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Foreword 

Mark DeLoura 

madsax@satori.org 

elcome to the fifth volume of Game Programming Gems. By now you probably 
know what we're all about: assisting you with your game programming chal- 

lenges by tapping the wisdom of as many industry experts as we can possibly fit into 
one book. Kim Pallister and his team of section editors have done an excellent job of 
unearthing these gems and polishing them up for your reading pleasure. We all hope 
that some of the nuggets you find in this book will help you on your next game pro- 
gramming project. 

The job of writing game engines has sure not gotten simpler since the launch of 
the first book in our series. Nor have games and game teams been shrinking. It’s not 
uncommon these days to hear of development taking 3—5 years, nor to hear of pro- 
jects with 200-person teams. Can game development cycles keep increasing? Can 
these teams possibly grow any larger? Well, we certainly hope not, but it seems quite 
likely. However, we see Game Programming Gems as one of the many Forces of Good 
that are lining up on the opposite side of the equation; we seek to provide you with as 
much wisdom from the experts as possible, complete with code, so that you at least 
have a chance of speeding up the process of developing your engine. 

Engine Development 
ns RA ENS eNOS UN IN RESTS A ONES EER NEN RETRAIN 

Fortunately, there are also middleware companies that will happily help you with your 

engine development, but recently they've begun consolidating just as the rest of the 

industry has. A few have merged together to provide a more complete game engine as 

a single package. A few others have been bought out by developers or publishers so 

that they can take advantage of the technology internally, reducing your options. 

While some of these packages are still available for you to purchase, the prospect of 

using an engine owned by one of your competitors is not optimal—to say the least— 

and must be considered carefully. 

But as the cost of building an engine increases, does it really make sense to build 

your engine from scratch with each new project? It used to, but now engine develop- 

ment is such a complex and costly task that many studios are actively developing 

strategies for increasing the life span of their code base. Most developers now at least 

xi 
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stretch the life spans of their engines by incrementally optimizing them with-each 

SKU created during the lifespan of a platform. Publishers are also beginning to see the 

wisdom of developing core technology, and some even encourage the studios they 

work with to collaborate on common technology and toolsets. 

So at least, on the technology side, we as an industry have some strategies to reduce 

the development costs as we move forward onto new and more complex platforms. 

Moving Forward 
vc 

LASS ROSIE S22 HENRI Rt UCP A SAN EEE SAI ean sem sens 

One of the things that frightens many people regarding the next generation of consoles 

and PCs is the sheer amount of art content that will need to be created to suitably take 

advantage of these platforms. By one studio’s estimate, creating next-generation charac- 

ter models will take approximately seven times as long, largely due to the need for 

higher-polygon meshes and multiple texture layers. With gigantic art teams already 

stretching the budgets and timelines, how will you cope? 

We're clearly not going to solve these issues here, but as game development on 

PCs and consoles continues to increase in complexity, as the cost for these titles con- 

tinues to increase, and as the team sizes keep getting larger, the impact on our indus- 

try takes a wide variety of forms. One of the most noticeable effects is that you see 
fewer risks being taken in game design. Since the impact of an unsuccessful, expensive 

title can put some of the smaller publishers out of business, there are more copycat 

titles being created, with less focus on innovation and creativity. If we do see innova- 
tion, it’s “in the small”: simply evolutionary tweaks to genres as opposed to any radi- 
cal new concepts. Of course, this makes complete sense financially, but the more we 
do this as an industry, the more we stand the risk of boring our players. There are 
many other forms of entertainment competing for their attention and dollars. 

One of the alternatives for studios is to create the more risky games on smaller 
platforms, which are less expensive to produce for. With the coming of age of capable 

mobile gaming platforms in the form of handheld game devices, game-capable cell 
phones, and PDAs, companies will increasingly be able to try out their gameplay 

innovations in a less risky setting. And from those titles that are successful, some of 

the innovations will certainly find their way onto the “big budget” platforms. 

Game Developer Education 
SRI 

The most hopeful sign for the growth of our industry is that these past few years have 

seen enormous demand for schools to teach game development courses; according to 

the International Game Developers Association (Attp://www.igda.org) there are cur- 

rently over 280 schools now offering game-related classes. The result of this increase 
in formal game development education is an increase in capable young developers 
with interesting ideas. This new core of excited, educated students flowing into our 

industry will bring with it many new and creative concepts, if we're just willing to lis- 
ten. Of course, convincing a publisher to listen and then place a multimillion-dollar 
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bet on an untested game concept from a new hire fresh out of school is challenging, 
admittedly. 

As a result we've recently begun to see a rapid increase in the number of indepen- 
dently developed games, game mods, and casual games from small, young develop- 
ment teams. These small teams are able to test out risky ideas, and whether the results 

are successful or not, they’re great experience for all involved—and excellent material 
for a resume. Those projects that are successful are an interesting opportunity for for- 
ward-thinking publishers. 

The growth in demand for formal game development education is the fuel that 
feeds the fires of innovation in the indie game scene. Many publishers are continuing 
to simply evolve game concepts and play it safe, but revolutionary concepts can come 
from the independent game developer community, if we support it. 

For professional developers, this means it’s more important than ever for you to 
get out there and share your expertise with students and hobbyists. There are also 
more opportunities than ever for you to do so. Who knows, perhaps by working with 
a small group of independent developers on a risky game design, you'll find your own 
game development projects enriched and more exciting as a result. 
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Preface 

Kim Pallister, Intel Corporation 

Kim.Pallister@Intel.com 

W"’ am I the editor of this book? 

This is a book about game development, and I am not a professional game devel- 
oper. I have been on the “fringes” of the industry for the past dozen years, with Intel for 
the past seven years, and with a graphics hardware vendor before that. In an industry 
that has traditionally catered to a young market, and attracted a similar vein of people 
to its ranks, this places me part way between bushy-tailed neophyte and grizzled 
curmudgeon. 

Those of curmudgeon age will remember that during the first few decades of this 
industry, we saw a transition from one-person-shop development to an era of teams, 
where people relied on one another's skills and efforts to realize their creative visions. 
During the past decade, and perhaps the few years that preceded it, we have transi- 

tioned to an age where groups of people rely on each other. Groups of programmers 

and artists and designers make up development teams. Teams within a company lever- 

age one another's tools and assets, and companies rely on one another at the meta level. 

Inter-company relations aren’t new to the business; the developer-publisher rela- 

tionship has existed for a long time. But the past decade has ushered in new struc- 

tures, dependencies, and channels of communication. Developers now license 

technology from other companies, looking to middleware, hardware, and platform 

vendors for knowledge on how to exploit new technology. In return, these vendors 

seek information on how to direct their technology efforts. Entities like CMP Game 

Group (Game Developer Magazine, Game Developer Conference) and the Interna- 

tional Game Developers Association foster dialogs about design, business practice, 

and quality of life issues. A growing number of academic institutions, along with pub- 

lishers like Charles River Media (who brings us the Gems series), work to educate and 

inform the entire cluster. Looking at all these relationships, we see a circle of life—one 

that is inherent to all successful industries. 

However slowly, the industry is moving from a state of begrudging cooperation to 

open, directed facilitation. We are sharing source code with middleware and hardware 
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companies and funding research in academic circles while increasing dialog and pub- 

lication. Each member of the circle has a vested interest in the success of the medium 

and of those who create it. That circle includes me, and thats why I'm editing this 

book. 

Where Do We Go from Here? 
SR ATENEO 

The near fapnee is a ee The a ee i continue to grow as new users come 

on line (in both senses of the term), existing users grow older and continue to play, 

and the production quality of games increases, which in turn attracts users who previ- 
ously weren't avid gamers. 

One of the most difficult and important inflection points facing our industry is 

the move to multithreaded platforms and software development. At the time of this 
writing, desktop PCs are exposing multithreading technology in processors, and true 

multicore processors are around the corner. Server-side components of online games 

are being developed on multiprocessor and distributed systems, and the next genera- 

tion of consoles promises to bring multiprocessor platforms to consumer living rooms 

in short order. 

The transition to true multithreaded game engines and platforms looks to be a 

formidable challenge. We'll need new tools, new techniques, and even new languages 

if we hope to make this transition while still evolving our games. We'll also need to 

focus on sound software engineering—principles and practices. Projects with budgets 

of seven or eight (or—dare we say it—nine) figures with significantly larger teams will 
require a new level of discipline and rigor. 

During this transition, knowledge sharing (between individuals, between compa- 

nies— at all levels) will be critical. I'd like to think that the Game Programming Gems 

series will play a small part in this journey. 

Further down the Road 
PENNIES AERA CRE DAM EISNER EMER. OTR . occas Ss a 

Looking efi skis iStaedings ‘eid rhe get yan i exciting! At the time of 
this writing, Asia (particularly Korea and China) is seeing an explosion in popularity 
of massive multiplayer online games. Several hundred million new broadband house- 
holds will appear over the next four years. Game-capable cell phones and portable 
devices will continue to proliferate and connect. Televisions and other consumer elec- 
tronics devices will become increasingly interactive. And if it interacts, it games! 

Many in our industry have been quick to draw comparisons between our games 
and Hollywood movies. Usually the comparisons are between the revenues that the 
respective industries generate or between the similarities in the production processes. 
Another parallel exists. 

At the 1939 World’s Fair, a new technology was introduced that promised to 
entertain people: the television. Critics were skeptical. A New York Times article stated 
“The problem with television is that people must sit and keep their eyes glued on a 
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screen; the average American family hasn't the time for it.” Laughable now, but no 
one at that time, even proponents of the technology, could have imagined the impact 

that this new entertainment medium would have. 
During a GDC session a number of years ago, Chris Hecker forecasted that gam- 

ing would be “The defining entertainment medium of the twenty-first century,” and 
I can’t think of a better way to put it. We are only just beginning to grapple with the 
possibilities of interactive entertainment mediums. We may call that interactive enter- 
tainment “games” today, but already, we're stretching the definitions and boundaries 

of the term; we are still figuring out what it all means. 

Now it’s up to you to play a role in defining that medium. Hopefully we've given 
you some tools to help you do so. Put them to good use forging your contribution to 

the future. 

saab SELON mS ER EES TUITE ESS EE SEE ION LIES NOE TESS LACES SED 

I opened this preface questioning my position as the editor of this book. Let me close 
by saying that I could not have done it without the direct and indirect contributions of 
a lot of people. At the top of my list are series editor Mark DeLoura and series pub- 

lisher Jenifer Niles. I'd like to thank both for giving me the opportunity and guiding 

me through the journey with sage “Book Editing Gems” learned through the produc- 

tion of Game Programming Gems I through 4. 

While this work represents a lot of my time and effort, it would certainly not have 

been possible without the many authors of the individual gems and the seven section 

editors: 

General Programming: William E. Damon III, ATI Research 

Mathematics: Eric Lengyel, Terathon Entertainment 

Artificial Intelligence: Robin Hunicke, Northwestern University 

Physics: Michael Dickheiser, Red Storm Entertainment 

Graphics: Jason Mitchell, ATI Research 

Network and Multiplayer: Shekhar Dhupelia, Studio Gigante 

Audio: Mark DeLoura, Sony Computer Entertainment 

We really are privileged to work in an industry where knowledge-sharing is encour- 

aged and practiced by so many. 

On a similar note, Pete Baker and the rest of my management at Intel deserve 

thanks for letting me contribute to the greater good. When I was adamant that work- 

ing on this text wouldn't impact my day job, they knew better and let me do it anyway. 

The biggest gratitude of all is owed to my wife, Alisa, for helping me pursue my 

passions in editing this text. Doing so during the same year that we welcomed our set 

of twins into the world meant a great deal more work for her as well as for me. Finally, 

a note of thanks is due to my mother and father, for instilling in me an insatiable 

curiosity about, well, everything (and for buying the Commodore64, which seems 

like a pretty good investment in retrospect). 
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About the Cover Image 

© Sammy Studios 

Charles River Media Edited by Kim Pallister 

alf-vampire gunslinger, Jericho Cross, battles against the undead in the Old West 

in Sammy Studios’ Darkwatch game, coming in 2005 for the Sony PlayStation® 

2 and Microsoft® Xbox™ video game systems. 

The environment and character were conceived in Sammy Studios’ Carlsbad stu- 

dio, with rendering and lighting by Los Angeles based Brain Zoo Studios. The image 

was art directed by Sammy Studios’ Creative Visual Director, Farzad Varahramyan 

with additional artwork by Production Assistant, Dan Kit. 

xix 



od) wings aba’ wae) evtaiial a sgritlend 

ORE ii | What | 

ieherte: Srricg ng aha ™ yous 

“1 Lipa) oie os m thy Mote ze 

a abupih zed y 4a | Rpt iss DHT HM 
ay > etd ‘wiland “a sesh i aah 

payer 
ais 

Ci supe goats ved show: W eat yi thy 

ae 

a” 

4) 7 

7 

pay 
a at 

ho 



Contributor Bios 

Contains bios for those contributors who submitted one. 

Neeharika Adabala 
SAMPSON RESERPINE UNIS A REE USS EERE NO a 

nadabala@cs.ucf.edu 

Neeharika Adabala obtained her doctorate for her work on modeling and rendering of 

gaseous volumes in which she introduced the concept of particle maps. She worked in 
Philips Research, MIRALab, University of Geneva, and the Media Convergence Lab, 
University of Central Florida. She has research publications in both the areas of 
dynamics simulation and realistic rendering. Her research interests include real-time 
rendering, physics based dynamics, illumination models, perceptual issues in render- 
ing, scientific visualization, and smart graphics. 

Barnabas Aszodi 
_siomapwmetorasgnretoece eta ec faa EEE HUMOR RISEN SNS 

ab011@freemail.hu 

Barnabas Aszédi is a Ph.D. student at Budapest University of Technology and Eco- 
nomics. His areas of focus are computer graphics (e.g., real-time realistic shadow com- 
putation), creating animations, and games. He contributed to WSCG ’04, CESCG 

02, and other publications. He welcomes e-mail at the above address to provide him 

feedback or exchange ideas. 
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Tony Barrera 

tony.barrera@spray.se 

Tony Barrera is a certified autodidact math genius. He has published 25 papers in dif- 

ferent subjects, of which 18 are scientific papers in computer graphics, numerical 

analysis, and mathemathics. Tony does research together with Ewert Bengtsson and 

Anders Hast. 

Ewert Bengtsson 
eters anmeme tie 

ewert@cb.uu.se 

Ewert Bengtsson has been professor of computerized image analysis at Uppsala Uni- 

versity since 1988. His main research interests are to develop methods and tools for 

xxi 
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biomedical applications of image analysis. This includes visualization and computer 

graphics aspects, since the visualization of 3D biomedical images is nontrivial. He has 

published about 120 international research papers. He received his Ph.D. from Upp- 

sala University in 1974. He is a member of IEEE, SPIE, and IAPR. 

CREAN RO IERIE NE NE LE NI TT 

author@boarslair.com 

James Boer has been an active participant in the game development industry since 

1997, when he helped create the surprise hit Deer Hunter. He has also been a prolific 

writer, contributing to no less than seven game programming books (including his 

own book, Game Audio Programming) and several articles in trade magazines. James is 

currently employed as a programmer at Amaze Entertainment, where he is helping to 

develop new technologies for the Elemental Engine, Amaze’s in-house cross-platform 

console engine. 

johnjbolton@yahoo.com 

John Bolton is a software engineer at Page 44 Studios in San Francisco. He is cur- 

rently working on next year’s lineup of Sony’s hockey games for the PS2, PSP, and 
PS3. He has been programming games professionally since 1992 and has been lead 
programmer on several games including J Have No Mouth and I Must Scream, Heroes 
of Might and Magic, and High Heat Baseball. 

Breyer 
LARC AE EEL LI ENTE LE TLL EI TND 

thebreyers@comcast.net 

Markus Breyer holds a master’s degree in technical computer science, and has been in 
the game industry for eight years, working on numerous titles including Star Wars 
Bounty Hunter, Gladius, and Return Fire. Markus is now with Factor 5 developing 
technology for next generation platforms. 

Martin Brownlow 
a LE BOE P NE LT OEE LIED PLL CLI 

mbrownlow@shiny.com 

Martin started programming at age 10 on his friend’s ZX81. After completing his 
education, Martin began his career at Virtuality, Ltd. (U.K.) writing VR arcade 
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games. After three years, he moved to the U.S. to work for Shiny Entertainment. He 
has worked on several games for Shiny, including MDK and Sacrifice, and is currently 
knee deep in the Matrix video game. 

Warrick Buchanan 
ALLDATA IT OE NE AE I SE ELMER ADE EEE PE ae EA RNS 

warrick@chimeric.co.uk 

Warrick Buchanan is development director at Chimeric Ltd, working on the Maxin- 

ima and ScreenSaverMax products. Among working for various game development 
companies over the years, he also did a stint in graphics card driver development for 
Imagination Technologies Ltd. He enjoys playing with toys that range from cutting- 
edge graphics cards to trampolines. 

Jamie Cheng 
_amsreeer ami RE LM AT NURSES SSS SSIES STL EE NR SPONGES EEE NNN 

jcheng@relic.com 

Jamie Cheng is an AI programmer at Relic Entertainment. He recently developed the 

opponent AI in Warhammer 40,000: Dawn of War. He also serves as the core liaison 
between Relic and the GAMES group in the University of Alberta, working together 

to push the boundaries in commericial game AI. Away from work, Jamie enjoys col- 

laborating with others to develop games that break away from the norm. Jamie 

received his BSc in computing science from Simon Fraser University. 

Octavian Marius Chi ncisan ee 
eit tN EES SEENON OEE SORENTO TEE AA ELIE REWER ADR RS ANNES RE 

mariuss@rogers.com 

Octavian graduated from the Technical University of Cluj-Romania in 1987 with a 

Master of Science in electrical engineering. One year later, he graduated with a post- 

university diploma in applied electronics and he finalized a project on building a Z80 

based personal computer compatible with Sinclair Spectrum. From 1988 to 1994, he 

worked as a C++ programmer for a financial institution. He came to Canada in 1994 

and worked for several companies as a C++ senior software programmer. In 2000, 

another challenge arose: game programming. Self-taught in this field, the results of his 

knowledge, passion, and work have been the creation of Getic 3D Editor and Getic 

SDK, currently under development. Currently, Octavian is working at Zalsoft Inc. as 

a software architect. 



Ignacio Incera Cruz 
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ignacio@incera.net 

Ignacio is a software engineer currently working on European Defense Area Projects 

in Madrid, Spain. Specifically, he works on real-time simulations, 3D terrain, geo- 

graphic information systems (GIS), and missions planning and debriefing systems. 

He has a computer science degree and a master’s degree in virtual reality, both from 

the University of Deusto. Also, he is currently getting a doctorate degree in computer 

science and artificial intelligence at the Technical University of Madrid. His research 

focuses on robotics, molecular computing, and artificial minds. 

veka at lide stl at i as 

cs007@ural2.hszk.bme.hu, czsz@freemail.hu 

Szabolcs Czuczor is a Ph.D. student at the Computer Graphics Group of the Depart- 

ment of Control Engineering and Information Technology at BUTE, Hungary. His 

research interests include multimedia, video and image processing, Web and game 

programming, and creating visual and sound effects for motion pictures. Szabolcs 

contributed to WSCG ’04, CESCG ’02, and other publications. 

William E. Damon 
wdamon@ati.com 

William is an engineer with ATI Research, Inc. His professional background at the 
time of this publishing includes five years of technical experience within the games 
industry, where he primarily focuses on software core technologies and platform per- 
formance. William holds a bachelor’s degree with honors in computer science from 
Virginia Polytechnic Institute and State University. 

Mark DeLoura 
SMELT SERRATE SO 

madsax@satori.org 

Mark is the creator and series editor of the Game Programming Gems series of books. 
In his role as the manager of developer relations at Sony Computer Entertainment 
America, he gets the opportunity to share information, both technical and nontechni- 
cal, with game developers around the world. Mark is fascinated with the concept of 
creating shared, entertaining experiences that educate people and encourage them to 
communicate with each other. He has been pursuing ways to broaden the concept of 
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what an “entertaining experience” is through a variety of roles, including former posi- 
tions as editor-in-chief of Game Developer magazine and lead software engineer of 
Nintendo of America’s Developer Support group. 

Chuck.V.DeSylva@Intel.com 

Chuck DeSylva is a senior software applications engineer in Intel’s Software Solutions 
Group in Folsom, California. He currently manages a team of engineers working on 
optimization on some of the industry's leading software game and media titles. When 
not squeezing performance out of software, he enjoys practicing bass/guitar, playing 
first person shooters, and traveling the world. 

Shekhar Dhupelia 
UPA RE aD Na OC a am ea sr em sre 

sdhupelia@gmail.com 

Shekhar Dhupelia’s first foray into the games industry took the form of two years 
working with the SCE-RT group of Sony (SCEA) in San Diego, developing the 
online software and server infrastructure that powers SOCOM: US Navy Seals, Fre- 

quency, Twisted Metal Black Online, NFL Gameday, and many other Playstation 2 

titles. He then moved onto Microsoft’s NBA Inside Drive 2004 XBox Live implemen- 

tation, before spending some time at Midway Games, working on NBA Ballers for 
both PS2 and Xbox. Shekhar previously wrote for Game Programming Gems 4, and is 

also contributing to Charles River Media’s Secrets of the Game Business, Revised Edi- 

tion. He has spoken at the Game Developer's Conference (GDC) and the Penny 

Arcade Expo (PAX) on topics surrounding game design, and is now developing the 
Xbox Live gameplay for Studio Gigante and THQ’s WWE Wrestlemania XXI. 

RRA ANN AER ETP AE LOLI SR ETN ELLOS 5 EET GIES EERO ET CLI TET IER WIE 
Mike Dickheiser 

mike.dickheiser@redstorm.com 

Mike is a nine-year veteran of the games industry, and works as a software engineer for 

Red Storm Entertainment. His career has involved work on flight simulators, 

dynamic fluid modeling, collision systems, and vehicle physics models. Mike's current 

focus is development of vehicle AI control systems for the Ghost Recon product line. 

When not teaching helicopters how to: hunt down and destroy tanks, infantry, and 

game designers, Mike enjoys computer games, sports, playing piano, and relaxing at 

home with his ever-supportive wife, Jaye. 
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Jean-Frangois Dube 

jfdube@ubisoft.qc.ca 

Jean-Francois (a.k.a. deks on Gamedev.net) has been working in the game industry 

for more than seven years. He’s currently the technical lead programmer of an upcom- 

ing next generation console game at UbiSoft Montreal studio. Jean-Frangois previ- 

ously worked as the lead programmer of Rainbow Six 3 on XBox and shipped several 

other games like Batman Vengeance on PS2 and Speed Busters on PC. 

Pavicneoizzeuae ee 

gizmo@gizz-moo.com 

Patrick, also known as Gizmo or “Gizz” for short, is like Pepsi: flat and still thinks that 

15 degrees Celsius is the correct inside temperature to work, much to the general dismay 

of his fellow co-workers. While still working on his Seamless Server and many tools, he 

still longs for the day when he will find the time to finish his distributed raytracer. 

Dominic Filion 

dfiliong@videotron.ca 

Dominic is senior 3D engine developer at Artificial Mind & Movement, performing 

research on 3D effects and physics simulations. Previously, he held the position of 

technical director at DC Studios, where he led the technology team to create the stu- 

dio’s in-house cross-platform 3D engine. He has worked on four commercial 3D 

engines before, acting as principal architect for two of the four. He also worked at 

Microids and Fun Key Studios. Feel free to drop him a note about the articles or just 

for a friendly chat. His Web site is found at itp://www.bingecoder.com. 

Mario Grimani 

mgrimani@san.rr.com 

Mario Grimani is an industry veteran who joined the gaming industry almost two 
decades ago. After publishing his first game in 1987, he poured all his development 
effort into the Amiga platform. The early demise of the Amiga platform marked his 
departure from the gaming industry, expecting never to come back. Since re-emerging 
in mid ’90s, he has joined big name studios such as lon Storm, Ensemble Studios, 

Verant Interactive, and Sony Online Entertainment. While at Ensemble Studios, he 
was a dedicated AI specialist in charge of improving the computer player competitive- 

ness. He has developed a scripting system and a computer player AI for the Age of 
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Empires I: The Age of Kings and Age of Empires II: The Conquerors. During the early 
stages of Age of Mythology development, Mario served as AI lead in charge of AI archi- 
tecture. After joining Verant Interactive, which later became Sony Online Entertain- 
ment, he took over as lead programmer on Sovereign and later worked on the 
EverQuest IT team. Mario is now a partner in Xtreme Strategy Games, where he is 

using his technical expertise in bringing to market the next generation of games and 
gaming technologies. 

ACME GE TEE 

julien_hamaide@hotmail.com 

Julien started programming text games on his Commodore64 at the age of 8. He 
wrote his first assembly program within the year. Years passed, but the passion 
remained. He has always been self-taught, reading all the books his parents were able 
to buy. He recently graduated as multitmedia electrical engineer at the Faculté Poly- 
technique de Mons in Belgium at the age of 21 (2003). He is now working on speech 

and image processing at TCTS/Multitel (Aztp-//tcts.fpms.ac. be; http://www.multitel. be). 
He is working very hard to get into the game industry. Open-eXtnd is his latest pro- 
ject (a free implementation of XTND), intented to be used in AI. 

Sami Hamlaoui 

disk_disaster@hotmail.com 

Obsessed by AI, Sami was rather confused when he realized he'd written an article 
about audio. When not going off topic, he spends most of his time trying to make 
500 bots look smart while keeping the frame rate in frames-per-second and not sec- 
onds-per-frame. Check out his Web site at Attp://members.gamedev.net/sami/, where 
content is occasionally added! 

Matthew Harmon “ne 

matt@matthewharmon.com 

Matthew Harmon has been developing games since college, working on Microsoft 

Flight Simulator for subLogic Corporation while earning his degree in film theory 

and criticism. Since then, he has served as lead programmer and director of develop- 

ment at Mission Studios Corp. and Velocity Development. Recently, he co-founded 

eV Interactive Corporation to continue developing games and use game technology 

in the military training and simulation arena. In his spare time, Matt chases his sons, 

Alex and Greg, around the house. 
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Anders Hast 
ee LLL ALLEL LEE 

aht@hig.se 

Anders Hast has been a lecturer in computer science since 1996 and associate professor 

since 2004 at the University of Gavle. He received his Ph.D. from Uppsala University 

in 2004. Together with Barrera and Bengtsson, he has investigated fundamental algo- 

rithms in computer graphics and searched for new ways of solving the math behind the 

algorithms, which has led to about 20 research publications and book chapters. 

Daniel F. Higgins 
RIALS LATNA TNCENE EAL ELT LLL E LLL TLL LE LLL LL 

dan@stainlesssteelstudios.com 

Dan Higgins is a proud member of Stainless Steel Studios, the Cambridge-based His- 

torical RTS game company lead by Rick Goodman. Prior to working for Stainless, his 

background was not in games but writing both high-performance search engines for 

the History Channel, A&E (Arts & Entertainment), and Biography Channel. A pas- 

sionate programmer for SSSI, Dan works in a broad range of areas including military 

Al, pathfinding, terrain analysis, optimization, animal AI, formations, and physics. 

Originally from Maryland, Dan and his family are “wicked” in love with Boston and 

feel like native New Englanders. He’s a computer science graduate from Frostburg 

State University in Maryland, and most times when Dan is described in a conversa- 

tion, the words “freak” and “spaz” seem to pop up with alarming frequency. 

Charles E. Hughes 
i IRL LE teammmmroncnes em eRe NN I ES 

ceh@cs.ucf.edu 

Charles E. Hughes is Professor and Graduate Coordinator in the School of Computer 

Science at the University of Central Florida. He holds a joint faculty appointment in - 

the School of Film and Digital Media, and serves as Chief Scientist for the Media 

Convergence Laboratory, an interdisciplinary collaboration located within UCF's 
Institute for Simulation and Training. He has authored or co-authored over 100 refer- 
enced journal and proceedings articles, seven book chapters, and six books. His cur- 
rent research interests are in mixed reality and models of distributed computation. 

Robin Hunicke 
hunicke@cs.northwestern.edu 

Robin Hunicke is finishing her Ph.D. in AI and Games at Northwestern University. 
In her copious free time, she strives to bridge the gap between academic study and 
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industry application—working with the IGDA’s Education Committee, teaching in 
the GDC Game Design and Tuning Workshop, and participating in events like the 
Experimental Gameplay Workshop and the Indie Game Jam. Her first love was 
M:Urlaks 

al li late 

imays@hitel.net 

Hyun-jik Bae thanks God for letting him be enlightened, the Gospel, and the little 
talent afforded to him. He is a technical director at MowelSoft Co, which is currently 

developing Blizz 1941™, an MMO game with World War II as a setting. He has 
developed several 3D MMO games since 1997. The first game he authored is 
SpeedGame (not™) for MSX BASIC, which required the user to smash the space key 
rapidly, so it became the cause of the breakdown of computers in his elementary 
school. 

scott@escherichia.net 

Scott Jacobs, educated to be a microbiologist, ditched that fancy college education to 

pay the rent by working in the games industry. Purported to be a networking pro- 
grammer, he is often suckered into working in all sorts of other areas, like scripting 

engines, physics, and graphics. He has worked for Interactive Magic, Sinister Games 

(UbiSoft), and Red Storm Entertainment (UbiSoft). Currently he works for 

Sim Wars, where he yearns for them to put out Super Puzzle Americas Army IT: Turbo. 

Wendy Jones 

gamegirl@fasterkittycodecode.com 

Wendy Jones is a game developer and industry evangelist. She's held roles ranging 
from industry journalist to game programmer to author. She is active in the IGDA of 
South Florida, participating as a board member of the local chapter. She currently 

keeps herself busy doing freelance software development for handheld devices as well 

as writing articles and books pertaining to game development. 

lengyel@terathon.com 

Eric Lengyel is a senior programmer in the advanced technology group at Naughty Dog, 

Inc. He is the author of the bestselling book Mathematics for 3D Game Programming and 
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Computer Graphics, and he has written many articles for industry publications ranging 

from gamasutra.com to the Game Programming Gems series. Eric has been dedicated to 

3D graphics research for over 10 years, during which time he has been the lead pro- 

grammer for Quest for Glory 5 and the chief architect of the C4 Engine. 

ae 

Clomont@math.purdue.edu 

Chris Lomont has been programming since the fifth grade, when he learned to make 

simple games on his new TI-55 programmable calculator. Progressing through all 

manner of computers, he got into PC programming in college, where he obtained a 

triple BS in physics, math, and computer science, writing a chess program as a senior 

project. A short time programming video games at Black Pearl (defunct) paid off his 

school loans, and he went to Purdue, obtaining a Ph.D. in math in 2003. As a grad 

student, he did consulting for many companies, mostly on graphics related develop- 

ment, although he has developed many types of applications professionally, including 

video games, financial modeling, robotics software, parsers and compilers, image pro- 

cessing tools, crypto, and more. He currently does quantum computing research at 

cybernet.com. Hobbies include piano, chess, sports, programming, puzzle design, 

and attempting to write books. His Web site is www. math. purdue.edu/~clomont and 

will hopefully move to www.lomont.org soon. 

Mandel 

mmandel@gmail.com 

Michael Mandel is a recent graduate of Carnegie Mellon University, where he earned 

his graduate and undergraduate degrees in computer science. His graduate work 

examined using simulation and data-driven approaches to character animation. He 

has various academic publications related to developing intelligent agents, and was a 

visiting scholar at CMU while finishing his thesis work. He has been professionally 

involved with the development of Xbox and PC game titles while at LucasArts and 

Microsoft. Currently, he is working as an engineer for Apple Computer, Inc. 

Adam Martin 

adam@grexengine.com 

Adam Martin is the CEO of Grex Games, an MMOG middleware company. Much 
of Grex’s products were based on Adam's own patents, although he now concentrates 
on strategy and business development. He has a degree in computer science from the 
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University of Cambridge, and has worked as a developer and producer on two pub- 
lished games. He has lectured at the MDC conference, and is often found on MUD- 
DEV. In 2004, he founded the Java Games Factory (http://javagamesfactory.org) to 
promote professional-quality java games development and help java games studios. 

maq@panoramix.ift.uni.wroc.pl 

Maciej Matyka was born in Wroclaw, Poland. He studies computational physics at the 
University of Wroclaw (Theoretical Division of Physics and Astronomy Department), 
where he has a scholarship for his outstanding academic performance. For eight years, 
Maciej has been an active programmer in the Amiga and PC demo scene. His general 
interest lies in physically based modeling. Maciej is the author of physics simulation 
software, with awards for Fluid (second place in the Second Department Contest for 
Physics Software in 1999) and for Waves (first place in Third event in 2000). He is 

also the author of several publications in Polish journals, mostly related to physics 
simulations. At the University of Wroclaw, he gave lectures for high school students, 

and he speaks about his physics software at department seminars. Maciej is the author 
of the book Computer Simulations in Physics, published in 2001 by Helion. He also 
wrote an article about soft body dynamics for the book Graphics Programming Meth- 
ods by Jeff Lander, published in 2003 by Charles River Media. 

Bee ees eee ees 

pmeehan@tenaciousgames.com 

Patrick Meehan began his career at Nintendo Technology Development following his 
graduation from DigiPen in 1996. He has worked in the industry since as a developer 
for Interactive Imagination and Amaze Entertainment, among others. His experience 

includes most aspects of game and engine development on a variety of platforms. At 
the time of this publication, he is pursuing the bohemian life of a garage developer 
under Tenacious Games, a Seattle production company. 

al eld Maat oe cbalie te a RERUN ANIME RRA NOS 

nmefford@yahoo.com 

Nathan Mefford is a software engineer at Firaxis, where his focus is on software archi- 
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Introduction 

William E. Damon Iil 

wdamon@ati.com 

| ae background art, settings, locations, characters, plots, stories, and 

actions that breathe life into the game experience—drives hit titles. For the pro- 

duction staff, this means constructing their product around a solid premise and 

employing outstanding, disciplined service organizations. The Information Technol- 

ogy department might spring to mind, but the organization addressed here is actually 

the software engineering team. 
Software engineers solve problems. Sometimes problems in game programming 

are solved with a tremendous amount of programming effort, but a transition in 

thinking is occurring. Game programming is evolving into a disciplined practice of 

engineering general solutions for broader and more reusable application, whether it is 

adopting and adapting a middleware technology or creating something in-house. This 

evolution is allowing engineers more time to solve the real problems faced by their 

customers, the content creators, rather than reinventing old solutions. As a result, 

content creators are enabled to more rapidly iterate over implementations, tuning and 

tweaking details to achieve higher quality in the final product. 

This is the common thread that runs through all the articles in this section. 

Whether discussing improved designs for low-level libraries built for other engineers 

on the project to use, general yet intelligent memory management techniques for the 

core of the systems (game, editor, or otherwise), remote debuggers, and/or visual and 

scriptable environments for designing user interfaces, all the articles in this section are 

aimed at providing reusable components in the production pipeline. 

You'll see a broad range of topics in this section—and even various solutions for 

particularly large problems—to help guide you in building the best suite of tools for 

the title at hand. Absorb these articles, for as an engineer who solves problems, you 

never know when one will come in handy! 
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Context-Sensitive 

HUDs for Editors 

Adam Martin, Grex Games 

gpg@grexengine.com 

ost games need custom graphical tools for content creation (level layout, Al 

behavior editing, etc.). Really good tools can greatly increase the efficiency of 

the content development team, often multiplying the amount of content created by a 

large ratio. For instance, one good level-editing tool can easily make a single level- 

designer become as productive as three equivalent designers working with inferior 

tools. However, excellent tools often turn out to be inordinately expensive, making it 

difficult to justify the risks of initial development, or the continued costs associated 

with maintenance. 

This gem provides an approach to heads-up editing using some very simple tech- 

niques. It is designed to be extremely simple to maintain and should alleviate many of 

the costs and difficulties of in-house editor development. It unlocks end-user 

(designer) productivity boosts in earlier stages of the tool development process and 

reduces some of the project risks. 

Problems 

There are four sets of problems that apply to custom editors, each of which we will 

cover in detail to explain how and why the idea behind this gem works. 

The first set of problems is due to the inherent complexity of a custom content 

editor. Custom editors always become complex (some would say bloated) sooner or 

later; if their work was simple, mainstream editors would have been sufficient in the 

first place, and the cost of making a custom editor could have been avoided altogether. 

The other sets of problems are each associated with a particular role in the devel- 

opment team. For example, the ways in which content authors use the editor create 

problems unique to those people. 

Editor and GUI Complexity 

Taking a 3D modeler as an example, we usually have four views of the object being 

edited, each view represented in a dedicated viewport. Each viewport has to be 

5 
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independently controllable. Starting with basic camera control, the editor needs to 

provide all of the following separately in each viewport: 

Display Controls 

Show the position of the look_at point Zooming in and out (i.e., altering FOV) 

Show the positions of the different viewport Panning in two dimensions 

cameras in the other viewports, where visible Rotation about three axes 

Render the “document” (3D model) Translation in three dimensions 

Render world-landmarks (primary Cartesian Select each and every option to act upon 

axes, positive/negative axis directions, etc.) EITHER the camera OR the look_at 

Render the precise Cartesian coordinates of point OR both of them 

each salient item, at least the camera and the 

look_at point 

So, for an “editor” that lets you do nothing more than move the cameras about (and 
without any fancy controls for doing so; just the basics!). We have five separate things 
that have to be displayed and five separate sets of controls to provide. These 10 items 
each requires unique algorithms, and although the algorithms themselves are simple 

to implement, they still need to be written. Already, we have enough separate algorithms 
(each of which we want to maintain, update, replace, and/or remove separately) that 

it would be nontrivial to maintain, and we haven't yet added essential features such as 

object selection and basic editing. 
Typical game content editors consist of perhaps 50 unique display algorithms and 

30 or more control algorithms, with continuous extension. This can be a nightmare 
to maintain, and most editors soon become so unwieldy (in terms of both code and 

architecture) that adding even the simplest of functionality incurs considerable cost. 
This is especially hard to justify when the end consumers (players) are often not even 
going to see the tool. 

Users 

The end users of content-editing tools are rarely the programmers. Although pro- 
grammers do develop and use editors (including IDEs, of course) such tools are usu- 

ally developed to make it easy for nontechnical people to create or customize content 
for the game. On large projects, the primary users are usually artists (creating 2D and 
3D graphical content), writers (creating quests, subplots, game-logic widgets, etc.), 
and interpreted/proprietary-language programmers (e.g., developing AI scripts). 

The main requirements for this set of users are: 

¢ A powerful, feature-rich graphical user interface (GUI) 
* Extendible, with the ability to add new features over time (an iterative process of 

end users’ feedback to the tools’ developer(s) resulting in new functionality) 
* Reliable; most editing should be quick and easy for the end user, and the tool(s) 

must be stable 
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The first requirement in the previous list is perhaps obvious, but common platform 
utilities and APIs make it a surmountable task. The extendibility requirement, how- 

ever, could prove to be a major challenge for the tool developers, because the tool is 

itself a custom solution. The need for editing that is both quick and easy is perhaps 

the most challenging requirement. How can the developers expose a long list of fea- 

tures (which will only grow longer over time) without making every command 

require some number of mouseclicks? To flatten the learning curve and make the end 

user more productive, we will assume that it is sufficient to give the end user some 

metacontrols allowing for GUI customization. That way, the end users can choose to 

lay out the interface in a fashion familiar to them. 

Unfortunately, editor bugs are some of the most harmful on the project. A level- 

editor bug might, for instance, silently corrupt the save file. This has no long-term 

effect on the game itself, since it only damages some content that was “in develop- 

ment,” and as such, the temptation is to give such bugs low priority in the general 

project (although, clearly, high priority in the content author's bug list). However, the 

users lose a huge amount of time to wasted effort working around such problems, 

especially since most damage cannot be retroactively fixed (when the data is lost, it’s 

lost). Consequently, content authors must assume the bug could happen at any 

moment and preemptively guard against it on every edit, even if it only happens on 

average once every 100 edits. An unreliable editor can easily burn up most or all the 

efficiency gains it was destined to otherwise provide (had the tool been reliable). 

Worse, developers do not always appreciate that a “rare” bug slows the users down all 

the time, not just when it occurs. 

Developers 

Generally, tools such as editors do not directly increase a game's review scores or sales 

volume. 
Editors, to put it bluntly, do not (in general) themselves make money. 

Most games are developed with that in mind, and content-authoring tools tend 

to come in quite low on the priority list. Also, we know that developers rarely write 

editors for themselves; usually such tools are created to enable a wider range of people 

to contribute to the game (i.e., all the nonprogrammers, or programmers who know 

Al languages but not C++, etc.). The net effect is that the developer is usually devel- 

oping something they do not expect to use, will likely not have to maintain, and that 

is arguably taking them away from spending time on their core tasks. 

New features are added sporadically, and the developer is probably spending a lot 

of time on core code in the meantime, meaning that the editor source can often be 

prone to bit rot (i.e., each time they come to add the next feature, so much time has 

passed that even the original authors have forgotten how it works). 

Some teams have highly skilled personnel dedicated to tools development, thus 

reducing the impact of these issues. Even so, these people will often have a variety of 

other tools to support, upgrade, and maintain, and to a lesser extent suffer the same 

problems. 
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So, for the developer of an editor, the main requirements for a tool like a level edi- 

tor are: 

¢ Minimal time investment. That is, spend as little time as possible developing the 

editor. 
¢ Maintainability. Code must be very easy to understand after not looking at it for 

a long time. 
¢ Extendibility. Adding new features must be very rapid and never require a refac- 

toring of the existing code. 

Producers and Project Managers 

Producers look at a project in terms of critical paths, advantage/cost and advantage/ 
risk ratios, etc. Custom editing tools look extremely good in terms of advantage/cost, 
because they simultaneously reduce the costs of content development and usually also 
enable the content authors to produce more complex content that they could not 
otherwise have managed. 

However, custom editing tools are often useless (or worse than useless, for 
instance, if they only write to a file format that is no longer supported by the main 
game engine) until almost all the development on the tool has been completed. If a 
producer knows they may have to cancel or scale back tool development in the future 
to meet a deadline that will otherwise slip, it’s a huge risk to spend time on such a 
front-loaded activity. 

Worse, in practical terms, editor development work often starts simultaneously with 
the main team starting on the game project. Post-mortem articles by game producers fre- 
quently cite the damage done by the content authors: either waiting months for an editor 
to be ready or else using early versions only to have to delete everything and start again 
when later revisions of the editor turned out to be non-backward-compatible. The usual 
conclusion is to “try using more middleware next time,” but the practical reality is that 
middleware can only provide the highest common factor functionality, if costs are to be 
kept low. However, most of the value is in having a tool that is fully customized to the 
game at hand (map formats, engine architectures, proprietary coding schemes, etc.), 
thereby achieving the biggest possible gains in productivity. 

Solutions 
DR SERENE R PSEA DISA RELA MRE ARIE AO ER NN SRUN NOMAD RRC IGGL EE SL Ba OU 

Having covered the problems in depth, it’s high time we discussed solutions. There 
are several areas we'll cover, starting with heads-up-displays, or HUDs. 

Most games developers are familiar with heads-up displays (HUDs) and frequently 
use them in the same kind of situation they were originally invented for: fast-paced 
games where the player can't risk bringing up a menu and looking away from the 
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main viewport but requires instant access to certain key information at all times (e.g., 

current health, current ammo remaining, etc.). 

The main benefits of HUDs for games and editors are: 

e¢ Instant access to critical data. Show the most critical pieces of data culled from a 

larger data set. 
° Convenience. Merge data with the main viewport, enabling the user to see the 

data without looking away from the main viewport. 

¢ Clarity of visualization. Arranged so that the areas of screen that they are over- 

writing are relatively unimportant information (e.g., targeting cursors appear as 

brackets surrounding a target, rather than on top of the target, creating blind spots 

over small uninteresting areas of sky or background rather than over the target 

itself). 

These benefits are useful in a complex editor. However, they do not seem to do much 

to solve the problems highlighted in the earlier sections. 

Context-Sensitive HUDs 

We extend the concept of a single monolithic HUD to that of a context-sensitive 

HUD. A context-sensitive HUD is one that responds in real time to user actions, with 

a large amount of built-in intelligence. For example, a context-sensitive HUD for a 

first-person shooter (FPS) might normally display ammo, health, and frag-count; how- 

ever, if the player is somehow poisoned, so that health is dropping continuously, it 

might replace everything with a simple thermometer reading of the player's health 

because all the other information becomes relatively unimportant. 

In an editor, the position of the mouse cursor at any given time is the best indica- 

tion of what the user is doing or thinking about; therefore, a context-sensitive HUD 

will typically be most sensitive to changes in cursor position. For example, the tool-tip 

pop ups in a standard Windows application are an example of a context-sensitive 

HUD, albeit a very simple one, which vanishes completely when the cursor is no 

longer floating over any button. 

Microsoft in particular has spearheaded the use of context-sensitive HUDs in 

applications, showing great usability improvements, although so far they have barely 

scratched the surface of what is possible. For instance, whenever the mouse cursor is 

moved over any of the borders of a cell in Word, it changes to a resize cursor, and the 

function of the mouseclick is temporarily changed to match this (only the cursor 

change is a HUD change, but more on that later). 

Heads-Up Editing 

In the Word example mentioned earlier not only does the cursor change, but the 

entire function of the mouse does, too. A context-sensitive HUD merely provides rich 

and intelligent changes in what is being displayed; heads-up editing combines this 

with automatic switching of the current tool or mode of the editor. 
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A fully heads-up aware and capable editor is a step forward for users for the fol- 

lowing reasons: 

¢ Automation. Eliminates the need for manually changing tools all the time (the 
cursor changes automatically according to context, simultaneously switching 
tools as appropriate). 

¢ User-interface simplification. Most of the little icons on toolbars can be removed, 
since the user no longer needs to select them manually. 

¢ Learning curve reduction and productivity increase. Learning how to use the edi- 
tor takes much less time because it automatically presents the user with the cor- 
rect tool, saving the user from having to hunt for it in a menu, toolbar, or 

elsewhere. 

But it gets better: heads-up editing can be implemented with a very simple architec- 

ture that makes maintenance and extendibility much easier for the developers, staving 
off bit rot almost indefinitely. The proposed architecture forces all new features to be 
added as fully encapsulated modules, preserving existing code and making compo- 
nents easy to replace in the future. 

, 

Implementation 
SEEN ORAL REE RELL IE EELS OSA LE LEI O LEE EES ELLE LTO EOE LE LEE L ORL ELLOL ILL LL LEDS, 

The implementation of the solutions covered thus far is broken down in a number of 

areas: acetates, renderers, and tools. We'll also discuss details in sharing code between 

components. 

Acetates } 

To the user, we present a conceptual model of acetates on an overhead projector 
(OHP) as seen in most conference and lecture rooms. Each acetate is merely a trans- 
parent sheet of plastic, which the lecturer can insert, remove, or edit independently of 
the others. Each acetate contains one or more diagrams or text, and the grouping is 
arranged to keep the number of acetates as small as possible (easier to manage) while 
allowing however fine a granularity the lecturer needs to rapidly change diagrams. 
Often the contents of a particular acetate make no sense on their own (for instance a 
set of disembodied arrows), but when placed in the context of the other acetates, they 
suddenly become meaningful. 

With real acetates, it is easy to reorder them, to twist or translate individual layers, 
to hide and reveal sections, etc. This particular approach has proven very powerful, 
because it gives the user (the lecturer) the ability to instantly change the information 
being displayed in many ways: the user can very rapidly add or remove content and 
easily simplify or add more detail. 

Our software approach is to build a system of layers, where each layer is akin to an 
acetate. Like acetates, each layer is transparent and overlays the main data (viewport); 
i.e, each layer is a HUD. However, unlike acetates, our layered HUDs have much 
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richer control options, mainly because we have much more power with a computer 
GUI. Furthermore, each layer has one or more control modes (a.k.a. tools) associated 
with it; for instance, “translate selection” and “rotate selection.” This turns each layer 

into an encapsulated context-sensitive HUD with associated editing modes. 

Renderers 

The main editor viewport is just like a traditional editor. It shows the current docu- 
ment being edited, where the document may be a textual document, a 3D model, or 

any arbitrary rendered data. The document is the set of data on the screen that is 

saved or loaded as opposed to being part of the GUI/editor. The main viewport dis- 

plays nothing else; everything else will be handled by HUDs (and this can provide a 

convenient means for the user to see exactly what will be saved, without mistaking a 

HUD-applied tint on a texture as part of the model plus texture that will be saved. All 

they need to do is turn off all HUDs and they will then have a “What You See Is What 

You Save.” 
Where the document itself is particularly complicated, you may even render only 

part of the document in the core renderer and do the rest in HUDs. For instance, 

some 3D model formats save the vertex data, the texture data, the bones, and the ani- 

mation all in one file. You can get an editor up and running quickly by implementing 

only the vertex reading and rendering in the core renderer, and later adding a separate 

HUDi/layer for each more advanced element, without needing to alter your existing 

code. If there are any bugs in the texture renderer, for example, the user can always 

simply disable that layer and carry on viewing the vertex renderer as if they were using 

an early version of the editor. 
Each HUD renders itself transparently on top of the editor viewport. As with 

acetates, some careful planning is required to divide up the desired visual features 

(selection highlighting, etc.) into HUDs, although generally it is better to have more 

HUDs rather than fewer. 

The user has a simple tool for choosing which layer they are editing in, and wiz- 

ard actions may programmatically select a queue of layers, transferring the user auto- 

matically from one to the next in order to complete the editing task. 

This may sound familiar to the layers of modern paint programs: individual inde- 

pendent layers, with user actions constrained to only those they explicitly choose at 

any given moment. This interface should be immediately familiar to most artists. The 

main difference is that we are using acetates for the actual GUI, whereas paint pro- 

grams typically use layers for isolation of content (make changes only in one layer) 

and for composition of content (e.g., blending to a background is very hard to undo 

once done, so compositing temporarily via layers makes things much easier; it acts 

like an instant preview without permanently committing the author to the current 

composition). 
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Tools 

Each tool is either allotted a unique acetate of its own or shares one belonging to a dis- 

play element (and zero or more other tools). If you are unsure, it is safest just to have 

one tool per acetate. 

Shared Code and Extending the Context 

Dividing the code up into one or more classes per HUD presents some problems with 

duplication of code. This is a natural side effect of attempting to make the HUDs as 

independent of each other as possible. However, code duplication could easily under- 

mine the ease of maintenance, and so we definitely want to avoid it if possible. 

Most of the code that typically gets duplicated is common display code, not tool 
code, such as x, y, and z coordinates of a point. It is duplicated because in any partic- 
ular editor, the different tools tend to display or affect exactly the same information, 
although in different ways. This is fortunate, because it means we can safely encapsu- 
late that code in a single HUD renderer, introducing only a very narrow dependency 
of each tool on that one single renderer (i.e., they are not dependent upon each other 
in any way). 

A better long-term solution is to completely avoid the dependency by making 
rendering X a fundamental feature of the renderer (where X is some information that 

will be set at different times in different ways by different tools). We do this by sup- 

plementing our definition of context, which was originally just cursor position, to also 
include the current value of X. We also need to supply at least one HUD that queries 
that aspect of the context and renders it. One of the advantages of doing it this way is 
that you can have multiple different HUDs rendering that context at once in different 
ways (different formatting, different details, etc.) and leave it to the user to decide 
which they want to see (using the show/hide HUDs controls). 

For example, if you have multiple tools that need to pop up the (x, y, z) coordi- 
nates of a point or for a vector, the context can be supplemented with a field current 
point, which the tools will fill whenever appropriate, and then assume that one of the 
HUDs will render it for them. 

Source Code 

There are two main elements to the source implementation, regardless of the win- 
dowing system you are using: a HUD manager and the individual HUDs themselves 
(all of which are of the same type). 

The HUD manager is a Model in MVC (Model, View, Controller) terminology: 
it has data-structures containing references to all the current HUDs and has methods 
for adding or removing HUDs programmatically. It also keeps track of the state of the 
GUI (e.g., managing the HUD stack, described in the “User Controls” section). 

All HUDs are implementations of a template/interface that provides callbacks for 
things like triggering rendering to a suitable surface (i.e., painting the HUD to a back 
buffer) and for feeding in GUI events (e.g., mouseclicks). 
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ON THE CD 

By encapsulating all the logic for a particular HUD into one class, we make it 
easy for the developer to add/remove HUDs from the editor and to alter existing ones 
without having to edit more than one source file at a time. Obviously, a particularly 
complex tool may itself consist of many classes, but the logic to activate that tool and 
render the interactive HUD parts is all in one place. 

The implementation given on the CD-ROM is simplistic, but should be easy to 
extend as you desire. The HUD manager is net.tmachine.gpg.hud. HUDManager. 
The interface/ADT for HUDs is net.tmachine.gpg.hud. HUD and the base abstract 
class (contains some common methods) is net.tmachine.gpg.hud.BaseHUD. A demo 

application is in net.tmachine.gpg.hud.HudDemo (which is run automatically if you 
try to run heads-up-editor.jar). 

User Controls 

There are three aspects to the users’ interaction with the heads-up editing system: 

¢ Interactive, heads-up selection of which tool to use 
e Activation and de-activation of individual HUDs (and their tools) 

¢ Peeking at the internal state of the heads-up editing system 

Tool Selection 

One HUD is a proxy for a set of other HUDs and tools. This HUD will have many 

context-sensitive rendering features, including an activation symbol for each and 

every HUD for which it is proxying. For instance, if it proxies for a translate object, a 

rotate object, and a stretch object, it will have icons that appear for each within suit- 

able activation areas (e.g., the translate icon is activated while the cursor is inside the 

bounds of an object, rotate is activated when the outside object is within 10 pixels of 

a corner, and stretch is activated when the outside object is outside 10 pixels of a cor- 

ner but inside 10 pixels of any edge). 

LMB on an activation area delegates to the other HUD + tool mapped to that 

area, placing the current HUD + tool on a stack. When the delegated tool is finished, 

it can automatically pop the activating HUD + tool. This allows arbitrary nesting of 

proxying HUDs, which is good for extremely complex editing situations but also 

allows one HUD/tool to be invoked from several different contexts, without needing 

to be context aware, or having to be re-implemented with almost identical code once 

for each different context. 

HUD Activation 

To manage the different HUDs, we simply copy the standard layer palette from high- 

end paint programs. This is a well-established form of GUI—with which many users 

will already be familiar—that shows all the layers in order as a list, with controls to 

show/hide any particular layer and allow the layers to be dragged and dropped to 

reorder them in the list. 
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With our HUDs, reordering can be useful since it controls which HUDs are 

over-painting which other HUDS; with this feature, the user can usually resolve any 

paint conflicts on screen, keeping the underlying code simple. Otherwise, the individ- 

ual HUDs would need to interact with each other so that they could avoid overlap- 

ping so as to negotiate use of screen space; e.g., to reserve particular screen regions for 

painting in. 

The show/hide feature is used just as in a paint program: hiding a HUD simply 

turns off its painting code. This may be done to reduce clutter on the screen, to 

increase rendering performance, or simply because the user doesn't need a particular 

HUD during the current session. Since HUDs are persistent and identical across edit- 

ing sessions (unlike layers in a paint program, which are ephemeral and tied only to 

the current document), a helpful feature in particularly complex heads-up editors is 

the ability for the user to quickly save and restore particular patterns of hidden 

HUDs. A particularly neat way of doing this is to create a tab along the top of the dia- 

log for each saved preset of hidden HUDs, with the user providing a name for each 

preset when creating them. This allows extremely fast switching between different 

editing modes, in keeping with the aim of the user being able to do most of his work 

with minimal navigation of dialogs, menus, toolbars, etc. 

Internal State 

This serves two nonobvious purposes. Since the internal state of the system can arbi- 
trarily mask out tools that would otherwise be available, it’s often important for users 
to understand what they've selected mid-selection (e.g., if they make a mistake and 
select the wrong element they typically won't know what they clicked on, only what 
they intended to click on), and this acts as a navigation map. Secondly, it makes 
debugging much easier, since users can easily quote the situation they got into, rather 
than the developer having to guess or examine log files. This is especially helpful in 
that it empowers users to avoid particular situations that are subject to outstanding 
bugs; if they know that a certain part of the “map” causes crashes, it’s easier to avoid 

ending up there. 

Conclusion 
‘Guam ssetceerea: NSS EN SER IUCN BR TR OS mary SEO 

This gem has shown how a simple editor design can give more power to the users and 
simultaneously make life easier for the developers. This is a virtuous circle that reduces 
stress all around: developers spend less time getting tangled up in unmaintainable 
code, and users spend less time waiting for seemingly simple (yet deceptively complex) 
features to be added. 

Organizing your editor around HUDs keeps it very flexible in terms of features: 
adding a new feature is rarely difficult, thanks to the independence of individual 
HUDs. At the same time, the editor is effortlessly able to simultaneously run alterna- 
tive implementations of the same control: both run at once, and the user turns them 
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on/off in real time as desired. This allows you to experiment more easily with unusual 
features or new ideas for the editor, at a low development cost. 

However, it doesn’t go much beyond the basics of what can be achieved with 
heads-up editing (HUE). There are many ways this gem could be extended to provide 
far greater support for HUE, although most of these require considerable extra pro- 
gramming and are not to be attempted lightly. The core support presented in this gem 
is cheap to develop and maintain, while providing most of the benefits. 

G3 Errata and updates for the source on the CD-ROM will be available from [Mar- 

onTHECD tin04]. The supplied code is minimal, but a library free for both commercial and per- 
sonal use is being built on top of it, and later versions and improvements will be 
available free on that site. 
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1.2 

Parsing Text Data 

in Games 

Aurelio Reis 

AurelioReis@gmail.com 

NM: games require a vast amount of text data to be read and interpreted. From 
scripting languages to shaders, the text must most often be taken from a stan- 

dardized format and converted to binary data structures the program can use natively. 
In this gem, we examine the creation and usage of a tokenizer: the module responsible 
for converting textual data into discrete units, ready for interpretation and consolida- 
tion into valid game information. 

Before We Start __ 
For pit ae a hpi is sometimes Fier to asa stele and the tokenizer the lex- 
ical analyzer (a word analyzer). We will use the terms token and tokenizer for this gem. 
Many free tokenizers are on the Internet, and you should check them out, particularly 
one of the more popular tokenizers, Lex (with Yacc) [Lex & Yacc], which is open 

source and can function as a valuable learning tool. Tokenizer and parser theory is an 

enormous field, and this gem will not attempt to cover every last facet. Instead, the 

purpose of this gem is to serve as an introduction and explanation on the usefulness of 

a tokenizer in game production, and how to approach implementing and using one in 

a practical manner. For more information on the history and theory behind tokeniz- 

ers and parsers, there is a “References” section at the end of this gem. 

So Whattlstalioke tenner er 
A token is melee an urdereive grouping ae cece used to represent individual 

basic symbols. Basically, it is a grouping of characters that form a special ° ‘word.” As 

an example, examine the small C++ program segment in Listing 1: 

17 
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Listing 1.2.1 A Simple C++ Code Segment 
a — 

return false; 

} 

If you were to break Listing 1.2.1 down into tokens, you would have a list such as 

that in Listing 1.2.2. 

Listing 1.2.2 A List of Discovered Tokens Generated from the Code Segment in Listing 1.2.1 
a
 

SLAF <string> 

( <left parenthesis> 

a <string> 

aS <string> 

0 <number> 

) <right parenthesis> 

{ <left brace> 

return <string> 

false <string> 

F <semi-colon> 

} <right brace> 

As you can see, the tokens are classified into specific types. A tokenizer would blindly 

read that segment as ASCII data and perform the classification process. We will get 

into what we do with these tokens later, but for now just realize that we define the 

basic types, then form a list of discovered tokens based on the data set (the text). 

Making a Tokenizer 
smareremine te Te ia DEE NOL SEERA RTOS SIE AD BE NI A ETE OI, 

A tokenizer essentially works as a finite state machine (FSM), which generally func- 
tions by performing a specific action or event based on the current global state. To 
parallel with the world of games, an FSM might be used to guide an AI agent around 
a virtual world. Its current state for instance might be “wander,” in which case it 
might randomly walk through a node grid (or similar navigation scheme). 

An input event such as seeing an enemy may trigger a state change to “search and 
destroy” in which the agent hunts and attacks the enemy until it loses or kills it, at 
which time the state may change again. In this instance, virtual visual and auditory 
input functions as the input events. In a tokenizer, however, input events take the form 

of special characters. Let’s examine one of the simplest situations; the comment. In 

C++, a comment may exist in two forms; a line comment specified with two forward 
slashes (//), or a block comment, specified by a forward slash and star to begin (/*) and 
star and forward slash to end (*/). The tokenizer walks through every character in the 

data set until it finds a forward slash (/). When it finds one, it skips ahead a character 

to see if this is actually a comment. If it is, we have a state change to “In comment.” 
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The tokenizer then continues, skipping all new characters until either the end of the 

line or the end block statement. 
The tokenizer itself can be as complex as you wish to make it. If simple text data is 

all you require, you can forgo token types entirely. All you would need to define are 
your delimiters. A delimiter specifies how you want your data set broken up into 
tokens much the same way punctuation does for the English language. The most com- 
mon delimiter we use in written language is (of course) the space (). If you were to use 

the space as the delimiter for tokenizing this sentence, each word would become a new 
token. Notice however that a comma and period were also used. If you wanted to skip 
these characters while using them to define your token boundaries, you would also 
specify them as delimiters. The most common delimiters you might use are space (), 
comma (,), newline (\n), line break (\r), and tab (\t). You might also want to use the 

semicolon (;), but in some instances, it is better to reserve this as a special token type. 

If you require more robust checking of token types, you need to represent them 
with something more concrete than just a string token. This may be more desirable, as 
doing so may allow for more straightforward parsing of tokens (more on this in a bit). 

Using C++ methodology, you can derive a new token type inherited from a base token. 
When a new token is to be created, it is matched with the token type most closely 
matching its characteristics. General rules can also be created to allow for string group- 
ing. For instance, a string token might begin with a quote, contain multiple characters 
including would-be delimiters, then end with another quote (e.g., “This is a single 
token”). Expressions (1 + 2 * 3) can also be defined in this manner, but most people 

choose to define these after tokens have been created in the parsing stage. 
As an example, examine Listings 1.2.1 and 1.2.2 again. Just from looking at the 

token types, you can see a basic structure to the tokens’ placement. As you will see in 

a moment, when parsing a segment like this, it is far easier to expect data types than 

check for specific text at every token. For instance, a basic rule might be this: when an 

if string token is encountered, we expect an open parenthesis, a number of inside val- 

ues representing an expression, and a close parenthesis, followed by more tokens. 

Instead of checking explicit names, we can merely ask for specific tokens by type. A 

mere convenience, but this certainly helps in code readability and usage. Also, it guar- 

antees proper syntax when parsing the data. With proper error checking, tokenizing 

and parsing data is made much easier for the end user, which is why it is usually one 

of the most important aspects of a good parser. 

How It Works 
UBLITERES LR ETE IES EA 

G=% On the accompanying CD-ROM you can find a simple tokenizer with a test app. To 

ONTHECD tokenize a string, the tokenizer follows a few simple steps. First, the file containing 

our text data is read into a buffer or mapped to a view (if you are using file mapping). 

We then call our tokenize function on this buffer, which goes through every character 

and categorizes it based on the current state (with the initial state being TKS_INWHITE; 

i.e., reading whitespace). The state changes many times during the entire process. 

scene RU EUR AO ESE BOONE EATER LAT EE STONED LEE EOT TE ELLIE ITER ERTL EEL 
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When a valid character is reached, the state turns to TKS_INTEXT, which means we. are 

now reading actual characters. When a delimiter is reached, a token is created, catego- 

rized into a type, and added to the token list. On the other hand, if a quote is encoun- 

tered, our state suddenly changes to TKS_INQUOTES, which means we are now reading in 

a text group. As soon as another quote is encountered, the text group ends and is final- 

ized as a string token. The same process happens for single- and multiline comments. 

The main function to examine is TokenizeString(). This is where the characters 

are sequentially iterated over, and states change based on character conditions. The 

token classification is done through the function ClassifyToken() (Listing 1.2.3), 

which basically determines whether it matches the characteristics of a float, a special 

character (from the special character table), or a string. This function is actually a 

prime candidate for being recursive, but this has been skipped for illustrative purposes. 

As you can see, it identifies whether a string can be converted to a digit, and if so, 

whether it is negative. isdigit() is used to determine whether the string is a number, 

but by comparison, it would be just as easy to scan the string for a period (denoting a 

fractional number). IsSpecialCharacter() merely checks the first character of the 

string to see if it is a one-character special token like an open brace, bracket, or quote. 

If you were to add a semicolon as a token type, for instance, this would be the place to 

check for it. When a token is ready to be made, the classified token is created with the 

AllocToken() function. If the tokenization ends prematurely, the FinalizeToken() 

function is called, which makes sure no token is left behind. After we have a token list, 

it is time to parse through it, but what exactly are we parsing? First we must create 
some kind of text format. Let’s quickly examine something called the BN Form, shown 

in Listing 1.2.3. 

Listing 1.2.3. Implementation of ClassifyToken() (Comments Removed for Clarity) 

TOKENTYPE CTokenizer::ClassifyToken( const char *strText, 

unsigned long ulFlags ) 

{ 
TOKENTYPE TokenType; 

if ( !( ulFlags & TKFLAG_STRINGSONLY ) && ( isdigit( strText[ 0 ] 

) || 
( strlen( strText ) >= 2 && ( strText[ 0 ] == ‘-’ && isdigit( 

nally aealleal i de My a) 3) 

{ 
return TKT_FLOAT; 

else if ( TokenType = IsSpecialCharacter( strText[ 0] ) ) 

5 
return TokenType; 

} 
else 

{ 
return TKT_STRING; 

} 
} 
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Making Your Own Format 
At this point we actually need to have something to tokenize. In the included test app 
and code, you will find a very simple example. Basically, I started the foundations for 
a format we will call the character file (we'll keep the extension .txt though so you 
don’t have to register any new file types to read it). The character file will explain the 
characteristics of a character in your game, non-player or player. For instance, imagine 
a role-playing game where you must first create your character or start from a precre- 
ated set of template characters. After your character is created, he needs to be saved. 

The character file is the file we would save the character to (or in the case of precre- 
ated characters, load from). The format is actually quite simple (perhaps too simple), 
but to explain it, we must understand the concept of the Backus-Naur Form (BNF; 

also referred to as Backus-Naur Notation). Basically, BNF is just an explanation of 

how grammar syntax should be applied. An excellent example directly related to 
everyday writing is available at [CS310] and an explanation of the symbols used at 
[Estier]. BNF is based around unbreakable rules that define how strings may be used 

together. My favorite example is the BNF for a date, shown in Listing 1.2.4. 

Listing 1.2.4 The Backus-Naur Form (BNF) for a Calendar Date 

<date> := <month> '/' <day> '/' <year> 

<month> = 2 

<day> = le pe ai 

<year> ‘= 1900 .. 3000 

As you can probably intuit, a BNF defines symbols and shows us what values a sym- 

bol may be assigned. Using the previously defined grammar, and ignoring the fact 

that some months don’t have 31 days in them (plus leap years), we could easily con- 

struct a date—say, 12/25/04—and validate it using these defined rules. ‘Translating to 

English, the BNF says “A date is a month, followed by a slash, followed by the day, 

another slash, and then the year. A month is a value between 0 and 12. A day is a 

value between 1 and 31. A valid year (to us) is between 1900 and 3000.” 

It’s usually easy enough to go the other way around. Describe your “language” 

and then translate to BNE If you would like a more detailed explanation, see 

[Garshol03]. One last thing to note is that a lot of people don't follow a strict BNF 

interpretation. If you want to separate the symbols with a +, for instance to signify 

and “in addition,” the BNF would have been just as valid (although something like 

that may be valid when using multiple string symbols next to each other as shown in 

a moment). Find a system that works best for you but is not so esoteric that others 

will be unable to interpret your instructions. Ambiguity (opening up the possibility 

for too many possibilities to occur within your grammar without an idea of which one 

is actually correct) is also something to avoid. BNF act more as a guide to help ratio- 

nalize and think through key design decisions. As a fun exercise, see if you can make a 

BNF for the C++ segment in Listing 1.2.1. 
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Now that you have an understanding of what a BNF is, take a quick look at our 

example character file, Character.txt. A rule set for the grammar in our character file 

format may be defined as shown in Listing 125: 

Listing 1.2.5 A Rule Set for the Grammar of Our Character File Format 

<CharacterFile> i= ‘Character’ + ‘{" <TextBody> ‘}’ 

<TextBody> i= <CharacterStat> <Value> 

<CharacterStat> I= ‘Name’ | 'Strength' | ‘Dexterity | 

Constitution | Intelligence | Wisdom | “Charisma | HitPoints 

<Value> r= <Float> | <Bool> | <String> 

<Float> cha OND OA ICE 740.02 21 Ox 

<Bool> Ils TRUE | FALSE 
<String> = Anon Ze AA See ZS 

As you may have already guessed, a few ambiguities have been introduced here on 

purpose. For starters, a CharacterStat right now can be one of three things: float, 

bool, or string. Using the supplied grammar, a name technically can be assigned TRUE 

or 3.14. This is obviously a fallacy. To remedy this, see Listing 1.2.6. 

Listing 1.2.6 A Disambiguated Rule Set for the Grammar of Our Character File 

<CharacterFile> = Character + { <TextBody> } 

<TextBody> = <CharacterStat> 

<CharacterStat> = ( <FloatStat> <Float> ) | 

( <BooltStat> <Bool> ) | ( <StringStat> <String> ) 

<FloatStat> Dis Strength | Dexterity | Constitution | 
Intelligence | Wisdom | “Charisma | HitPoints 

<BooltStat> i= IsPlayer 

<StringStat> = Name 

<Float> i= Oa. OE Ate ot 

<Bool> i= TRUE | FALSE 

<String> re ALY Za] RAR Ze 

As you can see, the ambiguity has been completely resolved by specifying explicitly 
that a FloatStat may only take a float, Boolstat only a bool, and StringStat only a 
string. A few liberties were taken with the BNF by adding the + after the number and 
letter definitions, since it would be somewhat silly to define exactly what a number is 
every time you write up a new BNF. Putting the + there basically states that there may 
be an unlimited number of these values specified here. If you cross-reference this BNF 
with our character text file, you will see that we meet all the requirements. As a mat- 
ter of fact, it helps to write out the format as you want it to look even before creating 
a BNF. As mentioned earlier, a BNF is an excellent way to poke holes in a format that 
may look good at first but may later have disastrous loopholes (don’t laugh; it’s been 

done). 
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Parsing Your Token List_ 
Now that we have a defined format, written a file with valid input, and converted the 

text to discrete tokens, it is finally time to interpret these tokens and convert them to 

valid binary data structures. The process of doing this is often calling parsing since 
that collection of data is analyzed and processed individually. In our case, we process 
it so the computer can understand it. Parsing data can be a very involved and in-depth 
subject with many things that can go wrong. Some people prefer to parse recursively 
(i.e., Recursive Descent Parsing [RecursiveDescent]), analyzing the data at different 

levels and returning results as a whole. In our case, we will simply step through each 
token linearly, following our grammar rules. 

The most important part of parsing data is to remember that error checking is 
essential. This cannot be stressed enough. If you do not ensure your data has been 
parsed correctly, disaster will surely follow. You may choose to use exception handling 
to take care of the situations where things break the format. It’s simple enough to 
throw an exception when a rule has been broken. If you reference the code, you will 
see that we first check for the Character and { statements to ensure we are starting a 

new character entry. After this, we enter a loop that either terminates at a } or 
assigns a value to our CharaterStats. If we run out of tokens or an error occurs 
(using a BoolStat for a FloatStat, for instance), the loop terminates and kills further 

processing, exiting the program with an error. 
While not very exciting, the example application provided on the accompanying 

CD-ROM can easily be extended. For starters, imagine attaching script behaviors to a 
character with full expression checking and move/attitude commands. In addition to 
the basic character loading, the code has been extended to read in a weapon as well, 
but other items are easily added such as armor or shields. Also included is a neat trick 

you can use that takes a CharacterStat and matches it directly to its class data mem- 

ber using byte offsets into the Character class object (CCharacter). Using this tech- 

nique, new class members are easily checked by the parser through the ccustomField 

array (more specifics are in the code). This trick also comes in handy for network vari- 

able synchronization or save/load functionality. There are lots of exciting ways to 

expand the app; have fun trying it. 

Conclusion 
neaneaane RR SM REE SO RNR HIRT OCP 

In this gem, we delved into the basics of implementing a versatile tokenizer, which we 

use to break down text data into valid tokens, which in turn may be parsed into valid 

game data. Using this knowledge, we created a very simple text format for storing a 

game’s virtual character along with some stats. The accompanying code is commented 

quite thoroughly so you should step through it in a debugger for a firmer understand- 

ing of how the code flows. Then, put this knowledge to work in your own game! 
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D ceca object management models often rely on inheritance hierarchies to 
share functionality between different types of objects. As games grow ever more 

complex, this approach leads to a design that is hard to change and where functional- 
ity is forced up the inheritance hierarchy if it is needed in several branches. 

A good solution to this is to build objects from components, where each component 

is responsible for the data and behavior of one specific task. An object-management 
model based on this concept provides greater flexibility to create new objects and to mod- 
ify existing behavior. 

The first part of this gem outlines the differences between a traditional object- 
management system and a component-based system, and the main benefits gained 
from using the latter. The second part of the gem focuses on creating a component- 
based system from scratch. We conclude with a strong foundation for production- 
ready implementation. 

senate TE NSAI IESE, ATUL Led Ld acd 
In a traditional object-management system, objects derive from the same abstract base 

class. For the purpose of this discussion, we consider such a system where all classes 

derive from the class Cobject. The next step is to decide which classes derive from 

CObject. More often than not, the classes that derive directly from CObject are also 

abstract and represent a split in the tree between classes that have some functionality 

and classes that do not. Typical examples of such splits would be renderable/nonren- 

derable and animating/non-animating. Figure 1.3.1 shows a simple inheritance tree. 

At first glance, this looks quite good, and the seduction of such a system is that it 

often does look very good on paper, at least for a little while. One thing we know 

about making games is that requirements change as development progresses. This 

model is not one that accommodates change to a satisfactory degree. Let us look at a 

few examples to illustrate. 

25 
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FIGURE 1.3.1. Traditional inheritance tree. 

What do we do if it is decided that weapons need to be able to animate? As it 

stands, CWeapon and CAnimatingObject are in two different branches of the tree. A 

solution to this problem is to make Cweapon inherit from CAnimatingObject. But wait! 

A weapon is a collectable object, so we also have to make CCollectableObject inherit 

from CAnimatingObject. The result can be seen in Figure 1.3.2. 

CPhysicsObject 

CAnimatingObject 

CCollectableObject 

CHealthpack 

FIGURE 1.3.2 Some of the classes have been moved to 
allow CWeapon objects to animate. 
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This solves our problem (for now) but also introduces new problems. Now, all 

collectable objects have become animating objects because one of the classes that 
derived from CCollectableObject needed animation. That is quite a lot of baggage 
for a lot of objects to carry around. It also means that our poor health pack and any 
other collectable objects have to implement any pure virtual methods from CAni- 
matingObject just to be valid objects, even if those methods do not make sense for 

those objects. 
Now let us consider what happens if we want to allow objects to take damage. We 

should only need a couple of methods to be able to do that, so we decide to add those 

methods to an existing class. Our design calls for objects deriving from the CActor 
class to take damage (these are not shown here but would typically include at least 
CPlayer and CEnemy/CAICharacter), so we go ahead and add the methods to CActor. 

This seems like a sensible choice. 
As time goes on, it is decided that doors are supposed to be able to take damage 

and be destroyed as well. To give them the ability to do so, the damage methods are 
moved up to CAnimatingObject, as that is the first common ancestor of CActor and 

CDoor. It seems like a reasonable decision, and it gives us what we want. Another rea- 

sonable decision might be to move the damage methods up to CRenderableObject if a 
non-animating object needs the ability to take damage. The effect of a lot of these 

“reasonable” decisions is that our tree becomes increasingly top-heavy. A class high up 

the tree also ends up with a lot of methods that are not there because of what the class 

does but because of where it is in the tree. Such classes lose their cohesion as they try 

to be all things to all objects. 

Components 

We have seen that we run into quite a few problems if we rely on all objects being part 

of a big inheritance tree. What we would really like instead is a system where we can 

combine existing functionality into new objects and add new functionality to existing 

objects without having to refactor a lot of code and reshuffle the inheritance tree every 

time we want to do so. 

A Simple Object 

A good solution is to create an object from component parts. A component is a class 

that contains all the data members and methods used for a particular task. An object 

is in turn built up by compositing several components together. Figure 1.3.3 shows a 

spoon object and the components from which it is made. 

The Entity component allows us to place the object in the world. The Render 

component allows us to associate a model with the object and render it according to 

the settings of that component. The Collectable component allows us to pick up the 

object and keep it in our inventory. 
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Spoon 

FIGURE 1.3.3 A simple object built from components. 

Interfaces 

All components derive from a base component interface. We will imaginatively call 
it IComponent. This interface contains a few methods that all components need to 
implement. It is mainly of use to the object manager (discussed in the next section) 

for being able to deal with all components through pointers to this base class. 
We would prefer to concern ourselves only with the public interface that each com- 

ponent exposes. To make any sense, each component needs to derive from an interface 

that promises a bit of functionality. Let us use the Render component as an example. 
Figure 1.3.4 shows the inheritance tree that leads to CCmpRenderer. At the top we 

have IComponent. Then we have ICmpRenderer. Finally we have CCmpRenderer that 

implements any functionality that the interfaces above it have promised. 

IComponent 

ICmpRenderer 

CCmpRenderer 

FIGURE 1.3.4 7/e CCmpRenderer 

inheritance tree. 
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This looks an awful lot like we are doing a lot of the things we just said are wrong 
with the traditional systems. Everything derives from one base class and we are using 
inheritance all over the place. How is this different? It is different because now all our 
inheritance chains lead to classes that perform a closely related set of tasks. In other 
words, the classes have tight internal cohesion. 

Keeping Track 

We need to organize all these components somehow. For that purpose, we have the 
object manager. It is really an interface to a database that the rest of our code is not 
allowed to see very much of. The database does not have to be (and is unlikely to be) 
of the Oracle or SQL kind; it just needs to keep track of all our components and make 

the access methods exposed in the object manager as efficient as possible. The object 
manager allows us to create, query, and destroy components, among other things. We 
will have a closer look at the object manager and one possible implementation of the 

database in the “Implementation” section. 

There Is No Spoon 

Let us go back to our spoon object example (illustrated in Figure 1.3.4). We have all 

these components, but what has happened to our object in all this? There is none! It 

may be tempting to keep a CObject class around for comfort, but we are not going to. 

There is nothing that requires us to retain a CObject class; if we did, how would we 

decide what was allowed to live in the CObject class and what would have to live in 

components? If we make everything live in components, that is one less choice to 

make when we are designing our system. All that remains of the object is an object 

ID. This can be anything as long as it uniquely represents an object and is convenient 

to pass around. Some kind of handle based on an int should do just fine. Of course, 

it is still convenient to talk about objects, because that is what they appear to be to the 

rest of the world. Any talk about objects from here on really means the collection of 

components that form an object when combined. 

We Need to Talk 

The components that form our spoon object all perform their own well-defined tasks, 

but it would be naive to think that they can accomplish this without communicating 

with each other. The Render component needs to ask the Entity component about 

the world position of the object when rendering, and the Collectable component 

will probably have to tell the Render component to switch off rendering when the 

object is picked up. 
There are two ways that components can communicate. In the case that we know 

of a particular interface that we would like to ask or tell something, we can ask the 

object manager for a pointer to the particular interface and then call methods on the 

particular component through that interface pointer. This would be a good solution 
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to the Render component asking the Entity component for the object's world posi- 

tion. Any of the code in the game that has access to the object manager can query for 

an interface belonging to a particular object. All that is needed is the object ID. 

The second means of communication between components comes in the form of 

messages. This is useful for the situation where a component has something to say, but 

does not quite know to whom to say it. A message can be sent to an object or to all 

objects. In the case of the Collectable component telling the object it belongs to that 

it is picked up and wants to be hidden, it would post a message to all the components 

in the object to say that it would like to be hidden. Each component type will tell the 

object manager at initialization time which messages it is interested in receiving. 

Extending Our Object 

So what to do if we want to be able to bend the spoon? At the moment, our spoon 

object is rigid and does not bend easily. The solution is simple enough: we add an ani- 

mation component to the object. 
Now, we have not really talked about how objects are defined. That bit seemed 

easy in the traditional system: the object was defined by where it was in-the inheritance 
tree and by the methods it exposed to the rest of the world. We could still make a class 
for each object type and use aggregation so that each object class is built up from a 
bunch of has-a relationships rather than the is-a relationships of old. This brings us one 

step closer to what we want, but it still means that objects are set up in code, and that 
means we need to compile every time we change the structure of an object. 

What we would really like to have is the whole process of creating objects be com- 
pletely data driven. That way, designers can play around with existing objects and 
even create new object types without any programmer input. The system has every- 
thing that is needed to make this happen. We simply need to derive file formats for 
specifying components and objects and provide the designers with the tools they will 
need. 

Creating the System ERNIE EER RRR A RC TR TER UES 

Now that we have a reasonable idea of what we want, we can go ahead and create the 

©» system. The companion CD-ROM has all the code for a component-based object- 
ONTHECD management system, including a few different components and messages to get 

started using it. It is not a complete system, and there is not really any way that it can 
be considering that all games are different, but it should be easy enough to extend the 
system to make it work for a wide range of games. 

The Component Interface 

The first class that we are going to have a look at is the component interface. This is 
the class from which all other component interfaces and components derive. It looks 
like this: 
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class IComponent 

{ 
public: 

IComponent() ; 

virtual ~IComponent() = 0; 

virtual bool Init(CParameterNode &) = 0; 

virtual void Deinit(void) = 0; 

virtual EMessageResult HandleMessage(const CMessage &); 

virtual EComponentTypelId GetComponentTypelId(void) = 0; 

CObjectid GetObjectId(void) const; 

ICmpEntity *GetEntity() const; 

private: 

void SetObjectId(CObjectid old); 

CObjectid mObjectId; 

friend CObjectManager ; 

}3 

So now we know what it looks like, but what does it do? Let us have a look at each of 
the declarations in turn. First we have the constructor and destructor. They do not 
really do much other than the virtual destructor signaling that this class is meant to be 

derived from and not instantiated. After that, it gets a bit more interesting. The next 

two declarations: 

virtual bool Init(CParameterNode &) = 0; 

and 

virtual void Deinit(void) = 0; 

are called on each component at initialization and de-initialization time, respectively. 

The one parameter to the Init() method is a reference to a CParameterNode object. 

CParameterNode is a node in a tree of component data. Think of it as a node in the 

XML datafile that lets us read data from it and its children without having to do all 

the parsing that reading XML would normally entail. The Init() method of each 

component then asks for the data it wants from this parameter node and initializes the 

component appropriately. The Deinit() method is responsible for cleaning up after 

the component, making sure to free any memory and release any handles that the 

component owns. 
The next declaration: 

virtual EMessageResult HandleMessage(const CMessage &)5 

is not declared pure virtual. Component classes do not have to override it if they do 

not want to. Its return value is of the enumerated type EMessageResul1t that looks like 

this: 
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enum EMessageResult 

{ 
MR_FALSE, 
MR_ TRUE, 
MR IGNORED, 
MR_ERROR 

hs 

where MR_FALSE, MR_TRUE, and MR_ERROR all indicate that the message was handled. 

MR_IGNORED means that no attempt was made at handling the message. The imple- 

mentation of HandleMessage() in IComponent simply returns MR_IGNORED without tak- 

ing any further action. 
The next declaration: 

virtual EComponentTypelId GetComponentTypeld(void) = 0; 

returns a value of the enumerated type EComponentTypeld. There is a one-to-one rela- 

tion between the entries in the enum and instantiable component classes. 

Then we have: 

CObjectid GetObjectId(void) const; 

CObjectid mObjectIid; 

GetObjectId() is a nonvirtual member function, and we added the member variable 

mObjectId. In a perfect world, we would not have this member variable, and GetOb- 

jectId() would be pure virtual to make the IComponent class a proper interface. In 

the real world, however, it makes a lot of sense to have mObjectId as a member vari- 

able of the IComponent class and to give the object manager access to change it 

through the two remaining declarations in the private section: 

void SetObjectId(CObjectId old); 

friend CObjectManager; 

If we did not allow this, every component class would have to contain the same code 
to set up the object ID, and we would be introducing plenty of scope for error. 

Finally we have the public method: 

ICmpEntity *GetEntity() const; 

This is another situation where being practical is of greater importance than making 

it look pretty. In our system, we have decided that all objects have to contain a com- 
ponent that implements the ICmpEntity interface, so we add GetEntity() here to 
facilitate the lookup of this component from any other component that belongs to 
the same object. The IcmpEntity class can be seen on the companion CD-ROM. 
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The Object Manager 

The heart of the system is the object manager. The CobjectManager class is a bit too 

large for us to go through it method by method here, so we are going to focus on the 
core features. Refer to the code on the companion CD-ROM for the CObjectManager 

declaration and implementation. 
The most important feature of the object manager is the database. It is imple- 

mented as a separate struct to hide the implementation details from users. We are 
going to have a little peek at it here though. Here it is: 

struct. SObjectManagerDB 

{ 
// Static component type data 
SComponentTypeInfo 

mComponentTypeInfo[NUM_COMPONENT_TYPE_IDS] ; 

std: :set<EComponentTypeld> 

mInterfaceTypeToComponentTypes[NUM_INTERFACE_TYPE_IDS] ; 

// Dynamic component data 

std::map<CObjectIid, IComponent*> 

mComponentTypeToComponentMap[NUM_COMPONENT_TYPE_IDS] ; 

// Message data 

std: :set<EComponentTypeld> 
mMessageTypeToComponentTypes[NUM_MESSAGE_TYPE_IDS] ; 

}5 

All the members of SobjectManagerbDB are plain old arrays of more complex data 

types. They can all be thought of as two-dimensional arrays where one dimension is 

known at compile time because we know the number of component, interface, and 

message types. 

The first two data members of this struct are set up at system initialization time 

and will not change while the game is running. Each component type calls Cobject - 

Manager: :RegisterComponentType(), which sets up the data in these two arrays. 

SComponentTypeInfo contains data that we need to create components. It looks like 

this: 

struct ComponentTypeInfo 

{ 
ComponentCreationMethod mCreationMethod; 

ComponentDestructionMethod mDestructionMethod; 

CHash mTypeHash,; 

}5 

The creation and destruction method members are function pointer typedefs: 

typedef IComponent* (*ComponentCreationMethod) (void) ; 

typedef bool (*ComponentDestructionMethod) (IComponent ie 

We are going to create functions with these signatures as static member functions of 

each component class. They are responsible for creating and destroying components, 
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respectively. The object manager only deals with pointers to components, which 

leaves effective management of component memory as an exercise for the reader. For 

the system implemented here, standard new and delete work just fine. The variable 

mTypeHash is used to look up the component type ID based on the hashed name string 

for the component. 

For each interface type, we maintain a set of component types that implement it. 

That information is stored in the array mInterfaceTypeToComponentTypes| ]. This is 

used in the queryInterface() method of the object manager. To simplify things, we 

only allow one implementation of any interface in each object so that QueryInter- 

face() either returns NULL if no components in the object implement that interface, 

or a pointer to the only component in the object that does so. 

During the course of the game, we will be using the mComponentTypeToCompo- 

nentMap array a lot. Each element of this array is a map that maps IComponent point- 

ers to the object IDs of the objects to which they belong. When a component is 

created, its object ID and address (in the form of an IComponent pointer) gets added 

to the map at the array index determined by its component type. The QueryInter- 

face() method will ultimately have to look at mcomponentTypeToComponentMap to see 

if it can match an interface via mInterfaceTypeToComponentTypes to a component 

pointer. Look at the code on the companion CD-ROM for details of this method. 
The last member of SObjectManagerDB is mMessageTypeToComponentTypes. [his 

keeps track of which component types subscribe to which message types. Message 

subscriptions tend to be set up at initialization time, although there is nothing stop- 
ping subscriptions or unsubscriptions while the game is running. 

A Sample Component 

If our game involves dealing and taking damage, we are quite likely to need a health 
component. The requirements are quite simple: 

¢ Keep track of the current health of the object. 

e Allow querying of the current health. 

* Update the current health value when the message MT_TAKE_HIT is received. 

¢ Send the message MT_HEALTH_DEPLETED when the health reaches zero. 

The Interface Class 

First we create the interface ICmpHealth. It looks like this: 

class ICmpHealth : public IComponent 

{ 
public: 

virtual int32 GetHealth()=0; 
protected: 

static void RegisterInterface(EComponentTypeld) ; 

}5 
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The method declaration GetHealth() is the reason we create this interface in the first 

place. The implementation of the next method looks like this: 

void ICmpHealth: :RegisterInterface(EComponentTypelId compId) 

{ 
GetObjectManager().RegisterInterfaceWithComponent ( 

TID HEALTH, 

compId) ; 

} 

This method needs to be called from the Init() method of any component that 

implements this interface. The RegisterInterfaceWithComponent ( ) function call tells 

the object manager that the component of type compId implements IID_HEALTH. 

GetObjectManager() as a global function. 

The Component Class 

We call our component class CCmpHealth, and it looks like this: 

class CCmpHealth :°public ICmpHealth 

{ 
public: 

// Static methods 

static void RegisterComponentType(void) ; 

static IComponent* CreateMe() ; 

static bool DestroyMe(IComponent *) ; 

// Virtual IComponent methods 

virtual bool Init(CParameterNode &) ; 

virtual void Deinit (void) ; 

virtual EMessageResult HandleMessage(const CMessage &); 

virtual EComponentTypeld GetComponentTypeld (void) 

{ return CID_HEALTH; } 

// ICmpHealth methods 

virtual int32 GetHealth() { return mHealth; } 

private: 

int mHealth; 

}5 

First, we look at the implementation of the static methods: 

void CCmpHealth: :RegisterComponentType() 

{ 
ICmpHealth: :RegisterInterface(CID_HEALTH) ; 

GetObjectManager() .RegisterComponentType ( 

CID_HEALTH, 

CCmpHealth: :CreateMe, 

CCmpHealth: :DestroyMe, 

CHash(“Health”) ) ; 

GetObjectManager() .SubscribeToMessageType ( 

CID HEALTH, 

MT_TAKE_DAMAGE) ; 
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This is arguably the most interesting of the three. It begins by registering itself as an 

implementer of the ICmpHealth interface. Then it calls RegisterComponentType() in the 

object manager to tell it about the CreateMe() and Dest’ royMe() methods, and also 

what name (in the form of a hash value) it would like to be known under. The last thing 

it does is to register the component as a recipient of the MT_TAKE_DAMAGE message. 

The next two methods take care of creating and destroying the component. We 

simply use standard new and delete to do so. 

IComponent *CCmpHealth: :CreateMe() 

t 
return new CCmpHealth; 

bool CCmpHealth: :DestroyMe(IComponent* pComponent) 

{ 
delete pComponent; 

return true; 

} 

This is an area that would benefit from a little more work on a tailor-made memory- 
management system, as we will be doing a lot of creating and destroying components. 
Different component types could even use different allocation schemes as long as the 
create and destroy methods match for each type. 

Now we move on to the methods defined in IComponent. The method: 

bool CCmpHealth: :Init(CParameterNode &compNode) 

mHealth = compNode.GetInt(“Health”) ; 

if (CParameterNode: :GetLastResult() != EPR_OK) 

return false; 

retunn sceues 

} 

reads the data that the component needs. compNode is the component level parameter 
node. The call to Get Int (“Health”) asks for the int value of the child node with 

name health. To simplify things, there is only one child layer of nodes 

under compNode. If the request for data fails, the CParameterNode class flags an error. 

That is checked for by calling GetLastResult(). 

The next method: 

void CCmpHealth: :Deinit(void) 

{ 
} 

does absolutely nothing. Our only data member is an int value, so there is not much 
to clean up. If the component had any memory allocated, we would have to free it 
here. 
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Let us look at the message-handling method: 

EMessageResult CCmpHealth: :HandleMessage( 

const CMessage &Message) 

{ 
int newHealth; 

switch(Message.mType) 

{ 
case MT_TAKE_ DAMAGE: 

newHealth = mHealth — 
reinterpret_cast<int>(Message.mpData) ; 

if (newHealth <= 0 && mHealth > 0) 

GetObjectManager() .PostMessage ( 

GetObjectId(), MT HEALTH DEPLETED) ; 

} 
mHealth = newHealth; 

return MR_TRUE; 

} 

return MR_ERROR; 

} 

When we receive the MT_TAKE_DAMAGE message, we know that its data field is of type 

int and represents how much damage we have taken. If the health went from positive 

to negative, our health is depleted and we need to tell the other components that 

make up this object about that. We do this by calling the PostMessage( ) method in 

the object manager. We have to specify the recipient object, and for that, we will use 

the GetObjectId() method that we have inherited from IComponent. If we would like 

all objects to hear about a message, we would call BroadcastMessage(). [hen we set 

the new health value and return MR_TRUE to indicate that all went well. If we did not 

recognize the message we received, that is an error. We use MR_IGNORED for messages to 

which we know we have subscribed but decide to ignore. 

The last two functions are so straightforward that we have defined them inline 

with the declaration. 

SRN SEE OLESEN OOD ITED LL LTTE LOE LLL LED SLL LLL LILES LEN 

We have seen that static inheritance hierarchies do not stand up to the challenges of a 

modern game. This article has presented a strong alternative in the form of a compo- 

nent-based system. This system is flexible enough to cope with frequent changes of 

requirements. The game designers get the power to create and modify objects without 

programmer intervention. This leads to quicker turnaround time for testing a design 

change, which leads to more design iterations, which tends to lead to better games. 

The programmers no longer have to spend their time refactoring the system every 

time the design changes but rather move the game forward by implementing the 

functionality called for in the design. 
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1.4 

Using Templates for 

Reflection in C++ 

Dominic Filion, Artificial Mind & Movement 

dfilion@hotmail.com 

he C++ language has evolved quite a bit since its humble evolution from the orig- 

inal C language. It has grown from a language that was purposely devised to pro- 

vide “readable assembler code” (C) to a programming language with a wide arsenal of 

tools supporting structured, procedural, object-oriented, and/or generic program- 

ming, depending on which style suits you best (or best fits your problem domain). 

The latest variant on the C++ language, C#, adds on many features of its own— 

garbage collection, just-in-time compiling, and many other things—but one feature is 

most worthy of note: reflection. 

Reflection is the ability for a program to inspect (and sometimes modify) its own 

high-level structure at runtime. Compiling the program generally strips the assembled 

code of any easily externally observable structure; in reflective programming lan- 

guages, this structural information is kept as metadata. An enormous effort has been 

put in by such notable companies as Microsoft into building reflective infrastructures, 

from COM to .NET. 

Now, all this highbrow stuff about code that is se/f aware is all very nice for Star 

Trek fans out there, but how does it help us in the real world, and more to the point, 

how does it make your four-legged furry zombie giant better than the other guy's 

four-legged furry zombie giant? 

There are many uses for reflection. One common use is to bind external inter- 

preted script code to actual C++ engine code. As an example, you may write a class 

CbigAssWhoopingWeapon. You may expose this class to a script language so that a script 

engine could easily and automatically discover the class’s type and structural informa- 

tion, such as properties and methods and automatically route script calls to CBigAss- 

WhoopingWeapon’s methods and accessors. 

Other examples of uses would be to automatically serialize (load/save) objects in 

your game as XML data or to provide basic network persistence of class objects. We 

will go more into applications of reflection after implementation details have been 

discussed. 

39 
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As this gem will make ample use of advanced features of templates, it is assumed 
that the reader is quite familiar with templates in general. More obscure details on 
how the templates are used will be explained as we go along. 

Requirements 
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Our goal is to build a user-friendly reflection system that can be used in C++. We 
would like this system to be: 

Efficient: Making games today often means making console games. We want this 
reflection system to be lightweight so it runs on the limited memory footprint 
available on console machines. 

Cross platform: Again, this comes with the territory when making console games. 
So, we cannot use compiler-specific knowledge, such as decoding PDB files. 
Besides, nobody would be too keen at the prospect of bundling debug 
information with a shipping game. 

Transparent: Programmers should not need to change the way they normally code 
to be able to use the reflection feature. It should be the reflection system's 
burden to tie itself into the user programmer's code, not the reverse. 

Without effect on compilation: The system should not adversely affect compile 
performance or make the compiling process more complicated. This precludes 
the possibility of making a separate C++ parser that would read the C++ code 
to discover types at compile time; such processes are generally slow and 
error-prone. 

Flexible: Programmers should have exact control over which parts of their class 
interface they would like to expose to the outside world. Often you may want 
to expose a limited functionality from a class, not the whole class. 

Robust: The system should be type-safe and catch any common errors (such as 
trying to set a value of a certain type to a property of the wrong type in a script). 
This should be the first hint that templates will be used in the system. 

The functionality of the reflection system can be broken down into three main parts: 

Registration: This deals with letting the programmer tell us which data members he 
would like to expose to the external world. 

Introspection: This allows the programmer to inspect what property and method 
names are supported by the class and of what type. 

Manipulation: This allows the world to call the programmer's code from an 
external interface (which could be a script, a GUI, a file, etc.). 

Reflection normally entails exposing code elements such as data members and class 
functions. Because we will cover a lot of ground in this gem, we will focus on the 
implementation of reflection to expose data member accessors; implementation of 
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function methods will be left as an exercise for the reader. The technique exposed here 

is easily extended to support exposure of class functions as well. 

Properties are the central element in our reflection system. For the sake of defini- 

tions, a property is simply a data attribute whose access is controlled by read and write 

accessors. Often the accessors simply return or set a protected or private variable; 

other times they will compute a result or change an internal state. We will start by 

building the system around properties from the lower layers up, adding complexity as 

the need arises. 

Part: Runtime Type Information 
At the most basic level, no reflection system can work without some notion of run- 

time type information (RITI), or determining an object's type dynamically at runtime. 

While the C++ runtime’s innate RTTI could be used for this purpose, using our own 

RTTI system will simplify the implementation of the property system, help for exten- 

sibility, and will ensure the system is optimal. While it may look like we are making a 

rather large detour before getting to our main topic, the implementation of our cus- 

tom RTTI system will become very handy later on. We will build upon the knowl- 

edge gathered here to implement the reflection support in the second part of this gem. 

We will be using templates for our RTT system as well, so this will prepare us for the 

template work ahead for the reflection system itself. 

To be able to find the type of an object at runtime, that object must implement a 

virtual function overridden at each level in the class hierarchy that returns informa- 

tion about the type of the object. Our type information structure will contain: 

¢ The name of the class 

¢ A unique class ID identifying the class 

* A pointer to the ancestor's RTT information 

¢ A function callback to a factory function 

The class name will be the undecorated name of the class stored in a string. @T:The 

class ID is a unique user-provided 32-bit number that will be provided for effective- 

ness in terms of comparing class types, and in terms of serializing class type informa- 

tion to a file or over a network protocol. 

The pointer to the ancestor RTT is self explanatory. 

The function callback will point to a factory function that will create a new 

instance of an object of this class type. This can be quite useful when we want to cre- 

ate an instance of an unknown type at runtime while only having its class ID. 

The RTTI structure information should look something like this: 

typedef DWORD ClassID; 

typedef CBaseObject* (*ClassFactoryFunc) ( ClassID ); 

const DWORD CLASSNAME_LENGTH = 32; 
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class CRTTI 

{ 
public: 

CRTTI( ClassID CLID, const char* szClassName, 

CRTTI* pBaseClassRTTI, ClassFactoryFunc pFactory ); 

private: 

ClassID m_CLID; 

char m_szClassName[CLASSNAME_LENGTH] ; 

CRE m_pBaseRTTI; 

ClassFactoryFunc m_pObjectFactory; 

}; 

Public data accessors (Get, Set) would normally be added to this class but are not 

shown here for clarity. Each class in the application will contain a static instance of its 

RTTI structure and will implement a virtual function returning a pointer to this sta- 
tic RI'TT structure. Note that the RTTI structure is only stored once per class, not 
once per class instance. 

Vain stemplates for ALEL sa. 
The RTTI system could be implemented using macros, but a more elegant technique 
involves using templates to implement the RTTI. 

Rather than using macros to effectively paste in the RTTI code in each applica- 
tion class, we can derive all of our application classes from a templatized cSupport- 
sRTTI class that will implement the RTTI functionality. 

If all our engine classes inherit from CSupportsRTTI, how can they ultimately derive 
from their true ancestor? Would this require us to write variants of CSupportsRTTI that 
derive from every possible ancestor? It does not, because it is entirely legal to write the 
template in this way: 

template < class BaseClass > 

class CSupportsRTTI: public BaseClass 

{ 
}; 

Notice how the ancestor of the templatized class is actually a template parameter itself. 
Thus, when deriving one of our application classes from CSupportsRTTI we can also 
specify CSupportsRTTI’s ancestor, like this: 

class CMyClass : public CSupportsRTTI<CMyBaseClass> 
{ 
}; 

By deriving all application classes from CSupportsRTTI, we have our RTTI functional- 
ity sandwiched conveniently between each class and its ancestor. What we are effec- 
tively doing is injecting our RTTI code between each class and its ancestor, giving a 
hierarchy like the one in Figure 1.4.1. 
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CSupportsRTTI<CMyClassA> 

CMyClassA 

CSupportsRTTI<CMyClassB> 

CMyClassB 

FIGURE 1.4.1 Zhe RTTI hierarchy. 

We can thus review the rest of our RT'TI functionality. 

#include <typeinfo.h> 

template <class T, class BaseClass, ClassID CLID> 

class CSupportsRTTI: public BaseClass 

{ 
publicy: 

const static ClassID ClassCLID = CLID; 

CSupportsRTTI(); 

sitaticel * Create(); 

static void RegisterReflection() ; 

static inline CRTTI* GetClassRTTI() { return &ms_RTTI; } 

virtual CRITI* GetRTTI() { return &ms_RTTI; } 

protected : 

static CRTTI ms_RTTI; 

}5 

template <class T, class BaseClass, ClassID CLID> 

CRITI CSupportsRATTI<T, BaseClass, CLID>::ms_RTTI 

(@iCELD; typeid(T) .name(), BaseClass::GetClassRTTI(), 

(ClassFactoryFunc)T::Create, NULL ); 

template <class T, class BaseClass, ClassID CLID> 

inline CSupportsRTTI<T, BaseClass, CLID>: :CSupportsRTTI() 

{ 
} 
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template <class T, class BaseClass, ClassID CLID> 

T* CSupportsRTTI<T, BaseClass, CLID>::Create() 

{ 

; 
return new T(); 

template <class T, class BaseClass, ClassID CLID> 

void CSupportsRTTI<T, BaseClass, CLID>::RegisterReflection() 

{ 
} 

The RTTI info structure is put in as a static member in the template. Each template 
instance (we have one unique template instance per class type in our application) will 
spawn its own instance of the static member, which is exactly what we want. 
GetRTTI() is the virtual function that will return the correct RTTI information 

depending on the type of polymorphic objects. 
GetClassRTTI() is a function that can be used to query the RTTI information of 

a specific class, as in CClassType::GetClassRTTI(). Note that static member func- 

tions Aide static member functions in ancestor classes, which again is exactly what we 
need here. CClassType: :GetClassRTTI() will hide CBaseClassType: :GetClassRTTI(). 

The Create() function is our class factory function. Its simple implementation 

allocates a new instance of the instantiated template type. T::Create() will resolve to 
CSupportsRTTI<T, BaseClass, CLID>::Create(), which is T’s base class. 

The lines that declare the static RT'TI structure merit our attention. Here, the 

RTTI structure is statically constructed, and all relevant RTTI constructor parameters 
are passed in to the RTT] structure: 

* CLID is the 32-bit unique class identifier. This is a template parameter. 
* Typeid(T).name() is the class's name string. It may appear that we are cheating 

here: are we not using the C++ runtime type info system to build our own system 
on top of it, which pretty much defeats the purpose of writing our own? Not 
really: typeid(T) here will be resolved by the compiler at compile time, so we are 
not really using the C++ dynamic RTTI structure. In fact, you will find that the 
code works even with the C++ runtime type info system turned off. In effect, this 
snippet of code will simply cause the compiler to create and fill the type_info 
structure for T and return the associated string, which does not require any run- 
time polymorphic checks. 

° BaseClass::GetClassRTTI() is the base class RITI structure. BaseClass is a 
template parameter. 

* CSupportsRTTI<T, BaseClass, CLID>::Create() provides the pointer to our fac- 
tory class function, which was automatically instantiated by the template. It’s use- 
ful to create instances of classes when only knowing the class ID or class name as 
a string. 

When the static variable is initialized at application startup, all RTTI structures can 
be added to a global RI'TI manager. Care must be taken to avoid dependencies 
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between each static variable’s constructor: the compiler cannot guarantee a specific 
order of initialization for static variables, and having a static variable A referencing a 
static variable B in its constructor can wreak havoc. Fortunately, there is no need for 
such dependencies in our static variable’s constructor parameters, thus the order of 
initialization is irrelevant to the RTT system. 

Making an application class support our custom RTT] system is now very simple: 

class CMyObject : public CSupportsRTTI< CMyObject, CBaseObject, 

0x2e160f7a> // 0x2e160f7a is a user-provided random unique ID 

{ 
}5 

The RTTI system is thus complete. 
To be able to create instances of classes by their class ID at runtime, we simply 

need to add some code in the RTTI structure’s constructor so that all the RTT struc- 

tures are registered into a globally managed list or map. This map could then be 

searched by the RT'TI manager who could find the RTTI structure associated with a 

class ID and call the factory function associated with the structure. 

Other Comments about RIT!” ONSET 

The RTTI system described previously could be tweaked on several aspects: 

¢ The class ID is not truly essential. The RITI structures are unique static 

instances for each class type in the application, thus you could use pointers to the 

RTTI structures themselves as an ID of sorts for comparison and assignment pur- 

poses. Class IDs will be required only if you intend to save the IDs to a file or pass 

them over the network. 

¢ The class factory function is optional if all you need is to query polymorphic class 

types at runtime. 

¢ Using typeid(T).name() syntax to retrieve the class name is not obligatory if it 

causes problems with your compiler, but the syntax to bind the RTTI to the 

application classes will certainly not be as elegant. The class name string can be 

passed as a template parameter. However, it is not allowed to use unnamed objects 

as parameters to a template, so doing this: 

template <const char* szString> class CMyTemplate 

{ 
}5 

class CMyClass : public CMyTemplate<”Hello”> 

will not be allowed, as the string “Hello” is an unnamed string variable. You will be 

forced to make the string a constant with a specified name, like this: 

char szHello[] = “Hello”; 

class CMyClass : public CMyTemplate<szHello> 
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This will work fine but is somewhat messier. 

Having built our own RTTI system, we can now reap the rewards dapilationt the 

reflective property system. Putting reflection into our software means extending the 

runtime type-information system so it includes metadata about supported properties, 

and eventually, methods. Our RTTI structure will be extended to include a list of 

property objects. We can now describe what these property objects will be. 

Part Il: Property Objects 
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A property object is a typed, named object that acts as a gateway to an internal data rep- 
resentation. Properties are a very abstract concept that will draw on many definitions 
and concepts that we will go through as we go along. We will build the property 
object as a layered hierarchy of three classes: 

As an abstract property: The base property class will be untyped and not associated 
with any specific class type. This base class could be used for someone querying 
for a property, knowing its name but not caring about type or any specifics. 

As a typed property: Building on top of the base property class will be a 
templatized typed version of the property object to be used when type-aware 
queries to properties are made. 

As a class member property: The last layer in the property object is another 
templatized class where the property is actually bound as a member to a specific 
class type. We will see later why this is needed and how it fits in the overall 
picture. 

We will examine the abstract property layer first: 

enum ePropertyType 

{ 
eptBOOL, 

eptDWORD, 

eptINT, 

eptFLOAT, 

eptSTRING, 

eptCOLoR, 

eptENUM, 

Ep tRik;, 

eptMAX_PROPERTY_TYPES 

}5 

class CAbstractProperty 

{ 
public: 

virtual ePropertyType GetType() const = 0; 

protected: 

const char* m_szName; 

hs 
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The abstract property layer simply contains the property’s name. It also contains an 
abstract virtual function for describing the property's type; we will see how we can 
describe property types later on in the article. This abstract property layer is very 
lightweight. 

template <class T> class CTypedProperty: public CAbstractProperty 

{ 
public: 

virtual ePropertyType GetType() const; 

virtual T GetValue( CBaseObject* pObject ) = 0; 

virtual void SetValue( CBaseObject* pObject, T Value ) = 0; 

}5 

It is at the next level of the property object that type-correctness is implemented. This 
is a templatized class, with the type of the data type this property represents as a tem- 

plate parameter. This layer contains abstract templatized functions for getting the 

value and setting the value of the property. This layer is very abstract as well, and con- 

tains little in the way of implementation. Again, we will see later how this class can 

implement the GetType() function. 

Notice that the property expects the owner of the property (the object on which 

we are trying to access the property) to be passed in as parameter to the GetValue () 

and SetValue() functions. Our property class is not bound to any specific class 

instance; it binds access to a specific data member on a class type. All instances of a 

class will share the same property object. For this to work, all classes in our application 

must ultimately derive from a common class such as CBase0bject. CBaseObject could 

be empty; a common ancestor is just needed for consistency. 

template <class OwnerType, class T> class CProperty : public 

CTypedProperty<T> 

{ 
public: 

typedef T (OwnerType: :*GetterType) (); 

typedef void (OwnerType::*SetterType) ( T Value ); 

virtual T GetValue( CBaseObject* pObject ); 

virtual void SetValue( CBaseObject* pObject, T Value ); 

protected: 
GetterType m_Getter; 

SetterType m Setter; 

}; 

At the level of the class member layer, we finally have enough information (type and 

class type) to perform an actual implementation of the property class. 

The property will guard its data member and access it through standard getter 

and setter accessors. It would be possible for the property to have a pointer directly to 

the data member it is guarding, but that would mean exposing private details about 
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classes. Using standard accessors will keep the data private to the system and be more 

compliant to object-oriented development rules. The accessors will be expected to 

have a standardized form, namely T Get() for getters and void Set( T Value ) for 

setters. 
With that in mind, the templatized property can define typedefs (as was shown in 

the previous code) for the accessor function callbacks it will use to access its associated 

data. Pointers to the function pointers are stored in the property object itself. 

Getting or setting a value via the property will call relevant function callbacks. 

template <class T> 
T CProperty <OwnerType, T>::GetValue( CBaseObject* pOwner ) 

{ 

} 
return pOwner->*m Getter(); 

template <class T> 
void CProperty<T>: :SetValue(CBaseObject * pOwner, T Value ) 

{ 
if ( !m Setter) 

{ 
assert( false ) // Cannot write to a read-only property 

return; 
} . 

pOwner->*m_Setter( Value ); 

} 

You can see here that the ->* C++ pointer-to-member operator is used. This is neces- 
sary as we are calling a function that is a member of a class object. 

The property structure now has everything necessary to wrap the data type and 
access it through standard getters and setters. The property structure can be used and 
embedded in objects themselves. 

Storing Properties 

Properties are associated with a particular class type. It will be natural to extend our 
class's RI'TI information to include a list of its properties. A global properties man- 
ager will also be needed to manage the overall allocation and deletion of properties. 

This gem’s implementation puts the properties in a C++ Standard Template 
Library (STL) list, organized as illustrated in Figure 1.4.2. 

The global property system manager will manage a global list of properties that 
will contain all property objects. Properties are registered and added to the list 
sequentially, i.e., all properties that belong to the same class type will be contiguous 
in the list. Each class’s RT'TT structure also contains a list of its associated property 
objects. 
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A property is a typed construct. It must allow its type to be queried and compared with 
other property types. A simple way to do this is to declare an enumeration specifying 
every property type we plan to support: integers, floating-point values, bytes, words, 

double words, strings, colors, enumerations, vectors, and pointers to objects. It would 

be simple enough to have users of the reflection feature specify the type of a property 

as a parameter to the registration function; however, this can be done more elegantly 

by allowing the type of the property to be specified as a template parameter. Thus, 

instead of using syntax like this: 

RegisterProperty( “MyProperty”, eptINT ); 

RegisterProperty( “MyProperty2”, eptPTR ); 

Syntax like the following could be used, which is more natural and less error-prone: 

RegisterProperty<int>( “MyProperty” ); 

RegisterProperty<CMyClass*>( “MyProperty2” ); 

To achieve this, template types must somehow be associated by the compiler with the 

corresponding type enumeration value. We can do this by defining a CPropertyType 

template class containing a static data member. A static data member in a template 

will be instantiated once for every specification of the template. Thus CMyTemplate 

<CMyObject>::ms_MyStaticDataMember will refer to a different static data member than 

CMyTemplate<CMyOtherObject>: :ms_MyStaticDataMember. We can use this fact to cause 

the compiler to automatically generate a static data member for every unique type that 

we plan to use with properties (remember, not for every type reference but for every 

unique type). In this way, we can associate a unique static data member with all types 

referred in code used by properties. 
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Using template specialization, we can associate our types with the correct enu- 

meration type. Here are the results in code: 

template <class T> class CPropertyType 

{ 
public: 

static ePropertyType ms_TypelID; 

}5 

template<class T> ePropertyType CPropertyType<T>::ms_TypeID = 

eptUNKNOWN ; 

template<> ePropertyType CPropertyType<bool>::ms_TypeID = eptBOOL; 

template<> ePropertyType CPropertyType<DWORD>::ms_TypeID = eptDWORD; 

template<> ePropertyType CPropertyType<int>: :ms_TypeID = eptINT; 

template<> ePropertyType CPropertyType<float>::ms_TypeID = eptFLOAT ; 

template<> ePropertyType CPropertyType<char*>::ms_TypeID = eptSTRING; 

Specializations of the templates are specified for all known types; types that have 

no specialization will get the enumeration member EUNKNOWN assigned to them 

as in the default template implementation code. Pointer properties are special cases 

and are handled through a separate property registration call (see-the code on the 

accompanying CD-ROM). 
We can use this to have the property code associate a unique, repeatable number 

when it is given a property's type through a template parameter. 

Property Registration Hook 
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Each object will include a description of the properties it contains, along with name, 

type, and access information. What is needed is a mechanism to initially describe the 
properties of each class and store them into a list. 

Because we want users of the reflection feature to have control over which data 

members are to become reflective, properties will be registered manually by the pro- 
grammer of the class who uses the properties. Those properties must be registered 

very early in the application’s runtime so that they are usable as soon as possible. 
We saw earlier how our RTT information is initialized by the RTT] system through 

the use of instancing static variables. With static variables being initialized very early at 

startup of the application, this is the ideal time window to initialize class properties as 

well. What we need is a simple hook where each unique class type can register its specific 
properties. 

A RegisterReflection() static function call can be added to our CSupportsRTTI 

templatized class. The RITI system has been modified so that T::Register- 

Reflection() is passed in as a function pointer to the RTTI class’s constructor. As it 

is being constructed, the RT'TI class will call the function pointer, providing the hook 
that was mentioned earlier and giving a chance to the class designer to register its 
properties for that class type. 
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The default implementation of CSupportsRTTI<T>::RegisterReflection() is 

empty. The class designer can override this behavior by implementing Register - 
Reflection() in a class that derives from CSupportsRTTI. A static function will hide 

another static function with the same name in a derived base class. Thus, if 

CMyClass::RegisterReflection() exists, the following code in CSupportsRTTI 

<CMyClass> will pass CMyClass::RegisterReflection(); if CMyClass::Register- 

Reflection() does not exist, the compiler will resolve it to CSupportsRTTI 

<CMyClass>::RegisterReflection(): 

template <class T, class BaseClass, ClassID CLID> 

CRITI CRTTIClass<T, BaseClass, CLID>::ms_RTTI 

( CLID, typeid(T).name(), BaseClass::GetClassRTTI(), 

(ClassFactoryFunc)T::Create, 

(RegisterReflectionFunc)T::RegisterReflection() ); 

If CMyClass::RegisterReflection() is not defined, CSupportsRTTI<CMyClass> 

::RegisterReflection() will be called, which is an empty implementation and is 

correct for RTTI classes that do not have any reflective data members. 

Registering Properties 
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We have defined a way for programmers to run code that is associated with each class 

type at runtime, and now we can see how property descriptors that initialize the prop- 

erties and bind them to classes can be declared. 

Users of reflection will need to specify what the properties are in the Register- 

Reflection() call. Each property registered will need to specify: 

e Name 

* Type 
¢ Getter accessor callback 

e Setter accessor callback 

Before calling the hook, a unique static variable is set by the RTT system to keep 

track of the current class for which we are registering properties. 

Users of the reflection system then write code in the hook to make calls to the sta- 

tic RegisterProperty() call, passing in the parameters enumerated previously: 

void CMonster: :RegisterReflection() 

{ 
RegisterProperty<int>( “Health”, GetHealth, SetHealth ); 

RegisterProperty<char*>( “Name”, GetName, SetName ); 

} 

The parameters of the property are put into a new property object and linked into the 

RTTI structure and the properties global list. 
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After this operation, each class’s RTT structure contains a list of its property 

objects. Great care was put throughout the reflection system code to ensure that the 

system was as transparent as possible to users of the reflection feature. Now it is time 

to see some real applications. 

Applications for Scripts 
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Finally, it is time to see how all the effort put into this abstract system can be used for 

actual game production. The applications are diverse and can be very powerful. Our 

properties provide an effortless way for programmers to expose a particular data mem- 

ber to the outside world. The programmers do not need to change the internals of 

their classes and simply need to write short hooks for each class type that will tell the 

system what properties are available for a specific class. 

The most common use of reflection use in games would be as a glue interface for 

scripts. Scripts often need to make calls to the core engine to affect gameplay mechan- 

ics. Reflection provides an ideal transport for such cross-boundaries communication. 

A script could use a line of code such as: 

Player.Health = Player.Health — Monster.AttackDamage ; 

Global scope script calls could be wrapped into separate classes and registered as prop- 

erties like this: 

void CPlayer: :RegisterReflection() 

// Assume CPlayer contains accessor functions GetHealth() and 

// SetHealth() for accessing health data. 

RegisterProperty<int>( “Health”, GetHealth, SetHealth ); 

}5 

void CMonster: :RegisterReflection() 

{ 
// Assume CMonster contains accessor functions 

// GetAttackDamage() 

// and SetAttackDamage() for accessing health data. 

RegisterProperty<int>( “AttackDamage”, GetAttackDamage, 

SetAttackDamage ); 

} 

void CGlobalScript: :RegisterReflection() 

{ 
// Assume CGlobalScript contains accessor functions GetPlayer () 

// and GetMonster () for accessing script sub objects. 
// Read-only property 

RegisterProperty<CPlayer*>( “Player”, GetPlayer(), NULL ); 

// Read-only property 

RegisterProperty<CMonster*>( “Monster”, GetMonster(), NULL ); 



1.4 Using Templates for Reflection in C++ 53 

A scripting engine could use reflection to look up what objects are exposed by the 
global scope script class. It would thus find there is a property named Player; access- 
ing this property would return a CPlayer object. This object can in turn be queried to 
see if it supports a property named Health, at which point the script engine could use 
reflection to directly retrieve the value of the player’s health. The script could do the 
same to look up the value of the monster’s attack damage and compute the result. The 
reflection system would call SetHealth() on the player object automatically to set the 
new value. Each property contains its type ID so the script engine can also use the 
reflection system to aid in type checking the script. 

Applications for Tweakers 
Property information exposed by objects can be very useful to automatically expose 

<5 tweakable data for editor applications. This is the example that is showcased on the 
ONTHECD companion CD-ROM. 

In this scenario, a programmer writes a certain class, say, cPlayerStats, which 

exposes certain properties. An editor application can then use this property informa- 
tion to build a generic property page GUI interface for this object that will display a 

GUI control for each property type. 
This can greatly help in making a game more data-driven. A typical scenario may 

be that an AI programmer has created a certain game class for controlling some AI. 

After some experimentation, the AI programmer may realize that certain aspects of 

the Al’s variables are somewhat arbitrary and that they would be better left to a 

designer for tweaking. The AI programmer can easily make aspects of his code tweak- 

able by exposing some of his accessors as properties. A “tweaker” application or editor 

can scan for these properties and provide a dynamic interface to the designer. This 

makes the whole process of data-driven design very fluid and tightly integrated. 

Other Applications 

Here are some more examples for applications of properties: 

Implicit serialization: Properties could be used to automatically load and save 

certain objects of a game in a generic, open format. XML lends itself very well as 

a file format for saving property data. 

Simple network persistence: Simple network persistence for game objects could be 

achieved through a system that uses properties to discover what data types need 

to be synchronized across the network. 

Logging: Accesses to properties could be logged to aid in debugging scripts. 

Conclusion 

This gem outlines in detail a generic system that allows code to expose some if its 

structure at runtime, more specifically, named data members. Using templates, the 

system was made robust, cross-platform, type-safe, and transparent to the user. 
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We have only scratched the surface when it comes to the possible applications 

that reflection can be used for. Also, although it was not discussed here, reflection can’ 

also include the exposure of class functions. Templates can be used in the case of class 

functions as well, using template type parameters for type-correctness and binding to 

the code. 
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Br Space Partition trees, or BSPs, have been the bread and butter of 3D pro- 

grammers for years. While they are not as popular as they once were, BSPs are 
still used in many crucial areas within 3D engines, such as visibility preprocessing, 
collision detection, and polygon sorting. Few algorithms have been so successful at 
solving so many diverse problems. 

As hardware capabilities and gamers’ expectations evolve and the demand for 
higher polygon counts increases, however, BSPs show one of their weaknesses: long 
preprocessing time. Building a BSP is a process that is of the O(n log’(z)) order, and 

with next-generation video cards now pushing millions of polygons every frame, hav- 

ing an O(n log?(n)) preprocess algorithm passing on each polygon is simply not an 

option. Even for smaller data sets, BSPs are often the single thing preventing an 

engine’s tools chain from going from “can preview levels in 20 seconds” to “can pre- 

a noticeable improvement that will keep your level designers » 

view levels instantly, 
working at top speeds. 

This gem describes an algorithm to effectively reduce BSP construction from an 

O(n log?(n)) process to an O(n log(7)) process. The technique involves using a coarser 

but faster partitioning space (sphere trees) to optimize the BSPs’ preprocessing step. 

BSPs 
semen een HO RNA, 
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BSPs will be reviewed very briefly here for completeness. However, for the most part, 

it will be assumed that the reader is familiar with both algorithms. For a more thor- 

ough review of BSPs, see [Ranta03]. 

ABSP isa partition of 3D space using infinite planes to split a space into recursive 

halves. This space partition can then be used to discover relationships among the poly- 

gons in a space; most commonly, if a polygon A lies in front or behind a polygon B. 

A polygon soup is fed into the BSP construction algorithm. During BSP con- 

struction, one of the polygons is chosen as the splitter. The plane of the splitter poly- 

gon is computed, and other polygons are categorized as being either in front of or 

55 
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behind the splitter polygon plane. If a polygon straddles the plane, it is normally cut 

in two by the splitting plane, and the two halves are categorized as in front of or 

behind the plane separately. The two halves of the space are then separate spaces, and 

they are recursively partitioned by choosing splitter polygons in each half and again 

computing which polygons in the halves are in front of or behind the splitter polygon. 

The algorithm continues recursively until all polygons have been used as splitter poly- 

gons. At that point, the 3D space will have been divided into a hierarchy of binary 

spaces that form convex regions. 

To fully understand how the BSP construction process can be optimized, so as to 

remove one order of complexity, it will be helpful to review the BSP construction 

process. 
A good BSP tree must score highly with respect to two main criteria: 

EY 

Minimum splits: A strict BSP must not have any polygons that overlap into 
neighbor BSP leaves. Thus, polygons organized in a BSP must be split so that 
each polygon can be categorized in one, and only one, BSP leaf. Split polygons 

add overhead to the BSP in terms of memory storage and complexity of the tree. 
A good BSP tree must then avoid this overhead by choosing split planes that will 
minimize the number of polygon splits. 

Balance: Balance means having a roughly equal number of polygons on the front 
and back children of each BSP node. Having a good balance ensures that the 
BSP will, on average, be traversed with a uniform amount of steps. An 

unbalanced tree is unreliable, as some of the branches may be tens or hundreds 

of times longer than the shorter branches, thus making access times unreliable. 

BSPs could also have other criteria depending on the situation, or may disregard some 
of the criteria listed previously, but this does not change the core of the algorithm 
optimizations presented here. 

For the purposes of this gem, let’s assume the two criteria mentioned earlier are 
the criteria for BSP fitness and that we are building a strict BSP, i.e., a BSP where each 

polygon is categorized into one, and only one, BSP leaf. We will assume that the poly- 
gon planes are used as BSP splitters and that the BSP is deemed complete when every 
polygon’s plane has been used as a splitter in the BSP. As a review, a BSP is constructed 
as follows. 

First, the BSP will recursively split the space into binary halves 7 times, where 7 is 
the number of polygons in the polygon soup; this is the first ” in the 7 log*(7) order 
of complexity and forms our outer loop. An outer loop will always be needed to put 
all polygons in the BSP so we cannot optimize out this loop. 

Each split of the BSP must scan through all polygons in the current BSP half to 
find the best plane candidates that will cause the least number of splits and provide 
the best balance for the tree. Each polygon A scanned must be compared against all 
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other polygons in the current BSP space to determine how many splits that polygon 
A’s plane would cause against polygons. Since we are splitting in halves recursively, 
each iteration of these two embedded inner loops need only scan half as many poly- 
gons as the last iteration (in the ideal case), and this is where the two log(7) powers 

from 7 log?(2) come from. We will be optimizing out one of the log() powers from 

the algorithm’s order of complexity. 
Finally, once the best splitting plane candidate has been selected, all polygons in 

the BSP space must be categorized into the respective front and back child BSP nodes 
and clipped by the BSP as necessary. Technically, this would make the order of com- 
plexity of the algorithm 7 (log’(z) + log(m)), but this does not include the second 

(added in) log(z) term in the original algorithm complexity estimate for simplicity, 

and because according to standard algorithm analytic rules, a quadratic function 
dominates the complexity order over linear terms. Still, we will be optimizing out this 
second (added in) log(7) term from the algorithm. 

The Optimization: First Steps 

We are removing the second log(7) loop, the one where a certain polygon’s plane is 
tested against all other polygons to verify how many splits are caused and how bal- 
anced the tree would be if that plane was used to split the BSP in two. 

The first idea that may come to mind is using the age-old trick of testing bound- 
ing spheres instead of actual objects (in this case, polygons) to get a rough idea of that 
polygon’s location with respect to the plane. In the majority of cases, the polygons 
bounding sphere will lie strictly on one side of the plane, and this will avoid the need 
to test each polygon’s vertex individually. 

Pushing the idea a little bit further is where it really starts to pay off though: using 

sphere trees to divide and conquer. A sphere tree is simply a hierarchical tree of 

spheres where each sphere in a tree node encloses all other spheres in the tree nodes 

below it. Thus, using this idea, a single bounding sphere test could be used to deter- 

mine the location of tens or hundreds of polygons at a time. 

Building the Sphere Tree 

What we are effectively doing here is using a coarse and loose space partitioning algo- 

rithm (sphere trees) to optimize another refined and accurate space partitioning algo- 

rithm (the BSP tree itself). Sphere trees are ideal for this, as they can be built very 

quickly—orders of magnitude faster than the BSP tree. We wouldn't want the tree we 

are using to optimize our main algorithm to actually take longer to build than the 

time we are trying to save through the optimization. 

So how do we go about building this sphere tree? We want a quick and dirty way of 

partitioning the polygon soup, and optimality of the sphere tree is not truly essential. 

One simple way to build a good sphere tree without much complexity goes as follows. 

First, calculate a bounding sphere enclosing all the polygons in the polygon soup. 

This will be the bounding sphere for the sphere tree root node. The sphere does not 
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have to be an optimal fit; simply calculate the bounding box for all polygon vertices, 

use the center of that box as the center of the bounding sphere, and adjust the radius 

of the bounding sphere accordingly. 

Next, compute an axial plane on the x axis that coincides with the bounding 

sphere’s center. Divide the polygons into two groups: those on the front of the plane 

and those on the back of the plane. There is no need to split hairs here (or polygons 

for that matter): if a polygon straddles the polygon, simply compute the number of 

vertices on each side of the plane and categorize the polygon as being on the side of 

the plane where it has more vertices. If it has just as many vertices in front of the plane 

as behind it, just categorize it as being in front of the plane by default. The important 
thing here is not accuracy but having a repeatable heuristic that will unambiguously 
categorize the polygon as either part of group A (in front of axial plane) or group B 
(behind axial plane). 

Once the polygons are categorized, calculate the bounding spheres of each sub- 
group, create two child nodes in the sphere tree, attach them to the parent, and assign 
the enclosed polygons to the nodes. Continue the process recursively, this time using 
an axial plane on the y axis (then the z, and then back to x). Cycling through the axes 
allows a roughly even distribution through all dimensions. Recursively build the tree 
until the area covered by the sphere leaf is as small as the smallest polygon’s bounding 
sphere, or when there is only one polygon in the leaf. 

It is also important to store the number of polygons that each sphere tree node 
and all its children contain. The sphere tree root node will have a polygon count equal 
to the total number of polygons in the scene, and sphere tree leaves will only count 
polygons attached to the leaf itself. Sphere tree branches will count all polygons con- 
tained in the leaves that can be reached from that branch. 

This process will produce a sphere tree that loosely groups polygons that are close 
to each other into clumps bounded by the spheres. See Figure 1.5.1 for an overview of 
the sphere tree structure. 

FIGURE 1.5.1 Overview of the sphere tree. 
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Optimizing the BSP) 

We are now ready to use the sphere tree to speed up the BSP building process. 
Each polygon is tested as a splitter candidate. To determine if it is a good splitter 

candidate, it is tested against all other polygons in this BSP branch to determine the 

number of polygon splits and the tree balance. Using the sphere tree, we can now test 
each splitter candidate against the spheres instead of individual polygons. 

The test against the sphere tree begins at the root node, which bounds all poly- 

gons. For each sphere tree node, the node’s bounding sphere is tested against the split- 

ter candidate’s facet plane. If the bounding sphere lies entirely on the front or on the 

back of the splitter plane, it is known that no polygon splits occur with any of the 

polygons contained within that sphere tree branch. The tree balance can also be com- 

puted by looking up the number of polygons contained in that tree branch. 

If the sphere overlaps the plane, the polygons contained within the sphere tree 

node may or may not overlap the plane as well. In this case, the sphere tree children 

must be tested recursively against the plane until sphere nodes lying entirely on one 

side or the other of the plane are reached. 

If no such sphere can be reached—i.e., a sphere leaf is reached that still overlaps 

the plane—the individual polygons within that sphere leaf must be tested against the 

plane. This is actually the only case where individual polygons are tested. 

In the majority of cases, all polygons in the space will be identified as in front of, 

behind, or straddling the plane after traversing only a few nodes of the sphere trees. 

This is where the bulk of the log(7) order is removed. Figure 1.5.2 shows how a BSP 

tree plane is compared with sphere tree nodes. See Listing 1.5.1 for an overview of the 

code that performs the BSP tests. 

FIGURE 1.5.2 BSP using the sphere tree for plane testing. 
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Listing 1.5.1 Testing a Polygon Candidate 

void CBSPTreeBuilder: :TestSplitCandidate( 

CSphereTreeNode* pSphereTreeNode, bool& bTerminateEarly ) 

{ 
// Test sphere tree node with plane 
float fDistance = m_pCurCandidate->m_Plane.GetDistance( 

pSphereTreeNode->m_Bounds.m_vPosition ); 

if ( fDistance < -pSphereTreeNode->m_Bounds.m fRadius ) 

{ 
// Sphere tree node completely in back 
m_dwBackCount += pSphereTreeNode->m_dwPolyCount; 

else if ( fDistance > pSphereTreeNode->m_Bounds.m fRadius ) 

// Sphere tree node completely in front 

m_dwFrontCount += pSphereTreeNode->m_dwPolyCount; 

} 
else 

// Sphere tree node possibly straddles the plane 

if ( pSphereTreeNode->m_pPolygons ) 

// This is a sphere tree leaf, so we have to test the 

// polygon individually 
CPolygon* pCurPoly = 

(CPolygon*) pSphereTreeNode->m_pPolygons; 

while ( pCurPoly ) 

{ 
// Check for splits with the current candidate 
if ( pCurPoly != m_pCurCandidate ) 

{ 
switch ( pCurPoly->GetSide( 

m_pCurCandidate->m_ Plane ) ) 

{ 
case CPolygon::epsFRONT : 

m_dwFrontCount++; 

break; 

case CPolygon: :epsBACK : 

m_dwBackCountt++; 
break; 

case CPolygon::epsBOTH : 

// Ya, this one causes a split 
m_dwSplits++; 

if ( m_dwSplits > m_dwBestSplit ) 

{ 
bTerminateEarly = true; 

break; 

// Too many splits — This candidates a 
// loser, discard it early, seeya 

} 
break; 
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Cutting Down Trees 

pCurPoly = pCurPoly->m_pNext; 

} 
} 
else 

ch 
// Sphere tree node, so test both children 

if ( pSphereTreeNode->m_pChildren[0] && 

pSphereTreeNode->m_pChildren[0]->m_dwPolyCount > 

0) 
{ 

TestSplitCandidate( pSphereTreeNode-> 

m_pChildren[0], 

bTerminateEarly ); 

} 
if ( !bTerminateEarly && pSphereTreeNode -> 

m_pChildren[1] && 

pSphereTreeNode->m_pChildren[1]->m_dwPolyCount > 

0 ) 
{ 

TestSplitCandidate( pSphereTreeNode-> 

m_pChildren[1], 

bTerminateEarly ); 

} 
} 

There is still an important piece missing to the algorithm for it to actually work, how- 

ever. As the BSP is split recursively, polygons are categorized into separate half spaces. 

When choosing the next splitter candidate one level below in the BSP hierarchy, that 

splitter candidate must only be compared with the polygons that are contained within 

its own half space. It must not be compared with the polygon soup as a whole. 

The sphere tree contains all the polygons. Using the same sphere tree for each 

BSP split would not only not produce the correct or best splitter, but it would also 

report an inaccurate balance of the tree for that half space. To solve this problem, as 

we cut the space into successive halves, we must also split the sphere tree into two sep- 

arate parts. 
The sphere tree has a Split () function that will remove all sphere tree nodes that 

are behind the plane from the sphere tree and put them in a separate back sphere tree 

that will be returned by the function. 

The splitting algorithm compares each sphere node with the splitting plane, as 

was done for the polygon candidate tests. If the sphere node lies completely in front 

of the plane, nothing is done; the sphere node is part of the front tree that is the cur- 

rent tree. If the sphere node lies completely on the back of the plane, that sphere node 

must be relinked to be the back tree. Relinking the node implicitly relinks all the 
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sphere node’s children as well, thus adding a whole new branch to the back tree. If the 

sphere overlaps the plane, further processing will depend on whether the sphere node 

is actually a leaf. 
If it is a sphere leaf, the polygons are compared individually against the splitting 

plane. Each polygon will be individually relinked to the front sphere node or the back 
tree node. If the polygon straddles the plane, this is where it will be clipped, and each 
clipped subpolygon will be linked to its appropriate sphere node. Notice that actual 
polygon clipping occurs as part of the sphere tree-splitting process, not directly as part 
of the BSP build process. As far as the BSP builder is concerned, it is splitting sphere 
trees not polygons. 

If it is not a sphere leaf, a recursive split occurs. Splitting the node causes a recur- 
sive split of the children. The Sp1it() call is called with each sphere node's child as a 

parameter. A back node version of the parent is created. Node child A will then create 
a back node version A of itself that will attach to the back node parent, and node child 

B will create a back node version B of itself that will also attach to the back node par- 
ent. See Figure 1.5.3 for an illustration. 

a => Ad 
BC DE Bor.GiwD +E 

FIGURE 1.5.3 Recursive split condition. 

Extra care must also be taken to update the polygon counts in the front and back 
sphere trees respectively, especially after a sphere tree split operation. 
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Bee ieeesauoanhand Beyond fsa 2A RANE 

The technique described earlier produces a well-optimized, well-behaved BSP. Sacri- 

ficing some of the runtime optimality could further speed up the algorithm. It is 
arguable that statistically a fairly good BSP splitter will be found by only looking at a 
subset of all available polygon candidates, say 5% or 10% of all available candidates. 
The resulting BSP may not be as efficient, but it could be produced in approximately 
O(n log(n)*0.1), making it relatively close to the <Eqn015.eps> theoretical limit. 

While suboptimal, the BSP produced by only evaluating a subset of polygon splitter 

candidates would still be much more efficient than randomly choosing splitters. A 

suboptimal BSP could be good enough for previewing levels or even when there is no 

need to have a completely optimal BSP. 

Soh ALE ara HAE EE 

Using the previously described algorithms can bring BSP building to an almost inter- 

active process. This can make the difference between making last-minute level 

changes that take 10 to 20 minutes for each small change and level changes that take 

seconds; a speed up that will be especially valuable when time is short. 
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improved Frustum 

Culling 
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A”: game scene generally consists of many objects, which if not managed 

appropriately may hinder rendering performance. Libraries such as OpenGL 

and DirectX do some geometry management by clipping polygons that are partially 

off-screen and early rejecting those that are completely out of view from further pro- 

cessing. To perform the clip, however, each vertex in a polygon must go through the 

library pipeline, be transformed to screen coordinates, and be checked with the active 

viewport. When the polygon count is low, this process does the job, but when render- 

ing many objects consisting of many hundreds (or thousands) of polygons, the high 

cost of transmitting and processing all the vertices quickly overloads the system. A 

higher-level per-object culling algorithm must be implemented to effectively manage 

rendering a typical scene. This gem describes a clever improvement to an already well- 

known scene-management technique: view frustum culling. 

ene ne SRR PAS SEL ERO ES 
Frustum Culling 

SEARS TRELLIS EEE NEO IE 

Frustum Culling works by defining a volume that wraps the space that is currently 

visible from a given point of view. As shown in Figure 1.6.1, that view volume is built 

by constructing a pyramid with the apex at the eye’s position and the four triangular 

faces aligned with the screen borders. Two parallel planes, the near- and far- clipping 

planes, slice this pyramid; nothing closer than the screen or farther than some prede- 

fined distance will be included in the view volume. The resulting volume is known in 

mathematics as a frustum, and the objects that are completely outside of this volume 

have no chance to be seen by the camera and may be rejected on a per-object level. 

Once the frustum is built, objects can be tested against it for visibility. Each 

object in the scene may be completely enclosed by a bounding primitive, such as a 

sphere, cube, cylinder, or cone, which is used to test against the frustum rather than 

using the object itself. This avoids the overhead of duplicating the work already in the 

rendering pipeline and allows a higher-level of efficiency than per-polygon culling. If 

65 
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FIGURE 1.6.1. The geometrical object that bounds the visible section of the world 
is called a frustum. 

the simple bounding primitive falls completely outside the frustum, the entire object 
(or objects) it contains may be rejected. The key is to use shapes that can be quickly 
tested against the frustum, so the most commonly used primitives are spheres and 
axis-aligned bounding boxes. 

The Traditional Six Planes Approach 

The most common representation of the frustum itself is six simple planes, which are 
extracted from the matrix composed of a concatenation of the model view and projec- 
tion matrices, as shown in Figure 1.6.2. Each plane divides the space into two halves; 
the intersection of all the planes shapes a volume that defines what the camera sees. 

Working with the six planes approach has some disadvantages, the first of which 
is processing expense. Determining whether a point falls inside the frustum means 
evaluating an equation for each plane. Only if the result is positive for every plane 
evaluation may the point in question be determined to fall within the frustum. A sec- 
ond drawback to this approach is that it is not so easy to extract the frustum’s position 
and orientation, making operations such as an update quite difficult. This drawback 
is the reason why almost all implementations recreate the frustum every time the cam- 
era updates, which imposes a bit of overhead in the form of unnecessary floating- 
point operations (including divides and square roots!) as the six planes shaping the 
frustum are reconstructed [Morley00] 
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FIGURE 1.6.2 The six planes that define a frustum. 

The Radar Approach 

This algorithm was first designed for a two-dimensional radar system. The only 

intended purpose was to show the objects covered by a radar wave by leaving out 

those objects that were not covered. The approach proved to be very fast if some 

bounding primitives were inside the view, and the method was quickly extended to 

work in three dimensions. Now, the algorithm has been used for frustum culling with 

incredible results. 

To describe how the radar approach works in a friendly way, let’s first go back and 

introduce the two-dimensional algorithm and then extend it to the three-dimensional 

world. 
When working on a system with two dimensions, a frustum becomes a triangle, 

and asa frustum is a symmetric object, the triangle is known to be isosceles as is shown 

in Figure 1.6.3. The segment that starts in the apex and is perpendicular to the base is 

called in mathematics the triangle height. The handy part of the height is that as the 

frustum is symmetric; it splits the isosceles triangle into two equal halves. Coinciden- 

tally, the height happens to be directionally parallel to the camera's forward vector. 

Using the radar approach, a frustum is defined to be as intuitive as the camera, so 

frustum construction is almost free. The two-dimensional radar only needs to know the 

field-of-view angle (FOV), the forward vector, and the right vector. Conveniently enough, 

these are the same three parameters that the camera uses, so they can be extracted 

directly from the camera. The radar implementation does not, however, use the FOV 
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rward 

ight 

FIGURE 1.6.3. A two dimensional 

frustum is represented as an isosceles 

triangle where the height matches 

the forward vector. 

directly but the tangent of that angle; so that is the only thing that must be computed 
when building the frustum. Even that, though, can be cached and only computed when 

the camera changes the FOV (which, in most games, only occurs when a zoom is per- 
formed, changing the perspective). While that angle remains unchanged, the frustum is 
built by copying the forward and right vectors directly from the camera. This is far 
cheaper than performing all the calculations required to build a frustum using the six 
planes approach. 

And now, let’s go to the really interesting part: knowing if something is inside the 

frustum. 

Isa Point Inside a Frustum? 

First, let’s see what we need for knowing if a given point is inside the frustum; check 
Figure 1.6.4. To know if the point P is in the frustum, the radar approach projects OP 
to the forward and right vectors. The point P is known to be in the frustum if the for- 
ward projection F is between the far and near values and the right projection Ris 
between rLimit and —rLimit, otherwise, it is meant to be completely out. 

As described earlier, the first thing that must be done is to compute the projec- 
tions F and R. To project one vector into another, a dot product is performed and the 
resulting scalar is multiplied by either of the two vectors to obtain the projection in 
the desired axis. Figure 1.6.5 illustrates. There are two vectors V, and V,, and the dot 
product of them returns a scalar s. 

s=VdotV, =V,°V, =V,.x-V,.x+V,.y-V,y 
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FIGURE 1.6.5 Pro- 

jection of one vector 

into another. 

O 

-rLimit O ff. tLimit 

FIGURE 1.6.4 Classifying a 
point against a frustum. 

The projection of V, in V> is V>* s with the condition that V, be of length 1. 

Using the previous equation and considering that the forward and right vectors 

are unitary, it is possible to compute the values F and R by performing: 

f= Forward ¢ OP And r= Right ¢ OP 

If the condition (near < f< far) is not true, the point is out of the frustum. Check the 

first part of the code: 

bool cFrustum::IsPointIn( const cVector2f& Point ) 

{ 
cVector2f OP = Point - EyePosition; 

float f = OP * ForwardVector; // OP dot ForwardVector 

if (f < Nearz || FarZ < f) return false; 

float r = OP * RightVector; // OP dot RightVector 

float rLimit = rFactor * f; 

if (r < -rLimit || rLimit < r) return false; 

// Up to here the point is known to be in the frustum 

return true; 

} 

Computing rLimit is trickier and involves the FOV tangent. The FOV tangent, 

called the rFactor, was discussed previously and is computed as follows (see Figure 1.6.6). 

f 
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rLimit 

FIGURE 1.6.6 Quantities 

needed to find rFactor. 

[ a] opposite side Limit 
rFactor = tan|] —— |= —— = ——_ 

aS adjacent side Fe 

rLimit 
rFactor = ——— 

rLimit = rFactor - f 

The point is outside of the frustum if the condition (—rLimit < r < rLimit) evaluates 

to not true. Otherwise, the point is known to be in the frustum. 

That sums up all that must be done to determine whether a point is inside a two- 
dimensional frustum. 

Translating this to three dimensions is as easy as introducing another factor, the 
uFactor, which is the rFactor multiplied by the ViewAspect used when defining the 
perspective matrix so the frustum matches the viewport. Also, a new vector must be 
taken into account: the Up vector. The Up vector may be directly extracted from the 
camera exactly as the forward and right vectors. Using the point P, the Up vector, and 
the uFactor, a projection U and a wLimit value may be calculated. If that projection is 
not between the positive and negative values of ulimit, the point is outside of the 
frustum. 

Combining this with the previous two-dimensional example, the position of a 
point with respect to a frustum in three dimensions can be known. The remarkable 
aspect is that it takes less than half the math necessary for the six planes approach, 
which is a great savings considering that there will be a lot of testing against the frus- 
tum each frame. 

