to represent the
view from the spotlight by calculating the "look-at" matrix based on its position,
direction, and any vector perpendicular to the direction. The "look-at" texture matrk
must finally be multiplied by a matrix that represents the frustum created by the spot-
light. The texture coordinates for the spotlight texture will then simply be the world
coordinates of the vertex. The result of this texture look-up is modulated with the
DOT3 calculation to get the final lighting.

References

[Blythe98] Blythe, David, "Advanced Graphics Programming Techniques Using
OpenGL" available online at www.sgi.com/software/opengl/advanced98/notes/
notes.html

462 Section 5 Graphics Display

[DeLouraOO] DeLoura, Mark, Game Programming Gems, Charles River Media, 2000.
Dietrich, Sim, "Attenuation Maps," pp. 543-548.
Dietrich, Sim, "Hardware Bump Mapping," pp. 555-561.

[Mitchell] Mitchell, Jason, "Radeon Bump Mapping Tutorial," available online at
www.ati.com/na/pages/resource_centre/dev_rel/sdk/RadeonSDK/Html/Tutori-
als/RadeonBumpMap.html

ARB_multitexture, EXT_texture_env_combine, and EXT_texture_env_dot3 spec
available online at http://oss.sgi.com/projects/ogl-sample/registry/

5.4

Generating Procedural Clouds
Using 3D Hardware

Kim Pallister, Intel
kim.pallister@intel.com

A great number of the games we play take place in outdoor environments, and
most of those take place in environments that attempt to look much like the

world around us. Because of this, the realistic rendering of terrain has become some-
thing of a holy grail for many game developers. Unfortunately, the modeling of the
sky, and the clouds therein, does not get nearly as much attention, and is often added
as an afterthought. Clouds usually end up being modeled with one or more layers of
static scrolling textures. At first glance, these look OK, but they quickly give away
their repetitive nature when looked at for an extended period.

In this gem, we'll set out to procedurally generate cloud textures that possess
some of the properties that real clouds exhibit. In addition, because textures typically
reside in graphics subsystem memory, we'll aim to generate the procedural clouds
almost entirely using the graphics hardware. Finally, we'll address some ways to scale
the technique's quality and performance requirements in order to accommodate a
range of target machines.

Properties of Clouds

By taking note of the characteristics of real clouds, it's possible to come up with a pri-
oritized feature list for the simulation. As with all real-time techniques, we may need
to forsake some of these features in the interest of speed, but we'll worry about that
later.

Here are a few things that we notice at first glance:

• Clouds are animated. They both move across the sky as the wind pushes them
along, and change shape or "evolve" with time (as can be seen in any time-lapse
footage of clouds). Additionally, the amount of cloud in the sky changes with
time. This gives us a hint that there are three variables we'll need: the simulation
rate, the wind speed, and something describing how overcast it is.

• As the clouds change shape over time, small details change frequently, while
larger details take longer to change.

• Clouds exhibit a great deal of self-similarity in their structure.

463

464 Section 5 Graphics Display

• The level of cloud cover can also vary from a completely overcast sky to a clear
blue sky with only a few isolated clouds (or none at all). As the level of cloud
cover changes, so does the appearance of the clouds. In overcast conditions,
clouds become gray and dark; in clear skies, clouds tend to be bright white
against the blue backdrop of the clear sky.

• Clouds are three-dimensional entities. They are lit by the sun on one side and fall
in shadow on the other. On a smaller scale, its much more complex than that,
with clouds self shadowing and scattering light in all directions.

• Clouds are lit much differently at sunrise and sunset, as the light of the sun tends
to illuminate them from an orthogonal angle, or even from underneath.

• Clouds tend to float at a common altitude, forming a cloud layer. Sometimes
there are multiple layers. Since each of these layers is a constant altitude above the
earths curved surface, we'll likely use some kind of curved geometry for the layers
of clouds.

. . . and this is just some of what we see from the ground. In an application such as a
flight simulator, where we could fly up and into the clouds, a whole new set of diffi-
culties comes up. For this gem, we'll stick to the view from the ground.

Random Number Generation

As with almost any procedural texture, a good place to start is with the generation of
some noise. Noise is a term used to describe a primitive that is random in nature. The
noise primitive is a function that for a given input series (e.g., 1, 2, 3...), produces a
seemingly random series of results (e.g., 0.52,—0.13,—0.38...). I say seemingly random
because it must always produce the same result for a given input. This makes it
pseudo-random, allowing us to recreate the same result for a given input seed value.
Additionally, noise is often referred to as having a certain dimensionality (e.g., 2D
noise, 3D noise, etc). This just refers to the number of inputs that are used to map
into the random number function, much as one does a lookup into a multidimen-
sional array. One of the dimensions is scaled by some factor (usually a prime number)
large enough to keep repetitive patterns of results from showing up in an obvious
fashion.

The generation of random numbers (or pseudo-random numbers) is a subject of
much study. All approaches contain trade-offs between the complexity of the function
and the quality of the result. A random number generator of high quality generates a
good distribution of the random values, and does not repeat for a very long time.

Luckily, for the purposes of this gem, the results of a very simple random number
generator will suffice. When we cover the specifics of the technique later, we'll be call-
ing the random number generator multiple times per pixel with different input "seed"
values. The cumulative result of this will mask any obvious repetition that occurs.

The pseudo-random number generator (PRNG) we'll start with is shown in List-
ing 5.4.1. It works by using the input parameter x as the variable in a polynomial,

5.4 Generating Procedural Clouds Using 3D Hardware 465

where each term of the polynomial is multiplied by large prime number. By scaling
each term of the polynomial differently, we get a long series before it repeats. The sign
bit is then masked off, and the number is divided down to the 0—2 range, and is sub-
tracted from 1, to give us a range of—1 to 1.

Listing 5.4.1 A simple pseudo-random number generator
float PRNG(int x)
{

x = (x«13)*x;

int Primel = 15731;
int Prime2 = 789221;
int Primes = 1376312589;

return (1.0f - ((x * (x*x*Prime1 + Prime2) + Primes)
& 7fffffff) / 1073741824.0)

}

In cases where multiple octaves are being used, you can increase the "random-
ness" of the PRNG by constructing an array of prime numbers and using different
ones for Primel and Primel, depending on the octave. For the purposes of this gem,
using the single set of primes in Listing 5.4.1 is sufficient

Since we want to implement this in graphics hardware, and graphics hardware
doesn't allow us to do all of the code shown in Listing 5.4.1, we'll create a lookup table
of the function in a 512x512 texture map. Using a 512x512 texture map gives us
-260 thousand entries before the function repeats. We'll use this texture as a random
number generator by copying part of this texture into a target texture, using a software-
generated random number to offset the texture coordinates. This is illustrated in Fig-
ure 5.4.1. The copying is done using the graphics hardware to render our random
number series texture to a quad in the target texture.

Startlndex(x,y)

FIGURE 5.4.1 A) The random number lookup table texture. B) The generated 32x32
noise texture.

466 Section 5 Graphics Display

Band-Limited Noise

Ken Perlin pioneered the technique of using band-limited noise as a rendering primi-
tive. Band-limited means that the noise is limited to a certain frequency range, which
can be thought of as its maximum rate of change between samples. For our purposes,
this means that we want to be able to produce a series of random values spaced out
according to the frequency range, with intermediate points interpolating between
these random samples. We do this simply by indexing into our random number
lookup table and upsampling by the desired amount, using the graphics hardware's
bilinear filtering to do the interpolation for us. Getting rid of the high frequency
components will make for a procedural primitive with smoother, more natural-looking
transitions. This is illustrated in Figure 5.4.2.

(a) (b)

FIGURE 5.4.2 A) Sampling the random number lookup table texture to create an array of
noise. B, C) Using upsampling and filtering to create band-limited noise at the target
resolution (the target frequency range).

It's worth noting here than in some cases when using noise to create procedural
content, bilinear interpolation is insufficient, and a higher order filtering is needed to
produce adequate results. Luckily, this is one case where the lower quality bilinear fil-
tering produces sufficient results.

An array of noise created in this fashion gives us a single noise primitive of a given
frequency. We'll refer to this as an octave of noise, since we will later combine multi-
ple octaves (multiples of the same frequency) together. First, though, we need to be
able to animate our array of noise.

Animating an Octave of Noise
fs?r: ::•:•;;;;:":•""::•:.-v::1:":1::1;-.'"'":'"'::;.:::::1::1"":':.:" r.r":\'™™'.r:~"~r:r"'::-'"~r.r:..—•;:.l™r":;:;:l:r::1^-"': .::™.r. ~:^~"~:; ..::.•". ".'.'>*../.::"' r^~.:'.~:~:"~ ~" :'"~:r:":"'r -"•.•-—--..: ,™:v: :™:-"-.""'::'-'-$

If we want to animate an octave of noise, we can look at time as a third dimension
that we can use to index into our random number generator. The way we'll imple-
ment this using the graphics hardware is to periodically save off our noise texture,
create a new one, and then interpolate between the two from one update to the
next. The rate at which we update the texture determines the frequency in this third
dimension.

The interpolation is illustrated in Figure 5.4.3. This is one case where using lin-
ear interpolation results in some artifacts, as the noise becomes more "focused" at the

5.4 Generating Procedural Clouds Using 3D Hardware 467

J

FIGURE 5.4.3. Interpolating between noise updates to animate an octave of noise. Result =
PreviousUpdate * (1-(T1-TO)/(T2-TO)) + NewUpdate * (Tl-TO)/(T2-TO). TO is the previous
update time, T2 is the new update time, and Tl is the current time between updates.

actual sample points. Again, this artifact is not apparent after the noise is incorporated
into the final effect, as we'll see. Still, it's worth keeping in mind. If we were willing to
sacrifice enough fill rate, we could maintain octaves for multiple points in time and
use a higher order interpolation scheme to achieve a better result.

Summing Octaves into Turbulent Noise

A commonly used technique in procedural texture generation is to use a fractal sum,
which is a summation of scaled harmonics of the basic noise function. This is referred
to as fractional Brownian motion, or fBm, and is used in all types of procedural ren-
dering techniques, such as fractal terrain, many types of procedural textures, and so
forth. The fractal sum is shown in Equation 5.4.1. In it, a determines how we step
across the frequency spectrum (a is most commonly 2, giving us f, 2f, 4f, ...), and b
determines the amplitude of the contribution of each component in the series.

JV-1

Fortunately, a value of 2 for a is both commonly used in the generation of proce-
dural textures, and is well suited to our hardware implementation, as we can simply
implement the octaves of noise as a series of texture maps whose sizes are a series of
powers of 2.

Using a value of 2 for b is also both commonly used and makes our implementa-
tion easier. The composition of the octaves of noise can be done by performing mul-
tiple render passes using a simple blend, as shown in the pseudocode in Listing 5.4.2.

Listing 5.4.2 Noise octave composition
//note that ScaleFactor is needed to keep results in the
// 0-1 range, it changes {1 + 1/2 + 1/4 + ...} to {1/2 + 1/4 + ...}

468 Section 5 Graphics Display

float ScaleFactor =0.5
float FractalSum = 0.0
for i = 1 to NumOctaves
{

FractalSum = FractalSum*0.5 + ScaleFactor *
NoiseOctave(NumOctaves-i)

Figure 5.4.4 illustrates the process of animating the different octaves between
updates, and building the composited turbulent noise texture.

Previous Updates Animated Octaves Current Updates

Octave 0

Octave 1

Octave 2

Octave 3

1/2 Octave 0 + 1/4 Octave 1 +
1/8 Octave 2 + 1/16 Octave 4 =

FIGURE 5.4.4 Composition of several octaves of animated noise.

5.4 Generating Procedural Clouds Using 3D Hardware 469

Making Clouds from "Vapor"

Now that we have a texture map of animated, turbulent-looking noise, we need to do
a few steps to turn it into clouds. Ideally, we'd like to use the noise as input to some
sort of exponential function, giving us a sharp "condensation level" above which
clouds would be visible, below which they would not. However, since this is an oper-
ation not available to us in a graphics chip, we'll have to use another method. There
are several ways to tackle this.

The simplest way is to do a subtraction. Subtracting a fixed value from the texture
clamps the texture at 0 where the noise was below that fixed value, isolating some
clouds. This is illustrated in Figure 5-4.5.

FIGURE 5.4.5 Subtracting a fixed value to get isolated clouds.

Unfortunately, we lose some of the dynamic range in the remaining clouds. We
can compensate for this, however, by oversaturating and modulating with vertex col-
ors and varying this. This is the method we use in the accompanying sample code.

Another way would be to have all the layers of texture that we have talked about so
far have an alpha channel. This would let you do the subtraction and the clamping as
in the previous test, but only on the alpha, and then do an alpha test to mask off the
region without clouds without losing any dynamic range in die clouds themselves. A
different problem occurs here, however. Since the alpha test is done before any filter-
ing, rough jagged edges occur unless we use a really high-resolution destination texture.

Another way that may be better still would be to use some sort of dependent tex-
ture lookup, where one texture's color value affects the location from which a texel is
fetched in a subsequent stage. One example of a texture- dependent lookup is the
BumpEnvMap render state supported by some hardware under DirectX. In the
future, as more hardware supports this type of operation, it may become feasible to
encode an exponential function in a texture map and simply look up the result.

Mapping It to the Sky Geometry

Having prepared the cloud texture in Figure 5.4.5, we can map it to the sky geometry.
Your choice of geometry depends on your application. The sample application uses
something we've called a "skyplane," which is simply a rectangular grid of triangles,
with the vertices pulled down over die radius of a sphere. You can imagine this as
dropping a piece of cloth over the surface of a beach ball. It's not perfect, but makes
mapping the texture easy. The skyplane is illustrated in Figure 5.4.6.

470 Section 5 Graphics Display

FIGURE 5.4.6 Terrain geometry and the skyplane used for the cloud texture.

Feature Creep
At this point, we can do many things to the clouds, depending on how much applica-
tion time and graphics hardware fill-rate we want to consume. Some of these are
implemented in the sample code; others are listed to provide you with ideas for your
own implementation. Some of the things that can be added include:

• Noise-driven wind direction, cloud cover. Some dramatic results can be achieved
by using other noise functions to modify some of our other variables over time, so
that, for example, the wind can change direction and the level of cloud can
increase or decrease over hours or days.

• Embossing the clouds to give them a 3D appearance. This will require an extra
pass, and will require some modification of the vertex UV values. The vertices are
given a second set of texture coordinates and are offset/scaled according to the
direction of the sun. The clouds are darkened on the side away from the sun, and
brightened on the side toward the sun.

• The clouds can cast shadows on the ground simply by using the end result texture
with a subtractive blend. Your terrain will need to have another set of texture
coordinates, or will have to use texture projection in order to do this.

• Modify lighting and/or lens flare intensity. Since we know how the texture is
mapped to the geometry, and we know the angle of our sun, we can calculate the

5.4 Generating Procedural Clouds Using 3D Hardware 471

exact texel or group of texels corresponding to where the sun is in our line of
sight. We can use this to vary the level of lighting on our terrain, or to fade out a
lens flare temporarily. Note that when modifying lighting, increased cloud cover
should decrease the intensity of the directional light of your "sun" in the scene,
but should increase the ambient level, since in reality the clouds will scatter the
sunlight in all directions.

Hardware Limitations
Allowing the graphics hardware to do much of the grunt work in this technique
allows us to achieve better performance than we'd be able to achieve if we had to man-
ually lock and modify the texture at every frame. Unfortunately, it comes with some
drawbacks as well. The drawbacks fall in four areas:

• Render-to-texture support. The technique spelled out in this gem uses this
capability extensively. However, support for rendering to texture surfaces is far
from ubiquitous. Detecting support for the capability has become easier with
more recent API releases, but can still be tricky. In cases where rendering to tex-
ture surfaces is not supported, a workaround of copying from frame buffer to tex-
ture can be used, but performance may suffer.

• Limited precision. Current hardware stores texture and render target values as
integers, usually in 32 or 16 bits per pixel. Because we are essentially working in
"monochrome," generating a texture in shades of gray, we are limited to 8 bits per
pixel, and in the worst case, 4! The latter gives noticeable artifacts. Note that this
means that the high-frequency octaves are only contributing a few bits of color
data to the final result due to this problem.

• Limited dynamic range. Because the integer values represent data in the 0-1
range, we are forced to scale and offset values to fit in this range. Since our noise
function originally returned values in the -1 to 1 range, we had to compress these
to fit them into our available range. This requires extra work, and also amplifies
the artifacts from the limited precision

• Limited hardware instruction set and capabilities. The limited instruction set
of the graphics hardware limits us in terms of what we are able to do. It would
have been nice to feed the turbulent noise texture into a power function, perhaps
as the exponent, to generate some interesting results, but we are instead limited to
simple arithmetic operations. As well, we make much use of render-to-texture,
which isn't available on all hardware. In the future, as hardware capabilities
increase, this will be less of an issue.

Making It Scale
If we want to use this technique in a commercial game project, and are targeting a
platform such as the PC, where performance can vary from one machine to the next,
then we need to worry about scalability of the technique. Even if targeting a fixed

472 Section 5 Graphics Display

platform, the game may have a varying load, and we may want to scale back the qual-
ity and performance requirements of the technique in heavy load situations.

There are several ways in which the technique can be scaled:

• Texture resolution. The resolution of the textures used at the various intermedi-
ary stages could be reduced, saving memory and fill-rate consumption. Note that
scaling color depth is most likely not an option here, since the artifacts show up
pretty quickly when using 16bpp textures.

• Texture update rate. Not every texture need be updated per frame. Particularly if
the simulation rate is slow, the interpolating textures do not need to be updated
at every frame as we did in the sample code.

• Number of octaves used. The sample code uses four octaves of noise, but using
three might provide an acceptable result. Similarly, five octaves might give slightly
better quality on systems that have the horsepower.

Conclusion
mm ; :-: :r"::-;:::::; r: ;"":;• --7:::. —-'-•::" ~" :;-:;;: •—-•••:::•—-•"••--:•-••:;•::,: -™:r:~:::: ::•: -•-'•r:;-::̂ --":-vi::::'::"::"r"-:;-.v;;:::-1"-»

Figure 5.4.7 displays the final result of the procedural cloud example program.

*a^p t̂a»%s«

"*""'"*"

FIGURE 5.4.7 Final result of procedural cloud example program.

5.4 Generating Procedural Clouds Using 3D Hardware 473

We hope this technique has provided you with some insight into procedural
texture generation, using clouds as an example, and how to get graphics hardware
to do much of the per-pixel work needed in generating dynamic procedural textures.

As hardware grows more capable, so will the techniques in which we can generate
these textures in real time. We encourage you to try your own experiments and share
them with the development community.

References

[Ebert et al, 98] Ebert, David S., et al, Texturing and Modeling: A Procedural Approach,
AP Professional Inc., 1999. ISBN: 0-12-228730-4.

[Elias99] Elias, Hugo, "Cloud Cover," available online at http://freespace.virgin.net/
hugo.elias/models/m_clouds.htm, offers a software-only technique similar to this
one.

[Pallister99] Pallister, Kim, "Rendering to Texture Surfaces Using DirectX 7", avail-
able online at www.gamasutra.com/features/19991112/pallister_01.htm

5.5

Texture Masking for Faster
Lens Flare

Chris Maughan, NVIDIA Corporation
cmaughan@nvidia.com

This gem introduces a novel way in which to generate texture information from
pixels already rendered to the frame buffer. The technique can be used in several

different ways, but is presented here as a solution to the common problem of
occluded lens flare. Many games attempt to read back pixels generated in the frame
buffer in order to determine exactly what was visible in the final scene. I will present
a technique that works without CPU assistance, and does not require reading
data from the graphics card. I will also outline the reasons why reading back infor-
mation from the graphics card can be a costly operation and should be avoided if
possible.

Lens Flare Occlusion

Many modern games add lens flare to the scene to increase realism. The lens flare is
usually applied as the last item in the scene, using a 2D texture map rendered as a bill-
board over the frame. A complication with this technique is that objects in the scene
can occlude the sun image, and in this case, the correct visual result is a lessening of
the lens flare intensity. A good way to visualize this is to imagine yourself driving
along a road lined with trees on a sunny day; if the sun is below the tree line, you will
experience a flickering as your viewpoint through the trees changes and the amount of
light reaching your eyes varies.

The usual approach to detecting the occlusion of the sun is to first render the
objects in the scene, including the sun itself. Then we read back the frame buffer
data around where the sun pixels would be and deduce the amount of sun visible in
the scene. We can do this in two ways: we can read back the color buffer and look
for values that match our sun color, or we can read back the Z-buffer and look for Z
values that are as far away as the sun. The ratio of visible to occluded sun pixels
gives us a handy approximation of the intensity of the lens flare. We are now ready to
draw our lens flare by blending it onto the final scene using an alpha value to set its
intensity.

474

5.5 Texture Masking for Faster Lens Flare 475

Hardware Issues

The preceding approach is generally taken when rendering lens flare in games. While
it can work well, it causes unnecessary stalls in the graphics pipeline that can seriously
impair performance.

Modern graphics pipelines are very deep. Polygon data is not only queued inside
the graphic chip pipeline, but it is also queued in a large "staging" buffer. Typically,
many thousands of polygons will be queued in the staging buffer by the game, and the
graphics chip will drain the buffer as it draws polygons into the frame buffer. In a
good parallel system, the game can be doing useful work on the CPU, such as physics,
AI, and so forth, while the graphics chip (GPU) is draining the staging buffers.
Indeed, this is to be encouraged if the maximum performance of the system is to be
achieved. Figure 5.5.1 illustrates a system with optimal parallelism.

M - CPU Preparing Scene 3

Submit Scene 2 Do Network DoAl Do PhysicsCPU Activity Submit Scene 2 Do Network DoAl Do Physics I Submit Scene 3

Draw Scene 1 Page Flip Draw Scene 2

^_ GPUDrawing __M GPUDrawing Scene 2 -
ocsne l

FIGURE 5.5.1 Parallelism of the GPU I CPU in an ideal game engine.

Now consider the situation that occurs when the game has submitted all the
polygons for the current scene to the graphics chip. Much of the scene may still be
queued in staging buffers and will not be drawn for some time. The next thing our
game wants to do is to read back the contents of the scene to determine the sun vis-
ibility for the lens flare calculation. Here lies the first part of our problem. In order
to read the completed scene from the frame buffer, we must wait for the rendering to
complete, and in order for this to happen, the whole pipeline must be flushed. While
waiting for this to occur, the CPU is effectively unused, as it is simply idle inside the
graphics card driver waiting for the rendering to complete. Ideally, we want the GPU
and the CPU to be concurrently active at all times. One potential solution to this
problem is to insert our physics/AI code after the scene render, but before the lens
flare calculation. In this way, the CPU will be busy while the GPU is rendering the
polygons.

In this case, if our CPU work is more than the GPU work, then we do not have a
problem—although arguably the system is unbalanced because the GPU is waiting
for the CPU to finish its work, when it could be doing more rendering (Figure 5.5.2).

476 Section 5 Graphics Display

CPU Submitting
Scene 2

CPU Activity Submit Scene 2

-H- CPU Waiting forGPUto Finish Scene 2

Lock / Read Frame Buffer Submit Flare

GPU Activity Draw Scene 1

^ GPUDrs
Scene 1

Page Flip Draw Scene 2 Draw Flare

FIGURE 5.5.2 Pipeline stall caused by flush at end of rendering.

If our CPU work is less than the GPU work, we will again stall when we try to
read back the lens flare data. This is undesirable because ideally we would like to be
preparing the next frame of the game on the CPU while the last one completes on the
GPU (Figure 5.5.3). Parallelism is the key here, and inserting any stalls can hurt it
considerably.

The story does not, however, end here. After losing our concurrency, there is
another problem. Reading back data from a current generation graphics card is a slow
operation, and in some cases cannot be done at all.

While most graphics cards run at AGP 2x/4x speeds when written to, reading
back from them is still limited to PCI speeds—this is inherent in the nature of the
AGP bus design as it stands today. The result is that for a 32-bit frame buffer, we can
only read pixels at a maximum rate of 66Mhz, with no caching or bursting behavior.
Therefore, reading an area of 256 * 256 from the graphics card will take

1 / (66,000,000 / (256 x 256)) = -1 millisecond.

This assumes a 256-square pixel area of the sun projected onto the screen. If we
are standing nearer to the light source—for example, a street-lamp—then the pro-
jected area can vary quite considerably until the read back becomes very significant.
Even if we are willing to take this hit in performance, there is no guarantee that the

CPU Submitting
Scene 2

CPU Preparing
Scene 3

CPU Activity

GPUActivity
(CPU Load
heavier than I
Load)

Submit Scene 2 Network/ Physics /Al
Lock/Read
Frame
Buffer

Draw Scene 1 Page Flip Draw Scene 2 GPU Idle |

GPUDrawing
Scene 1

GPUDrawing
Scene 2

GPUWaiting for CPU to finish

FIGURE 5.5.3 Pipeline stall caused by flush before end of frame, after CPU work.

Submit Flare

Draw Flare

5.5 Texture Masking for Faster Lens Flare 477

graphics card will allow us to read back the data at all; in fact, many do not. Most will
not allow reading of the Z-Buffer, many do not allow reading of the frame buffer, and
none will allow reading of an antialiased buffer.

Texture Masking
How can we alleviate the stalls caused by reading the frame buffer? We arrive at the
solution through a bit of lateral thinking. We know that we cannot pass a value down
from the CPU to modulate the lens flare brightness, for the reasons outlined previ-
ously. This leaves only one possibility: that we modulate the lens flare value with data
already generated in the graphics memory on the card. Such a value must be in the
form of a texel in a texture map, and this texel needs to contain either a luminance
color value or an alpha value. We know that we can render to a texture map in
Direct3D or OpenGL. The remaining problem is how we actually generate this texel
based on a set of source pixels. The solution lies in the alpha blending capabilities of
the GPU. The alpha blending unit is basically an adder, which adds a value in the
GPU to one on the frame buffer, and can be used to accumulate color information.
Add to that the realization that objects in our scene are rendered in a color of our
choosing, and a suitable solution presents itself. The following steps show how to
achieve the result we need.