The point math was the easy part; however, there are just a few times when it is nec- 
essary to know whether a single point falls within a frustum. Most of the time, more 
complex geometries are evaluated. The good news is that almost all bounding objects 
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used to test against a frustum in today’s games follow the same point-to-frustum algo- 

rithm. Therefore, one must clearly understand the point-to-frustum algorithm in order 

to understand its application to more complex geometries. For this reason, it is recom- 

mended that you go back through this section if bits of it were unclear. 

Spheres, Where Are You? 
Se ERE ER ERE SECO E 

One of the faster and more commonly used bounding objects in today’s games is a 

sphere. A sphere is defined as a center point and a radius. Spheres are quite easy to cre- 

ate and are almost as fast as the point-to-frustum algorithm since it is just a variation 

of it. Knowing the position of the sphere against the frustum can no longer be an 

inside or outside issue, though, because that test can also return if the bounding 

sphere is not completely inside or completely outside but intersecting the frustum 

planes, which allows some clever optimizations that are going to be covered later. For 

the purposes of this gem, however, we will only be covering the method that returns 

if a bounding sphere is Visible or Completely Outside of the frustum. Please refer to 

[Puig03] for more advanced methods. 

Consider the definition of a sphere: a center point and a radius. With that in 

mind, you can think of testing a point against a frustum like checking a bounding 

sphere with radius zero against a frustum. Now all we do is extend that to include a 

nonzero radius. See Figure 1.6.7. 

Radius 

rLimit 
e e 

IN INTERSECTING OUT 

FIGURE 1.6.7 [f the projection lies in the Out 

area, the sphere is reported as Completely Out; 

otherwise, it is reported Visible because it has 

to lie on the In or the Intersecting area. 
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The algorithm first checks if the sphere is in the frustum and returns trueor false 

accordingly. This works much like the point code, but this time the limits are radius 

units farther. 

char cFrustum::ClassifySphere(const cVector3f& Center, const float 

Radius) 

{ 
cVector3f OP = Center - EyePosition; 

float f = OP * ForwardVector; // OP dot ForwardVector 

if (f < NearZ-Radius || FarZ+Radius < f) return false; 

// Unoptimized but more understandable 

float r = OP * RightVector; 

floater Eun Gessrrackop. * wits 

if (r < -rLimit-Radius || rLimit+Radius < r) return false; 

// Optimized ( a substraction is removed ) 

float u = OP * UpVector; 

float uLimit = uFactor * f + Radius; 

if (u < -uLimit || uLimit < u) return false; 

return true; 

} 

As you can see, the test in the 7 axis is completely expanded here for illustration. 
This can be optimized, and in fact, the code in the accompanying CD-ROM rewrites 
that segment. Notice that the condition in the if statement (—rLimit — Radius) is the 
same as —(—rLimit + Radius), which is the second condition of the check. With this 
refactored math, the add operation is only performed once when computing rLimit, 
and used in its negative and positive. 

If the conditional checks fail, the bounding sphere is reported to be completely 
outside of the frustum. At first glance, the code to retrieve the position of a sphere 
according to a frustum can look a bit confusing, but once it has been carefully stepped 
through, it becomes quite basic, not to mention incredibly fast when compared to the 
six plane approach. 

Bounding spheres may be fast but often grossly inaccurate, leaving large empty 
spaces around the object in question. For this reason, the frustum has to provide some 
functionality to determine the position of complex geometries like boxes, cylinders, 
etc., but as this gem is just an introduction to the radar approach, discussion of those 
methods is omitted. Nonetheless, the source code for these routines is provided on the 
accompanying CD-ROM, which includes methods for testing against axis-aligned 
bounding boxes and oriented boxes. Those two primitives in particular see compara- 
tively big optimizations using the radar approach and behave as reliably in situations 
where the six planes version fails by returning visible when the object is completely 
outside of the frustum. 
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Other Uses 

Finding the eight vertices of the frustum was a huge task on the six planes approach 

due to the involvement of computing the intersection of three planes eight times 

which indeed is an expensive operation. However, this is very simple using the radar 

approach. Take a look at Figure 1.6.8. 

right 

FIGURE 1.6.8 Computing the point 

A by adding NVector and RVector. 

The position of point A can be computed by adding the two vectors marked in 

Figure 1.6.8. Computing the Vector is just a matter of multiplying the unit forward 

vector by the “near” value. Finding the R vector is a little trickier; it is just the right 

vector times a factor that comes from the following evaluation: 

f _ opposite side __ factor 

2 

factor 

rFactor = tan es ; 
adjacent side near 

rFactor = 
ear 

factor = rFactor - near 

Therefore, the R vector is defined as rVector = Right - rFactor -near. Adding it to 

the near vector gives point A, and the same can be applied to get all eight points. 

Check the provided source for a full implementation. 
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Knowing the position of the eight points helps to do many handy things like 
drawing the camera frustum, surrounding the visible section of the world with an 

AABB or a bounding sphere, among others. 

Further Improvement 
Eee EET EHSL GAN I NA EY 

The previous approach on its own is extremely fast, but there are some tips that can 
help to increase efficiency and speed. Let’s check some of them in the order of the 
more to less obvious. 

Earlier, you learned methods for checking against a frustum using the radar 
approach that only returns two values: completely outside or visible. The test against the 
frustum, however, can be extended to determine whether the geometry is completely 
inside, completely outside, or intersecting the frustum planes. This can be accom- 

plished without too much trouble, and without a big speed sacrifice, allowing for the 
optimizations in the following section. 

i NCAR CORT SRE 

Hierarchical Scene Organization 

Think of a big scene populated with many objects. Testing each object against the 
frustum and rendering the ones that are visible is actually faster than sending all the 
objects to the graphics hardware and letting it reject the nonvisible polygons at a per- 
vertex level. While that is the case, it is far from optimal taking into account that 
every object has to be checked. Using a scene hierarchy reduces the huge amount of 
tests required to reject all objects that are outside of the frustum by grouping objects 
and surrounding them with concatenated bounding geometries. If a bounding geom- 
etry is found completely outside of the view frustum, for example, all the objects that 
it contains (all the objects contained within the bounding geometries that compose 
the convex bounding geometry used in the test) are also completely outside of view. 
The same applies for the branch that reports to be completely inside of view, which is 
traversed but not checked again, since all the children of the bounding geometry are 
going to be completely inside by definition. 

Several space partition algorithms allow hierarchical traversal of the scene with a 
frustum, rejecting nonvisible branches. The most widely used and simplest are 
octrees, BSP trees, KD-trees (short for “k-dimensional trees”), and ABT. Each algo- 
rithm keeps the scene organized in a hierarchical tree, but each has subtle differences 
or properties that make it more suitable on some scenes. Which one you select will be 
dependent on the application being implemented. 

Plane Masking 

Having the scene hierarchically organized allows rejecting groups of objects and by 
that allows rejecting groups of objects, making it unnecessary to test every single 



1.6 Improved Frustum Culling 75 
cvoseticnanptsseeeiateannnaitnesesontonenunaseottiesnanmeunssonue 

object against the frustum. However, if a parent object is known to be potentially vis- 
ible (that is, it is not completely outside of the frustum) then all its children have to be 
tested against the frustum. That works fine and is pretty fast but, in some situations, 

can be optimized a bit. 
When testing an object against the frustum—suppose a sphere for simplicity— 

there are three checks to perform: the near-far test, the right test, and the wp test. If for 

example, the right test returns that the object is completely within view, that test does 

not have to be performed on the object’s children because each one will also return 

completely inside (see Figure 1.6.9). Only tests that return intersecting must be 

checked again. As a result, some operations can be avoided when checking against the 

frustum, thereby gaining some extra performance. 

FIGURE 1.6.9 The dot lines in the frustum 

represent the near-far test returning Completely_In 

for the object and all its children. 

The plane masking can be archived by storing a byte in the bounding object that 

links a bit to each of the three tests. So, if the binary code is 101, the first and third 

tests are performed but not the second one. This works pretty fast because it only 

involves clearing bits and checking them later rather than relying on more compli- 

cated operations. 

Plane Coherency 

In most applications, especially games, the camera moves smoothly, producing just 

small changes in the frustum configuration. Therefore it is very likely that if one of 
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the three frustum tests fails, it fails also in the next frame. Consequently, in the next 

frame, the frustum must start checking by the test that previously failed. That will 

allow the frustum to potentially reject objects with just one test when the object doesn’t 

change too much in the frustum (see Figure 1.6.10). 

Lite oe 

Oo 

Wall 
Right :In _ Near-Far:Fails 
Near-Far:Fails = Right  :In 

FIGURE 1.6.10 Kearranging the test order with 

knowledge of the previous frame information poten- 
tially allows rejecting the object in the first test. 

The plane coherency can be implemented in many ways. The simplest is to store 
a byte in the bounding object that keeps the test that fails in the previous frame. 
When the frustum checks the object, it starts with the test that the byte points to, and 
if it succeeds, it continues with the other two as usual. 

Checking Whether the Object Is Inside the AABB 

That Surrounds the Frustum 

Determining intersection against an axis-align bounding box is almost always reduced 
to six comparisons, two for each axis. No expensive operations have to be performed, 
thus, it is incredibly fast compared to the usual frustum test. In the “Other Uses” sec- 
tion, a method to determine the AABB that surrounds the frustum was shown. That 
method is very proficient, and best of all, it only has to be called once per frame if the 
frustum changes. 

If an object is known to be outside of the AABB that surrounds the frustum, it has 
to be also outside of the frustum (see Figure 1.6.11). Testing the object against the 
AABB is fast and allows rejecting the object just by doing simple comparisons. However, 
if the object is not completely outside, the usual test against the frustum is performed. 
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FIGURE 1.6.11 Jf the object is 
known to be completely out of the 
AABB that surround the frustum, 
it can be said without further 
checking that it’s completely out 
of the frustum, too. 

Conclusion 

Frustum culling is one of the most widely used culling techniques and allows rejecting 

large amounts of primitives at the per-object level without much processing cost. In 

the majority of today’s applications and games in which culling is implemented, it is 

done so using the six planes approach with excellent results. However, as is shown in 

this gem there is another fast alternative: the radar approach algorithm, which is more 

memory friendly, allows faster object-in-frustum tests, and is more intuitive. Best of 

all, it is possible to build the frustum almost for free. 
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Generic Pager 
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W: frequently find a situation in which at any given time we need to unload 
unnecessary information from our system in order to load new information. 

This simple task carries with it complicated management baggage to track the infor- 

mation that should be kept and that which may be excluded at any instant. The situ- 

ation becomes even more complicated if there is more than one user that requires 

access to the same information at the same time. The process around this manage- 

ment of currently loaded data is commonly known as “paging.” 

Traditionally, solving this problem means designing complicated systems that are 

not always as efficient as we hope; they are also usually very limited because they are 

specifically designed to solve a particular instance of the paging problem. This gem 

introduces a more general, less complicated, and more efficient solution to the paging 

problem, called the generic pager (GP). By meeting all these criteria, the GP allows the 

system designer to completely forget about the challenges posed by creating a custom- 

brewed solution, allotting more of his valuable time for designing and implementing 

other critical parts of the title. 
For you skeptics out there, I'd like to highlight the flexibility and efficiency of the 

GP presented in this gem by referring you to two major projects from completely 

unrelated domains. 

° GP has been successfully integrated in an autonomous robots system where the 

resources of the robots are limited, and efficient management of the information 

needed at any given time is necessary. 

¢ GP has been used in a navigation and visualization 3D terrain system. 

The Old Paging Solution: Check Everything 
= OLA TOLL ES LETT LET LT LENE ETE MAO 

The most widespread (though not necessarily the best) solution consists of the follow- 

ing steps: 
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The GP Paging Solution: Only Check What You Need Scena eee ZN 
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Section 1 General Programming 

. Define the information to load/unload. 

. Define the size of each block of information. 

. Divide the search space into blocks. 

. Define the necessary structures to manage all the blocks. 

. Every time it is needed, check the information to load/unload, walking 
along all the blocks of the search space. 

MWB OG NH Re 

As you may have noticed, this solution is highly inefficient. It spends too much time 
in the division of the search space and consumes many resources, which is necessary 
in maintaining such complex structures with so much information for each block. 
Checking everything is excessively costly, too, and this solution is limited to loading/ 
unloading the type of information defined by the design. If another type of informa- 
tion is required, it may be necessary to redesign the entire paging system! Finally, all 
these problems increase exponentially as soon as the search space grows, so let's go 
ahead and take the time to do it well the first time around. 

GP solves all the aforementioned problems in a really easy way through simple and 
intuitive interfaces. The main features of GP include the following: 

¢ Almost complete transparency for the designer and user 

¢ Search-space size independence 
* No preprocessing, space divisions, or complex structures 
* Memory only contains indispensable data 
¢ Multiuser transparency (for the designer and the user) 
¢ Information agnostic 

The following sections will progressively describe the design of GP and some details 
of the implementation. It is worth noting that this implementation is not unique; GP 
can be implemented as desired, using most high-level programming languages and 
paradigms. 

PALIT TO LAE RAT TORT 

In GP, as well as in other traditional paging systems, it is necessary to define the size of 
each block of information that will be loaded/unloaded. We will also define a mecha- 
nism to locate each block in the search space, along with a unique identifier per block. 

We begin with a class called Gpindex that manages this information, thereby ful- 
filling three functions simultaneously: 

* Define the size of the paging block. 
¢ Locate the block in the search space. 

° Uniquely identify the block. 
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GPindex contains two attributes: position and size. Each contains m elements where 

n represents the dimensions of the block. Usually the blocks are two-dimensional 
such as memory, images, or digital terrain models. In these cases, the position of the 

GPindex contains x and y (2D coordinates) while the size contains height and width. 

However, we are not locked into 1D or 2D blocks; note that we can add as many ele- 
ments to each attribute as dimensions the block has. 

The attribute position defines, locates, and identifies each block. Since each block 

determines a portion of the search space, its position is unique. Consequently and con- 
veniently, the position of the block defines its location and unique identification. 

GPindex provides another function that is extremely practical: it allows us to nav- 
igate through the blocks without creating any structures, without a previous division, 
and without loading anything into memory. It implements three methods: 

GetIndex (position p); 

// Gets the GPindex that contains the position p. 

GetNext (int n) 

// Gets the next n-th GPindex in any dimension. 

GetPrevious(int n) 

// Gets the previous n-th GPindex in any dimension. 

For example: 

GPindex GetIndex (int x, int y); 

// Returns the GPindex that contains the position x, y 

GPindex GetNextX(int n); 

// Returns the next n-th GPindex in X 

GPindex GetPreviousX(int n); 

// Returns the previous n-th GPindex in X 

GPindex GetNextY(int n); 

// Returns the next n-th GPindex in Y 

GPindex GetPreviousY(int n); 

// Returns the previous n-th GPindex in Y 

As shown in Figure 1.7.1, there is an index defined with position (100, 100) and size 

(50, 50). 
This is so versatile for the reason that, as soon as the index is defined, we can con- 

sider that all the search space is divided, although it is not really divided (saving time 

and memory) as shown in Figure 1.7.2. 

We can now navigate freely, moving over 50 x 50 (size) blocks creating just an 

index as Figure 1.7.3 illustrates. 

A very interesting characteristic is that the position and the size can reference any 

type of data. The example on the CD-ROM is implemented with integers, but you 

can use any data type or data structure, provided you take into account the following 

two criteria: 

¢ Implement appropriately the methods Get Index(), GetNext (), and GetPrevious() 

for every dimension of the block. 
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¢ The data type must contain, at least, the following operators: ee 

operator < 
operator == 

operator <= 

ae 

FIGURE 1.7.1 GPindex at position (100, 100) with size (50, 50). Global Map used 
in the images in this article courtesy of Earth Observatory: The Blue Marble Web site 
(eobglossary.gsfc.nasa. gov). 

FIGURE 1.7.2 Implicit division of search space. 
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Gethndex( 275.2 1) 

FIGURE 1.7.3. Navigation through the search space. 

Nevertheless, integer use is common in most cases (or at least a type that converts eas- 

ily into integers), so the CD-ROM implementation should suffice. 

It is not a problem that an index can surpass the search space, nor is it a problem 

that there are potentially empty blocks. The solution for this is to check the limits and 

? free space when the block must be loaded, as we will see in the next section. (See Fig- 

ure 1.7.4.) 

FIGURE 1.7.4 Out of limits and free space. 
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The Tile: The Block of the World 

Section 1 General Programming 
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To review, the definition of the index in our system is almost ready to page: 

GPindex 

( 
Position, //X, y,; .«..., n-dimensions 

Size //width, height, ..., n-dimensions 

Now that we know how to divide the search space and locate and identify a specific 
block, let us define the block itself: GP holds a simple class called GPtile that basically 

contains the GPindex that defines its position and size. This means that the zi/e is the 

block of the search space and is determined by the index. In the example of the terrain 
paging, every tile corresponds to a portion of terrain, with a position and size defined 
by the index of the tile. 

Once the tile is defined by assigning the index, all that remains is to load/unload 

the data. 

virtual void Load() 

virtual void Unload() 

The GP user simply has to design a class that carries out the next requirements: 

1. Derive from GPtile 

2. Implement the methods Load() and Unload() 

In the implementation of these methods, the user can utilize the information con- 
tained in the index of the tile and the class derived from GPtile in order to 
load/unload the information. 

Following the previous example, an index was defined with the position (100, 
100) and the size (50, 50). Now we have the location and size of the block of the 
search space, but it was not necessary to know what the block was or what kind of 
information it contained. In our example, the information to manage is terrain por- 
tions. At this point, we define a class derived from GPtile. See Figure 1.7.5. 

In the Load method, we load the information situated in the position (100, 100) 
and size (50, 50) as shown in Figure 1.7.6. 

It is important to know that a GPindex can reference any data type, meaning the 
GPtile can load/unload any kind of information (see Figure 1.7.7.). The information 
contained by a GPtile can bea fragment of a 50 x 50 image, a height map, a portion 
of a digital terrain model, etc. 

Every GPtile contains a very useful attribute, state. There are four different 
states for a tile: 

LOAD: The GPtile is loaded. 
LOADING: The GPtile is already loading but it is not completely loaded yet. 
UNLOADED: The GPtile is unloaded. 
UNLOADING: The GPtile is already unloading but is not completely unloaded yet. 
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(108 , 100) 
|@DoLoad{) 
@DoUnLoad{) 
*<cyirtual>> Load() 
*<<yitual>> UnLoad(} 

GPuserDerivedTile 

*<<yirtual>> Load() 
*<<yirtual>> UnLoadt) 

FIGURE 1.7.5 GPtile definition. 

FIGURE 1.7.6 GPtile Load. 

The class GPtile manages these states in a transparent way for the GP user (see Fig- 

ure 1.7.8). The user will only need to implement the methods Load() and Unload(). 

In some situations it will be necessary to load information of different types and 

origin, but conceptually in the same tile. In the example, the index (100, 100) (50, 

50) can reference a terrain portion located in coordinate (100, 100) and size (50, 50) 

and, at the same time, it can reference to a fragment of an image with the same coor- 

dinates and size that is going to be used as the texture in that portion of terrain, as 

shown in Figure 1.7.9. 
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FIGURE 1.7.7 Different types of information in the same GP index. 

UNLOADING 

Finish UnLoad 

UNLOAD 

Start Load 

Start UnLoad 

Finish Load 

LOADING 

FIGURE 1.7.8 States diagram. 

To manage this, the GP provides two alternatives: 

Global Conception: The methods Load() and Unload() load and unload all the 
necessary information, respectively. The concept of tile includes all the 
information, no matter its type, that is located by the index. In the example, we 
load and unload both the portion of terrain and the fragment of texture, as 
shown in Figure 1.7.9. 

Specific Conception: This uses simultaneously different instances of GP. each to 
page kind of information but updating simultaneously the navigation system 
(window, which is examined in following next sections). 

To review, now we just need two steps to get the GP paging system: 

1. Define the GPindex. 
2. Implement the Load / Unload methods of the GPtile. 
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FIGURE 1.7.9 Different information simultaneously in the same GPtile. 

The World: The Search Space 
RR HRI BL EEE EHS INN SEO IE LE IE EES BOE LIES ELITE SIT ILS LEELA ILE LEBER EOL EE, 

After discussing the index and the tile, we need to cover another very important con- 
cept that we referred to in several places earlier but did not fully explain: the search 

space. The search space, in the GP context, is the world where the paging blocks 

(@Ptiles) exist and are located through the indices. 

GP models this world through a class GPworld. This class contains all the created 

GPtiles that are in use. When a GPtile is needed, the GPworld creates it; when it is 

not necessary anymore, its information is unloaded and the GPworld destroys it auto- 

matically. This process optimizes the memory use and maintains in memory only 

strictly what is necessary. 
When GP needs a GPtile, it makes a request to the GPworld through the method 

GetTile(), passing as parameter the GPindex of the sought after GPtile. At this 

moment, the GPworld will check if it contains the GPtile. If the GPworld contains it, 

this will return it, and if not, this will build it through its method BuildTile. When 

GP wants to load/unload a GPtile it does it through the GPworld with its methods 

LoadTile() and UnloadTile(). The GP user will just design a class derived from 

GPworld and implement the virtual method BuildTile(). 

In the BuildTile() method, it is only necessary to build an object of the class 

derived from GPtile. The use of the parameter is not really necessary. The GP system 

will automatically assign to the created GPtile its corresponding GPindex. The user 

will only need to take into account the construction of the derived class, which can be 

a really easy task, as the following snippet shows, or as complicated as the system 

where GP is being integrated requires. 

Tile* BuildTile(const Index& index) 

{ 
return (new GPuserDerivedTile() ) 

} 
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There is also another method that can be implemented by the class derived-from the 

world class. 

virtual bool IsValidIndex(const GPRindex& index) ; 

This method returns true by default; its purpose is to let us know if a specific GPindex 
is valid inside this GPworld. This method is automatically used by GP. When GP 
wants to create a GPtile for a given GPindex, it checks if this GPindex is valid, and if 

the index is valid, the GPwor1d will create the GPtile through its method BuildTile() 

(explained earlier), as shown in Figure 1.7.10. If the index is not valid, the GPworld 

will not create anything, and the GetTile() method will return false. This validation 

of a GPindex falling inside the GPworld along with the check against errors works 

towards avoiding a subsequent wrong loading or other implications. 

GetTile(index) 

| :GPwindow | :GPworld | | :GPuserDerivedWorld :GPole | | :@PuserDerivestile | 

IsValidIndex (index) 

BuildTile(Index) 

LoadTile (index) 

DoLoad 

UnLoadTile(tile)! 
py op 

sail Load() 

DoUnLoad() ' 
\ UnLoad() 

IsTileWindowListEmp lay () | 
+_ 

DestroyTile() 

u 
be 

1 

FIGURE 1.7.10 Sequence diagram. 

A world can include GPtiles that contain all the necessary information although 
they are different types of information (global conception) or, on the other hand, 
many different GPworlds can exist in GP, one for each data type, that is, one for each 
instance of GP (specific conception). 
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GP is almost formed, and we are only at three easy steps: 

1. Define a GPindex. 
2. Implement methods Load / Unload of GPtile. 
3. Implement the method BuildTile of GPworld. 

The Window: Navigating in the World 

Once we have our world (GPworld) and we can get any block of it (@Ptile) just 

through its position (GPindex), we only need to know which blocks we want to load 
and unload. For this purpose, GP provides the GPwindow. With this, we can navigate 
around the GPworld using the GPindexes of the GPtiles without needing to know the 
information contained within them (see Figure 1.7.11). 

The GPwindow has three main attributes: 

CenterIndex: GPindex of the GPtile located in the center of the GPwindow 

Radius: Indicates the number of GPtiles around the center GPtile 

GPtilesList: Contains all the GPtiles of the GPwindow 

FIGURE 1.7.11 Ze GPwindow. 

The initialization of the GPwindow is really easy: 

1. Provide it with a reference to its GPworld. 

2. Give the GPwindow a GPindex, which will position it. 

3. Give it a Radius. 
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After this, GP automatically fills out the GPtilesList, taking the GPindex given as the 

center, using the methods GetNext Index() and GetPreviousIndex() of that GPindex, 

and telling the GPworld to load the entire list, as shown in Figure 1.7.12. 

FIGURE 1.7.12 Loaded GPwindow. 

To navigate, we simply give positions to the GPwindow through its update method, 
Update(). Every time this method is called, it will check if the new position is inside 
the center GPtile, meaning it is contained in the center GPindex. If the new position 
is inside the center GPtile, the GPwindow will not update itself; if not, we will take as a 
new center the GPindex that contains the new position, and the GPwindow will be 
updated with its new center and radius. 

In the update process, the tiles list is modified, adding the new GPtiles that are 
inside the GPwindow and removing the GPtiles that are not inside. The GPwindow 
tells the GPwor1d to load the new ones and to unload the GPtiles deleted from its list. 
This process is automatic, transparent to the user, and completely independent of the 
type of information contained in the tiles, as shown in Figure 1.7.13. 

If the radius is modified, the update process is the same, but note that in this case, 
the center remains invariable. 



FIGURE 1.7.13 GPwindow update process. 

Finally we are ready to use GP. Here are all the steps: 

Define a GPindex. 

Implement the methods Load() and Unload() of the GPtile. 

Implement the method BuildTile of the GPworld. 

Initialize the GPwindow by assigning: 

e The GPworld 

e A Center 

e A Radius 

5. Update the position of the GPwindow. 

ae ee 

Multiple Windows, Multiple Users 
RESELL AD DOORS NEEL L TLE LE LMT ELLIE LISI DOL LEI RSPR SELENE TIES 

GP is multiuser in a natural and transparent way. The right term is multiwindow, 

because each user can have several GPwindows, and there can be several users at the 

same time (see Figure 1.7.14). GP takes each GPwindow as a different user. When a 

GPwindow calls to the GPworld for loading or unloading a GPtile, this realizes some 

easy checks: 

GPtile::Load(): If the GPtile is already loaded, the world does nothing. 

GPtile::Load(): The GPtile is unloaded only if there are not other GPwindows that 

need it. After unloading the tile, the world destroys the tile. 

This entire process is transparent to the user, who only has to take care of updating 

the locally owned GPwindow (or GPwindows) when necessaty. 
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 GPwindow3 

FIGURE 1.7.14 Multiple windows, multiple users. 

Optimizing: Multithreaded Paging 
aT SSA RRR AES RH UI ESS a A es SED ELA LLL SET NTT, 

An optimization of GP is to avoid the GPworld realizing the calls to the methods 
Load() and Unload() of the GPtiles immediately. The world will realize these tasks in 
a separate thread so as to avoid any interference of the load/unload processes with the 
rest of the system, and thus increase performance. 

‘To do this, the world has a list of GPtiles. When a GPwindow calls to the GPworld 
for loading (or unloading) a GPtile, the GPworld adds this GPtile to the list and 
marks it as loadable (or unloadable). In the main loop of the load/unload thread, each 
element of the list is removed and processed. 

Conclusion 
ROLLIE LM EES ALE LEE ETT NLA DERE EE IER TED I TER ERD HES AI 

This gem described a complete, multiuser general paging system (GP), capable of 
managing any type of information in an easy and efficient way, optimizing the 
resources of the system. The scope of GP is global, so it may be integrated into any 
other system that requires management of the loading and unloading of information. 

The design of the GP follows some of the design suggestions of [Lakos96] and 
[Alexandrescu01]. The implementation of GP uses some of the suggestions of [Mey- 
ers96]. 
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i: this gem, we examine a unique synthesis of traditional state objects with a stack- 

based management and queuing system. These combine into what might be called 

stack-based state machines. This mechanism is remarkably superior to traditional state 

machines, especially when dealing with traditionally messy logic flow, such as in deeply 

nested user interface screens. Stacked state machines also make it simple to handle 

other thorny state-related issues, such as how to implement a global state such as a 

game pause state without writing special-case code everywhere, or building intrinsic 

knowledge into the state about where it should return to when it is finished executing. 

An advanced state-manager system is also demonstrated, adding functionality 

such as queued state commands, delayed state transitions, and centralized state timing 

functionality. States are, as expected, represented as hierarchical C++ objects and are 

designed to automatically handle details such as knowledge of previous and next states 

when entering and exiting, as well as stacking events (pushing and popping of states 

on top of other states). This system is an extremely effective way of managing large- 

scale state systems, such as the concept of a global application state (or game state) 

within a program. 

Traditional State Machine Code and 

Associated Problems — 
SRE SDD LISS E TI NOL ET LL LIE SLI ODE EEE ELLIO NOELLE TOTS 

SS POEL ROT ASE SLING ELE TONING 

One of the most fundamental tasks of any game is representing an internal “state” that 

represents the visual and logical elements that are currently presented to the user. 

Generally, games divide into two distinct sections of states: frontend user interface 

states and in-game states. For example, each user interface screen in the front end 

should likely be considered a unique state, since each screen has unique functionality 

as well as unique transitions to other states. Dialog boxes and other major screen ele- 

ments with which the user must interact might also be considered unique states, 

although these have specific issues that will be addressed later. 

93 
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Likewise, a game may have one to any number of unique global states within the 
actual gameplay. For example, a traditional first-person shooter (FPS) might allow the 
player to interface with a computer in the game. At this point, the game enters a dif- 
ferent state: the rendering path changes, and the interface to the game is different. In 
essence, it is as though a completely different minigame is playing instead of the pri- 
mary control mechanism. Figure 1.8.1 demonstrates how a standard state machine 
diagram might represent typical states such as these. 

New Game 

Tae 

oni
 at i

 e
S 

pes an
n 

Minigame 1 | Minigame 2 

Game Options : 
Ga 

FIGURE 1.8.1 A typical game-state diagram. 

It’s fairly easy to create a simple state machine in C or C++ code. All you need is 
an enum variable and a switch statement, as demonstrated in Listing 1.8.1. 

Listing 1.8.1 A Simple State Machine 
I 

————— 

enum GameState 

{ 
STATE_OPENING TITLE, 
STATE_MAIN MENU, 
STATE_RUN_ GAME 

}5 

GameState m_State; 

Lf 
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switch(m_State) 

{ 
STATE_OPENING_TITLE: 
// Do opening title code 

break; 

STATE_MAIN MENU: 

// Do opening main menu code 

break; 

STATE_RUN_GAME: 

// Do main game code 
break; 

}5 

Unfortunately, the real world is not quite so simplistic. A number of thorny issues 

often quickly arise. For instance, what happens if you need notification on the first 

update when switching states? A quick solution is simple enough: just add a counter 

that tracks updates and resets whenever the state changes. What about when leaving a 

state? Well, you could add separate sets of switch statements for entering, exiting, and 

updating states. How about if you need to change to a state at some specified time in 

the future? Again, you could add a timer with a delay element. What if you want to be 

able to queue up a number of state changes in sequence? By now, your simple C-style 

state machine is growing into a bit of a mess, with a number of variables, switch state- 

ments, and functions all lumped together. Although this C-style state machine may 

be highly functional at this point, readability, usability, and maintenance all become 

serious issues. Even worse, where exactly does one store data specific to any of these 

states? Since all you have are functions, it becomes much messier to actually create 

and use data specific to the lifetime of any particular state. To top it all off, this state 

machine is only usable for a single set of states; the code is not re-usable except to the 

extent of cut and paste. 
Now, how about dealing with some even more fundamental problems? How 

exactly would you represent a state such as “pause game”? The behavior is unlike other 

states in that you probably expect it to return to whatever previous state existed before 

you paused the game. Likewise, many menu systems operate in a hierarchical fashion, 

with layers added upon layers. Using a traditional state machine to transition between 

these different user interface screens (such as when a confirmation dialog pops up over a 

user interface screen) is certainly possible, but may be less than optimal. Scott Meyers, a 

well-known C++ authority and writer makes the point if you find yourself writing code 

in the form of “if an object is of type TI, then do something, but if it’s of type T2, do 

something else;” you should stop because that isn't how it’s done in C++ [Meyers98]. 

The intent of this article is not to extol the virtues of C++, but rather to demon- 

strate why object-oriented solutions are often vastly superior to their functional 

equivalents. As such, we will demonstrate how an object-oriented solution to the 

game state problem can vastly simplify your programming efforts and keep your code 

much cleaner. 
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The C++ Approach to Game States 
While most programmers are quite used to the concept of designing classes based on 
physical entities (i.e., a Weapon or Player class), C++ classes can also be highly effective 
when modeling more abstract concepts, such as states [Gamma94]. If we standardize 

the meanings of specific functions, we can achieve a straightforward approach to 
modeling a single state with a class. Listing 1.8.2 demonstrates how this might 
look. 

Listing 1.8.2 Modeling a Single State with a Class 

class SomeState 

{ 
public: 

void OnEnter(); 

void Update(); 

void OnExit(); 

}5 

Each function represents a specific event in the handling of this particular state. 
When the game requires this particular state to be activated, the class’s onEnter() 
function is called. This gives the state a chance to initialize, allocate, or activate any- 
thing necessary for this state to operate. On each update tick (update or render cycle) 
of the game, the class’s update () function is called to process any events that may need 
handling. Depending on your particular engine’s design, you may or may not need a 
separate function call for doing any rendering work. Finally, when the state exits, 
meaning another state is about to become active, the OnExit() function is called to 
allow the state to clean up after itself. 

This gives a nice home to any initialization, updating, and cleanup functionality 
required to represent this game state. However, almost as important is the fact that we 
now have a logical place to store any persistent data on which this functionality 
must operate. For instance, if this state represented a user interface screen, the class 
could contain all the various user interface elements that the screen must display and 
manage. 

The State Interface Class 
SA MANE ANSE HERO TI ATTEN RAIS OSCE soem 

To ensure each state’s compliance with this interface, and to be able to operate on dif- 
ferent states through a common system, we can use a base state that acts as a standard- 
ized interface for all other states derived from it. Additionally, let’s assume that we will 
add some functionality to the system: the names of states will be passed to the state 
object via these functions. Listing 1.8.3 shows what this class looks like. 
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Listing 1.8.3 State Interface Class 

class IBaseState 

4 
public: 

virtual ~IBaseState() {} 

virtual void OnEnter(const char* szPrevious) = 0; 

virtual void Update() = 0; 

virtual void OnExit(const char* szNext) = 0; 

virtual void OnSuspend(const char* szNext) = 0; 

virtual void OnResume(const char* szPrevious) = 0; 

}5 

You can see that when switching states, any state object will have easy access to the 

previous or next state, which can be useful when dealing with transition-specific code. 

You may have noticed the OnSuspend() and OnResume() functions and wondered what 

those are for. The next section will explain their significance. In fact, part of their 

functionality is designed to actually reduce the necessity of transition-specific code, 

which tends to complicate state machine design and maintenance. 

Stacking States—Why Three Dimensions Work 

Better Than Two 
SEDER ROE NOISIER ERD NNN SOE ELIT I IE STOLE EE ELLE EE EL ELIT 

Ina typical game, it is not uncommon to have many different modes of gameplay rep- 

resented by different state objects. As an example, a typical role-playing game may 

have a dozen different game states depending on whether the player is walking around 

outside, in a town, purchasing goods from a store, in combat, or playing a mini-game. 

At any point in the game, you would like the user to be able to bring up the same 

options screen then return to where the game left off. It may be desirable to leave the 

game rendering in the background, but in a paused state. Exiting completely out of 

the game state and coming back in is problematic in this case. 

Another form of this problem comes up quite often in user interface screens. 

Often, it is desirable for a screen to continue rendering while a dialog box is drawn in 

front of it. There is no clean way of dealing with this in a traditional state machine, 

because we really do not want to completely exit the current state in order to enter a 

new one. Rather, we want to be able to suspend (or pause) one state while another 

supercedes its functionality, but then return to the original state and resume (or 

unpause) its behavior. 

These types of issues can easily be solved with the concept of a state stack: the abil- 

ity to push and pop states on top of other concurrently running states. This is what the 

OnSuspend() and OnResume() functions are for. When a state is pushed on top of 

another state, the original state’s OnSuspend() function is called. However, the Update () 

function is still called each frame. Figure 1.8.2 shows how a state machine can work in 

three dimensions instead of in two through a stack mechanism. 
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Normal State Transitions Represented 
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FIGURE 1.8.2 Adding a third dimension to a typical 
game-state diagram. 

This gives the state two options. The first is, it may wish to pause itself when another 
state is pushed on top of it. This is a simple matter of setting an m_bPaused flag when 

OnSuspend() is called and clearing it when OnResume() is cleared. A simple check in 

the update loop could then prevent code from executing when another state overrides 
this state. Alternatively, the state object may wish to continue updating in the back- 
ground, effectively allowing two states to execute in parallel. You may even wish to 
build this sort of functionality into the base class for consistent operation of all classes. 
For the sake of simplicity, we leave these options out of the base class interface (for 
this gem). 

A State-Object Management System 

You may note that we are emphasizing game states as opposed to other types of states 
that occur within a game, such as various states within a single AI entity or states of a 
UI widget. This is because an object-oriented state machine works best for more com- 
plex state systems, such as those representing the state of an entire game. The reason is 
two-fold. First, each state must be represented by an entire class; typically one derived 
from a base class (or implemented using templates) for reasons of polymorphism. 
This is a considerable amount of work to invest in a single state, and only pays off if 
the state itself is somewhat complex in nature. Second, these states must all be man- 
aged by an external system to be used effectively. Let’s examine what such a state-man- 

“es agement system would have to consist of. Listing 1.8.4 shows the interface to the 
ONTHECD StateManager class found on the accompanying CD-ROM . 
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Listing 1.8.4 Interface to the StateManager Class 

class StateManager 

{ 
public: 

StateManager() ; 

~StateManager(); 

void Init(); 

void Term(); 

// Register a state object and associate it 

// with a string identifier 
bool RegisterState(const char* szStateName, 

IBaseState* pState) ; 

// Checks if the current state will change 

// on the next update cycle 

bool IsStateChangePending() const; 

// Returns the current state 

const char* GetState() const; 
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// Get the state object based on the string ID 

IBaseState* GetStateClass(const char* szState) ; 

// Get the state object on top of the current 

// state stack 
IBaseState* GetCurrentStateClass(); 

// Returns the size of the state stack 

int GetStateStackSize() const; 

// Passing bFlush = true will override any previous 

// state changing commands that may be pending. 

// Otherwise, state commands will queue and be 

// executed in the order of the calls made. 

// Changes the current state on the next 

// update cycle. 

void ChangeState(const char* szState, 

float fDelay = 0.0f, bool bFlush = false); 

// Pushes a new state on top of the existing 

// one on the next update cycle. 

void PushState(const char* szState, 

float fDelay = 0.0f, bool bFlush = false); 

// Pops off the current state or states to reveal 

// a stored state underneath. You may not pop off 

// the last state 

void PopState(int iStatesToPop = 

float fDelay = 0.0f, bool bFlush = false); 

LIVERF OOL JOr 

LEARNING & JNFORMATION 
SERVICES 
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ON THE CD 

Section 1 General Programming 

// Pops all but the last state. 
void PopAllStates(float fDelay = 0.0f, 

bool bFlush = false); 

// 

// Updates the state machine internal mechanism. 

// This function is called once by the main update 

// loop and should not be called by anyone else. 

void Update(float dt); 

}5 

***Tnsert CD Icon Here*** 

In the interest in saving space, we're not showing the internal workings of the class 

(private data or function contents), but you can browse the source code on the 

accompanying CD-ROM in the files StateManager.h and StateManager.cpp. 
As is apparent by the interface, our state manager associates states with simple 

string identifiers. We chose string identifiers for two reasons. First, strings are handy 
when printing the state for debugging purposes. Second, there is no reason to use 
enumerated identifiers for reasons of efficiency. We assume that state switching will 
occur relatively infrequently, especially if we use this system exclusively for tracking 
game states. Additionally, the use of strings to represent states is much easier to inte- 
grate with scripting systems. 

The state manager easily and automatically handles problems such as queued 
and/or delayed states, in addition to allowing states to be pushed and popped on each 
other. This mechanism ensures a robust and uniform mechanism for handling all 
state-based transitions and situations. Additional functionality required by your game 
or engine may easily be added as needed, and other projects will be able to take advan- 
tage of these improvements if this system is utilized as a library (or engine) level com- 
ponent instead of a game-only component. 

One of the benefits of standardizing on a uniform game-state transition and def- 
inition mechanism is that various library elements can represent entire game states 
rather than simple functional components. For instance, a library widget that repre- 
sents an on-screen keyboard (a necessary component of many console games) can not 
only contain the widget element, but also the complete state code necessary to set up 
and handle all events that occur in this sort of complex screen. As games become more 
complex, developers need to think about ways of efficiently reusing larger and more 
complex components in order to reduce development time and avoid having to rein- 
vent the same technology for every new title. 

Conclusion 

The simple concept of objects as states is certainly nothing new, even when combined 
with the technique of state stacking and implementing via a centralized state-manage- 
ment system. Unfortunately, all too often in the game programming field, these types 
of fundamental building blocks are eschewed in favor of an “evolutionary” design, 
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meaning no thought is given to these systems before coding begins. This can, in the 

worse case, lead to nightmarishly twisted and complex code paths as your game 

evolves. 
In truth, the detailed inner workings of the state manager are less important than 

the concept of how to organize large-scale states in your project. Whatever methodol- 

ogy or code you decide to use for managing these sorts of state-related problems—as 

long as your systems are able to overcome fundamental problems related to program- 

ming states in large-scale, complex software systems such as games—you will have a 

much easier time avoiding buggy, unmaintainable code in the long run. 
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1.9 

CSG Construction Using 

BSP Trees 

Octavian Marius Chincisan 

mariuss@rogers.com 

Cea Solid Geometry (CSG) is a method that combines fundamental 

shapes, such as boxes, spheres, cylinders, and cones, to build more complex 

shapes, which may then be used throughout a game engine for a variety of applica- 

tions. These fundamental shapes are generally referred to as primitives, and the opera- 

tions that combine these primitives together in CSG construction are known as 

Union (+), Intersection (&), and Subtraction (_). 

In this gem, we will see that CSG and Binary Space Partitioning (BSP) algo- 

rithms are actually quite simple and rely on no more than the partitioning and split- 

ting of polygons against planes (and a little careful housekeeping). Additionally, we 

will step through the application of Boolean operations—such as those previously 

listed—between primitives, and even take the concept to the extreme to combine sets 

of complex results. 

CSG Boolean Operations 

Although classic CSG is not the subject of this gem, a brief explanation of all the fun- 

damental Boolean operations is provided here for completeness. 

The fundamental CSG operations between two solids are illustrated in Figure 1.9.1; 

where (b) is Union, (c) Intersection, and (d) and (e) Subtraction. To better illustrate the 

algorithms, the solids taken in the samples are reduced to simple 2D segments, where 

each line segment represents a face. All solid faces are facing outward; therefore, the con- 

tents of X and Y are considered solid. Exterior (outer) spaces are considered empty. 

Union 

The Union between two or more solids is realized by discarding geometry that ends 

up in solid space. In Figure 1.9.2, we have to discard faces C”C, CE, and EC’. A little 

later in this gem, all segments are referred to as faces, and all laying planes faces as 

planes. To perform a Union operation, all the faces of solid X have to be clipped by 

solid Y, and all solid Y faces clipped by solid X. The remaining geometry 
after the clip 

builds the final resulting solid is shown in Figure 1.9.3. 
103 
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RAR 
(a) XY (b) X+Y (c)X&Y (d) X-Y 

FIGURE 1.9.1 Boolean CSG operations between X and Y. 

Cc 

FIGURE 1.9.2 Clipping ABC against DEE FIGURE 1.9.3 X clipped by Y. 

We take one by one solid X faces (AB, BC, and CA) and clip them against solid Y 
planes (P1, P2, and P3) (see Figure 1.9.2). Clipping means we classify all of X’s faces 
against all of Y’s faces laying planes. The following function shows a split-face-by-plane 
function that is used in the clipping process. The function returns —1 if the face is 
completely in back of the plane, 1 if it is in front, and 0 if the plane splits the face. 
The frontFace and backFace variables carry out returned new faces. Further on, the 
clipping process drops off one of the two face fragments. 

int Face::Split(Plane& plane, Face& frontFace, 
Face& backFace) 

{ 
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Vertex vertex! = m_points.first() ; 

Vertex vertex2 = m_points.back(); 

Vloeks alse 

float fA = plane.DistTo(vertex2._xyZ); 

for_each(vertex in m_poins) 

{ 
vertex1 = *vertex; 

fB = plane.DistTo(vertex1._xyZ); 

if (fB > EPSILON) 

{ 
if(fA < -EPSILON) 

{ 
float t = -fA /(fB - fA); 

Vertex midvertex = vertex1 + 

(vertex2- 

vertex1)*t; 

frontFace << midvertex; 

backFace << midvertex; 

} 
frontFace<<vertex1 ; 

} 
else if(fB < -EPSILON) 

{ 
if (fA > EPSILON) 

Float te =e -tAe/ (iB = ofA) 

Vertex midvertex = vertex1 + 

(vertex2- 

vertex1)*t; 

frontFace<<midvertex ; 

backFace <<midvertex; 

} 
backFace <<vertex1; 

} 
else 

if 
frontFace << vertex; 

backFace << vertex1; 

} 
vertex2 = vertex; 

TA) = TBs 

} 
. 

if (m_points.size( ==frontFace.size()) 

return 1; 

else if m_points.size()==backFace.size() 

return -1; 

return 0; 

} 

During the clipping process, some of X’s faces are split in two by Y’s planes. If a face 

ends up behind one of P1, P2, or P3, it continues to be clipped until it has been 

clipped by all planes P1, P2, and P3. If that face survives, ending up being behind all 
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Y’s planes, the face is dropped. The other faces, or fragment faces, are added to the 

final resulting solid. 

We start by clipping faces AB, BC, and CA against planes P1, P2, and P3. AB is 

split by P1 in AA" and A"B. AA" is in front of P1, and therefore is no longer clipped 

forward by P2 and P3 and is added to the final brush before splitting on A' by P2. AB 
is added to the final brush result. A"B ends up behind P1, and is clipped by P2 and 
P3. Clipped by P2, A"B ends up in front (both ends are in front), and therefore face 
A"B is added to the final brush (and is no longer clipped by P3). 

Next, face BC ends up behind P1 (both segment ends are behind P1). Because 

BC is in back, we send this face on to be clipped by P2, and BC ends up in front of 

P2 so it, too, is added to the final result solid (see Figure 1.9.3). One more face to go. 

Face CA, clipped by P1, yields AC’ and C'C. AC is in front of P1, and so is added 
to the final solid (see Figure 1.9.3). C'C is clipped forward by P2; as we can see in Fig- 
ure 1.9.2, C'C is split by P2 in two faces, C'C" and C"C. C"C is the face fragment in 
front of P2 and is added to the final solid (see Figure 1.9.3). C'C", however, is clipped 
by the last Y plane, P3. C'C" is totally behind P3. Consequently, C'C" is dropped and 
not added to the final solid. 

At this point, we have solved half of the problem. The next step is to clip the Y 
faces against the X planes (see Figure 1.9.4). We take the original faces (AB, BC, and 
CA) and their laying planes and clip faces DE, DE, and FD against them. We follow 
the same algorithm as before. Any face that ends up in back is clipped (Figure 1.9.5). 
If a face is clipped by all of P1, P2, and P3, that face is not added to the final solid (see 
Figure 1.9.4). 

We start with face DE. DE is totally in back of P1 and is clipped by P2. DE is 
split by P2 in two faces. DD' is in front while D'E is in back of P2. DD’ is added to 
the final result while D'E is clipped forward. D'E ends up in back of P3, and so is not 
added to the final solid. Following the same logic with EF, EE' ends up being 
dropped, and EF is added. 

FIGURE 1.9.4 Clipping DEF by 
Pl, P2, and P3. 
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FIGURE 1.9.5 Y clipped by X. 

All the faces that have been added to the final solid realize the union between 

ABC and DEB as Figure 1.9.6 illustrates. Don’t worry about the resulting solid look- 

ing a little bit sliced. AB is in fact AA’ plus A’B (refer to Figure 1.9.7). When we ana- 

lyze the BSP approach of CSG we are going to handle the unnecessary cuts due to the 

CSG operations. 

B os . PS 

att FIGURE 1.9.6 Zhe final result FIGURE 1.9.7 Multiple CSGs. 

of the Union operation. 

Don’t be surprised, but at this point we have already managed to cover 90% of 

classic CSG construction. Intersection and Subtraction are no more than variations of 

Union. 
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Intersection 

Intersection (Figure 1.9.1(c)) is performed by inverting the both solids, performing a 
Union on them, and inverting them back to achieve the final result. Inverting solids 

means reversing all faces’ planes (plane normal and plane constant). By inverting the 
solids, they become empty and their surroundings become solid. Classic Union will 
eliminate any geometry ending up in solid AB, BC, AC’, and CC" (see Figure 1.9.2) 
and DD", EE’, and DF (see Figure 1.9.4). 

Subtraction 

Subtraction (Figure 1.9.1(d) and 1.9.1(e)) is performed as follows: we subtract B from 
A by inverting A, performing classic Union with B, and then reverting to get the final 
result. On the other hand, if we want to subtract A from B, we invert B, union reverse 
B with A, then revert back for the final result. The following table shows the mapping 
of operations to their symbolic equivalents: 

Operation Symbol 
Union + 

Intersection & 

Subtraction re 

Reversed solid ! 

Using these operators, Intersection and Subtraction may be defined as follows: 

A & B =!(!A+!B) 
A-B=\(!A + B) 

and 

BA =\(As!B) 

Why BSP? 
A oncSAT ANRC 

BSP comes into the picture when one of the solids participating in the Boolean CSG 
operation is no longer convex. In Figure 1.9.7, we may want to subtract C from A. As 
we can see in the illustration, A is no longer a convex solid. If a solid has at least one 
of its faces’ planes splitting itself, it is called concave. In Figure 1.9.7, the P2 and P1 
planes are splitting A itself, therefore A is concave. Let’s see how the classic CSG we 
covered in the earlier section fails to union A with C. We can assume we have already 
clipped all A faces and are now working on B faces. We clip face EF against P2, P3, 
P4, and P5 planes. Right away we can determine that EF’ will be dropped because it is inside A. FE is behind P3 and is therefore clipped forward, ending up being behind 
P4, behind P2, but on front of PI. Being in front of at least one of P2, P3, P4, and P5, EE is added to the final solid. Allowing EE' to be part of the final result is wrong, 
however, because it is inside A. What do we do? 
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The solution is to split the concave solid into small convex regions and perform 

CSG operations between these regions. It is widely known that a BSP leafy tree solves 

this problem. Leafy BSP, or Beam Tiree, helps us to partition any solid into small, con- 

vex regions. 

The BSP 

All you need for a good BSP is a good splitting polygon function and good house- 

keeping. For housekeeping, we threw in a node structure that caries a splitting plane 

and two references to front and back nodes, and a leaf structure that caries the BSP 

polygons. See Figure 1.9.8. 

Front List 

E 
Back List 

G 

FIGURE 1.9.8 Splitting A by plane P2. 

Gera The implementation provided on the accompanying CD-ROM has the full Leafy 

ont#ecD ~~ BSP implementation. Here we will summarize the basic steps for building a BSP out 

of solid A, as illustrated in Figure 1.9.8. 

1. We pick a random face to be root splitter. Let’s say EF laying on P2. 

2. We flag the face that its laying plane has chosen as being the splitter. 
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. We split the solid by this splitter plane. 

. All faces or fragment faces ending up in front of the splitter are added on 
the front list. If a face is coplanar with the splitting plane, that face is parti- 
tioned by the plane’s orientation as follows: if the normal of the face has the 
same orientation as the splitting plane, it is added to the front, otherwise, on 
the back. 

. All faces, or fragment faces, ending up in back are added to the back list. 

. We reference the front and back lists to the original splitter as front and back 
nodes. 

. We repeat the process for back and front lists starting at Step 1 but we always 
choose a nonflagged face for the next splitter as follows: 
¢ For the front list, we stop the recursive process when all polygons have 

been used as splitters or when front polygon’s size is 1, and we create a ter- 
minal leaf node where we add all polygons from the front list. 

* On the back list, we continue the recursive process until no polygons are 
left in the list. At this stage, we create a terminal leaf node and flag it 

solid. 

The BSP built by this algorithm has internal nodes with only splitter planes and point- 
ers to front and back nodes. Figure 1.9.9 shows the final BSP tree for the solid A. 

Root 

P2 

nS: fur 
5 EF 

Hie of Cre 
solid AE 

solid BD 

FIGURE 1.9.9 Final BSP for solid A. 
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Cute ee coeMer 
Finally, we have the elements necessary to complete our CSG algorithm. Using the 

BSP, we no longer clip solid polygons against other solid polygons. Instead, we clip 

the polygons against the other solid BSP and vice versa. The CSG pipeline between X 

and Y looks like this: 

1. Make X BSP. 
2. Clip Y against X BSP and retain appropriate polygons. 

3. Make Y BSP. 
4. Clip X against Y BSP and retain appropriate polygons. 

Clipping a solid with a BSP tree consists of partitioning all solid polygons with all 

partition nodes (the BSP tree's splitting planes). The clipping process starts at the root 

and continues down to the leaves. The following sample exemplifies the recursive 

process: 

void Bsp::Recurs Clip(int node, 
list<Polygon>& polys2Clip, 

list<Polygon>& finalList) 

BspNode node = GetNode(node) ; 

if (node->IsLeaf () ) 

{ 
if (node->IsSolid() ) 

{ 
if (m_csgUnion) 

{ 

} 
finalList << polys2Clip; 

return; 

} 
else 

{ 
if (!m_csgUnion) 

{ 

} 
finalList << polys2Clip; 

return; 

} 
return; 

} 

for_each(pSpPoly in polys2Clip) 

{ 
Where_Is rp1 = pSpPoly.Classify ( 

node->GetPlane()); 

switch (rp1) 

{ 
case ON PLANE: 

if (SameFacing(pSpPoly,node.GetPlane())) 
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{ 
backPolys.push_back(pSpPoly) ; 

} 
else 

{ 
if (m_csgUnion == FALSE) 

frontPolys.push_back(pSpPoly) ; 

else 

backPolys.push_back(pSpPoly) ; 

} 
break; 

case ON FRONT: 

frontPolys.push_back(pSpPoly) ; 

break; 

case ON BACK: 

backPolys.push_back(pSpPoly) ; 

break; 

case ON_SPLIT: 

{ 
Polygon fp, bp; 

pSpPoly.Split(node->GetPlane() ,fp,bp) ; 

frontPolys.push_back(fp); 

backPolys.push_back (bp) ; 

} 
break; 

} 
} 
if (backPolys.size()) 

Recurs_Clip(node->BackNodeIndex(), 

backPolys, finalList) ; 
if (frontPolys.size()) 

Recurs_Clip(node->FrontNodeIndex(), 

frontPolys, finalList) ; 

} 

The polygons are partitioned into front and back lists at the root node. If we particu- 
larize our explanation, we end up dropping polygons DE, ER, and FD (see Figure 
1.9.7) from the BSP root node (see Figure 1.9.9), All the polygons that make up C are 
clipped by the root node. Some of them end up being split, some not. All polygons 
ending up in front are added to a front list, all those ending up in back, to a back list. 
For the standard algorithm, all coplanar polygons with the splitting node planes are 
pushed onto the back list. There may be variations of how we process these, which 
depends on the current CSG operation. You can see this algorithm at work in the 
accompanying source to this gem. The front and back lists are forward clipped by P3 
and P1, respectively. The process is repeated until the remaining polygons have 
reached the leaf level. When a list reaches the leaf depth, we decide which polygons we 
drop and which we retain to build the final CSG solid. If we refer back to Figure 
1.9.1, here are the particular conditions for all enumerated CSG operations: 
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CSG Operation Description 
Union Drop all lists that end with a solid leaf 

Subtraction Apply the formula !(!A + B) or !(!BA + AB), or slightly 
change the clipping algorithm without reversing front 
and back too many times (see the example source) 

Intersection Apply !(!A + !B), or simply drop all lists ending with an 

empty leaf 

Conclusion i. 

The CSG algorithm exposed in this gem covers two solids at a time, but it can be 

recursively adapted to perform complex CSG Boolean operations between multiple 

solids, as the accompanying example implementation demonstrates. The performance 

of the algorithm can be improved by eliminating unnecessarily splits, i.e., building the 

BSP tree out of polygons that are coming into contact with the other solid. This 

requires maintaining a bounding box for each face and testing the faces prior to CSG 

construction against the other solid’s bounding box. The polygons untouched by the 

other solid’s bounding box are simply copied into the final result. A second approach 

for reducing the splits is to track how many times a polygon has been split along with 

a reference of the polygon in each of its fragments. Finally, if all fragments having the 

same original polygon as a reference have survived safely, we replace the fragments 

with the original polygon. Now, go fire up the sample code, and enjoy the beauty of 

CSG! 

Reference 

[Rottensteiner] Rottensteiner, Franz. “Constructive Solid Geometry.” Available 

online at http://www. ipf- tuwien.ac.at/frlbuildings/diss/node38. html. 
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Building Lua into Games 
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Corporation 

matt@ev-interactive.com 

I: the past decade, computer and console games have become less hardcoded and 

more data driven. The benefits have been numerous, from easier development to a 

whole subculture of user-extended products. In fact, when examined from a technical 

standpoint, many games now resemble a virtual machine or operating system more 

than a single special-purpose application. 

The most powerful constituent of the movement toward data-driven design is 

undoubtedly the use of embedded languages. Simple data-driven design focuses on 

the externalization of hard game data: maps data, entity parameters, if/then triggers, 

and other arguments to the game engine. By using an embedded, or “scripting,” lan- 

guage, games can also externalize logic. This has opened entire new worlds of end-user 

customization as well as produced sweeping changes in the way games, and game 

systems, are developed. 

Unfortunately, creating an embedded language from scratch can be a significant 

undertaking. Even with a wide variety of tools available to assist in this endeavor, end- 

ing up with a complete, robust, and flexible system can consume many man-hours. 

Luckily, today there are several ready-made solutions that can be quickly integrated 

into a project. Languages such as Python, Ruby, and Lua are proven, reliable, and in 

heavy use. Other solutions exist, and some are even tailored specifically toward games, 

but those do not yet share the popularity of these general purpose languages. 

This gem is designed to show how quickly and easily an existing embedded lan- 

guage can be added to a game system. The language of choice for this gem is a pack- 

age that is being rapidly embraced by the game development community: Lua. 

An Overview of Lua TAS aS Wear neal 

Lua is a simple yet robust language with many features that make it attractive to game 

developers. It is already being used in many professional games, and many more are 

integrating it. By paying a visit to the Lua “uses” site (www.lua.org/uses. html), you can 

immediately see how the language has made inroads into the game industry. It’s quite 

possible that game developers will look back at the 2000s as the “decade of Lua.” 

115 
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ON THE CD 

Section 1 General Programming 

The following are some features that make Lua particularly suited to game 
development: 

¢ Lua is lightweight. A full Win32 library includes only a couple hundred KB of 
code. In fact, the entire demo executable on the CD-ROM is only 145 KB! 

¢ Lua can run text scripts, or pretranslated byte-code files. Developers can expose 
some scripts, hide others, and even omit Lua’s lexer, parser, and code generator. 

By doing this, some have reduced Lua’s footprint to under 25 KB! 
¢ Lua is a complete and surprisingly powerful programming language. 
¢ Lua is suitable for “semiprogrammers.” It is dynamically typed and includes auto- 

matic memory management and garbage collection. 
¢ Lua is proven and reliable, with a very active user community. 

¢ And, most of all, Lua is easy to embed and interface with C. 

A Quick Program 

The structure of a Lua program is quite straightforward. While a complete descrip- 
tion of the language is beyond the scope of this gem, it is safe to say that most C pro- 
grammers will quickly pick up the basics of Lua. Following is a snippet of Lua code to 
help familiarize ourselves: 

— define a function (“—” signals a comment) 

function EruptSequence() 

Camera.SetMode(CAMMODE_ORBIT) ; 

Camera.SetOrbitRate(PIOVERZ2) ; 

ent = Entity.Find(“Volcano”) ; 

Camera.SetTargetEntity (ent) ; 

end 

— Run the erupt sequence every 20 minutes 
while (1) do 

Script.WaitSeconds(20 * 60); 
EruptSequence() ; 

end 

This code shows some simple Lua syntax. The bulk of the code actually involves call- 
ing functions from our game engine that we have registered with Lua. 

Dynamic Typing 

Lua is a dynamically typed language. You do not declare variables or even define their 
types; you simply start using them. For example, in Lua it is perfectly valid to say: 

b = 24.5; 
b = “Wait! Now b is a string. How wild!”; 
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Automatic Memory Management 

Lua manages memory automatically. When a value is no longer referenced, it is made 

available for garbage collection. Thus, there is no need to specifically free any mem- 

ory. Keep in mind, though, that holding references to unneeded objects will prevent 

them from being cleaned up. 

The Lua State 

There are a few Lua terms that warrant quick definitions, and the first is the Lua state. 

Essentially, a Lua state is a single operating environment for the Lua interpreter 

including the stack, execution state, global variables, and so forth. The Lua state is the 

object with which we interface when embedding the language into a game. Most 

architectures will need only one Lua state. 

Lua Chunks 

A chunk is a sequence of statements that are translated, and optionally executed, by 

Lua. Chunks can be thought of as programs, or fragments of programs, that are 

loaded into the Lua environment and made available for use. Chunks usually come 

from files in the form of scripts but can also come from static text strings within 

another chunk, or even directly from a command console. In the latter case, a chunk 

can be a single statement typed in by the user. 

Interfacing Lua with C 

From a game programmer’s point of view, one of the most attractive aspects of Lua 

is how simply it interfaces with C. Before examining how to actually embed Lua 

and feed it with scripts, we will explore how to make C functions available to the 

interpreter. 

Communication between the two languages is provided via a stack, which serves 

both as an insulation layer as well as a translation mechanism. Because Lua is dynam- 

ically typed, a single stack entry can represent data of any Lua type, so translation rou- 

tines are provided to get the data into a format usable by C. 

Calling C Code from Lua 

The first task most programmers want to accomplish is to expose some functionality 

of their game engine to Lua and make it available for script-based control. This is 

done by registering simple “glue” routines with Lua. Say we want a Lua script to be 

able to control where our in-game camera is looking. We want the Lua script to look 

something like this: | 

— Point the camera at the volcano 

Camera.SetTargetPos(100.0, 40.0), 280/10) 5 
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We first write a C-language “glue” routine to get the parameters from the Lua-script to 
the C side, and then call our engine’s camera function with those values. Glue rou- 

tines take this form: 

static int LuaSetTargetPos(lua_ State* luaState) 

{ 
TUOG GX 

Toate SVG 

LOA te Zs 

x = (float)lua_tonumber(luaState, 1); 

y = (float)lua_tonumber(luaState, 2); 

z = (float)lua_tonumber(luaState, 3); 

CameraSetTargetPos(x, y, Z); 

return(0O); 

[ 

When Lua calls a C function, it pushes the arguments found in the script, in order, 
onto the communication stack. It then calls the registered glue routine for the 
given function, passing it a pointer to the 1ua_state in which the script is running. 
Remember, the Lua state is simply an object that represents the entire state of the Lua 
interpreter, including all data, the communication stack, and any functions you have 
registered with Lua. 

The sample glue routine then attempts to pull three values from the communica- 
tion stack, namely the camera’s coordinates (x, ys 2). Values are read from the stack 
using the lua_toxxx() calls, which convert the Lua values at the given stack offset to 
C types as requested. Note that we can arbitrarily address any stack position, and our 
first parameter starts at index 1, not 0. Next, we call our engine’s camera code to make 
it all happen. Finally, the routine returns 0, which signifies that we have not pushed 
anything back on the communication stack as a return value to our Lua script. 

Because Lua is dynamically typed, we must somehow know the types of parame- 
ters we are expecting and convert them appropriately. In the previous example, we 
need three floating-point values to represent the camera’s position. Lua represents all 
numeric quantities as doubles, so while 1ua_tonumber() will convert the dynamic Lua 
value to a double, we still need to cast it down to a float. Lua includes many facilities 
for manipulating the communication stack, including the ability to check if a stack 
entry is of a given type. This allows the glue routine to present detailed errors to the 
user when incorrect or insufficient parameters are found. 

Returning Values Back to Lua 

Now suppose we need to let our Lua script query the player’s current score. In Lua, we 
may want to do something like this: 

— End the level after the player has scored 9 points 
if Game .GetPlayerScore() > 9 then 

TriggerEndOfLevel(); 
end; 
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Returning the player’s score to the Lua script is accomplished by creating a glue rou- 
tine that pushes a number value onto the communication stack as in: 

static int LuaGetPlayerScore(lua_State* luaState) 

{ 
lua_pushnumber(luaState, game->playerScore) ; 

return(1); 

} 

In this case, our glue routine takes no parameters from the communication stack but 

does push one value onto the stack and alerts Lua by returning 1. In fact, Lua func- 

tions can have multiple return values, and it is perfectly legal for a C glue routine to 

return multiple values on the communication stack. 

Registering the Glue Routines 

Now that we know how to create glue routines, we need to register them with Lua to 

make them available to our scripts. The easiest way to register a set of functions is to 

use Lua’s library management calls. These calls are provided to simplify the process of 

registering a group of related functions with the language. 

First, we create a null-terminated array of function pointers and the symbolic 

names by which Lua scripts will recognize them. 

// camera library glue routines and function names 

static const luaL_reg cameraLib[] = 

{ : 
{“SetMode”, LuaSetMode }, 

{“GetMode”, LuaGetMode }, 

{“SetTargetPos”, LuaSetTargetPos }, 

{“SetTargetEnt”, LuaSetTargetEnt }, 

{“SetOrbitRadius”, LuaSetOrbitRadius}, 

{“SetOrbitRate”, LuaSetOrbitRate }, 

{“SetFov”, LuaSetFov }, 

{“SetWobble”, LuaSetWobble ie 

{“SetZoomPos” , LuaSetZoomPos Ps 

{“SetPivot”, LuaSetPivot }; 

{“EnableShake” , LuaEnableShake Vee 

{NULL, NULL } 

}5 

Next, we call a handy Lua utility function that registers each function in the array 

with Lua. 

luaL_openlib(luaState, “Camera”, cameraLib, 0); 

The first parameter is the Lua state with which we are working. The second parameter 

is the name we are giving to this library, and the third parameter is our array of func- 

tion pointers and names. After this call, our functions will be available to Lua scripts, 

and their names will be prefixed with the library name. Thus, the C glue routine 

LuaSetOrbitRate() can now be called from a Lua script as Camera. SetOrbitRate(). 



120 Section 1 General Programming 

That's all there is to it. With just a handful of code, functionality of a game’s 
engine can be quickly and easily exposed to Lua. There are many more sophisticated 
ways to link Lua and C, but they are beyond the scope of this introductory overview. 
Lua is not limited to integration with C either. Tools such as Luabind can also be used 
to help create relationships between Lua and C++ classes. 

Now that we understand how to create a linkage between a game engine and Lua, we 
explore how Lua is embedded into a game. 

Creating and Destroying States 

To use Lua in a game, we must first create a Lua state and then load and execute 
chunks of Lua code. A Lua state is created as follows: 

lua_State* luaState = lua_open(); 

When we are ready to shut down our game, we close the state: 

lua_close(luaState) 

This frees up all memory used by the interpreter and triggers any remaining garbage 
collection on code that has been loaded into the state. 

Loading and Executing Code 

Once Lua is initialized and we have registered our new functions as shown previously, 
it is time to start loading and executing Lua code. Lua provides support for feeding 
the interpreter with data from any arbitrary source. For this example, we will use some 
of Lua’s helper routines that take input from files and strings. Executing a script from 
disk can be done with: 

lua_dofile(luaState, “LuaScriptFile.1lua”) ; 

This will compile and execute the script, if any execution point exists. If a file consists 
of nothing but function definitions, all the functions will be defined and added to the 
Lua state, but no actual code will be executed. 

Likewise, the Lua code in a text string can be executed with: 

lua_dostring(luaState, ~8=14% b=73") 5 

As you can now surmise, creating an interactive command console with Lua requires 
only a few simple lines of code. 

A very interesting feature of Lua’s script loading is that any of these routines can take either text scripts or pretranslated binary Lua code. The Lua distribution ships with a pretranslator called luac that can compile scripts into a binary form. When this 
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is done, applications can choose to omit the lexer and parser components of Lua, 

making the code overhead even smaller. This also gives developers the option of leav- 

ing some scripts available for modification in their original text form but others com- 

piled, and thus hidden from prying eyes. 
Code can also be loaded and translated without executing it, as follows: 

luaL_loadfile(luaState, “LuaScriptFile.lua”); 

Calling Lua Functions from C 

As shown earlier, it is often useful to load a script into Lua but not actually execute 

any code until a later time. A good example of this is the scripting of logic for game 

entities. Each class of entity may load a Lua script on startup that defines its in-game 

behavior. There may be separate Lua routines for setup, movement, and rendering. A 

simple entity’s Lua code may look like this: 

— functions for fictional “walker” entity 

function WalkerSetup (walker) 

— our poor walker only lives for 1 minute 

timer = 60.0; 

end; 

function WalkerMove(walker, elapsedSec) 

timer = timer — elapsedSec; 

if (timer > 0.0) then 

Walker.DoAI(walker, elapsedSec) ; 

Walker.UpdateControls (walker) ; 

Walker.DoPhysics(walker, elapsedSec) ; 

Walker .UpdateAccelAndPos (walker, elapsedSec) ; 

end; 

else 
Walker .Destroy (walker) ; 

end; 

end; 

function WalkerRender (walker) 

visible = Walker.GetVisibility (walker) 

if (visible == 1) then 

matrix = Walker.GetMatrix(walker) ; 

Game .SetModelMatrix (matrix) ; 

Game .RenderModel (Walker .GetModel (walker) ) ; 

end; 

end; 

When the entity class is initialized, it can use luaL_loadfile() to read and compile 

the script. Then, the entity’s C code can call the Lua script routines as needed during 

the game loop. Calling a specific Lua function from C involves pushing the function
, 

as well as all parameters, onto the communication stack and then calling lua_call1(). 

An example of calling the walker’s Move() routine is as follows: 
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— call this entity’s Move script 

lua_getglobal(luaState, “WalkerMove”) ; 

lua_pushlightuserdata(luaState, this); 

lua_pushnumber(luaState, elapsedSec) ; 

lua_call(luaState, 2, 0); 

The first call pushes onto the stack a global value whose name is “WalkerMove”. That 
value happens to be a function in the script we loaded when the walker class was 
initialized. 

The next call pushes our C++ entity’s this pointer onto the communication stack 
for use by Lua. Really, Lua isn’t going to use this value since it doesn’t understand our 
C++ object at all. Instead, it will just pass this value right back to the C glue functions 
so they know which object pointer to use. To push our this pointer, we made a call to 
lua_pushlightuserdata(). “Light user data” is a special Lua data type that can be 
used when C code needs to give Lua data that it does not inherently understand. Most 
of the time, as in this example, light user data is used to hold pointers to C/C++ 
objects and structures. 

Next, we simply call 1ua_pushnumber() to push the elapsed seconds since the last 
frame. Now that the function and all the parameters are correctly on the stack, we can 
execute the Lua code by calling 

lua_call(luaState, 2, 0); 

The second parameter (2) tells Lua how many arguments have been pushed on the 
stack, and the third parameter (0) tells how many return values we expect back. Lua 
will execute the entire function and, upon returning, the communication stack will 
contain any return values we expected. 

Now we can call C functions from Lua and Lua functions from C. We're well on 
our way to making our game Lua enabled . . . or are we? 

Real-Time Considerations 

Notice that when we load and execute a chunk with lua_dofile(), or we call a func- 
tion in a Lua script with 1ua_cal1(), the call does not return until the requested Lua 
script is done processing. This may be fine for some applications and architectures, 
but in many games this will not suffice. We need to be able to schedule events over 
time. 

A Time Based Example 

Say, for example, we want to use Lua to script the movement of a camera when a vol- 
cano erupts. We could call a Movecamera() function in our Lua script every frame, and 
that Lua function would internally update timers and call out to different subfunc- 
tions as the timers trigger new camera states, This is messy, however, and we prefer a 
simple linear script that looks something like this: 
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— script to trigger volcano eruption 

— every 20 minutes throughout the entire game 

function EruptSequence() 

— start shaking the camera gently for 10 seconds 

Camera.SetShakeMag (0.002) ; 

Script .WaitSeconds (10) ; 

— suspend player control 

Game.SuspendPlayer() ; 

— set the camera to slowly orbit the volcano 

entTarget = Entity.FindByName(“Volcano”) ; 

Camera.SetMode(CMX_ORBIT) ; 

Camera.SetTargetEnt(entTarget) ; 

Camera.SetOrbitRadius (500.0) ; 

Camera.SetOrbitRate (0.003) ; 

— and jack up the shaking! 

Camera.SetShakeMag(0.01) ; 

Script .WaitSeconds(5) ; 

— ok, after 5 seconds ease up on the shake 

Camera.SetBankShakeMag (0.002) ; 

— and put the camera back in the player’s eyes 

entPlayer = Entity .FindByName(“Player”) ; 

Camera.SetTargetEnt(entPlayer) ; 

Camera.SetMode (CMX_FIRSTPERSON) ; 

Game.ResumePlayer(); 

Script .WaitSeconds(10) ; 

— after 10 seconds, turn shake off all together 

Camera.SetShakeMag(0.0) ; 

end 

— This is the first executable code in the script; 

— an implied main(), if you will 

— Run the erupt sequence every 20 minutes 

while (1) do 

Script .WaitSeconds(20 * 60) ; 

EruptSequence(); 

end 

This code first defines a function that handles our camera sequence. Then, the script 

calls that function repeatedly every 20 minutes. We schedule the various events using 

a new routine we registered called Script .WaitSeconds(), which simply delays for the 

given time. 

This works great in theory, but if executing Lua code doesn’t return until the code 

is complete, how can we ever expect to run our actual game loop? The answer lies in 

our implementation of the Script .WaitSeconds() function, and a Lua feature called 

coroutines. 
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Coroutine Support 

Simply put, Lua’s coroutine support provides a way for a Lua script to halt execution 
mid-stream and yield control back to the C program that called it. This is a form of 
cooperative multitasking, where it is up to the code itself, not the operating system, to 

suspend execution and transfer control back to the caller. This is known as yielding and 
can be done from either a Lua script, via yield, or from the C API via lua_yield(). 

As you can imagine, our C implementation of Script .WaitSeconds() includes a 

call to lua_yield(), which returns control back to the game so we can render frames 

while the script is suspended. When our script management system has determined 
that enough time has passed, we call 1ua_resume() to continue processing where that 
script left off. To a game developer, coroutine support is one of the more attractive 
and important features of the Lua package. 

Multiple Scripts 

While it may be possible to get good results from using a single Lua script, it is far 
more practical to have many scripts running concurrently, waking up to perform 
actions as needed, or being called directly from C code on demand. Lua supports the 
concurrent execution of multiple scripts through a threading system. 

Unfortunately, Lua’s use of the term “thread” is somewhat confusing to beginners: 
that particular term carries with it an implication of preemptive multitasking, which 
is not the case in Lua. A Lua thread can be thought of as a child state of the main 
lua_State and can run its own script. A new state, or thread, is created with: 

lua_State* newState = lua_newthread(mainLuaState) ; 

Each new state shares all the global function and variables of the original lua_State 
but gets its own stack and execution state. Also, each new state can be independently 
yielded, allowing the system to manage many scripts, all potentially yielding for dif- 
ferent reasons. 

Thus, a common architecture for embedding Lua into games is to develop a 
script manager that creates a new child state for every script the system is running. 
The manager tracks why each script is yielded and resumes it as needed. 

A Script Management Framework 

Using what we know about states and coroutines, we can construct a basic script- Management system to handle the details of creating and running multiple Lua scripts. The manager’s most important job is to encapsulate the work of tracking and waking up any scripts that have yielded. We will allow scripts to yield for a given dura- tion, for a number of frames, or until a given time. Additional conditions can be 
added easily. 
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This sample framework is implemented via two classes: a LUAMANAGER and a 

LUASCRIPT. While some details have been omitted from the text for brevity, a com- 

plete and functional skeleton is available on the CD-ROM. 

The Manager Class 

The manager initializes Lua by calling 1ua_open() to create a lua_State. It maintains 

a linked list of running LUASCRIPT objects by providing a CreateScript() facility as 

the only way script objects can be created. The manager also includes an Update () 

function, which is called once every time through the game loop and calls down to 

each script object’s respective Update(). This is where yielded scripts are checked for 

resumption. 

A simplified skeleton for the manager object looks like this: 

class LUAMANAGER 

{ 
public: 

LUAMANAGER (void) ; 
~LUAMANAGER (void) ; 

LUASCRIPT* CreateScript (void) ; 

void DestroyScript (LUASCRIPT* s); 

void Update (float elapsedSec) ; 

private: 

lua_State* masterState; 

LUASCRIPT* head; 

}5 

The manager also registers a library of common script-management glue routines 

with the Lua interpreter, including those that allow a script to yield based on time or 

elapsed frames. From Lua, these routines look as follows: 

Script .WaitSec (seconds) ; 

Script .WaitFrame(frames) ; 

Script .WaitTime (timestamp) ; 

These routines are described in more detail in the following section. 

The Script Object 

A script object represents a single child 1lua_State derived from the masterState cre- 

ated by the manager. Each script object can run a Lua program as a (Lua) thread, 

yielding and resuming as needed. The script object maintains some additional data 

that lets us know why a script has yielded and when to reactivate it. The following 

code shows a simple skeleton of a LUASCRIPT object: 
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typedef enum 

YM_NONE, // not yielded 

YM_FRAME , // waiting for x frames to elapse 

YM_TIME, // waiting for x seconds to elapse 

} YIELDMODE; 

class LUASCRIPT 

{ 
public: 

void RunFile (char* fileName) ; 

int RunString (char* buffer) ; 

LUASCRIPT* Update (UDWORD elapsedSec) ; 

private: 

lua_State* childState; 

LUAMANAGER* manager; 

LUASCRIPT* next; 

YIELDMODE yieldMode; 

int waitFrame; 

float waitTime; 

LUASCRIPT (void); 

~LUASCRIPT (void); 

}5 

The LUASCRIPT script class gives us mechanisms to actually execute Lua code. RunFile() 
and RunString() feed the Lua interpreter from the given source. The script will execute 
until it is finished, or it yields. 

As expected, the class creates and maintains a pointer to the new lua_State that 
it manages. However, as we will soon see, it is also important for Lua to know which 
C object owns a particular lua_state. To do this, we will store some data in a Lua 
construct called a table. A full explanation of tables is a bit beyond the scope of this 
gem, but think of them as arrays that can be indexed with any value. 

To associate the address of our LUASCRIPT object with the lua State that it 
created, we add an entry to a global table in the masterstate. We use the lua State 
pointer itself as the index, because we know it will be unique. We can then later 
retrieve the LUASCRIPT object pointer by using the address of the lua State that is 
passed into our glue routines. This can be done when the child state is created: 

// create a new state (thread) from the master 
childState = lua_newthread(mgr->masterState) ; 

// save a pointer to this script object in the global 
// table using the new state’s pointer as a key 
lua_pushlightuserdata(mgr->masterState, childState) 
lua_pushlightuserdata(mgr->masterState, this ); 
lua_settable(mgr->masterState, LUA_GLOBALSINDEX ); 

. 
BI 
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This sounds complex, but it is very much like storing the address of a window han- 

dling object in the GWL_USERDATA of a dialog box. This way, when a glue routine is 
called, it can determine the LUASCRIPT object that issued the call. 

Yielding Routines 

One of the keys to the script-management system is allowing Lua threads to yield for 
different reasons and resume when needed. To do this, we implement a few new func- 

tions and register them with Lua. For example, wed certainly like to yield a script for 

a given amount of time with a call such as: 

Script .WaitSeconds(seconds) ; 

Following is the glue routine that implements this call: 

static int LuaWaitSeconds(lua_State* 1) 

LUASCRIPT* 5; 

// get a pointer to the C++ object associated 

// with this script 

lua_pushlightuserdata(1, 1); 

lua_gettable(1, LUA_GLOBALSINDEX) ; 

s = (LUASCRIPT*)lua_touserdata(1l, -1); 

// save our sleep time and wait state 

s->waitTime = lua_tonumber(1); 

s->state YM_TIME; 

// tell Lua to return, yielding this thread 

return(lua_yield(1, 0)); 

} 

When the glue routine is called from a Lua script, we don't know which C++ 

LUASCRIPT object is managing it. So, we must first retrieve a pointer to our object 

from the global Lua table where we previously stored it. Then, the number of seconds 

to yield are retrieved from the stack and saved. We also tell the object what type of 

wait we are performing. Finally, we call lua_yield() to suspend the script and return 

to'C, 

Now, it is simply a matter of checking the timer during the scripts Update() rou- 

tine. If enough time has elapsed, the script is resumed by calling lua_resume(). 

By following this model, scripts can be made to resume based on time, elapsed 

frames, or even when a flag is raised. With some clever management, actions per- 

formed by one script can even trigger the resumption of other scripts. A complete 

working example of this simple manager can be found on the CD-ROM. 
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Conclusion 

This gem has shown that with very little work, developers can quickly embed the Lua 
language into their game. With a little more management, a game can easily take 
advantage of many of Lua’s useful features, including running multiple scripts, yield- 
ing script execution, and resuming it again as needed. 

To get a script up and running quickly, this article has glossed over many details 
of Lua that should be explored by any developer seriously considering embedding the 
language into their game. In particular, the concept of Lua tables and a more in-depth 

understanding of the communication stack are valuable to understand more com- 
pletely. A visit to www.lua.org is the best starting place for anyone working with the 
language. r 

Lua has found its way into quite a few games to date, and readers are encouraged 
to give the language a try. If you are contemplating embedding a language into your 
game but have not yet begun the task, take a few hours and integrate Lua. They may 
be some of the most rewarding hours you spend on your project. You may even find 
yourself looking at your game code with a whole new perspective, thinking over and 
over: “How can I give more control of my game to Lua?” 
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Gr. are expected to be more and more dynamic every day, and our strategies for 

dealing with memory must keep up with that demand. Unfortunately, dynamic- 

memory allocation has downsides that limit our ability to treat memory as a truly 

dynamic resource. In Game Programming Gems 4, we were introduced to the concept 

of the freelist [Glinker04], a special-purpose allocator that solves the problems of 

dynamic-memory allocation by restricting itself to allocating objects of a single type. 

In fact, freelists are such a powerful tool for improving allocation performance in 

games that they are appropriate to use in almost every project. Yet even with such a 

basic concept, design and implementation are filled with questions that have no clear 

answer. Should the list be allowed to grow? How should the chunks of memory be 

allocated? How should chunks and free blocks be tracked internally? Should objects 

be constructed and destroyed only once or with every allocation? Should chunks that 

are completely unused be returned to the memory manager? To accommodate differ- 

ent requirements, some projects end up with multiple freelist implementations. Other 

freelists wind up with complicated interfaces in an effort to achieve flexibility, making 

them harder for clients to understand and use. 

Policy-based design allows the users of a library to provide the answers to such 

design questions, yielding classes that are flexible and highly reusable without sacrific- 

ing speed or introducing interface complexity. In this gem, a policy-based freelist is 

presented that can easily be configured with different behaviors suitable for different 

requirements and allocation patterns. In addition, we develop a default parameteriza- 

tion that improves upon the implementation in [Glinker04] by closely mimicking the 

behavior of operators new and delete, removing the need for applications to initialize 

nontrivial classes and reducing the per-allocation overhead to zero. 

UY 
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A thorough discussion of the issues associated with dynamic memory management in 

games appears in the prequel to this gem [Glinker04]. Besides being slow, we are 
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shown that allocation and release of memory from a general-purpose memory man- 

ager can cause poor locality of reference and—even worse—memory fragmentation. 
Additionally, most memory managers add some invisible bookkeeping overhead to 
each allocation. It may not sound like much, but even just 16 bytes of overhead per 
allocation can quickly add up to a megabyte or more of wasted memory with even a 
modest number of allocations. 

A solution to these problems is then provided in the form of a freelist: a class 
made suitable for runtime allocations by restricting itself to allocating and freeing 
objects of a single type and, hence, size. You might question the usefulness of a mem- 
ory allocator that is only capable of allocating objects of a single type, but it turns out 
there are many situations in a typical game where freelist allocation might be appro- 
priate. Objects allocated by inherently dynamic effects like particles and decals are 
perfect candidates for freelist allocation. Freelists can provide a natural mechanism for 
recycling objects like vehicles and pedestrians in a sprawling world where it is imprac- 
tical to allocate every instance of these objects up front. Nodes in common data struc- 
tures such as linked lists and trees can also effectively use a freelist allocation strategy. 
In fact, the default allocator of the popular standard template library (STL) imple- 
mentation STZPort [STLPort04] is a custom freelist allocator. Many modern design 

patterns result in a large number of small classes working together to accomplish a 
complex task. For example, applying the strategy, state, or decorator pattern [GoF95] 
sometimes results in many small objects being allocated that may be best managed by 
a freelist. In short, any type that needs to be allocated and freed frequently at runtime, 
and whose memory can be recycled many times, may benefit from allocation out of a 
specialized freelist. 

While providing a freelist implementation, the previous gem rigidly hardcoded a 
series of design decisions resulting in a relatively inflexible library. For example, it has 
an immutable capacity and uses an additional list to track free memory blocks. 
Another example is the decision to store fully allocated objects in the list, avoiding 
calls to constructors and destructors on each allocation. This may lead to increased 
performance but at the expense of less-intuitive allocation behavior that requires the 
application to perform per-allocation initialization and cleanup. For many situations, 
these choices are entirely appropriate, and the freelist previously presented may be 
used as is. Unfortunately, the tradeoffs in that specific implementation ultimately 
limit its applicability across a wide range of requirements and allocation patterns. 
Some situations may call for a freelist that can grow and/or shrink its capacity, other 
situations may benefit from behavior that closely mimics operators new and delete, 
and still others may not be able to afford the additional memory overhead imposed by 
a separate list for tracking free blocks. 

Instead of forcing a particular set of tradeoffs onto the user, we entertain the pos- 
sibility of designing a single freelist implementation that permits its users to select the 
appropriate tradeoffs for their situation. Of course, this flexibility and reusability 
must come without compromising ease of use, safety, or performance. 
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Policies to the Rescue 

There is a design mechanism in C++ that offers the promise of enabling safe, efficient, 

and highly customizable behavior: policies. What exactly is a policy in the context of 

C++ design? At a fundamental level, a policy simply defines an interface, which may 

include member functions, member variables, and type definitions. Any class that 

implements this interface is referred to as a policy class. A given policy can have an 

unlimited number of policy class implementations. Policies and policy classes by 

themselves are useless. Their power is realized only when other classes are designed to 

exploit a given policy. Classes that use policies and policy classes are called hosts or host 

classes. 
With these basic definitions outlined, how do policies, policy classes, and hosts 

actually fit together, and what benefits do they give us? Game programmers are prag- 

matic people by nature, so I think we've reached the point where a few lines of code 

will help illustrate policies better than another paragraph of definitions and theory. 

template <class APolicy> 

class AHost : public APolicy 

{ 

void DoSomething() 

{ 

APolicy::Foo(); 

¥ 
}3 

// Later on in client code 

AHost< MyPolicy > hostInstance; 

hostInstance.DoSomething() ; 

It may not look like much is going on here at first glance, but if we look closely, we 

will see that there is actually a surprising amount of power, flexibility, and elegance 

contained in those few lines of code. In this simple example, Ahost is our host class, 

which has been designed around a policy named APolicy. Whenever an AHost is 

instantiated, a policy class that implements the APolicy interface needs to be provided 

as a template parameter, giving our host class access to a concrete policy implementa- 

tion. When a call to AHost: :DoSomething() is made, AHost defers some of its imple- 

mentation to the policy class by calling APolicy: :Foo(); allowing an aspect of AHost’s 

behavior to be configured by users instead of being hardcoded by AHost’s author. This 

open-ended ability to configure the behavior of a host class is at the heart of policy- 

based class design. 

It gets even better. In the previous example, notice that the host class publicly 

derives from the policy class, which conveniently accomplishes the task of binding the 

host class to a specific policy class as well as aggregating any structure defined by the 
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policy class. Because we have chosen to make the policy class a public base class.of the 
host, the policy class can extend the interface of the host with public functions of its 
own. Complex policy classes can expose an enriched interface specifically tailored to 
their features and idiosyncrasies without requiring modification of the host class or 
complicating the base interface with functions and arguments used only by some 
implementations. If a user later switches to a policy with a more minimal interface, 
the compiler will catch any calls not supported by the new policy class, effectively 
enforcing design constraints. 

This method of implementing policies also leverages incomplete instantiation. In 
C++, ifa template function is never called, it will never be instantiated, and the com- 

piler will never even look at it, except perhaps for syntax checking. In our example, 
this means that AHost can be configured with policies that do not even declare or 
define Foo(), perhaps because Foo() would be nonsensical for certain concrete policy 

classes. If AHost : :DoSomething() is later called and Foo() is unimplemented, the com- 

piler will immediately report the error, strictly and automatically enforcing both the 
policy design and the policy class’s restriction. With this ability, host classes can take 
advantage of a potentially rich policy interface while still working with truly minimal 
policy classes, albeit with reduced functionality. Combined with the ability for policy 
classes to expose additional functionality, we have a truly powerful mechanism for 
customizing the functionality of our host class. 

Using templates to bind the policy class to the host has a few other notable bene- 
fits. One of the biggest is that, because the binding is done statically, the compiler is 
capable of generating very optimal code, comparable to a handcrafted equivalent. 
Also, unlike classic interfaces, which consist of virtual functions, policy interfaces are 
more loosely defined. Policy classes need only conform to the interface syntactically, 
as opposed to overriding an exact virtual function signature. In our previous example, 
policy classes implementing APolicy are free to define Foo() as static, virtual, or nei- 
ther. Finally, this method scales easily to more than one policy simply by adding addi- 
tional template parameters and deriving our host class from each additional policy 
class. In fact, the real power of policy-based design is only realized with multiple poli- 
cies, providing for a combinatorial explosion of behaviors with only a linear amount 
of additional code. 

Now that we understand the mechanics of policies, how do we actually apply 
them to solve real design problems? A good way to start is to identify the high-level 
design decisions involved in crafting your class. Anything that can be reasonably 
implemented multiple ways or that involves making a tradeoff should be extracted 
from the class and delegated to a policy. Taken to an extreme, a host class may delegate 
all its meaningful design decisions to policies, in which case the host becomes a sim- 
ple shell whose sole purpose is to assemble a combination of policy classes to perform 
the necessary tasks. 

When decomposing a class into policies, it is imperative to strive towards policies 
that are orthogonal to each other. Orthogonal policies are policies that can be safely 
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varied independently from one another. Non-orthogonal policies lead to complica- 

tions in both the host and policy classes, which results in a class that is less type-safe 

and harder to use. An easy way to spot nonorthogonal policy decomposition is when 

two policies need to communicate with each other, or worse, when some combina- 

tions of policies result in an invalid host. 

Unfortunately, this section has really only been able to scratch the surface of pol- 

icy-based design. For much more information on both the theory and practice of 

using policies to enhance your C++ classes, | encourage you to read [Alexandrescu0 1] 

and [Vandervoorde03]. 

Decomposing the Freelist 
Policies sound like a pretty promising candidate for achieving our goal of developing 

a reusable freelist that does not compromise ease of use or performance. Before we 

jump into creating a policy-based freelist, however, let’s quickly review how freelists 

operate at a high level. The freelists that we are interested in pretty much all start out 

by allocating a relatively large chunk of memory capable of satisfying a large number 

of individual allocations. This large chunk of memory is then split up into memory 

blocks, which are cached for future retrieval. When an object-allocation request is 

received, a block of memory is popped from the list of available blocks, initialized for 

use as the given type, and returned to the application. If no free blocks exist in the list, 

a new large chunk of memory may optionally be allocated to repopulate the list of free 

blocks. Finally, when the application returns an object to the freelist, it is converted 

back into a simple memory block and placed back in the list of free blocks ready to be 

quickly recycled for a future allocation. With this high-level overview in hand, we can 

now begin to identify behaviors that should be split out into policies. 

A good first step would be to separate out the growth behavior of our freelist. 

Some freelists may simply pre-allocate a single chunk of memory and not allow any 

future growth. Other situations may call for a constant number of blocks to be allo- 

cated each time the freelist is empty. The growth policy will give users the ability to 

configure this behavior, giving them relatively fine grain control over the number of 

free blocks a freelist will allocate and when. It will also provide a convenient hook for 

any custom behavior when our freelist has run out of free blocks. 

It also makes sense to avoid hardcoding the method used to allocate and free the 

large contiguous chunks of memory that are later split into individual blocks. Some 

freelists might call malloc () to get an uninitialized chunk of memory from the heap, 

while others may allocate a fully initialized block of objects with operator new(). 

Deferring this to a policy will also enable our freelist to take advantage of custom 

memory managers without requiring a change to the actual freelist class. 

Another responsibility that should be deferred to a policy is the manner in which 

free blocks are converted into objects of a specified type and back to blocks again. A 

freelist will be most natural to use if it fully constructs and destroys objects each time 
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they are allocated and freed, respectively; however, this may be too costly in-some sit- 
uations. Customizing this behavior allows users to choose between various levels of 
performance and safety. More generally, this policy gives us a good place to perform 
any initialization and cleanup of an object just before and after an application uses it. 

Finally, we need a policy that is responsible for storing the list of memory blocks 
that are currently available for allocation. There are a variety of methods for tracking 
blocks of memory, each with its own set of functionality, performance, and memory 
tradeofts. This policy is slightly different from the others, because it is responsible for 
defining the structure of the freelist as well as aspects of its behavior. This ability to 
parameterize structure is one of the most powerful features of policies and is some- 
thing that cannot be done with simple virtual functions. 

It appears that we have now identified four policies that our freelist will use: 
growth, allocation, creation, and storage. Unfortunately, upon close scrutiny, the allo- 
cation, creation, and storage policies are not truly orthogonal to each other. Certain 
methods of storing free blocks may interfere with valid ways to create and allocate 
blocks. Some strategies for storing objects require a specific creation policy for some 
types of objects. Other nasty implied dependencies between these three policies also 
exist. Since a clean policy-based design is heavily dependent upon finding an orthog- 
onal set of policies, we must solve this problem before moving forward. 

The simplest solution is to combine the responsibilities of those three policies 
into a single policy that we will refer to as the allocation policy from here on out. 
Making this choice results in some tradeoffs. On the one hand, this new policy will 
have a more complex interface, which will make it more involved to author new pol- 
icy classes. On the other hand, this new policy will enable more powerful and com- 
plex policy class implementations since it will control more aspects of our freelist. The 
fact that combining these policies enables implementations that would not have 
otherwise been possible is a good sign that they were never orthogonal to begin with. 
In the end, there is little choice but to consolidate them to avoid all the pitfalls associ- 
ated with non-orthogonal policies. 

So we will proceed with a freelist design involving two policies. One will be the 
growth policy, responsible for choosing how many blocks to allocate and what to do 
when our list is empty. The other is the allocation policy, which will define how our 
freelist allocates chunks of memory, partitions them into blocks, and converts blocks 
to and from objects. 

Implementing the Freelist: Is That It? 
ee, SITET 

With the policies and their roles identified, actually coding the freelist class becomes 
surprisingly straightforward. Applying what we learned earlier, the declaration of our 
freelist class writes itself. 
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template< typename T, class GrowthPolicy, 

class AllocationPolicy > 

class FreeList : public GrowthPolicy, 

public AllocationPolicy 

{ 

}5 

Let’s start simple and look at our class constructor first. It needs to ask the growth pol- 

icy for a number of blocks to pre-allocate and give the allocation policy a chance to 

prepare this many blocks for allocation. Omitting template parameters for clarity, this 

is how that looks in code: 

FreeList: :FreeList() 

{ 
unsigned int numToPrealloc = 

GrowthPolicy: :GetNumberToPreallocate() ; 

if (numToPrealloc > 0) 

AllocationPolicy: :Grow(numToPrealloc) ; 

} 

At its most basic level, the only responsibilities of a freelist are to perform fast alloca- 

tion and release of objects of type T, so our freelist only needs two public member 

functions, Allocate() and Free(). Here is how Freelist implements them. 

T* FreeList: :Allocate() 

{ 
voids pBlock = AllocationPolicy::Pop(); 

asf (ae! PBLOcKs) 

A 
unsigned int numAlloced = 

AllocationPolicy: :GetNumAllocated() ; 

unsigned int growSize = 

GrowthPolicy: :GetNumberToGrow(numAlloced) ; 

if( growSize > O ) 

AllocationPolicy: :Grow(growSize) ; 

pBlock = AllocationPolicy: :Pop(); 

} 
} 

if( pBlock ) 

return AllocationPolicy: :Create( pBlock ); 

else 
return 0; 
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FreeList::Free( T* pObject ) 

{ 
if( !pObject ) 

return; 

AllocationPolicy::Destroy( pObject ); 

AllocationPolicy::Push( pObject ); 

} 

FreeList::Allocate() requests a block of memory from the allocation policy. If that 

request cannot be satisfied, it queries the growth policy to determine how many new 
memory blocks should be reserved, if any, and the allocation policy is told to add that 
number of free memory blocks to its list. If the allocation still cannot be handled, NULL is 
returned; otherwise, the allocation policy is given a chance to make sure that the memory 
block being returned is a properly initialized object of type T. FreeList::Free() simply 
asks the allocation policy to convert the object back into a memory block, and then 
returns this memory block back to the allocation policy, ready to be quickly recycled in 
the future. 

Notice that in all these functions, our FreeList host class is doing very little 
actual work of its own and is serving mostly as a framework to coordinate the behav- 
ior of its policies. This is typical of a policy-based design. 

Earlier, it was stated that there were only two public member functions, which for 
all intents and purposes is mostly true. There are, however, additional overloaded 
template member functions that take a number of arguments of arbitrary type and 
pass them along to AllocationPolicy::Create(). As we will see later, these functions 
are used to make our freelist more natural and safer to use. There is also a template 
constructor that passes its single template argument to GrowthPolicy’s constructor. 
This can be used to conveniently configure a growth policy class at runtime. Thanks 
to the power of incomplete instantiation, the compiler will only bother to compile 
these functions if they are used, allowing policy classes and users to blissfully ignore 
them until they are actually needed. 

That truly is all the code that is necessary to define our freelist and the policy 
interfaces it depends on. Once our policies were identified, implementing the freelist 
became straightforward and mechanical. 
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Now that our freelist has been defined and our policy interfaces have been solidified, 
all that remains is providing some concrete policy classes. 

Let's take a look at the relatively simple growth policy first. Its interface consists of 
only two functions: GetNumberToPreallocate() and GetNumberToGrow(). An example 
of a simple yet effective class implementing this policy might look like this: 
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struct ConstantGrowth 

{ 
ConstantGrowth( int pre = 16, int grow = 16 ) 

: preAllocate( pre ), numToGrow( grow ) 

{} 
protected: 

int GetNumberToPreallocate() const 

{ 
return preAllocate; 

int GetNumberToAllocate( int unused ) const 

{ 
return numToGrow; 

} 
private: 

int preAllocate, numToGrow; 

}5 

This class is ready for immediate use by FreeList. That is how easy it can be to create 

new policy classes, giving completely new and customized functionality to your host 

class. No arcane language tricks or special C++ prowess is required. 

The interface for the allocation policy is slightly more complicated. It consist
s of 

interface functions to push and pop memory blocks capable of holding a certain type 

of object, functions to convert a memory block to and from that type, and a function 

to grow the capacity of the list. One such policy class that implements this interface is 

PlacementNewEmbeddedLink. Let’s take a look how this class works starting with its 

class declaration and the data members. 

template< typename T > class PlacementNewEmbeddedLink 

{ 
public: 

private: 
struct FreeBlock 

FreeBlock* pNext; 

}5 
FreeBlock* pFreeBlocks; 

std::vector< void* > chunks; 

}3 

This particular allocation policy allocates chunks of contiguous memory and parti- 

tions them into blocks just large enough to hold an object of type T. The first four 

bytes of each memory block are then used to point to the next available block, and 

each block is pushed onto the head of a singly linked list. The Grow() function shows 

this in action. 
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void PlacementNewEmbeddedLink: :Grow( int numBlocks ) 

void* pChunk = malloc( numBlocks * sizeof(T) ); 

chunks.push_back( pChunk ); 

for( int ix = 0; ix < numBlocks; ++ix ) 

Pushi( s(char*)pChunk toix.* sizeorg)e)s 

} 

The Push() and Pop() functions are responsible for maintaining these simple links as 

well as adding and removing blocks at the head of the list. Their implementation is as 
simple as you would expect. 

void PlacementNewEmbeddedLink: :Push( void* pBlock ) 

FreeBlock* pNewHead = (FreeBlock*)pBlock; 

pNewHead->pNext = pFreeBlocks; 

pFreeBlocks = pNewHead; 

} 

void* PlacementNewEmbeddedLink: :Pop() 

{ 
if( !pFreeBlocks ) return 0; 

void* pNewBlock = pFreeBlocks; 

pFreeBlocks = pFreeBlocks->pNext; 

return pNewBlock; 

} 

The major benefit of using the beginning of each block of memory to point to the 
next block of memory is that there is no per-block memory overhead. This can 
amount to hundreds of kilobytes of savings when compared to the overhead involved 
with many general-purpose memory managers. The obvious downside is that any 
data that may have been in that memory to begin with is overwritten by the pointer; 
including possibly a virtual function table. This policy’s Create() and Destroy() 
functions solve the problem very elegantly while ensuring that our raw memory is 
converted into a full-fledged object. 

static T* PlacementNewEmbeddedLink: :Create( void* pBlock ) 
{ 

return new( pBlock ) T; 

} 

static void PlacementNewEmbeddedLink: : Destroy ( T* pObject ) 
{ 

pObject->~T(); 

} 

Create() uses the placement new operator, which instructs the compiler to create a 
fully constructed object of type T at a given memory address. Since it makes no 
assumptions about the contents of the memory, the problem of overwriting poten- 
tially important data with our free block link is implicitly addressed. 
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Far more importantly, it makes freelists configured with this policy safer and eas- 

ier to use. Because placement new invokes the object’s constructor, this policy's create 

function naturally mimics the way objects are constructed when they are created by a 

call to operator new(). As an added bonus, defining templated overloads of Create() 

that pass arbitrary parameters to our class constructor becomes relatively trivial, 

allowing any public constructor to be called. Of course, the natural complement to 

initialization in a constructor is cleanup by a destructor, and that is exactly what hap- 

pens in the Destroy() function. 

Examining the result of configuring FreeList with this policy shows that we have 

met all our goals with flying colors. Allocating and freeing objects is certainly fast, 

consisting of only a few pointer operations plus a call to a constructor or destructor. It 

also has zero memory overhead per allocation. Most importantly though, using con- 

structors and destructors to automate initialization and cleanup makes using our 

freelist a very safe and natural replacement for calls to operator new() and operator 

delete(). 

Possibilities 
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If this were the end of the story, all the effort to split our freelist into policies would 

have been a waste. It would be great if the previously mentioned policies solved all our 

problems all the time, but unfortunately they do not. To illustrate just how versatile 

our policy-based design has made our freelist class, the following sections provide four 

separate allocation policies with varying behaviors and associated tradeoffs. 

PlacementNewEmbeddedLink 

This is the allocation policy described earlier. Its combination of performance, zero 

per-block memory overhead, type safety, and ease of use makes it a versatile choice. 

Due to all these positive factors, this is the allocation policy with which FreeList is 

configured by default. It is not without limitations, however. For one, freelists config- 

ured with this policy never return memory back to the global heap and do not share 

their free blocks in any way. Depending on your allocation patterns, a large amount of 

memory may end up just sitting in freelists as free blocks, unavailable for any other 

purposes. Also, in extremely performance critical areas, PlacementNewEmbeddedLink 

may not be appropriate for classes with expensive constructors and destructors. 

Because of its ease of use, however, this is the default allocation policy. 

ConstructOnceStack 

This allocation policy exactly matches the design and behavior of the freelist in 

[Glinker04]. The full set of that implementation’s benefits and tradeoffs described in 

the beginning of this gem are encoded in ConstructOnceStack. The ability of our 

freelist to easily and perfectly emulate such a different implementation is a testament 

to the power of policies. This policy even exposes the additional function provided by 

the previous gems freelist, FreeAl1(), making the imitation complete. 
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CompactableChunkPolicy 

A slightly more unusual allocation policy class is CompactableChunkPolicy. This pol- 
icy behaves similarly to PlacementNewEmbeddedLink but with a twist. In this policy, 
each chunk maintains a count of how many free blocks are being used from that par- 
ticular chunk. If two chunks have no blocks in use by the application, this policy will 
actually return the larger of the two free chunks to the heap. The tradeoff comes in 
the form of a significantly more expensive free operation. This policy might be bene- 
ficial in a situation where objects are allocated and freed in relatively infrequent 
bursts, or when many freelists will be instantiated, but many of them are empty at any 
given time. 

SharedChunkPolicy 

Finally, the most exotic allocation policy class on the accompanying CD-ROM is 
SharedChunkPolicy. Internally, all instances of this policy class share a static set of 
freelists. This means that two separate freelists managing objects of similar size and 
configured with this policy will share memory blocks. If an application uses a large 
number of freelists that aren't always near peak usage, this can significantly reduce the 
amount of memory just sitting in freelists waiting for later use. The main tradeoff this 
policy makes is that objects allocated from a single freelist can no longer be counted 
on to be located near each other in memory, degrading locality of reference. There is 
also the potential for a small amount of per-object overhead depending on how this 
policy is configured. Some general-purpose memory managers actually operate this 
way internally, and this is almost exactly how the default allocator in STLPort works. 

All the allocation policies on the accompanying CD-ROM expose two additional 
member functions, GetNumBlocksInUse() and GetPeakBlocksInUse(), which can be 
used during development to tune your growth policy for optimal memory usage. Sev- 
eral growth policies are also provided, including one that will double in size, one that 
will grow linearly up to a fixed maximum capacity, and one that will ensure that each 
contiguous block fits tightly into a page of memory. 

Of course, if none of these policy classes meet your particular requirements, 
changing behaviors is as easy as writing another policy class, and it can be done with- 
out changing one line of code in FreeList. That's the true beauty of a policy-based 
design. 

Conclusion 
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The goal of this gem was to develop a freelist class that would be fast, easy to use, and 
flexible enough to be used in as many circumstances as possible without compromise. 
To meet these goals, we developed a freelist with a simple, consistent interface but 
open-ended behavior. In the end, we did not end up with a single freelist, but a highly 
configurable freelist framework. Not one but four different implementations are pro- 
vided, each providing subtly different tradeoffs. Even if you are unhappy with all four 
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of these implementations, it doesn’t matter, because you can easily provide one that 

suits your particular needs without changing one line of the provided code, and most 

importantly, without altering the interface or core design. 
Policy-based design was the key to achieving our goal. Even if you never use this 

freelist class, by reading this far, hopefully you've seen the power that can be wielded 

with policies. When it comes to developing flexible and configurable classes or even 

complete class libraries, this technique is simply unrivaled. It is a tool that every devel- 

oper who strives for robust, reusable code should add to his toolbox. 
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1.12 

A Real-Time Remote 

Debug Message Logger 

Patrick Duquette, Microids Canada Inc. 

gizmo@gizz-moo.com 

or some years now, we have seen a rise in the interest for in-game, on-screen 

debugging panels. Although they are great and they normally do the job, they 

have the uncanny ability to clutter your game screen. Whenever we want to see more 

than the current frames-per-second (fps) stat counter, we end up losing a big chunk of 

the screen space. Consoles games are the worst, as their screen resolution is not very 

high to begin with, and to see something, we have to use a big font. It’s hard to fit a 

lot of information on a 640 X 480 screen and still see something behind all this text. 

There’s also the trusted outputDebugString(). But due to its single output pane 

and scrolling list type of display, real-time logging of frequently changing values is a 

nightmare. On one particular project, we used the output window on a regular basis 

for debug information. While it is true that the information was there, you cannot 

expect to easily find anything. This simply does not meet my vision of a productive 

debugging session. 

For this gem, we will skip over the topic of log files as we try to focus on a real- 

time monitoring solution. 

The Need for a Standardized Debug Log _ 
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With game projects now requiring 20 to 30 full-time programmers, it’s important to 

have a standard way to manage and manipulate in-game debug information. If the 

data is present but in an unreadable format, it is almost useless. The same holds true 

for nonpractical data logging procedures. If we have too many steps to do before 

enabling data logging, chances are people will not use it. 

Debug data should be presented in a concise, and more importantly, in a quan- 

tifiable manner. Having unrelated numbers scroll before us would not only give us a 

headache, but if we are not the person who created the logging function, we might as 

well not see the debug log, as the numbers will likely mean little to us. 
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Organize your debug data in related sections or pages. Having lots of unrelated 

data in a single page, as in the output window when using OutputDebugString, forces 

us to paddle through a lot of unnecessary lines. It takes time and might make us skip 

over the line we were looking for. 

Debug pages should not be hardcoded, either. Although it might be tempting to 

hardcode the debug pages, we should restrain from this practice. There is no way we 
will foresee every debug data category while designing our debug logger, and as such, 
we should make provisions for dynamic page creation. Of course, some pages will 
most certainly appear in all our projects, but by letting the end user have the possibil- 
ity to specify each page’s properties, we aim to provide a convenient solution on top of 

a practical one. 

Data Presentation: Do You See What I See? 
SRST ANGE SILENT OLE PERRO REE 

Data presentation is one of the most important things. Making sure that the end user, 
be it a programmer, an artist, or a technical producer, interprets the results as we 
intended, is of utmost importance. Scrolling loggers are fine if we need to have a pre- 
cise log of a value over time, but a graph might be better if we only need to see the vari- 
ations over time. For variables where we only need the current values, a single line with 
the value being modified as needed is probably better than showing the last 500 values. 

In a perfect world, the logged application should never experience any slowdown 
due to the logging process. That, of course, is impossible (since we do have to gather 

the information and send it), but we should aim for the smallest CPU and memory 
footprint possible. Asynchronous functions for sending the data should be used when- 
ever possible. If the debug logger is not present, we also should not process the debug 
information gathering; this will give us the possibility to pause our logger if the need 
arises. 

The logging solution should also support the same features on all the platforms 
on which the logged game is executed. Having a standard way to log the debug infor- 
mation, no matter which platform the game is running on, will alleviate the debug 
reviewer of having to learn different interfaces. 

The Proposed Solution 
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The solution we will look into here is quite simple; a client/server where the debug 
console acts as the client and a cross-platform game module is the server. We could 
make the game module act as the client instead, but that would force us to tell the 
game module where and when it should connect. Having the game module act as the 
server enables us to connect to it from any station, at any time during the course of 
game execution. 

How will the data be represented? We already know that the data should be 
divided into categories to help quickly find what we are looking for. But inside those 
categories, how are individual data segments displayed? Depending on the type and 
the needed visual representation, we have many possibilities: 
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Scroll: The standard representation where values are appended one after the other 
Current value only: Only shows the most recent value 
Graph: A quick visual representation of the evolution of the variable values over 

time 

The Scrolling Representation 

The values are shown via a standard ListBox, each entry mapping to a line. New val- 

ues are added at the end of the list. No provision for sorting items is made, as this 

would slow down the insertion process. 

To speed up the insertion process, we will preallocate a number of rows via the 

InitStorage ListBox. A context menu is present to help us manage the ListBox content: 

Clear list: Clear the ListBox of all entries. 

Copy: Copy on the clipboard the selected lines. 

Copy all: Copy on the clipboard the whole ListBox content. 

Save: Save the list content to a file. 

Current Value 

This representation is the simplest. It is done via a read-only EditBox. Having an 

EditBox instead of a static control will let us select the text for copy/paste operation 

using the standard EditBox context menu. 

Graph/Datagram 

Graphs are probably the representation that will give you the fastest clear view of 

what’s going on in your game. When plotting data as received, though, one thing we 

have to watch for is the data going out of range. Two possible solutions to get around 

this caveat: give the user the possibility to change the range values and/or have the 

Graph invoke an adjustment when the data is out of range for an extended period. It is 

convenient to have both since manually overriding the Graph range will let the user 

see the previous value as he sees fit. 

Many different Graph types can be incorporated in our logger, and a system to 

expand the graph library should be put in place early on. For an example of some 

Graph types, see Figure 1.12.1. The sample code has only one Graph type available, but 

improvements will be made available through the author’s Web site [Gizz04]. 

While the debug data is categorized and kept together, it’s important to let the 

debug logger show different data types on one page. The best data representation for 

one type of debug information might be different from others in the same category. 
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FIGURE 1.12.1 Example of a graph from a logger. 

Putting It All Together 

A TabControl inside a dialog-based window manages the displayed information. The 
TabPages are created dynamically from information sent by the debugged game. 

For an example of a TabControl and TabPages, see figure 1.12.2. 

Be ist variable 

. _| 2nd variable 
_| 3rd variable 

FIGURE 1.12.2 Example of TabControl and TabPages. 

After starting the debug logger, we will try to connect to the logged game we want 

to log. Once connected, the logged game will send the TabPages name that it wants to 

register with the logger. These names will have an index associated, and only the index 

will be sent in further communication. Then it will send the list of the names it wants 

to have logged along with the type of representation that should be used and specific 
data if needed (such as a range, for Graphs). 

Once it is connected and initialized, the logger will then start to receive the data. 
Each data packet contains the TabPage index, the ValueName index, and the actual 

data. A quick lookup tells us exactly which part of a specific page to update. The data 
representation class takes care of displaying the data as intended. 
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The Game Log Module 

The LogModule is implemented inside a singleton. This gives us safe access to a glob- 
ally available object. When the LogModule is created, it initializes the platform-specific 
network library. 

TabPages and logged variables registration are done via one static function, which 

is called during the LogModule init phase. Enums are used for the TabPages and vari- 

ables index. A macro is used to convert the enum member in the variable name used 

in the debug logger. 
7 While the LogModule is considered as a server, in the code sample, it only accepts 

one connection at a time. No provision was made to let multiple loggers register for 

the LogModule debug info. Until the current connection is closed, the LogModule stops 

accepting incoming connections. 

Because we specifically aim for a CPU-light logging system, the communication 

part is handled via asynchronous network function. This and network initialization 

are the two code sections that are platform specific. 

Logging 

The log function is a variable argument function to give the programmer using the 

debug logging system an easy-to-use system. It takes out the burden of having to for- 

mat the debug info before giving it to the log function. That way, we still have the 

ability to send strings to the logger as when we were using OutputDebugString, only 

with more flexibility. 

The entire debug log LogModule code is wrapped with an #ifdef barrier in order 

to take it out easily when we want to exclude the log information. The call to the log 

function is done via a defined macro. This will remove the need for further #ifdef 

wrappers in the game code as they will be defined to nothing when the logging system 

is not to be included in the build. 

Possible Improvements or Extensions 
nner eee eeaeranienileamnenaemmaiaaammmmanmmeel 

The following is a list of possibilities for improving or extending the debug message 

logger: 

¢ Scrolling representation should have the possibility to limit the number of lines 

that will be kept. Even a global variable that could be overridden in each list if the 

user wants, would be a step in the right direction. 

° Let the user switch representation type for given debug information. 

© Let the user modify the range of the Graph. 

* Have the Graph modify its range when it detects that the data is out of bounds for 

a certain amount of time. 

* Give the possibility to log to a file every received bit of information or by page. 

Every page should have a different file. 

¢ Allow more than one debug logger to register with the LogModule. 
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Conclusion 

In this gem, we presented a simple, extensible, yet efficient way to display our debug 

information while not cluttering the game screen. While not always high on the pri- 

ority list, a good debug message logger/viewer can often save the day in crunch time 

where features are too often bugs in disguise. 

Reference 
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7 Ween method for minimizing load time is to pack structured data into a 

contiguous block for immediate use upon loading [Olsen00]. One limitation is 

that pointers (including virtual function table pointers) are not preserved, which 

makes it difficult to save and restore complex data structures or classes that include 

virtual functions. 

The first part of this gem presents a simple way to preserve user-defined pointers 

and a trick for safely restoring virtual function table pointers. This means that game 

data may be freely described using classes, virtual functions, and pointers with no 

need to implement tedious per-class methods to serialize or restore them. 

The rest of this gem tackles the design and implementation of a sample API. The 

implementation provides transparent class saving and loading functionality with few 

limitations placed on the end user. Details of the implementation are discussed in 

hopes that the reader will improve and extend it. 

The Trick | at 

The trick turns out to be a straightforward use of pointer arithmetic and the place- 

ment new operator. 
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Saving and Restoring User-Defined Pointers 

If we dont want to deal with relative offsets at runtime, we can simply resolve them at 

load time by building a table of pointer remaps and storing it at the end of the file. 

Each entry contains the offset to the pointer that needs to be remapped and the offset 

to whatever the pointer remaps to. Both offsets are relative to the base of the file, so 

we can just add the address of the file’s destination to resolve them. 

Saving and Restoring Virtual Function Table Pointers 

When you declare a virtual function in your class, the compiler adds a virtual func- 

tion table pointer to the class's memory footprint. When the class is constructed, the 
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pointer is filled with the address of whatever virtual function table is appropriate. 

Unfortunately, the virtual function table pointer is only valid during the session in 

which it was created. If you store a class with a virtual function table pointer in a file, 

the pointer will probably be garbage when you load the file back in during the next 

session. 

So, to phrase the problem: how can we safely restore a class's virtual function table 

pointer when that class was constructed in a previous session? 

The solution lies in the placement new operator. The placement new operator 

constructs an object “in place” using memory specified by the user. Unlike operator 

new, the placement new operator does not allocate any memory. 

char rawMem [ sizeof ( Foo )]; // Raw memory to hold a Foo. 

Foo* foo = new ( rawMem ) Foo (); // Construct a Foo in place. 

If you want the class’s destructor to be called, you will have to do so manually. 

foo->Foo::~Foo(); // Explicitly call the destructor. 

Calling placement new for constructing an object over memory already occupied by 
an object of the same type will ensure that its virtual function table pointer is valid. If 
we leave the constructors empty, we can restore objects saved during a previous ses- 
sion. The constructors are left empty to avoid reinitialization upon loading. An alter- 
native is to create a separate constructor specifically for placement new restoration. 

Implementing the FreezeMgr 
a 
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In this section, we move away from background information and actually go through 

the design of the implementation provided on the accompanying CD-ROM. It is 
assumed that you are a systems or engine programmer interested in a solution for use 
by other members of your team. The user to which this article refers is a game or tools 
programmer who will use (but probably not alter) the implementation. 

It is hoped that you will read through this explanation and experiment with the 
sample, and go on to either write your own or modify this implementation to suit 
your needs. The sample under discussion is a limited version of an implementation, 
with some features combined and some glossed over to stay focused. 

Usage Model 

We want the end user to be able to create game data in whatever order pleases him. 
This includes classes, structs, and arrays of both compound and simple types. We also 
want the user's pointers to be automatically restored upon loading. 

We need a way to keep track of data created by the user and to provide an inter- 
face for saving and restoring it. To do this, we'll use a singleton class called the 
Freezemgr. I'he metaphor is that whatever data the user creates is frozen whole, in its 
natural state, ready to be thawed and used again later with no additional preparation. 
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For this reason, the key operations of the FreezeMgr are Freeze() and Thaw(). Since 

the Freezemgr has to keep track of user-created data, its interface will also include 

methods for allocation and deletion. 

As for the singleton design pattern used, we'll implement the singleton interface 

for this sample in the most basic way; see [Bilas00] for a more sophisticated approach. 
From the end user’s perspective, the process will be: 

° Use the FreezeMgr to create game data. 

¢ Initialize the data in whatever manner is appropriate. 

¢ Command the Freezemgr to pack all relevant data into a file and save it for opti- 

mal reloading. 

Tracking User Allocated Memory 

Whenever the user asks the FreezeMgr to create something, the Freezemgr will allo- 

cate a memory block and store an internal record of it. This record includes the 

block’s size and address. We'll provide the following method for allocating memory: 

template < typename TYPE > 

TYPE* FreezeMgr::AllocTyped ( u32 elements ); 

AlloctTyped() is a template method that will use both malloc() and the placement 

new operator to create a user-specified type (or array of types) and call the appropriate 

constructor(s). We use malloc() instead of new because we want to control exactly 

when the class is constructed, independent of when its memory is allocated. 

The record used to track memory allocations is called a MemBlock. MemBlocks are 

stored by the FreezeMgr in a map of addresses onto MemBlocks. The MemBlock contains 

a method that will check to see if a given address falls in its range. The method is: 

bool MemBlock::ContainsAddress ( void* addr ) const; 

In turn, the FreezeMgr contains a method that, given an arbitrary address, will return 

the MemBlock that contains the address, should such a MemBlock exist: 

MemBlock* FreezeMgr::FindContainingMemBlock ( void* addr ) const; 

Tracking User Declared Pointers 

User declared pointers are tracked with the help of a template class called FreezePtr. 

Its template parameter is the pointer type. The only data member is the pointer itself. 

Upon construction, FreezePtr will attempt to register itself with the FreezeMgr. 

If the FreezePtr falls within a MemBlock, a record of it will be stored in that MemBlock. 

Otherwise, the FreezePtr is ignored. 

Determining whether a FreezePtr falls within a MemBlock is just a matter of call- 

ing FreezeMgr: : FindContainingMemBlock (). 
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Building a File 

At this stage, we can accomplish two of our goals: 

° We'll pack the user's data into a contiguous block of memory that can be loaded 

in one shot. 

¢ We'll crawl through that memory at load time and patch all the pointers so that 

the user will not have to mess with relative offsets. 

It follows that classes and structs will work right out of the box, as long as they do not 

include virtual functions (we'll cover virtual function tables in the next section). 

Before we pack a file for the user, we have to think about how the user will want 

to access the data once it’s loaded back into memory. Users will probably want to 

access their data through some class or struct that they themselves define. They will 

want to treat the file as though it has some root type through which they have access 

to the data. For example, if the file represents a game level, its type might be a 

GameLevel class created by the user, which contains pointers (FreezePtrs, of course) 

to things like spawn points, collision geometry, node graphs, etc. 

The decision to ask the user to specify a root type suggests the method by which 

files are actually packed. The user will call FreezeMgr: : Freeze () with a class of the 

root type as its parameter. The Freezemgr will find the MemBlock that contains the 

class and pack it into the file. It will then recursively iterate through any other Mem- 

Blocks associated with the root type by walking along the FreezePtrs known to each 

MemBlock. 

As we “flood fill” the network of MemBlocks connected by FreezePtrs, we do sev- 

eral things: 

e Add each MemBlock encountered to a list of blocks to be included in the freeze 

¢ Compute the block’s location in the contiguous packed block 
¢ Compute each FreezePtr’s value as an offset into the contiguous block 

¢ Add each FreezePtr to a list of pointers to be included in the freeze 

During the process, we assume that each FreezePtr points into valid memory tracked 

by MemBlocks or to NULL. In other words, if the pointer is not NULL, a call to 
FreezeMgr: :FindContainingMemBlock() should always return a valid MemBlock. 

Once the list of MemBlocks has been built, we scan through it and pack each block 

into the file. We then write out the table of pointers. Each entry in the table contains 
the offset of the pointer and the offset of the contents of the pointer. 

The process for thawing a file, as intended, is simple and fast. 
To load a file, we allocate a chunk of memory large enough to hold the con- 

tiguous block before pulling it in with a single read. Patching the pointers is then 
accomplished by scanning through the pointer remap table and performing pointer 
arithmetic. 
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Note that pointers are not sensitive about the order in which they are remapped, so 
sort the remap table (prior to output) in whatever order will most improve performance. 

Restoring Virtual Function Table Pointers 

As discussed earlier, we can use placement new to restore virtual function table point- 
ers. For this reason, the FreezeMgr is also a factory class that can look at an instance of 
a class and restore it using placement new. You may use a discrete factory class; for the 
sake of our discussion we'll package that functionality into the Freezemgr. 

For this implementation to work, any class that contains virtual functions must 

inherit an abstract base class that will identify it. The class has only one data member, 

a 32-bit type identification number. We'll call the base class Freezable, though this is 

a bit of a misnomer, because it is used to qualify only a subset of what can actually be 

frozen. 

A Freezable may be allocated whole or may be embedded in another class. Like 

the FreezePtr, Freezables are tracked by the MemBlocks that contain them. 

To construct Freezables upon loading, the FreezeMgr keeps an internal table of 

abstract creator classes. Each type of Freezable must have its own concrete creator 

class. The abstract creator is called AbstractCreator. A template class called Con- 

creteCreator<> is provided to save users the trouble of having to write a creator for 

each Freezable. The method used to register a user-defined class is also a template: 

template <typename TYPE> 

void FreezeMgr: :RegisterFreezableType(void) ; 

This function declares a static ConcreteCreator<TYPE> and assigns it to the next 

sequentially available AvstractCreator table entry. The index of the table entry then 

becomes the 32-bit identification number for that class. We could use a map to con- 

vert user-defined identifiers into table entries, but it is more efficient to directly index 

into the table as we inspect the type of each Freezable at load time. The trade-off is 

that for the data created by the FreezeMgr to remain valid from session to session, the 

order in which types are registered must be respected as new types are added. 

To make sure the right 32-bit type identifier is mapped to a given instance of a 

Freezable, we ask the user to overload a pure virtual method in Freezable: 

char const* Freezable::GetClassName(void) const; 

To figure out the identifier for a given class, the Freezemgr keeps a map of class names 

onto identifiers. Any Freezable may determine its identifier by calling GetClass- 

Name() and using that name to see if the class has been assigned an identifier. 

There are more robust and useful ways to deal with runtime type information 

[Wakeling01] that should be explored to replace the way it’s been done here. 
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Since the Freezable’s constructor will be called during the thaw, the user must 

take care not to reinitialize its members. For example, if a Freezable initializes its 

members to NULL at construction, the members will be reinitialized to NULL during the 

thaw. 

We could work around the problem of reinitialization by providing an alternative 

constructor that only gets called by placement new during the thaw. The problem is 
that there is no way to extend this to the Freezable’s members unless the user imple- 

ments an alternative constructor for each member and sets up explicit calls to it down 

the constructor chain. That is a lot of hassle for what will probably amount to a bunch 
of empty constructors. A more pragmatic approach is to expose the problem from the 
start (so the user will be aware of it) and ask the user to check for reinitialization by 

calling FreezeMgr: : IsThawing(). 

To review the limitations placed on the end user: 

¢ The user must derive all classes containing virtual functions from Freezable. 

e The user must overload GetClassName(). 

¢ The user must declare all Freezable types before using the FreezeMgr. 

¢ The user must not change the order in which Freezable types are declared. 
¢ The user should either do nothing in the Freezable’s constructor or its member 

class constructors, or should check to see if a thaw is in progress and only perform 

initialization if there is not. 

To manage and freeze the user’s classes: 

¢ Track the Freezables as they are created. 

¢ After all the MemBlocks and FreezePtrs have remapped, remap the Freezables. 

¢ Write out the FreezePtr remap table. 

¢ Write out a table of Freezables. This table just contains the relative offset of each 
Freezable. 

To thaw from a file: 

¢ Read in the contiguous data block. 
* Patch all the pointers. 
* Find each Freezable in memory and determine its 32-bit type number, 
* Use the type number to index the table of AbstractCreators. 
* Pass the Freezable to the AbstractCreator: :Construct(). 

A Few More Features 
8ST NSA CRS CARRS RSCG RFRA ES RRM OOMC ATER OR GS ERAN IR BRE TENG PRT GLUES serra RHEE ORES ERRNO 

The Freezemgr is still not quite ready for prime time. More features are necessary for 
it to be useful. 
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Serialized Data 

There remain cases where we want to approach parts of our data as serialized streams. 
To support this, we add two virtual methods to Freezable: 

virtual void Freezable::SerializeIn ( FILE* file ); 

virtual void Freezable::SerializeOut ( FILE* file ); 

The user may add serialized data to a Freezable class by overloading these methods. As 
would be expected, SerializeOut() is called during the freeze, and SerializeIn() is 

called during the thaw. In both cases, the user is given direct control over the file. The 

FreezeMgr remembers how many bytes (if any) are written by SerializeOut(), so 

SerializeIn() must read the same number of bytes. 

Loading in Edit Mode 

Up to this point we've assumed that the user will create and modify game data in one 

session and will load it in read-only mode for use in another session. 

Implementing an edit or read-write mode option is a matter of rebuilding the 

FreezeMgr’s internal tables, including the memory block table and the pointer remap- 

ping table upon load. Once this is done, the user is free to augment or modify the 

data and then refreeze it. 

This extension to FreezeMgr may dovetail with existing schemes for allowing 

players to save their games at any time [Brownlow02]. 

File References 

You may give users the option of initializing FreezePtrs in such a way that they will 

resolve into files when loaded: 

mFoo.PointAtFile ( "bar.bin" ); // mFoo is a FreezePtr 

When the file containing mFoo is loaded, the resource manager will automatically load 

in “bar.bin” and point mFoo at it. To package this in a standalone sample implementa- 

tion would either require ties to a resource manager [Boer00] or a callback interface, 

both of which are outside the scope of this gem. Nonetheless, it is a useful feature and 

you should consider implementing it. 

Using the Sample Implementation 
COLL MMBLLLLL LAL LTUL TON ETE TELL TO TR HIE 

You can use the provided sample as is, but you should try reworking it to suit your 

own needs. It was composed for this gem as a standalone version of the utility used by 

the author, It is offered as is. There is no warranty for commercial use and no plans to 

support it, so it is recommended that you familiarize yourself with it, understand its 

flaws, and create exciting new flaws of your own. The FreezeMgr can become a key 

part of your project, so please accept this disclaimer and give your own implementa- 

tion the careful attention it deserves. 
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For a variety of design reasons, the mechanism that calls the destructors of thawed 

classes is not included. This will be an issue if you use the serialized data feature, as 

you will probably be allocating memory. For this reason, you will have to decide how 

you want to handle freeing the memory allocated by serialized classes. 

The FreezePtr Template Class 

The FreezePtr automatically registers itself with the FreezeMgr upon construction. 

Just include it in your data and use it like a regular pointer. In a struct or class, declare: 

FreezePtr<Foo> mFooPtr; // A pointer of type Foo 

You should only point the FreezePtr at memory allocated using the FreezeMgr, or the 

FreezeMgr will assert() when you freeze your data. 

The Freezable Class 

If a class contains any virtual functions, it must inherit the abstract base class Freez- 

able. Its interface is: 

virtual char const* GetClassName(void): A pure virtual. You must overload this 

to return a constant to identify the class. 
virtual void SerializeIn(FILE* file): Called at the end of the thaw, after the 

pointers and virtual function tables have been restored. 

virtual void SerializeOut(FILE* file): Called at the end of the freeze. 

Overload this method to output data in whatever format you wish. 

Because the class’s constructor must be called upon loading to restore the virtual func- 

tion table pointer, make sure you do not do anything in the constructor unless you 
call FreezeMgr: : IsThawing() to determine whether a thaw is in progress. 

You will need to call FreezeMgr: :RegisterType() to map the type name onto a 

32-bit identifier prior to freezing or thawing. 

The FreezeMgr Singleton 

The FreezeMmgr singleton controls file creation, loading, and saving. It also provides 

memory allocation and class creation methods to create data that may be frozen. The 
Freezemgr regards data it did not create with disdain and will assert() if you try to 
freeze it. It will also assert() if you point a FreezePtr at unmanaged data. 

The interface is: 

template<typename TYPE>TYPE* AllocTyped(int total=1): Allocate and return a 

class or array of type TYPE. To create an array, just pass in its size. 
void Flush(void): Releases memory allocated by the FreezeMgr and purges the 

internal lists. 
void Free(void): Delete memory allocated by the Freezemgr. This includes files 

that have been loaded via Thaw(). 
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void Freeze(char const* filename, void* addr): Walks the graph of data to be 

frozen starting at the address provided and writes out a file. The address 
provided must be an address returned by AllocTyped<>(). 

static FreezeMgr* Get(void): Returns the FreezeMgr singleton. 

bool IsThawing(void): Returns true if a thaw is in progress. This is relevant to 

Freezable constructors that wish to avoid reinitialization. 

template<typename TYPE>void RegisterType(u32 typeID): Register a class derived 

from Freezable with the Freezemgr. 

template<typename TYPE>TYPE* ThawTyped(char const* filename, bool 

edit=false): Load a file created by Freeze() and restore it for use. 

If you are creating classes that derive from Freezable, you will have to register them 

with the FreezeMgr in your initialization code and before any calls to FreezeMgr are 

made. Remember that the FreezeMgr assigns type identifiers based on the order of 

registration, so the order must stay the same. If that is too limiting, it is easy to change 

at the cost of a slight performance hit. 
It's possible to void pointers in Freeze() and Thaw(). This is dangerous, but 

removes the requirement to use Freezables. The hope is that the user will not abuse 

this feature. If you do not share this optimism, then again, this is easy to change. 

Conclusion 

This particular utility represents a large expanse of extremely uninteresting code that 

basically does a lot of behind-the-scenes bookkeeping. That said, we've laid the foun- 

dation for a turnkey API that can be used to manage a lot of the mess and hassle asso- 

ciated with writing and maintaining game files. 

The sample implementation is heavily commented, so you should dive in and 

extend it to include the ideas of the many excellent authors whose work makes up the 

body of Game Programming Gems. 
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| pean computer architectures describe multiple levels of memory becoming suc- 

cessively slower and larger. Those levels include registers, level-1 cache, level-2 

cache, main memory, and disk. The access time increases from one cycle for registers 

to around 10, 100, and 100,000 cycles for cache, main memory, and disk, respectively 

(see Figure 1.14.1). According to the current and future CPUs and memory evolu- 

tions [Moore65], [Hennessy03], the penalty for algorithms that do not take benefit of 

this hierarchical memory representation will increase through many caches misses. 

For addressing this problem, cache-oblivious algorithms were introduce by [Frigo99]. 

The idea was to optimize the I/O model’s scheme without specific knowledge about 

the memory block size. They describe that basic problems can be solved using optimal 

algorithms being cache-oblivious [Frigo99]. First attempts were dedicated to matrix 

and FET transformation. Later, [Bender00] gives additional proposals for B-tree and 

search tree representation. Cache-oblivious algorithms differ from cache-aware algo- 

rithms, as they adapt themselves to any architecture. 

Computer Memory Architecture 
eee 

SONNE NEAR LE NTN pen sn we ett IAN 

Most algorithms ignore memory architecture. Those driven by small data structures 

like binary trees suffer huge penalties in accessing their data. Each memory layer 

works in a similar fashion and is composed of cache blocks. Current architectures use 

cache lines of approximately 32-64 bytes. Notable improvement can be achieved by 

accessing data within the same cache line [Patterson97], [Hennessy03]. A cache line’s 

lifetime depends on hardware-specific heuristics [Smith87]. Decisions are made on a 

159 
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Roughly: 

1 cycle 

~1-5 cycles 

~5-20 cycles 

~40-100 cycles 

FIGURE 1.14.1 Memory multilevel hierarchy. 

replacement and associative policy within the cache. Sometimes, cache misses are 

unavoidable [Hill02] such as in the following cases: 

Compulsory: A cache miss cannot be avoided; this occurs when some data is 

accessed for the first time. 
Capacity: The data fit in the cache in previous steps, but due to the renewal policy 

of the cache, the data was removed from this cache level. 
Conflict: Cache trashing due to data mapping to the same cache lines. 

Data Structure and Cache Coherence 

Spatial alignments have an impact on the cache usage. Notably, data structures mak- 
ing intensive use of pointers are not good candidates. Pointers or data that will likely 
be accessed together should as well be stored together for optimizing memory access 
[Ericson03], [Ding04]. In some circumstances, they may not fulfill the object-ori- 

ented programming methodology. 

Van Emde Boas Layout 

The van Emde Boas layout [van Emde Boas77] (see Figure 1.14.2) is the standard 

way of laying out a balanced tree in memory so that a root-leaf path can be traversed 
efficiently in the cache-obliviously model using O(4 * logg(z)) B = NbElement/Cache 

Line memory transfers [Agarwal03]. 

aN: 090 aN: 696 b\Ve O00 b\\ 
10;11;12;13 17;18;19;20 58;60;61;62 

FIGURE 1.14.2 Van Emde Boas’ tree representation. In this example, each subtree 
is composed of seven nodes. 
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ABT Tree 2 

ABT trees are very similar to KD trees [Szécsi03]. At each step, two children may be 

created based on an axis-aligned splitter. One difference with KD trees is that the 

algorithm will minimize the resulting children’s AABBs and store all the geometry 
exclusively in the leaves. Thus, each node becomes a totally enclosed region in space 
where the internal nodes are used for rejecting the traversal of nonvisible parts of the 

environment. 

ABT Tree Creation 

The creation of such a tree begins with the root node containing a reference to the. 

whole scene AABB. The recursive building method subdivides the local current 

AABB into two parts along an axis-aligned splitter. Then, each face is assigned to one 

child depending on their median (see Figure 1.14.3). 

FIGURE 1.14.3 Axis aligned bounding 

box readjustment. 

Once the distribution of all faces has occurred, each child recomputes its own 

AABB containing unique faces on this level. The ending criterion depends on the spe- 

cific 3D environments and hardware envisaged. The splitting policy will try to mini- 

mize the following attributes: 

* Space localization, as in Equation 1.14.1: 

f,(n)= Min(Area(boxLeft) + Area(boxRight)) (1.14.1) 

* Tree balancing, as in Equations 1.14.2 and 1.14.3: 

fi(n)= Min| A(Area(boxLeft) - Area(boxRight)) | (1.14.2) 

f,(n) = Min| A(! (ExtendedArea) - > (Area) |< e (1.14.3) 

° Epsilon should stay below 5—10% before a noticeable performance penalty. In 

most cases, 90% of the faces will be contained in this 5% extended AABB 
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Scene complexity, as in Equations 1.14.4 and 1.14.5: 

i,(m= Min| (> faces(boxLeft) — Me faces(boxRight)) | (1.14.4) 

(n= Min| A( [ ressources(boxLeft dt - {ressources(boxRight dt) (1.14.5) 

The final equation becomes that shown in Equation 1.14.6: 

fny=w,* f(n)t+w,*fi(n)+w;* f(r) t+w,* f,+ws* fs) (1.14.6) 

The weights will change during the traversal with regard to the engine bottlenecks 

and scene organization (scenegraph, special effects, etc.). The methodology will also 

differ for the preprocessing stage and during runtime. 

At runtime, typically each point of view will do a full or partial traversal during 

the different rendering phases (culling, shadow, collision detection, etc.). Thankfully, 

ABT-tree traversals are really simple and fast to compute. Starting from the last local 

root, the recursive function tests if either of the two children is in the frustum and if 

so, continues the tree traversal. When a leaf is reached, all geometry contained can be 
sent to the next stage in the rendering pipeline. Since each face is unique, no addi- 
tional tests are needed (like for collision detection). We can also keep a small vertex 
buffer by leaf and local materials. For reducing the number of vertex buffers used, we 
can benefit from the neighbor child’s location. Therefore, a single vertex buffer could 
be shared within their limits (generally 65K of 16-bit indices) among leaves. This pro- 

vides a more efficient branching when neighbors need to be proceeding altogether, 
improving the rendering performance [Wloka03]. 

ABT-trees can also be tuned dynamically by simply reordering each moving 
AABB among their subtrees. One downside with dynamic trees is that they tend to 
degenerate with time. 

Efficiency 

All binary trees, notably BSP and KD trees, suffer from depth level. Even with ABT 
trees’ abilities, it remains a significant issue. Assuming that the tree implementation is 
using pointers instead of implicit pointers, we can consider that every time the tree 
needs to follow a pointer, a CPU cache misses will occur. Relative to the depth level, 
the number of caches misses will increase accordingly up to a limit where they become 
more expensive than testing intersections. However, cache-oblivious trees reduce 
cache misses relative to the cache line size. The traversal then becomes less sensitive to 
memory access rather than CPU performance. 
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Complexity 

ABT trees, like all binary trees, have an O(log 7) search time [Sedgewick90]. By using 
the van Boas cache-oblivious layout representation, the search time can be majored to 

O(4 * log, (2)) where B = CoupleNodesByCacheLines [Brodal03] (see Figure 1.14.4). 

Search Complexity 

2 —1_ Standard B-Tree 

| |~2_Cache-Oblivious B-Tree 
(32Bytes Cache Line) 

7 = | -3-cache-Obiivious B-Tree 
|| (64Bytes Cache Line) 

FIGURE 1.14.4 Searching time order. 

Each node needs to store its local AABB and a pointer (or index) to its two chil- 

dren. Using a naive implementation, the memory consumption becomes relatively 

important: 

¢ AABB described by six floating-point values: 6 * 4 bytes 

¢ Pointers to its two children: 2 * 4 bytes (32-bit CPU) or 2*8 bytes (64-bit CPU) 

Total memory requirement per node is therefore 32 bytes (32-bit CPU) or 40 bytes 

(64-bit CPU). 
However, [Gomez01] has shown that we only need to keep the relative extents for 

each child, which can be truncated to an 8-bit integer value. This conservative esti- 

mate will have a relative error of 1/255, or approximately 0.4%, which is covered by 

the average 5—10% AABB overlapping. 

Exploiting Redundancy 

[Gomez01] has described practical ways for reducing the memory footprint. At each 

subdivision, 6 extents from the 12 defining the children’s AABB come directly from 



164 Section 1 General Programming 

the parent, as all faces will be propagated to the leaves. For saving a few bytes by-node, 

we store them by couple. Thus, instead of keeping the absolute AABB locally, each 

couple of nodes will keep the proportion to their direct parents AABB. 

Consequently, six bytes are needed to represent the children relative ratio. An 

additional byte specified through different flags will use this relative position from the 

two children and reuse the parent value. During runtime traversal, the recursive 

method will recompute the local AABB on the fly. Finally, since the last byte has 

unused two bits at this stage, we specify whether the left or right children are nodes or 

leaves (see Figure 1.14.5). For keeping a cache-oblivious data structure, we store them 

in eight bytes, leaving seven bits unused for the tree itself. For instance, they allow 

specifying whether the following subtree was loaded, which may be useful for stream- 

ing worlds. 

63 62 61 60 59 58 57 56 S5 48 47-40 39-32 31-24 23-16 15-8 7-10 

LX|LY|LZ|RX/RY|RZ}LL|RL| LX LY LZ RX RY RZ 
Ratio Ratio | Ratio Ratio | Ratio | Ratio Ue 

Since computer cache-line architecture is always a power of two, we aligned 

our data structure to be 64 bits or 8 bytes. 

¢ L? specify if it’s a node or a leaf. 

¢ Ratio Lx,y,z: relative ratio based on the lowest part of the specific axis 

to enforce that the truncated AABB will be equal to or bigger than the 

absolute one. The ratio is split into 255 elements. 

Ratio Rx,y,z as above but using the higher part. 

Flags: Bit 63-58 specifies which child extend belongs to his parent 

(1 Left child, 0 Right Child). Bit 57-56 indicates if the left and right 

children are leaves elements (1 Leaf, 0 Node). 

FIGURE 1.14.5 ABT trees node data representation (couple). 

Finally, as the subtree will always be a power of two minus one, and as the cache 
line size is always a power of two, we have eight bytes available for linking this subtree 
to the next subtree. As the hierarchy tends to use implicit pointers, four bytes are used 
to provide the index to the first child available. Parts of the four additional bytes spec- 
ify which end node is connected to a child’s subtree. Depending on the cache line size, 

some bits may remain unused (see Figure 1.14.6). 
The build routine is done so that all subtrees coming from the last subtree are 

direct neighbors (see Figure 1.14.7). 
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N= cache Lines Size (Bytes) 

Byte N Byte8 Byte7 Byte 4 Byte3 Byte 0 

e Bytes 0-3: Index to the first next child sub tree. All sub trees are direct 

neighbors. 

e Bytes 4-7: Cx?: Flag specifying if the end-node i is connected to a sub 

tree. 

e Byte 8-N: Each group of 8 bytes represents a couple of nodes or a leaf. 

FIGURE 1.14.6 Cache line organization. 

Sub-Tree Index 

FIGURE 1.14.7 Subtree organization with linking to following subtrees. 

Now consider a leaf, whose composition is made of eight bytes. One bit is used to 

specify its condition. Then again, it may depend on the number of nodes the system 

may use. On 32-bit systems, 31 bits are generally enough; leaving four bytes that can 

be used for additional information (mainly for dynamic management of resources; see 

Figure 1.14.8). However, 64-bit programs may want to use more nodes and therefore 

take more than 31 bits. 
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63 62 61 60 59 58 57 56 55 48 47-40 39-32 31-24 23-16 15-8 7-10 ~~. 

e L? Specify if it’s a node or a leaf. 

e Inthis configuration, 31 bits are used for referencing the leaf, the last 4 

bytes aren’t used for the tree itself, but can store extra information (like 

for streaming worlds). 

FIGURE 1.14.8 ABT trees leaf data representation. 

Performance 

For analyzing the performance of this approach, three different implementations were 
used (see Figure 1.14.9): 

Intuitive: 6 * 4 bytes for storing the AABB and 8 bytes for the children’s pointers 
(32-bit CPU), or 64 bytes for a couple. 

Using redundancy: 8 bytes for the AABB, 8 bytes for children’s pointers, or 
48 bytes per couple. 

Cache-Oblivious (64 byte cache lines): 8 bytes per couple + 8/7 extra bytes 
needed for implicit pointers, giving an average of 9.14 bytes. The global 
memory requirement depends on the tree balancing (see Figure 1.14.7). 

Memory Consumption 

; 
@ [=] o 

& =) 

—1_ Naive 

~2_ Reuse Elements 

—3_ Cache-Oblivious ~ 

® 200 

; 
: 
g 

FEE EEE ES ES 
Nodes 

FIGURE 1.14.9 Memory usage across implementation. The memory 
consumption for the cache-oblivious depends on the tree’ balancing. 
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With regard to the eight-bit integer value for representing the children’s extents, 

the overhead to convert them back was measured. Experiments made on 16 K ran- 

domly distributed leaves have shown an overhead of about 7%, which is clearly com- 

pensated by the better cache-friendly design. 

Validation Phase 

Validations were made through several tools. [VTune04] was used for observing 

memory access and discovering nonrelated bottlenecks. Using [PAPI04] allows us to 

monitor hardware counters as well. They can keep track of cache misses, TLB misses, 

and similar events. However, specific measurements have required the creation of a 

dedicated profiler. Through the several implementations from RAM-based to cache- 

oblivious ones, statistics were collected for improving and understanding the cache- 

oblivious implementation. 

Conclusion 

Even if this gem was focused on culling algorithms, ABT trees are also useful for many 

others elements including AI or 3D sound management. This allows sharing the rep- 

resentation of the world using multiple views [Bar-Zeev03}. 

Current hardware evolutions require studying the cost of accessing data through 

the different layers of memory. CPU speeds will continue to improve greatly, but the 

memory evolution cannot follow. Computers will become more and more dependent 

on memory access rather than on pure raw performance. 

Real-time simulation using large data sets will become limited by the memory 

bottleneck, reducing the impact of CPU evolutions. Finally, the adaptive nature of 

cache-oblivious algorithms provides a better alternative over cache-aware algorithms, 

while offering near to similar performance. 
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Nc all the code that goes into a game needs to be written by programmers. Many 

activities that a game must accomplish may be better expressed using a special- 

ized description that is converted during development into data and code. This 

process, known as code generation, potentially works very well for systems that can be 

implemented with state machines. For a more complete discussion of code genera- 

tion, see [Herrington03]. Code generation requires expressing the requirements of the 

intended system completely and unambiguously prior to the generation process. 

Describing a state machine with this level of detail—the topic of this gem—can be 

accomplished visually using flow charts. 

Why Code Generation? 

Incorporating some level of automatic code generation into your development process 

has several benefits. For example, you could write (and debug) once the code that con- 

verts state machine descriptions into data and code has run, and you can reuse that 

converter throughout your project. This is also possible for the state machine itself that 

actually uses the generated data and code. Once written, debugged, and tested, those 

components may be used and reused to power UI screens, complex particle effects, in- 

game cinematic sequences, and even game logic. Building this level of runtime data 

and code generation into the system along with the ability to execute it on the fly pro- 

vides enormous flexibility and freedom to content creators. The generation of a state 

machine from a specialized visual state machine description offers a number of advan- 

tages over the standard and all too common practice of having a designer write a 

description of a system in text as a specification for a programmer to implement. 

Perhaps the biggest advantage of such a system is the most obvious one. The state 

machine description is expressed visually, and the final result is generated directly from 

the visual design, providing on-the-fly synchronicity 
between design and functionality. 
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170 Section 1 General Programming 

A change in the design results directly and immediately in a change in runtime opera- 
tion of the state machine. Another advantage is that special-purpose data creation and 
visualization tools can ease layout of the state machines. 

An obvious first choice for data creation and editing would be a flow chart dia- 
gramming tool. As opposed to a textual description of a system’s operation, a designer 
or programmer can take a look at a flow chart describing the entire system and spot 
logic flaws or design problems visually before any coding time is spent implementing 
the problematic system. Working within the constraints of a visual tool also enforces 
that the system is consistent and viable. Instead of a programmer running back to 
design to find out whether or not the player can fire his weapon while jumping, 
designers can make this decision at design time by either linking the weapon firing 
state from the jumping state or not. Rapid reconfigurations of logic flow can take 
place, and a number of different approaches towards runtime actions can be per- 
formed, without any manual code modification. 

SR A 

To make visual design of state machines viable, a number of game engine parameters 
and methods will need to be predefined and presented to the state machine designer. 
These are parameters and methods that will also need to be exposed to the state 
machine engine from inside the game engine. They may be as simple as a global set of 
Booleans describing the current state of input from the player, or they could be a 
more complex scripting system exposing timers, event generation, game object man- 
agement, and more. 

A number of small, easily testable, possibly unrelated variables, methods, and 
modules can be linked together with a state machine to create the intended in-game 
activity. An example would be a simple state machine that modeled the actions of a 
pistol. A programmer could implement a number of discrete activities necessary for 
incorporating a gun in a game like providing hooks to play sounds, generate particle 
effects, and damage game objects. Then, a state machine can be laid out with a visual 
design tool, and a number of gameplay actions can be experimented with and iterated 
over, as will be discussed later in this article. 

Applying General Tools 

A number of different tools could be used to diagram the state machine flow. Perhaps 
a custom tool written to take advantage of your specific application would be the best 
solution, but a good starting point for your first experiments with visual state 
machine design and code generation is an existing flow chart editor. One such editor 
is UMLPad [Bignami04]. This GPL-licensed application runs on a number of plat- forms and works reasonably well as a simple state machine editor. Basic flow charts are easily composed with this tool, and the text-based file format is very easy to under- stand and parse, making the conversion of flow chart definitions into state machines that can run in your game engine a straightforward exercise. 
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Generic state machine engines that read visually designed state machine descrip- 

tions could be written in a variety of languages, but here we will use one written in 

Lua [Lua04]. In its tenth year, Lua is in ever-increasing use within the game develop- 

ment community [Burns04] and seems a natural fit for implementing our state 

machine engine. 

Exposing game engine variables and methods via Lua to state machine designers is 

quite straightforward, and a number of readily available resources describe approaches 

for doing so. The process can often be made even more efficient with the help of a tool 

like tolua++ [Manzur04], which automatically generates the code that exposes C/C++ 

types to Lua. For help with Lua, you should check out the short but very comprehen- 

sive Lua manual [Ierusalimschy03a] and the book Programming In Lua by Roberto 

lerusalimschy, available both in hardcopy and online [Ierusalimschy03b]. 

Lua is a dynamic scripting language where functions are first-class objects. This 

gives a lot of flexibility, as the flow chart to state machine conversion process can 

result in a mixture of data and machine-generated code. States can contain lists of 

methods that are run to determine if the machine should be advanced to a new state. 

Using a feature of Lua called meta tables, simple generic state machine management 

code can be written that operates the same for all instances of state machines in the 

game. Because all state machines share the same meta table, they all present the same 

interface, making the game engine’s use of the state machines consistent. The unique- 

ness of each state machine is contained entirely in the (visually designed) data. 

State Management 

The state machine engine described here is concise but powerful. It seems even sim- 

pler if you keep in mind the fact that the data structures, methods, and relationships 

described here are all generated automatically by the conversion script based on the 

UMLPad file. Each state is implemented as a Lua table, and the state machine engine 

keeps track of which table is the current state. The table may contain any number of 

standard methods that the engine looks for and runs at appropriate times. 

Among these methods, which need not exist for any given state, are methods run 

when a state is entered or exited. The current state is also given an opportunity to update 

‘tself when the state machine engine is updated. Each state table contains a list of links 

to the other states that are possible to enter from the current state, and each link may 

have an advancement conditional method that is run to determine whether the state 

machine engine should follow that link. Absence of a conditional means the engine will 

always follow the link. Following a link makes the linked state become the current state. 

During each state machine's update cycle the 
current state’s links’ advancement con- 

ditionals are sequentially evaluated. If none of the conditions for advancement are met, 

the state machine remains at the current state. An advancement conditional is associated 

with a given link in the visual state machine design tool and can be as simple as a single 

Boolean (is input button X currently pressed?) or may be a more complicated function. 

(Has timer X expired or is the amount of ammunition left in the inventory sufficient to 

allow reloading?) Each state has its own table of state-specific data that is available to all 
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the enter, exit, and update methods as well as each link advancement conditional 
method. This state-specific data area is a convenient place to put timers or counters. 

State machines are created by asking a state machine factory for an instance of a 
named state machine. The state machine factory loads the file that was generated 
from the visual state machine datafile, installs the state machine engine meta table, 
and returns the object to the caller. Once the caller has this table, it can begin to 
update the state machine. The user of the state machine factory can be another Lua 
script, game engine C/C++ code, or any other code for which a Lua interface exists. 
Once the state machine starts, the user of the state machine should run Update()at an 
appropriate periodic rate. If the state machine completes, Update()returns the Lua 
value nil, which evaluates to false in conditional statements. 

Putting It All Together ssmienrrsemetpaciehemnietipss sicher renee aroieentiouastneia eecesettieanctoanemeumeesinoeet 
For a concrete example of this technique, let’s design a state machine to operate a sim- 
ple gun. The gun should be able to fire bullets, run out of ammunition, be reloaded 
from ammunition stored in an inventory, and perform a dry fire when there is no 
more ammunition left. To see the visual design, you can use UMLPad and open the 

<<» file Gunl.uss from the accompanying CD-ROM; a snapshot of the state machine 
onTHECD design is illustrated in Figure 1.15.1. 

Dry Firing 

OnEnter: print(“Click”) 

state.timer = 0 

OnUpdate: 

state.timer = state.timer + frameTime 

[state. timer >= 0.1] 
[trigger Down and machine.numRounds == 0] 

{ ene Down and machine.numRounds > 0) 

OnEnter: print(“Idle”) 

[machine.numRounds < 5 and reloadDown and machine.roundsininventory > 0} 

On€Enter: print(“Bang!") 

machine.numRounds = machine.numRounds - 1 

Recoil and Recovering 

OnEnter: print(“Recoiling”) 

State.timer = 0 
OnUpdate: state.timer = state.timer + frameTime 

(state.timer > 1,5] 

Reloading 

OnEnter: print(Reloading”) 

state.timer = 0 

OnUpdate: state.timer = state.timer + frameTime 
Onexit: state.roundsNeeded = 5 - machine.numRounds 
State.roundsToLoad = math.min( machine.roundsinInventory, state.roundsNeeded ) 
print(“loading " ., state.roundsToLoad ) 
machine.numRounds = machine.numRounds + State. roundsToLoad 
machine.roundsininventory = machine.roundsininventory - state.roundsToLoad 

FIGURE 1.15.1 A simple state machine describing the actions a pistol may perform. 
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This state machine has a beginning (the large black dot) and no end. When 

begun, the state machine will progress immediately to the Idle state. Because we have 

repurposed a general state machine editor, we must be careful to follow a few conven- 

tions when filling in the data for each state. In the Activities and Description field, the 

code generation script will look for the special strings OnEnter:, OnExit:, and OnUp- 

date:. All text after each string will become the methods the state machine engine runs 

at the appropriate time. The methods will be supplied a single argument: state, which 

is a state-specific table that can be used to store data. If you incorporate this gem into 

your production pipeline, you may wish to alter UMLPad to include separate fields 

for each method. In the Idle state, only one method is defined: OnEnter. Every time 

the state machine engine progresses the state machine into the Idle state, the OnEnter 

method is run. In this example, the OnEnter method prints Idle to the screen. 

From inspection, we can see that there are three ways for the state machine to 

leave the Idle state. The conditions required for advancement are detailed on each 

link. Every state machine update cycle, those conditions are evaluated in turn and 

if/when one is met, the state machine engine makes the linked state the current state, 

first running the OnExit method of the old current state, if it exists, then the OnEn- 

ter method of the new current state, if it exists. 

In this case, pretend that triggerDown has become true because the game engine 

set this variable in response to the player pressing a fire button. The Firing state 

becomes the current state. In a real implementation, Firing’s OnEnter method would 

probably call methods to play a gunshot sound and create an instance of a bullet in 

the game world. On the next update cycle, the state machine finds only one link out 

of the Firing state, and since there is no conditional, the link is immediately followed. 

In the Recoil and Recovering state, there is also only one link out (back to the Idle 

state), but it cannot be followed until the timer has reached a certain threshold. Each 

update cycle, the state machine engine runs Recoil and Recovering’s OnUpdate 

method, which increases the timer by the amount in frameTime, a variable set by the 

game engine. The rest of the state operates similarly. 

A Showcase of Data Driven Design 

Running the conversion script ussToState.lua on Gun1.uss results in a file Gun.lua that 

the state machine factory in StateMachineFactory.lua can use to provide gun state 

machines to requesting code. The script testGun.lua does just that, requesting a Gun 

state machine from StateMachineFactory, then simulating the role of a game engine by 

providing variables like frameTime, triggerDown, and reloadDown. The script test- 

Gun.lua runs the gun through the Idle, Fire, Recover, and Reload states until all the 

ammunition is spent, then the gun falls into an endless loop of idling and dry firing. 

Now comes the beauty of this gem: reconfiguration of the existing state machine 

to meet new design requirements. Perhaps the design department would like to do 

some gameplay experiments with a weapon that automatically reloads when it is out 

of ammunition and the trigger is released. To facilitate this, a second link from the 
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Idle state to the Reload state with the conditional of not triggerDown and num- 
Rounds == 0 is created, and the state machine now has the desired behavior. Figure 
1.15.2 shows Gun2.uss with the new link from Idle to Reload. 

Dry Firing 

OnEnter: print(“Click”) 

state.timer = 0 

OnUpdate: 

state.timer = state. timer + frameTime 

[state.timer >= 0.1] 

{trigger Down and machine.numRounds == 0] 

{trigger Down and machine.numRounds > 0] OnEnter: print(“Bang!”) 

machine.numRounds = machine.numRounds - 1 

OnEnter: print(‘Idle”) [state.timer >=0. Recoil and Recovering 

[machine.numRounds < 5 and reloadDown and machine.roundsininventory > 0} OnEnter: print(“Recoiling”) 
: ; 1 ! F state.timer = 0 ne.numRounds == 0 and machine.roundsininventory > 0 . 

agi UU Lg : veh OnUpdate: state.timer = state.timer + frameTime 
[State.timer 115) 

Reloading 

OnEnter: print(“Reloading”) 

state.timer = 0 

OnUpdate: state.timer = state.timer + frameTime 

OnExit: state.roundsNeeded = 5 - machine.numRounds 

State.roundsToLoad = math.min( machine.roundsIninventory, state.roundsNeeded ) 

print(“loading ” .. state.roundsToLoad ) 

machine.numRounds = machine.numRounds + state.roundsToLoad 

machine.roundsininventory = machine.roundsinInventory - state.roundsToLoad 

FIGURE 1.15.2 A second link has been created from the “Idle” to the “Reload” state, which is followed 
when the gun is out of ammunition. 

Compare running the Gun.lua generated from Gun1.uss and Gun2.uss through 
testGun.lua with reloadDown hardcoded to false to see the effect of the new behavior. 
The gun will reload when out of ammunition, even though reloadDown is never true. 
Now pretend there is a new requirement from design. The gun needs to have a 4% 
chance of jamming, which requires three seconds to clear. Change the Idle state to cal- 
culate a chance of jamming during each OnUpdate cycle. When the trigger is down 
and there are rounds to fire, if the chance to jam is less than 0.04, the state machine 
makes the jammed state the new state. The jammed state’s timer must be increased to 
three seconds before Idle becomes the current state again. We have just created two 
new game object behaviors with a few mouseclicks and a tiny amount of typing! 
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Hopefully, the potential to use something besides a text editor to create in-game 

actions and behaviors has intrigued you. The tools and languages presented in this 

gem, while a good basis for beginning your experimentation with state machine code 

generation, are not as important as being inspired by the concept that the core struc- 

ture of systems like state machines can be abstracted, written, and debugged once, 

then enabled by data and code provided from tools that sport a number of benefits 

including self documentation of systems, rapid behavior modification, enforcement 

of system constraints, and no specific language knowledge requirements for system 

designers. 
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WW: the increasing size and complexity of computer games, it becomes more crit- 
ical that we embrace techniques that allow a more structured design methodol- 

ogy. The concept of viewing a software system as using a series of reusable components 

is not new, but it is still a practice that is not always applied where it should be within 

our industry. 
This gem presents a configurable C++ template library that is designed to ease the 

process of developing reusable software components with support for features such as 

factories, interfaces, interface versioning, type identification policies, and reference 

counting. 

First, we will introduce a number of elemental concepts that the library relies 

upon that are useful and usable separately in their own right. From these, we will 

build the foundation for the component system and demonstrate its use. 

ERE IE GONE NATL SEL EE ELITE LL, 
Type Identification System 

The library is reliant upon a means of identifying the type of a class at runtime. As 

there are many preferences to how one can implement a type identification system, it 

is presented as a configurable parameter to the library. It is a simple user-defined class 

that must be implemented at least in the form of: 

struct TypeID 

{ 
template<class Type> TypeID(const Type* type); 

TypeID(); 

int operator==(const TypeID& typeID) const; 

bool operator<(const TypeID& typeID) const; 

static TypeID FromName(const char* const name) ; 

}5 

177 
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This allows the relevant TypeID object to be created from a pointer to a class and from 

a string name of the class by means of a static member function. It also allows two 

TypeID objects to be tested for equality and provides an ordering method that is use- 

ful for when this class is used with STL container classes. 

The type identification parameter is used as a template parameter to all the classes 

provided in the library so they are not tied to any specific type identification system. 

A sample implementation that uses the C++ type_info support as found in Microsoft 

Visual C++ 7 can be found in the supplied header file RTTITypeID.hpp. 

Factories 

A method of creating our components in a manner that insulates the client code from 

the actual component details is to use a Factory pattern [Gamma95]. If we temporar- 

ily view our components under the more generic moniker of an object it will allow us 

to design a Factory class that is useful in a more general sense. 
The first requirement we wish the Factory object to fulfill is that, given the type 

of the object we wish to create, it will create an instance of the object: 

template<class TypeID, class Base> 

struct Factory 

{ 

}5 
Base* Create(const TypeID& typeID) ; 

The first issue we see from this fragment of pseudocode is that we must decide what 
type of object is returned by the factory’s creation method. For this implementation, 
we have all objects derived from a common base type, and that is what is returned 
from the creation method, as this keeps the actual concrete class of the object that is 
to be created further hidden from the client code. 

The second issue is that of how we communicate to the factory which object it is 
we wish to create. We simply pass an instance of our type identification object that 
identifies the object we wish to create to the creation method. 

As we wish to make our library as generic as possible, we also template our factory 
class on a type identification class parameter discussed previously and the actual base 
class that is returned from the creation method. This eliminates an unneeded reliance 
upon the rest of the component library. 

Such a “sushi: pick and choose the pieces you wish” mentality to library design is 
crucial for users to achieve the most out of any library. It makes the difference 
between a generic library that has a long and productive lifespan and a library that is 
more an inflexible framework that continually needs refactoring. 

We can now add overloaded versions of the creation method to allow C++ syntac- 
tic sugar that will make the use of the factory class even easier: 
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template<class TypeID, class Base> 

struct Factory 

{ 
Base* Create(const char* const name); 

Base* Create(const TypeID& typeID) ; 

template<class Type> Base* Create(); 

}5 

This allows the following creation patterns: 

Pattern 1: 

Factory factory; 

TypeID typeID; 

Base* base = factory.Create(typelID) ; 

Pattern 2: 

class MyObject; 

ie tc 
Factory factory; 

Base* base = factory.Create<MyObject>() 5; 

Pattern 3: 

Factory factory; 

Base* base = factory.Create("MyObjectName") ; 

Pattern 4: 

class MyObject; 

ite ace 
MyObject* myObject = 0; 

Factory factory; : 

Base* base = factory.Create(myObject) ; 

The first three creation patterns tend to be the most useful; and patterns 1 and 3 are 

paramount when the object to be created is not known at compile time, which is 

essential functionality for data-driven applications. 

At this point, you may be wondering how the factories know how to create the 

objects we ask for. They must be told how to do so, and if we ask for an object the fac- 

tories do not know how to create, they shall return NULL from their creation meth- 

ods. We extend the factories class definition like so: 

template<class TypeID, class Base> 

struct Factory 

{ 
Base* Create(const char* const name) ; 

Base* Create(const TypeID& typelID) ; 

template<class Type> Base* Create(); 
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template<class Type> void RemoveSupport() ; 

template<class Type> void Support(); 

}s5 

We now have two methods with which we can add support dynamically to our fac- 

tory for any object type we wish (note that we are making the assumption that all 

classes have a default constructor). Given an implementation of an object we wish to 

create that is derived from the appropriate base class, that we will call Myobject, we 

can add support to a factory for it as follows: 

class MyObject : public Base 

MyObject(); 

Ieee 

}; 

Factory factory; 

factory .Support<MyObject>(); 

Our factory object will now be able to create instances of the supported class. The 

ability to dynamically add and remove support of specific object types can be 

extremely useful and is not always available in other factory system designs. 

The actual specifics of how the factory object is able to do this so simply will not 

be described here but is provided in the accompanying source code. A brief descrip- 

tion is that the factory keeps a map of templated constructor objects for each sup- 

ported object type with each constructor object knowing how to create the specific 

object type. 

It can be helpful to apply the singleton design pattern to factories for a myriad of rea- 
sons, the most significant of which is simplicity. We can easily provide this by adding 

the following static method to our Factory class: 

struct Factory 

{ 
Maer 

static Factory& Singleton() 

{ 
static Factory factory; 

return factory; 

oa 
}5 

Employing the singleton design pattern allows us to access a single instance of our 
factory object from almost anywhere simply by referring to the factory object as 
Factory::Singleton(). Not only is this a helpful convenience but also safer. Further, 
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we can add support for child factories, meaning we can connect factories in a hierar- 
chal fashion to affect object creation in one simple way. If a factory does not know 
how to create the object we requested, we recursively descend its children until we 
find a child factory that does know how to create the object. For this support, we 
extend the factory class as follows: 

struct Factory 

{ 
void RemoveChild(Factory* factory) ; 

void AddChild(Factory* factory) ; 

}5 

Through these two new methods, our factory class can now maintain a list of point- 
ers to child class objects (constructors). In this implementation, there is no support 
for cases where a child factory is destroyed elsewhere but is still referenced by another 
factory object. The system could be extended to cope with such circumstances by 
adding reference counting functionality (or some similar safety net) to the factory 

classes. 

DLL Factories 

For the Microsoft Windows operating system, we can enhance our factories even 

further to support the concept of dynamically loadable factories using Dynamic Link 

Libraries (DLLs). We achieve this by creating a class, DLLFactory, derived from 

Factory, that wraps the loading of the DLLs and binding to the factories exposed 

through them. The DLLs only have to export a function to return a pointer to the 

factory object to be exposed. Remember multiple factories can be exposed from a 

DLL by the use of child factories. 
The implementation can be found in the supplied source code in the file, DLL- 

Factory.hpp, and an example of its use in the supplied example workspace. Note that 

care must be taken if the factory DLL is to be unloaded. Objects created using the 

DLL may still be around, which will result in access violations. Objects created 

through a DLL factory must also be released by that DLL, so the base class from 

which all factory creatable objects are derived should provide a method of self-dele- 

tion. An implementation of this typically follows the form: 

struct Base 

void DeleteThis() 

delete this; 

} 
}5 

More complicated and robust functionality in such circumstances could be added by 

requiring the factory objects to track and play a more active part in the lifetime of the 

objects they create, but that is beyond the scope of this gem. 
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Components 
Now that we have the basic building blocks of our library in place, we can concentrate 

on the actual implementation details of the components themselves. Conceptually, a 

component should be a unit of code whose implementation details are hidden from 

the client code. Communication between the component and the client code should 

be abstracted through the use of interfaces. From this, we have two key concepts: the 

component and its interfaces. 

The lifetime of the component must be managed in some way. Our factory class 

will provide creation facilities, but we can use a reference counting system to keep 

track of our components and provide the details of their destruction. The class pro- 

vides reference-counting functionality as follows: 

struct ReferenceCount 

{ 
ieee 

void Reference(); 

void Release(); 

}5 

The full implementation of ReferenceCount can be found in ReferenceCount.hpp. 

The methods provided allow the increase and decrease of an object’s reference count, 

respectively. When the reference count of the object becomes zero, the object will 
automatically delete itself. From this we can configure a specific Component class 
implementation by deriving from the ReferenceCount class and a base Component class 

provided by the library (This is shown in the file ExampleConfiguration.hpp). Addi- 
tionally, we can define a Clone() method in our Component class implementation in 

the form of: 

virtual Component* Clone() { return 0; } 

This allows a transparent way for client code to duplicate the component, and is 
optional for the component to implement. This still does not allow us to get much 
use from our components, as we can only create and destroy them. We need to add 
support for interfaces onto the components to make them usable. 

Component Interfaces 
SL TENE EAN ELD ASE RHINOS TERN OREN 

The standard way of achieving this is to use what is known as a QueryInterface() 

method. We call this method with an identifier for the interface we wish to obtain, 

and we either get back a pointer to the requested interface or NULL: 

struct Component 

{ 
template<class Type> Type* QueryForInterface(); 
Mowe 

}5 
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We could use our type identification system to specify the interface we are after, but 
we shall arrange things so that we can use yet another class if need be. Our component 
class will actually have two template parameters: the type identification system to use 
and the interface identification system to use. 

template<class TypeID, class InterfaceID > 
struct Component 

{ 

}s 

[fas 

The InterfaceID class parameter is very similar to the defined type identification 
class; it should have the form: 

struct InterfaceID 

{ 
template<class Type> InterfaceID(const Type* type); 

InterfaceID(); 

int operator==(const InterfaceID& interfaceID) const; 

bool operator<(InterfaceID const& interfaceID) const; 

}5 

In fact, it is so similar that we can still use our type identification system in its place if 
we wish. The reason to allow the possibility of an interface identification system that 
can be different from the type identification system used is that doing so allows us to 
add support for a feature called interface versioning. 

Interface Versioning 

Interface versioning in the library is supplied as an optional feature and was designed 

to overcome the problem of minor interface changes occurring during code develop- 

ment. In an ideal world, we would define an interface once and it would never 

change. If we wished to extend or change the interface, we would keep the old inter- 

face and add a new one to provide the new functionality. 

This is all well and good if you are talking about official code releases meant for 

public consumption, but typically in practice, the frequency that the interfaces will be 

changed during internal development is quite high. It is simply impractical to create 

new interfaces that often. The catastrophic effect of this is that units of code that are 

compiled separately end up with definitions of interfaces that they believe are the 

same but in fact are not. If these units of code try to communicate with each other 

through these interfaces, the effect is often terminal. 

A solution to this dilemma is to simply assign each interface a version number. 

When an interface is queried for on a component, part of the interface identification 

includes this version number. The version numbers must match for the query to be 

successful. It is much simpler for a programmer to increment a simple version num- 

ber if he changes the interface than the alternative. It should also be possible to set up 
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an auto-incrementing version number scheme when the code for interfaces is checked 

in or changed to further guard against such interface incompatibilities. 

To add a version number to an interface, we simply derive it from the following 

template class with the version number as its parameter: 

template<unsigned Number> 

struct Version 

#ifdef DEBUG 
enum { VersionNumber 

#else 

enum { VersionNumber = (int)Number }; 

#endif 

-(int)Number }; 

}5 

So an example versioned interface would be: 

struct MyInterface : Version<2> 

{ 
i]. 

}5 

If the code is compiled in debug mode, we assign all interfaces negative version num- 

bers. This is useful because we do not wish debug components to be used or mixed 

with release components (and have their use flagged as errors) in certain cases. In the 

case where we are allowed to freely mix debug and release code, only the absolute 

value of the interface version will be taken for interface identification comparisons. 

This behavior is optional and could be controlled by a compile time setting. 

We can be even more flexible by allowing version numbers to be optionally spec- 

ified. If they are not specified, version numbers default to zero or some other value, so 

they are called relaxed versioning. The provided file InterfacelD.hpp includes three 
interface identification classes that allow you to choose between strict versioning, 

relaxed versioning, or no versioning. For example, to select strict versioning you 
would declare your interface identification class as: 

typedef InterfaceID WithStrictVersion <TypeID> MyInterfacelID; 

Note that the class still requires an underlying type identification system with which 
to function, the one provided in RT'TTTypeID.hpp being ample for most purposes. 
The Interface1D class provides its versioning functionality with C++ trickery that is 

evident in the code provided. 

Defining Components and Their Interfaces 
‘ensneer pe anonertaartcioeter aie area Se er A ENR RTE 

All that background information and setup code still does not tell us how we can 
implement a component and its interfaces. To best illustrate the implementation and 

binding of components and interfaces, a direct example follows. 

ES I HCL 
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// Define an interface 
struct Movable 

{ 
virtual void GetPosition(float& x, float& y) = 0; 

virtual void SetPosition(float x, float y) = 0; 

}5 

// The components implementation 
struct Player : Component, Movable 

{ 
float x, y; 

Player () 

{ 
ExposeInterface<Movable>(this) ; 

} 

void GetPosition(float& x, float& y) 

{ 
xX = this->x; 

y = this->y; 

} 

void SetPosition(float x, float y) 

{ 
this->x = x; 

this->y = y; 

} 
}5 

The key is the templated ExposeInterface() method (inherited from the component 

class) that takes a pointer to the interface to expose. The base component class keeps 

a map of interface identifications to actual interface pointers that are used in the look- 

up when an interface is queried for. 
One nice feature of this system is that interfaces do not have to be implemented 

by inheritance; they can also use object composition that can be preferable in many 

cases. For example, the previous component could have alternatively been imple- 

mented as: 

// Define an interface 

struct Movable 

virtual void GetPosition(float& x, float& y) = 0; 

virtual void SetPosition(float x, float y) = 0; 

}5 

// Define an interface implementation 

struct MovableHelper : Movable 

float x, y; 
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void GetPosition(float& x, float& y) 

{ 
x = this->x; 

this->y; — 
ii} 

} 

void SetPosition(float x, float y) 

this->x = X; 

this->y Y; 

}5 

// The components implementation 

struct Player : Component 

MovableHelper movableHelper; 

Player () 

{ 
ExposeInterface<Movable>(&movableHelper) ; 

} 
}5 

Actually, a factory object may even create the previously defined component; we sim- 

ply expose it to the factory class singleton in one line: 

Factory: :Singleton() .Support<Player>(); 

Then, to use the component we would typically write the following: 

Component* component = Factory::Singleton().Create<Player>() ; 

if (component) 

{ 
Movable* movable = component->QueryForInterface<Movable>() ; 

if (movable) 

movable->SetPosition(3.2f, 4.0f); 

component ->Release() ; 

} 

One thing to note is that unlike some component systems, such as Microsoft's COM 
(Component Object Model), management of the component lifetime is not done 

through the component’s interface. This separation allows greater flexibility in compo- 
nent implementations because an interface is not tied to a component by inheritance. 
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Configuring the Library _ 
Generally, users of the component library provided with this gem will use typedefs for 
particular configurations due to the complexity of the syntax associated with the tem- 
plate library classes. Even in the example code, some of the template parameters have 
been omitted for reasons of clarity. In the sample code provided on the CD-ROM, 
typedef configurations are given in the header file ExampleConfiguration.hpp. 

eSATA hi. 
A generic library that facilitates the structuring of code into reusable software compo- 
nent has been presented. It can easily form the basis of an off-the-shelf plug-in frame- 
work for many applications, and it has a syntax that is quite elegant compared to that 
of many other designs of such systems. 

Many thanks to Achim Stremplat for the idea of interface versioning and Alan 
McDonald for various suggestions. 

Reference : 

[Gamma95] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 
Design Patterns. Addison-Wesley Professional, 1995. 
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Choose Your Path— 

A Menu System 

Wendy Jones 

wendy2032@yahoo.com 

he question of how to implement the menu system of a game is usually answered 
haphazardly near the end of the project, causing the implementation to be gener- 

ally sloppy. Developers are typically more excited about the more challenging and 
seemingly more pressing issues, but menus hold a special importance to the overall 
perception and quality of the game. The game menus are the first thing the player sees 

upon sitting down to play the game, and if the players’ first experience is with an 
interface that is hard to navigate, their perception of the game—along with its fun 

factor—will instantly diminish. 
This gem focuses on the design and construction of a flexible and scalable generic 

menu system. 

Why Do You Need a Menu System? 
nosieotnneepeeonentntom oS RASA Lae nee sett ettte tennant 

Most menus are rated 4 in a hurry ea very little concern for good design or code 
reuse. When the next project comes around, the menus are once again started from 
scratch and tossed in. Menus can be a pain to work on, but racers want car selections 
and shooters need weapon choices, so menus are definitely necessary. When it comes to 
menu systems, you might as well start off with a good design to make your life easier. 

Designing a menu system that will scale with an evolving project as well as be 
reused is not too difficult. Menus need only to perform a few basic tasks: 

* Display a series of options 
¢ Allow the user to easily select options using a given input method 
* Move on to the next menu in the sequence based on the selection made 

Taking these tasks into account, it is easy to see how they can translate into pieces of 

a menu system. Let’s take a moment to break these tasks out into their abstract com- 

ponents and outline what each one’s purpose is and what it does. 

189 
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Let’s start with the menu component. The menu component can be thought of as 

a single screen of options. For instance, the first menu in a game will normally present 

the user with a few high-level options such as Play, Setup, or Number of Players. This 

series of options would constitute a single menu component in your game. Each suc- 

cessive menu in your game would then be another menu component. 

The next component is user controls. You may be familiar with common controls 

typically found in any windowing environment, i.e., buttons, listboxes, sliders, etc. 

These controls give the user a simple and consistent way of interacting with the system. 

Each menu component aggregates a series of controls to collect input from a user. 

The final component is a menu manager. The menu manager ts the primary con- 

troller of the menuing system. It creates the menus when necessary, collects information 

from the menus, and keeps track of the user’s path through the system. The simplicity 

and elegance of the menu manager allows the designer of the user interface to create 

complex menu paths while allowing the programmer a minimal, one-time investment 

in development time. The general menu manager tracks the user's path through menu 

navigation, loading and presenting only the necessary menu components. 

The Menu System Objects 
SELLA TALIS REO a RADE SERIE SNELL ONS NOOO ENCE TTR Mt IESE EE ERE YE ET BEST 

Now that we have outlined the three major components and their associated tasks, we 

can start laying out the implementation details, such as what classes we need. 

The menuing system consists of three main classes, each based on a menu task: 

the menuScreen class, menuControl class, and the menuManager class. 

The menuScreen Class 

The menuScreen class is the basis for all the menus that will be displayed. This abstract 

class includes a set of pure virtual methods providing a common interface to which all 

menus must adhere. By enforcing that all menus adhere to this interface, the menu 

system does not need to know the details of how each menu works. This allows new 

menus to be created quickly and plugged into the menu system easily. To take advan- 
tage of this feature, all menus in the system must inherit from the menuScreen class. 

The menuScreen class contains three virtual methods that must be implemented 

by each concrete menu component class: init(), update(), and render(). 

The init() function provides a single place to load the images for a menu as well 
as set up any controls needed. The init() function is called before the menu is dis- 

played. 
The update() function handles user input and updates the states of any onscreen 

items. Update() is called once per frame, right before the menu is drawn. Finally, the 

render() function performs the actual drawing of the menu to the screen. Within the 

render() function, you can modify the order in which menu items are drawn. 
The menuScreen class also includes the loadBackground() method as well as a 

pointer to a background image. Since all menus will normally contain a background 
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graphic, this function was placed in the menuScreen class for easy access. The back- 
ground image stored in the parent class can be drawn during the call to the render 
function. Listing 1.17.1 shows the description of the menuScreen class. 

Listing 1.17.1 Description of the menuScreen Class 

class menuScreen 

{ 
public 

// menuReturn code 

// The update method will return one of these codes to inform 

// the menuManager of its status. 

// NONE - no action, continue showing current menu 

// NEXT - current menu should end and go to the next menu 

// PREV - current menu ends, display the previous menu 
// POPUP - the menu is requesting a popup menu be displayed 

// END - This is the last menu and the menus are done 

static enum menuReturn { NONE=0, NEXT, PREV, POPUP, END }; 

menuScreen(void) ; 

virtual ~menuScreen(void) ; 

// load all the resources needed for this menu 

virtual bool init(void) = 0; 

// called each frame to update the menu 
virtual int update(BYTE keys[]) = 0; 

// called each frame to draw the current menu 

virtual void render(void) = 0; 

// returns a string that represents the name 

// of the next menu 
std::string& getNextMenu(void) ; 

protected: 

// loads the background image 

bool loadBackground(std::string imageName) ; 

// all menus have a background image associated with them 

resourceImage *bkgrdImg; 

// the name of the next menu 

std::string nextMenu; 

}; 

Adding User Controls 

User controls needed to gather input from the user are created with the menuControl 

class. MenuControl is implemented as an abstract class; all controls used in concrete 

menu classes will inherit their base functionality from this class. 
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The menuControl class contains information that is common to most types of 

user controls, such as control location, control type, and the curren t state. MenuCon- 

trol also offers a render() function, again allowing the system to treat all controls 

similarly. Additionally, 

ity, giving you complete control over w 

Listing 1.17.2 contains the description of the menuControl class. 

Listing 1.17.2 Description of the menuControl Class 

class menuControl 

the menuControl class contains methods for altering the visibil- 

hether a certain menu object will be displayed. 

{ 
public: 

static enum controlType { 

NONE = -1, 

BUTTON = 0, 

STATIC, 

SLIDER, 

LIST 

}5 

static enum controlState { ACTIVE=0, DISABLED }; 

static enum controlView { VISIBLE=0, HIDDEN }; 

menuControl(void) ; 

virtual ~menuControl(void) ; 

virtual void render(void) = 0; 

void setControlxXY(int X, int Y) { locX = X; locY = Y; } 

int getType(void) { return type; } 

void activateControl(void) { state = controlState::ACTIVE; } 

void disableControl(void) { state = controlState::DISABLED; } 

bool getControlState(void) { return state; } 

void showControl(void) { view = controlState::VISIBLE; } 

void hideControl(void) { view = controlState::HIDDEN; } 

bool getControlView(void) { return view; } 

protected: 
// properties of a control 

int type; // the type of control 

int locx; // the X location 

tae OC Ys // the Y location 

bool state; // whether the control is active 

bool view; // whether the control is visible 

}s 
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Controlling It All: The menuManager Class 

The menuManager class is the real workhorse of the menuing system, as its description 
hinted earlier. Implemented as a singleton, the menuManager ensures that only one 
instance is ever created, providing a single control center for creating and rendering 
menus as well as tracking the user’s path through the system. The menuManager con- 
sists of two main pieces, the manager itself and the menu factory. 

The Manager 

Depending on the game, the amount of menus can become unwieldy very quickly; 
the menu manager keeps this in check. The manager accomplishes this by keeping a 
list of all the menus the user has already visited. The last menu in this list is seen as the 
current menu. When updating or rendering a menu, the manager simply accesses the 
last object in the list and passes on the command. 

The list of menus, known as the menu trail, is how the menu manager tracks 

which menus the user has visited. At times, there may be multiple pathways that lead 
to a single menu, making it difficult to return the user to the correct previous screen. 

The menu trail solves this problem. If the user wants to backtrack through the menus, 

the manager need only traverse the menu trail in reverse. 

We have only discussed how the menu manager uses the menus in the trail so far; 

in the next section, we will cover how the menus are created. 

Listing 1.17.3 shows the menuManager class. 

Listing 1.17.3 The menuManager Class 

class menuManager 

{ 
public: 

// singleton to ensure only one instance of the 

// menu system 
static menuManager& getInstance() 

{ 
if (pInstance == NULL) pInstance = new menuManager() ; 

return *pInstance; 

}5 

// initialize the menu system 

bool init(void) ; 

// close and release the menu system 

void shutdown(void) ; 

// passes down update messages to the menus 

int update(BYTE keys[]); 

// draws the menus 

void render(void) ; 
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private: 

static menuManager *pInstance; 

menuManager (void) ; 

~menuManager (void) ; 

menuScreen *popupMenu ; 

// flag to keep track of whether a popup window 

// is active 

bool popupActive; 

// the menu trail keeps track of the menus that the 

// user has gone through. This gives the system the 

// ability to track back the path the user took through 

// the system 

std: :vector<menuScreen*> menuTrail; 

// menu factory implementation 

#define REGISTERMENU(a) registerMenu(#a, &CreateObject<a>) ; 

std::map<std::string, menuCreateFunc> menuList; 

// function that registers a menu with the factory 

void registerMenu(std::string menuName, 

menuCreateFunc menuFunc) ; 

// creates a new menu 

menuScreen* createMenu(std::string menuName) ; 

// removes a menu from the system 

void destroyMenu(menuScreen* menu) ; 

}5 

The Menu Factory 

The job of the menu factory is the on-demand creation of menus. When a new menu 

is needed, the factory receives a request to create it. The factory then creates the menu 

and sends a menu pointer back to the caller. The manager then uses this pointer to 

interact with the new menu. 

The factory also provides the benefit of limiting the amount of menus created to 

just the ones the user visits. In most cases, only a portion of the total menus are ever 

shown during a single session. For instance, if someone wants to just jump in and 

play, they most likely will not visit the options or credits screen beforehand. The 

menu factory keeps these menus from being instantiated, saving time and memory. 
The menu factory is implemented using a set of function pointers and a Standard 

Template Library (STL) map. The map stores a pointer to the constructor for each menu 
and allows the menu manager access to these when required by simply using the menu 
name (string) as the look-up key. When a new menu is about to be created, the manager 

sends to the factory the name of the menu it wants. The factory looks this name up in the 
map and uses this to create the new menu. A pointer to the new (requested) menu is then 
sent back to the manager for use. Figure 1.17.1 shows this process. 
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FIGURE 1.17.1 How a menu factory 

creates a menu. 

In most menuing systems, the creation of menus is handled by using a switch 

statement. The constructors for each menu are hidden behind a label that the switch 

uses to figure out which menu needs to be created. For systems with only a few 

menus, this is all that is needed, but when the number of menus starts growing, this 

method quickly becomes problematic to maintain. By using a factory, the amount of 

code necessary to add a new menu to the system can be kept to a minimum. 
Listing 1.17.4 shows the factory implementation. 

Listing 1.17.4 The Factory Implementation 

typedef menuScreen *(*menuCreateFunc) () ; 

typedef std::map<std::string, menuCreateFunc>::iterator Iterator; 

template<typename ClassType> 

menuScreen *CreateObject() 

{ 

} 
return new ClassType; 

void menuManager: :registerMenu(std::string menuName, 

menuCreateFunc menuFunc) 

{ 
menuList[menuName] = menuFunc; 

} 

menuScreen* menuManager::createMenu(std::string menuName) 

{ 
// find the menu being requested in the list 

// of registered menus 

Iterator iter = menuList.find(menuName) ; 

// if the menu is not in the list, return null 

if (iter == menuList.end() ) 

return NULL; 
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// second is the value, first would be the key 

// this should generate the constructor 

return ((*iter).second) (); 

} 

void menuManager: :destroyMenu(menuScreen* menu) 

{ 
if (menu) 

delete menu; 

menu = NULL; 

} 
} 

Extendibility 
i 

iaemmmmeeenaiammmaell SLO NESTON A ENNIO LORE LEE ELE TOTO 

The classes that make up the system discussed for this gem were designed to be cross- 

platform compatible with minimal changes. Since the requirements for each game are 

different, the menuing system presented here will provide you with a good base to 

expand on. Here is a short list of a few suggestions to extend the feature set of the system. 

Scripting support: Each menu can be described in an external file that can be 

loaded at runtime. The placement of controls and even their behavior can be 

scripted, giving you a completely dynamic way to create menus. 

Additional user controls: New controls can be added easily and plugged into the 

system allowing for menus to behave in any manner necessary. 

Multiple input devices: Currently, the system supports only keyboard input, but 

this can be easily changed to include a gamepad or mouse device. 

Conclusion 
SSIES ESC ERC ELC TTT EE EEC ELSE EE IE ELLE NEEL a Re ASIST ETA NE ENE 

You can find a sample implementation of this menu system-on the accompanying 

€<) CD-ROM. The sample project provided uses Microsoft Windows GDI calls for its 

ONTHECD graphics to keep things simple, though the system may easily be adapted for 

OpenGL, DirectX, or any other rendering API. As you can see, building a powerful 

menu system does not have to be overly complicated, and by keeping to and enforc- 

ing a simple yet extendible design, the system can grow to fit the needs of your game 

without too much—if any—additional overhead. 

Reference 
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Introduction 

Eric Lengyel, Naughty Dog Inc. 

lengyel@terathon.com 

Me modern video games take place within some kind of simulated virtual envi- 
ronment. They usually attempt to make that environment appear and behave like 

the real world, at least to the degree that the computer hardware allows at an acceptable 
frame rate. Displaying a realistic representation of a 3D environment and simulating 

dynamic systems that follow the laws of physics requires that programmers understand 
the mathematics used to model what we experience in the world around us. 

Mathematics as a whole is an unending series of generalizations—many are known, 
and many more await discovery. Two seemingly different mathematical notions applied 
in separate manners at one level can often be unified at some higher level of thinking 
and regarded as two cases of a single generalized concept. Our first gem, by Chris 
Lomont, discusses the branch of mathematics known as geometric algebra and presents 
the multivector generalization of commonly used operations such as rotations and cross 
products. 

During the course of game development, it is often desirable for some set of data 
points to be smoothly interpolated. Examples of such data are a set of camera positions, 

animation keyframes, and even the vertices of a low-resolution mesh. A commonly used 

tool for performing smooth interpolation is splines, usually the cubic variety. This sec- 
tion continues with two gems that pertain to splines. The first, by Tony Barrera, Anders 

Hast, and Ewert Bengtsson, discusses a technique for minimizing the curvature of 
Hermite curves while maintaining smooth interpolation. The second is a gem by James 

Van Verth that discusses applications of splines to animation control. 
Although game engines aim to simulate realistic environments as best they can, the 

result is inescapably an approximation at many different levels. In the realm of compu- 

tation, precision and speed are opposing forces that need to be balanced in the way that 

best suits the application. Our next two gems offer approximation techniques whose 

goal is achieving the best possible speed while sacrificing as little precision as possible. 

Andy Thomason first describes approximations for quaternion interpolation, and 

Christopher Tremblay next discusses the minimax approximation technique. 

We wrap up the mathematics section with a projection matrix modification trick 

written by Eric Lengyel. The mathematics behind the perspective projection matrix 

and the properties of homogeneous clip space are sometimes unintuitive, but a deeper 

understanding of their nature can lead to many useful adjustments. The technique 

described in the final gem distorts the view frustum so that the near plane is replaced 

by an arbitrary clipping plane and shows how to minimize the effect on depth buffer 

precision. 
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2.1 

Introduction 

Using Geometric Algebra 

for Computer Graphics 

Chris Lomont 

Clomont@math.purdue.edu 

Gor Algebra (GA) is a compact way of representing many geometric ideas 
useful for computer graphics, which allows one to perform calculations in a more 

unified manner, simplifying equation derivation and algorithm design. 

GA provides a single language that unifies many areas of computer geometry and has 
applications to physics, computer vision, differential geometry, and other areas. The 
power of GA for computer graphics lies in the concise way it handles seemingly unre- 
lated structures such as linear algebra, rotations in any dimension (including quater- 

nions), intersections of subspaces, Pliickerspace, dot and cross products, and even 

calculus and surface representations. For example, GA has a single formula giving the 
intersection of any subspace with another: line with line, line with plane, plane with 

plane, etc. Most derivations of intersection formulas need special cases and do not scale 

easily to higher dimensions. These are just a few areas where GA simplifies notation and 

thinking about geometric problems. Before continuing, the reader may wish to read the 

examples at the end of this gem to gain a better understanding of the benefits of GA. 

Recall how long it took to master linear algebra, then quaternions (admit it— 

they are still weird!), thus don’t assume GA will make sense and be useful after a sin- 

gle 10-minute reading. Although GA also seems weird at first pass, like quaternions, 

it becomes a powerful way to do geometric calculation, and the effort spent mastering 

it will be repaid with interest by simplifying future geometric calculations. Next, we'll 

capture the “flavor” of GA with an example capturing the essential ideas. 

The Motivating Example 

To illustrate GA, we consider a simple example starting with the two-dimensional 

vector space represented by the usual x-y plane. Treating the points (x), y,) and (2, 2) 

shown in Figure 2.1.1 oly as points does not give much computational power, but 

if we think of them as vectors (each point defines an arrow from the origin to the 
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point), we can add vectors in the usual way. This gives more structure to the plane 

and some added tools for solving problems. Next, we can create a way to “multiply” 

the points (or vectors) in a manner that behaves nicely with our addition. Of the 

many possible ways to do this, we will choose to think of each point as a complex 

number, that is, we treat (x,, y)) as x; + iy; Using iz = —1, we can multiply via 

(x, + iyy)(X2 + iV2) = (1X2 — Wo) + 112 FX y,), which is another point (or vector). 

This is a very powerful way to think of points and vectors, because this “multiplica- 

tion” of vectors is invertible, that is, we can divide by a point (i.e., a vector, or a com- 

plex number), allowing a richer framework in which to perform computations. This 

choice of multiplication is intuitive (after some study) since addition and multiplica- 

tion of points acts very much like the usual operations on real numbers. 

Note that the map (x;, y;) > x + iy sends the usual basis {e; = (1,0), e, = (0,1)} 

to the complex numbers 1 and i. So we can think of a basis for the space we have 

constructed as 1 (the scalar part) and i (the complex part). Thus, another basis for the 

x-y plane is {1,7}. 

A illustrative and powerful idea using this representation is that we can rotate a 

point (or entire drawing) by multiplication. Multiplying the point (x), ¥,) by the 

point exp (i) = cos@ + i sinO = (cos@,sin6) will rotate (x), ;) by an angle @. Multi- 

plication of vectors now has geometric meaning: multiplying by a general point 

becomes a rotation followed by a stretching. Figure 2.1.1 yields Equation 2.1.1, 

(x,.,)(x,.»,)=(ne")(ne*) 
i(6,+8,) =rr,e ; (2.1.1) 

which represents the point (x1, y;) rotated by the angle from the x-axis to (x, v2) and 

then stretched by the length r, of the vector to (x, y). We have made algebra out of 

2-space, which means we can multiply any two elements of the 2-space and get 

another 2-space element. 

Now we extend these ideas to any dimension. 

} (X11) 

(X2,Y2) ry 

i) 62 0; 

| 

FIGURE 2.1.1 he complex plane defines “mul- 
tiplication” of vectors in real 2D space. 
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Geometric Algebra PRR SLSR SENSE MEISE IE IRN i J 

We fix some notation to clarify the presentation: Greek letters like a B, ¥, and 6 will 
denote real numbers. Standard vectors will be bold lowercase letters like a, b, c. Later, 

we will use capital bold letters like A, B, M, R for multivectors, which are general ele- 

ments of the geometric algebra, in the same manner vectors are general elements of a 

vector space. 

The Algebra 

Given an n-dimensional vector space V", we construct a new vector space CV (C for 

Clifford from mathematics), the geometric algebra of V, as follows. We usually think 

of Vasa collection of vectors, which are just one-dimensional oriented magnitudes. 

The geometric algebra will extend this to handle tracking all two-dimensional oriented 

areas, all three-dimensional oriented volumes, etc. We start by defining what the objects 

of CV are, beginning with the outer product. 

The Outer Product 

For any two vectors a and b in V, we create a bivector, written a A b. This represents 

the plane spanned by a and b, the orientation of the plane, and also encodes the mag- 

nitude of the area of the parallelogram with sides defined by a and b. See Figure 

2.1.2(c) for a rough idea. A bivector is also called a 2-blade or a 2-vector. The opera- 

tor A is called the outer product (also known as the wedge product or exterior product) 

and satisfies the properties outlined in Equation 2.1.2 for any scalars @, B, ¥, and vec- 

tors a, b, ¢: 

Ana=ard=h)a vector and scalar commute 

avb=-baa anticommutative on vectors 

(Aa) Ab= A(a A b) associative with scalars 

Aa A b) = (a A b) A commutative with scalars 

(a+ Bb)vAc=aarct bac bilinearity 

an (ab + Be) =agarb+ Ppaac (linear in both factors) Q.4..2) 

We extend the outer product in the same manner to products of three or more 

vectors. One important rule we find is that for any vector a, anticommutativity gives 

aj az=-—aaa. Since the only quantity that equals its negative is zero, we must have 

a a a= 0, areal number. 

The geometric intuition for the outer product is illustrated in Figure 2.1.2. A vec- 

tor a isa directed one-dimensional object. It has magnitude and direction. We extend 

this to scalars by treating as a zero-dimensional point with magnitude ov. A bivector 
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(a) (b) (c) (d) 

FIGURE 2.1.2 One way to think of the outer product 1s using 

distance, area, and volume elements. 

is an oriented area (two-dimensional), which has magnitude and orientation. A-trivec- 

tor is an oriented 3-space, etc. This is why the outer product is anticommutative; 

reversing the order of the defining vectors will negate the orientation. Only the sub- 

space, orientation, and magnitude are unique, not the exact parallelogram shape; for 

example, the following bivectors are equal, but the defining edges are different: 

(2a) \ (3b) =(6a) A b = (3a) (2b) = 6(arb). 

Now fix an orthonormal basis {€,,€5,...,¢, }of V to simplify the presentation. 

Define the geometric algebra CV associated with V to be the vector space having 
basis consisting of all the outer powers of the basis elements of V, along with the scalar 
1. For example, if V has dimension 3, we have a basis of CV in Equation 2.1.3. We 
don’ get any other outer products since once a basis vector appears twice, the outer 

product result is 0, and we can order the subscripts into increasing order using the fact 
that swapping adjacent e; negates the answer: e; A e; = —€; A @;. 

Vemtse,,€, ,€7,€, A €,,€, AG, se AG, ee ne. (2.1.3) 
Se ee ey ee LE ge 

scalars vectors bivectors , trivector , 

2-blades 3-blade 

So CV is a vector space made of all linear combinations of the basis elements in Equa- 
tion 2.1.3. If the dimension of Vis 2, then the dimension of CV is 2” (checking this 

would be a good exercise). The general vector of CV is called a multivector to distin- 

guish it from the ordinary vectors in V. For example, a multivector in CV could be A 

= 3 + 2e, + 4e; a e@) A e;. Any two multivectors of CV can be multiplied using the 

outer product with the rules given earlier. We define a few more terms. A k-blade! is 
the outer product of & vectors. This does not have to be a product of only the e,; for 

4 ats : . ; In other areas of math this is called a &-form, and CV is the exterior algebra. We use the terminology common to GA 
since it has a more geometric feel to it. 
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example, (e, + 2e,)A (3e, - e,) is a 2-blade. A k-vector is a sum of k-blades. Thus a 
k-blade is a k-vector but not vice versa. The number & is called the step (or grade) of 

a blade. A multivector is a general element of the geometric algebra and is a sum of 

k-blades, possibly for differing & values. Thus, a bivector aA Db is a 2-blade and has 
step 2. Note a vector is also a multivector. 

As an example, if a=@,e,+@,e, and b= Be, Ge we can calculate, as in 

Equation 2.1.4, 

avb=(a,e,+a,e,) (Be, + e,) 

=a, Be, Ae,+a Be, re, +a,Be, re, FOO, A es 

=0+a,B,e,re,—a,Be, re, +0 

=(a,B,-a,B,)e, re,. (2.1.4) 

Note the scalar value is the area of the parallelogram defined by vectors a and b. 

For an n-dimensional space, we denote the outer product of all orthonormal basis 

elements as I, =e, Ae, A-:-Ae,. This is called the pseudoscalar and is often denoted 

simply as I. 

The Geometric Product 

The geometric product is the most important product, so we do not use any symbol 

for it; we merely place multivectors adjacent. We start by defining the geometric 

product of two vectors a and b from V using the dot product (also called inner prod- 

uct) and outer product, as shown in Equation 2.1.5: 

ab=a-b+anb. (231.5) 

This has the nice property that it is invertible. That is, if a is nonzero, we can divide 

ab by a to recover b, and likewise divide by b to recover a. Note that the inverse of a 

isa = a/(a . a) and satisfies aa | = a a=1. Now we have a product we can cancel, 

making this product similar to the product in the complex number example. 

Next in Equation 2.1.6, we extend the geometric product to arbitrary elements of 

CV with the following rules for scalars a, B, vectors a, b, and multivectors A, B, C: 

aB and ab have the usual meaning 

aA=Aa scalars commute 

ab=a-b+aab vector and vector 

A(BC)=(AB)C associative 

A(B+C)=AB+AC distributes left 

(A+B)C = AC+BC distributes right (2.1.6) 
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To show how to compute with these, we simplify and give formulas for an orthonor- 

mal basis—there are general formulas, but they are more involved. Any vector can be 

written using an orthonormal basis fe, ey suse, } . We can then expand any multivec- 

tor into the basis of CV. From the vector definition, we easily compute Equation 2.1.7. 

e,Ae, =e e,, df BEE; 
ee, = (O37 } 

Ib ibe. 

We write e,, , =e,e,--e, as shorthand for the geometric product of & basis 
v2" iy 2 ‘k 

elements. Then we claim without proof that e,, , =€,€, ---€, =e, A€, Av AE, 
Ue he ty Wa 1 7: 

for any h distinct basis vectors. So now, to compute the geometric product of any two 

multivectors, we proceed as follows: 

1. Expand multivectors into outer products of basis elements. 

2. Write (as earlier) the outer products as geometric products. 

3. Multiply out using associativity of the geometric product, keeping track of 

order. 
4. In each product, swap subscripts in adjacent pairs to get the desired order. 

Each swap causes a sign change if the subscripts differ, and when two iden- 

tical subscripts are adjacent, both terms are replaced with 1. 

5. Finally, write the simplified products in terms of the outer product (this 
step requires unique subscripts, so we must swap and replace with 1 when- 

ever possible in the previous step). 

This computation should be mastered—it is essential. For example, consider Equa- 

tion 2.1.8: 

ie +e, Ae, )(e, +e, Ae,)= (e, t+e,,)(e, ee 

=O, FEs, O35) F Oo313 

= —€,,—€),, FED, TC 33 

Are, Cyne, : 1+ €,CCichk Ge; -] 

Set NE Pe Pe rAe, RE re Nee. a. ti) 

With these rules, we could construct a multiplication table for the eight basis ele- 
ments of CV, which is a good exercise. And we can now by hand calculate outer and 
geometric products of any two elements in the entire algebra CV. Note the general 
geometric product has many terms: the geometric product of an m-blade and a k-blade 
potentially has terms of all grades from |\m - k| tom+k. 
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The Contraction Product 

The final product that we use is the (left) contraction product, which generalizes the 
inner product (also called dot product) of two vectors to an inner product on general 
multivectors in a manner that works well for computer graphics. This is sometimes 

called the /eft projection; there is a right projection, the dual of the left, but we do not 
cover it here. This product is used to project spaces onto other spaces, much like the 
inner product is used to project one vector onto another. The contraction product is 
denoted by the symbol 4 and expands across multivector grades in the same manner 
as the outer product. It is read as “a contract b” or “a left contract b.” 

We need some notation: for a k-blade A=a, Aa, A---Aa,, we denote the 
pr 

reverse of its terms by ne a,Aa,_,A7Aa, = (- . For a multivector A, we 

denote the grade r part as (A), or sometimes A_ if no confusion results. 
r 

The general definition of the contraction product of multivectors is 

AB "7 (A,B, aa y 

What does this mean? To compute the contraction product of an 7-blade A with an 

s-blade B, we compute the geometric product, then take the s — r grade component, 

which may be zero. The contraction product is 0 when r >, since there are no neg- 

ative grade elements. To compute the contraction product of multivectors, we expand 

into blades and compute each combination separately. Geometrically, the contraction 

product A 4 B of two blades returns a blade contained in B that is perpendicular to 

A. Figure 2.1.3 shows an example of a vector a contracted into a plane B. 

FIGURE 2.1.3 The contraction product projects spaces 

onto perpendicular components in other spaces. 

We also require that the contraction product reduce to the dot product for vectors 

and be linear in both components. These requirements give the relations outlined in 

Equation 2.1.9. 
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ai Bp=ap scalars 

ai Bp=0 vector and scalar 

a ib=ab scalar and vector 

aib=a-b usual dot product on vectors 

a.(brC)=(aisb)AC-ba(a sC) expansion formula 

(A,B):C=A.(B_C) distribution formulas 

A A(B.C)=(A.B).C eae) 

Note the contraction product is not associative: (A.B).C#A 3(B.iC). So paren- 

theses are needed to avoid ambiguity. As a simplifying notation to avoid having to 

parenthesize every product combination, the precedence conventions shown in Equa- 

tion 2.1.10 are used: 

(AAB)C=AABC #Aa(BC) 

(A.B)C=A.BC #A.(BC) 

A.(BAC)=AsBAC #(AB)AC. (2.1.10) 

This says that when there are ambiguous mixtures of types of products, outer prod- 

ucts are performed first, then contraction products, and then geometric products. 

We show an example computation before we continue. Being able to compute 

the following example covers most of what we have explained so far. Given multivec- 

tors A=1+2e,—3e, Ae, and B=2e,+7e,, compute the outer, geometric, and 

contraction products, as shown in Equation 2.1.11: 

AAB=2e,+7e, Ae, Ae, +4:0+14-0—-6e, Ae, Ae, — 21-0 

= 2e, + 13e, Ae, Ae, 

AB = 2e, + 7e,,, + 4e,, +14e 6e,,, —2le Apa 0 tae) 13123 

+ 6¢,,, —2le 

= 2e, Hedi +4 -— l4e,, oo 6e4 — Zle; 

= Ze; + fhe +4-—14e 
1223 11233 

=4-19e, —I4e Ae, +13e, WE, Ae, 

AJ B=24¢,+7 Je,,,+4e, ie, +146, se.,—6.0—2le ie), 

z 24@) )i-4 4 ena ae 4(e, goat lAlece ane 21ejegy) oh 

=2e, + /e,,,¢4—14e,, — 2 ie 

=4—19e —l4e AG +76 AGan Ge. (2.1501) 
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Inverses 

The contraction product allows easy computation of inverses for many multivectors. 
A multivector is called a versor if it can be written as the outer product of vectors.” 

Thus, a &-blade is a versor, and a versor can be written as a &-blade. Some &-vectors are 

not obviously versors, and some &-vectors are not versors. For example, e,,—€,, +€,, 

is not a k-blade (but is a 2-vector) for any & as written, but it is a versor since it can be 

rewritten as €,,—€,, +€,, = (e, +e, )a(e, +e,). A good exercise is to show that in 

three or fewer dimensions, every &-vector is actually a versor, although this is not true 

in higher dimensions. For a nonzero versor A a can be written as the outer prod- 

uct of r vectors, the (left and right) inverse is At = = A/ (A if A), which reduces to the 

special case inverse of a vector a being a7! = a/ 6 4 a) =a/a-a, as we saw earlier. For 

fun, prove that 1+e, has no (left or right) inverse in any dimension. Then find the 

inverse of 1+e, Ae,. Finally, show that 1+e,+e,Ae, and 1—e,—e, Ae, are 

inverses, but neither are versors. You must be careful with inverses since there are dis- 

tinct left and right inverses in some cases (or so the literature says). Keeping to 

inverses of versors is safe since the formula produces an inverse that works as both a 

left and a right inverse. 

Old School Revisited 
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Now that we have sie geometric algebra and know how to manipulate a few 
products, we show how some ideas from linear algebra are already present in this 

formulation. 

The Complex Numbers 

Complex numbers exist in any plane! Given a plane, pick two orthogonal unit vectors 

u and vu, and label the bivector i=uAv. Then any vector a=au-+ Pv in this 

plane can be rotated just like the example in the Introduction, using this bivector as 

the imaginary unit. Multiplying by the multivector R, =cos@+isin@ gives Equa- 

tion: 2le12, 

R,a= (acosO + Bsin@)u + (Bcos@ - asin®)v =aR ,. (Ql eh2) 

Note that the rotation direction depends on left and right multiplication, and to 

make this look more like the general rotation we write a> R,,,aR_,,,. The 6/2 

angles make this transform behave like quaternion rotations, which we examine next. 

2Note a versor can then always be written as an outer product of orthonormal basis elements spanning the same sub- 

space times a scalar “volume.” This can be useful in calculations. 
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The Quaternions 

If we define the following bivectors in 3-space 

i=e, Ae, 

then the quaternion relations apply: i =j =k’ =-1, j=k (and cyclic combina- 

tions), where the multiplication is the geometric product. The bivectors have been 

chosen to make i denote rotation about the x axis, etc., and so that there is a nice 

relationship between the usual notion of a quaternion and the geometric algebra 

notion. The set of multivectors of the form a+ Bit yj+6k is precisely the quater- 

nions, but when viewed as elements of the geometric algebra, extend rotations from 

acting only on vectors (as we usually use the quaternions) to rotations on any multi- 

vector! And the usual quaternion inverse, for nonzero quaternions, is exactly the geo- 

metric inverse! 

The quaternion method to rotate a plane requires moving all the defining para- 

meters one at a time with the quaternion. The geometric algebra method rotates the 

plane (bivector) directly by the quaternion, which is conceptually more elegant. 

Now instead of thinking of a quaternion as a unit vector on a four-dimensional 

sphere with a continuous group law, we can picture one as a planar piece (which 

defines an axis of rotation), and an angle of rotation, as in Figure 2.1.4 (the axis-angle 

view). So it seems complex numbers give rotations in two dimensions, quaternions 

give rotations in three dimensions, and geometric algebra unifies them both. Rota- 

tions in any dimension use the same rules, of which quaternions and complex num- 

bers were special cases (note they both used bivectors to rotate)! 

q 

UAV 

\~) 

FIGURE 2.1.4 A quaternion can be viewed as an 

oriented area element with a magnitude. 

Reflections and Rotations 

The reflection of a multivector K through a &-blade A (both through the origin) is com- 
puted with the transform X— —(-1 "AXA. This is illustrated in Figure 2.1.5, 
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which shows how to reflect a vector X through a vector a, by the transform x > axa. 

This is a useful formula, since it works in any dimension, and is the basis for rotation for- 

mulas that are dimension-independent. 

FIGURE 2.1.5 Reflection has a simple GA notation. 

By reflecting twice over vectors a and a with an angle 6/2 between them, we can 

rotate the objects encoded in multivectors by an angle 8. The object R = ab is called 

a rotor, and performs rotation on any multivector X in any dimension, by the transfor- 

mation X— RXR". They are more efficient to compose than matrices and are 

numerically more stable. And they rotate multivectors, not just vectors (see the exam- 

ples that follow). In 3D, expanding a rotor in terms of basis elements shows it is just 

a quaternion, as we would expect. 
There are several equivalent ways to construct a rotor. It is useful to take a and b 

to be unit vectors, since then R™ = ba is easy to compute. In 3D, a way to'construct 

a rotor that rotates by @ around an axis ¢ is to take R =cos(6/ 2)-sin(6/ 2)Ic. 

With these different and concise formulas to construct rotations, GA provides a sim- 

pler way to work out computations. And in any dimension, composition of rotors is 

computed with the geometric product. It’s even possible to do calculus on rotors to 

give velocities, accelerations, interpolations, minimizing paths, camera orientation, 

etc., but this will require more gems. As in all mathematics, this goes much deeper 

than there is space to present completely. Another advantage is that the rotor also 

keeps track of the direction of rotation, unlike a scalar-valued angle or rotation 

matrix, allowing subdivision and interpolation of rotations. In three dimensions, 

rotor interpolation is the usual SLERP, as shown in Equation 2.1.13 

ee sin((1-2)@)R, +sin(20)R, rts) 
sin@ 
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This simplifies for the midpoint between two rotations: 

sin(6/2) 
R(1/2)=———(R, + R, ). 

sin@ 

Linear Algebra Connection 

Given a linear transformation f:V"—V" (a matrix multiplication, for example), f 

acts naturally on k-blades as f ( a) =. We add the rule on scalars f ( a) =q and 

extend linearly to get a transform f{:CV — CV defined for any multivector in the 

geometric algebra. This extension plays nicely with our notions of geometry. For 

example, a linear transform moves lines to lines, planes to planes, etc. To see a linear 

transform move a line to another line, we apply f to both sides of the general line 

equation (x- a) Au=0, resulting in Equation 2.1.14 

f ((x-a)au)= f(0) 

f(x-a)a f(u) 
(F(x)- f(a))a (4) 

(x’-a’)Au 

0 

0 

0. (2.1.14) 

The Dictionary 
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Before we show how GA can simplify the derivation of equations, we first list some 

common geometric relations and how these relations translate into GA. There is not 

space in this gem to derive and explain each one, so we merely list facts and simplify- 

ing computational rules that can be applied. 

1. The geometric product is the most fundamental product; the others can be 

written in terms of it®. For example, consider Equation 2.1.15 

aAb=+(ab—ba) 

a:b =+(ab + ba) 

axb=(anb)i1, =-L(aab)=-(anb)l, 

asb=(ab).. 2.115) 

2. The usual 3D cross product is a x b = (a A b) Al, =-L(anb)=—(anb)L.. 

This is easy to verify by choosing an orthonormal basis for the span of a Ab, 
extending it to a 3D basis, and evaluating each expression. 

: : : , : , There is an axiomatic way to define the geometric product first, and derive the others from it, so we are not using 
circular definitions. This presentation way is easier to learn. 
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. Vectors are perpendicular if and only if the dot product is 0. This extends to 
the contraction product applied to &-blades! 

. Linear (in)dependence: the outer product of vectors is 0 if and only if the 

vectors are linearly dependent. Thus two vectors are parallel if and only if 
their outer product is 0. This allows simple line and plane equations. 

. The equation of a line through a point a and with direction wu is 
(x _ a) Au=0. This works in any dimension, so it is more concise than the 
dimension-dependent forms. 

. Similarly, a plane through a point a and parallel to the bivector uv is 

(x- a) Auav=0. Again, this is dimension-independent. 
. The orthogonal projection of a blade A onto a blade B is given by P, ( A) s 

(A B)B-. This is nice since it is the same expression for any two spaces: 
points onto lines, lines onto planes, planes onto planes, etc., in any dimen- 

sion. 

. Extending the projection, the expression A—P,(A) must represent the 
perpendicular component of A with respect to B. 

. The pseudoscalar I commutes with all elements in odd-dimensional spaces. 
. Given a vector N, a plane perpendicular to it in 3-space is —nl, and given a 
plane defined by uv, the normal vector is -(u A v)I. This is shown in 

Figure 2.1.6. Recall this plane has an orientation, so we include the minus 

signs to make this agree with the “dual.” 

n 

UAV 

FIGURE 2.1.6 2 3D, perpendicular vectors are 
“dual” to plane elements. 

Duality: the dual of a multivector A is defined by A‘ =ALLI. This is useful 

for exchanging “spanning” relations and “perpendicularity” relations. This 

generalizes the previous fact. In 3D, this exchanges bivectors with normal 

direction vectors, so it can be used to quickly find the normal to a plane. 

This is shown in 3D for a normal and plane in Figure 2.1.6. 

The norm of a multivector generalizes the length of a vector and is written 

JAJ=VA 4 A . It returns the area of a bivector, the length of a vector, etc. 



13. Given two versors A and B, each defines a subspace of V; the intersection of 

these subspaces is called their meet and is denoted by M = AQB. It can be 

computed via AA B= A’ i B= (A i) 1B. The dual concept is the jozn, 

which is the smallest subspace of V containing the two subspaces, written as 

J=AUB. For example, the meet of two nonparallel planes in 3D is the 

line of their intersection, as shown in Figure 2.1.7. The meet of two versors 

can be thought of as the greatest common divisor of the defining vectors, 

and the join as the least common multiple. Knowing one allows easy com- 

putation of the other via the relations shown in Equation 2.1.16. 

J=AA(M".B) | 

M=(BiJ')sA (2.1.16) 

ANB — 
re 

FIGURE 2.1.7. Think of the “meet” as the intersec- 

tion of subspaces. 

Examples 

In this section, we present several example computations that show GA in action. The 
point of this gem is to show that GA simplifies hand derivations and reduces code com= 
plexity. So when working through these examples, the reader should consider the coding 

complexity involved for each of two geometry engines: one with basic linear algebra 
routines and one supporting the geometric product. In each case, these derivations are 
short by hand and would only involve a few lines of code in the GA engine. However, 
the coding work for the linear algebra methods would involve quite a bit of code for 
most of the examples. Quod erat demonstrandum and touché, to mix languages! 

1. Given vectors x and a, suppose we want to find the component x, of x that 
is perpendicular to the vector a, as illustrated in Figure 2.1.8. The perpendic- 
ular condition is x, ;a=0, and magnitude conditions require another 
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condition: the magnitude of the area spanned by a and x is the same as that 
by aand x, (this just says the area of the parallelogram is base times height). 
Thus, x, Aa=xAa. Adding these two equations gives the geometric 
product x, Aa+x, sa=xAa+0=x,a, and this we can divide by x to 
get X, = (x A a) a '. To see how this fits into standard linear algebra, we pick 
a basis such that a= ae, and X= Be, + 6e,, plug in and expand, getting 

xX, = ((Be, + de, ) A ae, )(e, /ax) = 0€, as we would expect. 

FIGURE 2.1.8 GA has a simple notation for decompos- 
ing objects into parallel and perpendicular components. 

Now for the kicker. What if we want the vector component of x that is per- 
pendicular to a plane given by a bivector A? We do the same math and ob- 
taint x, = (x A A)A™. Elegant indeed! (Or we just project x to the normal 
—AI, of the plane, which is equivalent by duality). 

2. Next, we reflect a point through a plane. In Figure 2.1.9, B is the side view 
of a plane, and a is a vector that we want to reflect through the plane. We 
do this with the reflection through a vector idea, getting a nice formula. Let 
n be the normal to the plane. From earlier, we know the reflection of a 

through n is just nan”, and from Figure 2.1.8, the reflection of the point 

through the plane is —nan"'. To avoid making errors by believing nice pic- 

tures, note this formula still works with the “other” normal to the plane. 

Computing a concrete example is instructive. So given the point and plane, 

it is one line of code to project like this, and the equation works in any 

dimension as usual. 

3. We demonstrate the meet of two blades by computing the intersection of 

two nonparallel planes through the origin, as shown in Figure 2.1.7. We 

take planes that we can easily visualize, and get the answer we expect, as 

shown in Equation 2.1.17. 

4Actually, you need to know that for any vector x and bivector A, xA =x )A+x A Aandx , A=0 if and only if 

X LA, both of which are easy to prove. The vector case inspires this. 
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-1 
2 n nan 

ye 

We 

/ 

ye -nan-! 

FIGURE 2.1.9 Negating reflections of vectors gives 

reflection through a plane. 

(e, ae, |n(e, Ae)= 

=-e, 2 t7) 

4, We prove a theorem of Euler stating that the product of two rotations is 
another rotation by obtaining a concrete formula for the resulting rotation. 

We view a quaternion in the normal way as a scalar B, plus an axis of 
rotation q= fe +f,e,+B,e,, written B,+q. Assume that any single 
rotation can be represented as a quaternion.? Recalling the pseudoscalar 
[=e,Ae,Ae, and using the previous definitions, we rewrite this 
quaternion representation with the GA version using the transformation 
B, +q— B, —1,q. Now multiply two quaternions, and one can easily read 
from Equation 2.1.18 both the scalar and the vector defining the resulting 
quaternion. This proves the theorem of Euler and also obtains a concrete 
answer for the resulting scalar and vector. Computing this relation is messy 
and ad hoc using usual quaternions but is straightforward using geometric 
algebra. 

*We assume any rotation can be represented by a quaternion. I have a proof, but it won’t fit in this margin. 
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(p, _ P)(4, zi q) td (p, -Lp)(q, —I,q) 

= PI — Pol,4- 4% 1,p + Lplq 

= Py, —P4- P,1,4-9,1,P 

=P) -P:4-PAq-p,l,q-49,Lp 

= Py -P-4-1,(p,4+ q,P +4 P) 
> (2,4) -P:4)+(P,4+4,P +4 P) (2.1.18) 

5. A concrete rotation example is in order: the composition of rotation by 

7/2 around e, preceded by a rotation of 7/2 around e, results ina 27/3 

rotation around the vector (e, +e Fre, ) / NB . The calculation uses the 

quaternion representation from the previous example. Recall that we divide 

angles by 2. The proof is provided in Equation 2.1.19. 

eosate sin sey: ane me (lee y= (Ieee ) 4 1 4 4 2 4 V2 32 9. 13 

\ 
=Z(I+e,, +e,, fe 

1 _3,(¢, +6, +¢,) 
WHI 3 

% (€-6+¢,) | 4 
— cos— + ——— sin— (2.1.19 

6. An example of the rotation of an entire multivector at once is given by 

rotating the plane defined by the bivector B=e, Ae, by 60 degrees around 

the vector a=e, + e,. There is no need to decompose the plane into com- 

onent vectors first. We start with the normalized rotor R= cos(z/ 6)- 

la/ J2 )sin(z/ 6). Then the rotated plane is as shown in Equation 2.1.20 

Tm e€.-e 1 m7 ©.-e.,.. £ 
RBR™ =| cos——-—2—# sin— |(e, ve, )| cos—+ + —4 sin— 

[cost J2 aC al ge a 
1 V6 

a Ne +(e; +x): CIE 

6And this avoids the problem of applying a rotation to a plane and having to recompute the normal. Recall that the 

normal of a rotated plane is not the rotated normal of the plane! Usually a plane is defined by a point and normal, and 

rotating the plane requires getting two linearly independent vectors orthogonal to the normal, rotating these two vec- 

tors, computing a new normal, and obtaining a new point. 
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7. Given vectors a, b, and ¢ in the plane, we can find a vector x so that “a is to 

b as € is to x,” as illustrated in Figure 2.1.10. If these were real numbers, we 

would solve x:¢=b:a. GA behaves the same since we can now divide 
5 2 ; = = 

vectors by multiplying the ratios by ¢ to obtain the answer x = bac. 

b 

FIGURE 2.1.10 Ratios make sense 

for vector magnitude and direction. 

8. Again in the plane, we find the distance from a line with equation 

(x - a) Au= 0 to the origin, shown in Figure 2.1.11. We find the vector d 

perpendicular to the line and passing through the origin, whose length is 
the distance. The same reasoning using the normal condition and area con- 

dition used in Example 2.1.1 gives d= ( an u) u |, which gives the distance 

d|. Does this work for the distance from a plane to the origin? 
. To show an example of the projection formula, we project the vector 

a=a.e,+a,e, +a,e, onto the plane B=e, Ae,, where we have picked 
the plane so we can easily verify the answer. Since the plane is in a nice ori- 

entation, we know the answer should be @,e, + @,e,. Computation verifies 
this, as shown in Equation 2.1.21. 

F,(a) (a.B)B" 

(ae, + Oe, + O,€, le, Voss (G,. ) 

(ae, +e, )(e,,) 

ae, +a,e, (2.821) 

10. We find a general formula for the intersection of two lines in the plane 
(which is just Cramer’s Rule, except we derive it completely intuitively and 
geometrically). See Figure 2.1.12; this is hard to see the first time around. 
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FIGURE 2.1.11 Computing distance from a 

point to a line is simple. 

We can write two given lines (x-a)Au=0 and (x—b)Av —( in 

expanded form as XAU=aAU and xAV=DaAv. Set U=aau and 
V =Dbav,. It is clear the intersection is a linear combination of u and v. To 

find the coefficients, we look at the picture. The area corresponding to V 
divided by the area corresponding to uA V gives the multiple of u needed, 

and dividing U by uv gives the v multiple. However, since the orienta- 

tion of the bivectors must be taken into account, we need to reverse UAV 

in the v direction. So the final answer must be 

¥, 
ut 

UAV VAU 
x= V. 

Someone fluent with geometric algebra would sketch the picture and be 
able to write out this equation instantly. With a GA engine, there is no need 
for a complicated line intersection routine—only the geometric product! 

Vv 
~*~ i 

V \ 

qe 

FIGURE 2.1.12 Here is a graphical way to 

visualize Cramer’s Rule. 
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11. A do at home exercise: given a plane triangle with corners (x,.9,), 

i=1,2,3, show the area is the absolute value of the determinant in Equa- 

tion 2.1.22. Using only analytic geometry, this proof is a lot of work, but is 

very short using GA (about a half page). Hint: this is easy from using the 

outer product. Generalize to higher dimensions: 

ey > A 

1 
Area = 5 Ae, LE (2.1.22) 

wm y, 1 

12. As a final example, consider the problem of finding a rotation that will 

move one orientation to another, as shown in Figure 2.1.13. 

a1 b 

a3 3 

a2 b, 

SaaS Se 

b2 
FIGURE 2.1.13 Computing the transform to 

move one orientation to another is simple. 

For example, we might want to align an Al-controlled spaceship with a 
player-controlled one. If we have stored orientations as quaternions, then 
this is just an invert and multiply, but if we only have three linearly inde- 
pendent vectors defining each orientation, finding this rotation is a lot of 
work. We don’t require the vectors to be orthogonal, only linearly indepen- 
dent. Assume there is a rotation (rotor) R such that b, =RaR" for 
i=1,2,3. We want to solve these three equations for R. Lett R= a—B for 
some bivector B (thus R’'=@+B). The adventurous reader should 
attempt to solve this using linear algebra before proceeding. We define a 
reciprocal frame (which acts somewhat like an orthonormal frame) written 
with superscripts: set 
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a,aal 
al =—_2—_3 _ 

a, Aa, Aa,I 

which is a vector (easily checked), and similarly define a’ and a’. Note 

a’-a, =0'. Then we compute (carefully) the expression in Equation 2.1.23, 

which allows us to isolate R. Next, we solve for R in terms of the a’ and b.. 

To get rid of the unknown @, we normalize: set T=1+ > ba’, and then 

R= T/ IT| gives the desired rotor. The derivation is a bit of work to check, 

but the final answer is short, easy to compute, and takes very little code in a 

GA engine. Programming this given only linear algebra routines is a lot of 

work! As a final note on this example, one may need to check the sign of the 

final rotation, as shown in Equation 2.1.23, and watch out for 180 degree 

rotations. 

y'b a’ = y’Ra Ra’ 

= )’Ra,(a@+B)a' 

= R(3a+B) 

=-R(a-B-4a) 

=-R(R™—4a:) 

=-1+4aR (2.1.23) 

Conclusion and Future Directions 
RAMONE HERE ETT TAPIA NE NEI at 

We have presented the definition of geometric algebra and given rules for hand com- 
putations, which can be turned into libraries for doing the work on a computer. Basic 

geometric ideas like projections and rotations were presented, and many examples 

were given to show how to use GA for geometric calculations. It should be clear GA 

unifies many ideas into a single framework and provides a much more concise and 

powerful framework than linear algebra. So what's next? 

Well, there is a lot more math, computer science, and physics already developed 

and written in the language of GA. There is a complete description of classical 

mechanics in GA [Hestenes86]; GA seems very well suited for physics. You can per- 

form calculus on GA objects, allowing minima and maxima problems to be solved 

and allowing differential equations to be written to describe motions, interactions, 

and physical properties. We saw that GA incorporates quaternions, complex num- 

bers, projections, intersections, linear (in)dependence, and more. It also encompasses 

Pliickerspace and unites all of the following geometries into a single framework: 

Euclidean, affine, projective, spherical, inverse, hyperbolic, and conformal. This uni- 

fication makes moving from one system to another much easier and provides quicker 

croseient es 

access to the methods in each area. 
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Oddly enough, it seems GA best represents 3D geometry and interaction by 

embedding 3-space into a 5-space, called the “double homogeneous model” [Dorst- 

Fontijne04]. The power of this is that it gives spheres in a nice manner, and intersec- 

tions work in a better manner among different geometric primitives. However, this 

topic is beyond the scope of this gem. 

The most important question that the reader might still have is “Can GA replace 

linear algebra in my future game engines?” Realistically, GA is not ready due to per- 

formance reasons in fast action games. It took linear algebra/computer graphics 30+ 

years of refinement to get to the performance level it is now, and GA is just being 

adapted to computer graphics. Current hardware does linear algebra, making linear 

algebra needed for 3D engines. However the code simplicity and shortened time to 

create algorithms makes GA suitable for tools, testing, prototyping, and many other 

areas. In the same manner, subdivision surfaces were once too inefficient for real-time 

games but are now becoming widespread; it is possible that in the next several years 

GA will become an indispensable tool for developing professional games.’ Some 

experimental results can be found in [Gaigen04], where they have implemented ray 

tracers in C/C++ using both linear algebra and geometric algebra and have done vari- 

ous comparisons. 

The papers [Dorst-Fontijne04], [Dorst-Mann02a], [Dorst-Mann02b], and 

[Suter03] should provide good starting points for more information. [Hestenes98] 

discusses calculus with GA material and contains references. Finally, Web searches for 
the authors Doran, Dorst, and Hestenes yield a lot more references. As a final note, it 

is important to be aware of differing notation used by some authors. 
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his gem shows how a curve with minimal acceleration can be obtained using Her- 

mite splines [Hearn04]. Acceleration is higher in the bends and therefore this 

type of curve is a minimal bending curve. This type of curve can be useful for subdi- 
vision surfaces when it is required that the surface has this property, which assures that 
the surface is as smooth as possible. A similar approach for Bézier curves and subdivi- 

sion can be found in [Overveld97]. It could also be very useful for camera movements 

[Vlachos01] since it allows both the position and the direction of the camera to be set 

for the curve. Moreover, we show how several such curves can be connected to achieve 

C! continuity between the curve segments. 

A cubic Hermite curve is defined by four constraints: the two endpoints p, and 
Pp, and the tangents at those points t, and t,. The idea behind this gem is to make 

the curve have a minimum of acceleration along the curve, and this can be achieved by 

modifying the lengths of the tangents. Thus, the endpoints and the direction of the 

tangents are the same, but the magnitude of the tangents is set to an optimal value in 

order to obtain a minimal bending curve. We use the variable ( for this purpose. Figure 

2.2.1 shows three different Hermite curves with different tangent lengths. The dotted 

curve with the longest tangents has a noticéable bend in the middle, while the dotted 

curve with the shortest tangents is rather flat in the middle but has a noticeable bend 

close to each endpoint. The solid curve however, has the minimal bending property. 

Note that the lengths of the tangents have been scaled down to 25% in all the figures 

so that the curve is not so small compared to the tangents. 

225 
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FIGURE 2.1.1 Three different curves with different tan- 
gent lengths. The solid curve possesses the minimal bending 
property. 

Let a general cubic Hermite spline curve be defined as 

h(u)=aw +bu? +eu+d. 

Then the Hermite spline coefficients [Hearn04] are given by 

a 2972 guido kipep; 

Die Antttaia 2 aeaon bill Pe 

c OO eke UL Gat 

|! eqns Qed ono mM pent: 

(2:2.1) 

(2.2.2) 

Note that variables @, and Ql, are used later to set the optimal tangent lengths. Let 

the vector between p, and p, be denoted p,,. Thus p,, =p,—p,, and the coeffi- 

cients for Equation 2.2.1 are given by Equation 2.2.3 

a=at + at, - 2P,, 

b=3p,, —2a,t, —@,t, 

C= at, 

d=p,. (2.2.5) 

A common method for minimizing the difference between two functions is the least 
square approximation [Burden89]. We use the same basic idea; however, we minimize 
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the acceleration instead. The minimal acceleration for each 0, is found by solving the 
pair of equations 

h’(u)| du=0. (2.2.4) 
aie 

al 
This equation can be interpreted as follows. The acceleration of the curve h, (i.e., the 
second derivative of h) is squared in order to avoid negative values, and these are 

summed over the whole interval by the integral. This sum depends on the different @. 
To find the optimal coefficients, the result is differentiated and set to zero. Hence, the 
minimum of the function is obtained, giving the minimal acceleration over the whole 

interval. The necessary computations are shown in Equations 2.2.5, 2.2.6, and 2.2.7 

h”(u) = 6au + 2b (2.2.5) 

h”(u)|) =36a°u? +24a-bu+ 4b? (2.2.6) 
1 

Jha du = 1207 +12a-b+4b% O27) 
0 

(We use the notation a” =a-a in order to make the equations easier to read.) Substi- 

tuting the values given by Equation 2.2.3 into Equation 2.2.7 and differentiating 

with respect to each @, gives Equation 2.2.8 

Dine ia! h’(u)| du =80,0? +4a,,t, t,-12p,,t, 

0 2 2 poe h’(u)| du = 80,03 + 4a,t, -t, -12p,,t,. (2.2.8) 
a, 0 

Setting both equations to zero yields the following system of equations 

2 ae 8a,17+40.,t, t, =12p,,-t 
1 

4a,t, -t, +80,t; =12p,,-t (2.2.9) 2° 

Or in matrix form after dividing by 4, we have 

oP oat ta O.| . | 3p,, oh; 
3 7 (2.2.10) 

t,t, 2 {Lo 3p. °t, 
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Multiplying both sides by the inverse of the first matrix gives 

1 
a Di peat 3p,,-t 

oe oe a) (2.2.11) 
at, t,-t, or 3p,7t 

The solution is Equation 2.2.12 

= 3(2t; (p,, Tat -t,)(P,; ‘t, )) 

Se oma aie 
9 32H (Pat) “(ht (Ppt) (2.2.12) 

; Att, ate ‘t, c 

These two values of ( were used for the solid curve shown in Figure 2.2.1. Now we 

have the mathematical tools we need to put several curves together. Actually, we can 
define several curve segments where the endpoint of the first curve is the same as the 

starting point of the second curve. Moreover, if the tangent at the endpoint of the first 

curve is pointing in the same direction as the tangent of the first point of the second 

curve, then we have G' continuity [Foley97]. However, if we want the tangents to 

have the same length in order to achieve C’ continuity, we have to proceed in a 
slightly different way, as shown in the next section. 

Connected Minimal Bending Curves with 

C1 Continuity 

If Seal Hermite curves are eee wid Ch continuity, as shown in Figure 2.2.2, 

we have to solve a system of equations generated by the integral in Equation 2.2.13. 

0 | 2 
ay } + h’(w)| 

220 

We do not show all the calculations for this since they are basically the same as previ- 
ously explained, but the system of equations has k +1 unknowns if there are & curves 

hy(u) h”_(u)| du=0 (2.2.13) 

and thus k+1 values of @ Once again, let the vector between p, and p,,, be 
denoted p, ,,,. In this case we obtain 

pie 2 a h/(u)| du =8a,r? +40.,t, t, -12p,,-t, (2.2.14) 
1 0 

aly 2 
aa, 4 h?(u)| du =4ort,-t, +1600; +4e,t,-t,-12p,,-t,-12p,,-t, (2.2.15) 

Jam 2 
5 J Ihe (u) 

3.0 

=4a,t, t, +16a,f, + 4a,t,-t,-12p,,-t,-12p,,-t, (2.2.16) 
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and so forth, and finally we get Equation 2.2.17 

1 

Fly, (wf d= Art, t, +B I2Ppaa tage (2217) k+1-k+1 

00.41 0 

Once again we divide Equations 2.2.14 through 2.2.17 by four and rewrite them into 
matrix form, just as we did for Equation 2.2.8 to get the matrix in Equation 2.2.10. 
Note that if the tangents are normalized prior to solving the system, then t? = 1. This 
makes the matrix even simpler, but this is not done here. The system that needs to be 

solved looks like Equation 2.2.18 

pL adres Oe AV "++ 56 0 Ia, 2 Oy 

CRNA» Tpeste had OT eG Or ten 3t, -(P,, +P,,) 

Oren trod nate 1 tout fg 0 | a, |=|3t,-(@,,+pP,,) |. (2.2.18) 

0 0 0 Overs Spry, ti Oe Stas Peis 

Note that nonzero entries appear only on the main diagonal and immediately above 
and below it. A system involving a matrix of this form is called a tridiagonal system 
and can be solved very efficiently using a specialized algorithm [Lengyel04]. 

Ps 

Po P. 

P1 

FIGURE 2.2.2 Zhree connected minimal bend- 

ing Hermite curves. 
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A Closed Loop of Minimal Bending Curves 
tr i Smt es MMe RE eA EE SZ TANASE NOT EL NL TE 

If a closed loop is desired as shown in Figure 2.2.3, the system can be simplified, since 

the first point and tangent are the same as the last point and tangent. We do not show 

all the computations here, but the resulting system is 

4t; t, “t, 0 0 eG 0 t,;t, a, at, (DS. st Deol 

tt, At; tts 0 ss 0 0 a, ot. (ft Da) 

Ott) 40 te te re 0 0 ja, |=} 3t,-(P,+P,,) |. 2.2.19) 

t,t, 0 0 Doo ty att ha a eh ot Ri ee 

This system gives unknowns instead of the k +1 unknowns associated with a non- 
closed loop connected curve. The presence of the nonzero entries in the lower-left and 
upper-right corners make this system a cyclic tridiagonal system. It can be solved by 
applying the Sherman-Morrison formula to the ordinary tridiagonal system as dis- 
cussed in [Press92]. 

Ps 

Pi 

FIGURE 2.2.3 A closed loop of three connected 

minimal bending curves. 

Conclusion 
eat RENO HE ARC EO Se seenteeennsiaremnnesnsnietite SRS IRS HER eR a 

We have shown how a cubic Hermite spline can be modified in such a way that a 
minimal acceleration curve, or as it is sometimes called a minimal bending curve, is 
obtained. This is done by computing the least square acceleration over the curve and 
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setting the tangent lengths to optimal values. We have also shown the necessary com- 

putations for connecting several such curves with C’ continuity. This yields a simple 
system of equations to be solved. Moreover, it is possible to construct a closed loop of 
such connected curves. Possible uses for a minimal bending curve is for surface sub- 

division, and the connected version can be used for camera movements. 
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2.3 

Spline-Based Time 

Control for Animation 

James M. Van Verth, Red Storm 
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oO" of the standard problems of animation is moving an object along a path rep- 
resented by a parametric curve Q(u). For most curves, using the standard para- 

meterization does not give constant speed, so it is necessary to reparameterize the 
curve by distance d to get Q( d). Then time is mapped to distance using another 
function, d ( t). For constant speed, the function d(t) is a line, but we can use any 

function that maps time to distance. 

Previous articles ([Olsen00], [Krome04]) have discussed ease-in/ease-out functions 

to manage velocity along a curve. This gem describes how to construct a general dis- 

tance-time function using piecewise splines. Various parameters are used to constrain 

this function. For example, there can be distance keys requiring that a particular point 

must be hit at a particular time. A speed can also be attached to such a key requiring that 

a particular velocity be reached at the given time. Less-specific parameters can be set at 

each key, like fast-in/fast-out (approach/leave quickly) or slow-in/slow-out (approach/ 

leave with zero speed), or smooth (move as smoothly as possible). The goal is to provide 

a flexible system for animators to use within internally built animation tools, in particu- 

lar for camera animation with in-game cinematics. 

To build the distance-time functions, we use piecewise Hermite splines. Some 

knowledge of such splines is assumed, and basic information about them is provided as a 

refresher, but [Burden93] and [Rogers90] cover this in more detail for those who need it. 

The purpose of the particular functions that we create here is to control our speed as 

we move along a fixed path in space. This path is usually generated by a parametric 

curve, but for our purposes, we don’t actually care whether it’s a series of piecewise lin- 

ear functions, a Bézier curve, or a B-spline. All we care about is that we have a general 

function of the form Q(w): we enter a value u, and out comes a point Q in 3D space. 

As u increases, the function traces out a path in space. 

sAectUONNO AONE CNMI NNER TMNT TN TC NIN 
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Before we add our own time control, we need the object that we're animating to 

move at a constant speed along the length of the curve, using only the parameter wu. 

However, with cubic curves (the most common case), the relationship between dis- 

tance along the curve and the parameter u is not linear. In some places, we move a 

short distance along the curve for a step of Au, and in some places, we move farther. 

This is because to provide the curvature we want, we have to vary the first derivative 

and hence the speed at which we move along the curve. 

Obviously, if we want to maintain constant speed, this is not desirable; in some 
areas of the curve we are moving faster than in others. The solution is to reparameter- 
ize the curve by distance. Rather than find a point on the curve using the parameter 
u, we find a point using a parameter d, where d represents the distance along the curve 
from the start of the curve. As we increase d at a constant rate, we move along the 
curve at a constant rate. In most cases, computing the reparameterization for a cubic 

curve is not practical with analytical methods. Handling this involves using numerical 

methods, usually either root finding or table-generated solutions, which are described 

in more detail in [Eberly01], [Parent02], or [VanVerth04]. For our purposes, we 
assume that we already have such a parameterization for our curve. 

General Distance-Time Functions 
se een re REAR ESC ea. 

Rather than moving along the curve by distance, we generally want to move via time; 
that is, determine where we are on the curve at time ¢. So we need some means to 

convert time into distance and use that as input to our reparameterized curve. We can 

represent this by a distance-time function d(t), which varies the distance parameter 
based on time. A point on the curve corresponding to a time ¢ is given by evaluating 

Q(d (t)). For example, traveling at constant speed is a linear function that starts at 
(0,0) and ends at some maximum time and distance. This is commonly normalized 
so that maximum time and distance are both 1 (see Figure 2.3.1), so it can be used 
with multiple curves. To adjust our input ¢ to work with our normalized function, we 
can use Equation 2.3.1 

t= x (2.3.1) 

where ¢, and tf, are the arrival times for the start and the end of the curve, respec- 
tively. To adjust our output, we multiply the result d (t) by the total length of the 
curve. We then plug that into our reparameterized curve to obtain our final position. 
For simplicity’s sake, we assume that we are performing these corrections by default, 
and any time and distance values we refer to below lies between 0 and 1. 

There is no reason to limit our distance-time function to just linear functions. 
Let's look at another example: the ease-in/ease-out function (see Figure 2.3.2). There 
are a number of ways of computing a function of this type ([Parent02], [Olsen00)]), 
but they all have the same basic shape. Using this as our distance-time function gives 
the following result: we start at zero speed at the beginning of the curve, ramp up to 
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d 
A 

My 

SS > | 

0 1 
FIGURE 2.3.1 Linear distance-time function. 

+» f 

0 1 

FIGURE 2.3.2 Ease-in/ease-out distance-time 

function. 

maximum speed at the middle of the curve, and then slow down to zero speed at the 

end. This gives a very natural look to movement along the curve. Rather than starting 

abruptly at a given velocity, maintaining it along the curve, and then stopping 

abruptly at the end, it looks much more like the acceleration and deceleration needed 

to move a physical object. 

We don't have to stop there. We can use any function of t with domain [0,1] that 

doesn't have a range outside of [0,1] (i.e., time and distance remain clamped to the 
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normalized intervals). Beyond the basic constraints, how we lay out our function con- 
trols how we move along the curve. Figure 2.3.3 shows a distance-time function for 
which the slope is always nonnegative. In this case, we never move backward along the 
curve as f increases. If the function has negative slope at any point, we do move back- 
ward along the curve for that segment. Figure 2.3.4 shows such a curve; the gray sec- 
tion indicates the segment with negative slope. Note that in this function, we also 
delay departure, and then arrive early and wait. Using this technique gives us a great 
deal of flexibility for controlling speed and arrival times on our animation path. 

rQ 

SS 

0 1 

FIGURE 2.3.3 Distance-time function 
with non-negative slope. 

as 

0 etre 

FIGURE 2.3.4 = Distance-time function with 
one section of negative slope and showing 
delayed departure and early arrival. 
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Creating Distance-Time Functions with Splines 

In general, we can use any function that satisfies the previously stated criteria, but for 

ease of construction, we use piecewise Hermite splines because they have a few advan- 
tages. They are fairly easy to compute, and they provide simple handles for control: 
endpoint positions and velocities. However, we use them here in a slightly different 
way than they are usually presented. Since we are only interpolating across distance 
not points in space, the positions are real numbers rather than multivalued vectors. 

Similarly, the tangent at each control point becomes the slope of the curve at that 

point, and velocity becomes speed. 
The standard definition of a Hermite curve between positions p, and p,,, and 

slopes py and pj,, is shown in Equation 2.3.2. 

H(t)=(28 -37 +1)p, +(-20° +30?) p,,,+(0 - 20 +1) 7, +(f -0) pf, (23.2) 

This is also called a normalized Hermite curve, because the parameter f lies in the 

interval [0,1] . In our case, there are multiple sample positions P,.-.,P,,. Each inte- 

rior sample position p, has two slopes: the outgoing slope P;,» and the incoming 

slope p/,. These slopes can match if we want a smooth curve or not match if we 

want a “kink” in the curve. To generate a continuous function from py) to Pp, we 

create subcurves that interpolate between succeeding pairs of positions. So subcurve 

H, interpolates between Py and p,, H, interpolates between p, and p,, etc. This 

is called a piecewise Hermite curve. Figures 2.3.6 through 2.3.9 show examples of 

such curves. 

In our case, the positions represent distance values along the path. Associated 

with each distance value p, is atime f,: the time at which we want to arrive at that 

distance. Each pair of values is called a distance key. These t, values are in increasing 

order, so that t, <t,,,- This means that each subcurve has a different interval 

[7 pt i | for its local domain, which is not necessarily [0,1]. Clearly we can’t use the 

standard definition; the solution is to use a slightly more complex but more flexible 

representation for our Hermite curves. 

There are two parts to this. First, we have to convert our input time to something 

usable in the standard formula. Given a time ¢, we first find a subcurve for which 

t, <t<t,,,. We then apply Equation 2.3.1, where t,=t, and t, =t,,,- As before, 

this will map ¢ to a value f that lies within [0.1], which we can use in the standard 

formula for a Hermite curve. Secondly, we must also correct the slopes at each sample 

position. The original slopes assume that we are moving the same number of units in 

t as we are in d. However, we've scaled our ¢ value by | (t ied | ne so we correct for 

this by scaling our slopes by te -t,). So for a given p;, DP, =P; (ta: —t,). The 

combination of these two adjustments allows our time inputs to be used with the 

standard equation for a Hermite curve. 
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So computing the distance-time function is fairly simple: we find the correct sub- 
curve by searching for the time key pairs such that t, <¢ <t,,,. From that, we com- 
pute 7, and then use the result in the standard Hermite formula with the corrected 

slopes for that subcurve. The result is our distance value d. However, how do we cre- 
ate the Hermite spline in the first place? 

Incoming and Outgoing Speeds 

One way to make a spline-based distance-time function is to specify the incoming 
and outgoing speeds at each key, which are used as the endpoint slopes for our piece- 
wise Hermite curve. There are a few possibilities for setting the speeds. First, the user 
can define them. Usually the user wants to specify the speeds in game space, so these 
have to be converted into an equivalent speed in the normalized distance-time func- 
tion by multiplying by the total desired time for the space curve and dividing by the 
total length of the curve. As before, these speeds have to be corrected for the non- 

normalized Hermite curves by multiplying by the time interval of the subcurve. One 
concern is when the user sets a speed value with a large magnitude; the curve may 
loop outside the desired range interval of [0,1] (Figure 2.3.5). However, if a graphic 
display and enough error feedback are provided, this can work quite well. 

FQ 

0 mmr ts 

FIGURE 2.3.5 Large user speed leads to 

invalid distance-time function. 

For another approach, we notice that there are some standard cases for which we 
can set default values, and that can be used in combination to create functions with- 
out the user needing to set slopes directly. Standard animation parlance talks about 
slow-in, slow-out, fast-in, and fast-out. The -in and -out parts refer to the arrival and 
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departure speeds for the key, respectively. Slow means the speed is 0 at the key. Fast is 
less well defined but basically means that the object leaves the key as quickly as possi- 
ble. Assuming that keys are increasing in distance and the user wants to avoid the 
object backing along the curve, we define “fast” so that the minimum speed along the 
resulting curve is 0. If the keys are decreasing in distance, we just negate that so that 

the maximum speed is 0. Slow-out from one key to a slow-in at another key gives us 
something like the familiar ease-in/ease-out curve. Fast-out to fast-in gives us the 
reverse: we start out fast, then slow to 0, and then speed back up again. Figure 2.3.6 

shows a function that does a fast-out to a fast-in, followed by a slow-out to a slow-in. 

Setting up slow-in and slow-out is simple; we just set the in or out speeds to 0 at 

that key. If we want something closer to the ease-in/ease-out curve, we can add an 
additional key at the average point between the original keys and set it to have fast- 
in/fast-out speed. 

We can derive the speeds for fast-in and fast-out by using two constraints. First, 

the speed at the midpoint of the curve is 0. We can represent this by taking the deriv- 
ative of a standard Hermite curve at the halfway point and setting it equal to 0, as 

shown in Equation 2.3.3 

Oe 2 42) 

= (6(1/2)' -6(1/2))p, +(-6(1/2)' +6(1/2)}P,, 

+(3(1/2) -4(1/2)+ 1) pi +(3(1/2) -2(1/2)) Phar 
= 6 Pi — 9D, — Peg ~ Prats (23:3) 

Second, the speed at the start of the subcurve needs to match the speed at the end of 

the subcurve. This allows us to rewrite Equation 2.3.3 as Equation 2.3.4 

0= 6( Pear —p,)-20%,, 

Po = 3( Pear a P,): (2.3.4) 

This speed will be used for fast-out at key & and the same for fast-in at key k+1. We 

can use this speed with our normalized Hermite equation, so we don't have to correct 

it by (tx — 7) as we did in the other cases. However, if we're correcting all speeds as 

a final processing step, we can set the fast-in/fast-out speed to iat =D ie = t,) 

instead. 
Other standard parameters exist. Linear means that the distance-time curve takes 

a straight line from one key to the next key. The outgoing speed at the start key and 

the incoming speed at the end key are set to the slope of the line specified by the two 

points. Step means that the distance-time curve remains at one key until the time 

interval has elapsed and then immediately jumps to the next key. This is not as conve- 

nient to represent with a single spline, as there is a discontinuity in the curve. One 
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rQ 

0 1 : 

FIGURE 2.3.6 Fast-out/fast-in followed 

by slow-out/slow-in. 

solution is to create a new key at the same distance as the first key but just before the 
second key in time, and then create two linear steps: from the first to the hidden key, 

and then the new key to the second key. The other is to simply break the spline at that 
point and start a new spline. Figure 2.3.7 shows a function with two linear sections, 
separated by a step. 

FQ. 

[A eho 
0 1 
FIGURE 2.3.7. Distance-time curve showing 

linear sections and a step key. 
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Figures 2.3.6 and 2.3.7 show that there is no reason that the incoming and out- 
going speeds at a given key have to match; while not physically realistic, it is some- 
times useful to have an object arrive slowly at a point and then immediately tear off at 
high velocity. As another example, animators can use fast-in/slow-out to create a 

quick reaction time to an event and then a slow recovery. Similarly, we don’t have to 
have matching -out and -in speeds on a given subcurve. For example, we could start 
off with a slow-out at one key and end with a fast-in at the next one. The end result 
would ramp up the object from rest from the first key to a high speed once it reaches 
the second. It’s all up to the needs of the animator. 

Automatic Curve Generation 

An alternative to setting the speeds directly is to set a series of distance keys, as described 
earlier, and then automatically generate the subcurves that interpolate between those 

- keys. While we have “positions” that define the ends of each subcurve, we still need 
speeds at each key that can be used in the piecewise spline. We'll usually want a smooth 
curve, so in this case, we'll assume that the incoming and outgoing speeds are the same. 

There are a number of approaches that can work, but the method that gives the 

smoothest result is to use a natural piecewise Hermite spline. This involves setting up a 

series of linear equations that maintain C * continuity for interior points on the spline 

and zero-valued second derivatives at the endpoints; more detail can be found in both 

[Burden93] and [Rogers90]. For non-normalized Hermite splines, this looks like Equa- 

tion 2.3.5 

3 
ay, (Po) 

1 Pp ; 

At? (p,—p,)+ At’ (p,-p 
2(Ar, + At, ) At, Pp fer ni 2 J ri 1 | 

r (2:3:5) 

Mt Ae ee) AP | pe 3 ’ , 
n-2 ( n-2 n ol n-1 ; a Te [ at? (p, -p,,)+ At (p,,., — Pi )] 

l 2 P,, n-2 n-1 

3 
s ogpa 2 =p.) 

n-1 al 

where At, = (t,., _ peyi Solving this set of linear equations for ee gives us 

the slopes at each key and the information we need to build our Hermite spline. Since 

the left matrix is sparse and tridiagonal, solving this can be done in linear time; [Bur- 

den93] has more details. Note that this solution doesn't correct our slopes for the 

non-normalized time interval, so we still have to multiply them by the appropriate 

At,. An example of such a distance-time curve can be seen in Figure 2.3.8. 
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=> Sy, 

0 1 

FIGURE 2.3.8 = Distance-time function cre- 
ated by natural spline through distance keys. 

Combining Smoothing and Speed Specification 

For full generality, the user should be allowed to create a curve with fixed arrival and 
departure speeds at certain keys as well as automatically generated sections for the 
remainder. For this we add smooth-in and smooth-out keys. A sequence of smooth-in 
and smooth-out keys indicates a section of curve that the user wants automatically 
generated. If we see a smooth key, we start tracking a smooth section of curve and 
progressively store the parameters for our linear system until a non-smooth key is 
reached. Then we run the parameters through our tridiagonal matrix solver to gener- 
ate the slopes for that section of curve. 

Because of the flexibility of our system, we might end up with given speeds at the 
endpoints of our smooth section. For example, suppose we have a slow-out key followed 
by a smooth-in key. The curve will start at speed 0, and then smoothly blend to the 
following distance key. The initial endpoint is known as a clamped condition. Con- 
structing the matrix for this is just a modification of the setup for a natural spline. We 
replace the first matrix row with a 1 in the diagonal, and the corresponding entry in 
the right vector with our given speed. If we were to end at a non-smooth key, we 
would do the same for the last matrix row. So for our example, the linear system looks 
like Equation 2.3.6 

(2.3.6) 
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The following pseudocode shows how the tracking of the smooth sections is handled. 
We iterate through the keys and either set given speeds or set up parameters for the 
smooth sections. A Boolean inSmooth is used to indicate whether we're currently 
tracking a smooth section. 

inSmooth = false 

for each key do 

if current in-speed is not smooth 

if inSmooth 

finish clamped spline 

inSmooth = false 

else 

set given speed 

else 

if !inSmooth 

start clamped spline 

inSmooth = true 

if not at end and out key is smooth 

add to middle of smooth spline 

else 

finish natural spline 

inSmooth = false 

if current out-speed is not smooth 

set given speed 

else if !inSmooth 

start natural spline 

inSmooth = true 

Some details have been skipped here for clarity. For example, we don't consider the in- 

speed for the first key or the out-speed for the last key, as they're not valid. The full 

details can be found in the sample code. 

Example 

As an example, let's assume that the user has set three time-distance pairs, with the fol- 

lowing speed parameters: 

Time Distance In-Speed FS: Out-Speed 

0.0 0.0 — Linear 
ST Ee AN a Sa a a DN enc Se 

0.45 0.60 Fast Smooth 

1.0 1.0 Slow — 

The outgoing speed at the first key is linear, so its value is (0.6-0.0)/(0.45- 0.0), 

however, we correct this by multiplying by (0.45—0.0), so the final stored speed is 

0.6. The incoming speed at the second key is fast-out, so its value is 3(0.6 — 0.0). The 

outgoing speed at the second key is smooth, so we start building a linear system. In this 

simple example, we stop building it immediately at the next key since it is slow-in and 

thus non-smooth. Our linear system for this section of curve looks like Equation 2.3.7. 
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2 iT r’,] |3t0=28 | 
* |=] 1.0-0.45 (2.3.7) 

0 1), Px, a 

Solving this gives us intermediate values of p;, = 1.09091 and p;, = 0.0. Correcting 

both by (1.0- 0.45) = 0.55 gives us final elie of p,,=0.6 and p;, =0.0. Our 

final parameters for our Hermite curves are 

Time _Distance In-Speed Out-Speed 

0.0 0.0 — 0.6 

0.45 0.60 1.8 0.6 

1.0 1.0 0.0 —- 

The resulting curve can be seen in Figure 2.3.9. 

d 
A 

I al, 

0 pasty 

FIGURE 2.3.9 Distance-time function 

created by example keys. 

Interface Choices 

While the earlier OES ene aS orice amet RES ce for the technique, 
it’s no good unless it can be controlled. One possibility is to provide an interface to set 
arrival times at each interpolating control point for the spatial curve, and then use the 
distance along the curve to those points to create keys for the distance-time function. 
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The parameters for smoothness and/or incoming/outgoing speeds can also be set at 
the spatial control points. Together with this, it is useful to be able to display the cur- 
rent distance-time graph, with the distance keys plotted as points. These can be 
clicked and moved left to right in the time axis. Their distance values can’t be changed 
since they are fixed by their position on the spatial curve. Errors should be reported if 
the function falls outside of 0 or 1 along the range. 

Alternatively, the spatial curve and the distance-time function can be set up sepa- 
rately, so the function has a completely independent set of keys. However, in this case 
it’s usually wise to place icons on the distance-time display to show where the spatial 
control points lie, so that the user has some sense of arrival time at those points. The 
arrival time data can also be copied back into the-display for the spatial curve. 

A hybrid approach is also possible, with the starting distance keys derived from 
the spatial control points, and additional points added that have no correlation in the 
spatial domain but are only used to control the distance-time function. 

Conclusion 

This gem has presented a method for computing distance-time functions for anima- 
tion by using piecewise Hermite splines. Hermite splines allow a lot of user input, 
particularly as the tangents on the curves provide an intuitive way for managing speed 
control. Automatic creation of splines, such as natural splines, and default settings for 
speed control are also useful for allowing users to quickly create distance-time func- 
tions. It may be possible to extend these ideas to other spline types, such as piecewise 

Bézier curves or B-splines, as long as the basic requirements for a distance-time func- 

tion are maintained. 
This technique can also be used for other applications. For example, the slerp func- 

tion for quaternion interpolation maps a ¢ value between 0 and 1 to two interpolants, 

where the result of each interpolant is also between 0 and 1. These interpolants are then 

used to blend two quaternions. The entire function normally requires three sines and a 

floating-point division. We can approximate each interpolant function instead by piece- 

wise Hermite curves. The result won't be as exact as slerp but will be faster and will still 

be better than straight linear interpolation. 
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© atin are used extensively in game development because they provide a 
simple and effective way to represent a rotation. A quaternion takes up 4/9 of the 

storage required for a rotation matrix, can smoothly interpolate between rotations, and 

has many other properties that make it useful for skinned, hierarchical animation. In 
particular, quaternions are used to represent the joints of characters that can only 

rotate about a particular point. 
As games become more complex, we must move to more advanced methods sim- 

ilar to the linear algebra techniques used by supercomputers. Methods like the Struc- 

tures Of Arrays (SOA) method can improve computational efficiency by an order of 

magnitude or more by grouping together similar operations, reducing memory access, 

and using all available ALUs (Arithmetic and Logic Units) by way of SIMD (Single 

Instruction, Multiple Data) instructions. 

The trouble with using batch linear algebra techniques is that the trigonometric 

functions normally associated with quaternion interpolation cannot be used. So by 

using an approximation, not only can we speed up the process by sacrificing some 

precision, but we can enable the calculations to be done using adds, subtracts, multi- 

plies, divides, and square roots. 
In the game Galleon, we were able to have dozens of figures fighting hand to hand, 

each with cloth dynamics, real-time footstep placement, and Al. If we wanted thou- 

sands of such figures using the same hardware, the skinning and animation load would 

dominate, principally because of the cost of quaternion interpolation used for key 

expansion, animation blending, and collision. 

With vertex shaders increasing in complexity, it is now possible to use quaternions 

for skinning [Hejl04]. We can use approximations to generate batches of quaternions 

from animation data and quickly feed these results to vertex shaders. 

247 
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These methods should be suited for use on the specialist vector units that are 
becoming more common on consoles and computers alike. Examples are provided in 
C++, but feel free to recode them using native assembly language or intrinsics. 

Using Quaternions as Rotations 
LRH EAN SS SERA RENN OE ERT TER SOT TTS TE EIS 

Recall that a quaternion q is a Bie -component quantity that can be written as follows. 

q=(w,x,y,z)= wt xit yj+zk (2.4.1) 

It consists of one scalar component w and three vector components x, y, and z. 

Quaternion multiplication is defined using the ordinary distributive law with the fol- 

lowing rules for the products of the “imaginary” numbers /, /, and k. 

tO nd ee | 

=i 
jk=-kj= 

ki=—ik = j (2.4.2) 

Using these rules, the product of two quaternions a and b can be expanded to 

ab= (a,b, -a,b —a,b, —a.b.) 

ms 3(a,,b, +a,b,+a,b,—a_b, )i 

+3(a,b,-a,b, +a,b, +4,b,)j 

+3(a,,b, +4,b,-a,b, +a.b, )k (2.4.3) 

Every nonzero quaternion q= w+xi+)j+2zk has an inverse q | given by 

gre (2.4.4) 
q 

eas the quantity q= w-xi- yj—zk is the conjugate of q. For a unit quaternion, 
gq’ =1, and the conjugate and inverse are the same quantity. 

A quaternion representing a rotation through an angle @ about the unit-length 
axis A=(A_,4,,A_) is usually written in the following form. 

q rotation 
= tpg arene (2.4.5) 

2 Zz 
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The way in which a quaternion is used to rotate a vector V is to treat the vector as a 
quaternion with zero scalar component and evaluate the product 

Rotate(v,q) = qvq (2.4.6) 

This leads to the familiar quaternion-to-matrix conversion formula: 

pg wi eee ted Toul 

qvg = 24,4, P2gq. , l= 2q° - 2q° 24,9, aed ally (2.4.7) 

2:4 -= 24,Gere 2G grt 2Ghgs WAGs alg an hy: 

Note that if we don’t make the usual assumption that 

q+¢,+9,+4, =1 (2.4.8) 

then we get an alternative formula 

Get ae-¢, Ia 24,9, 24,4,424,4, |, 
?} 

qvd=| 29,¢,+2¢,9, / ¢,+¢%-@-@ 29,9,-24,4, || v,| 249) 
?) 

24,4,329,8, $24,9,$29,9, ~ 7g deg || ¥, 

and we can incorporate a scaling factor s into the quaternions as follows. 

Rotate( v,+vsq) = qvqs. (2.4.10) 

This only works because we are using the conjugate of the quaternion, not the 

inverse, for our rotation formula. But clearly, a negative scaling factor cannot be used. 

Note that negating a quaternion does not affect the rotation that is produced. That is, 

Rotate(v,—q) = Rotate(v,q). (2.4.11) 

For the most part, the techniques described in the following sections assume a unit 

scaling factor, so be very careful how nonunit quaternions are used. However, the 

extra scaling factor can be very useful when using quaternions in vertex shaders. 

Interpolating Quaternion Rotations 
SL LIEEL ELLE LLL BELLE LEI, 

In computer games, animations consist of a series of keys, usually rotations represent- 

ing the angles of joints of a character. To smoothly interpolate between the keys and 

thus to avoid using precious storage to store a key for each frame, we use a method 
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called spherical linear interpolation or slerp for short. The goal of the slerp function is 

to interpolate smoothly between two quaternions a and b, sweeping a constant angle 
per unit time and maintaining a constant unit length. 

So why can’t we just use linear interpolation? The answer is that we need to main- 
tain the unit length of the interpolated quaternion to avoid introducing a scaling fac- 
tor. Even if we renormalize the result of linear interpolation, the angular velocity of 
the resulting animation will not be constant, resulting in jerky movement. 

An example of a slerp in real life is the great circle taken by a passenger jet over the 

surface of the Earth. The jet keeps a constant distance from the center of the Earth 
and moves with a constant speed over the shortest arc. Thus, if we want to fly from 

Amsterdam to Berlin, we apply the function: 

Slerp( Amsterdam, Berlin) (2.4.12) 

How do we achieve this? 

(1-10 & 

Bb 

0 

FIGURE 2.4.1 An illustration of the 
slerp function. 

In Figure 2.4.1, Amsterdam is represented by the vector a and Berlin by b. The 
position p of the jet sweeps out an arc of @ radians during the journey, taking one 
hour. At time ¢, we have moved Of radians. 

This position can be represented as a linear combination of the vectors a and b: 

p(9,t)=a(0,t)a+ B(O,t)b. (2.4.13) 

We can calculate a and b by using the triangle drawn on the diagram. Using the sine 
formula for triangle area in three different ways for the triangle ope, with op =1, 
oc =, cp=B, 
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aBsind = —asin (10) =~ Bsin((1-1)6). (2.4.14) 

These equalities give us a and B leading to the well-known formula 

p(9,r) = Slerp(a,b,t) = sin(1-1)6 + su betes arccos(a : b). (2.4.15) 
sin@ sin@ 

So if x=a-b, then 

ms sin((1- t)arccosx) a sin(¢arccosx) 
OL LS capers cape iat) misoay prea (2.4.16) 

because 

sin(arccosx)=V1—x’. QAly) 

Figure 2.4.2 shows a plot of (x,t). Notice how the graph is quite flat where x = 1 

but curves steeply when x =—1. This is the source of potential problems with an 

approximation. 

beta(x,t) 

FIGURE 2.4.2 A 3D plot of the function B(x,2). 

Approximation Methods | 

Now we can discuss some methods of approximation. To illustrate the methods we 

can use, we use examples of Maple procedures. 
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We discuss several methods of approximation and summarize their strengths and 
weaknesses. One of the golden rules of numerical approximation is that no one 
method is best. The context in which the approximation is to be used must be consid- 
ered when determining the specific method. 

In computer games, we may have to ask ourselves a number of questions, notably: 

¢ How many CPU cycles can we spare? 

¢ How much precision do we need? 
¢ Can we cheaply use functions such as sqrt (x) and exp(x)? 

¢ Can we use SIMD instructions, like VU macro mode, paired float, SSE, or 3 DNow? 
¢ Are we going to be blending more than two quaternions at once? 
e What is the maximum angle between our keys? 

We present various methods here, but it is up to the reader to decide which is most 
appropriate for a particular application. 

Direct Method 

We start with the direct approach. We just examine the beta function formula and 
approximate the various components. This is actually the best method if very high pre- 
cision is necessary, but it can be very costly, especially when evaluating large batches of 
slerps. 

Almost every game engine contains something like the code in Listing 2.4.1, and 
many games spend significant proportions of their time executing it. 

Listing 2.4.1 Reference Slerp Class 
SSS a a 

class SlerpReference 

{ 
public: 

SlerpReference( const Quat &a, const Quat &b ) : mA( a), 

mB( b ) 
{ 

Float™adotb = a.X * b.X + a@.¥ * b.Y + a.Ze* b.Z + a.W * b.W; 
adotb = Min( adotb, 0.99999f ); 

mTheta = acosf( adotb ); 

mRecipSqrt = RecipSqrt( 1 - adotb * adotb ys 
} 

Quat Interpolate( float t ) const 

{ 
float alpha = sinf( (1 - +t ) * mTheta ) * mRecipSqrt; 
float beta = sinf( t * mTheta ) * mRecipSqrt; 
return Quat( alpha * mA.X + beta * mB.X, alpha * mA.Y + 

beta * mB.Y, alpha * mA.Z + beta * mB.Z, 
alpha * mA.W + beta * mB.W ); 

’ 



2.4 Faster Quaternion Interpolation Using Approximations 
ssegnssusi 

253 
ose tttaA AAAS CNL ALLAAH AALAND HI OHHH QA RERRESOEO// EOE SEE EEE LCI HRSA SOOO 

private: 

float mTheta; 

float mRecipSqrt; 

const Quat &mA; 

const Quat &mB; 

}3 

Here we have used trig functions to create a reference slerp class. The class has a con- 

structor and a method to calculate individual interpolated quaternions. We have taken 
pains to avoid using branches that will cause lengthy pipeline stalls by using the Min 

function to avoid overflows. Note that although the results near adotb = 1 will be con- 

sistent, if the quaternions point away from each other, the result will be unpredictable. 

To turn this into an approximation, we have to approximate sin(x) and arccos(x). 

The sin(x) component is simple, as this responds to traditional polynomial 

approximation tools. In Maple, there is a package called numapprox that contains 

polynomial approximation tools that can convert an arbitrary function into a polyno- 

mial over a certain range of values. 

A Taylor series turns a function of x into a polynomial in x that matches the func- 

tion exactly at one point. Maple has a built-in Taylor series command that gives a 

result like this: 

ae 
taylorseries = x — a + = + Ole ). (2.4.18) 

Unfortunately, Taylor series are not very useful for approximation as they are exact in 

one place only, but they are simple to calculate and are useful for showing us the gen- 

eral form of a function. A polynomial can be made to be exact in n or more different 

places, where n is the degree of the polynomial, or highest power term. This can be 

used to significantly reduce the error. 

In the numapprox package, Maple has a command called minimax that chooses the 

best places to make a polynomial exact in such a way as the maximum error is mini- 

mized, hence the name. 

minimaxSeries = minimax( sin(x), x=— 7.7, 3 )=(.824535+(-.08692x)x}x (2.4.19) 

Figure 2.4.3 shows a plot of taylorseries, minimaxsertes, and sin(x). Here we see that 

the Taylor series shoots off to infinity when a Figure 2.4.4 shows a plot of 

the error, which shows that the Taylor series is exact only at the origin, whereas the 

minimax polynomial is exact in five separate places, spreading out the error over the 

interval. 
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Legend 

taylor series 
—_-——— minimax 
fae are oe sin(x) 

FIGURE 2.4.3 Plot of taylorseries, minimaxseries, and sin(x) showing the differences. 

Legend 

taylor series error 
minimax error 

FIGURE 2.4.4 Plot of the error of a Taylor series versus a minimax series. 

This is how the built-in functions in C++ are created. The following is an approx- 
imation to COs(x) on the interval x €[—2/ 2,7 /2] that we can use to approxi- 
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mate sin(x) on x €[0,77]. In this case, cos(x) is an easier function to approximate 
than sin(x), as it is even and hence uses only terms in x’. 

cos(x) = sin(x+2/2)=1+(-.4999991 + (.416636+(-.0138537+.000231540x")x?)x? x? (2.4.20) 

Figure 2.4.5 shows a plot of the error for the previous approximation. 

4e-08 

2e-08 | 

-2e-08 4 

-4e-08 4 

Legend 
f(x)-sin(x) 

FIGURE 2.4.5 Showing the error in the approximation to cos( x) shifted into 

the range used by the slerp function. 

The arccos(x) function does not respond to this kind of treatment. Figure 2.4.6 

shows a plot of the error for eight terms, which is shockingly bad. 

The reason for this can be seen by looking at the arccos function itself, shown in 

Figure 2.4.7. There are singularities at x =1 and x=—1l that behave as VJ—x and 

/1+ x » respectively. It is very hard for a polynomial to approximate this kind of func- 

tion. These kinds of behaviors can be discovered using the Maple “series” command. 

Making an approximation in terms of nonlinear terms works much better: 

arccos(x) = 

\2.218480716 — 2.441884385x + 0.2234036692x* — 

/2.218480716 + 2.441884385x + 0.2234036692x° + 

1/2 +0.6391287330x. 
(2.4.21) 
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Naive Arccos Error Plot 

0.04 | 

4 

| 

0.02 | 

So — — 

08] 06  -04 0.2 0.2 0.4 0.6 08 

-0.0 4 

FIGURE 2.4.6 = The result of using Maple’ minimax on the arccos function. 

Plot of Arccos(x) 

| 
35 

xX 

FIGURE 2.4.7 A plot of arccos(x) showing singularities at x = +1, 
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The error for this approximation to arccos(x) is plotted in Figure 2.4.8. Note that 

these functions only work over our required range. If functions that work over other 
ranges are needed, they will have to be made separately. The accompanying CD- 
ROM contains some example Maple worksheets. 

Arccos(x) - arccos( x ) 

| 

6e-05 | 

de-05 | 

| 2e-08 

-0.6 -0.4 407 1 0.2 0.4 0.6 0.8 

26-05 | 

-4e-05 4 

-6e-05 4 

FIGURE 2.4.8 A better approximation to arccos(x). 

The reciprocal square root is available on most modern processors using the division 

unit. One should be careful to allow for latency, however, and calculate this first so 

that the result is available later. An approximate reciprocal square root is also often 

available in a single-cycle form to 16 bits with SIMD instructions. 

The proportional error in the rotation can be calculated to be of the same order as 

the error in the alpha and beta functions. To perform this calculation, we may assume 

an error ein the function and use the Maple “series” command. Decrease the number 

of series terms until the order O e) is the last remaining term in e. 

Figure 2.4.9 shows a series of error plots of beta functions for various angles of 

separation of the quaternions 

Sin(t Arccos(x)) sin(tarccosx) 
= 4 2.4.22 a (2.4.22) 

l-x° 

Where Sin(x) and Arccos(x) are the approximations. 
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Plot of Errors of Various Beta(x,t) 

FIGURE 2.4.9 Plots of errors in B(x,t) for various x. 

Use of SIMD architectures enables the calculation of both sine functions together, as 

shown in Listing 2.4.2. 

Listing 2.4.2 Direct Slerp Method Class 

class SlerpDirect 

{ 
public: 

SlerpDirect( const Quat &a, const Quat &b ) : mA( a), mB( b ) 

{ 
float=adoth*="aex-* bi Xa wy =*ebey teas 2a becesnta. W * Jb. Ws 

adotb = Min( adotb, 0.99995f ); 

float even = 2.218480716f + .2234036692f * adotb * adotb; 

float odd = 2.441884385f * adotb; 

mTheta = Sqrt( even - odd ) - Sqrt( even + odd ) + 

1.570796327f + .6391287330f * adotb; 

mRecipSqrt = RecipSqrt( 1 - adotb * adotb ); 

} 

Quat Interpolate( float t ) const 

float A= (1 - t.) * mTheta - 1.570796327f; A = A * A; 

float B = t * mTheta - 1.570796327f; B = B * B; 

float sinA = .9999999535f+(-.4999990537f+(.4166358517e-1f 

+(-.1385370794e -2f+.2315401401e-4f*A) *A) *A) *A; 
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float sinB = .9999999535f+(- .4999990537f+(.4166358517e-1f 

+(-.1385370794e -2f+.2315401401e-4f*B) *B) *B) *B; 

float alpha = sinA * mRecipSqrt; 

float beta = sinB * mRecipSaqrt; 

return Quat( alpha * mA.X + beta * mB.X, alpha * mA.Y + 

beta * mB.Y, 

alpha * mA.Z + beta * mB.Z, alpha * mA.W + beta * 

mB.W ); 

} 
private: 

float mTheta; 

float mRecipSqrt; 

const Quat &mA; 

const Quat &mB; 

}5 

This class shows the result we obtain when we simply approximate the component 

functions of the tradional slerp function. 

Matrix Approximation 

Because B(x,t) is simply a function of two variables, we can, in theory, represent the 

entire result as a two-dimensional polynomial in x and t. That is, 

B(x,t)=XMT (2.4.23) 

where M isan NX N, matrix and 

x1 Mee ) 

Tal {nee oe oa (2.4.24) 

Applying the same process as in the analysis of arccos(x), namely using the Maple 

series command, we see that we have a problem approximating the whole polynomial 

because 

lim B(x,t) =<. (2.4.25) 

We need to take this singularity out of the function so that we can approximate it 

with fewer terms. 
If we evaluate 

g(x.t)= B(x,1)(1+x) (2.4.26) 

instead, then we end up with a much better behaved function over the range 

ms e[-11], as illustrated in Figure 2.4.10. We can then multiply by 1/(1+.x) to 

obtain B(x,t). 
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| 

1 

FIGURE 2.4.10 ¢(x,t), a better alternative to approximating B(x,t). 

Unfortunately, Maple does not come with a 2D version of the minimax command, 

and besides, uniform error distribution is useful only in certain conditions. 
We can make a 2D version of the Chebyshev approximation method, which con- 

structs a function in the form 

Ni» IN) 
t x 

Dee Mae) DUT) (497) 
j=0 i=0 

where 7'(i,x) and T(j,t) are Chebyshev Polynomials of the first kind, given by 

x)= 4x — 3%. (2.4.28) 

When we have constructed a function of this form, it is easy to convert it to a regular 
polynomial by multiplying out and collecting terms in x and t. A Maple procedure 
that does this is included on the accompanying CD-ROM. 
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Applying this to g(x,t) gives 

1.570994357 -0.6461396421  0.07949824672 —0.004354110679 

0.5642929825 0.5945659091 -0.1730440015 —0.01418982936 

M= (2.4.29) 
_0.1783657609 0.08610292588  0.1079287872  —0.01567243477 

0.04319948653 -—0.03465102568 —0.01439451411 0.005849053560 

for best accuracy in 0<a-b<1. Clearly, more terms can be used, and each row adds 

two SIMD instructions and more precision to the x expansion. 

One of the most useful features of this method is that once the vector 

1 
—§ XM 2.4.30 
l+x ies) 

is evaluated, multiple a(t) and [(t) values can be generated with simple algebra. 

Listing 2.4.3 shows an implementation. 

Listing 2.4.3 Matrix Slerp Method Class 

class SlerpMatrix 

{ 
public: 

SlerpMatrix( const Quat &a, const Quat &b ) : mA( a ), mB( b ) 

{ 
float adotb = a.X * b.X + a.Y * b.Y + a.Z * b.Z + a.W * D.W; 

mRecipOnePlusAdotB = Recip( 1 + adotb ); 

mC1 = 1.570994357f+(.5642929859f+( -.1783657717f 

+.4319949352e-1f*adotb) *adotb) *adotb; 

mC3 = -.6461396382f+(.5945657936f+ ( .8610323953e - 1f 

- .3465122928e-1f*adotb) *adotb) *adotb; 

mC5 = .7949823521e-1ft+( -.1730436931f+(.1079279599f 

- .1439397801e-1f*adotb) *adotb) *adotb; 

mC7 = -.4354102836e -2f+(.1418962736e- 1f+( - .1567189691e-1Ff 

+,5848706227e-2f*adotb) *adotb) *adotb; 

} 

Quat Interpolate( float t ) const 

float | = ent tee tt, Te = T * TF; 

float alpha = (mC1+(mC3+(mC5+mC7*T2) *T2)*T2)*T ce 

mRecipOnePlusAdotB; 

float beta = (mC1+(mC3+(mC5+mC7*t2)*t2)*t2)*t * 

mRecipOnePlusAdotB; 

return Quat( alpha * mA.X + beta * mB.X, alpha * mA.Y + 

beta * mB.Y, alpha * mA.Z + beta * mB.Z, 

alpha * mA.W + beta * mB.W ); 
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private: 
float mRecipOnePlusAdotB; 

float mC1, mC3, mC5, mC7; 

const Quat &mA; 

const Quat &mB; 

}5 

Here, we precalculate polynomial coefficients that enable us to simply calculate a 

series of interpolations. In practice, we would probably recode this using native 

SIMD instructions. 

Renormalization 

A quick and dirty approximation, where accuracy is not important, is to simply linear 
interpolate (lerp) the quaternions and renormalize the result. This produces a result 

that is good to about four to eight bits in normal use, which is quite often enough. If 

the angle between the quaternions is very small, the result is quite accurate. 
This is the method that has been used in vertex shaders as it is possible to blend 

between several quaternions in a way that is superior to conventional matrix blending. 
However, except for the setup time, the interpolation is slower than the Matrix 

slerp method presented earlier and has significantly less precision. 

Listing 2.4.4 shows an implementation. 

Listing 2.4.4 Simple Lerp and Renormalization 

class SlerpSimpleRenormal 

{ 
public: 

SlerpSimpleRenormal( const Quat &a, const Quat &b ) 

mA( a), mB( b ) 

{ 
}5 

Quat Interpolate( float t ) const 

{ 
float alpha = 1 - t; 

float beta = t; 

Quat result( alpha * mA.X + beta * mB.X, alpha * mA.Y + 

beta * mB.Y, alpha * mA.Z + beta * mB.Z, 

alpha * mA.W + beta * mB.W ); 

float recip = RecipSqrt( result.X * result.X + result.Y * 

result.Y 

+ result.c ~ Pesultec -F "result W * result.W )s 

return Quat( result.X * recip, result.Y * recip, 

result.Z * recip, result.W * recip ); 
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private: 

const Quat &mA; 

const Quat &mB; 

}; 

The simple lerp can be improved by approximating 

sin(tarccos x) 
B(x,t) o(x,t)=1-B(x,t), (2.4.31) 

z sin(tarccosx) a sin((1 = t)arccos x) : 

instead, and then renormalizing. Alternatively, the angle subdivision methods can be 

used before the lerp and renormalization operations. 

Renormalization can also significantly improve the accuracy of the direct and 

matrix methods, but at the cost of extra time. 

Listing 2.4.5 shows an implementation of the improved renormalization method. 

Listing 2.4.5 An Improved Renormalization Method (Rather Cumbersome, However) 

class SlerpRenormal 

{ 
public: 

SlerpRenormal( const Quat &a, const Quat &b ) 

mA( a ), mB( bd ) 

{ ; 
float adotb =a.x * b.X + a.Y * b.Y + a.Z * b.Z + a.W * 

b.W; 

adotb = Min( adotb, 0.995f ); 

float even = 2.218480716f + .2234036692f * adotb * adotb; 

float odd = 2.441884385f * adotb; 

mTheta = Sqrt( even - odd ) - Sqrt( even + odd ) 

+ 1.570796327f + .6391287330f * adotb; 

} 

Quat Interpolate( float t ) const 

{ 
float T=1 - ee ten el eens 

iddteAl——(seenCe ee amne tals 

float B = t * mTheta; 

float sinA = -.67044e-5f + ( 1.000271283fF + 

( -.17990919e-2f 

- .556099983e-2f + 

( .1198086481e-1f 

Ws e7ri20o2ise-2f * Ay * AY * A) * A) RA ) * A; 

float sinB = -.67044e-5f + ( 1.000271283f + 

( -.47990919e-2f 

+ ( -,1621365372T + ( - .556099983e-2f + 

( .1198086481e-1f 

dorin'e7 12092 066227 Bi) * Bi et 1B peteBe) 4 [33 J) ake 

float recipAB = Recip( sinA + sinB ); 

float alpha = sinA * recipAB ; 

float beta = sinB * recipAB; 

ct ct ib) iT] 

+ ( -.1621365372F + ( 
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// renormalise ~. 

Quat result( alpha * mA.X + beta * mB.X, alpha * MA.Y + 

beta * mB.Y, 

alpha * mA.Z + beta * mB.Z, alpha * mA.W + beta * 

mB.W ); 

float recip = RecipSqrt( result.X * result.X + result.Y * 

result.Y 

+ result.Z * result.Z + result.W * result.W ); 

return Quat( result.X * recip, result.Y * recip, 

fFesult.2 * Lecip, heSUlt We sreclpm)s 

} 
private: 

float mTheta; 

const Quat &mA; 

const Quat &mB; 

}5 

Angle Subdivision Methods 

We can bisect the angle between two quaternions by noting that 

a) = 1 B(x3)= (2,3 Trivagtly lose pyaciarpen: 

This is exact for half the angle and can be extended for any value of ¢ that is composed 
of quarters, eights, sixteenths, and so on. A Maple worksheet is included on the 

Es accompanying CD-ROM that calculates the subdivision beta functions in terms of 
ONTHECD square roots using bisection. 

) iL sin(4arccos(x)) 1 

B(x,0)=0, 

B(x,1/4)= 1+V2+2x 

J24N24 20225 

ha ATEE S. 
] B(ag3 4) a or 

(x V24+V24+2xV24+2x 

Pi 2, ewe (2.4.33) 

Comparison of Methods 
sicinemesscanten aren seein ~— sous 

We Be eo the Raat aye accuracy eae “speed The test data were three sets of 
quaternion encodings with large, medium, and tiny rotations. 
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We expect the small rotations to be more accurate, as the distance between the 

quaternions is smaller. Large rotations are less common in animation data, but an 

algorithm must cope with these as well. Table 2.4.1 summarizes the accuracy of the 

methods for different classes of input data. 

Table 2.4.1 Approximate Precision in Bits Equivalent 

Data set Large angles Medium angles Tiny angles 

Worst Avg Worst Avg Worst Avg 

SlerpDirect 11 13 11 11 11 i 

SlerpRenormal 16 18 Ny 19 1) 19 

SlerpMatrix 13 16 14 15) 15 15 

SlerpSimpleRenormal 4 8 11 15 19 19 

Table 2.4.2 lists the time taken (in arbitrary units) to slerp 50,000 quaternions. The 

test consists of one setup and 10 interpolations using a wide range of data. 

Table 2.4.2 Slerp Time 

SlerpReference 22906 

SlerpDirect 13077 

SlerpRenormal 24115 

SlerpMatrix 7829 

SlerpSimpleRenormal ; IPSs} 

This shows that the approximate functions are quite a bit faster than the reference 

function, although to get real speed improvement, we would need to code using 

native instruction sets. 

The Matrix method is the clear winner, beating even the simple lerp and renor- 

malization method, probably because of the slow implementation of sqrt on the fpu. 

This would work especially well on the PS2 VUO coprocessor, where micro mode 

could be used to calculate large batches of quaternions for skinning. 

Squad Derivative Calculation 

ON THE CD 

We also investigated speeding up the “squad” or spherical quadrangle approximation 

often mistaken for a Bézier slerp. 

Using the approximate arccos and sin functions and a nicely reduced function, 

we found it was possible to simplify the traditional method that uses log and expo- 

nent of quaternions. 

Listing 2.4.6 shows a function that contains relatively benign components, easily 

codeable using SIMD instructions. The approximate functions ArccosFast and SinFast 

in Listing 2.4.6 are included on the accompanying CD-ROM. 
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Listing 2.4.6 Elegant Squad Derivative Generator 
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// Squad derivative calculation, optimized by hand 

// This is quite fast and gives excellent results (~16 bits) 

// try to remove the branches implicit in the ? operators. 

Quat DerivativeCompact( const Quat &a, const Quat &b, 

{ 

const Quat &c ) 

Quat bconj = Conj( b ); 

Quat arel = Mul( a, bconj ); 

Quat crel = Mul( c, bconj ); 

float aScale = arel.W > 0.9999f ? -0.25f : 

-0.25f*ArccosFast( arel.W ) * RecipSqrt( 1 - arel.W * arel.W ); 

float cScale = crel.W > 0.9999f ? -0.25f 

-0.25f*ArccosFast( crel.W ) * RecipSqrt( 1 - crel.W * crel.W ); 

float 

float 

float 

float 

float 

float 

float 

logx = aScale * arel.X + cScale * crel.X; 

logy = aScale * arel.Y + cScale * crel.Y; 

logz = aScale * arel.Z + cScale * crel.Z; 

length = Sqrt ( logx * logx + logy * logy + logz * logz ); 

sinLength = SinFast( length ); 

cosLength = Sqrt( 1 - sinLength * sinLength ); 

xyzScale = length < 1e-5f ? 1 : sinLength / length; 

return Mul( b, Quat(xyzScale * logx, xyzScale * logy, 

pes 
} 

xyzScale * logz, cosLength 

// This function can be used like this: 

Quat d1 = DerivativeCompact( q0O, qi, q2 ); 

Quat d2 = DerivativeCompact( q3, q2, qi ); 

Quat qi2 = SlerpMatrix( qi, q2 ).Interpolate( fract ); 

Quat di2 = SlerpMatrix( di, d2 ).Interpolate( fract ); 

Quat squad = SlerpMatrix( q12, di2 ).Interpolate( 2 * fract * 

(CA SG aC Bae) 

// Where gO,...,q3 are a sequence of keys, fract is the 

fractional time. 

Further Reading 
vate ee a a at ma NCR SRR ETAL 

The reader iene ei ek See Siggraph paper [Shoe85] for a background to 

the quaternion slerp process. Not only does this introduce us to the concept, but it is 
also a very readable introduction to quaternion rotations. 

It is worth noting that [(x,t) is almost identical to a Chebyshev polynomial of 
the second kind, unlike the Chebyshev polynomials of the first kind we used for the 
2D approximation. 
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Blat}=U, (x) (2.4.34) 

These are solutions of a Sturm-Louiville differential equation: 

2 

(1- 1°)“ B(x) x= B(x.) +(# -1)B(x,t)=0 (2.4.35) 

Normally for Chebyshev Polynomials, the parameter t would be an integer, in which 

case the function would be a polynomial. However, as our parameter f is a real value, 

we have a nonpolynomial result. 

Read Chapter 11 of [Rich02] for further information. This book contains a good 

introduction to Maple, power series, and approximate methods. 

While doing the research for this gem, we explored using forward differences to 

solve this equation for a(t) and B(t). Although this was nota good method for eval- 

uating the function at a spot value, it would probably be useful for evaluating a series 

of quaternion interpolations. It is also possible to use multiple-angle formulae to iter- 

ate successive slerp results. 

Conclusion 
a OSE SE EE ROE EET ETE sue Me EAE TERETE 

We have explored many methods of approximating the quaternion slerp function, which 

is used extensively in character-based games. We have developed a simple matrix-based 

method that requires only a few multiplies and adds to produce accurate interpolated 

rotation quaternions. 

Angle subdivision methods using only square roots were also discussed that enable 

very specific slerp values to be calculated simply. 