Step 1

Create a texture map of 16x16 texels. Call this the sun map. We will be rendering the
sun itself and the occluding geometry onto this map. The surface format should have
at least 8 bits per color component. On typical graphics hardware, this equates to a
32-bit ARGB surface. The sun map is chosen to be 16x16 because it contains 256 tex-
els. As we will see later, we are not limited to a 16x16 size, and can play tricks with fil-
tering to reduce it if necessary.

Step 2

Create a 1x1 texture map. This is the intensity map. This is the final destination of our
intensity data. We only need a single texel of information, but of course, this texture
can be as big as needed to satisfy particular hardware requirements. Again, the format
of this surface should be at least 8 bits per color component.

Step 3

Render the portion of the scene containing the sun into the sun map. There are many
ways to do this, but we choose a simple approach. We orient the viewer to look directly
at the center of the sun. We also set the projection matrix so that the sun fills the view-
port. The front plane is just beyond the eye; the back plane is just behind the sun. The
sun map is cleared to black. We render one of two colors to the sun map. The image of
the sun itself is rendered in white. The occluding geometry is rendered in black, thus

478 Section 5 Graphics Display

covering any of the sun values already rendered. If the sun is rendered first, Z-BufFering
is not required, as we are just interested in the occlusion, not the depth ordering. The
sun map now contains 256 values, some of which are white, some of which are black.
In 32-bit color, this means that the frame buffer contains OxFFFFFFFF or
0x00000000. Note that for consistency, I set up the alpha channel in the same way as
the color channels, enabling the option of alpha blending or color blending.

Step 4

Render 256 pixels to the 1x1 intensity map. Draw them using point-lists or point-
sprites if the API/hardware supports them, as they require less transform work than
full triangles or quads. Set texture coordinates so that each sun map texel is referenced
once. Set the alpha blend unit to add the color information of each of the source sun
map texels to the destination intensity map. We also want to sample only one texel at
a time from the sun map, so we set texture sampling to point sampling mode. Note
that we are writing to a single destination pixel multiple times, with different source
texels. One further step is that we blend each sun map texel with a constant value of
0x01010101. This is actually 1/255 in each of the color channels. The result is that
the modulated sun map values will either be 0x01010101 if the source sun map texel
is white, or 0 if the source sun map texel is black. I choose white and black as values
in the sun map because these are generally easy to achieve during rendering, and can
be displayed for diagnostic purposes in the demo.

The trick here is that we are adding 256 values from the sun map, to form a pos-
sible range of 256 values in the intensity map. The brighter the pixel in the intensity
map, the more visible sun pixels there are in the sun map, and hence the scene itself.
We have "masked" out the texture results of a previous rendering and added them
together. As we will see later, this texture masking approach can be very useful for var-
ious applications.

The whole process has used the GPU to generate lens flare intensity from infor-
mation in the frame buffer. Because the GPU pipeline is serialized, we know that the
intensity information will be written before we generate our lens flare, and that the
pipeline does not require a flush during the operations discussed earlier. Further,
because we have decoupled lens flare intensity generation from scene rendering, we
can perform these steps at any point, and potentially use the resulting value during
rendering of the actual scene rather than at the end. We could perhaps use this value
to modify the ambient intensity of the scene to simulate the viewer's pupils' reaction
to the light—an option that is not open to us with the lock method unless we want to
render the entire scene twice.

Performance Considerations

The presented algorithm may seem like a lengthy procedure, but is in fact a relatively
inexpensive operation when compared to reading the frame buffer and flushing the
pipeline. Consider that we are adding a little GPU work at the end of the frame,

5.5 Texture Masking for Faster Lens Flare 479

which can continue to run in parallel with the rest of our engine. The caveat is that
the rendering of the sun map must be quick. We can ensure that this is the case by
considering that the sun is usually above ground, and that the field of view to the sun
is actually very small. This considerably reduces the number of objects we have to
consider, and allows quick rejection of those that we do via frustum culling. We can
do early-out rejection if we determine that any of our objects completely occlude the
sun, and hence we do not draw the lens flare at all. A further option would be to ren-
der the potential occluders with less geometric detail.

Another performance concern may be the rendering of the 256 blended polygons
we use to find the intensity result, but this isn't a problem because a modern GPU can
render about 40 million points per second—a fraction of the time it will take to read
back a potentially large amount of data from the frame buffer, issues of concurrency
aside. In addition, reading back data from the frame buffer involves the CPU, which
we are trying to free up for nongraphics tasks.

Improvements

The preceding scheme works well, and it gives a good approximate result. One obvious
criticism of the technique is that the sun is typically a circular object and the sun map we
are using is a square texture. In fact, this is not a problem, as we can sample any texels we
like from the source sun map, including a circular sampling pattern. Of course, we need
to make the sun map larger in order for it to cover the required number of samples.

If we wish, we can only sample a selection of the sun map texels. To do this, we
simply sample the required number of texels in the sun map, and change the modu-
late operation we use when writing to the intensity map to scale up our results.

Note that we are solving the lens flare problem as an example, but many of the
techniques are reusable in other situations. Perhaps the intensity value could be used
to darken the scene to mimic overexposure effects, or to add silhouettes or halos to
characters. In fact, once we realize that the GPU has great flexibility as a mathemati-
cal solver, we can modify our algorithm in a number of ways, using the GPU as a gen-
eral parallel mathematics engine. For example, we can use texture filtering to sample
four texels at a time, giving an average result for four samples. In our previous exam-
ple, we only need to draw 64 points to get our intensity map results if we rely on
bilinear filtering to get the average intensity of the four samples. We can also do sev-
eral mathematical operations by varying the blending operation, such as using modu-
lation to scale values. This is useful if we wish to accumulate more samples in the
intensity map, because we can use the modulation to add scaling to our intensity map
results at the expense of dynamic range.

Sample Code

if •;.«& "*§ The sample demo on the companion CD-ROM gives a good idea of the performance
ON me co difference between the locking and texture masking techniques, and shows how to

480 Section 5 Graphics Display

implement the algorithm as described. Options are also available on the menu to
enable the display of the sun map and the intensity map.

When running the demo on my target system, I take about a 50-percent frame-
rate hit for using the lock method versus the texture masking method. The perfor-
mance delta also increases the larger the frame buffer becomes. Typical numbers for
the opening scene are as follows:

Texture Masking (600x500x32bits) = 53.5 fps
Frame Buffer Locking (600x500x32bits) = 27.8fps

The source is heavily commented and should be easy to follow. I used Direct3D
version 8 to write the demo, but the concepts are identical for OpenGL. See the

s~~z- B^ README included with the application on the CD for more information on how to
£,'•:" *JC •*"' : ' • -%5<-ffii^ run ,-he demo and analyze the results. Detail is also included on how to use the

"Increase CPU Work" option in the demo to study the hit to system parallelism from
using the lock call versus the texture masking technique.

Alternative Approaches

There are two alternative approaches to lens flare that should be mentioned for
completeness:

• Sometimes, a geometry-based approach is taken to determine the visibility of the
flare. The approach is to scan the geometry and do ray intersection tests to deter-
mine visibility of a grid of sun pixels. While this works, it can be costly in terms
of CPU compute time, and is not a useful approach when using billboards, as the
source textures have to be scanned for "holes."

• Some graphics cards have the ability to do asynchronous readback of the frame
buffer data. In this case, the light source area is uploaded in parallel with the ren-
dering of the rest of the scene. This can be useful assuming that there is a suitable
point in the scene after occlusion objects are drawn in which to start the read-
back, but before the rest of the scenery or lighting work is done. This method
does of course rely on the support from the API to read back the data asynchro-
nously, and support from the hardware to upload the data. At the time of writing,
this support is not available in Direct3D or OpenGL, although extensions to
both APIs have been proposed.

References
[KingOO] Yossarian King, "2D Lens Flare," Game Programming Gems, Charles River

Media Inc. 2000: pp. 515-518.

Practical Priority Buffer
Shadows

D. Sim Dietrich Jr., Nvidia Corporation
sdietrich@nvidia.com

As game graphics become more sophisticated in certain areas, others begin to look
primitive by comparison, thus breaking the consistency so essential to an immer-

sive experience. One example of this phenomenon is the advent of detailed per-pixel
lighting, which can be applied to the entire scene in real time (see the "Dynamic Per-
Pixel Lighting" gem). Unfortunately, the visual complexity of the lighting outshines
the shadow techniques employed by many games. This gem presents a set of tech-
niques to improve the utility of priority buffers, first introduced in [Hourcade85].
Along the way, we will explore other shadow techniques, and close by discussing how
to create useful hybrid techniques.

Shadows are very tricky in real-time graphics, because they are truly a scene-graph
level problem, perhaps most naturally solved on the CPU. However, to achieve
the detailed results and performance we seek, we must leverage graphics hardware to
solve the shadow test on a per-pixel basis. Some graphics hardware currently has
native shadow support, including priority buffers and shadow depth buffers. However,
since none of these are available through a single standard interface, we will concen-
trate on generic techniques that should work with modern PC graphics hardware
through either Direct3D or OpenGL.

Some of the shadow techniques employed by modern games are shadow volumes,
depth buffer shadows, and. priority buffer shadows. Each has various advantages and dis-
advantages, briefly outlined in Table 5.6.1.

Shadow depth buffers [Williams78] work by using the Z-buffer or a texture that
represents per-pixel depth from the light. We will focus on techniques that work with
texturing, to maximize the utility of the techniques across graphics hardware. Shadow
depth buffers work like so:

Buffer Creation Phase:

For each Light
Clear Depth Buffer Texture to Oxff
For each Object in Light's Viewing Frustum

481

482 Section 5 Graphics Display

Table 5.6.1 Comparison of Real-Time Shadow Techniques

Priority Buffers Depth Buffers

Only convex pieces can
self-shadow properly

Shadow Volumes

CPU Work

Render To Texture
Required

Fill Requirements

Self Shadowing

Very Low
Per-Light Setup
Object Sorting

Yes

Medium
Depends on size of
shadow map

Partial

Very Low
Per-Light Setup

Yes

Medium
Depends on size of
shadow map

Yes

High
Per-Light Setup
Per-Object Shadow
Volume Creation
No

High
Depends on complexity
of shadow volume and
camera position
Yes

Precision

Aliasing Artifacts

GPU Complexity

Typically 8-24 bits of
ID
Range independent

8-24 bits of ID
Typically spread across
lights' range

Yes
Between Adjacent
Objects
0 (N * M * R * P)
N = Vertices of caster
R = Vertices of receiver
P = Number of receivers
M = Size of shadow map

Yes
Depending on Depth
Precision & Light Range
0 (N * M * R * P)
N = Vertices of caster
R = Vertices of receiver
P = Number of receivers
M = Size of shadow map

No limit to accuracy

Directional Lights
Spot Lights
Point Lights

Yes
Yes
Yes

Yes
Yes
Yes
With less precision

Yes
Yes
Yes

No

0 (N * R * P * E)
N = Vertices of caster
R = Vertices of receiver
P = Number of receivers
E = Depth complexity

of shadow volume

Compute Per-Pixel Depth from Light from 0x0 to Oxff
Render Object into Texture, using Depth as the color

Shadow Testing Phase:

For each light
Create texture matrix to move vertices from view space to
Light's view space

For each Object in Player's Viewing Frustum
Compute Per-Pixel Depth exactly as above
Select Depth Buffer as a Texture
For each vertex
Project vertices to the Depth Buffer Texture

For each pixel of Object
Compare Computed Depth to Closest Projected Depth

5.6 Practical Priority Buffer Shadows 483

If Computed Depth > Closest Projected Depth
Pixel is in Shadow

Else
Pixel is Lit

Priority buffers work by first assigning each "Object" a unique ID from 0x0 to
OxFE. An object is defined as something that can't shadow itself. Examples of objects
with perfect shadowing through this technique are convex objects and individual tri-
angles. Priority buffer shadows work like so:

Buffer Creation Phase:

For each Light
Set Priority Buffer Texture as the Render Target
Clear Priority Buffer Texture to Oxff
For each Object in Light's Viewing Frustum
Assign ID from nearest to Light = 0x0 to farthest from Light

<=OxFE
Render Object into Texture, using ID as the color

Shadow Testing Phase:

For each light
Create texture matrix to move vertices from view space to
Light's view space
For each Object in Player's Viewing Frustum
Select ID as a constant color
Select Priority Buffer as a Texture
For each vertex
Project vertices to the Priority Buffer Texture

For each pixel of Object
Compare constant ID to Closest Projected ID
If Constant ID > Closest Projected ID
Pixel is in Shadow

Else
Pixel is Lit

Comparing Priority Buffers to Depth Buffers

Priority buffers and depth buffers are very similar techniques—we could even use the
same pixel shader program or texture stage setup to perform either method.

Depth buffers have the advantage that each pixel is treated individually by having
its own depth value measured from the light. This allows this technique to perform
self-shadowing.

One downside of depth buffer shadows is that the depth from the light is typi-
cally computed over the light's entire range of influence. If we use an 8-bit color or
alpha channel to represent depth from the light as in our previous example, only 8
bits are available for the entire light's range. This is not adequate precision for many
scenes to support both proper inter-object shadows as well as intra-object self-
shadowing (Figure 5.6.1).

Section 5 Graphics Display

At Light |—^—— ——^^1 ^ Light's Maximum Range

FIGURE 5.6.1 Depth from light.

Priority buffers overcome this difficulty by assigning each object its own ID,
based on its sort order in terms of distance from the light. This way, the precision is
effectively infinite over the entire range. Any range can be equally accommodated, at
the cost of losing self-shadowing. Because each object has its own ID, individual sec-
tions of the object can't shadow each other.

Figure 5.6.2 is an example where two chairs are rendered with different IDs from
the point of view of the light. The background is normally white, but is cleared to
black to make the chairs show up better.

FIGURE 5.6.2 Priority buffer from light's view point.

There are several ways to overcome the self-shadowing problem without special-
ized hardware. One way is to break up the model into convex pieces, perhaps each
hierarchy level of an animated model or even down to the individual triangle level.
One natural approach for static geometry is to break up the world into convex pieces
using OctTree or BSP nodes, and assign an ID to each node. Unfortunately, this
approach exacerbates a serious problem—aliasing.

Resolving Aliasing Problems

Aliasing artifacts most obviously occur when two nonoverlapping objects with differ-
ent object IDs shadow each other. This occurs due to the simple fact that the back
buffer and priority buffer texture are at different resolutions and different orienta-
tions. This causes a point sample of the priority buffer to fall somewhere within one
texel of the desired sampling location. Sometimes the sample selects the desired texel,
sometimes one of its neighbors (Figure 5.6.3).

5.6 Practical Priority Buffer Shadows 485

FIGURE 5.6.3 The dashed line shows the texture sample positions lined up with the
priority buffer. This mismatch of size and orientation causes aliasing.

Bilinear filtering is used for texture mapping in order to reduce this type of alias-
ing by performing a weighted average of a 2x2 footprint of texels. Unfortunately, aver-
aging object IDs makes no sense. If we have texels with object ID 100 and 200, and
we average them, we get object ID 150. This object ID may represent a completely
different object, so we see that straight bilinear filtering won't do the trick.

One way to solve the aliasing problem is to offset the texture by half a texel so that
the sample falls exactly in between a 2x2 area of texels. Then, perform the shadow test
four times, and only allow a shadow when all four samples agree that the pixel should
be in shadow. This solves the aliasing problem, but costs four texture fetches, and
multiple passes on dual-texture hardware.

An improvement to this technique is to "pre-jitter" the priority buffer. After cre-
ating the priority buffer as we did earlier, by putting the object ID in the alpha chan-
nel of the priority buffer, we perform another render-to-texture pass into a texture the
same size as the original priority buffer. With this pass, we perform the "pre-jitter" by
taking the four texels that neighbor the original sample location in the priority buffer,
and replicating them into R, G, B, and A of the destination color.

This way, during the shadow testing phase, a single texture fetch of the "pre-
jittered priority buffer" gives all four neighboring samples. With a bit of per-pixel
math, all four shadow tests can be computed at once, their results combined, and the
aliasing eliminated, by only shadowing the pixel if all four tests agree it should be in
shadow (Figure 5.6.4).

This pre-jitter technique is useful because there is only one jitter step per frame,
but many shadow testing operations, so it exploits coherency for faster rendering.

Figure 5.6.5 is a pre-jittered version of Figure 5.6.4. Note how the chairs have a
colored outline, which indicates that the R, G, and B channels represent different IDs
after jittering.

486 Section 5 Graphics Display

FIGURE 5.6.4 The dashed line shows the
texture sample positions lined up with the four
nearest neighbors of the priority buffer.

FIGURE 5.6.5 Pre-jittered priority buffer from
the light's view point.

Hybrid Approaches

Perhaps the best use of priority buffer shadows is to use them for inter-object shadows
between objects that don't come close to intersecting, and thus won't alias, and use
another technique altogether to handle self-shadowing. So, if two objects are far
enough apart such their bounding spheres don't intersect, the priority buffer method
is used to shadow the further one with the closer one. In the case where the bounding
spheres do intersect, there is a chance that the objects may alias with each other, so
they use the same object ID, and they must be shadowed with the self-shadow test.

One approach that combines priority buffers for inter-object shadows and depth
buffers for self-shadowing is to encode the 8-bit object ID into the red channel of a
texture in a vertical ramp, and an 8-bit depth in the green channel in a horizontal
ramp. The idea here is that the 8-bit depth buffer is only used for self-shadowing
within a single object, so the 8 bits can be spread across a single object's range. This
gets around a major problem with standard depth buffer shadows: limited precision
across the light's range (Figure 5.6.6).

Object 2

Depth Range 1 Depth Range 2

FIGURE 5.6.6 Depth measured across each object.

5.6 Practical Priority Buffer Shadows 487

The technique to perform this dual shadow test is a subtraction and a dot prod-
uct, replicated into the alpha channel. Alpha testing can be used to determine
whether a pixel is in shadow, thus allowing this technique to work on any hardware
with dual texturing and a dot product operation.

Another hybrid approach is to use stencil shadow volumes only for self-shadowing.
After computing the shadow volume edges, we can extrude them only to the edge of
the object's bounding box, instead of extending them to the limit of the light's range.
This reduces the impact of the major drawback to stencil shadow volumes—the fill
rate cost when the shadow volume extends across the camera's view plane. By restrict-
ing them to self-shadowing only, we also have the benefit that we can completely skip
the self-shadowing test for objects outside the viewing frustum.

Yet another way to achieve self-shadowing with priority buffers is to perform ray
casts of each vertex to the light source on the CPU, and check for the ray intersecting
the object. If the ray intersects a solid portion of the object, set the alpha channel of
the vertex diffuse color to zero. During the lighting process, modulate this alpha value
with the lighting contribution of the light. As shown previously, this could be per-
formed only on objects in the viewing frustum, and even dropped altogether for dis-
tant objects. A variant on this approach is to perform the test only on chunks of the
model—say, one for each model hierarchy level—like the shoulder or forearm. This
makes a nice level-of-detail option for distant and/or unimportant models.

Summary

Priority buffers are a great way to get inter-object shadows that bypasses the issue of
limited precision across a light's range. Although standard priority buffers are not
ideal for handling self-shadowing, other techniques can be paired with them to
achieve a complete shadowing solution for real-time games.

References

[DietrichOO] Dietrich, D. Sim, "GDC 2001 Presentation—Shadow Techniques,"
www.nvidia.com/marketing/developer/devrel.nsf/bookmark/04l9FBACDE043
ABF88256A1800664C06.

[Hourcade85] Hourcade, J.C., and A. Nicolas, "Algorithms for Antialiased Cast
Shadows," Computers and Graphics, vol. 9, no. 3, pp. 259-265, 1985.

[Williams78] Williams, Lance, 'Casting Curved Shadows on Curved Surfaces,"
Computer Graphics (SIGGRAPH 78 Proceedings), vol. 12, no.3, pp. 270-274,
August 1978.

5.7

Impostors: Adding Clutter

Tom Forsyth, Mucky Foot Productions
tomf@muckyfoot.com

f mpostoring is a term that is probably not familiar to many reading this. However,
the concept may be—it has surfaced in various forms many times in the history of

3D graphics. Simply put, it is about using sprites in a 3D scene, but instead of an
artist drawing or rendering the sprites beforehand, they are updated on the fly. (In
fact, the academic version of impostoring started when rendering things such as
cityscapes for VR fly-throughs, and was not updated dynamically—that came in later
versions. However, the dynamic update version is far more interesting to games, since
by their nature they deal with scenes that change.)

Instead of rendering a high-triangle object every frame, the high-triangle object is
occasionally rendered to a texture—usually on the order of once every 5 to 50 frames.
Every frame this texture is mapped onto a much lower-triangle object which is drawn
in place of the complex object.

The main target for impostors is scenes with lots of small static objects in them—
clutter. Each of these objects will use an impostor, and most will be redrawn at a
much lower rate than the main scene's frame rate. By doing this, the perceived trian-
gle density is far higher than the actual density, and the visual quality allowed by all
these incidental objects considerably increases the realism of the scene. The main dif-
ference between an office or house in a computer game and the real thing is the
amount of clutter present.

Although newer cards have huge triangle throughput, using impostors is still of
great benefit. The bus bandwidth (in the case of the PC, this is the AGP bus) is usu-
ally a bottleneck, and reducing this for some objects allows greater triangle detail to be
used on others. An impostor is a single texture, whereas rendering the object normally
may require multiple textures and multiple texture layers—changing texture flushes
the hardware's texture cache and may require extra texture management from the dri-
ver, the API, or the application. Drawing the object each frame requires that it be lit
each frame, even if the lighting has not changed, and as lighting techniques become
more sophisticated, lighting becomes more expensive. Finally, there is usually plenty
of application overhead associated with drawing an object, even before a single API
call is made—using impostors can avoid much of that work.

488

5.7 Impostors: Adding Clutter 489

The Whole Process

Impostoring involves a few key parts, which will be addressed separately:

• Rendering the impostor texture on the screen each frame. I call this "rendering"
the impostor.

• Rendering the impostor's mesh at low speeds to the texture. I call this "updating"
the impostor.

• Deciding when to update the impostor, and when to leave it.
• Driving the hardware efficiently.

Rendering the Impostor:

ONE:INVSRCALPHA

An impostor is essentially a color picture with an alpha channel that defines that pic-
ture's opacity in some way. Given that, there are basically two choices for this sort of
blending: premultiplied alpha and "normal" blended alpha.

Normal alpha is the standard SRCALPHA:INVSRCALPHA style. The other
style is premultiplied alpha— the ONE:INVSRCALPHA style.

Which one to use depends on which produces the correct result when rendering
an alpha-blended object into an impostor, and then rendering the impostor to the
screen. A pixel P is rendered to an impostor texture (which is cleared to black) to pro-
duce an impostor pixel I, and then that is rendered on top of the existing framebuffer
pixel F, to produce result pixel R.

If using non-premultiplied alpha, the desired result is:

The render to the impostor produces the result:

And rendering this to the framebuffer produces:

= P x Pa x Pa x Pa + F x (1 - Pa x />„)

This is pretty useless, and very little like the desired result. With premultiplied alpha,
the desired result is:

R = P+Fx(l-Pa)

The render to the impostor produces this result:

7 = P + O x (l - J P a)

490 Section 5 Graphics Display

Rendering to the framebuffer produces this:

= P+Fx(l-Pa)

which is perfect. Premultiplied alpha is not used by many apps, but it is fairly simple
to adapt an existing engine to use it.

One thing to note is that it is now important to be precise about the alpha-
channel result even when rendering opaque triangles, since the result will be written
to the impostor, and will influence the result when die impostor is rendered to the
screen. Non-alpha-blended (i.e., opaque) rendering to the impostor must ensure that
the alpha result is 1 , or the background will show through. Fortunately, this is fairly
easy to do, but it does require more care with the alpha-channel result than is nor-
mally taken.

One problem with impostoring is that alpha-blend effects rendered into an
impostor must be capable of expressing their effect within the premultiplied alpha
scheme. This means that effects such as multiplicative color blends (basically, any-
thing with a COLOR argument in the alpha-blend) will not work as intended,
because the impostor has only a single alpha channel to express the amount of back-
ground to allow through. Fortunately, these sorts of effects are rarely used on objects
that are suitable for impostoring. Note that this only applies to actual translucent
effects — opaque multipass rendering that uses alpha blending to combine the passes
(e.g., light maps, detail maps, etc.) will be fine, as long as the final alpha-channel value
is carefully controlled.

Billboard Quad

The most obvious way to render the impostor is to simply render a quad representing
the impostored object. This gives a perfect result as long as the neither the object or
the camera move.

Unfortunately, pixels are not all the app has to worry about in a 3D scene; there
is also depth to consider. A quad can only represent a single plane of depth, but the
object it represents will cover multiple depths.

So, for the quad, the app needs to decide at what depth to draw. Unfortunately,
for some of the most common applications, there is no single depth that is appropri-
ate. As can be seen in Figure 5.7.1, our impostored hero is standing between two
walls. Unfortunately, his feet are sticking through the near wall, and his head has van-
ished through the far wall. Quads are no good if an impostored object is going to be
close to other objects. They may be quite good for flying objects that don't usually get
too close to things, though, such as aircraft in a flight simulation.

Cuboid

The next approximation is a bounding box. Instead of a quad, the object-space
bounding box of the object is drawn, with the impostor texture projected on it.

5.7 Impostors: Adding Clutter 491

FIGURE 5.7.1 Side view and rendered view of a billboard impostor showing Z-buffer
problems.

Because the bounding box is a real 3D object, its Z-buffer properties can be con-
trolled far better than those of a screen-aligned quad. In particular, its Z-buffer prop-
erties are now independent of the camera position—they only depend on the object
position and orientatipn, which is one less thing the app has to worry about.

Bounding boxes actually work quite well. Most things in everyday life fill their
bounding boxes nicely, and artifacts from intersections between bounding boxes are
rare. Note that only the front or back of the bounding box is drawn. Either can be
used, but I recommend the front, because many objects fill their bounding boxes, so
using the front side gives a parallax shift that is similar to the real object when the
camera moves.