We have also investigated the squad interpolation function and found a simple 

function to generate the extra quaternions required for smooth interpolation of a 

series of keys. 
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2.9 

Minimax Numerical 

Approximation 

Christopher Tremblay 

ti_chris@yahoo.com 

oO: field of game programming that is often disregarded but ever so present is 

that of approximation. Approximation is extremely important in a game's per- 

spective since the game as a whole is really an approximation of something that we 

want to represent. Consequently, the characters are approximated with polygons, and 

the physics is approximated with given models. A more mathematical, but still pretty 

interesting, type of approximation is that of complex functions with simpler, faster 

functions. For example, computations involving the sine and cosine functions are 

notorious for being pretty slow. It would indeed be beneficial in many cases if we 

could come up with a function that is faster, but perhaps a little less accurate, than 

that provided by the floating-point unit (FPU). Such functions can often define the 

movement or position of certain objects within the world, and not obtaining full 

accuracy typically does not significantly impair the final output. In such situations, it 

can be pretty useful to find faster functions that approximate the original. 

Well-Known Optimizations tenement ” poem MELEE a 
eee sete NNT SAEED 

During the study of calculus, one typically learns a common function approximation 

technique known as the Taylor series. A Taylor series approximates a curve using a 

polynomial function of a given degree. The polynomial function is chosen for its 

speedy evaluation and its ease of use. A polynomial function can be quickly computed 

since it involves operations that are relatively fast on a CPU today (when compared to 

a cosine/sine or exponential function, for example). Furthermore, they can be written 

in the Horner form, thus making them a mere set of multiplications and additions. 

The Horner form of a polynomial is a form that writes the polynomial by factoring 

the variable x out of the polynomial. For example, the polynomial given by 

ax+ bx? +ex'+dx' +e (2.5.1) 

269 
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an nT nT NT TITTINNTNTTTITTT TTT 

can easily be rewritten in the Horner form: 

e+x(at+x(b+x(c+xd))). (252) 

A Taylor series approximates a curve by copying certain properties of the curve at a 

given point. More specifically, it copies the position, slope, acceleration, etc. of the 

curve, or more precisely, it is a polynomial for which the derivatives (up to a certain 

level) match those of the original curve at a given point. 

oe 5 Ra RSS eR 

The Taylor approximation unfortunately comes with several issues. Notably, the 

approximation converges very slowly (many terms are required to get a decent 

approximation). Because of that, the error on a curve at a given point can be large. If 

we compute a sine function approximation using a Taylor series and obtain an error of 

0.5, then the approximation clearly is not really a good one since the curve has an 

range of [-11]. For instance, note the difference in the sine function and its fourth- 
degree MacLaurin series approximation (i.e., Taylor series expanded about x =0) 
shown in Figures 2.5.1 and 2.5.2. In these figures, we see that the approximation 

is not terribly good near the end of the interval, while it is pretty accurate at the 

beginning. 

FIGURE 2.5.1 Zhe sine function over the range [0,7]. 
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FIGURE 2.5.2 The sine function’ fourth-degree MacLaurin 

approximation over the range [0,7]. 

The curve is an excellent approximation at x =0 but is indeed a very poor one at 

x= 7. A better approximation to the curve would be achieved by choosing x = 27/2, 

because the average error in the interval [0,7 | would be smaller. Thus, one thing 

obviously needs to be defined at this point. What exactly makes an approximation a 

good approximation? For one, it must closely resemble the initial function, and for our 

purposes, it must be fast. It is well known that the Taylor series approximation is more 

accurate if the degree of the polynomial is higher. In other words, the curve is a better 

approximation if more derivatives match, but this comes at the cost of greater evalua- 

tion time of the approximation. If the approximation turns out to be slower than the 

actual function, we do have a problem, and the approximation cant possibly be 

deemed “good.” 

Now comes the problem of actually defining what “closely resembles” really means. 

It is a very vague definition that needs to be specified in mathematical terms to make 

any sense. The first thing we want to do is to define an interval upon which the function 

will be approximated. We can yield a better approximation if we limit our approxima- 

tion to a given domain. With this in mind, we can say that the best approximation is a 

function that minimizes the maximum error over an interval [a,b]. Furthermore, we 

can state that one approximation is better than another if it is more accurate for a given 

polynomial degree. For instance, the fourth-degree MacLaurin series for the sine func- 

tion is 
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but the Taylor series centered about x= is given by 
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The latter in Horner form has more terms than the previous, and thus although the 

error is smaller in the second case but still comparable, the first approximation is bet- 

ter since it involves less computational complexity. If we were to add more terms to 

the first approximation such that it would match the number of terms of the second 

approximation, the first approximation would provide a smaller error for the same 

number of terms and thus would be deemed a better approximation than the latter. 

2 

sinx = x Lenin (2:55) 

More generally, x° can be factored out for any degree, significantly reducing the com- 

putational complexity for a given precision since the MacLaurin approximation of the 

sine function has a coefficient of zero for all terms of even degree. Consequently, it is 

not only important to look at how a given function approximates another one very 
well, it is also important to look at the computational complexity. This makes it easier 
to speak of the best approximation as the function that for a given degree of multi- 
plicative complexity minimizes the maximum error over an interval [a,b]. 

EA ca OSLER i ORI PRE RELI NT TE ISU LE EON EST REI Aa HANT 

Now that we have defined the properties for “the best approximation” as far as we are 
concerned, we can define the minimax approximation. The minimax approximation is 
the best approximation for a given polynomial degree. It has no relation or knowledge 
of computational complexity (i.e., how much work it takes to compute) and thus 
differs a little bit from our definition of best approximation. Consequently for our pur- 
poses, in a single line, the minimax approximation is a polynomial approximation of 
degree m that minimizes the maximum error of a given function. By construction, the 
minimax approximation is the holy grail of approximation for a given polynomial 
degree, and it is unique up to permutations of equivalent equations. Because it has no 
knowledge of complexity, it should be noted that some other approximations could 
sometimes yield “better approximations.” In other words, for the same degree, the 
minimax approximation will still be better or equal to the better approximation, but 
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because the amount of CPU work required to compute the better approximation 
makes it faster than the minimax approximation, the minimax approximation isn't the 

best approximation. For example, this is true for the sine function when we approxi- 
mate for a total of 13 bits of accuracy. In this case, the Taylor approximation is our 

“best approximation” because of the Horner form that allows us to rewrite the equa- 

tions in a more efficient way. 

To make the notation easier, we can rewrite a general mth degree polynomial 
- 2 hx) =Gtc xt c.x +--¢ x. as the:dot product 

Calle (2.5.6) 

where we define the row vector as ¢ and the column vector as x. We are primarily 

interested in finding the values for the coefficients ¢, in the vector ¢. The key to the 

minimax polynomial is defined by a theorem called the Chebyshev Equioscillation 

Theorem. Let f be a continuous function with range [a,b] ER. The polynomial 

p(x) of degree n is the minimax polynomial of degree n if and only if there exists 

n+2 points aSx,<x,<-<x,,, $5 for which f(x,)- p(x,) = (-1)’ E with 

Jae Oe ati eat, Hee +(f-p). Put into words, this implies that the error func- 

tion actually has (n + 2) extrema. As a result of the theorem’s alternating sign equa- 

tion, the two functions are equal exactly (n + 1) times for an approximation of degree 

nand of course, all this is true unless the error E is zero, in which case the polynomial 

is a perfect approximation of the original curve within its defined range. 

Given that there are more extrema than times where the functions are equal as 

well as the previously mentioned theorems, we can easily deduce that the first and last 

point on the approximation are two points where the error is maximal. Furthermore 

for this to make sense at all, the signed error must alternate sign. Given this much 

information, we can actually solve simple problems with simple math. As an example, 

consider the case in which we want to approximate a parabola with a single line. We 

can solve the problem if we simply state the previously mentioned theorems and 

lemma in terms of mathematics. We want to find the coefficient vector ¢= [a b| 

for a line f (1) =a+bt such that the error E between it and the parabola g(t) Sin 

over the range [0,1] attains the same maximum absolute value at three locations (two 

of which are f=0 and t=1). This is summarized by the following equations 
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f(0)-8(0)=£ 
f(x)-8(x)=-8 
f(l)-s(l)=2 

£1 ¢(x)-g(x)]=0. 2.5.7) 

Substituting everything shows us that we are actually dealing with a system of 

four unknowns with four equations: 

a+b-0-3-0°=E 

a+bx—3x° =—-E 

a+b 

b-6x=0. (2.5.8) 

This system can easily be solved by any method we wish to apply. Doing so reveals 

that the answer to this specific problem is (a,b) = (-3,3). We can also try the same 

method against any reference function g(t) to notice how easy it is to compute the 

minimax approximation for the second level. The maximum error of a minimax 

approximation is always given by the difference of the original function and the 

approximation at either of the endpoints of the interval over which the approxima- 

tion is applied. We can obtain the values for the third degree minimax approximation 

using the same logic expressed here. Where it becomes tricky is when we want to 

compute the minimax approximation for polynomials of degree higher than three. 

We reach a point where we have fewer knowns than unknowns, and we thus cannot 

solve the system. In these cases, we must resort to more sophisticated mathematical 

techniques to solve the problem at hand. 

Solving the Minimax Approximations 

for Arbitrary Degrees 

It is by no means trivial to obtain the coefficients of an arbitrary minimax approxima- 
tion. There are no strict speed requirements in finding the solution because it does 
not need to be solved in real time. The Remez algorithm can help us solve the prob- 
lem at hand and goes as follows. 

1. Choose an initial guess for the coefficient vector ¢. 
2. If the error F is satisfactory, stop. Otherwise, find the maximum vector x in 

h(x) = g(x)- f (x) given ¢. 

3. Find the values for the coefficient vector ¢ (forget about the previous value 
for ¢) for the linear system g(x)- f(x)=(-1) E, given the maximum 
vector X, and go back to step 2. 
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In a nutshell, we choose an initial guess for the coefficient and find the values of the 

maxima, which we iteratively use to refine the solution (¢ finds x, which finds ¢, etc.). 

As an example of the solution, let us take the previous example and run it through the 
algorithm. Suppose we make an initial guess of ¢ =(4,1). Now we need to find the 
maxima (i.e., the roots of the derivative). There are ample methods out there for find- 

ing roots of polynomials, and they are left as a reference (see [Math]). For this partic- 

ular problem, the math is pretty simple and direct: 

Q59) 

We thus find a general equation that tells us that there is a maximum every time at 

x= b/6. Quite obviously, due to the construct, there is also a maximum at x =0 

and x =1 because they are the boundaries of the minimax approximation. 

Now that we have an estimate for x (in fact the only unknown maximum for this 

case), we can proceed to step 2 to find our coefficient: 

' 1 
at+bx+E=3x’,x= {0.2.1 

i of 1 0 
a 

I 1 
ja = =i! b\=| — 2.5.10 é 13 (2.5.10) 

fs ea Se he 

Solving the linear system, we find that the solution is (a,b,E ) = (—1,3,14), which is 

not too far from the minimax solution of our previous calculations. Going through 

the second iteration of the loop, we find that x = 3/6 = 1/2, changing the equation to 

the following. 

| 
thee B=3rx={0.0| 

(0 Ie al 
a 

pelea Aya a (2.5.11) 
2 4 

miei! \3 
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Solving this linear system gives the exact solution we have known for quitea bit: 

c= (-3,3). Obviously, not all approximations are this easy to compute. 

Sometimes the root-finding process is tedious and requires an iterative process 

such as the Newton-Raphson method or Haley's method, and the linear system 

is sometimes tedious to process. The beauty about it is that we only need to 

compute the coefficient once to compute the approximation to the function; 

thus, there exists no true efficiency requirements. Figure 2.5.3 shows the graph 

of the error between the approximation and the true function. We can clearly 

see that it follows the theorems stated earlier in terms of extrema and null-errors. 

FIGURE 2.5.3 Graph of the error between the first-degree 

minimax approximation of f(x) and g(x): 

Error Analysis 
Sc RR OREO NODE AEN RTOS OE HSE AR PMO EERE ANS PRE ANRUAERST CCEA. OST ARERR SOR CRO 

An especially true fact of approximation is that error analysis is a crucial part of the 
work. The minimax approximation does not directly define the best approximation. 
It merely defines the approximation giving the lowest maximal error for a particular 
polynomial degree. It does not in any way guarantee that it is the fastest method given 
a bit-accuracy. As a proof of this statement, suppose we wanted to approximate the 
sine function over the interval [0,7/ 2]. We can easily compute the remaining values 
of the function using simple trigonometric identities. The fourth-degree minimax 
approximation for the sine function is given by the coefficient vector 
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c= (0.000107652,0.9964223759,0.0190787764,—0.2026644465,0.0284 1900366) (2.oind2,) 

In Horner form, this equation takes a total of four multiplications. On the other 
hand, we can write the Taylor series of the sine function for four multiplications in 

Horner form: 

sin(x) = x] 1+27 benef eeas (2.5.13) xX xX xX 3) X 5) 7 oe 

If we consider that x? is precomputed as a single value, we have that the error func- 

tion for this approximation is slightly better than the minimax approximation of 
equal complexity as shown in Figures 2.5.4 and 2.5.5. This all means that the mini- 
max approximation is an excellent approximation, but others can sometimes be better 

depending on the bit depth. Thus, we should be careful as we go about computing 

this to make sure that the minimax approximation is indeed the best one for a given 

complexity. 

0.0001 

0.00005 

FIGURE 2.5.4 Fourth degree minimax approximation to the sine function. 

If we compare a minimax approximation in Figure 2.5.4 with a Taylor series of 

similar degree in Figure 2.5.5, it is quite clear that the minimax approximation is the 

undisputed winner. One has a maximal error of about 0.0001 while the other hosts an 

error of 0.00016. The best part is that the minimax approximation offers a faster alter- 

native to every single FPU function in existence, regardless of the precision. If we take 
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0.00016 

0.00012 

0.00008 

0.00004 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

X 

FIGURE 2.5.5 Seventh degree Taylor approximation to the sine function. 

the previously mentioned approximation for the sine curve for example, the sine func- 

tion is twice as fast as what is provided by the FPU, and ina reasonable approximation’s 

case, the precision losses are not that high as shown in Tables 2.5.1 and 2.5.2. It gets 

even better if we implement this technique using a SIMD (Single Instruction, Multiple 

Data) processor. By doing so, we can basically compute four sine functions simultane- 

ously, improving the speed almost seven times the speed of a single sine function, or 

minimally six times for a function that has full 23 mantissa bits of accuracy. 

Table 2.5.1 Error for Sin(x) Taylor Series 

Degree Taylor Equations for sin x Max Error for 0 = [0,1/2] 

0 0 1 

1 E 0.5707 

2 x 0.5707 

3 x —x?/6 O751G > 10> 

4 x — «3/6 Ske S< Ua 

5 x— 7/6 + «°/120 —0.4524 < 107 
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Table 2.5.2 Error for Minimax of Sin(x) 

Degree Minimax Equation for sin x Max Error for 6 = [0,7/2] 

0 0.5 0.5 

1 0.1051 + 0.6366 - x 0.1051 

2, —0.1385 - 107! + 1.1748 - x -0.3314 + x? 0.1385 X 1071 

3) —0.1365 X 10-2 + 1.0252 - x—0.7068 X 107! - x? 0.1365 X 107 

—0.1125 - x? 

4 —~0.1076 X 103+ 0.9964 - x + 0.19078 X 1071 - x? 0.1076 X 103 

—0.2026 - x3 + 0.2841 X 107 - x4 

3) 0.7064 X 10> + 0.9996 - x + 0.2193 X 10 - x? 0.706482 X 10° 

—0.1722 - x3 + 0.6097 X 10°? - x4 + 0.57217 - x? 

From this point on, computing an approximation for a function is pretty trivial. In 

practice, we can approximate every single FPU function, and we can almost always at 

least double the speed of the functions if we simply use a few identities. 

Further Improving the Approximation 

There are three methods for decreasing the approximation’s error. The most obvious 

one is to increase the polynomial degree and thus increase the complexity of the 

computations. This is not the ideal method, since it does involve increasing the com- 

plexity. The other technique we may consider is to convert the function into a combi- 

nation of other functions. For instance, if we want to compute the numerical 

approximation of sinx-cosx, we should consider whether it is faster to compute two 

approximations (one for sine and one for cosine) than to compute one approximation 

for the entire function. In this specific case, it is not. Computing the approximation 

of the entire function yields faster results when compared to approximating two func- 

tions, but it is something to be considered at all times, as it may well not be the case 

for more complex functions. This is especially true for rational functions. 

The very last method that can be used to improve an approximation is to simply 

reduce the range of the approximation. In the first example, the sine function was 

approximated only on the interval [0,7/ 2|; and trigonometric identities can be used 

to compute values outside this range. Sometimes, it may be wise to compute piece- 

wise approximations to a function to reduce its complexity. For example, if we want 

to compute the approximation to the sine function once more, we could do so by 

computing 18 linear (first-degree) evenly spaced approximations. It is very easy to 

know which approximation to use if the function is evenly spaced-the range is a division 

of the entire curve, and we can store the coefficient in a table to compute the value. In 

embedded devices, sine/cosine tables are often used, and they represent the values of the 

functions for a given degree. If we use this technique, we can achieve a greater precision 

with less static footprint, given an extra multiplication/addition per computation. It is 

well worth the effort and rather easy to compute as was shown earlier. 
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Finally, the last piece of advice that can be given is to use identities or geometric 

relationships when possible. All transcendental FPU functions can be accelerated with 

the minimax approximation. It is really only a matter of knowing what geometrical 

relationships exist within the functions in order to reduce the range of approximation. 

For instance, consider the function tan x. At first view, it is a very hard function to 

approximate because of its asymptotic behavior. Fortunately, if we consider the identity 

l 
(P= 

1 
at |e 

ls 

we can significantly reduce the precision issues by creating an approximation of tanx 

from angles 0 to 1/ 4. As another example, consider the inverse of the tan function: 

the arctan function. This function is also very ugly because it is asymptotic in x and 

thus has an unlimited range. Fortunately with a quirky identity, we can reduce the 

approximation’s range to a mere 0) to 1: 

(2.5.14) 

7|x| \! 
arctan x = —— — arctan] — |. A Fei Ba, 

gE: x 

As long as the identity we find is not more complicated than computing the function 

itself with the EPU, it should not be a problem. For the two examples presented, the 

cost of the divisions and extra work required doesn’t really hurt that much since the 

equivalent FPU functions for theses two functions are even slower than the sine/cosine 

functions, thus compensating for the more complex logic required to compute the 

function. 

Reference 
SMS ARNEL RNS ROLE AIS EE TEE MM TENET DRIES INC PARES HN REE ORTRONICS BSR EE GES, 

Mer ener on-line at http://mathworld.wolfram.com/Root-FindingAlgorithm. 

tml. 
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Oblique View Frustums 

for Mirrors and Portals 
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So" techniques have been developed to render 3D images containing elements 

that are inherently recursive in nature. Some examples are mirrors that reflect 

their immediate surroundings, portals through which a remote region of the scene 

can be viewed, and water surfaces through which refractive transparency is applied. 

Each of these situations requires that part of the scene be rendered from the perspec- 

tive of some imaginary camera whose position and orientation are calculated using 

certain rules that take into account the position of the real camera through which the 

user is looking. For example, the image visible in a mirror is rendered using a camera 

that is the reflection of the real camera through the plane of the mirror. 

Once such a component of an image is rendered through an imaginary camera, it 

is usually treated as a geometrically planar object when rendering from the perspective 

of the real camera. The plane chosen to represent the image is simply the plane that 

naturally separates the image from the rest of the environment, such as the plane of a 

mirror, portal, or water surface. In the process of rendering from an imaginary cam- 

era, it is possible that geometry lies closer to the camera than the plane representing 

the surface of the mirror, portal, etc. If such geometry is rendered, it can lead to 

unwanted artifacts in the final image. 

The simplest solution to this problem is to enable a user-defined clipping plane to 

truncate all geometry at the surface. Unfortunately, older GPUs do not support user- 

defined clipping planes and must resort to a software-based vertex processing path 

when they are enabled. Other more modern GPUs do support generalized user- 

defined clipping operations but using them requires that the vertex programs in use 

be modified—a task that may not be convenient since it requires two versions of each 

vertex program to be kept around. 

This gem presents an alternative solution that exploits the clipping planes that 

already exist for every rendered scene. Normally, every geometric primitive is clipped 

to the six sides of the view frustum: four side planes, a near plane, and a far plane. 

Adding a seventh clipping plane that represents the surface through which we are 

looking almost always results in a redundancy with the near plane, since we are now 

281 
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clipping against a plane that slices through the view frustum further away from the 

camera. Thus, our strategy is to modify the projection matrix in such a way that the 

near plane is moved to coincide with the surface plane. Since we are still clipping only 

against the six planes of the view frustum, such a modification gives us our desired 

result at absolutely no performance cost. Furthermore, this technique can be applied 

to any projection matrix, including the conventional perspective and orthographic 

projections as well as the infinite projection matrix used by stencil shadow volume 

algorithms. 

Plane Representation SUH RTARTA TSE TL ETE MALLE EL TITTLE TTT RRMA 

Before examining the projection matrix and how it defines the six planes of the view 

frustum, we quickly review how planes work in 3D graphics. A plane C is mathemat- 

ically represented bya four-dimensional vector of the form 

C=(N,,N,,N,.-N-Q), (2.6.1) 

where N is the normal vector pointing away from the front side of the plane, and Q is 

any point lying in the plane itself. A homogeneous point C= (N,,N,,N,,-N-Q) 

lies in the plane if and only if the four-dimensional dot product C-P is zero. For 

points lying on the front (or positive) side of the plane, this dot product is positive, 

and for points lying on the back (or negative) side of the plane, this dot product is 

negative. 

A plane C scaled by any nonzero scalar still represents the same plane. Likewise, a 

homogeneous point P scaled by any nonzero scalar still represents the same point. If 

the normal vector N of a plane C is unit length, and the w-coordinate of a point P is 

1, then the dot product C-P measures the signed perpendicular distance from the 

point P to the plane C. 

A plane is a covariant vector and therefore must be transformed from one coordi- 

nate system to another using the inverse transpose of the matrix that transforms ordi- 

nary points (which are contravariant vectors). This is particularly important when 

transforming planes with the projection matrix, since it is not orthogonal. Given a 

camera-space point P and a camera-space plane C, the projection matrix M produces 

a clip-space point P’ and a clip-space plane C’ as follows 

P’=MP 
eds ad (2.6.2) 

Inverting these equations gives us the following formulas, which transform from clip 
space to camera space 

P=M'P’ 

C=M'C’. (2.6.3) 
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The Projection Matrix 

We spend some time now reviewing the function of the projection matrix and its rela- 
tionship to the view frustum’s clipping planes. We avoid examining any particular 
form of the projection matrix and require only that it be invertible. This allows our 
results to be applied to arbitrary projection matrices that may have already been mod- 
ified from the standard forms. 

Recall that in OpenGL camera space (also known as eye space), the camera lies at 
the origin and points in the —z direction, as shown in Figure 2.6.1. To complete a 
righthanded coordinate system, the x-axis points to the right, and the y-axis points 
upward. (In Direct3D, the z-axis is reversed and camera space is lefthanded.) Vertices 
are normally transformed from whatever space in which they are specified into cam- 
era space by the model-view matrix. In this gem, we do not worry about the model- 
view matrix and assume that vertex positions are specified directly in camera space. 

Z 

FIGURE 2.6.1. OpenGL camera space and the standard view 

frustum. The near and far planes are perpendicular to the z-axts 

and lie at the distances n and from the camera, respectively. 

The standard view frustum is the six-sided truncated pyramid that encloses the vol- 

ume of space visible to the camera. As shown in Figure 2.6.1, it is bounded by four 

side planes representing the four edges of the viewport, a near plane at z=—n, anda 

far plane at z=—f. The near and far planes are normally perpendicular to the cam- 

era’s viewing direction, but our modifications to the projection matrix will move these 

two planes and change the fundamental shape of the view frustum. 

The projection matrix transforms vertices from camera space to homogeneous 

clip space. In OpenGLs homogeneous clip space, a four-dimensional point ee Wises w) 
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lies inside the projection of the camera-space 
view frustum if the following conditions 

are satisfied 

—wsxsw 

—-wsysw 

—wszsw. 
(2.6.4) 

Performing the perspective division by the w-coordinate moves points into normalized 

device coordinates, where each coordinate of a point in the view frustum lies in the 

interval [-11]. Our goal is to modify the projection matrix so that points lying on a 

given arbitrary plane have a z-coordinate of —1 in normalized device coordinates. 

Figure 2.6.2 shows the x and z components of a three-dimensional slice of the 

four-dimensional homogeneous clip space. Within this slice, the w-coordinate of 

every point is 1, and the projection of the view frustum described by Equation 2.6.4 

is bounded by six planes forming a cube. The w-coordinate of each plane is 1, exactly 

one of the x-, y-, and z-coordinates is +1, and the rest of the components are zero, as 

shown in Table 2.6.1. Given an arbitrary projection matrix M, Equation 2.6.3 can be 

used to map these planes into camera space. This produces the remarkably simple for- 

mulas listed in Table 2.6.1 in which each camera-space plane is expressed as a sum or 

difference of two rows of the projection matrix. 

{0F0) 1 a1) 

(1, 0, 0, 1) (-1:0;091) 

FIGURE 2.6.2 A three-dimensional slice of OpenGLs 
homogeneous clip space at w=1 and four of the six 
clipping planes that form a cube in this space. 
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Table 2.6.1 OpenGL clip-space and camera-space view frustum planes. The matrix M 
represents the projection matrix that transforms points from camera space to clip space. 
The notation represents the j-th row of the matrix M. 

Frustum Plane Clip-space Coordinates Camera-space Coordinates 

Near (0,0,1,1) M, + M; 

Far (0,0,-1,1) M,-—M; 

Left (1,0,0,1) M,+M, 
Right (-1,0,0,1) M,-—M, 
Bottom (0,1,0,1) M,+M, 

Top £0,—1,0,1) M,-—M, 

Clipping Plane Modification | << Sen 

Let G= (Gn GRE Ga) be the plane shown in Figure 2.6.3, having coordinates 

specified in camera space, to which we would like to clip our geometry. The camera 
should lie on the negative side of the plane, so we can assume that C, <0. The plane 
C will replace the ordinary near plane of the view frustum. As shown in Table 2.6.1, 
the camera-space near plane is given by the sum of the last two rows of the projection 

matrix M, so we must somehow satisfy 

C=M,+M,. (2.6.5) 

We cannot modify the fourth row of the projection matrix, because perspective pro- 

jections use it to move the negation of the z-coordinate into the w-coordinate, and 

this is necessary for perspective-correct interpolation of vertex attributes such as tex- 

ture coordinates. Thus, we are left with no choice but to replace the third row of the 

projection matrix with 

M’=C-M,. (2.6.6) 
4 

Far Plane 

Near Plane 

FIGURE 2.6.3 The near plane of the view frus- 

tum is replaced with the arbitrary plane C. 
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After making the replacement shown in Equation 2.6.6, the far plane F of the 

view frustum becomes 
‘ 

F=M,-M, 

= 2M, -C. (2.6.7) 

This fact presents a significant problem for perspective projections. A perspective pro- 

jection matrix must have a fourth row given by M, = (0,0,-1,0) so that the clip- 

space w-coordinate receives the negation of the camera-space z-coordinate. As a 

consequence, the near plane and far plane are no longer parallel if either C, or C, is 

nonzero. This is extremely unintuitive and results in a view frustum having a very 

undesirable shape. By observing that any point P= dons y,0, w) for which C-P =0 

implies that we also have F-P=0, we can conclude that the intersection of the near 

and far planes occurs in the x-y plane, as shown in Figure 2.6.4(a). 

Since the maximum projected depth of a point is achieved at the far plane, pro- 

jected depth no longer represents the distance along the z-axis, but rather a value cor- 

responding to the position between the new near and far planes. This has a severe 

impact on depth-buffer precision along different directions in the view frustum. For- 

tunately, we have a recourse for minimizing this effect, and it is to make the angle 

between the near and far planes as small as possible. The plane C possesses an implicit 

scale factor that we have not yet restricted in any way. Changing the scale of C causes 

the orientation of the far plane F to change, so we need to calculate the appropriate 

scale that minimizes the angle between C and F without clipping any part of the orig- 

inal view frustum, as shown in Figure 2.6.4(b). 

Let C’= (M" y" C be the projection of the new near plane into clip space (using 

the original projection matrix M). The corner Q’ of the view frustum lying opposite 

the plane C’ is given by 

Q’ = (sgn(C’),sgn(C’), 1,1) (2.6.8) 

where the sgn function returns the sign of its argument as follows. 

+1, ifk>0; 
sen(k)=4 0, ifk=0; (2.6.9) 

-1, ifk<0. 

(For most perspective projections, it is safe to assume that the signs of C’and C ’ are 
. . . . . y 

the same as C, and C,,, so the projection of C into clip space can be avoided.) Once 
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we have determined the value of Q’, we obtain its camera-space counterpart Q by 

computing Q=M 'Q’. For a standard view frustum, Q coincides with the point 

opposite the plane C where two side planes meet the far plane. 
To force the far plane to contain the point Q, we must require that F-Q=0. 

The only part of Equation 2.6.7 that we can modify is the scale of the plane C, so we 
introduce a factor a as follows: 

F=2M, -aC. (2.6.10) 

Solving the equation F-Q=0 for a yields 

12M Q 
> 2.6.11 ao (2.6.11) 

replacing C with aC in Equation 2.6.6 gives us 

2M, : 
eae (2.6.12) 

and this produces the optimal far plane orientation shown in Figure 2.6.4(b). It 

should be noted that this technique also works correctly in the case that M is an in- 

finite projection matrix (i.e., one that places the conventional far plane at infinity) by 

forcing the far plane to be parallel to one of the edges of the view frustum where two 

side planes meet. 
As mentioned earlier, modifying the view frustum to perform clipping against an 

arbitrary plane impacts depth-buffer precision, because the full range of depth values 

may not be used along different directions in camera space. It can be shown that the 

maximum attainable normalized device z-coordinate along the camera-space direc- 

tion V is given by 

a(C-V)+V 
Zz oor (2.6.13) 

Zz 

In general, the depth buffer precision decreases as the angle between the normal direc- 

tion of the clipping plane C and the z-axis increases and as the distance from the cam- 

era to the clipping plane increases. More information about depth precision issues can 

be found in [Leng04]. 
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(a) 

FIGURE 2.6.4 (a) The modified far plane F given by Equation 

2.6.7 intersects the modified near plane C in the x-y plane. 

(b) Scaling the near plane C by the value a given by Equation 

2.6.11 adjusts the far plane so that the angle between the near 

and far planes is as small as possible without clipping any part of 

the original view frustum. The shaded area represents the volume 

of space that is not clipped by the modified view frustum. 
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The standard OpenGL perspective projection matrix M is given by 

2n 0 r+l 0 

r—-l r—l 

0 2n t+b 0 

M= t-b t-b (2.6.14) 

0 0 cite 2h 

f-n fen 

0 0 —] 0 

where 7 is the distance to the near plane, f is the distance to the far plane, and the 
values /, 7, 6, and ¢ represent the left, right, bottom, and top edges of the rectangle 
carved out of the near plane by the four side planes of the view frustum. Since 
M, = (0,0,-1,0) , Equation 2.6.12 simplifies to 

— 
M, = 2. © +(0,0,1,0). (2.6.15) 

C:Q 

The point Q is given by 

Q=M" (sgn(C,),sgn(C, ), 11), (2.6.16) 

applying the inverse of M, we have 

gamle tek 

sen(C,) an oat 

bab Vier 
Q= son) et f (2:6,17) 

—] 

i/f 
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Listing 2.6.1 demonstrates how the modification to the projection matrix can be 

implemented in an OpenGL-based application for a typical projection matrix. It 

assumes that the projection matrix M is a perspective projection having the form 

a 0 b O 

0 aad “= 
M= ‘ (2.6.18) 

Or OP se ey) 

00-1 0 

where a>0, c>0,and f #0. The code makes direct use of the general inverse of 

M, given by 

idee Orn J0r abhe 

On tlices Ome, dic 
M'= i (2.6.19) 

(= s0am cy =~ 

OemOmey yt eh 

Listing 2.6.1 Implementation of the Projection Matrix Modification for an OpenGL 

Projection Matrix Having the Form Shown in Equation 2.6.18 (The clipPlane parameter 

passed to the ModifyProjectionMatrix function represents the camera-space plane 

to which clipping is to occur.) 

inline float sgn(float a) 

{ 
if (a > 0.0F) return (1.0F); 

if (a <s0,0F) *netunn (10m). 

return (0.0F); 

} 

struct Vector4D 

{ 
ATL OCs MX yee Wa 

Vector4D() {} 

Vector4D(float a, float b, float c, float d) 

{ 

} 
x = as y = bi Z = Cy) Weed; 



2.6 Oblique View Frustums for Mirrors and Portals ; 291 
ECR te NE EAM MRE NRE 

// Scalar product 
Vector4D operator *(float s) const 

{ 

} 
ReCUrMEMECLORAID (Xs 78S, Vi oS sez. * Si, Was): 

// Dot product 
float operator *(const Vector4D& v) const 

{ 
mene) (Ok 82 Wee ie A FS WA era Wey sa oP AZT 

} 
}5 

void ModifyProjectionMatrix(const Vector4D& clipPlane) 

{ 
float matrix[16]; 

Vector4D lr 

// Grab the current projection matrix from OpenGL 
glGetFloatv(GL_PROJECTION MATRIX, matrix); 

// Transform the clip-space corner point opposite the 

// clipping plane into camera space by multiplying it 

// by the inverse of the projection matrix 

q.x = (sgn(clipPlane.x) + matrix[8]) / matrix[0]; 

q.y = (sgn(clipPlane.y) + matrix[9]) / matrix[5]; 

q.z = -1.0F; 

q.w = (1.0F + matrix[10]) / matrix[14]; 

// Calculate the scaled plane vector 

Vector4D c = clipPlane * (-2.0F / (clipPlane * q)); 

// Replace the third row of the projection matrix 

matrix[2] = C.x; 

matrix[6] = c.y; 

MatrexdeO = coz ciOR: 

matrix[14] = c.w; 

// Load it back into OpenGL 

glMatrixMode(GL_PROJECTION) ; 

glLoadMatrix(matrix) ; 

} 

In the Direct3D environment, camera space is lefthanded, and the near plane cor- 

responds to the set of points for which the clip-space z-coordinate is 0. Thus, the 

value of the near clip plane listed in Table 2.6.1 should be changed to (0,0,1,0) for 

Direct3D applications. Consequently, the camera-space value of the near clip plane is 

simply given by M,. This means that the entries of the third row of the projection 
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matrix are exactly the coordinates of the near clip plane in camera space. The far clip 

plane F is still given by M, —M,, so we have 

F=M,-aC (2.6.20) 

after replacing the third row of the projection matrix with an arbitrary plane C. Solv- 

ing for the scale factor a that causes the far plane to include the point Q given by the 

inverse projection of Equation 2.6.8, we have 

,_M,:Q M)= ao 

The standard Direct3D perspective projection matrix M is given by 

C (2.6.21) 

2n rt+l 
— 0 — 0 
r-l r—-l 

0 2n t+b 0 

M= iD, shel j (2.6.22) 

frn fon 

0 0 1 0 

Ve oe 

where each value has the same meaning as it does for the OpenGL projection matrix 

given by Equation 2.6.14. In this case, Equation 2.6.21 simplifies to 

M) = 2. ¢ (2.6.23) 
C:Q 

Equation 2.6.16 gives the value of the point Q in Direct3D as well as OpenGL. 

Applying the inverse of the projection matrix M given by Equation 2.6.22, we obtain 

the same coordinates for Q shown in 2.6.17, except that the z-coordinate is negated. 

Listing 2.6.2 demonstrates how the modification to the projection matrix can be 
implemented in a Direct3D-based application for a typical projection matrix. It 
assumes that the projection matrix M is a perspective projection having the form 

ao 

GO ind 
(2.6.24) 

oO [o> o es —_  ® o +8 o 2c 
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where a>0, c>0, and f #0. The code makes direct use of the general inverse of 
M, given by 

We Oo On eb) 

i thiodk Veal 0 onl fio 
M'= 0625) 

(aes 0 1 

UE els ena 

Listing 2.6.2 Implementation of the Projection Matrix Modification for a Direct3D 
Projection Matrix Having the Form Shown in Equation 2.6.24 (The clipPlane parameter 
passed to the ModifyProjectionMatrix function represents the camera-space plane 
to which clipping is to occur. This code uses the Vector4D class shown in Listing 2.6.1.) 

void ModifyProjectionMatrix(const Vector4D& clipPlane) 

{ 
D3DXMatrix matrix; 

Vector4D q; 

// Grab the current projection matrix from Direct3D 

D3DDevice.GetTransform(D3DTS_ PROJECTION, &matrix) ; 

// Transform the clip-space corner point opposite the 

// clipping plane into camera space by multiplying it 

// by the inverse of the projection matrix 

q.x = (sgn(clipPlane.x) - matrix._31) / matrix._11; 

q.y = (sgn(clipPlane.y) - matrix._32) / matrix._22; 

Caze= dmn0hy 

q.w = (1.0F - matrix._33) / matrix._43; 

// Calculate the scaled plane vector 

Vector4D c = clipPlane * (1.0F / (clipPlane * q)); 

// Replace the third row of the projection matrix 

MAtEUX< aid = C.X; 

matrix. 23 = C.y; 

matrix, 33. = ¢.Z; 

matrix. 43 = C.w; 

// Load it back into Direct3D 

D3DDevice.SetTransform(D3DTS PROJECTION, &matrix) ; 
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Introduction 

Robin Hunicke, Northwestern 

University 

hunicke@cs.northwestern.edu 

ene cee you look—at GDC and E3 or in the gaming and popular press—people 
are talking about “next generation” games. Pundits and players alike agree: innova- 

tion in game AI has the power to take us beyond stunning graphics and familiar genres 

to exciting, unexplored territories. If it’s done right, AI can help diversify content, 

streamline development processes, and lower the production costs of games, while 

strengthening and broadening their overall appeal. 

Easier said than done! It’s clear that the “simple” or “known” AI techniques cham- 

pioned just a few years ago won't vault us to the next level, but when we look ahead, 

things get fuzzy. Preparing for new hardware (with new, unexplored capabilities), 

developers ask, what is the next logical step for game AI? And will we have the time 

and resources to take it? 
A few developers have already begun experimenting with narrative, characters 

and emotion, procedural content, persistence, reputation, and consequence. On these 

teams, AI and game design tasks intertwine, and communication strategies and 

reporting structures change. And as new techniques are integrated, existing standards 

for game balance, player control, feedback, and “fun” must be met. The work is differ- 

ent and more difficult at the same time. 

Experimentation and innovation are a focus, but solid engineering is a must. 

Beneath the investigation into game Al’s new forms and roles, there is a critical push 

towards clarity and optimization. Programmers strive to leverage fast, predictable 

algorithms wherever possible, while maintaining efficient and debuggable code. 

Design tools must be consistent and transparent to programmers and nonprogram- 

mers alike. Parallelization, for all its benefits, seriously impacts these concerns. 

This section reflects the growing array of issues and considerations that surround 

modern game AI. Many of the gems are exploratory, and some present overviews of 

larger, complex subject areas—a bit of a break from the traditional “gems” form. To 

round this out, weve included some down-and-dirty discussions of familiar topics, 

including search and pathfinding, targeting, strategy, and combat analysis. And even 

here, we hope you'll find a few surprises. 

Looking to the future, it’s hard to say whether any of our AI dreams will pan out 

(though our track record, so far, is a bit discouraging). Looking beyond that, if we 

achieve even the simplest of our goals, what will the next crop of problems be? 
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As characters grow increasingly autonomous, will they also become difficult to 

“control” from a design perspective? Will procedural content give its games a “cookie 

cutter” feel that detracts from the player experience? Will persistence bite dedicated 

players in the butt, leading to complex but unforeseeable (and undesired) con- 

sequences, far from the incidents that initiated change? Will we see something analo- 

gous to global warming in the saved games of our future? 

As Al and game design become increasingly enmeshed, how can we abstract away 

from game-specific issues and implementations? Do we have the right language to 

discuss and design broader, repeatable solutions? Can we even pinpoint the AI com- 

ponents of our games as such? In a few years, will this chapter have a new heading or 

three? There are so many unknowns, it’s almost overwhelming! 

Unless, of course, youre like the rest of us: the authors, developers, researchers, 

and players who work (and play) hard to make tomorrow’s great games. For us, these 

questions don't depress, they excite! Because for us (as with all things), the challenge is 

really just part of the fun. 

Hopefully you consider yourself part of our camp. And if not, consider joining 

us. Take that next step, beyond this chapter to other volumes, from those volumes 

into your practice, studies, and discussions. The work is far from over, and there’s 

always room for fresh faces, innovative ideas, and fun! 

Enjoy! 
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Automatic Cover Finding 

with Navigation Meshes 

Borut Pfeifer, Radical Entertainment 

borut_p@yahoo.com 

n many combat-related games, NPC cover finding is implemented by placing 

hidden volumes, which denote areas that can be used for cover under fire. Whether 

separate from a navigation graph or incorporated in it, level designers must place 

these points manually. In very large levels and open, freely explorable worlds, this 

rapidly becomes a time consuming task. 

This gem describes how navigation meshes can be combined with collision infor- 

mation, enabling NPCs to find cover points automatically. By augmenting the navi- 

gation mesh with additional information regarding the navigability of neighboring 

links, we can use standard, runtime search algorithms to find a valid cover position for 

NPCs, saving developers much time and effort. 

In his article “Simplified 3D Movement and Pathfinding Using Navigation Meshes,” 

Greg Snook elaborates upon the use of navigation meshes in games ({Snook00}). 

Other gems ([Tozour02], [White02]) discuss specific techniques for simplifying 

meshes or speeding up searching on them. The type of mesh used in this gem is a tri- 

angle-based mesh, which is the same mesh used for in-game world collision detection. 

Specifically, for each walkable triangle in the navigation mesh, there is a direct 

correspondence to a triangle in the collision mesh (the triangle data itself is shared), 

but the collision mesh may have many more nonwalkable triangles with no represen- 

tation in the navigation mesh. 

Building the Navigation Mesh 

Each triangle in the mesh can have up to three neighbors; while only some neighbors 

may represent walkable triangles, all are stored for use by other applications (such as 

decaling). Each triangle also has a bitfield for each neighbor denoting possible
 traversal 

options (in this case, walkable, standing cover, crouching cover, and non-walkable). 
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To determine the flag for each link in a preprocessing step, we perform-ray casts 

along each side of the link at the appropriate heights (Figure 3.1.1). Once we've deter- 

mined the applicable cover or lack thereof for each edge, we can store that information 

in less than one byte per triangle (since there are only two bits of information per edge). 

Triangle A Triangle B 

FIGURE 3.1.1 Front view of per edge ray test during 

preprocessing. 

These two simple cover distinctions (standing and crouching) assume human-sized 
opponents. To accommodate a wider variety of heights in the NPCs searching for cover, 
simply increase the number of cover ranges above two (a flag for each meter of cover, for 
instance) or store the height of the link in the navigation graph (which has other poten- 
tial applications, like determining if an NPC can climb or jump to the linked triangle). 

Testing a Triangle for Cover 

To determine if a given triangle is acceptable as a cover position, we have to do two 
things: 

1. Test for a straight line path from the center of a given triangle to the target 
point (that we wish to be in cover from). This can use simplified two dimen- 
sional line segment intersections tests, as in Snook’s article [Snook02]. 

2. If the triangle does not have a straight path to the target point, find the edge 
that is between the center of this triangle and the target; if that link was 
flagged in our preprocessing step as crouching or standing cover, this triangle 
can be considered to be in cover from the target. 

Limitations 

With this type of graph and cover test, we do face a couple of limitations. To start, because 
the navigation is preprocessed, our algorithm can only find static cover (the list of large 
enough dynamic objects can then be iterated through quickly for additional cover points). 

In addition, the two-dimensional math for fast line-of-sight operations limits us 
to wall-based cover. The ground itself will never be used as cover, as in the case of a 
hill that lies between an NPC and its target. For many environments, such as urban 
settings or interiors, this is not much of a concern. 
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Open Goal Pathfinding 

To search for a cover point, our pathfinding system needs to support the concept of 

open goal search. In a typical pathfinding request, the search is from a start point to a 

specific end point; we know the exact element that meets our goal, so it’s a closed goal 

search. An open goal search is simply looking for an element that meets the given con- 

ditions, without knowing exactly what the element is. 
We need to parameterize our search on two categories to achieve this: 

The heuristic: A test that the A-star algorithm uses to weight each node. 

The goal test: Defines if a given node meets the goal parameters for the search. 

The pathfinding function might look like: 

template<class PathSearch> 

PathResult FindPath(NodeID startNode, 

Path* pInputPath, 

PathSearch searchParam) ; 

Alternately, you could use a base class with virtual goal and heuristic functions, or 

function pointers, as ways of parameterizing this data, but in theory, the templates 

improve code locality for consoles with a small instruction cache, such as the PS2 (by 

avoiding per-node virtual function calls). 

Some games implement these open-goal searches (such as finding cover locations) 

outside of the pathfinding system. However, using the previous method, you can take 

advantage of all the existing search code in your pathfinding engine, as well as other 

features (such as timeslicing). 

Searching For a Cover Position 
sae OE ERS ELE LLL LLL LL ERE MALE MARES EES ATLAS LIES EE TES, 

Since the notion of what defines cover is relative, and constantly changing, we have to 

test for cover given a few input parameters. The two main parameters are the agents 

position (the start of the search) and the targets position (the point from which to 

ensure we're in cover). 

Additionally, a given direction and acceptable angle within that direction allow us 

to weight nodes in the direction the NPC is already intending to move. A maximum 

distance allows us to limit the search to reasonable cover positions, since the NPC 

would only consider the area nearby in the middle of heated combat. 

The template parameter PathSearch class, passed into the previous FindPath 

function, would look like this: 

class PathSearchForCover 

PathSearchForCover(Vector start, 

Vector coverFrom, 
Vector inDirection, 

float angle, 

float maxDist) ; 
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bool TestGoal(NodelID) ; 

float GuessRemaining(NodelID) ; 

} 

The goal test is simply the cover test defined earlier. If a node qualifies as cover, we've 

found an acceptable end to our search (this doesn’t guarantee we will find the best 

cover, but in practice, this was never a concern). The heuristic acts like a standard 

point-A-to-B path heuristic, in that it will return the straight line distance to the goal 

(or a similar heuristic, such as the Manhattan distance). 

There are two additional rules to its method of weighting cells: 

© Cells that lie beyond the target point (so we would have to travel from our start- 

ing position, past the target, into cover) are weighted much higher (10 times). 

This helps to prevent the undesirable behavior of NPCs running past the player 

to get to cover. 

© Cells that lie in our given direction, within the given angle, are weighted as a third 

of their normal value. This ensures the search will move in the direction the NPC 

desires to move. 

Once our search is over and we've found a cover point, we're close, but not quite finished. 

Since our cover test uses the center of each triangle, we need to calculate the most desir- 

able position on the triangle for cover. 
If we know the path-requesting agent’s width, we can simply take the edge of the 

triangle that is providing us cover and offset the cover point from the vertex of the edge 

that is closest to the target point. See Figure 3.1.2. 

Cover edge 

Midpoint 

Cover point & 
direction 

FIGURE 3.1.2 Determining the cover point on the 

found triangle. 
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Now we have a point offset from the wall by the agent’s width, and we know the 

direction the agent needs to move along the wall to pop out of cover. Based on the flag of 
the cover edge (standing or crouching), we can adjust the cover point to be at the correct 
height, telling an agent if it needs to crouch to stay in cover here. 

The cover test will occasionally give us false-positive results, in that it may flag a 
wall that is adjacent to another wall as cover. To avoid this problem, we can test adja- 

cent triangles for cover edges that share a vertex with our current cover edge; this 

would indicate our edge is actually along a wall. The false-positive scenario is also 

dependent on the target position; it will only produce a false-positive if the target 

position is opposite the center of two triangles whose edges form a wall. 

In practice, since the problem is by definition hidden from the player (the NPC 

would think they were able to move to see the player when it was actually behind a 

larger wall), it did not seem worth the extra per node memory retrieval costs on the 

PS2. The test does not, however, have a problem with false negatives (finding a cover 

position that is actually out in the open and able to be fired on from the target). 

Moving through Cover — SU NREENERNN SSEREA ED LEEE SEERA ESE NEE TNE 

Now that we can find cover points, we can also generate paths between two points 

that attempt to stay in cover. This simply means we do a normal search from one 

point to another, but if we come across a node that is acceptable cover, we weight it 

much lower (so the search will consider it over other, closer nodes). 

Then, in the path smoothing step, we ensure that acceptable cover locations do 

not get removed from the path by the regular line of sight tests. See Figure Bled 

FIGURE 3.1.3 The smoothed path with cover 

points kept as waypoints. 
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It may be desirable to have NPCs use cover positions on the player as a group; for 

example, teammates providing covering fire or flanking the player by advancing from 

opposite cover points. To accomplish this, we have to modify the search slightly. We 

are no longer seeking one particular goal but a set of goal positions. While the search 

isn’t normally set up for this sort of scenario, it’s easy to include it as part of the open 

goal search. 
The search itself, because we need to find all the cover points around a given 

point, becomes a breadth first search. There's no heuristic we can use to simplify the 

search, but we can use the same architecture to find the desired results. 

As before, the heuristic function tests for cover from a given point. Now it also 

stores the valid cover points; as the search tests nearby nodes, the heuristic records 

applicable nodes. The goal function returns true only when the heuristic has recorded 

the desired number of cover points. 

A team of NPCs can share these points to advance on the player and provide cov- 

ering fire for each other. Once the nearby cover points have been found, one NPC can 

fire at the player while the others spread out to the various cover locations. Then the 

remaining NPC can run for cover (assuming he’s still alive) as the other NPCs alter- 

nate popping out and providing cover fire. 

If an NPC is looking for a player it recently lost sight of, this search can provide a 

list of potential hiding places. You can find all the nearby triangles that have an edge 

that blocks the NPC’s line of sight, so the NPC can patrol its environment going 

from obstacle to obstacle, looking for its lost target. 

Additional Functionality 
WEES RRR 8 SS IDR EEE ONT RIE TN 

The following sections describe additional functionality you may wish to add. 

Reserving Cover Points 

If your pathfinding system allows for simple reservation of path nodes (preventing 

them from being considered for other path searches), NPCs can reserve their cover 
points such that other NPCs will not consider them in their path searches. This pre- 
vents NPCs from bunching up at the same cover point. 

More Data 

It becomes trivial to embed additional collision information into the navigation mesh. 
Although cover is detected automatically, designers can disable/enable areas as being 

applicable for cover searching by using a 3D tool to paint these values on the naviga- 
tion mesh. We could automatically detect other pathfinding concerns such as jumps by 
testing for cliff edges that have equivalent height triangles a set distance away. 
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Other Searches 

It is also easy to extend the system by adding additional searches. For NPCs that have 
to run away from the player, simply forcing them to run in the direction opposite the 
player can cause artifacts like the NPCs getting stuck on walls. An open goal search 
for a position outside a certain radius of the player will give the NPC a surer path out 
of harm’s way (although it may still need to start moving in the given direction while 
the path finishes processing). Additionally, we can weight this path search slightly, 
biasing the NPC towards cover locations if we want the NPC to avoid fire as it flees. 

Conclusion 

While games that are heavily focused on combat in small, tight locations may still 

need the use of a manual cover-placement system to allow for designer control, larger 

games can allow for tactical combat without requiring the same effort in the produc- 

tion process. The technique described here is fairly simplistic but still provides mean- 

ingful results without having the same workflow requirements for designers. In 

addition, such approaches allow behavior to emerge from the system, as NPCs find 

available cover in all manner of situations. 

Thanks to Tinman, Stan Jang, Marcin Chady, Ben Geisler, and Adrian Johnston 

for their input and related work. 
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Fast Target Ranking 

Using an Artificial 

Potential Field 

Markus Breyer, Factor 5 

me@markusbreyer.com 

| Pee autotargeting and AI agents often have to select a target from a number of 

game objects arranged arbitrarily in 3D space. Whether attacking opponents, pick- 

ing up items, selecting an agent to engage in a conversation, finding the optimal place 

to take cover, or choosing the best landing spot, target selection is everywhere in games. 

In most target-selection algorithms, items are ranked based on distance and 

angle: near objects are picked over those that are far away, and targets straight ahead 

are chosen over those at the sides or behind. This is because the observer has to spend 

time turning around to interact with objects behind it, making such targets somewhat 

less preferable. However, a target behind can be preferred to a target straight ahead if 

it is somewhat closer. It becomes clear here that distance and angle are two competing 

goals that must be properly combined into a single metric for decision making. The 

formula presented in this gem uses a simple and computationally inexpensive rational 

function to compute a 3D pseudo potential that incorporates this distance/ angle 

trade-off in a smooth, very natural fashion and yields a single scalar value by which 

targets can be prioritized. 

NR 

Our goal is to derive a scalar metric for objects in an arbitrary scene and use it to rank 

targets in order of preference. We want to find a scalar value function that takes the 

position and orientation of a target and those of the observer and returns a ranking 

(our implementation interprets lower values as higher preference, but this is simply an 

implementation choice). 

There are two approaches to this problem. Commonly, points are ranked by 

distance (or distance squared). When the distance is interpreted as a potential, a 2D 

contour plot of such potential (i-e., a plot of isocontours comprises lines connecting 

points of equal potential) looks like Figure 3.2.1. 

307 
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FIGURE 3.2.1 A potential field based solely on 

distance. Points of equal potential form concentric 

circles (or in 3D, spheres) around the observer. 

Ranking based solely on distance treats targets behind the observer equal to those 

in front of the observer. If we would like to favor targets in front of the observer, we 

can select based on the angle from the view axis (or local z-axis) of the observer. A 

contour plot of a potential field ranked by angle looks like Figure 3.2.2. 

FIGURE 3.2.2 A potential field based solely on angle. 
Points of equal potential form V shaped pairs of rays 
(or in 3D, cones) originating at the observer. 
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To consider both distance and angle for target selection, we could compare and 
amalgamate the distance and angle potentials in some fashion to derive a single result. 
Instead, we could approach the problem from the other end: imagine that isocontours 
in the 2D space are connecting points of equal preference, as shown in Figure 3.2.3. 

FIGURE 3.2.3 A potential field based 

on both distance and angle. 

With this approach, a target far away (but straight ahead) ranks the same as a 

target to the side or behind (but near). That means near targets are preferred over far 

targets, and straight ahead targets are preferred over those by the side at the same 

time, as was our goal. In the following, we will examine a way to derive a function 

that produces such a field. 

The Formula } 
SLE LESLIE LLE LIS NTL OEIC SIAL AE EL TEE EAE 

A function to satisfy the desired requirements should have a global extremum (maxi- 

mum or minimum) at the position of the observer. It should be monotonous over its 

entire domain, laterally symmetrical, and assume some constant value at a number of 

selected points along one of the equipotential curves. If the function is chosen cor- 

rectly, the rest will fall into place. 

To start, let us look at each of the three coordinate directions. In z direction, we 

would like the function to be steep behind the observer, have a minimum at the 

observer, and then slowly rise again. In x and y direction, the function should be 

symmetrical and have a minimum at the z axis (x = y = 0). A set of functions that 

accomplishes this for each axis independently is: 
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24 +e 

if ah ls “y= dy hey, fy a2 (3.2.1) 
: pz+q 

Vv 

Adding the terms up, canceling, combining, and renaming coefficients yields: 

z? +(ax’ +by +ejztax’ tdy +f 

pz+q 

x ztax’ztbyztcx +dy’ +ez+ f 

y, pz+q j 

Vives) Vay :, +V,= 

(3.2.2) 

Now, we need to find eight boundary conditions that will enable us to solve for the 

eight coefficients. 

We will assume that the potential is zero and minimal at the position of the 

observer (i.e., smaller values of v mean a better pick) and require that the isocontour 

v = 1 (or in 3D, isosurface) goes through certain points in space.’ 

The extent of the desired isosurface bubble v = 1 can be defined-in terms of five 

intuitive parameters as illustrated in Figure 3.2.4. 

Xfars Vfar 

FIGURE 3.2.4 Isosurface bubble defined 

by Shap Xfap js far RXV fay S rear 

; ee MM nc ; 
The value 1 is arbitrarily picked here since we need some non-zero valued isocontour to pinpoint the shape of the field. 
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Varying the parameters Zi. Xfae Vfmr 20 far Zrear allows us to shape the bubble as 

needed. We can in particular make its horizontal and vertical extents different to 
define a selector that is more sensitive in either horizontal or vertical direction. Expe- 
rience shows that a designer can usually define the parameters right away and yield a 
satisfactory result that requires little or no subsequent tweaking. 

Together with the requirement that the potential at (0,0,0) be zero and minimal, 

and have maximal lateral extent at z = zxyg,, we can then specify the following eight 
boundary conditions: 

v(0,0,2,,)=1  v(0,0,0)=0 

%) v(0,0,-z._)=1 <= —(0,0,0)=0 
rear Oz 

\ ed) Vv 

VX fa 29 Z yar) = 55 ar? y Z star) = 0 

ov 
VON Aaa ap (02 Y sar? Znpar) = 9 

Solving for the coefficients yields: 

Des ise qt+z ‘ 
Pp=2Z,--Z ip eet C= eee e=0 

far rear 2 x? 

gh far 

Dect qt+z. . 
G=Z,,2 jg Sas d=—* 7(=0 

far” rear 2 

D ie a 

Now, v can be defined in terms of Zf Xfi Jah Zar ANA Z eq With e and f removed, 

the potential function looks like this: 

wy +(az+c)x° +(bz+d)y? (3:25) 
pz+q 

Evaluating the Potential Function Ae 

When evaluating the potential function, we must pay attention to three things to 

ensure the function yields the expected results: 

1. The denominator must not become zero or negative. Otherwise, this would 

not only allow the potential to assume infinity but also would make the po- 

tential field discontinuous and nonmonotonous. 
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2. The terms (az+c) and (bz +d) must not become negative. If they became 

negative, the potential would be allowed to fall beyond a certain z, which 

would produce inconsistent behavior, i.e., lower values even though the 

pick is worse. 

3. The boundary contour v = 1 must be placed at the outmost rim of the selec- 

tion volume, i.e., the maximum range of the target selector. Only values of 

v <1 can be relied upon for correct ranking. A value v > 1 reliably tells you 

that the target is out of range, but values v > 1 cannot be relied upon for 

ranking, since the potential function starts losing the desired properties for 

values that go beyond v = 1. 

With all this in mind, evaluation should go as follows: 

R=max(az+ c,0); (3.2.4) 

S =max(bz+d,0); (3.2.5) 

D=max(pz+ q,eps); (3.2.6) 

2? + Rx’ + Sy’ 
=== eee D 3.279 

Here, eps is some very small positive value, e.g., 0.001. This is a computationally very 

inexpensive formula that can be easily executed every frame for dozens of targets. 

Visualization 
TRAE 

To aid in development and debugging, a game engine is usually capable of visualizing 

its inner workings through graphical debug markers (boxes, spheres, etc.). Similarly, 

you may find it useful to visualize the potential field through one or more of its iso- 

surfaces, in particular, the surface v = 1. 

Even though the field is defined through an implicit formula, an explicit formula 

can be derived to describe an isosurface v = v,. It is parameterized in distance along the 

view axis z and angle @ around the observer's view axis, consisting of a series of ellipses 

perpendicular to the z axis. Using the constants R, S and D defined above, compute 

the radii of the ellipses’ principal axes for each value of z as follows: 

Dv. -2* Dv -—2 
ss | a (3.2.8) 

? R y 5 
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Then render the point cloud (z = Zypig-Zmax» Q = —Il..T): 

R_ sing 

P=| R,cos@ |. (3:29) 

Z 

Here, zmin and zmax can be found by solving the equation Dy —z* =0. 
In case Zp > Zean the best way to solve for Zniq ANd Znqx is defining S=v_p and 

T =v_q, and to compute Zi, aNd Zpg. by: 

cde =5[s+Vs* +4r | 

y Md G20) 

Note that for v, = 1, Zin ANd Zna are simply —Zeq, aNd Zf» 80 if you do not need to 

plot the surface for other values of v,, then you do not need the previous formula. 
The resulting point cloud can be easily tessellated if so desired. Remember that v, 

must be between 0 and 1 for useful results (however, it may be possible to find appli- 

cations for other values of v!). An example plot looks like Figure 3.2.5 

OKT) (OATS 

iM Nsteates 
Wiens 
WO XY IANS 

FIGURE 3.2.5 Resultant 3D potential field. 
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Use as a Directional Field 

The potential function might also be used for more applications like a damage, 

thrust, or suction field. You might define a field magnitude by H = max ( 1—v,0)}, 

then use H (or H”) as the damage of a flame thrower or the strength of a thrust or suc- 

tion field. For direction, use the normalized gradient (negate as needed). To calculate 

the gradient, define two new constants as follows: 

M =aq-cp 

N =bq- dp. 

Then using these constants, compute the gradient of v as follows: 

dv / ax 2xRi D 

Vv=| dv/ody |= 2yS/D 

av / dz [Mx? + Ny* + (pz+ 2q)zV/D* 

Such a suction field (in 2D) could look like Figure 3.2.6. 

(3.2.11) 
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FIGURE 3.2.6 Potential field in the case of 2D “suction. 
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Expanding in More Dimensions 
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The application we have discussed in this gem centers around using two parameters: 
Distance and Angle. It is not difficult to reach the hypothesis that this could be 
extended to an increased number of dimensions, such as “target threat level,” “target 

vulnerability,” or any number of other examples. The use of potential fields with iso- 
surfaces could certainly be extended into multidimensions, however, the particular 
rational function derived in this gem is very specific to the distance/angle problem of a 
3D observer and not necessarily extensible to a general potential field approach. How- 
ever, by applying a similar kind of reasoning that lead us to the particular rational func- 
tion introduced in this gem, you can derive other potential functions specific to 
different boundary conditions. 

For example, in the case of a value/threat trade off, you might find a parabolic look- 
ing potential field by requiring that even a low-threat target has to have a certain min- 
imum value to make it worth attacking, that value should be somewhat proportional 
to threat, while for high-threat targets the value parameter increases more rapidly, 

resulting in something like v = 1/(a*value — b*threat’2). Again, here the denominator 

would have to be clamped to some small, positive value. Several such potential func- 

tions could then be combined, for example by simply adding them, resulting in a par- 

abolic looking plot. This again could be represented as a simple potential function. 

Still, there may be some potential future application here. Experiment! 

Conclusion 

< OS 

ON THE CD 

sae 

This gem presents a simple, computationally inexpensive method employing an arti- 

ficial potential field to rank objects of interest smoothly and naturally by both dis- 

tance and angle. We describe a simple method for rendering the isosurfaces of such 

fields, and a method for computing the gradient of the field to be used, as a direction 

vector of suction, thrust, or damage. An example source file with C++ implementa- 

tions of all presented formulas is included on the companion CD-ROM. 
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3.3 

Using Lanchester 

Attrition Models to 

Predict the Results 

of Combat 

John Bolton, Page 44 Studios, LLC 

johnjbolton@yahoo.com 

| Boi to World War I, E W. Lanchester formalized a set of basic mathematical mod- 

els for describing combat in terms of the number of units and the rates at which 

the units are destroyed. These models are known as Lanchester Attrition models and 

have become a foundation for the mathematical analysis of warfare. This gem shows 

how these models can be used to predict the results of combat in games quickly and 

efficiently. The general principals of Lanchester Attrition are reviewed, and models for 

evaluating several combat systems and scenarios are demonstrated. 

Overview 
samme eR NH ye OS SRIAREL SHIRE RINE 

Using a system of differential equations, Lanchester Attrition models describe the rate 

at which units are lost in a battle. The system of equations can be solved to answer a 

number of questions, including 

¢ Who wins? 

¢ How long does the battle last? 

¢ How many units does a side have at any time? 

¢ How many units does the winner have at the end of the battle? 

The equations are determined by the type of combat, the conditions of combat, and 

the combat system. In the models presented, combat ends when all the units on one 

side are destroyed. In general, combat is assumed to be continuous and simultaneous, 

and all the units on a side are assumed to be identical. 

What follows are several scenarios (or combat systems) that typically occur in 

games. In each scenario, the appropriate model and solutions are listed. In all the sce- 

narios, there are two armies: Blue and Red. The number of units in each army during 

317 
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combat is represented by the variables B and R. The initial numbers of units in each 

army are represented by the constants By and Ry. Units of both armies have a combat 

rating, which is represented by the constants ¢p and cp. The combat rating generally 

represents the rate at which a unit destroys units in the opposing army. This constant 

can include factors such as weather and terrain, defensive and offensive capabilities. 

The combat rating is discussed in further detail following the scenarios. 

Scenario 1: All-Out Melee 
In this scenario, an army of 1,000 orcs (the Blue army) battles an army of 200 

humans (the Red army) on an open plain. The humans are well equipped and well 

trained, and each can kill 10 orcs per minute. The orcs are slow and stupid, and each 

can kill only one human per minute. How does this battle play out? In this scenario, 

all the units are constantly fighting. The rate at which units are lost is simply the 

number of units in an army times the rate at which a unit destroys units in the other 

army. The following system of equations describes this scenario: 

dB = —-c,Radt 

dR = —c,Bdt. (3.51) 

In our example, Bo is 1,000, Ro is 200, cg is 1, and cp is 10. 

Who Wins? 

To determine who wins, the equations are combined as follows: 

dB —c,Rdt _ c,Rdt 

dR -c,Bdt_ —c,Bdt" (3.3.2) 

This is a separable first-order differential equation. Given the initial condition that 

B = By when R = Rj, the solution is this: 

c,(B? - B:) = ¢ (R? - R°) 
R 

9 Bs Sas — R?)+ Be. (3.3.3) 
B 

By our definition, Blue wins if B > 0 when R = 0, which gives the following result 

(noting that if B > 0, then B, > 0): 

0 < a (0- R)+ 85 

penta per (3.3.4) 
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In this scenario, the humans lose as shown here: 

10 ‘Be 2 

pee en), zs ppaalld 9 10.225, (3.3.5) 
Goad R 200 

0 

This is an important result. It shows that for open melee, while the battle outcome 
depends on the combat rating of individual units, it also depends on the square of the 

initial number of units in each army. That is, the Blue army needs only J2 times 
as many units to defeat an army whose units are twice as effective. This model is 
Lanchester’s Square Law. 

How Many Units Remain at Time t? 

The number of units remaining at a particular time is given by these equations. 

B = Booosh(Jfc,c,t)-R, JX sinh CC, 1) 
B 

R,cosh(,[c,c, t)— B, | -&sinh(,/e,c, 1) (3.3.6) 
CR 

Despite the superior ability of the humans, they are vastly outnumbered and losing 

quickly. After only three seconds (.05 minutes), nearly a quarter of the humans are 

gone, while most of the orcs remain. 

10>. 
1000-cosh(f10-1.05)~ 2002 sinh fi0e-05) = 912 

200: cosh V10-1-.05)- 1000-4]. sinne[0-1-05) = 152 (3.3.7) 

R 

B 

R 

How Many Units Are Left When One Army Loses? 

The number of units remaining when the battle is over is given by these equations. 

The result is valid only for the winning army: 

B.. = ,|Be-2R 
R=0 0 be 0 

ee ee Be (3.3.8) 
B=0 0 Cc 



320 
Section 3 Artificial Intelligence 

neti CONN OAD AD ADDO — 

When the battle is over, 775 orcs remain in the Blue army ready to battle another army, 

Bo = 1000? -~*-200' Et Fp: (3.3.9) 
=0 

How Long Does the Combat Last? 

The amount of time it takes for the losing army to be destroyed is given by one of 

these equations. The result is valid only for the winning army. One important thing 

to note is that if the two armies are equally matched, the combat will last forever. 

tanh! Ry fe 

B, CE 

oot | 
0 VOR 

tooo aoe ak eee (3.3.10) 

CECR 

In this scenario, if nearly one quarter of the Red army is destroyed in three seconds 

with minimal losses to the Blue army, it is expected that the rest of the Red army is 

destroyed nearly as quickly. The actual duration of the battle is .236 minutes or 14 

seconds. 

tanh’ "ahs ae 
1000 VY 1 

1p Rn Ee 2G 310 
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Scenario 2: The Narrow Staircase 
erence aR TAT SO SE 

In this scenario, the orcs and humans instead meet on a staircase cut into the face of a 
cliff. Despite the size of the armies (200 humans versus 1,000 orcs), there is only 
room for two units to fight at a time. The difference between this scenario and the 
previous scenario is that only a fixed number of units (as opposed to all the units) are 
fighting in this scenario, so the rate that units are lost is proportional to the number 
of units fighting rather than the total number of units. The following system of equa- 
tions describes this scenario. The model assumes that an equal number of units fight 
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concurrently in each army, but it can be easily modified to describe a scenario with an 
unequal number of units fighting concurrently: 

dB = —c,ndt 

dR = ~—c,ndt. (3.3.12) 

Again, in our case, By is 1,000, Ro is 200, cg is 1, and cp is 10. In this scenario, 7 is 2. 

Who Wins? 

Blue wins if B > 0 when R = 0, which is the case when, 

< 5, R . (333,13) 

In this scenario, the tables are turned, and the Blue army loses: 

c, 10 B, 1000 
—-=—, — = — _ =5, 10>5. G4 

C 1 R 200 
(3.3.14) 

B 0 

This is also an important result. It shows that a smaller army with superior units has a 
better chance of winning in this scenario than in the previous scenario. This is Lan- 

chester’s Linear Law. 

How Many Units Are Remaining at Time t? 

The number of units remaining at a particular time is given by these equations: 

II B 

R 

B -c, nt 
ae Gi3i5) 

Liss Cait. 

After 30 minutes of battle, both armies have lost many units, but the humans are win- 

ning (70% remaining versus 40% remaining): 

1000-10:2:30 = 400 

200-1-2-30 = 140. (3.3.16) 

B 

R 

How Many Units Are Left When One Army Loses? 

The number of units remaining when the battle is over is given by these equations. 

The result is valid only for the winning army: 
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B., = B,-=R 
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Re a (3.3.17) 
R 

In this scenario, though half of the Red army was destroyed, it has won the battle: 

B=0 
R = 200-—1000 = 100. (3.3.18) 

How Long Does the Combat Last? 

The amount of time it takes for the losing army to be destroyed is given by one of 

these equations. The result is valid only for the winning army: 

teo = fo. 
Se nC, 

B 
tele ge me (3.3.19) 

nc, 

In our example, the Red army wins in 50 minutes: 

1000 
Cian eae (3.3.20) 

Scenario 3: Artillery Duel ikGsooieebasenseesntticsiniiapeendieeteesaeeeecialcoeeeeainoel 

Imagine a game similar to Battleship, where neither army knows the locations of the 

other army’s units. Each army has 100 units placed on a 100 by 100 grid, and the 

units can move anywhere on the grid at any time. A unit fires a shell and hits a point 

on the opposing army’s grid. If that point is occupied by a unit, the unit is destroyed. 

The rate at which a unit fires is determined by an external factor and it is the same for 

all units in the army. For this scenario, the Blue units fire twice per second and the 

Red units fire once per second. The results of this scenario depend on probability. 
Thus, we can’t compute the exact results, but we can predict the expected results. 

In this scenario, the rate of loss for an army is proportional to the number and 
combat rating of the opposition, and also the density of its units. If Ay is the area 
occupied by army X, then the density of its units, Px, is given by these equations: 
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B R 
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In our example, both Ag and Ap are 10,000: 

B R 

Pa To000° P®~ 10000' (3.3.22) 

The following system of equations describes this scenario: 

dB = —c,Rp,dt 

NERA L A FORTS (3.3.23) 

In our scenario, By is 100, Ro is 100, cp is 2, and cp is 1. 

Assuming that the area occupied by an army is constant, the equations can be 
simplified by combining the area with the constant term. We introduce a modified 
combat rating constant: 

i ny = (3.3.24) ieee, RE 4:39 R A, B A, 

In our example, 

= = 0001 Se 215002 3.3.25 
temo) GOO (3.3.25) 

The simplified model is the following. 

dB = —y, RBdt 

dR = —y7,BRadt (313-26) 

Who Wins? 

Blue wins if B > 0 when R = 0, which is the case when, 

(30027) 
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In this scenario, Blue’s rate of fire is twice Red’s and Blue wins easily: 

Bo Hq _ 0001 _ 5 sha al, ea" (3.3.28) 
0 %, 0002 100 | 

How Many Units Remain at Time t? 

The number of units remaining at a particular time is given by these equations: 

Kaho ‘e bees 
Bath earn) aa ae 

Hed Ged exp((2.R) - 15, )e) 

Paes AR — XwBo (3.3.29) R ; "y R,-LpB, exp((7,B, = _R,)t) 

Here are the results of this scenario after the first 100 seconds. The situation does not 

look good for Red. 

1,8, = 0002-100 = .02 

xR, = 0001-100 = .01 

is SH ON (2G Bat 

02.01 -exp((.01-.02)-100) 

01-.0 
Ro etob a ee Oe eee 

",01—.02-exp((.02—.01)-100) 

How Many Units Are Left When One Army Loses? 

As explained in the next section, the combat in this scenario always lasts forever, but as 

time goes to infinity, the number of units in each army approaches a value. If the armies 

are equally matched, the number of units remaining in both armies approaches 0. 

x, Vis 1B 
Bee % Bee. gene 

Xx Xp 0 

B Rope Seckee AEanm Spee (3.3.31) 
Xr Xs 0 

In this scenario, Red loses and the number of its units approaches 0. The final num- 

ber of units in Blue approaches 50. 
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How Long Does the Combat Last? 

The combat in this scenario lasts forever because as the number of units in an army 
gets smaller, the units are less likely to be hit. However as time goes to infinity, the 
number of units in one or both armies always approaches 0. A modification to this 
scenario that would limit the time of combat would be to declare a winner when the 
number of remaining units in an army is less than a certain number or less than a per- 
centage of the army’s original size. 

Scenario 4: The Boss 

In an RPG, a boss with 5,000 points fights three members of a party with a total of 
1,000 points. In this system, the boss does a constant amount of damage, 90 points 
per turn, and each character does an amount of damage proportional to its health, 1 
point per health point per turn. 

In this scenario, the Blue side is fighting a single Red boss unit. The boss is 

destroyed when its “health” reaches 0, and the party is destroyed when its combined 

health reaches 0. This scenario is a combination of scenarios 1 and 2, except in this case, 

the number of units remaining is replaced by the number of points remaining. This sce- 

nario is also an example of how a combat system can be modeled when the rules are dif- 

ferent for each side. The following system of equations describes this scenario. 

AB 9= wenicy dt 
(3.3.33) 

aR” =" ac, Bde. 

In this scenario, By is 1,000, Ro is 5000, cg is 1, and cp is 90. 

Who Wins? 

Blue wins if B > 0 when R = 0, which is the case when, 

1 Cy 2 Ree 8, (3.3.34) 
Da R 

In this scenario, the party defeats the boss, but it is close. 

5000 <== 1000, 5000 < 5556. (3.3.35) 
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How Many Units Remain at Time t? 

The number of units remaining at a particular time is given by these equations. 

B= By Segt 

I 
R R,-( Beate} (3.3.36) 

In this scenario, after five turns, the party’s health (and thus the amount of damage it 

does) is down to almost half, but the boss's health is down to only 20%. Still, the 

battle is close because the party has lost much of its ability to do damage and the boss 

has not. 

B = 1000-90-:5 = 550 

R 
1 

so00-[ 1000-1-5-5-1.905 =. 1125 33.37) 

How Much Health Does One Side Have When the 

Other Side Loses? 

The health remaining when the battle is over is given by these equations. The result is 

valid only for the winning side: 

G 

By = By aio 
B 

Rie Dipti e (3.3.38) 
B=0 0 ae OF r=? 

In this scenario, the boss loses; however, the combined health of the party is now only 

316 (of the original 1,000). The party is in such bad shape that perhaps it would be 

better to stop and recuperate: 

4 90 
Bes = 1000° —2- rico =e Os (3:35.99) 

How Long Does the Combat Last? 

The amount of time it takes for the losing side to be destroyed is given by one of these 
equations. The result is valid only for the winning army: 
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By 
too = ~ (3.3.40) 

R 

In this scenario, if the boss won, it would have taken about 11 turns (1,000 points at 
90 points per turn), but the party managed to defeat the boss in 7.6 turns: 

1000 — ,{10007 =2.-*-5000 
fo lean aera Pear io orITI0 Til WS (3.3.41) 

More abou the Comber natn 
The combat rating constant is generally the rate at which a unit destroys opposing 

units. The value depends on the combat system and can include several factors. For 

example, units might have an attack value, ay, which is the number of points of dam- 

age done in a unit of time, and a “health” or “hit points” value, /y, which is the num- 

ber of points the unit must receive to be destroyed. Thus, the rate at which a unit in the 

Blue army can destroy units of the Red army is ag//p, s0 cp = ap/hp (and cg = ap/ hp). 

The combat rating might include a special defensive ability that would reduce the 

amount of damage received by a constant percentage. Units with heavy armor or units 

that are highly maneuverable would modify the other army’s combat rating to 

account for its defensive ability. 

The combat rating can also include the effect of weather or terrain. Certain 

weather conditions might reduce the effectiveness of one army and have no effect on 

another. Certain types of units might be more effective on some types of terrain. As 

long as these factors are constant for the entire army, they can all be combined into a 

single combat rating. 

Limitations 
These models assume that combat is continuous and simultaneous. Frequently, com- 

bat in a game is implemented such that attacks occur at specific intervals rather than 

continuously, or each army takes turns attacking. Combat may also be implemented 

with no fractional units, and each individual unit fights at full strength until it is 

destroyed. In these cases, quantization results in a difference between the models and 

ys ene & 
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the actual outcome, and the model can only be used as an approximation or predic- 

tion of the outcome. However, if the number of units is large compared to the rate at 

which they are destroyed, the approximation will be reasonably close to the actual 

outcome. 
Even when the attrition models are not suitable for determining the outcome of 

combat in the game, they can be useful aids in designing a combat system and balanc- 

ing the units in the game. The models presented here could also be used for determin- 

ing battles occurring out of player view or for rapidly determining battle outcomes if 

“fast-forwarding” through time, evolving a game world, or similar. 

Conclusion 
OS MMMM LLL LLL LLL LLL RAL LLL LAL cd 

This gem has provided an introduction to Lanchester Attrition models and their use 

in predicting the outcome of combat in games. Several examples of the application of 

attrition models to combat scenarios that are common in computer war games and 

strategy games were given. The models described in this gem can be modified and 

extended to fit other scenarios and combat systems that are not listed here. 
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he increasing complexity of game worlds and the growing focus on team-based 

gameplay have pushed the development of game Al beyond the limits of finite 

state machines (FSMs). FSM approaches are typically brittle with respect to changes 

in the game design and engine, are hard to debug, and are difficult to extend beyond 

their originally designed purpose. Designing multiple FSMs to interact intelligently 

and cooperatively is very tricky, and unforeseen situations during the game can throw 

the AI into disarray. 

Planning addresses these issues by abstracting the reasoning to a new level and 

expressing them in a concise language that describes the effects of actions in the world. 

Using planning, most of the reasoning process is handled automatically by the plan- 

ning engine. Changes to the game design can be quickly reflected in the planning 

domain, and because the planner reasons explicitly about the goals and subgoals to be 

obtained, it is able to effectively distribute tasks, allowing cooperative action between 

multiple agents. 
This gem explains our work on the concepts and tools for implementing practical 

planning, including mixing planning with other types of control (e.g., pathfinding, 

FSMs, and scripting), communications between the game engine and the planning 

engine, optimizations, and other important issues. 

For the purposes of this introduction, we present a Sims-like game, but one in 

which the player specifies goals for their simulated people instead of specific actions. 

However, the planning approach applies equally well to a wide range of games. We 

have given substantial thought to its use in RPGs, tactical squad-based FPSs, high- 

level strategy in RTSs, and stealth/espionage games; and we foresee many new types of 

gameplay both in and out of these genres. 

329 
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The Planning Framework 
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Conceptually, a planning framework works with a set of world states that contain the 

essential information about the game world at a given point in time. When we are 

about to plan, we must provide an initial state, describing the world we want to rea- 

son about. For example: 

¢ Bob is in the kitchen. 

¢ The cabinet key is in the kitchen. 

¢ The cabinet is in the den. 

¢ The silver plate is in the cabinet. 

° The cabinet is locked. 

States are transformed into other states via actions, so part of our abstract description 

includes details on how actions alter states. Here, a move action would allow Bob to 

move between the kitchen and the den. Similarly, a take action would allow Bob 

to pick up objects in the same room as himself. If Bob used the take action on the key, 

the new state would be: 

¢ Bob is in the kitchen. 

* Bob is carrying the key. 
The cabinet is in the den. 

The silver plate is in the cabinet. 

The cabinet is locked. 

Using this model, the designer can specify goal conditions such as “Bob is carrying the 
plate.” We are interested in any state where Bob is carrying the plate. We will call 

these goal states. There can be multiple possible goal states, because the only condition 

we specified is that Bob is carrying the plate. The rest of the world can be in any state. 
Planning is a search for a sequence of actions that will transform the initial state into 

a goal state. During the search, the planner will, explicitly or implicitly, construct many 

possible world states, heading toward the goal. These states do not map directly to the 

game engine but are instead based on the initial state fed to the planner. If the planner 
succeeds, it formulates a plan: the set of actions needed to reach the goal state. This is 

then executed step by step, transforming the actual game world. See Figure 3.4.1. 

Planning Domains 
2 SE 7 BEL NAM AI USTED ET NS RE een aI HU UE sR IT SME 

We call the abstraction of the game world the planning domain for the world. Classi- 
cal planning views the world as a logical construct where there are certain facts about 

the world associated with each state. It is common to introduce planning using 
propositional logic, which simply uses a set of propositions that are either true or false 
(essentially, a set of Boolean variables). A proposition might consist of a statement like 

“Bob is carrying the key,” and that statement can be either true or false. Think of the 
proposition as a Boolean variable named BOB_CARRIES_KEY. 



3.4 Implementing Practical Planning for Game Al 331 
coe znnsggncsitennsaeentencomsecsnilscan nice neste 

Initial State 

Goal State 

FIGURE 3.4.1 Example of plan to reach goal state. 

Predicate logic would instead represent the same statement as a Boolean function 

that takes objects as arguments. Our example would become something like carry- 

ing( Bob, key ). This allows for a much more concise planning language and is used 

in most contemporary planners. Predicate logic is the basis for what is probably 

the best-known planner, STRIPS [Fikes71]. The STRIPS planning language is still 

used today, along with many variations-arid extensions. The most widely accepted 

planning language at present is PDDL, used by most contemporary research planners 

[McDermott98]. PDDL uses a LISP-like syntax, which is not widely used in the 

games industry, so we have developed our own syntax and parser, better suited to the 

industry at large and more readable by designers who may have only limited program- 

ming experience. 

Objects 

Predicate logic describes truth statements over a set of objects. Objects are the entities 

that make up the world. In our earlier example, objects would include “Bob,” “key,” 

“silver plate,” “den,” “kitchen,” etc. These objects are not the same as objects in the 

object-oriented (OO) sense; they do not have methods or any associated dynamics. 

However, it is quite natural (and even desirable) to relate planning objects to OO 

game engine objects in a one-to-one fashion, so that the planner’s proposed actions 

can be translated directly into game object manipulations. 

Objects do have types, much as in the object-oriented framework. This mecha- 

nism affords type checking, so errors can be caught earlier in development. We allow 

multiple type inheritance, so types form a lattice. We identify one special type, 

“Object,” often called the universal type, from which all other types inherit. This leads 

us to the first kind of statement, which declares types to the planner. 
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type Locatable; 

type Location; 

type Creature isa Locatable; 

type Person isa Creature; 

type Item isa Locatable; 

type Key isa Item; 

type ValuablePlate isa Item, Decoration; // multiple inheritance 

Once we have declared types, we can declare objects. 

object alice isa Person; 

object bob isa Person; 

object cabinetkey isa Key; 

object silverplate isa ValuablePlate; 

object kitchen isa Location; 

object den isa Location 

Predicates 

Predicates help us state facts about the objects in the world. They map tuples of 
objects to true or false values. For example, we can have a predicate carrying that 
takes two arguments, the first a Creature and the second an Item. We can now express 

ideas like: carrying(bob, cabinetkey) or carrying(bob, silverplate). 

Facts expressed as predicates make up the states in our planner. A state is simply a 
collection of all the facts about the world. In general, we store only the true facts in 

the world: the predicates that evaluate to true. Every other predicate expression is 
assumed to be false. This is known as the closed world assumption and it is motivated 
by the expectation that more predicates will be false than true in the world, and so it’s 
more efficient to store the true ones. 

There are a few different ways to use predicates. In some cases, we will assert 

predicates, making our expression true in the current state. So we might assert 
carrying(bob, cabinetkey) to add that fact to the state. Alternately, we may use the 

predicate as a query: “Is Bob carrying the cabinet key?” If that is a fact in the current 
state, the predicate will return true. 

In our planning language, the arguments of predicates have types and predicates 
must be explicitly declared. 

predicate carrying(Creature, Item); 

predicate inroom(Locatable, Location) ;. 

Variables 

Predicates capture relationships between objects. We can ask whether a relation exists 
or not, but we can go further and ask for sets of relationships. This is done with 
variables. For example, if we would like a list of things carried by Bob, we can query 
carrying(bob, ?x), where ?x is the notation to we use to indicate that x is a variable. 
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It’s easiest to think about the process as pattern matching. The query checks all 
the carrying facts in the state, picks only those whose first argument is Bob, and sets x 

to each value for the second argument in succession. If the query finds one or 
more suitable matches, it returns true for each such match and binds the variable(s) 

accordingly. 

Logical Connectors 

Using conjunctions (logical AND) and negations (logical NOT), we can create much 

more interesting queries. For example, we can check whether Bob and the key are in 
the same room: 

inroom(bob, ?x) and inroom(cabinetkey, ?x) 

Here, the first inroom() query finds a match corresponding to Bob and binds ?x to 

kitchen. The second query now becomes inroom(key1, kitchen). 

It is also important to allow for a special kind of predicate to represent inequali- 
ties, only true if its two arguments are different objects; for example: ?x != ty. 

Operators 

We use operators to transform one state into another. In their simplest form, operators 

have a precondition, a query that must be true before the action can be performed, and 
effects, a set of changes to be made to the world. Both can be stated using simple logic 

expressions formed from predicates, conjunctions, and negations. 

operator take(Creature ?c, Item ?i) 

precondition: inroom (?c, ?r) and inroom(?i, ?r) 

effect: not inroom (?i, ?r) and carrying(?c, ?r); 

This operator takes two arguments (note their types). The preconditions state that the 

creature must be in the same location as the item. The effect creates a new state, iden- 

tical to the original state, removing the fact that the item is in the room, and adding 

the fact that the creature is carrying the item. 

{ Note that the ?r variable is not one of the arguments of the operator. Thats because 

‘% it isn't really essential to the action, it’s just some information we need to know to exe- 

cute it. Think of it as a local variable for the operator. When the game engine needs 

to actually execute the action, it only needs to know the creature and the item. 

Once we have operators, we can examine a state and automatically determine what 

actions are possible by testing the precondition for each action. Each match of the 

preconditions for each operator is a possible action. We now have everything we need 

to search for a plan except for the actual search algorithm. 
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A Multi-Agent Planner Example 

Putting all this together, we can look at a simple example that clearly shows the power 

of a planner. In this example, we create a state where there is a trivial solution, and 

then expand the problem to one that requires two agents working together to solve 

the problem. 

type Locatable; 

type Location; 

type Creature isa Locatable; 

type Person isa Creature; 

type Dog isa Creature; 

type Container isa Locatable; 

type Item isa Locatable; 

type Key isa Item; 

type Plate isa Item; 

type ValuablePlate isa Plate, Decoration; 

// multiple inheritance 

type Food isa Item; 

Once we have declared types, we can declare objects. 

object alice isa Person; 

object bob isa Person; 

object cabinetkey isa Key; 

object silverplate isa ValuablePlate; 

object kitchen isa Location; 

object den isa Location; 

object cabinet isa Container; 

object nelly isa Dog; 

object lasagna isa Food; 

object fridge isa Container; 

predicate inroom(Locatable ?a, Location ?b); 

// Object is in location 

predicate carrying(Creature ?c, Item ?1i); 

// Creature carries item 
predicate locked(Container ?c); 

// Container is locked 

predicate unlocks(Key ?k, Container ?c); 

// Key unlocks container 

predicate hungry(Creature ?c); 

// Creature his hungry 
predicate prepared(Food ?f); 

// Food is prepared 

predicate inside(Item ?i1, Container ?c); 

// Item is inside container 

// Pick up something in the room. 

operator take(Person ?p, Item ?i) 

precondition: inroom(?p, ?r) and inroom (?i, ?r) 

effect: not inroom (?i, ?r) and carrying(?p, ?r); 
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// move to another room 
operator goto(Person ?p, Room ?r) 

precondition: inroom(?p, ?0) and ?0 != ?r 

effect: inroom (?p, ?r) and not inroom(?p, ?0); 

// drop something carried 

operator drop(Person ?p, Item ?i) 

precondition: inroom(?p, ?r) and carrying(?p, 71) 

effect: inroom (?1, ?r) and not carrying(?p, ?1); 

// remove something from a container 

operator remove(Person ?c, Item 7?i) 

precondition: inside(?i, ?v) and inroom(?c, ?r) and 

inroom(?v, ?r) and unlocked(?v) 

effect: carrying(?c, ?i) and not inside(?i, ?v); 

// unlock a container with a key 
operator unlock(Person ?c, Container ?v) 

precondition: locked(?v) and unlocks(?k, ?v) 

and carrying(?c, ?k) 

effect: not locked(?v); 

// prepare some food 

operator prepare(Person ?c, Food ?f) 

precondition: carrying(?c, ?f) and not prepared(?f) 

effect: prepared(?f); 

// eat some prepared food from a plate 

operator eat(Person ?c, Food ?f, Plate ?p) 

precondition: carrying(?c, ?f) and carrying(?c, ?p) 

and hungry(?c) and prepared(?f) 

effect: not hungry(?c) and not carrying(?c, ?f); 

Now we define our initial state and goal state. The trivial case is that Bob wants the 

plate and it is in the den while Bob is in the kitchen: 

//define initial state 
inroom(bob, kitchen) 

inroom(silverplate, den) 

//define goal state 

goal carrying(bob, silverplate) 

Given this, the planner returns to us: 

goto(bob, den) 

take(bob, silverplate) 

Now watch how easily we can expand the problem, defining a new initial state where 

the plate is locked in the cabinet in the den and Alice carries the key. We will try to 

achieve the same goal: 
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//define initial state 

inroom(alice, den) 

inroom(bob, kitchen) 

carrying(alice, cabinetkey) 

inroom(cabinet, den) 

unlocks(cabinetkey, cabinet) 

inside(silverplate, cabinet) 

locked(cabinet) 

One possible plan is: 

unlock(alice, cabinet) 

remove(alice, silverplate) 

goto(alice, kitchen) 

drop(alice, silverplate) 

take(bob, silverplate) 

Now consider a new situation where Alice is hungry and we want her to be fed: 

//define initial state 
inroom(alice, den) 

inroom(bob, kitchen) 

carrying(alice, cabinetkey) 

inroom(cabinet, den) 

unlocks(cabinetkey, cabinet) 

locked (cabinet) 

hungry (alice) 

inside(silverplate, cabinet) 

inside(lasagna, fridge) 

//define goal state 
not hungry(alice) 

A plan to achieve this is: 

unlock(alice, cabinet) 

remove(alice, silverplate) 

goto(alice, kitchen) 

remove(bob, lasagna) 

prepare(bob, lasagna) 

drop(bob, lasagna) 

eat(alice, lasgna, silverplate) 

These simple examples have immense ramifications. Suddenly, designers can easily 
create scenarios that may require the AI to cooperate to solve a problem! Even better, 
as the player changes the world, the AI automatically replans and acts accordingly. 
Over the course of the game, new predicates can be asserted or operators added that 
allow creatures to do more things. Other options include designers writing simple 
scripts that assign goals for the planner to carry out, or players asking a cooperative Al 
for help. The possibilities are endless. 
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The best way to see the possibilities is to think about them. Given the earlier 
domain, spend some time thinking about how you could quickly implement the 
following: 

¢ Add a way for people to give items directly to each other. 
¢ Describe the layout of the house and add doors. 
¢ Add a thief who only steals valuable stuff and uses unlocked doors. 
¢ Add an operator for the dog to eat food when no people are in the room. 
¢ Make Bob not tall enough to reach the plate in the cabinet, requiring Alice to help. 
¢ Forbid Alice from unlocking the cabinet while Bob is in the room. 
¢ Require two people to move the fridge. 
¢ Require food to be heated before eating. 
* Create messes as a result of cooking (e.g., dirty dishes) that require cleaning up. 
¢ Allow only trained people to cook. 
e Add driving out to get food to prepare (someone needs a license). 

¢ Require that people like each other or be in the right mood to cooperate. 
° Give Alice a sword, Bob some skimpy armor, and the dog three heads to make an 

RPG. 
* Give Alice night vision, Bob a guard’s outfit, and the dog a sense of smell to make 

a stealth game. 

Even with automated planning by the agents in our household simulation game, 
there’s plenty of compelling gameplay here: setting a sequence of goals for agents 
much as actions are set in current games, dropping new objects into the world to help 

them, adding attributes and training the agents so they can gain new abilities, or 

directing the actions of one agent with the other working around it. 

Planning Search — 
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All these benefits are not without cost. There are overhead costs associated with plan- 

ning, both in terms of development and machine resources. Developers must specify 

the planning domain, essentially a secondary description of the game world, and 

ensure that the actions in the domain do not produce nonsensical states (e.g., the 

player is in two places at once). Planning domains must be designed and debugged 

like regular programs. Like a compiler, the planner can only work with what it is 

given, and if garbage goes in, garbage is all that will come out. However, this develop- 

ment cost is likely to be saved by having simpler low-level mechanisms and, further- 

more, we stand to gain more intelligent behavior. 

The real expense of planning is search. Depending on the specific methods used, 

planning search may consume substantial memory. To account for this, planning 

search can be implemented in different ways. 

The first distinction is between forward and backward planning. In forward plan- 

ning, we start from the initial state and consider actions until we discover a goal state. 

In backward planning, we start with the goals and consider those actions that can 
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achieve the goals. The preconditions for those actions now form a new goal; so we 

continue the search backward. Backward planning has the advantage that it tends to 

have a smaller branching factor because it never considers actions that do not satisfy 

some necessary goal, whereas forward planning can conceivably try all possible 

actions. On the other hand, forward planning is the more natural direction; it only 

considers states reachable from the initial state, and even an incomplete forward 

sequence makes sense and can be executed. 

The other major difference between search strategies is whether they search in 

state space ot in plan space. In state space, we explore states, eventually constructing a 

sequence of states that achieves the goal. We can then extract the plan by listing the 

actions necessary for each state. In plan space, we consider sets or sequences of actions 

directly, testing to see whether they achieve the goals, refining and extending the 

collection of actions as we search. 

Most contemporary planners fall into one of three classes: heuristic search plan- 

ners, planning graph planners, and satisfiability planners. We will briefly describe all 

three of these but focus on heuristic search planners, which we believe to be the best 

choice for games for a variety of reasons that will form part of the discussion. 

Heuristic Search Planning 

Heuristic search planning is a state space planning approach that can run forward or 

backward. The search is much like pathfinding. Familiar algorithms such as A* can be 

directly applied, and existing A* code reused. As in pathfinding, it is easy to associate 

costs with the actions and thus be able to compute “good” plans instead of just feasi- 

ble plans. It is comparatively easy to encode specific knowledge about the game in the 

costs and also in the heuristics used by A*. 
Another key advantages is that even if forward planning fails to find the goal, 

either because no sequence exists or because we have limited the running time of the 
planner, we can always use the best path found so far as a plan so that game characters 
will at least do something that is likely to reasonable. It is even likely that in sub- 
sequent re-planning, these partial actions may have helped to put us in a situation to 
find a complete plan. 

Finally, heuristic search planning offers state-of-the-art performance, especially 
on nonoptimal planners (optimal planners find plans with minimal plan length or 
cost, whereas nonoptimal planners search for “good enough” plans; for games, we 

probably don’t need optimal solutions) with planners like FF [Hoffmann01] among 
recent planning competition winners. 

A good introduction to heuristic search planning [Bonet01] is available at: 
http://www.tecn.upf.es/~hgeffner/index. html. 

Graph Planning and Satisfiability Planning 

Graph plans are essentially backward planners that work in plan space. From a high- 
level perspective, they work by constructing a planning graph, a data structure that 
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considers the effects of all possible actions starting from the initial state, pretending 
they never conflict with each other. While constructing the graph, information about 
mutually exclusive actions is kept, and when the graph is complete, a backward search 

from the goals takes place to find a set of legal actions within the graph [Weld99]. 

Graph planning produces partially ordered plans, where the exact ordering of 
actions is not always specified. Some actions can therefore be performed in any order 
or, in the case where the actions are performed by multiple agents, at the same time. 
This is particularly appealing when we wish to control multiple agents. However, the 
backward planning means that if we run out of time constructing a plan, there is no 
partial plan to execute. While this approach has potential for games, it not as readily 
adaptable as heuristic searching. However, it is worth noting that planning graphs are 
sometimes used to compute heuristics for other kinds of planners (e.g., the FF plan- 
ner mentioned earlier). 

Satisfiability (SAT) planners encode planning problems as SAT problems, which 
are classic NP-complete problems with lots of high-performance solvers readily avail- 
able. These planners differ chiefly in how they encode the problem, but once 
encoded, they can simply call the latest and greatest SAT solver to generate a solution. 
This means that these planners can be improved from year to year using off-the-shelf 
components. However, SAT planning is arguably more obscure and less hackable, 
since the CNF instances are too large to understand and the SAT solver is essentially 
a black box where it is difficult to encode any extra knowledge you may have about 

the problem. We will not discuss this approach further here, but it is worth consider- 

ing because of the rapid advance of SAT solvers. 
A good introduction to both graph planning and satisfiability planning [Weld99] 

is available at: http://www.cs. washington. edulhomes/weld/papers/pi2.pdf. 

Practical Issues _ 
The following sections discuss some practical issues. 

Limitations 

Planning is a powerful tool, one that should be combined with our existing tools to be 

effective. By using planning, a lot of the complexity being built into FSMs and rules 

can be better expressed in the planning domain, leaving us with simpler versions of 

these lower level constructs. However, it also has some limitations: 

1. A symbolic approach like planning is poorly suited to continuous problems 

(for example, one wouldn't use it to drive a car or aim at targets). Existing 

mechanisms should be used to handle these tasks, with the planner directing 

the actions. The planner is best seen as a mechanism to coordinate simple, 

low-level actions that are implemented in the best way available. 
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2. In addition to its somewhat limited scope, classical planning makes. some 

strong assumptions. It assumes that a world behaves as described and that 

actions will succeed. This is clearly not the case because of randomness, 

because we abstract the gaming world, and above all, because of the human 

player. This is why we must replan periodically to reflect the changing 

world and the failure of earlier plans. 

3. Classical planning is not adversarial. It does not take into account that 

someone may be working to thwart it. However, very few game Als address 

this problem with more than some basic heuristics and rules. Most of these 

basic strategies can be reflected as goal selection, with a top-level strategy 

module picking overall goals that the planner figures out how to accom- 

plish, executing the low-level behavior by instructing FSMs. 

4. The symbolic approach is also not good for making value judgments, like 

the relative strengths of two creatures. Existing heuristic functions should 

be used in this case and a predicate used in the planner that calls the heuris- 

tic and applies a threshold (e.g., a cankill(Creature, Creature) predicate 

might check that one unit’s strength is double that of the other unit). 

Integration with the Game Engine 

In addition to these concerns, it is important to consider how to integrate the planner 

to the game engine. This depends at least partially on how reusable you want the 

planning code to be, but we will address a few key points. 

We first consider the initial state for planning, which must be obtained by the 

game engine. Subsequent states generated during planning must be copies of this 

initial state; we don’t want to change variables in the game engine directly while plan- 

ning. There are a few strategies for getting the facts for the initial state. 

In a “pull” strategy, the planner requests information from the game engine to 

construct states. The planner examines all the predicates when we are about to plan, 

determines their values from the game engine, and stores them in the initial state. 

However, the expense of repeated copy operations here is nontrivial, and it is possible 
that a lot of useless state information will be stored 

One solution to this is to use a read-on-demand approach. In this case, the value is 

only read when the predicate is evaluated. Another approach is to use a “push” model, 

where the game engine sends changes to the planner as they occur. This is a good 

strategy if planning occurs frequently. With infrequent planning, a lot of update oper- 
ations will be performed needlessly. 

It is also necessary to associate planning objects and actions with the correspond- 
ing data structures and functions in the game engine. This mapping is fairly straight- 

forward but should be thought about carefully during design. In addition, different 
modules should be able to interact with the planner. We built a custom planning lan- 
guage to set up the planning domain (types, objects, predicates, operators) but used 
Lua, a popular scripting language, to drive the initial state and goals and bind objects 



3.4 Implementing Practical Planning for Game Al 341 

and actions to the game engine [Lua]. Our planner can also be controlled directly via 
C++. Designers can use their favorite scripting language to fine tune levels and, in the 
same script, ask agents to solve interesting problems without resorting to loading a 
separate script with different syntax. 

Note that it is possible to skip writing a custom parser entirely and drive the 
entire planner through Lua scripts (or your favorite scripting language). This gem 
used a custom parser, because we found it more instructional for the reader and easier 

to read for development, but it is not essential. 

Optimizations 
Planning is known to be hard in theory, and it is easy to build hard planning prob- 
lems. However, games represent an instance where we have a lot of control. In robot- 
ics and industry, the world is uncontrolled. In games, the world is perfectly observable 
and carefully engineered. Games are built to be reliable, and a lot of the qualities QA 

looks for in a game lead to easy planning domains. Most games are carefully designed 
so that the player cannot become trapped. Every state of the game should lead to 
some definite outcome (even if it’s just death). This lack of limbo states is good for 

planning. 
Many games also have a lot of monotonicity in their actions. This means that once 

an action is taken, the effect it has on the world is never removed. Examples of this are 

objects that are never dropped once picked up, doors that can be unlocked but are 
never locked again, and creatures that do not respawn once killed. Think about the 

games you have played and you will begin to see a lot of monotonicity. This is because 

good game design often leads to monotonicity by attempting to keep actions simple. 

If there is no reason for doors to be relocked or a switch to be flipped twice, making 

the action monotonic simplifies the controls, the player’s options in the game, and 

debugging/playtesting. 
Monotonicity leads to easy planning domains. Moreover, many planning algo- 

rithms pretend the domain is monotonic as a heuristic. Such algorithms will be highly 

effective in largely monotonic game worlds. Nonetheless, nonmonotonicity is going to 

arise as a natural part of interesting gameplay, and contemporary planning algorithms 

can still perform well. Exceptionally difficult nonmonotonic subtasks that prove to be 

a problem can be addressed by a custom solution, a specialized algorithm that solves 

the hard problem. This can be treated as an action by the planner, effectively removing 

the hard part of the domain by ensuring that it’s done as a single, special action. 

For example, an agent might be required to navigate a very complicated maze of 

doors with switches that must be flipped and reflipped to escape. If the planner is too 

slow at solving this problem, a specialized algorithm or scripted solution could be 

associated with a navigateMaze action. At the planning level, the action would simply 

require that the agent be at the start of the maze and the effect would be to put the 

agent at the end of the maze. Some such problems might be puzzles, which begs the 
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question of whether a game designer should pose puzzles for the game Al to solve. 

Since the usual point of a puzzle is to challenge humans, it might be better to auto- 

matically bypass the puzzle or force the player to solve it. 

A lot of other optimizations are possible, such as setting an order in which to 

explore actions if we have some idea of which might be important. We can automati- 

cally reject certain states if they have some undesirable property, thus pruning the 

search. Finally, there is a large research literature and a range of excellent tutorials that 

can suggest good optimizations and heuristics. 

Conclusion 
‘Sessa ata 
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a great match, and recent A* based strategies are both familiar to game developers and 

state of the art in planning research. The time is ripe to adopt planning into games. 
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don’t just think it’s possible, we're sure it’s inevitable. 
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Optimizing a Decision 
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Architectures 
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ecision Trees facilitate slim, fast game AI that is easy to implement and maintain. 
Although Neural Nets may be better in the long term (once educated), Decision 

Trees are ideal for a finite set of expectations, like those defined in typical games. 
This article presents a simple method for modifying an implementation of the 

basic Decision Tree algorithm. The method is fairly straightforward and easy to 
implement and more importantly can result in faster AI response. It is especially 
applicable to Als with large determination sets, where many units in the game use the 

same tree(s) spawned from a single main thread of execution, for a given set of Al 

responses (e.g., attack, movement, etc.). 

IE 

Essentially, a Decision Tree is a way of assessing data from a set of questions and sug- 

gesting a model that explains the data so that accurate predictions can be made. It is 

constructed of questions to be asked by AI characters based on data from the scene. 

There are numerous varieties of questions for a given set of data, and a typical game Al 

could (and should) have numerous Decision Trees (i.e., pathfinding, spontaneous 

reaction, Q&A, and to some extent, physics itself, such as avoidance and response). For 

more complex systems, such as agents, Decision Trees become even more important. 

Decision Trees can operate on finite or infinite sets of data, though for the case of 

games, the finite set is of the most importance. The obvious value of Decision Trees 

over other algorithms is twofold: they offer a simple and discrete explanation of 

regression sets as well as an easy “explanation” of Decision rationale. One of the most 

widely used Decision Tree algorithms is Quinlan’s [D3 algorithm for constructing a 

345 
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Decision Tree AI. Documentation for this algorithm and how it works is readily avail- 

able on the Internet. 

Decision Trees are essentially computer science binary tree structures, enabling a 

conclusion state to be reached from a root node (which denotes the start of a decision 

category) via a set of Decision states. In the example used in this document, the states 

are 2, as shown in Figure 3.5.1. The tree provides a technique to allow a conclusion to 

be made based on a specified problem definition. 

Root Node for 2-way 

“Attack” Decision Tree 

Defender 

Vulnerable 

(Attack)? 

Can Ally 

Attack? 
Is Defender a 

ground unit? 

Can All 
Is Defender Is Defender Send attack , ey : 

a tank an air unit? directive to se ht 
x Attacker? Ally 

Yes No 

FIGURE 3.5.1 Example 2-way based “Attack” Decision Tree. 

Since Decision Trees are a good way to turn an educated set of questions into 
nodes that result in answers, they are useful in classification systems as well as in com- 
puter game AI. The architecture of the Decision Tree typically requires a lot of input 

from the design in question and can vary from one design to the next. Although most 
problems in modern games are simple, the time is closely approaching where it will be 

possible to create game-independent AI characters that use multithreaded algorithms 
such as this. For now we'll constrain the topic to a simple optimization method of one 
implementation of this algorithm with the intent that it could be scaled to others 
similar to it (i.e., n-way trees, that is, more than one answer per node). 
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Caveats 

Some Decision Trees involve decisions that can be answered in a variety of ways (in 
addition to the binary yes/no). In inductive learning, as this type of Al is referred to, 
the goal is to find some rule or function that lets you draw useful conclusions based 
on a decision case you obtain at any point in the tree. For any particular decision set, 
the various inputs are classified via entropy functions, typically based on logarithmic 
functions. Since these functions are detailed in countless sources on this subject and 
don't have a great impact on the performance of the algorithm (most modern compil- 
ers automatically optimize math functions with special switches'), we'll forego a 
discussion on the nuances of the inner workings of the algorithm and stick to the 

“biggest bang for the optimization buck.” 
The original Decision Tree implementation was riddled with command-line 

input statements. To make the algorithm more useful for the purposes of profiling, it 
was modified to take input from a memory-mapped file (to simulate real-time input 
from a typical game). Further, the tree was made significantly deep enough (as it 
would be in a typically robust AI) to make profiling the algorithm closer to a real- 

world implementation. 

Optimization : 
saan een SR eS eee ARTO sa ocean 2A morass tame ae RENEE 

Most game developers don’t want their AI to assume more than ~20% of the (frame) 

compute cycle (depending on the game implementation) time. This is a rather liberal 

request given all the rigors of a robust gaming experience. If you have a well-balanced 

Decision Tree (one with equally distributed yes and no branches; see Figure 3.5.2) 

you might be able to gain that 10% back on a multithreading aware system? using this 

technique. 

The algorithms detailed in this article are based on material available at the Gen- 

eration 5 Web site, which details a simple yet robust and easily adaptable Decision 

Tree implementation. 

The code modifications in this example were done using a compiler? that sup- 

ports OpenMP (see OpenMP specification 2.0) directives. Since the majority of the 

(running) time spent in this algorithm is in searching for answers, the search part of 

the algorithm was chosen for optimization. 

The algorithm itself is recursive, so some additional routines are needed. It starts 

by a call to the member function DecisionTree: :Query() (see Listing 3.5.1). This in 

turn calls the member function DecisionTree: :QueryBinaryTree( *dt node ). As the 

tree is searched, a set of recursive calls {6: where, 6 is the depth of the tree} between 

'Intel’s C/C++ Compiler (v.8.0), for example, will vectorize math functions using certain switches (i.e. /QaxW for 

Netburst architecture) 
2Such as any multi-processor based system. 

3Intel’s C/C++ 8.0 Compiler. Microsoft’s Visual Studio .Net 2005 is also intending to support OpenMP as of this 

writing. 
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Well Balanced Tree 

Poorly Balanced Tree 

FIGURE 3.5.2 Example of a well balanced and poorly balanced 
Tree, each of depth (6) 4. 

this function and DecisionTree: :AskQuestion( *dt node ) call each other until the 

answer node is obtained or no answer is found. 
As the desktop CPU industry moves closer to simultaneous 80 x 86-based 32 and 

64 bit computing, performance is being challenged once again. Expectations are that 
80 x 86 based processors* with these technologies will require application software to 
scale appropriately to maintain on-par performance with the hardware capabilities. 
Proper threading of applications will be critical to application performance as Dual- 
core and Multi-core trends redefine scalability for today’s modern application software. 

4 Which are expected to start shipping mid 2005 as of this writing. 
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Listing 3.5.1 Initial Decision Tree Search Source 

void DecisionTree::Query() { 

QueryBinaryTree(m_pRootNode) ; 

} 

void DecisionTree: :QueryBinaryTree(TreeNode* currentNode) { 

//Error Checking ... otherwise default to asking the question 

//at currentNode 

AskQuestion(CurrentNode) ; 

//otherwise default to asking the question at the currentN- 

ode 

} 

void DecisionTree: :AskQuestion(TreeNode *node) { 

//Error Checking 

if (answer == "yes") 

QueryBinaryTree(node->m-_pYesBranch) ; 

else if(answer == "no") 

QueryBinaryTree(node->m-_pNoBranch) ; 

else { //Error on input 

AskQuestion(node) ; 

} 
} 

In keeping with this, the proposed optimization for this algorithm is targeted for 

a two-CPU (logical or physical) system. Branching out into 4-, 8-, 16-, etc. way 

implementation would mean further changes to accommodate this method by 

branching out and calling the first threaded routine on the Nth recursive iteration 

(from the root). That is, the starting point for threading is at 6 = 2V. The best way to 

do this is to base the threading starting point where the number of nodes at depth 6 

equals the number of available CPUs.’ 
Though the compiler determines the number of threads to generate based on 

CPUs, it does not determine where to spawn the threads. The new algorithm (Listing 

3.5.2) breaks out the call to the threaded routine once the proper depth is attained in 

the query using modified data decomposition. 

Listing 3.5.2 A 2-Way Threaded Decision Tree Implementation® 

#include <omp.h> 

void DecisionTree::Query() { 

QueryBinaryTreeFirstTime(m_pNode) ; 

} 

5tn the Microsoft Win32 API this can be obtained by calling the Platform SDK function GetSystemInfo(...). 

6Compiled with the Intel Compiler’s /Qopenmp switch. 
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void DecisionTree: :QueryBinaryTreeFirstTime (TreeNode* currentNode) { 

//Error Checking ... otherwise default to asking the question 

//at currentNode 

AskFirstQuestion(CurrentNode) ; 

: 

void DecisionTree: :QueryBinaryTree(TreeNode* currentNode) { 

//Error Checking ... otherwise default to asking the question 

//at currentNode 

AskNextQuestion(CurrentNode) ; 

} 

void DecisionTree: :AskFirstQuestion(TreeNode *node) { 

#pragma omp parallel sections 

{ 
if(answer == "yes") 

#pragma omp section 

QueryBinaryTree(node->m-_pYesBranch) ; 

else if(answer == "no") 

#pragma omp section 

QueryBinaryTree(node->m-_pNoBranch) ; 

} 
else // Wrong input 

AskNextQuestion(node) ; 

} 

void DecisionTree: :AskNextQuestion(TreeNode *node) { 

//Error Checking 

if (answer == "yes") 

QueryBinaryTree(node->m-_pYesBranch) ; 

else if(answer == "no") 

QueryBinaryTree(node->m-_pNoBranch) ; 

else 

{ //Error on input 
AskNextQuestion(node) ; 

In keeping with the 10% factor stated earlier for AI compute cycle, the workload 

was tested with a rendering load averaging 30 FPS. Doing a bit of math, this amounts 

to ~33 ms time per frame (neglecting the 0.3333 for extra-frame processing). 10% of 
1 second is 10 ms. So, this was the allotted time per second allocated to AI cycles at 

30 FPS chosen. That amounts to ~1/3 of 1 frame per second. Not a whole lot of time. 
So the test was run to generate one AI cycle per every 33 frames at 30 FPS. This 

would also allow for stabilizing the thread synchronization setup by OpenMP’s inter- 
nal thread pooling mechanisms. 

The next step was to decide upon a coherent decision set for the workload. In an 
average game, there may be multiple Decision Trees active at a time per unit. Assume 

that each AI unit has from between 10—200 decisions (nodes) it can make. This is of 

course completely an assumption, as robust Als could have more options (especially 
when m-way decisions are available). The geometric mean of this range is -45. Given 
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a worst case scenario of 300 AI units per scene (perhaps a large RTS), this amounts to 
a total of 13,500 nodes (or decisions) to be made per scene—a substantial number of 

nodes to parse in 1 second. Testing was performed on a Pentium 4 running at 3.2 
GHz with HyperThreading enabled (see Figure 3.5.3). 

Decision Tree Scaling with Sample Workload 
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FIGURE 3.5.3 = Zest results for Decision Tree workload. 

Notice the OpenMP directives for sections in Listing 3.5.2. In this case, two 

threads are scheduled by the OS for each section. This is done by compiling the code 

with the /Qopenmp switch and including the OpenMP header (omp.h). The pragma 

omp parallel sections informs the compiler that the following compound statement is 

parallelizable code, and that each work unit (function call in this case) is identified 

using the omp section directives. Refer to the OpenMP specification for more details 

on this and other directives. 

Conclusion 
— 

This method illustrates a simple way to modify an existing Decision Tree search algo- 

rithm. For more information on the usage models of Decision Trees see some of the 

references listed. The coding techniques presented using OpenMP are applicable 

where data sets are significantly large enough and where the Decision Tree itself is 

as close to evenly balanced as possible. Performance gains will vary based on this as 

well as CPU cache resources and how often the search algorithm is called in a partic- 

ular scene. As shown here, to gain real benefits for SMP systems, often a slight re- 

architecting of the algorithm with respect to load balancing is necessary. Additionally, 

note that there may be some trade-offs such as higher memory requirements along 

with code complexity. 
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Re. trends in chip development support the basic infrastructure for concurrent 

r parallel processing systems in games. The Parallel Virtual Machine (PVM) is a 

software system that allows an AI developer to write an AI that can run on multiple 

processors and systems. This gem will focus on the aspects of PVM development, pri- 

marily real-time games, with target architectures for Microsoft Windows or Linux. 

While this gem is targeted toward development of an AI with PVM, many of the 

concepts as well as the framework, are extensible towards other areas that might 

benefit from parallelization and may be of use on platforms that expose multithread- 

ing concurrency technologies, such as Intel's Hyper-Threading technology or future 

generations of consoles. 

st RSL 

A concurrent AI is usually branded as either a parallel or distributed system. PVM is 

both. With PVM, a game can use multiple processors on one machine or a series of 

computers on a local LAN for an enhanced gameplay experience. 

A key proposition in PVM development is its wide use of a message-passing 

model to utilize a distributed environment. Retrofitting an existing system for such 

message passing will not yield better gameplay or a smarter AI. To reap the benefits of 

PVM, you must start with a general framework that will allow for the development of 

a concurrent AI system. This upfront work will allow for offloaded AI tasks, to com- 

municate with and work with the core game executable. With a minimal framework 

in place, an AI developer can have his bots constantly evaluating the best path to take 

or have a separate task constantly evaluating the best tactical avenue by which to 

approach an elusive player. By constructing all AI queries into tasks that are executed 

on other processors, we allow AI tasks to be constantly executing in the background. 
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Any AI developer would relish the thought of not having his AI relinquished to a 

frame dependent clamp! 

tA RUE ERENT RA REDE BEASTIE LMR OE NEN IM IR AOI 
Core Terms and Concepts 

Before we can discuss the details and benefits of a PVM enhanced game, we need to 

first define some terminology. Instead of reviewing generic parallel-programming 

techniques, we'll focus on the components that are needed to efficiently develop a 

PVM framework. See Figure 3.6.1. 

1 For a more in-depth discussion of PVM, readers are encouraged to consult 

[Geist1994]. 

| iene | 
Element 2 Element 3 

Task Manager/Router ; 

Task ID and Data Block Be 

. Task ID and Data Block 

Task ID and Data Block 

FIGURE 3.6.1 Components of a PVM AI system. 

All tasks occur within process elements (PEs), such as on-board processors or LAN com- 
puter resources. It is easiest to visualize the relationship between the main game and the 
ancillary PEs by understanding that the main game is the master, and all the available 

PEs are its slaves. PEs do not instigate work, they are there to process tasks for the game. 
Tasks are subdivided elements of a larger problem, such as path generation, influ- 

ence map generation, military disposition assessment, terrain analysis, spatial determi- 
nations for unit placement, wall building, economic analysis, and other game-related 
actions. 

Task Decomposition 

A fundamental component of parallel AI development is the concept of solving a task 
by dividing it into a number of subtasks, each of which is processed by separate ele- 
ments or workers. This infrastructure allows for a breakdown of fundamental tasks 
that can be easily evaluated by multiple processors. 
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Task decomposition generally falls into two categories: functional decomposition 
and data decomposition. Data decomposition is an algorithmic approach on task 
breakdown. Data decomposition is the more complex of the two categories. Func- 
tional decomposition is the simpler method, in that an encapsulated function can be 

passed off to another processor for execution. While this approach requires a shift in 
how we approach the design and implementation of an Al, it is the approach that our 
PVM system will use for game processing. 

With functional decomposition, each task instigates a specific operation on 
another processor. For example, if you want to execute a background task to analyze 
potential enemy movement, you would create a task that initiates a unit analysis pro- 
gram with a series of prearranged parameters. These parameters would dictate things 
like preferred target rankings, previous diplomatic constraints, unit biases for forma- 

tions, and so on. In designing the analysis task, the developer must take into consid- 

eration how each aspect will be executed in a concurrent system. 

Sreatingaigenss ei ae EES UMMA NRT eae 

To illustrate how a larger problem can be decomposed into smaller elements, in Fig- 

ure 3.6.2, we examine a common problem for real-time strategy (RT'S) Al: distin- 

guishing destructive short-term decisions from more cognizant long-term actions. 

FIGURE 3.6.2 A sample scenario from a real-time strategy (RTS) game. 
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In Figure 3.6.2, we see that an AI player has discovered an enemy city with some 

tanks around it. In this example, we have a player massing troops on the western 

slope. The AI has a corresponding detachment of units on the eastern slope. The Al 

would like to attempt an invasion of the belligerent city. Should it use the most direct 

route (A) or the alternate (B—C) route? 

Ideally, the AI can react with a degree of prescience. At the strategic level, we 

assume that the AI already knows it needs to take the city. To accomplish this, the AI 

would need to evaluate the available routes and form a plan. 

Here are three possible plans: 

Plan A: March forces through the mountain pass. 

Plan B: March forces to the port city and then transport them around to the 

southern flank. 

Plan C: March part of the forces through the mountain pass to occupy the 

enemy while the main force executes plan B. 

These plans all have similar components; let’s look at the components that go into 

plan C, as it encompasses components of both plans A and B: 

Update the influence map: In this specific instance, the AI needs to know if 

his forces can be mobilized through the choke point before his forces would be 

engaged. This will require an up-to-date influence map. 

Generate unit paths: We need paths for units that are going to enter the 

mountain pass and for the units that are moving via route B-C. 

Provide Transportation: Tasks to either build transports at the city or route 

transports to help in moving the units. 
Provide Attack Formations: This will direct the units once they reach the 

western slope of the mountain range. 
Assess Diplomatic Constraints: Ascertain what type of political fallout will 

occur if the AI attacks the city on the western slope. 

Just by deciding how the AI should attack, we've generated several potential tasks. In 
addition to these new tasks, we may have high-level, behind-the-scenes, strategic 

plans and tasks in process. Some tasks will be quick and easy to compute (usually on 
the local processor); others will be bulky and require assignment to other PEs. As we 
shall see, the size or granularity of the task will dictate how each task needs to be 
scheduled. 

Granularity 

Each task is assigned a granularity, which helps determine its scheduling position 

inside the task manager. A task’s granularity is a reflection of the following: 

¢ The size of the task 

¢ The amount of computational effort required to accomplish the task 
¢ The bandwidth that will be required to facilitate a solution 
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PVM is generally friendlier to tasks that are larger. There is an appreciable overhead 
that occurs during the creation of a task—its addition to the task pool—to the actual 
processing of that task. In attempts to maintain PVM-friendly tasks, we will generally 
allocate tasks that are fairly large in scope, as shown in Table 3.6.1. 

Table 3.6.1. Varying Task Granularities 

Sample Task Granularity 

Influence Map Analysis Large 

Generating Unit LOS Medium 

Wall building Medium 

Squad of units pathfinding Medium 

Analyzing surrounding cells Small 

Single unit pathfinding Small 

Tactical influence map analysis Small 

Combined arms formations Small 

While it is possible to hand-tune tasks for execution, we automatically assign a granu- 

larity based on task processing time, as observed during development. Execution 

times are cross-referenced with a master timing table, which assigns a granularity to 

this “type” of task. The task reference is then stored inside the task manager's granu- 

larity table, which is updated when new tasks are performed. By performing runtime 

analysis of task execution length, we can group or link related tasks together. 

Task Management 
ae 

ceeeaanaienl 

Once created, new tasks are placed in the task pool data structure for distribution to 

the task management/routing system. Depending on the state of the tasks being 

executed, it may take a long time for tasks to make it from the task pool onto the 

appropriate number of PEs. It is important to consider this when designing your 

tasks, assigning granularity, and constructing distribution algorithms. 

Distributing tasks among PEs depends upon two factors: 

¢ How many processor elements are available 

° The types of tasks that are suitable for distributed processing 

Continuing our earlier example, lets look at the factors that will determine how our 

attack task will be distributed. In a system that contains just two processors, one 

processor should be delegated as the ancillary processor, which deals with tasks of 

large or medium complexity. The other processor should service small tasks, or tasks 

that require immediate execution. This processor will also serve as the processor that 

runs the main game executable. 
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Updating the entire influence map or generating pathing routes for-an_entire 

squad of units (which would also include dealing with potential troop formations) 

should be routed off to the secondary processor for execution. With something as cru- 

cial as pathfinding for a squad of units, why do we want the task offloaded to another 

processor for execution? Shouldn't we want the AI to immediately generate a series of 

paths for us? Most certainly; but this individual task is only one task in a handful of 

tasks that are going to be required, for a complete plan of action. 

Not all your AI tasks should or will be distributed. Some instances will require 

immediate execution on the local PE, which the PVM architecture accounts for. For 

example, if our game is executing on a dual-processor system, PVM will handle the 

task normally, assigning it a higher priority, such that the task manager immediately 

schedules it for local execution. For example, if we have a lone soldier that just came 

under attack from an enemy, and it is unable to defend itself, the soldier should flee 

from the attacker. Finding a quick and dirty location to escape to takes precedence 

over a unit’s potential long-term goals. This fight-or-flight response is purely reac- 

tionary, and this type of task should be scheduled for immediate execution. Once the 

danger has been avoided, the unit can then again begin to make long-term goals that 

are more amiable to an ancillary processor. 

Dependencies 

Task dependency is a potential byproduct of a task that is reliant upon a previously exe- 

cuted task’s output. Still using our previous RTS example, the AI player needs to not 

only path to the opponent's city, but he also needs to be aware of any potential enemy 

movement surrounding the city. What is required is an enemy unit disposition analysis 

task, so that the most currently available influence map is used to assess and analyze the 

unit’s strengths and movement history, as well as formulate the Al's response. One way 
to deal with this chain of dependencies (the simplest possible scheduling solution, in 

fact) is to ignore it. In this scenario, the accuracy of your AI depends on the (arbitrary) 

ordering of update tasks for your influence map and analysis algorithms. 

Arbitrary scheduling, while simple, is inefficient and prone to errors. In a perfor- 
mance-critical application such as games, one must consider the myriad of possible 
relationships between tasks and schedule accordingly. Should we schedule tasks sev- 
eral frames in advance, with a reservation policy? This ensures that important tasks get 
completed on time and reserves bank PEs for work on tasks that are essential but 

large. If we reserve, should tasks be interrupted? Task interruption is discussed later. 

Grouping 

A simple approach is to group like tasks into execution packets when they are small 
enough to be lumped together on a single PE. This grouping eliminates the extrane- 
ous overhead of task setup, bandwidth wastage, and in general allows for the more 
efficient use of processor resources. In addition, when several similar tasks are exe- 
cuted on the same PE, the data required to process the tasks remains local to that PE. 
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This data locality saves us memory reads and communication overhead. See Figure 
3.6.3 for an example in which similar tasks are grouped together. 

The dynamic grouping of tasks requires a management class, which evaluates and 
groups tasks by type. This class sits between the task pool and the general task man- 
ager and serves as selection mechanism and a pump into the general task manager. 

Processing Element 1 

Tank Pathfinding 

Soldier Pathfinding 

Soldier Pathfinding 

| 
Build a wall around city | 

Generate Tactical Influence Map ] ie 
Task Pool 

FIGURE 3.6.3 Grouping of similar tasks 

before they are scheduled for distri buted 

processing. Here, three similar pathing 
commands are grouped for efficiency. 

To facilitate execution, we can adjust the granularity of an operation and spread it 

out among available PEs. While this has benefits, some tasks (regenerating an influ- 

ence map, spatial calculations for unit dispositions, and potential terrain analysis), 

when refactored, can lead to increased interprocess communication. In general, tasks 

that rely upon data that has been previously calculated and placed into shared mem- 

ory will encourage the increase of interprocess communication. 

Shared memory is one of the most familiar mechanisms for interprocess communication 

(IPC), allowing a series of processor elements access to the same memory pool. When one 

processor element changes the shared memory pool, the memory pool changes for all the 

processor elements. Within Microsoft Windows or Linux, you will have to provide your 

own synchronization mechanisms for accessing shared memory, using semaphores. 

Linking 

An ancillary variation to grouping, linking is useful when larger tasks are dependent 

upon smaller tasks for initialization input. Inside the task ID, an unsigned integer is 

reserved for linking to another task packet. The task scheduler takes note of this, and 
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before the ancillary packet is routed to a PE, the linked packet is scheduled for execu- 

tion. Linked packets should be used with care, as they are extremely susceptible to 

race conditions and deadlock issues that can also lead to thread leakage (discussed 

later). 

While implementing a task scheduler is fairly straightforward, individual task 

selection mechanisms are highly game-specific. One key component is data process- 

ing. If the PEs are being starved (waiting for data), the AI routines that supply tasks to 

the pool need to take this into consideration. When starvation ts observed, it is 

important to rework the AI routines and scheduling logic so that it is more anticipa- 

tory of potential processing holdups. 

Caching or Processor Affinity 

Caching or processor affinity encourages similar tasks to be executed on processors that 

have executed identical or similar tasks, an important consideration when offloading 

tasks to PEs. To accommodate this processor affinity, the task manager should contain 

a basic history tracking system. The basic history tracking contains a list of differing 

tasks and the most recent processor element that executed it. 

Interruption 

Once a task is routed off to a processor element for execution, it is critical that the task 

proceed uninterrupted. We allow any offloaded task to be completed before another 
task is routed to that processor element. This eliminates an entirely cumbersome 
mechanism of stalling processes, storing the entire state of a processor element, just 

because a higher priority task was entered into the task manager. If you find that a 

task needs to be interrupted, the task is most likely too large and needs to be broken 
down into smaller tasks. 

A typical example from an RTS game is the generation of an influence map. A 

unit attacking a group of enemy tanks may not necessarily need the entire influence 
map regenerated, which can potentially become a bottleneck during normal gameplay 
due to the size of most influence maps. Instead, the creation of a tactical influence map 

can be used. A tactical influence map is just a smaller influence map that is focused on 

a particular region of interest. This allows all the normal operations of the larger influ- 
ence map to occur, just on a finer scale. You don’t have to limit the scope of your tasks; 
designing a smaller data set to work with will alleviate the possible task interruptions. 

Load Balancing 

When creating a task for execution, we must consider the actual size of the workload 
that a PE will be expected to. process. If the workload is too small, the PE will be 
starved for data, spending more time preparing and communicating then actually 
processing tasks. If the task is large and takes too long to execute, it may cause data 
dependency issues. Worse, it may delay the delivery ofa crucial result to the game, such 
that a gap in the decision-making process becomes evident. 
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To maximize the PVM architecture, it is critical that threads are kept busy. Tasks 

can finish out of sequence, but you want to avoid any condition where one processor 
element is serving as direct input into another. Dependencies can cause stalls and can 
turn our parallel AI system into a sequential AI system if left to proliferate unchecked. 

An example of a series of tasks that could have been designed to be dependent is 
presented in our previous RTS example. As discussed in the dependencies section of 
this article, we have a series of tasks that constitute the AI’s plan. These tasks are 

updating our influence map, assessing unit positions, analyzing the units strengths, 

and tracking movement history. There are definitely more tasks that could be created 

for a real-life RTS. If all four of these tasks are grouped as a single larger task and 

routed for execution, the influence map task would have to complete before the unit 

assessment task could start. This would then have the undesirable side-effect of a PE 

waiting for completion of another task before it starts its execution. This delay would 

have a negative impact on the other waiting tasks inside the task manager. The queued 

unassociated tasks would just sit there and wait, while the previous tasks stall the 

entire pipeline. 

Threading Pools 

The majority of your tasks will be managed by the task manager, which will create 

threads to facilitate the execution of the various PEs. A thread pool allows the runtime 

creation of a bank of threads, which the task manager can access for process element 

execution. This shifts the cost of continuous thread and stack creation to a one-time 

operation executed at startup. 

Thread pools are subject to all the same issues that a normal parallel process can be 

subject to, such as deadlock, synchronization issues, resource thrashing, and thread 

leakage [Gerber04]. 

An important aspect to using thread pools is the reliance upon the thread pool being 

the proper size. By carefully tuning the number of threads available to game tasks, you 

will avoid the waste of system resources as well as reduce or eliminate thread thrashing 

by allowing excess thread requests to be queued. 

PVM Implementation - 
ct CASALL LMM LLL NNT MNT 

It takes work to design and implement a parallel-friendly game. Fundamental 

assumptions (and often your previous experiences with AI implementation) must be 

re-evaluated. 

Modularizing your design will facilitate the transition from serial to parallel. Cre- 

ate a bank of common game libraries to which all components (PEs or the main game 

executable) have access. The goal is to construct a modular framework in which all 

PEs (including the game executable) can share common code without requiring spe- 

cial one-off implementations. 
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Wrappers also facilitate the modularity of your implementation, distancing your 

code from any PVM-specific calls. While PVM supports the basic pack and unpack- 

ing mechanisms of strings, integers, and the like, you will have to write some of your 

own. These game-specific data-packing routines will increase modularity, allowing 

you to create data classes that can be automatically archived and unarchived by your 

wrapper without any direct dependencies upon the PVM system. They will also help 

keep the same game processes going without interruption, if the game is executed on 

a single processor system. 

The example design includes a base class for fundamental behaviors, alongside 

parallel implementations. This allows the game to target single processor or PVM- 

friendly machines; see Figure 3.6.4. 

cCoreParallelObject 

cPVM Object 

1 cParallelShell Object 

Task Objects | 

cCustom Object 

cCoreTask Object 

FIGURE 3.6.4 Class diagram of a sample parallel Al. The task manager 
shell (cTaskManagerShe11) resides inside the games Al workspace. The 

task manager shell holds both the parallel shell object (cParalle1she11) 
and the core task object (cCoretask). Both of these classes are created via 

simple factory methods. 

PVM has a rudimentary resource manager that will handle the placement of 
tasks. This simple resource manager should be used only as a simple routing mecha- 
nism to the available processors. Complex, game-specific resource management 
should occur within your task manager/router implementation. This will allow you to 
identify which processor elements have recently executed an identical or similar task, 

which in turn will aid in using previously cached data evaluations. Data evaluations 
are usually stored in shared memory to speed up processing. 

PVM uses the user datagram protocol (UDP) for interprocess communication. 
To customize, consider adding a fault tolerance system. The addition of fault toler- 
ance allows the game to continue executing, even if communication is lost with a PE 
processing a task. With a basic system in place, the task manager/router would verify 
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if a task terminated prematurely or never failed to terminate. When this condition 

occurs, the current task is terminated and it is resent. The small amount of overhead 

required to verify a task’s current state is far less than the cost of preparing an entirely 

new task. 

lication: RTS 
Now that we have all the components of our PVM, what’s going to turn our normally 

productive AI into an AI that looks like its thinking ahead, behaving more realisti- 

cally, and anticipating the player's actions? Let’s look at a prototypical real-time strat- 

egy (RTS) example. 

We have two belligerents facing off on a secluded island. The island is just one of 

many landmasses in our game world. In a typical sequential AI, level heuristics would 

determine if the units should attack (and if they could survive the attack), if the units 

need support, and where that support will come from. 

In a PVM-based implementation, the AI can reason about the situation in the 

background, precomputing potential game situations and choosing among them when 

action is required. With the right prognostic actions in place, the AI can reason about 

the current situation and react to future player strategies and tactics more effectively. 

Specifically, the AI can ask the following: 

© Can I afford to lose this island? 

© What will the effect be if I lose the island immediately? 

© Will I be able to reclaim the island if I lose it now? 

¢ If] want to take the island back, where can I recruit an army: 

¢ How quickly can an army get to the island? 

* Will there be political/diplomatic fallout among my allies? 

e What would that look like? 

Instead of performing a few serial evaluations, the AI can now “think on its feet,” pur- 

suing multiple threads of reasoning at once. As the situation changes, certain threads 

will bear fruit while others die, but on the whole, the AI will be much more prepared. 

The real work (as with all AI programming) is in translating relatively vague 

strategic queries into concrete computational actions. The question, “Can I afford to 

lose this island” is actually an evaluation of the Al’s current military and unit power, 

land holdings, and diplomatic standings as they compare to the opponent's perceived 

rankings. 

Simple in and of themselves, such comparisons are powerful in aggregate. Coupled 

with a dozen other guiding analysis tasks, they create an AI that is constantly evaluat- 

ing the most important overall scenario: the what-if scenario. 

Enhanced Gameplay 
LAL LLL LL ITLL LLL LA 

eer 

Just because we have an Al that executes what-if scenarios in the background doesnt 

necessarily mean we want an AI that exhibits a more difficult game experience for the 
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player, though this is a definite benefit of a properly developed PVM-based AT. Another 

benefit of this AI system is that we can develop more complex simulators for the players 

to interact with. Let’s look at our prototypical RTS example again. 

Diplomacy 

In a typical RTS when a player instigates political negotiations with an AI, the AI nor- 

mally replies with preformulated responses. These responses are most often based 

upon limited heuristic data, generated by the enemy empire's stats (military power, 

proximity of enemy units to the Als cities or bases, etc.). 
If the Al could evaluate potential player actions, it might create political situations 

that are more responsive to individual players and more representative of real-world 
situations. Using the techniques discussed in this article, an AI developer can write a 
series of evaluation tasks, which can be executed based upon currently occurring 

events. 
Let’s say a player enters into a diplomatic negotiation with an AI opponent. The 

player doesn’t have any of his units near the Al’s bases, but he has been progressively 
and consistently moving towards the Al’s base from multiple countries. The AI can 
have a background task executing that evaluates enemy troop movement. By keeping 
track of troop movements, the AI is able to ascertain that the player might be trying 
to mass groups from various positions on the map, allowing for a potential assault on 
the Al’s base. 

This type of evaluator logic would most certainly play a role in diplomatic nego- 
tiations. The AI could suggest that the player reduce military power in one of the 
countries that potentially threatens a strategic base. This task may be a small part of 
the overall diplomatic picture, one small part of a more informed and responsive 
negotiation logic. 

A PVM-based AI can also evaluate a player's tendencies to honor long-term agree- 
ments by executing background tasks. As in real-world negotiation, the AI would 
evaluate what the other party has done in the past, how it could effect the current sit- 
uation, and how the current decision could impact future actions. 

Production 

Another fairly straightforward aspect of normal RTS development is the ability for an 
AI to manage unit production, food harvesting, research and development, and other 
economic activities. These all serve as ideal background tasks that can execute on 
other PEs, while the central control mechanisms reside in the main game executable. 

In a typical RTS, a core game unit serves as the harvesting unit for particular 
resources. T’hese resources are then transported to various buildings to produce differ- 
ent units or supplies. A PVM task could be written that would do a flow analysis on 
the buildings. This flow analysis involves making sure that each building has the proper 
resources available for production/manufacturing of a particular unit or resource. Each 
building may also have a direct or indirect consumer that relies upon their output. 
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Consider a baker that is reliant upon the flour mill for flour to produce his baked 

goods. A PVM flow task would make sure that the baker is constantly supplied with 

flour so he may make his bread goods available for the town. The task would evaluate 

the past, current, and future needs and inputs for the baker. If the flow task finds a 

part of the production system lacking, it could have the task manager/router start a 

task that deals with work scheduling. This new task could produce more harvesters 

that would allow the flour mill a higher output. 

This system is not only available for the AI but also the player. Many RT'Ss have 

ministers or governors that run or control cities and bases. The same logic that drives 

the AI can also run the player’s town, with only a marginal CPU hit. Any one of these 

tasks could be accomplished with current AI systems, but the capabilities of having 

these systems run in the background will free traditional resources for new tasks and 

allow for a more immersive and complete game experience. 

Other Domains 

In a traditional first-person shooter, players are generally happy that bots can pathfind 

their way to the players and engage them in combat, perhaps executing some pre- 

scripted behavior en route, in an attempt to add some illusionary realism to the bot. 

With a parallel AI system, we can in the background continuously process things 

like: 

© The bor’s threat level relative to the player 

* How threatening the player is to the other NPCs in the scene 

¢ Which NPC potentially needs backup 

¢ Potential flanking moves 

¢ Appropriate use of cover or distractions 

The potential decisions that a bot can make are endless. With this large number of 

potential actions running in parallel, repeat decisions are unlikely, allowing for a truly 

unique, potentially emergent, nonscripted experience for the players. 

Conclusion 

Building intelligent, reactive, and forward-looking AI is a challenging task. In this 

introduction to parallel AI development, we cover the fundamental | principles 

required to implement a PVM-based AI. We have shown how the framework can dis- 

tribute AI tasks, allowing for concurrent, complete, background evaluation. With this 

framework, AI developers can add more depth to their opponents and agents, increase 

an Al’s strategic opportunism, and supply users with powerful management tools. 

It is often said that AI developers focus on the artificial aspect of Al, attempt- 

ing to create the illusion of intelligent behavior with smoke, mirrors, and window 

dressing. We believe that PVM is more than just window dressing and that parallel 

techniques will help developers realize the intelligence aspect of Al. While parallel 

implementations require a departure from standard techniques and tools, the rise of 
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multiprocessors in desktops and consoles makes that effort all the more feasible and 

worthwhile. 

The time is right for PVM! 
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M: games use some form of artificial intelligence (AI), and pathfinding is usually 

an integral part of it. The A* algorithm is a well-known approach for solving gen- 

eral-purpose pathfinding problems [Stout00]. A* is a greedy algorithm [Cormen01] 

that combines keeping track of the cost from start, used by Dijkstra’s algorithm, with 

the heuristic estimate of the remaining cost to target. It is the fastest known solution for 

finding minimal cost paths, and it works well for basic pathfinding problems. 

As good as it is, A* has its limitations. For one, the algorithm performance 

decreases drastically as the search space grows and the demands on CPU and memory 

resources increase, making it impractical for problems with a large search space. To 

make matters worse, queries from high-level Al modules can generate numerous calls 

to the A* algorithm, putting even more demand on CPU resources. Because of these 

limitations, some games have opted for less-optimal solutions while others have used 

less query-intensive high-level Al. 

Although there are solutions for dealing with large search space [Botea04] and 

other search space problems [Stout96], very little work has been done on integration 

of pathfinding with the rest of AI with the goal of reducing query cost. A cost reduc- 

tion would allow for an increased number of queries, generating more knowledge for 

high-level AI. This additional knowledge would improve both tactical and strategic 

decision-making in many genres of games. 

We begin by formally defining the problem domain as a connectivity graph with 

nodes representing locations and cost-bearing edges representing the cost of move- 

ment between those locations. 

367 
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The A* algorithm executing in this domain would require the following-parame- 

ters: start node, target node, heuristic estimate function, and agent movement criteria. 

The start node and target node are the nodes we are trying to connect by the minimal 

cost path, with the graph traversal beginning at the start node and completing when 

the target node is reached. As we already mentioned, the heuristic estimate function is 

a distinguishing characteristic of the A* algorithm and it represents a heuristic esti- 

mate of the remaining cost to target. 

The last parameter, agent movement criteria, is not necessarily part of every A* 

analysis but it happens to be part of almost every A* implementation. It represents the 

ability of an agent to move across nodes and consequently the ability of nodes to 

obstruct agent movement. Because this ability needs to be taken into account during 

the graph traversal, the traversal logic needs to ignore movement-obstructing nodes. 

For the purpose of this gem, we define a query as an inquiry or a request for infor- 

mation initiated by high-level AI, an answer to which is dynamically generated by 

underlying code. This definition is not to be confused with the usual definition of a 

query as a formal request to a database or search engine. Of course, the information 

we are requesting could be precalculated and stored in a database or cached, but those 

concepts are outside the scope of this gem, which is to demonstrate how to generate 

the information on demand. 
High-level AI usually operates on and issues queries for more than one domain. 

In this gem, we will focus on queries that operate on the connectivity graph domain 
we just defined. Furthermore, we will restrict queries to the class of queries that 
involve pathfinding. A typical query in this class calls underlying code, which makes 
successive calls to the pathfinding algorithm while changing one or more parameters. 
Each iteration creates a unique set of parameters, which when passed to A*, produces 
one optimal result. After gathering all the results and selecting an optimal one, the 
underlying code chooses the parameter set that produced it and returns the parameter 
set along with the result. 

A good example of one such query is a request to choose among exit locations 

around a building an exit location that produces the minimal cost path to a given des- 
tination location. In this case, the underlying code would make one call to A* for 

every exit location and return the exit location that yields the minimal cost path along 
with the path. As we have already discussed, making many successive calls to the A* 

algorithm quickly becomes a source of performance slowdown, leaving us with the 

need for a more efficient solution to this problem. 

RANI sR ARE RR TROON NG ENR ND 

m and problem domain, we are ready to start working on the 
solution. We plan to use the existing A* algorithm as a starting point and derive an 
algorithm that is more suitable for high-level AI queries we have just described. As the 
first step, for reference purposes, we present the A* algorithm in pseudocode form: 

le Knowing the prob 
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List OpenList, ClosedList 

AStarPathfinder (Node StartNode, 

Node TargetNode, 

MovementCriteria MovementCriteria, 

Path PathFound) 

{ 
Node StartNode, BestNode, SuccessorNode 

Cost NewCost 

reset OpenList and ClosedList 

if (StartNode fails MovementCriteria) return as failure 

set StartNode cost to 0 

set StartNode estimate to heuristic estimate of remaining cost 

to TargetNode 

set StartNode value to sum of cost and estimate 

set StartNode parent to NoParent 

add StartNode to OpenList 

while OpenList is not empty 

{ 
remove best node BestNode from OpenList 

if BestNode is TargetNode 

construct path and save it in PathFound 

return as success 

for each successor SuccessorNode of BestNode 

if (SuccessorNode fails MovementCriteria) continue 

set NewCost to sum of BestNode cost and cost of 

moving from BestNode to SuccessorNode 

if ((SuccessorNode is in OpenList or ClosedList) and 

(NewCost is not less than SuccessorNode cost) ) 

continue 

set SuccessorNode cost to NewCost 

set SuccessorNode estimate to heuristic estimate of 

remaining cost to TargetNode 

set SuccessorNode value to sum of cost and estimate 

set SuccessorNode parent to BestNode 

if SuccessorNode is in ClosedList 

remove SuccessorNode from ClosedList 

if SuccessorNode is not in OpenList 

add SuccessorNode to OpenList 

} 
add BestNode to ClosedList 

} 
return as failure 

} 

The pseudocode uses only a handful of data types. List is a generic data type that rep- 

resents a collection of nodes and can be implemented in many different ways, as we 

will see later in the gem. Node is a data structure that contains information relevant to 
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a single node. The node data structure includes a cost of reaching the node, a heuris- 

tic estimate of the remaining cost to target, a heuristic value equal to the sum of the 

cost and the heuristic estimate, and a link to parent node. MovementCriteria is an 

aggregate data structure that represents a set of variables that define an ability of an 

agent to move across nodes. Cost is an actual cost of reaching a node from the start 

node. In a typical implementation, the cost is represented as a floating-point number. 

Path is a data type that contains path data. 

We can now set about improving the algorithm’s performance. A sensible 

approach to finding the solution would be to bundle all instances of parameters we 

are planning to use and pass them to the pathfinding algorithm in one call. With this 

extra information, the algorithm ought to be able to execute the combined requests 

more efficiently. 

By looking at the A* algorithm pseudocode, we can see that the most significant 

savings can be achieved by reducing the number of graph traversals needed to produce 

a solution. The parameters used inside the traversal loop are part of the logic that 

decides on how the traversal unravels. They cannot change during the execution of 

the loop without breaking the algorithm. Passing in more than one value for such 

parameters has no benefit since only one value can be used at a time. In fact, of all 

parameters passed to the algorithm, only the start node is unused by the traversal 

logic, making it a sole candidate for this optimization. 

How can we use these findings to modify the A* algorithm so that it accepts multiple 
start nodes and chooses between them as part of the single search space traversal? It 
turns out that the solution to this problem is rather simple. We can see from the orig- 
inal A* pseudocode that there is nothing in the logic of the algorithm to prevent us 
from using more than one start node. Instead of passing in a single start node, we pass 
in all of them and handle each one of them the way we would handle a single node. 
This means that during the initialization step, every start node becomes an open node 
and is added to the open list. The open list, which provides the ordering of currently 
open nodes by design, will assist us in the selection of a start node by returning the 
best one as part of the final path. 

Naturally, we would like to know whether something similar is possible on the 
other end of the resultant path. Is there is a way to choose between multiple ending 
locations? If we look closely at the original pseudocode, we can see that the target 
node has a dual purpose. One is to provide information for the calculation performed 
by the cost estimate function and steer the traversal of the search space towards the 
target node. The other one is to act as a stopping point for the traversal. Could we 
split the target node functionality and relieve the target node from being the stopping 
point? 

It turns out that is possible. We could have multiple stop nodes, which in order to 
be effective, need to be nodes that are encountered en route to the target node. The 
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stop nodes, very much like the target node, can be used only after they have been 
removed from the open list and not before. After taking all the changes in considera- 
tion, we are ready to present a derived pathfinding algorithm in pseudocode form: 

List OpenList, ClosedList 

BeyondAStarPathfinder (List StartList, 

List StopList, 

Node TargetNode, 

MovementCriteria MovementCriteria, 

Path PathFound) 

{ 
Node StartNode, BestNode, SuccessorNode 

Cost NewCost 

reset OpenList and ClosedList 

for each StartNode in StartList 

{ 

{ 

if (StartNode fails MovementCriteria) continue 

set 

set 

StartNode cost to 0 

StartNode estimate to heuristic estimate of remaining 

cost to TargetNode 

set 

set 

add 

StartNode value to sum of cost and estimate 

StartNode parent to NoParent 

StartNode to OpenList 

while OpenList is not empty 

remove best node BestNode from OpenList 

if BestNode is in StopList 

construct path and save it in PathFound 

return as success 

each successor SuccessorNode of BestNode 

if (SuccessorNode fails MovementCriteria) continue 

set NewCost to sum of BestNode cost and cost of 

moving from BestNode to SuccessorNode 

if ((SuccessorNode is in OpenList or ClosedList) and 

(NewCost is not less than SuccessorNode cost) ) 

continue 

set SuccessorNode cost to NewCost 

set SuccessorNode estimate to heuristic estimate of 

remaining cost to TargetNode 

set SuccessorNode value to sum of cost and estimate 

set SuccessorNode parent to BestNode 

if SuccessorNode is in ClosedList 

remove SuccessorNode from ClosedList 

if SuccessorNode is not in OpenList 

add SuccessorNode to OpenList 
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} 
add BestNode to ClosedList 

} 
return as failure 

} 

When compared to the A* algorithm, the derived algorithm has a few major differ- 

ences: its parameter list accepts multiple start and stop nodes, multiple start nodes all 

become open nodes, and any stop node can stop the algorithm traversal. 

How can we know that the derived algorithm is guaranteed to produce minimal 

cost paths? Although proving this is beyond the scope of the gem, we will give a few 

pointers on the subject. First, we need to define any algorithm guaranteed to find an 

optimal path to the goal as admissible. Next, we need to look at the admissibility of 

the A* algorithm [Nilsson98] and use that as a starting point. The key to our proof 

would be introducing an extra node that connects to all start nodes. This new node 

acts as a single start node and essentially changes our derived algorithm into the stan- 

dard A* algorithm. 

s of Implementation I AL IERIE: RES SSCS RGSS ISIN TLE NL IO TE TAREE EE 

A typical implementation of the derived algorithm is not drastically different from 

a typical A* implementation. Since the nuances of A* implementation are well 

known [Pinter01], we will focus on how to implement features unique to the 

derived algorithm. 

The derived algorithm passes in multiple start and stop nodes. As we would 
expect, passing multiple start and stop nodes as parameters increases the amount of 

data involved and adds extra overhead to the performance. To reduce this overhead, 

we store the multiple node data in arrays, which themselves are passed by reference. 
Many practical implementations dealing with similar problems, in addition, store the 

node data separately and use the arrays to store references, handles, or object Ids for 
accessing the actual node data. 

The derived algorithm also uses multiple stop nodes to halt execution of the algo- 
rithm. It is advisable that stop nodes are explicitly tagged as such. The tags should be 
stored in some sort of node data structure, which also contains all other node runtime 

data (cost values and a link to parent node). By tagging nodes, we no longer need to 
compare each traversed node with the entire list of stop nodes. Instead, the node tag can 

be checked immediately. When traversing m nodes looking for one of 7 stop nodes, an 

implementation with untagged stop nodes would require m X m comparisons. Using 
tagged nodes cuts the number of comparisons to m, one for every traversed node. 

SBCA BRET: 

Put into practice, the derived algorithm allows for some advanced functionality. Let’s 
consider a typical RT'S game with game objects that may garrison units and assign 
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rally points to which the garrisoned units should move upon exit. For the purpose of 

this gem, we will refer to these game objects as containing game objects. In the actual 
game, containing game objects are usually implemented as buildings or a variation of 

transport vehicles. 

Examples with Multiple Start Nodes 

One of the common problems related to garrisoning is how to choose where, among 

all the exit locations around the containing game object, to place the exiting unit. The 

simplest and the fastest approach would be to use a predefined order of exit locations 

and choose the first unobstructed location. Since this approach does not take into 

consideration the location of the rally point, more frequently than not the exiting unit 

is forced to move around the object it exited before heading towards the rally point. 

In an attempt to avoid this problem, we might choose the exit location with the 

shortest straight-line distance to the rally point. Although this is clearly a better 

approach, it still has its problems. For one, it does not take into account any obstruc- 

tions that might lie between the exit locations and the rally point. As a result, there is 

no guarantee that the chosen exit location is the optimal exit location that is a starting 

point of the minimal cost path leading to the rally point. Worse still, sometimes the 

obstructions cut off the chosen exit location from the rally point, stalling the exiting 

unit and thoroughly diminishing the unit's usefulness to the player. 

One way to account for the obstructions is to find minimal cost paths between 

every exit location and the rally point and choose the exit location that yields the path 

with the lowest overall cost. Unfortunately, with the exception of situations with very 

few exit locations, the performance cost of this implementation is prohibitive. 

This problem can be avoided if, instead of making many successive calls to the A* 

algorithm, we make a single call to our derived algorithm. Possible exit locations will 

provide us with multiple start nodes, and the rally point will provide us with a target 

node, which will act as a stop node as well. By using these parameters, the derived 

algorithm will find an optimal exit location and an associated minimal cost path to 

the rally point in one search space traversal. 

Figure 3.7.1 shows an example with a building as a containing object, a dozen or 

more exit locations, a rally point obstructed by a wall-like structure, and an optimal 

exit location as a starting point of a minimal cost path leading to the rally point. The 

example also demonstrates how an exit location that has the shortest straight-line dis- 

tance to the target, which in this case is the location in the lower-right corner of the 

building, is not necessarily an optimal exit location. 

There are other practical uses for the pathfinding algorithm with multiple start 

nodes, One of them is determining, among several possible buildings, which one 

would be the best choice to produce units needed at a given target location, such as a 

hotly contested area. The chosen building would be the one that can produce units 

capable of getting to the battlefield the quickest. A call to the derived algorithm can 
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FIGURE 3.7.1. Az example of using multiple start nodes to find 
an optimal exit location. 

provide a quick answer to this request. The exit locations of all the buildings will pro- 
vide us with multiple start nodes, and the target location will provide us with a target 
node. With these parameters, the derived algorithm will have no problems finding a 
minimal cost path to the target location, which will also give us an optimal exit loca- 
tion and the building associated with that location. 

Figure 3.7.2 shows an example with the buildings A, B, and C as candidates for 
production of units needed at the target location. Building B happens to have an opti- 
mal exit location that is a starting point for the path with the minimal cost. It is 
important to notice that building A has the exit locations that have a shorter straight- 
line distance to the target location, but because of the wall-like obstruction to the 

right of the building, those exit locations are nonoptimal. 



Building 

C 

e| Exit Location Target Location 

Optimal Exit Location _ Optimal Path 

By Movement Obstruction 

FIGURE 3.7.2 Az example of using multiple start nodes to find 

the best building to produce units. 

Examples with Multiple Stop Nodes 

Now let’s change things around and assume that there is a unit ordered to garrison in 

a given containing game object. Our task is to choose the entry location, among all 

the entry locations around the containing game object, from which the unit will enter 

the object. Choosing the entry location with the shortest straight-line distance to the 

unit is a possibility, but this approach is plagued with the same obstruction problems 

that we encountered when we were dealing with exiting units moving towards a rally 

point. Another possibility, not available when we were dealing with exiting units, is to 

ignore the containing game object as an obstruction during this pathfinding traversal 

and make the unit just enter when it collides with the object. Unfortunately, this 

approach works only for containing game objects of convex shape. In any other case, 

we may not be able to find an optimal solution. 
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A better and more general solution is to consider paths between the unit and every 

entry location. As we have done with exiting units we need to forgo making successive 

calls to the A* algorithm and make a single call to our derived algorithm. The unit's 

location will provide us with a start node, and possible entry locations will provide us 

with multiple stop nodes. To make sure the algorithm converges on the containing 

game object, we will need a target node inside the containing game object, preferably 

close to the center location of the object. Passing these parameters to the derived algo- 

rithm will give us a minimal cost path leading to the optimal entry location. 

Figure 3.7.3 shows an example with a building as a containing object, a dozen or 

more entry locations, an initial location of the unit looking to garrison, and a mini- 

e | Start Location 

ha Movement Obstruction 

= | Entry Location 

= Optimal Entry Location 

J Optimal Path 

FIGURE 3.7.3 An example of using multiple stop nodes to find an 
optimal entry location. 
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mal cost path ending in optimal entry location. Similar to the example in Figure 

3.7.1, this example also demonstrates how an entry location that has the shortest 
straight-line distance to the unit’s location—in this case, the location in the upper-left 
corner of the building—is not necessarily an optimal entry location. 

Examples with Both Multiple Start and Stop Nodes 

Now that we have seen how multiple start nodes and multiple stop nodes work on their 
own, it is time to examine how they work together. Consider a situation when there is a 
unit garrisoned inside a containing game object. The unit is ordered to exit the contain- 
ing game object and immediately enter another. It is our task to find a minimal cost 
path between the two objects while taking into consideration potential obstructions. 

Using what we have learned from the previous examples, it is obvious that the exit 
locations around the first object will provide us with multiple start nodes, and the entry 
locations around the second object with provide us with stop nodes. In addition, a tar- 

get node needs to be placed inside the second object, close to the object's center point. 

Using these parameters, the derived algorithm can determine where the unit exits the 

first game object, where it enters the second game object, and the path it should follow 

in the process. The algorithm guarantees that the path found is a minimal cost path. 

The situation presented is not necessarily an unusual situation, and we can find it 

in many games. For example, we could have a unit producing building that automat- 

ically sends units into a defensive structure that allows garrisoning, such as a bunker 

or a tower. To set this up, a player could set a rally point from the unit producing 

building to the defensive structure. 

Figure 3.7.4 shows an example of two buildings, A and B, and a minimal cost 

path connecting them. As with previous examples, there are wall-like structures 

obstructing the direct path between the buildings, demonstrating that the straight- 

line approach does not work. 
The techniques we have presented so far also prove very useful when applied to a 

search space represented by a waypoint graph [Tozour03]. In such a system, points in 

continuous 2D or 3D space, known as waypoints, define nodes of the graph. The 

placement of waypoints is usually rather sparse, due to the nature of the world and the 

graph data used to represent it. 

When trying to find a path in this search space, the main problem is pathing 

object’s current location, which can be quite far from the graph. Because of this, 

choosing proper start and stop nodes becomes a bit of a challenge. If we use the node 

with the shortest straight-line distance to the pathing object as the start node, the 

unusual results might happen. The movement of the object onto the start node can 

render the actual path to be suboptimal, which would manifest itself as an object 

moving away from the target location before moving towards it. Figure 3.7.5a shows 

an example of a situation where this kind of movement happens. 
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FIGURE 3.7.4 Ax example of using multiple start nodes and multi- 
ple stop nodes to find a minimal cost path between two buildings. 

We could attempt to find a solution to this problem by searching for the nearest 
point on the nearest edge of the graph to the pathing object, but the performance cost 
associated with this search is prohibitive. These issues are present on both ends of 
the desired path. Using our derived algorithm with multiple start and stop nodes 
solves this problem rather nicely by allowing the submission of several good candidate 
start and stop nodes. The algorithm accepts the candidate nodes and, as part of the 
pathfinding process, it figures out which should be the actual start and stop nodes of 
the resultant path. Figure 3.7.5b shows the same situation as Figure 3.7.5a, but this 
time we are using our derived algorithm, so the awkward movement is gone. 
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e—— Connectivity Graph 

e@—----e Unit Movement 

e——e Connectivity Graph 

e----e Unit Movement 

B) 

FIGURE 3.7.5 (a) An example of a unit using a waypoint graph (b) and how 

our derived algorithm can improve a unit’ selection of start and stop nodes. 

Performance Considerations 

To make a fair overall comparison, we will contrast the performance of a single iteration 

of the derived algorithm with the performance of multiple iterations of the original A* 

algorithm. This functionality is typical of high-level AI queries. For querying purposes, 
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this derivative A* traversal takes the place of multiple calls to the original A* algorithm 

and is comparable in functionality to multiple iterations of the original A* algorithm. 

Unlike the original A* algorithm, though, since multiple inputs are used simultaneously 

and the nodes between start and stop nodes are traversed only once, the overall perfor- 

mance improvement can be an order of magnitude or larger. 

Given a set of start nodes /, a set of stop nodes m, and the set of nodes that need 

to be examined between /and m, n, one can really begin to see the real difference that 

this derived algorithm makes. Using multiple consecutive iterations using the original 

A* algorithm, a query will require 1X m Xn individual nodes to be examined to find 

the solution to what the shortest path is between / and m. Each node in » will be 

examined roughly / x m times, one for each permutation of start and stop nodes. 

Using the derived algorithm, though, since it aggregates the inputs, will require only 

n individual nodes to be examined to find the same solution. 

To drive this point home, we can look at the performance improvements for 

some of the examples we have presented earlier. For the example in Figure 3.7.1, the 

derived algorithm yields a 20-fold performance increase; for the example in the Figure 

3.7.2, the performance increase is 45-fold; and for the example in the Figure 3.7.4, it 

is an impressive 208-fold increase. 

Advanced Issues I aa east SEE PE DSI SE ARDS SARTRE LR NEO I 

The following sections address some advanced issues. 

Multiple Start Nodes with Heuristics 

As we can see from the algorithm pseudocode, as part of the initialization step, all 
start nodes become open nodes and are added to the open list. Since every open node 
in the list has to have a cost and a heuristic estimate associated with it, start nodes get 

those values assigned to them as well. For all new open nodes, the cost value is set to 
zero and the heuristic estimate value is set to the estimated cost to target. 

By using the same cost value for all start nodes, which in this case is a zero, we are 

assuming that all of them are of equal importance to the high-level AI. In the actual 

game, this is rarely true. The high-level AI not only looks at start nodes with different 

importance, but their importance varies depending on the situation. For example, in 

some cases the AI might be looking for nodes that are less vulnerable to attack, while 

in the others it might be looking for nodes closer to resources. In situations that are 

more complex, the AI might be even looking at the combination of several different 
traits. 

To accommodate the AI needs, we should allow start nodes to have different ini- 

tial cost values. This feature lets us attach heuristic values to the start nodes and rank 

them by importance. As it is case with all heuristic values, these values need to be 
picked carefully and with regard to the other costs the algorithm will use during the 
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execution. Otherwise, the initial cost values might render the algorithm heuristics 

useless. We can implement this feature by attaching the initial cost values to every 

start node passed to the algorithm and using those values during the initialization. 

Returning Multiple Solutions 

So far, we have assumed that queries using the algorithm require a solution with a sin- 

gle stop node. That is why the algorithm, as presented, terminates when it reaches the 
first stop node. In practice, some queries might prefer to receive the results for all stop 
nodes and combine them with some other data before deciding which stop node to 
choose. 

To accommodate this new requirement, we modify the current algorithm so 

when it reaches the first stop node, it stores the path to that first stop node and con- 

tinues looking for the other stop nodes. When the next stop node is reached, the path 

to it is saved as well, and the algorithm continues until all stop nodes produce a result 

or the algorithm runs out of open nodes. Running out of open nodes would indicate 

that one or more stop nodes are unreachable. The result returned by this modified 

algorithm is an array of paths, one path per reachable stop node. 

One potential pitfall worth pointing out is the danger of a severe performance 

hit. Our derived algorithm, very much like the original A* algorithm, now has a bad 

worst-case scenario. Because the algorithm is designed to keep traversing the search 

space until a path is found, the algorithm will traverse the entire search space if no 

stop can be found. By attempting to reach more than one stop node, the likeliness of 

the worst-case scenario happening increases significantly. This pitfall is substantial, 

and we should take it into account when deciding whether to use a version of the 

algorithm that returns multiple solutions. 

Conclusion os 
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The A* algorithm is an important part of many AI implementations and a proven 

solution for basic pathfinding needs. Unfortunately, queries from high-level Al mod- 

ules can generate a large number of calls to the A* algorithm and have a negative 

impact on performance. One way of solving this problem is to design a pathfinding 

algorithm that performs the work of many calls to the A* algorithm in a single perfor- 

mance-efficient call. In this gem, we have presented one such algorithm. 

The algorithm presented here is an A* derivative, which accepts multiple start 

and stop nodes. By taking advantage of this additional information, the algorithm 

manages to find a query solution in a single search space traversal. This efficiency is 

reflected in performance improvements that can be as large as a couple of orders of 

magnitude. The presented algorithm has many practical applications, some of which 

were discussed in this gem. The material presented is a good reference and a starting 

point for writing further derivative A* algorithms that can be used by high-level AI. 
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athfinding is one of the most famous theoretical problems in game development. 

There is vast documentation in literature covering many aspects of the problem. 

This is because pathfinding issues are present not only in computer science but also in 

robotics, mining, and automation technology. 

In games, our maps approximate reality. In most cases, maps are graphs that rep- 

resent the environment using a regular grid, where each node matches a point in the 

map with a particular scale or resolution (see Figure Bal): 

ste ee 

FIGURE 3.8.1. A regular grid 

graph representing a map with a 
one foot resolution. 

Given a start point and a goal point in the map, how do we find the shortest path 

between them? The most common algorithm used to solve this problem is A*, whose 

performance is far better than Dijkstra, or any other SSSP (Single Source Shortest 
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Path) algorithm [Stout96]. While A* works very well in static environments, it is inef
 

ficient on dynamic maps, where any map modification requires replanning. 

Because there is a high probability that a given change affects only a small portion 

of the already computed path, it is a waste of time to recompute the entire path. A 

dynamic version of A* (known as D*) helps solve this problem. 

As stated previously, we have to use a graph that represents a real map. If two points 

in the map are connected, there is an edge from the two nodes representing them in 

the graph. Generally (but this is not mandatory) every edge has associated a cost that 

represents the price we have to pay for passing over it. 

In Figure 3.8.2, we assume that if the cost associated to a particular edge is > 7, 

then that arc is not drawn in the graph representing the map. 

In this gem, we assume that if from point A we can reach point B, we represent that 

as Cost| Edge( A,B) | <n, where n is the number of nodes on the map. If the two 

points are not connected, we represent that as Cost| Edge( A,B) | > ne 

FIGURE 3.8.2 A map with obstacles and the resulting graph. 

The D* algorithm takes a map graph as input. During traversal, the algorithm 
checks to see if there have been any modifications in any points of the map. When a 
modification in the graph is detected, D* starts from the node in which there has been 
a change and modifies the proposed path only in the affected area. 

In essence, the algorithm focuses replanning within a very small area. Real-time 
tests [Stentz94] show clearly that the advantage of D* over A* increases exponentially 
with the number of points in the map. 
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Suppose that the environment is a square with edge M, and that the input of D* is a 

graph that maps the ambient environment. (We assume without loss of generality that 

only horizontal and vertical movements are allowed between nodes—no diagonals.) 
D* maintains a list of open states, which is used to process states and to expand 

the computing to the affected neighbors of the current examined node. At the begin- 

ning, all nodes are marked NEW. They become OPEN when they are inserted in the 

open list. After their computation, they are marked CLOSED. 
D* maintains an explicit list of these tags for each node; we will refer to it as 

Tag(x). 

Backpointer(x) is intended as the direction to follow to arrive to the goal. From 

each node x, if we follow Backpointer(x), we arrive at the goal following a shortest path 

(in fact, there can be more paths with the same cost). The cost of a path is the sum of 

all edges traversed when following it. 

H (x) is defined as the estimated distance from x to the goal. After a replan, H(x) 

is the minimal distance from the goal. 
The key function K(x) is defined as the minimum between: 

¢ H(x) before a modification occurs 

¢ All A(x) values since x was placed in the open list 

This is an important threshold in classifying the nodes in two classes. Based on K(x) 

value and H(x) value, we consider two types of nodes: 

Raise K (x) <H (x): The class of nodes used when there is a cost increase in the 

graph and we must propagate this information to all nodes affected. . 

Lower K ( x) af ( x): The class of nodes used when there is a cost decrease in the 

graph and we must propagate this information to all nodes affected. 

As we will see shortly, the algorithm treats each type of node in a different way. 

An Example 

Now that we have focused the practical key issues of the algorithm, it should be use- 

<> ful to see how it works on a real example. In the accompanying CD-ROM there is an 

ONTHECD easy algorithm implementation that you can check to understand how it works in 

detail. There is a win32 demo application, too. 

Suppose (for simplicity) that we have a 5 x 5 map with obstacles (Figure 3.8.3). 

Each square can be FREE (white) or OBSTACLE (black). This ZERO-ONE choice 

is again made to better clarify the steps of the algorithm. We start in the upper-left 

corner; our goal is at lower-right corner. 

LCOS LAN NESE OSI 
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The algorithm performs an initial pathfinding by calling ProcessState() repeat- 

edly. In Figure 3.8.4, the arrows show the backpointer of each node. Remember that 

the backpointers tell us which direction we should follow to minimize the total cost of 

our path. 

FIGURE 3.8.3 A5 xX 5 map with FIGURE 3.8.4 [nitial back- 

obstacles. pointers configuration. 

In Figure 3.8.5, we show the path that is followed if we start from upper-left 

corner ({0] [0] if we use a C notation and read the map as a matrix). 

FIGURE 3.8.5 The path from 

start to goal. 

Our agent starts following the path depicted. Suppose that when it is at location 
[4][1], the square at [4][2] becomes an OBSTACLE. Let’s see how D* handles this. 

When the algorithm detects that there has been a change in the environment, it 

calls the function ModifyCost(x, y, value); it changes the arc cost from x to y and 
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then inserts the node x in the open list if it’s a closed node. Next, the function 
ProcessState() is called while there are nodes on the open list whose distance from 

the goal is lower than the one of the current node. In this way, D* modifies only the 

backpointers of affected nodes, saving the already computed work where possible. 
In Figure 3.8.6, we show in dark gray only the recomputed nodes after the algo- 

rithm detected a change in the environment. Figure 3.8.6 should convince you that 

D* analyzes only the minimum number of nodes needed to correctly compute a new 
shortest path. The strength of the algorithm is made clear here. 

FIGURE 3.8.6 Affected nodes FIGURE 3.8.7 New back- 

by the modification. pointer configuration after 

modification in [4] [2]. 

FIGURE 3.8.8 New path 
computed from [4][1]. 

Let’s see how the backpointers configuration changes after the modification (Fig- 

ure 3.8.7). Starting from [4][1] (depicted in darker gray), Figure 3.8.8 shows the new 

path computed. 
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Actually there aren’t many real games that uses D* in any way to perform any sort of 

pathfinding algorithm. This is due to the intrinsic nature of the game simulation, 

which privileges the illusion of the AI over the real AI, so is far simpler to find a 

pseudonatural way to get a unit move between two points in a well-known (a-priori) 

environment than let it discover the best path during the way. The search maps actu- 

ally in use are spatially limited and not very detailed, letting A* be efficient enough. 

Obviously, this is an AI limitation caused by the minimal CPU resources allocated to 

AI in current and past games. 

D* is ideal for each situation where the programmer wants to give some learning 

capabilities to a game agent. In this scenario, the agent doesn’t know anything a priori 

about the surrounding environment: all information is detected from its sensors dur- 

ing its lifetime. 

D* agents can move on larger maps, because the environment needs to be 

scanned only locally to perform a path search and when any perturbation occurs (a 

new obstacle is discovered or removed), the replanning only affects a small search area. 

Thus, CPU resources allocated for agent path planning would be enough. 
Currently, many game developers think that the next generation of games will 

spend more time performing AI, because the focus will be on the behavioral realism, 

so more sophisticated algorithms like this will come into the game development 

world. 

Conclusion 
OS RSC EE Se aS ee EAL NCE TITS aeRO OSSETIAN 

nalyzed the basic D* implementation. As you can see in [Stentz94] the 
benefit of using D* instead A* becomes stronger as the size of the environment 

increases. This is simply because the computational cost of replanning from scratch 
increases as the number of nodes in the graph becomes higher, and D* avoids as much 
recomputation as possible. 

It is possible to use a focused D*, which can lower the number of examined node 

in case of a world change; this is achieved by using a heuristic to drive the research 

only for promising nodes. Interested readers should consult [Stentz95]. 
A final note on the demo included with the book: it makes use of the Leonardo 

Library [Leonardo03], which is mentioned in the references, for interested readers. 

This gem has a 
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Introduction 

Mike Dickheiser, Red Storm 

Entertainment 

mike.dickheiser@redstorm.com 

he next time you are outside, pause for a moment to take in the sights around 

you. Everywhere you look the world is full of motion on both grand and subtle 

scales, from the great, mechanized products of human ingenuity to the dancing of 

nature’s freshly fallen leaves. Each movement pervades our senses, adding to our 

understanding of the world and defining our expectations of reality. 

It is natural for us to use the real world as a basis for comprehension, experimen- 

tation, and enjoyment of other, fictional, worlds. After all, this world is what we 

know, and everything we see, feel, or imagine is filtered through our understanding of 

the familiar. If a fictional world fails to meet the standard (in the ways that matter), 

we are led to boredom, confusion, or disappointment. As creators of such worlds, this 

simply won't do. Thus, we seek to meet the standard, so that we may immerse our- 

selves in new worlds that keep us amazed, excited, and absorbed. 

Returning our attention to computer games, we see how far we have come. This 

year marks another step in the evolution of realism achieved in the virtual worlds we 

create as game developers. More than ever, physical simulation in games approaches a 

degree of fidelity that eerily matches much of what we see around us. Clearly, our 

craft has advanced considerably over the past several years. In the following section, 

several gems demonstrate the progress that has been made and offer ideas for getting 

to the next level. 

Graham Rhodes starts things off at full speed by presenting a solid and intuitive 

look at aerodynamics and its various applications in games. From the airborne to the 

wind swept, we next move to Rishi Ramraj’s discussion of dynamic grass simulation 

and other effects, including water surfaces and the motion of leaves. Our realism 

toolset is then rounded out with Juan Cordero’s look at cloth animation, followed by 

Maciej Matyka’s discussion of an innovative technique for animating soft bodies. 

The next gems remind us that the art of computer game development is a 

dichotomy: a simultaneous effort in maximizing the degree to which we can emulate 

the real world but also our skill at creating masterful illusions. Michael Mandel 

manipulates the puppet strings of game characters by adding feedback control systems 

to rag doll simulation. We then reach the opposite end of the rich spectrum of physi- 

cal realism with two gems on prescripted physics. The basic architectural considera- 

tions are handled by Dan Higgins, and Shawn Shoemaker presents a variety of 

applications. 
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The section closes where it begins: with a good look at the world. This time the 

view is provided by Barnabas Aszédi and Szabolcs Czuczor, who present several ideas 

for realistic control of camera motion in 3D car simulations. 

The gems in this section cover a wide variety of topics and illustrate the tremen- 

dous progress that has been made in computer game physics. At the same time, they 
only hint at the exciting possibilities that have yet to be realized, teasing us with still 
just-out-of-reach capabilities that will immerse us even deeper. With every closer 
glance at the real world, we notice more details of reality that defy our imitative efforts 
and challenge us to go to the next level. The hope is that these gems will serve as step- 
ping stones on the exciting path up that next level and will inspire new entrants to the 

discipline to take up the cause. 
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2 real life, aerodynamics enable heavier-than-air vehicles to fly, make the curve ball 

possible, and cause palm trees to sway above beautiful girls on exotic beaches. Aero- 

dynamics have long played a role in gaming, primarily in flight simulators, and in 

some cases have been used to improve the realism of effects such as particle systems. 

Many game developers take an ad-hoc approach to aerodynamics that is based more 

on numerical experimentation than on sound principles. This gem will provide a 

portfolio of simple, low-CPU/GPU-cost, back-of-the-envelope formulas, derived 

from sound engineering principles and strictly controlled wind-tunnel experiments, 

that game programmers can use to support a wide variety of aerodynamic effects in 

many game genres. While we use the term aerodynamics, in fact the formulas here 

work equally well for objects moving through a fluid such as water, as long as veloci- 

ties are fairly high. 

The gem is developed in two sections. The first section describes how different 

aerodynamic primitives can serve as proxies to game geometry and presents simple 

equations for calculating aerodynamic forces on those primitives. You can reasonably 

use these equations for objects that are moving through the air or other fluids at a 

Mach number of less than approximately 0.75. While the presentation is short on 

theory due to limited print space, certain key principles from aerodynamics theory are 

present. The second section of the gem focuses on applications of back-of-the-enve- 

lope aerodynamics to achieve way cool effects in action games, complete with source 

code. 

SEALE LEIS LTA ERR 

The following sections provide some background on the topic of aerodynamics. 
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Aerodynamic Loads and Rigid Body Dynamics 

The formulas presented herein will help you to calculate approximate aerodynamic 

loads—forces and moments (also known as torques)—that can be applied to rigid 

bodies. The loads calculated with these formulas can simply feed your existing rigid 

body physics system! 
In the engineering world of aircraft flight dynamics, there are six standard aerody- 

namic load quantities: three forces (lift, drag, and side force, which is perpendicular to 

the other two) and three moments (pitching moment, yawing moment, and rolling 

moment). However, the manner in which this gem treats geometry allows us to sim- 

plify the situation, modeling only lift, drag, and a single moment. The full set of three 

forces and three moments is simply a generalization. Figure 4.1.1 illustrates the orien- 

tation of these three load quantities. 

> Center of Gravity 

@ Location of Force 

Zw 

Se 
Pitching 

Moment 

Gravity 

FIGURE 4.1.1 Location and orientation of lift, drag, and pitching moment. Drag 
acts in the direction of the relative wind, and lift acts perpendicular to the relative 
wind—both often through a location other than the center of gravity. Pitching 
moment acts about an axis through the center of gravity and perpendicular to the 
lifi/drag plane. 

Here, the axis system Xw, Zw represents the world space coordinate system, and 
the axis system Xo, Zo represents an object-aligned coordinate system. For 3D objects, 
there are of course Yw and Yo directions, and the two coordinate systems will often be 
more arbitrarily oriented. The object’s orientation is unimportant as long as it is 
known. The orientation of the relative wind, defined later, is critical to calculation of 

the forces. 
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The orientation of these loads, which are defined here in the so-called wind axes, 

may surprise you. You may have been expecting the lift force to act vertically straight 

up (opposite gravity) and the drag force to act horizontally—both acting through the 

center of gravity, since many simplistic introductions to aerodynamics present the 
forces in this way. You may have never heard of pitching moment. Be assured, the wind 
axis representation is both realistic and fundamental to simple aerodynamic theory. 

The force calculations depend only on the object’s orientation relative to the 
wind and not to the world. While lift on airplane wings normally does have a vertical 
component that balances the object’s weight, causing the object to move horizontally 
or with a constant vertical velocity, lift can in fact act in any direction, even horizon- 
tally! It is recognition of this that makes it reasonable for us to ignore the side force, 
for example, as a special case, since side force is often just a horizontally oriented lift- 

ing force. 

Dimensionless Forms 

It is common practice to represent all the aerodynamic loads in terms of dimension- 

less coefficients. Equations 4.1.1 through 4.1.3 are equations for computing the loads 

given the value of a dimensionless coefficient. 

VES 
D=Drag=—2* (4:.1,1) 

OM 
L= Lit =_—s (4.1.2) 

Vers lage 
M = Pitching Moment = ae (4.1.3) 

Here, Cp is the drag coefficient, C; is the lift coefficient, and Cy is the pitching 

moment coefficient. The variable S,,r is a constant reference area, usually taken to be 

a projected area of the geometry, such as a cross-section area or a top-down projected 

area. The variable J,,., is a reference length, usually taken to be one of the physical 

dimensions of the object, such as the chord width of a wing or the diameter of a 

sphere-like object. The variable p is the fluid density, which for gaming applications will 

most often be taken to be constant. 

Finally, the variable Vis the speed of the fluid, measured relative to the object; that is, 

it is the speed of the fluid moving past the object, measured in world space. Given the 

velocity of the point on the body where the force is applied to an object, Vi. iion-of— force? 

in world space, and a wind velocity in world space, V _j it is easy to find the wind 
WL 

velocity relative to the object, Vi irive ying? USING Equation 4.1.4, The geometry of this 
rei 
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situation is illustrated in Figure 4.1.2. The quantity Vin Equations 4.1.1 through 4.1.3 

is simply the magnitude of Viiv. wings When calculating Vi. ion-of— force? be sure to 

include the translational velocity due to object rotation, since this will affect the forces. 
a 

Specifically, let V, = K wx  \ocation-of — force rr T joint-of -rotation 2 location—of — force point—of —rotation 

with 7 being the location of a point, measured in world space, and @ being the rota- 

tional velocity about an axis through the point 7 , measured in radians per 
point—of —rotation 

second, as shown in Equation 4.1.4. 

— — = 

(4.1.4) 
relative_wind wind location—of — force 

—> 

V location-of-force 

FIGURE 4.1.2 The geometry of relative wind. 

Fluid Properties and the Standard Atmosphere 

The equations presented herein are dependent on the fluid properties, be that fluid 
air, water, or something else. At sea level, air has an average density, p, of 1.225 kg/m? 
(23.77 x 10-4 slugs/ft*), and dynamic viscosity, {l, of 1.789 x 10-5 Newton-sec- 
onds/m? (3.737 x 10-7 lb-seconds/ft*). At 20 degrees Centigrade, pure water has an 
average density of 1000 kg/m? (1.94 slugs/ft’) and a dynamic viscosity of 1.0 x 10-3 
Newton-seconds/m? (2.09 x 10—5 Ib-seconds/ft?). 

For air, at any given moment in time, the properties vary with altitude, as well as 

with weather conditions, etc. There is a model, called the Standard Atmosphere (U.S. 

and International versions exist), which represents the average air properties over a 
range of altitudes. An Internet search on that phrase will produce numerous links, 
including table listings of the properties and software for querying the tables. 

Aerodynamic Primitives 

While there have been a few developments that simulate variants of the Navier-Stokes 
equations of fluid flow in real time [Stam03, Lander02], for the purpose of simulating 
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smoke, clouds, and water flow in games, these methods are usually overkill when the 
goal is to find the net force and moment on a rigid body object. For games, in many 
cases, a very approximate solution is realistic enough. To that end, the remainder of 
this gem will discuss aerodynamic load calculations for a number of aerodynamic 
primitives. These primitives have simple shapes for which the engineering world long 

ago has developed closed form, simple algebraic equations. Some of these develop- 
ments date back centuries. To apply these equations in your game, you simply need to 
choose the most appropriate aerodynamic primitive—usually the one whose shape is 

closest to your in-game object—and apply the equations associated with that primi- 
tive. You can also represent a more complex shape as a composite of several aerody- 
namic primitives (e.g., a sphere plus a simple wing, linked together as a rigid set) to 

approximate the loads. To be sure, this approach often produces very approximate, 
first or zeroeth order estimates that ignore object-to-object interference effects, among 
other things. Fortunately, these estimates are extremely cheap to compute and are 

often absolutely convincing! 

Forces on Bluff Bodies 

We define a bluff body to be any object that is not slender or streamlined, and that 

does not contain wings for generating lift. For the purposes of this gem, consider any- 

thing that is shaped somewhat like a sphere, or a cylinder whose center axis is perpen- 

dicular to the relative wind, to be a bluff body. This includes arbitrary blobs, cubes, 

tubes, etc. Consider the location of the force of a bluff body to be located at the 

object’s centroid. 

Drag (Aerodynamic Primitive: The Sphere) 

For bluff bodies, Cp is largely a function of a dimensionless parameter called the 

Reynold’ Number, defined by Equation 4.1.5. The Reynold’s Number represents the 

ratio of inertial to viscous forces in the fluid. 

pv, 7 
Reynold's Number = R, = ak ft (4.15) 

Three of the variables you recognize. The fourth, jt, is the dynamic viscosity of the 

fluid (units are force-time/length-squared). Figure 4.1.3 illustrates the variation of Cp 

for a sphere over a large range of Reynold’s Number values. 

To calculate the drag on a sphere-like bluff body: first calculate its R,, with /,.rset 

to be the diameter; next, pick a Cp value from Figure 4.1.3; finally, plug the Cp into 

Equation 4.1.1, with S,,r equal to a represéntative, front-projected area for the body. 
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FIGURE 4.1.3 Variation of Cp on a spherical bluff body over a range of 

Reynolds Numbers. 

For convenience, White [White74] presents a simple equation, reproduced as Equa- 

tion 4.1.6, for estimating drag on a sphere that is fairly accurate for R, below approx- 

imately 200,000. This equation was produced as a curve fit to experimental data, 

24 6 
Cc ims tp +0.4 

D, sphere R. ee JR, (4.1.6) 

For R, values between approximately 2,000 and 200,000, just pick Cp equal to 0.4. 
For higher Reynold’s Numbers, use whatever works best between 0.1 and 0.4. 

In some cases, a sphere is not the best way to represent a given shape. While Cp 
versus R, charts aren't often available for other shapes, there are resources that will 

provide you with a reasonable guess at a Cp for different shapes. In particular, the 
JavaScript-based Bluff Body Drag Calculator provided by Professor M. S. Cramer of 
Virginia Tech [Cramer98] is an excellent and recommended resource. 

Bet You Thought Drag Varied Linearly 

with Velocity, Didn’t You? 

As presented earlier, by definition, drag and the other aerodynamic forces are propor- 
tional to a dimensionless coefficient multiplied by the square of velocity. This relation- 
ship is always correct, no matter what the fluid, no matter what the speed of travel, no 

matter what the object. It is a definition! But, as you may have read, it is also true that 
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in some circumstances, drag varies linearly with velocity. How are both possible? The 
truth lies in the variability of Cp. It turns out that for R, below approximately 1,000, 
Cp varies approximately proportional to the inverse of R,, which effectively puts an 
extra V in the denominator of Equation 4.1.1, thus making drag a linear function of 
V. But, the relationship defined by Equation 4.1.1 also remains perfectly valid! 

Lift on Spinning Bluff Bodies (Aerodynamic 

Primitive: The Cylinder) 

Lift is a force that acts perpendicular to the relative wind, caused by fluid pressure dif- 

ferences that result from flow acceleration and deceleration over the surfaces of an 

object. The fine details of the physics that ultimately cause this to happen are beyond 
the scope of this gem; however, we can take advantage of one of the early develop- 
ments in theoretical aerodynamics to obtain a handy equation for estimating the lift 
force on bluff bodies. One of the classical simplifications of the Navier-Stokes equa- 

tions of fluid flow is the so-called linearized potential flow model. With this model, it 

is possible to represent a full flow field as a superposition (summation) of elemental 

flow fields. The flow about a general object in a fluid can be approximated as a back- 

ground flow in which the fluid velocity is balanced (and no lift is generated) plus a 

so-called circulation flow, which represents an acceleration of the fluid on one side of 

the object and a deceleration on the other side. The easiest way to begin to understand 

circulation is to consider it to be a concentric flow, a vortex, superimposed on top of 

a background flow. The vortex flow is additive, incrementing the fluid velocity on one 

side of the object, producing lower pressure, and decrementing the fluid velocity on 

the other side of the object, producing higher pressure. The pressure difference 

between the sides causes the lift force. 

In the early 1900s, two scientists, Kutta and Joukowski, each independently 

determined that if the relative wind is nonzero and if there is a circulation, then a lift 

force exists and can be quantified with a simple equation. Equation 4.1.7 is a general- 

ization of the Kutta-Joukowski Theorem, which defines the lift force in terms of a 

known circulation. 

per _unit_length a p Y ceeatae feed x r (4:1,7) 

Here, I’ is a vector representing circulation per unit-length, oriented in a certain 

direction, and the resulting force, ay 2s aos is the lift force per unit-length, with 

length being the object length along the circulation direction. In real life, the circula- 

tion is a variable along the length, and Equation 4.1.7 must be integrated along the 

length to obtain the total lift force. 

Circulation can be the result of geometric asymmetry in the curvature of an object 

(e.g., an airfoil that has more curvature on the top than on the bottom), and can also 

result due to rotational motion—spinning. The curve of a curveball is due largely to 

lift caused by circulation flow around a spinning baseball. The circulation is due to skin 

friction on one side of the ball accelerating air molecules faster in the direction of the 
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relative wind (lower pressure), while skin friction on the other side of the ball deceler- 

ates the air molecules against the relative wind (higher pressure). The direction of cir- 

culation for a spinning ball is the ball’s spin direction, as shown in Figure 4.1.4. 

FIGURE 4.1.4 Circulation generated on a spinning baseball and a cylinder, due to circu- 

lation caused by skin friction. 

The real-world fluid flow around any general object is quite complex, and its cir- 

culation situation is nontrivial. To greatly simplify matters for games, simply treat the 

object as a cylinder. The aerodynamic primitive is a bounding cylinder, aligned with 
the spin axis. In this case, the circulation per unit length is approximated for a cylin- 
der. The total lift can be approximated by multiplying the result of Equation 4.1.7 by 
the length of the bounding cylinder. For such a cylinder, with radius r and spinning at 
a rate of @ radians per second (positive or negative), the circulation per unit length is 
given by Equation 4.1.8. 

= 2x0? (4.1.8) 

From here, the total, approximate lift on the bluff body with bounding cylinder 
length / can be calculated using Equation 4.1.9. Here, @,,,, is a unit vector indicating 
the axis of spin, and @é,. is the rotational velocity in radians per second. The extra 
factor of 0.785 approximates three-dimensional losses that occur for finite length 
cylinders. The equation is more accurate for longer cylinders. 

L=0.78510V, sive wind X(20Or'€,,,,) (4.1.9) 

If you consider the force associated with the spin of a baseball as being due to the so- 
called Magnus Effect (also called the Robins Effect), you are quite correct. These are 
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terms given to the phenomenon long before Kutta and Joukowski formulated the 
math, though in reality, there are factors other than circulation at play. 

Forces on Streamlined Bodies 
ELEN NRA 

In ere olin sections, we ll faa at a number As yee affecting the behavior of 

streamlined bodies. 

Lift and Drag on Wing-Like Bodies (Aerodynamic 

Primitive: Quadrilateral Plate/Wing) 

Objects that are shaped like airplane wings are especially good at generating circula- 
tion, and hence, lift. For our purposes, consider any object that is basically flat, and 
aligned within 10-15 degrees of the relative wind, to be a wing—an efficient lifting 
body. The engineering world derived thin wing theory, which led to the development of 
convenient equations for Cp and C; of thin wings. These equations are perfectly fine 

for many gaming applications outside of realistic flight simulation. Figure 4.1.5 illus- 
trates a number of geometric parameters required to evaluate the following equations. 

Top View 

relative_wind 
@=Location of Land D 

i 

FIGURE 4.1.5 The geometry of wing-like bodies. The XY 

plane of the object-aligned coordinate system is aligned with a 

representative center plane of the object. 
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Here, A is the leading edge sweep angle, the C values are the chord lengths at the 

root and tip of the wing, 0.54 is the semi span length, and is the angle of attack of 

the wing, measured relative to Vite wing? Ehere is a simple formula, due to Hale 

[Hale84], for approximating the lift on such wing-like bodies at small (less than 

10-15 degrees) angles of attack, given by Equation 4.1.10. 

A 
Co ee ee (4.1.10) 

LE LO 2 

1+,/1+ a 
2cosA 

Note that the equation requires @ in radians. Here, C;,9 is the lift generated when 

the wing is at zero angle of attack. This is nonzero when the wing curvature is differ- 

ent on the top and bottom surfaces. For approximate solutions in games, assume it is 

zero. A is the aspect ratio, equal to the span, b, divided by the average chord length. 

For @ greater than 10-15 degrees, the variation of C,; with @ will become nonlinear. 

See Bertin and Smith [Bertin79] or Raymer [Raymer92] for information on the more 

realistic behavior of CL for higher values of @. 
Drag on wing-like bodies consists of two primary components: a parasite drag 

component that is the same drag as that encountered by bluff bodies and a vortex- 

induced drag that is a side effect of the generation of lift. From thin-wing theory, drag 

on wings can be approximated by a parabolic drag polar, given by Equation 4.1.11. 

l 
Cr (4.1.11) 

Here, Cp, is the parasite drag component, and the remaining term is the induced drag 

component. Normally, since wings are streamlined, Cp, is quite small. A reasonable 

value is 0.045, though certainly you can tweak this as needed. A is the wing aspect 
ratio, and e is the so-called Oswald span efficiency factor. Outside of flight simulation 

games, just pick e equal to 0.8. 
It is important to pay careful attention to the location where the lift and drag 

forces act, since these forces will contribute to moment loads. To locate the center of 
lift and drag, first find the chord along the location y = 2b/31. This location assumes 
a semi-elliptic, span-wise lift distribution. The lift and drag act approximately at the 
intersection point of that chord and the quarter-chord line, which occurs one quarter 
of the chord length behind the leading edge, along the entire span. It is also critically 
important that you include the translational velocity at the force location due to 
object rotational velocity. This velocity component contributes to physically based 
pitch damping. Without it, your simulation may exhibit instabilities. 

There are a couple of important observations to make. First, Equation 4.1.10 was 
developed under the assumption that the wing is symmetric across the XZ plane, e.g., 



4.1 Back of the Envelope Aerodynamics for Game Physics 405 
stents tte HL neeeterneicnrteNSinenNtiOHeot 

there are two halves. Regardless of this fact, if you only have half a wing, e.g., a 
quadrilateral fin stuck to the side of a missile, Equation 4.1.10 will work perfectly as 
long as you choose S,.¢in Equation 4.1.2 to be the area of the portion of the wing that 
exists in your model. Second, if you have a full wing that is symmetric about the XZ 

plane, you need to include the lift and drag for both halves, doubling the net force. 
Notice that the net lift and drag for the two halves will act at a point that has the same 
X coordinate value as the individual halves, but a Y coordinate value of 0, e.g., lift and 

drag act at a point down the centerline between the two wing halves. 
Raymer [Raymer92] provides a much more comprehensive introduction to the 

lift and drag of wing-like bodies, and provides a wider range of still-simple formulas. 

This is a highly recommended resource that should be available in most major engi- 

neering university libraries. 

Pitching Moment 

In reality, lift and drag are not generated at the center of gravity of an object. They are 
the integrated result of a pressure and friction force distribution over the surface of the 

object. The actual centroid of the forces almost never coincides with the center of 

gravity of the object. We merely use center of gravity for our rigid body simulations 

for convenience of the time integration of the rigid body equations of motion. If you 

apply lift and drag at the location given earlier, you will have a reasonable approxima- 

tion to the pitching moment produced by the wing. 

Moments in General 

When you think about it carefully, you will realize that any of the aerodynamic forces 

(lift, drag, side force as a variant of lift) can produce a moment about the center of 

gravity of the object that must be applied during a simulation. If an object has a bluff 

body component producing drag, and the vector from the object's center-of-gravity 

through the bluff body component’s center is not parallel to the relative wind, then the 

drag will produce a moment about the center-of-gravity. Lifting forces in any direction 

usually produce the largest moments. Bottom line: if you ensure that your forces are 

applied at the correct locations, approximations to the aerodynamic moments will 

result naturally. 

Forces on Slender Bodies (Aerodynamic Primitive: 

Slender Ellipses of Revolution, or Missiles) 

Some objects are neither bluff bodies nor are they shaped somewhat like airplane 

wings or flat plates. Among these are the so-called slender bodies, objects that are 

shaped similar to capsules or missiles, with a high length-to-diameter ratio (the slen- 

derness ratio), which fly through the air with their length axis approximately aligned 

with the relative wind. These objects can in real life generate lift, drag, and pitching 

moments. Unfortunately, due to space limitations, it is not possible to delve into a 
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detailed discussion of slender body aerodynamics here; however, Karamcheti[Karam- 

cheti80] presents a comprehensive theoretical introduction in his book. In a pinch, 

you can approximate a pitching moment using the following variant of the formula 

presented by Karamcheti, which is fairly realistic for @ less than approximately 10 

degrees. Equation 4.1.12 defines the magnitude of the pitching moment coefficient. 

Cu slender_body * [2a (a in radians) (4. 1. 12) 

Here, a is the angle between the axis of the slender body and the relative wind. In 

this case, the product Sreflref in Equation 4.1.3 is taken to be the volume of the 

slender body. The pitching moment acts about the center of gravity of the body, and 

the orientation of the moment is given by the cross product, V. sAA 
relative_ wind ‘slender _ body? 

where A), iy hogy 1S an axis from the nose to the tail of the slender body, through its 

center of gravity. Note that this moment is destabilizing, e.g., if the slender body ever 

becomes misaligned with the relative wind, the pitching moment will seek to push the 

slender body further out of alignment. To make a slender body stable, add fins behind 

the center of gravity. Fins are wings that will counteract the pitching moment to sta- 

bilize the object. 

For the quick-and-dirty case, slender bodies generate no lift, and so you can 

choose C, = 0. For drag, try a Cp value of 0.1 or less, and use the maximum cross- 

section area perpendicular through the body axis for S,,., 

Let’s look at applying the principles covered thus far in three different examples: a 
wind-driven particle storm, a curve-ball simulation, and a simple airplane simulation. 

Impementations of all three are included on the CD-ROM. 

A Wind-Driven Particle Storm 

This example uses the equations for drag on a spherical bluff body to simulate parti- 
cles in a windstorm, a simple tornado. In this case, we model the windstorm using a 

so-called potential vortex, with a strength that varies quadratically with altitude. The 
center, base point of the vortex is (0, 0, 0). The world Z direction represents altitude. 

The storm is assumed to have a strength that varies quadratically from So at sea level 
to S599 at 500 meters, as given by Equation 4.1.13. 

2 
Z 

S(z)=S, + is = Ss lanos (4.1.13) 

— 

From this, the local wind velocity, V,,,,, at any point in space due to the storm is 
given by Equation 4.1.14. 
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Here, 7 is the perpendicular distance from the point to the core axis of the vortex. In 
this case, ~ = ./x24 y® » since the vortex is located at the origin. Care must be taken 

when r is very small. Bertin [Bertin79] provides a more comprehensive introduction 
to the potential vortex. 

The drag force on each particle is evaluated by first calculating V,,, at the loca- 
tion of the particle, due to the storm, then computing the relative wind, and finally by 

calculating Cp and the actual drag force. The drag force is then added with the 

object’s weight to obtain the total force acting on the particle. This total force is 

applied within a simple particle physics simulator. 

A Simulated Curve Ball 

This example uses the equations for drag on a spherical bluff body and lift on a spin- 

ning bluff body to simulate a curve ball pitch in a baseball game. In this case, we 

assume that the wind velocity is zero, so that the relative wind is simply the opposite 

of the ball’s current velocity. This example is illustrated earlier in Figure 4.1.4, with 

the exception that the spin axis is vertical, resulting in a horizontally oriented lift 

force. You can vary the pitch speed from 70 to 90 miles per hour (a/s keys), and you 

can vary the spin rate from —100 revolutions per minute to 100 revolutions per 

minute (+/— keys). The pitch always begins horizontally, along the —X axis (towards 

home plate), and the spin axis is the Z axis. Gravity acts along the negative Z axis 

(straight down). Press the g key to begin the simulation, p to pause, and r restart. 

A Simple, Longitudinal Airplane 

This example demonstrates the calculation of lift and drag on a very simple airplane 

(see Figure 4.1.6). This airplane is of the canard style, meaning its main wing is 

behind the horizontal stabilizer, and the center of gravity lies between the two wings. 

The purpose of this example is to demonstrate the stabilizing nature of the pitching 

moment that results from wing lift when the centers of lift of the two wings are posi- 

tioned properly relative to the center of gravity. For simplicity, this example ignores 

the phenomenon known as downwash, which causes the angle of attack of the rear 

wing to be reduced by the presence of the forward wing. The simulation does include 

airplane rotation when calculating the relative wind for each wing, and the physically 

based pitch damping that results helps make the airplane dynamically stable for small 

angles of attack. The pitching oscillations that occur are realistic—they occur in life 

and damp themselves out naturally. 

In this example, you can adjust the orientation angle of the forward wing relative 

to the rear wing (+/— keys). As you adjust the parameters, notice that the airplane ori- 

entation changes but over time finds rotational equilibrium. This is due to the balanc- 

ing of the pitching moments of the two wings. This is a longitudinally stable airplane. 
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FIGURE 4.1.6 A simple, canard style longitudinal airplane configuration. 

Conclusio = Se ae - ee ae 

This gem introduces a series of fundamental aerodynamic concepts and provides sim- 

ple equations that you can use to quickly calculate interesting aerodynamic effects 

within your game. Depending on your gaming platform, you may have a number of 

options available for implementing aerodynamics. If you use a custom, freeware, or 

licensed physics engine, you will need to implement callback functions that can com- 

pute the aerodynamic loads about the center of gravity of a rigid body, given its cur- 

rent state and the current wind velocity. Once the loads are computed in the wind 

axes, map them into world space and apply them to the rigid body. The physics 

engine will simply incorporate the additional loads into its numerical time integration 

with no additional work on your part. With the advent of programmable graphics 

hardware, it has become possible to perform limited physics calculations on the GPU. 

The formulas presented herein are simple enough that they can be implemented in a 

vertex shader using current or emerging GPUs. This is an especially compelling 

approach when adding aerodynamics to a particle system. These simple formulas are 

cheap enough that you may be able to use them, limitedly, on handheld gaming plat- 

forms. The challenge here will be optimizing the formulas to run quickly using fixed- 

point math or on floating-point capable-but-limited CPUs. 
Though these equations are based on occasionally severe assumptions and ignore 

many higher-order effects, including object-to-object interference and ground effects, 
you can reasonably use them to provide extremely cheap illusions that will make your 
game worlds appear more realistic to your players. Aerodynamics alone cannot make 
a game, but can contribute to a much richer gaming experience when used in con- 
junction with other more traditional visual, physical, and animation effects. The most 

interesting results are often obtained via experimentation and play. For this reason, 

feel free to apply the techniques described here in unexpected ways. Make your next 
game world live, with aerodynamics! 
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yysically animated cloth COLOR PLATE 1B = Physically animated cloth COLOR PLATE 1A 7, 

from Article 4.3. from Article 4.3, draped over a sphere. 

Soft Body 3.0 by Maciej Matyka, http://panoramix.ift. uni.wroc. p¥-mag 

: COLOR PLATE 2 A deformable rabbit model showing Article 4.45 

ractical animation of soft bodies. 



No Controller Fall Controller 

COLOR PLATE 3 Comparison of two ragdoll-physics character falls from Article 
4.5, on the left without feedback control, on the right with feedback control. 



COLOR PLATE 4A Applications of prescripted physics from Article 4.7. 

COLOR PLATE 4B Applications of prescripted physics from Article 4.7. 





Fy Sie ae Bk 
COLOR PLATE6 Screenshot of snow moving at high velocity from technique presented in 
Article 5.2. 

COLOR PLATE 7  Gridless fire technique from Article 5.5. 



Fireball Smoke Debris Frame 

oe | 
- COLOR PLATE 8A Components of explosions used in technique from Article 5.6. 



(a) (a) 
COLOR PLATE 9A Components used in gem rendering technique from Article 5.7. 

ore 



(b) (d) 

COLOR PLATE 9C = Screenshot from ATIs demo “Ruby: The Double Cross” 
showing the gem rendering technique from Article 5.7 in action. 
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evelopments in games like Half Life 2 have demonstrated that the physical 
behavior of a game’s environment plays a large role in providing an immersive 

feel to the user. However, simulating complex natural effects involves significant com- 

putational overhead. 

Overhead can be reduced by examining an existing algorithm used for water sim- 
ulation. The memory requirements of this methodology can be reduced by up to 
50%, while still maintaining (if not enhancing) the quality of the simulation. This 

methodology can then be extended to simulate effects such as wind blowing over grass 

and through leaves. 
This gem has three goals. First, a method is presented for optimizing the memory 

requirements of water simulation under certain circumstances. The resulting model is 

then used to provide a robust and easily implemented algorithm for simulating 

dynamic grass. Finally, these methods are generalized to provide an approach for sim- 

ulating effects involving the impact of change through a network of similar or dissim- 

ilar objects. 

The Water Effect 
PARE TER LEAL LLL LLL NLT ET TELE EE TELLIN ELE ELITE ENT NRE SIT TEM TO 

The approach to natural effects described in this article was derived from an algo- 

rithm outlined in Game Programming Gems 4 called “iWave” [GPG04]. A simplified 

version of the algorithm can be found at [Willemse00]. Both algorithms described are 

essentially the same, but for simplicity’s sake, we will discuss the latter. 

The Algorithm 

The iWave algorithm approximates a planar body of water by a grid of points. The 

vertical motion of each point on the grid simulates ripples moving over the water, as 

depicted in Figure 4.2.1. 
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FIGURE 4.2.1 The iWave approximation of a planar body of water. Three- 

dimensional (left) and two-dimensional (right) depictions are shown. 

To animate the system, two grids are used, representing the pre and post state of 

a time step. One grid stores the current height values of the system. It is then used to 

calculate the values of the next time step, stored in the other grid. Using two grids 

ensures the calculations performed on the (i — J, j)) point for example, do not bleed 

over onto point (i, /). 

To make waves move through the system, we look at each point (i, j) individually, 

The resulting height at that point is calculated by summing the heights of the point 

around it, dividing the result by two, and subtracting the height of the current point: 

pres iis |. = (sreohisatiio* 
Srecn[ Salad 
Sroliltsd- 1 kos 

srech (1,7 +e fe 2 src hpiggis 

The result is a system where waves move through the grid. The waves maintain the 
same amplitude, so energy has to be removed from the system. The solution is to 

simply remove a portion of the energy from the system every update by subtracting a 
portion of the height: 

res h[i,j] -= res_h[i,j] * damp_factor; 

To create a ripple on the surface, simply set the height point on the surface to a value 
other than 0. The effect is that the change produced moves throughout the system, 
affecting points around the selected point. A wave, in turn, ripples out from the 
selected point. 

Specifics as to how and why these formulas are used and why they work are found 
in [Willemse00] and are more thoroughly discussed in [GPG04] (including how to 

animate over a variable time step). The effect conserves water mass; as a surface rises 
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in one location, it falls in another. [GPG04] also discusses how obstacles that cause 

waves to rebound are modeled. 
These specifics, however, exceed the scope of this gem. Next we will look at the 

aspects of this simulation that relate to change propagation. 

Analyzing the Approach 

Intuitively, we view this system as an approximation using a planar mesh because that 
is how it is rendered. If, on the other hand, we view the system as a network, we can 

make several interesting observations. 

The network is composed of several nodes, each the same, with at most four and 

at least two connections to other nodes. Each node is used to store a height value, and 

their logical position in the network is used to determine their physical position in the 
render. 

Links used in the network tell the system that change occurs between the linked 
nodes. Nodes on either side of this link can mutually affect each other. Thus, if we 

change the height of one node in the system, it would affect the heights of its neigh- 

bors during a time step, and would later be affected by its neighbors in the succeeding 
time step. The result, over a period of time is a rendition of the affect of change in one 
node on the entire system. 

The function defined earlier is part of each link. It defines how the properties of 
one node affect the properties of its neighboring node and characterizes how change 
propagates throughout the network. The function is integral to the operation of 

simulation. For example, the entire effect can be changed into a blur (as mentioned in 

[Willemse00]) by averaging the heights of the nodes. It also characterizes the stability 

of the simulation. Without the aforementioned damp_factor, for example, the entire 

simulation would become very sporadic; waves would never fade out. 

Optimization 

[GPG04] mentions that iWave is not very effective at generating ambient ocean 

waves. This optimization creates a simple approximation of ambient waves, while 

reducing the memory requirements of the effect, making an ocean feasible. It also 

adds an interesting quirk to the change propagation model. 

The optimization is simple: use one planar grid instead of two. This approach 

keeps the concept of a time step between calculations while eliminating half the bulk 

memory requirement of the system. As the update proceeds through this one grid, the 

point (i, /) is calculated with a mix of updated points, (i — J, j) for example, and cur- 

rent points like (i + /, /). Instead of waves radiating outwards from a point in all 

directions, they radiate from a point in the direction of the update. The result is a 

water simulation that seems as though it is being blown by the wind; it resembles the 

large ambient waves of an ocean. The result is presented in Figure 4.2.2. 
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Calculate (i,j) Calculate (i+1,j) 

Update 

Next Point 

Direction 

of Update 

FIGURE 4.2.2 The iWave approximation with optimization. As the update proceeds 

through the mesh, a point (i, j) is calculated. It is then used to calculate (i+ 1, j). 

Why is this happening? We are of course removing the “double buffering” 

approach the initial algorithm used. The original algorithm used double buffering to 

ensure one time step’s data wasn’t polluted by interim calculations of the next time 

step. However, this is only problematic depending on the goal of the simulation. If 

the goal is accuracy, which is required for certain simulation, then eliminating the sec- 

ond buffer is not an option. If the goal is a simulation that looks “good enough,” then 
eliminating the second grid is not only beneficial to memory, it can also look good as 

in the case of iWave. 
There are many situations where an accurate time step is necessary. This is not the 

case in most natural effects because the simulations are usually cosmetic. The remain- 
ing effects discussed in this gem do not use a second buffer to accommodate for an 
accurate time step. The next example, grass simulation, starts to exploit aspects of net- 
work analysis. 

Simulating Grass 
nem 

There is very little difference between simulating grass and the water effect. In a large 
field of grass, when energy is applied to one stalk, it in turn affects those around it. It 
should be noted that the term energy is used colloquially. In this sense, it describes a 
quantity that affects or is possessed by an object. It is used as such for the remainder 
of the gem. If sufficient energy is applied, like a gust of wind, then a wave of energy 
moves through the field of grass. 
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The Algorithm 

If we analyze the water effect using the previous network approach, we can pick out 

elements that we can preserve. Grass, like water, uses the same planar grid to represent 

its elements. Each node can represent a stalk of grass and is surrounded by up to four 
other stalks. Energy moves through both systems similarly, so the function we use 

between links does not change. The only difference between the systems is the way 
the property of the node is interpreted. In the case of a water simulation, each node 

represents a height value. In the case of grass, it is more complex. When energy affects 

a stalk of grass, the stalk rotates (e.g., bends) in the direction of the energy flow. This 

process requires two things: a direction of the application of this energy and a scalar 
representation of energy to determine the extent to which the stalk is affected. 

We can use the value at each node as a representation of energy. That is, the 

height of a wave instead becomes the degree to which the grass rotates. We can define 

a vector as the direction of the energy. This lets us control which way the wind blows. 
The vector is scaled by the energy scalar. It is then divided into components along the 
x and z axes. Rotation along these axes is proportional to the resulting components. 
There are different ways to convert the components of the vector into angles, the eas- 

iest being to simply scale the components. The result is demonstrated in Figure 4.2.3. 

Pre Rotation Post Rotation 

SJ 
=e 
— 

; 

ef 

FIGURE 4.2.3 The rotation or “tilt” of a stalk of grass. The vector Wx is calculated from 

W. It is then scaled with a value r to produce (rWx)° of rotation. A similar rotation is 

preformed in the z direction. 

Repeat this process for a large amount of grass over a field, and you create the illu- 

sion of a plain of grass being blown by the wind. We are now capable of converting a 

water simulation to a grass effect with little effort. Next, we will take a look at the 

rules of the change propagation model. 
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The Change Propagation Model 
ANNA 
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Over the past discussion, we have highlighted several components required for a 

change propagation model. It is composed of a network of nodes connected to other 

nodes, each used to store some value. These nodes are linked together if they change 

each other and the change that occurs is controlled by some function. Next, we will 

take a look at each component of the model to identify the essential parts. 

The Network 

The networks described so far have all been girded matrices. In both examples, the 

logical arrangement of the network (i.e., a grid) maps directly to the physical repre- 

sentation. However, these examples are simply implementations of an abstract con- 

cept. We can generalize the concept; the network is responsible for defining the 

interconnections between nodes. It is not restricted by architecture or any physical 

mapping to reality (as the next effect will demonstrate). The architecture of the net- 

work can also change over time. 

The Nodes/Interpretation 

Nodes in previous examples have all been composed of one value. This value has been 

some floating-point scalar that has been mapped to a physical element. Every network 

presented has been a collection of the same node. 

In general, a node can be considered a thing that can be changed. It can represent 

any quantity, from a single floating-point variable to a linked list of arbitrary classes. 

Nodes do not have to be mapped to any physical quantity; they can just as easily 

represent something abstract, like the weights of a neural network [Buckland01}. Fur- 

thermore, nodes do not have to be replicas of their neighbors, so long as they fulfill 

the requirements of the links and functions, which we will discuss next. 

The Functions 

The functions presented have worked with scalar values to produce scalar values. 
iWave, for example, uses the heights of a mesh to produce a new height. In general, 

however, we can say that a function, in this model, is a relation that maps the output 
of a node to the input of another node (or back to the original node). To address the 

earlier problem with dissimilar nodes, a function could be written to convert the out- 
put of one node to the input of another. Further, these functions do not have to be 

bidirectional. 

The relevance and derivation of functions have been in part influenced by the 
application that uses them. iWave, for example, derived its function from the linearized 

Bernoulli equations [|GPG04], functions that describe fluid dynamics. Although we 

cannot totally avoid the end application, it should be noted that the function does not 
have to be justified mathematically. It is a relation between the causal input and the 
resulting output. Approximations and arbitrary associations are acceptable, provided 
they produce the desired effect. 
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The Links 

The previous examples have not covered the concept of links. In general, a link is the 
set of functions between nodes and acts as a bridge between nodes where changes 
occur. One link may use more than one function. Functions can in turn be swapped 
between nodes as the simulation continues. If the architecture of the network 
changes, then a standard input/output type is required. The conversion could be pre- 
formed by a function inserted in the middle of a link. 

Simulating Leaves: Applying the Model 
aan ESR aS HN a a SERRE TEE SERIE, ITI ni ioe osrsnniantee: 

In the next exercise, we will use the change propagation model to simulate the effect 
of wind blowing through leaves. In this effect, the leaves of a tree react more violently 
on the side of the tree facing the wind. As energy moves through the tree, leaves closer 
to the source of energy obstruct leaves farther away. To reproduce this effect, we will 
take a look at individual components of the change propagation model and decide on 
reasonable solutions to the problems they pose. 

The Network 

The network is responsible for defining the interconnections between nodes. In real- 
ity, the effect between leaves on a tree is fairly minimal. Leaves do not regularly make 
contact with each other. However, leaves do obstruct each other from wind, which 

implies that they induce change. In this case, the architecture of the network does not 

change over time. 

Ideally, each leaf would affect all others; the wind could come from any direction 

such that each leaf could obstruct others. The function would be based on the flow of 

wind around the leaf. It is obvious that this is overkill. Instead, we can simplify the 

simulation by making a few observations. The basis of the simulation is that energy is 

dissipated from one or several points in the network. We can say that a node is con- 

nected to three of its closest neighbors and the energy transferred between nodes is 

proportional to the distance between them. The value three is arbitrary and in prac- 

tice has proven to be a fairly good compromise between an accurate fully meshed sim- 

ulation and a mesh of single links. 

The Nodes/Interpretation 

A node is a thing that can be changed. In this case, we want to store some sort of 

scalar, which represents how much the leaf blows in the direction of the wind. Each 

leaf must be aware of its current orientation and the overall orientation of the wind so 

that it can be blown in the proper direction. Note that we could design the system so 

that the leaves would be blown in random directions. In this case, the orientation of 

the wind could be inferred by the way energy flows through the system. 

Interpreting the energy scalar poses several interesting problems. We have two 

vectors, one defining the orientation of the leaf and the other defining the orientation 
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of the wind. The energy scalar indicates how closely the leaf rests on the wind vector. 

When there is no energy, the leaf settles back into its original position. When there is 

a lot of energy, the leaf moves violently in the direction of the wind. 

There are several mathematical ways to tackle this problem. We could use quater- 

nion and spherical linear interpolation [Wattenberg97]. Using this approach, we 

would run into problems when trying to introduce randomness to the behavior as 

well as problems rendering the leaves in the desired directions. Instead, we could con- 

sider the problem in spherical coordinates [Bobick03]. The initial orientation of each 

leaf and the orientation of the wind are specified by an azimuth and an inclination. 

The energy scalar is used to specify how much of an angle we add from the current 

leaf orientation towards the wind orientation. We will also be adding small random 

angles to produce noise. The algorithm for calculating the new orientation for the leaf 

is presented in Figure 4.2.4. 

Step 1 

The first step is to determine 

the angle between the leaf's - 

current orientation and the 

wind's orientation. 

Wind F 

Orientation ~ 

Leaf 

Orientation 

Step 2 

We then multiply this value, 

d@, by the energy scalar to ie 

produce dE. / a@ xX ENERGY = 1 dE 

Step 3 

A random value R is added 

to dE to produce dF. 
i R ot 1 dE + \ = ; oF 

Step 4 
Final 

dF is then added to the Leaf's ga 

original orientation to produce e 

the Final orientation, which + "f dF f= 

is rendered. a 
Orientation 

/ 

Leaf 

Orientation 

FIGURE 4.2.4 Algorithm for calculating the new orientation 
of a leaf. 

The Function 

When wind blows through a tree, the leaves closer to the source of the wind are 
affected the most. When the wind stops, the energy affecting the leaves dies off. 



4.2 Dynamic Grass Simulation and Other Natural Effects 419 
cunusascesteuainunssceenieaetnt se iSisAnsasSOis isanunnencsaeesstasasaabonnntesaniii at NAMA E HAASE DRONE ICN 

Energy on those affected the most dies off last. This type of behavior is best repro- 
duced by a blurring algorithm, as discussed in the water effect portion of the gem. In 
a typical blur, the point (i, /) results from taking the average of points around it and 
itself. 

Although this function emulates the behavior we seek, over time, the energy of 

the system increases permanently as more energy is added. Take, for example, a grid 
that uses this function. If we apply an increase in energy at (i, j), then when the dis- 
tribution of energy settles over a time ¢, all points in the grid will possess some of the 
initial energy. The energy applied to the system initially will be evenly divided among 
the points in the grid. 

We want a system where energy fades back to zero: a return to equilibrium. We 
can make the interchange of energy proportional to the distance between nodes. This 
way, only a portion of energy is transferred between nodes; as the distance between 
nodes increases, the energy transfer decreases. The result is then summed. Distances 

between nodes will be constantly reducing the amount of energy in the system over 
time, and as a result, the system will return to equilibrium. 

The Links 

In this particular simulation, the role played by the links is minimal. Analysis using 
links becomes important when considering networks with dynamic architecture. 

ED ae 
Throughout this gem, we have considered three simulations: water, grass, and leaves. 

Each simulation uses the same basic idea: the change propagation model. The intent 

is for the reader to consider the examples presented and use them along with the 

change propagation model to create new effects. 
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Although cloth is a common object, the physical laws that govern its dynamics are 

complex. Continually, algorithms for cloth animation are improved by focusing on 

two main aspects: the efficiency of the models and the search for realistic results. 
Since the mid-eighties, several cloth simulation models have been proposed based 

on geometric [Weil86], physical [Provot95, House00], and hybrid [Tsopelas9 1] prop- 

erties. For the moment, only models based on physics provide realistic results. How- 

ever, physical models are time-consuming processes due to the complexity of 

calculations and the difficulty of creating user-friendly methods for specifying mater- 

ial characteristics. 

In recent years, the Kawabata Evaluation System (KES) [Kawabata75] has been 

used in cloth simulation models to empirically obtain parameters intrinsic to a partic- 

ular type of cloth. However, KES is a costly technique, and in most cases, relatively 

few of the obtained results are used in the simulation models. 

This gem details a new simulation method based on the mass-spring model that 

achieves high-quality results with a low computational cost. In the next section, we 

describe a computational model for cloth based on masses and springs. After that, we 

present the forces involved in cloth dynamics. We then outline the equations of the 

dynamic system and provide an approach to resolve them. Finally, we present our 

conclusions and identify directions for further research. 

A Discrete Representation of Cloth 
cca RUBNEREE ERR LEER NOL ME LTT ELIE EEL TTT eit A RASTA RSE CANINE REEL ERE 

A rectangular piece of cloth can be Me ented by a coe of nXm mass particles 

linked by springs, as shown in Figure 4.3.1. 

421 
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FIGURE 4.3.1 A discrete represen- 

tation of cloth using a mesh. 

The mass of each particle represents the mass of the material situated around the 

particle. Springs, linking particles, generate forces that make the distances between 

the particles constant. A mesh is oriented such that for every particle of the mesh, a 

normal vector to the surface is defined. The normal vector that describes the orienta- 

tion of the mesh has the expression shown in Equation 4.3.1. 

N, tied sy 

) | N,4+N, +N, +N, | 

where , is the normal vector of each triangle that defines the mesh around the par- 

ticle (see Figure 4.3.2). 

FIGURE 4.3.2 = Zhe normal vector of the mesh 
at a particle position is a combination of the 
normal vectors of the triangles that surround 
the particle. 
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As we will show, it is important to know the surface normal for each particle in 
order to decide if a force is internal or external to the plane of the mesh. For every par- 
ticle of the mesh, there are three sets of neighboring particles: stretching (or structural) 
neighbors, shearing neighbors, and bending neighbors. The internal forces of the mesh 

will be described once the sets of neighboring particles are defined. Starting from a 
particle of the mesh situated at (i, 7), the stretching neighbors are described in Equa- 

tion 4.3.2 

Fics See ed ale A 8 (4.3.2) 

for the case involving four neighbors. If the particle is localized at the edge of the 

mesh, it will have three neighbors, and if at a corner of the mesh, it will only have two 

(see Figure 4.3.3). 

FIGURE 4.3.3 Stretching neighbors 

representation. 

The set of stretching neighbors, V7, is divided into two subsets that correspond to 

the principal directions of the mesh: 

Vis S [Baebes i} 

Vioey = ors ? Pi jot i, 

where V7"? is the subset of stretching neighbors in the direction of the warp and Vt 

is the subset in the direction of the weft. 

The set of shearing neighbors is expressed as in Equation 4.3.3 (see Figure 4.3.4). 

(4.3.3) 
S i+1,j+1?~ i-1,j+1? eee 
Se (eG? 
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Note that there are one, two, or three neighbors, depending on the situation of the 

particle under study. 

FIGURE 4.3.4 Shearing neighbors 

representation. 

We will later show that the set of shearing neighbors does not need to be divided. 

The set of bending neighbors is expressed as: 

4 cadena nce Sart Ag (4.3.4) i=23f? b,gt2?~ i,j-2 

As with stretching neighbors, the set can consist of four, three, or two elements, 

depending on the position of the particle within the mesh (see Figure 4.3.5). 

x 
x 
FIGURE 4.3.5 Bending neighbors 

representation. 

The set VB is also divided into two subsets: 
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These represent the neighbors in the directions of the warp and the weft of the cloth, 
respectively. 

To simplify the notation, we use R to designate the set of subindexes related to 

sets 1, 2, and 3 along with their respective subsets: 

R,={(i+ Ls) (iba) (6541) (6I- Vf 
={(i+17).(i-L)} 
eter 

R, ={(i+1,j+1),(i- (i-1,/+1),(i+1,j-1),(i-L 7-1} 

R,={(i+2,/),(?-2./),(44+2),(64-2)} 
Ryo ={(i+2,/),(7-2./) 
Ry ={(i,5+2),(6.5-2)} 

Forces 
iS CARD EEE ISR ER ESLER EEE SORES. LION ES EE TC NESE ED RIL EEL LTR ROTTED SANE 

Once the mesh of the cloth is obtained and the orientation of the particle is defined 

along with its set of neighbors, we can express the forces related to each particle. Two 

different groups of forces will be determined: internal forces and external forces. 

Internal Forces 

The internal forces relate to the quasi-elastic behavior of the cloth. There are stretch- 

ing forces, bending forces, and shearing forces. Stretching and shearing forces are in- 

plane forces while bending forces are out-of-plane forces. This means that stretching 

and shearing forces follow the directions defined by the mesh, while bending forces 

are normal to the surface of the mesh. Therefore, to define the forces, we must first 

know the orientation of each particle within the mesh. 

The stretching force is predominant among the internal forces. Due to the simi- 

larity of the stretching properties of cloth in general, this force does not discriminate 

against different types of cloth during the simulation. Therefore, many authors do not 

consider the effect of the stretching force, and instead they impose a fundamental 

assumption on the mesh: the distance between stretching neighbors is constant 

[Witkin90]. This paper takes into account stretching forces. Hooks Law gives the fol- 

lowing expression for the stretching force of a mesh particle P;;: 
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peau Sybe(c\ ee ere (43.5) 
(KER wp (AER wp 

where 

me Ls 

Lg = “ Py 

e ss | Vina | ¥ Lia —> SGraia 
> sf = 

Ve 

where 

14/9 is the length of the spring that links P;9 to P;;0 when the mesh is at rest. 

That is: 

lp as Fs Pa > 

where K,»e(E) and K,»/(E) depends on the elongation, €. Together K;wr(§) and 

K,f(&) model the quasi-elastic behaviour of the cloth. 

The other in-plane force is the shearing force. This force represents the lateral 

deformations of the cloth. The force over a particle P; is: 

Fa== > Ble) Opiee (4.3.6) 
(k,lJeR, 

[O-==D 
where > hey £6 doe iG es 

ijkl 

and n, is the normal vector at P;; particle, as seen earlier. 
The parameter @;,, can be explained as follows: the shearing force is an in-plane 

force that attains its maximum value when @j,)is 1. This occurs when the normal at 

P, and the vector /,,, are perpendicular. When the vectors are not perpendicular, the 
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value of @;; decreases as the force changes from a shearing force to a bending force, as 

shown in Figure 4.3.6. 

(b) 

FIGURE 4.3.6 he longitude of a shearing spring has 

been modified (a). The elongation of the spring is applied 

perpendicular to the plane of the mesh, so there are no 

shearing forces (b). 

There is no absolute coordinate system for the mesh, so we cannot express shear- 

ing forces based on the warp and the weft of the cloth. Therefore, when a lateral 

deformation occurs, we assume both directions are equally affected. So, instead of 

Ky» and Kgs, a combination of both functions Ks is used. 
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Bending forces are the only out-of-plane forces and can be expressed as: 
aoe 

a Fo=t 2) Ko (6) Vg ug es 1K ys (E)V up) (4.3.7) 
y 

(KE)ER up (KER wy . CF j 
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The value of the parameter Y;,,,, similar to @;4), represents the force applied out of the 

plane. Then, when W,,;= 0, the normal 7%, and the vector /,,, are perpendicular and 
the force is applied within the plane. However, if Wj,)= 1, the vectors are parallel and 

the force is applied out of the plane, as shown in Figure 4.3.7. 

Elongation Functions 

The K (€) functions, previously introduced, determine the force variation due to elon- 

gation. If we consider these functions linear, the springs’ behavior will also be linear. 

This would mean that stretching forces, lateral deformations, or flexions of the cloth 
obey Hooks Law. However, the elastic behavior of cloth is nonlinear. When elongation 
extends beyond a certain limit, the force opposing the motion increases exponentially 
(as seen in the graphics of KES). This way, the functions K (&) introduce the quasi- 
elastic behavior of cloth into the force expressions. Therefore, to obtain coherent 
results in the animation, K (&) has to meet at least two conditions: 

K(0)=0 
K(&) is monotonically non-decreasing 

External Forces 

The set of forces that are not produced by the quasi-elastic behavior of the cloth are 
known as external forces. These forces are gravity, air friction, and others. In the pro- 
posed model, every particle mass corresponds to the mass of the area over which that 
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(b) 

Gj) GH) 25) 

FIGURE 4.3.7. The length of a shearing spring has been modified 

(a). The spring elongation is applied within the mesh plane, so no 

bending forces exist (b). 

particle dominates. Thus, gravity is applied over all the particles. We use the common 

expression for gravity: 

CG _ = 

F, = Nye, 

where m,; is the mass of the particle P,, and g is the acceleration due to gravity. The 

influence of air over the cloth depends on the speed and direction of the air as well as 

the speed of the cloth itself. This force is estimated as: 
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where C,, is the air viscosity constant, , is a vector that defines the speed and direc- 

tion of the air, ¥, is the speed of the particle P; and 1, is the normal vector of the 

particle P;;, When the air speed vector u,, is equal to 0, the air remains immobile and 

the previous expression can be considered as air friction. Many other forces that are 

applied over the cloth are categorized as external forces. Examples of such forces are: 

the resulting force when manipulating the cloth and the force produced when hang- 

ing the cloth from one corner. 

Dynamic System Approach _ 
After obtaining the forces applied over the particles of the mesh, we can formulate a 

dynamic representation of the system. To accomplish this, the particles must follow 
Newton’ Second Law, as shown in Equation 4.3.9. 

F.=m,a, (4.3.9) 

where F,, represents the forces applied over each particle P,, mj is the mass of the par- 
ticle, and 4, = P, the acceleration. From Equation 4.3.5, for each particle of the mesh 
we can obtain the differential equations in Equation 4.3.10. 

ijx yx 

1 

m.. 
y 

1 
i Dix aa 

ij 

l 

m.. ijz 
pts (4.3.10) 

The computational methods used to solve differential systems can also be employed 
to resolve the cloth dynamics problem [Volino00]. In this particular case, due to the 
use of elongation functions instead of elongation constants, time-step techniques are 
recommended for solving the previous equations. In most cases, forces will not 
increase much, but they may increase to oppose the effects of severe elongations. By 
using the Runge-Kutta-Fehlberg method of fourth-fifth order, good results can be 

obtained. 

After presenting the model and the equations that describe the dynamic behavior of the 
mesh, we can outline the description of the cloth animation method (see Figure 4.3.8). 
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FIGURE 4.3.8 Scheme of the 
proposed simulation method. 

First, we model an associated mesh from a cloth object. A suitable mesh is chosen that 

will have an adequate number of particles to allow the representation of the surface to 

be as smooth as possible. 

Second, we calculate the normal vectors of the surface at each particle. We then 

obtain the internal and external forces applied to each particle and formulate the dif 

ferential equation system as previously shown. 

Finally, we resolve the system by applying an incremental interval of time, with 

which a new position of the mesh can be obtained. Repetition of these steps results in 

a real-time animation of the cloth system. 

Conclusion 
SRRITCUL OTESLIIELIU TELE NSE ELLEN SELL IEEE SELLE ELE LE LILLE ELE 

We have proposed a model for realistic cloth animation. The advantage of the model 

resides in the simplicity of its implementation. The mesh representation is based on a 

familiar mass-spring system and provides an efficient computational system viable for 

computer game application. 

By considering the behavior of cloth as quasi-elastic, rather than perfectly elastic, 

we increase the realism and avoid undesired effects such as super-elastic effects 

[Cordero01]. 

Furthermore, distinguishing between in-plane and out-of-plane forces produces a 

more accurate simulation, avoiding (for example) the appearance of bending forces 

when only shearing forces exist. 

Figures 4.3.9 and 4.3.10 (see Color Plates 1A and 1B) have been generated using 

the proposed method. 
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FIGURE 4.3.9 A flag flying. 

FIGURE 4.3.10 A cloth draping over a sphere. 

Any future work proposed should strive to find the K (§) functions capable of sim- 
ulating cloth more realistically. That is, to find the best parametric function K(&) and the 
value of its parameters, to minimize the error between the real motion of a cloth and 
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its simulation. Also, the method we have presented uses a mesh of a rectangular cloth. 

Future models should strive toward the mesh representation of any cloth, indepen- 
dent of its form. 
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n Computer Graphics (CG) research, a number of approaches for simulating soft 
bodies exist. Generally, these can be divided into two primary models: geometric 

and physically based. Fast and simple geometric models (known as free form deforma- 

tions [Sedenberg86]) are not feasible in game development because of limited control. 

For purposes of realistic computer animation, other methods—particularly physically 

based—have been proposed. 
Physically based application of the theory of elasticity gives a mathematically com- 

plicated and complex solution for the problem of soft body motion. Using finite vol- 

ume methods [Irving04], we are able to simulate the behavior of viscoelastic bodies 

accurately. Unfortunately, use of these engineering methods results in non real-time 

animation, and is therefore inappropriate for games. Even classic computational fluid 

dynamics (CFD) found its place here; in [Nixon02] the authors build a model of com- 

pressible fluid enclosed by a mesh that introduces additional forces into the model. 

That approach is discussed further because of its similarity to our model of pressurized 

soft bodies. Note that the CFD approach is not considered here because it is not a real- 

time solution due to the complexity of solving the Navier-Stokes equations. 

We will not go deeper into non-real-time soft body models. We mention them 

because it is important to know that more accurate and physically correct models exist 

in current CG research that may serve as basis for future game development application. 

Several different approaches have been proposed for the application of real-time 

soft body simulation, but none of them seem to be particularly suitable for game devel- 

opment. Simple spring-mass (SM) models were introduced mostly because of their 

ease of implementation and computation speed (see [Lander03]). However, SM models 

435 
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do not generally yield very good realism, and increasing the number of springs with the 

hope of increasing realism does not automatically result in an ideal solution; it comes 

with its own problems. Using a large number of springs typically creates difficulties 

with the “stiffness” of the simulation. Also, animators working with SM models will 

have to play with a large number of physics constraints, which involves dubious 

changes to the simulation model (imagine an object with 1,500 springs and an anima- 

tor attempting to anticipate the effect of changing the properties of a single spring). 

Simplified Spring Mass Models 
RR TEE SEEN NE DOE ESET IRE OEE EE POOLE ET OE ETC IELTS TLE LL LL ELLIO DES IT 

Because of the problems with SM models in deformable body simulation, some mod- 

ifications have been proposed to avoid introducing additional spring connections. 

Consider the geometric object shown in Figure 4.4.1a. Its construction would be 

nearly useless in a typical SM simulation; running the simulation in the presence of 

gravity would cause the object to immediately collapse. We need some kind of inter- 

nal system of forces that will keep the object stable. The easiest and most intuitive way 

to do that is to add supporting springs between all vertices in the object. 

A model constructed in this manner is presented in Figure 4.4.1b. Such a model 

should behave reasonably well as a deformable body in a typical SM simulation. Note 

the addition of connections between all pairs of points. This means that for NV points 

we will need to do N? spring calculations. This is really too much for objects com- 

posed of more than a few thousand vertices, and in fact, we are probably quite close to 

precluding real-time SM simulation altogether. By increasing the number of springs, 

we have also increased the difficulty of maintaining rigidity and managing unwanted 
internal motion. There are two ways to reduce this “stiffness” problem. One way is to 

use implicit integration that is applied for calculation of the motion equations [Bar- 

raf98]. Another is to use inverse dynamics constraints as corrective measures for the 

explicit integration method [Lander03, Provot95]. Both methods would help to some 

degree, but they of course incur additional costs in processing speed. 

a) 

FIGURE 4.4.1 Typical Spring-Mass models showing a) a simple hull without 
internal support and b) a hull supported with internal connections. 
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These issues have been successfully avoided in computer graphics research involv- 
ing models composed of simplified spring-mass constructions (see [Matyka03, 
Nixon02, Meseure00]). Nixon et al. [Nixon02] build a three-dimensional mesh filled 

with compressible fluid, and they solve Navier-Stokes equations inside of the object. 
This approach seems to be an accurate and very interesting new idea for physically 

based models. Unfortunately, the solution is completely inappropriate for efficient 

real-time simulation because of the complexity of the solutions to the Navier-Stokes 

equations and the need to construct a time-dependent grid. 
The fields of medical imaging and virtual reality have also delved into real-time 

deformable bodies and have produced very interesting results. Meseure et al. 
[Meseure00] claim that models composed only of springs are not viable for surgical 

applications because of the complexity of geometric construction for objects contain- 
ing a large number of points. They built an SM mesh in the same way Nixon et al. 
did, but without filling the object with fluid. Instead, the object is filled with a “vir- 

tual rigid component.” The rigid component is called “virtual” because it does not 
interact with the simulation environment. 

The idea of a virtual rigid component introduced by Meseure et al. seems to be 
interesting for game development. However, one disadvantage is that it introduces 
some complications over the simple model. For example, the physics background of 

the model is somewhat abstruse. Of course, in results-oriented game development we 

are only interested in getting a good deformable body simulation, but when working 
with a model of physically based animation, we should be reasonably up to speed 
about the physics behind it. 

Physics behind the PSB Model 
SLUT NSERC AIM INSEE NESTON EEN TIEN ETM ial 

In the Pressurized Soft Body (PSB) model, we consider a geometric object consisting 

of a mesh made of nodes (mass material points) and spring connections (Hooke lin- 

ear springs), as shown in Figure 4.4.1. We assume that the shape of the object is 

closed, which means that there are no holes (discontinuities) occurring in it. Because 

of the similarity to SM construction of cloth-like objects [Barraf98, Provot95], we 

generally consider it to be similar to an object sewn out of cloth. 

To get deformable body behavior out of the “sewn cloth” object we introduce the 

PSB model. The basic idea is illustrated in Figure 4.4.2, in which a small pipe has 

been inserted into the object. 

The pipe has been connected to a gas container. Inside the container, a gas with 

pressure P, > 0 exists. Because of the difference between the pressure inside the body 

(P, = 0) and pressure inside the connected container (P, > 0), gas will flow from the 

container to the object as long as P, is not equal to P,. The pipe is then removed. 

After that, the simulation model will be slightly different from that shown in Figure 

4.4.1. It will have been reshaped (expanded) due to the fact that the gas inside of it is 

under a pressure that exceeds that of the atmosphere (P; > P,). 
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FIGURE 4.4.2 A pipe has been put inside of the object with 

an initial pressure, P,, of zero. It is connected to a container of 

a gas under pressure P, in an environment with atmospheric 

pressure P,,. 

An Ideal Gas Approximation 

Because of the macroscopic size of the simulated object and microscopic size of the 

particles in the gas, we can neglect the interactions between gas particles and use an 

approximation of an ideal gas with non-colliding particles [Callen85]. This means 

that we will be able to use the familiar zdeal gas law, shown in Equation 4.4.1. 

PV =nRT (4.4.1) 

where: 

Nees 
e P | is the pressure of the gas. 

e V [ m*] is the volume occupied by the gas. 

* nis the number of moles of the gas. 

¢ R is the gas constant. 
¢ Tis the gas temperature. 

In this expression, we assume that n, R, and T are constant and will not change dur- 

ing the simulation. We also assume that we know how to calculate the volume of the 

body. As a result, we will get a simple expression for the calculation of the pressure 
inside of the object that changes only according to changes in the volume, as shown in 
Equation 4.4.2. 
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w nRT 

V 
ip (4.4.2) 

On the right side of Equation 4.4.2, we have three constants (n, R, T) and one 
variable quantity, V. The volume calculation will be discussed later. 

We will use the pressure calculated directly from the ideal gas law to calculate the 
forces acting on the mesh nodes. It is a straightforward and rather easy procedure; 
however, it is useful to review the physics and math behind it. 

Because of the physics dimension of pressure P * , we will need to determine 

the force by using a pressure value calculated from Equation 4.4.2. Pressure roughly 
entails a dimension of the force acting on a unitary field. 

By considering one triangular face of the three-dimensional object as shown in 
Figure 4.4.3, we can write a simple expression for the force that acts on mesh node 
material points. 

0 xX 

FIGURE 4.4.3 A triangular face consisting of three mass nodes and three 

spring connections. The light gray vectors represent point normal vectors. 

Using the notation given in Figure 4.4.3, we express the force acting on a triangle 

by Equation 4.4.3: 

FP=P-n-A (4.4.3) 

where: 

¢ P is the pressure calculated using an equation (4.4.2) 

¢ Aisa field of the face 

e ii, is the normal vector to the i-th point 

At this point, two things need to be addressed. First, we must determine how to cal- 

culate the normal to the point. This is simply the sum of the normal vectors of all 

faces to which the point belongs. 
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To calculate the field of the face we use simple vector multiplication. Using nota- 

tion from Figure 4.4.3, the field of the triangular face from that figure can be 

expressed as in Equation 4.4.4. 

A=(%,-7)x(i-4) a) 
Equation 4.4.4 expresses the length of a vector generated by multiplying two vectors 

that lie on two of the edges of the triangulated face. 

PSB Model Implementation _ ‘HERALDED RERANIANEEO I ETI 

In [Matyka03] the pressure based model is introduced, and the basis of its implementa- 

tion is presented. A brief outline of the proposed algorithm will be presented here in 

subsequent sections. We will introduce the reader to the PSB model by giving a full 

description of the workings of the simulation program. We refer the reader to 

[Matyka03] for further reading. However, we believe that the code can be written 

from scratch with the descriptions that follow. 

First, let us summarize where we are so far. We have defined the physical model of 

the deformable body that is filled by an ideal gas. In the previous section, we outlined 

the mathematical model but we still did not explain how to use those equations and 

where they fit in the overall scheme. 

Understanding how the model works requires the reader to be familiar with the 

spring-mass simulation ideology. We see no need to introduce it in detail here, due to 

the wealth of documented research available to the reader (see [Lander03, Provot95, 

Barraf98]). However, we briefly outline the technique used in soft body application 

later. 

We start with a model of a closed 3D mesh composed of triangles with mass 

points placed at every node of the mesh as in Figure 4.4.1. All edges of the mesh rep- 

resent spring connections. (We leave it up to reader to determine how to keep the 

object in computer memory. For simplicity of the code, we use STL vectors.) 

" st , SERA RNIN IEP AB ELEN SE TOO ETS 

Typical Spring-Mass Model 
STEP IT 

The procedure for the typical SM engine is straightforward. The object being simu- 

lated is presented as input to the procedure, and after processing one time step, the 
updated (changed) object is produced as output. The new version of the object is then 
presented again to the procedure and the cycle continues. 

The high-level algorithm for an SM system can be expressed in three simple steps: 

1. Calculation of the forces acting on all material points 
2. Integration of equations of motion with collision detection and response 
3. Results visualization 
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The first of these steps requires closer examination. It can be further broken down 

into the following steps: 

1. External force calculation. We first iterate over all the material points (repre- 
sented by mesh nodes), calculate the external forces, and store them in the 
material point force accumulator. By assuming that only one external force 
(gravity) exists in the system, the total force acting on th point at this level 
will look like Equation 4.4.5. 

De cata ie (4.4.5) 

where m, is the mass of the point, and ¢g is the gravity vector. 
2. Node interaction forces. Loop over all spring connections and calculate 

mesh node-to-node interaction forces. We use an expression for Hooke’s 
force with damping, which can be written in the form of a force vector, as 
shown in Equation 4.4.6. 

ip aa (i -7)-d)-A,, +k, (9, -9,)-A, |-A (4.4.6) 12 

where the normal vector can be expressed by Equation 4.4.7. 

{ 

. (4.4.7) 
a LGN 

Here, k, is the spring elasticity factor, and k, is the spring damping factor. 
Typical values for these are given in the results section. Note that vectors cal- 
culated with Equation 4.4.6 are accumulated by two interacting points with 

opposite signs. 
3. The PSB model step is discussed in a later section. 

4, Integration. The integration step should be applied now. Note that even a 

first-order Euler integrator works quite well for some limited set of physics 

properties. We refer to [Ancona02] as a reference for numerical integration. 

The simple Euler integrator gives us an expression for the movement of 

all the points of the geometrical model that make up the deformable body. 

By looping over all points, assuming that we have accumulated all the forces 

acting on them, we can write a discrete form of Newton's second law, as 

shown in Equation 4.4.8. 

Fela ew At (4.4.8) 
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PSB Step 

Here, n/n + 1 enumerates the time step (n indicates “at the previous time 

step”). By applying this simple integrator, we can simulate deformable bod- 

ies using a PSB model. Later, we will present an application of the predic- 

tor-corrector Heun integrator in the deformable body simulation. 

As we can see in the previous algorithm, the deformable body simulation we present 

is based strongly on SM simulation (see Figure 4.4.4). Note that this model can be 

viewed as an enhancement of the general SM system and is therefore applicable to any 

physical system that currently handles simple SM simulations. 

(Spring-Mass Model) 

4- 

=( SoftBody 
= 

FIGURE 4.4.4 Summary of the PSB model; two enhancements added 

to cloth dynamics yields real-time deformable bodies. 

SP LAB ILI TUN ETM OE LEE ELLE ONLY LEAL LAM LOE LEELA ONE LAT 

In the previous section, we noted that following the force calculations we should call 

a PSB step procedure. That procedure is called together with all the other force calcu- 
lation functions because it also calculates the result force of the gas that has been put 

into the object. 
We discussed earlier how the pressure value should be calculated using Equation 

4.4.2. By assuming that the reference atmospheric pressure is zero, we can reuse the 

pressure value in Equation 4.4.3. We simply iterate over all the faces of the object, 

determining the pressure value for each and distributing the pressure over all nodes 
that belong to each face. 

So EL eee 

In order to calculate the forces, we will need to determine the volume of the simulated 
body. For purposes of [Matyka03], we use the simple idea of generating bounding 
boxes for the object and calculating the total volume from those boxes. 

However, it turns out that such an approximation introduces a number of prob- 
lems into the simulation. Unexpected oscillations and object growth to infinity (as 
well as growing pressure) are examples of the errors that can come from a naive 
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approximation of the volume. We pointed out in [Matyka03] that we are looking for 
a good approximation of the exact volume of the body, and we found that for closed 
shapes without holes or integral faces (for example, balloon-shaped objects) we could 
use Gauss’s theorem to find an elegant, fast, and very accurate value for the volume. 
We will skip mathematical derivation of Equation 4.4.9 and leave the reader with a 
reference to [Feynman01], where Gauss’s theorem is well explained. For those who are 
going to derive the volume integration equation, we simply assume that our object 
has been placed in a vector field (for example) in the form (x,y,z) = x. We are then 
able to calculate the divergence of that field, which is equal to 1. If we put these results 

into Gauss’s integration theorem in specified vector fields, we end up with a simple 
expression for volume that can be written as in Equation 4.4.9. 

V= —: FX+F,X+F,x)- x: A, (4.4.9) i=l 

where 7; is the node position, n is the normal to the triangle, A; is the field of the ith 
triangle, and NUMF is number of faces. 

Predictor-Corrector Heun Integration 
Mei HRN EOE NES LOE REMOTE NEEL LANE EAI ELL LEE IT ESS ION EN ELLE 

Euler integration is the simplest means of integrating equations of motion and gener- 
ally requires small time steps. The stiffness problem occurs, too, and is a well-known 

disadvantage of low-order schemes of ODE integration. To make the solution more 
accurate and stable, we consider using more complex integrators. This may be an 
explicit scheme from the Runge-Kutta family (second-order mid-point method could 
be good choice, see [Matyka03, Ancona02]) or one of several unconditionally stable 
implicit schemes, such as Backwards Euler. 

We propose using something between explicit and implicit schemes. A semi- 

implicit predictor-corrector Heun integrator will give us second-order accuracy and 
will still be somewhat as simple as the explicit schemes. We will not go very deeply 

into the derivation of that scheme, which the reader can find in any book about 
numerical computation, e.g., [Ancona02]. 

The semi-implicit Heun integrator consists of two main steps, and for a typical 

problem is given by Equation 4.4.10. 

2 - rv’) (4.4.10) 

The first step of the integration (called the “predictor”) is exactly the same as in the 

Euler integrator and is used to calculate the estimated value of y in the next time step, 

as shown in Equation 4.4.11. 

pyr = y"+At- f(y,t) (4.4.11) 
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Normally, the procedure ends here and the next time step is ready to start. However 

in the Heun integrator, some of the values are used in the next step (called the correc- 

tion step), as shown in the second term of Equation Ath W2e 

ym = y+ S(¢(r er) soe") (4.4.12) 

The entire semi-implicit integration scheme has been written with two equations: 

Equations 4.4.11 and 4.4.12. Note that the “dashed” y is distinct from the normal y, 

as it is retained separately between the two steps. 

To give the reader an idea how fast the presented method is, we performed a bench- 

mark test similar to the one presented in [Meseure00]. We performed a simulation ofa 

toroid falling to the ground without any additional collision detection (only collisions 

between deformable body and the ground were taken into account). Figure 4.4.5 pre- 

sents a comparison between the PSB model and that presented by [Meseure00]. The 

simulation was performed on an AMD Athlon with a 1.4 Ghz processor. It should be 

noted that test performed by (Meseure00] was run on a R10000, 194 Mhz processor, 

so the comparison in Figure 4.4.5 is qualitative only. 

[ms} 

Ree =| Raat te 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 

FIGURE 4.4.5 Time calculations for one full simulation step of a 
toroid falling to the ground. The PSB model (indicated with 
circles with straight line) is compared with results presented in 

[MeseureO0O] (dashed line with black points). 



4.4 Practical Animation of Soft Bodies for Game Development 445 
eeenanannecnninnnnane 

As Figure 4.4.5 indicates, using the PSB model, we obtain real-time performance 
(less than 25 ms per time step) for the simulation of objects containing up to 4500 
nodes. 

Examples | 

Figure 4.4.6a shows the initial state of a rabbit object without internal pressure. In 
Figure 4.4.6b, we have this same rabbit with some internal pressure P > 0. Figure 
4.4.6c shows the same object after the user has captured it during motion. Finally, Fig- 
ure 4.4.6d shows the rabbit with one mesh node fixed in place while still under the 
force of gravity. These pictures are from the Soft Body 3.0 application. The simulated 
object has 690 vertices and 1,376 faces. The physical constants used in that simulation 

are: k, = 350000, ky = 10, P = 53000, and single node mass m = 1.0. The simulation 
runs at 50 fps on an Athlon 1.4 Mhz computer with a Radeon9200 graphics card. 

FIGURE 4.4.6 Simulation snapshots of a deformable rabbit object. 
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In Figure 4.4.7, we present a second example of real-time animation using the 

PSB method applied to a ball containing 642 vertices and 1,280 faces. The ball <. 

dropped and allowed to collide with the ground. In this example, collision detection 

is simply performed between the mesh nodes and the ground (y = 0), using the 

following physical parameters: k, = 121100, k, = 110, P = 611120, and node mass 

m = 1.0. The simulation runs at 50 fps on an Athlon 1.4 Ghz computer with 

Radeon9200 graphics card. 

FIGURE 4.4.7. Simulation of a bouncing deformable ball. 

Future Development 
The PSB model of deformable body simulation is in the early stages of development. 

Several projects have been created that are based on this model [OpenCAL, Jello, 

MotionPlan] and attempt to develop the model in a variety of ways. We see a lot of 

ideas for improving the PSB model, including the following: 

¢ Implementation of implicit integration as done previously in “Large Steps in Soft 

Body Simulation” [Barraf98] 
¢ Application of inverse dynamics constraints as done before in [Provot95], includ- 

ing experimentation with the behavior parameters 
¢ Separation of the physical model from its graphical representation, which allows 

more focused work on simulating simple models as the basis for more compli- 
cated shapes (see [Meseure00]) 

¢ Implementation of object-object collision detection and response, a “detail” 

omitted here to facilitate presentation of the material (see [Matyka03]) 
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* Application and testing of the use of nonlinear springs in the object mesh 
* Real-time PSB simulation with collisions computed on the GPU 

These ideas represent possible ways for future developments of the presented model. 
It should be noted that a lot of research in cloth animation could be used here as back- 
ground material and developed further according to specific geometric shape of the 
simulated PSB objects. 

Conclusion 
LEE IRRONNNEEIG SAEED LEN LST TT TI EI NINE RTE Ee EAA LEN HLT ESSN NSIS ee 

We have presented a system for real-time deformable body simulation. The main 
reasons why it is worth it to go more deeply into development of this model is that 
it is based on the well-known spring-mass model, which can be easy updated and 
extended to handle soft bodies. We also have observed that objects simulated with our 
method behave very well in comparison to other previously developed systems. 

Because of the model simplicity, we lose little computational time by calculating 
the additional forces used beyond those in the simple spring-mass model. All the 
effort during development of the system has been focused on proper object construc- 
tion and selection of the simulation parameters. 

We hope that the model will fit the requirements of those in the game develop- 
ment community. All the updates, new versions of the source code, and applications 
will be available on the home page of the author [Matyka05]. 

Source Code 
YT SRS RRA EBT ITED ESI a TN RE CT ES UTI 

Te source code for this gem contains portions of the Soft Body 3.0 program. It has 
been developed using MS Visual C++ compiler. Updates of the code can be found on 
the Web page of the authors (see [Matyka05]). The code provides the solution to 

three-dimensional deformable body real-time simulation with user interaction. 
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haracters in games sometimes look unrealistic when interacting with dynamic 
environments, because their movements are predetermined by an animator’s 

keyframes or a motion capture actor's movements. Ragdoll physics has been used to 
combat this problem by modeling the physics of the body as it collides with the envi- 
ronment and other characters. At their best, ragdolls can be applied in games to allow 
players to send enemies hurling through the air, reacting quite dynamically to objects 
they encounter in the environment. Unfortunately, their usefulness is limited to the 

lifeless, flopping motion seen in these death animations, because they lack control sys- 

tems to produce more realistic behavior. If developers could control the muscles of the 
ragdoll, they could direct the arms to protect the body from injury before impact, 
much as a real person would do. 

This gem looks at how to control a character's body during simulation, while still 

retaining the realistic qualities obtained by enforcing physical laws between the body 
and its environment. We cannot yet hope to replace all our animation data with sim- 
ulation due to the complex and coordinated movements required for many human 
behaviors. We can, however, produce better results in many situations by using simple 
feedback controllers to generate muscle torques that naturally direct simulated limbs. 
Color Plate 3 shows a side-by-side example of how controllers can improve the 
human-like nature of a fall over ordinary ragdoll simulation. The tools presented in 

this gem provide a generic means to drive the movements of a typical ragdoll simula- 

tion, enabling you to generate protective falling behaviors, balancing reactions, and 

even jumping or tackling motions. You can be as inventive as you like, provided you 

can model the underlying control laws of a particular behavior. 

449 
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Motivating Work 
ao DUA EES A EE 

A number of researchers have used physical controllers to generate motion for a vati- 

ety of human behaviors. Hand-tuned feedback controllers have been demonstrated 

for simulating athletic behaviors including running, vaulting, and bicycling [Hod- 

gins95]. Faloutsos further developed the idea of creating composable controllers by 

stringing together many behaviors like falling, standing, and balancing to create a 

virtual stuntman [FaloutsosO1]. Interactively controlling a physically simulated 

character has the potential to open up doors to new gameplay mechanics. Laszlo et al. 

explored using intuitive interfaces to allow players to take direct control of a simu- 

lated human to produce running, climbing, and gymnastics movements [Laszlo00]. 

It is also important to have the ability to interface your physically controlled 

behaviors with existing motion data. Techniques have been developed that allow char- 

acters to react physically to external forces followed by a smooth return to existing 

animation through trajectory tracking [Zordan02]. There are other methods that 

allow simulation-and ahimation data to vie for control of the character, using either 

approach in a context-dependent way [Mandel04], [Shapiro03]. The biomechanics 

literature is another starting point for a low-level understanding of how the body per- 

forms a particular movement. Capable rigid body simulators like Open Dynamics 

Engine [Smith04] are freely available to enable you to experiment with controller 

development. The methods presented in this gem are the low-level control mecha- 

nisms crucial to many of the works referenced earlier. 

Controlling the Simulation 
EEL LEE LLL TIO EOD 

Ragdoll characters are represented as an articulated figure consisting of a series of rigid 

links connected by joints. A rigid body simulation engine is supplied with a set of 

primitives to represent each body part, each with mass and inertial properties, joints 

of appropriate type connecting the parts, and constraints to keep the movement of 

each joint to human physical limitations. The basic building blocks for controlling a 

ragdoll simulation are target poses for the joints, as well as a method to compute the 

joint torques that drive the motion towards these desired targets. For computing the 

muscle torques, this gem will cover the commonly used proportional derivative (PD) 

controller. One option for specifying target poses is to use sparse artist-directed poses 

separated by time or event-based transitions. Known as a pose controller, these target 

poses guide the simulation to key elements of a behavior, such as the twist and tuck 

positions of a diving motion [Wooten96]. A continuous controller generates target 

poses automatically from the current state of the system (positions and velocities of 
limbs). This tight coupling with feedback from the simulation allows continuous con- 
trollers to be more dynamic than pose controllers but is potentially harder to specify. 
A continuous falling controller might look at how the shoulder and hip velocity 
evolve during the simulation and constantly adjust the target position of the arms to 
break the fall. 
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Isn’t This Just Keyframing? 

While controlling the simulation with guiding sequences of target poses may sound 
like keyframing, there are a number of important distinctions. First, the inputs to the 
controller are desired joint angles, not actual joint angles. The controller computes 
muscle torques to drive the joints towards the desired values, but the limb’s motion 

remains the result of all the applied forces, including those from the environment. 
The joints may never reach the desired values because of the environmental forces. 
For example, an arm might be pinned by the body to an object in the world causing 
the joint controller to be unable to generate enough force to move to the desired posi- 
tion. Second, the character’s global position and orientation is not specified directly 
but evolves from the natural interactions between the character and the environment. 
The character will always fall under gravity, for example. Finally, the desired pose isn’t 
always predetermined as static keyframes are. When using continuous control, the 
pose is adaptively determined as a function of the system’s state. 

Computing Torques with a PD Controller 

The PD controller is a valuable tool, representing the low-level control system that 

drives the desired movements of a simulated character. For a more thorough introduc- 

tion to control systems, see Dorf [Dorf89]. The inputs to the controller are the 

desired joint angles 4,,,, the state of the system x=| ¢q|, and various sensor data such 

as the contact state of the hands. The output of the controller is the internal muscle 
torques T, applied to each joint, driving it towards the desired value. This is the clas- 
sic setup for a closed-loop system (closed because it requires feedback of the system’s 
state). Figure 4.5.1 is a graphical representation of this basic controller feedback loop. 

Desired Joint Angles Joint Torques 

Controller Simulator 

State: x =[4q] 

Sensors Feedback Loop 
; External Forces 

FIGURE 4.5.1 Structure of a basic closed-loop feedback system. 

For each joint, the PD controller computes the required torque using the equation: 

t,=k,(8,,,-9)-k,9, 



452 
Section 4 Physics 

sassy NMO
L NHANES osc 

where k, and ky are the proportional and derivative gains @and 0,., are the current 

and desired joint angles, and @ is the current velocity of the joint (generates angular 

velocity in its attached bodies). Clamping the torque at a reasonable maximum value 

is a good idea to maintain a stable simulation. The following code snippet imple- 

ments the computation made by the PD controller: 

void ApplyPDControlTorques (Vec3 *Kp, Vec3 *Kd, Vec3 *des, 

int numJoints) 

{ 
for(int i= 0 ; i < numJoints ; ee) 

{ 
Vec3 torque; 

Vec3 vel = GetJointVelocity(1) ; 

Vec3 cur = GetCurrentAngleForJoint (i); 

torque[0] = Kp[i][0]*(des[0] — cur[0]) — Kd[i][0]*vel[0]; 

torque[1] = Kp[i][1]*(des[1] — cur[1]) — Kd[i][1]*vel[i]; 

torque[2] = Kp[i][2]*(des[2] — cur[2]) — Kd[i][2]*vel[2]; 

if (torque.length() > MAX_TORQUE) 

torque = MAX_TORQUE*torque.normalize(); 

ApplyTorqueAtJoint(i, torque) ; 

} 
} 

Tuning Controller Gains 

The PD controller behaves like a spring and damper, with the proportional and deriv- 

ative gain parameters, k, and k,, controlling the resulting response curve. Tuning 

these parameters is critical to achieving natural looking movement, The proportional 

(stiffness) gain controls the strength of the spring while the derivative (damper) gain 

adjusts how smoothly the joint arrives at the desired value. Under-damp and you 

will get an oscillating response as the joint overshoots the desired value, while over- 

damping will give an overly slow progression towards the desired value. Somewhere in 

the middle, you will achieve critical damping, the perfect balance where the joint 

arrives at the desired value quickly, with little to no overshoot. Traditionally, the gain 

values are hand-tuned, and this process can be somewhat time-consuming. If you 

plan on hand-tuning the gains, a good rule of thumb is to start with a 10:1 ratio 

between the proportional and derivative gains. 

One technique that can drastically reduce the number of hand-tuned parameters 

is to scale the computed torques by the effective moment of inertia of the chain of 

bodies affected by each joint [Zordan02]. For instance, the shoulders would be 

affected by the relative moment of inertia of the upper arm, lower arm, and hand, as 

illustrated in Figure 4.5.2. Using this technique, the number of tuned parameters can 
be reduced to one stiffness and damping parameter for the entire body because the 
final gains will be adjusted by the affected chain of bodies for each joint. Collect the 
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affected bodies per joint and compute the relative moment of inertia according to this 
equation: 

H= dAmy, og i Ly,O;)> 
i t 

where m; is mass of the body, r; is the relative center of mass (CM) of the body com- 
pared to the chain’s CM, v; is the relative velocity of the body CM compared to the 
chain's CM, Joy; is the inertia tensor of the body about its CM, and @; is the angular 

velocity of the body (see [Kwon98]). In addition to this technique, you may also try 
learning the appropriate gains for a given behavior using optimization techniques like 
simulated annealing or genetic algorithms; see [Sims94]. 

FIGURE 4.5.2 An example chain of bodies affecting the 
movement of the shoulder joint. By estimating the relative 
moment of inertia of these bodies to the shoulder, its con- 
troller gains can be tuned efficiently. 

Building Behaviors 

Now that you have a low-level mechanism for controlling the joints of a simulated 

character, you can begin developing specific behaviors. Finite state machines are a com- 

mon representation for managing transitions between motor control states. Transitions 

between states are typically time or event based, and may ease in new controller gains 
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or desired values tailored to the state’s goals. For instance, a fall controller may have a 

number of states that throw one or both arms in the direction of a fall, requiring the 

gains to keep the body somewhat rigid, but still give the arms a rapid response. When 

the arms contact the ground, a transition is made to a controller state that will absorb 

the impact and reduce the velocity of the hips and upper body. Figure 4.5.3 demon- 

strates an example of a fall controller simulating a backwards fall. 

FIGURE 4.5.3 An example fall controller. The predicted 

shoulder landing positions, indicated with spheres, are 

used as reference points to compute desired arm positions. 

The forward velocity and facing direction are indicated 

with vectors and are used to determine the current state, 

based on fall direction. © 2004 Reprinted with permission from 

Tikka Keranen & Rich Carlson. 

Observing the raw state of the simulation may not provide controller states with 

the most useful information. It is helpful to implement sensors that provide informa- 

tion to controllers such as support polygon, center of mass, body part contacts, and 

facing direction. Using this information, personal intuition, and perhaps some bio- 

mechanical knowledge, you can break down a behavior into its fundamental control 
states. Plan ahead to make sure your controller can robustly respond to the variety of 
inputs that could occur during gameplay. Keep your goals manageable; building a 
controller that generates a stable running gait is much more difficult than one that 
simply needs to make sure the body ends up on the ground. Building simulated 
behaviors is difficult, but as a game developer, this is where your creativity and inge- 
nuity greatly impacts the results. 



Conclusion 
This gem presents techniques to augment your existing ragdoll characters with more 
interesting behavior. PD controllers allow you to drive the limbs of your characters in 
a physically grounded way. While computing the desired joint values and tuning the 
controller gains can be tricky, the methods described can lower the number of manu- 
ally tuned parameters. Being creative with this technology is up to you, but the possi- 
bilities are endless as we discover better ways to model human behaviors. 
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What is 

Designing a Prescripted 

Physics System 

Daniel F. Higgins 

webmaster@programming.org 

Ga development is, without a doubt, an intense, high-endurance sport. Its lead- 
ing developers have seasoned teams who dominate genres because of their 

incredible focus, innovation, and fierce passion. As if playing a game of high-stakes 

poker, developers tend to gather around the same no-limit table and constantly raise 

the pot to the sky. We hold our cards close, counting on our new game's technology, 
“fun factor,” and the love of our fans to win the hand. Therefore it’s no surprise that 
when a competitor reveals a winning hand, we watch slack jawed as our chips disap- 
pear in the blink of an eye. 

To strengthen our hand of cards, we-have to look everywhere for inspiration. It 

can be found in the battle for Helms Deep in The Two Towers, watching silly skate- 
board tricks at the skate park, or observing a border collie’s leap for a slimy tennis ball. 

This gem describes an engine born from inspiration. That inspiration served as a 
challenge to design a system that could produce the illusion of a big-budgeted physics 

engine, allow for rapid development, and avoid a large development price tag. Addi- 

tionally, it should be designed to be usable by novice and expert programmers alike 

while still maintaining enough flexibility to be integrated into an out-of-game physics 

tool. Eventually, that system was created, and its name is prescripted physics. 

Froscripsed Physics? 
On a typical day, a conversation with a game developer about physics will include 

words like velocity, friction, rigid body, gravity, and acceleration. You'll also probably 

hear the term “ragdoll.” In the old days, game physics operated mostly as a vehicle, 

drearily moving objects from point A to point B along a path like a painfully dull 

merry-go-round. In today’s competitive game development arena, kiddy rides are no 

longer cutting the mustard. Today's engines not only move objects along paths, they 

hurl them through the air, crash them through walls, and cause cascades of bricks to 

come loose and eventually pile up in dynamically formed rubble. Our competitors, 

armed with big-budget engines, can be scary to face in hand-to-hand combat on the 
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fields of game development. How can we rush into the melee against powerful adver- 

saries who are so well armed? Simple; we fake it by creating the illusion of compli- 

cated physics when in actuality, we're just moving these objects on a preplanned track 

like a roller coaster. 

Even if using a “real” physics system, prescripted physics may be useful to drive 

the behaviors of some of the more “ambient” elements of the simulation. For exam- 

ple, arcing and bouncing bits of debris from explosions might be prescripted while 

vehicles are not. 

How Prescripted Physics Works 

Prescripted physics works by connecting a series of 3D points together using a curved 

path. A simple way to visualize it is to think of each point as a clothespin on a clothes- 

line. Now imagine that the clothesline was on the ground with a dozen or so pins 

stuck at fairly regular intervals along it. If that clothesline is slack, the line between the 

clothespins looks curved. In prescripted physics, we use waypoints for our clothespins 

and use splines as our clothesline. 

The first step in creating a prescripted physics event begins with the artistic skill 

of observation. The creator has to observe the event they wish to duplicate by either 

seeing it on screen, in real-life, or in the mind’s eye. Next, they break it down into 

keyframes of movement such as a head turning here, rotation there, an explosive start, 

or bouncy ending. Once the keyframes have been identified, the programmer then 

has to “reverse engineer” how the event took place by coding the physics from a time 

perspective instead of one using the traditional velocity accumulation. In simple 

terms, for each keyframe (or waypoint), the programmer records what the object's 

orientation and 3D position should be for that point as well as how much time has 

passed since the event started. The list of waypoints is then passed to the physics 

engine. The engine is responsible for ensuring that the object appears at each point at 

the given time, that it moves correctly in both orientation and position between 

points, and finally that it possesses all the properties specified (e.g., final orientation 

and animation). 

To demonstrate how this works, let’s make a physics event. In this event, we want 

to hurl Edgar the Chicken dramatically through the air. Our event begins by identify- 
ing what we want the outcome of the physics to look like, then marking waypoints 
along the flight path. 

The simplest physics event we could make for Edgar would be to just move him 
along a path as seen in Figure 4.6.1. Besides being possibly the world’s most boring 
physics, anyone watching it would boggle in confusion as to why something so “fake” 
was allowed into the game. We can cure this problem by fixing one of the most unnat- 
ural things about the physics: Edgar is still maintaining fantastic posture. Great pos- 
ture is no doubt an admirable trait, however since were going more for the “under 
nature’s force” look, we'll need to pitch him forward a bit as he flies (Figure 4.6.2). 
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FIGURE 4.6.1 Edgar on a boring ride. 

FIGURE 4.6.2 Edgar tilting on his journey. 

That was an improvement, but it’s still not very believable. Let’s try changing 

Edgar into a panic animation as he hits one of the early waypoints. The animation 

will make a big difference, but we can't stop there. The battle is won or lost in the 

details! An interior decorator knows the job isn’t finished without lots of pillows and 

a throw on a sofa; likewise, we need that extra something that brings the hurling 

Edgar to life. That extra something could be a graphical effect like random feathers 

erupting into the air as he transitions from a casual animation to one of panic (see 
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Figure 4.6.3). Finally, playing a loud “SQUAWK” as he transitions should make it 

just right. Let’s stop here, even though we could continue to embellish on the event. 

FIGURE 4.6.3 Animation and other effects help to sell 
the illusion of Edgar’ flying. 

Thanks to Edgar, we can see how moving an object through a series of points can 
have the same end result as more traditional physics engines. Remember that while 
prescripted physics simulates more complex,.“real” physics by reducing an object's 
movement into simple keyframes and the lines that connect them, it’s all about the 
details you add to the event that make it come alive and mask the simplicity of the 
underlying technology. 

Prescripted Physics Pros and Cons 

Like almost everything in life, prescripted physics has its ups and downs. Those peaks 
and valleys are due in large part because the system doesn’t compute physics in real- 
time; instead, it’s done at the start of the event. Understanding this difference is the 
key to realizing the strengths and weaknesses that come with prescripted physics. 

Following is a list of the strengths of prescripted physics: 

Ease of use: Prescripted physics systems are built from the ground up with the 
intention of being used by people who aren't versed in the complex math of 
more advanced physics systems. 

Rapid development: Building the prescripted physics engine takes less than a 
weekend to prototype and under a week to develop to its game-ready state. The 
real benefit of rapid development becomes evident when creating new custom 
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physics events. Instead of days implementing complicated math for new physics, 
most should take only a few hours and require little code from the programmer. 

Tools: Prescripted physics can be made into a tool that artists and designers use to 
generate “physics files” for objects in the world. This can take the programmer 
completely out of the loop once the engine is built and game-ready. 

Performance: A common barrier people face when using physics is the fear of 
performance. Since prescripted physics events are by definition precomputed, 
the real-time performance cost can be very light on the CPU. 

Replay: The prescripted physics engine is ideal for “rewinding” an object's 
movement through the game world as if it were in a sports “instant replay.” 

Following is a list of the weaknesses of prescripted physics: 

Reactions: If you want prescripted physics to interact with other objects in real 
time, like a baseball being interrupted by a baseball bat, then it requires extra 

code to support that reaction. Since this system computes the path the object 

will travel at the beginning of the physics event, reactions can only work if the 

engine supports both collision detection and the ability to morph the event into 

a reaction event. Coding this functionality can potentially take as much time as 

coding the prescripted physics engine itself. 

Unique and unfamiliar: Ifa tool isn’t built for artists or designers to use, you 

must rely on programmers to produce the physics events. Programmers need to 

understand that they have to think differently to use prescripted physics. It doesnt 

take a math genius to write these events, but it does take skills in observation and 

the ability to transfer those observations into steps. With such a foreign system 

of physics, it’s not surprising that some of the most mathematically gifted 

programmers struggle with this system at the beginning or outright refuse to use 

it. Once they toss aside their calculus books and think of the physics as if they 

were watching a movie, it generally “clicks.” 

Compound physics: Compound physics, like reactions, requires extra effort to get 

right. As a general rule, when an object is under the influence of prescripted 

physics, no other physics in the world should be affecting the object unless you 

write special code to support it. 

The most basic prescripted physics engine has two main parts: the movement of 3D 

points and the changing of an object's orientation. Both the movement and orienta- 

tion use a percentage value computed using time as the basis for interpolation. For 

location, the time converts to a percentage indicating where an object is on the spline 

from point A to point B. As for orientation, that same percentage is used to determine 

the object’s yaw, pitch, and roll. For example, if a waypoint started at world time 100 

ms and went until 250 ms, giving us a total of 150 ms in length, at world time 175, 



462 Section 4 Physics 
Sn nenncents SNES SS, 

we would be 50% complete: (175—100)/150. Using that percentage, we can deter- 

mine both its position and orientation by using splines and quaternions. 

Movement of 3D Points 

Think of the physics event as if you were going to play connect-the-dots. In this ver- 

sion of the game, the dots are already numbered in order, and you already know that 

the shape you're tracing is a person’s face. Since most faces aren't square, when you 

trace between the dots, you decide to put in an artistic touch by making the lines 

between the dots have gentle curves instead of harsh straight lines. The end result is 

that the curves make the face look natural and far more pleasing than if you had sim- 

ply used a ruler. } 
Like playing connect-the-dots, the manner/in which you draw the lines between 

the dots (or waypoints) determines the overall picture that the customer will see. Most 

prescripted physics engines can easily support multiple connect-the-dot movement 

algorithms, including basic linear methods and several implementations of splines. In 
this gem, we'll focus on just using Catmull-Rom splines [Dunlop00] to move our 
objects from point to point. 

Velocity is a great example of how topsy-turvy this new physics can be. Velocity 
is determined based on where we place our waypoints and how much time we allow 
for an objett to travel between a pair of waypoints. It’s one of the many backward- 
thinking Hurdles programmers face when using this method of physics. We're so used 
to giving an object acceleration and velocity, then sending it off into the world, that it 
can get confusing when we realize that an object traveling X distance for J amount of 
time plugs nicely into the old velocity formula. 

Listing 4.6.1 is a basic function that uses percent complete, percent squared, per- 
cent cubed, our X, Y, or Z position for spline points at nm — 2, n — 1, and n + 1 inter- 
vals, and our given X, Y, or Z position to generate our current position. 

Listing 4.6.1 Catmull-Rom Computation for a Given X, Y, or Z 

inline float GetSpline(float inOurPoint, float inPercent, 

float inTSquared, float inTCubed, 

float inBack2, float inBack1, float inNext) 

return (O.5f * (230fF ~ dnBackt + 

((-inBack2 + inOurPoint) * inPercent) + 

((2:,0f * inBack2 - 5.0f * inBackl + 4.0f * 

inOurPoint - inNext) * inTSquared) + 

((-inBack2 + 3.0f * inBack1 - 3.0f * inOurPoint) 

+ inNext)* inTCubed))); 

} 

Listing 4.6.2 is a simplified function that advances an object to its next waypoint 
given a percentage. It uses the GetSpline method with this waypoint’s ending world 
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position to determine the current 3D location. For example, if inPercent is 0.5, the 
object’s current position will end up halfway between the last waypoint and the cur- 
rent waypoint. 

Listing 4.6.2 Advancing a Point Along a Spline Path 

void AdvanceSpline(float inPercent, GE3DPoint& ioPoint, const 

GE3DPoint& inBack2, const GE3DPoint& inBack1, 

const GE3DPoint& inNext) 

{ 
inPercent = min(1.0F, inPercent) ; 

float theTSquared = inPercent * inPercent; 

float theTCubed = theTSquared * inPercent; 

/*oSpline for X17 / 
ioPoint.mX = ::GetSpline(mPoint.mx, 

inPercent, theTSquared, theTCubed, 

inBack2.mX, inBack1.mX, inNext.mX) ; 

{> Spline at Ons Yos 

ioPoint.mY = ::GetSpline(mPoint.my, 

inPercent, theTSquared, theTCubed, 

inBack2.mY, inBack1.mY, inNext.mY); 

(AsSplinesfioraZes / 
ioPoint.mZ = ::GetSpline(mPoint.mZ, 

inPercent, theTSquared, theTCubed, 
inBack2.mZ, inBack1.mZ, inNext.mZ) ; 

} 

Listing 4.6.3 shows AdvanceSpline using mostly precomputed splines. If you want to 

use faster spline calculations, precompute most of the math into a look-up table as 

shown. (Note, you'll see in later sections of this gem that it’s possible to affect an 

object’s physics path during runtime. In that case, go with the normal, slower spline 

calculations since you will end up recomputing the splines every time the physics path 

changes.). 

Listing 4.6.3 Cached Spline Calculations 

/* uses a precomputed array to compute a fast spline */ 

inline float GetFastSpline(float* inArray, float inSquared, 

float inCubed, float inPercent) : 

{ 
return (0.5f * (inArray[O] + (inArray[1] * inPercent) + 

(inArray[2] * theTSquared) + (inArray[3] * theTCubed) )) ; 

} 
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/* simplified Advance spline method */ 

void AdvanceSpline(float inPercent, GE3DPoint& ioPoint) 

ioPoint.mX = GetFastSpline(mOptimizedSplines, 

theSqd, theCube, thePercent) ; 

ioPoint.mY = GetFastSpline(mOptimizedSplines + 4, 

theSqd, theCube, thePercent) ; 

ioPoint.mZ = GetFastSpline(mOptimizedSplines + 8, 

theSqd, theCube, thePercent) ; 

} 

Orientations and Quaternions 

Orientations describe an object’s yaw, pitch, and roll. In short, orientation is not an 

object’s location, but rather which direction it is facing while at that position. If the 

object is facing upside down, angled sideways, or head over heels, that refers to its 

orientation. Luckily for us, quaternions are great for orientations. Quaternions not 

only do an amazing job of modifying an object’s orientation smoothly, they also fit 
neatly into the time-percent paradigm that we use with our 3D movement and 
splines. If that wasn’t enough, using quaternions to advance orientation is so simple it 
should be a crime. Quaternions work their magic on an object's orientation by using 
a spherical linear interpolation, known as “slerping,” which smoothly scales its orien- 
tation along a curve (see [Svarovsky00)]). 

Start Your Engines! 

Time to put all the pieces together into a roaring engine that will thrill our game fans. 
The heart of a basic engine is simple. Its job is to process all the physics nodes, 
advance object positions using splines, and then advance orientations using quater- 
nions. Finally, the correct orientation is applied and the object's location is set. 

Walking through Listing 4.6.4, we can see what the update code of the pre- 
scripted physics engine looks like. The first operation in the update is to pop off our 
nodes until we are in the correct time range. For example, if world time is 200 and 
node 3 goes from 195 to 220, we will pop off nodes 1 and 2 to ensure we are ready at 
node 3 for processing. Once we have the current node, we advance the orientation 
(using time and quaternions), followed by advancing the 3D position (using time and 

splines). Lastly, we ensure that we are rotating around the correct point on the object 
(feet, head, middle, wherever) before finishing our update. It’s simple, it’s fast, and it’s 

almost too easy. 

Listing 4.6.4 Update Method of the Prescripted Physics Engine 

float thePercent; 

bool theResult = true; 

bool thePointMatches; 
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/* Ensure our next point is the right one (time-wise) */ 

AdjustToCorrectPointUsingTime(inWorldTime) ; 

/* any physics nodes? */ 
if (mPhysicsNodes.empty() == false) 

{ 
GE3DPoint thePoint; 

peEgetr our point 47 
inCurrentLocation.GetPosition(thePoint) ; 

/* get the first item */ 
FPNode& theNode = mPhysicsNodes.front() ; 

/* compute the percent(it will be 0-1.0F because 

of the “AdjustToCorrectPoint method” */ 

thePercent = ((float)(inWorldTime — 

theNode.mStartTime)) * theNode.mInverseTotalTime; 

/* advance Orientation */ 

theNode.AdvanceOrientation(thePercent, 

mQuatOrientation) ; 

outResultOrientation = mQuatOrientation; 

/* Advance our location */ 
theNode.AdvanceSpline(thePercent, thePoint, 

theNode.mSplines[0], theNode.mSplines[1], 

theNode.mSplines[2]); 

/* Rotate it at the correct spot. (head/middle/etc) */ 
ApplyRotation(theNode, outTransform, thePoint); 

else 

theResult = false; 

Polish It to a Shine! 

As with almost everything in the games industry, the details are where you can pull 

away from the crowd or fall back with the pack. Some polish items that make a large 

impact on how well the physics appears to our customers come from adding accelera- 

tion ramps, animations, and effects to waypoints. Other items include mapping 

points onto objects or terrain, rotating about an arbitrary point on the object, rewind- 

ing physics, or causing reactions to occur. 

ssa se 

Ramps and Rewind 

At almost every turn, prescripted physics seems to be battling the traditional notion of 

physics. How can we possibly move an object through a series of points naturally 

without using acceleration? It’s lucky for us that quaternions needed a percentage 



466 
Section 4 Physics 

cee emmiataapnaaarissisnnssmmnnnnennisisannincnmnaatmnmmumnmeertnitatten 

from 0% to 100% to orient things correctly, because it’s the secret that makes custom 

ramps so useful for us. 
“Normal physics moves objects from point A to point B by applying forces that 

result in acceleration, which in turn changes their velocity and acceleration over time 

until a desired velocity or position is reached. In prescripted physics, we use ramps to 

affect our percentage from 0-1, which in turn tells us how far along the path we are. 

Imagine pushing Edgar the Chicken in a straight line from point A to point B. If 

we use no ramps, Edgar will move along the path at exactly the same speed. However, 

if we apply a sine or cosine ramp that affects the current percentage, Edgar can be 

moved quickly away only to slow as he approaches his destination, or moved slowly at 

first, only to speed up at the end. The net result of a ramp might be, given a percent- 

age of 25%, to modify it and return 12%. We then execute our spline and orientation 

thinking that we are at 12% along instead of 25%. We can also use a ramp modifier 

that can be used as a scratch variable for our ramps. Let’s say we want to use a cosine 

ramp, we might only want to use half of the curve, so by using a floating-point mod- 

ifier we control how our ramp changes the percentage. Naturally, these ramps must be 

integrated into our AdvanceSpline and AdvanceOrientation methods as seen in List- 

ing 4.6.5. Don't forget to use different ramps for orientation and movement since 

they advance independently. 

Listing 4.6.5 AdvanceOrientation with a Ramp 

void AdvanceOrientation(float inPercent, Quaternion& outQ) 

{ 
/* Change the incoming percent by using a ramp */ 
inPercent = ProcessRamp(inPercent, mOrientationRamp, 

mOrientationRampModifier) ; 

/* slerp to my-lou my darling. */ 

mStartQuat.Slerp(mQuaternion, inPercent, outQ); 

} 

Rewinding is a simple feature to add and operates in much the same fashion as ramps. 
If all the event nodes are stored after they are fully executed, then either by flipping 
the percentages (25% ends up at 75%) or rewinding time, we can watch Edgar 
rewind his movement and orientation, going from the ending waypoint all the way 
back to the first. 

Mapping to Terrain and Objects 

One of the big fears of applying prescripted physics is that if we plan a path for the 
object during the beginning of the event, any time something unexpected happens in 
the world that affects the object’s path, the physics event breaks. For example, imag- 
ine that an object falls off a high-rise building, and we determine that the final resting 
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place would be a nice grassy hilltop. Halfway down, an explosion annihilates the hill 
leaving it a deformed pile of dirt far below where we expected our object to land. All 
hope is not lost! We can change our path during real time, but doing so requires that 
we adjust our times and splines for the surrounding (or all) waypoints in the event. 
This is not the pinnacle of CPU efficiency, so overall we don't like surprises during 
prescripted physics events. 

One of the tools we can use to get out of this jam is mapping waypoints onto ter- 
rain or other objects. When we map a point to terrain during the creation phase, we 
know that whatever else happens during prescripted physics, this waypoint will be 
firmly on the ground. Likewise, mapping a point onto an object means that wherever 
the mapped-to object moves, the waypoint will remain locked onto it. If you decide 
to use mapping, remember that when waypoints move, they must have their time 
scaled so their perceived velocity doesn’t change. That requires that you adjust the 
ending time and possibly the start and end times of all future nodes. It's very impor- 
tant to also adjust the waypoint spline positions for the current waypoint (as well 
as the next two waypoints), because spline calculations use the positions of waypoints 

(m — 2) in reverse. 

Rotations 

When we apply rotations in the engine, they happen about the 3D position of the 

object. If the object is at the exact position we want to rotate, perfect for us! Other- 

wise, we have an object whose defined center isn’t at the center of its geometry, and we 

may have to do some transformations to ensure that we rotate about the right area. 

For example, in an RTS game, you might have the 3D point of an object be at its feet, 

but you probably want to rotate objects from its center instead. Perhaps you even 

want to make something flip lopsided by starting the rotation point at the feet and 

sliding up to the head over the lifetime of the physics event. Listing 4.6.6 is an unop- 

timized function that demonstrates how we can rotate using transformations: 

Listing 4.6.6 Using the Current Quaternion to Rotate about the Desired Point on the Object 
Seen errr

 

GETransformation theRotateCenter ; 

GETransformation theRotateCenterInverse; 

GETransformation theTranslation; 

GETransformation theRotation; 

GETransformation theResult1; 

GETransformation theResult2; 

GE3DPoint thePoint; 

/* put it into transform. “y} 

this->mQuatOrientation.ConvertToTransform(theRota
tion) ; 
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/* set the translation */ 

theTranslation.SetPosition(inPoint) ; 

/* set the rotation center (adjusting for Z, not XY) */ 

theRotateCenter.SetZ(mHeight * ioNode.mRotationModifier) ; 

/* make inverse (cache this and the main transform) */ 

theRotateCenter.MakeInverse(theRotateCenterInverse) ; 

/* apply the rotation center to the world translation “7 

theTranslation.Apply(theRotateCenter, theResult1) ; 

/* apply the world/rotated to the result */ 

theResult1.Apply(theRotation, theResult2) ; 

/* convert from local space to world space. */ 

theResult2.Apply(theRotateCenterInverse, ioFinalTransform) ; 

Reactions 

Reactions are the weakest part of prescripted physics compared to using traditional 
physics. It’s all planned out ahead of time, so the engine doesn’t take well to surprises 
unless you code in the ability for it to handle them. In general, reactions should focus 
on creating “reaction events” in response to things like collision with walls or other 
objects. When the collision happens, a special reaction event should examine the cur- 
rent situation, create the appropriate reaction physics event, and follow the path of 
the reaction instead of the old physics event. Like mapping to terrain and objects, 
reactions affect the path in real time but cause more catastrophic changes. 

Imagine we're using prescripted physics to pitch a baseball. As the ball flies towards 
the catcher, a bat pops into its way and hits it. That is a catastrophic change to the 
object’s path that causes a reaction. The reaction is handled by creating a new physics 
event, taking into account things like velocity, current position, bat swing strength— 
you name it—then giving it to the physics engine, which kills the old event and 
continues life with the new one. 

Optimization tip: Collision detection can be expensive, so try turning it on and off 

on a per-waypoint basis when you know that it’ safe to skip. 

Out-of-Game Tool 

Even though prescripted physics events are easy to create for a programmer, it’s 
inevitable that changes from an artist or designer will likely be needed. Ideally, once 
prescripted physics has demonstrated its value to a game engine, an out-of-game tool 
should be written to allow artists and designers the ability to generate descriptions of 
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physics events. This can be a very complicated tool to design since so much of the cre- 
ation needs to involve examining the world in which the physics event is created. It is 
generally a good idea to make a few simple physics events in code to prove that 
prescripted physics works in your game engine before embarking on tool creation. 
Otherwise, the “days” estimate to get a prescripted physics engine up and running 
could easily turn into weeks as the programmer tweaks user interface details, such as 
ways for artists and designers to “simulate gravity” or “add points around a circle.” 

Twister: Right Foot on Red 

After putting together the prescripted physics engine, it’s finally time to have some 
fun writing a physics event! As a quick example, if we were to write a tornado event, 
we could derive a class from a physics event base, overload the Create method, and 
have our own tornado in one simple function. Listing 4.6.7 provides a very simple 
version of a tornado that swirls an object about in the air. 

Listing 4.6.7 A Simple Tornado Physics Event 

/* using velocity and distance, get the time */ 

unsigned long theTimePerIteration = 

::FloatToUnsignedLong((kPI * (2.0F * inRadius)) / inVelocity) * 

1000; 

/* compute the iterations needed */ 

long theTornadoWaypointsPerPI = 35; 

float theFloatIters = ((float)inTime / (float) theTimePerItera- 

ELON ies 

float theInterval = (theTimePerIteration / theTornadoWaypointsPerPI) ; 

float theIncPerLoop = (1.0F / theTornadoWaypointsPerP1I) ; 

/* set the starting point. */ 

thePNode.SetStartingQuat (inCurrentQuat) ; 

theRotationTransform.SetPosition(inCenter) ; 

theNewPoint = inStartPoint; 

/* animation */ 

thePNode.SetAnimation(inAnimation) ; 

/* set the point */ 

thePNode.SetPoint (theNewPoint) ; 

/* Start NEW POINT */ 
long theNextYPRCounter = 0; 

long theZCounter = 0; 

/* Rotation amount we’1l use */ 

float theRotationAmount = -((kTwoPI / 35.0F) * 2.0F); 

thezCounter = (theTornadoWaypointsPerPI / 4); 
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/* Loop over all the points */ 
for(theFLoop = 0.0F; 

theFLoop < theFloatIters; 

theFLoop += theIncPerLoop, 

theZCounter-, theNextYPRCounter—) 

/* Cache the last Z for use later */ 

theLastZ = theNewPoint.GetZ(); 

/* Reset yaw/pitch/roll increments? */ 

if (theNextYPRCounter == 0) 

{ | 

/* setup next */ 

theNextYPRCounter = 4; 

/* Inverse instead of dividing 3 times */ 
theInverse = 1.0F / (float)theNextYPRCounter ; 

/* compute the change range */ 

theYaw = GetRandom(-TwoPI, TwoPI) * theInverse; 

thePitch = GetRandom(-TwoPI, TwoPI) * theInverse; 

theRoll = GetRandom(-TwoPI, TwoPI) * theInverse; 

} 

/* Orientation setup */ 
thePNode.SetOriYPR(theOri.mYaw + theYaw, 

theOri.mPitch + thePitch, 

theOri.mRoll + theRoll) ; 

/* Vector/destination point */ 
theRotationTransform.RotateByYaw(theRotationAmount) ; 

theRotationYaw = theRotationTransform.GetYaw() ; 

/* Tip: Tweak radius and time to make a funnel */ 

/* Compute the local point spacing in relation to the 

radius and transform into world space */ 

theLocal.SetY(inRadius) ; 

theRotationTransform.Apply(theLocal, theWorld) ; 

/* Rotate world. */ 
theFloatPoint = theWorld; 

theFloatPoint.RotatePointAroundZero(theRotationYaw) ; 

theFloatPoint.SetZ(theWorld.GetZ()); 

theNewPoint = inCenter; 

theNewPoint += theFloatPoint; 

/* Get a new Z? */ 
if(theZCounter == 0) 

{ 
/*ene set eaitiee/ 
theZCounter = (theTornadoWaypointsPerPI / 4); 
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/* compute Z Change (0.0F = TERRAIN Z) */ 
theZChange = GetRandom(0.5F, 5.0F) + 0.0F; 
theZChange = (theZChange - theLastZ ) / 

(float) theZCounter; 

} 

/* Set the position, and add the Z to our current Z */ 

thePNode.SetPoint(theNewPoint.GetX(), 

theNewPoint.GetY(), 

theLastZ + theZChange) ; 

/* Time this will take. */ 
theCurrentTime = thePNode.SetTime(theCurrentTime, 

theCurrentTime + theInterval) ; 

/* add to our list of waypoints we’1l use later */ 

theNodes.push_back(thePNode) ; 

} 

/* add those waypoints to the physics event, your done! */ 

AddPoints(theNodes) 5 

Soneiueoae 
The key points from this gem you should remember include the following: 

Physics is important: Today’s market demands game physics that can rival movies 

and special effects software. Don't be afraid to take the challenge! There is 
almost always a solution that is off the beaten path. It just has to be found. 