Although a bounding box is more complex than a quad, it's not much more com-
plex—12 tris is not going to break the triangle budget now that typical scenes have
hundreds of thousands of triangles. The increase in Z-buffering stability compared to
a single quad is definitely worth the effort.

Bounding Object

There are plenty of objects for which a bounding box is not a good enough approxi-
mation, and using one leads to unnecessary Z-buffer clashes. Another factor to con-
sider in choosing the shape of the impostor is parallax error. Most 3D scenes have a
large number of elements that are stationary, but the camera will still be moving
through that scene. A box painted with a picture of something on it is not going to
look like that something for long when the camera starts moving. Although increasing

492 Section 5 Graphics Display

the rate at which the impostor is updated can help, this just burns pixel and triangle
rates far faster for not all that much benefit—the eye very quickly notices the lack of
parallax as it moves.

Using an impostor object that is closer to the real shape of the object, although
still with a very low triangle count, can give a good improvement over a bounding
box. The main restriction on the shape is that it needs to fully enclose the object; oth-
erwise, the impostor image may be bigger onscreen than the impostor object being
used, and the edge of the image will not get drawn. The other restriction is that the
object must usually be convex to prevent self-sorting problems, because the impostor
texture is drawn with alpha blending.

Image Warping

One of the problems with the impostor object is that it must be both convex and
larger than the thing it represents. The former is required to prevent pixels being ren-
dered twice, and the latter to prevent some pixels not being rendered at all. However,
this inevitably means that the parallax as the object rotates (or the camera moves) is
not going to be correct, because the impostor object is bound to be larger than the
image it represents. Using a higher-tri impostor object can help reduce this in the case
of entirely convex source objects. However, for nonconvex source objects, this does
not noticeably improve matters—the impostor object must remain convex, and no
amount of tris will allow it to match a concave object.

Another way to deal with this is to move the texture coordinates at each vertex
each frame. The tri counts involved are fairly low, so a bit more work at each vertex is
unlikely to hurt performance much. The principle is fairly simple—figure out where
on the real object (and thus the impostor texture image) each impostor objects vertex
lies when viewed from a certain angle. As this viewing angle changes, the texel that the
vertex lies over will change. Therefore, for a new viewing angle, trace the line from the
viewer through the impostor object vertex to the original object. Then work out
which texel this part of the object was originally drawn to, and set the UV coordinates
of this vertex accordingly.

Nice Theory, What Can We Get Away With?

This is expensive and fiddly to implement. It also has loads of problem cases, such as
the vertex raytrace falling down a visually insignificant "chasm" in the object and,
because of the low density of vertices in the impostor object, producing large warps
over the image. Another problem is what to do with vertices at the edge of the impos-
tor object that do not map to any part of the real object at all—what happens to
them? Some type of interpolation seems to be needed from the visible edges of the
object out to these vertices. This is the type of work that an app does not want to be
doing at runtime, however few vertices it involves.

In practice, what I have found to be far simpler, and works just fine, is to give each
vertex a "parallax factor"—the number of image texels to move per degree of viewer

5.7 Impostors: Adding Clutter 493

movement. This is a factor usually tweaked by hand, and easily determines the vertex's
texel coordinates at runtime. This factor is only done once for each impostor object
vertex, and hand-tweaking around 8 to 10 vertices per object does not take long.

Alternatively, to generate these parallax values automatically for most real-world
objects, find the nearest real-object vertex to each bounding object vertex. This dis-
tance is then proportional to the parallax factor required. The actual value depends on
exactly how the factor is applied to the UV values, which depends on how the texture
is mapped to the impostor object. For more complex objects, such as highly irregular,
spiky, holed, or multilayered objects, it may still be better to hand-tweak the factors.
This method finds the nearest vertex, but for these objects, it may be more appropri-
ate to use some sort of average instead.

Even this simple method may not be possible because the objects are generated
dynamically; for example, through animation. In this case, using a bounding cuboid
and assuming an ellipsoid object inside works remarkably well for such a primitive
approximation. It certainly works better than having no texture coordinate
changes at all.

Update Heuristics

On each frame, for each impostor, the decision needs to be made whether to update it
that frame. A number of factors contribute to this decision. In all these cases, some
sort of screen-space error estimate is made for each factor, and the factors summed. If
this sum is over a global factor (which may be static, object-specific in some way, or
dynamic to try to maintain a certain frame rate), the impostor is updated.

Animation

Animation changes the appearance of the object, and at some point the error is going
to grow too great. This can be quantified by a delta between the animation frame the
impostor was rendered with, and the animation frame that would have been used if
the object were not impostored. Doing this precisely requires the object to be ani-
mated each frame, even if an update is not needed. This can be quite a large part of
the expense of rendering an object, and it is a good idea to try to avoid a complete ani-
mation step. The easiest way I have found is to do a preprocessing step on each ani-
mation and find the largest distance that any vertex moves during the animation.
Divide by the length (in time) of the animation, and thus find a "maximum error per
second" measure for the animation. This is easy to do in a brute-force way, and since
it is a preprocessing step, this is perfectly reasonable.

Note that the human eye is absolutely superb at extracting humanoid movement
from images just a few pixels high. Impostoring this motion, effectively reducing its
effective frame rate, can be surprisingly noticeable, even at very slight levels. It is a
good idea to have an extra bias on these animations that can place even more empha-
sis on them than simple mathematical screen-space error. This effectively rules out
impostoring for anything but slight animations on distant objects.

494 Section 5 Graphics Display

Lighting

If the lighting changes significantly on the object, it will need to be updated. Since
lighting systems are extremely varied between 3D engines, this requires fairly engine-
specific routines to decide what the equivalent screen-space error is. Lighting a point
at the center of the object using the six cardinal normals and comparing RGB differ-
ences between the current conditions and those when the impostor was created gives
a fairly good idea of how the lighting has changed. Multiplying this by object size and
dividing by the distance from the camera then gives a rough screen-space error.

Viewing Angle

Changing the viewing angle is probably the most obvious factor that decides an
impostor update. Note that what is important is the vector from the camera to the
object in object space. This will change when the object rotates, and also when the
camera moves, both of which are important. The camera's direction of view is unim-
portant—unless an enormous field of view is used, the object does not change appear-
ance much when the camera rotates, only when it moves.

Camera Distance

As well as the direction from the object to the camera, the distance between the two is
also important. Although it does not change the actual appearance of the object, as
the camera moves directly toward the object, the impostor texture gradually enlarges.
After a while, it becomes obvious that this is just an image that is being enlarged by
bilinear filtering, and not a real polygonal object, and so needs updating. This update
will render to a larger texture, and so give more detail.

Game-Specific Heuristics

Many games also have specific heuristics that can be used to tweak these update rates.
A common one for FPS games is that objects near the center of the view are usually
the ones the player is looking at. These should get a slight boost to their update rates
by dropping the acceptable screen error.

For mouse-driven games such as god games and RTS games, a similar tweak can
be made to objects underneath the mouse cursor, for exactly the same reasons.

A distinction can also be made between "scenery" and "important" objects. Items
that are purely in the scene to create an ambience, but are not usually involved in the
gameplay, can be assigned a relatively large screen error. The player will not be exam-
ining them terribly closely—his or her attention is likely to be elsewhere. Therefore,
these objects can be "more wrong" before the player notices the error.

Efficiency

The main efficiency hit on most cards is changing the render target. This causes flush-
ing of many internal caches and states, and on some cards causes a flush of the entire

5.7 Impostors: Adding Clutter 495

rendering pipeline. The main efficiency aim is to minimize these changes. The best
way to do this is to wait until the end of the current scene, batching up the required
updates to the impostor textures, rather than doing them as they are needed. Use large
render targets, and at the end of the scene, pick the emptiest render target and render
multiple impostor images to subregions of that texture.

Prediction

When updating an impostor, the current state of the object is rendered to the texture.
This is then faded in over a few frames, and then preserved for a few frames more,
before in turn being replaced by a newer render. This does mean that what is visible
onscreen is always out of date.

This can be improved by doing some forward prediction of impostor state. The
idea is to predict what the impostor is going to look like halfway through its lifetime.
If an object is currently being updated every sixth frame, when updating the impos-
tor, the state of the impostor (orientation, position, lighting, animation, etc.) should
be forward-predicted by three frames.

With games such as first-person-shooters, objects in the world are basically split
into two distinct categories: those that almost never move (walls, furniture, clutter),
and those that move erratically (players). The movement of the players is notoriously
hard to predict, and it is probably a waste of time trying to impostor players.

On the other hand, impostoring the scenery and furniture is a far more viable
proposition. Prediction for them is trivial—they almost never move. And when they
do move, they usually move under control of a player; in other words, erratically. The
easiest thing is to simply disable impostoring for the duration of the movement.

For god games and Real-Time Strategy (RTS) games, the problems are similar, but
the movement of the camera is very different. It is usually a bird's-eye view, and most of
the time it is either static (while issuing orders to units), or moving at constant speed
over the map to get to a different area. Small, erratic movements are rare, which is for-
tunate since these are extremely hard to predict. Prediction of moving objects can also
be very useful in these games, since most of them are Al-controlled. Much of the time,
the objects are either stationary or walking in straight lines to a destination, both of
which are easy to predict. However, both camera movement and object movement can
change abruptly, and when they do, the best thing is to flag the impostor for an update
very soon, or even to temporarily disable impostoring altogether.

Summary

Impostoring is useful when trying to draw scenes with lots of fairly static objects in
them. The raw triangle count will overwhelm any bus and graphics device that tries to
render them at top detail, and progressive mesh methods can only do a certain
amount to reduce the workload—texture changes and animation are extremely diffi-
cult to reduce in this way.

Section 5 Graphics Display

Impostoring is most effective on static objects some distance from the camera.
Introducing this sort of clutter into games increases the visual quality substantially,
especially since each object is still a real independent 3D object that players can inter-
act with if they wish. It also allows key objects to be "hidden in plain sight" amongst
a lot of other objects—something that has been extremely difficult to do with existing
techniques and the limited number of objects available in a scene.

Even an implementation using a bounding box and some simple math produces
good results for the incidental objects that are currently missing from games, but pro-
duce far more realistic scenes.

5.8

Operations for Hardware-
Accelerated Procedural
Texture Animation

Greg James, NVIDIA Corporation
gjames@nvidia.com

Consumer-level 3D accelerators have come a long way in recent years. Today's
most advanced chips sample four textures per pass and offer powerful texture

addressing and pixel processing operations. Among these are dependent texture reads,
where the color value sampled from one texture is used to perturb the coordinates of
a subsequent texture read. Dependent texture reads combined with the ability to ren-
der to a color buffer and use that buffer as a source texture in later rendering make it
possible to generate interesting textures and texture animations entirely on the graph-
ics processor. With texel sampling rates close to one billion per second, these proce-
dural texture effects run very fast and are practical for real-time 3D-accelerated scenes.

Techniques for procedural texture generation have been with us from the early
days of computer graphics. There are various algorithms for mimicking natural phe-
nomena and generating complex emergent patterns [Ebert98]. Procedural texture
animation is excellent for a wide range of effects while using a tiny fraction of the
memory and storage that a prerendered or "canned" animation would require. Mem-
ory to hold two or three full frames is often all that is required to generate an endless
non-repeating animation. User input can be applied to these animations on the fly,
and this interactivity enables richer and more engaging virtual scenes.

This gem covers a few fundamental operations for generating procedural anima-
tions, and puts these to use in specific examples that simulate fire, smoke, water,
or perform image processing. With today's consumer hardware, we can even run com-
plex cellular automata programs entirely within the rendering of a 3D accelerator and
put the resulting animations to use in various effects.

Hardware Operations

We will focus on two rendering operations that give rise to interesting procedural tex-
ture effects. The first is four-sample texture sampling from adjacent texels of an
image, and the second is 2D dependent green-blue texture addressing. These opera-
tions are supported in the two most common APIs: OpenGL and Microsoft's

497

Section 5 Graphics Display

DirectXS. For the four-way multisampling, we will use a vertex program that is
loaded into the graphics processor and operates on the incoming vertex position and
texture coordinates. These vertex programs are DirectXS's "Vertex Shaders" [DXS'OO]
and what is currently the NVIDIA NV_vertex_program extension to OpenGL
[NVExt2001]. For our examples, this vertex program establishes the appropriate
coordinates for neighbor texel sampling in each of the four texture stages that feed the
pixel engine. This pixel engine will combine the samples for various effects, and can
also further manipulate the samples with the dependent texture addressing opera-
tions. The pixel engine is also programmable as exposed through DirectX 8's "Pixel
Shader" programs and NVIDIA's NV_texture_shader extension. First, we examine the
vertex processing operations.

Neighbor Sampling for Blur, Convolution, and Physics

Many procedural texture algorithms rely on sampling a texel's neighbors and filtering
or blurring these samples to create a new color value. We can accomplish this neigh-
bor sampling for all the texels of a source texture by rendering it into a color buffer of
the same resolution as the texture while using four-texture multisampling. The source
texture is selected into all texturing units, and a vertex program generates four sets of
independent texture coordinates, each offset by the distance to one of the texels
neighbors. By rendering a single quad with texture coordinates from 0.0 to 1.0, which
exactly covers the render target, and setting each texture coordinate offset to zero,
each texel of the destination would sample from its single source texel four times. We
would end up with an exact copy of the source texture. By offsetting each texture
coordinate by a vector to a neighboring texel, each pixel of the destination samples
from four of its neighbors in the source. We can convolve the samples (combine them
with various scale factors) in the pixel engine however we like.

If we use point sampling, four-sample multitexturing hardware gives us up to
four neighbor samples per pass. If we enable bilinear filtering, each offset sample
draws upon four texels, so we could potentially sample 16 neighbors per pass. The
weighting of texels within each 2x2 bilinear sample is determined by the precise tex-
ture coordinate placement. For example, we could grab and average all eight of a
texels nearest neighbors by placing four bilinear samples exactly between pairs of
neighboring texels. Figure 5.8.1b shows this, and Listing 5.8.1 presents code for
neighbor sampling on four-sample multitexturing hardware. The 'X' of Figure 5.8.1
denotes the texel being rendered to the destination, and the dots indicate the sample
locations from the source texture used to render it. We can select between various sets
of sample locations (A or B in this case) by using the vertex shader indexing variable
aO. x. The value of the indexing variable is loaded from a shader constant value that is
set before rendering.

5.8 Operations for Hardware-Accelerated Procedural Texture Animation 499

Offsets A Offsets B

FIGURE 5.8.1 Texel sampling for the code of Listing 5.8.1, showing the sample pattern
when the texel marked by the X is being rendered. The vertex program's texture
coordinates as iterated in each texture unit T[0-3] are marked with dots. The hollow
circle marks where a sample of texture coordinate offiet (0.0, 0.0) would fall, illustrating
the need for the s_of f and t_of f half-texel offiets. Each texel is of dimension (si, tl)
according to Listing 5.8.1.

Listing 5.8.1. Code and vertex program for sampling each texel's
neighbors

RenderFullCoverageQuadO renders a single quad with input texture coordinates
from 0.0 to 1.0 in each axis, which exactly covers the render target. These coordinates
are offset four ways into the four output oT[0-3] texture coordinates so that as each
pixel is rendered, it draws upon neighboring texels for its result. All-caps variables are
#defines to appropriate indices into vertex shader constant memory.

float s1 = 1.0f / texture_resolution_x; // one texel width
float t1 = 1.0f / texture_resolution_y; // one texel height
float s_off = s1 / 2.Of; / / t o sample texel center
float t_off = t1 / 2.Of;

// s,t,r,q offsets for 4 nearest neighbors (bilinear or point)
float offset_al[4] = { -si + s_off, O.Of + t_off, O.Of,

O.Of} ;
float offset_a2[4] = { s1 + s_off, O.Of + t off, O.Of,

O.Of} ;
float offset_a3[4] = { O.Of + s_off, t1 + t off, O.Of,

O.Of};
float offset_a4[4] = { O.Of + s_off, -t1 + t_off, O.Of,

O.Of};

// s,t,r,q offsets for 8 surrounding neighbors (use bilinear)
float offset_bl[4] = { s1/2.0f + s_off, tl + t_off, O.Of,

O.Of};
float offset_b2[4] = { -s1 + s_off, t1/2.0f + t_off, O.Of,

O.Of};
float offset_b3[4] = { -s1/2.0f + s_off, -t1 + t_off, O.Of,

O.Of};

500 Section 5 Graphics Display

float offset_b4[4] = { s1 + s_off, -tl/2.0f + t_off, O.Of,
O.Of} ;

SetVShaderConstants((TO_BASE .. T3_BASE) + SET_A, offset_a1 ..
offset_a4);

SetVShaderConstants((TO_BASE .. T3_BASE) + SET_B, offset_b1 ..
offset_b4);

SetVShaderConstants(OFFSET_TO_USE, use_a ? SET_A : SET_B);
RenderFullCoverageQuad();

Vertex Program
; vO = vertex position
; v1 = vertex texture coordinate

; Transform vertex position to clip space. 4-vec * 4x4-matrix
dp4 OPOS.X, vO, C[WORLDVIEWPROJJ)]
dp4 oPos.y, vO, C[WORLDVIEWPROJ_1 j
dp4 OPos.z, VO, C[WORLDVIEWPROJ_2]
dp4 OPOS.W, vO, C[WORLDVIEWPROJ_3]

; Read which set of offsets to use - set A or B
mov aO.x, c[OFFSET_TO_USE].x

; Write S,T,R,Q coordinates to all four texture stages, offsetting
; each by either offset_a(1-4) or offset_b(1-4)
add oTO, v1, c[aO.x + TO_BASE]
add oT1, v1, c[aO.x + T1_BASE]
add oT2, vl, c[aO.x + T2_BASE]
add oT3, v1, c[aO.x + T3_BASE]

It is important to note that for this case of rendering a full coverage quad to a
buffer with the same resolution as the source texture, a texture coordinate offset of
(0,0) would sample from the upper left (lowest coordinate point) of each texel. To
sample from the exact texel center, we must either add half a texel width and height to
the offset or move the quad by half a pixel in each axis. Listing 5.8.1 chooses to add
half a texel width and height. It is essential to understand these half-texel offsets when
using bilinear filtering. Without this, the bilinear sample will grab potentially unde-
sired neighbors and produce very different results. It is essential to test and know
exactly where texture samples are placed for procedural texture algorithms to work as
expected. Conway's "Game of Life" described later in this gem makes a good test case.

The four resulting texture samples can be combined in the programmable pixel
engine for various effects. By using the resulting image as a new source texture and
applying the neighbor sampling again and again to create subsequent frames, a wide
variety of interesting texture animations is possible. If the four samples are averaged,
the result is a blurring of the source image. By introducing an additional (s,t) scrolling
amount to the offsets presented previously, we can blur and scroll a source image over
successive frames. As we blur and scroll, we can jitter the scrolling vector used in each
frame and multiply each sample color by various RGBA values to fade or alter the
color. If we supply a steady input to the blur and upward scroll by first rendering

5.8 Operations for Hardware-Accelerated Procedural Texture Animation 501

A.

Texture 1
Source "Embers"

blur + scroll blur + scroll

Texture 2

B.

FIGURE 5.8.2 Fire and smoke animation using Listing 5.8.1 s offiets A with a scroll offset. The bright
"embers" at the bottom are rendered to the texture each frame before blurring and scrolling upward.
B) shows the progression of rendering operations.

bright source pixels or "embers" in the bottom of the texture for each frame, the result
is the fire and smoke effect of Figure 5.8.2. Using just two 128x128 32-bit textures,
this effect runs endlessly without repetition at over 500 frames per second on a mod-
ern graphics card. Because we cannot simultaneously render to a texture and use it as
a source, we must use two textures and ping-pong back and forth between them. One
is used as the previous frame source, and the other as the current frame destination.

Rather than averaging neighbor samples to blur, we can compute the differences
between samples and raise this to a power for high contrast. Using Listing 5.8.1's off-
sets A and reducing the magnitude of the offsets to partially sample the center texel,
we can perform edge detection in a hardware pixel shader program, as implemented
by Matthias Wloka [Wloka2000] and shown in Figure 5.8.3. Another curious
"frosted glass" effect is produced by blurring the source and differencing this blur
from the original image. Figure 5.8.3d shows the result of (src DIFF (src DIFF(
BLUR(src))), where DIFF is the absolute value of the difference in RGB color.

Neighbor sampling and differencing can also be used to implement the physics of
height-field-based water in successive render-to-texture operations. An algorithm for
height-field water with vertex geometry on the CPU is presented in Game Program-
ming Gems [GomezOO]. We can develop this into a series of rendering operations that
use textures to represent the water height, velocity, and force. Each texel takes the
place of a vertex in Gomez's implementation. Instead of sampling neighboring ver-
tices on the CPU, we sample neighboring texels on the graphics processor. Our imple-
mentation involves six textures. Two textures represent the height of the water as

502 Section 5 Graphics Display

a.

c.

FIGURE 5.8.3 Edge detection and image processing. A) is the original image. B) is the
result of an edge detection in programmable pixel hardware. C) shows a 50-percent blend
of a and b. D) is the original minus the difference between the original and a blur of the
original.

grayscale color values (height maps), with one texture for the heights at the current
time step and one for the heights at the previous time step. Similarly, two textures rep-
resent the velocity of the water, and two are used to accumulate the nearest-neighbor
forces acting on each texel. Figure 5.8.4 shows four frames in the progression of an
animation using this technique, and despite the use of six 256x256 32-bit textures
and four rendering passes per time step, the animation maintains a rate of over 450

FIGURE 5.8.4 Initial condition and three frames of height-based water animation in the pixel

processing of a 3D accelerator. Six textures are used in generating subsequent time steps, although only
the output height texture is shown here.

5.8 Operations for Hardware-Accelerated Procedural Texture Animation 503

FIGURE 5.8.5 Six state textures used for height-based water animation. Hm is height for the most
recent time step. Fl and F2 are used to accumulate the force that will act on each texel height. The
resulting F2 is applied to the previous time step's velocity V^.;, and the resulting velocity Vm is
applied to the height to create the height field at the next time step //w+/. Scale factors for "mass" and
"time" that are multiplied into the texel values are not shown.

time steps per second. Figure 5.8.5 shows the progression of textures used in generat-
ing one time step.

The hardware used for this example operates internally on 9-bit per component
signed color values, and this gives rise to inaccuracy. Low bit values are easily lost, pro-
ducing rounding errors in the physics that cause the system to decay to zero or grow
to saturation. The nearest-neighbor sampling can also produce high-frequency oscil-
lation between texel values that appears as noise. These problems are lessened by
damping the system with blurring and adding a restoring force that pulls all heights
gently to a midrange value. The blurring is accomplished by using bilinear filtering
with neighbor offsets slightly greater than one texel width or height. The system can
be driven by occasionally rendering seed droplets to the texture at random locations.
By experimenting with the scale factors at which blurring, force, and velocity are
applied, a stable endless animation is not difficult to achieve.

Animated grayscale height maps are useful, but we can go a step farther and use
nearest-neighbor sampling to create an RGB normal map from the grayscale map.
This normal map can then be used for realistic dot product bump mapping
[Moller99]. The normal map can be created in a single render-to-texture pass on the
graphics processor, and this avoids costly CPU work, texture memory copies, and
graphics pipeline stalls. Creating normal maps in hardware this way is an elegant
means of updating and animating the surface detail they represent. Grayscale height
features such as bullet holes, cracks, and so forth can be rendered into the height map

504 Section 5 Graphics Display

as the game is running, and this is then converted to a normal map on the fly. The
conversion is comparable in speed to the fire and smoke effect discussed earlier. List-
ing 5.8.2 shows a pixel program for creating an RGB normal map from a grayscale
height map in a single pass on four-sample multitexture hardware. It uses an approxi-
mation in normalizing the resulting RGB texels, and the result works very well for
lighting and reflection calculations. Two passes and a dependent texture read opera-
tion could be used to produce exactly normalized RGB vectors.

Use texel offsets A from Listing 1.

Listing 5.8.2 Code for RGB normal map creation in hardware from a
grayscale height texture. The grayscale image is
selected into all four texture stages, and offsets A from
Listing 5.8.1 are used.

Pixel Program;
// Creates an RGB normal map from an input grayscale height map
// Pairing of RGB and Alpha instructions is not used
// Normal map parameterization is [0,1] so 0.5 = zero component
// along that axis (value of 127 stored in the texture).
// Red = positive S axis
// Green = positive T axis
// Blue = positive R axis (up out of page)

// Declare pixel shader version
ps.1.1

def c5, 1.0, 0.0, 0.0, 1.0 // red mask for s axis component
def c6, 0.0, 1.0, 0.0, 1.0 // green mask for t axis component
def c4, 0.0, 0.0, 1.0, 1.0 // blue mask for r axis component

// (blue = up out of texture)
def c2, 0.5, 0.5, 0.0, 0.0 // 0.5 bias for red & green
def c1, 1.0, 1.0, 0.0, 0.0 // color mask for red & green

get colors from all 4 texture stages
to = -s, 0
t1 = +s, 0
t2 = 0, +t
t3 = 0, -t

// Select source grayscale texture into all 4 texture stages
// Sample all 4 texture stages
tex to // to = RGBA texel at coordinate offset by

// (-s, 0)
tex t1 // t1 = (+s, 0)
tex t2 // t2 = (0,+t)
tex t3 // t3 = (0,-t)

5.8 Operations for Hardware-Accelerated Procedural Texture Animation 505

sub_x4 rO, to, t1 // rO = (tO-t1)*4 = s axis height slope
// Use _x4 to increase low contrast grayscale
// input

mul to, rO, c5 // to = rO * red mask = red component only
// Use to as temp storage

sub_x4 M, t3, t2 // r-1 = (t3-t2)*4 = t axis height slope
mad rO, r-1, c6, to // rO = M.green + to = s and t result in
red,green
mul t1, rO, rO // t1 = square s and t components

// Use t1 as temporary storage

dp3_d2 n, 1-tl, c1 // rl.rgb = (1 - s"2 + 1 - tA2)/2
// (1-s"2) is approx sqrt(1-s*2) for small s

add rO, rO, c2 // rO = rO + 0.5 red + 0 . 5 green
// shifts signed values to [0,1]

mad rO, M, c4, rO // RGB = (r+0, g+0, 0+blue)
// output = rO

Dependent Texture Addressing

We have seen that a simple multisample operation can go a long way to produce var-
ious effects. There are other more sophisticated and powerful texture operations at
our disposal. Dependent texture address operations enable us to fetch texture samples
from one texture based on the colors of another texture, or to fetch based on the dot
products of iterated texture coordinates and texture colors. This gem covers only
one of the more simple dependent texture operations: the dependent green-blue
texture addressing operation expressed as DXS's texreg2gb instruction, or the
GL_DEPENDENT_GB_TEXTURE_2D_NV extension to OpenGL.