Prescripted physics has strengths: Use prescripted physics for special physics events 

like throwing objects, recoil physics, and other cinematic moments. 

Prescripted physics has weaknesses: Don’t use prescripted physics where traditional 

linear physics is superior such as walking soldiers in an RT'S world. 

Quick to code: The prescripted physics engine is quick to create, and it's even 

quicker to program events. Don't be afraid to use all that extra time to 

experiment with new ramps, splines, and other polish items. 

Wait on the tool: Don’t create a physics tool until you have created the engine and 

in-code events. After all, getting it up and running is the first step. 

Optimize splines: If you're not applying real-time forces to your physics points (like 

an object being carried off in a moving tornado), then cache your splines into an 

array to reduce math computations. 

Quaternions are incredible: If you don't already have one, write a quaternion class 

for your application and slerp your orientations for smooth rotations. 

Modify those rotations: Change how you rotate an object by using a floating-point 

modifier from 0.0F (feet) to 1.0F (head). Otherwise all rotations for the object 

will occur about the actual 3D position, which could be anywhere. 
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Polish it: This gem details a basic prescripted physics engine, but there are many 

ways to improve it. Be sure to add ramps, rewinding, animations, sounds, 

graphical effects, or whatever else you can think of that will add excitement to 

your game. 

In today’s competitive game industry, physics is just as important as graphics. Graph- 

ics draws the world the user sees, but if we don’t make a world worth looking at, no 

amount of graphics will help. Prescripted physics can be a great solution for develop- 

ers who want exciting physics in their game at a fraction of the time needed to create 

a traditional big-budget physics engine. 

Every year we sit at the World Series of Poker for game developers, guarding our 

hands, feeling both nervous and confident at the same time. What will you do with 

your next hand of cards? Will you play tight and aggressive? Will you stick to what 

you know? Will you be innovative, and work on building those cards? Whatever style 

you choose, be sure to keep raising the pot for all of us. In the end, it’s what keeps us 

pushing the envelope and making our customers happy. 

Thanks to Richard Woolford for the use of Edgar the Chicken. (No chickens were actu- 

ally harmed in the writing of this gem). 
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Re physics simulation in games provides robust results but can be quite expensive 
in terms of processing, especially on more modest platforms and in Web applica- 

tions. Also, “true” physics simulation generates arbitrary locations and orientations 
for units, which can result in unexpected (and undesirable) situations. Many games 
require that units obtain a particular location and orientation as a result of physics 
motion, and some also require hundreds of units to be simulated simultaneously. This 

gem describes the merits of implementing a prescripted physics system to generate the 

illusion of actual physics, and demonstrates how Hollywood effects normally available 

to games with sophisticated physics engines can be achieved inexpensively and 

quickly while sticking to the rules of the game world. 

While there are many published articles on rigid body physics and general 

dynamics, there are few devoted to prescripted physics systems. This gem discusses an 

actual game example of a prescripted physics system, detailing the physics used for the 

paratrooper drop in the RTS game Empires: Dawn of the Modern World developed by 

Stainless Steel Studios. It is assumed that the reader has some knowledge of basic 

game physics, quaternions, and splines, and has become familiar with the mechanics 

of a general prescripted physics system, such as that described by Dan Higgins [Hig- 

gins05]. 

Why Prescripted Physics? 

Why not just stick to real physics in a game? Often, real physics does not allow the 

designers to specify exactly what should happen in the game, because often what 

should happen does not actually follow the laws of physics. Most games prefer the 

look of Hollywood physics: explosive, fantastic, and exaggerated. Usually this is 

hardly what real physics simulation will result in. For example, consider an explosion 

near infantry units. Actual physics simulation would toss all the units away from the 
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explosion location, with a bit of rotation for some of the units. By contrast, the Hol- 

lywood model calls for all of the infantry units to fly high in the air, flip a few times, 

and then crash to the ground—a much more dramatic and visually pleasing effect. 

Some may argue that a solid, working knowledge of physics and the underlying 

equations allow the programmer to alter environment parameters to result in the 

desired look of the system. While this is true, the prescripted physics route gives the 

programmer—and more importantly, the designers (who may not be fully versed in 

physics simulation)—complete control. Further, altering global physics parameters 

can throw the physics simulation off unpredictably in other areas, as the system is typ- 

ically tuned for one particular result. If the programmer is stuck tuning the physics 

simulation for each particular behavior, there is no good reason to have run on a real- 

istic system in the first place. Instead, the exact desired results for each situation may 

be attained every time with a prescripted system. 

Not only does prescripted physics help attain the desired visual look, it also pro- 

vides for a known end state of the simulation. In true physics simulation, the initial 

state and inputs are known, but the final result usually is not known, leading to some 

complicated possible situations. This is not the case in a prescripted system; the pro- 

grammer or designer determines what the end result will be and plans the physics 

route accordingly. This is much more flexible in games with thousands of units, where 

some of the more computationally expensive techniques are not feasible, and units are 

restricted in their pathfinding. 
The final selling point is the big benefit that the producer will enjoy: short devel- 

opment time. A simple prescripted physics system can be up and running in two 
weeks. A robust rigid body system would require considerably more time, perhaps 
several months. The prescripted system avoids some of the challenges of rigid body 
simulation, such as integrator instability, friction, resting constraints, and penetration 
issues. The bottom line is, prescripted physics is very inexpensive to implement, 
debug, and maintain. 

The Prescripted Physics System 

A detailed design of prescripted physics is beyond the scope of this gem, but the basic 

mechanics are worth mentioning here. Briefly, a combination of Catmull-Rom 
splines and quaternions make up the chief components. Units are moved along the 
spline segments at a particular rate, rotating and animating as they go. 

Each spline control point has various parameters that can be set to control the 
motion. First, each control point has the total time for the unit to traverse that partic- 
ular segment. Next, each control point has a time function, used to control the “accel- 
eration” of the motion along the spline segment. This time function can simply be 
linear, or based on some higher-order function of time. The total time combined with 

the time function dictates the speed of the spline segment. 
The control points also specify a goal rotation in the form of a quaternion. This 

allows units to rotate towards an explicit orientation as they move along the spline 
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segment, with the orientation at any given point along the spline coming from in- 
terpolation between control points. Finally, each control point specifies a particular 

animation that is to be played while the unit is traveling along the segment. The con- 

trol point parameters may be set in real time or predetermined by design. All that 
matters is that “good” values are chosen. 

Choosing “Good” Prescripted Values 

For a prescripted physics system to work, it needs to look believable. For example, 

units should appear to fall realistically and bounce when they hit an obstacle. To sell 
the look of the system, it’s important that it has some of the same properties of a real 
simulation. The problem, then, is determining how to partially model the effects of a 

realistic system in the prescripted world. 
Dynamics provides all the equations that are needed for a realistic simulation. 

Typically, an examination is made of the real-world equations that are necessary to 
model particular effects, such as gravity, buoyancy, drag, and friction. The equations 

are then combined, and some time points are chosen for motion and are plugged into 
the appropriate parameters. The equation is then solved for each time point, and the 
resulting table of time inputs and equation outputs can be fed right into the pre- 
scripted simulation. Note that increasing the granularity of the time points will 

increase the approximation of the real system. 
Another way to arrive at the input values for the prescripted system is to run a real 

simulation “offline” and record the position data over time. The “fake” simulation can 

then be made to match the real simulation data, resulting in a natural look and feel to 

the motion. 

Once a prescripted physics system has been developed and a method for selecting 

values has been chosen, it’s easy to use the system to cover a variety of situations. 

What follows are a number of examples of prescripted physics applications. 

Application: RTS Building Destruction 
Seem SO EE OC ELECT LEE LLL ELLEN LLL LLELLLLLDEL LASSE LLL ALLELE ELA ALLEGE 

In 3D RTS games, buildings generally build up out of the ground and fall back into 

the ground once they are destroyed. This simple behavior can easily be modeled using 

prescripted physics. A number of short spline segments are needed, positioned from 

the building’s center point to a point below the terrain, at a total distance sufficient to 

hide the top of the building under the terrain. Each control point’s quaternion con- 

tains a small pitch or roll amount, to simulate the building's shaking. The speed of the 

control points should increase as they go down, so that the building appears to accel- 

erate on its way to the ground. Figure 4.7.1 shows five control points for building 

destruction. In this example, five points are sufficient to show the varied speed and 

rotation for the destruction. 
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FIGURE 4.7.1 Spline control points for building destruction. 

SPVICAMONE JUMPING 1... 
Jumping is another straightforward application for a prescripted physics system. From 
a stop, a unit runs a small distance, bends down, and leaps up. After a small amount 
of time, the unit comes down and lands. As shown in Figure 4.7.2, the unit should 
play a run animation and accelerate from control point A to B. At point B, the unit 

should play a “jump into the air” animation and begin with high velocity towards 
point C. The velocity should slow towards point D. While it is not possible to alter 
vertical and not horizontal velocity in this system, this simulation does not need such 

accuracy to look convincing. There is a slight pause in velocity about point D, at 
which point the acceleration due to gravity overcomes the unit’s upward velocity. The 
unit accelerates through point E and quickly arrives at point E. At point §, the unit 
plays a landing animation, which is accompanied by an appropriate visual effect for 
the terrain on which the unit lands. Point G completes the effect, allowing room for 
the unit to recover or stutter following the jump. 

FIGURE 4.7.2 Spline control points for a jumping effect. 
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Application: Explosion Displacement 

Explosions are another great application for a prescripted physics system. As shown in 
Figure 4.7.3, units follow a somewhat parabolic spline. However, as opposed to actual 

physics, units will flip as they fly through the air. All units fly away from the center of 
the explosion. Units choose from a number of predetermined splines based on both 
their distance to the center of the explosion and some randomization factor. This, 
along with control point height and rotation randomization, provides for a lot of vari- 
ety in the flight taken by units. 

FIGURE 4.7.3. Units following a parabolic path follow- 

ing an explosion. © 2004. Reprinted with permission from 

Stainless Steel Studios. 

Rotations are broken up over a few control points so that no single spline seg- 

ment has too much rotation for its spline segment length. Breaking up the rotation 

also allows for the units to flip completely over. A unit should only rotate in one direc- 

tion throughout the spline. While flips are a Hollywood effect, changing direction 

mid flight would be an obvious red flag to the player. At the end of the spline, any 

rotation must leave the unit on its back or on its stomach in preparation for the land- 

ing animation. 

Animations are added to show the unit flying up off of the ground. Units can 

either fly forward on their stomach, or backward on their back. Once airborne, units 

play a mid-air flailing animation. For landing, “land-on-stomach” and “land-on- 

back” animations are used, as appropriate. The landing animation will sell the physics 

effect even better if it includes some amount of bounce for the unit on impact. 

Finally, an appropriate visual effect for the terrain collision should be added when the 

unit hits the ground, such as a dust cloud or tossing of other debris. 

Application: Buoyancy 

The effect for buoyancy is easy to simulate. What is really needed to convince a player 

of buoyancy? Units must fall to the water, at which point their descent is greatly 
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reduced. After falling down through the water, the unit will stop, and then begin to 

rise. The unit rises faster and faster, until it breaks the surface of the water. Perhaps the 

unit breaks the water plane again on the way down and then resurfaces before coming 

to a resting position on top of the water. This is all that needs to be shown to sell the 

idea of buoyancy. 

Water level 

Sea floor 

FIGURE 4.7.4 Spline control points for a prescripted buoyancy effect. 

Figure 4.7.4 shows additional details of the buoyancy described. The speed 
between splines control points A and B should greatly reduce. This deceleration 
should continue to point C, at which point the buoyancy of the unit has overcome 
the force of gravity. The unit accelerates from a stop up to point D, with additional 
increases in speed to point E. From point E, the unit again accelerates from a stop. 

Points F and G repeat the process of gravity and buoyancy for the secondary splash- 
down but with greatly reduced time durations for each control point. 

To add realism, as usual some animations are added. Units should use a tread 
water animation for points G and E, and a swim animation for points C, D, and FE 
Points A and B call for a falling animation. Each break of the water’s surface should be 
accompanied by a visual splash effect. To add variety to the physics, a unit’s density 
and mass should affect the depth of control points as well as the speed. Finally, should 
the unit have sufficient velocity, or if the water is shallow enough, the unit should kick 
off of the sea floor, and thus have an increased speed for points D and E. 
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Application: Paratroopers 
For Empires: Dawn of the Modern World, some number of paratroopers were required 

to drop out of their C-47. The paratroopers needed to follow a realistic-looking path 
to the ground. Further, the paratroopers needed to land near the player-specified 
landing zone. Paratroopers were not allowed to land on illegal map locations, as this 

would frustrate players. 
Each paratrooper had six spline control points created to move the paratrooper to 

its pre-calculated landing location. The positions of the spline control points were 
slightly randomized per paratrooper, creating unique flight paths for each. Further, 

subsequent splines would move the paratroopers in opposite directions, to further dis- 
tribute their descent. 

Figure 4.7.5 (also Color Plate 4A) shows these six spline control points for one 
paratrooper. Control point 1 is the location from which the paratrooper begins his 

descent and is located on a tag point on the C-47 airplane model. As mentioned pre- 
viously, control points 2, 3, and 4 are slightly random, so that subsequent paratroop- 
ers have varying flight paths. This variation is easier to see in Figure 4.7.6 (also Color 

Plate 4B), which provides a better perspective on the scene and features a whole stick 

of paratroopers. Control points 5 and 6 add a hook at the end of the spline. This hook 

ensures that the paratrooper intersects the terrain at the correct predetermined loca- 
tion. Note that control point 6 is actually below the terrain. 

Heri ie 2a ae Sah Aca ee 

FIGURE 4.7.5 Control points for one trooper. © 2004. 
Reprinted with permission from Stainless Steel Studios. 

Each physics tick, the amount of time passed combined with the paratroopers 

acceleration, was used to calculate the distance the paratrooper had traveled. Each 

spline segment had its length calculated before the simulation began. In this manner, 

the paratrooper could determine which segment of the spline it was currently follow- 

ing. Once the trooper knew its current spline segment, its new position along that 
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FIGURE 4.7.6 Line of troopers with variance. © 2004. 
Reprinted with permission from Stainless Steel Studios. 

\ 

particular segment was determined based on the distance traveled and the total length 
of that particular segment. 

To help make the motion of the paratroopers more believable, animations were 

combined with the prescripted physics paths. A “snap” animation was added for the 
point at which the units left the C-47. A wobble animation was used for most of the 
descent through the air. Two different animations were used for landing, including 

one in which the unit raised its legs in preparation for landing and an animation in 
which it absorbed the shock of landing with its legs. The look of the paratroopers 
along the spline benefited from the combination of the prescripted motion and the 
animations. For example, the “raising legs” animation was combined with a nearly 
smooth path over the terrain, yielding a natural looking glide that is often seen in real 
life landings. 

Random rotation of the paratroopers was also added to help simulate the effects 
of wind. This rotation slowed as the units got closer to the ground. Also, as the units 
approached the ground they were scaled up in size. This was due to the fact that the 
scale of the C-47 was accurate to that of the buildings and paratroopers. Hence, the 

paratroopers begin very small and actually get larger as they fall to the ground. 

Conclusion 

This gem demonstrates some applications for a prescripted physics system for use in 
RTS and other games. A few points are worth reiterating. A prescripted physics sys- 
tem can provide many benefits including low implementation time, a Hollywood 
look, and a final result that matches designers’ vision. Actual physics simulation can 
be measured to produce starting values for a prescripted system. Further, splines and 
quaternions are the key elements driving movement in such a system. But movement 
alone is not enough; it’s also crucial to combine animation with the prescripted motion. 
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There are obviously some drawbacks to a prescripted physics system. It is pre- 

planned and therefore not reactive. Units may not collide with other units if that pos- 
sibility has not been accounted for. Further, a prescripted system requires that each 

particular path of motion is either programmed or created in some sort of application. 
For example, if a path of motion is created for a unit falling from a 40-story building, 
a different path of motion will be necessary for a unit falling down a flight of stairs. 

These issues aside, the prescripted system is very useful in RTS games or any 

other genre in which hundreds of units are in need of exciting Hollywood physics. It 

can also be applied to many other areas of the game wherever units require motion 

that is not covered by simple object dynamics. All of this can be achieved in a very 

short amount of time, allowing developers to spend more time creating interesting 

behaviors for their games. 
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[Higgins05] Higgins, Dan. “Designing a Prescripted Physics System.” In Game Pro- 
gramming Gems 5. Charles River Media, 2005. 
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[I a car simulator or driving game, there can often be several different camera posi- 

tions used throughout the course of the game, with most of the virtual cameras 

attached to the moving car (i.e., internal cameras in the cockpit, on the top of the 

hood, etc.). In the case of an internal cockpit camera, it is not only acceptable but also 

desirable that every little car movement also causes movement of the camera, in order 

to enhance the realism. In other cases, such as when the virtual camera is placed 

beside the path of the car, it can be very disturbing if every little movement of the car 

shakes the camera. Additionally, in a collision that stops the car very rapidly, the cam- 

era stops rapidly as well, which can be quite jarring. In this gem, we propose a camera 

model that can enhance the realism of our virtual camera movement. Our virtual 

camera could have weight and inertia, but primarily its behavior is based on human 

nature. As a result, the car, due to its movement in the world, may not always be in 

the center of the screen, but may fall behind or go ahead, enhancing the realism of the 

representation. 

coat AREA 

In reality, every object follows the rule of continuity, meaning that a real object can- 

not change its position with sudden jumps through space. Without this, the object's 

speed would need to be infinite, which is impossible. Therefore, when we define our 

object’s position as a function of time, it should be continuous if it is a simple straight 

line or a path with lots of curves or angles, as in Equation 4.8.1. 

483 
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r=r(t) (4.8.1) 

Here, r is the actual position of an object, which is represented as a three-dimensional 

vector whose actual value depends on time. A real object can change its speed just as 

continuously as its position, as defined in Newton’s second axiom, provided in Equa- 

tion 4.8.2. 

{ 

= | 
(4.8.2) 

F (force) and a (acceleration) are vectors, and m (mass or weight) is a scalar. The speed 

can change with a jump only when the acceleration is infinite. This expression means 
that it can happen only when the force is infinite or the mass is zero. Of course, both are 
impossible in real life, so when we want to control a virtual camera in a virtual scene, we 
have to care about these two major rules, otherwise, its movements will be unrealistic. 

A real camera has mass and, as a result, inertia. To simplify our task in calculating 

our camera's movement, we represent it with two points: an eye and a target. The cam- 
era looks from the eye to the target, which means that the target will be always in the 
center of the screen. We define the orientation of the camera based upon the relative 
position of these two points. Because the eye and the target have mass, and because 
the acceleration must be finite, the speed of a real object cannot change discontinu- 

ously. We cannot change the force discontinuously either, so the function that repre- 
sents the force can only be continuous. Let us see this problem in reverse. 

Using Figure 4.8.1, we will review what we mean when we talk about different 
degrees of continuity. This will be important when discussing the continuity of Equa- 

tion 4.8.1, which defines the position of an object in time. On the far-left column of 
Figure 4.8.1, we show a discontinuous motion that fails the laws of physics. If there 

are no instantaneous jumps in the function, as shown in the second column of Figure 
4.8.1, we can refer it as a C® continuous curve. To calculate the velocity of the object 

aC) not aC) ct AG) Cc! ta) Cc? 
continuous continuous ~ continuous / continuous 
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FIGURE 4.8.1 § Curves with discontinuity, C° continuity, C! continuity, and C? 
continuity. The top row is the initial function of time. The second and third rows 
are the first and second derivatives of each function. 
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on its path, we take the derivative with respect to time. If the derivative is also contin- 
uous, as shown in the third column of Figure 4.8.1, it is referred to as a C! continu- 

ous curve. Finally, if we examine the second derivative of our path, which is the 
acceleration of the moving object on the path, and find that it is also continuous, then 

our path can be referred as a C? continuous curve as shown on the far-right column 
of Figure 4.8.1. If we want to make the movement of our virtual camera realistic, its 
path must be at least C® continuous, but it would be better if it could fulfill the 

requirements of a C* continuous path as well. 

What Do We Get? Sometimes Unrealistic Movements 
There is a huge variety of 3D driving games on the market today. Some of them invite 
the player into a realistic world, while the others transport the player into fictional 
places. In some games and simulators, we need to observe traffic laws, while in the 

others, we can drive with reckless abandon. In either case, however, it is generally 

expected that the virtual cars have realistic movement. 

Even for racing games that offer the player a cockpit view, there is often a race 

replay mode, during which we can review details of our race from external points of 

view. In addition to inside views, we can often watch our race from stable cameras 

placed beside the speedway. Imagine that you are a camera operator whose task is to 

follow a racing car with his TV camera. The camera is fixed on a tripod and you can 

rotate it around a vertical (Y) and a horizontal (X) axis. In this case, we can say that 

the eye position is stable and the target is moveable. These two points can be defined 

as two 3D vectors. There is also a third vector, called wp, which defines the default ver- 

tical axis of the camera as shown in Figure 4.8.2. By default, you can pitch and yaw 

your camera. If you want to roll it too, you need to change this assumed up vector and 

use another formulation such as the Euler angles shown in Figure 4.8.3. 

FIGURE 4.8.2 A camera and its important vectors. The 

eye defines the viewpoint, the target defines the ortenta- 

tion (it will be in the center of the rendered screen), and 

the up defines the vertical axis of the camera. 
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FIGURE 4.8.3 An object can be rotated around 

three axes: pitch (X), yaw (Y), and roll (Z). These 

rotations are defined by Euler angles. 

Now, your job as a camera operator in a fantasy race has already begun, and the 

cars are coming towards your viewpoint, as shown in Figure 4.8.4. The car that you 

need to record appears on the horizon and you start following it with your camera's 

target point. It comes with very high speed, but the driver accelerates even more. You 

knew that he would likely accelerate since your assigned section of the track is a long 

straightaway, so you keep right up. Eventually, the car is nearly in front of you, when 

a giant creature made of stone suddenly appears just in front of the car! The creature 

is too stupid to jump away and the driver does not have enough time to step on the 

brake to avoid the collision. CRASH!!! The creature seems to have felt nothing but 

the car is in pieces on the track. Because of the mass of the camera and the unexpected 

accident, your rotation of the camera continues. After you recognize what happened, 

you rotate back to the car wreck. 

IWWYW-L1L,” 
CRASH point q 

a car with high speed 

camera 
on a tripod 

FIGURE 4.8.4 An example situation where a roadside camera tries to follow a racing 
car, which stops suddenly. 
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Examining the Camera Control : 

As we discussed earlier, we would like to define the path of a camera as a C* curve. In 

a car racing game, a stable camera beside the road always looks at the car no matter 

what kind of maneuvers the player of the driving game makes. As we know, computer 

games do their physics and graphics calculations at a series of discrete points in time. 

As a result, we must process the paths of the moving objects and cameras as sampled 

curves. But how do we define a C? continuous curve based on discrete samples? 

Working with Parametric Curves 

What if we define parametric curves aligned to the actual positions of the given 

object? This solution results in several problems. As mentioned earlier, the followed 

object (i.e., the car) can have unrealistic movements, yet we need to use its sampled 

path to create the C? continuous path of our camera. One of the problems is that the 

sudden movements, which may have discontinuous jumps, cannot result in a C : 

curve. Besides, how could we generate a curve from the sample points of an object's 

position that is controlled by the player in real time if we don’t know the future? 

Expanding the curve with a new point might change the whole shape of the curve. 

We could partition the path to several smaller curves, but the problem of adding a 

new point to it would still exist. We will put aside this mathematical approach and 

start again from another point of view. 

Observing Human Behavior 

Recall the camera movement described in the previous story. Of course, there are the 

mass and inertia of the camera, but the most important source of our fictional cam- 

era’s behavior is human control. In fact, hereafter we will refer to realistic camera 

movement as human camera control. If we had a bigger and heavier camera, its move- 

ment would be much smoother, according to Newton’s second axiom. That is, even 

though we have limited force to accelerate the camera, reaching a given speed is just a 

question of time. So, we can move or rotate our heavy camera as fast as a handy cam 

but with not so much detail in the movement. Smoothness means that we can follow 

the slow and the fast movements well (sometimes with some delay), but we cannot 

follow sudden direction changes. The frequency is a typical parameter of movements 

that can be described by curves, thus smoothness can be represented by a frequency 

limit. This limit can be applied by some kind of low-pass filtering method. 

Human behavior means not just smoothing the movement of the camera, but 

also taking the thinking of the camera operator into account. First, he sees something 

in the viewfinder and starts following it. Then, he recognizes the speed of the object, 

but still follows it. If the object is accelerating, the camera operator notices it and tries 

to keep it in the screen. The overshooting in case of a sudden movement of the object 

can be explained with both properties: thinking, because the camera operator wants to 

be too smart and he has some delay after an unexpected event, and smoothing, because 
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the bodies of the camera operator and the camera have mass and the muscles-of the 

camera operator can apply finite force. 

Actually, if we are able to create smooth paths having the ability of human predic- 

tion on the future shape of the path, we can approximate C* continuous curves prop- 

erly enough. 

Final Decision: Realizing Human Behavior 
ANESTESIOL Li ORES ELAR UNTER OIE LE PEIN DESPISED ELETET 

We saw that the mathematical approach is very proper and scientific. However, it 

needs much time to explain, to understand, and to implement. Besides, we thought 

that the theory of human behavior represents the problem that we want to solve much 

better. Additionally, its implementation is not too difficult. So, let us find out which 

algorithms can be used to implement the two main human behaviors of smoothing © 

and thinking. 

Smoothing Curves with Inertia 

As we mentioned earlier, the main result of inertia is smoothing of the paths of 

motion. How do we apply this to our discrete set of sample points? How do we 

smooth them or apply low-pass filtering on them? If you are familiar with digital sig- 

nal processing, you are aware that because of Shannon's sampling theorem (also 

known as the Nyquist criterion), a waveform can store components only up to half of 

the sampling rate. For example, if we have 120 samples in a second, we can store 

sounds up to a maximum 60 Hz frequency. 

Let us take the average of two neighboring samples of a signal, keeping the original 

sampling rate, as shown in Figure 4.8.5. This procedure is similar to downsampling the 
waveform to 60 samples per second, limiting the maximum frequency to 30 Hz. If we 

take the average of three neighboring samples, the maximum frequency will be 20 Hz, 

Wt 
(i 

FIGURE 4.8.5 Averaging neighboring samples of a list. 

original sample list 

orig[0...n] 

| 

| 
I 

= 
(orig[i - 1] + origfi]) / 2; 

averaged (LPF) sample list 

aver[0...n] 
SSS SS 

aver[{i] = 

Of course, in camera control we have three-dimensional position vectors coming 
one after another, frame by frame. The sampling rate in the previous example corre- 
sponds to the frame rate in the case of motion control. First, we need a list where we 
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can store the position vectors of the target object. We need another list, into which we 

can calculate the low-pass filtered values of the input position list. This smoothing is 

one step toward human camera control. 

Thinking: Extrapolating Position Samples 

Remember your behavior as a camera operator. You tried to anticipate where the tar- 

get object will be and how fast it will be moving. During the preceding step of inter- 

polation, we had two or more key-samples and we tried to find out what would be 

between them as shown in Figure 4.8.6a. During extrapolation, we have the same two 

or more samples and we will try to find out what the next sample point will be, as 

illustrated in Figure 4.8.6b. Taking just the differences of the known position samples 

into account, we can predict a new position. Taking the differences of differences into 

account, we can also predict velocity, and with this, we can correct our first prediction 

for the new location. In addition, taking the differences of these differences of differ- 

ences into account, we can make a prediction for acceleration, so we can correct our 

speed and, in turn, the location prediction. While the first extrapolation needs at least 

two samples, the last one needs at least four. However, if we have just few samples, the 

result of our prediction can be somewhat inaccurate. To improve this, we can consider 

even more samples. We can also weight the samples to define their importance. For 

example, the recent past can be taken into account with more weight than the distant 

past. 

smp[i-1] smp[i] smp[i+1] smp[i-1] smp[i] smp[i+1] 

newsmp 

’ " £[0,1)eR 
newsmp = smp[i]*(1-t) + smp [it1]*t; newsmp = smp[i+1] + (smp[i+1]-smp[i]) *t; 

(a) (b) 

FIGURE 4.8.6 Interpolation (a) and extrapolation ( b) of sample points. 

By choosing the length of the extrapolation, we can define the “watchfulness” of 

our virtual camera operator. As mentioned earlier, we need at least two samples to 

extrapolate the next position of the target object. This newly predicted position will 

be used in the very next moment. In this case, we can tell that our camera operator is 

very watchful and fast, because a tiny little sudden change in the movement of the fol- 

lowed object is taken into account just in the next frame. If the frame rate is high, for 

example 120 frames per second, this speed is too fast for a human. It would mean that 

our camera operator perceives changes in movement in 8.3 milliseconds. Generally, 

people can perceive sudden changes in 0.7 seconds, which causes some delay in 
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motion. To compensate, the prediction about the actual position of the followed 

object is born 0.7 seconds earlier. Therefore, the sample buffer holding the extrapo- 

lated positions needs to store samples from the last 0.7 seconds, which is easy to solve 

in case of a constant frame rate. However, the frame rate of a computer game is always 

changing depending on the complexity of the rendered scene. As a result, we must use 

a variable length sample buffer for extrapolated positions. 

Programming Issues 
MLR AMAL NAMM LM IT 

This gem was implemented in C++ language using OpenGL and GLUT graphics 

support in the Win32 environment. In this section, we will present our virtual cam- 

era model and other helper data structures, which are applicable to OpenGL easily. 

Camera in OpenGL 

First of all, let us see how we can define a perspective view in OpenGL using GLUT. 

We used two functions to define a view. The first is 

gluPerspective(fov, width/height, nearDist, farDist); 

The fov (field of view) is the vertical viewing angle of a camera in degrees. This can be 

a small value when using a telephoto lens and can be large in the case of a wide-angle 

lens. If you want to simulate zooming, you have to change this variable from time to 

time. The value width/height defines the aspect ratio of the rendered view, which 

should be the same as the screen to avoid distortion. The last two parameters, 

nearDist and farDist, define the distance of the camera’s eye from the near and far 

clipping planes. The scene appears between these two planes. 
The basic function for the camera definition is as follows: 

gluLookAt(eye.X(), eye.Y(), eye.Z(), 

target.X(), target.Y(), target.Z(), 

up.X(), up.Y¥(), up.Z()); 

With this call, we can define the actual position of the camera's eye, the target point, 

and the camera’s up vector. In a computer game, the scene is always changing. If the 
camera is changing too, we need to recalculate these variables frame by frame in both 

functions. 

Changeable Field of View, Auto-Zoom 

Our camera model has an auto-zoom feature. Our camera can take into account the 

size of the followed object and its distance from the camera, allowing it to calculate 

the fov at every time step: 

fov = 2.0 * 

atan((targetSize / 2.0) / (target - eye).Length()) * 

180.0 / MPI; 
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You can notice that in our code snippet, we used the distance between the camera's eye 

and its target instead of the distance between the cameras eye and the object itself. The 

argument for doing this is that the camera's target always represents the direct or indirect 

position of the followed object. An indirect case occurs when the target deviates from 

the actual position of the object after applying low-pass filtering and extrapolation. 

Implementing Human Behavior 

We will now discuss the implementation of our human camera movement model in 

our camera model. The Camera has a variety of data members and member functions. 

Here, we will introduce the most important ones. 

At the beginning of the camera.h header file, where the Camera class is defined, 

there are some global constants. One of them defines the maximum length of arrays 

that are used in extrapolation of the camera's target. It is called MAXEXTRAPOLLENGTH 

and its value, used by us, is 1000. This value should be greater then the maximum 

frame rate of the rendered scene in the used computer, because the lists defined with 

this length should store vectors of a second collected frame by frame. 

Other important members of the camera class are the Vector3f variables, which 

define the camera itself (eye, target, and up). The Vector3f arrays (objPosList, 

objPosDifList, objPosDifDifList, and lpfObjPosList) and float arrays 

(objFrameWeightList and sumWeight) are used in the extrapolation. The first three 

arrays are the collections of position, speed-like, and acceleration-like samples, while 

the fourth one is reserved for the low-pass filtered position samples. The first float 

array stores weights where we define the importance of the corresponding objPosDi- 

fList and objPosDifDifList elements, while the second list contains a precalculated 

sum of weights for each element number used in averaging. 

These arrays store data chronologically. The elements indexed by 0 correspond to 

the actual frame, while another indexed by 7 represents the past, 7 frames ago. 

Here you can see the spirit of the human behavior for our virtual camera model. 

This function (called placeObjectHereToFollow( )) gets the actual position (objPos) 

of the followed object with a flag (lookAtItExactly) to know that the target should 

follow it directly or with human nature. 

void placeObjectHereToFollow(Vector3f 
objPos, 

bool lookAtItExactly = false) { 

if (actualFPS == 0.0) return; } 

The function starts with a control. If the actual frame rate ts zero, which can happen for 

a while when the application first starts, we skip this execution to avoid malfunction. 

Then we define those time-dependent parameters, which are calculated from the 

actual frame rate (actualFPs). The floating-point variables lengthForExtrp1 and 

LengthForLPF and their integer versions (called iLengthForExtrpl and iLengthForLPF) 

contain the number of samples used in extrapolation or low-pass filtering. In other 
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words, they represent the time constant of extrapolation (in our example, it is 0.7 sec- 

onds) and low-pass filtering (0.4 seconds, which is the 2.5 Hz limit frequency of LPF). 

float lengthForExtrpl = 

min(actualFPS, (float)MAXEXTRAPOLLENGTH) * 0.7; 

float lengthForLPF = 

min(actualFPS, (float)MAXEXTRAPOLLENGTH) * 0.4; 

In the next part of the code, we calculate the next low-pass filtered sample using a set 

of the original samples of the followed object stored in objPosList. 

Vector3f lpfObjectLastPos = objPos; 

for(int 2 = 0; 1,<. ({Lengthrorepra- yy se) 

lpfObjectLastPos += objPosList[i]; 

if (iLengthForLPF != 0) 

lpfObjectLastPos *= (1 / (float)iLengthForLPF) ; 

else lpfObjectLastPos = objPos; 

Whatever happens, we always shift the previously mentioned lists frame by frame in 

full length. 

for (int i = MAXEXTRAPOLLENGTH - 1; i > 0; i-) 

{ 
objPosList[i] = objPosList[i - 1]; 

lpfObjPosList[i] = lpfObjPosList[i - 1]; 
objPosDifList[i] = objPosDifList[i - 1]; 

objPosDifDifList[i] = objPosDifDifList[i - 1]; 

i 

After shifting, insert a new value into the 0 position. Notice that the list, which stores 

the speed-like data, has the differences of LPF samples as new element. 

objPosList[0] = objPos; 

lpfObjPosList[0] = ipfObjectLastPos; 

objPosDifList[0] = lpfObjPosList[0] - lpfObjPosList[1]; 

objPosDifDifList[0] = objPosDifList[0] - objPosDifList[1]; 

Here, we calculate the weighted average of the speed-like and acceleration-like data. 

Vector3f averageTargetStep; 

Vector3f averagePosDifDif ; 

for (int 2 = Oj}eie<)ilengthFornExtrpl 8139444) 

{ 
averageTargetStep += 

(objPosDifList[i] * objFrameWeightList[i]); 
averagePosDifDif += 

(obj]PosDifDifList[i] * 

objFrameWeightList[iLengthForExtrpl - i - 1]); 

averageTargetStep *= (1 / sumWeight[iLengthForExtrpl - 1]); 

averagePosDifDif *= (1 / sumWeight[iLengthForExtrpl - 1]; 
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If we want to follow directly, we just leave the function “attaching” the target onto the 

object. Else, we take the element of the low-pass filtered position list at the beginning 

of the extrapolation (by 0.7 seconds in the past) and increment it with the average 

speed multiplied by the time of extrapolation and the half of the low-pass filtering. As 

a final correction, add the average acceleration to it. 

if (lookAtItExactly) { target = objPos; return; } 

target = lpfObjPosList[iLengthForExtrpl] + 

averagelargetStep * 

(lengthForExtrpl + lengthForLPF i. Zo) ae 

averagePosDifDif ; 

} 

You could ask why exactly the half of the LPF time constant was used in the calcula- 

tion. The answer is simple: generating the low-pass filtered position data, we per- 

formed averaging. Let us examine a straight-lined, even-paced movement of an object 

that we need to follow with the target of our camera. Take iLengthForLPF pieces of 

neighboring position samples and get their average. This results in the arithmetic 

mean of those samples. In the case of such movement, the arithmetic mean of vectors 

will be the center of the section defined by those sample vectors. Chronologically, that 

center point is in the center of that section in time, too. If we take the first element of 

1pf0bjPosList (indexed by 0), which was generated during such movement, It points 

to a location that was passed by a half of lengthForLPF time ago. Therefore, the delay 

is (lengthForLPF/2). If we take the element of this list indexed by iLengthForExtrpl, 

the summed delay will be (LengthForExtrpl + lengthForLPF / 2). This time multi- 

plied by the average speed will result in the actual position of the followed object in 

case of straight-lined, even-paced movement. This is the reason why the algorithm is 

able to keep up with the object in straight sections. In other kinds of movements, the 

nature of following will be more human-like. 

Conclusion 
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We have described an algorithm for adding human camera control to driving applica- 

tions. The algorithm is straightforward to implement and simulates the inertia and 

the struggle of the camera operator to keep up with the movement of a virtual car. 

The performance of our algorithm does not depend on the frame rate or the speed of 

the car. The main advantage of this algorithm is that it demands very little processing 

time, so it does not degrade the performance appreciably. 
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Sample Application 

We have implemented our algorithm in a simple demo application, which can be 

<s% found on the companion CD-ROM. The demo shows a car in a three-dimensional 

ONTHEGD environment followed by a camera on a tripod. The car can be controlled using the 

arrow keys. The camera follows the car as if it were controlled by a virtual camera 

operator. Pressing the Q key toggles the human behavior of the camera. 
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Introduction 

Jason L. Mitchell, ATI Research 

JasonM@ati.com 

Nas GPU processing power increasing at a rate that outstrips the ability of the 

rest of the system to feed it—not to mention the increasing cost of authoring 

content—you will notice a trend toward data amplification through instancing and 

proceduralism in the coming years. As a result, we have chosen to focus on both data 

amplification and natural phenomena in the graphics gems in this fifth edition of the 

Game Programming Gems series. 

In the first graphics gem, “Realistic Cloud Rendering on Modern GPUs,” Jean- 

Francois Dubé of UBISOFT discusses a technique that uses advanced pixel shaders 

and precomputed noise textures to generate procedural clouds with sophisticated 

dynamic illumination. In the gem “Let It Snow, Let It Snow, Let It Snow (and Rain),” 

Niniane Wang and Bretton Wade describe the technique they developed for rendering 

precipitation in the game Microsoft Flight Simulator 2004: A Century of Flight. This 

technique is both efficient and controllable, allowing artists to tweak the model to suit 

the desired look of the game. 

We then move from the sky to the ground, with a focus on efficient and realistic 

foliage rendering. In his gem, “Widgets: Rendering Fast and Persistent Foliage,” Mar- 

tin Brownlow describes techniques for using current graphics hardware to efficiently 

render large numbers of instanced objects to act as ground cover. This includes both 

GPU and CPU techniques for maintaining maximum performance. In the gem “2.5 

Dimension Impostors for Realistic Trees and Forests,” Gabor Szijarté discusses a tech- 

nique that uses dynamic depth sprites to render realistic tree canopies. 

Interactive virtual worlds with procedural skies and foliage may be beautiful, but 

you can't make a game without a little destruction, right? To that end, Neeharika Ada- 

bala and Charles E. Hughes present a technique in “Grid-less Controllable Fire” that 

enables the simulation and rendering of highly realistic flames. Sometimes you want 

something even more dramatic, with that over-the-top Hollywood flair. In his gem, 

“Powerful Explosion Effects Using Billboard Particles,” Steve Rabin of Nintendo 

describes a technique for creating powerful over-the-top explosions that are realistic, 

controllable, and efficient to render. 

For the first time in the Game Programming Gems series, we have an article on ren- 

dering—you guessed it—gems! In the gem, “A Simple Method for Rendering Gem- 

stones,” Thorsten Scheuermann of ATI Research describes the technique used in the 

ATI demo Ruby: The DoubleCross to efficiently render a realistic diamond. Dominic 
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Filion and Sylvain Boissé then present a method for integrating realistic refraction and 

heat haze effects into 3D scenes in their gem, “Volumetric Post-Processing. ” 

As noted earlier, the cost of content creation is increasing with the ability of 

GPUs to consume large data sets. In their gem, “Procedural Level Generation,” Tim- 

othy Roden and Ian Parberry present a framework for generating game worlds proce- 

durally—drastically reducing the tedium of creating certain classes of game levels. In 

our final graphics gem, Dominic Filion presents a technique in “Recombinant 

Shaders” that enables graphics application programmers to effectively manage the 

large numbers of shaders that must be generated to effectively render increasingly 

complex game worlds. 

The ideal gem is one that is quick and easy for you to drop into an existing game 

programming project without a major rewrite. As a result, we have chosen topics that 

meet this need and address the increasingly important topics of data amplification 

and natural phenomena. > 



3.1 

Realistic Cloud Rendering 

on Modern GPUs 

Jean-Francois Dubé, UBISOFT 

jfdube@ubisoft.qc.ca 

ith the new generation of rendering hardware, games are becoming more and 

more realistic. Per-pixel lighting and shadowing, volumetric lighting, and atmos- 

pheric effects are now possible. Despite these advances, if you take a look at any modern 

game, youll notice something that they all have in common: a static (and sometimes 

ugly) cubemap for the sky. More advanced solutions add a moving layer of clouds, which 

helps but is still not as realistic as we would like. In this chapter, we'll discover how to ren- 

der and light realistic, dynamic clouds all on the GPU, using shader model 3.0. 

In this gem, we'll see how to procedurally generate an animated noise texture that 

looks like real clouds, all on the GPU. This texture will then be mapped on a plane 

over the camera, similar to a skybox. Firially, we'll see how to add realistic lighting by 

actually integrating along rays through the clouds with ps3.0 shaders with loops, as 

we see in Figure 5.1.1. 

ate 

FIGURE 5.1.1 Realistic real-time procedural clouds. 
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Making Noise 
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Cloud Density ». 
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The basic idea behind cloud rendering is to generate and animate noise over time to 

make the clouds change shape in a plausible way. As we want to perform all our com- 

putations on the GPU, current implementations of 3D Perlin Noise aren't well suited 

for our task. Instead, we will composite multiple precomputed noise textures at differ- 

ent octaves and weights. Each octave of noise adds detail to the final texture—the first 

octave gives the rough shape, and the more octaves we use, the more details we add. 

We have found that using eight octaves of noise is a good trade-off between perfor- 

mance and visual quality. 

/ 

Octave Compositions / 

Each noise octave is represented by a smoothed 128 x 128 noise texture. This noise is 

generated with random numbers, and smoothing is performed with simple neighbor- 

hood filtering. Because the noise is signed, you may have to perform some scaling and 

biasing to pack the data into the textures and when you sample from them in your 

pixel shaders, depending on the texture format youre using. In our pixel shader, all 

eight octaves are added together with different scales and weights to achieve the 

desired effect. That is, the first octave is not tiled, giving the rough shape of the final 

composite noise. As we continue to add in higher octaves, they are repeated more fre- 

quently and weighted less, giving more and more fine detail, as shown in Figure 5.1.2. 

Playing with the tiling rates and weight factors allows you to tune the look of your 

clouds. Giving more weight to higher octaves results in smaller cloud formations, but 

still provides the rough shape defined by the lower octaves. Good starting values are l, 

2, 4, 8, and so on for octave scales, and 1, 1/2, 1/4, 1/8, and so on for octave weights. 

Animating the Noise 

Animating the noise texture is simply a matter of animating the octave textures over 

time, as discussed in [Elias] and [Pallister01]. Low octaves should animate more 

slowly than high octaves. This way, the basic shape of our clouds will change slowly, 

while finer details will change faster. For each octave, we keep two noise textures and 

interpolate slowly between them at different rates. We will return to this step later 

when we discuss optimizations. 

eS eR ARF a RE IAEA ERE AAEM AR ANN SUE EERE EE EAN AS HTN 

So far, we have created our basic building block: dynamic noise with controllable 
octaves. A typical image of eight octaves of noise is shown in Figure 5.1.3a. We must 
now perform a few more steps to make this noise appear more cloudlike. For example, 

we need to be able to control the percentage of clouds in the sky. To do this, we sub- 
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FIGURE 5.1.2 (a) First octave gives the rough shape of the clouds. (b) Second octave adds 

detail. (c) Third octave adds finer detail. (d) Fourth octave and higher add more detail 

but are more and more subtle. 

tract a value called “cloud cover” from the noise and clamp the result to zero, thus 

removing a certain quantity of noise, as shown in Figure 5.1.3b. The cloud cover vari- 

able ranges from [0..1] and represents the amount of blue sky that we want to see 

(0 creates a fully clouded sky, and 1 creates a fully clear blue sky). At this point, we 

still don’t quite have clouds, so we exponentiate our current result to obtain the fluffy 

look of clouds that we’re looking for, as shown in Figure 5.1.3c. 
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FIGURE 5.1.3 (a) The eight octaves noise texture. (b) The same noise texture after we 

subtracted the cloud cover value and clamped it. (c) The same noise texture, after 

exponentiation. Notice how it starts to look like clouds. 

The following HLSL code performs the computations described earlier (the rest 

of the shader will be given later in the article): 

01. float cloud cover = 0.457; 

02. float clouds sharpness = 0.94f; 

03. float3 tex = tex2D(OctaveO, uv * OctavesScalesO.x) * 

OctavesWeightsO.x; 

04. tex += tex2D(Octave1, uv * OctavesScalesO.y) * 

OctavesWeights0O.y; 

05. tex += tex2D(Octave2, uv * OctavesScalesO.z) * 

OctavesWeights0.z; 

06. tex += tex2D(Octave3, uv * OctavesScalesO.w) * 

OctavesWeights0O.w; 

07. tex += tex2D(Octave4, uv * OctavesScales1.x) * 

OctavesWeights1.x; 
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08. tex += tex2D(Octave5, uv * OctavesScalesi1.y) * 

OctavesWeights1.y; 
09. tex += tex2D(Octave6, uv * OctavesScales1.z) * 

OctavesWeights1.z; 

10. tex += tex2D(Octave7, uv * OctavesScales1.w) * 

OctavesWeights1.w; 

141. tex = max(tex * 0.5f + 0.5f - cloud_cover, 0.0f); 

12. tex = 1.0f — pow(clouds_sharpness, tex * 255.0f); 

Lines 3 to 10 perform the compositing of the eight octaves of noise. The value uv con- 

tains the texture coordinates of the cloud plane, which get scaled prior to sampling. 

The values fetched from the noise textures are weighted as well. This shader assumes 

that the noise is stored in a signed texture format, hence the value of tex is signed. As 

a result, Line 11 converts the noise range from [-1..1] to [0..1], subtracts the cloud 

cover value, and clamps the result to zero. Line 12 performs the exponentiation. 

So far, we have used fairly traditional methods to compute plausible cloud density 

in real time. To fully integrate our animating clouds into our game worlds, however, 

we must light them in a realistic way. 

Cloud Lighting 

Real cloud lighting is very complex, exhibiting light scattering, which is difficult to 

evaluate in real time. Even sophisticated solutions still leave much to be desired [Har- 

risO1], [Harris02]. As a result, we have chosen to ignore physically correct computa- 

tions and tried to approximate the desired look. 

Light Scattering 

In real life, clouds receive light from the sun. What we see from below is the amount 

of light coming out of the underside of the clouds. As light travels in the cloud vol- 

ume, it is scattered in all directions as it hits water particles, resulting in dark gray por- 

tions in the bottom of clouds. Ideally, for every pixel rendered in our cloud plane, we 

would like to trace a ray from the sun to the pixel, accumulating the distance traveled 

within the clouds to approximate the light scattering integral. This would be quite 

expensive to do in real time, so we have come up with approximations that make this 

usable for games. 

Cloud Density Field Tracing 

To perform the trace from the sun through the clouds to a given pixel on the under- 

side of the clouds, we use the noise composited previously as a density field very sim- 

ilar to a height field. To reduce aliasing, our cloud lighting is performed using only the 

first four octaves of noise. At the beginning of every frame, we render the first four 

octaves of the cloud density into a 512 x 512 render target, which will be used in the 

final shader as the density field. The following HLSL code performs the path tracing. 

This code follows the previous code and tex.r is the current cloud density. 
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01. float Density = 0.0f; 

02. float3 EndTracePos = float3(uv, -tex.r); 

03. float3 TraceDir = EndTracePos - SunPos; 

04. TraceDir = normalize(TraceDir) ; 

05. float3 CurTracePos = SunPos + TraceDir * 1.25f; 

06. tex = 1.0f — pow(clouds_sharpness, tex * 255i Onn) 5 

07. TraceDir *= 2.0f; 

08. for(int i=0; i<64; i++) 

09. { 

AO} CurTracePos += TraceDir; 

ale float4 tex2 = tex2D(DensityFieldTexture, CurTracePos. xy) 

2550s ets 

We Density += 0.1f * step(CurTracePos.z*2, tex2.r*2); 

} 
14. float Light = 1.0f / exp(Scattering\* 0.4f); 

15. return float4(Light, Light, Light, tex.r); 

In line 2, notice that we use —tex.r as the end position of the sun to cloud ray. This is 

because in real life, clouds aren’t mapped on a plane: they are three-dimensional. So in 

the trace loop, the cloud height field is going in both directions (equal distances above 

and below the cloud plane). Also notice that we perform the exponentiation after 

computing the ray information: this is because exponentiation is only-a trick to make 

clouds look better. Lines 7 to 13 are the heart of the shader: the actual sun to cloud 

density field tracing loop. As you can see, we perform ray marching in 64 increments 

of 2 units, accumulating the density traversed during the trace. Line 12 performs the 

actual check to see if the current ray position is inside the clouds. Essentially, we're 

checking to see if the current trace Z position is inside the clouds. On line 14, we 

roughly approximate light scattering, and then return the final lit cloud pixel in line 

15. The complete shader and a demo are included in the companion CD-ROM— 

including videos for people without shader model 3.0 video cards. 

Performance 

This technique is highly fill-rate dependent, due to the tracing loop. Development 

was done on a GeForce6 graphics card, and the sky runs at 60 frames per second at a 

resolution of 640 x 480. As the resolution increases, performance drops dramatically. 
It is also possible to run this technique on ps2.0 hardware by replacing the tracing 
loop by direct illumination: this is left as an exercise for the reader. 

on wanes PS ASA RR IEE ITS AARNE NSPE SRM NERA MRE 

Some steps of this algorithm can be precomputed each frame, notably the animation 
of noise octaves. Instead of interpolating from two textures for each octave at every 
pixel, it is possible to precompute them using a render target for each octave. We 
slowly interpolate between the two, and we use the render targets as input textures for 
our cloud shader. Also, as we render the first four octaves in the density texture each 
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frame, we do not need to compute them again in the final cloud shader: we simply 

fetch them from the density texture and add the final details with the last four octaves. 

Conclusion 

Simulating clouds that look realistic is very difficult, but we showed that it is possible, 

with modern graphics hardware, to get very good results in real time. We anticipate 

that the coming generation of game consoles will have enough rendering power to per- 

form techniques like the one described in this gem at the target HDTV resolutions. 
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Let It Snow, Let It Snow, 

Let It Snow (and Rain) 

Niniane Wang, Google Inc. 

niniane@gmail.com 

Bretton Wade, Microsoft Corporation 

brettonw@microsoft.com 

ether youre creating a driving game, a first-person shooter, or the next big 

RPG, realistic-looking rain and snow can add realism to your outdoor scenes. 

Your cars, armored soldiers, and two-headed monsters can all benefit from being 

viewed through a sheet of rain or dense snow. 

Many games have modeled precipitation with particle systems [Reeves83], which 

produce realistic motion by simulating every drop of rain or snow. For example, each 

snowflake can travel on its own path, caught in flurries of wind. However, this is often 

expensive, and the cost increases with denser precipitation since that requires simulat- 

ing more particles. 

In this article, we present a technique for rendering precipitation with less perfor- 

mance overhead by mapping textures onto a double cone and then translating and 

elongating the flakes or drops via hardware texture transforms. Our approach, which 

was implemented in Microsoft Flight Simulator 2004: A Century of Flight as shown in 

Figures 5.2.1 and 5.2.2, also yields more artistic control over motion factors and drop 

appearance than typical particle systems. 

Modeling Particle Bundles Using a Texture 
SI RUE REE AIDS ITE REE TOTO 8 NE SBE SAO STO ELST TTS OLE TE LEE ETE OT, 

We build upon the basic idea of using a texture to simulate precipitation, with low 

performance overhead. The textures consist of a bundle of drops created by our 

artists, an example of which can be seen in Figure 5.2.3. 
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FIGURE 5.2.2 Screenshot of snow moving at high velocity. 

We need to apply translation to the texture so that the precipitation appears to be 
falling over time. We started with the obvious approach of translating the texture at a 
rate proportional to the desired speed of precipitation according to the game clock. 
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FIGURE 5.2.3. An example rain texture. 

This simple approach produced two visual artifacts. First, when the translation is 

much larger than the size of an individual raindrop, the eye does not connect the rain- 

drop in one frame with the same translated raindrop in the next frame, due to the lack 

of motion blur and large spatial separation. Thus, it looks as though disconnected 

raindrops are randomly flitting past the camera, rather than one raindrop making a 

continuous movement. If the texture coordinate translation is even larger—so that it 

is almost the length of the entire texture from one frame to the next—the rain can 

appear to move backward, much like the typical wagon-wheel effect in old western 

movies. To fix this, we translate the texture by a fixed size of one raindrop width each 

frame. This ensures the eye will connect the movement of each raindrop across 

frames. 

Note that the translation is constant regardless of precipitation speed and also of 

framerate. Since we want the precipitation to appear to fall at a constant rate regard- 

less of framerate, we must account for varying frame times—otherwise, it will fall 

faster with higher framerates and slower with lower framerates. To this end, we scroll 

the texture each frame by D,,.<ip, described in Equation 5.2.1: 

t 
pas * _ delta 

2 l 

precip iv. Oran 
(5. ® ) 

const 

1 3 

where tf, 1s a fixed frame time, €.g-, 30 seconds. 

To simulate motion blur, we use the aforementioned stretch factor. This factor is 

proportional to the speed of movement, such that longer streaks occur when the cam- 

era is moving quickly. 
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We compute the stretch factor, described in Equation 5.2.2, based on VeCyrecip» Sp 

(a precomputed scale factor to scale down successive textures so they appear further 

away), Chie) (a conversion factor specifying the world space equivalent for each pixel 

in the texture), and Sie, (an artist-controlled scale factor to give different lengths of 

streaks to different types and intensities of rain, e.g., light rain has longer streaks than 

heavy rain). 

S fee streak (S22) 

eee ce : Ae 
pixel precip streak 

Rendering Snow or Rain in Parallax SIREN REINER EERIE SRLS EON ERT IE EMI 

In addition to providing the sense of particles moving past the player, we want to pro- 

vide a sense of depth and parallax. Raindrops or snowflakes in the distance should 

look smaller and fall slower than ones close by [Langer03]. To simulate this, we apply 

our texture scrolling technique to multiple textures. Our system used four textures, 

a 

scaling down the texture coordinates progressively on each one to produce smaller 

precipitation drops and slower scrolling. We use Direct3D fixed function multitextur- 

ing to blend the four textures together. 

The amount of scaling down depends on the type and intensity of precipitation, 

and is controlled by our artists. 

Although this produces the parallax effect, the Z information is incorrect. The 

textures are designed to look far from the camera, but they are actually rendered on 

a plane at a close distance. When the drops are small enough, however, this is not a 

noticeable artifact. 

Simulating Camera Movement with a Cone 
SARE LANL LEE MEE EL LALLA ON LEE DOLL LIONEL LEA LIAO een HE eS 

When the camera is traveling forward, the rain or snow should tilt so that it appears 

to be shooting at and past the camera. Similarly, when the camera moves sideways, the 
precipitation streaks are expected to have a sideways component to their motion. To 
simulate these effects, we map the four precipitation textures onto a double cone, as 
shown in Figure 5.2.4. Our textures are designed to tile so that no seams are visible 
when they are repeated across the cone surface, or as they scroll across the cone. 

To reduce the visibility of the singularities at the cones’ tips, we make the cones 
more transparent at those points, gradually fading in toward the circle at which the 
cones meet. We also select an appropriate cone height to tune the angle at which the 
rain appears to fall. If the cone is too short, when the camera is stationary, the rain will 

fall at an unrealistic slanted angle rather than straight down due to the cone’s steep 
edges. On the other hand, the cone must not be too tall. This ensures that when the 
camera is moving and the cone is rotated, the rain will fall from the middle of the 
screen toward the edges as desired. 
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FIGURE 5.2.4 Double cone onto which 

we mapped textures. 

As the camera moves, we pivot the double cone so that precipitation appears to 

fall toward the camera from the direction of movement. We do this by setting the 

cone’s world matrix to look along the precipitation travel vector VéCprecips described in 

Equation 5.2.3. 

Vee ay =(Cp* VE ny +V El roay |” tt (5.2.3) 
precip camera gravity 

where Velimen is the camera velocity, Cp is an artist-controlled damping constant to 

limit the tilting of the cone, Vélyayin is the velocity of the precipitation due to gravity, 
‘gravity 

and typ, is the time elapsed since the last frame. 

Together in One Matrix 
een

 SRST RELEASE RRM 
ASAT LRG 

Dprecip and the elongation factor E are combined in the texture transform matrix 

shown in Equation 5.2.4. Dprecip 18 represented in pixel space and converted to real- 

world space by £, which also slows down scrolling in successive textures. 
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We can also simulate different precipitation intensities by varying the scaling and 

translation on the matrix. For example, heavy precipitation is modeled with larger 

drops (less scaling down) and faster movement (larger translation). A big advantage to 

designing a system with so many tweakable variables is that it can be controlled by the 

artists. 

Adding Artist Control ARES PEELE ID LTE. LETTE 

We designed our system to give our artists fine-grained control over the final look and 

feel. First, the artists create the textures, so they control the distribution of raindrops 

and snowflakes. We use a different set of textures for light rain versus heavy rain, and 

the artists can adjust the drop density for each intensity. The artists can also add a haze 

or fog into the texture, which obscures objects in the scene. The fog can be heavier in 

some parts of the textures to add variety. 

We also grant artists control in the rainfall/ snowfall equations by allowing them 

to adjust damping and scaling factors at several points. We wrote a tool that interfaces 

with our in-game rendering engine that allows tweaking of visual parameters using 

sliders. 

Artists can adjust Spto change the drop size and scrolling speed. They can also 

adjust Sire the streak length (to give lighter rain longer streaks than heavy rain, for 

example) and Cyto limit the cone tilting. 

For each intensity of rain and snow, our artists experimented with parameter set- 

tings until they found the right combination of streak length, drop size, speed, and 

cone damping. Immediate visual feedback and artistic control over the parameters 

was key to creating a high-quality end result. 

Conclusion 
up eR a RE ERI NEARS ENT ONE ERIE I RN ARES LO TETRIS IE RNIN IIT DIETER MOE ETE TTI OIE LON TERE ERD 

Our system looks most realistic for rain and heavy snow. In real life, light snow tum- 

bles and flutters as it falls, which is not well simulated with our current system. Shift- 

ing around the texture coordinates over time may approximate the effect and is an 

area for future work. 
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The system is also more suited for games with relatively steady framerates. When 
the game framerate stutters drastically, the scrolling of the precipitation texture also 
stutters, which is more noticeable than the rest of the frame. In particular, the stretch 
emphasizes stutters, possibly causing the effect to appear to run backward. 

Our technique has negligible impact on the game’s overall framerate and has the 

same performance overhead for heavy precipitation as light precipitation, unlike a 

particle system. It ships with Microsoft Flight Simulator 2004: A Century of Flight, 

which maintains framerates of 15 to 60 fps across a range of consumer PCs. 
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Meshes for Widgets 

Widgets: Rendering Fast 

and Persistent Foliage 

Martin Brownlow 

martinbrownlow@msn.com 

(Gz that render outdoor environments face a common problem: to look realis- 

tic, vast amounts of foliage must be drawn. For the purposes of this gem, foliage 

includes such features as plants, bushes, boulders, grass stalks, and other low-to-the- 

ground objects. These objects serve to obscure the ground textures in complex layers, 

lending a more realistic, voluminous appearance to the ground. 

The objects used as foliage, which we shall refer to as widgets, are generally inert 

(they cannot be interacted with) and are there just to give the eround depth. Although 

these widgets could be randomly generated as new areas of the world are activated, an 

astute player might notice any differences when revisiting a previous location. Addi- 

tionally, artists generally want control over everything that affects the look of their 

levels, and so prefer to define which types of foliage appear in which areas and how 

often they appear. In extreme cases, an artist might even want to go in and individu- 

ally place several widgets to achieve a specific look. 

Another consideration is that of destructibility: although widgets are essentially 

inert, it is often desirable to have world events affect them. For instance, if your game 

has huge explosions that change the underlying landscape textures to represent dam- 

age to the ground, it would be ridiculous for all the little tufts of grass to survive the 

blast unscathed. Some method of temporary or permanent removal of individual wid- 

gets or groups of widgets from the world will help the sense of immersion. 

For efficient rendering of foliage, we need to address two distinct problems: we 

need to be able to quickly generate only those widgets that fall within the view frus- 

tum, and then to efficiently draw the resulting list of models. 

Although our intent is to render highly complex scenes covered with foliage, the indi- 

vidual meshes that make up the widgets need not be complex at all. In fact, the most 

effective models used as widgets generally use only a handful of double-sided poly- 

gons and a single texture. This simplicity allows us to render many more instances 
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than we otherwise could, and so adds to the overall complexity of the scene. Figure 

5.3.1 shows a simple example mesh that can be used as a widget, consisting of eight 

double-sided triangles and a texture map. 

FIGURE 5.3.1 A simple ground cover mesh. 

Unfortunately, although the meshes themselves are simple, drawing them effi- 

ciently is not. Today’s graphics hardware is designed to render huge amounts of trian- 

gles but performs best when rendering in blocks consisting of thousands of vertices. 

Rendering a thousand different copies of our eight triangle mesh is not going to be 

making the best use of graphics hardware. 

Drawing Widgets Efficiently 
Ea SRE 

If we put aside for the moment the question of how to generate a list of the widgets 

that are to be drawn, we can look at how we are to efficiently draw a large number of 

tiny models. We have already determined that our widget meshes are to consist of a 

small amount of triangles and a single, simple material. We can further insist that each 

widget mesh should consist of exactly one triangle strip of indeterminate length. 

To get the best throughput from our graphics hardware, we must submit as few 
batches of triangles to the hardware as possible, with each batch being as large as we can 
make it. This, then, is our objective: to find some way to batch together a large num- 
ber of small models whose positions can change independently of one another from 
frame to frame (as the view changes, different sets of widgets will need to be drawn). 
This obviously rules out a large vertex buffer containing pretransformed widgets, since 
we would need to keep editing this buffer as the viewpoint moves around the world. 
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Widget Batches 

Although filling a vertex buffer with pretransformed widgets is out of the question, 

can we find a way to make the graphics hardware transform each widget by the correct 

matrix for us? In fact, we can; this is a similar problem to skinning, where each vertex 

indexes into a palette of matrices for its transform. By adding a matrix index to each 

vertex in the widget, we can make each widget index its own transformation matrix, 

then add multiple copies of the same widget to the buffer. Each individual widget 

must have the same index value for every vertex it contains, but consecutive widgets 

can and should have different values. Using an indexing system like this, we can place 

as many widgets in a single vertex buffer as there is room for matrices in the vertex 

constants. This method was employed by Gosselin, et al. for rendering large crowds of 

characters, but due to the skeletal animation, only four characters could be rendered 

in one API call [Gosselin04]. For foliage, we can render more widgets per API call. 

The following structure shows a possible vertex format for describing widgets: 

typedef struct 

float position[3]; 

float uv[2]; 

u32 mtxIndex; 

} WIDGETVTX; 

Now that we have created a vertex buffer containing several copies of the same 

widget, each with its own matrix index, we must figure out how to draw them in a 

single batch. We already know that each widget consists of a single triangle strip; we 

just need to stitch together the strips of consecutive widgets. This is done through the 

use of degenerate triangles; triangles that have two or more vertices that are coinci- 

dent. To join two triangle strips together, we need to add four degenerate triangles, in 

the form of two indices. For example, to join the two strips, (1,2,3,4) and (8,9,10,11) 

we would repeat the last vertex of the first strip and the first vertex of the second strip 

to form the strip (1,2,3,4,4,8,8,9,10,11). In this example, our four degenerate trian- 

gles are (3,4,4), (4,4,8), (4,8,8), and (8,8,9). Each degenerate triangle produces no 

pixels, and so the net result is the appearance of drawing two disconnected strips of 

triangles but with a single draw call. 

However, joining strips in this fashion requires that the first strip be of an even 

number of indices. If the first strip is not an even number of indices in length, the 

winding order for the second strip will be wrong, since the winding order of the trian- 

gles in a strip is reversed for every other triangle. To get around this, if the first strip is 

an odd number of indices in length, we must first make it an even length by repeating 

the last vertex. For example, joining the two strips (1,2,3,4,5) and (8,9,10,11) results 

in a single strip of 12 vertices: (1,2,3,4,5,5,5,8,8,9, 10,11). : 

Along with the vertex buffer containing multiple instances of a single widget, we 

must also create an index buffer containing a single strip to draw all these widgets. 

When creating this buffer, we must remember that the base vertex for each consecutive 
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widget must be incremented by the number of vertices in a single widget in-order to 

address the correct set of vertices. The following code will generate a single strip for 

nw widgets, each consisting of nv vertices and ni indices, and returns the number of 

indices generated in the strip: 

u32 CreateWidgetIndices ( 

u16 *pOutput, // ouput. buffer 

u32 nw, // number of widgets 

u32 nv, // # verts per widget 

u32 ni, // # indices per widget 

u16 *pIndices ) // ptr to indices for 1 widget 

u32 i,basev,j; 

u16 *pout; 

// base vertex = 0 
basev = 0; 

pout = pOutput; 

// for each widget 
for( i=1;i<=nw;i++ ) 

i 
// copy the widget’s indices, offset by base vertex 

for(j=0;j<ni;j++ ) 

pout[j] = pIndices[j] + basev; 

pout += ni; 

// if the widget is an odd length 

af (eel) 
{ // repeat the last index 

pout[O] = pout[-1]; 

pout++; 

} 

// if we’re not the last widget, add degenerates 

if( i!=nw ) 

{ 
// create degenerate tris: 
// repeat the last index 

pout[O] = pout[-1]; 

// increase the base vertex 

basev += nv; 

// repeat the first vertex of the next widget 

pout[1] = pIndices[0] + basev; 

pout += 2; 

} 
} 
// return the # of indices 
return pout — pOutput; 



5.3 Widgets: Rendering Fast and Persistent Foliage 519 
sonitentenseoseenssevsinitnnnnstcnnetcceannteetunantsnenennascuateennitsnantstaetnne issn ceiner ett anhAlieneneAROVAtitinetRSMMAEHVA TENGE 

Drawing Widget Batches 

Once we have our vertex and index buffers, we can now draw multiple widgets in a 

single draw call. To do this, we must first generate a list of widgets that must be drawn 

and their respective transformation matrices. We will then send the transformation 

matrices for the first batch of widgets to the corresponding vertex shader constants 

and draw the primitive. If there are more widgets than can be sent in a single batch, 

we simply send multiple batches containing as many widgets as possible. 

As long as we draw full widget batches, this is relatively simple, but what happens 

when we cannot completely fill a batch? In cases like this, we simply reduce the num- 

ber of indices that we render from the strip to cut out some widgets. If a widget is 

n indices long, and we want to draw m copies of the widget, then we need to draw 

(((n + 1) & (~1))*m + ((m — 1)*2)) indices. That is, we need to draw the number of 

indices required for a single widget, rounded up to an even number, times the num- 

ber of widgets to be drawn, plus two extra indices between each drawn widget. 

Compressing Widget Transforms 

As we have previously seen, we can now draw as many widgets in a single batch as we 

have room for transformation matrices in the vertex shader constant registers. Gener- 

ally, a matrix transform takes up three vertex constant registers, but we can impose 

some limitations on our widgets that help reduce this to two constant registers, 

increasing the number of widgets that can be drawn. We know that our widgets are 

supposed to lie on the ground; therefore, we can restrict the degrees of freedom given 

to each widget. Specifically, we will restrict the widget to five degrees of freedom; a 

3D position, a single rotation around the vertical axis, and a scale factor. The matrix 

for such a transformation is as follows: 

sin(@) - scale 0 cos( ar) ‘scale x 

0 scale 

— 

0 

cos(or) - scale — sin(@) - scale 

0 0 0 

As we can see, this matrix contains very few distinct values. Given a vertex processor 

with arbitrary element swizzling capabilities, we can easily compress the needed values 

into the following two vertex constants: 

(x Vow scale) 

(sin(a) cos(a) —sin(@) 0) 

As we will see when we look at the HLSL vertex shader code in the next section, it is 

a simple matter to reconstruct the transformation matrix from these constants. By 
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compressing the transformation matrix for each widget in such a fashion, we-can draw 

50% more widgets in a single batch than we otherwise could if we had used a es) 

matrix to represent a more general transform for each widget. 

Widgets in Practice 

Now that weve looked at the theory of drawing widgets, let’s look at an example 

implementation. On the companion CD-ROM in the directory containing the 

FoliageDemo (/chapter5-Graphics/ 5.03-widgets_Brownlow) is the source for a sim- 

ple foliage demo. The files widgetmesh.h and widgetmesh.cpp define a class, CWid- 

getMesh, which handles all the steps involved in optimally rendering a number of 

instances of a given widget. 

The FoliageDemo program requires PC graphics hardware capable of running vertex 

and pixel shader programs compiled for Version 1.1 or later. It must also be capable 

of displaying four simultaneous textures. If your graphics hardware is not capable of 

this, the FoliageDemo program will not execute. 

The member function Create is responsible for creating a widget mesh from a regu- 

lar mesh. It takes as parameters a pointer to an array of vertices, a pointer to an array 

of indices, the number of vertices and indices in the arrays, and the name of a texture. 

This function creates a vertex buffer and an index buffer with enough space in them 

for WIDGET_MAXINSTANCES (defined in ‘widgetmesh.h’) copies of the input data, and 

then fills the buffers as described earlier in this gem. 

To draw a series of instances, we must first call the Begin member function. This 

function sets up the rendering pipeline to render the widgets. It sets the vertex and 

index buffers associated with the mesh as well as the vertex and pixel shaders, vertex 

format, and texture. After calling Begin, we can then iterate through the instances that 

we want to be drawn, calling AddInstance for each. Each time that AddInstance is 

executed, it stores a record of the instance in a static array. If at any point this array 

becomes full, FlushInstances is automatically called. 

The FlushInstances member function is responsible for drawing a batch of wid- 

gets. It first sends the array of instances created by AddInstance to the appropriate ver- 
tex shader constants. After this, a DrawIndexedPrimitive command is issued, using the 

appropriate number of indices and vertices, as calculated from the number of instances 
in the array. Finally, it clears the count of instances in the array and returns. The final 
function of interest in the FoliageDemo class is the End function. This function simply 
issues a FlushInstances call to ensure that all the instances added are drawn. 

The vertex shader program for drawing widgets is located in the file widget.hlsl. 
It is a fairly basic vertex shader; the only real point of interest lies in the transforma- 
tion of each vertex by the compressed instance’s matrix. The shader uses swizzling to 
recreate the first and third rows of the uncompressed rotation matrix (the second row 
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contains only a single element, scale, and so is trivial to implement) and uses them to 

rotate the input point, adding the instance position afterwards. This is represented by 

the following code fragment: 

float4 pos; 

pos.x = dot (vtxin.pos,mtxInstances[vtxin.index+1] .xwy); 

pos.y = vtxin.pos.y; 

pos.z = dot (vtxin.pos,mtxInstances[vtxin.index+1] .ywz) ; 

pos.w = 1; 

POSEY 2 = pos.xyz*mtxInstances[vtxin.index].w + 

mtxInstances[vtxin.index].xyZ; 

Once the rotated and scaled position has been calculated, the point is transformed 

into clip space and passed to the pixel shader as usual. 

culling Wicgets romana 

Now that we can efficiently draw a large number of instances, we must look at ways 

to generate the relevant instances from a constantly changing viewpoint. There are 

two main ways to approach this. In the first, instances are generated semirandomly 

(but deterministically!) as new areas of the world are revealed and instances that are no 

longer visible are deleted. The second method—the one that this gem will concen- 

trate on—involves precalculating the positions of all the widget instances in the world 

and creating an efficient representation of them that can be used to quickly generate a 

visible set of widgets. 

Although more memory intensive, the main advantage of this method is that the 

position of these widgets will be constant—players can leave an area and return later 

to find the foliage in the same position as earlier. Moreover, using this method, wid- 

gets can be deleted when necessary with little effort on the programmer’s part. This 

allows players to leave their mark on the foliage of the world with explosives and 

whatever else they care to fire at it. 

BSP Trees 

The method that we will use to store the positions for the widget instances in the 

world is a modified BSP tree. The use of a BSP tree over a quad- or octree allows the 

world to be irregular in shape without using any extra memory for empty nodes. For 

those unfamiliar with BSP trees, they consist of a hierarchy of planes. Each plane cuts 

the world into two pieces, with each object in the world ostensibly falling on one side 

or the other of each plane. Figure 5.3.2 shows an example of the first two planes of a 

BSP tree. The first plane separates the world into two halves, while the second plane 

separates one of those halves into two more halves. In this way, the objects in the 

world are arranged into a binary tree. 
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FIGURE 5.3.2 BSP tree construction. 

A typical BSP node can be represented by the following structure: 

typedef struct 

{ 
float plane[4]; // the cutting plane 

BSPNODE *front; // nodes in front of the plane 

BSPNODE *back; // nodes behind the plane 

BSPLEAF *coplanar; // elements that are coplanar 

} BSPNODE; 

This structure is 28 bytes long (assuming, for now, that the target machine's pointers 

are 32 bits in length), which is a little excessive. Additionally, because the structure 

contains three pointers that may need dereferencing, the data access pattern for any 

code using this representation of a BSP node will be erratic at best, causing havoc with 

the data cache. Finally, the length of the structure, in addition to being excessive, is 

not a multiple (or even a divisor) of the cache line size. This means that each time the 

CPU pulls this structure into the data cache, it has to fill at least one, and possibly 
two, cache lines, depending on the memory address of the node. Figure 5.3.3 illus- 

trates these two possibilities for a machine with 32-byte cache lines. 

Node A 

Node B 

FIGURE 5.3.3 = Cache line usage for two unaligned BSP nodes. 
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In each of the large blocks in Figure 5.3.3, the white area represents the memory 

taken up by the BSP node and the gray area represents memory that is read into the 

cache whose contents are not known. Upon examination of Figure 5.3.3, it is easy to 

see that there is potentially a lot of unused data being pulled into the data cache when 

randomly accessing a BSP node. Even if nodes are stored consecutively in memory, we 

are still going to be accessing them randomly (from the point of view of the memory 

controller; the actual access pattern is defined by the view position and BSP tree lay- 

out). This means that we will be pulling almost as much unused data into the data 

cache as used data, with a commensurate loss in performance. Clearly, we would like 

to modify our algorithm and our data structure in some way to avoid this poor cache 

behavior. 

A Memory-Efficient BSP Tree 

The two most obvious ways to improve our CPU cache usage are to reduce the size of 

the BSP node structure and to impose some kind of predictable pattern on the mem- 

ory accesses. Examining our initial definition of the node structure, we can see that it 

is divided into two, roughly equal sections. The first of these sections contains the 

cutting plane and the second contains the locations of the child nodes. 

We can greatly reduce the memory required to store the cutting plane of each 

node by ensuring that each plane chosen is axis-aligned to one of the three ordinal 

axes. By doing this, we can reduce the 16 bytes required by the plane to 4 bytes (to 

store the plane’s distance from the origin) and 2 bits (representing which axis to use). 

This leaves us with 30 more bits to use to store the tree pointers, in order to occupy a 

measly 8 total bytes. Let’s look at how we can do this. 

In addition to reducing the memory taken by pointer storage, we also need to 

impose some sort of memory access pattern on tree searches. If we always ensure that 

the front child of a given node is stored immediately after the parent, then we remove 

the need for a front node pointer at all. Additionally, we can use an extra two bits to 

record whether the front and back nodes are leaf nodes, containing only data (in this 

case, widget instances). Finally, to reduce the memory required to store the pointer to 

the back node, we can store it instead as a positive offset from the current node. These 

changes result in a definition ofa BSP node that takes only 8 total bytes, as shown by 

the following structure: 

typedef struct 

{ 
u32 axis ire 

u32 numFrontLeaves Ay 

u32 numBackLeaves : 4; 

u3s2 backNodeOffset . 22 

float distance; 

} WIDGETNODE ; 
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If we can ensure that any code searching through the BSP tree always visits the front 

child of a node before the back node, we make maximal use of the data cache. This is 

because the data for the front child is very likely to be located in the data cache due to 

its proximity to its parent node. 

Creating the BSP Tree 

Creating this BSP tree is almost trivial, especially if we treat each widget instance as a 
point. After creating an array of all the widget instances in the world, we calculate an 
axis-aligned bounding box for them. At each node, we find the longest axis of this 
box. This axis becomes the splitting plane. After sorting the nodes by their position 
along this axis, we then position the plane between the two median widgets. That is, 
if there are 63 widgets in the world, the cutting plane would be placed between the 

31st and 32nd widgets. 
We continue creating nodes in this fashion until there are only a small number of 

widget instances remaining in each node; the node is then said to be a leaf node. A 

leaf node in this instance is considered to be an array of WIDGETLEAF structures. The 
count of widgets remaining in the array is located inside each element of the array. 
The WIDGETLEAF structure as described also takes only 16 bytes of memory, maintain- 
ing efficiency and cache-friendliness. 

typedef struct 

{ 
float position[3]; // position of the widget 

s8 sinAngle; // sin of its orientation (*127) 
s8 cosAngle; // cos of its orientation (*127) 
u8 scale; // scale of this widget (*32) 
us pad; 

} WIDGETLEAF ; 

The FoliageDemo application included on the CD-ROM contains the files widgetbsp. 
cpp and widgetbsp.h, which describe the cwidgetBsP class. This class is responsible for 
the creation and management of a widget BSP tree. The CreateTree member function 
takes an array of WIDGETLEAF structures as a parameter and creates a BSP tree from 
them, as described in this section. Once the tree has been created, we can efficiently 
search it to find the list of widget instances that must be drawn. 

Searching the BSP Tree 

Now that we have a compact, memory access-efficient BSP tree definition, we can 
look at how to calculate the set of widgets that should be rendered. To do this, we 
must retrieve from the BSP tree all the widgets within the view frustum that are 
within a certain distance of the view position. We can use the size of the viewport, the 
camera matrix, and the field of view to construct an axis-aligned box that encloses the 
area of interest, as shown in Figure 5.3.4. 
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FIGURE 5.3.4 An axis-aligned 

view box. 

Armed with this box, searching the BSP tree becomes trivial; at each node, we can 

compare the distance associated with it with the precalculated minimum and maxi- 

mum values of the view box in the relevant axis to determine which child or children 

to visit. We must remember that, to maintain cache coherency, if the front child of a 

node is to be visited, it should always be visited before the rear child of the node. 

When passed the view parameters and a maximum draw distance, the Draw mem- 

ber function of the cWidgetBsP class will construct a view box and then perform a 

view-based search of the widget BSP tree. For each widget instance that is found within 

the view box, the AddInstance member function of the appropriate CWidgetMesh class 

is called. 

Conclusion 
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We have seen in this gem that by reducing the number of API calls required to draw a 

set of models, we can greatly decrease both the CPU and GPU cost involved in pro- 

cessing and rendering these models. This premise forms an efficient way to draw a 

large number of small models, which also works well with older (vertex shader 1.0) 

graphics hardware. 

We also saw how to construct a memory-efficient and cache-friendly version of a 

BSP tree. These optimizations allow us to create and navigate a BSP tree that can con- 

tain enough foliage to cover a sizable world. The memory layout and access patterns 

of this BSP tree allow it to function efficiently even on systems where memory speed 

is relatively slow, such as the Sony Playstation 2 console. With selective use of any 

available cache prefetch instructions, the efficiency of this BSP tree can be further 

increased. 

Combining these two techniques allows us to populate a world with a large num- 

ber of foliage models and be able to efficiently draw views from anywhere within the 

world. 
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One possible avenue of advancement is to create an algorithm to deterministically 

place foliage in a small area, and then create BSP trees for these areas as they approach 

the viewpoint. Such an algorithm would allow us to take advantage of the memory 

cache efficiency of the BSP tree while keeping actual memory usage to a minimum. 

This would give us the ability to populate worlds of increasing size with foliage for a 

constant memory cost, since only BSP trees that could possibly be rendered with the 

current viewpoint need to exist at any given time. 
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@): of the major challenges in developing techniques for realistic and high- 

performance visualization of outdoor environments is the rendering of vegeta- 

tion. Convincing modeling of trees and bushes requires a very large number of 

polygons that exceed the limits posed by the current rendering hardware. A number 

of methods have been proposed in the past to address the issue, most of which are 

variants of multiresolution modeling and level-of-detail algorithms. 

In this gem, a 2.5 dimension impostor based method [Szijarto03] is developed 

for high-resolution tree rendering, which uses the structure of conventional trees. 

Moreover, it takes advantage of the programmable rendering pipelines available on 

the recent video cards. The algorithm uses view-dependent 2.5 dimensional impos- 

tors to visualize convincing trees in most levels of detail. Due to the use of impostors, 

the performance depends heavily on the fill rate of the video card. 

eee REE 

It is often useful to define specific scales of simulation at which a vegetation-rendering 

algorithm should provide the required level of realism. Most applications can be 

assigned to one.or more of the following categories: 

Insect scale: The level of simulation where a consistent, realistic depiction of 

individual branches and leaves is expected. (The avatar can climb the tree.) 

Human scale: Scenes must look realistic at distances ranging from an arm's reach to 

some tens of meters away. Consistency is desired but not required. (The avatar 

can bump into trees, even dash through bushes, but does not focus on specific 

details.) 

527 
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Vehicle scale: At this level, vegetation serves as little more than a backdrop. 

Individual trees are almost never focused upon, and consistency is not required. 

Viewing distance may exceed several hundred meters. (The avatar is usually 

moving through the environment at some altitude above the ground at faster 

than running speeds.) 

The focus of this research has been an algorithm for human and vehicle scale sim- 

ulation, with possible application in low-altitude (helicopter and glider) flight, land 

vehicle simulators, and first person shooters. 

Vegetation visualization seems to be a hard nut to crack. There are two general 

approaches: geometry- and image-based methods. As its name suggests, techniques of 

the former group use geometric representations of the foliage. As it takes roughly one 

hundred thousand triangles to build a convincing model of a single tree, some form of 

Level of Detail (LoD) rendering technique must be applied to reduce the polygon 

count for a given frame to a reasonable level ([Remolar03], [Puppo97]). Visually 

pleasing results can only be achieved with complex algorithms or significant memory 

overheads. At this point in time, geometry-based methods are not acceptable for real- 
time applications. Image-based methods represent a trade-off of consistency and 
physical precision in favor of more photorealistic visuals. 

The simplest of all image-based methods is sprite rendering, shown in Figures 5.4.1 
and 5.4.2. This technique is analogous to using a cardboard cut-out with a tree-like 
image painted on it that always faces the camera. Though the resulting visuals are far 
from satisfactory, the technique is often used to depict smaller plants. 

Projection .” 
Plane 

FIGURE 5.4.1 Sprite rendering. The textured polygon is always facing the camera. 
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FIGURE 5.4.2 Billboard with arbitrary position and orientation. 

Two obvious improvements introducing some form of view dependence are sets of 

view-dependent sprites and more complex cutouts. The view-dependent sprite 

method simply pregenerates a finite set (usually 4 or 8) of views and, at runtime, pre- 

sents the one closest in alignment with the viewing direction. A popping artifact is 

visible when there is an alignment change and another view is selected. The complex 

cutout approach uses texture transparency and blending to render more than one 

view at the same time onto properly aligned surfaces, as shown in Figure 5.4.3. Both 

methods yield surprisingly acceptable results in vehicle scale simulations but fail to 

deliver quality in close-up views. It is also not trivial to introduce varying shapes and 

sizes of trees without overtaxing memory. Lighting is also a concern with this method. 

One of the most advanced methods actually implemented in commercial enter- 

tainment software is the basic freeform textured tree model with some LoD applied, 

as shown in Figure 5.4.4. Though the idea is quite straightforward, only in the last 

few years has hardware become powerful enough to handle the task. Resulting visuals 

are satisfactory, although, due to the simple geometric model used, close-up views 

usually look artificial and variations are usually introduced through new models or 

through combining model parts. Increasing the number of trees in a scene quickly 

reduces performance. Most recent human.scale simulators rely on this technique, and 

on the raw hardware power to cope with it. 
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FIGURE 5.4.3 Complex cutout with two faces. 

Projection .” ; 
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FIGURE 5.4.4 Freeform textured tree model. 

Improving on Previous Methods 

The techniques described so far all take advantage of the fact that it is much faster to 
render a recorded image of a tree than to actually process the geometric information 
describing the tree model. There are two key reasons for this: 
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¢ A leaf on a tree is usually mapped to only a few pixels. On today’s hardware, ren- 
dering a pixel is much faster than transforming a triangle. 

¢ The number of obscured leaves is very large. Thus, a significant number of trans- 
formations would be performed in vain. 

Image-based methods suffer from two significant drawbacks: fixed perspective and 
invariance to motion and rotation. Fortunately, in tree rendering, the fixed perspec- 
tive is not so disturbing. The tree canopy is a fairly irregular structure, and the human 
eye is far less sensitive to perspective distortions of irregular shapes than regular ones. 
The other problem is far more disturbing. Leaves are static as the camera moves, while 
it would be expected for some leaves to appear and others to become obscured as the 

viewer moves relative to the tree. This issue has to be addressed in some way to raise 

rendering quality to an acceptable level. Popping artifacts are about as disturbing to 

the human eye as static textures in motion. Thus, we can conclude that to achieve 

convincing visuals, the geometry of leaves has to be processed to some extent. 

The algorithm described in the following sections renders the tree canopy as a 

collection several small leaf clouds. A leaf cloud consists of only a fraction of the total 

leaves needed to model the entire tree. The amount of geometry needed to render a 

leaf cloud is small enough to handle on a per-frame basis. The idea is to process a leaf 

cloud, render it to a texture, and apply that texture multiple times to render the tree 

canopy, thus introducing the motion parallax missing from previous image-based 

methods. However, because the leaf cloud textures overlap, artifacts will occur unless 

depth information is handled correctly. Introducing depth-consistent impostor ren- 

dering results in images where leaf clouds can correctly overlap with other leaf clouds, 

branch geometry, other trees, or any other object in the scene. 

The Algorithm 

The proposed technique is an improvement to traditional impostor rendering. 

Impostor rendering has two stages. The first stage is a view-dependent render-to-tex- 

ture operation (drawing the impostor), the result of which is used in the second stage 

usually as sprite or billboard texture (see Figures 5.4.5 and 5.4.6). 

The idea is to represent the tree canopy with more than one sprite, as shown in 

Figure 5.4.5. Sufficient variations can be introduced by the perturbation of the rela- 

tive positions of the sprites in space. Rendering two or three different textures for 

sprites can introduce even more diversity. Individual sprites can also be blended using 

different colors, again to introduce variations, and even lighting. A canopy depicted 

using 10 to 100 sprites can look very convincing in still images, as shown in Figure 

5.4.8, even if the same texture 1s repeated over all sprites. 

However, the view independence of sprites makes the previous method quite use- 

less for real-time rendering when the viewer is in motion. As sprites are always facing 

the camera, if their appearance is constant, they upset the motion parallax, producing 

very unrealistic results. The introduction of view dependence through the use of 
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FIGURE 5.4.5 Using multiple sprites to render the tree. 
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FIGURE 5.4.6 Rendering the impostor texture from a group of leaves assumed to 
be positioned at the center point of the tree. 

impostors updated every frame instead of static sprites successfully eliminates this 
problem. 

In the stage of impostor rendering, depth and color information are stored in tar- 
get textures. The result is a 2.5 dimensional impostor. The z-near and z-far planes are 
adjusted to approximate a reasonable bounding box for the rendered group of leaves, 

as shown in Figure 5.4.6. In the final phase of rendering, the stored depth values are 
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appropriately scaled and clipped to the final depth buffer before depth testing is per- 
formed, yielding a volumetric feel to the textured sprites, which can overlap in a spa- 
tially coherent manner. 

The artificial look resulting from repetition of the same image over many sprites 
is almost completely eliminated, as volumetric overlapping obscures this arrangement 
to the point where it is almost impossible to discern any single impostor. 

implementation 

The proposed technique produces very convincing results and can be efficiently 
implemented using the GPU of recent video cards, as shown schematically in Figure 

5.4.7. Figure 5.4.8 shows the tree canopy rendered using impostors. 

Leaves 

Vertices 

Blocks 

Vertices 

Leaves 

Texture 

Leaves 

Depth 

Buffer 

Leaves 

Texture 

FIGURE 5.4.7 Block diagram for implementation using two vertex and two 

pixel shaders. 

The implementation assumes Version 2.0 vertex and pixel shaders and uses only stan- 

dard techniques. The code is written in C++ with DirectX 9 [Microsoft04]. The 

shader program is written in Cg [NVIDIAO2]. The example program shows a tree 

equivalent to 1.6 million polygons. 

Leaves are rendered into an impostor texture at the resolution of the final image 

to avoid resizing artifacts and performance overhead. Allocating impostor textures 

every frame would have large performance overhead, thus it is recommended that 

applications pre-allocate big enough impostor textures for all cases. 
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FIGURE 5.4.8 Tree canopy rendered using impostors. 

Depth Precision 

Current graphics cards do not provide efficient access to the depth buffer because of 
internal optimization considerations. Because of this, the pixel program of the first 
pass stores depth information in the alpha channel, thus enabling the next stage to 
access it. Since the alpha channel has 8-bit precision, the projection matrix should be 
set carefully to minimize information loss. 

The front clipping plane is moved to the front of the leaf cloud, and the far clip- 
ping plane is moved to its back. Additionally, the center of the window is moved to 
the center of the foliage. In the Direct3D rendering pipeline, the corresponding es 
jection matrix is [Szirmay95]: 

w 0 0 0 

0 h’ 0 0 

z 
M,,, =| opt  Vopier az I 
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where w is the half window width (which can be computed from the horizontal field 

of view as w=1/ tan( fov/ 2) ), impostor 1S the ratio of the number of pixel columns in 

the frame buffer, and in the impostor texture, Z;ene, is distance along axis z between 

the eye position and the center of the foliage, and Tnpotor is the radius of leaf cloud. 

To move the leaf cloud to the center of the impostor texture, x,go aNd Jopier are 

determined. These values are calculated by transforming the center of the foliage with 

the standard model, view, and projection transformations, which determines the cen- 

ter of the foliage in screen coordinates. The computed x,4.,, and yg; values are the first 

two screen coordinates multiplied by —1. 

Rendering the Impostors 

As mentioned earlier, this rendering algorithm has two passes. The first pass computes 

the impostors and uses the following vertex shader: 

vertout main(appin IN, 
uniform float4x4 mModelViewProj, 

uniform float4 invTrSunDir, 

uniform float4 colorParam) 

{ 
vertout OUT; 

float4 pos = IN.Pos.xyzz; 

pos.w = 15 

pos = mul( pos, mModelViewProj) ; 

pos /= pos.w; 

OUT.Pos = pos; 

OUT.Col.a = pos.Z; 

float light = max( 0, dot(IN.Normal.xyz, invTrSunDir. xyz) ); 

OUT.Col.rgb = IN.Col * (light * colorParam.x + 

colorParam.y) ; 

return OUT; 

} 

The leaf cloud will be rendered into the impostor using this vertex shader. Each ver- 

tex has a position, normal, and color. The vertex shader also gets two additional para- 

meters defining the direction of the sun and its directional and ambient intensities. 

The diffuse illumination model is applied to compute the reflected intensity. 
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The output of the vertex shader is the transformed position and the lit color 

value. The color value contains the pixel color and the depth in the alpha channel. 

The pixel shader program of impostor rendering is very simple. Since in this case, 

the alpha channel contains depth values, we have to disable alpha blending before exe- 

cuting this code. 

void main( vertout IN, 
out float4 color : COLOR) 

{ 
color.rgba = IN.Col.rgba; 

} 

Mipmaping of impostors is unnecessary, because the impostor texels have the same 

orientation and approximately similar size as the pixels. The effect of rescaling the 

impostors due to perspective correction is not significant. 

Using the Impostor 

The second pass that renders the tree canopy into the final image as a collection of 

impostors is far more interesting. The vertex shader is used to calculate the projected 

size and the position of the impostor texture. The application loads these values into 

the vertex shader constant store as if the impostor were located in the center of the 

foliage. The vertex program makes the appropriate corrections based on the actual 

location of the leaf cloud in the image and passes the associated depth value to the 
pixel shader. The pixel shader is responsible for rendering the impostor texture, 

including correct depth information. 
Two triangles are needed to draw each impostor to the screen. At first, the vertex 

shader calculates the impostor center. The impostor texture contains the depth of 
leaves from the impostor’s front clipping plane. Thus, we add the z distance of the leaf 
cloud to the z coordinates stored in the impostor. Additionally, the impostor is scaled 
according to the perspective distortion. 

vertout main(appin IN, 

uniform float4x4 ModelView, 

uniform float4x4 PEO. 

uniform float4 constans, 

uniform float impostorSize, 

uniform float centerBlockSize, 

uniform float impostorZSize, 

) 

vertout OUT; 

float4 pos = IN.POS.XYZZ; 

pos.w = 1; 
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// calculate center point of the impostor from view 

Pos = mul( pos, ModelView) ; 

float4 scl = float4( 0, impostorSize, pos.z, 1); 

// projection transformation 
pos = mul( pos, Proj); 

pos /= pos.w; 

pos.z -= impostorZSize; 

// calculate size of the impostor 

scl = mul( scl, Proj); 

scl /= scl.w; 

// calculate scale factor 
float scale = scl.x / centerBlockSize; 

// calculate impostor corner 

float2 uvp = (IN.uv - 0.5) * constans.xy * scale; 

pos = pos + float4( uvp.x, uvp.y, 0, 0); 

// calculate impostor uv parameter 

float2 uv = IN.uv * constans.z + constans.w; 

OUT .Pos = pos; 

OUT.Col.rgb = IN.Col; 

OUT.Col.w = 0; 
OUT .uv = RLOAtA GUM: x, SUE V 9 DOSmZ st); 

return OUT; 

} 

The pixel program has to determine the real depth of impostor texels and ignore any 

invisible ones. If the scaled z value of a texel is greater than 1, it is not visible. Current 

pixel shaders do not support pixel pipeline breaking, thus the final depth values of 

these invisible texels have to be set big enough to let the z-buffer hardware ignore 

them. The pixel shader gets constant depthScale, which scales the depth values of the 

impostors. Finally, the scaled depth value is added to the depth of the front clipping 

plane used in the impostor computation. 

void main( vertout IN, 

uniform sampler2D impostorTexture, 

uniform float depthScale, 

out float4 color : COLOR, 

out float depth :. DEPTH) 

float4 texCol = tex2D(impostorTexture, IN.uv.xy); 

if (texCol.a >= 1.f) { 

depth =e dis 

} else { 

depth = IN.uv.z + texCol.a * depthScale; 

} 
color.xyz = texCol.xyz * IN.Col.xyz; 

color.a =F ie 
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Conclusion 
{sin ra RE Ds NN EERE 

In this gem, depth impostors were used to render foliage. The power of the technique 

becomes obvious when the objects are in motion, as there are no popping artifacts, no 

obvious flat sprites turning, etc. We can obtain a high level of detail since the number 

of leaves perceived can easily surpass one million for an average forest canopy. 

The algorithm presented can be used in vehicle and human scale simulators to 

render realistic looking trees and forests in real time. The technique takes full advan- 

tage of the programmable rendering pipeline available on recent graphics accelerators. 
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aming scenarios often involve fire: objects/vehicles/ buildings on fire, torches of 

fire, fireplaces, etc. Fire is a phenomenon created by glowing combustion prod- 

ucts in turbulent motion. Fire simulation techniques used in computer graphics usu- 

ally involve solving the equations for dynamics of fluids on grids. These approaches 

are often computationally intensive and do not work in real time [Nguyen01]. Other 

approaches [Wei02] work in real time; however, they are based on computations on 

three-dimensional grids that introduce significant design issues in terms of choice of 

grid size, resolution, and position. For example, what should be done when a wind 

blows on a fire? Should a grid be defined so that it encompasses the whole region that 

may ever contain the fire or should it be designed to move with the fire? In the latter 

case, knowledge of the possible regions the fire could flow into is required. Also, grid- 

based computations are often not guaranteed to be stable and relate to the resolution 

of the selected grid, adding to the complexity of applying these approaches. Thus, 

grid-based simulations of fire demand skillful choice of grid size, position, and resolu- 

tion in every scenario that involves fire, which can be a tedious task. 

In this chapter, we present a eridless technique for modeling fire, based on a sto- 

chastic Lagrangian process [Pope00]. In this approach, the equations for dynamics 

simulation define the trajectory of each particle. As a result, they can be directly eval- 

uated to yield the position of each particle at successive time steps. The stochastic 

nature of the approach makes the computations relatively stable. 

539 
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Most fires that are created in gaming scenarios are diffusion fires, or fires in which 

the oxidizer and fuel are not premixed (unlike the steady flame of a burner where the 

fuel and oxidizer are premixed). The fuel or object that is burning has to evaporate 

and come in contact with the oxidizer before it can burn. Since this process does not 

occur uniformly, fires flicker and exhibit a characteristic “jumping” behavior. Most of 

the existing approaches do not allow us to capture this distinctive property of fire. In 

this chapter, we present a simplified approach to modeling flickering fire in order to 

enhance realism. The work of Lamorlette and Foster [Lamorlette02] identifies the 

intermittent flame region in fire, but their model is designed for an offline production 

environment rather than real-time applications. In this chapter, the flickering of fire is 

captured by creating a simplified model for the “global extinction” behavior of fire. 

Global extinction refers to the moment when the combustion in the fire is so low that 

no flame is visible. Our technique also models “flame brushes,” which are regions of 

greater brightness in flames that occur in areas of the flame where there is higher rate 

of chemical reaction. 

An additional issue in modeling of fire in games is the need to have parameters to 

control the appearance of fire. The approach presented in this chapter, enables control 

of the flicker rate, flame height, and number of flame regions in the fire. In addition 

to the simulation, a technique for real-time fire rendering that uses the programma- 

bility of graphics hardware is described. 
Our fire model is presented in the next section. There are two main aspects to 

our model: the stochastic Lagrangian model for the dynamics and the chemical evolu- 

tion model that represents the combustion accompanying the fire. The rendering of 
the model using programmable graphics hardware is then detailed. This is followed by 

a discussion with examples demonstrating the capabilities of the technique. Conclu- 

sions are given in the final section. 

Model of Fire 
ses RRO ET SN EET EPR REO EINE EES CTON GOERS PRETEEN IR 

The key aspects that have to be modeled while simulating fire are turbulent dynamics 

and the chemical reaction accompanying them. 

Dynamics Model 

The flow of hot gaseous products in a diffusion flame can be modeled as an incom- 
pressible turbulent flow. The equations that define this flow are the equation for con- 
servation of mass, shown in Equation 5.5.1. 

Vsruted (5.5.4) 

and the Navier-Stokes equation, shown in Equation 5.5.2. 
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Du 1 2 

in Bea u+F (5.5.2) 

where Du/Dt is the material derivative 0/dt-+ud/dx + vd / dy + wd / dz =0/dt+u-V, 

u is the velocity vector (u,v,W), p is the pressure, V* is the Laplacian operator, p is the 

density, v is the coefficient of kinematic viscosity, and F represents the external and 

body forces. 
These equations can be solved by the Eulerian approach, where one solves for the 

vector fields that define the flow at fixed points of a grid, or by the Lagrangian 

approach, where one solves for the trajectory of a set of particles evolving in the flow. In 

the case of turbulent flow, the chaotic nature of the flow makes the problem of defin- 

ing the size, shape, placement, and resolution of the grid tricky. Also grid-based tech- 

niques require significant insight into the expected behavior of the flow. For example, 

the grid should be shifted in the direction of an external wind field to keep the solu- 

tions on the grid points relevant. Because of these issues, we choose a Lagrangian 

approach because it is gridless. 

When computations are applied for real-time simulations, they must be stable. 

Turbulent flows are chaotic and notoriously sensitive to small changes in initial con- 

ditions. Therefore, the stability of the computations cannot be guaranteed. However, 

this sensitivity of flow to small changes in initial conditions makes it suitable to sto- 

chastic modeling. The stochastic Lagrangian approach to maintain the gridless nature 

of the computations is used here. In this approach, the fluid flow is modeled by a set 

of particles whose statistical characteristics are the same as those of particles that 

evolve based on the equations of flow. These approaches are numerically more stable 

than the deterministic solutions to the equations. 

The turbulent motion of the particles is simulated by using a stochastic 

Lagrangian approach. Equations 5.5.3 through 5.5.5 define the evolution of the ith 

particle in the simulation [Pope00]. 

dx” =U dt (525;5) 

dU = “¢, (@)U (t)—(U) dt + C,k(@)dW (5.5.4) 

do =—(0 -(@))C,(@) + (20? (@)@C,())aw” (5.5.5) 

Equation 5.5.3 defines the position of a particle based on its velocity. The computa- 

tion of velocity is based on the simplified Langevin model for stationary isotropic tur- 

bulence with constant density. The details of the derivation are beyond the scope of 

this chapter and can be found in the book on turbulent flows by Pope [Pope00]. The 

terms that are enclosed in ) represent the local mean values of the enclosed vari- 

ables. In combustion studies, they are evaluated by dividing the region occupied by 
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the particles into a grid and considering the particles that lie in the same grid cell as 

the i” particle. In our approach, we use a kd tree to store the particle system and eval- 

uate these local mean values on 1 nearest neighboring particles of the i” particle. The 

value of n used in our work typically falls in the range of 10 to 20. This approach of 

storing particles in a kd tree was introduced earlier in [Adabala00] and is called the 

particle map approach. The constant Cy = 2.1 is the standard value used in turbulent 

flow simulations, and k is the turbulent kinetic energy. In the simulations presented in 

this work, the value of k is taken as 1.5. d and W represents an increment in the 

isotropic Wiener process W(t). It is implemented as a vector of three independent 

samples of the standard normal distribution. The next equation represents the evolu- 

tion of the turbulent frequency. The value of the constant C; is 1, and W* represents 

an increment in a scalar Wiener process W*(t), which is independent of the Wiener 

process in the previous equation. 

The previous equations enable us to model the turbulent motion of fire. We will 

now describe our model of the chemical aspects of fire. 

Chemical Evolution Model 

The chemical evolution model simulates the changing composition of fuel in the fire 

as the reaction progresses. Modeling of global extinction requires identification of the 

stage in the reaction’s progress when it is no longer able to sustain a visible flame. At 

this stage, global extinction occurs. After global extinction, the diffusion of fuel and 
oxidizer continues, and the conditions for combustion are again met and a flame 

reappears. The whole process occurs in a fraction of a second. Therefore the actual 

moment when no flame exists is not actually perceived but rather a flicker in the 
flame is observed. This phenomenon has not been modeled by the typical approaches 
to fire modeling in computer graphics that concentrate on modeling the variation of 

temperature in the flame. 
Various approaches to model the chemical aspect of fire exist in combustion stud- 

ies. Many of these results are based on empirical studies of fire [Drysdale99]. There is 

still a large gap between models of combustion and the actual phenomena, as several 
simplifying assumptions have to be made. For example, each fuel has its own unique 
way of burning, depending on its chemical composition, diffusivity of fuel, oxidizer, 
and products. The Euclidian Minimum Spanning Tree (EMST) mixing model, pro- 
posed by Subramaniam and Pope [Subramaniam98], is a general model for modeling 

evolution of composition of fuel during combustion in a turbulent flow. This model 
is compared with other approaches to model combustion in [Subramaniam99]; the 
comparison is done by applying the techniques to simulate the evolution of composi- 
tion in a simple periodic thermochemical model [Lee95]. The fundamental concept 
of this model is to associate chemical composition parameters with the particles 
involved in the combustion process. The composition of the particles is initially 
defined using a periodic thermochemical model. The composition of the particles is 
subsequently evolved by constructing an EMST in composition space and updating 
the composition by considering the particles’ neighboring nodes in the tree. This 
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approach of updating the composition helps to maintain the locality of chemical 
composition evolution with combustion. Visually, this results in the ability to simu- 
late flame brushes. In this approach, global extinction is estimated by computing the 
expected value of the reaction progress variable and comparing it with a threshold. If 

the value is less than the threshold, global extinction occurs. 
We formulate a simplified model that mimics the main aspects of the EMST model 

for real-time applications. In the EMST model with the simplified thermochemistry, 

the initial composition of the particles at equilibrium is as shown by the solid line in Fig- 

ure 5.5.1. The composition then evolves with time to a distribution along the dotted 

line in Figure 5.5.1. The extent to which it evolves towards the dotted line depends on 

the nature of the combustion. When the combustion is steady, the time for mixing of 

oxidizer and fuel is comparable to the time of combustion. Hence, the line remains close 

to the equilibrium state indicated by the solid line. However, when the reaction is not 

steady (when there is global extinction), the time taken for diffusion is significantly 

larger than the time for chemical reaction. As a result, the composition of particles 

evolves to the dotted line in Figure 5.5.1. The exact distribution of the compositions 

may vary significantly, depending on the value of several parameters that define the 

EMST mixing model [Subramaniam99]. The essence of the composition evolution in 

the EMST model can be summarized as a shift from the solid curve to the dotted curve 

in Figure 5.5.1 while maintaining the neighborhood in composition space. 

[— =< T ai) 7 i T = aes =e Sas Sa ee 
— intitial composition | | 

-» final composition 

Fi ot, ae % RE RE A" he ‘ ie h 

0 0.2 0.4 0.6 0.8 1- 1.2 14 1.6 1.8 2 

x 

FIGURE 5.5.1 Plots of main curve along which composition values are distributed 

at the initial and final (before global extinction) time step for the EMST mixing 

model simulation. The x axis is the mixture fraction &(X,t), and the y axis 1s the 

reaction progress variable Y(X,t). 
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The x axis in Figure 5.5.1 is the mixture fraction E(X,t), and the y axis is the reac- 

tion progress variable Y(X,t). Here X is the position vector of the particle (x,,x,,,). 

The reaction progress variable is the mass fraction of product where the chemical 

reaction considered is fuel + oxidant <> product [Subramaniam99]. 

In our simplified model, we do not evolve the values of the mixture fraction. 

Therefore, we represent it by 6(X) by removing its dependence on time. The values of 

E(X) for a particle are defined such that the gradient 0g / Ox, is a constant as in the 

case of [Subramaniam99]. We defined a constant as a parameter 7) €(0.0,c¢] in our 

approach. This parameter is used to control the number of flame brushes. The num- 

ber of flame brushes that occur in a spatial region where the value of x, varies by one 

unit is equal to the value of 7. Therefore when 7 = 1.0, there is a single flame brush 

in the spatial region, where the value of x, varies by one unit. The value of Y(X,f) at 

t = 0 in our model is defined in Equation 5.5.6. 

¥(X,t) = Y(E(X)) = exp(-(6(X) | 6(X) |)- 0.5)" / A). (5.5.6) 

This is the representation of adjacent overlapping Gaussian distributions. The para- 

meter 2 €(0.0,-] controls the overlap between two neighboring flame brushes. 

Lower values result in less overlap and well-separated flame brushes, while higher 
values result in greater overlap. Figure 5.5.2 gives the plot of the values of Y(X,2) with 

n=1.0andA=0.8. 
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FIGURE 5.5.2 = Plots of main curve along which composition values are distrib- 
uted at the initial and final (before global extinction) time step for our model that 
mimics the EMST mixing model. The x axis is the mixture fraction E(X), and the 
y axis is the reaction progress variable Y(X,t). 
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In our model, we begin by distributing the composition of particles as a Gaussian 
distribution as given by Equation 5.5.6 and illustrated in Figure 5.5.2. We then 
evolve the composition to values about the curve shown in dotted lines in Figure 
5.5.2. We choose the Gaussian distribution as the starting distribution, because it has 

been shown empirically and numerically that the distribution of composition should 

relax to a Gaussian with time. The EMST model is formulated so that the composi- 

tion distribution relaxes to a Gaussian with successive updates of composition. In our 

simplified approach, we start the fire visualization from the first step of simulation. 

There are no preprocessing simulation steps that allow the distribution to relax to a 

Gaussian. Therefore, the distribution of composition should be a Gaussian from the 

start. This is ensured by the use of Equation 5.5.6 to initialize the composition. 

We evolve the composition Y(X,f) with Equation 5.5.7: 

V(X) =7 td) CX —1), OSA) 

where ¥ is the rate of decrease of the reaction progress variable. rd €[0,0.01* 7] isa 

small random perturbation in the value of x. This simple approach to updating the 

composition mimics the essence of the EMST mixing model as the neighborhood 

regions are maintained in composition space and there is an evolution between the 

initial and final curves that have a similar appearance. The value of x can be in the 

range (0, 1.0]. It was found that values of ¥ in the range [0.85, 1.0] give visually real- 

istic results. Values of x tending towards 1.0 result in high flames, as the reaction 

progress of the particle remains in the visible range for more time steps of the dynam- 

ics simulation. 

Global extinction is identified as the stage during combustion when the overall 

reaction progress is not enough to sustain the flame. At this stage, the flame reduces in 

intensity and reappears in the next time step when the compositions of the particles 

are redistributed at thermochemical equilibrium (the values at Y(X,0). In the EMST 

model, the stage of global extinction is predicted by computing an extinction index 

that relates directly to the expected value of the reaction progress variable. The extinc- 

tion index is compared with a fixed value. If the index is less, global extinction is said 

to occur. In our simplified approach, we compute the mean value of the reaction 

progress variable of all the particles involved in the simulation. If it is less than a 

threshold value, global extinction occurs and we restart the simulation with new par- 

ticles and composition, as the old particles are no longer visible after global extinc- 

tion. Thus, Equation 5.5.8: 

if mean (Y(X,0))<@ global extinction, (.8) 

where @ is a threshold parameter that can be adjusted to control the frequency of 

global extinction. The justification for varying the value of threshold 6 is that various 

fuels produce different kind of flames, and depending on the fuel, a different value of 
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minimum reaction progress is needed to sustain a flame. The value of @ is.chosen in 

the range [0.0, 0.4] for a visually realistic appearance. We use the mean| Y 2 ,0) 

rather than the sum of the reaction progress values to estimate the overall reaction 

progress in the system so that the threshold value is independent of the number of 

particles involved in the simulation. 

A model of flickering fire that works in real time is achieved with the techniques 

described in this section. In the following section, we describe a method for rendering 

the particle system that evolves according to the model presented thus far. 

Real-Time Rendering 
HOON EEN ERR LR INES TLS EOS IRE EB EEN IO MI 

A programmable graphics card is used to realize the rendering of the particle system 

evolving based on the model presented in the previous section. Specifically, the 

approach exploits the ability to render to an OpenGL p-buffer. 

The particle system is rendered as streaks of light extending from the current 

position of the particle to its previous position. This approach is adopted because 

when a bright light-emitting particle moves with high velocity, we perceive a streak 

due to persistence of vision. The composition parameter is used to define the texture 

coordinates of the line. The current value of composition is used as the texture coor- 
dinate at the current particle position, and the composition at the previous time step 

is used for the other end of the line. Since a particle composition and location repre- 

sent the characteristics of a small volume of the fuel located at a given position, a 

thickness is associated with these lines. These lines are rendered into the p-buffer. A 

blur/halo is created in the upward direction to represent the scattering of particle light 
by hot gaseous products resulting from combustion. Two random textures are used to 

obtain offsets to the texture coordinates for blurring. The result of the computation is 

stored back in the p-buffer that is being used as the source to obtain the texture coor- 

dinates. This enables creating a cumulative blur. 
The blurred texture is then used as a texture coordinate index into a one-dimensional 

texture that represents the variation of light emitted with the progress of combustion. 

SAARI 

Examples and Discussion 

The examples presented here are implemented in C++ and OpenGL and run‘on 
machines with the Linux operating system. The algorithm performs at the rate of 
approximately 60 frames per second on both a 2.2 GHz Pentium 4 with 768 MB of 
RAM and GeForce 5800 graphics card and a 1.46 GHz Athlon XP with 512 MB 
RAM with a GeForce 5900 Ultra graphics card. The number of particles used in all 
the images and animation is 300. 

Figure 5.5.3 shows some images of fire between two stages of global extinction. 
The fire in the image is generated with 1 = 2, and the spread of the fire is two units in 
the x; direction. Therefore there are four flame brushes. The value of A is one and y is 
0.97. The threshold 6 is 0.1. Values of @ in the range 0.1 to 0.4 give the most visually 
appealing results. 
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FIGURE 5.5.3 Images of fire between two stages of global extinction. Several frames exist 

between two time instances of global extinction; these are not consecutive frames. 

Figure 5.5.4 shows fire generated with 7 = 1.0 and 7) = 2.0. In both cases, A was 

chosen to be 1.0. This creates an overlap of flame brushes that gives the fire a realistic 

appearance. 

FIGURE 5.5.4 Comparison of fire with different numbers 

of flame brushes. The fire on the left has two main regions 

(n = 1.0) while the one on the right has four regions 

(Hive 2:0): 

Figure 5.5.5 shows fires of different heights created with our model. For the tall 

flames, the value of is close to 1. Tall flames undergo little or no global extinction. 

When the value of y is lower, global extinction occurs more frequently. This is consis- 

tent with the intuitive idea that when a flame is extinguished frequently, it has to start 

again from the fuel source and cannot propagate to a great height before it is extin- 

guished again. 

In this implementation, the particles are introduced into the simulation by 

assigning an initial velocity in the upward direction to represent the initial upward 

velocity due to thermal buoyancy. Apart from controlling with the parameter 7, the 

height of the flames can also be controlled to some extent with the value of upward 
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FIGURE 5.5.5 Comparison of fire with different heights of flames. Left 

image created with x = 0.99999, middle image created with x = 0.97, and 
right image generated with x = 0.9. 

velocity assigned to the particles as they are introduced into the simulation. Higher 

initial upward velocity results in greater flame height. This is consistent with the fact 

that a larger flame results when a fuel is injected or introduced into an oxidizer with 
greater velocity. It should be noted that particles evolved with the turbulent flow 
(Equations 5.5.3 to 5.5.5), are not always guaranteed to move upward. When a parti- 

cle moves significantly in the outward direction, it is deleted from the system and a 
new particle is introduced for every deleted particle. When the composition of a par- 
ticle reduces so that it no longer emits enough light to be visible, such a particle is 

deleted from the simulation. In the examples, we have not simulated smoke. A tech- 

nique for simulating smoke can be introduced on top of the fire as described in [Lam- 

orlette02}. In that case, a particle that is no longer emitting light can be introduced 

into the smoke simulation system. 

These images are created with constant threshold @ value. The examples demon- 

strate that it is possible to design fires with desired visual properties using the simple 
intuitive parameters 7), ¥, and 0. 

Conclusion 

In this chapter, we have presented an approach to synthesize fire in real time for com- 

puter graphics applications. The features of this work include: 

¢ A gridless stable numerical simulation technique for turbulent flow in the form of 
a stochastic Lagrangian approach-based solution. 
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¢ A model for the phenomena of global extinction that enables capture of flicker in 
fire. This property of fire was not previously included in computer graphics mod- 

els of fire. 
e A parametric model such that flicker rate, flame height, and number of flame 

brushes can be controlled in the model. 

¢ A hardware accelerated technique for rendering the fire particle system. 

The dynamics technique is implemented with particle maps, making the approach 

gridless, and thus overcoming the problem of addressing grid design related issues like 

choice of grid size, grid resolution, and grid placement in space. The technique pro- 

posed is inspired by the physics and thermochemistry based models, however it is tai- 

lored for computer graphics and gaming applications where control of the visual 

aspects of fire is more important than physical accuracy. 
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5.6 

ON THE CD 

Powerful Explosion 

Effects Using Billboard 

Particles 

Steve Rabin, Nintendo of America Inc. 

steve_rabin@hotmail.com, steve@aiwisdom.com 

xplosion effects are common in games, but often they lack punch or intensity. 

This article explains how to create an impressive fuel explosion effect out of bill- 

board particles on any 3D hardware platform, including portable devices. Since com- 

puters and video game consoles are currently not powerful enough to simulate real 

explosions or even replay precanned explosion simulations consisting of thousands of 

particles, game explosions must be caricatures of the real thing. Therefore, the goal is 

not to directly simulate an explosion, but rather to convey the impression that a pow- 

erful explosion has taken place. This requires a careful blend of approximation and 

caricature. The in-game explosion must attempt to look like a real explosion, but also 

exaggerate certain aspects to sell the effect. 

The explosion effect in this article is a combination of seven different particle 

effects: initial flash, radial flares, white hot inner core, intense fireball, expanding 

smoke, and debris. The effect is shown in Color Plates 8A and 8B, as well as in several 

videos on the CD-ROM. While the explosion does not resemble any kind of simula- 

tion, research in simulating both explosions and smoke inspired many of the tech- 

niques [Fedkiw01, Feldman03, Stam03}. 

Initial Flash 
—LLG LLAMA LEAL 
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When an explosion occurs, there is a moment at the very beginning when the viewer 

is blinded by light. While this effect is missing from most video game explosions, it is 

a critical cue that the explosion was both intense and powerful. 

One way to simulate the initial flash is to create a single semitransparent particle 

with a very bright yellow/white glow that falls off completely at the edges. An effective 

method is to place a Photoshop lens flare in the alpha channel of the texture, as shown 

in Figure 5.6.1. The color component of the texture should be a solid yellow/white. 

551 
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FIGURE 5.6.1. Alpha channel of a flash texture. 

At the time of the explosion, the particle should spawn from the center of the 

explosion and uniformly scale up very quickly, taking up the entire screen. Starting at 
fully transparent, it should fade up quickly, then after about 0.3 seconds, it should 

fade down very quickly until it is fully transparent (at which time it can be destroyed). 
This sequence is shown in the far left column of Color Plate 8A. 

This technique works best for explosions taking place in the sky, since the rapidly 
expanding flash particles will intersect with the ground, buildings, and other objects, 
causing the familiar z-buffer intersection of the billboard particles with the scene 
geometry. If this artifact is unacceptable, another option is to create the flash using a 
post-processing effect on the entire rendered image. 

Radial Flares 

As you can see in Figure 5.6.1, the initial flash contained some radial flares. However, 
this technique is so effective that it’s worth emphasizing in the explosion. The effect 
involves creating 10 to 30 pointy flares that are randomly placed around the explo- 
sion, as shown in Figure 5.6.2. 

These flares won't be scaled but should protrude out enough so that they are seen 
sticking out of the initial explosion, with each being a random length. Each flare 
should be started randomly between 0 and 0.2 seconds after the start of the explosion. 
They should be fully visible on initialization and then start fading out after 0.1 sec- 
onds. Note that the explosion will seem cartoonish if the flares are long or if they fade 
out more slowly than this. If the flares are short and fade out quickly, the effect is 
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FIGURE 5.6.2 Radial flares randomly pointing away 

from the center of the explosion. 

almost subliminal yet very effective in conveying the intensity of the explosion. This 

sequence can be seen in the second column of Color Plate 8A. 

Each radial flare billboard should be a narrow quad that points in the direction of 

the explosion, as shown in Figure 5.6.3. A solid colored texture with a cloud-like blob 

in the alpha channel works well for these billboards. A good color scheme is for the 

flares to be a dusty light gray at the center and then blend to a dirty light yellow at the 

tips. This colorization and gradient can be easily achieved by using a monochrome 

texture map blended with interpolated vertex colors to provide the yellowish tint. 

We 
ris 

FIGURE 5.6.3 Radial flare billboards made up of quads. 
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White Hot Inner Core 
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The white hot inner core is a key component of the explosion effect. It starts out as a 
small fully opaque white circle fringed in yellow and orange. It then expands at a very 
high rate, yet the expansion exponentially decays over time until it ceases to grow. At 
its largest, the white hot inner core is a cloud-like white, yellow, and orange mass, as 
shown in the third column of Color Plate 8A. 

From the time of creation, the core should remain at full visibility for about one 
second and then start fading out very slowly. This effect will act as a backdrop for the 
fireball and smoke effects, which will be described shortly. As the smoke and fireball 
expand, this white hot inner core will show through any empty spots and add to the 
mottled look of the explosion. 

There are two ways to render the inner core. The first method is the cheapest, 
both for the CPU and GPU, and only requires one particle. The second method is 
more expensive and requires about 100 particles. As we will see later, games can choose 

between the cheap and expensive methods in order to scale performance depending 
on the platform or the complexity of the scene. 

The cheap method uses a single texture shaped as an amorphous solid white blob 
with a very thin fringe of yellow and orange around the edges. The texture should 
have a sharp but smooth edge in the alpha layer. This single particle will start off 
rapidly expanding (scaling up), but then slow down exponentially until it stops grow- 
ing. Then it will fade out slowly after one second. 

The expensive method uses about 100 solid white particles, each with a cloud- 
like blob in the alpha channel. By coloring the vertices of each particle yellow-orange 
and rendering them using an additive blend, hot white spots will appear on overlap- 
ping particles, fading out to yellow-orange at the edges. One effective color scheme is 
to use bright yellow-orange on the top-right vertex, medium yellow-orange on the 
bottom-right vertex, medium gray on the top-left vertex, and dark gray on the bot- 
tom-left vertex. It also helps to make different octants of the explosion have different 
intensities of the color scheme so that the core appears less uniform. 

With the expensive method, each particle will remain the same size during the 
entire effect. However, the particles shoot out randomly from the center with a high 
velocity, exponentially decaying until the particle is motionless. Once all particles 
have stopped moving, the core will have reached its full size. After about one second, 
the particles should begin to fade slowly. 

In reality, a lingering explosion will rise slowly due to its thermal buoyancy in the 
air and then drift in a given direction due to the wind. Both of these effects can be 
simulated by defining a wind force that blows softly in some horizontal direction with 
a slight vertical component to represent the thermal buoyancy. This wind should be 
applied to any hot inner core particles. This small touch helps to sell the effect. 
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The fireball is a secondary effect that kicks in after the first three effects. It starts at 

about 0.1 seconds after the start of the explosion and shoots outward from the center 

of the explosion. The fireball should start fully opaque and then fade out slowly after 

0.3 seconds (as seen in the fourth column of Color Plate 8A). 

As with the hot inner core, there are two ways that you can choose to render the 

fireball component of this explosion effect. The first method is the cheapest and 

involves a single particle. The second requires about 50 particles and is more expensive. 

The cheap method uses a single texture shaped as an amorphous blob, similar to 

the cheap hot inner core step. The texture itself should be a mottled red fireball with 

black cloud-like edges within the texture, while the alpha channel should have a 

cloud-like density and amorphous shape. This particle will basically crossfade with 

the white hot inner core, scaling up at a similar rate with the exponential decay. After 

0.3 seconds, the particle should slowly fade out. 

The expensive method involves spawning roughly 50 particles in the center of the 

explosion. Each uses a texture similar to the cheap effect and each starts off very small 

and scales up slowly to a capped size. Each particle shoots from the center at a very 

high velocity in a random direction. The velocity will then exponentially decay until 

the particles are still, with only the combined wind and thermal buoyancy causing 

them to drift. Each particle should then fade out slowly after 0.3 seconds. To make 

the fireball more mottled, it helps to darken particle vertex colors in particular octants 

of the explosion. : 

An important aspect of the expensive method is stretching of the fireball particles 

in the direction of motion. As each fireball particle moves away from the center, it 

relaxes into a square shape. This effect is very important in creating the feeling of power 

bursting from the center. Figure 5.6.4 shows how the billboard quad transforms over 

the particle’s lifetime. Note that the particles become larger and more square as they 

expand outward and slow down. 

FIGURE 5.6.4 The transformation of the fireball billboard quad 

over its lifetime. Note how the quad starts out narrow in the direc- 

tion of the explosion and then relaxes into a square shape. 



556 Section 5 Graphics 

ait ~ 
The expanding smoke is another secondary effect that occurs after the flash, flares, 
and core. It happens at about the same time as the fireball and generally overlays on 
top of all the previous effects. Starting at 0.1 seconds, about 30 to 50 smoke particles 
shoot from the center of the explosion (as seen in the fifth column of Color Plate 8A). 

The particle’s texture should be a light gray smoke cloud with lots of billowing detail. 
The alpha channel should have a cloudlike density and amorphous shape. 

The smoke effect is fairly important to the explosion since it will expand the far- 
thest and linger the longest. There is no cheap way to create the smoke effect, espe- 
cially since it provides the cover for the cheap core and fireball effects, masking their 
simplicity. Even with the expensive core and fireball, the smoke needs to be rather 
detailed to sell the effect. Many game explosions ignore smoke, but it is a rather con- 

vincing detail. 

As the smoke shoots out of the center, it will use the same basic technique as the 
fireball. Each particle will shoot in a random direction with a very high velocity and 
exponential decay. Each particle should start out stretched in the direction of its 
velocity and then relax into the shape of a square over time as shown in Figure 5.6.4. 
After about 0.3 seconds, the smoke should begin to fade out very slowly (slower than 

the fireball step). 

During the course of each smoke particle’s lifetime, it should be carried by the wind 
and thermal buoyancy just like the core and fireball. However, there is one more effect 
that can add a nice touch. Normally, smoke has lots of billowing and interesting turbu- 
lence. This can be caricatured by rotating the smoke particles. The trick is to determine 
the wind direction as projected to screen space and rotate the particles to simulate sub- 
tle vorticity. All smoke particles on the left side of the wind direction should rotate 
counterclockwise, and all smoke particles on the right side of the wind direction should 
rotate clockwise, as shown in Figure 5.6.5. The rotations should be very slow, and each 
particle should have a different randomly determined angular velocity. 

Wind and Thermal 
Buoyancy Direction 

FIGURE 5.6.5 Fizked rotational turbulence based 
on the wind and thermal buoyancy direction. 
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Debris 

Effects Table 
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No explosion would be complete without debris flying from it. The debris can be 

embers, small dark chunks of dirt/metal, pieces on fire leaving smoke trails, or whole 

pieces of whatever just blew up. The debris should be given a high initial velocity and 

should not decay like the other gaseous effects. Instead, the initial velocity coupled 

with gravity should drive its motion. 

Dark debris is quite effective, since it has a high contrast with the explosion itself. 

A cartoonish look can be achieved by having chunks of debris give off smoke trails as 

they sail away from the explosion. Usually these smoke trails give off smoke particles 

that start off hot white and change over time to yellow, orange, light gray, then finally 

dark gray. Of course, these smoke trails require rendering of even more particles, so 

the effect has to be used judiciously to maintain acceptable performance. 
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The previous effects involved many precise timings, ve ocities, and forces. Table 5.6.1 

lists each effect with all the relevant data so that you can easily compare and recreate 

the explosion effect. Referring to Color Plate 8A will also help you understand the 

precise timing of each effect. 

Table 5.6.1 Comparison of the Timings, Velocities, and Forces Involved for Each Effect 

Start Outward Other 

Effect Particles | Time (sec) | Fade Up | Fade Down Scale Up Velocity | Forces 

Initial Flash | 1 0.0 quickly very quickly | very quickly | none |_none 

Radial Flares | 10 to 30 0.0 to 0.2 instantly quickly after | none none none 

0.1 seconds 

White Hot | 1 0.0 instantly | very slowly quickly with | none wind and 

Inner Core after one exponential thermal 

(cheap) second decay buoyancy 

White Hot | 100 0.0 instantly | very slowly none very fast with | wind and 

Inner Core after one exponential thermal 

(expensive) 
second decay buoyancy 

Intense 1 0.1 instantly slowly after | quickly with | none wind and 

Fireball 
0.3 seconds | exponential thermal 

(cheap) he decay | buoyancy 

Intense 50 0.1 instantly slowly after | slowly until | very fast with | wind and 

Fireball 
0.3 seconds | square exponential thermal 

(expensive) 
‘4 decay buoyancy 

Smoke 30 to 50 0.1 instantly very slowly slowly until | very fast with wind and 

after ().3 square exponential thermal 

seconds decay buoyancy 

Debris 10 to 100 | 0.0 to 0.2 instantly | depends none fast with gravity 

exponential 
decay 

er 
OO 
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Soe 
The Billboded effects presented so far will create a nice explosion, but the following 
extra touches can help make the explosion really come alive. 

Randomness 

While this article presented a great deal of timing information for start times, fading 
rates, and velocities, the entire effect is much more effective if each particle is unique 
and isn’t in lockstep with the others. Randomness should be used to tweak all these 
times, rates, and velocities, but it helps to keep the randomness within narrow ranges. 
Most of the particles need to behave similarly, so the randomness shouldn't introduce 
any large variations. 

Screen Shake 

When a powerful explosion takes place, the perceived intensity can be amplified by 
briefly shaking the camera up and down (not left and right). Not every explosion 
might warrant this effect, but close or powerful explosions will certainly be enhanced 
by the brief shaking. 

Efficiency Concerns | , 
RESTA CT TIEN NS 

There are several efficiency concerns that are raised when many explosion effects 
occur at the same time. The following explains how to deal with three such concerns. 

Controlling the Number of Particles 

In a game, it is typically difficult to control how many near-simultaneous explosions 
occur at a time, due to the unpredictability of the players or AI. Therefore, the cost of 
each explosion effect should be relatively small since the cumulative cost can sky- 
rocket quickly. Not only must each particle be updated every frame, but all particles 
from all explosions must be sorted on the CPU in order to blend correctly with the 
frame buffer. As more particles are drawn, the sorting cost will rise exponentially. 

The explosion effect described in this article showed how to make a cheap white 
hot inner core and a cheap fireball in order to limit the number of particles. The 
cheaper explosion effect uses about 43 particles (not including optional debris). The 
more expensive explosion effect uses about 230 particles (not including optional 
debris) and has considerable overdraw, which can be expensive for the GPU. 

Choosing whether to use cheap or expensive explosions is one way to limit parti- 
cles, but an equally important technique is to put a hard limit on the number of 
drawn particles and recycle the oldest ones when the limit is about to be hit. For 
example, a limit of 1,000 particles may be imposed so that the fifth overlapping 
explosion will start to recycle particles from the first explosion. Since the first explo- 
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sion is probably far into its lifetime and already fading out, the removal of these older 

particles is generally not noticeable, especially since new explosions are very distract- 

ing to the eye. 

Optimizing Billboard Orientation 

During gameplay, it might be common to see half a dozen simultaneous explosions 

represented by thousands of particles. Each particle must recalculate its orientation in 

order to face the camera each frame. This represents some serious computation, but it 

isn't necessary or even desirable. 

Within a single explosion, if each particle faced the camera based on its center 

point, the particles would intersect with each other and cause ugly artifacts. There- 

fore, the particles within an explosion must all be oriented in the same direction. The 

solution is for each spawned explosion to have a single center point that travels with 

the explosion during its lifetime (affected by wind and thermal buoyancy). This ori- 

entation can be calculated once per frame for each explosion. All particles belonging 

to a given explosion then use this same orientation, reducing the number of orienta- 

tion calculations from over a thousand to less than a dozen. 

Sorting Particles within Framerate Constraints 

With thousands of potential semitransparent particles, all must be sorted with respect 

to the camera so that they can be rendered properly. Unfortunately, this task falls on 

the CPU, so efficiency is a major concern. 

It is well known that the quicksort algorithm is ideal for this type of sorting, tak- 

ing on average O(7 log ). However, the time that quicksort takes can fluctuate wildly 

each frame, even up to O(n’) in the worst case. This can be a big problem for games 

that are trying to maintain a fixed or respectable framerate. 

One solution is to use a sorting algorithm that can be stopped after taking a spec- 

ified amount of time, thus ensuring that it will never take too long. Obviously, this 

will cause some artifacts, as not all particles are properly sorted on every rendered 

frame, but this is a concession that may be acceptable in practice. The chosen algo- 

rithm must be incremental in that whenever the sorting is interrupted, the list is more 

sorted than when it started. Since explosions stay confined to small areas and don't 

move quickly, the sorted list of particles will be relatively unchanged from frame to 

frame. 
One sorting algorithm that can solve the problem is the infamous bubblesort. 

This very simple sorting algorithm is well known to perform poorly, but it has two 

nice properties. First, it can steadily sort a list and be interrupted at any time while 

leaving the list intact and partially sorted..Second, if the list is sorted, it can escape 

early with as little work as O(n). Therefore, the bubblesort algorithm can be capped, 

for example, to never take more than 3% of the frame time. 
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The combined explosion effect presented in this article is a detailed account of one 

type of explosion, performed completely with billboard particles. Since there are 

many types of explosions, it will take some careful tuning and creativity to caricature 

the explosion that you're interested in for your particular game, but hopefully many of 
the techniques presented in this article can be applied. The key is to study the type of 
explosion you're trying to recreate. This can be done by looking at reference material 
from the Internet, movies, and military documentaries. 

Many game explosions focus on the white hot core or the fireball but could be 
enhanced by considering the other effects such as the flash, smoke, and camera shake. 
One of the key innovations in this article, shown in Figure 5.6.4, was applied to the 
fireball and smoke. This innovation of making the fire and smoke forcefully explode 
from the center is very convincing in showing a sense of intensity and power. Without 
it, the fireball and smoke just seem to be static puffs that quickly move away from the 
center. This disparity can best be seen in two of the example movies on the CD- 
ROM. The file explosion1.mpg uses the pointy fireball and smoke technique, while 
explosion2.mpg does not. The other explosion movies on the CD-ROM are supplied 
to show different variations. 

Creating good explosions for games is a balancing act of trying to get the best 
effect within the limits of the hardware. Until we can simulate or replay explosion 
simulations with tens of thousands of particles per explosion, it will surely take both 
programming wizardry and artistic creativity to get the most bang for the buck. 

SRE RN LACT IOS TE EU NN EE 

[Fedkiw01] Fedkiw, R., J. Stam, and H. W. Jensen. “Visual Simulation of Smoke.” 
The Proceedings of ACM SIGGRAPH, 2001. 

[Feldman03] Feldman, B. E., J. EK O’Brien, and O. Arikan. “Animating Suspended 
Particle Explosions.” The Proceedings of ACM SIGGRAPH, 2003. 

[Stam03] Stam, Joe. “Real-Time Fluid Dynamics for Games.” Proceedings of the Game 
Developers Conference, 2003. 



0.f 
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Rendering Gemstones 

Thorsten Scheuermann, ATI Research 
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M games require players to find or earn treasure in order to advance in the 

game environment. This article discusses a technique for rendering gemstones 

that could be used to reward successful treasure-hunting players with neat eye candy. 

The beautiful and complex appearance of gemstones is mainly due to their trans- 

parent material that has a high index of refraction. This causes chromatic dispersion 

and total internal reflection of light rays traveling through the gem. 

The gem-rendering technique for this article was used in ATI’s Radeon X800 

launch demo Ruby: The Double Cross (see Figure Se). 

- + 

FIGURE 5.7.1 A screenshot from ATT’ demo Ruby: The Double Cross showing 

the gem rendering technique in action. © ATI Technologies, Inc. 2004. 

561 
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Our gem-rendering technique combines lighting terms for light transmitted through 

the gem, reflections (using a cubic environment map), and specular highlights. For the 

transmitted lighting term we render the back and front faces of the gem separately. The 
reflections and specular highlights are only computed for the front-facing geometry. 

The appearance of a gem is dominated by light traveling through the gem and 
bouncing around its interior due to total internal reflection, which unfortunately is 
expensive to simulate properly. The gem-rendering technique described in [Guy04] 
performs fairly accurate simulation of light transmission in gemstones at interactive 
frame rates, but its performance is not acceptable for a game scenario on current- 
generation hardware. We use a “refraction” cubemap for computing a simple approx- 
imation of the transmitted lighting term. Several samples from this cubemap are accu- 
mulated to give the appearance of total internal reflection and several light bounces 
inside the gem. 

Finally, to make the gem look very shiny, we render a number of light flares over 

its brightest regions using screen-aligned billboards. 

Normals and Cubemap Sampling Issue 

Cut gemstones have flat facets and hard edges, which introduce shading discontinu- 
ities. However, when using gem geometry with unshared vertices and vertex normals 
set to face normals, the reflected and refracted view vector will not change much over 

each face. When these vectors are used to look up into the reflection and refraction 
cubemaps, only small regions of the cubemaps are sampled and magnified over the 
gem's facets (Figure 5.7.2a). Using smooth vertex normals improves cubemap sam- 
pling coverage, but the shading discontinuities along face edges disappear (Figure 
5.7.2b). As a compromise, our gem geometry contains both face and smooth nor- 
mals. For reflection and refraction vector computations, we use the average of both 
normals which results in a reasonable rate of change for normals interpolated across 
faces. This improves cubemap sampling coverage while still maintaining edge discon- 
tinuities (Figure 5.7.2c). 

setae to et RAE MMSECAOINS 

Transmitted Light 
cam 

To compute the transmitted lighting term, we use a very simple approximate form of 
precomputation: an offline renderer that can account for total internal reflection 
through raytracing generates a cubemap from inside the gem looking out. Figure 
5.7.3a shows the refraction cubemap used in the screenshots of this article. It was gen- 
erated in Maya using raytracing with the recursion depth set to four bounces. The 
lighting environment in the offline renderer was approximated with an environment 
map. Although the gem geometry is simple, the cubemap captures a lot of the visual 
complexity due to the complex path light rays follow when traveling through the gem. 
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(a) (b) (c) 

FIGURE 5.7.2 Visual effect of using different normals: (a) face normals, 

(b) smooth normals, (c) averaged normals. 

FIGURE 5.7.3 Zextures used in the examples: (a) refraction cubemap, 

(b) environment cubemap, (c) rainbow cubemap, (d) edge map. 

The gem pixel shader performs two looktips from the refraction cubemap and accu- 

mulates them. The gem’s back and front faces are rendered in separate passes with the 

front faces using additive blending, so that ultimately a total of four refraction cube- 

map samples are accumulated for the final image. Figure 5.7.4 illustrates how the 

transmitted lighting term is computed. 
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For each pass, the vectors used to look up into the refraction cubemap.are two 

refraction vectors computed with a different index of refraction. Additionally, the sec- 

ond refraction vector undergoes a reflection in a per-face random direction and an 

additional arbitrarily chosen swizzle. The random reflection direction is looked up in 

a 1D texture containing random values with a texture coordinate computed in the 

vertex shader based on the face normal in model space: 

rndTexcoord = dot(N face model, float3(1, 1, 1)); 

The semirandom reflection and swizzling causes the two vectors to look up into dif- 

ferent regions of the refraction cubemap, which results in a more complex appearance 
of the transmission term. Rendering two passes instead of just performing four cube- 
map lookups on just the front-facing geometry has the advantage that different nor- 

mals are used in the computation on back and front faces, which yields more diverse 

sampling locations in the cubemap. 

An additional way to increase visual complexity is by mapping a texture ae hard 

edges (the “edge map”) on the gem’s geometry and modulating it with the transmis- 

sion term (see Figure 5.7.4). In our example, we use a simple colored checkerboard 

pattern (see Figure 5.7.3d). The colors of the edge map help to give the illusion of 
chromatic dispersion (light splitting into a color spectrum due to the physics of 

refraction). The strength of this effect is controllable by a parameter that blends the 

edge map to white. 

Transmitted 
Lighting Term 

FIGURE 5.7.4 Breakdown of the steps for computing the transmitted lighting term. 



5.7 A Simple Method for Rendering Gemstones 565 
ssnneesnnnencesescnetners omens nites nace nleettetenetA SOA . sunsets eseeneiinnsntsonnonnnneceneicyesteeiesctahauainnnetrauntetnananianmitanneotintoursoonit 

Here is the HLSL function for the transmitted light term: 

sampler tRefraction; // refraction cubemap 

sampler tEdge; // edge map 

sampler tRandom; // 1D texture with random RGB values 

float3 TransmissionTerm (float3 N_curved, // averaged normal 

float3 V, // view vector 

float2 edgeUV, 

float rndTexcoord, 

float brightness, 

float edgeStrength) 

// Compute refraction vectors 

float3 vTransmission1 = refract(V, N_curved, 2.4); 

float3 vTransmission2 = refract(V, N curved, 1.8); 

// Reflect second vector by a unit vector random to each face. 

// rndTexcoord is computed in the vertex shader based on the 

// face normal in model space. 

float3 rnd = tex1D(tRandom, rndTexcoord) ; 

rnd = normalize(2.0 * rnd — 1.0); 

vTransmission2 = reflect(vTransmission2, rnd) ; 

// Lookup into refraction cubemap and apply gamma 

float3 cRefract = texCUBE(tRefraction, vTransmission1) ; 

// Look up again, swizzling the vector for additional 

// “randomness” ‘ 

cRefract += texCUBE(tRefraction, vTransmission2.yxZ) ; 

// Apply gamma curve to cubemap to bring out bright regions 

// (this could be folded into the cubemap) 

cRefract = pow(cRefract, 4.0); 

// Edge term 

float3 edge = tex2D(tEdge, edgeUV) ; 

edge = lerp(1.0, edge, edgeStrength) ; 

// Modulate with edge term and scale overall brightness 

return cRefract * edge * brightness; 

aa eeemmnmememmell Reflections : 

The reflection term of the gem shader is a combination of a specular highlight from a 

point light source and reflections from an environment cubemap modulated by a 

Fresnel term. To increase the dispersion effect, we use a cubemap in which each face 

contains a rainbow color gradient and modulate it with the environment map (see 

Figure 5.7.3). Together with the Fresnel term, this creates discolorations around the 

edge of the gem (see the final result in Figure 5.7.5e). As with the dispersion from the 

edge map, the strength of this effect can be controlled by brightening the rainbow 

cubemap. 
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FIGURE 5.7.5 Breakdown of the steps for computing reflections with dispersion. 

(a) Environment map reflections, (b) rainbow cubemap samples, (c) Fresnel term, 

(d) product of (a) and (b), (e) final result. 

Here is the HLSL code to compute the reflection term: 

sampler tEnvironment; // environment cubemap 

sampler tRainbow; // rainbow cubemap 

float3 ReflectionTerm (float3 N curved, // averaged normal 

float3 N face, // flat face normal 
float3 V, // view vector 

floaters // light vector 
float3 lightColor, 

float shininess, // specular exonent 
float dispersionStrength) 

// Reflection vectors 

float3 R_face = reflect(V, N face); 

float3 R_curved = reflect(V, N curved); 

// Specular highlight 

float RdotL = clamp(dot(R_face, L)); 
float3 specular = pow(RdotL, shininess) * lightColor; 

// Fresnel term approximation 
float fresnel = pow(1.0 — Cclamp(dot(N_face, V)), 2.0); 
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// Look up in environment map 
float3 cEnv = texCUBE(tEnvironment, R_curved) ; 

float3 cRainbow = texCUBE(tRainbow, R_curved); 

// Modulate environment map by fresnel term and dispersion 

cRainbow = lerp(1.0, cRainbow, dispersionStrength) ; 

cEnv = cEnv * cRainbow * fresnel; 

return saturate(specular) + cEnv; 

ei NSS ERNE EE HID SSRN RESET. 

Rendering light flares over the gem’s brightest regions can give it a more brilliant look. 

We place static flare billboard geometry on the gem’s surface and throughout its inte- 

rior (see Figures 5.7.6b and 5.7.6c). The flare centers stay fixed relative to the gem 

while the flare geometry is screen-aligned in the vertex shader. 

The flares are rendered with additive blending on top of the final image as a post- 

processing effect. Before rendering the flares, the frame buffer contents must be copied 

into a texture so that they are accessible in the flare pixel shader. The flare intensity is 

chosen in the shader depending on the luminance of the frame buffer at the flare’s cen- 

ter position. If the luminance is below a threshold, all fragments of the flare are dis- 

carded. This causes flares to only appear over the brightest spots on the gem. Moreover, 

they will rapidly turn on and off as the viewing angle and the position of the gem 

change, which hides the fixed position of the flares relative to the gem. Additionally, 

the flare intensity can be modulated by a noise value dependent on the flare’s screen 

space position and the current view direction for a more sparkly appearance. 

(a) (b) 

FIGURE 5.7.6 (a) Flare geometry, (b) and (c) flares distributed throughout the gem. 

Rendering a lot of flares—most of which will be faded out at any time—can be 

expensive because of the high overdraw involved. To save fill overhead, it is advisable to 

create flare geometry that tightly bounds the nontransparent area of the flare texture (as 
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shown in Figure 5.7.6a), which can result in better performance when compared to 

simple billboarded quads, which would have large empty areas. 