Dependent green-blue addressing is a straightforward process. For the pixel being
rendered, the hardware fetches the source texture's color at that pixel. The green com-
ponent of this color is used as the S (horizontal) coordinate of a fetch into another
texture. The blue component is used as the T (vertical) coordinate. Figure 5.8.6 illus-
trates this with a 3x3 source texture.

Texture 2 can have any size relative to Texture 1; however, if Texture 1 holds 8-bit
green and blue values, then any resolution of Texture 2 greater than 256 is pointless,
as the fine resolution cannot be accessed by the coarse 8-bit values. Texture 2 provides
an arbitrary lookup table for the Texture 1 input, and this can be used with render-to-
texture operations to run some very sophisticated programs entirely within in the
pixel hardware. We'll refer to Texture 1 as the "input" texture, and Texture 2 as the
"rules" texture, because Texture 2 determines how an input color maps to a result.

With render-to-texture operations, we can use one or several texture maps to
store intermediate logic results. We can also generate the input and rules maps on the
fly based on previous results or user input. As you can imagine, there's quite a lot of
flexibility here, and we haven't even considered dependent alpha-red lookups or the
dot product address operations! Since the green-blue addressing operation relies on

506 Section 5 Graphics Display

G-B Addressing

Texture 1 Texture 2 Result
FIGURE 5.8.6 Dependent green-blue texture addressing. The Texture 1 source is sampled
at the points indicated. Each texel of Texture 1 determines the coordinate at which to
sample from Texture 2, the "rules" texture. The resulting color from Texture 2 is output as
the result.

specific texture colors that are probably not the best colors for displaying in a scene, it
is a good idea (and trivial) to add a second dependent lookup into a color table. This
second operation maps the results of the procedural texture to any RGBA values for
display in the scene. It creates a final output texture, so the user never sees the under-
lying green-blue textures driving the calculations. Our final example involves com-
bining neighbor sampling and dependent lookups to run Conway's "Game of Life"
on a graphics processor.

Conway's "Game of Life" in Hardware

John Conway's "Game of Life" [Gardner70] is a popular cellular automata program.
Though it does not at first seem relevant or of much use to the average computer
game, it is familiar territory in which to work, and the basic operations of running the
game on a graphics chip are applicable to other procedural techniques. The game can
produce interesting patterns of correlated noise that are useful in driving other effects;
for example, the embers in the fire and smoke effect shown previously. Implementing
this game on your own platform is a good way to verify that the hardware is doing
exactly what you expect. The game has easily recognizable cyclical patterns and
depends sensitively on proper texel sample placement, making it easy to determine
when you have your sampling correct.

In Conway's "Game of Life," each cell begins as either "on" or "off," which we
represent by a texture map of white or black texels, respectively. The rules for creating
the next generation are, for every cell on the map:

5.8 Operations for Hardware-Accelerated Procedural Texture Animation 507

1. If a cell is on and has two or three neighbors on, the cell remains on in the
next generation.

2. If a cell is on and has fewer than two or greater than three neighbors on, the
cell is turned off in the next generation.

3. If a cell is off and has three neighbors on, the cell is turned on in the next
generation.

The game requires that we sample eight neighbors and the center cell, and apply
logic to the result of the sampling. The OpenGL "Red Book" [Neider93] outlines a
technique for running the game using a hardware stencil buffer, but we can imple-
ment it in a more flexible manner using fewer passes with hardware capable of depen-
dent texture addressing.

Our approach is to create a render target color buffer of the same resolution as the
field of cells. Beginning with black at each texel of this buffer, we render colors addi-
tively from the source cell field for each of the eight neighbor texels and the center
texel. Each neighbor texel of the source is multiplied by 1/8 green and added to the
destination, and the center texel is multiplied by full blue and added in. In practice,
we use bilinear sampling and the B offsets of Listing 5.8.1 to sample two neighbors at
once, and multiply the sample by 1/4 green. A second pass samples, the center texel
multiplied by blue. The result is a color that encodes the condition of each source
texel in relation to the rules of the game. Each cell's neighbor count ranges from 0 to

Green channel
neighbor count

Dependent green-blue
address operation

(1,1)
d. Rules map e

FIGURE 5.8.7 Steps in the production of the next generation of cells in Conways "Game of Life. "A) is
the initial cell field. B) is the green component of the condition texture that is each 'cell's number of
active neighbors. C) is the blue component of the condition that reflects whether the cell is on or off.
D) is an 8x2 pixel texture that encodes the rules of the game. E) is the resulting generation of cells
that will be used again as the new input a.

508 Sections Graphics Display

1.0 in green, and the cell's "on" or "off" state is 0 or 1 in blue. Each green-blue texel is
then used as the input for a dependent green-blue address operation. The operation
reads from an 8x2 pixel rules texture that determines the color (white or black) of the
texel in the next generation. This rules texture is black at all texels except those at
(2,1), (3,1), and (3,0), which are white. These white pixels are those that the rules of
the game determine to be "on" in the next generation. Figure 5.8.7 shows an initial
generation source texture, the green-blue condition rendered from it, the rules tex-
ture, and the subsequent generation produced.

This simulation depends on the source texels being white and the intermediate
being green-blue. We could easily perform an additional dependent texture read from
the source or intermediate into an arbitrary color ramp to create a separate texture for
use in rendering the scene. Also, there is no need to limit the rules texture to 8x2 pix-
els. Any size texture could be loaded, and this texture could encode highly complex
rules, or rules that spawn pixels of any RGB value. See the online examples and source
code mentioned below for a glimpse of the possibilities.

Future Work

As graphics processors draw more texture samples per rendering pass, the 8-bit color
components and internal pixel processing operations of today's hardware are squeezed
for precision. It is all too easy to end up with color banding or other rendering arti-
facts. Future generations of hardware will almost certainly need higher precision for-
mats, and with 16 or 32 bits per color component, there are great opportunities for
hardware-accelerated procedural texture effects.

Problems of limited precision were mentioned earlier in the water simulation. 16-
bit floating point values would virtually eliminate these. Higher precision floating-
point values in textures and pixel calculations could enable fluid flow simulations and
lattice grid-based Navier-Stokes algorithms to run in graphics hardware [Witting99].
CPU implementations of these algorithms are already close to real time in special
effects houses and graphics research. Increased precision of render target buffers will
also enable hardware-accelerated advanced lighting calculations that involve simple
Fresnel integrals, wave propagation, and diffraction effects [Feynman85][Stam99].

Cellular automata programs give rise to a wealth of interesting animations and
rjatterns with various degrees of correlation. Cellular automata programs do have the
disadvantage of being difficult to control and engineer to a specific pattern or effect,
but collections of discovered programs and convenient browsing programs exist on
the Internet. Work on lattice gas automata (generally 2D surface simulations) may
also provide useful animated patterns.

The future of real-time procedural texturing and animation is filled with promise.
There is a vast landscape of techniques and effects to explore, and these certainly have
the power to bring added realism and variety to interactive 3D games.

5.8 Operations for Hardware-Accelerated Procedural Texture Animation 509

Acknowledgments

Special thanks to Matthias Wloka for his work on multisampling and hardware image
convolution, and to my co-workers at Nvidia for inspiring and enabling such amazing
graphics hardware.

Code Samples

DirectX 8 code for the preceding examples is posted on Nvidia's public Developer
Web site (www.nvidia.com/Developer/DX8) for you to download and experiment
with. The samples can be run in the DX8 SDK's reference rasterizer or on hardware
that supports DX8 Vertex Shaders vl.l and Pixel Shaders vl.l.

References _
[Ebert98] Ebert, David S., et al, Texturing and Modeling: A Procedural Approach, Aca-

demic Press, 1998 [ISBN 0-12-228739-4].
[DXS'OO] Microsoft Corporation, DirectXS SDK, available online at http://msdn

.microsoft.com/directx/, November, 2000.
[NVExt2001] Nvidia Corporation, "Nvidia OpenGL Extensions Specifications"

(nvOpenGLSpecs.pdf). available online at www.nvidia.com/opengl/OpenGLSpecs,
March 2001.

[Wloka2000] Wloka, Matthias, "Filter Blitting," available online at www.nvidia.com\
Developer/DX8, November 2000.

[Gomez2000] Gomez, Miguel, "Interactive Simulation of Water Surfaces," Game
Programming Gems, Charles River Media Inc., 2000: pp. 187-194.

[Moller99] Moller, Tomas, and Haines, Eric, Real-Time Rendering, A K Peters, Ltd.,
1999.

[Gardner70] Gardner, Martin, "Mathematical Games," Scientific American, vol. 223,
no. 4, October 1970, pp. 120-123.

[Neider93] Neider, Jackie, et al, OpenGL Programming Guide, Addison-Wesley Pub-
lishing Co., 1993: pp. 407^409.

[Witting99] Witting, Patrick, "Computational Fluid Dynamics in a Traditional Ani-
mation Environment," Computer Graphics Proceedings (SIGGRAPH 1999) pp.
129-136.

[Feynman85] Feynamn, Richard P., QED: The Strange Theory of Light and Matter,
Princeton University Press, 1985, pp. 37-76. Although he does not label it a
"Fresnel integral," this is the name for the calculation he explains in Chapter 2.
This powerful mathematics accounts for all phenomena in the propagation of
light by a large sum of a few simple terms.

[Stam99] Stam, Joe, "Diffraction Shaders," Computer Graphics Proceedings (SIG-
GRAPH 1999) pp. 101-110.

Gomez, Miguel, "Implicit Euler Integration for Numerical Stability," Game Program-
ming Gems, Charles River Media Inc., 2000: pp. 117-181.

6.1

Bridge

Game Audio Design Patterns

Scott Patterson
scottp@tonebyte.com

Design pattern concepts have achieved great popularity in recent years. Really,
design patterns have been in use for a long time, and recently we have been get-

ting better at categorizing and identifying them. Object-oriented programming lan-
guages are commonly associated with design pattern implementations, but even
programming languages that are not identified as object oriented can provide effective
object pattern implementations. Design patterns can also serve as an inspiration when
building a code system. In this gem, we will use them as an inspiration for an audio
interface design. This discussion assumes that we are audio interface designers and
our clients are game programmers. We want to supply an audio interface to our
clients that is convenient, flexible, and powerful. We will present brief summaries of
some design patterns and how we can relate them to audio interface design.

"Decouple an abstraction from its implementation so that the two can vary
independently."

Sound Identifiers

An effective way of decoupling an abstraction from its implementation is to pass iden-
tifiers rather than things such as class pointers or references. Identifiers can be defined
as numbers or strings. Since we are talking about audio, we are talking about an iden-
tifier for each particular sound. We can start and stop a sound by passing its identifier.
How the audio system actually does the work to start and stop the sound is com-
pletely decoupled from the client of our API.

void StartSound(int nSoundld);
void StopSound(int nSoundld);

Also hidden is the way in which sounds are loaded and accessed. We can provide
similar calls to load and unload a particular sound.

void LoadSound(int nSoundld);
void UnloadSound(int nSoundld);

514

6.1 Game Audio Design Patterns 515

Perhaps more useful is yet another identifier system for collections of sounds.
Now we can load and unload many sounds at a time.

void LoadSoundCollectionf int nSoundCollectionld);
void UnloadSoundCollection(int nSoundCollectionld);

It may be useful to know if a sound is currently loaded,

bool IsSoundLoaded(int nSoundld);

If we try to start a sound that is not loaded, the response could be to play no
sound or play an error sound.

Facade

"Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use."

Subsystem Control

When writing an audio API for game programmers to use, the goal is to hide any
tedious complexity of the audio system and cover the needs of all parts of the game.
Writing an API with this type of goal is much like designing a class with the Facade
design pattern. The complexity of the audio system is hidden from the complexity of
the game code, and the connection between the two systems is our API.

We may have more than one method available to produce sounds, but having the
same interface to control these sounds makes the audio subsystem easier to use. Calls
to set and get master volume may look simple enough, but actually may update more
than one audio subsystem internally.

float SetMasterVolume(float fVolume);
float GetMasterVolumeO;

Audio subsystems related to hardware synthesis, software synthesis, and stream-
ing code may all be updated from calls such as these, but this complexity is hidden.
Similar complexity may be hidden in a call that stops all sounds currently playing.

void StopAllSounds();

Composite

"Compose objects into tree structures to represent part-whole hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly."

Engine Control

Something like a car engine may actually be composed of many different sounds.
There may be rumbles, whines, clanks, and sputters all happening in concert. The

516 Sections Audio Programming

volume and pitch and other parameters of these sounds may be mapped to various
game parameters such as engine type, throttle level, power level, current speed, and
many others. In this case, we may want to hide this complexity and provide functions
specific to the type of engine we are controlling.

void StartEngine(Carlnstance_t *pObject);
void UpdateEngine(Carlnstance_t *pObject);
void StopEnginef Carlnstance_t *pObject);

Now the internal audio code can interpret the states and parameters available in
the given Carlnstance_t object and translate them into the control of one or more
sounds. Our client is able to treat engine control the same way, whether we are con-
trolling an individual sound object or compositions of sound objects.

Ambience Control

Control of ambient sounds can also be a situation that exhibits composite behavior. If
we want to simulate an environment such as a jungle, we may be randomly playing
many animal sounds. In this case, we may not have a structure in the game called
Jungle_t, but we may know our distance from the jungle area and how excited the ani-
mals are.

void Start Jungle (float f Distance, float f Activity);
void UpdateJungle(float f Distance, float f Activity);
void StopJungle() ;

"Provide a surrogate or placeholder for another object to control access to it."

Handles

Handles provide just such a placeholder for another object to control access through.
When we start a particular instance of a sound, we may want to continue to control
that instance over time. Our control parameters may be anything from 3D position
information to direct control over things such as volume, pitch, pan, or effects. Our
start function returns a handle, and our update and stop functions use this handle to
access the sound instance.

Handle_t StartHandledSound(int nSoundld, const ControlParamsjt &cp) ;
void UpdateHandledSound(Handle_t hSound, const ControlParams_t &cp) ;
void StopHandledSound(Handle_t hSound);

A discussion on handles can be found in [BilasOO] .

6.1 Game Audio Design Patterns 517

Decorator

"Attach additional responsibilities to an object dynamically. Decorators provide a flex-
ible alternative to subclassing for extending functionality."

User Data

One way to allow dynamic responsibilities and associations to be given to an object is
to provide user data access. If we provide a user data field that clients can set per
instance of a sound, we can help clients link other responsibilities with sound
instances. We can add user data access functions to our handled sound interface.

void SetHandledSoundUserData(Handle_t hSound, UserData_t User-Data);
UserData_t GetHandledSoundUserData(Handle_t hSound);

Callbacks

We can also provide a callback field that clients can set per instance of a sound. This
callback could be defined to be triggered when a sound loops or has played for a cer-
tain amount of time.

void SetHandledSoundCallback(Handle_t hSound, CallbackFuncPtr_t pCB);
void ClearHandledSoundCallback(Handle_t hSound);

Command

"Encapsulate a request as an object, thereby letting you parameterize clients with dif-
ferent requests, queue or log requests, and support undoable operations."

Command Queues

We can put some or all calls to our audio API in a command queue that is processed
once per game frame. We could look through this queue to determine if the same
sound is being called more than once per frame, or whether a sound has been started
and stopped before it had a chance to play. Viewing this queue can provide an impor-
tant aid during debugging.

Speech Systems

A speech system benefits from command queuing. Since more than one character
may want to talk at one time, we can look through the queue of requests to determine
who should speak next. There may also be times when we want to stop any further
speaking so we clear the queue.

void PostSpeechRequest(int nSpeakerld, int nPhrase);
void ClearSpeechQueue();

518 Sections Audio Programming

Memento

"Without violating encapsulation, capture and externalize an object's internal state so
that the object can be restored to this state later."

Pause and Restart

When we want to pause all sounds, we could return a handle to a state that can be
used to restart those sounds later.

StateHandle_t PauseAllSounds();
void RestartAllSounds(StateHandle_t hState);

Observer

"Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically."

Dynamic Types

If we can pass a type number to a sound that we are starting, we could later reference
that sound and any others that have been given the same type. For example, if we start
all the sounds for a particular character with the same type number, then we can later
turn off those sounds with one call.

void StartSoundWithTypef int nSoundld, int nTypeld);
void StopAllSoundsWithType(int nTypeld);

We can also update all sounds of a particular type,

void UpdateSoundsWithType(int nTypeld, const ControlParams_t &cp);

We can also associate behaviors such as default priority and default volume with
types.

void SetDefaultPriorityForType(int nTypeld, int nDefaultPriority);
void SetDefaultVolumeForType(int nTypeld, float fDefaultVolume);

It is assumed here that a priority system is in place to determine which sounds
should play if limited buffers are available.

Big Ball Of Mud (also known as Spaghetti Code)

The last design pattern I want to mention is the Big Ball of Mud. The paper with this
title, written by Brian Foote and Joseph Yoder, is a witty and insightful categorization
of patterns that can creep into a project quite naturally. In a way, the Big Ball of Mud
is the pattern we all want to avoid, but conversely it is a pattern that may be impossi-
ble to avoid. Therefore, the wisdom here is that whether you know design patterns or

6.1 Game Audio Design Patterns 519

not, you may be implementing the patterns that can lead to a Big Bull of Mud any-
way, namely: Throwaway Code, Piecemeal Growth, Keep It Working, Shearing Lay-
ers, and Sweeping It Under the Rug.

So, how does the Big Ball of Mud pattern relate to audio and game program-
ming? Our first goal might be to keep our audio system's internal code from being a
Big Ball of Mud. Our second goal might be to keep the rest of the game code from
being a Big Ball of Mud. We have some influence over the code organization by pro-
viding useful features in our audio API. We can also provide API features to help
debug audio problems. Therefore, even if Mud prevails, our audio API can provide
features for swamp navigation.

Status Functions

Providing status functions can help us find common problems. We can return specific
values in response to specific requests such as the number of voices playing. We can
also return a string ready for display in response to more general requests such as
sound status.

int GetNumberOfSoundsPlayingO;
bool IsSoundPlaying(int nSoundld);
string GetAudioStatusO;
void GetDescriptionsOfSoundsPlaying(list<string> &Stringl_ist);

Logging Functions

We can provide a logging system that records audio system activity. The logging
records could be directed to different types of output such as stdout or a file or a dis-
play. We can also provide a detail-level control to determine how much information is
recorded. One detail level might just record all audio API calls and parameters passed.
Another detail level might include internal sound buffer allocation information and
other internal state information.

void EnableLogging();
void DisableLogging();
void SetLoggingDetailLevel(int nDetailLevel);
void SetLoggingOutputType(int nOutputType);

System Disable

Sometimes the easiest way to determine if the audio system is causing problems with
the game is to disable the audio system completely. When the audio system is dis-
abled, all calls to audio API functions simply do no work. If problems still persist after
disabling the audio system, then we can eliminate it as a cause. Disabling a system
such as this can also make some game debugging situations less complicated.

void AudioSystemEnable();
void AudioSystemDisable();

520 Section 6 Audio Programming

Conclusion

Using design patterns as an inspiration, we have outlined useful features for a game
audio API. Whether we are revving engines, on a jungle safari, or just navigating the
swamps, we want to make our clients happy.

References
[Gamma94] Gamma, et al., Design Patterns, Addison-Wesley Longman, Inc., 1994.
[Foote99] Foote, Brian, and Yoder, Joseph, Big Ball of Mud, www.Taputan.org/mud/
[BilasOO] Bilas, Scott, "A Generic Handle-Based Resource Manager," Game Program-

ming Gems, Charles River Media, 2000: pp. 68-79.

6.2

A Technique to Instantaneously
Reuse Voices in a
Sample-based Synthesizer

Thomas Engel, Factor 5
tengel@factor5.com

Synthesizers typically offer a limited number of voices that can be active at any
given time, so complex allocation schemes are used to make the best use of the

voices that are available. Allocating a voice at any given time is easy as long as free
voices are available, but becomes quite tricky when this is not the case, requiring voices
to be reused. The difficulty results from the amplitude difference between the current
active sample and the next sample to be played, resulting in a sharp pop or click sound
(see Figure 6.2.1). This gem presents a technique to accomplish this without any
major calculation time or memory overhead.

FIGURE 6.2.1 The amplitude difference between samples can create a distracting click.

The Problem

To reuse an active voice for playback of another sample, you might try slowly lower-
ing the volume of the current sample and immediately starting the playback of the
new sample. This would nicely avoid any clicks or pops caused by abruptly stopping
the old sample, and would start the new sample prompdy.

521

522 Section 6 Audio Programming

This is unfortunately not very practical since two voices are needed to handle this
properly—and all this at a time when voices are no longer available. A possible solu-
tion to this problem would be to reserve a number of voices for just this case. Unfor-
tunately, this also has major drawbacks. First, hardware resources are lost since you
have to guarantee the availability of some extra voices at all times. Second, the num-
ber of voices that could be reallocated at once would be limited by the number of
extra voices reserved for this purpose, making this a rather impractical solution.

You can remove the need for two voices by serializing the method: first fade out
the old sample, and then start the new sample on the same voice. This delays the start
of the new voice and lowers the volume of the old voice quite a bit earlier than one
would like. It also can be very problematic when playing back a musical composition
because the delay is very noticeable. The effect of the delay can be minimized by
delaying all voice starts, no matter if reusing voices or not. This nevertheless intro-
duces an extra global delay to the audio pipeline, and makes it more difficult to
handle the voices due to added complexity.

A more elegant solution is needed.

An Idea for a Solution

The basic idea for the solution is found within a simple question, or rather, the answer
to it: What is sound? Answer: sound is a change in air pressure and, therefore, a
change in the amplitude of the output signal. A constant output signal, no matter
what the amplitude, will not be audible. Reallocating a voice results in a sudden,
unwanted change in amplitude that generates a sharp pop sound. This sound would
also be audible if one were to switch off the old sample even without starting a second
sample.

The idea now is not only to stop any change or oscillation of the old sample, but
also to keep its last amplitude active in the output sum. A single sample being stopped
would look something like Figure 6.2.2.

This output would not generate any click or pop since there is no sudden ampli-
tude change.

FIGURE 6.2.2 Holding the last amplitude from a sample prevents an undesiredpop
sound.

6.2 A Technique to Instantaneously Reuse Voices In a Sample-based Synthesizer 523

The Solution

The effect outlined previously can be put to good use to solve our problem. Halting
the oscillation of a voice but not dropping its last amplitude simplifies things quite a
bit, since all logic concerned with fetching new samples or handling the pitch for the
old voice can be dropped as soon as the new sample is started.

The output would look something like Figure 6.2.3.

FIGURE 6.2.3 Starting the second sample at the final amplitude of the first.

This has an obvious drawback: by simply halting the old voice we introduce a
potentially high DC offset to the output signal, which, due to the limited maximum
amplitude of the output sample, may cause the output quality to drop significantly
because of clipping artifacts.

Two simple approaches can limit, and, in most cases, completely remove such
artifacts. First, one should use a mix buffer of more than 16 bits to generate the final
output signal. This extends the maximum amplitude, which can be internally han-
dled. Since the DC offset will be handled together with other voices that again can
lower the amplitude, this actually reduces artifacts quite dramatically. The most
important step nevertheless is to lower the DC offset quickly to zero. One basically
has to fade out the halted old sample (Figure 6.2.4).

All this would still require separate logic to handle the halted old sample for each
voice to avoid limiting the number of voices that can be reused at once. But is this
really true? In fact, one could handle all DC offsets introduced by voices being reused
in one very simple handler.

FIGURE 6.2.4 Fading the initial sample to zero.

524 Section 6 Audio Programming

The logic is as follows: each time a voice is reused, the last value mixed into the
sum by the old sample on this particular voice will be added to a global DC offset
value. This value in turn will be added to the output signal once all voices are
processed.

To get rid of this DC offset, which as outlined previously is necessary but
unwanted, one lowers the DC offset sum on a per-sample basis over a certain time.
This can be very efficiently done and does not introduce any further artifacts if not
performed too rapidly. A period of about five milliseconds is usually slow enough to
lower even a full amplitude DC offset to zero (Figure 6.2.5).

FIGURE 6.2.5 Fading the initial sample to zero while playing the second sample.

Conclusion

In practice, the theoretical negative side effects caused by the DC offset are close to
inaudible. One would have to reuse extreme numbers of voices at high amplitudes to
achieve some audible effect when using at least a 24-bit mix buffer.

At the same time, the benefits of this method are huge. One can reuse a voice on
a moment's notice with no delay and with no audible artifacts in the output signal.
The overhead needed to implement this method is minimal. The method can, widi
some extra work, be used in systems that feature multichannel hardware playback of
samples. Just one voice has to be set aside to contain the DC offset values to be added
in the form of a sample data stream generated by the CPU following the algorithm
outlined in this gem.

6.3

Software-based DSP Effects

fan Lewis, Acclaim Studios
ilewis@acclaim.com

This gem introduces basic DSP concepts and techniques that can be cheaply
implemented on today's PCs and next-generation consoles, including filtering,

convolution, delay, and interpolation.

DSP Technique

Filtering

Purpose

Occlusion and 3D sound effects
Physical modeling effects such as strain on engines

Convolution

Delay
Interpolation

Head-Related Transfer Functions (HRTFs)
Accurately simulating real acoustic spaces
Echoes from walls or terrain
Pitch shifting
Sample rate conversion

Filtering

Filtering is actually a special case of convolution, but merits its own section because it
is far simpler to implement quickly than general convolution.

To filter an audio signal is to emphasize or deemphasize certain frequency com-
ponents, much like the "bass" and "treble" knobs on your stereo. The effect of this is
extremely difficult to see on a graph of the waveform, but is immediately recognizable
to the ear. For instance, applying a low-pass filter tends to make the wave sound muf-
fled, and applying a high-pass filter tends to make the wave sound thin.

The general form of a filter is a loop where a set of values (filter coefficients) are
multiplied with the incoming samples, and then added together. The first filter coef-
ficient is multiplied with the current sample, the second with the previous sample,
and so forth, so the code looks something like this:

for (k = 0; k < nCoefficients; k++)
{

output+=coefficient[k] * (*(input-k));

525

526 Section 6 Audio Programming

This type of filter is called an FIR, or Finite Impulse Response filter, because its
output will always decay to zero in a predictable amount of time after the input decays
to zero. A slightly less acoustically "stable," but more powerful filter is the IIR, or Infi-
nite Impulse Response filter. This design feeds the filter outputs back into the input
in a form something like this:

for (k = 0; k < nCoefficients; k++)
{

output+=coefficient[k] * input[n-k] +
feedback_coefficient[k] * previousOutput[n-k];

}

After each sample is computed, of course, the contents of the previous Output[]
array are shifted up by one, and the current output is placed into the bottom position.
This looks more complex, but the upside is that the number of coefficients can be
much smaller than the equivalent FIR implementation.

Although there are hundreds of filters available, most have musical purposes and
tend to be more complex than what you need for games. The sample code uses a vari-
ant of the music-DSP source code archive's simple Chamberlin filter [DeJongOl],
which in its full form provides a high pass, low pass, notch, and bandpass filter that is
extremely cheap and easy to implement.

Filters work really well with SIMD hardware and even vector hardware, because
they're nothing but strings of multiply-accumulates.

Convolution

Convolution is the process of taking two signals and multiplying them together so
that the first signal takes on the characteristics of the second. For instance, say you
had a level set in an old cathedral. You could literally make a recording of an
"impulse" (a very short sound spike, like a balloon popping) in any handy Gothic
cathedral, convolve that impulse with your game sounds, and presto!—your game
sounds like it's inside that very cathedral. Unfortunately, convolution is extremely
expensive—mostly because each output sample is the sum of one input sample multi-
plied by ALL of the impulse samples. To understand the code, think of each sample in
the impulse file as being a coefficient in the FIR filter described earlier. This only
really works for very short impulses.

A good collection of short impulses is the set of Head Related Transfer Functions
(HRTFs) available at the MIT media lab [Gardner94]. Convolving with the appro-
priate HRTF gives the illusion of placing the sound in three-dimensional space.

A faster method of convolution involves translating both signals into the fre-
quency domain (where each sample represents a frequency like on a spectroscope,
rather than an amplitude like on an oscilloscope) using the Fast Fourier transform
[Press92]. This can be useful if you're already storing samples in the frequency
domain. Some methods of compression do use the FFT or one of its variants; for

6.3 Software-based DSP Effects 527

instance, MP3 compression uses a variant called the Discrete Cosine Transform
(DCT).

A digital delay is probably the easiest DSP effect to generate. It takes very little CPU,
but it does require some RAM. The algorithm is simple: for each sample, push a copy
of the sample onto a queue or circular buffer. Then read the oldest sample out of the
buffer and mix it with the output.

DelayBuffer.push(input);
Output=input + DelayBuffer.pop() * delayGain;

The length of the buffer determines the length of the delay. Usually you'll want to
scale the delay volume by some factor (delayGain in the preceding example). A simple
delay can add an echo to a big outdoor scene, for instance.

More interesting delays are regenerative. In a regenerative delay, the scaled delay
output samples are fed back into the delay buffer, producing a multiple echo effect
that more accurately simulates natural spaces. Since the gain of each sample is reduced
every time it gets recycled, eventually the echoes die away into nothing. The time it
takes for the delay to die away is determined by the amount of attenuation you apply
to each sample. Apply a lot, and you get a "slap-back" effect with very little presence,
like you would at the edge of a canyon or near the wall of a very large building. Apply
less attenuation, and you get a dense stream of echoes more like what you'd hear
inside a cathedral or an echoing cavern.

An even more sophisticated reverb effect is the multi-tap reverb. In the multi-tap
algorithm, a copy of the input sample is not only pushed onto the tail of the delay
buffer, but inserted into other locations ("taps") in the buffer as well. This allows for
much denser echoes and more realistic effects. For instance, a sound made in a large
rectangular room might be pushed into the delay buffer four times, one for each wall
the sound bounced off. The exact position of each tap in the buffer could be dynam-
ically determined based on how far the source of the sound is from each wall.

The ultimate in spatial realism comes from DSP reverberation algorithms, which
are an even more complex variation on the basic delay theme. Reverberation algo-
rithms are generally too expensive to implement in software. With a growing trend to
implement hardware reverb processors on PC soundcards (for example, Creative's
EAX extensions) and next-generation game consoles, this article will not try to
describe reverb algorithms in depth.

Interpolation
Interpolation is the art of determining values for nonexistent samples, based on the
values for known samples. That might seem a little esoteric, but the principle is one
you use all the time in many areas of game programming. For instance, bilinear

528 Section 6 Audio Programming

texture filtering is a form of interpolation, where you might use as few as 4 or 5 texels
to cover 10 or 20 onscreen pixels. Resampling is the primary use of interpolation in
audio. One of the most effective ways to compress audio is to reduce its sample rate,
especially if the audio contains very few high-frequency components.

Sample-rate conversion (and pitch shifting, which is by and large the same thing)
can use one of several algorithms. They are listed here from least to most expensive:

• Sample doubling, used when the ratio between the target sample rate and the
source sample rate is a multiple of two.

• Sample averaging, where the target sample is computed to be the average of the
values of the two closest points.

• Linear interpolation, similar to sample averaging except that the average is
weighted—more weight is given to the value of the closer point.

• Cubic interpolation, where the nearest 3-7 points (reportedly 5 points gives the
best results [DeJongOl]) are approximated using a spline function, and the value
of the target point is the value of the spline at that point.

Cubic interpolation does give a decidedly better result than the other forms of
resampling, although surprisingly, all of the other forms sound about the same. In a
case where the resample ratio is not a power of 2, simple sample averaging is the best
choice if CPU cycles are at a premium. This gives a reasonable result for pitch shifting
where the ratio between the source and target sample rates is between .75 and 1.5.

Cubic sampling can get you higher ratios without sounding terrible, but no simple
resampling algorithm will ever avoid the dreaded "Mickey Mouse" effect. To get rid of
"Mickey Mouse," you've got to do formant-corrected pitch shifting, which involves
some extremely complicated calculations that are far beyond the scope of this gem.

References
[BoresOl] "Bores Signal Processing. Introduction to DSP," www.bores.com/courses/

intro/ (4 March 2001)
[DeJongOl] Dejong, Bram, "The Music-DSP Source Code Archive," www.

smartelectronix.com/musicdsp/ (4 March 2001)
[Gardner94] Gardner, Bill, and Martin, Keith (1994). "HRTF Measurements of a

KEMAR Dummy-Head Microphone." MIT Media Lab, http://sound.media
.mit.edu/KEMAR.html (4 March 2001).

[Iowegian99] lowegian International Corp. (1999), DSPGuru, www.dspguru.com/
(4 March 2001).

[Kosbar98] Kosbar, Kurt L. (1998), "Introduction to Digital Signal Processing
(DSP)," www.siglab.ece.umr.edu/ee301/dsp/intro/index.html (4 March 2001).

[Press92] Press, William H., et al, Numerical Recipes In C, Cambridge University
Press, 1992, www.ulib.org/webRoot/Books/Numerical_Recipes/ (4 March 2001).

[SprengerOl] Sprenger, Stephan M, "The DSP Dimension," www.dspdimension
.com/(4 March 2001).

6.4

Interactive Processing
Pipeline for Digital Audio

Keith Weiner, DiamondWare Ltd.
keith@dw.com

Introduction

Algorithms for Digital Signal Processing (DSP) have been readily available for a long
time. Games haven't used them much, probably because of the high CPU cost. Today,
however, gigahertz processors are cheap and are getting cheaper. They allow room for
a certain amount of audio processing, even after the graphics engine, AI engine, and
physics engine all get their share.

Games (and other applications) have a need for an audio processing pipeline. The
goal is to allow a set of DSP functions with corresponding parameters to be specified
for a sound. Other sounds may pass through a different set of DSP functions and/or
use a different set of parameters.

A block diagram of an audio system is shown in Figure 6.4.1. A full architecture
would stream sounds from any source, decrypt if necessary, decompress if necessary,
process, mix, and then output. This gem describes the block labeled "Processing."

This gem presents a lightweight, but general-purpose architecture. "General pur-
pose" is meant in two respects here. First, it allows any type of processing, even a
speed changer. Speed changers are tricky because they necessitate a buffer length
change. It gets even trickier if you want to allow parameter changes on the fly. Second,
it's completely OS independent, and could be used on Linux as easily as Windows.
The architecture demonstrated in this article has been used in device drivers, a
general-purpose audio API/engine, and a telephony media control component.

Constraints

In thinking about, and designing a system, a good way to get focused is to define the
problem and all of the constraints for the solution. We've already begun, but I'd like
to spell out all of the requirements in one list, and then discuss each item.

• Supports A^ sounds.
• Each sound can pass through A^DSP functions.

529

Sound 1

Source (file, http,CD,
memory buffer, etc.)

~~TT~^
Decryption

_xH
Decompression

4^

Processing

r̂

Sound 2

Source (file, http,CD,
memory buffer, etc.)

zm:
Decryption

L^^
Decompression

ZLTZ
Processing

Sound 3

Source (file, http.CD,
memory buffer, etc.)

~^±

Decryption

~^-£~
Decompression

~^r~

Processing

^ 1

FIGURE 6.4.1 An audio processing system.

530

Interactive Processing Pipeline for Digital Audio 531

• Any parameter for any DSP function may be changed at any time.
• Any function may impose a length change.
• Efficient, this is for games on PCs, not scientific research on supercomputers.
• Makes it easier to write DSP functions.

Let's drill down into each item. First, we said N sounds. Monophonic sound
engines have been obsolete since around 1994. If we store all DSP function and para-
meter information in the instance data of each sound, this will allow us to handle an
unlimited number of sounds without having extra complexity.

Next is the requirement to support N DSP functions per sound. This is the
essence of the gem. If we wanted to pass a sound through only a single DSP function,
we wouldn't need a pipeline!

Parameters may be changed at any time. This is the heart of interactivity. In a
game, the sound designer doesn't know what will happen, or when it will happen. At
any time, the user could enter the concrete pipe, and then certain sounds would have
to have a reverb.

Perhaps it's not that often that you want to slow down or speed up a sound you're
playing, but sometimes you do. As long as we're building a general-purpose engine,
we may as well support this operation. A speed-changing DSP function, in the con-
text of our pipeline, is any function that outputs a different number of samples than
it uses for input. The classic example of a DSP function which slows down music is
only one type of speed changer. A reverb function may be categorized as a speed
changer (though it is actually more of a length changer) if it can generate output past
the end of its input; in other words, it allows the last reverberations to fade to silence
before stopping.

The audio system should be efficient. Hopefully the pipeline itself doesn't con-
sume a lot of CPU cycles, but we can be careful not to cause any unnecessary copying
of memory; for example, if a DSP function returns "I have no work to do," no mem-
ory copying should be performed.

The goal of any general-purpose API is to save work, not create work. An audio
engine is built only once. There are many types of DSP functions. We should handle
as much ancillary work as possible, so that each DSP function implements an algo-
rithm and not much else.

Discussion

Throughout this section, I will discuss what happens for one sound. Multiple sound
support does not become a relevant factor until the mix stage.

Looking again at Figure 6.4.1, we see that the audio input to our little world
comes from the decompressor (if present, or else from the input stream manager). The
output goes to the mixing engine (which may be DirectSound or another system).

This is asymmetrical. While the input side is relatively flexible (it should be able
to supply us with as many samples of audio as we request, within reason), the output

532 Section 6 Audio Programming

side is inflexible. The mixing engine needs a certain number of samples from our
stream; it cannot handle anything more, and if we try to pass it anything less it will
continue mixing—without our sound, which will have a gap in it.

This is so important a rule that it should be stated again: the output of the audio
processing pipeline must be determined by the needs of the mix engine. That's what
determines how many samples we are to output.

There is only one type of inflexibility imposed by the input stream: EOF. When
the stream reaches the end, the processing engine needs to know.

So, let's say the mix is done in a fixed buffer of 16,384 samples. This means that
it waits until it needs that many samples, and then triggers the audio processing.
Therefore, the audio processing pipeline must output 16,384 samples.

How many samples does the pipeline need for input? We don't know that yet. So
far, we know only that the last function in the chain must output 16,384 samples.
How many samples does this function need for input?

We don't know that either, but we can find out. We can ask it! The mixer wants
16,384 samples. The last function in the chain, with its current parameter set, says it
wants 24,576 samples of input to produce 16,384 of output. To determine how many
samples of input to obtain from the stream, we continue traversing the chain of DSP
functions backward. We go backward because we know the number of samples out-
put at the end, but not the number of samples input at the beginning.

Once we're done with this phase, we can obtain the requested number of samples
from the input stream, and pass them to the first function in the chain. We can take
its output and pass it to the second function, and so forth. At the end, theoretically,
we have the right number of samples to send to the mix engine.

What if that assumption is broken? What if a DSP function produces fewer sam-
ples than it was supposed to? The next DSP function in the chain must be given the
new, smaller buffer. It must produce output as well as it can. At the end, there may be
a shortfall. We treat this shortfall as the desired output for a second iteration, query
backward up the chain, and then process data a second time. We do this until we
either run out of input samples, or fill the output buffer. For the sake of efficiency,
DSP functions should be implemented in a manner such that they don't frivolously
misreport their expected input requirements. This is a feature that should only be
used if computing the exact number of input samples required would require sub-
stantial processing (for example, if the DSP function would have to actually process
the audio to know exactly how many samples it would need).

What if a DSP function "eats" fewer samples than requested? This is a trickier
case to program. The pipeline must provide a buffer between each pair of DSP func-
tions in the chain. The buffer between function #2 and function #3 holds underflow
data from function #3.

What if a DSP function produces too many output samples? Well, it shouldn't do
that! Seriously, the obvious way to handle this case is to buffer it, but that is not
demonstrated in the code for this gem.

6.4 Interactive Processing Pipeline for Digital Audio 533

This raises a point: DSP functions are not commutative. Order matters. This is
not merely a limitation of the buffering system I just proposed, but also of the nature
of processing. If one changes the pitch of a sound and then imposes a reverb, the result
will sound different than if one applies a reverb and then changes the pitch. Therefore,
we're not worried that our proposed architecture imposes this requirement as well.

Details

We're envisioning an audio processing pipeline that's called whenever the mixing
engine needs more data for a sound channel. It may be implemented as a callback, if
the mix engine is driven by interrupts, or as a regular function if the status of the mix
buffer is polled.

The processing engine must call the input stream manager to request raw data for
the sound channel. It may return a full buffer, or less if the sound has reached the end.

The processing engine can call each DSP function with several messages. So far,
we've discussed a query to determine how many input samples are needed to produce
the required output, and of course the output call itself.

We ought to add two more: firstcall and lastcall. Firstcall is the first message sent to
a DSP function, to let it allocate instance data, and lastcall allows it to free that data.

To implement a DSP function to plug into diis architecture, the programmer
must provide a single entry point that's capable of properly handing firstcall (initial-
ization), lastcall (shutdown), query, and output messages. This entry point is given a
single struct that contains the command number, input and output buffers and
lengths, and two other items. One of these is a pointer to DSP-specific parameters,
which is passed down from the application (presumably controlling all of this). Exam-
ples of DSP-specific parameters would be room size for a reverb, ratio for a speed
changer, and so forth. The other item is private instance data allocated and main-
tained by the DSP function itself.

Implementing the engine is somewhat more complex, but this was our intent.
Make this one piece intelligent so that the many DSP pieces are quick and easy to
implement.

The processing engine uses three buffers: a source, a destination, and an accumu-
lation buffer. During processing, the buffers swap roles, so the engine uses buf [0],
buf [1], and buf [2]. The reason is that the destination (output) of DSP function #1
becomes the source (input) of DSP function #2.

Similarly, if the last DSP function in the chain outputs less than the amount
required by the mixing engine, its destination buffer becomes the accumulation
buffer. After the next iteration of the chain, the accumulation buffer is prepended to
the new destination buffer.

The Code

Let's look at the source code to the main entry point.

534 Section 6 Audio Programming

void dsp_ProcessAudio(dsp_AUDIO *audio)

audio->src = 0;
audio->dst = 1;
audio->acc = 2;

bfbuf_WIPE(audio->buf[audio->src]);
bfbuf_WIPE(audio->buf[audio->dst]);
bfbuf_WIPE(audio->buf[audio->acc]);

audio->samps = 0;

while ((audio->samps < audio->sampsneeded) && (!audio->done))

SWAP(audio->acc, audio->dst);

QueryDSPIn(audio);
stream_GetData(audio);
DoDSP(audio);

bfbuf_MoveAll(audio->buf[audio->dst], audio->buf[audio->acc]);

ON me a

ON me CD

One last explanation is necessary before this code makes sense. A bfbufis a data
structure of my own invention. A backfill buffer is a memory buffer designed to make
it easy to prepend data. The contents are always aligned flush with the end, so that
prepending is done with a simple memcpy (). The source code to BFBUF.C is included
on the companion CD-ROM.

It turns out that the prepend operation is the one we need to handle the under-
flow buffers in the DSP chain itself. Therefore, I've implemented the outer loop to
use a prepend to take the partial buffer from the previous iteration and add it to the
current partial buffer. This could just as easily have been implemented to append the
current partial buffer to the previous partial buffer. When you make yourself a new
hammer, and you feel clever about it, you have a tendency to see everything as a nail.

Let's walk through the function. Its sole parameter is a pointer to a struct defined
in the code on the CD. There are three backfill buffers, which we initialize to empty,
and assign their initial semantics.

We have a loop that iterates until we run out of source data, or until the output
buffer is full. For the first iteration, the swap is meaningless and does nothing.

The rest is simple. First, we determine how many input samples are needed, get
them, and process. Then, we prepend the accumulated samples from previous itera-
tions (if any) to the current destination.

stream_GetData() is the call to the input stream manager (external to DSP.C). It's
important to understand that this function must put the samples in the destination
buffer. As we'll see, DoDSP () swaps the source and destination buffers at the beginning.

Now let's look at the query function.

6.4 Interactive Processing Pipeline for Digital Audio 535

static void QueryDSPIn(dsp_AUDIO *audio)
{
dsp_PARAMS params;
dsp_DSP *dsp;
DWORD underlen;
DWORD x;

params.cmd = dsp_QUERYACTIN;
params. actualin = audio->sampsneeded - audio->samps;

for (x=0;x<audio->numdsps;x++)
{
dsp = &(audio->dsp[audio->numdsps - x - 1]);
params. dstlen = params. actualin;

(*dsp->callback) (¶ms) ;
underlen = bfbuf_GETDATALEN(dsp->underbuf) ;

dsp->inreq = (underlen < params. actualin) ?
params. actualin - underlen : 0;

dsp->outreq = params. dstlen;

Notice how the function begins by knowing how many samples remain (audio ->
sampsneeded — audio->samps). It sets this up where the code in the loop expects to
find it from a previous iteration. Alternatively, I could have coded this with a goto to
enter the loop in the middle, but that seemed a less elegant solution.

The loop itself traverses all the DSP filters used by the sound in reverse order. For
each, it sets up a parameter to specify the desired number of output samples, and
makes the call. Then it subtracts the number of samples stored in the underflow
buffer from a previous iteration of processing. The result may be zero, if the previous
iteration had sufficient samples left over. In this case, the filter needs no more input;
all the input it requested is already waiting for it in our underflow buffer!

Each DSP stores how many input samples it needs, and the expected output (the
number of samples requested by the next item in the chain).

The meat of the Gem is the DoDSP() function.

static void DoDSP(dsp_AUDIO *audio)
{
bfbuf_BUFFER *srcbuf;
bfbuf_BUFFER *dstbuf;
dsp_PARAMS params;
dsp_DSP *dsp;
DWORD x;

params.cmd = dsp_OUTPUT;

for (x=0;x<audio->numdsps;x++)

536 Section 6 Audio Programming

dsp = &(audio->dsp[x]);

SWAP(audio->src, audio ->dst);

srcbuf = audio->buf[audio->src];
dstbuf = audio->buf[audio->dst];

bfbuf_MoveAll(srcbuf, dsp->underbuf);
bfbuf_SetDataLen(dstbuf, dsp->outreq);
bfbuf_GetBufStart(srcbuf, &(params.lsrc), &(params.rsrc));
bfbuf_GetBufStart(dstbuf, &(params.ldst), &(params.rdst));

params.srclen = bfbuf_GETDATALEN(srcbuf);
params.dstlen = bfbuf J3ETDATALEN(dstbuf);
params.dspspecific = dsp->dspspecific;
params.privdata = dsp->privdata;

(*dsp->callback)(¶ms);

if (params.nowork)
{
bfbuf_WIPE(dstbuf);
SWAP(audio->src, audio->dst);

params.actualout = params.srclen;
}
else
{
if (params.actualout < bfbuf_GETDATALEN(dstbuf))
{
bfbuf_ChokeUp(dstbuf, params.actualout);

}
if (params.actualin < bfbuf_GETDATALEN(srcbuf))
{
bfbuf_Eat(srcbuf, params.actualin);
bfbuf_MoveAll(dsp->underbuf, srcbuf);

}
else
{
bfbuf_WIPE(srcbuf);

}
}

}
audio->samps += params.actualout;

}

At first, the initial swap of source and destination looks funny. Each DSP func-
tion is given the previous function's output (destination) for its own input (source).
This also makes it easy to handle the case when a DSP reports that it has done no
work.

There's some variable setup, and then four calls to this mysterious backfill buffer
manager. First, we fetch all underflow samples from the previous iteration. Note: this

6.4 Interactive Processing Pipeline for Digital Audio 537

is stored on a per-DSP basis. The underflow for DSP function #1 is different from the
underflow for DSP function #2, and must be kept separate.

Next, we set up the expected size of the destination backfill buffer. If this turns
out to be wrong, we'll fix it later. Finally, we obtain pointers to the current beginnings
of the buffers. Notice that left and right are stored separately. This makes DSP pro-
cessing easier, as well as the eventual move to multichannel audio (for example, 5.1).

We do some straightforward parameter setup. Notice how we provide the DSP
with both a pointer to function-specific parameters, and its own instance data for this
sound.

After the call, if the function did no work, we set the destination buffer to empty,
and swap destination with source (so the destination is now the one with samples in
it) to prepare for the next iteration, which will swap again.

Otherwise, something was done by the function, so we check to see if the DSP
generated less than a full buffer. The choke up is the only BFBUF operation that must
do a memory move.

Then we check to see if the function consumed less than all of the input data sup-
plied to it. If so, we buffer it as underflow. Otherwise, we just mark the source buffer
as empty.

Extra Commentary

This isn't the easiest code to read, but it's nice and efficient, which is what counts! No
cycles are wasted unless a DSP generates too little data, and there's not much to do
about that except iterate the whole chain again hoping we'll get enough data.

Notice how each time dsp_ProcessAudio() is called, the parameters for all of the
DSP functions could have changed. This code forms the core of an audio processing
engine that meets all of the criteria we enumerated earlier.

Building it was not only possible, but it wasn't as hard as it seemed it would be.
Two functions have been omitted from the text (they're on the CD). dsp_New-

^r'^Hs, Sound () must be called when a new sound is added to the system, and dsp_Delete-
ONWCD Sound () must be called when a sound is removed from the system. This is important

because it's not obvious from the code presented thus far. There is a call to the stream
manager, and that call sets audio->done if the stream reaches the end.

Whatever code calls dsp_ProcessAudio() must check this bit, and then call
dsp_DeleteSound() if appropriate. The tricky part is to wait until the sound is done
(in other words, audio->samps is 0). DSP functions (such as echo) may retain their
own internal buffers. Regardless of how they determine when to eat input samples
and produce nothing (when given a request for output and when provided with less
input than requested) they must output whatever they can. This way, the DSP engine
knows that when a stream reaches the end, and the DSP function chain produces no
output, the last reverberations or echoes of the sound are done, and the sound may
safely be deleted without causing an audible truncation.

538 Section 6 Audio Programming

From an architectural standpoint, this is admittedly somewhat weak. It is possible
to design a more elegant, self-contained solution to this problem inside DSP.C. A
related limitation is that the dsp_AUDIO struct and its dsp_DSP array are allocated
outside as well. There is entirely too much management of DSP-related memory
structures, parameters, and so forth, outside the DSP engine. This is done primarily
to keep the code clean and easy to understand.

There are two functional limitations (the previous are considered to be structural
or architectural) to discuss. First, the code doesn't handle the case of when a DSP
function overflows. The quick excuse is that no function should ever output more
data than is requested of it. It could also be argued that those few functions that
would want to, can simply maintain an internal buffer. This isn't satisfactory because
we've gone to great lengths to make sure that DSP functions are small, lightweight,
and easy. The real answer is that this would add considerably to code size and com-
plexity (including in BFBUF.C), and provide a (comparatively) marginal value. This
code is not really a robust commercial implementation, and adding something like
overflow protection (including the algorithms to determine how big is big enough,
etc.) just wouldn't make sense before putting in DEBUG error-checking, for example.

The other missing feature is that there is no way to add or remove DSP functions
after a sound is created. This can be worked around as long as all DSP functions have
a parameter to indicate "passthru." Then, just make sure each sound is created with all
of the DSP functions that you'll possibly want to use on it at any point during its life-
time. It's not inefficient, and it works (although it is a bit clunky).