For the billboarding vertex shader that follows to work properly, all vertices that 

belong to a flare have to have the same vertex position located at the flare center. The 

flare’s shape is determined by the 2D texture coordinates, as shown in the shader code. 

Following is a flare vertex shader: 

float4x4 mWorldViewProj; 

float4x4 mWorld; 

float4x4 mView; 

float3 worldCamPos; 

float flareRadius; 

struct VsInput 

{ 
float4 pos : POSITIONO; 

float2 uv : TEXCOORDO; 

}5 

struct VsOutput 

float4 pos : POSITIONO; 

float2 uv : TEXCOORDO; 

float2 noiseUV : TEXCOORD4 ; 

float2 screenUV : TEXCOORD2; 

}5 

VsOutput main (VsInput i) 

{ 
VsOutput 0; 

// Screen-align billboard geometry and transform 

// Note that all vertices of one flare must be set to the flare 

// center position. The shape of the flare is determined by the 
// texture coordinates. 
float2 pos2D = i.uv — 0.5; 

float4 pos = i.pos + (pos2D.x * mView[0] + 

pos2D.y * mView[1]) * flareRadius; 
0.pos = mul(pos, mWorldViewProj); 

// Compute screen space position of flare center 

float4 flareCenterPos = mul (i.pos, mWorldViewProj); 

o.screenUV = flareCenterPos.xy/flareCenterPos.w; 

o.screenUV.y = -o.screenUV.y; 

o.screenuUV = 0.5 * o.screenUV + 0.5; 

// View vector to flare center 

float3 V = normalize(worldCamPos — mul(i.pos, mWorld)); 

// Pass along texture coordinate 
O.UuV = i.UV; 
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// Compute some “random” texture coordinates depending on the 

// position and view vector, which are used to look up into a 

// noise texture in the pixel shader. 

o.noiseUV.x = fmod(abs(dot(pos.xyz, float3(1, 1 uh ) eee 
o.noiseUV.y = fmod(abs(2.0 * dot(V, float3(1, 1, 1 

), 2.0); 
))), 2.0); 

return 0; 

} 

Following is a flare pixel shader: 

sampler tFlare; // flare texture 

sampler tNoise; // 2D noise texture 

sampler tScreen; // back buffer contents 

float flareIntensity; 

struct PsInput 

float2 uv : TEXCOORDO; 

float2 noiseUV : TEXCOORD1; 

float2 screenUV : TEXCOORD2; 

}5 

float4 main (PsInput i) : COLOR 

{ 
// Sample flare texture 

float fAlpha = tex2D(tFlare, i.uv); 

// Get noise value for flare intensity 

float noise = tex2D(tNoise, i.noiseUV) ; 

noise = lerp(0.6, 1.0, noise); 

// Get screen luminance at flare center 

float3 cScreen = tex2D(tScreen, i.screenuUV) ; 

float lum = dot(cScreen, float3(0.3, 0.59, Oeil) is 

// Discard fragment if luminance is less then 0.8 

clip(lum - 0.8); 

// Pull luminance for visible flares into [0, 1] range 

// and apply a gamma 

lum = smoothstep(0.8, 1.0, lum); 

lum *= lum; 

float4 o = 0; 

o.rgb = noise * lum * fAlpha * flareIntensity; 

return 0; 
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Conclusion 
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This Aes eee a Paane fos radadae gemstones that performs well on cur- 

rent graphics hardware. This method largely ignores physical accuracy and instead 

concentrates on an interesting look that would fit in a typical game environment. 

Transmitted light is approximated using lookups into a precomputed refraction cube- 

map. The reflection term is a combination of a reflection cubemap and specular light- 

ing. The illusion of chromatic dispersion is created by simple blending of different 

textures. Flares are rendered over bright spots on the gem using billboards in a post- 

processing pass. 
Our rendering technique uses tricks that could be applied in other scenarios: 

averaging face and smooth normals can be useful for shaders on geometry with hard 
edges. The flare post-processing technique can be generalized to cover the complete 
image and used for special effects. Finally, complex particle geometry that bounds the 
nonempty regions of a particle texture—as used for the flares—might help improve 
performance on fill-bound particle systems. 
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WwW the ubiquity of programmable graphics hardware, we are seeing increasing 

interest in customized. post-processing effects. Effects such as pixel displace- 

ments, blooms, and glows are common post-processing effects in today’s games. lypi- 

cally, post-processing effects are inherently 2D. Pixel displacement effects, for example, 

will transform pixels so as to warp the image, simulating refraction due to heat or some 

special effect. This process is typically applied to a specific subregion of the image and 

does not take into account issues of object ordering and shape. As an example, consider 

a heat shimmer effect shown in Figure 5.8.1. The heat given off by the fire should warp 

objects seen through it, displacing pixels to form an undulating wave pattern. Done 

naively, the heat shimmer effect will warp not only objects behind the fire but also 

objects in front of it, which is incorrect. Clearly, the post-processing effect needs some 

form of depth awareness. This gem will discuss how we can integrate depth informa- 

tion into our image-space operations using volumetric post-processing. 

FIGURE 5.8.1 Correct post-processing. The heat from the fire 

should distort the wall seen behind it. However, if an object such 

as a column is put in front of the object, the column should not be 

affected by the heat shimmer. 

571 
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Volumetric Post-Processing 

To apply our volumetric post-process, we will define the concept of a post-process 

volume. The post-process volume is a 3D object that will affect any scene pixels that are 

behind it. Figure 5.8.2 shows an example of a post-process volume. 

FIGURE 5.8.2 = he post-process volume. 

Unlike standard post-processes, we are using a 3D shape, not a 2D image-space rec- 

tangle, as our post-process region. The post-process volume defines a region—it is not 
meant to be rendered directly. The post-process volume could be a simple cube as 
shown in Figure 5.8.2 or it could be defined by a more arbitrary shape as discussed in 
[Oat04]. Naturally, some scene objects may penetrate the post-process volume, caus- 
ing only a portion of the object to be distorted. 

Depth Awareness 

With our post-process volume defined, we can classify our scene in two sets: regions 
that are behind the front of the volume and regions that are in front of it. We could 
simply sort the objects in our scene to try and figure out the spatial relationship with 
the post-process volume; however, this would not work for objects intersecting the 
volume and would not be robust in general for arbitrary scenes. 

In effect, we need to: 

* Render only objects that are behind or contained by our post-process volume to 
an offscreen render target. 

* Apply the post-process effect (i.e., a warp to simulate refraction due to heat) to 
the render target. 

* Render objects that are in front of the post-process volume. 

The first problem is how to render only objects that are behind the post-process vol- 
ume in image space. We would like to compare the z-values of the pixels of the scene 
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that we render to the z-values of the pixels of the post-process volume and only allow 

those z-values that are greater than the post-process volume’s z-values. 

This would suggest that using a simple z-buffer greater-than comparison mode 

would do the trick; unfortunately, changing the z-buffer test from its normal less-or- 

equal value to greater-than will ruin the hidden surface removal for the scene in gen- 

eral. Essentially, we want the nearest pixel that is behind the front of the post-process 

volume to remain in the frame buffer. Having two z-buffer tests that would each com- 

pare values from separate source frame buffers would do the trick (greater-than post- 

process volume and less-or-equal current frame buffer z-value) but no such concept 

exists in hardware depth buffering. 

Using Shaders for z-Compares 
Since the graphics card does not natively support multiple depth buffer tests, the solu- 

tion is to add this functionality to the videocard through the use of vertex and pixel 

shaders. We will implement the comparison with the post-process volume this way. 

Naturally, we first need a value with which to compare. The post-process volume’s 

z-values must be calculated and stored in an image buffer that will be the same size as 

the main framebuffer. We cannot use the z-values in the videocard z-buffer directly, 

since these values are typically encoded or compressed in a hardware-specific format. 

Instead, we can use a vertex shader to compute these z-values ourselves. These val- 

ues can be passed to a pixel shader through an interpolator and stored in a texture. 

Since high precision is needed on values computed, it is necessary to use a floating- 

point texture. We only need to store a single floating-point value per pixel, so we use 

a D3DFMT_R32F format texture in Direct3D. Since not all hardware supports float tex- 

tures, a standard color texture still can be used as a fallback. This can result in preci- 

sion limitations that create subtle artifacts on screen, though this can be reduced using 

workarounds such as reducing the Far/Near ratio when computing the depth values. 

Storing the z-values of our post-process volume into a single-component floating- 

point texture gives us the values we need so we can find objects that are behind the 

post-process volume. We will refer to this texture with the post-process volume’s 2- 

values as the volume’ depth texture. We want only objects behind and within our post- 

process volume to be affected by the post-process. 

Pixel-Perfect Clipping MAMMAL LOL MTEL TTL NLT 

The volume’s depth texture can now be compared with the pixels of the scene. The 

depth texture is first selected as an active texture. As before, a vertex shader will com- 

pute the z-values in the scene and transfer them to a pixel shader. 

We will also need to know which pixels in our frame buffer correspond to which pix- 

els in the depth texture. To achieve this, the vertex shader will perform the perspective 

transformation to screen space. The screen space coordinates will then be normalized by 

the vertex shader to a normalized 0..1 range so that the screen coordinates correspond to 

UV coordinates on the depth texture. These UV coordinates are passed to a pixel shader 
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using an interpolator. The pixel shader can then use these UV coordinates to look up the 

post-process volume’s z-value in the depth texture, as illustrated in Figure 5.8.3. 

Frame buffer Depth texture 

Pixel in frame buffer image is compared with 

corresponding pixel in depth texture. In this image, 

darker pixels in the depth texture correspond to 

larger depth values. 

FIGURE 5.8.3 Looking up the depth value. 

These two z-values are compared in the pixel shader, and alpha testing is used to 

mask which pixels get written to the frame buffer. If the z-value of the scene pixel is 

greater than the post-process volume’s, the alpha of the resulting pixel is set to 1, oth- 

erwise, it is set to 0. With an alpha test compare function of greater-than and an alpha 

reference value of 0, this allows us to kill pixels that are in front of the post-process 

volume. We could alternatively use the assembly texkill (or HLSL clip() intrinsic) 

to perform this conditional pixel killing. 
After our rendering pass, what we will have is a rendered scene that is “clipped away” 

by our post-process volume mesh at the pixel level. The post-process volume mesh used 
for this clipping operation can be arbitrarily complicated, as shown in Figure 5.8.4. 

FIGURE 5.8.4 = The “clipping” operation. 
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The Post-Process . 

As mentioned earlier, there are many post-process transforms such as distortions, 

blurs, and color transforms that can be applied in image space. In our example, we are 

modeling a heat shimmer effect, which can be suitably modeled by a traveling sine 

wave distortion with a slight blur. Please refer to the sample code included on the 

(<=) companion CD-ROM for a detailed implementation. The effect is applied by select- 

onTHECD ing the proper post-process shader (blur, displacement, bloom, etc.) and re-rendering 

the post-process volume. This will apply the post-process only to pixels within the 

volume. 

The Final Pass 

At this stage, we will have rendered what is behind the post-process volume and 

applied our effect to our post-process area. We now must render the undistorted poly- 

gons that are in front of the post-process volume. This is exactly the reverse of the 

operation conducted in the first pass of the algorithm. Here, pixel alpha will be 1 

when the z-value of the scene polygon is /ess than the post-process volume’s and 0 oth- 

erwise. At this point, the image will be completed. 

Multiple Volune2 an 
Our technique could be used with multiple post-process volumes as long as the vol- 

umes are nonintersecting and are easily sortable by their z-order. Given these condi- 

tions, our algorithm extends to: 

1. Clear frame buffer. 

2. Clear depth texture to zero. 

3. Select greater-than z-buffer comparison test and render all post-process vol- 

umes into depth texture, storing z-values as floating-point values in depth 

texture. 

4. Set z-buffer test to /ess, not /ess-or-equal, to save on fillrate (we will be ren- 

: dering the same polygons multiple times) and render the scene with a vertex 

shader calculating z-values and a pixel shader filtering out pixels that are in 

front of z-values calculated in depth texture. 

. Apply post-processing effect of farthest post-process volume to screen. 

6. Go back to step 2, this time excluding the post-process volume that is far- 

thest away from the viewer. Loop through steps 2 to 5 multiple times, 

removing the next farthest post-process volume on each loop until there are 

A 

no volumes left. 

For an example of how this process works with multiple volumes, refer to the top- 

down view shown in Figure 5.8.5. Say a scene contains nonintersecting post-process 

volumes A, B, and C. On the first loop, all three volumes are rendered into the depth 
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texture. This will cause our pixel shader to only render pixels that are behind all three 

volumes (region 1). Setting the z-buffer test to greater-than will ensure that the 

farthest front-facing polygons from the set of three volumes are stored in the depth 

texture. The post-process effect for C is then applied to the scene. 

On the second loop, the depth texture is cleared and post-process volume A and 

B are rendered in the depth texture. We re-render the scene, allowing pixels that were 

behind A and B but were in front of C (region 2) to be written to the scene. We then 

apply the post-process for volume B (the farthest away in the current post-process vol- 

ume set). On the third loop, only post-process volume A is rendered into the depth 

texture, thus adding pixels that are behind A but were in front of B and C (region 3). 

The post-process for volume A can then be applied. Finally, objects that were in front 

of all three post-process volumes are rendered (region 4). No post-process effect is 

applied on these. 

Region 1 

Region 2 

Region 3 

FIGURE 5.8.5 Multiple post-process volumes. 

RATED RNAS BSR ETN LOL Si REINER 

The technique presented in this gem allows an arbitrary 3D volume to be affected by 
a post-process effect. This can be used for dramatic effect with localized image filters. 

The algorithm does rely on some recent features of videocard hardware such as 
shader functionality and, most importantly, floating-point textures. There can be 
some overhead as the scene geometry is rendered multiple times, but this can be alle- 
viated through clever culling and a good visibility system. 

The technique can also be used in many other situations where pixel-perfect 3D 
clipping with a volume must be achieved. One could easily imagine using this tech- 
nique to provide “cutaway” views of objects or to perform voxel-based processing. 
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raditionally, a typical 3D game development project proceeds concurrently on 

two fronts. Programmers design, code, and test a game engine at the same time 

that artists create content for the game. There are compelling reasons to suggest that 

this paradigm may no longer be desirable or even feasible for some projects. Technical 

advances in hardware have enabled the use of art assets that are much more detailed 

than ever before. Increased storage and available RAM translates into larger game 

worlds. Some games require an enormous amount of content such as online multi- 

player games and games that aim to provide a high level of replay. Still another factor 

‘s the increased availability of licensed engines and other high-quality middleware, 

which can cut engine development time significantly. What this means is high-defin- 

tion art assets, which take artists longer to create, will likely be needed sooner rather 

than later in the development cycle. One obvious solution to this problem is to create 

art assets procedurally. This gem presents the ideas and techniques behind a proce- 

dural level generator. We illustrate its use to create a simple 3D dungeon. 

en
e 

We have several goals for the level generator. First, we want a prototype system to cre- 

ate an integrated collection of portal-rendered indoor 3D geometry—a level. The sys- 

tem should be as generic as possible so it can be adapted to specific needs. We want to 

generate levels of arbitrary size and complexity. We want the system to run fast so we 

can use it to generate levels dynamically during program execution. Finally, we want 

the level generator to rely upon human-created artwork as little as possible. Ideally, 

the entire level will be synthesized by the computer. In practice, however, a small 

amount of human-created artwork will be required to make a better quality level. 

579 
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Creating a level consists of five steps: 

. Design the level. 

. Create a set of prefabricated 3D geometry. 

. Procedurally generate a 3D graph. 

. Procedurally map the prefabs to the nodes of the graph. 

. Procedurally add content (details) to the level. WW HY Go Nb re 

Level Design 
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Designing a Pay ert evel has some strong similarities to designing a 

level by hand, at least initially. Questions have to be answered such as, what is the 
theme of the level? What is the general size and shape of the level? How many rooms 
are there? How many corridors? Since the level will be created procedurally, we get to 
specify some of this information parametrically. For the purposes of this gem, we cre- 
ate a simple dungeon consisting of corridors, stairs, and rooms. 

Out of necessity, we envision our dungeon positioned on a 3D grid that parti- 

tions world space into cubic sections called cells, as shown in Figure 5.9.1a. Using a 

grid will simplify many implementation details, including welding of geometry, map- 

ping world coordinates to local coordinates, automatically generating portals, and 

instancing of geometry. Each grid cell will be 90 feet high, 90 feet wide, and 50 feet 
high, as shown in Figure 5.9.1b. Each cell can contain either a corridor or a room. 

Geometry in each cell can connect with the geometry of up to four adjacent cells 

(north, south, east, and west). We allow connections between cells at either the same 

height or in a sloping manner. For example, we allow a corridor to connect to an adja- 
cent corridor that is higher or lower, as shown in Figure 5.9.4. In such cases, we gen- 

erate stairs to connect the two cells. 

nimi are 
90! 

(a) (b) 

FIGURE 5.9.1 (2) World space partitioned into cubic cells by means 
of a 3D grid. (b) One 3D grid “cell.” 
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Corridors, both flat and with stairs, are 10 feet wide. Flat corridors have 10 foot 

ceilings while stairs have 15 foot ceilings. Rooms are 30 by 30 feet square with 10 foot 

ceilings and have 10 foot open entrances (no doors). All horizontal connections 

between corridors are at right angles. Given these dimensions, we could lay out a 4- 

connected corridor in a cell, as shown in Figure 5.9.2a, or a 4-connected room, as 

shown in Figure 5.9.2b. 

10' 10' 

30' 
(a) (b) 

FIGURE 5.9.2 (a) Top view of cell containing a 4-connected corridor. 

(b) Top view of cell containing a 4-connected 30'X 30' room. 

Using Prefabricated Geometry 
In contrast to a purely procedural approach that would take our preceding definition 

of the level and generate the geometry for each cell, we add a human element. We 

want the level to look as good as possible, so it's a good idea to have an artist create 

portions of the actual level geometry. We use a modeling program to create a set of 

prefabricated geometry pieces. Using prefabs as building blocks for more complex 

geometry is a straightforward approach already in use in more conventional human- 

centered level design [Perry02]. 

The goal is to create a prefab for each possible cell layout. The problem with this 

is that even with the simple dungeon we've described
 so far, there is a large number of 

possible cell variations. Consider a cell containing a corridor. The cell could be 1-con- 

nected, 2-connected, 3-connected, or 4-connected. With 1-, 2-, or 3-connected cells, 

there are four different orientations. For example, a 1-connected cell could be con- 

nected to another cell to the north, south, east, or west. To make matters worse, con- 

nections can occur between cells at the same or different heights. A 2-connected cell, 

for example, has nine different variations, which when multiplied by its four possible 

orientations, gives 36 possible layouts. A 4-connected cell has 80 possible layouts, and 

so on. 
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To make the job of creating prefabs more manageable and to reuse as much geom- 

etry as possible, we subdivide each cell horizontally into 3 x 3 sub-cells, each 30 x 30 x 

50 feet in dimension. Our aim is to populate a cell with geometry by welding together 

several smaller prefabs at execution time. As it turns out, we only need the nine small 

prefabs shown in Figure 5.9.3 to do this. To augment this set of sub-cell prefabs we 

could optionally create one or more full-cell (or sub-cell) “special” prefabs. This could 

be useful if our design called for the inclusion of special rooms or locations in the dun- 

geon that couldn't be readily constructed using only the nine smaller prefabs. 

cor_lway cor_2way cor_2wayangle 

cor_3way cor_4way cor_down 

small_room small_room_wall small_room_door 
(floor & ceiling) 

FIGURE 5.9.3 Jop view of nine prefabs needed for basic dun- 
geon level, each shown on a 90'X 90'cell, subdivided into 3 x 

3 sub-cells, each 30'X 30' 

Graph Generation 
HER HEN ERNE NI ANC RO a 8 

With a design in hand and a set of prefabs to work with, we're now ready to imple- 
ment the procedural part of the level generator. We generate a 3D graph data struc- 
ture as a high-level representation of the procedural game level. Each node in the 
graph will correspond to one cell of geometry in world space. We store the nodes of 
the graph in an array. Each node in the graph contains the following data: 
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struct GraphNode { 

int x, y, z; // in graph coordinates, (0,0,0 = start node) 

int dir[4]; // array index of 4 adjacent nodes (O=none, 

ib} else connect to node 

ALE // dir[x]-1 in array) 

Generating a random graph presents myriad possibilities. Whatever method we devise 

should be driven by the design. Our design may include constraints to be placed on 

the graph generator. For example, we may want to enable specific sequences of rooms 

in the dungeon that can only be visited in a particular order. 

For the purposes of this article, we generate a graph with a tentacle-like topology 

that radiates from the starting node in the eraph (the entrance to the dungeon). With 

knowledge of the intended geometry, we place one constraint on the graph genera- 

tor—a new node in the graph cannot be created directly under an existing node that 

has a connection to a lower node. The reason for this can be seen in Figure 5a. in 

case a cell needs to connect to a lower cell, the actual geometry for the cell will drop 

below the cell into the adjacent lower cell. We therefore require this lower cell to 

remain empty since we will assume the geometry if a descending cell occupies not 

only the space contained by the cell but also the cell directly be
neath it. 

Reserved 

for ! 

Node A 

| 

FIGURE 5.9.4 Side view showing how two corridor nodes (cells) 

can connect to each other diagonally using stairs. The graph node 

below Node A is reserved for use by Node A. 

We begin by specifying a minimum and maximum number of nodes for the 

graph. We control the height of the graph by supplying a parameter that specifies the 

percentage of connections between nodes that will be at different heights. For exam- 

ple, using a value of 25% means each new node added to the graph will be at the same 

height as the node it is connected to about 75% of the time and at a different height 

about 25% of the time. 
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The basic algorithm works as follows. We generate a starting node that becomes 

the entry point into the dungeon. Since this node can have up to four connections to 

other nodes, we add four entries into an “available” list. Then, in a loop that executes 

once for each additional node we want to generate, we do the following: 

1. Create a new node. 

2. Randomly select from the available list an existing node as the attachment 

point. 

. Verify that all constraints remain satisfied. 

. Attach the new node to the graph. 

. Remove one entry in the available list for the existing node. 

. Add three entries in the available list for the new node. ON WN HR BO 

If we find that attaching the new node will violate any constraints, we select another 
attachment point. For very complex constraints, there may not be a valid attachment 

point. In that case, we can either terminate the algorithm, if the minimum number of 

nodes have already been generated, or optionally, restart the algorithm from the begin- 

ning. When implementing a new graph generation algorithm or modifying an exist- 
ing algorithm, automated testing should always be done to prove the algorithm works 
reasonably well. 

When selecting a new node from the available list, we prefer to choose nodes cre- 

ated more recently as attachment points. This allows the graph to grow outward, pro- 
ducing a more interesting graph. A simple method for selecting an available node is to 

generate a random number between 1 and the number of entries in the available list. 

Call this value 7. Next, generate a second random number between r and the number 

of entries in the available list. Use this second number as the index into the available 

list. 

After the graph is created, we save the graph in both binary and text file formats. 
Along with the graph data, the files contain some statistics including seed values used 
by the random number generator. The seed values can be very useful. For example, 
given a fully generated level, we can regenerate it again at any time using only the seed 
values. An example text file is as follows: 

num_nodes: 99 

max_level: 5 

adjacency: 4 

min_nodes: 50 

max_nodes: 100 

percent_vertical connects: 0 
percent_sloping_horizontal_connects: 25 
random_type: 0 

random_start_seed: 1076104227 

random_end_seed: 1359372770 

Node: 0 

location (x,y,z): 0,0,0 

connected to nodes: 1(N) 
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The companion CD-ROM contains the source code for the graph generator. 

The next step in generating the level is to cycle through each node in the graph, map- 

ping geometry to it. We tag each node according to the type of geometry we want in 

the corresponding cell. Some nodes become rooms while others are tagged as corri- 

dors. We can enforce additional constraints at this point such as no two rooms are 

adjacent to each other. 

Mapping prefabs to the graph is purely mechanical. We initialize an empty list of 

full-cell models. This cell-model list, when built, stores every possible variation of cell 

geometry found in the level. It is highly possible that multiple cells will be of the same 

type (room, corridor) and have the same spatial connectivity. In this case, we don't 

want to duplicate actual model geometry. Instead, we allow multiple nodes in our 

graph to instance the same geometry in the cell-model list as shown in Figure 5.9.5. 

Potentially, we end up with a fairly large list of models, but it is likely a smaller set 

than all possible variations. 

CellContents 

Model3D 

FIGURE 5.9.5 The major data structures that make up a level. 

Using the sub-cell prefabs, we have basically shifted work from the artist to the 

computer by eliminating the need to generate all possible variations of cell geometry 

ahead of time. We also reduce the run-time storage requirements of the level by only 

storing the cell geometries used in the level. 

For each node in the graph, we examine its connectivity information and look for 

previously generated geometry in the cell-model list. If identical geometry is found, 
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we instance this geometry. Otherwise, we create the geometry for the cell and place it 

in the cell-model list. Creating new cell geometry proceeds as follows: 

. Gather the sub-cell prefabs needed. 

. Translate/Rotate each prefab as necessary. 
Weld all the prefabs into a single model (see Figure 5.9.6). 

. Add this new model to the cell-model list. 

Translate (0,0,-30) Rotate (180) Rotate (90) 

Rotate (90) 
Translate (0,0,-30) 

Ueselieras Sauenyfoac Connect 

Down 

, To 

Lo me a | emer Res i Lower Cell 

FIGURE 5.9.6 Welding four sub-cell prefabs into a single model. 

Since our sub-cell prefabs tend to be small in terms of number of vertices, we pre- 
fer not to render them as distinct models with individual API draw calls. Instead, for 
efficiency and for simplicity, we want to treat the geometry of each cell in the level as 
a single model. To combine several smaller models into one, we must reorient and 
weld the geometry of all the sub-cell prefabs together into a single model for each cell, 
as illustrated in Figure 5.9.6. This sufficiently reduces the API overhead and allows for 
efficient rendering. 

Visibility and Collision Detection 

Once all cell geometries have been built, we dynamically generate data needed for 
rendering and collision detection. For each model in the cell-model list, we create an 
associated set of up to four portals, depending on the connectivity of the cell. Each 
portal is a 2D rectangle that encloses all vertices of the cell’s geometry that lie on the 
plane connecting the cell to the adjacent cell. We use these portals to enable portal 
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rendering of the level [Luebke95]. In contrast to the standard portal rendering philos- 

ophy of using convex cells connected via portals, we place no restrictions on the 

geometry in each cell. A disadvantage of using non-convex cells is that it can result in 

overdraw during rendering. This is outweighed, however, by the flexibility we gain 

from placing no limits on the cell geometry and the ease with which we can automat- 

ically create the portals. 

To enable collision detection, we create a binary tree of axis-aligned bounding 

boxes (AABBs) for each model in the cell-model list in a manner similar to 

(Schroeder01]. Finally, since there is no direct relationship between a cell in the level 

(in world space) and its corresponding node in the graph, we create a hash table that 

maps world coordinates to nodes in the graph. Making the hash table efficient is vital 

since every reference to data in the level, using world coordinates, maps through the 

hash table. Some general knowledge of the potential layout of the level is helpful to 

make the hash function fast. 

Adding Level Content 
LONE TN TTL LL I E SARL ITLL OTITIS 

At this point, we have a basic level, perhaps large but nonetheless empty, as shown in 

Figure 5.9.7. Using a rule-based system, with rules derived from the design, several 

types of content can be added. Nodes in the graph can be annotated with environ- 

mental audio properties and other sound effects based on the size, shape, and content 

FIGURE 5.9.7 Basic dungeon of corridors and rooms generat
ed using a 

“‘entacle” graph (inset). Entrance to the dungeon is via a small corridor 

shown at the top of the graph. 
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of each node’s geometry. Adding actual geometry falls into two categories..Static 
geometry includes augmentations to the level geometry such as pillars or statues. 
These are items we may want to weld to the existing cell geometry. If so, we need to 
make sure the cell geometry is not being instanced by more than one node in the 
eraph. If it is, we will need to create a separate version of the cell geometry before we 
weld any new geometry to the cell. Welding new geometric features also requires an 
update to the cell’s AABB tree and possibly the recalculation of portals. Nonstatic 
geometry can simply be added at the node level without welding. 

Conclusion 

We have presented a process for generating procedural game levels to address the large 
amount of content required by growing game genres such as massively multiplayer 
online games. Given an appropriate set of rules, our algorithm provides amplification 
of a simple data structure into a complex geometric game level [Roden04]. Our 
process begins by generating a 3D graph with appropriate rules. Prefabricated 3D 
geometric level pieces are then mapped to nodes of our graph. Identical geometry is 
instanced instead of being copied, taking care to weld sub-cell prefabs into a single 
model to reduce the number of redundant vertices and save on rendering time. We 
then compute visibility and collision detection information for later use by our portal 
algorithm. Finally, we add level content such as static geometry and environmental 
audio. 

The method presented should be considered as a foundation for the reader in 
building their own level generator. One important issue we have not touched upon is 
lighting. A procedure for adding realistic lighting would depend not only on the design 
but also on how the level generator is used. If levels are generated as a pre-process, 
lighting can be computed using pre-processing techniques, whereas for dynamically 
generated levels, a different set of lighting techniques would be employed. 
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Graphics Processing Units (GPUs) were recently brought much closer to their CPU 

counterparts with the introduction of shaders. GPUs went from rigid graphics pro- 

cessing devices to more general chips, as can be seen in the increasing amount of 

research being put into using shaders for physics, math computations, and raytracing. 

It was only a matter of time before the advent of GPU compilers would make 

shaders even more useful. GPUs are indeed seeing the same evolution as their CPU 

counterparts (specialized chips, evolution to general purpose, compiling tools, and 

optimizers) but at a much faster pace. 

GPUs are at this time, however, very far behind their CPU counterparts when it 

comes to flexibility and ease of integration. 

Some issues with GPUs include: 

Limited length of programs: Limited length of microprograms means that the 

whole application’s graphics pipeline cannot be put into a single program or 

function, as it may have been for a software renderer. 

Limited or missing branching: Lack of branching instructions in most 

programming models is a severe limitation that inhibits flexibility in the 

pipeline. 

No general scatter-gather: GPUs don't have a general memory model, as their 

memory is not randomly accessible. 

No interaction with fixed pipeline: On an APLlevel, shaders run on a completely 

different path than the standard fixed pipeline. An effect implemented in a 

shader must supply its own implementation for skinning, lighting, and other 

features that may already be present in the fixed pipeline. There is no way to 

effectively make “calls” into fixed pipeline circuits. 

Combining Effects AMMEN NSMBL ARLE ALLTEL
 see ERIN 

In practice, the very linear nature and limited scope of the graphics pipeline along 

with the limitations of shader programming models described earlier tend to force 

589 



590 Section 5 Graphics 

applications to treat shaders as a fairly hardcoded, precanned process. This is exactly 

what shaders were designed to prevent! 

Consider the collision of a technique like matrix palette skinning and a typical 

special effect. It is quite common for special effect shaders to only affect lighting, tex- 

ture coordinates, or any other vertex component besides position. Yet, to be com- 

bined with skinning, the vertex shader implementer must write specialized variants of 
an effect for skinned and unskinned versions. The combinatoric explosion that this 
implies for even a moderately complex graphics engine means that it becomes impos- 
sible to write a single shader that will work for all situations. In fact, just supporting 
the full fixed-function pipeline as specified in DirectX® 9 is not possible using a sin- 
gle shader [Sander03]. Thus, for maximum optimality, a different vertex shader 

would have to be written for every possible fixed pipeline setting combination. 
In this gem, we will explore ways to handle the problem of multiple shader vari- 

ants, along with effective techniques to generate the variants, store them, and gener- 

ally integrate a flexible shader pipeline into a 3D engine. One specific approach for 
flexible shader integration is presented here, but this gem will also provide many start- 

ing points that could be used for further research into novel approaches to shader 
integration. 

Dealing with Combinatoric Explosion . 

First, let's categorize some of the approaches to dealing with this proliferation of 

shader variants. 

Close-ended: This is the most common approach to the problem. Most games 
will write between 5 and 60+ highly specialized shaders that will handle the 
most common effects a game will implement. It is a viable approach when the 
feature set of the graphics pipeline is very clearly defined, but it does limit 
creativity and makes any engine code rather inflexible to changes in the game 
design. With this strategy, the shader variants problem is side-stepped by simply 
not allowing an arbitrary number of effect types to be applied in the game. 

Open-ended. Generate shader variants at runtime: The most flexible approach 
is to actually build the shader variants at runtime. The engine renderer must 
analyze the current renderer settings, determine the appropriate vertex shader 
code fragments needed, and assemble this into a single shader. There are several 
ways to approach this. 

° Nvidia's NVlink 

¢ DirectX Fragment linker 

HES 

Methods to generate shader variants can be classified as additive or subtractive. Addi- 
tive methods work by adding, copying, or linking fragments of code, while subtrac- 
tive methods will take a large generic shader and refine it to create a specialized variant 
with only the relevant subset of functionality. Here, we present a brief overview of 
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these methods so that we can understand and point out the advantages of the novel 

method that we will propose. 

NVIDIA’S NvLink 

The NvLink tool provided by NVIDIA is an older additive method used to sew 

together assembly language vertex shader fragments. The #beginfragment and 

#endfragment keywords are placed within the shader code to delimit fragments. The 

INVLink interface (obtained from a library provided by NVIDIA) can then be used 

to link the fragments together at runtime. We will not dwell more on this technique, 

as its restricted use for assembly shaders severely limits its usefulness; it is mostly of 

historic value. 

D3DX Fragment Linker 

The D3DX fragment linker consists of a set of sparsely documented functions in the 

D3DxX library. The key entrypoints are D3DXAssembleFragments(), LinkShader(), 

and LinkVertexShader(). These functions can be used to additively link shader frag- 

ments written in DirectX assembly language or compiled from HLSL. 

To use the linker, a semantic prefixed with r_ is assigned to some function para- 

meters. These parameters then act as the glue between the shader fragments, serving 

as their communication channel. The vertex fragment also has to be declared with a 

special vertexfragment keyword, as shown in the following example: 

void Transform( 

float4 vPos : POSITION, 

float4 vNormal : NORMAL, 

float3 vPositionResult : r_TransformedPosition, 

float4 vNormalResult : r_TransformedNormal ) 

vPositionResult = mul( vPos, mWorldView ); 

vNormalResult = mul( vNormal, (float3x3)mWorldView ie 

} 

Vertexfragment Transform = compile fragment vs_1_1 Transform(); 

D3DXAssembleFragments() can then be used to load all shader fragments from a given 

file, and LinkShader() can be used to combine them to construct shaders [Boyd]. 

Using the fragment linker is a lightweight process that can be done at runtime. 

The linker will resolve symbol tables, optimize register use, and remove dead code. 

Generating Shader Variants through HLSL 

AMM, LLL LLL 
ou senna 

MMMM LLL LLL LLL 2A ALENT 

Since shaders can be written in a high-level language, it is only natural to use the 

shader compiler to concatenate shader code strings together to build a more complex 

shader. Generating shader variants through a high-level shader language can be done 

using either additive or subtractive methods. 
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Additive Methods 

Through additive methods, the shader code is built from smaller fragments of 

shaders. This has the advantage that small shader fragments can be written without 

the need to know the complete shader pipeline. In the simplest form, we are merely 

pasting HLSL strings together. To be truly effective, however, a strict set of rules 

should be defined to allow the shader fragments to interoperate. 

We can view the shader pipeline as a set of atomic component blocks operating 

together, not unlike hardware component blocks. These blocks have input and output 

ports that can be used for communication. Adding fragments to HLSL code is quite 

simple, since they can be written as separate functions. A runtime shader combiner 

can then paste in the code to call the function at the relevant point in the code. 

Subtractive Methods 

Subtractive methods use a completely different approach to generating shader vari- 
ants. A large generic shader that describes a game’s complete pipeline, including skin- 
ning, effects, uv animations, etc., is written. Specialized versions of this generic shader 

are then derived through the use of constants and/or defines, as shown in the follow- 

ing example: 

struct Input 

float4 Position : POSITION; 

float4 Normal : NORMAL; 

}; 

struct Output 

{ 
float4 Position : POSITION; 

float4 Coloro : COLORO; 

}5 

// Parameters 
float4 Diffuse[8]; 

float4 LightDir[8]; 

void Main( in Input In, out Output Out ) 

{ 
// Insertion Point 

Out.Position = mul( view_proj_matrix, In.Position he 

float3 NormView = mul( (float3x3)view_matrix, In.Normal.xyz ); 

// Lighting 

Out.ColorO = AmbientCol; 

for ( float i = 0; i < LightCount; i++.) 

// Directional light 
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Out.Color0O.xyz += Diffuse[i] * dot( NormView, - 

LightDir[i].xyz ); 

} 

The previous example shows sample HLSL code for a simple lighting pipeline using a 

variable number of point lights. The previous example would actually not compile 

using the vs_1_ compile target since loops and conditionals are not supported. 

We can prefix the code right where the Insertion Point comment is with: 

LightCount = 3; 

We have just generated a specialized variant of the code, taking a generic vertex shader 

and specializing it as a shader for three point lights. The shader compiler will analyze 

the code and find out the loop can be unrolled three times. Also notice that if we were 

to set LightCount to zero instead, the shader compiler would optimize out the whole 

lighting loop as well as the calculation of NormView. 

This allows us to write a single, monolithic shader for our game. We can ignore 

limitations of shader microprogram length and limited registers in this generic shader 

as the specialized variants will weed out any unused elements. 

Both additive and subtractive methods have their advantages. The additive method 

is closer to the true concept of recombining shaders as it glues shader fragments together 

and allows each shader fragment to be developed independently, as well as being more 

flexible. The subtractive approach is much simpler to use and facilitates debugging by 

having the programmer preassemble all fragments together early on. 

Some code may need to be “switchable” through the use of #defines and #ifdef 

in the HLSL code. Vertex structure members that are not needed (extra uv coordi- 

nates, etc.) can be culled out through the use of #ifdef statements. The shader com- 

biner can then add the necessary #def ine to include the necessary vertex components 

as needed. 

Hybrids 

One good compromise is to use a hybrid of the two methods. The subtractive method 

is used for the common, standard parts of the pipeline—skinning, lighting, uv anima- 

tions, and so forth—while a large, generic shader is written that supports all the main 

pipeline features, as shown in Figure 5.10.1. Multiple attachment points are defined in 

this generic shader code where the shader code can inject function calls to pipeline 

plug-ins. These pipeline plug-ins are specialized, optional effects such as toon shaders 

and shadow volumes. Such pipeline plug-ins can be exposed through the art package 

and eventually be written by tech-savvy artists as well as programmers. 
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FIGURE 5.10.1 Ax example pipeline using the hybrid approach. 

For the technique to work in a generalized fashion, the communication channels 
(function parameters and variables) between all components of the pipeline must be 
clearly defined and have standardized names. These are indicated in the diagram on 
top of the communication channel lines. 

In the example, the lighting subcomponent needs the vertex position in view 
space. It could compute it itself, but to avoid recomputing it for each light, this task is 

delegated to a TransformPosViewSpace component that performs the transformation. 
The lighting subcomponent can then retrieve the view space position through the 
PosViewSpace communication channel coming out of TransformPosViewSpace. Com- 

ponents of the pipeline must be carefully planned and thought out to maximize reuse 
cases such as this one. 

The circles in the diagram represent attachment points where “external” shader 
pipeline plug-ins can be attached, effectively pasted in the generic shader code at spec- 
ified injection points. 

Integrating Recombinant Shaders 
BROAN LE SAREE RIL BRONTE STE ZS SLNE MI GRISEA BINS RET BRST BN RECT EON cat a a 

Having described ways in which shaders can be combined together at runtime, we 
can examine what would be an effective setup for tying this system into a 3D engine. 
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Most graphics API such as Direct3D and OpenGL are mainly state machines. Sev- 

eral render states are set and a batch of polygons is sent to the hardware using the speci- 

fied render states. Our shader system rendering interface will use the same mechanism. 

States will be set by an interface to our graphics subsystem and stored by the shader 

system until a call is made to prepare a shader to render the next batch of polygons. 

Having recorded all active states, the shader system can gather all the relevant 

states and encode them in bit field with 64 or 128 bits. For example, the lowest 2 bits 

may encode the number of skinning weights that need to be used while the next 3 bits 

may contain the number of lights, etc. This shader key only describes what effects need 

to be activated. It does not contain specific parameters such as light positions, direc- 

tion, color, etc., as these do not affect which shader fragments need to be linked in. 

The shader system can then look up the key value in a STL Map. If the key is 

found, that particular combination of effects was used recently and thus the precom- 

piled shader can be retrieved from the map immediately. Otherwise, a new shader 

variant must be generated. This generated shader can be built by taking the generic 

shader code, finding a proper insertion point, and using code specialization for sub- 

tractive shader combining: setting number of lights as a constant, number of skinning 

weights, and so forth. The shader key can be used to derive all code specialization. 

To add fragments using the additive method, the shader combiner must find 

which shader functions it will graft to at which attachment points. Each shader frag- 

ment has a standard call form string for each compatible attachment point, which will 

be pasted into the main shader body at the specified attachment point in the main 

shader code’s body. ' 

After the shader is compiled, we can query the shader compiler to find which 

shader parameters are needed for this shader. These parameters can be uploaded to the 

GPU in succession, retrieving them from the active render states. 

The generated shader is added to the map and associated with its key, thus giving 

us a cache of recently used shaders. As we generate shaders, their compiled binary size 

is computed. If a newly compiled shader causes the cache to exceed a threshold, the 

least recently used shader will be destroyed. 

At this point, the shader has been compiled and activated, and the parameters 

have been set up. The renderer can proceed to rendering the polygon batch. 

Building a Complete Pipeline through Shaders ee 

The approach described herein allows us to achieve a flexible, unified pipeline where all 

shader effects can be combined together. It is actually possible using this approach to 

have a 3D engine using shader variants for 100% of all rendering. At the moment, this 

may not be ideal on all cards, as older video cards still use a specialized hardware path 

for fixed function transform that may make the standard fixed pipeline faster than the 

shader pipeline. Video cards such as the AT RADEON™ 9600 and above, however, 

actually use shaders internally for all rendering, whether the fixed function pipeline 

API is used or not. 
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ON THE CD 

Section 5 Graphics 

The sample CD-ROM contains an example of a typical fixed-function_ style 

pipeline, completely built using recombinant shaders. The sample pipeline supports: 

¢ Skinning with one to four weights 

¢ Arbitrary number of lights 

¢ Point, spot, and omnidirectional lights with specular component 

e Environment mapping 

¢ UV transformations 

* Multiple coloring modes: white, material color, vertex colors, dynamic lighting, 

vertex color + dynamic lights, vertex color * dynamic lights 

Other Issues| 
REGRETTED SLR NATE 

Conclusi 
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The flocs sections Penk some er issues you should be aware of. 

Shaders Version 2.0 and Beyond 

It could be tempting to think that a recombinant shader system is overkill for a system 
that is planned to support shaders 2.0 and above only. Shaders 2.0 and above support 

longer shaders, some forms of branching, conditions, and loops. 

Although migrating to a higher version of the shader model implies a certain 

amount of performance headroom, the fact remains that a short shader will still out- 

pace a longer shader. Recombinant shaders can still be relevant for shaders above 2.0 

by optimizing out major shaders variants that are often used. 

Optimizing Combinations 

The shader system makes all effects combinable in myriad ways. Care must still be 
taken to watch for excessive generation of shader variants, as any machine will buckle 
when handling thousands of shader variants. Compiling shaders takes time, and any 
steps taken to pregenerate shader variants for static assets at export time will help 
reduce the load. Certain similar shader variants can also be regrouped into a slightly 
suboptimal shader variant representing a whole shader category. 

The recombinant shader system gives complete control to artists over creative 
aspects of special effects in games, but they should be made aware that “one effect per 
polygon” is not the way to go. Switching shaders often takes some time, thus polygons 
using the same shader keys should be batched up together. 

mente “ne ROR A ee NRE A TRE 

Gecletaltaiaes ean an engine erasttiad shadetd ithott er into the pattern of precanned 
effects and inflexible setups is not an easy task. However, a well-built recombinant 
shader system can pay off in the long run by allowing those hard-earned effects to be 
assembled in new and creative ways. Artists can insert small, specialized effects with- 
out requiring a complete knowledge of the shader pipeline or can even create new 
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effects by starting from basic shader building blocks that can be recombined. Instead 

of having a programmer build a specialized ice shader, artists can be set loose to make 

their own effects by assembling more complex shaders from more elementary build- 

ing blocks of the pipeline. Through recombinant shaders, the artist is truly given total 

control of the graphics pipeline. 
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Introduction 

Shekhar Dhupelia 

sdhupelia@gmail.com 

he number of networked, online games is growing. Some titles offer discrete 

“offline” and “online” modes, while more and more are unfolding entirely online. 

While the hardware and low-level technology has stayed fairly constant over the past 

few years, the quality of services found on each platform, and within each game, is 

getting better and better every year. For evidence, witness the growing number of peo- 

ple playing Massively Multiplayer Online Games (MMOs), or look to the popularity 

of Sony and Microsoft’s respective online console services. 

As more and more games are designed from the beginning to take advantage of 

this community of players, more and more teams have taken on full-time network 

engineers and online game designers, to exclusively focus on these gameplay aspects. 

While many problems have been solved, and have been neatly wrapped up for some 

time now, there are many new lessons to be learned every day. 

This section tries to address the myriad types of online games, and should have 

something for everyone. Starting with MMOs, Shea Street breaks down how to use a 

distributed service approach to better handle the server side. Patrick “Gizz” Duquette 

continues with an article on implementing seamless world servers, without the zone- 

to-zone transitions found in titles today. This is followed by a brief look at various 

schemes of vulgarity filtering, applicable to all types of online games. Hyun-Jik Bae 

then gives a detailed explanation of how to use RPC calls for the network layer of a 

client/server game. 

Many people with broadband connections have installed NATs in their homes; 

Jon Watte takes a look at how to best get through this restriction. Martin Bromlow 

then describes how to design a reliable messaging layer for game communication, fol- 

lowed by a demonstration of a random number system that is safer to use for online 

gameplay than standard C/C++ calls. Finally, Adam Martin returns to the series to 

look at how to design your game with a focus on security, no matter the type of game, 

to provide a better player experience. 

Whether you're a commercial game developer, implementing online features in a 

big-budget title, or an independent developer hoping to add networked gameplay to 

your next great demo, these articles will both stimulate and serve as a reference for 

years to come. 

601 
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6.1 

Keeping a Massively 

Multiplayer Online Game 

Massive, Online, and 

Persistent 

Shea Street, Tantrum Games 

shea.street@tantrumgames.com 

[; our world of fast food, fast cars, and even faster Internet, we struggle to keep 

things mass produced, always available, and high quality. Creating and hosting a 

massively multiplayer game is no different. Our players demand the game to be just 

that: massive, always online, and never miss a beat. Unfortunately, we live in a world 

always short on time and full of unforeseen events. However, up to a certain level, we 

can provide these things to the player. In this article, we will discuss how to achieve 

these levels of uptime, by expanding on the distributed services approach [Street05]. 

Quick Review MI ISLE IED 0 LR NAL ES LEE LE ee 

The distributed services approach is a system of services distributed across multiple 

servers all connected to a unified network (see Figure 6.1" 1) 

Unified Network 

Client 

Frontend Service 
Service Server 

Service Server 

FIGURE 6.1.1 Distributed service system diagram. 

603 
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These services provide task-specific game functionality to the entire game world. 

Services provide a way for the game world to distribute its load on an individual task- 

by-task basis. Examples of typical game services include chat services, item services, 

position services, AI services, and combat services (See Figure 6.1.2). By using distrib- 

uted services, the entire simulation of the game is now no longer run on just a single 

server. 

Service 

NamingService | | ExecutionService | | AdminService | | FrontendService GameService 

ItemService CombatService PositionService AIService DatabaseService 

FIGURE 6.1.2 Distributed services example breakdown. 

Being Massive 
LEMPIRA RELEASE TERNS IE ITE RET NEE EE CO Terence es mittee 

As the total number of online gamers grows, the need to support greater amounts. of 
concurrent players also increases. There are a number of ways to tackle this obstacle. 

Streamline the Frontend Service 

The frontend service is secretly the hardest worker in the entire distributed services sys- 
tem. At first glance, it may appear to be just another generic gateway into an online 
game, but in actuality, it is so much more than that. It is important to understand the 
full scope of the frontend service and the best approaches to optimizing this process. 
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But before it could ever be optimized, its operating goals need to be properly defined. 

These goals and their implementations will always be game specific but are still built 

upon a common underlying framework of ideas. These include: 

* Being an entry point for all players 
¢ Serving as the first line of defense 
¢ Performing sanity and error checking 
¢ Managing and balancing bandwidth usage 

¢ Ensuring proper routing of game information 

¢ Providing the fastest response times possible 

The frontend service acts as a middleman between the clients and the game’s backend. 

It concentrates data from all the backend services into a single filtered usable stream 

for all its connected players, and vice versa. By using game specific knowledge, the 

frontend service can provide faster player response times while saving the backend 

from unwanted traffic. Creating flow charts and use cases can greatly help target, 

study, and develop these potential optimizations (See Figure 6.1.3). 

One possible optimization is with the addition of a local spatial database. This 

database can merely be a sphere tree [Ratcliff01] that holds positions, state data, and 

static statistical information. Since this database can end up holding data on all the 

players, items, and NPCs that are currently active in the game, it is best to keep this 

information as simple as possible. When designed right, the spatial database will take 

up very few resources and allow the frontend service to do more optimal work. The 

reason for this database and the local caching of this amount information Is to allow 

for a quick out. If the system never has to go beyond the frontend service to provide a 

client with information, it never will. Also, when a player performs an action, it can 

be quickly perceived by everyone else connected to that same frontend service, while 

it is still being propagated through the rest of the system. Performing sanity checking 

and keeping communications to a need-to-know basis can prevent the backend from 

being flooded and overworked. This is true in the case of all services; once these 

guidelines have been implemented, there are subsequent methods to further guaran- 

tee quality and stability. 

Increasing and Upgrading Servers 

When talking about increasing or upgrading servers, we primarily concern ourselves 

with dealing with the machines upon which the frontend services are run. The num- 

ber of players supported by a distributed services system is directly proportional to the 

number and power of these frontend services. The system is designed in such a way 

that more players can be supported just by adding more frontend services, without 

ever having to touch the backend. This by no means suggests that the backend will 

never have to be changed. As a game matures and evolves, it may need more services 

to accomplish its goals, and thus need additional and more powerful servers to be able 

to reach this. 
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FIGURE 6.1.3 Example of a frontend service optimization flow chart. 
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Overall, this process is quite simple. Typically, all it takes to add or upgrade a 
piece of hardware is to install the needed services and set up the admin service to des- 
ignate when and how these services should be run on this specific machine. It has 
always been the goal of the distributed services approach to be able to use consumer 
off-the-shelf hardware, but the sheer amount of required servers may get out of hand. 
At some point, it may be more fruitful to move to an enterprise server solution or a 



6.1 Keeping a Massively Multiplayer Online Game Massive, Online, and Persistent 607 
sssanenneaneneoncnnsneneinsiiessnneanenssnessneneegenetsintc une bettneaeromuninsnnenitneineetotieeeinetetotentehiiiensWnantenteteinontinniei teal 

hybrid approach to save on space. This design ensures that a game never has less or 

more than what it absolutely needs to properly function. The whole concept of 

increasing and upgrading servers in general is obvious, but it needs to be remembered 

when dealing with a distributed services system. 

Staying Online 
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There is no way to guarantee bug-free code. The important thing is to prevent a crash 

from taking down the entire game. When a system crashes, it must be transparent to 

the players. This involves monitoring for crashes, keeping track of buggy service ver- 

sions, and very fast resumption of the game execution. 

Watchdog and Shadow Services 

If any part of the game ever goes down, you need to know when it went down and 

how to get it back up and running as fast as possible. The best way to do that is by 

using automated processes that can handle the most common causes of downtime. 

The watchdog service is a program that keeps an eye on other running services in 

case of any unscheduled termination. In some cases, the service being watched will be 

able to catch the terminating signal and perform some form of a shutdown procedure. 

As a precaution, the watchdog looks after this service, so even if there is an abrupt ter- 

mination that cannot be handled by that program, the watchdog will still notice. 

When this happens, the watchdog will launch the waiting shadow service into action. 

Shadow services are copies of whatever service programs they are shadowing. 

Every time a service is started, a shadow of that program is created as a clone of that 

service. Though the shadow service is a copy of its partnered service program, it sits 

idle, waiting to take its place if any critical, abrupt termination of that service occurs. 

The watchdog and shadow services can be consolidated into the same program. 

Hot Swappable Services 

In the event of hardware failure, the watchdog and shadow service become irrelevant. 

There may be a need to have a separate piece of hardware waiting in standby to pick 

up the dropped service as soon as a failure is detected. 

The admin service will determine if this is the case, and is responsible for telling 

the execution service (running on the spare server) to start the necessary service. If a 

spare service server is not available, the admin service could tell a service server that 

isn't as heavily loaded to become the temporary backup for that service. 

Service Version Control 

If a critical event happens that causes a termination of a service, there needs to be a 

way to flag it and revert back to a stable version. In the event of a service's terminating 

unexpectedly, the version would be flagged, and after a set number of flagged crash 

occurrences, a reversion to a previous build would begin. A service version table would 
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be kept to distinguish between the current, stable, unstable, and unusable versions 

(see Table 6.1.1). 

Table 6.1.1 Service Version Table 

Service Name Version _ Flags — — 

Chat Service 32, Current, Stable 

Chat Service 1.24 Unstable 

Chat Service eT Stable 

Chat Service 1.0 ; Stable, Not Usable 

Item Service 2.23 Unstable 

Item Service 2.0 Current, Stable 

When a service is reverted to a previous version, the shadow service loads the previous 

stable version of that service and takes control of its responsibilities. The shadow ser- 

vice will never revert to a previously flagged unstable version or a version marked 
unusable. Instead, the shadow service will make sure to always run a revision known 

to be stable. 

Live Updates 

With the previously mentioned methods in place, we are now able to ingeniously 

handle live updates. We push the updates to the revision tables, have the service 
servers launch the new services in standby, switch control from the old services to the 

new services, and then shut down the old services to clear up resources. 

Keeping Persistent 
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To resume functionality in the event of a crash, data must be stored persistently, and 
in more than just a statistical database. We need valid game state data in order to con- 
tinue from where we left off. Currently, some online games write the entire game state 
to disk about every 20 minutes. If a crash were to occur, that saved game state would 
be reloaded. The problem with this is, since we do not know when a crash will occur, 
the state may be up to 20 minutes old. 

Backing up Game States 

The solution to this is shared memory. Anything loaded into shared memory stays 
around until you explicitly destroy it, so it is safe for each service to store its game 
state data in this memory block. In the event of a non-hardware crash, the shadow ser- 
vice can simply attach to its shared memory segment and have all its previously avail- 
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able data. In addition, a snapshot of that shared memory can be taken every few min- 

utes and copied to another segment of memory as a backup. Normally, this process 

should be very fast and take up few resources. The backing up to disk could then be 

done at leisure in the background from these backup segments of memory. Synchro- 

nizing these game state snapshots across the services can be done with a simple mes- 

sage sent to all the services. Since each service performs a specific task, and those tasks 

are done in small steps, they are allowed to process their current event, queue all 

incoming events, copy current shared memory, and then resume normal operation. 

Once this has taken place, the new active service can begin sending its own snapshots 

to other servers. This is done so that a game state backup can always be found on the 

network and easily retrieved when needed. 

Restoring Saved Game States 

Depending on the game’s architecture, there are two methods to restoring a saved 

game state when a service goes down. The first method is appropriate when the game's 

state requires it to be time synced; all services would then need to be reverted. The 

second method is used when your services are structured to be independent enough to 

allow only single services to be reverted. 

When only one service needs to be reverted, the system finds the service server 

that failed, locates a server with enough spare resources to run the needed service, and 

then tells it to start that service up. A running server with the dead service's most 

recent snapshot then pushes its snapshot to that new server, and the system instructs 

that service to load its previously saved snapshot. 

However, in a game architecture that requires all services to be reverted on failure 

of a single service, the process is basically a domino effect. As before, the system 

locates a spare service server, has the dead service’s saved game state pushed to it, and 

then instructs the server to load that previously dead service in an idle state. After the 

service is loaded, the system takes down each individual service, has them restarted, 

and loads a snapshot of the same timestamp. When all services have been restarted, 

the system then resumes normal game operation. The restoration of the game state is 

based on the frequency that the snapshots are saved and sent to other servers. 

Conclusion eee LEASES WRT IE it 

eee 
CARERS AOS IE IE 

Online games are rapidly maturing and evolving and so are the players. Their 

demands and expectations will always continue to increase just as fast. As with any 

progress, the problems of the past will no longer be viewed as acceptable. The distrib- 

uted services approach and the improvements discussed in this article are just the 

tools to help keep up with this pace. With-all these tools in place, we can now meet 

the current demands of these players. In the end, size, duration, and continuity are 

just a few of the keys to winning their hearts. 
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i [Beardsley03], the author provided an introduction to seamless world servers and 

their pros and cons. He did a great job of making us think of the many issues inher- 

ent with a seamless world. This article relates a journey, in the world of a too-many- 

times-shunned server design. It will focus on the actual implementation of a seamless 

world server, complete with world nodes, a proxy, and a login server. In the course of 

the article, we will look at the design decision normally encountered with this type of 

server and wrap the article with a “where to go from here” section outlining some 

areas for further exploration. 

The Mandatory Definition 

By definition, a seamless world is a world where the player is free to roam, explore, and 

travel to his heart’s content. No physical barriers between “zones” to hinder your 

travel and no loading screen while transitioning between the zones. Designers no 

longer need to put mazes between zone borders in a seamless world and, having fewer 

constraints, they can let their imaginations run free. 

Although seamless worlds can benefit any game genre since it’s the core of the 

server and the game specific world should reside on top of it, the immersive gains will 

vary depending on genres and gameplay designs. RPG games benefit from having a 

huge, continuous world through which the player can travel. And FPS games can now 

have wars that can unroll on vast expanses of terrain. Taking away the physical zones 

greatly boosts the player's immersion in the game. 

Of course, this level of freedom comes at a cost. The artists need to create transi- 

tion areas to join different climates, just like in real life. While in traditional zoned 

worlds, you could have sub-tropical zones next to zones with frosty mountain ranges 

without disorienting the player, because you expect the hard cut between the two 

parts of the world and you have time to “disconnect” from the game when changing 

611 
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zone or loading. It’s like loading a new map and you expect something different when 

it will finish loading. 

From a programmer's perspective, the challenge resides mostly near the borders. 

When a player moves from one server to another or is exchanging items in the border 

area, having players managed by different servers can lead to many potential problems 

if not handled correctly. Another problem is the loading of visual assets as we move 

around between servers. It needs to be done in the background, if you don’t want the 

player noticing. 
And since we can have interactions between players, NPCs, objects, etc. that are 

on different servers, we have to keep an eye on the number of messages that are sent 
internally, server to server. Those can skyrocket in no time if care is not taken while 

working out the inter-server communication details. Even if today’s network hard- 
ware is more than able to manage our expected LAN traffic, we have to keep in mind 
that we not only need to send the packets, the recipient must process them, too. 
Fewer data exchange between servers means less processing. 

The implementation | 

the different types of servers fou A brief explanation of nd in our seamless world: 

RemoteController: The login coordinator and the process giving the okay to the 
ProxyServer to start accepting client connections. 

ProxyServer: The bridge between the outside world and our server layout. 

LoginServer: Authenticates the clients. 

NodeServer: Manages a segment of the world. 
WorldManager: Distributes the world segment to the NodeServers. 

From the start, you will have a minimum of three servers: ProxyServer, LoginServer, 

and NodeServer. Since the number of NodeServers could vary, and we don’t want to 
manually add lines in an ini file, we will use an autoregister system. The different 
servers will register themselves with the ProxyServer upon starting up (well, actually it’s 
with the WorldManager, but that will be discussed later). This strategy lets us change 
the number of NodeServers as often as we like without changing a single line in an ini 
file. 

The RemoteController, or How to Manage 

the Server’s Startup Period 
cnitemaasee 2: ik 

Of course, this way of doing things led us to another potential problem. When do we 
start to accept incoming connections? The naive solution would be to put a wait delay 
on the proxy before it starts accepting connections. Although it could work, it isn’t 
flexible and it’s quite dangerous, as you don’t know if everything will be booted before 
it goes online. 
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The second option is to have the proxy wait on a special packet containing a “go 

online” command. This way you can control precisely when is the proxy server goes 

online. This packet will be sent only when all the conditions of the RemoteController 

are met. Some conditions are: making sure that the LoginServer is up, that the World- 

Manager has handed all the world segments to the NodeServers, etc. 

The RemoteController is more than just a convenience, it is an invaluable tool to 

schedule the server boot up period. The alternative would be to manually control the 

ProxyServer, which can lead to human error and everything that comes with it. 

rver 
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As with many online games, you don't want to expose your server architecture to the 

outside world. One way to achieve that is to make all communication pass through a 

proxy server that will relay the packets to the right recipient. This technique has the 

advantage of having only one external entry point and hiding the actual servers’ lay- 

out from the client. If you need to change your server layout, number, or internal pro- 

tocol, you can do so and the client will be none the wiser, since the only thing it 

knows is the proxy. 
This server will handle all the incoming and outgoing packets between the clients 

and our servers and thus handle the most traffic. With that in mind, the proxy server 

can be implemented using IO Completion Port (IOCP), since it doesn't take much 

resource, while being able to service many concurrent clients’ connections. For a good 

introduction to IOCP and other relevant windows socket paradigm, please refer to 

[Jones02]. : 

On a live setup, you would want to have many ProxyServers to spread the load. The 

client would connect to a master redirector, which will tell the client which ProxyServer 

to use based on current work load and latency (ping time) from the client. This will 

enable you to have ProxyServers distributed in the world while maintaining a single 

connection point for the client. 

When the ProxyServer receives an incoming connection from an unknown client, 

it forwards it to the LoginServer for authentication. Once the credentials of the client 

are verified, the LoginServer notifies the ProxyServer of the client’s spawn point and 

NodeServer handling the spawn location. 

The client connections are internally maintained via a simple array that does the 

translation between the ClientID and the NodeServer to which it should connect. 

The ClientID is the index of the array and is handed by the ProxyServer when it 

receives the authentication confirmation from the LoginServer. The ProxyServer allo- 

cates at boot time the array, knowing the maximum number of connections it will 

support. It also keeps a list of unused connections for fast management of client con- 

nections and disconnections. To minimize the possibility of a malicious user spoofing 

a client while it is connected, we store the connection details alongside the Node- 

Server to which it will connect. Once ina while, we check that the packet we received 

is really coming from the legitimate client. 
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LoginServer 
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The LoginServer handles client authentication. The LoginServer take up the matter 

of checking the player profile for his spawn point coordinate and looking up the cor- 

rect NodeServer to switch the connection to. This is done by asking the WorldManager 

which NodeServer handles this part of the world. The LoginServer handles the data- 

base lookup and calling up the WorldManager, since we want to have the ProxyServer 

as lightweight as we can. 
The player’s information is stored in a standard SQL database. For simpler imple- 

mentations, mySQL [mySQL] might be a good choice, as it is more than capable of 
handling smaller needs, and it is free. Other database solutions for a live setup that 

you might want to look at are [Oracle] and [SQLServer]. In a production environ- 

ment, you might also consider having a proxy/queue server in front of the database to 
queue the query/update by order of importance. Also, if you are able, keep your data- 
base in memory; it will greatly speed up your transactions with the database if it doesn’t 
need to access the disk. Of course, schedule physical dumps once in a while to have a 
physical copy of the database in case the server crashes. However, keep it to a mini- 

mum, and if possible, do it on another server (using replication). 

NodeServer 
‘atau 

The NodeServers are the keepers of the world, the final arbiter of conflicts between 
the client representation of the world and the one kept internally. They perform san- 
ity checks on player interactions with his surroundings, making sure everything is 
kept tidy, but also giving a life to the many parts of the world. For example, while it 
might not control directly the gust of wind that moves some leaves near the player's 
feet, it will notify the client that a 5 km/h wind is blowing in a certain direction. 

Since online games tend to have huge open worlds for player exploration, each 
NodeServer has a small segment to manage. Alas, with this splitting of the game 
world comes a non-negligible complexity cost for a seamless world implementation 
that is not present in a traditional zoned online world (at least, not in this magni- 
tude). Interactions between players and/or with NPCs take a new meaning, as they 
now can be on two different servers when the interaction is initiated. This can lead to 
various exploits, and great care has to be taken when designing the transaction system 
used when the player is acquiring/exchanging/giving “items.” For the sake of clarity, 
anything that can be exchanged between players or with an NPC and that has a reper- 
cussion in the game like physical items, quest parts (physical or “spoken”), etc., will be 
put in the “item” category. 

To manage across border interactions, the NodeServers not only need to manage 
what is in their segment of the world, but they also need to be aware of things just 
outside it, in what we call the BorderZone. The BorderZone stretches a little past the 
border between two segments. This space, while really belonging to another server, 
will let the NodeServer tell his client situated near the border what is in their aware- 
ness area, even if it’s situated in a part of the world managed by another NodeServer. 
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To have the same object on two servers at the same time, we must introduce the 

concept of proxy objects, a server-side object representing a ghost of the master object, 

which is on another NodeServer. When a transaction between two players is initiated 

and each one is on a different side of the border, the server will perform the transaction 

with the proxy object instead of the real copy situated on another NodeServer. 

One last thing on BorderZones: as noted in [Beardsley03] and other articles on 

the subject, the minimum BorderZone size has to be at least the size of the player 

awareness radius to circumvent problems where two players, each one on different 

sides of a border, may not see the same things, or worse, one might not see the other, 

and thus open the door to exploit. Also, having the BorderZone slightly larger than 

the player awareness radius will lessen the possibility of visual popping as new objects 

are replicated as proxy on the neighboring NodeServers. 

Performance Consideration 

This server will need to process a lot of packets, both from the outside world (via the 

proxy server) and the inside (inter-server communication). It will also need to manage 

a large object base and moving characters (players and Al). It will also need to update 

things that are game specific, like weather modification and quests/missions handed 

out by NPCs or even other players. Astral objects like stars and the sun(s)/moon(s) 

should be managed by a global server and not by a NodeServer, if your online world 

does not span more than one solar system. 

Looking at all this, it adds up to quite a lot of processing per server. To alleviate 

the NodeServer from some extra processing, at the cost of taking more inter-server 

bandwidth, the game AI entities can be managed on separate dedicated server(s) and 

be treated as normal clients by the NodeServer. 

The world is divided in many segments, which lead to many borders and more 

importantly, many border junctions. For simplicity, an easier starting point might be 

a stripped world, with only two border junctions per NodeServer, with no UT of 

“cross” junctions. See Figure 6.2.1 for a visual representation. 

FIGURE 6.2.1 Zivo border junctions and “cross” junctions. 
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Registering with the ProxyServer 

When registering with the ProxyServer, the NodeServer is only telling it “I'm online 

and ready to serve.” Nothing has been decided concerning which portion of the world 

is to be managed by this server. Of course, an ini file could solve the problem but that 

means that you will have to manually manage the file, for all the servers, every time. 
Instead, the servers get their “work order” from another server, the WorldManager. 

Upon booting up, before registering with the ProxyServer, the NodeServer negotiates 
with the WorldManager for a segment of the world to take care of. The NodeServers 

each have a copy of the complete world. While this causes a burden when updating the 
game content since it has to be replicated on all the NodeServers, it also alleviates us of 
having all the NodeServers trying to fetch the world data at the same time during the 
boot process. Having everything locally will also permit dynamic resizing of the Node- 
Server borders, a technique discussed in the “Where to Go from Here” section. 

The bulk of the work of this server is the validation of the player input. Be it item 
exchanging/acquiring, player navigation in the world, or the rate-of-attack during a 
combat, the NodeServer has to look over everything that comes from the player. This 
is the old networking idiom, “never trust the client” at its best. 

To do so, the server has to keep a simulation of the world, and this simulation 
acts as the reference when a disparity between the client and the server representation 

happens. If anything isn’t as in the master copy kept by the node server, the client 
must be notified and action should be taken to correct the situation. 

Handling the Communication with 

the Outside World 

Knowing that this server will need a quick way to associate incoming network traffic 
to the managed object it is destined to, we must make sure that it is as efficient as pos- 
sible. A map of the objects in the managed world might be in order, as a list traversal 
might be too time consuming for our needs. The drawback with mappping is that 
insertion may turn up as being one of the bottlenecks in the connection processing, 
but since we shouldn't have too much object creation/deletion at any one time, we 
shouldn't experience any slowdown. Another possibility is to have every object have a 
unique ID throughout the world and use the same technique as for the ProxyServer. 
This would even be faster than the map search, without the insertion/deletion penal- 
ties but at a greater memory footprint. (Imagine an array for all the world objects.) If 
the objects are handed a new ID when crossing borders, you only need to keep an 
array for the maximum number of objects that will be present at any time on the 
NodeServer. Add to that the possibility to grow the array in an emergency situation, 
and we should be okay. 

Each object is represented on the server, and network messages can be addressed 
to them. When a player interacts with an NPC, the player’s actions are sent to the 
server and validated. When a player tries to hit a monster, it actually sends a message 
to the NodeServer telling it “I target MonsterX.” The NodeServer validates that the 
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player is able to see the monster, to target it from where he stands, and that he is 

allowed to target it. The player then sends an “I swing at MonsterX” message. The 

NodeServer validates that the player is near enough to swing at MonsterX and tells 

the monster if it was hit, and if so, tells the player how much damage he has caused. If 

any of these steps fail, the NodeServer might log the attempt for later review. It could 

be a latency issue or a player's trying to fool the NodeServer. 

The client should always receive the world information on a need-to-know basis. 

Only when a player is near a game object should its relevant information be sent to 

the player. For example, only when a beast is slain and searched should the server send 

the loot description. 

While the Al is updated often on the server, a message containing the current sta- 

tus/position of the AI will only be sent once in a while to the client, once per 10th of a 

second, maybe less often when there’s no situation asking for more frequent update. 

The client will use dead reckoning to extrapolate the Al position based on the last 

update. Of course, the client will have to make a correction when it receives an update 

from the server. For more information on dead reckoning, please refer to [Aronson97]. 

X Proxy Objects for a Master 

How do we keep in sync an unknown number of proxy and a master? Since we can 

have an unknown number of proxy objects for any given “master object,” we need to 

keep track of everyone to update them whenever the internal states change. Luckily, a 

design pattern is designed just for that: the Observer pattern (also known as the Pub- 

lish-Subscribe pattern). For a formal explication of this pattern (and many others), 

please refer to [Gamma95]. Briefly, this pattern defines a one-to-many relationship 

between objects and is used to synchronize the objects between them. The beauty is 

that you don’t need to know beforehand how many objects there will be. 

Our application of this pattern has the proxy notify the master of change, and the 

master replicates those change to the registered proxy’s objects. While not really rele- 

vant to our current implementation, it was done in prevision of having border junc- 

tions with more than two node servers. The master object is the final arbiter in case of 

discrepancy between the proxy objects and the master. 

Proxy Objects Notification 

Since the proxy objects can be created and deleted as the master moves throughout 

the world, we need a sure way to manage their life span on the node server. Sure, the 

proxies are part of a observer pattern, which will cover the death of un-needed objects 

when the master moves outside the border zone, but what happens when the master 

moves from the center of the managed segment of the world to the border zone 

between two servers? No proxies are created at this time. The master object, when 

crossing a border zone threshold, notifies the correct neighbor that a proxy should be 

created. The proxy, once created, registers itself with the master, which will then send 

the updated state of the object and start the Observer relation. 
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Neighbors 

The NodeServer can request from the WorldManager its neighbors. This can be done 

at boot up or every time you need to check if you have dynamic borders (see the 

“Where to Go from Here” section at the end of the chapter). In the simpler “strip 

world” example, we can only have two neighbors. Our implementation is simplified 

greatly by this, and as such, we only have two member variables keeping the informa- 
tion associated with the neighbors. If the info is not set, we ask the WorldManager 

who they are and then we initiate a communication channel with them that will be 

kept until the server is shut down. 

The WorldManager 
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The WorldManager server is responsible for splitting the world into different manage- 

able segments and giving each segment to a different NodeServer. When the manager 
has handed out all the world segments, it sends a message to the RemoteController, 

telling it that the world is distributed. This will ensure that we can‘ start receiving player 
connection while segments of the world won't be managed and thus inaccessible. 

Subsequent connections to the WorldManager asking for a piece of the world are 

ignored in a Strip World implementation, as there’s no provision for backup Node- 

Servers; this is discussed in the “Where to Go from Here” section. Also, the number 

of segments of the world is already known at boot time, so that when the node servers 

connect, they are handed a segment of the world immediately. 

Another task of the WorldManager is to answer requests from the LoginServer 

and NodeServers as to which NodeServer handles a certain part of the world. This is 
vital since from one player session to another, if the server was shut down, we can’t 
guarantee which NodeServer will handle the part of the world from which the player 
disconnected. This may seem strange and inefficient, but it does free us from having 
to manually specify world boundaries for each NodeServer, and it makes an auto- 
mated process when introducing new NodeServer in our layout, be it from expansion 
or because a server crashed. 

Where to Go from Here 
SCARRED ISA ARTUR ERB EE A BEES ABIES AIS NI RET ABE DARIN OTS unaeee erase RNR RNR 

Dynamically managing the world segments, instead of statically, is one area for 
improvement. If a NodeServer is overcrowded, the WorldManager could receive a 
request for backup processing. By resizing the borders or splitting the current world 
segment in two, giving the other half to a backup NodeServer would alleviate the 
server if the need arises. The NodeServer will have to support direct transfer of man- 
aged entities without going through the ProxyObject creation normally associated 
with entities crossing the NodeServers border. 

Having backup NodeServers registered to take the load of a dying NodeServer 
could also help recover from hardware fault without interrupting the service. If a 
NodeServer monitors the hardware notifications, it can react to them. Instead of clos- 
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ing the game service for maintenance because one of the redundant power supplies 

died, the NodeServer tells the WorldManager its status. The WorldManager takes one 

of the backup NodeServers and assigns it to the world segment managed by the dying 

server. When the transfer of all the managed entities is done, the dying NodeServer 

can be safely removed. 

Because of the sheer size of the entity transfer, we might want to do it progres- 

sively. If we transfer the entire load from NodeServer A to NodeServer B, doing it in 

one operation may be noticeable. Instead, by moving the NodeServer borders and 

migrating only a part of the total world segment area at a time, the transitions, albeit 

the fact that many proxy objects will be created and destroyed while the borders are 

moving, will be smoother. 

With dynamic borders, the RemoteController could also act as a world segments 

interface, giving the administrators the capacity to control their exact layout and size, 

enabling concrete management of the world division. No longer confined to static 

division, the administrators could modify the world segment'’s size before planned 

game events where a large number of players are expected. 

Instead of computing the AI directly on the NodeServer, it can be done on dedi- 

cated servers. While the NodeServer will treat the AI like a normal client, having 

them connected through a dedicated port (the port used for inter-server communica- 

tion) will give us the possibility for further optimization, since they can be considered 

“rusted” clients. Some double-checking for physics with the world or AI action valid- 

ity could be skipped. Some might wonder if this doesn’t lead to a possibility for 

exploits, and they would have been right-if the AI server wasn't connecting through 

another port than the one used by the communication with the outside world. (On a 

live server, that would have been through another network card altogether.) Only at 

the time of connection, when the server will start to manage the Al entity, will the flag 

“trusted entity” be set. 

Some of these “next steps” can be found on the [Gizz04] Web site, where they are 

continuously implemented. 

LEE LLL LAR LEAL 
zi 

While IOCP was discussed in this article, please keep in mind that it is Windows- 

specific. For information on the difference between the IOCP concept and its *nix 

counterpart, “dev/poll,” please refer to the article by Ian Baril [Baril04]. 
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Ns online usernames and chat rooms more and more prevalent in recent online 

games, so too becomes the problem of adult content (especially when trying to 

ship an E-rated game!). Everyone at this point would acknowledge that it’s impossible 

to catch every possible use of vulgarity while also trying to remain efficient and user 

friendly. However, there are methods that will catch a lot of the more obvious cases. 

This article discusses the components that go into a fast word-search vulgarity fil- 

ter, including how to organize the “bad words” in a data source, how to search 

through all of this data, and the various options for what to do with the violating text. 

Also discussed are some best practices and. additional points of reference when build- 

ing such a system. 

Syntax Versus Context 
stat enn nomcoc LMKMBMMMMABMM
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It’s important to keep in mind that most games cannot afford to attack the problem of 

“context.” Context suggests the actual meaning ofa sentence, or a full thought. While 

some standard sentences might be blocked in their entirety, a very high level of artifi- 

cial intelligence would be needed to determine the meaning of a sentence and refuse 

potential rule violations; this is especially true since the Al would need to be running 

in real time. . 

Further, it is far beyond the scope of this gem to discuss voice chat. While it is 

admirable to want to provide a “family friendly” environment within a game, espe- 

cially one geared towards all age levels, it is far beyond the scope of our average game 

hardware to monitor voice chat and do anything particularly useful with it. 

The discussion here is of syntax. Syntax refers to the words themselves; while 

“A#$% YOU!” still confers quite a bit of meaning, the point is that the effect is still 

dulled from not allowing full expletives to be transmitted back and forth. 

621 
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Dictionaries 

A dictionary, or data dictionary, is where the lookup table of bad words exists. The 
options here are endless; the application might already have a database system or 
filesystem in place, probably using some sort of relational or token lookup. The goal 
is to have a consistent, easy-to-manage data source that can store all the designated 
“bad words” in one place. 

If constructing from scratch, a good place to start is XML files. For the uniniti- 
ated, XML is a form of information identification, assigning tokens to data that can 
quickly be searched and referenced. A good reference for XML can be found at the 
O’Reilly Network’s XML.com [Oreilly01]. 

Parsers 

Having a dictionary to store the bad words is only a start. The more resource-intensive 
part involves searching through the data dictionary for matches against a string. While 

most C/C++ programmers and Java programmers will be familiar with string manipu- 
lation, parsing can be slow and turn into a bottleneck for the game if not implemented 

carefully. 

Again, this is a subsystem that may already be in place with many existing game 
engines. Parsing through a data source is useful in many other areas of a game besides 
this one feature. When building a new engine with XML in mind, however, Xerces is 

a good place to start [Xerces01]. The Xerces library is an open source C++ library that 

allows very fast searching through XML file sources. 

Elitening = 
ODEN SANA 

So far, the game will have a lookup dictionary for bad words and strings, and a parser 
to actively go through and root out any violations against this dictionary. The next 
step is to filter the text and either block it or change it accordingly. However, the 
method used in the game is dependent on the specific design in mind, as there are 
several different ways to filter the violating strings. 

Search-and-Replace, Predetermined Strings 

The first filtering method is to do a search-and-replace operation on the string, with a 
predetermined string. This involves setting up a second word or list of words that act 
as suitable replacements. An example predetermined string might be: 

char szReplacementText[] = “[censored]” 

In this case, the bad word would be replaced with [censored]. To add variety in a 
place where there might be many violations, you might loop through a list of 10 or 20 
variations, such as banned, blocked, and not allowed. 
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Search-and-Replace, Random Strings 

This method is similar to the previous, except that it uses random characters to pro- 

vide variety. For example, English-speaking comic strips often use something like 

&°*$ to designate a curse word. However, there’s no set standard on the number of 

symbols to use, or even what particular symbols to draw from. With that in mind, 

more variety could be presented by choosing a random number of letters, as well as 

choosing randomly from a list of characters or substitute words. This might look like 

the following process: 

Define a list of substitute characters. 

Get the violating string. 

Choose a random number of characters. 

Loop through the bad string, character-by-character. 

Choose random replacement characters from the list. 

Return the filtered string. See ee 

Word Stripping 

Word stripping is useful in that it helps remove some of the meaning from a block of 

text. Sometimes, a sentence such as I want to %#@$@% might still confer some mean- 

ing in the context of the conversation or situation. However, word stripping might 

change this into I want to, which just eliminates the violating string completely, with 

no substitutions. Of course, this doesn’t stop the user from simply entering the string 

with substitute characters in place; this is where human intervention is sometimes 

necessary, a topic discussed further later. 

Block-and-Refuse 

This is the most forceful method, but does the most to try and automatically block 

violating context, instead of just the syntax. Block-and-refuse detects the violating 

string, then refuses the entire submission. For example in a chat room construct, the 

user entering a sentence word word2 word3 violator would not even get to send word 

word2 word3 or word word2 word3 %#$*. Instead, they would get an error message 

informing them of the violation, with the string thrown away. 

Best Filtering Practices NAMES ERE RT 

While the various filtering methods can be implemented efficiently, either alone or 

together, there are several key practices that will help make the process quicker and 

less frustrating for the end user, as well as provide efficiencies to the game servers. 

These are described in the following section. 

MM MCSLLMGRLLARMAAELLLL LLL ALLL SEL LLL ALAA 
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Use Both an Offline and Online Dictionary 

While not possible for some embedded systems (such as game consoles without large 

local storage), it’s a good idea to use an offline dictionary, in addition to the server- 

side dictionary file. This allows some checks to be performed quickly and locally, 

without spending extra bandwidth to verify every string. The online dictionary might 

serve as a second form of protection; for example, a static offline dictionary might do 

a quick first check on every string, while the dynamic, updateable online dictionary 

can do another pass on the strings as they are transmitted. 

Filter Offline First 

As mentioned previously, don’t waste large amounts of bandwidth unnecessarily on 
anything that is not part of the core gameplay. Filtering offline first can save a lot of 
time and cost, and actually make some processes more user friendly. An example of 
this might be during user registration; as the player enters a username or an avatar 

tagline or some other string, a quick check can be made against the offline dictionary. 
This could at least let the user finish the registration process and then proceed online. 
The online portion might simply check the suspect strings again without requiring re- 
entry of the entire form. 

Again, while not possible for all systems, a dynamically updated dictionary file is 
a great tool; as players come up with new or overlooked vulgarity or questionable jar- 
gon, the dictionaries should be updated regularly with these additions. Even in cases 
where the offline dictionary cannot be modified, the online dictionaries should have 

regular review periods. 

Dictionary Change Control 

While it’s established that regular dictionary updates are important, care should be 

taken to control these changes and track them, similar to source code changes or source 
art modifications. Updates should be scheduled on regular time intervals (while neces- 
sary), tracked and revised similar to source code, and done with a minimal impact on 

users (if not in real time, than as part of other updates such as bug fixes or content 
changes). 

Continually Monitor Any Workarounds 

When filtering is based on a dictionary, there will always be words that fool the sys- 
tems you have in place but still convey some illicit or angry tone. Regular Internet 
users have grown accustomed to writing their words with symbols or numbers in 
place of standard characters. For an example, pretend that the word “FOOL” was in 
the dictionary file. Now, if the user instead types “FOOL” or “F@@L,” the meaning is 
still clear, but the word escapes the attention of the system. 

If these modified words are not addressed, the entire vulgarity filtering system is 
rendered useless. Unfortunately, no automated method has shown itself to date that 
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can efficiently handle all the possible word permutations from a given dictionary. This 

reality suggests the need for constant, vigilant human intervention. 

Human Intervention 
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After all this technology, there’s still the major concern that none of these tactics will 

fully provide a “safe,” family-friendly environment. The fact is, any one or combined 

approach to filtering that fits within reasonable CPU/memory constraints will have 

easy workarounds. 

Unfortunately, the best one can hope for is to make a reasonable effort from a 

technology standpoint, and hope that it covers a large majority of potential violators. 

But this technology will fail under many cases. If the game is still likely to suffer heavy 

abuse despite these safeguards, there is often no choice but to add a layer of human 

intervention. There are two often-used methods that help weed out a large majority of 

the worst-case users: the in-game supervisors and player feedback. 

In-Game Supervision 

In-game supervision refers to an actual moderator or team of moderators, who 

actively play and patrol the online game, basically looking for any sort of violation. 

These moderators may choose whether to be listed as administrators, versus serving 

“undercover.” While the consequences for bad behavior may include a ban from 

future play, often a looser punishment might solve the problem (for instance, a 30- 

day ban on chatting). 

Player Feedback 

Player feedback can be quite powerful if handled correctly. With this technology, the 

other players themselves have a means to report unruly behavior. This allows the com- 

munity to actively police themselves and potentially weed out more cases of unwanted 

actions than a team of moderators could hope to find. While this still requires people 

to read the feedback and act accordingly, as well as handle cases of fraudulent feed- 

back, this also allows more active reporters to become “senior” members of the com- 

munity, and likely will serve as the game’s staunchest advocates. 

Conclusion ft 
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This article discussed a couple of different ways to implement vulgarity filtering in an 

online game. Further, this article talked about ways in which this filtering can—and 

will—fail, and where human intervention is still necessary. Fortunately, the methods 

discussed here will severely blunt the blow of a malicious user, to the point where it 

may become too difficult or frustrating for the user to try and continue his bad behav- 

‘or, Between combinations of these methods, users can be assured of a safer, protected 

game environment. 
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7 fee are many articles on network game development focused on aspects such as 

dead reckoning, distributed game servers, throttling, load balancing, smart seeds, 

and so on. These are very useful and important ideas and can be applied to many 

projects. All these techniques share a common characteristic in that they all require 

sending and receiving at least one message; this code is typically one of the greatest 

sources of redundant network code. 

Many network game programmers tend to write redundant code that treats every 

network message the same but could easily be consolidated. Sending and receiving 

messages involves many switch-case statements and structure definitions. This redun- 

dancy only grows as messages are added or changed during the development process. 

This article introduces a solution to reduce this burden, focusing on a code-level 

perspective. 

First, let’s take a look at a typical problem area for most network games. Listing 6.4.1 

shows an example that processes two messages: “move knight” and “attack enemy.” 

Listing 6.4.1 Our Familiar Networking Code 

/////// on both sides 

#define Message _Knight_Move_ID 12 

#define Message Knight_Attack_ID 13 

struct Message 

{ 
int m_msgID; 

}5 

627 
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struct Message _Knight_Move:public Message 

{ 
int m_id; 
float m_x,m_y,m_Z; 

}5 

struct Message Knight_Attack:public Message 

{ 
int m_id; 

int m_target; 

int m_damage; 

}5 

/////// on sender side 

void Knight_Move(int id,float x,float y,float z) 

{ 
Message Knight_Move msg; 

msg.m_msgID=Message_Knight_Move_ID; 

msg.m_id=id; 

msg.M_X=X; 

msg.m_y=y; 
msg.m_Z=Z; 

} 

void Knight_Attack(int id,int target,int damage) 

{ 
Message Knight_Attack msg; 

msg.m_msgID=Message_ Knight_Attack_ID; 

msg.m_id=id; 

msg.m_target=target ; 

msg.m_damage=damage; 

} 

void DoReceivedMessage(Message* msg) 

it 
switch(msg->m_msgID) 
{ 

case Message Knight_Move_ID: 

{ 
Message Knight_Move* msg2= 

(Message _Knight_Move*)msg; 

} 
Do_Knight_Move( 

msg2->m_id, 

msg2->m_x, 

msg2->m_y, 

msg2->m_Z); 

break; 

// ... Cases for other message types 

case Message Knight_Attack_ID: 

{ 
Message _Knight_Attack* msg2= 

(Message _Knight_Attack*)msg; 
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} 
Do _Knight_Attack ( 

msg2->m_id, 

msg2->m_target, 

msg2->m_damage) ; 

break; 

// ... cases for other message types 

} 

Let’s now assume a case where we must add another message type. We must modify 

four spots in Listing 6.4.1 for the new message: a new message ID, a new message 

structure, a new function sending the message, and a new case for reading the mes- 

sage. This cumbersome work can be reduced by using streaming classes, such as 

Carchive or std::istream, or by writing your own. With these classes, Listing 6.4.1 

can be simplified to look like Listing 6.4.2. 

Listing 6.4.2 Another Style of Our Familiar Networking Code 

///11// on both sides 

#define Message Knight_Move_ID 12 

#define Message _Knight_Attack_ID 13 

/////// on sender side 

void Knight_Move (int id, float x,float y,float Z) 

{ 
Message msg; 

msg<<(int)Message_Knight_Move_ID; 
msg<<id<<x<<y<<Z; 

} 

void Knight_Attack(int id,int target,int damage) 

{ 
Message msg; 

msg<<(int)Message_Knight_Attack_ID, 

msg<<id<<target<<damage; 

} 

/////] on receiver side 

void DoReceivedMessage (Message* msg) 

{ 
int msgID; 

(*msg)>>msgID; 

switch(msgID) 

{ ; 

case Message_Knight_Move_ID: 

{ 
int id; 

float X,V,Z; 

(*msg)>>1d>>x>>y>>Z ; 

Do_Knight_Move(id,x,y,2Z); 
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} 
break; 

case Message _Knight_Attack_ID: 

{ 
int id,target,damage; 

(*msg)>>id>>target>>damage; 

Do_Knight_Attack(id, target, damage) ; 

break; 

// ... cases for other message types 

} 

} 

Either way, we can send, receive, and process messages by calling Knight_Move() on 

the send side and calling Do_Knight_Move() on the receiver side, as well as the mes- 

sages Knight_Attack() and Do_Knight_attack(). 

Notice the pattern in these examples, in that they're very redundant. They can be 

abstracted for now to just read as one-line declarations, such as Listing 6.4.3, which is 

the goal for how we want our actual game code to look. 

Knight_Move(int id,float x,float y,float z); 

Knight_Attack(int id,int target,int damage) ; 

Listing 6.4.3. The ultimate style we desire 

We can refer to Listings 6.4.1 and 6.4.2 as the manual send- receive-switch-case code 

and refer to Listing 6.4.3 as the automatic send-receive-switch-case code. Later in this 

gem, we'll discuss how these send-receive-switch-case codes can be generated auto- 

matically, which is one of the major benefits of Remote Procedure Calls (RPC). 

RPC: Introduction 
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RPC is a message-passing tte: on is Sileptdent of the underlying network layer 
and allows a distributed application to call services available on various computers in 

that network. Put more simply, RPC abstracts the technique of a program on one 
computer requesting a function call on another computer. For a complete introduc- 
tion to generic RPC usage, refer to an operating system textbook [Silberschatz02]. 

There are many RPC implementations, some available by several major compa- 
nies. Some of the more well known are MS-RPC, DEC-RPC, DCOM, CORBA, and 

Java RMI. (DCOM, CORBA, and Java RMI have object-oriented behavior, but their 

concepts are also based on RPC.) In this article, let’s call these implementations legacy 
RPC systems. Legacy RPC systems are stable and support many features such as secu- 
rity, authentication, and many protocol compatibilities. However, because many of 
these implementations have some drawbacks for game programming, we want to 
write our own RPC system and avoid the following problems with legacy RPC: 

* Hard to understand and use 
* Too redundant and cumbersome for game applications 
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* Do not allow for complete control of message formats 

* Do not allow for complete control of message transmission, such as with throttling 

¢ Legacy asynchronous models are much more complex than synchronous models 

in practice 

In this article, we introduce a guide to implementing an RPC system for game pro- 

gramming, composed of an RPC compiler and a runtime engine. Because this RPC sys- 

tem is fully under application control, it can be optimized or streamlined as necessary. 

The example presented here is very simple and should be fast enough for a quick 

start. For further simplicity, we'll intentionally ignore some lower-level topics such as 

the actual socket code and error recovery with this RPC system, because the more fea- 

tures we add, the more complicated the examples will become. 

We refer to a module that makes RPC calls as an RPC client, while a module receiv- 

ing these RPCs is an RPC server. Note that the RPC client and server are different from 

the game client and server. Ordinarily, a game server and a client have two heteroge- 

neous RPCs for calling client-to-server and server-to-client in their program modules, 

while a game peer has a homogeneous RPC, calling and receiving mutually. The 

included example RPCDuel is a case of the latter. 

There are two networking models of RPC: asynchronous and synchronous. Syn- 

chronous RPC has output parameters. If your RPC client program sends a synchronous 

RPC to your RPC server, the RPC client will wait until the RPC server accomplishes 

execution and the return values are received. On the other hand, asynchronous RPC 

differs in two aspects: 

¢ Asynchronous RPC doesn't wait for return calls. 

¢ Asynchronous RPC cannot have output parameters. 

* Asynchronous RPC allows for unreliable messaging. Since some messages may be 

lost during transmission, RPCs with unreliable messages may be missing as well. 

Game programs rarely require synchronous RPC; most RPC server programs have no 

case that waits for execution on the RPC client by design, because it may be a cause of 

bottleneck or deadlock. Instead, they define two messages for requests to the RPC 

server and replies from it. Moreover, RPC client programs have a few cases that wait 

for execution on the RPC server. Many games have to wait for replies from the RPC 

server, showing a wait animation and permitting users to push a Cancel button. 

Moreover, synchronous RPC is hard to implement, for reasons we'll explain later. 

The example code with this article contains a compiler as well as parser. There are 

some further readings about grammar definitions, parsers, and lexical analyzers 

[Sebesta02]. 

cine LLL 
NCE LATENT, 

Here is a simplified presentation of a well-known sequence design of a generic RPC 

implementation. In short, it works like Figure 6.4.1. 
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FIGURE 6.4.1 RPC sequence diagram with reply. 

As we are just interested in the asynchronous model, we do not need phases that 
wait for replies. After trimming them, it works like Figure 6.4.2. 

FIGURE 6.4.2 RPC sequence diagram without reply. 
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When an RPC function is called from an RPC client, it cannot directly execute 

the function body on the RPC server, of course. Instead, it collects function parame- 

ters and adds these parameters into a message, as well as a message header, to identify 

the desired function call. ‘The code that performs this phase is called the proxy, 

because it runs another function with the same name, which serializes (marshals) func- 

tion identifiers and parameters to a data stream and sends a message, instead of calling 

the actual function. 
When a message is received on an RPC server, it passes the message to a function 

that reads the message, determines which RPC body should take the control, extracts 

message data into parameters, and calls an RPC function body. This is called the stub, 

due to its role of selecting one of many functions and invoking the appropriate call. 

Notice that we are only discussing asynchronous RPC here, so we can safely ignore 

the RPC response phase. 
As an RPC call is converted to a message and analyzed at the other side, every 

RPC message should be formed in a specific manner. When an RPC is called on the 

proxy side, the generated message must include all needed information about the 

function call. This includes: 

¢ Function Identifier tag 

¢ Serialization of function parameters 

The Function Identifier is a predefined number whose value is incremented whenever 

another RPC function is declared. This is necessary to detect where the message is 

serialized. ; 

Serialization of function parameters is basically a concatenated data block of each 

parameter listed one by one, built by the proxy. Ignoring error detection and recovery 

for now, only the parameter values themselves are needed, because we can deduce how 

many parameters and which type they are when we look at the Function Identifier. 

There are several ways to serialize parameters of various data types. The example 

presented with this article shows an example of a message class and several serializa- 

tion functions with the same function name and different parameter types (function 

overloading), like the following example: 

void Message_Read(CMessage& m,double &val); 

void Message_Read(CMessage& m,std::string &val); 

void Message _Write(CMessage& m,const double &val) ; 

void Message _Write(CMessage& m,const std::string &val) ; 

Figure 6.4.3 shows how developers adopt RPC for their own networking applications. 

We want to generate all our networking code with simple, one-line declarations. 

RPC introduces Interface Definition Language (IDL) for this type of declaration. The 

IDL file is where we write RPC function declarations, as well as these one-line decla- 

rations. Keep in mind that the IDL file cannot be directly identified by our applica- 

tion source files. Instead, IDL files should be compiled by the JDL compiler, which 

generates the proxy and stub code files. The proxy code is then linked to a program 
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FIGURE 6.4.3 Design-time sequence diagram. 

where RPC functions are remotely called; meanwhile, the stub code is linked to the 
program where they are invoked. 

As at least one helper function or class exists for both the stub and the proxy, we 

may want to move them into a library, which we call the common runtime. 
Do not include the generated proxy and stub code in your source control system, 

however. As the IDL compiler overwrites the proxy and stub code when an IDL file.is 
modified, it may cause a build error when the proxy and stub codes are not checked 
out and are read-only. 

RPC: Implementation 
STEER NRO RE a I GEE ARS RE NCR HRA OMAN: SERBIAN NO 

The following sections dannih RPC ‘inpledadneiien 

Proxy and Stub 

An RPC function cannot be called directly, since its actual body is on another process. 
However, the local function with the same prototype should be available. It surrogates 



6.4 Fast and Efficient Implementation of a Remote Procedure Call System 635 

the call by creating a message and sending it to the remote process, where the actual 

function body exists. These local versions of the remote calls are what we refer to as 

proxy code. 
The IDL compiler is responsible for generating the proxy code. Our IDL com- 

piler generates proxy code using a code pattern that we specify. One easy way of defin- 

ing this specification is to write an example proxy code, deduce code patterns from it, 

and use this model within our IDL compiler. 

When a message is received, it should be passed to a function that will have a giant 

switch-case. At first, we identify what the receive message is requesting by reading the 

Function Identifier in the message header. Then, we go to one of the switch-cases. 

Each switch-case routine deserializes (unmarshals) the messages into each parameter 

value. Then we call the RPC function body. Our stub code consists of only a function 

with many switch-cases inside it. The function bodies are outside the stub code. The 

IDL compiler can also be responsible for generating the stub code. Like our proxy code 

patterns, we feed stub code models to the IDL compiler. 

IDL Compiler 

To start the IDL compiler, we have to make a compiler that takes IDL files as input 

and then generates output code of stub and proxy. Let's start with the parser, which 

analyses what RPC functions the IDL file declares. We choose ANTLR [Parr04] for 

our implementation here, which is more comprehensive and easy to use than Lex and 

Yacc. ANTLR is a top-down parser generator written in Java, but we can generate 

parser code in C++ as well. : 

For simplicity, we'll stick to a basic grammar for our IDL files. When you look at 

IDL files of legacy RPC systems, they have more parameters such as network proto- 

cols, parameter-passing directions, and unique IDs. For now, let’s see a basic example: 

Knight_Move(int id, float Xi lLoain Va tloatez)a 

Knight_Attack(int id,int target,int damage) ; 

With this model in mind, Listing 6.4.4 provides an example of a complete grammar 

in ANTLR format. 

Listing 6.4.4 A Snippet of Our IDL Grammar 

// an RPC function definition 

functionDefinition : 

IDENT // function name 

LPAREN 

( parameterDefinition 

( COMMA! param=parameterDefinition es 
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2 

RPAREN 

SEMI 

b 

// an RPC parameter 

parameterDefinition 

IDENT // type 

IDENT // name 

b] 

The first function identifier number can be defined anywhere, even outside of the 

IDL file, but it’s usually less confusing to keep the definition within the IDL file. 

The backend of our compiler should generate these files based on the semantic 

information from the frontend (discovered by the parser). In general, an IDL output 

consists of several source code files: 

* Proxy source code and its header 
e Stub source code and its header 

Going back and looking at Listings 6.4.1 and 6.4.2, we can see that these code pat- 

terns correlate to Listing 6.4.4, where FunctionName stands for an RPC function 

name, ParameterDeclarations stands for C++ declarations for all the function para- 

meters in the RPC function, and Parameters stands for the parameter list separated 

by commas. See Listing 6.4.5. 

Listing 6.4.5 Our Proxy and Stub Code Pattern 

// common 

static const RPCHeader RPC_ID_FunctionName=(10+0) ; 

FunctionIdentifierDefinitionsForOtherFunctions 

// proxy 

RPCResult FunctionName(RPCSendTo sendTo,RPCSendContext 

sendContext ,ParameterDeclarations ) 

{ 
CMessage m; 

Message Write(m,RPC_ID FunctionName) ; 

Message Write(m,FirstParameter) ; 

Message Write(m,LastParameter) ; 

return RPC_Send(sendTo,sendContext,m) ; 

} 

ProxyDefinitionsForOtherFunctions 

// stub 

RPCResult RPC_DoStub(RPCSendTo recvFrom,RPCSendContext 

recvContext,CMessage& m) 
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RPC: Usage 
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{ 
RPCHeader msgID; 

m.SetCursor (0) ; 

Message _Read(m,msgID) ; 

switch(msgID) 

case RPC_ID FunctionName: 

{ 
FirstParameterDefinition; 

Message _Read(m,FirstParameter ) ; 

LastParameterDefinition ; 

Message Read(m,LastParameter ) ; 

FunctionName ( 

recvFrom, 

recvContext, 

Parameters) ; 

} 
break; 

CasesForOtherFunctions 

} 
} 

Note that RPCHeader, RPCSendTo, and RPCSendContext are just our own local type 

definitions. In these examples, they're defined as unsigned int. 

For simplicity, the backend code described here uses printf() or cout, with sev- 

eral for{} statements. However, this will get cumbersome when the code patterns get 

more complex. So it will be helpful to adopt a text generator based on text templates 

such as eNITL [Breck99]. 

It may be hard to keep maintaining and modifying the IDL compiler as we add 

more functionality to our RPC system. We can drive some parts of them into a com- 

mon library, which contains several typedefs, helper functions, and some classes. The 

example in this article has a very little common library called MyRPC. MyRPC has a class 

CMessage and several read and write functions for the most frequently used primitive 

data types such as int, float, and std::string. 

<<< MSL LLAMA LALLA MALLE ANSE NNN TTS NALIN 

To use our RPC implementation within our application, we should add the IDL file 

to our project and configure custom build options for the IDL files. In the case of 

Visual Studio.Net, we may configure these per Figure 6.4.4. 

In addition, the compiled output files and common library need to be added to 

our project configurations. As the generated proxy and stub code is a kind of compi- 

lation output, it is recommended to add generated proxy and stub .h and .cpp files 

indirectly to your source code using #include clauses. 

RPCHeader, RPCSendTo, and RPCSendContext are used for sending and receiving 

tasks via your networking module. If the number of RPC functions defined is under 

255, a traffic conservation trick would be to change RPCHeader to unsigned char. 
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Test.IDL Property Pages . 

Configuration: eae x] Platform: [Active win32) | Canfiguration Manager... ei 

Configuration Propertie Command Line |DLComp,exe “$(InputPath) Ng 

ies ame ; Description Compiling MyAPC $(InputName), IDS. 

@y Custom Build Step | | Outputs Se a » $(inputNarne)— proxy, h:$(nputNlame)_proxy, cpp: 3$(inp 

» General Additional Dependencies 

Outputs 

$(InputName)_proxy.h 
$(InputName)_proxy, cpp 
$(InputName)_stub.h 
$(nputharne)_stub, cpp 

; Macros>> 

Outputs , : 
Specifies the output files the custo Cancel _| __ Hels | 

FIGURE 6.4.4 Configuration of Test.IDL. 

RPCSendTo identifies the remote computer that receives the messages. RPCSendContext 
defines other parameters such as protocol selection (TCP or UDP), timeout options, 
or invocation identifiers for multiple asynchronous responses. You may change these 
typedefs as you wish. This RPC implementation automatically adds RPCSendTo and 

RPCSendContext into generated RPC functions’ declarations as the first and second 

parameter, respectively. 

You then need to add a networking module to the application, because our RPC 
system itself doesn’t have any. When the proxy constructs a message, it calls RPC_Send() 

to pass it to your network modules. Meanwhile, when a message is received at your 

network modules, it should pass the message to the stub through RPC_Stub(), which 
exists in the generated stub file. 

Sample Programs 
ONG 2 NSB RATA ETN LATTE LOS MOE LE ES ETT AOE ST TRG EERE I STO INGE IEE ETE IN OE RRC TS MORRO 

There are two executable examples with this article: Simple Test and RPCDuel. SimpleTest 
is basically a Hello World application. It has an IDL file and a main() function, which 
calls some RPC proxy functions, which just saves the generated message to its local mem- 
ory. Then assuming it has already received the message sent by the proxy, it calls a stub 
function, which resolves the message and calls the appropriate RPC body. While trivial, it 
should serve as a quick example of how the more complex RPC samples work. 
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RPCDuel is a modified version of a simple game called Duel in the Microsoft 

DirectX SDK sample. RPCDuel is an example of RPC based on DirectPlay, which 

Duel is also based on. The original application messages have been changed to MyRPC 

ones, while commenting out the original portions. You can examine how RPC works 

by searching for the comment before RPC in the RPCDuel source files. 

Further Features 
OE ISENSESESISPEOCLSSSBEB ESE IT LETS NEE EES SEER ELE LE RELL AL LALDEEELE SELLE SS ELLE LENA EL LAELIA. 

There is a proverb in Korea, “A journey of a thousand miles starts with but a single 

step.” Although the implementation here, as a first footstep, is written in a simple 

manner and only begins to show the practical use of RPC, it should be easy to 

improve and extend the system based on your needs. Here are some areas for improve- 

ments worth investigating. 

Allow Multiple Proxy/Stub Instances 

of an IDL in a Program 

This implementation generates global functions and typedefs. This means there’s a 

limitation on multiple instantiations of the RPC functions for multiple game sessions 

or other re-use. One solution is to have the IDL compiler generate a proxy class and 

an abstract stub class, capable of handling several clients at once. 

Error Detection and Recovery 

Most online game servers or peers have to’ program in a tolerance against erroneous 

messages, which may cause various exceptions such as buffer overrun, invalid message 

format, and networking failure. One of the solutions is to add boundary checking to 

our serialization and deserialization functions. Of course, if you enable your IDL 

grammar to accept value ranges specified by the game programmers, it may reduce 

having to write vulgarity checking codes. 

More Data Types 

In our example, only some primitive data types such as integer, floating number, and 

strings have serialization and deserialization functions. However, we may want to 

support more data types in our RPC functions, even arrays and structures. There is a 

serializable class Vector3D in the SimpleTest example. It has these two functions. 

void Message Write (CMessage& m,const Vector3D &val) ; 

void Message_Read(CMessage& m,Vector3D &val) ; 

We can continue defining as many serialization and deserialization functions as neces- 

sary. Some C++ template functions might be more convenient for generic structures 

such as array and list, however. 
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Message Encryption 

In many online games, not all the messages need highly secured encryption, and due 

to performance issues, only a few types of communicated messages are made secure. 

When we add an encryption option to our IDL grammar, and IDL output code 

pattern and encryption facilities to our streaming class, we can make use of encryp- 

tion easily just with one definition such as: 

[encrypted] RequestLogin(string id,string password) ; 

Message Compression 

Message compression is easily implemented by enhancing our streaming class and our 

IDL grammar. For example, we may want to add a “number of bits” option for each 

parameter, which we can define like this: 

Knight_Attack(int type:4,int magicBuff:7,int critically; 

Variable type takes four bits and magicBuff takes seven bits, while critical takes 

one bit. Of course, we would then need to modify our streaming class for bitwise 

manipulation. 

Switch-Case Optimization 

For better performance, it is also a good approach to substitute switch-cases in RPC 
stub to a binary search tree, to get O(logm) for 7 as number of RPC functions. 

Debugging and Profiling Tools 

It may be easier to profile servers by adding some probe code to the RPC proxy and 

stub code templates. For example, when we want to trace every incoming or outgoing 

message, we can do so just by adding code that prints the function name and parame- 
ter values to console or debug output. Of course, we can also view the trace log 

records showing what functions and parameters have been passed. This is a great way 

to help detect vulgarity received from a bad game client or RPC body functions that 
cause long process times. 

Synchronous RPC 

Most games will typically not require synchronous RPC; however, if it is needed for 

your programs, you can add this faculty to your RPC at runtime. 
Adding synchronous RPC to our example requires some more work: 

¢ We need to define more sequences that wait until the RPC body returns and 
passes the return values to the RPC function caller. 

¢ Only guaranteed messages are acceptable with synchronous RPC. 
* We need to add a parameter direction option, which are input parameters 

(inparam) and output parameters (outparam). Inparam is sent to the RPC server 
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while Outparam is received from the RPC server after the RPC body executes. 
For this difference, we should add parameter direction grammar to our IDL com- 

piler and add code that serializes outparams at the stub and deserializes inparams 
at the proxy. Here is one example of synchronous RPC. 

UserLogin([in] string id,[in] string password, 

[out] int loginResult) ; 

¢ We need to consider exceptional cases such as timeouts and exceptions, to prevent 

deadlock. 
¢ We need to manage function call sequence number. When RPC outparam mes- 

sages are received by the proxy, it can determine which thread is waiting by the 

call sequence number. To only wake a thread that corresponds to that sequence 

number, we need to prepare a queue containing outstanding RPC calls waiting 

for outparam messages. 

Conclusion 

Writing an RPC implementation normally has some prerequisites not associated with 

game programmers. This gem was an attempt to euide you towards getting started 

with your own RPC system, and you're encouraged to explore and see the productiv- 

ity and efficiency, as well as performance, you can get via RPC systems. To get the best 

understanding from this article, you may want to look at some of the references. Now 

it is your turn! 
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in Peer-to-Peer 
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{ eatnayee computing revolutionized the way we compute. From the early 

research Internet of the late 1970s through the dial-up Internet revolution in the 

early 1990s to today’s bonanza of fat broadband pipes, everyone is using computer 

networking for fun and for profit. More than 50% of all Internet users will have 

broadband when this gem is published. Although, with this popularity comes all 

kinds of problems: self-replicating worms, pings of death, and Windows security 

problems, coupled with heavy vendor scare tactics, cause most users to set up firewalls 

to protect their computers. Connection-sharing firewalls are a hot selling item, as 

homes with multiple computers find that sharing a single broadband connection is 

the easiest route; prices having fallen to under $100 for a feature-rich wireless access 

point with router, switch, and firewall. 

Online games are maybe one of the more exciting applications of computer net- 

working technology, where the ability to compete with players from all over the world 

from the comfort of your own office, living room, or coffee shop has subtly changed 

how we view the term “buddy” and how we choose to interact online. Companies like 

Sony Online Entertainment and NCSoft make it their business to run large server 

clusters where players from all over the world can meet and play together. However, 

these big server clusters come with big leasing, power, and networking bills, and such 

services usually come with a monthly price tag for the end user. Thus, another popu- 

lar form of online gaming is peer-to-peer gaming, where one player's computer also 

serves as the server for the game, and all the other players connect to this player, who 

is said to be hosting the game. 

Unfortunately, some games are not as good at supporting this model of connec- 

tion as others. Frequently, firewalls and connection sharing software get in the way of 
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hosting games, and sometimes even joining games. While some users may be techni- 

cal enough to configure a DMZ or port forwarding in their firewalls, many are not. 

And even for the technical users, pleading with a Starbucks® employee to give you 

access to their wireless access “hot spot” is unlikely to make that hosted game of War- 

crafi® III come any closer. As a developer of a networked game, you would like to do 

better, and this gem will show you how. 

Audience 
Se act aU NR SEG EES A ESSE tenes OLE LOE LSAT 

This chapter is intended for all game programmers who want their game to work as 

well as possible on the Internet. It is especially important for programmers who want 

their games to use peer-to-peer, player-hosted servers, and want to extend to as many 

users as possible without telling users to configure port forwarding, set up a DMZ, or 

remove their firewall. 

We assume that you are familiar with general Berkeley sockets programming 

(Unix) or Windows WinSock Version 2 (Windows). The technique shown will work 

equally well under either operating environment. For purposes of this gem, MacOS X 

(and higher) works a lot like Unix, but the code has not been verified on MacOS X. 

This chapter uses C++ for its code samples, but the techniques can be expressed in any 
language capable of using networking at the sockets layer. 

Penccrasse 
At the core of all networking is the network address. The Internet at large uses an 

address format called IPv4, which is short for Internet Protocol Version 4. What the 

first three versions looked like has long since lost its relevance. There is also an up- 

and-coming version called IPv6 that has so far failed to gain mainstream acceptance. 
In this article, “IP address” is synonymous with “IPv4 address.” 

An IP address is simply a series of four bytes. Typically, it will be written out in 
dotted notation, such as 192.168.1.2. An IP address identifies a specific network card 

or modem connected to a specific device on the Internet; these individual hardware 

devices are called network interfaces. 

Devices connected to the Internet may run multiple services; for example, a Web 

server will often also run a Secure Shell Daemon (SSHD) that allows administrators 

to access the command-line interface of the server for monitoring and maintenance. 

To distinguish network packets destined for the Web server from network packets 
destined for the SSHD, the two most common Internet protocols add the concept of 
a port number. Each service uses its own port; for Web servers, the port is 80 unen- 

crypted services and 443 for encrypted services. For the SSHD, the port is 22. 
For games, the developer will often choose an arbitrary port within the allowable 

range. Ports in TCP and UDP addresses are two bytes, and thus the range is between 
0 and 65535 inclusive, although tradition dictates that the port number is chosen in 
the range 1024-49151, inclusive. This tradition likely started with the arbitrary 
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implementation choice on Unix, where ports 1 through 1023 are reserved for the spe- 

cial administrative user “root” on the machine, and only root may open new sockets 

listening for traffic on these ports. For more information, see [Man3rresvport] and 

[RFG793)}: 
A UDP or TCP address thus consists of six bytes: four single-byte numbers in the 

range 0-255, inclusive, called the IP address, and one two-byte number in the range 

0-65535, inclusive, called simply the port. The IP protocol suite specifies that all 

numbers larger than a single byte be sent with the high-order byte first (big-endian), 

and most sockets implementations supply functions or macros named hton1(), 

htons(), ntohl(), and ntohs() to convert between the local machine representation 

and the well-defined network representation of numbers. 

sat heb Sic EE LTE LLL LON DEL LLL NOOR ELLE LL TRL DE ALLL LL TELE NOON 

A program running on a machine (we will call these programs “processes” and the 

machines “nodes” in the rest of this chapter) will typically play one of two roles: server 

or client. A server process will create a socket using : :socket() and bind it to a local 

port and one of many local addresses if the node has multiple network interfaces, 

using ::bind(). If the socket is used for TCP connections, the server will then call 

::listen() and enter a loop where it calls ::accept() to wait for and accept incom- 

ing connections from clients. ::accept() returns a new socket for each new client, 

and data is exchanged using : :send() and ::recv() using this socket. To tell the dif- 

ferent connections apart, each TCP connection on the client side automatically allo- 

cates a new, unused port for the specific server connection. 

If the socket is instead used for UDP connections, the process will enter a loop 

where it calls ::recvfrom() on the socket directly after ::bind(). All incoming traffic 

from all clients will arrive at the same socket. The network layer has no notion of con- 

nectedness, so if multiple, related packets are to be exchanged over UDP, some higher 

layer software (such as the process itself) has to take care of the coordination thereof. 

Return traffic for servers using UDP is usually sent using ::sendto(). 

For a client of a TCP service, after calling :: socket (), the process will call ::con- 

nect() to establish a connection to the intended recipient; once connected, ::send() 

and ::recv() are used for data exchange. The argument to ::connect() is a LGP 

address that may have been looked up from a textual name (such as “www.there.com: 

80”), using name server functions such as ::gethostbyname(). Meanwhile, clients of 

UDP just call ::sendto(), passing in the IP address (again, possibly derived from 

textual form using the name resolution library), and receive data back using 

:rrecvfrom(). 

In a typical process, many things will be going on at the same time, so thinking of 

“send” and “receive” as sequential events is usually misleading. Physics simulation, 

graphics drawing, audio mixing, and disk I/O are examples of other actions often 

happening at the same time as networking in a typical action-oriented networked 

computer game. The approach to managing these overlapping tasks is usually either 
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to poll the network using ::select() to determine what can be productively-done, or 

to spawn multiple threads to deal with operations in different parts of the program. 

The supporting code for this article uses ::select()(or on Linux, the : :select ()-like 

function ::poll()), because it causes less synchronization overhead and leads to fewer 

threading bugs; the techniques presented are equally useful in either world view. 

A specific process can be a server and a client at the same time. For TCP, this usu- 

ally means creating at least two sockets; one that is listening and accepting new 

incoming connections and a separate socket that is connected as a client to some 

server on the other end. For UDP processes, multiple sockets are not necessary, 

because it is possible to ::sendto() and ::recvfrom() on a socket to and from an 

arbitrary number of peers. In fact, when using UDP, the concept of “client” and 

“server” is only visible at the application level, not in the network layers below. 

Purists will note that the TCP protocol doesn’t specify “clients” and “servers,” but 

in reality, a process that calls ::accept() is a server, and a process that calls ::con- 

nect() is a client. See [Stevens94] for more details. 

Routers, Peers, Protocols 
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A few more preliminaries are needed to flesh out the background against which to 

examine peer-to-peer networked gaming. 
First, the Internet does not work like a telephone, where a wire is hooked up to 

the handset on one side and, conceptually, is hooked up through switches to a wire 
leading to the handset on the other side, forming a closed electrical circuit. Instead, 
from the point of view of the Internet infrastructure, each IP packet is separate from 

each other packet. When a process causes a packet to be sent, the local node makes a 
determination on which interface to send the packet; the packet then makes it 
through that interface to a router on the other end of that specific connection (the 

first router along this path is referred to as a gateway for the local node). That router 
then makes a determination as to where to forward the packet among its possibly 
many interfaces, passes it along, and so on. The process is repeated until the packet 
makes it to one of the interfaces on the recipient node and is delivered to the receiv- 
ing process, or delivery fails. It is important to keep in mind that each router inspects 

all incoming packets and follows some kind of rule to figure out which interface to 
forward the packet to, or whether to just ignore the packet (known as “dropping the 

packet”). 

Second, because every node participating in the Internet has its own IP address 
(and, for most services, a socket listening on a specific port), there is no way to inspect 

just the IP address of a packet and know whether the packet is sent by a client or a 
server. On the Internet, all nodes are logically equivalent; they are said to be peers of 
each other. The notion of client and server is something that is constructed by the 
users of the Internet, typically implemented into the software running the processes 
on each node. 
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Third, there are a large number of protocols in use on the Internet. Some of the 

more common ones include 802.3 (for regular wired Ethernet), IP (packets contain- 

ing an IP address), UDP (specifying a source and destination port number), and DNS 

(used for querying name servers to resolve textual node names to IP addresses). A 

given packet will usually make use of many of these protocols at the same time; a 

DNS query will be sent on port 53 in a UDP packet to some name server IP address, 

transmitted over Ethernet through the first jump to the DSL or cable modem. Each 

protocol is layered on top of the underlying protocols, so UDP 1s layered on top of IP, 

and DNS is layered on top of UDP (in this case). 
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An example DNS query packet, as explained earlier, is shown in Figure 6.5.1 at the IP 

layer. Below IP, there will be additional framing, such as Ethernet, ATM, or PPP, 

which we have excluded for clarity because this gem deals only with phenomena 

observable at the IP protocol layer and above. We also disregard minutiae like packet 

fragmentation or van Jacobsen header compression, which do not modify the basic 

operation of IP networks at the level visible in this gem. 

bit 0 
bit 3 

Eola Packet Length (bytes) 

DIM ff: BBG Fragment Offset 

Protocol Header CRC 

Source IP Address 

Destination IP Address 

Source Port 

UDP Length 

FIGURE 6.5.1 Anatomy of a UDP packet, with IP header, UDP header, and payload 

data. 
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Given all this knowledge, you should be able to write a networked game that 

works over the Internet as it looked in the early 90s. However, time has moved on, 

and the introduction of NAT (Network Address Translation) changed all that. 
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The Internet started growing rapidly in 1992 and has kept on growing ever since. 

Because it is a peer-to-peer network, each node on the Internet needs its own, unique 

address. These addresses take the form of four bytes, so there is a total available of a 

little over four billion addresses in the world. 

The Problem (IP Address Space) 

At some point, we are going to want to add more nodes (or at least interfaces) in the 

world than supported by four-byte addresses, and even worse, the way that addresses 

are used at the routing level causes a certain amount of waste. In addition, the alloca- 

tion between different parts of the world is sometimes grossly skewed; it is said that 

MIT has more Internet addresses allocated for its internal use than the entire country 
of China! Whether this is true or not, the Internet has been facing an address crunch, 

growing faster than the ability to allocate addresses. 

Another Problem (Security) 

Nodes connected to the Internet are peers to all other nodes. This means that you can 
type in any URL in a Web browser, and send network traffic to whatever other node 
that URL resolves to. Unfortunately, it also means that any peer on the Internet can 
send your node whatever network packet it wishes. Some network services are 

designed with more careful attention to this fact than others are, and a number of 

remote exploits (security holes) have been found, using bugs in networked software or 

even in an OS like Windows itself to take over virtually any node on the Internet, 
bypassing the need for a password. 

Most users will be unable to fix application bugs on their own, and a better way 
of avoiding security holes through application bugs than just unplugging the machine 
from the network is necessary. 

The Fix 

A popular fix to the dual problems of IP address space shortage and keeping 
unwanted network traffic away has emerged; it is known as Network Address Transla- 
tion or NAT for short. Most DSL routers, cable modems, and Internet Connection 
Sharing devices use NAT to work their magic. 

The idea is simple: most network protocols use UDP or TCP for their underlying 
transport. A port number and an IP address identify the endpoints communicating in 
those protocols. If multiple nodes can share a single IP address but use different port 
numbers, and the network could somehow distinguish which node to forward a 
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packet to, based on the port in addition to the address, then you would only need a 

single IP address per household, company, or other subnetwork using less than 

65,000 simultaneous connections. 

The low-level network protocols like ARP that make the packets flow between 

nodes do not work well if more than one node share the same IP address, but there’s a 

higher-level entity that fits the bill perfectly to implement this address sharing: the 

gateway router. If all nodes wishing to share one address (from the point of view of the 

Internet) sit on one end of the router, and the router is the only visible node to the 

Internet, then everything will be happy, assuming we can find some addresses for the 

internal nodes to use when talking to each other and to the router. 

Luckily, some address ranges of the IP address space are reserved for experimental 

or private use. These ranges are 10.x.x.x (with space for 16 million internal nodes), 

172.16+x.y.z (with space for a million internal nodes), and 192.168.x.y (with space 

for about 65,000 internal nodes). These addresses are guaranteed to never be used on 

the publicly visible Internet, so using those addresses inside a NAT-routed network is 

guaranteed to not clash with anything outside the NAT. For more information, see 

[RFC1918]. 

In our example, the NAT device has address 10.0.0.1 on the inside and address 

381.226.155.187 on the outside (with apologies to whoever currently uses that 

address). The nodes on the inside of the NAT are 10.0.0.2 and 10.0.0.3, and the 

sample site we are trying to connect to is 64.125.216.191 (again with suitable apolo- 

gies to whoever uses that currently). Presumably, the ISP for the user with the NAT 

box has allocated the 81.x address, and the 64.x address has been allocated by the 

hosting provider for the destination server, and found by the user using DNS. 

Putting it all together, when nodes inside the NAT start up, they are assigned 

addresses out of a private address range, and their gateway is configured to be the 

NAT router. When they want to communicate with some node on the outside (say, 

64.125.216.191:80 for a Web connection), they form their network packets as usual 

(say, using source address 10.0.0.2: 6000), and forward them to the NAT router. The 

NAT router then notices that the source address is from within its private network, 

and substitutes its own, public, address as the source address, so for a device on the 

outside, it looks like the packet comes from the NAT router. 

Unfortunately, more than one internal node may use the same port number for 

the source port. Thus, the NAT router must substitute a new port number for the 

original port number, in addition to its own IP address for the private source IP 

address. 

Finally, in turn for returning network packets to make their way back to the right 

node, the NAT router maintains a table of (source IP, source port, substitute IP, substi- 

tute port, destination IP, destination port) tuples to be able to rewrite returning packets.
 

In our example, illustrated in Figure 6.5.2, the tuple for a simple Web request is the first 

line of the table: (10.0.0.2,6000, 81.226.155.187,11001, 64.125.216.191,80). Once 

the port number 11001 has been allocated on the NAT to be used for the node 
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10.0.0.2 port 6000, this port number should remain allocated for that address/ 

port pair for as long as the connection is open, or a returning packet addressed to 

81.226. 155.187:11001 will not make it back to the right place. 

Third parties cannot send traffic to the internal node, because the private address 

of the internal node makes no sense when interpreted in the open Internet; a packet 

addressed to 10.0.0.2 from the outside would not even make it to the gateway. Simi- 

larly, if a packet arrives at the NAT router with a source address or port that the inter- 

nal node has not recently sent data to, there will be no tuple recorded in the gateway 

to translate the destination address to an internal address, and the gateway will simply 

drop the packet. In this way, a NAT router works a lot like a stateful firewall and often 
provides all the protection a typical home user needs from remote network attacks. It 
still cannot protect against attacks that rely on user behavior, such as sending Trojans 
through e-mail or enticing the user to click on malicious Web links, but it is a good 

first defense. 

81.226.155.187 

64.125.216.191 

Public 

NAT + Firewall Internet 
Public 

2OROR 10.0.0.3 

\ Internal Network (behind NAT) 

Internal Address Public Address 

10.0.0.2:6000 817220 ghoul erie Od. 64.125.216.191:80 

ORO a sos Olr22Orloon ei ToS DOS 679.27 5S 

LOMO ROR 2 23 81.226.155.87:53 1956721995282 53 

10.0.0.4:53 Si220e Looe o7 sro! ESTO 7/5199 27 353 

FIGURE 6.5.2 Example NAT-ed Internet connection. 
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The NAT router substitutes a public source address/port pair for the private address/ 

port pair, remembers the destination address/port, and forwards the packet. For 

returning packets, it does the reverse translation, and the node on the internal net- 

work can communicate flawlessly with the outside world. 

Unfortunately, this does not work for all protocols, especially protocols designed 

before NAT gained widespread acceptance, or without proper understanding of the 

needs of NAT. One prime example is the File Transfer Protocol (FTP) that is com- 

monly used to download files on the Internet. When FTP was designed, it was 

designed so that one node could set up a file transfer between two other nodes 

([RFC959], [RFC1123]. The controlling node C would connect to node A, tell node 

A to expect a file, node A would start listening on a port, and tell node C what this 

port is. Node C would then connect node B, and tell node B to connect to node A on 

that port, sending the file. This also allows the control connection to remain open and 

issue more commands while data is being transferred on the data connection. 

The common case of transferring a file to the controlling node C from the server 

node B is handled as a special case in the FTP protocol, where the port and address of 

node C are forwarded to node B, and node B connects back to node C to actually 

send the data. 
The problem is that, because the receiving node listens on a port, rather than 

actively connecting to the external server, if a NAT router is in the way, the local port 

and address of node C makes no sense to node B when instructed to connect back. 

The NAT router translates the source address of the outgoing request to connect back 

to node C, but it does not have any knowledge of the actual data stream inside the 

ETP control connection, and thus the internal address and port of the socket waiting 

for the connection passes through untouched as data on the wire. 

An example of how a UDP-based game may make the same mistake as the FTP 

protocol is found in Listing 6.5.1. 

Listing 6.5.1 Embedded Address Code Sample 

1: Embedded Address Code Sample// An example packet structure for 

// connecting to a server. 

struct CmdHello { 

char cmd; 

char len; 

unsigned short port; 

unsigned int addr; 

}3 

// Get the local address of a socket; this is not 

// something that’s generally 

// useful on the public internet! 

struct sockaddr_in addr; 
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socklen_t len; 

len = sizeof (addr) ; 

::getsockname( sock, (struct sockaddr *)é&addr, 

&len ); 

// This bad code puts a local address into 

// a packet sent to a remote location — do 

// NOT do this yourself! 

Hello h; 

h.cmd = CMD HELLO; 
h.len = sizeof (h); 

h.port = addr.sin_port; // don’t do this! 

h.addr = addr.sin_addr; // don’t do this! 

::sendto( sock, &h, h.len, 0, 

serverAddr, sizeof(*serverAddr) ); 

The Hack 

Because FTP is a very common protocol with lots of clients in use, a fix had to be 

found. Ideally, that fix would not require changing all FTP clients in existence. 

The fix that emerged involves adding smarts to the NAT router and having it 

inspect the data of packets of traffic to certain ports. Most NAT routers today know 
enough of the FTP control protocol to be able to intercept a control message contain- 

ing an address and port and rewrite the data of the protocol to contain a public 
address and port; the router will also add the appropriate tuple in the active NAT ses- 

sion table to allow packets from the serving node to get back in. 

While the FTP protocol is so widespread that it enjoys special status in the major- 
ity of NAT gateways (but not all), newly designed protocols cannot hope to achieve 

the same special-case status. 

The Fix 

The real fix to make a network protocol NAT safe is to structure the protocol so that 
IP addresses or port numbers do not need to travel within the data stream. The easi- 
est way to make sure that this is sufficient for the protocol needs is to always create a 
connection from the client to the server, using UDP or TCP, and always have the 
server reply back to the client using the address visible on the server when the client 
connects. No forwarding of connection information should occur over back channels 
between servers. Correct management of peer addresses is illustrated in Listing 6.5.2. 

Some very advanced data center equipment exists that is NAT aware. One kind 
uses reverse NAT to load-balance connections, secure clusters against external attack- 
ers, or allow freedom in assignment and management of IP address space. Design of a 
communication system involving reverse NAT in the face of shared authentication 
has to be done with utmost care and is beyond the scope of this gem. 
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Listing 6.5.2 Correct Address Management 

// A proposed packet for acknowledging a 

// (corrected) CmdHello packet. 
struct CmdHelloAck { 

char cmd; 

char len; 

}5 

// The server uses ::recvfrom() to correctly get the 

// address of the peer that connects. 

struct sockaddr_in addr; 

socklen_t len = sizeof (addr) ; 

union { 

CmdHello hello; 

} command; 

:trecvfrom( sock, &command, sizeof(command), 0, 

(struct sockaddr *)&addr, &len ); 

// Server registers connected client on a received 

// hello packet, and then acknowledges using 

// ::sendto() to the received address. 

if( command.hello.cmd == CMD_HELLO ) { 

// client_hello() is the function that adds 

// a newly connected client to some internal list 

client_hello( command.hello, addr ); 

CmdHelloAck ack; 

ack.cmd = CMD_HELLO ACK; 

ack.len = sizeof (ack); 

::sendto( sock, &ack, sizeof(ack), 0, 

(struct sockaddr *)addr, sizeof(addr) ); 

Other Problems 

A variant of this problem is where a game server cluster uses one server for validating 

logins, and then passes the information about the player to another server, which 

attempts to return traffic to the client. Even if the public NAT address of the client is 

used, the NAT router does not expect to see traffic from the new server, so the return 

traffic is dropped. 

Again, the rule to make a protocol fully NAT safe is to always initiate the connec- 

tion with each individual server from the client, and to never send IP addresses 

or port numbers as data, but instead rely on ::accept(), ::getpeername(), and 

-:recvfrom() (but not ::getsockname ( )!) to get the address of the node on the other 

end. 

To support the idea of a central login server that validates username and password 

for a server cluster, you could use a cryptographic cookie. Share a common secret 

(frequently, a 128-bit strong random number) between the servers. When the player 

logs in, the login server creates a hash of user ID, login time, and the shared secret, 

and returns user ID, time, and hash to the client. The client then submits this same 
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information to each other server; that server need only verify that the hash of-user ID, 

time, and secret (not known to the client) matches the hash supplied by the client, to 

know that the login server properly validated the name/password that goes with the 

user ID in question, at the time indicated. The strength of this system is mostly 

dependent on the strength of the shared secret (which should change every so often) 

and the strength of the hashing algorithm; on Linux, using 16 bytes from /dev/ 

random works well for shared secret, and MD5 is a commonly used strong hashing 

function. 
If you follow this advice, your client/server service will be NAT safe. However, 

how does this work when using peer-to-peer networking? 

How Does NAT Break Peer-to-Peer Protocols? 
Setting up and operating large server clusters is expensive. For a smaller game devel- 
oper, or a game developer who does not want to charge players $14.95 a month for 
access after the initial purchase, allowing players to host their own game servers is an 
attractive option. There are security implications in that you can’t really trust an arbi- 
trary server hosted in some hacker’s bedroom, but the popularity of peer-to-peer net- 
worked games all the way from id Software®’s Doom™ through Dice's Battlefield 
1942™ and on validate the peer-to-peer gaming model. 

However, the client/server model we have discussed previously only works when 
the server has a port and address that is publicly visible on the Internet for clients to 
connect to. Too often, this means that users behind NAT routers cannot host games, 

only join them, and if the game is not designed to be NAT safe, a user behind NAT 

cannot even join a game! With the widespread popularity of NAT in modern net- 
works, this is not really a tenable situation. The diagram in Figure 6.5.3 shows a prob- 
lem where neither node can actually talk to the other (on port 8960, presumably used 
by some game), because the NAT routers have no appropriate entry for the second 
node in their respective session state table. Here is where using the technique in this 
gem will save your game! 

The Hack 

Read the README.txt of many games today, and you will probably see mention of 
port forwarding. Port forwarding means going to the NAT router and telling it to 
make a special case for packets arriving at a specific port. In effect, port forwarding 
adds a permanent tuple of (internal IP, port, gateway IP, port, any-remote-IP any- 
remote-port) to the session state table of the NAT router. 

The effect is that any packet arriving at the designated port is only rewritten in 
the part of the destination IP address and forwarded to the specific machine set up as 
the port-forwarding target. Games with half a clue will require you to only forward a 
single port, and may even let you configure which port to use within the game. 
Games with less flexibility will require a specific port (such that you cannot ever host 
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Internal Address 

10.0.0.2:8960 

Public Address 

81.226.155.187:1101 

10.0.0.2:8960 81.226.155.187:8960 

FIGURE 6.5.3 Neither peer can send packets to the other. 

two games between the same NAT router) or require a whole range of ports to be for- 

warded, In the latter case, a user may go to’the extreme of setting up a De-Militarized 

Zone (DMZ) host in their NAT router, which negates almost all the security benefits 

of being behind a NAT gateway, in effect, removing the NAT. 

The Fix 

Port forwarding is clunky, many consumers have trouble setting it up correctly, and 

it’s often a support hassle for developers and publishers. Luckily, another solution 

exists, and was first described in [Kegel99] by Dan Kegel, as used in the game Battle- 

Zone™ published by Activision®. 

The core of the problem is that each NAT router is lacking an entry in its session 

state table for the other peer with whom the internal node wishes to communicate. If 

we could somehow fool the NAT routers to add such an entry, traffic would flow cor- 

rectly, and the game could go on! 

Remember that when a peer sends a packet out through the NAT router, a tuple 

‘s added to the session state table, containing the internal and the external addresses as 

well as the remote address. As a first approximation, if we assume that a NAT router 

will preserve the source port of the internal node, assuming that port is not already in 

use by some other session, we could send packets to the remote node using its public 

NAT address and the known port. If each node starts sending to the peer in the same 
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way at the same time, and both of them actually get the ports they expect on-the NAT 

router, then the right thing will happen. 

The Problem with TCP 

This sketch for a solution might work for UDP (assuming we solve the port re-use 

requirement), but it will not work for TCP. The reason is how TCP connections are 

allocated: each connection allocates a new port number to uniquely identify the con- 

nection. There is no way, in general, to guess which port number will be allocated 

next, nor how the NAT router will map that port number, so unless you're willing to 

try 65,536 different port numbers at the same time, you can’t really make the three- 

way handshake work in through a NAT for a TCP connection. 

Dan Kaminsky has created an experimental library [Kaminsky03] for punching 

through NAT routers with TCP connections, but the foundations for this library do 

not seem solid enough to base production code on. We encourage you to look at the 

library, because it is educational, but the success rate is low enough that you cannot 

base a reliable product on it. Unfortunately, that is about as good as it gets regarding 

TCP and peer-to-peer networking through NAT, so we will return to UDP where the 
prospects for success are very good. 
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There are a few too many “ifs” in the previously sketched-out solution. First, how 
would the peers know to start communicating to each other at the same time? Sec- 
ond, what if the desired port is already in use on the NAT router, and the router 

chooses to map the internal port to another external port? Maybe the NAT router 
implementation always remaps the ports, even, for implementation expediency or 
extra security. 

Bonus Problem 

Let us start with the first problem: how do the peers know to start sending at the same 
time? How do the peers even know what the visible (NAT) address of the other peer 

is? Ideally, the interface we'd like to present to the players is a roster of available, 
hosted games, where the player can choose to host a new game or join one of the 
games already being hosted. Good implementations of this game roster system 
include Blizzard®’s Battle.net® and the Xbox Live™ service by Microsoft®. Warcraft 
IH® on Battle.net uses TCP, and peer-to-peer NAT introduction will not work 
through TCP, because each connection allocates its own local port. Xbox Live uses 
UDP, however, and experience is that its game hosting will work through most NAT 
boxes. So how do you find another player to play against? 
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Matchmaking 

Browsing hosted games is not something you can actually do peer-to-peer, unless you 

do it using broadcast on a local LAN. You'll have to break down and get at least one 

server onto the public Internet, where games being hosted can register, and players 

can go to look up hosted games to join. The upside of this approach is that the traffic 

and performance requirements for this server are very low; a few hundred bytes per 

game being hosted, and a kilobyte or two per player connecting and getting the list of 

all games should do it, even for a game with a lot of active players. Ten-thousand play- 

ers during a single night, consisting of a peak three hour period, break down to less 

than a single player per second; with the suggested bandwidth usage, you could host 

this on a single dial-up modem! Actually, we would recommend getting into at least a 

minimal hosting facility, because uptime, availability, and dealing with load spikes is 

important, and well worth the $100/month or so in hosting fees. As a bonus, you can 

probably run your corporate Web server on the same machine, given that the load is 

so low. If your game is wildly successful, scaling this solution up can be an almost triv- 

ial operation. 

In the code file sample.cpp, the available games to join are held in the global set 

gHosting in the introducer server, where they are added in response to a HOST protocol 

command, as shown in Listing 6.5.3, and are returned to presumptive clients in 

response to the LIST protocol command, as shown in Listing 6.5.4 (error checking 

removed). 

Listing 6.5.3 Adding a Hosted Game 

enum { 

MAX_NAME_LEN = 32, 

}5 

// For Request: :What: :HOST 

struct HostRequest { 

unsigned char what; 

char name[ MAX_NAME_LEN ]; 

}5 

struct Peer { 

std::string name; 

sockaddr_in addr; 

bool operator==( Peer const SO) CONS tart, 

return name == o.name; 

a operator<( Peer const & 0 ) const { 

return name < o.name; 

} 
}3 

std::set< Peer > gHosting; 
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// When the introducer gets a HOST packet, handle it. 

void introducer_host( char * data, int len, sockaddr_in & sin ) { 

// extract the packet and make sure it’s terminated 

HostRequest & hr = *(HostRequest *)data; 

hr.name[ MAX_NAME_LEN-1 ] = 0; 

// Record the fact that there’s a new guy hosting 

// (in the real world, we’d also add a timeout-at 

// time, and do some login name/password checking) . 

Peeps 

p.name = hr.name, 

p.addr = sin; 

gHosting.insert( Pp ); 

Listing 6.5.4 Returning Hosted Games 

struct ListResponse { 

unsigned char what; 

char name[ MAX_NAME_LEN ]; 

sockaddr_in addr; 

}5 

// When the introducer gets a LIST packet, handle it. 

void introducer_list( char * data, int len, sockaddr_in & sin ) { 

// I just dump all available hosts back — no 

// limiting, no matching, and above all, no re- 

// sending of lost packets. 

ListResponse lr; 

Ir.what = Request: :LIST_RESPONSE; 

for( std::set< Peer >::iterator ptr = 

gHosting.begin() ; 

ptr != gHosting.end(); ++ptr ) { 

// Construct a ListResponse packet 

strcpy( Ir.name, (*ptr).name.c_str() ); 

// I put an address as data, but that’s OK, as the 

// address is publicly visible (::recvfrom()). 

lr.addr = (*ptr).addr; 

// Send the packet, ignoring errors (packet may be 

// dropped anywhere, including in the network 

// layer — too bad). 

::sendto( gSocket, (char const *)&lr, sizeof(1r), 

0, (sockaddr *)&sin, sizeof(sin) ); 

// Send a final, empty host name to terminate the 

Hijet Stirs 
Ir.name[0O] = 0; 

::sendto( gSocket, (char const *)&lr, sizeof(l1r), 0, 

(sockaddr *)&sin, sizeof(sin) ); 
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Introduction 

Once you have a game browsing server on the public Internet, a client should connect 

to this server using UDP on a single socket bound to a known port. The publicly vis- 
ible, NAT-translated address of this socket will be visible to the game browser server 
when it calls ::recvfrom() to receive network packets. The browsing server should 

send this IP address and port to all prospective clients wishing to join the hosted 
game. 

In addition, the browsing server should send the publicly visible IP address and 

port of clients wishing to joint to the game host. That way, the game host can attempt 
to proactively send packets to the joining clients. This will have the effect of adding 
the appropriate tuple to the session state table in the NAT router to allow the packets 
being sent from the prospective clients to be allowed through to the hosting server. 

A server that acts as a repository of publicly visible IP addresses and ports, and 
furnishes these to other interested peers for purposes of NAT punch-through, is com- 
monly referred to as an “introducer.” 

Referring to Figure 6.5.4, the difference from the case where we “correctly guessed” 

the public port numbers, is that the port used by the NAT router to represent the in- 
ternal node can be arbitrary, because they are made visible to the other peer using the 
introducer. The wishful thinking that the port would always be untouched is no longer 

necessary. 

Implementation Details 

There is one fundamental assumption that makes this introducer-based solution work: 

when a specific (source IP, source port) address is used for source addressing, the NAT 

router will translate this to a specific (NAT IB NAT port), no matter what the destina- 

tion IP and port is. While we still need to send packets both to the introducer, and to 

the peer we're being introduced to, to create the full session state tuple in the NAT 

router session state table, if the NAT chose a different port for different destination 

addresses, even with the same source port and IP, then the return traffic from the 

remote peer would not arrive at the expected port, and the technique wouldnt work. 

Luckily, there are three good reasons for a NAT router to re-use the same NAT 

port for the same (source IP, source port) pair. 

First, on the public Internet, a client process sending a network packet on a 

socket bound to a specific address and port expects the sender of that packet to 

remain fixed, no matter what the destination is. After all, the application bound the 

socket to a specific port and used that same socket to send packets to different remote 

nodes. Note that this is only possible with UDP, not TCP, which by design allocates 

new ports on the client side for each connection. 

Second, if the NAT router has several nodes on its inner network, it may be called 

upon to allocate many ports for a lot of simultaneously active sessions. The number of 

ports available is not unlimited, so the NAT will conserve port space and be able to 
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Internal Address Public Address 

10.0.0.2:8960 81.226.155.187:11002 64.125.216.191:8960 

i Internal Address Public Address 

10.0.0.2:8960 69.17.45.36:32769 64.125.216.191:8960 

Internal Address Public Address 

10.0.0.2:8960 81.226.155.187:11002 64.125.216.191:8960 

10.0.0.2.8960 81.226.155.187:11002 69.17.45.36:32769 

Internal Address Public Address 

10.0.0.2:8960 69.17.45.36:32769 64.125.216.191:8960 

Internal Address Public Address 

10.0.0.2:8960 81.226.155.187:11002 64.125.216.191:8960 

10.0.0.2.8960 81.226.155.187:11002 69.17.45.36:32769 

Internal Address Public Address 

10.0.0.2:8960 69.17.45.36:32769 64.125.216.191:8960 

10.0.0.2:2960 69.17.45.36:32769 81.226.155.187:11002 

In step 1, each of the peers have a session open to the introducer, which has a public IP and port 

address. The introducer records the publicly visible IP and port of each participating peer, and 

makes them available to the others. 

In step 2, the first peer has received the public address of the second, and has sent a packet to 

the second, which causes a session entry to be created in the NAT gateway. At this point, traffic 

from the second peer to the first peer will make it back through the NAT, but packets sent by the 

first peer will be dropped at the second gateway. 

In step 3, the second peer has otherwise received the public address of the first peer, and such a 

packet to establish a session. Because the first peer had already sent a packet that established 

the session, and because the same local port is used to communicate with the introducer as well 

as the peers, packets can now flow in both directions. 

FIGURE 6.5.4 Peer-to-peer communication setup using an introducer. 

serve more simultaneous clients if it re-uses the same external port for the same inter- 

nal address, port values. 
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Third, NAT introduction is quickly becoming a standard technique. A NAT 
gateway that does not support this technique will be considered faulty by users, and 
will have higher return rates and support costs than devices that work properly. This 
behavior is also actively encouraged for all NAT builders since 2001, through the 

Internet Society document RFC3022 [RFC3022]. 
In reality, most gateways work well with this technique, because they do proper 

port matching. There are reportedly a few that do not; the only one we know of for 

sure that does not conform to RFC3022 is based on the BSD operating system and 
not very common in home environments. In 1999, some NAT routers would not deal 
correctly with a packet being sent from the internal network to an external address 
that refers to another internal address on the same internal network, as would be the 

case when two peers behind the same NAT router join through an introducer. This 
bug has since been worked out of most routers, and most devices on the market today 
should deal properly with this situation. While there is no workaround for the bug 
where a NAT gateway does not re-use ports, you can work around a gateway that does 
not allow internal hosts to communicate through the publicly visible NAT address by 
initially communicating both using the internal and external address of the peer in 
question, responding to the address from which you actually get a reply, and picking 
the public address if you get a reply from both addresses, as the public address is guar- 

anteed to be unique. 
If you find that your client is behind a NAT gateway that is still broken, you can 

either throw up your hands and tell the user to fix the gateway, or configure port for- 
warding, or you can decide to eat the bandwidth cost of serving these users (as they 

are relatively few), and reflect their packets from your well-connected introducer ser- 
vice. Which option you decide on should depend almost entirely on what trade-off 
between low support cost and low hosting cost you are willing to make. 