It would be a bad kludge, but you could actually add new DSP functions to the
end of the list (as long as you provided a way to do firstcall processing for them).

Conclusion

The essence of this gem demonstrates how to build a basic DSP pipeline that supports
passing a sound channel through a chain of DSP filters, each of which can do any-
thing to the stream that it wants.

In order to support DSPs that may wish to change the size of the buffer as they
process, we need a query call to ask the DSP "if we want N samples of output, how
many samples of input do you estimate you'll need?" We do this query in reverse
order.

In addition, we added support for two underflow conditions: generating too little
data, and eating too little input. These weren't too hard to support with the help of an
innovative data structure: the backfill buffer. The concept is the most difficult thing

ONTHCCD -with this. As you'll see on the CD, the code is straightforward, if not trivial.
With this engine, and some glue logic, it's possible to do any type of audio pro-

cessing that a game will need. Indeed, it could support a whole professional audio stu-
dio for music production and performance.

6.5

A Basic Music Sequencer
for Games

Scott Patterson
scottp@tonebyte.com

This gem describes how to make a basic music sequencer. First, we will start with a
comparison of music streaming and music sequencing. Then, we will review

some important concepts from the MIDI music language, outline a basic computer
music language implementation, and then discuss the coding issues that relate to tim-
ing and synthesis control.

Streaming vs. Sequencing

Music in games is generally played back in one of two ways: either as a stream of sam-
ple data or as a sequence of instructions to an audio synthesis system. It is also possi-
ble that music playback may involve a combination of both methods. Individually,
the methods have some pros and cons that depend on the hardware systems available.
To be combined, synchronization issues must be addressed as well.

Streaming Method Pros

• Audio hardware requirements are minimal.
• Music development and integration with the game is easy.
• Music quality is only limited by the sample rate and number of channels of the

stream data.

Streaming Method Cons

• Music data plays the same way each time.
• There can be latency in the start and stop of the stream.
• There may be latency problems when looping a stream or switching streams.
• There may be large memory buffer requirements.
• Certain resources may be tied up during playback such as DMA hardware and

storage device hardware.
• If the stream data is not compressed, it will take significant storage space.
• If the stream data is compressed, it will require hardware or software decompres-

sion resources.

539

540 Section 6 Audio Programming

• It may not be possible to cross-fade two different streams depending on hardware
limitations, so the only choice available may be fading to or from silence.

Sequencing Method Pros

• No latency problems when starting or stopping the music.
• No latency problems when looping or switching music.
• If audio memory is available, sample data memory will not compete with game

data memory.
• Resources such as DMA hardware and storage device hardware may not be

required for music playback and will be free for die game to use at any time.
• A great deal of music styles and variations can be produced from a relatively small

sample data set.
• Music data can be dynamically altered at runtime to create unique game and

music interactions.

Sequencing Method Cons

• Voices for music may compete with voices needed for other game audio.
• Music development and integration with the game is more complex.
• Music quality may be limited by synthesis capabilities.
• Music quality may be limited by available sample memory.

Core Computer Music Concepts

Let's now review core computer music concepts, and build our music command
language.

Event Blocks

Music can be described as events or commands occurring over time. Therefore, we
can build our music command language with "event blocks" composed of three ele-
ments: time, event type, and event details. We will store the time relative to previous
events and call it a delta-time. The event type will be identified with a number, and
the event details will be zero or more parameters diat are defined by the event type
(Figure 6.5.1).

By using a sequence of event blocks we can describe any combination of events
and time intervals. Therefore, building our computer music language is now a task of

Delta Time / Event Type / Event Parameters

FIGURE 6.5.1 Event block.

6.5 A Basic Music Sequencer for Games 541

choosing how to store the delta time, choosing the event types to support, and choos-
ing the parameters supplied for each event type.

MIDI (Musical Instrument Digital Interface) Music

The MIDI specification has been around for a long time. Most music composition
and sequencing software provides compatibility with MIDI input and output ports
for recording and playback. These software products also provide options to save and
load MIDI files. Since we are creating our own computer music language, a good
place to start will be learning the MIDI specification and its file format. We can then
convert MIDI file data to our own custom data.

The word interface in MIDI refers to the fact that it is a specification for commu-
nication between musical devices. In making a music sequencer for games, we aren't as
interested in musical device communication as we are in music playback on a partic-
ular machine. Therefore, my introduction to MIDI will include only the parts that
relate directly to making our music sequencer for games.

MIDI Event Types

The MIDI specification defines several events called the channel voice messages.
MIDI originated as a virtual piano keyboard communication language, so terms such
as attack velocity, release velocity, pitch wheel, and key pressure all refer to actions
applied to a virtual piano keyboard (Table 6.5.1).

The channel voice messages are the core musical control events defined by MIDI.
The Program Change event defines what instrument definition to use. The Note On
and Note Off events do as they suggest, and the remaining events update various
audio playback parameters to new values. Since the Control Change event specifies a

Table 6.5.1 MIDI Channel Voice Messages

Event Type

Note Off

Note On

Pitch Wheel

Control Change

Program Change
Poly Key Pressure

Channel Pressure

Event Parameters

Note Number
Release Velocity
Note Number
Attack Velocity
Pitch Bend LSB
Pitch Bend MSB
Controller ID
Controller Value
Program Number
Note Number
Pressure Value
Pressure Value

Section 6 Audio Programming

Controller ID parameter, it can be used for many different types of audio control.
Two of die most commonly used Controller IDs are 7 for Volume and 10 for Pan.

There are also meta-events defined in die MIDI file format 1.0 specification.
Table 6.5.2 lists a selection that will be important to us.

The End of Track meta-event defines the end of a series of event blocks, and the
Set Tempo meta-event defines how fast to step through die delta time values of event
blocks. The Time Signature and Key Signature meta-events do not change the way
that MIDI music plays, but are commonly used for organizing die visual display of
music data. We can use these meta-events as special markers for our own organization
or synchronization purposes. The remaining meta-events I have listed store string
data. We can store custom information in these strings to be used in our conversion
from die MIDI format to a custom format.

MIDI Channels and Tracks

The "channel" in MIDI channel voice messages refers to the fact that each MIDI
event block also contains a channel number from 1 to 16 (0 to 15). The channel con-
cept makes it possible to send MIDI commands to more than one target over a serial
connection. It would also be possible for us to store our music data as a single serial
stream and assign channels to each message. An advantage of this method is that pro-

Table 6.5.2 Selected MIDI Meta-Event Types

Meta-Event Type Meta-Event Parameters

End of Track
Set Tempo Tempo Number
Time Signature Numerator

Denominator
MIDI clocks per metronome click
32nd-notes in a MIDI quarter-note

Key Signature Sharps/Flats Indicator
Major or Minor Indicator

Text Event String Length
__ String Data
Sequence/Track Name String Length

String Data
Instrument Name String Length

String Data
Lyric String Length

String Data
Marker String Length

String Data
Cue Point String Length

String Data

6.5 A Basic Music Sequencer for Games 543

cessing a single stream of data would work well for CPU caching. A disadvantage of
this method is that track data organization would not be flexible and independent.

It so happens that the MIDI file format 1.0 specification defines "format 0" files
that have all information combined in one track, and "format 1" files that have any
number of tracks.

The basic music sequencer that we will present processes any number of tracks
independently and does not have a channel concept.

Computer Music Sequencer Implementation

Now we are at the point where we can determine our own custom computer music
language. For the purposes of this gem we will choose to implement event types that
are very similar to MIDI event types. You can create your own additional event types
for your own needs.

Sequences, Tracks, Events, Instruments, and
Voices

Let's quickly cover the terminology used in the rest of this paper. A sequence is a col-
lection of tracks that run simultaneously. Each track is a series of event blocks that we
defined earlier. There is always a single current instrument on each track. Every Note
On event in a track will start a voice of the current instrument. The corresponding
Note Off event will turn this voice off. Many types of events in a track will modify the
state of the track's voices.

The sequencer data structures described later show an implementation of these
relationships.

Sequencer Event Types

As a first step in creating our basic music sequencer we will come up with a list of
event types that we want to support. These are displayed in Table 6.5.3.

Table 6.5.3. Event Type Ideas

Event Types Notes

Note Control These work like the traditional MIDI events

Note Off Key
Release velocity (optional)

Note On Key
Attack velocity

(continues)

544 Section 6 Audio Programming

Table 6.5.3. (Continued)

Event Types

Immediate Modifications
SetVolume
SetPitchBend

Notes

These work like the traditional MIDI events
Value
Value

SetPan Value
SetEffect Any effect type

Value
Setlnstrument Program change
SetTempo Value

Target Modifications
SetTarget

Target an event value rather than setting it
Time format and duration to target value
Basic modification type and data

Arrangement
Track End
Track Marker
Jump to Track
Gosub to Track

Ends track playback
Additional entry points, sync points.
Jump to new track data
Jump to new track data, returns when done

Callback
Callback Calls game code, could change test values

Note Control
It is pretty hard to make music without notes. Following the MIDI tradition, we asso-
ciate a key number and velocity with notes. The MIDI Note Off message includes a
release velocity, but it is our option to include this for our sequencer.

Immediate Modifications
These event types are quite similar to certain MIDI messages. This will make conver-
sion from MIDI files for these events easy. These events also represent immediate
updates of synth hardware. Values may be absolute or relative depending on the event
type.

Target Modifications
These event types interpolate from current value to destination value over a given
time rather than changing settings immediately. Target modifications have the advan-
tage of being able to describe a curve of parameter values with a single command
rather than the many immediate modification commands needed to achieve the same
effect.

Arrangement
These event types switch us to different sections of music data.

6.5 A Basic Music Sequencer for Games 545

Callback
These event types generate callbacks to functions that have been registered with the
music sequencer.

Sequencer Data Structures

The abbreviated data structures that we could use for our music sequencer are listed
in Listing 6.5.1.

Listing 6.5.1 Music sequencer data structures

typedef list< Sequence_t * > SequencePtrList_t;
typedef list< Track_t * > TrackPtrListjt;
typedef list< Voice_t * > VoicePtrList_t;

class MusicSequencer_t {
MusicSequencerState_t State;
SequencePtrList_t ActiveSequencePtrList;
SequencePtrList_t FreeSequencePtrList;
TrackPtrList_t ActiveTrackPtrList;
TrackPtrList_t FreeTrackPtrList;
VoicePtrList_t ActiveVoicePtrList;
VoicePtrList_t FreeVoicePtrList;

};
class SequenceState_t {

Tempo_t Tempo;
Volume_t Volume;

};

class Sequence_t {
SequenceState_t State;
TimeUnit_t TimeElapsed;
TimeUnit_t TimeStep;
TrackPtrList_t TrackPtrList;

};

class TrackState_t {
Volume_t Volume;
PitchBend_t PitchBend;
Pan_t Pan;
Effect_t Effect;

};

class Track_t {
TrackState_t State;
Sequence_t *pOwner;
char *pEvent;
Instrument_t *plnstrument;
VoicePtrList_t VoicePtrList;

};

class VoiceState_t {

546 Section 6 Audio Programming

SynthVolume_t Volume;
SynthPitch_t Pitch;
SynthPan_t Pan;
SynthEffectjt Effect;

};

class Voice_t {
VoiceState_t State;
Track_t *pOwner;
int nKey;

};

Here we show the MusicSequencer_t class that holds the lists of active and free
sequences, tracks, and voices. We also see that sequences, tracks, and voices each have
a notion of state and some example parameters of those states are shown. A
Sequence_t has a TmckPtrList that holds the tracks owned by the sequence. A Track_t
has a VoicePtrList that holds the voices owned by the track. A Voice_t has zpOwner
that points to the track that owns the voice. A Track_t has apOwner that points to the
sequence that owns the track. These parent and child data structures help us query
and update information up and down our hierarchy, whether we are operating on
sequences, tracks, or voices.

Event Data Structures

To implement the event type commands, we can have the event type command num-
bers correspond to an array lookup that holds the relevant function pointer and the
byte length of the event type and parameters. Listing 6.5.2 shows this code. The func-
tion pointers give us a quick way to get to the code associated with each event type.
The byte lengths give us a quick way to step to the next event block.

Listing 6.5.2 Event type data structures

// Example Note Off Event Block
typedef struct {

char nEventType;
char nKey;
//no release velocity

} NoteOff_EventBlock_t;

void NoteOff_Function(Track_t *pTrack)
{

// the pEvent is pointing at our event block
NoteOff_EventBlock_t *pNoteOffEB =

(NoteOff_EventBlock_t *)pEvent;

// walk through this track's voices and turn off
// any that have pVoice->nKey == pNoteOffEB->nKey

}

// Example Note On Event Block

6.5 A Basic Music Sequencer for Games 547

typedef struct {
char nEventType;
char nKey;
char nVelocity;

} NoteOn_EventBlock_t;

void NoteOn_Function(Track_t *pTrack)
{

// the pEvent is pointing at our event block
NoteOn_EventBlock_t *pNoteOnEB = (NoteOn_EventBlock_t *)pEvent;

// try to get a voice from the free list or
// try to get a voice from the active list if possible
// if we have a voice, turn it on with the pNoteOnEB->nKey
// and pNoteOnEB->nVelocity and other state information

enum enumEventType
{

EVENT_TYPE_NOTEOFF ,
EVENT_TYPE_NOTEON,

EVENT_TYPE_COUNT

typedef void (*EventFuncPtr_t) (Track_t *);

typedef struct {
EventFuncPtr_t pFunc; // pointer to command function
int nLength; // byte length of command

} EventTypes_t;

static EventTypes_t aET[EVENT_TYPE_COUNT] = {
{ NoteOff_Function, sizeof (NoteOff_EventBlock_t) },
{ NoteOn_Function, sizeof (NoteOn_EventBlock_t) },

Here we show that we can give each event type a number that can be used to call
up an EventType$_t structure from an array. The EventTypes_t structure contains the
function pointer to call for the given event type and the length of the command ID
and parameters. Being able to define our own command numbers and have them cor-
respond to array entries like this provides an alternative to switch statements.

The Audio Frame and Update Interval

Different computer systems have different ways of providing timing callbacks or
threads that wake up at specific intervals. I will simply assume that we can have a
function called at a specific interval referred to as the audio callback. We can think of

548 Section 6 Audio Programming

the time between these callbacks as the audio frame. During each callback, we need to
update our notion of how much time will pass during the next audio frame, and we
need to send out all of the commands that are due to occur over diis time.

Independent of the audio callback rate we will also have an update interval. The
update interval determines the amount of time we will step when sending out low-
level commands. For example, we could have an audio callback that occurs once every
second with the update interval at 120 times a second, which would require stepping
through 120 time intervals per callback. Another possibility is that we could have an
audio callback that occurs 60 times a second with the update interval at 120 times a
second, which would require stepping through two time intervals per callback.

Listing 6.5.3 is an outline of the audio callback code.

Listing 6.5.3 The audio frame

// This function is called by the timer callback
static void OSys_AudioCallback(void)
{

// protect against callback reentrance

// determine the number of update intervals required
//to deliver during this callback

// begin critical section
OSys_BeginAudioCriticalSection();

// for the number of update intervals required on this frame
// {
// iterate over sequences
// perform per sequence operations

iterate over tracks
perform per track operations

//
// send low-level commands for this time step
// move to next time step
// }

// end critical section
OSys_EndAudioCriticalSection();

}

Since our callback may happen while other code is executing, this means it might
happen when we are changing data structures for the music sequencer. We protect
against this by using the critical section method specific to our operating system.

Timing Calculations

In order to play our music data at different rates, we need to work out how to step
through our music data based on three parameters: the music tempo, the update
interval, and the resolution of our music time format.

6.5 A Basic Music Sequencer for Games 549

• Music tempo is described in beats per minute (BPM).
• The update interval is described in updates per second (UPS).
• Music time resolution is described in parts per quarter note (PPQ).

We are looking for the amount of music time to increment for each audio call-
back. We can call this parts per update (PPU).

If we consider beats per minute (BPM) to be the same as quarter notes per minute
(QPM), then the equation is:

PPU = QPM * PPQ* (I/UPS) * (lMinute/60Seconds)

If we store this PPU number as a 16.16 fixed point number, the final code is
(Listing 6.5.4):

Listing 6.5.4 Time step calculation

unsigned long CalcTimeStep(unsigned short qpm,
unsigned short ppq,
unsigned short ups)

{
unsigned long ppu;
unsigned long temp;
temp = (unsigned long)qpm * (unsigned long)ppq;
if(temp < 0x10000)
{

ppu = ((temp * 0x10000) / 60)
/ (unsigned long)ups;

} else {
ppu = ((temp / 60) * 0x10000)

/ (unsigned long)ups;
}
return(ppu);

}

Our calculation here does a little range checking during the calculation to make
sure that we obtain as accurate a 16.16 result as possible given that the input numbers
can range in value.

We recalculate the parts-per-update value any time that a sequence's tempo
changes. This parts-per-update value is placed in our TimeStep variable in our sequence
structure. Since these time parameters are in the sequence structure, we can only change
the tempo for the entire sequence. If we wanted to change tempo for each track indi-
vidually, we could put these parameters and die tempo setting in the track structure.

Audio Synthesis Control

Connecting Synth to Sequencer

An important issue for our music sequencer implementation is how music event para-
meters are mapped to audio synthesis parameters. This is where music sequencer code

550 Section 6 Audio Programming

can get very platform specific. In order to keep the code as cross-platform as possible,
I will call a software synthesizer interface from our sequencer code.

One important part of connecting our audio synthesis to our music sequencer is
the Setlnstrument event type. The Program Change parameters of Setlnstrument
Command is used as an index into a table of instrument definitions. The address of
this table entry is used to set the ̂ Instrument field of our Track data structure. When
a Note On command occurs, the parameters from the plnstrument are transferred to
the voice to be started. You can view these details in the accompanying source code.

The capabilities of the audio synthesis system that we are using will determine
instrument definition and even definition details. As a result, there will be certain
types of control we will have available and music will have to be written with these
control issues in mind.

The Code
The example code on the CD-ROM shows how to play music using our custom
music sequencer language. This includes how to step through the music data of each
track of each sequence, and how to code the event types for a particular synth inter-
face. Of the event type ideas presented, the code implements the NoteOn, NoteOff,
SetPan, Setlnstrument, and TrackEnd commands.

|̂' c> 4 The example code uses a cross-platform audio engine called CSyn. The CSyn
ON me CD library provided on the CD-ROM is for demonstration purposes only.

Conclusions
We covered the details of a basic music sequencer. Important MIDI concepts have
been presented, as well as our custom music language. Implementation details of data
structures, event types, and timing were presented. Finally, the code is there to play
with and customize for your own needs. Enjoy!

References
CSyn audio engine, www.softsynth.com/csyn.

6.6

An Interactive Music
Sequencer for Games

Scott Patterson
scottp@tonebyte.com

Games are interactive. This means that a player has control over the game in some
way, and the game asks the player to use his or her control to interact in some

way. This control and interaction is the foundation of gameplay that is immersive and
entertaining.

It is natural to want to mix the immersiveness of control and interaction in com-
puter games with the immersiveness of music. How do we control music? How can
we create musical interaction? "What kind of musical meanings can we generate? This
is the motivation for this gem.

Building on the concepts and code from the basic music sequencer, we now will
discuss features that provide interactive control. Specifically, we will discuss the ability
to modify parameters on the sequence level and track level.

Making interactive music can be viewed as controlling a puppet. We need to pull
the right strings to make it seem alive. And if we pull the right strings to control the
way the music plays, we may even pull the emotional strings of our game player. In
order to discuss what types of emotional strings might be available, we've generated a
list of associations and meanings that music can convey. We then cover transitions,
transition types, control granularity, and target control. Finally, we present a few
design examples.

Musical Associations

Music is its own form of entertainment. We listen for styles, attitudes, technology,
improvisation, composition, and skilled performances and interpretations. Our mem-
ories associate music with past situations, friends, and places. While some associations
may be personal and specific, others are quite common and generally accepted. We
may associate a particular song with a particular person. We may associate a particular
style of music with a particular geographical location. We may associate the "mood"
of some music widi love, hate, contentment, or anger (Table 6.6.1).

551

552 Section 6 Audio Programming

Table 6.6.1 Music Associations

Category / Type

Age Groups
Activities
Cultures
Time Periods
Locations
Mood
Tension
Strength
Reward
Defeat

Description

Children, teenage, college, mature
Sports, chase, battle, puzzles
Themes, styles, anthems
Historical, futuristic
Geographical, magical, space exploration
Humor, serious
Relaxed, tense
Powerful or weak
Pride, confident and energetic
Ridicule, goofy and taunting

Musical Meaning

If we want our music to be interactive, we should know the different meanings that
we wish to convey with the music. Some of the meanings that we might want to
attach to the control of music are categorized in Table 6.6.2.

Table 6.6.2 Musical Meanings

Category / Type Description

Self
Health
Power
Skill
Mood
Familiar

Others
Friends
Enemies
Love
Hate
Familiar

Location
Secrets
Hints
Safety
Danger
Magic
Familiar

What state is the player in?
Confidence in the music.
Strength in the music.
Sharpness and agility in the music.
Heaviness or lightness in the music.
Music that is familiar to certain player states in the game.

What state are nonplayer characters in?
Pleasing attitude in the music.
Harsh attitude in the music.
Sweetness in the music.
Violence in the music.
Music that is familiar to certain nonplayer character states in the game.

What is our current location like?
Occasional secret melodies or instruments play.
Sudden burst when looking the right way.
Even, predictable music.
Irregular, ominous music.
Chimes, and echoes, and sprinkles in the music.
Music that is familiar to a common location in the game.

6.6 An Interactive Music Sequencer for Games , 553

Table 6.6.2 (Continued)

Category / Type

Situation
Safety
Danger
Magic
Preparation for Bartle
Tension
Adrenaline
Time is Running Out
Challenge Level
Reward
Failure
Familiar

Description

What kind of situation are we in?
Even, predictable music.
Irregular, ominous music.
Chimes, and echoes, and sprinkles in the music.
Drums of war. Mechanized beats.
Sharp tones and dynamic changes.
Tempo is up. Mechanized beats.
Tempo is up. Chaotic passages.
Complicated layering, added effects.
Triumphant music.
Whimpering or taunting music.
Music that is familiar to a common situation in the game.

Transitions

Transitions can be defined as one or more changes occurring over a time interval. A
transition might mean an interpolation of some type of state data done over a specific
time interval. In addition, a transition might mean a new track section, musical
cadence, key change, or other compositional technique. A transition could be a com-
bination of these things.

Transitions may be triggered by a combination of game logic and music language
logic. It is useful to provide API functions for game code to directly set target states.
These types of implicit and explicit controls over transitions are another key element
of the interactive control of music.

Transition Types

Some of the many transition types are mentioned in Table 6.6.3.
The simplest way to use music interactively is to simply switch music. If we have

one composition that is considered traveling music, and one composition that is con-
sidered battle music, then when we stop traveling in the game to have a battle, the
music switches at the same time. This type of musical interactivity is very common
and very useful. We could even use a basic music sequencer to simply stop one tune
and start another. If we want our transitions between tunes to be more musical or sub-
tle, then we need more sophisticated functionality from our music sequencer. We
might want to overlap the two tunes so that one is heard to be fading off as the other
fades in. We might want to have the tunes synchronized in some way as they go
through this transition.

To use music interactively is not the same as making interactive music. This would
mean that we actually change the character of a music composition through various
control methods. What if we want to gradually switch the timbres of instruments in

Section 6 Audio Programming

Table 6.6.3 Music Transition Types

Transition Type Description

Quick
Slow
Fading
Intensity
Effects
Key
Chord
Harmony
Melody
Accompaniment
Percussion
Transposing
Layering
Fills
Rhythmic
Randomness
Instrument
Timing

Music that stomps on previous music
Subtle alterations and state changes
Fading whole sequences or just some tracks
Instrument dynamics
Any synthesis parameter changing
Compositional changes
Compositional changes
Compositional changes
Compositional changes
Compositional changes
Compositional changes
Compositional changes
Compositional changes
Enter from any beat position, push music decoration events in to a queue
Lagging, ahead, modified swing
Controlled randomness of varying parameters
Switching instruments
Switching tempo

the music to make it seem more dangerous? What if we also want to gradually change
the mix of the music to emphasize our new instrument timbres and bring up the per-
cussion? Now we are talking about interactive music. If we can design manageable
ways to control this complexity, we will have something pretty impressive.

Control Granularity

The many ways to define and control volume are a great example of the levels of gran-
ularity available for music parameters. These volume control types are listed in Table
6.6.4.

We can see that there can be many levels of control for certain audio parameters.
We might even want to group controls. It is useful to define the set of track volumes
in a sequence as a mix. We can then command a sequence to switch to a given mix
definition either immediately or gradually. We might want to externally control
something like a sequence volume to turn it down while a character is talking. In
addition, we might want to set up internal relationships such as ducking one
sequence's volume when another sequence is playing.

6.6 An Interactive Music Sequencer for Games 555

Table 6.6.4 Volume Types

Volume Controls

Master
Music
Sequence
Track

Instrument

Note

Voice

Description

Controls all audio.
The music volume controls all musical sequences.
A sequence volume can be used to do fade in or fade out or ducking.
Each track of a sequence has a volume. It is useful when creating music to be able
to define the balance between tracks and to control crescendo and decrescendo.
Instrument definitions may include volume. When defining instruments, we may
want a volume control so that the instrument can be programmed to have similar
volume range characteristics as other instruments.
The velocity parameter of a note. It is useful when creating music to have this
built-in volume control per note.
The value we pass to a particular synthesis voice. This value is determined from a
combination of the other volume types.

Target Control

When we switch any parameter, we may want to do so immediately or gradually. To
choose the gradual behavior, we set a target volume and timeframe for the transition.
Internally, the parameter is interpolated from its original level to its target level over
the given timeframe.

When audio synthesis is involved, even if you are setting immediate parameter
values, the internal synthesis behavior might actually result in a quick interpolated
transition from the original value to the "immediate" value over a short period of
time. In addition, some synthesis parameters might only allow modification before a
voice has been turned on and not while it is playing.

The abbreviated data structures for our music sequencer with new target controls
are shown in Listing 6.6.1

Listing 6.6.1 Sequencer data structures with target control
typedef list< Sequence_t * > SequencePtrListjt;
typedef list< Track_t * > TrackPtrList_t;
typedef list< Voice_t * > VoicePtrList_t;

class MusicSequencer_t {
MusicSequencerState_t State;
SequencePtrList_t ActiveSequencePtrList;
SequencePtrList_t FreeSequencePtrList ;
TrackPtrList_t ActiveTrackPtrList ;
TrackPtrl_ist_t FreeTrackPtrList;
VoicePtrList_t ActiveVoicePtrList ;
VoicePtrList_t FreeVoicePtrList;

class SequenceState_t {

556 Section 6 Audio Programming

Tempo_t Tempo;
Volume_t Volume;

};
class Sequence_t {

SequenceState_t State;
SequenceState_t TargetState; // Interactive feature
Sequencelnterpolator_t Interpolator; // Interactive feature
TimeUnit_t TimeElapsed;
TimeUnit_t TimeStep;
TrackPtrList_t TrackPtrList;

};

class TrackState_t {
Volume_t Volume;
PitchBend_t PitchBend;
Pan_t Pan;
Effect_t Effect;

};
class Track_t {

TrackState_t State;
TrackState_t TargetState; // Interactive feature
Tracklnterpolator_t Interpolator; // Interactive feature
Sequence_t *pOwner;
char *pEvent;
Instrument_t *plnstrument;
VoicePtrl_ist_t VoicePtrList;

};

Here we show new additions to our sequence and track data structures that allow
us to interpolate from our current states to new target states. The TargetState and Inter-
polator members define what the target values are and how fast to step toward them.

Design Examples

There are four important factors in the discussion of interactive music: game design,
game programming, music design, and music programming. Music programming is
influenced by the other factors in the following ways:

• Game design will influence music design.
• Music design will influence music programming.
• Game design will influence game programming.
• Game programming will influence music programming.

To point out these influences, I will describe some interactive music design examples.

Design Example #1

Game design: Through player skill, a character can achieve a powered-up state. This
state can last a very long time and a sound effect might get monotonous. We
want to hear his energy in the music.

6.6 An Interactive Musfc Sequencer for Games 557

Music design: Transition the melody and percussion track instruments to add DSP
effects that add color and depth to the instruments.

Programming design: Two sequence states are created, and the game can choose
when to set each target state.

Summary: The music responds to the player's attributes. This way, the music tells
the player how he or she is doing.

Design Example #2

Game design: When our player goes near a dangerous location in a level, we may
want to hint at that approaching danger, using the music to do so.

Music design: Fade down the main melody track and fade up die danger melody track.
Programming design: Based on distance from the location, set the track target

states for volume.
Summary: The music responds to the player's location. This way, the music tells the

player that there are new things to expect from this place.

Design Example #3

Game design: Let's say we have a game design where we change from day to night.
Assuming that the player's role is more offensive in the day and more defensive
at night, we'll want energy music during the day, and tense and scary music at
night.

Music design: To keep it simple, we will describe three tracks of the music: melody,
accompaniment, and percussion. We will define "energy," "mellow," and
"creepy" versions of each of the three tracks. Again, keeping it simple, we will
define "energy," "mellow," and "creepy" versions of each of the instruments for
each track.

We could describe our transition table like Table 6.6.5.

Stop at each column in the table and you can see a different stage of the music.
We can consider each column a keyframe for our music control parameters. We can
use the control value shown to interpolate between the keyframes.

Table 6.6.5 Day-to-Night Transitions

Game Time

Control Value
Melody Track
Melody Instrument
Accompaniment Track
Accompaniment Instrument
Percussion Track
Percussion Instrument

12noon

0.0
Energy
Energy
Energy
Energy
Energy
Energy

3pm

0.25
Energy
Mellow
Mellow
Energy
Energy
Energy

6pm

0.50
Creepy
Mellow
Mellow
Mellow
Energy
Energy

9pm

0.75
Creepy
Creepy
Mellow
Creepy
Mellow
Mellow

1 2midnight

1.0
Creepy
Creepy
Creepy
Creepy
Creepy
Creepy

558 Section 6 Audio Programming

Programming design: We generate our control value based on the game time. This
control value is used to interpolate between instrument states and track states.
Therefore, when our game time reaches 3 P.M., the melody instrument has fully
transitioned to the "mellow" state. When our game time reaches 6 P.M., the
"energy" melody track has faded down and the "creepy" melody track has faded
up.

Summary: The music responds to the game state. This way, die music tells the
player something about how to play die game, or how the game is progressing,
or what to expect next.

The Code

Building on die code presented in the basic music sequencer gem, die example code
shows how to play music that can be interactively modified to new target states.

The example code uses a cross-platform audio engine called CSyn. The CSyn
library provided on the CD-ROM is for demonstration purposes only.

Conclusion

The reasons for developing your own interactive music sequencer code are the same as
the reasons for any code development. You may want standard features across many
platforms. There may not be systems available that meet your needs. You may want
an implementation that you can optimize for delivering the particular features you
need. You may want control over your own code to provide improvements, enhance-
ments, and reliability in line with internal scheduling requirements.

In this discussion, we covered many motivations and implementation ideas for
interactive music. We presented some core programming concepts that can give us the
flexibility and control we need. We pointed out the design influences, meanings, and
transition types. The next thing to do with all of these ideas is to implement your own
interactive music sequencer and make sure interactive music is part of your game's
design.

References
CSyn audio engine, www.softsynth.com/csyn.

6.7

A Low-Level Sound API

Ian Lewis, Acclaim Studios
ilewis@acclaim.com

This gem describes a platform-independent, low-level sound API suitable for
games. This API could be a wrapper for DirectSound, OpenAL, or console-

specific APIs. A DirectSound reference implementation is provided on the CD.
The goal of the API is to provide a platform-independent, extensible API in C++.

The basic functionality must support:

• Hardware-accelerated mixing
• Software mixing and processing
• One-shot and looping sounds
• Wave caching

In addition, each feature must be extensible to support new platforms and features.

Core Classes

CWave Wraps a wave audio source. Waves are always accessed indirectly
by the output stage, so they can be cached and reused.

CWavePtr Iterator class for indirectly accessing a CWave. CWavePtr's main
function is to fill a user-supplied buffer with bytes from the wave
to which it points. CWavePtr maintains a current position and a
loop flag to make sure the bytes come from the correct place in
the wave.

The base class is fully functional, but it can be extended if
extra processing is needed. For instance, you might extend
CWavePtr to convert a 16-bit PCM input source into floating-
point data, or to convert an ADPCM-encoded source into
standard PCM. CWavePtr can also be extended to provide
platform-specific memory functions. For instance, some console
platforms contain both areas of memory that are directly CPU-
accessible, and memory areas that cannot be directly accessed by
the CPU. A CWavePtr-derived class might automatically move
memory from non-CPU-accessible to CPU-accessible RAM.

559

560 Section 6 Audio Programming

CMixer Encapsulates channel allocation and updating. Has a virtual
tick() routine that should be called once per frame. (This is
perhaps less elegant than running the mixer on a separate thread,
as DirectSound does, but threads are hardly cross-platform...
and since most threading OSs have a thread timeslice that is
greater than the length of a 60-Hz frame, threading can often
cause more problems than it solves.)

The mixer can be extended to handle various hardware
architectures. The base class mixer does not allocate any memory
for channels, since derived class mixers may want to use their
own channel implementations.

CMixer: :channel The base channel class is tightly coupled with CMixer, so it's
implemented as an inner class. Channels are responsible for
managing a CWavePtr, which is the input to that channel. The
channel class extracts data from the CWavePtr on demand, keeps
track of whether the CWavePtr is still playing or has (in the case
of one-shot sounds) finished, and deletes the CWavePtr when it
is done

The channel class can also be extended to meet varying
needs. The sample source for this article contains
implementations for a DirectSound accelerated channel and a
software-based mixer channel.

CMixer-channel also contains a virtual tick() function,
which is called from the base CMixer: :tick(). This allows
platform-specific channel implementations to perform hardware
housekeeping. For instance, the
CDirectSoundAcceleratedChannel implementation uses tick() to
apply the channel's gain and pan parameters to the hardware
buffer

CAudioBufTer Encapsulates a pointer to audio data and a length. Used to pass
data around the system.

CWaveDesc Encapsulates a platform-independent wave description. It
strongly resembles Microsoft's WAVEFORMATEX, but contains
some extra fields for platform independence.

on me co

The sample source on the CD contains implementation classes for various
DirectSound-based classes, showing how hardware acceleration, software mixing, and
DSP-style processing can be worked into the base classes. This implementation is, of
course, not optimized and is written more for readability than for performance.

APPENDIX

About the CD-ROM

The CD-ROM that accompanies this book contains a wide variety of useful informa-
tion designed to make your life easier as a game developer. Here are some of the things
that are included on the disc:

• All of the gem source code listed in the book
• Demos of many of the techniques described in the book
• The DirectX SDK
• The glSetup Monolithic version
• The OpenGL Utility Toolkit (GLUT)
• High-resolution versions of the color plates
• Links to useful and interesting game development sites

Complete installation and usage instructions are included on the CD-ROM in
the AboutThisCD.htm file. Please read this first.

Also, be sure to visit the Web site www.GameProgrammingGems.com, for more
information about the series and about game programming!

561

Index

A* algorithm, 250
pathfinding and, 315, 325
waypoints and, 315

Abstract interfaces
described and defined, 20-22
disadvantages of, 26-27
factories, 22-23
as traits, 23-26
virtual destructors, 23

Accidental complexity, 258-259
Algorithms

A* algorithm, 250, 315, 325
Bloom Filter algorithm, 133
collision detection, 228-238
combinatorial search algorithms, 354
line / line intersection, 191
Marching Cubes algorithm, 229
random number generator algorithm, 130
Recursive Dimensional Clustering (RDC), 228-238

Aliasing
bilinear filtering and, 485
"pre-jitter" technique, 485—486
shadows and aliasing problems, 484-486

Alignment, flocking rule, 330
AllocateMemoryO routine on CD, 67
"Alt-Tab" problem, 82-83
Animation

bone animation keys, 148
clouds, procedural texture generation, 463-473
mesh deformation and skin calculation, 149
projective self-shadowing techniques for characters,

421-424
simple animation scheme, 429-431
Super Mario 64 controls, 431
system time and smooth animation, 148
third-person control schemes for, 425-432
3ds max skin exporter and animation toolkit,

141-152
See also Bones

API functions, explicit DLL loading and, 36
Artificial Intelligence (AI)

accidental complexity, 258-259
architecture, 251-272

behavioral module, 266
decision making and intelligent agents, 287
distributed processing, 253
emergent behavior to avoid scripting, 255
event-driven behaviors, 251-252
flocking, 330-336
fuzzy logic, 343-350, 347
fuzzy state machines (FuSM), 337-341
game programming vs. academic research,

249-250
influence mapping, 287-297
innovations in, 256
Level-of-DetailAI,254
manager entities and centralized cooperation,

252-253
neural networks, MLPs, 351-357
pathfinding, 152, 252, 274-275
personalities and, 306, 332-333
polling, 251-252
precomputing and preprocessing, 255
problem solving shortcuts, 254
processing issues, 253-254
processing peaks, avoiding, 253
real-time strategy issues, 272-306
redundant calculations, reducing, 252
tactical decisions, 287-316
terrain reasoning, 307-316
updating data, 255-256
See also Micro-threads, AI architecture

Artificial Life by Steven Levy, 335
Audio design patterns

Big Ball of Mud (spaghetti code) audio design
pattern, 518-519

bridge audio design pattern, 514-515
command audio design pattern, 517
composite audio design pattern, 515-516
decorator audio design pattern, 517
facade audio design pattern, 515
momento audio design pattern, 518
observer audio design pattern, 518
proxy audio design pattern, 516

Audio processing pipelines, interactive, 529-538
backfill buffers in, 534-537

563

564 Index

Audio programming
audio design patterns, 514-520
Digital Signal Processing (DSP) techniques,

525-528
interactive processing pipeline for digital audio,

529-538
low-level sound API, 559-560
music sequencers, 539-558
sample-based synthesizer for voices, 521-524

Audio systems
described, 529-531
schematic illustration of, 530

Authors, bios and contact information for, xix-xxxfi
Avoidance, flocking rule, 330
Axis-aligned bounding box (AABB) tree structures

building AABB trees, 390
compressing AABB trees, 390-391
described, 388
extent value approximation, 391
redundancy in, 392
resources required, runtime costs, 393

Axis-aligned bounding boxes, 389

Backfill buffers for underflow data, 534-537
Band-limited noise, 466
Behavioral classes, 53

hierarchy for, 54-55
Behaviors

active behaviors and brain classes, 267
AI design and, 265-268
behavioral module example, 266
Combs method and fuzzy logic for, 342-350
emergent behaviors, 255, 332-333
event-driven behaviors for AI optimization, 251-252
flocking, 330-336
Template Method pattern for assigning, 55

Binary space partitioning (BSP) trees, 388
Bit maps and bit mapping, fast bit blitter for, 92-99
Blitters, 92-99
Bloom, Burton H., 133
Bloom Filters, 133-140

definitions related to, 134-135
described, 134
exceptions lists and, 139-140
flow chart illustrated, 136
tuning, 135-138
use fundamentals, 137

Blurring
See under Influence maps

Bones
bone animation keys, 148
bone assignments, 150-151
position and rotation of, 148-149

segmenting character geometry and, 421—422
weighting, 146-148

Boolean values, text parsers, 115
Bottlenecks, profiling module for identifying, 74-79
Bounding volume trees, 389
Bounds violations, defined and described, 69
Brains

brain classes, 267-269
brain queues and cyclic commands, 274-278

Bridge audio design pattern, 514-515
BSP (binary space partitioning) trees, 388
Buffers

backfill buffers for underflow data, 534-537
index buffers, 372-375, 378-379
priority buffers vs. depth buffers, 483
priority buffers described, 483
priority buffers used for shadows, 481-487

Bugs and debugging
abstract interfaces and, 26
code bloat and, 11
deprecated functions and, 63
drop-in debug memory manager, 66-73
OutputDebugString (), Windows NT, 263
reproducing bugs, 105-106
structured exception handling and micro-threads,

263

C++
deprecation facilities for, 62-65
exporting classes from DLLs, 28-32
implicit linking support in, 33-34
optimization techniques, 5-15
property class for generic member access, 46-50
recursive searching, 89-90
stack winding and, 88-90

Cache misses, 18
Callbacks, 545, 547-549
Camera cuts, 220, 225-226
Cameras

camera cuts, 220, 225-226
flythrough paths for, 220-227
free-floating cameras, 425
impostoring and camera distance, 494
lens-flare effects, 474-480
orientation interpolation, 222-223
position interpolation, 220-222
web cameras, 153-162

Cartoon rendering
programmable vertex shaders and, 444-451
silhouette edge detection and, 436-443
texture mapping and, 444-451

Caustics, simulating water in a fish tank, 402-405
Cellular automata, 506-508

Index 565

Child classes, data 43-44
Ciphers as mixing functions, 129
Classes

exporting from DLLs, 28-30
See also Specific classes

Class member functions, exporting from DLLs, 30-31
Closed-form equations, used to calculate nearest points

on lines, 194-198
Clouds

additional features for procedural clouds, 470-471
characteristics of, 463-464
FBM fractals used to create, 245
mapping to skyplane, 469-470
procedural cloud generation, 463-473
random number generation and, 464-465
scalability of procedural generation techniques,

471-472
"vapor" creation, 469

Clutter. See Impostors
Code bloat, 11-12

accidental complexity in AI, 258-259
inline functions and, 18

Cohesion, flocking rule, 330
Collision detection

altitude relative to collision plane, 182-183
brute-force comparison algorithm for, 228
distance to collision point, 184-185
finding pairs with RDC, 234-235
kickback collisions, 187-188
line / line intersections, 191-204
location of collision point, 183-184
Recursive Dimensional Clustering (RDC), 228-238
reflected vectors (bounces), 185-187
vector / plane intersections, 182-190
See also Collisions

Collisions
with damping, 188-190
pathfinding and, 317-323
sphere-to-plane collisions, 189-190
See also Collision detection

Collision shapes, selecting, 318-321
Combs, William, 343
Combs Method for managing exponential growth,

343-349
proof for, 348-349

COM interface search, alternatives to, 46-50
Command audio design pattern, 517
Command queues, audio design and, 517
Composite audio design pattern, 515-516
Computation, history and development of, 165-166
Constructors

explicit vs. implicit, 8
optimization and, 7-8

Control schemes
camera-oriented controls, 425
character rotation and input, 427—428
converting player's input for third-person control

systems, 425-427
dampening formula for smooth character control,

427-428
simple animation scheme, 429-431
third-person control of animated characters,

425-432
Convolution, 526-527
Conway, John, 506
Core editor modules, generic, 46—50
Cosine functions, lookup tables for, 174-175
Cramer's rule, 196-197
Creational dependencies, 302-304
Cryptographic hashes as mixing functions, 129
Cube environment mapping, 419
Cubemap normalization, 459-460
Cubic interpolation, DSP techniques, 528
Culling, sphere trees for, 384-387
Cycle counters, 180

Dampening formula for smooth character control,
427-^28

Databases
game save databases and persistent type information,

44
tweakable instance database, 123-124

Data files, preprocessing, 113-114
DeAllocateMemoryO routine on CD, 67
Debugging. See Bugs and debugging
Decals

algorithm for, 41 I^il3
on complex surfaces, 411-415
defined, 411
triangle clipping and, 413-414

Decorator audio design pattern, 517
Dependency

creational dependencies, 302-304
and resource allocation trees, 302-304
vulnerable dependencies, 304-305

DEPRECATE macro, 64-65
Deprecation

adding facilities to C++, 62-65
implementation of, 64-65

Desirability values, 290-292
Destructors, virtual destructors in abstract interfaces,

23
Determinism

defined, 105
random numbers and, 109
See also Predictability

566 Index

Digital Signal Processing (DSP)
convolution, 526-527
cubic interpolation, DSP techniques, 528
delays, 527
filtering technique, 525-526
interactive audio processing pipeline, 529-538
interpolation, 528
linear interpolation, DSP techniques, 528
reverberation effects, 527
sample averaging, DSP interpolation, 528
sample doubling, DSP interpolation, 528

Digital Signal Processing (DSP) techniques, 525-528
DirectX, DLLs and required components, 34—36
DLLs. See Dynamic Link Libraries (DLLs)
Dot3 Bump mapping, 456—459
Drop-in debug memory manager

logging, 68-70
memory allocation and deallocation routines, 67-68
reports from, 70-71

Dynamic_cast operator, 42
Dynamic Link Libraries (DLLs)

API functions, 36
class member functions, exporting, 30-31
Direct X components and, 34-36
explicit vs. implicit linking and, 33-34
exporting C++ classes from, 28-32
FreeLibrary, 34
GetProcAddress, 34-36, 37
LoadLibrary, 34, 37
memory-tracking programs and, 29
OS specific features, 36-37
virtual class member functions, exporting, 31-32

Dynamic type information (DTI) class
described, 38-39
exposing and querying, 39-40
generic objects and, 41-43
inheritance and IsA function, 40-41

Economic systems, resource allocation trees and, 302,
304

Edge collapse, binned vertices, 365
Edge detection, 502

silhouette edge detection and rendering, 436—443
Edge split, defined, 365
Efficiency. See Optimization
Emergent behaviors, 255, 332-333
Encryption, 104
Entities

death of entities, AI management strategies, 269-270
Entity class and subclass, 54-55
entity managers and cooperation among AI agents,

252-253
runtime strategies for, 58-60

Exception lists, 139-140
Exponential growth, Combs Method to manage,

343-349
Exported classes, 50, 56-57

Facade audio design pattern, 515
Factories

defined and described, 57-58
Entity factories, 57
game entity factory, 51-61

Factories, abstract interfaces and, 22-23
FBM (fractal brownian motion) fractals. See Fractal

brownian motion (FBM) fractals
Fibers, cooperatively multi-tasking threads, 260
File lump structure, 101
Files, management using resource files, 100-104
Filters and filtering

bilinear filtering and aliasing, 485
Bloom Filters, 133-140
Finite Impulse Response (FIR) filters, 525-526
texture filtering, 418, 479

Finite Impulse Response (FIR) filters, 525-526
Fish tanks, simulating refraction effects in, 402-405

clip planes and stencil buffer, 404-405
precomputations, 403
scale factor for tank, 403—404
shear factor for tank, 404

Fixed Up method vs. parallel transport frames, 218
Floating-point numbers

absolute values, 174
arbitrary functions, 177-179
clamping values to a specific range, 173—174
defined, 167
float/int conversions, 169-172
IEEE floating-point format, 168-169
initial state variations and, 108
integer comparisons, 173
Intel architecture and, 261
linear quantization, 178
logarithmic quantization, 178-179
performance measurement after optimization, 180
propagated influence values and, 293
sign test for, 172
square root optimization and, 176-177
text parsers, 115

Floats. See Floating-point numbers
Flocking, 330-336

boids, varieties of, 332-333
rules of, 330-331

Flocking with Teeth demo, 334
Flythrough paths

natural cubic splines and, 221-222
quaternion-based flythrough paths, 220-227

Index 567

Flyweight classes, 53
Flyweight objects

described, 52
State And Media Manager (SAMMy), 52-54

Fog-of-War (FOW)
defined, 280
visibility and, 279

Formats
fast bit blitter for conversion of, 92-99
MRC file format for exporting, 142-143

Fractal brownian motion (FBM) fractals
clouds created with, 245
described, 241-242
landscapes created with, 245
noise generator implementation, 242-245
turbulent noise function, 467

Fractals
defined, 239
fault fractals, 240-241
multifractals, 244-245
plasma fractals, 240
programming, 239-246
terrain creation, 239, 246
See also Fractal brownian motion (FBM) fractals

FreeQ, 9
FreeLibrary, 34
Free lists, memory management and, 9
Frenet Frames vs. parallel transport frames, 217-218
Function pointers, used within C++ classes, 59—60
Functions

chaining and TempRet routine, 86-87
deprecated functions, 62-65
exporting from DLLs, 28

Fuzzy logic
combinatorial explosions and, 342-350
Combs Method and, 343, 348-349
Combs Method rules for, 344-348
defined, 337
sets in, 342
traditional rules for, 343-344
variables in, 342

Fuzzy state machines (FuSM), 337-341
adapting generic FSMs, 339-341
increasing gameplay with, 338-339
uses in games, 339

Game engines
data-driven development, 51-61
GPU / CPU parallelism, 475
input recording and, 105-111

"Game of Life," 506-508
Gaussian elimination, 196-197
GenRandQ, 131-132

Geometry management of 3D models
axis-aligned bounding box (AABB) trees and,

388-393
cube environment mapping, 419
decals on complex surface, 411-415
projective self-shadowing techniques, 421-424
quadtree lookup, direct access, 394—401
segmenting character geometry, 421-422
skyboxes and distant scenery, 416-420
sphere trees and, 384-387
terrain creation with interlocking tiles, 377-383
VIPM methods, comparison of, 363-376

GetProcAddress function, 34
Graphical User Interfaces (GUIs), tweaker interface

GUI, 124-125
Graphics display

hardware accelerated procedural texture animation
and, 497-509

hardware limitations and, 508
impostoring, 488^496
lens flare using texture masking, 474-480
per-pixel lighting techniques, 452—462
pipeline stalls, 475-477
print-resolution of screenshots, 406-410
silhouette edge detection and rendering, 436-443
texture mapping and programmable vertex shaders,

444-451
/GR switch, 42
GUIDs, text parsers, 116

Handles, used in proxy audio design, 516
Hardware

cloud generation with, 463-473
disadvantages when used for procedural textures, 471
procedural rexture animation and, 497-509
rendering print-resolution screenshots with, 406-410
as source for random numbers, 129

Hashing functions, 129, 134
Hash Table template, 48
Header files, 101-102, 113-114
Height advantage, as tactical assessment factor, 296
Herding. See Flocking
Hierarchies

Behavior class hierarchy, 54-55
of C++ classes, method for describing, 51-61

IEEE floating-point format, 168-169
Impostors

billboard quad rendering, 490
bounding object rendering, 491-492
camera distance and updates, 494
cuboid rendering, 490-491
described, 488

568 Index

Impostors (cont.)
game-specific updates, 494
image warping and, 492
lighting and updates, 494
prediction of impostor states, 495
rendering, 489-493
update heuristics, 493-494
uses of, 495-496
viewing angles and updates, 494

Increment functions, optimization and, 7
Index buffers

in sliding window VIPM, 372-375
as tile templates, 378-379, 380

Influence maps
AI optimizations, 256
cell data types, 289-290
cell size, determining optimal, 292
described, 287-289
desirability values, 290-292
falloff rules, 292-293
influence propagation (smoothing or blurring),

292-293
refreshing influence maps, 295-296
terrain and impacts on, 293-297
in 3D environments, 296

Inheritance
abstract interfaces as traits and, 23-26
IsA function and dynamic type information (DTI)

class, 40-41
multiple inheritance, 45

Initializer lists, 6-7
Inking for nonphotorealistic rendering

advanced texture features and inking, 442
edge-based inking, 438-440
inking described, 436-437
programmable vertex shader inking, 440-442

Inline functions, 11-12
advantages of, 16-18
code bloat and, 18
vs. macros, 16-19
parameter types and, 18

Inline keywords, Microsoft specific keywords, 19
Inlining. See Inline functions
Input recording

bug reproduction with, 105-106
game movie creation, 107
measuring optimization with, 107
multiplayer uses of, 107, 110
predictability and, 107-108
replaying interesting games, 106
testing techniques for, 110
uses of, 105-107

Inputs

converting player's input for third-person control
systems, 425-427

random number generators and, 128-129
Instruction pointers, 260-261
Integers

integer / float conversions, 169-172
text parsers, 115

Interaction
interactive audio processing pipeline, 529-538
interactive music sequencer, 551-558
web-cams for multiplayer games, 153

Interface functions, deprecation facilities and, 62-65
Interpolation

cubemap normalizer to correct problems, 459-460
defined, 527
DSP and linear interpolation, 528
spline interpolation technique, 224-225
vectors across line or plane, 189

Intersections, techniques for calculating, 191-204
IsA function, dynamic type information (DTI) class

and inheritance, 40—41

K-d trees, 388
Keywords, text parsers, 115

Landscapes. See Terrain
Lazy evaluation, 254
Lens flares

asynchronous readback of buffer data, 480
geometry-based approaches, 480
hardware issues, 475-477
occlusion, 474
texture masking demo, 479—480
texture masking for, 474, 477-478

Level-of-Detail (LOD)
AI optimization, 254
tile landscapes and determination of detail, 380

Levy, Steven, author of Artificial Life, 335
Lights and lighting

code for 3D lightmap with quadratic falloff,
453-455

Dot3 Bump mapping, 456—459
impostoring and, 494
light maps, 452-459
per-pixel spotlights, 460-461
per-pixel techniques, 452—462
See also Shadows

Linear programming
"Alt-Tab" problem in multitasking, 82-83
multithreading, 81-84
surfaces, video memory and loss of information,

83-84
for Windows-based games, 80-84

Index 569

Linear quantization and floating-point numbers, 178
Line-of-Sight (LOS)

defined, 280
LOS radius defined, 280
LOS search systems, 279-286
templates, 281-283

Lines and line segments
degenerate lines, 198-199
finite line segments, 200-203
intersection calculation, 191-204
nearest points calculated with closed-form solution

equations, 194-200
nearest points on finite segments, 200-202
parallel lines, 199, 201-202

Linking, explicit vs. implicit, 33-34
LoadLibrary function, 34
Locations

tactical analysis of, 309-310, 315
terrain reasoning for 3D games, 307-316

Logarithmic quantization and floating-point numbers,
178

Logs and logging
audio system activity and, 519
memory manager logging, 68-70

Lookup tables, for trig functions, 174-176
Loops, object construction and, 6
LOS. See Line-of-Sight (LOS)

Macros
DEPRECA TE macro, 64-65
vs. inline functions, 16-19
state machines created with, 19

MallocQ, 9, 67-68
Maps

combined visibility maps, 283-286
cubemap normalizer to correct interpolation

problems, 459-460
Dot3 Bump mapping, 456-459
height maps, 503-504
interlocking landscape tiles and height maps,

379-380
lightmapping, 3D textures, 452—459
player visibility maps, 281-282
shadow maps, 422

MAX. See 3ds max skin exporter and animation toolkit
MemcpyO, 13
Memory

AABB tree optimizations, 388-393
bounds violations, 69
code bloat and, 11-12
drop-in debug memory manager, 66-73
fragmentation and Standard Template Library

(STL), 13-14

freeO, 9, 67-68
inline functions and, 18
leaks, 70-71
managing for optimization, 9
memcpyO, 13
memory tracking, 29, 66-73
MFC's memory manager, 72
procedural textures to spare, 497
Standard Template Library and, 12—14
VIPM memory costs, 363-364
See also Memory allocation

Memory allocation
allocating for stacks, 262
alternatives to mallocQ, callocQ, reallocQ, andfrecQ,

67-68
mallocO, 9, 67-68
web camera allocation, 155-156

Memory managers, drop-in debug memory manager,
66-73

Meshes
deformation and skin calculations, 149
exporting to file, 149-150
Real-Time Optimally Adapting Meshes (ROAM),

377-378
resolution defined, 365
View Dependent Progressive Meshes (VDPM),

377-378
View-Independent Progressive Meshing (VIPM),

363-376
Message pumps, alternatives to, 80-84
Metaball clusters, RDC algorithm and Marching Cubes

algorithm, 229
MFC, new and delete operators in, 72
Micro-threads, AI architecture

"brains" to run, 267-268
loading and saving, 263
stack management, 262
state machine coding and, 265-266
structured exception handling, 263
switching between threads, 260-262
troubleshooting, complications, 263

MIDI (Musical Instrument Digital Interface),
541-543

Minkowski sums, 319-322
"lazy man's Minkowski sum," 321-322

Mirages, 286
Mixing functions and randomness, 129
MLPs. See Multiplayer perceptrons (MLPs)
Modules

file management using resources files, 102-104
game profiling, 74-79
memory-tracking module, 66-73

Momento audio design pattern, 518

570 Index

Motion
forward motion and animation, 428—429
parallel transport frames for orienting moving

objects, 216-217
Motion detection, web cameras and, 157-158
Movies, input recording to create game movies, 107
MRC file format, 142-143
Multiplayer games

input recording and, 107, 110
web-cam interaction for, 153

Multiplayer perceptrons (MLPs)
collecting data for, 354-355
described, 351-353
input selection and training, 353-354
perturbation searches and, 355-356
resources required for, 356-357
training, 353-354, 355-356

Multitasking in games, 82-83
Multithreading, 81-84
Music

associations with, 551-552
basic music sequencer, 539-550
callbacks, 545, 547-549
control granularity, 554-555
event blocks, 540-541
event data structures, 546-547
meanings of, 552-553
MIDI (Musical Instrument Digital Interface),

541-543
modifications, 544
note control, 544
sequencer data structures, 545-546
sequencer implementation, 543-549
sequencing methods, 539-540
streaming method, 539-540
synthesizer / sequencer connection, 549-550
timing calculations, 548-549
transitions in, 553-554
volume control, 554-555

Musical Instrument Digital Interface (MIDI), 541-543
Music design, factors for interactive music, 556-558

Nearest-point calculation, closed-form equations for,
194-198

Neural networks, multiplayer perceptrons (MLPs),
351-357

Nodes, export routines and, 144-145
Noise

animating an octave of noise, 466-468
band-limited noise, 466
fractals and pink noise, 241-242
Perlin noise, 466
turbulent noise creation, 467—468

Nonphotorealistic rendering (NPR)
inking for cartoon rendering, 436-443
painting for cartoon rendering, 444—451

Nvidia's Developer Web site, 509

Objects
construction and destruction of, 5-8
generic member access, 46-50
generic objects, 41-43
orientation of moving objects, 215-219
preallocation and caching of, 8
RDC algorithm to find groups, 229

Observer audio design pattern, 518
Obstacles, defined, 331
Octrees, 388

vs. sphere trees, 385
OpenGL, texture wrapping settings for skyboxes, 418
Operators

optimization and return by value, 7
text parsers, 115

Optimization
Artificial Intelligence strategies, 251—257
for C++ games, 5-15
code size and, 11-12
constructors and, 7-8
event-driven behaviors vs. polling, 251-252
impostoring and render targets, 494-495
increment functions and, 7
initializer lists, 6-7
LOS templates for player visibility systems, 281-283
manager entities to centralize cooperation, 252-253
measuring with input recording, 106
memory management techniques for, 9
memory usage, 66-73
object construction and destruction, 5-8
object preallocation and caching, 8
operators, 7
of points-of-visibility pathfinding, 324—329
profiling for, 5
quadtree access routines, 394-401
redundant calculations, 252
Standard Template Library and, 12-14
templates and, 14
trigonometric functions and, 213-214
virtual functions and, 9—11

OS threads, 260

Page faults, 18
Painting for nonphotorealistic rendering

computing Toon texture coordinates, 438—440,
446-448

painting described, 444-445
programmable vertex shaders, 448-450

Index 571

Parallax values, 492-493
Parallel transport frames

calculation of, 215-216
vs. Fixed Up method, 218
vs. Frenet Frames, 217-218
used to orient objects, 215-219

Parameter types, inline functions and, 18
Parser class of parsing system, 114-116
Passability, as tactical assessment factor, 296
Pathfinding

AI pathfinding, 152, 274-275
collisions and, 317-323
distributed processing for optimization, 253-254
hierarchical on-demand pathfinding, 254—255
precomputing propagated influence values, 294—295
redundant computations and, 252
tile-based pathfinding, 325
waypoint queuing and, 274-275
See also Points-of-visibility pathfinding

Paths
quaternion-based flythrough paths, 220-227
See also Trajectories

Patrolling, command queuing in RTS, 275-278
Pauses, in audio design, 518
Performance

Bloom Filter to improve, 133-140
commercially available tools for tuning, 75
cycle counters, 180
floating-point numbers and, 167-181
measuring, 180
profiling module, 74-79
searching systems for tile-based games, 279
tuning with commercially available tools, 75
See also Optimization

Per-pixel spotlights, 460-461
Persistent type information, 43-44
Personality, creating in AI, 306, 332-333
Perturbation searches, 355-356
Players

defined, 280
personalities for AI players, 306

Player visibility systems, 279-286
combined visibility maps, 283-286
LOS templates, 281-283
maps, 281-286
mirages, 286
player visibility maps, 281-282

Pointers
function pointers used within C++ classes, 59-60
instruction pointers, 260-261
smart pointer systems, 269
stack pointers, 260-261
tracking pointers, 271

Points-of-visibility pathfinding
collision models for, 318
collision shape selection, 322-323
expanded geometry for, 317-323
Minkowski sums of polygons, 319-322
optimization of, 324-329
silhouette points and, 325-326
silhouette zones and, 327-329
spatial partitioning, 329
vs. tile-based pathfinding, 325

Polygonal pathfinding. See Points-of-visibility
pathfinding

Postincrement functions, 7
Precalculating. See Preprocessing
Precomputing. See Preprocessing
Predators and Prey flocking demo, 330-336
Predictability, 105

genuine randomness and, 127—128
initial state predictability, 108
inputs and, 109-110
protecting game predictability, 107-108
pseudo-random numbers and, 127
random numbers, 109

Preincrement functions, 7
Preprocessing

AI optimization and, 255
of data files, 113-114
influence maps, 293—297
propagated influence values, 294-295
segmenting character geometry, 421-422

Print resolution of screen shots, 406-410
algorithm for, 406-409

Probability, strategic inference using dependency
graphs, 305

Procedural textures
cloud generation, 463-473
dependent texture addressing, 505-506
hardware accelerated animations, 497-509
height-field water as, 501-503
neighbor sampling and, 498-504
sampling methods, 485-504
scalability of, 471-472

Profiling modules
architecture, 76-77
basic mechanisms for, 74-75
built-in game profiling module, 74-79
data analysis, 78
implementation, 78-79
performance counter manager (IPerfCounterMan),

76
Projective shadowing techniques, 421—424
Properties, alternatives to Borland's proprietary, 46-50
Proxy audio design pattern, 516

572 Index

Pseudo-random numbers
cloud generation and, 464-465
pseudorandomness described, 127
pseudo-random number generators, 109, 465
simple pseudo-random number generator code, 465

Quadtrees
access routine optimization, 394-401
vs. sphere trees, 385

Quadtrees, direct access lookup
conditions and requirements, 395-396
level determination, 396-398, 401
location of target node, 399
traversing, 399
tuning, 399-400

Quaternions
flythrough paths and, 220-227
as orientation data, 222-223
selective negation to preprocess, 220, 223-224
singularity in rational mapping, 225
spline interpolation technique, 224-225

RAM-code. See Self-modifying code
Rand() function, alternatives to, 109
Random number generation

implementation of, 130-131
noise generation using, 242-244
procedural cloud generation and, 464-465
speed limitations of process, 129-130

Random numbers and randomness, 109
hardware as source, 129
mixing functions and, 129
random number generators, 127-132

Ray tracing , sphere trees for, 384-387
Real-Time Optimally Adapting Meshes (ROAM),

377-378
Real-time strategy (RTS) games

command queuing for, 273-278
commands for, 273
cyclic commands (patrolling example), 275-278
Line-of-Sight searching systems for, 279-286
waypoint queuing and pathfinding, 274-275

Recursive Dimensional Clustering (RDC), 228-238
pseudocode for RDC algorithm, 235-236
recursion and time complexity, 236-237
steps for, 232, 234

Reflections, 405
Refraction, simulating refraction effects, 402—405
Replays, input recording to replay interesting games,

106
Resource allocation trees, 298-300

current resource allocation, determining, 300-301
dependency graphs, 302-304

desired resource allocation, calculating, 300
measuring values in branches of, 302
personality creation and, 306
strategic decision making, 301-302

Resource files
defined and described, 100
implementation of modules, 102-104
resource system design, 101-102
used for file management, 100-104

RTS. See Real-time strategy games (RTS)
RTTI. See Runtime type information (RTTI)
Runtime type identification (RTTI)

Component Object Model (COM) as alternative to,
24

Runtime type information (RTTI)
code bloat and, 12
optimization, 14
RTTI typeidO, 125-126

Screen shots, print resolution, 406-410
Scripting

alternatives to, 51-60
emergent behaviors as alternative to, 255
micro-threads and scripting languages, 264

Searches
COM interface searches, alternatives to, 46—50
perturbation searches, 355-356
quadtree search implementation code, 400
recursive searching and C++, 89-90
sphere trees for range searching, 384-387
tile-based game search systems, 279-286

Self-modifying code
defined and described, 91-92
fast bit blitter example, 92-99

Self-shadowing
aliasing problems and, 484-486
hybrid approaches, 486-487
with projective textures, 421-424

Separation, flocking rule, 330
Sequencers, music

basic music sequencer, 539-550
interactive sequencer, 551-558
target controls, 555-556

Shadow maps, 421-424
Shadows

aliasing problems, 484-486
brute-force rendering, 423
cast by procedural clouds, 470
hybrid approaches for, 486—487
inter-object shadows, 486-487
priority buffer shadows, 481^487
real-time techniques compared, 481-482
self-shadowing, 421-424, 484-487

Index 573

shadow maps, 421-424
SICLump module, 102-103
SICResourceFile module, 103-104
Sign test (positive / negative) for floating-point

numbers, 172
Silhouette edge detection (SED)

advanced texture features and inking, 442
boundary edges, 437-438
crease edges, 437-438
edge-based inking, 438-440
inking described, 436-437
programmable vertex shader inking, 440—442

Silhouette points and zones, pathfinding, 325-329
Sine functions, lookup tables for, 174—175
Skeletal representations. See Bones
Skip strips VIPM method described, 368-370

mixed-mode skip strips, 372
multilevel skip strips, 369-370

Skyboxes
alternatives to, 419
described, 416
rendering, 418
rendering distant scenery with, 416-420
resolution, 416-417
size, calculating maximum, 418
textures for, 419

Skyplanes, mapping procedural clouds to, 469-470
Smoothing.

See under Influence maps
Sorting methods, hierarchical, 388-389
Sound

abstract interface to create sound system, 20-22
ambient sound, 516
defined, 522
echoes, 527
low-level sound API, 559-560
predictability and playback, 108
reverberation effects, 527
sample-based synthesizer to reuse voices, 521-524
speech systems and command queuing, 517
troubleshooting, 519
volume controls, 554-555
See also Audio design patterns; Audio programming;

Music
Spatial partitioning, used with silhouette zones, 329
Speech systems and command queuing, 517
Speed. See Optimization
Sphere trees, 384-387

bounding spheres, 384—385
demo and algorithm, 385-387
uses of, 385

Splines
natural cubic splines and flythrough paths, 221-222

open vs. closed, 221-222
Spotlights, per-pixel, 460-461
Sprites. See Impostors
Square roots, logarithmic optimization of, 176-177
SrandQ, 109
Stack pointers, 260-261
Stacks

copying, 262
stack management and micro-threads, 262
stack winding, 85-90

Stack winding, 85-90
recursion and, 89-90
temporary return routine, 85-86
thunking and, 88-89

Standard Template Library (STL)
memory fragmentation, 13-14
optimization and, 12-14

State And Media Manager (SAMMy), 52-54
State machines

creating with macros, 19
See also Micro-threads, AI architecture

Status functions in audio design, 519
Strategic assessment techniques, 298-306

resource allocation trees, 298-300
Strategic decision making

and resource allocation trees, 301-302
strategic inference, 305

Strategy games
Line-of-Sight searching systems for, 279-286
strategic assessment techniques, 298-306

Streaming vs. sequencing method for music, 539-540
Strings, text parsers, 115
Structured exception handling (Win 32), 263
Super Mario 64, third-person control scheme, 425-432

animation analyzed, 431
Surfaces, loss of surface information, 83-84
Survival, flocking rule, 331
SwapThreads () routine, 261
Swarming. See Flocking
Syntax errors, memory tracking and, 71

Tactical analysis and assessment
height advantage, 296
of locations, 309-310
tactical analysis of locations, 309-310
tactical values, converting to waypoint properties,

310
visibility, 296-297

Target identification, Line-of-Sight systems, 279-286
Template Method pattern, 55
Templates, optimization and, 14
Template specialization, type information provided

using, 120-121

574 Index

Terrain
fractals to create realistic landscapes, 239, 246
influence maps and, 293—297
interlocking tiles method, 377- 383
reasoning for 3D games, 307-316
skyboxes for rendering distant scenery, 416—420
See also Terrain reasoning

Terrain reasoning
computing waypoint properties, 310-313
resources required for algorithm, 314—315
waypoints, 308-309

Text files
advantages and disadvantages, 112
parsing systems, 112-117

Text parsers, 112-117
Boolean values, 115
floating-point numbers, 115
GUIDs, 116
integers, 115
keywords, 115
operators, 115
Parser class, 116
strings, 115
Token class, 114-115
TokenFile class, 116
TokenList class, 116
variables, 115

Texture filtering, 479
to reduce stretching, 418

Textures
dependent texture reads, 497
filtering to reduce stretching, 418
four-sample texture sampling, 497-498
green-blue texture addressing, 497—498, 505-506
self-shadowing with projective textures, 421—424
for skyboxes, 419
3D textures for light mapping, 452-459
uploading web-cam data, 160-161
See also Procedural textures

Threads
fibers (multi-tasking threads), 260
OS threads, 160
See also Micro-threads, AI architecture

3ds max skin exporter and animation toolkit
bone animation keys, 148
bone structure and hierarchy, 146
bone weighting (influence values), 146—148
mesh data and, 145-146
MRC file format for exporting, 142-143
nodes and, 144-145
steps to use, 148-149

Thunks and thunking, defined and described, 88

Tile-based games, Line-of-Sight searching systems for,
279-286

Tiles
defined, 280
searching systems for tile-based games, 279
tile-based pathfinding, 325
See also Tiles, interlocking landscape

Tiles, interlocking landscape
detail levels for, 380-382
and height maps, 379-380
linking pieces explained, 381-382
rendering method for, 382

Time
position and velocity as function of, 206-207
smooth animation and, 148
time complexity and RDC, 236-237

Timers, for AI agents, 253
Token class of parsing system, 114-116
TokenFiles class of parsing system, 117
TokenList class of parsing system, 116
Tools, 3-4

object creation tools, 51-61
performance tuning, commercially available, 75
profiling module, 74-79

Tracks, audio, defined, 543
Trajectories

angles of elevation and, 207-210
flight time calculations, 212
gravity's influence, 205-206
initial velocity, 210-211
inverse trajectory determination, 205-214
maximum height calculations, 211—212
multiple variables and, 212-213
time, position and velocity as function of, 206-207

Transparency, exported classes and, 56-57
Trigonometric functions

lookup tables for, 174-176
optimizations and, 213-214

Troubleshooting
audio design, 519
memory tracking programs, 29
voices in synthesizers, 521-524

TweakableBase_c class, 121-122
Tuieaker_c class, 122-123
TweakerInstanceDB_c class, 123
Tweaker interface, 118-126

classes, schematic illustrating, 119
design, 118
type information for, 120-121

Type information code of tweaker interface, 125
Types

defined and described, 38
dynamic type information (DTI) class, 38-43

Index 575

dynamic types in audio design, 518
persistent type information, 43-44

Updates
Artificial Intelligence (AI) data updates, 255-256
audio frame and intervals, 547
motion detection to avoid unnecessary, 157-158
tweaking update rates, 494
update heuristics for impostors, 493-494

UpdateWoM function, 80-81

Values
absolute values, 174
clamping to a specific range, 173-174
floating-point number tricks, 173-174
tactical values, converting to waypoint properties,

310
Variables

abstract variables as MLP inputs, 354
fuzzy variables, 342
influence maps to track, 289-290
text parsers, 115
tweaking, 118-126

Vectors
damped reflection vectors, 188-190
interpolating across line or plane, 189
in MAX, 145
reflected off collision planes, 185-188
Standard Template Library vectors, 12-13

Vertex-cache coherency, 364, 375
Vertices, binned vertices, 365
View Dependent Progressive Meshes (VDPM),

377-378
View-Independent Progressive Meshing (VIPM)

comparison of methods, 376
mixed-mode method described, 365-368
resources required for, 363-364
skip strips method described, 368-370
sliding window method described, 372-375
vanilla method described, 365-368

Virtual class member functions, exporting from DLLs,
31-32

Virtual functions, 9-11
Visibility

as tactical assessment factor, 296-297
See also Player visibility systems

Voices, defined, 543
Voices, sample-based synthesizers to reuse, 521-524
Vulnerability, as tactical assessment factor, 296

Water
height-field water as procedural texture, 501-503
simulating refraction in a fish tank, 402—4:05

Waypoints, 308
A* pathfinding and, 315
uses of waypoint-based reasoning, 315
waypoint properties, 310-313

Web addresses
artificial intelligence sites, 336
for authors, xix—xxxii
CSyn audio engine, 558
flocking and steering behaviors, 335
Nvidia's Developer site, 509
Squid web-caching program, 140

Web cameras
BGR pixels, 158
capture window initialization, 153—158
cartoon-like images, 159-160
data manipulation, 158-162
data retrieval, 156
destroying windows, 161-162
grayscale conversion, 159
memory allocation for, 155-156
motion detection, 157-158
in multi-player games, 153
textures, uploading, 160-161

Weighting
bones, 146-148
mesh deformation and, 149

World, defined for tile-based games, 280

	Section 1 General Programming
	1.1 Optimization for C++ Games
	1.2 Inline Functions Versus Macros
	1.3 Programming with
 Abstract Interfaces
	1.4 Exporting C++ Classes from DLLs
	1.5 Protect Yourself from DLL Hell
and Missing OS Functions
	1.6 Dynamic Type Information
	1.7 A Property Class for Generic
C++ Member Access
	1.8 A Game Entity Factory
	1.9 Adding Deprecation Facilities
 to C++
	1.10 A Drop-in Debug Memory
Manager
	1.11 A Built-in Game Profiling Module
	1.12 Linear Programming Model for
Windows-based Games
	1.13 Stack Winding
	1.14 Self-Modifying Code
	1.15 File Management Using
Resource Files
	1.16 Game Input Recording and
 Playback
	1.17 A Flexible Text Parsing System
	1.18 A Generic Tweaker
	1.19 Genuine Random Number
 Generation
	1.20 Using Bloom Filters to
Improve Computational
 Performance
	1.21 3ds max Skin Exporter and
Animation Toolkit
	1.22 Using Web Cameras in
Video Games

	Section 2 Mathematics
	2.1 Floating-Point Tricks:
Improving Performance with
 IEEE Floating Point
	2.2 Vector and Plane Tricks
	2.3 Fast, Robust Intersection of
 3D Line Segments
	2.4 Inverse Trajectory
 Determination
	2.5 The Parallel Transport Frame
	2.6 Smooth C2 Quaternion-based
 Flythrough Paths
	2.7 Recursive Dimensional
Clustering: A Fast Algorithm
for Collision Detection
	2.8 Programming Fractals

	Section 3 Artificial Intelligence
	3.1 Strategies for Optimizing Al
	3.2 Micro-Threads for Game
 Object Al
	3.3 Managing Al with Micro-
Threads
	3.4 An Architecture for RTS
 Command Queuing
	3.5 A High-Performance Tilebased
 Line-of-Sight and
Search System
	3.6 Influence Mapping
	3.7 Strategic Assessment
Techniques
	3.8 Terrain Reasoning for 3D
 Action Games
	3.9 Expanded Geometry for
 Points-of-Visibility Pathfinding
	3.10 Optimizing Points-of-Visibility
 Pathfinding
	3.11 Flocking with Teeth: Predators
and Prey
	3.12 A Generic Fuzzy State
Machine in C++
	3.13 Imploding Combinatorial
Explosion in a Fuzzy System
	3.14 Using a Neural Network in a
Game: A Concrete Example

	Section 4 Geometry Management
	4.1 Comparison of VIPM Methods
	4.2 Simplified Terrain Using
 Interlocking Tiles
	4.3 Sphere Ttees for Fast Visibility
 Culling, Ray Tracing, and
 Range Searching
	4.4 Compressed Axis-Aligned
Bounding Box Trees
	4.5 Direct Access Quadtree
Lookup
	4.6 Approximating Fish Tank
 Refractions
	4.7 Rendering Print Resolution
Screenshots
	4.8 Applying Decals to Arbitrary
Surfaces
	4.9 Rendering Distant Scenery
 with Skyboxes
	4.10 Self-Shadowing Characters
	4.11 Classic Super Mario 64
 Third-Person Control and Animation

	Section 5 Graphics Display
	5.1 Cartoon Rendering: Real-time Silhouette Edge Detection and
Rendering
	5.2 Cartoon Rendering Using
Texture Mapping and
 Programmable Vertex Shaders
	5.3 Dynamic Per-Pixel Lighting
 Techniques
	5.4 Generating Procedural Clouds
Using 3D Hardware
	5.5 Texture Masking for Faster
Lens Flare
	5.6 Practical Priority Buffer
Shadows
	5.7 Impostors: Adding Clutter
	5.8 Operations for Hardware-
Accelerated Procedural
Texture Animation

	Section 6 Audio Programming
	6.1 Game Audio Design Patterns
	6.2 A Technique to Instantaneously
 Reuse Voices in a
 Sample-based Synthesizer
	6.3 Software-based DSP Effects
	6.4 Interactive Processing
Pipeline for Digital Audio
	6.5 A Basic Music Sequencer
 for Games
	6.6 An Interactive Music
Sequencer for Games
	6.7 A Low-Level Sound API

	APPENDIX