Last, there is an implementation flaw in WinSock, the sockets library used on 

most personal computers connected to the Internet (it is what Microsoft ships with 

Windows). If you send a UDP datagram to a port that is not listening and receive an 

ICMP message back saying “port not reachable,” WinSock will wedge the socket that 

sent the initial datagram and return WSAECONNRESET when attempting to use the 

socket. At this point, you have to close and re-open the socket for it to work again. 

This is highly inconvenient, because you are very likely to receive at least one port not 

reachable message when setting up the peer-to-peer NAT punch-through, before both 

gateways have created the appropriate session state records. Luckily, because UDP is 

connectionless (as opposed to TCP), the NAT gateway will not know that the socket 

has been closed and re-opened and bound to the same port on the local machine, and 

everything will proceed as normal. Typical WinSock code will thus look like Listing 

6.5.5 to work around this problem (again, some error checking removed). 
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Listing 6.5.5 Working around WinSock 
; 

enum { 

GAME_PORT = 8960, 

}5 
#define SOCKET ERRNO wSAGetLastError() 

inline bool SOCKET_WOULDBLOCK_ERROR ( inte) { 

return e == WSAEWOULDBLOCK; 

} 
inline bool SOCKET _NEED_REOPEN( int e ) { 

return e == WSAECONNRESET ; 

} 
#define INIT_SOCKET_LIBRARY ( ) \ 

do { WSADATA wsaData; WSAStartup( \ 

MAKEWORD(2,2), &wsaData ); } \ 

while(0) 

SOCKET gSocket; 

// Allocate the single, global socket we’1l use in all 

i} aROMeSr 

void allocate_socket() { 

if( gSocket != BAD_SOCKET_FD ) { 

::closesocket( gSocket ); 

} 
else { 

INIT _SOCKET_LIBRARY () ; 

gSocket = ::socket( PF_INET, SOCK_DGRAM, 

IPPROTO UDP ); 
// Bind to my port on all local interfaces. 

// Because I want to run multiple instances on the 

// same machine, I try a sequence of ports. 

// Once I’ve bound to a port, I want to re-use that 

// port if I re-allocate the socket, so remember 

// which port was being used using a static variable 

// (this means I can only open a single socket per 

// process using this code). 

static int portUsed = 0; 

for( int port = GAME_PORT; port < GAME_PORT+10; 

ttport ) { 
sockaddr_in addr; 

memset( &addr, 0, sizeof( addr ) ); 

addr.sin_ family = AF_INET; 

if( portUsed ) { 

// use the old port af set 

port = portUsed; 

} 
addr.sin_port = htons( port ); 

// bind the socket to a specific port 

int r = ::bind( gSocket, (sockaddr *)&addr, 

sizeof(addr) ); 

Hoe ie SW) a 

uf ( portuseam)) 4 
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// if I can’t re-use the old port, bail out 
break; 

} 
} 
else { 

portUsed = port; 

break; 

} 

// There’s a flaw in WinSock where I’11 need to re- 

// open the socket if I get CONNRESET on a socket. 
// This is because it wedges the socket when it 

// receives an ICMP for port-not-reachable, which can 

// happen during NAT introduction negotiation. 
bool maybe reallocate_socket( int r ) { 

es 0) \mY 

if ( SOCKET_NEED REOPEN( SOCKET_ERRNO ) ) { 

fprintf( stderr, 

“Re-allocating socket because of WinSock.\n” ); 

allocate_socket(); 

} 
return true; 

return false; 

} 

sockaddr_in sin; 

socklen_t slen = sizeof( sin ); 

char data[ 512 ]; 

// Wait for an incoming packet 

int r = ::recvfrom( gSocket, data, 512, 0, 

(sockaddr *)&sin, &slen ); 

if( maybe reallocate_socket( r ) ) { 

continue; 

} 

Ropcusionee 
Using the technique presented here in this gem, your games should be one step closer 

to offering robust multiplayer gaming that works across a variety of networking con- 

figurations. As a result, wizards and warriors should be able to go about the business 

of saving the world, even from the comfort of their local Starbucks. 
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his gem describes a simple protocol for implementing reliable, in-order messag- 
ing for network communications. The protocol is independent of the trans- 

mission medium or network model (client/server or peer-to-peer), so it can be 

implemented in any situation where reliable networking is needed. 
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Before we begin looking at the details of this gem, we should first take a moment to 

define the terms used in the rest of this article: 

Host/client: For the purposes of this article, we will use the term /ost to signify the 
sender of a message and client as the recipient. 

Packet: A packet is the information physically transmitted over the network. It 

consists of one or more messages. If any of the messages within a packet are set 
to be reliable, then the packet is said to be reliable. 

Message: A message is the smallest form of data that can be sent by the application. 

Each message can be set to be reliable or unreliable. In each frame, the 

application creates a series of messages, which are bundled together by the 

networking library to form a single packet. 

System Message: A message sent by the networking library. This is application 

independent, and the application never needs to know about them. System 

messages are bundled into packets in exactly the same way as application-specific 

messages. A good example of a system message is an acknowledgment of packet 

receipt. 

Heartbeat: A heartbeat is a system message that is sent every so often when there 

are no other messages pending. The purpose of the heartbeat is to signify to the 

receiver that the sender’s application is still running correctly. 

Acknowledgment: An acknowledgment is a system message that states that the 

client has received a given packet from the host. 
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Message Handler: A function of the application that is called by the network _ 

library to process incoming messages. 

Reliable messaging is an important part of any networking library. The Internet, 

although a technological marvel, is not a very safe place for a given packet of data. The 

nodes that make up the Internet receive unpredictable amounts of traffic at any given 

time and are under no obligation to let all the traffic pass; if a node becomes over- 

whelmed, it will start discarding the incoming packets in order to remain operational. 

Additionally, consecutive packets between two machines are not guaranteed to take 

the same route across the intervening network. As traffic fluctuates among the Inter- 

net’s nodes, packets are routed in different ways to try to provide the best pathway. 

These characteristics of the Internet provide us with two distinct problems: any 

given packet of data that we send may fail to arrive at its destination, and any two data 

packets may arrive at the destination in the opposite order to their original transmis- 

sion. However, there are some pieces of data that an application must send that 

absolutely have to arrive at the destination; if this data were to disappear, the applica- 

tion would behave unpredictably and possibly even crash. For this reason, we need to 

define a way to ensure that a given packet will arrive at the destination in a reasonable 

amount of time. 

al nal Reliable Messaging 
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Now that we have defined the terms that we will be using, and have seen why reliable 

messaging is important, we can look at how a reliable messaging model is traditionally 

implemented. This will familiarize us with its strengths and weaknesses, allowing us 

to construct a better model. 

In a traditional implementation, when a host sends a reliable packet to a client, it 

records the time that it was sent, and puts the reliable packet into a list. The reliable 

packet is removed from this list only when an acknowledgment system message for it 
is received from the client. If, after a certain amount of time has elapsed, an acknowl- 

edgment for the reliable packet has not arrived, the packet is resent and its timer reset. 

When a client receives a packet that is marked as reliable, it must construct an 
acknowledgment system message for transmission back to the host. This message con- 
tains an identifier for the packet being acknowledged. If this message is not sent in a 

timely manner, the host will think that the packet has not been received and will 
retransmit it. 

From this description, we can see that if the acknowledgment for a given packet 
does not reach the host before that packet’s timer runs out, the host will resend the 
packet, eating up precious bandwidth. This has two important ramifications. The first 
is that acknowledgments must be sent immediately, even to the point of creating a 
packet just for them if there are no other messages to be sent. The second is that 
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acknowledgments must arrive once they have been sent to avoid the host resending 
the packet in question unnecessarily. This implies that acknowledgment messages 
should be set to be reliable, but doing so necessitates having acknowledgments for the 

acknowledgments, and before you know it, every packet is set to be reliable. 

A Simpler Method 
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From the preceding description of a traditional reliable messaging implementation, 

we can see some areas that need improvement. The two most important of these are 

reducing the number of acknowledgments sent, and removing the need for them to 

be sent reliably. 

Reducing the number of acknowledgments sent can be partially accomplished by 

adding an additional restriction to our reliable messages. If we can guarantee that reli- 

able messages must be processed in the order that they were sent, then receiving an 

acknowledgment of a given packet automatically implies receipt of every prior packet. 

This is because, to maintain the in-order restriction, we know that all the previous 

packets must also have been processed. However, the need to send acknowledgment 

packets quickly to avoid the host resending packets it thinks have been missed reduces 

the usefulness of this somewhat. 

If we can remove the need to send an acknowledgment quickly, we can reap sev- 

eral rewards. We will not have to send acknowledgments as often, and when we do 

send one, we can just acknowledge the most recent reliable packet processed. Addi- 

tionally, there would no longer be a need to send acknowledgments reliably. Unfortu- 

nately, while the host is responsible for detecting a missed reliable packet, our hands 

are tied. This, then, will be our main point of attack. 

The simplest way to remove the responsibility for detecting a missed reliable 

packet from the host is to move it to the client. For this to happen, a client must 

quickly detect that a reliable packet has been missed. We know that only reliable 

packets will ever need to be resent, and that ideally two reliable packets will be broken 

up with one or more unreliable packets. We also know that packets should arrive with 

a consistent frequency, due to the heartbeat system message. 

Using this knowledge, we can formulate a method by which we can quickly 

detect a missing reliable packet. The easiest way to do this is to allow every incoming 

packet to contain enough data to infer a missing reliable packet. Since we know that 

packets are arriving at a consistent frequency (due to the heartbeat system message), 

we know that we can make such an inference quickly. For example, if 10 packets 

arrive in a second, we know that we can infer the existence of a missing reliable packet 

as soon as the next packet arrives, one tenth of a second later. 

Packet Identifiers 

However, how do we allow an incoming packet to infer the existence of a missing 

reliable packet? Every reliable packet needs two pieces of data: a flag to say that it is 

reliable and an identifier, by means of which it can be acknowledged. An unreliable 
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packet, on the other hand, only requires a flag to say that it is not reliable; it does not 

need an identifier. This means that, should we assign an identifier to an unreliable 

packet, any number of unreliable packets can have the same identifier without any 

side effects. By combining the reliable/ unreliable flag with the packet identifier, we 

can create a simple packet numbering system that allows us to infer the existence of a 

missing reliable packet. 

If we use the least-significant bit of the packet identifier to store the reliable/unre- 

liable flag, we can see that, if we choose a bit value of 0 to represent a reliable packet, 

all reliable packets will have an even-numbered packet identifier and all unreliable 

packets an odd-numbered one. Then, taking advantage of the fact that any number of 

unreliable packets can share an identifier, we come up with the following two rules: 

¢ When creating an unreliable packet, the packet identifier should have the reliable/ 

unreliable flag set to 1. 

¢ When creating a reliable packet, the packet identifier should be incremented by 

2, and then have the reliable/unreliable flag set to 0. 

These simple rules allow a client to detect that a reliable packet has been missed, sim- 

ply by receiving any type of packet that was sent afterwards. To accomplish this, the 
client must maintain a record of the identifier of the next expected reliable packet, 

which we will call nextReliableID. 

The Incoming Packet Queue 

As incoming packets are received, they are placed into a queue, sorted by packet iden- 
tifier. Each time the network library is updated, it processes this queue, starting with 

the packet with the lowest identifier. Packets from the queue are processed in order, 

until the queue is empty or one is found that cannot be processed, according to the 

following rules: 

¢ If the packet identifier is even (reliable) and equal to nextReliableID, we 

have received the next reliable packet. Process this packet, and then increment 

nextReliableID by 2. 

¢ Ifthe packet identifier is odd (unreliable) and equals nextReliableID minus 1, we 

have received an unreliable packet that should be processed. 

¢ Ifthe packet identifier is less than nextReliableID, discard the packet. 

¢ If the packet identifier is greater than nextReliableID, we know that we have 
missed a packet and cannot yet process this new packet or any subsequent packet 
in the queue. 

After processing the incoming packet queue, we know whether a packet has been 
missed, and the identifier for the missed packet (nextReliableID). 

One notable exception to these rules is that any system messages in the incoming 
packets are processed immediately. This happens regardless of whether the packet is 
queued (care should be taken to only process each system message once). This allows 
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us to quickly fulfill remote system requests such as resends and acknowledgments. If 
we do not process these system level messages, there is a danger of encountering a 
deadlock situation. This can happen when two machines both detect missing packets 
from the other, and their resend requests both get queued behind the missing packet. 
The resend requests never get processed, thus the machines are deadlocked. 

The Resend Timer 

Ifa packet has indeed been missed, a countdown timer, called the resend timer, if not 

already active, is assigned a small value and started. This small value is called the out 

of order delay. The purpose of this short pause is to allow a short period for the miss- 

ing packet to arrive in case it is still in transit but out of order. If at any point, the 

missing packet arrives, the resend timer is stopped. 
When the resend timer expires, the client sends a system message to the host 

requesting a resend of the missing packet (nextReliableID). At this point, the resend 

timer is reset to a larger value, called the re-request delay and again started. We con- 

tinue requesting the missing packet every time the resend timer expires, until the 

missing packet arrives. 

The use of automatically repeated resend requests means that the requests them- 

selves do not have to be sent as reliable messages. Furthermore, the initial delay before 

requesting a missed packet allows any out of order packets to arrive, and so reduces 

the chance of a resend request being sent spuriously. A typical value for the out of 

order delay is around one-tenth of a second, and a typical value for the re-request 

delay is about one-half of a second. 

Acknowledgments 

Since the client is now responsible for detecting missed packets and requesting packet 

resends, there is no longer a requirement that acknowledgments be sent quickly. 

Additionally, the in-order processing of packets allows us to acknowledge the most 

recently processed reliable packet. From such an acknowledgment, the host can infer 

the acknowledgment of every reliable packet sent prior to the acknowledged packet. 

The net result of this is that we can send far fewer acknowledgment packets, at a 

far slower rate. Additionally, acknowledgment packets no longer need to be reliable, 

since if one is missed, the next one to arrive will imply acknowledgment of all the pack- 

ets acknowledged by the missed one. Acknowledgments can thus be sent out at a con- 

stant rate, regardless of how many reliable messages have arrived in between. A typical 

value for acknowledgment frequency in such a system is one every two seconds. 

The Reliable Packet Queue 

The host must keep a record of each reliable packet sent until such a time as it is 

acknowledged by the client. It does this by means of a reliable packet queue. As each 

reliable packet is sent, it is placed in the queue. When an acknowledgment arrives 
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from the client, any packet in the queue with an identifier that is less than or-equal to 

that of the acknowledged packet can be deleted. 

If a resend request is received from the client, the correct reliable packet is first 

located in the queue and then resent to the client. A resend request is also an implicit 

acknowledgment of all prior packets; to detect the missing packet, the client must 

have processed all packets up to the missing one. Therefore, when a resend request is 

received, the implicitly acknowledged packets can be deleted from the queue. 

Multiple Connections 

So far, we have only looked at a single connection, but in reality, we will probably 

need to allow multiple connections to a single machine. For example, a server applica- 

tion in a client/server system will need one connection per client, and each node in a 

peer-to-peer system will need a connection to every other node in the network. How- 
ever, a client application in a client/server system will probably only need a single con- 

nection to the server. 

When multiple connections are required, each connection will require its own 

incoming packet queue and reliable packet queue. Additionally, each connection will 
need to allocate its own packet identifiers, and keep track of the next expected incom- 

ing reliable packet, independent of the other connections. 

Memory Requirements 

In many games, especially those designed to run on consoles, memory can be very 
tight, even during the single player game. Often, there is only a very small amount of 
memory available for use by the network library. This has important consequences for 
reliable messaging, which relies on keeping track of unacknowledged reliable packets 
so they can be retransmitted. Luckily, memory requirements for this reliable messag- 
ing protocol are modest, and with a bit of massaging, we can make some great savings 
if memory is very tight. 

The majority of the memory used by this system resides in the memory used to 
store elements of the reliable packet and the incoming packet queues. There needs to 
be enough memory for the reliable packet queue to store all the outgoing reliable pack- 
ets for a few seconds, long enough for them to be acknowledged. The exact amount of 
time that we will need to record reliable packets for is unpredictable, and effectively 
unbounded, however, we can safely assume a value of around two to three times the 
value of the acknowledgment frequency. This allows us to safely lose an acknowledg- 
ment message, without danger of the queue overflowing. If we do ever run out of room 
in the outgoing reliable packet queue, the game can no longer transmit reliable pack- 
ets, as there is nowhere to store them so that we can retransmit them if necessary. 

Similarly, the incoming packet queue needs enough elements to store all the incom- 
ing packets that may arrive while we are waiting for a packet to be resent. However, once 
the incoming packet queue becomes full, it is safe to start discarding incoming packets 
that cannot be processed immediately; they can always be re-requested later. 
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When multiple connections are in use, the amount of memory required rises lin- 

early with the number of connections. However, we can share the memory used by 

the queues among all the connections; except in extreme network conditions, it is 
unlikely that all connections will need large amounts of queue space at the same time. 

In some cases, though, this will still prove to be too much memory usage. If we 
need to reduce the memory footprint further, we can choose to reduce the number 

and size of the packets stored in the queues, although the measures we need to take 

may seem a little draconian. We know that the arrival of packets and messages not 
marked as reliable are not critical to the correct execution of our application. There- 

fore, we can choose not to store these packets and messages in the queues. 

The way this works is simple; when we store a reliable packet in the outgoing 

packet queue, we remove from it all the messages that are not themselves reliable. This 

ensures that only the most important parts of these packets are queued for possible 

resend, reducing the memory used. In the incoming packet queue, we can choose not 

to store unreliable packets that cannot be immediately processed, and we can strip the 

unreliable elements from reliable packets that do need to be queued. 

The effects of such packet and message stripping can be undesirable, causing the 

times that packets are lost to be more apparent to the user. This can happen because 

several unreliable packets containing such things as positional updates for visible ene- 

mies will be lost each time the client has to wait for a missed packet to be resent. We 

can ameliorate this effect somewhat by selectively implementing it as the queues 

become full. When the queues are empty, all messages will be stored, but if a queue 

surpasses a certain length, the network library should go through and cull unreliable 

packets and messages from the queue. This reduces the appearance of packet loss, 

except in the times that it is severe. 

Conclusion 
~ SLT NEEL C OLE ES TELL ETI IE RIL RAE LETTE IESE SOLAS SEE SEE EOTOL LEN BENE SLIT E TELL LEE LEE LID SENSE EEL DEE, 

We have seen that reliable messaging is an important part of a networking library, and 

how the traditional method of implementing reliable messaging has several problems. 

We saw that by moving the responsibility for detecting a missed reliable packet to the 

client, we could overcome these problems and produce a robust, reliable messaging 

system. Finally, we examined the memory requirements for this system and looked at 

ways to reduce memory usage, especially during times of extreme packet loss. 

Further Reading 
SR RRNA EEE LL ALMAMLL ALAM ALAM MLN OANA CCAR AERO 

Those interested in learning more about network programming using the TCP and 

UDP protocols can find information in the following books: 

[Donahoo01] Donahoo, Michael J. and Kenneth L. Calvert. TCP/IP Sockets in C: 

Practical Guide for Programmers. Morgan Kaufmann Publishers, 2001. 

[Napper97] Napper, Lewis. Winsock 2.0. John Wiley & Sons, Inc, 1997. 
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here are typically two methods of implementing a networked action game, from 

a high-level perspective. The first is the synchronous method, or the “lockstep” 

method, where inputs are passed back and forth and the game is synchronized as 

much as possible. The second methodology is the asynchronous method. This is 

where the simulations try to stay in-sync as much as they can, but in between syncs 

the players are temporarily free to do as they wish, and the program attempts predic- 

tion and latency masking to hide the differences between the various machines. 

The synchronous model, in particular, is extremely sensitive to any difference 

between the two machines. While some ancillary items might be different from one 

machine to the next, anything and everything affecting gameplay must remain exactly 

the same on all machines. A big stumbling block for this methodology is random 

numbers. Random numbers might be used for a variety of tasks in a game, from arti- 

ficial intelligence behaviors to selecting sound effects. One of the very first steps when 

developing a synchronous game should be to implement a random number system 

that is under application control and is safe for use in networked gameplay. 

This gem describes the architecture of a safe random number system, along with 

steps you can take to save time during later debugging, and even how this type of sys- 

tem could replace an existing instant-replay system. 

Random Numbers Affect Online Play ae 
SSA NARI 
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When game code calls the standard C rand() and srand() functions, the values 

returned are not truly random. Rather, they are invoking a pseudorandom generation 

algorithm, a well-defined, standard process. 

If two machines are connected for online play, and the networked gameplay is the 

first thing that both applications are doing since startup, the pseudorandom numbers 

returned will likely be the same. However, if one application has already been playing 

a previous, offline session, using the same randomness (in AI, audio commentary, 

etc.), the connected machines will start getting different results. 

673 
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Random Number Pools 

Section 6 Networking and Multiplayer 
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Once the machines start getting different random number results than.each 

other, what then happens is called “out-of-sync” or de-synchronization. Essentially, 

making a random choice on whether a character should move left or right might 

come back with different decisions, and the games are no longer in the same state. 

Results can rapidly diverge, and this quickly results in an unplayable game, particu- 

larly in a deterministic (lockstep) game, where the game is primarily controlled by 

player inputs. 
What makes this problem easier is the algorithmic nature of random number 

generation. Since most variations of these algorithms rely on making some sort of cal- 

culation based on the previously generated number (the “seed”), this number can 
then be transferred from one machine to the others. Then, once all the connected 

machines start gameplay with the same seed value, their random number generators 

will consistently return the same results to each application, allowing them to keep 

identical states while remaining independent of one another. 

The key to tracking this random number generation, and having direct control 

over this seed value, is to move the random numbers out of the standard C/C++ 

libraries and into application-controlled code. Later, a class is discussed that does just 

that. 

When applying this random pools class to a networked game, there is no limit to the 

number of connected machines that can use this system. In a 32-player game, there 

still needs to be a decision on what the starting point is for all decision making, and 

what the seed will be within each pool (which is further described later). 

For simplicity’s sake, this article only assumes two machines in the networked 
game. However, whether the application is on 2 or 20 machines, only 1 machine can 
be designated the session master. This session master is the one whose random seed 
values will be polled and synchronized across the game at session start. A decision 
must be made to select a session master within the game/matchmaking logic. 

28 TNS aR RENN 

While synchronizing random numbers across connected machines may solve many 
problems with desynchronization, it can actually cause other problems as well. In fact, 
some of the game subsystems may actually be adverse to this system. 

An example of this might be an audio commentary system. In a sports title, an 
event such as a goal might occur that’s worthy of playing an audio cue. Further, for 
greater authenticity, the game might have a selection of audio cues to choose from, all 
for the same event. Selecting this cue may well be a random event. Now, if the audio 
clips are all resident in memory, playing the same commentary should be fine, both 
will start and end at the same time and the synchronized play continues. However, 
what if the audio cues must be streamed in real time from a physical drive? In this 
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case, one system will likely finish loading the audio clip before the other system, and 
playback will be different. While this might still be okay, there’s also potential for 

audio clips to start “backing up” over time on the slower hard disk or DVD and even- 

tually cause the games to be out of sync or unplayable with each other. 

But looking at this further, the programmers may realize that there is no reason 

for the audio commentary to stay in sync. As long as the audio is streaming while 

gameplay continues, never waiting for it to finish, the two connected machines could 

plausibly play completely different commentary while keeping all essential game sys- 

tems in a synchronized state. 
In this case, the randomness of the AI might need to be synchronized, but the 

randomness of the audio is either irrelevant or purposefully not synced. To do this, 

instead of developing a single random number seed and generator, the application can 

draw from multiple “pools” of random numbers. 

Drawing from random number pools is conceptually very similar to drawing 

from different memory banks in a memory management system. In a partitioned 

memory bank system, code might be added to debug or log the use of one bank while 

steering clear of the rest. There might be code to create and destroy some banks dur- 

ing runtime, while other segments are left alone. While each game might have its own 

requirements, this is an example of a list of pools: 

enum POOL_TYPE 

{ 
POOL_DEFAULT = 
POOL_ENVIRONMENT = 
POOL_AI = 
POOL_COMMENTARY = 
POOL_MUSIC = 

POOL _MAX_TYPES 

&b ON — oO 

}; 

Now, put simply, a seed is merely the last generated random number. But there has to 

be a start point, and in standard C/C++, this is performed by calling srand(). Typi- 

cally, this seed value is stored internally as a single 4-byte int or uint variable. But 

since we have multiple pools of random numbers for the various game subsystems, 

our data storage must match: 

static unsigned int randPools[POOL_MAX_TYPES] ; 

Now, if the application ever needs to retrieve the seed for a given pool, it can simply 

request it based on the pool enumeration: 

unsigned int getPoolSeed(POOL_TYPE whichPool) 

{ 
return randPools[whichPool] ; 

} 
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Further, when the session master broadcasts the random seeds to the other connected 

machines, they in turn can reset their local seed values in a similar fashion: 

void setPoolSeed(POOL_ TYPE whichPool, unsigned int newSeed) 

{ 
// Make sure the seed is not 0 

if (newSeed != 0) 

{ 
randPools[whichPool] = newSeed; 

} 
} 

At this point, the random number generation will act based on this new seed value, 

throwing away any previous seed. 

Random Number Generation 
iS RESUS EEREN ween SUSE aR 

Now, 7 actually using the aA hana generators es the first time, this sys- 

tem should require that the application provide an initial seed value for the pools. 

Further, the system should vot allow any application code to re-seed the initial values. 
Rather, the application should be forced to see the setPoolSeed() function described 

earlier after the initial seeding is complete. Here’s an example of seeding the pools for 
the first time and preventing subsequent seeding: 

static bool seeded = false; 

void seedPools(unsigned int seedValue) 

{ 
// Make sure the seed is not 0 

if (seedValue == 0) 

{ 
assert(0)); 

return; 

} 

// Make sure we’ve only seeded the pools once 
if (seeded == true) 

{ 
assert(0); 

He Guinn 

} 

// Loop through the random number pools 
for (unsigned short pool = 0; 

pool < POOL_MAX_TYPES; 
pool++) 

{ 
// Initialize this random pool 

randPools[pool] = seedValue; 

} 

// Set our seeded flag 
seeded = true; 
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Lastly, this system is nothing without an actual random number generator. Many 

sources on the Internet can be found that provide source code to different algorithms. 

Some of these are focused on speed, while some are focused more on randomness. 

Further, some just provide C code implementations of the ANSI C rand() function 

itself. The choice is up to each application, but for this example, a Randomal64 gen- 

erator is used [Thomas01]. Remember, this will probably be fine for most applica- 

tions, and if not, the guts of this can easily be replaced. 

static const unsigned long RDX_RANGE = Ox7FFFFFFF; 

static const unsigned long RDX_CONST = 0x00000000000041A7; 

static const unsigned long RDX_Q = RDX_RANGE / RDX_CONST; 

static const unsigned long RDX_R = RDX_RANGE % RDX_CONST; 

unsigned int getRandomNumber(POOL_TYPE whichPool) 

{ 
// Return random integer32 between 0 & range value 

unsigned long hi = 

randPools[whichPool] / 

RDX_Q; 
unsigned long lo = 

randPools[whichPool] - 

(hi * RDX_Q); 

randPools[whichPool] = ( 

(RDX_CONST * lo) - 

(RDX_R * hi) 

5 ' 
if (randPools[whichPool] == 0) 

randPools[whichPool] = RDX_RANGE; 

int rslt = int(randPools[whichPool}) ; 

fi(psttec 0) Pelt -a-rslt; 

return rslt; 

return 0; 

} 

Notice that this generator is saving the result of each run back into the pools array, 

and this value is what’s used the next time around. 

Overloading Standard rand() and srand() 
——onr i eneeeaenmmmaiauuuaaiiaels ANSARI EO

IN TEEN A MENTE IT 

Putting together the code up until now gives us a complete random number pool sys- 

tem, ready for use in an application. However, an online programmer will likely find 

a new problem after this is dropped into an application; many programmers wont 

know about the new random pool system or simply will forget or not bother to use it. 

Unfortunately, random numbers might be used anywhere in the game code, in areas 

the network programmer typically doesnt modify. All it takes is one errant call to 

rand() somewhere in the game to potentially break the online play. 

There is an easy solution to this problem. C/C++ allows macros to be defined that 

overload standard function calls; when resolving the symbols and #def ines at compile 



678 Section 6 Networking and Multiplayer 
votesrsresnamnamenmannctsecsecetie _emlaeeeonecaananesnonunnenen suntan eniasn ecu ieisnetsalaeoteanieeeoeenbnualeinesnnauAeeetenanniteneii cesotsnsunitainossnnannsessn : 

and link time, the compiler will choose the overloaded function calls over the-stan- 

dard library calls. 
Overloading standard C calls to rand() is as simple as: 

#define rand() Pools: :getRandomNumber (POOL_DEFAULT) 

Also, a good way of tracking down the engineer responsible for misused rand() and 

srand() calls is to trap any calls to standard srand() as well: 

#define srand(x) Pools: :seedPools(x) 

Making sure that the random pools header is available via #include high up in the 

compilation/link hierarchy, or is listed in a precompiled header, is usually all-it takes 

to propagate these macros. 

Next Steps: Logging and Debugging 
LLL TO LLL RLS LIES LLEL LOE DELLS PLEADED DOE ELLER MISE LOLS LE SEN I IETS IESE 

Once the random pool system is in place, it can itself become a powerful debugging 
tool for online game issues. This is particularly true in deterministic games, where 
game state must remain completely in lockstep for the duration of the session. 

A good method in finding problems between desynchronized machines is by 
comparing the usage of the random pools on each system. Implementing logging of 
function calls to getRandomNumber() should be fairly trivial (depending on the plat- 
form), and comparing the output from each machine should help isolate some of the 
application code problems leading to “out-of-syncs.” 

Next Steps: Instant Replay — 
On top of just providing extra logging and debugging, for some games, the random 
pools class can actually form the basis for an Instant Replay feature! Instead of record- 
ing game state frame-by-frame, simply record the results of calls to getRandomNumber () 
along with controller/keyboard/mouse input. This data should be stored in precise 
sequential order. These values can then be used to essentially “replay” a frame at any 
given point, feeding the same inputs back into all the various subsystems at work. 
While these other systems are oblivious to what's going on, and are essentially re-doing 
the same work, this data set is very small and economical. This is a benefit even for 
many offline games. 

Conclusion 
ES ESO ESMEES TOR STS LEE SEN EO OTE S a SS TEAR ORME 

This gem discussed multiple uses for a random number pool system. Chief among 
these is the ease in which networked games can be synchronized; this makes sure that 
a request for a random number comes up with the same result on every machine. In 
addition, random numbers controlled by the application allows a programmer to 
replay various subsystems over and over again, either as a debugging tool or as an 
actual feature of the game. 
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TN eae is only as secure as its weakest link, so spending time and money on secur- 

ing only some aspects of a system is usually a pointless waste. You must check 

every single link to have any confidence in your security, and yet most project leaders 

do not even know what links they have, let alone how to evaluate them. 

The ability to evaluate security is critical for any multiplayer or online game, yet 

the modern software engineer seems to fix problems in the completion and a post- 

release evaluation phases rather than during design phase. We need to design security 

into our games from the very start. 

This gem describes a multistage process that can easily be integrated with your 

existing development processes. Ideally, you would follow this process from the start 

of your project, but it is still extremely effective when applied retroactively. The text 

and examples concentrate on securing servers in particular, but the process itself is 

equally applicable to client activities. 

We work from the basis that an insecure system is formally defined as one where 

one or more attacks from the actual Threat Model (TM) are not dealt with by the 

actual Security Policy (SP). If we produce a complete I'M and fully adhere to our own 

SP. we can calculate how secure our system is simply by looking at these two docu- 

ments. This is the major aim of this gem. This is a simplified view of a concept known 

formally as a Security Target. 

The TM and the SP together fully document the system’s weaknesses, its solu- 

tions, and enough information to quickly reproduce and re-evaluate the original 

assumptions and conclusions. 

How Important Is Security, Really? 
Sica NT TOT TLL EL ALLELE AI eim

ai 

Security flaws tend to be like software bugs in that the cost of fixing them rises expo- 

nentially the longer it takes to discover them. However, security flaws tend to rise in 

cost even faster than normal bugs. For instance, the cost of a flaw that exposes the 

credit card details of all your subscribers is astronomical compared to the cost of fix- 

ing it before going live. 

681 
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Most people associate security primarily with encryption, passwords, and authen- 

tication schemes, but these are merely tools, and do not constitute security them- 
selves. There are currently three main approaches to game security in a wider sense: 

¢ Wait until release, see what breaks, then desperately issue patches as quickly as 
possible. 

* Delegate to someone else (person or company) and hope they are sufficiently 
afraid of being blamed that they somehow work out how to secure the system. 

* Deploy a suite of known tactics in haphazard fashion, hoping you might just 
manage to make it “a bit more difficult to hack.” 

In almost all cases, it is extremely expensive—and difficult—to fix security late in the 
development process. The received wisdom is that security cannot be added fetroac- 
tively, because it is simply too expensive; it needs to be “designed in from the start.” If 
your development process failed to take proper account of security concerns, you risk 
being condemned to producing a never-ending stream of security patches, none of 
which ever completely fix the problems, while “grief players” run amok in your mul- 
tiplayer game, ruining it for your other players, leading to poor reviews and reducing 
sales. 

On the other hand, perhaps your game is a Massively Multiplayer Online Game 
(MMOG), and as your game world falls to pieces under the grief-players, subscribers 
start canceling in large numbers. Worse, one of those holes might expose your per- 
customer credit-card details, taking the financial and reputation damage to com- 
pletely new levels. Anything you own or control—data, hardware, bandwidth, even 
your company’s identity—could easily be abused or stolen if your game-server secu- 
rity is inadequate. 

Fortunately, the process in this gem.is both simple and cheap, and produces 
benefits right from the start. Every game developer—from professional studios to 
individual hobbyists—should be able to use this process easily and effectively. 

Aims 
SLORY LATTA STL OCR TENE OS SE GER EE EGS PL ERAN RA SID TEE SU EH ONE 

As [Schneier03] points out, “security” is basically meaningless unless you know from 
whom and for how long it is secure. Therefore, our first aim is to formalize exactly 
what we mean; this is a process that needs to be performed separately for each project; 
there is no single answer for every game. 

Assuming we know what we are trying to protect, we also need a way of measur- 
ing our success. Developers today are accustomed to using metrics to assess code 
improvements in the development phases of a project: bug lists, unit tests, playable 
demos, etc. We need an equivalent for security, that is, we need a precise measure of 
secureness. 

Then there is the problem of cost: if every game project had infinite time and an 
infinite budget, it could simply be written very carefully and be penetration-tested 
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extensively. Nevertheless, assuming we have limits on our resources, we need to be 

able to prioritize where to spend them. We also need to be able to make predictive 

measures of “secureness” and compare them to each other (e.g., so that we can decide 

which of two designs to implement). Therefore, another aim is comparability. 

Both of the aims also require that results are easily repeatable, not just by the orig- 

inal measurers, but by other people, too. We cannot make the process entirely repeat- 

able, since one aspect of security—the discovery of attacks on a system—is inherently 

creative rather than methodical, and so there will always be an element of non-deter- 

minism. It would be helpful if this non-determinism could be strictly limited in some 

way. 
It is generally too expensive to reassess the entire system for each alternative, and 

so we need some way of restricting our comparisons. The ideal solution would 

be some form of encapsulated measurements, so that we only need to remeasure the 

parts of the system that are changed. 

Jerminolodgy. RES REI LEN TN SRE EEELELELONEREELEE LNT EL EEE LLL ILLES TLL LALO NE DELLE 

Unfortunately, the security industry lags behind software engineering in terms of both 

formalization and standardization. Until greater formalization is achieved, there con- 

tinue to be many self-proclaimed experts whose teachings are variable at best and 

often promote positively dangerous approaches to security; in this environment, it is 

particularly difficult to know whom to trust as an authority. Until the industry stan- 

dardizes more widely, most terminology has no single strict definition. This gem 

attempts to adhere to the most mainstream terminology, but in many cases there is no 

clear leader. 

In particular, many sources define “Security Policy” in wildly differing ways. The 

version used by this gem is an augmented version of one of the most common defini- 

tions. Some sources are passionately contemptuous of that base definition, declaim- 

ing, “Policies are not technical manuals.” For CIOs running large corporations, there 

is a document that they describe that has its own value; it is mainly for giving to non- 

technical staff as a series of daily rules to post next to their workstations, usually just 

one sheet of A4 that every staff member can memorize. Unfortunately, this document 

is usually also known as a Security Policy, and has led to some confusion, with a sig- 

nificant number of people coming to believe that this is sufficient to provide security. 

While it is another one of those useful tools in the over-arching process, it does not 

provide the core features of repeatability and completeness that our Security Policy 

does provide. 

Threat Model: 
[Berg02] states that the first step is to create a method to quantify and evaluate risk. 

We start with the Threat Model (TM), which models the inherent risks. We then use 

this to produce a Security Policy (SP), which explains how we deal with them. 

Measuring Insecurity ~ 
LLM MLLLMAMMLMMALA NL LETT TL TN 
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The most basic Threat Model is simply a list of things that crackers may attempt 
to do to subvert the rules of the system. Most of these will share some common ele- 
ments, but all are written down separately, so that every threat is independent. This 
ensures that future maintenance is very quick: items can be added or removed with- 

out having to rewrite any of the rest of the Threat Model. 

Making a system secure is by nature an imprecise task: we really just want to say, 
“make sure nothing bad can possibly happen, including all the possibly bad things we 
never thought of,” and then do it. If we were to naively apply the concepts of Require- 
ments and Specifications documents to security, our Requirements would be one line 

long, while the Specifications would be about the same length. Yet we cannot achieve 

repeatable, credible security without formalizing what we mean, what we intend to 

do, and how we are doing it. 

The Threat Model (TM) is an approximate equivalent to a Requirements docu- 

ment. Instead of saying what the game has to do, it instead says what crackers will 
attempt to do to the game. This stage is an entirely creative exercise, and it is well 

worth involving all the members of your team, simply brainstorming any attacks they 
can think of. No attack should be rejected if it makes sense from the cracker’s point of 
view; whether or not any of these attacks (threats) are dangerous to the system will be 
dealt with later, but they must be recorded at this stage, thereby demonstrating that 
later stages have taken them into consideration. 

Rejecting attacks at this stage creates two major problems. First, the assumptions 
that invalidate the attack today may change tomorrow; if the attack is not listed at all 
in the TM, then simple future reevaluation of the game's security will not notice the 
activation of this previously inactive threat. If it had been included and discounted in 
a later stage, it would be easy to discover its activation and to respond appropriately. 

Secondly, rejecting attacks loses the fact that they were evaluated at all. If some- 
one else brings up the attack in the future as a possibility, it must be reevaluated, even 
if some people present remember that it was evaluated and rejected, because they may 
have mis-remembered. 

Threats 

Each element in the Threat Model is a description of an attack that a cracker might 
attempt. Each attack should be concrete rather than abstract; i.e., it should include 
details of exactly what the attack is and what tools the attacker is using. It is also 
extremely helpful to record the reasoning—from the cracker’s point of view—that 
motivates the attack, so that future readers can understand why each threat has been 
included, and in that way, it performs a similar role to source-code documentation. 
With larger Threat Models, this information is usually best placed in an appendix, to 
ensure the main document is easily readable and not too verbose. 

For instance, good attacks on a subscription-based MMOG might include: 

* Attempting to steal another player’s character; discoving another user’s password 
and then logging in as that user; changing the password, credit card (CC) details, 
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home address, e-mail address, etc.; permanently taking over the account and 

making it look as though the cracker is the legitimate user of the account. 

¢ Attacking monsters that are too hard, seeing if you get lucky. If not, removing all 

the downside by avoiding death: attempt to escape just before actually dying. 

¢ Assuming you cannot escape by in-game means, attempt to disrupt the game so 

that you are no longer in combat. Attempting to log out of the game. If you are 

prevented from logging out (or if this will automatically lose the combat), break- 

ing the network connection or reboot your computer. Or, in extremis, attempting 

to crash the MMOG server so that when it reboots, it will reset your character's 

location and you will no longer be in danger. 

These are necessarily abbreviated and condensed; for a real MMOG, you would 

expect to go into a lot more detail on some of these issues! 

In each of the issues, the motivation of the cracker is included. This is important 

for three reasons. First, at some point we will want to prioritize which attacks we will 

defend against, and this information helps us evaluate which attacks are more likely to 

take place. 
Second, understanding the motivation of the cracker leads to the discovery of 

many more attacks that you would not otherwise think of. This is especially true 

when you have all your team collectively brainstorming attacks; in practice, the 

description of the motivation by one person often triggers additional ideas for attacks 

from other people. The account-stealing attack was originally brainstormed by some- 

one thinking about “things you might do in the game if you could,” like stealing 

someone else’s avatar. This led to inventing a variety of different attacks that would all 

achieve that end. 
Third, without understanding this end, the attack described might make no sense 

at all: why steal someone else’s account and change it so that you are being billed for 

it when you could more easily open a new account? The attack where you steal an 

account and do not change the CC details is entirely different, motivated by the 

desire to get a free game, and must not be confused with this other attack. Failing to 

understand and record this difference may lead to your implementing a “solution” 

that depends upon the assumption that the original CC details remain correct. In this 

particular attack, and in many other cases, too, that assumption is completely invalid. 

Even worse, future readers of the Threat Model may think it a mistake and delete this 

threat! 

Cost 

It may sound as though TMs require a large amount of time and effort to put 

together. In reality, they tend to be extremely quick to produce, mainly because each 

item is independent of the others, and they can simply be recorded as a plain list. Usu- 

ally most of the TM can be brainstormed within just a few hours. There is no need to 

get the whole team in one massive meeting just to generate the TM; each can have 

separate smaller meetings at convenient times, and then the leaders simply need to 
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meet and merge the results. Since each element is fully independent, merging is usu- 

ally very straightforward and does not create any conflict. 

Structuring Your Threat Model 

Even when working on simple games, you can quickly generate a TM with many 

individual attacks, and it is often necessary to impose some form of structure. Simple 

categorization rarely helps, mainly because most attacks cross multiple categories and 

will not easily fit into one rather than the others. Where multiple teams are attempt- 

ing to merge their individually created TMs, non-deterministic opinionated structure 

like this can make the merging process extremely difficult and confrontational, with- 

out bringing much tangible benefit. 

Many people instead like to use Attack Trees [Schneier99] to provide structure to 

their Threat Model. An Attack Tree is rooted by a specific goal or motivation of the 

cracker, with each node representing some action they can take to try to achieve that. 

You quickly end up with a tree, because most actions can be achieved in a variety of 
different ways, and so you want to show different subactions as children of the main 
action. 

The main advantages of Attack Trees are: 

¢ They are an efficient way of recording the information, cutting down duplication 

of common elements of multiple attacks. 
¢ They usually preserve most of the independence of each item while still providing 

structure. 
¢ Decisions on how to organize them are usually noncontentious. 

The tree-structure itself also records extra information in the form of the relationships 
between different attacks. It also makes them easier to read, since you can quickly find 

a particular group or class of attacks. They also perform a limited form of abstraction 
of detail; it is possible to read only the highest few levels and get an overview of all the 

attacks without having to read the full detail of each one. 
The main disadvantage is that they encourage constrained thinking, which 

increases the tendency to leave out some attacks. One common way of alleviating this 
is to do one or more initial iterations with plain lists, which quickly become unwieldy, 
and then to convert these to ATs (e.g., at the same time that you merge the TMs gen- 
erated by different teams). By enduring a brief period of coping with unwieldy lists, 
you hope to discover very nearly all the threats you possibly could, before quickly 
bringing things under control. 

There is also the significant problem of how to edit a large tree as an electronic 
document; few teams have good tools for editing trees that even come close to the 
power of plain document editors such as Microsoft Word. For complex systems, the 
concrete benefits of structuring a large Threat Model so that humans can easily read it 
and reason about it typically far outweigh the disadvantages. If the document is diffi- 
cult or irritating, either to read or to modify, people will be put off doing so, and both 
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usage and update frequency will decline. Ultimately, this leads to a fatal undermining 
of the whole process, and so it is extremely important to maintain ease-of-use for all 
the team. 

Improve Score 

Increase score Increase score 

from client saved on website 

Force incorrect value Make actions Increase points Alter HTML 

reported to server easier values for actions leaderboard 

Overwrite code P 
Slow down game- Make player Overwrite 

* i that generates 
logic invulnerable HTML files 

HTML 

FIGURE 6.8.1 Av example attack tree with 1 root, 3 child nodes, and 1-5 grandchildren. 

Most nontrivial systems usually have multiple independent attack-trees making 

up the complete Threat Model; there is no need to rigidly constrain yourself to a sin- 

gle tree that contains every attack (this would often require painful coercion of the 

attack descriptions). 

Security Policy: Nullifying Threats 
a MM AMMLLL AMMAN MMM REL EE ET NTE TE ASOT IGLOS 

The Security Policy is derived from the Threat Model. It explains how to counteract 

every potential threat, thereby rendering the system secure. Without a specific Threat 

Model, a Security Policy is largely useless, since it has become a solution without a 

precisely defined problem, no longer knowing the answer to: Secure from whom 

[Schneier03]? 

Unlike the TM, the SP’s purpose is to specify what the system and its administra- 

tors must do. It describes what they do, how they do it, and—where applicable—even 

why they do it. It must be precise; a vague SP creates ambiguity, which in turn is an 

opportunity for your team to accidentally create loopholes, or gaps between the secure 

elements, which will later be discovered and used by attackers. 
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Without an SP, no one can really take any actions to secure the system since-there 

is no strategy defining what they are doing; all that will happen is that individuals will 

infer, deduce, or simply invent their own private SPs according to whim. The SP 

should be seen both as a guiding strategy and the detailed laws laying out how that 
strategy is to be enacted; the assumption is that all possible side effects were evaluated 

when the SP was written, and that if the SP says to do something, it’s because there is 

a firm concrete reason for doing so. 

Critically, the SP can always be re-created from scratch and should always be the 
same (or mostly the same) when this happens. This is one of the core advantages we 

sought: repeatability, and the use of methodical and scientific approaches as opposed 

to random, haphazard attempts. Security can and should be an engineering discipline, 

not a hand-waving exercise. 

We know that it is repeatable, because the SP was generated methodically from 
the original TM. The SP should only change when the TM changes. (And it must 

always change when the TM changes—or at least be reevaluated in light of the TM 

changes. An SP that is not updated version by version in lock-step with the TM is val- 

ueless, since it is no longer a logical step from the TM—it will simply become an 

interesting historical document.) 

The process of creating the SP from the TM is quite simple: you work through 

each threat and check that your current SP nullifies it. If not, you add to the SP until it 

does. As you get towards the last of the threats, you will often discover that a threat is 
already countered by some existing element of the SP and needs no extra procedures. 

Ifa threat is judged too expensive to deal with, or too unlikely to justify worrying 
about, the SP should explicitly say so and provide reasoning. This is all part of ensur- 
ing that the SP is a methodical and logical extension of the TM, and that we retain 
repeatability and accountability. By explicitly dealing with every element in the TM, 
we render the SP a standalone instruction manual that fully captures all the informa- 
tion from the TM without needing to reference it; this enables staff to work directly 
with the SP on its own. Having just one simple proscriptive document to work with 
increases the chances that the decided upon security policy will faithfully be enacted 
by all staff. 

Ongoing Revision of Both Documents 

Most of the value of this process is realized as soon as you complete your first iteration 
through the steps of generating a Threat Model and a Security Policy. If you then fail 
to revise them regularly, you will certainly miss some of the advantages, but you will 
still have gained a lot over more ad hoc approaches. In cases where ongoing revision 
realistically will not happen, it is still worth starting out in the right way. 

In preference, both documents should be rewritten regularly. It is also sensible to 
revise them in light of any successful attacks. In both cases, the same development 
process should be repeated, except that you do not have to start from scratch. First, 
every threat should be reviewed, and any additional threats added (especially true 
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when a new attack has just succeeded!). Then the Security Policy should be examined, 
at least in light of the new attacks, although preferably in light of all of them. Some- 

times the successful attack will prove to be a threat that no one thought of, other 
times it will demonstrate a flaw in the Security Policy’s strategy for a known attack. In 
either case, both documents should be updated together, and it helps a great deal to 
have them versioned as a single atomic unit, so that they never get out of sync (assum- 
ing you have a document-versioning system). 

Additional Benefits to This Technique 
‘amecrarnere 

Further Reading 
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The following sections outline some additional benefits. 

Introduction to Code-Base 

It’s a very fast way to introduce new developers to how the game is written or how the 

code base fits together. By necessity, it is an aspect-oriented view of your code base, 

and works at the use-case level, since the threat model is a specialized form of “a set of 

use-cases.” For external people or new arrivals to the team, this makes it much easier 

to comprehend than most documentation. 

A Fresh Perspective on Existing Design 

A security audit tends to make people look at the system (and their own code) from a 

new perspective, which can preemptively uncover many non-security-related bugs, in 

addition to the security holes. It is also a “breath of fresh air,” being sufficiently differ- 

ent from the standard process of looking for bugs that it’s more mentally stimulating 

and a nice change from bug hunting. 

Benefit from Experience 

The threat model and security policy developed for a project may serve as the starting 

point for other titles. There will certainly be elements that are unique to any given 

title and design, but giving the team a starting point to serve as a launch pad for their 

brainstorming can help capitalize on previous work. The opportunity exists to build 

up a library of threat modes over time, with detailed descriptions of each threat, so 

that future team members could pick them up and understand them. Such a library 

would be valuable in much the same way other software libraries are, improvements 

could be back-propagated to earlier titles, metrics could be defined to measure suc- 

cess, etc. 

RETREAT 
SECESSION ELE TNT EMILIO LLIN TTL 

The industry-standard equivalent of this gem is an evaluative system known as the 

Common Criteria (CC)-[Cox00, CCEVS04]. The CC was derived from the com- 

mon elements of the TCSEC and ITSEC programs, from the U.S. and Europe, hence 
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the rather ambiguous name, although it also represents a step forward. The CE is a 

much larger framework than this gem, designed to provide greater levels of assurance 

and much more detailed and precise evaluation. As a practical example, you can view 

a CC evaluation of the Windows 2000 Operating System [Microsoft02]. The CC has 

three core elements: Protection Profiles, a Target of Evaluation, and a Security Target. 

This gem uses a Threat Model as a simplified equivalent of the CC Protection Pro- 

files, and an augmented Security Policy instead of a full CC Security Target. 

More generally, Bruce Schneier [Schneier00, Schneier03] is considered by many 
the foremost expert in the security industry, and his books are both approachable and 
contain practical insights. Ross Anderson [Anderson01] is another highly respected 

specialist, and maintains a frequently updated Web site [Anderson04] dealing with all 
matters to do with security, from privacy and data-protection through to cryptogra- 
phy, steganography, and the most esoteric (and interesting) of cryptographic systems. 

Conclusion 
as None LESSEE EEE ELLE LEE SLE LLL LLIB EEL DELEL EDEL ELDON NE TOOL EL EON EEE LEE LILO LESLIE. 

You now have a methodology for adding security to your games right from the very 
start of the development process, without increasing your total development time. No 
specialist knowledge is required, and all members of the team can contribute a great 
deal to the overall security and can understand how and why it is secured. 

This gem has not covered any implementation issues to do with security, which is 
where the specific understanding of cryptography, etc. comes in to play. Clearly, these 
issues are still critically important to the “secureness” of your system, but when using 
this gem, they are encapsulated as late-stage design and implementation details, and 
can be safely ignored during the main design process. 

For instance, where a Security Policy mandates the use of an encrypted stream at a 
particular point, you will eventually need to decide which cryptographic protocol to 
use, which is a nontrivial decision, However, the relevant information you need to make 
this decision will already have been captured by the Threat Model and Security Policy, 
making such implementation decisions relatively straightforward. For beginners, they 
start by picking a crypto library, but experts do it almost at the end [Clayton04]. 

The methodology used in this gem enables you to attack the security problem in 
a very focused and methodical manner. You gain all the benefits of a disciplined, sci- 
entific approach—the approach that Anderson and others term “Security Engineer- 
ing” (an overt reference to “Software Engineering” and all the good that that 
discipline has done for software development). It is only a single process, but when 
applied diligently empowers you to make your entire system secure, and not only that 
but also to know, empirically, just how secure your system is. No more hand waving; 
no more finger crossing guesses that it “is probably safe [subtext: I hope!].” You also 
have a formal specification of your “security design” that you can check against your 
implementation. 
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Introduction 

Mark DeLoura 

madsax@satori.org 

udio has come a long way. My first commercial game programming experience 
was working on a PC-based arcade game, where we used a Gravis Ultrasound 

card for audio playback. We were pretty excited about it, because the GUS enabled us 
to download samples into the card and play them back with whatever pan, volume, or 

pitch we wanted. It was also MIDI compatible. It was so cool! We set up a C++ sound 

manager layer that ran over the top of the low-level gfl libraries to automatically han- 

dle assigning physical voices, and then we created a pseudo-3D effect by tying sound 

sources to dynamic objects in the scene and using pan and volume accordingly. We 

mucked about with sample rates and bit depth, stereo, and mono samples, and did 

our best to optimize our memory map on the card so that we could fit both the wave- 

forms for the MIDI instruments and the engine sound and environment samples. 

I know that for some of you, this reminds you of the days you spent twiddling the 

speaker on your TRS-80 or Apple II, and how exciting it was when you first coerced 

your machine to make sounds resembling music. Fortunately for all of us, the state- 

of-the-art in audio has moved on to the point where we can have composers creating 

music instead of programmers, and we can simply stream their creations from disc or 

memory. We can create lush real-time audio environments with the assistance of 

audio-scripting tools, and they can be played back in high fidelity through 5.1 audio 

systems with real-time hardware effects processing from built-in DSPs. Our focus 

now can be more on creating audio environments that enhance the game experience, 

as opposed to simply getting the machine to make beeps and boops at the appropriate 

times. 

It’s with our past firmly in mind that we present these five excellent audio gems. 

Many thanks to Sean Gugler for his initial work organizing this section. First in this 

section, you will find a discussion of multithreading and its applicability to audio pro- 

gramming, by James Boer. Matthew Harmon will discuss writing sound APIs that 

manage groups of sounds easily. Then Sami Hamlaoui will briefly describe a simple 

technique for making audio appear to emanate from a 3D surface, as opposed to just 

a simple point source. Christian Schiiler digs deeply into the math behind Feedback 

Delay Networks for environmental reverb. And lastly, with speech recognition gain- 

ing increasing prominence in games, Julien Hamaide tackles a way to match incom- 

ing speech with a trained dictionary of words. 

We hope you find these gems useful, and that you'll be able to apply some of 

these techniques to your next game! 
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shvd pos gaming hardware is moving away from a single-threaded execution 

model, as parallel process execution and even multiprocessor machines are 

becoming more and more common on users’ desktops. Modern CPUs such as Intel®’s 

Pentium® 4 Xeon™ processors have introduced HyperThreading™ technology to the 

world, which is essentially a method of simultaneously executing two processes on 

one chip to take advantage of its built-in parallelism. Additionally, multiprocessor 

machines are becoming more common on the desktop, and users will expect their 

games to take full advantage of hardware that they paid good money for. While the 

sample code in this gem is specifically written for Intel and AMD processors on Win- 

dows-based PCs, the concepts of multitasking specific portions of your audio process- 

ing code can be applied to different platforms and operating systems, including Macs, 

Linux, and game consoles. 

We'll look at one specific area where we can use multithreaded code for Windows 

operating systems to take advantage of multiprocessors or HyperThreaded processors: 

the primary audio decoding and playback loop. Common pitfalls and multithreading 

mistakes will be examined, and ideas for optimizing various common audio-related 

algorithms will be discussed. However, the general tips and techniques presented in 

this gem can be applied to other areas of game development as well. 

A (Very) Brief Introduction to Threaded 

Programming 
SRNR TO TEETER ISL NNSA ITE TEAM TT TT NT SRN NEEL 

In a nutshell, threaded programming involves creating two or more code paths that 

execute simultaneously. These threads are both part of a single process (a single exe- 

cuting program) and share the same address space. In layman’s terms, this simply 

means that any threads spawned from a single process can access the same data. In 
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essence, every single C or C++ program can be considered to have at least one thread 

(the main thread), which is launched when the program is started. This thread is then 

responsible for launching other child threads, often for limited or very specific jobs. 

Figure 7.1.1 shows how this works on a multiprocessor system. 

Primary Thread Spawns Two Child Threads 

| Thread 1 | 

Processor 2 Thread 2 Thread 3 | 

Execution Time 

FIGURE 7.1.1 Main thread spawning other threads on second processor. 

Obviously, a machine with a single processor can’t actually execute more than one 
section of code at a time. The same timeslicing mechanism that allows more than one 
program or process to execute simultaneously on a multitasking operating system also 
allows more than one thread to execute simultaneously within a single process. Figure 
7.1.2 demonstrates how multitasking is simulated on a single processor machine. 

Simulating Simultaneous Execution of 
Multiple Threads on a Single Processor 
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FIGURE 7.1.2 Multiple threads sharing execution on a single processor. 



7.1 Multithreaded Audio Programming Techniques 699 

Fortunately, it is much more efficient for an operating system to timeslice between 

multiple threads than multiple processes. Because of this, it is feasible to add some 

degree of multithreading code to your game to take advantage of those machines with 

multiple processors (or single processors that can execute multiple threads more effi- 

ciently) while imposing very little overhead on machines that must emulate this mech- 

anism with a single processor. However, it would be foolish to create threads for 

anything but the most obviously suited tasks because of both the overhead for single- 

processor execution of these threads and the inherent complexity in managing and 

debugging multithreaded code. 

Threading Terminology and Mechanisms 
<ALL SEES ENON ITER LINE SEE LLIN ONT SLL ON ALN NLT 

Multithreaded programming not only involves thinking beyond traditional linear 

programming, it also invokes a complete set of specialized terminology. Many of 

those terms are described for you here. 

Each instance of a program that executes on a machine is considered to be a single 

process. The defining characteristic of a process is that it has its own address space and 

protected access to disk and other hardware resources. Some operating systems, such as 

Windows, Mac OS X, or Linux, allow multiple processes to be run at once. Other 

operating systems, such as those found on game consoles, are optimized to run only a 

single process. Each process (or program) dispatches one or more concurrently running 

threads. Threads may simply be thought of as paths of execution within a process, all of 

which have access to the same address space (such as global and static data). 

To safely use functions (either your own or library functions) simultaneously from 

multiple threads, the functions must both be reentrant and thread-safe. A reentrant 

fanction does not hold static data over successive calls or return a pointer to static data. 

A thread-safe function protects shared resources by use of a lock (such as using a 

mutex, which we'll describe next). This prevents two threads that may be simultane- 

ously executing the function from corrupting each other's data. The use of global data 

without locks will make a function non thread-safe. 

To lock means to prevent access to shared data or resources by more than one 

thread simultaneously, which prevents data corruption. A common lock is called a 

mutex, a shortening of the term “mutually exclusive.” While one thread holds the lock 

and performs work on the protected code, other threads may be forced to wait or per- 

form other tasks. In order to wait without consuming CPU cycles, a thread may be 

asked to sleep for a specific time or until a specific message or event wakes it. 

There are a number of unique error conditions associated exclusively with threads 

that you must guard against. A deadlock occurs when a lock is activated, and, due to 

specific interactivity with other threads, can never be unlocked. For instance, two 

threads may end up waiting for each other to become unlocked before proceeding. If 

there is no external signal that can unlock at least one of the threads, this is a deadlock 

situation. A race condition may occur when two or more threads must operate on the 

same data location, but the result depends on which order the threads execute it. Typ- 

ically, locks such as mutexes are used to prevent race conditions. 
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Additionally, all threads are assigned execution priorities, in much the same way 

processes are given priorities. This, somewhat obviously, allows the threading dis- 

patcher to better prioritize thread execution. A priority failure occurs if a thread fails to 
complete its assigned task before another thread requires its results. Often, this is a 

result of assigning incorrect priorities to tasks. A starvation failure is similar to a prior- 

ity failure in that a thread was unable to complete its required tasks in its allotted 

time. 

Identifying Audio Tasks Suitable for 

Threaded Programming SNA NRRL ERRATA LTS LE ELD TOLER OOO EEE 

In general, it is important to clearly identify which programming components are 

suited to multithreaded programming. Quite frankly, the traditional rule of thumb in 

game programming has tended to avoid threaded programming altogether, for several 

reasons. First, most consumer machines did not have more than one processor, as this 

was not supported on consumer operating systems. Second, since multithreaded pro- 
gramming implied a bit of extra overhead on single-processor machines, it was not 

deemed worth the price in CPU cycles to provide this simulated functionality. 

However, in the past few years, several things have occurred. Today’s operating 
systems such as Windows XP now support multiple processors, and we can expect 

some gamers to have these systems. Additionally, and perhaps even more importantly, 
the relative cost of implementing threaded behavior has decreased for single-processor 

machines for two reasons. First, because the average speed of processors is still rapidly 

increasing, the relative overhead of threads is lower than ever, since the absolute cost 
of thread switching has stayed more or less constant. And even beyond this fact, mod- 
ern processors are being designed to run multiple threads more efficiently than ever. 
We'll discuss Intel’s latest hardware innovations and the ramification of these new 
chips in the next section. 

Audio programming has some obvious ties to threaded programming. The very 
nature of any audio system is asynchronous behavior—namely, the continuous pro- 
cessing, mixing, and buffering of audio data from its original location on disk or in 
memory to its final destination in hardware buffers—all of which must happen in real 
time. Often, we wish to have continuously streaming audio even while other tasks 
may interrupt the primary thread, such as loading up data resources for a new level. 
Unlike visual rendering, in which frames can simply be dropped, there is no way to 
effectively mask starvation of an audio data stream—it will result in audible gaps or 
popping. 

One obvious candidate of threaded programming is that of streaming and decod- 
ing high-compression audio data, such as MP3 or Vorbis files. No matter what else is 
happening, this job requires periodic access to disk resources as well as a percentage of 
CPU time in order to acquire and decode the audio data from the disk and stuff it 
into audio buffers, all in real time. 
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There are also some less obvious uses for threads that execute in the background. 

3D audio data, including sound sources and listeners, must stay synchronized with 

objects in your game world in order to calculate the resultant 3D audio output cor- 

rectly. However, it may be a waste of processor time to calculate the audio every time 

the listener or 3D objects move (which may be as often as 60 to 90 times per second). 

Instead, you may wish to selectively degrade how often the 3D audio data is recalcu- 

lated. By putting these calculations on a separate thread and by periodically waking 

the thread at a rate slower than the main update rate, you not only save calculation 

cycles, but you allow a HyperThreaded or multiprocessor system to operate more effi- 

ciently by offloading these calculations to a separate processor. You could also perform 

data-transfer tasks such as moving audio data into a playing sound buffer on individ- 

ual threads. 
Additionally, you may even wish to access world geometry and perform raycast- 

ing and pathfinding for the benefit of your audio system. If these don’t sound like 

audio-related tasks, you might not be aware that most modern audio implementa- 

tions (like I3DL2 and EAX™) require various tasks such as line-of-sight information 

and other spatial awareness in order to calculate sound properties such as occlusion 

and obstruction, in addition to basic reverberation and echo properties. These are 

wonderful tasks to shunt off to a different thread, because this type of information 

does not have to update nearly as quickly as visual information. Thus, the thread can 

be tuned to consume far fewer CPU cycles than might be necessary if it were calcu- 

lated synchronously with the visual information in the world. 

Before we get into the specifics of how we would set up such a multithreaded sys- 

tem, let’s examine another recent technology that is making threading more impor- 

tant even on single-processor machines. 

Intel’s HyperThreading Technology—What Is It? 
DTT EOOIS a NENT IRIE 

One of Intel’s more recent technological achievements has been dubbed Hyper- 

Threading, and it is designed to allow a single processor to appear as two virtual 

processors to an operating system (and a program). By making more efficient use of 

the multiple execution units found on the chip (previously used only for out-of-order 

execution), multiple threads can actually be executed simultaneously, offering much 

greater efficiency than when executing only a single thread. 

As one might expect, it is not quite as efficient as if two true physical processors 

were executing simultaneously. This is because the separately executing threads will 

often collide, both requiring the same resources on the processor at once. However, in 

optimal threading conditions, it is expected to see a nominal performance boost of 

~3()% on both threads if their workloads are properly balanced. In the best case, users 

may even utilize two physical processors, each with HyperThreading enabled, giving 

the system four virtual processors to work on. 
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However, HyperThreading is not a magic bullet. In fact, it can actually-decrease 

overall performance, if applications are built using only a single thread or the main 

thread is too heavily loaded compared to secondary threads. The reason for this per- 

formance degradation is somewhat logical—if the processor's resources are split 

between two executing threads, and the game only makes use of one of these threads, 
the performance will be worse than if the entire chip was dedicated to execution of 

only the main game thread. 
In some sense, this puts game programmers in a bit of an awkward position— 

should you continue to avoid threads and allow a slight degradation of Hyper- 
Threaded systems, or do you take advantage of HyperThreading with extensive use of 
threads and simply accept the minor performance penalty on single-processor, single- 
execution chips? There is no one definitive answer, but games (and gamers) have 

typically pushed forward the technological envelope more than any other type of 
application, and gamers will be quick to adopt a technology if they see tangible 
results. Many in both hardware and software development feel that parallel and 
threaded programming is the wave of the future. 

Threaded Programming Techniques 

and O 
-eeen eeepc 

A Threaded Sample Program 

perations 

In certain situations, when creating a background thread in a game, it is not necessary 

for the thread to be active 100% of the time, because the worker thread is able to per- 

form its task much faster than the primary thread requires. This is the case with 

decoding MP3 or Vorbis audio data, or with performing most other audio-related 

tasks. 

To decode data at a decelerated rate, we can employ a higher-priority thread that 
is executed in periodic bursts and sleeps until the timer wakes it up to perform again. 
This mechanism helps to ensure against thread starvation while also keeping the over- 
all CPU time of the worker threads reasonable. 

Perhaps the most important step in designing a threaded system is deciding how 
and when your worker threads will share their processed information with the primary 
thread. In essence, this is the only link the two threads will share, and it is critical that 
the data transfer is done both safely and efficiently. It is important that the multiple 
threads do not overlap too often, or you will lose efficiency as one thread stalls while 
another finishes operating within a critical section. 

{eS UI SE ERR RIN HEME 

We'll now examine a small program designed to evaluate how much computational 
performance can be gained by splitting decoding tasks into threads. Additionally, it 
demonstrates how a single program can allow two code paths: multithreaded or sin- 
gle-threaded. This simple threading performance timing application can demonstrate 
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both code techniques as well as performing some useful benchmarks on various sys- 

tems. We will present the results of the benchmark tests later. 

Es Listing 7.1.1 shows our multithreaded benchmarking application in its entirety. 

ontHecD ~~ Please note that it is also included on the CD-ROM. 

Listing 7.1.1 Multithreaded Benchmarking Application 

#include <iostream> 

#include <process.h> 

#include <windows.h> 

#include <conio.h> 

using namespace std; 

#pragma pack(push,4) 

__int64 g_total_val = 0; 
int g_num_calculations = 0; 

bool g_do_floating_point = false; 

CRITICAL_SECTION g_val_update; 

// Perform some nonsense calculations to burn up CPU cycles 

void DoCalculations() 

{ 
int val = 0; 

if (g_do_floating_point) 

{ 
FOR(INEML =) OF -24< g_num_calculations; i++) 

{ 
for(int j = 0; j < 1000000; j++) 

{ 
yabet=Lint((float)i * (float) * 

((float)j - (float)i - 0.25f) / 

(vader a epee 

} 
} 
EnterCriticalSection(&g_val_update) ; 

g_total_val += val; 

LeaveCriticalSection(&g_val_update) ; 

} 
else 

{ 
FOn (inte 05 2 g_num_calculations; itt) 

{ 
for(int j = 0; j < 1000000; j++) 

{ 
Val te Fj * 4) 2a) 

(MaMa eSs Hoty; 
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} 
EnterCriticalSection(&g val_ update) ; 

g_ total _val += val; 

LeaveCriticalSection(&g_val_ update) ; 

} 

// This function is passed to createthread() 

void ThreadFunction(LPVOID lpv) 

HANDLE hEvent = (HANDLE) 1pv; 

DoCalculations() ; 

SetEvent(hEvent) ; 

} 

// Start the threaded timing tests 
int main() 

1 
char Cc; 

cout << “Do floating-point calculations (y/n)? “; 
Cilee oa cr 

in(c ==aiy) 
g_do_ floating point = true; 

int threads = 0; 

cout << “How many total threads do you wish” << 

“to create (including the main thread)? “; 

cin >> threads; 

// Allocate an array of handles if we have 

// more than one thread 

HANDLE* pHandles = 0; 

if(threads > 1) 

{ 
pHandles = new HANDLE[threads - 1]; 

} 

cout << “How many millions of calculation loops” << 
“should each thread perform? “; 

cin >> g_num_calculations; 
cout << “Now performing timing calculations. 

InitializeCriticalSection(&g_val_update) ; 

// Get the start time 
unsigned int start_time = timeGetTime(); 

// Perform all actual calculations - 
// one per thread. 

alighe aks 

if(threads > 1) 

{ 
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} 

for(i = (0% De< threads 1571+) 

pHandles[i] = CreateEvent( 
NULL, FALSE, FALSE, NULL) ; 

if (_beginthread(&ThreadFunction, 4096, 

pHandles[i]) == -1) 

return -15 

DoCalculations(); 
// Wait for all other threads to finish 

// before continuing 

WaitForMultipleObjects(threads - 1, 

pHandles, TRUE, INFINITE); 

Ie 
else 

{ 
// Do a simple set of calculations for the 

// single-threaded path 
DoCalculations() ; 

} 

// Get the end time 

unsigned int end_time = timeGetTime() ; 

// We no longer need this critical section 

DeleteCriticalSection(&g_val_update) ; 

// Close and delete handles used for synchronization 

if(threads > 1) 

2 
for(i-= 0; i °<' threads ="; itt) 

CloseHandle(pHandles[i]); 

} 
delete[] pHandles; 

} 

cout << * Finished!” << endl; 

cout << “Performed all calculations in 

<< end_time - start_time << 

“ milliseconds” << endl; 

getch(); 
return 0; 

“ 

#pragma pack(pop,4) 

Essentially, this is a small thread-based benchmarking program that times mathemat- 

ical calculations spread over any number of threads. The user is asked what type of 

algorithm to run (floating point or integer), how many threads to run, and how many 

million calculation cycles to run per thread. 
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To simulate data flow from the threads into a common pool, the calculated values 

are periodically added to a global variable named g_total_val. This is the all-impor- 

tant data transfer point we talked about earlier. Because this is a shared access point, it 

is imperative that access to this variable is protected. However, don't be fooled since 
we don’t do anything with the variable. It’s only there to show you how to access com- 
mon/global data from threads. Let’s briefly walk through this code to see how we 

manage our threads, and discuss how we might approach applying these techniques to 

an audio system. 
The first function you will notice is DoCalculations(). This performs a series of 

calculations in loops incrementing by a million, to perform meaningful timing tests. 

The results of these calculations are stored in the global variable g_total_val. Because 

this is a global variable and potentially accessible by multiple threads simultaneously, 

we must first use a mutex to lock access to the global, then unlock it after we've finished 

accessing it. When writing multithreaded code, it is important to endeavor to mini- 

mize the number of locks you must perform. If we, for example, locked and unlocked 

the global variable on each iteration instead of once every million iterations, the 

threading performance would be degraded because of an increase in collisions of 

threads when trying to access the variable, leading to stalled threads. 
The DoCalculations() function is wrapped in a function called ThreadFunc- 

tion(), which takes a pointer to a void pointer as an argument. This is the entry point 

to a new thread. When this function exits, the thread terminates itself. 

The rest of the program is rather straightforward upon inspection. The program 

asks the user a few questions, such as what type of calculations to perform and how 
many calculation threads to create. After getting the information it needs, the pro- 

gram sets a timer, then proceeds to launch either one or multiple threads, each per- 

forming a series of calculations inside the DoCalculations() function. The “results” of 
the calculations are all stored in a global variable g_total_val. 

This sample project demonstrates how to split up a task into a variable number of 
multiple, concurrently executing tasks. We'll use this program to do some simple tim- 
ing tests on several different test machines to demonstrate how threading can improve 
efficiency in an ideal case. 

For these tests, the sample program was run on two test machines. Machine One 
is a dual Xeon Pentium 4 2.4 GHz machine running Windows XP Professional. Tests 
were conducted both with HyperThreading turned on and off to demonstrate dif- 
ferent results. Machine Two is a Pentium 4 1.5 GHz Windows 2000 Professional 
machine with no HyperThreading capability and only a single processor. For each 
configuration, we ran tests that demonstrated both integer and mixed integer and 
floating-point calculations. The number of test cycles (1.2 billion) was chosen so as to 
obtain a reasonable length of time for execution. Remember, the total times are much 
less relevant than the relevant execution time of each test within a particular configu- 
ration row. We've used a somewhat primitive timing mechanism, so figure that our 
execution timing error is approximately plus or minus 20 milliseconds overall. Table 
7.1.1 provides the results. 
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Table 7.1.1 Test Results of Sample Program 

Configuration 1 thread 2threads 3threads 4threads 5 threads 6 threads 

M1, HT, integer 28078ms_ 16625ms 12172ms 10125ms 10438ms _10516ms 

M1, HT, float 68719ms 34843ms 23500ms 19813ms 20672ms 20578ms 

M1, no HT, integer 28063ms_ _14047ms 14062ms 14046ms 14141ms  14078ms 

M1, no HT, float 68859ms 34422ms 29797ms 27484ms 26032ms 25125ms 

M2, integer 43312ms 43332ms 43492ms 43593ms 44163ms  43442ms 

M2, float 147232ms 108246ms 95247ms 90059ms 85943ms 82418ms 

Key: M1 = Machine 1, M2 = Machine 2, HT = HyperThreading enabled, no HT = HyperThreading disabled, 

integer = integer-based calculations performed, float = floating point and integer calculations performed. 

You can see how the most significant improvement is achieved switching from one to 

two executing threads on a dual-processor machine. This is not unexpected, as the 

two threads can both execute simultaneously on two physical processors. The only 

loss of efficiency comes in synchronizing the execution and data collection from the 

two threads. This is why you should theoretically never see a 100% improvement in 

performance in this situation. 

When examining the performance gains from HyperThreading (meaning three 

or four threads are running on the dual processor machine with HyperThreading 

enabled), you can see a more modest but still substantial gain of approximately 30%. 

This corresponds to research done by Intel indicating how much you can expect to 

gain in optimal cases. One of the more interesting results to take note of is the odd 

fact that floating-point tests run on both machines continued to show improved per- 

formance beyond two threads, even when one might logically expect the opposite 

results. While the exact cause of these results are not clear, it could be surmised that 

both the operating system and processor are designed and optimized for execution of 

multiple threads, and so perform more optimally in this configuration, even on a 

multiprocessor machine. The fact that these results are primarily achieved with mixed 

floating-point and integer calculations may also play a part. 

Last, it is interesting to note how much overhead (or rather, how little) each 

thread actually incurs—in our tests, the results are almost negligible. You would have 

to either greatly increase the number of threads or increase the time the tests are 

allowed to run to get more accurate measurements. On Machine Two, since it is sin- 

gle processor by nature with no HyperThreaded technology, any thread count above 

one must be emulated by the operating system. 

What can we deduce from these numbers? On modern PCs running Windows 

operating systems, running multiple tasks on a single processor is very efficient, so 

long as the number of threads doesn’t become too large. However, on systems 

designed for parallel execution, we can see a substantial performance boost when the 

number of currently executing and balanced threads equals the number of processors, 

whether virtual (in the case of HyperThreading) or physical. If any game systems can 
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be robustly designed to take advantage of this parallel execution model, it would seem 

highly beneficial to do so. 

Real-Time Streaming Data Mechanisms 
SURES NERS NUNN ENA ERNE ENE IER EU EERIE EOE EOE ETO OL ILL DNL RODD DMM LL ADE REL RROD 

Let’s envision we want to set up a threaded system to assist in decoding MP3 or some 

other type of audio data which requires preprocessing. There are a couple of models 
for transferring streaming data from one system to another (such as between different 

threads). 

One method of transfer is called a “push” transfer, so called because the system 
representing the data’s source is responsible for notifying the destination system when 
it is ready to transfer a chunk of data. In this way, the data is “pushed” from the source 
to the destination. Streaming audio data over a network might operate in this manner. 

Since music cannot stream faster than the network allows, it makes sense for whoever 

is sending the music to take control of the transfer rate. If the music is streaming faster 

than real time, it can simply be buffered until it is needed. Or, the system may use a 
throttling mechanism to ensure that only a limited amount of data is buffered. 

Another method of transfer is called a “pull” transfer, because the destination sys- 
tem is responsible for notifying the source system when it is ready to receive more 
data. In this way, you can think of the destination system as “pulling” the data out of 
the source. Typically speaking, this would be the most common model for imple- 
menting a threaded MP3 decoder. If you wish to read more about these models and 
how an interface to a streaming object might look, the COM [Stream interface is 
available on Microsoft's sites, along with descriptions of these two models. 

Streams and Threads 

Assuming you will create a streaming interface similar to IStream, there is only one 
more decision to make regarding how the threads in your audio system are imple- 
mented. We'll present two options—neither is necessarily right or wrong, but both 
have advantages and disadvantages to consider. 

The essential question now is: How do you create the threading interface? We'll 
assume for now that you'll be using a pull model. The audio system will periodically 
need small chunks of audio data. As it is required, this system will request decoded 
data from the MP3 decoder object. 

One option is to create an IStream-based decoding object and to treat is as a 
threaded black box, allowing it to create an internal thread that is responsible for 
grabbing data, decoding it, and presenting it through the interface functions when- 
ever asked. The client operates from the main thread and requests data as needed. The 
IStream decoder object always anticipates the next request and decodes data on the 
thread. When the amount of decoded data in the decoder object falls below a specific 
threshold, the thread is kicked-into action, and more data is decoded until a specified 
maximum buffering threshold is reached. In this way, decoded data is always available 
for the main thread, and the threading problems are entirely contained behind the 
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decoder object's interface. Figure 7.1.3 demonstrates how these objects interact with 

each other. 
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Audio Decoding 
Module Streaming / Decoder 

SE Module 

Data Requests Data Flow 
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Interface 
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Streaming Audio 
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FIGURE 7.1.3 Threading behind the decoder interface. 

This method is highly attractive for one main reason—because the threading is 

entirely contained within the decoder object. This keeps the interface between the 

two threads highly constrained—always a good thing. For those looking for a simple 

and robust solution, it’s hard to beat this one. 

As with any simple solution, there are bound to be a few drawbacks as well. For 

starters, this implies that any new stream will be using its own thread. If you are plan- 

ning on creating multiple decoding objects, this may or may not be what you had in 

mind. Based on the rather surprising results of our timing tests, running multiple 

decoders, each in its own thread, may actually be more efficient than attempting to 

schedule them all yourself on a single thread, even on a single-processor machine. 

Unfortunately, there are also some special situations that might not work as well with 

this mechanism. For instance, when a sound buffer first starts, the buffer is typically 

Filled with initial data to start with. You would need to either keep some prebuffered 

and decoded data ready to use, or the system would have to be intelligent enough to 

wait for the initial set of data to be decoded before attempting to play the sound 

buffer. Either way, it adds unfortunate complexity to an otherwise simple and elegant 

solution. 
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An alternative method is to create a thread that encompasses a much larger sub- 

system. The thread can maintain a list of streaming sound buffers and their respective 

decoder objects. This thread is then periodically activated, at which point each 

streaming buffer is filled with as much data as is needed. The thread then sleeps until 

it is again awakened by a timer, at which point the cycle begins again. 
This system has some definite advantages and disadvantages. One advantage 1s 

that the problem of prefilling the buffer goes away to a large extent, because this all 

occurs using the same thread that adds new data to the buffer periodically. The result 
is that this initial decoding is invisible to the rest of the system. The downside to this 
system—and it is a considerable one—is that with so much data being managed by a 
single thread, the interface between this thread and the primary thread will tend to 

grow much more complex. This is because instead of simply filling a buffer in real 
time, this thread must block complete access to the sound buffer during the time in 
which the thread is directly accessing it. In essence, this means that any other member 
that accesses the sound buffer can potentially be thread-unsafe. It will take a large 
amount of engineering effort to ensure that this interface is completely bug-free. Fig- 

ure 7.1.4 shows how these systems would interact with each other. 
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FIGURE 7.1.4 Threading at the audio system level. 
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SCUELGELD 3 
The decision to enter into the world of threaded programming is not one to be made 

lightly. While threading can help programs run more efficiently when designed cor- 

rectly and supported by hardware, it can also make programs more difficult to debug, 

and introduces an entirely new lexicon into your programming vocabulary—one 

which, as with anything new, takes time and effort to master. 

It seems highly likely that games will, in the future, wish to take advantage of the 

new multiprocessor or HyperThreaded technologies available in current and next 

generation PCs and game consoles. After all, a game can never have too many CPU 

cycles to burn, and game programmers have traditionally been the true push behind 

the blazing advance of new hardware technology and innovations. 
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7.2 

Sound Management 

by Group 

Matthew Harmon, eV Interactive 

Corporation 

matt@ev-interactive.com 

(Ges, sound programming interfaces provide a good amount of control over the 

playback of individual sounds. Volume, playback rate, pan position, and pause/ 

resume state are some common features provided by today’s APIs. Most also provide a 

master volume control that alters the level of all sounds being played by the system. 

There are many cases, however, where programmers need to manage the playback 

of related sounds as groups. Being able to quickly and easily alter the properties of an 

entire group of sounds can be very convenient, and integrating this capability into the 

game's sound API up front can save considerable time and frustration later in a pro- 

ject. These benefits are highlighted by a few simple cases. 

* A team is developing an adventure game with both indoor and outdoor areas. As 

the player walks indoors, all the environment sounds from the outdoor areas— 

birds chirping, wind blowing, crickets chirping, etc.—should be reduced in vol- 

ume. Occlusion technologies could be used here, but this is often overkill and not 

supported on all platforms. Instead, the team just needs the simple ability to 

dynamically balance the volume between “indoor” and “outdoor” sounds as the 

player transitions from one area to another. 

¢ Programmers working on an air combat game finally get around to implementing 

the user preferences menus. The audio screen must provide an interface that 

allows the player to independently adjust the volume of several categories of 

sound effects: engine and environment noises, cockpit warnings, radio messages, 

and background music. The programmers add volume scale factors for each 

group of sounds but must then track down every place a sound is triggered and 

apply the correct scaling factor. Worse still, this is only a quick fix, as already 

active sounds won't be affected as the user slides the volume control back and 

forth. 
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¢ An innovative cartoon-style game gives the player the ability to dynamically 
accelerate time. To support the whimsical nature of the product, the team wants 

to scale the playback rates of sound effects but leave music and interface sounds at 

normal speed. 

Dealing with each case becomes trivial if group-based sound management is built 

directly into the API wrapper at the beginning of a project. 

API Wrapper Overview 
LAS MERLE ETL ELLE ELLEN ELLER LEER LIEBE ELE AEE LESSEE LAER ALLELEIELIEEEAYRE AEN LUTE ENOTES ITE: 

Capabilities 
"Et RRR viensnenuete 

Most sound playback APIs are quite similar at their core, and this gem assumes that 
the low-level sound API will be wrapped in a custom interface layer. For the sake of 
example, let’s propose a simple 2D API wrapper in which sounds are managed by a 
generic handle. 

handle = SndPlay(sampleBuffer) ; 

SndSetRate(handle, newPlaybackRate) ; 

SndSetVolume(handle, newVolume) ; 

SndPause (handle) ; 

SndResume (hand1e) ; 

SndStop(hand1e) ; 

To enable group management, we'll add a few simple new functions. First, we need a 
way to associate a sound with a group. 

SndSetGroup(handle, group); 

Alternatively, we can enforce the use of sound groups by requiring a group assignment 
at the time a sound is triggered. 

handle = SndPlay(sampleBuffer, group); 

Next, we add some very simple routines to manipulate playback parameters of entire 
groups of sounds. 

SndSetGroupRate(group, newPlaybackRate) ; 
SndSetGroupVolume(group, newVolume) ; 
SndPauseGroup (group) ; 

SndResumeGroup(group) ; 

SndStopGroup (group) ; 

This basic pseudocode can be extended to an object-based API as well as a 3D- 
enabled interface. Control over additional sound parameters can be similarly added. 

Theoretically, just about every parameter that controls a playing sound can be man- 
A « > . aged at the higher “group” level. In practice, however, only a small handful of parame- 

ters are typically useful, as shown in the API outline earlier. It is worth examining 
these properties to see how the group controls are factored in. 
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Volume 

It is not difficult to see that changing the volume of entire groups of sounds at once 

can be very useful. Adding group-level control to the volume parameters results in 

each playing sound having the following volume control factors: 

= * * * 
V sctaal Vem aniser V aistanceAttenuation Ve 

Vample controls the volume of the individual sound being played, Vinaster 18 the sys- 

tem’s overall master volume and, in the case of 3D sounds, Vgistanceattenuation would also 

be applied, possibly by the sound hardware itself. To this we add V,,oup» which scales 

the playback volume based on the group to which it is assigned. 

Pitch 

Pitch, or playback rate, is another useful property to place under group control. The 

factors controlling the pitch of a sample become: 

= * * * 

ia final im normal 2 sample P. dopplerEffect Be group 

Here, Promai is the sound data’s original sampling rate and, as with volume, each 

sound that is played has its own rate modifier, Psampte- PaopplerEffect 48 the result of 3D 

processing, applied either in software or by the hardware. Finally, we apply Paroup» 

which modifies the rate of all sounds in the group. 

Pause and Resume 

Pausing and resuming groups of sounds involves a few logic decisions. In most imple- 

mentations, it is probably wisest to have the group-level control operate at a level 

above the individual sound states. That is, a sound will play only if both its local and 

group controls are in a “playing” state. Similarly, the group control calls will never 

directly affect a sound’s local control state; a sound that is in paused mode will not 

start playing even if its group is commanded to play. The sound’s lower-level local 

control must also be set to play in order to activate the sound. 

Stop 

Stopping a group of sounds is straightforward enough. In practice, however, many 

sound systems issue callbacks or otherwise post notifications when sounds are finished 

playing. When stopping a group of sounds, you must be sure to trigger the notifica- 

tion system so the game correctly understands the state of the grouped sounds. 

ies 
Defining Groups 

NURSE 

AMET 
BRR IRURR UNNI TCHR 

LAAN AML
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In the basic API outlined earlier, sound groups are identified by an undefined type 

that we simply referred to as group. As it turns out, there are several methods of defin- 

ing groups, each with its own benefits and difficulty of implementation. 
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Simple Group IDs 

The most basic way to categorize sounds is to use a simple integer to identify a group. 
With just a byte, we can manage 256 different groups and, of course, with a full dou- 
ble-word we can manage many millions of groups. While millions of unique groups 
may seem like overkill, the example of the adventure game arises again. Each enclosed 

area in the game could be assigned a different group Id, and the category management 

system suddenly becomes a gross culling system as well. 
Conceptually, management by simple group is straightforward. However, since 

each group will need to maintain some data, mapping categories to Ids requires an 
indirection and some additional management. You certainly won't want to pre- 
allocate 232 group data structures and index them directly. 

Group Bitfield 

Another option is to use an integer as a category bitfield. With a double-word integer, 
we have 32 different sound categories. Using bitfields adds the flexibility of being able 
to control several categories at once by simply OR-ing category flags together. This 
proves to be quite flexible. In fact, it even provides generic “master” control over all 
sounds by simply using a fully set bitfield. Bitfield management is also the easiest-to- 
implement option, as a fixed array of 32 group data structures can be allocated ahead 
of time and indexed directly. 

When using bitfield-based categories, playing sounds takes this form: 

typedef enum 

{ 
SNDGRP_MENU = 0x00000001, 

SNDGRP_VOICE 0x00000002, 

SNDGRP_EFFECT = 0x00000004, 

SNDGRP_MASTER = OXFFFFFFFF 

} SNDGROUP ; 

// fire off a few sounds 
hSndBeep = SndStart(sampleBeep) ; 
hSndHello = SndStart(sampleHello) ; 
hSndGoodbye = SndStart (sampleGoodbye) ; 

// assign them to groups 
SndSetGroup(hSndBeep, SNDGRP_MENU) ; 
SndSetGroup(hSndHello, SNDGRP_VOICE) ; 
SndSetGroup(hSndGoodbye, SNDGRP_VOICE) ; 

// change the pitch of all voices 
SndSetGroupRate(SNDGRP_VOICE, Wasi yas 

// change the volume of all in-game sounds 
// (effects and voices) 
SndSetGroupVolume(SNDGRP_VOICE | SNDGRP_EFFECT, 

0.75f); wi 
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The category bitfield option inherently limits the number of sound categories avail- 

able. In many applications, this will not be an issue, and the simple bitfield method 

becomes the design of choice. However, as in the previous example, there are situa- 

tions when more categories are needed. Even in this case, a wide-bitfield object such 

as std: :bitset or boost: :dynamic_bitset could be used. 

Group Objects 

A third option is to manage sound groups via objects. By creating a class that manages 

sound group data, we allocate only as many group objects as we need. 

Managing sound groups with objects may look something like this: 

// define some groups 

SNDGRP sndGrpMenu; 

SNDGRP sndGrpVoice; 

SNDGRP sndGrpEffects; 

// fire off a few sounds - here we assign the group 

// when the sound is triggered 

SndStart(sampleBeep, &sndGrpMenu) ; 

SndStart(sampleHello, &sndGrpVoice) ; 

SndStart(sampleGoodbye, &sndGrpVoice) ; 

// change the pitch of all voices 

sndGrpVoice.SetRate(1.3f) ; 

// change the volume of all in-game sounds (effects 

// and voices) 

sndGrpVoice.SetVolume(0.75f) ; 

sndGrpEffects.SetVolume(0.75f) ; 

Group management via objects requires some special handling. For example, what 

should happen if a group object is deleted before all associated sounds have stopped 

playing? Will all associated sounds now belong to no category? While situations like 

this are unlikely to arise, they should at least be accounted for. 

It is also possible to structure the system such that the group object acts as a proxy 

for the sound playback controls, and all sound parameters are manipulated via the 

group object itself. This design, however, may prove to be overly complex and upset 

the natural simplicity of most sound APIs. 

Implementation Issues| 
sR NN TE RTE LLM MMGLI
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The following sections address some implementation issues. 

Tracking Playing Sounds 

To dynamically change the properties of a group of sounds, the interface will need to 

keep track of all sounds that are currently playing (or paused). In many instances, an 

existing sound interface may only track sounds individually (by handle or object) and 

not maintain a global list of all active sounds. 
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To be able to dynamically control the properties of a group, the system will-need 
to update each affected sound’s properties when the group’s properties are changed. 
That is, when a call like SndSetGroupVolume() is made, the system will need to access 

and update each currently active sound that is part of the group. 
In APIs that manage playing sounds as objects (not necessarily C++ objects but 

architectural objects), like OpenAL and DirectSound, this commonly involves keep- 
ing a list of all active sounds. When group commands are issued, the list is walked and 
all appropriate sounds are updated. 

In “track”-based APIs, like FMod and the Miles Sound System, it is likely that 
your wrapper API already tracks which sounds are playing on which channels, so 
group management may be a bit easier to implement. 

Simplified, One-Shot Sounds 

One-shot sounds are short effects that a game plays and never needs to control. Gun- 
shots and footsteps are good examples. In many cases, wrapper APIs include simpli- 
fied calls to play back one-shot sounds without exposing dynamic management of the 
sound. A gunshot, for example, is so short in duration that there is no reasonable need 
to change its volume or pitch while it is playing. Instead, the system calculates all 
significant parameters when the sound is triggered, and these stay constant for the 
duration of the sound. A one-shot sound may be triggered by a call like: 

SndPlayOneShot(sample, volume, rate, pan, loopCount) ; 

When implementing sound group management, you will need to decide if it is impor- 
tant to support dynamic group-based control of one-shot sounds. Likely, the answer 
will be no, but if the system allows for uncontrolled playback of longer samples, group 
control may be needed. 

Even if dynamic control is not needed after a sound is triggered, one-shot sounds 
should still be assigned to groups. Thus when the sound’s initial parameters are calcu- 
lated, the group factors will be taken into account. This merely involves adding a 
group assignment to the sound triggering call: 

SndPlayOneShot (sample, group, volume, rate, pan, 
loopCount) ; 

Portability 

As with any interface wrapper you create, it is best to become familiar with all the var- 
ious sound APIs that you may encounter. This will help structure your group manage- 
ment system to make it flexible enough to be used on a variety of platforms and with 
a variety of underlying sound systems. As mentioned earlier, different sound systems 
may take very different approaches to the management of individual playing sounds, 
and understanding these differences is the key to constructing a truly portable API 
wrapper. 
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This simple gem shows how the concept of managing sounds in groups, in addition 

to at the individual level, can be useful and easy to implement. Adding this feature to 

a sound API wrapper may take only a few hours, yet the benefits can be far reaching. 

This is particularly true when the need for group-based management isn't identified 

early in development. Including these features in the sound API also keeps the game 

code base clean and allows for easier inclusion of additional features down the road. 
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7.3 

Using 3D Surfaces as 

Audio Emitters 

Sami Hamlaoui 

disk_disaster@hotmail.com 

ie games today, sound sources are represented by a single point, regardless of the 

type of sound being represented. Gunshots? Points. Laser beams? Two Points. Rain? 

Lots of points. Although this has sufficed up until now, the level of detail in games is 

increasing with each generation of hardware, and while technologies like EAX go 

some way to improving the realism of game audio, all sound still comes from an infi- 

nitely small point in 3D space. We don’t want sound that comes from a point any- 

more——we want sound that comes from an entire surface. 

This gem will show you how to create sound that appears to do just that, with 

almost no extra processing time required and with full hardware acceleration. 

Intrigued? Then read on. 

Method 

Instead of using a single point as the location of the sound source, you use a standard 

geometric primitive such as a line, box, or sphere. Then for each frame, you calculate 

the closest point to the listener on the primitive and send it to the audio API as the 

sound’s position. 

This all seems rather underwhelming until you realize that as the listener moves 

around these emitters, the sound will travel with it. Move parallel to a line and the 

sound will move along with you, keeping the same distance until you move past the 

end of the line, at which point the sound will move behind the listener. As you walk 

around a sphere, the sound will appear to be a point emitter until you walk inside it 

and the sound comes from all directions at full volume, as if the sound is really being 

generated from inside the sphere itself. Use a box to represent rain outside a building, 

only to walk out into the open and find yourself deafened by the sound of th
e rain. 

The best part of it all is that the sound API and the sound card still think they're 

working with points, meaning that the audio is accelerated on the hardware. The only 

thing performed in software is a closest-point algorithm, which is so simple for all the 

emitters that there won't be any kind of performance hit from using it! 
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Section 7 Audio 

In the following sections, four different emitters are covered: the point,-line, 

sphere, and box. Presented alongside each description is a list of components that 
make up the emitter (the origin, direction, radius, etc.), the closest-point equation 
with a line-by-line walkthrough, and a couple of suggestions for what the emitter 
could be used for in a game. 

A Word on Volumes 

As mentioned earlier, once the listener is inside a volume emitter (an emitter that has 

a definable “inside,” like a sphere or box as opposed to a line or point), the sound will 

come from all directions at full volume. This is a deliberate part of the technique and 
can be used for quite a large number of special effects. They aren't listed here, as they 
can be found with the appropriate emitter. Suffice to say that the few examples given 
earlier are only the tip of the iceberg. 

A Word on the Math 

In the list of components for each emitter will be the mathematical representation of 

the variable in the closest-point equation. However, there are a few values that will be 

used in each equation, and it seems daft to include them every time, so they are listed 
in Table 7.3.1. 

Table 7.3.1 Standard Variables 

Name Math Notation Type 

Audio Position A Vector 

Listener xX Vector 

They are defined as follows: 

Audio position: This is the vector that is passed to the audio API. It is calculated 
by the closest-point algorithm. It is represented by A (for audio). 

Listener: This is usually the camera's position. It is where the sound is currently being 
heard from. It is represented by X (because L is used for the line components). 

Two temporary variables are used throughout the equations, too, and they also always 
have the same meaning. They are listed in Table 7.3.2. 

Table 7.3.2 Temporary Variables 

Name Math Notation Type 

Direction Vv Vector 

Distance d Scalar 
ee 
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They are defined as follows: 

Direction: This is the direction from something to something else. Unless stated, 

this value is not normalized and therefore contains distance as well as direction 

information. 

Distance: The distance between something and something else. This is a scalar 

value and is usually used when projecting points towards the listener. 

Points 
Table 7.3.3 shows the point components. 

Table 7.3.3. Point Components 

Name Math Notation Type 
vuanmenteoonenesnaenenteeecomianasatteytetohiceanstsotetenncrsien RS NRMMAAIN 

Origin ee Vector 

The first type of emitter we are going to cover is the point emitter, because although 

this gem focuses on alternatives, for the vast majority of the cases you need to play a 

sound, the point emitter will work fine. It is best if you use the other emitters when it 

suits the effect being created—and only then. Otherwise, stick to the point. 

Using a point emitter is exactly like using points for sound sources. Just set the 

audio position to the value of the point. As points have no properties other than their 

location, the closest point to the point is itself: For completeness sake, Table 7.3.3 lists 

components, and Equation 7.3.1 shows the nearest point on the point. 

AF Pasigin 
(75:1) 

Set the audio at the same location as the point. 

Uses 

As mentioned earlier, this is useful for any small sound effect that isn’t better suited to 

the other emitters. So, that'll be the voices, footsteps, gunshots, small explosions, rag 

dolls hitting things, rocket trails, fire, water dripping, etc. 

Lines oe 

Line emitters come in two flavors: infinité lines and line segments. You will probably 

use the line segments most of the time, but for cases when the line is either very big or 

infinite, the infinite line emitter will suit you perfectly. 
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Infinite Lines 

Table 7.3.4 shows the infinite line components. 

Table 7.3.4 Infinite Line Components 

Name Math Notation Type 

Point on Line Looint Vector 

Direction Lair Vector 

Infinite lines are just that—lines that go on forever. To store them, you only-need to 
keep track of a single point on the line and the direction the line is going in (Table 

7.3.4). To calculate the audio position, you need to orthogonally project the listener's 
location onto the line. Don’t worry if that scares you as it’s very simple to do. Just 

remember that you must use the same point on the line throughout the equation 
otherwise the audio position will be created in the wrong place! 

The closest-point equation for an infinite line is presented in Equation 7.3.2. 

V=X-L. 
point 

d=V-L,, 

A 7 | Pee ie L,,.4 (7.3.2) 

It is created by the following steps: 

1. Create a vector between the listener and any point on the line. 
2. Take the dot product between this vector and the direction of the line. This 

will tell us how far along the line to create the new point from the test 
point. 

3. Set the new audio location by scaling the direction by the distance and 
adding it to the point on the line used in step 1. 

Line Segments 

Table 7.3.5 shows the line segment components. 

Table 7.3.5 Line Segment Components 

Name : Math Notation Type 

Origin Drigin Vector 
Direction Lair Vector 
Length Liength Scalar ee, ee 
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Line segments represent a portion of an infinite line. Like the infinite line, they 

require a point on the line and the direction, but also the length of the segment (Table 

7.3.5). The point on the line should be the start of the line segment, and the length is 

how far away from this point the line ends. 

The audio position is calculated exactly the same as in Equation 7.3.2, except you 

must clamp the distance between the range of zero and the line’s length. If you dont, 

the result will be exactly the same as the infinite line. 

The closest-point equation for a line segment is: 

y = NG Li oicin 

d jie clamp(V ; Li, 0, Lost 

A 5 Li vigin ts L,,4 
(7.3.3) 

It is created with the following steps: 

1. Create a vector between the listener and the start of the line. 

2. Take the dot product between this vector and the direction of the line and 

clamp it between the range of 0 (zero) and the length of the line. This will 

tell us the distance to the new point from the line's origin. 

3. Set the new audio location by scaling the direction by the distance and 

adding it to the line's origin. 

Uses 

Some possible uses include the following: 

Fluorescent Tubes: As the tube flickers on and off, you could have a sound effect 

that plays along with it. Combine it with a dynamic lighting and shadowing 

system for a very atmospheric set piece. 

Laser Beams: Laser beams shot from futuristic rifles are an obvious choice for the 

line emitter, Instead of the sound being generated at the gun's location and the 

impact point, the entire beam will hum with energy. 

eaneiee 
Table 7.3.6 shows sphere components. 

Table 7.3.6 Sphere Components 

Name Math Notation Type 

Origin Sorigin Vector 

Radius Svadins Scalar 
PNAS 
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The sphere is the first of the volume emitters we will cover. Unlike lines orboxes, 

there is pretty much only one way to represent a sphere, and that’s with an origin and 
a radius (Table 7.3.6). As explained in the “Method” section, the volume emitters 

have a special function that occurs when the listener is inside them—the sound is 

played at full volume in all directions. There is no special case math required for this, 
as both the sphere’s and the box’s closest-point equations take this into account auto- 
matically. 

Using a sphere for a sound effect like a small explosion will not give you much 

benefit. In fact, most sphere emitters can be replaced by a point emitter without the 
player noticing the difference. The spheres become useful only when there is a visual 
representation of the sound to go with the sphere, and it’s one that the player can walk 

into and out of. Note that the boxes do not suffer from this, as they change the way 

the sound moves (along a single axis as opposed to spherically, like the points and 

spheres), and therefore can’t be replaced by any other emitter. 

The closest-point equation for a sphere is provided in Equation 7.3.4. 

Ve S origin 

d= min({V S| 

A=S. 4, +Vd (7.3.4) 

It is created with the following steps: 

1. Create a vector between the listener and the center of the sphere. 
2. Take the smallest value between the magnitude of this vector and the radius 

of the sphere. This will be how far away from the sphere’s origin to place the 
sound source. If the listener is inside the sphere, the magnitude will be the 
smallest, otherwise, it’ll be the radius. 

3. Calculate the source position by scaling the normalized vector by the dis- 
tance and adding it to the sphere’s position. This point will be on the sur- 
face of the sphere if the listener is outside, otherwise, it will be at the same 
place as the listener. 

Uses 

Some possible uses include the following: 

Explosions: Although most small explosions are best represented with a point 
primitive, if the explosion has an expanding radius, the sphere emitter would be 
the best option. It would be even better if you could tie in the radius of the 
emitter with the radius of the shockwave on screen. 

Shields: When surrounded by a shield, the noise will appear to surround you. To 
those outside, it will be generated on the surface. The bigger the shield, the 
more obvious the effect. If the players can walk into and out of the shield, it is 
another way of letting them know that they’re inside it. 
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Boxes 

Table 7.3.7 shows box components. 

Table 7.3.7. Box Components 

Name Math Notation Type 

Origin Bargin Vector 

Min Bounds Brin Vector 

Max Bounds Bas Vector 

Axis-aligned box emitters are probably the most useful to designers after points. As 

most game entities already have a bounding box defined, having a sound emit from it 

doesn’t require any extra calculations, other than the closest point! Sound on the box 

travels on two axes at a time (xy, yz, and xz). This means that as you walk parallel to 

the box, the sound will always appear to be the same distance away from you until you 

completely walk past it, at which point it will stick in the corner until you walk down 

another side. Of course, being a volume, as soon as the listener is inside, sound will 

come from all directions at full volume, but you should know that by now. 

There are two ways of storing bounding boxes: offset and absolute. Offset boxes’ 

bounds are relative to the box’s origin, while absolute boxes contain real values in 3D 

space. Remember that unlike the segmented and infinite lines, both offset and 

absolute boxes will produce exactly the same results—they are just two different ways 

of storing the same information. Table 7.3.7 provides the list of components for both 

boxes, although the origin is only used for the offset type. 

The two closest-point algorithms for a box are presented in Equations 7.3.5 and 

7.3.6. 

A =clamp(X,B,,,.B,,.) (7.3.5) 

A= clamp(X,B yo, + Bain Byrsin + Bow) (7.3.6) 

This does the following: 

1. Clamp the components of the listener to the minimum and maximum 

bounds of the box (Equation 7.3.5). 

2. If the box’s bounds are centered around [0,0,0] instead, you must add the 

box’s origin before the clamp takes place (Equation 7.3.6). 

Uses IOHN Wit 

Some possible uses include the following: 
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Environment Effects: For example, you're standing at the end of a long corridor. At 
the end is an open door that leads to the outside. You can hear the rain from a 

distance. As you move closer to the door the rain gets louder and louder until 

you are outside and the rain is coming from everywhere, deafening you, making 

you unaware of the masked figure approaching stealthily. 
The Block Puzzle: Every time a block is moved into the wrong position, it could 

flash blue and red and produce a deafening screech at the player. 

Summary 

This gem, has shown you how to create the illusion of sound coming from an entire 

surface. However, just because only a few different objects are covered doesn’t mean 

that this is all you can use—polygons, planes, cones, and if you really want a chal- 

lenge, convex hulls for brush-based levels, will all find their place in a game engine. 

For games using a full physics SDK, you should ideally provide an emitter for every 

primitive available (and then some). 

If you do decide to implement this technique, don’t bury the emitters under a 
mountain of options and menus that the designers will never find, as it defeats the 

whole purpose of providing them in the first place (unless of course they implement 

the block puzzle idea mentioned earlier, in which case, bury them as deep as possi- 
ble!). Make emitter creation and placement as intuitive as possible, and try to provide 
a way of binding them to the movement of game entities or exposing them to the 
scripting language so they can be further tweaked and enhanced. 

Finally, if you have any comments/ questions/praise/flames about this gem, by all 
means, please e-mail the author. 

On The CD-RO 
IOI ERE ERE ELSA EROS TRUOTS RTA Se sc sieiilihiiiiiacien Docent ciel: 

C<» In the audio folder on the accompanying CD-ROM, you will find a small demo that 
ONTHECD shows off the five (the two boxes count as one) emitters covered in this gem. It uses 

GLUT for the framework and FMOD for the audio processing [FMOD05]. FMOD 
is one of the easiest to use and most fully featured audio APIs out there and is free for 
noncommercial use. Check out the reference at the end of the gem for more details. 

The closest-point algorithms are in Primitives.cpp, and the emitter-management 
code is in Emitters.cpp. Feel free to play around with the source code and add a few 
more emitter types to it to test out your ideas. There are absolutely no licenses attached 
to the source code, so any new code you come up with (and the original code) can be 
used in a commercial engine without fear of lawsuits, bad press, or hissy-fits. 

References 
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of apie that appears once ina while on DSP-oriented mailing lists is, “How can 

calculate a reverb effect?” The questioner usually wants to know what computa- 

tion is necessary on a sound signal to make it appear reverberated, like what happens 

in a real room. Many commercial programs and hardware devices demonstrate that 

this can be done. 

Usually, the common answer to this question is “this is black art,” because the 

theory is age-old, and tinkering with the implementation 1s everything. Often a hint 

to some permutation of Schroeder's comb filters ({Schroeder62], [Moorer79]) is 

given. People who then try to implement their own reverb effect based on published 

material are soon disappointed. 

This gem aims to introduce Feedback Delay Networks (FDN5s), which date back to 

Gerzon [Gerzon76] and Stautner and Puckette [Stautner82]. An excellent review 

about EDN reverberation can be found online [SmithOnline], although you will not 

find a single line of code there. FDNs are kind of the granddaddy of delay networks, 

because it has been demonstrated that other algorithms, including Schroeder's, can be 

formulated as special cases of an EDN ({Jot91], [Smith96]). An FDN with a specific 

tone-correction filter has been patented [Jot93]. 

How to Apply This Material 
LNRM

 ETL LLL TT TNT TT NSIS ELSI 

This gem is focused on a reverb algorithm, not on using a specific sound API. As such, 

the audience that benefits the most from this gem includes people that currently have 

no ready-made reverb solution at their disposal. All other people are invited to enjoy 

reinventing the wheel for possible insight and better understanding of existing solutio
ns. 

729 
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By the end of this gem, you will have a function that can process audio buffers. 
Such a function may be plugged into anywhere your sound system allows, for manip- 

ulation of audio streams. For example, the FMOD sound system [FMOD], which is 

available for various platforms, has the concept of custom DSP filters that can be 

plugged into the audio stream exactly for this purpose. The same holds for Direct- 
Sound, where you could attach a custom effect implemented as a DirectMediaObject 
to any IDirectSoundBuffers via the SetFX() function [MSDN]. 

What would be really nice to have is a form of audio shading language, which 
would allow for a standard way to express user algorithms executed on sound hard- 
ware. Without such a mechanism, we are bound to consume CPU power whenever 

we want our own effects. Luckily, audio data does not demand much in terms of 

bandwidth, and platforms without dedicated sound hardware would use the CPU 

anyway, so no loss there. 

What is Reverb? 
BESS EES LEE CELE LEE TLE ESN LEELA EE ELIE RELI EEE DLE ELON ELLIE ES EN LIES IEEE EEE EILEEN EOIN EOIN EEN 

A smooth reverb is perceived when echoes arrive so densely packed that they become 

inseparable to the ear. But they must do so randomly, not in a regular pattern. Think 
of what happens when you snap your fingers in St. Peter's Cathedral. Imagine the 
sound wave originating from your hand and expanding in all directions. Soon it will 
hit the first obstacles, and the first reflections will arrive at your ear. Then come the 
reflections of the reflections. Then come the second and third indirect reflections, and 

so on. The average number of echos per second increases with ¢?, while the average 
number of resonant modes per Hz increases with f?. Figure 7.4.1 shows the first sec- 
ond of the impulse response of an ideal rectangular room. 

= if Mle
 , 

FIGURE 7.4.1 Zime and frequency plot of the impulse response of an 
ideal rectangular room. 

A real-time reverberator that aims to mimic this process is plagued with multiple 
problems. First, for a real-time application, you stand no chance but to model the 
process statistically, since the brute force approach—integration over the simulated 
volume, a 3D simulation—is prohibitively expensive even for the simplest of rooms. 
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The FDN is sort of a vectorized 1D-simulation that can develop an increasing echo 

density over time but not an increasing mode density over frequency, which results in 

artifacts like ringing tones. 

The Fepdise cay motwork 
See Figure 7.4.2 for a circuit diagram of an FDN with four channels. 

FIGURE 7.4.2 Circuit diagram of a Feedback Delay Network. 

The heart of an EDN is a feedback loop with the 7 delay lines z and a square n X n 

feedback matrix A. In case you are unfamiliar with the z-transform: multiplication 

with z raised to the power —m stands equivalent to a delay of m samples, a notation 

common in digital audio. The elements a; of the feedback matrix control how much 

signal from line 7 is taken back to line j. The input signal, x, is multiplexed prior to 

entering the feedback loop by the input matrix c. Likewise, the output signal, yj. is 

formed as a weighted sum over all channels by the output matrix d. Alternatively, you 

could directly access the four output channels to have four uncorrelated signals to 

place into the listener's 3D space. 

The key feature of an FDN is the signal traffic between the delay lines. An echo 

from the output of one delay line enters all other delay lines, being echoed by all of 

them, then each echo again enters all other delay lines, etc. Figure 7.4.3 shows the 

first second of the impulse response of a four-channel FDN. As you can see, the 

build-up of echo density is quite similar to that found in the rectangular room. The 

spectrum plot however reveals that the resonant modes are distributed uniformly over 

the frequency range and not packed as densely. This is the tribute to pay for the com- 

putational effectiveness. 
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FIGURE 7.4.3 Time and frequency plot of the impulse response of an FDN. 

Let’s talk some code. We choose to build an FDN with four delay lines, which are 

implemented as simple, ring-buffered FIFOs. We also assume that all samples are 

floats. The state needed so far: 

class FDN4{ 

float *line[4]; // memory for 4 delay lines 

unsigned size[4]; // the size of the delay lines (always 

// power-of -2) 
unsigned mask[4]; // size — 1, replaces modulo operation 

unsigned read[4]; // read cursors for FIFO 

unsigned write[4]; // write cursors for FIFO 
float A[4][4]; // feedback matrix 

float c[4]; // input matrix 

float d[4]; // output matrix 

ey 

}5 

The workhorse of the FDN is a process() function, which implements the machin- 
ery as depicted in the circuit diagram. In this function, almost all statements are 
4-tuples of the same operation, which is why they are abbreviated here with // etc 
cn tO SAVE SPACE, 

void FDN4::process( float *output, const float *input, unsigned n ) 
{ 

for( unsigned k = 0; k <n; k++ ) 

{ 
// step 1: read signal from the delay lines 
float r[4]; 

Ppoye=Line[O][ read[o] 1; 

Hf Ee 
// step 2: apply output matrix and output 
OUTPUELK) =or[O) ed[0) tortie d it jot r[2] * d[2]) + 

r{3] _* [3]; 

// step 3: apply feedback matrix 
float w[4]; 

WLO] = r[O] * A[O][0J + r[1]-* ALVI[G) * ele * Arey oy oe 
mis] * Als) [005 

LE REO, 
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// step 4: apply input matrix and add 

w[0O] += input[k] * c[0]; 

[A GO arc 
// step 5: inserted later 

// step 6: write signal into delay lines 

line[O][ write[O] ] = w[0]; 

SCLC x 

// step 7: bump cursors 
read[O] = ( read[O] + 1 ) & mask[0]; 

write[O] = ( write[O] +1) & mask[0]; 

PY RO F 

Choosing the Right Feedback Matrices 
SORT TI RSIS RS EEN EIEN LN RENNES 

This section gets a little bit mathematical. In Smith’s insightful online book 

[SmithOnline], he discusses special classes of feedback matrices, which are unitary 

(AT = A), or more generally, lossless. A lossless feedback matrix does not change sig- 

nal energy as it circulates through the feedback loop. An EDN with such a matrix is 

either called a lossless prototype [Smith96] or a reference filter [Jot91]. One advantage of 

lossless matrices is that with some of them, a matrix-vector multiply can be optimized 

to O(n) time, instead of the usual O(n’). 

An nX n feedback matrix Ay is lossless, if and only if it has N linearly indepen- 

dent eigenvectors and its eigenvalues are of unit magnitude. All orthogonal rotation 

matrices, with and without reflection, can be used as lossless feedback matrices. The 

“density” of the matrix, which is how many nonzero elements it contains, determines 

the richness of the cross-coupling and therefore the speed of echo build-up. 

A particularly attractive class of matrices is the Householder reflection, which is 

orthogonal and contains no zero elements. Assume U,, is an n X n matrix with each 

element set to one, and I, isann xn identity matrix, then 

A, =1,—U,: 

A Householder reflection is especially nice in the 4 x 4 case, because all elements are 

of the same magnitude. A matrix-vector multiply can be implemented as one swizzled 

vector addition and three swizzled vector subtractions: 

1 -1 -1 -1 

j}-1 1..-1 -1 
tees 

as tl le 
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€<> A variety of other matrices can be tried. See the source code included on-the CD- 
ONTHECD ~=ROM that implements a wealth of other possible feedback matrices, all of which are 

unitary. The choice of the feedback matrix can make a difference! While ultimately 
the sum of all delay lengths determines the number of resonant modes (the order of 
the system), the feedback matrix controls the locus of them. 

Choosing the Right Delay Lengths 
HE RDNA ENTE IEEE ESSENSE ONES EY RE TI EOE LIAO EER 

The time of arrival of the first echoes is the most important clue to the human ear of the 
size of the environment. This means that the lengths of our delay lines directly reflect 
the dimensions of the simulated room. For example, at 44.1 kHz sampling frequency, 
sound travels about 3/4 of a centimeter per sample. A 6 by 10 meter room would thus 

be modeled by setting the lengths of the shortest delay lines between 800 and 1,200 
samples. The other delay lines should be chosen with an eye to increasing the order of 
the system, because we are in dire need of every resonant mode we can get. 

Next, a classic suggestion demands that delay lengths be incommensurate 
[Schroeder62]. A minimum requirement states that the delay lengths are mutually 

prime, but a good “incommensuracy” is most easily done with some graphic help. 

PLLC TILE NEL 

© 887 
oO+0X 0 + oOX oF OO >< phe 

+1543 
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FIGURE 7.4.4 Echo taps of four delay lines. 

Figure 7.4.4 shows the echo taps of four different delays on a common time line. 
As you can see, care has been taken that no integer multiple of one delay length over- 
laps an integer multiple of another. When faced to trade early coincidence for late 
coincidence, the priority should be to eliminate early coincidence. 

If you want the room size to be adjustable in real time, you need an algorithm to 
set delay lengths upon request. An acceptable solution is to scale a series that is known 
to be incommensurate to the requested room size, possibly rounding the result to the 
nearest prime number. Two of such series for a four-channel FDN are presented here, 
their main difference being the third delay line placed before or after the second tap of 
the first delay line. 

Series A: 1.0000, 1.5811, 2.2177, 2.7207. 
Series B: 1.0000, 1.4194, 1.6223, 2.2401. 
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The CD-ROM includes a spreadsheet that generates diagrams similar to that shown 

ONTHED +: jai auret7/:4i2e 

Controlling Reverberation Time ENTREE SRR aude 

So far, our system is a unitary FDN, where the accumulated signal is circulating for- 

ever inside the feedback loop, so we need to add energy loss. Since most rooms have 

more or less high-frequency damping, we want to allow low frequencies to live longer 

than high frequencies, so we need the energy loss to be frequency dependent. We are 

going to insert a scalar gain, g;, with |gi| < 1 in front of each delay line i. Additionally, 

we insert a first order filter with a single coefficient 0; which affects only the higher fre- 

quencies ([Moorer79], [Jot91]). The product of both the scalar gain and the filter 

gives an overall frequency dependent gain g,(f)- 

Insert the following code as step 5 of the FDN: :process() function: 

// step 5: run the signal through a scalar gain and filter 

// before entering the delay line 

WiOle= GlOles ( filter[.o)} 45 alpha[O}] * (cw[0] — filter[0] ) ); 

Ll CRY oe 

Also, augment the FDN class with this new state: 

float filter[4]; // state variables of the attenuation filter 

float alpha[4]; // filter alphas 

float g[4]; // scalar feedback gains 

What follows is presumably the most mathematical part of the whole gem, 

because we are going to derive g; and 0, for arbitrary reverb lengths. Let’s express our 

control parameters as halflife (no pun intended), A(f’), which we define as the time it 

takes for a sinusoid of frequency f to decay to half of its amplitude. We define A, = 

(0), the desired half life at the low end of the spectrum at f= 0 (DC), and Ay = Mf) 

the desired half life at the high end of the spectrum at half the sampling frequency f, 

(Nyquist limit). Since the signal is not attenuated continuously but rather in intervals 

of the delay length m,, the logarithm of g,(f) must be proportional to that interval. 

Specifically, 

g(f) =2, 

where m; is the length of delay line 7, expressed in the same units as Mf). 

So far, so good. The filter as shown in the previous code may be familiar to you as 

decaying average, Or as something with another name. It’s really the common construct 

that blends the last output with the current input, and it satisfies the recurrence relation: 

Ve= Xt (1 — OH) Yer, 
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where y; is the filter output, x, is the filter input, and o is the filter alpha. Using the 

z-transform [Mathworld] we can obtain the system transfer function H(z) of this fil- 

ter. The z-transform replaces time shift with a multiplication by z, so we can factor 
out x, and y,: 

y, =ax,+(1- Ov Z. 

=a = H(z) 
x, 1-(-a)z" 

By plugging in z = exp(j27. f/f.) to represent sinusoidal signals of frequency f, we can 

calculate the frequency response |H(f)| for any filter parameter a. In the previous 

expression, j is the unit imaginary, so complex math is going on here. We are inter- 

ested in the special cases f = 0 and f = ; f,, which correspond to A, and Ay, respec- 

tively. These can be shown to reduce to: 

f=90->z=1 —4H()=1, and 

pel psy pee ue 
De 2-a 

The result H(1) = 1 shows that the filter indeed leaves the low frequencies unaffected, 
so the scalar gain g; can be directly calculated from A,. For the high end of the spec- 
trum, the filter alpha ©; is set such that H(—1) corresponds to the attenuation not 
accounted for by g;: 

gZ= QamilAL 

q-milay 2p 
a= ahs with B. = 

pide earl votes 
In case you are lost in all these formulae, just recap that we calculated g; and 0, to get 
a controlled energy loss according to Ay, and Ay. 

Sweeping and the Problem of Fractional Delay 
RETIRE IAAT TET ST Pe EN 

We want to make the delay lengths of our FDN time variant, which is also known as 
sweeping. The benefit of sweeping is a reduction of annoying stationary waves that 
would otherwise build up in a static FDN. Sweeping has been shown to increase the 
quality of the output, or reduce the number of necessary delay lines [Frenette00]. A 
sufficient effect is archived by varying the delay lengths a few percent at a slow rate 
(0.5—2 Hz). If you overdo the effect, you get pitch shift. 
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As we smoothly vary the delay lengths over time, the read cursors of our delay 

lines need to point “in between” samples. This is known as fractional delay, a problem 

similar to texture filtering. Rest assured however that audio is an order of magnitude 

more sensitive to aliasing noise than graphics, so nearest-point sampling is not an 

option. Next, the problem with linear interpolation is blurring, and you can see in 

Figure 7.4.5 (middle) how this kills us. Here, one second of repeatedly going through 

linear interpolation sufficed to have eaten all frequency content above 8 kHz. 

FIGURE 7.4.5 Cross-section frequency plot of an FDN impulse response at t = Is. No 

sweeping (lefi), sweeping with linear interpolation (middle), and sweeping with lin- 

ear interpolation and compensation (1 right). 

There exist a number of sophisticated fractional delay algorithms [Valimaki00], 

and as an example, Frenette uses all-pass filters for his FDN. Here you'll see how it is 

possible to stay with linear interpolation, and instead adjust our filters for an extra 

high-frequency boost that compensates for the average loss due to blurring. See in Fig- 

ure 7.4.5 (right) how this actually works out. 

First, we introduce new state to our EDN class to accommodate fractional read 

cursors. 

float p[4]; // partial read cursors position 

// (always stays inside Op) 

float dp[4]; // sweeping velocities 

Replace step 1 as follows. Step 1a will just integrate the sweeping velocities over time 

and bump the integer cursor on occasion: 

// step 1a: add sweeping velocities to the read cursors 

p[0] += dp[0]; 
| POCO a = 

read[O] = ( read[0O] + int( floor( p[0O] ) ) ) & mask[0]; 

Lim CiCm ac « 

p[0] = p[0] — floor( p[0] ); 

I MELCs chats 
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Then in step 1b, we linearly interpolate between the two samples neighboring the 
read cursor. We also change the code to do the regular advance of the read cursor in 
the midst of the linear interpolation (so step 7 is left as the advance of the write cur- 
sor only): 

// step 1b: linearly interpolate between the 

// samples next to the read cursor, and advance integer cursor here 

float r[4]; 

r[O] = line[O][ read[0O] ]; 

(if RCC. otic 
read[O] = ( read[O] + 1 ) & mask[0]; 

fin fps OTE C ipere cage 

rLOvet= plot FC tine[0l[ read{o] | — [Ol ); 
/ {meeC™ 1. 

What is not shown here is the code that slowly modulates the sweeping velocities, 
which is a simple sine table lookup or other modulation waveform, and can be done 
sparsely, like every 16-64 samples. 

Let's fight the blurring. Linear interpolation is in effect a first-order finite impulse 
response filter, which may be cancelled with a first-order infinite impulse response 
filter, just like the one that is already in place in our feedback loops. We want to 
calculate which adjustment must be made to the filter alphas ; to compensate the 
blurring. 

The transfer function of linear interpolation would be written as follows: 

WAR © let 2)» rts oo 

H(z)="=1- p+ pz, 
k 

Here, p is the current partial position of a read cursor. If p = 0, we are sampling inte- 
ger positions and no blurring is introduced, while with p = 1/2, the blurring is at max- 
imum. Let's assume that p is moving so fast that we get the net effect of a random p. 
For this case, we can calculate the integral of the absolute value |H(z)| and come up 
with 

1 1 

Jli-p+ pz |p =| Jp? - yp + lap, with y =2-2cos(2r f/f). 
0 0 

The interesting result is at the upper end of the spectrum, at f= f,, where the integral 
simply evaluates to 1/2. Therefore, we could try and adjust all our filter alphas as to 
increase by a factor of 2, and have a compensation for average blurring. 

But not so fast here; this works as long as p is in effect random, but when it is not, 
the system may eventually blow up. Imagine a partial read cursor being stationary at 
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or close to zero for long enough; the high frequencies would be amplified into infin- 

ity. In practice, the compensation factor must be less than 2 and needs to take into 

account the sweeping velocity dp, where the full compensation only kicks in if dp is 

es sufficiently high. To achieve this, the example program on the CD-ROM uses a 

ONTHECD smooth saturation curve, which saturates at 1.7 and falls with dp? if dp is below 10°. 

Specifically, the program calculates: 

0.7dp* 
2281 [t+ — 

P, a oa. 

and recalculates the filter alphas Bi from Bi' every time dp changes. 

Conclusion and Possible Improvements 

So far, the general concept of FDN reverberation has been introduced, and the most 

important parameters—feedback matrices, delay lengths and reverberation times— 

have been discussed. More infrastructure would be needed to get the sound to the 

EDN and from the EDN to the listener. An example of how this can be done is shown 

€<» in the example program, which is included on the CD-ROM. This program lets you 

ONTHECD play stereo wave files through the discussed four-channel FDN and experiment with 

different reverberation settings. To give you a quick start, the CD-ROM also includes 

two sample wave files, which are dry (unreverberated) excerpts of a game music remix. 

In a 3D setting, it would be possible to associate the channels of a four-channel 

FDN with the front, left, right, and back directions of the listener's space. Then, 

incoming sounds would be distributed to the delay lines according to their relative 

directions. The aim of this setting is to produce gradual decorrelation, where the late 

reverb comes equally from all directions while the early reflections are coupled to the 

sound source position. 

Multiple rooms with different parameters would need to be simulated with mul- 

tiple FDNs, and the results weighted. A transition of parameters of a single FDN gen- 

erally does not produce meaningful results but can nevertheless be used for interesting 

special effects. 
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Introduction to Single- 

Speaker Speech | 
Recognition 

Julien Hamaide 

julien_hamaide@hotmail.com 

n the past years, much effort has been made in the fields of 3D and artificial intel- 

ligence but not in the area of human-computer interfaces. In a majority of games, 

our interactions are still limited to traditional peripherals: keyboard, mouse, joystick, 

or joypad. This gem presents a technique that will introduce a new dimension to these 

interfaces: the voice. With the recent apparition of recording systems on consoles, this 

new type of interaction makes sense. Moreover, it can be the basis for a new type of 

gameplay. 

This gem introduces a single-locutor recognition technique based on examples. 

This technique is easy to implement, does not ask for much processing power, and is 

easily integrated in existing software. It does not try to understand the meaning of 

entire sentences, but rather tries to recognize isolated words. Demo software is pro- 
pers 

ontuecp ~~ Vided on the CD-ROM, so you may evaluate the system. 

Introduction 
ei ES ERTS NTE LOTTE HELE er 

Speech is a pretty complex signal. Its human origin, made of imprecision, makes it 

difficult to analyze. In this section, the structure of a speech signal will be briefly 

‘ntroduced. In addition, the acoustic properties that make its recognition more diffi- 

cult will be pointed out. 

Voice is a signal produced by our body and our brain. The latter corrects it and 

adapts it continuously, thanks to the feedback received through the ears. The produc- 

tion of voice results from the circulation of the air through the vocal cords of the lar- 

ynx. As the air passes through the vocal cords, it makes them vibrate, which results in 

the production of sounds. 

A speech production model can be seen in Figure 7.5.1. 

741 
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Brain Control 

Vocal Cords Vocal Tract 

FIGURE 7.5.1 Speech production model. 

Our languages use two different types of sound: the voiced sound, produced by the 
vibration of the vocal cords (for example, vowels); and the unvoiced sound, which 

does not use the vocal cords (such as consonants #, v, and s). Figure 7.5.2 shows a 
comparison between voiced and unvoiced sounds. The phoneme z is a voiced sound, 
whereas ¢ is an unvoiced sound. 

YP by Lay ial iy iN i MA lM 

(a) 

FIGURE 7.5.2 Comparison between (a) voiced sound and (b) unvoiced sound. 

The major problem when dealing with speech is the great instability of the pro- 
duced signal. Actually, the production of speech is dependent on the brain’s control of 
different organs: the lungs, the vocal cords, the tongue, and others. As our ear is 
insensitive to these weak variations, these are not controlled consciously. For a com- 
puter system, it is necessary to extract features as independently as possible from these 
variations. 

An important parameter of a speech signal is its fundamental frequency, also 
called pitch. The fundamental frequency of a speech signal is the frequency at which 
the vocal cords vibrate. For a man, it varies from 70 to 250 Hz, while for a woman or 
a child, it varies from 200 to 600 Hz. Due to the high variability of the pitch, features 
independent from it need to be extracted. 
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The other important parameter to take into account is the useful bandwidth. It is 

common to fix the limit of this bandwidth at 3400 Hz in speech processing. Accord- 

ing to Shannon's theorem, the sampling frequency has to be around 8 kHz. Most of 

the time, we only have access to a 44.1 kHz sampled sound. For speed and simplicity 

reasons, an 8820 Hz sampling rate is used, i.e., 1/5 of initial frequency. The conver- 

onTHECD sion procedure is available on the CD-ROM. 

Becagnwonisystem S 
The recognition chain is composed of two distinct blocks, as shown in Figure 7.5.3. 

The first one discretizes the whole signal into a discrete set of numeric values. This set 

is then presented to the input of the second block. A distance measure between the 

references contained in the database and the signal is performed. The nearest refer- 

ence is then chosen as the matching one, and its identifier is returned. In the follow- 

ing, the implementation of the system and its limitations will be discussed, and a 

solution for each limit will be proposed. 

Word 
Output 

Sound 

Input 

Instance 

Matching 
Feature 

Extraction 

Example 
Database 

FIGURE 7.5.3 Speech recognition chain. 

The technique described here has to be able to detect the presence or absence of 

a speech signal. In order to not waste computing power, a “push the button when I 

speak” system can be used. The player pushes the button during the pronunciation of 

the command. This allows some simplification of the recognition system. 

Feature Extraction _ ——— a aeeeueeaeimmeaameuaal EO ELT LE LEIS 

Feature extraction is an important step in the speech recognition process. The tech- 

niques that give the most accurate results are presented here, but a more general 

overview can be found in [Schalkwyk]. Actually, feature extraction allows the dis- 

cretization of a signal slice into a fixed set of numeric values. The length of this slice 
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has to be fixed. The signal within the slice is supposed to be pseudostationary. Experts 
have decided to take a 20-30 ms slice every 10 ms. A feature vector is produced every 
10 ms. The words are then represented as sequences of vectors. Before performing any 
processing on a slice, a pre-emphasis filter is applied in order to spectrally flatten the 
signal (Equation 7.5.1). A Hamming’s window is then applied to get rid of the border 

effect. 

y(n) = x(n) — 0.9*x(n — 1) (5:1) 

Figure 7.5.4 shows the original slice (a), the Hamming’s window (b), and the result- 
ing slice. We will now introduce the different feature extractions from this 30 ms of 
signal. 

(a) (b) (c) 

FIGURE 7.5.4 = (a) Slice of signal, (6) Hamming’ window, (c) result of Hamming’ win- 
dow on the slice. 

LPC 

The LPC (Linear Prediction Coding) analysis, used in [Edwards02], attempts to 
model the speech production using a linear system. The method tries to find the lin- 
ear combination that estimates the best sample x(n) from the ¢ last samples, t being 
chosen to get the desired precision degree. Equation 7.5.2 shows the estimation func- 
tion. The interesting coefficients are a;, which represent weights obtained from the 
linear prediction. 

x(n) = e(n)+ ke a,x(n—1), with e(n) being the residual error. (7.5.2) 
i=l 

One can show that the frequency response of the linear filter from Equation 7.5.3 is 
the envelope of the spectrum of the studied signal. 

x(n) = Y-4x(n =) (7.5.3) 
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Magnitude (dB) 

Ey 

ON THE CD 

Figure 7.5.5 depicts this phenomenon. This representation has the advantage of being 

independent from the fundamental frequency of the signal. The order of the method 

represents the number of samples used for prediction. The number of coefficients a; is 

equal to the order of the method. For the recognition process, an analysis with an 

order equal to the sampling frequency in kHz plus 4 is performed. In this case, an 

order of 13 will be used. Higher order coefficients are not interesting, because they do 

not carry enough information. 

The computation details have been treated in [Edwards02], so we will not linger 

on this problem, as the code is also available on the CD-ROM. 

Magnitude (dB) 1 1 ~--4-----1-,-----Hf + - 

| L | i | | hice L “09 i 

0.2 03 04 0.5 0.6 0.7 08 0.9 i 0 01 0.2 03 0.4 0.5 0.6 07 08 0.9 1 

Normalized Frequency (>7trad/sample) 
Normalized Frequency (><7trad/sample) 

(a) (b) 

FIGURE 7.5.5 (a) Signal spectrum, ( b) frequency response of the LPC filter. 

Unfortunately, these coefficients are unstable, and they change significantly for 

small signal changes. Therefore, they will be transformed into cepstral coefficients c(i) 

with Equation 7.5.4. p is the order of the LPC analysis. This recurrence allows us to 

find more stable coefficients suitable for the recognition process. 

i-l k 

c(i)=a,+>, Lim i Re ‘1 1.2 (7.5.4) 

k= 

These coefficients, although giving good results, do not take into account the nature 

of human hearing. Another technique, a little more computationally expensive, can 

be used. This technique is called Perceptual Linear Prediction (PLP). 

PLP 

This technique is another type of LPC analysis adapted to human hearing. The con- 

cept lies on two properties of the human ear: 

* The spectral resolution of hearing decreases when the frequency increases. 

° The ear is more sensitive to medium frequencies. 
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This technique will not be explained in detail, given its mathematical complexity. The 
Ex interested reader can refer to [Boite00] and [Costache02] for more information. 

ON THE CD The code related to this technique is also available on the CD-ROM. 

Signal Energy 

The last introduced parameter is the variance of the signal 62, an image of the energy 

of the slice. This parameter allows us to distinguish marked parts of the word (tonic 

accent, more energetic phonemes, etc.) from others. Equation 7.5.5 shows the evalu- 

ation formula for variance. 

ae qa ew- Ry 

Ke LOO) (7.5.5) 

Even if the energy is an important parameter, it is not usable in its current form. Actu- 
ally, if the player speaks louder, the energy increases and moves away from the refer- 
ence value. Therefore, we will use the relative variation of energy (Equation 7.5.6) 
instead of its absolute value. 

AC (n)= (7.5.6) 

Conclusions 

To perform speech recognition in video games, two methods can be used: the LPC 
analysis, which is computationally inexpensive, and the PLP analysis, which demands 
more processing power but also gives better results. They both produce 13 coeffi- 
cients. The choice must be made considering the available computing power and the 
desired precision. 

Whatever method is chosen, the vector contains 14 coefficients (13 coming from 
the LPC or the PLP, 1 from the variance) that will compose the identity of the slice. It 
will be denoted as the acoustic vector in the following sections. 

Instance Matching 
ens a ou a! 

The set of feature vectors is now available. We will use them to retrieve, among the 
references, the closest one from the presented word. To measure the distance between 
two words, called distortion, we have to define a distance between two acoustic vec- 
tors. We choose the Euclidian distance (Equation 7.5.7) for simplicity reasons. Other 
distances, such as city block distance, can be used. 
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d(x,y) =|x-ylP= LG, 77.) (7.5.7) 

The first approach is to compare vector to vector for each 10 ms slice and to sum the 

distances between each vector’s couples. Unfortunately, a word is rarely pronounced at 

exactly the same speed as we expect. The signal is subject to temporal compression 

and dilation. Therefore, a technique that automatically adapts the rhythm of the 

route of the acoustic vector will be used. This technique is called Dynamic Time 

Warping (DTW). 

The goal of DTW is to find the best path in the sequence of acoustic vectors of 

both words, i.e., the path with the lowest accumulated distance. 

The word to recognize will be referenced as X, the words from the database will be 

referenced as Y;. Figure 7.5.6 represents the type of awaited path. Each axis represents 

one of both words to compare. Each point represents a couple of acoustic vectors. 

FIGURE 7.5.6 Example of the DTW algorithm path. 

To respect the constraints of speech production, the progression of the system has 

to be limited. Constraints have been chosen to respect the nature of speech. The three 

main constraints are: 
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O Our 
FIGURE 7.5.7 Progression constraints. Black dot = starting point. 

The monotonic evolution: Seen acoustic vectors represent a temporal notion, no 
return is allowed. 

The border conditions: The path begins at (0,0) and finishes at (V,M), Nand M 
are respectively the size of the sequence of the reference and the size of the word 
to recognize. 

The progression constraints: One can find in Figure 7.5.7 some examples of 
constraints. Only displayed arrows are authorized displacements. The first 
constraint lets the system be totally free. The second one requires a diagonal 
progression just before a vertical or a horizontal progression. 

Route Algorithm 

To compute the minimal distance, we use the property exposed by Equation 7.5.8. 
The couple (i,/) represents a feature vector couple, i represents the temporal index of 
the vector to test, and j represents the temporal index of the reference vector, D(i,/) 
being the minimal distance to access the point (i, /). p@,j) represents the possible pre- 
decessors of (i,j) (depending on the progression constraints shown in bigare 7.5.7) 

D(i, j) = 4G, + mint D(pG,J))} 

(i, =| X,-¥" | the 
We have to successively compute the accumulated distance for each (i,j) couple grad- 
ually. We do not have to exactly know the traversed path, only the final score is of 
interest. 
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Once each reference from the database has been compared to the words to evalu- 

ate, the one having the smallest distortion is chosen as the solution. A maximum dis- 

tortion threshold has to be fixed, to avoid the execution of a command when the user 

pronounces a word that is not in the reference database. 

Pe More information about the DTW algorithm and implementation can be found 

ontH#ecp = in [Keogh03]. The DTW code can also be found on the CD-ROM. 

Training ake Nenana 

Before being able to recognize words, a database must be constituted. Therefore, the 

user is asked to pronounce the words to recognize a fixed number of times. The 

sequences of acoustic vectors are then extracted from the recordings. These vectors 

will be saved for two reasons. First, we do not have to perform feature extraction again 

on references, and second, the space needed to save these vectors is smaller than stor- 

ing samples of the signal. If the recording conditions are good, or if the vocabulary is 

limited, two or three recordings will be enough. In a noisy environment, or with a 

bigger dictionary, it could be necessary to record about 10 examples of each word. 

Limitations _ 
This very simple system, in adapted conditions of use (using a microphone of suffi- 

cient quality, in a quiet environment) gives results near 100%. Unfortunately, it has 

many limitations. 

First, the system is sensitive to environmental noise. Therefore, its use should be 

limited to a quiet room. Some signal-processing techniques can be applied to remove 

this environmental noise. If the background noise comes from the game, it is straight- 

forward to subtract it from the signal. 

Second, the recognition process is locator dependent. Other techniques indepen- 

dent from the locutor also exist but need more computation and are greedy for 

resources. 

Third, the complexity of the system depends on the number of words in the data- 

base. As the size of the database increases, the number of references the input word 

will have to be compared to will also increase. The only way to solve this problem is to 

try to extract phonemes from the signal, rather than comparing the word to examples. 

The bigger constraint is the constitution of the example database. The user is 

asked to record examples of command words. In most cases, three recordings should 

normally be sufficient. 

The solution to the limitations described is the use of more complex systems, 

based on probabilistic models, neural networks, or Hidden Markov models. These 

systems are out of the scope of this gem. More information on these systems can be 

found in [Boite00]. 
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STE 
This gem introduces the basics of speech recognition theory and systems. Even if the 
described system is rudimentary, feature extraction is common to all these systems. 
The presented technique is simple, quick, and easy to implement. It gives good 

enough results to be used in videogames. In ideal conditions, the method approaches 
100% efficiency. The technique has its limitations, but it provides a simple way to 

introduce speech recognition in an application. For integration in more complex sys- 
tems, it will surely be necessary to use third-party software, as the problem is far from 
being trivial. With the apparition of sound-recording systems on most recent con- 
soles, speech recognition might play an important role in the near future. 
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About the CD-ROM 

About the Game Programming Gems 5 CD-ROM 
This CD contains source code and demos that demonstrate the techniques described 

in the book. Every attempt has been made to ensure that the source code is bug-free 

and will compile. Please refer to the Web site Attp://www.gameprogramminggems.com/ 

for errata and updates. 

ectens 
Code: The source code and demos contained on this CD are contained in a 

hierarchy of subdirectories based on section name and Gem title and author. 

Source code and listings from the book are included. At each author's discretion 

a complete demo is sometimes included. Windows demos were compiled using 

either Microsoft Visual C++ 6.0 (projects with a .dsw file) or Microsoft Visual 

C++ 7.0 (projects with a .sln file). 

GLUT: In this directory you will find the GLUT v3.7.6 distribution for Windows. 

For Windows-specific information, please visit Nate Robins’ website at Attp.// 

www.xmission.com/~natelglut.html. 

J2SE: Sun’s Java 2 Platform, Standard Edition (J2SE), version 1.4.2, for those code 

samples written in Java. Both the Windows and Linux versions are included as 

self-extracting archives. 

DirectX: If you're running on Windows, you're very likely using the DirectX API. 

For your convenience this directory holds version 9.0 of the DirectX SDK. 

System Requirements 

Windows 

Intel® Pentium®-series, AMD Athlon or newer processor recommended. Windows 

XP (64MB RAM) or Windows 2000 (128MB RAM) or later required. 3D graphics 

card required for some of the sample applications. DirectX 9 and GLUT 3.7 or newer 

are also required. 

Linux 

Intel® Pentium®-series, AMD Athlon or newer processor recommended. Linux ker- 

nel 2.4.x or later required. 64MB RAM recommended. 3D graphics card required for 

some of the sample applications. XFree86 4.0, GLUT 3.7, OpenGL driver, glibc 2.1 

or newer are also required. Mesa can be used in place of 3D hardware support. 
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Numbers with “GPG” proceeding refer to previous editions of the Game Programming Gems Series. 

Numbers without this notation refer to the current volume. 

A 
A* algorithm, GPG2: 250 

aesthetic optimizations, GPG1: 264-271 
costs, GPG3: 295-296, GPG3: 298-300, 

GPG3: 304-305 

D* (dynamic A*), 383-389 
derivative algorithm with improved 

functionality, 367-382 
heuristic estimate function of, 367-368 
Master Node List and Priority Queue 

Open List implementation, GPG1: 
285-286 

multiple solutions returned by, 381 
navigation meshes and, GPG1: 294-295 
nodes, multiple start and stop nodes, 

371-372, 373-379, 380-381 
pathfinding and, 367-382, GPG1: 294, 

GPG?: 315, GPG2: 325 
path planning with, GPG1: 254-262 
performance, 367-382, GPG3: 301-302 
priority queues for speed, GPG1: 

281-286 
pseudocode listing for reference, 368-370 
speed optimizations for, 367-382, 

GPGI1: 272-287 
A Star Explorer program, A* tool, GPG3: 

305 
stochastic maps and, GPG4: 325-326 
tactical pathfinding, GPG3: 294-305 
waypoints and, GPG2: 315 
weaknesses of, GPG1: 261-262 

Abstract interfaces 
described and defined, GPG2: 20-22 
disadvantages of, GPG2: 26-27 
factories, GPG2: 22-23 
as traits, GPG2: 23-26 
virtual destructors, GPG2: 23 

Abstract syntax trees (AST), for programma- 

ble vertex shader compiler, GPG3: 410 

ABT Trees 
vs. binary trees, 162 
cache-oblivious implementation of, 

159-167 
complexity of, 163 
creation of, 161-162 
performance testing of, 166-167 

redundancy and reduction of memory 

footprint, 163-166 

van Emde Boas tree layout, 160 

Acceleration, GPG4: 221-225 

lookup tables and, GPG4: 229 

minimal acceleration Hermit curves, 

225-231 
and velocity on splines, GPG4: 180 

Accidental complexity, GPG2: 258-259 
Accuracy 

far position (hybrid between fixed-point 
and floating-point numbers), GPG4: 
162-166 

large world coordinates and, GPG4: 
162-166 

ActionState class 
GoCap, 233-234, GPG3: 231-232 
for MMPs, GPG3: 509 

Actor class 
GoCap, GPG3: 232 
for MMPs, GPG3: 512-513 

ActorProxy class for massively multiplayer 
games, GPG3: 513 

Adabala, Neeharika 
article by, 539-549 
contact and bio info, xxi 

Address-space management of dynamic arrays, 
GPG4: 85-93 

ADPCM audio compression format, GPG3: 
589, GPG3: 620-621 

Aerodynamics, 395-409 
aerodynamic primitives, 398-406 
of bluff bodies, 399-403 
curve balls, 407 
drag, 404 
fluid properties and standard atmosphere, 

398 
Kutta-Joukowski theorem, 401 
load quantities, 396-398 
Navier-Stokes equation, 398-399, 401 
rigid body dynamics, 396-397 
of slender bodies, 406 
of streamlines bodies, 403-406 
thin wing theory, 403 
for wind-driven particle system storms, 

407, 408 

Ahmad, Anis 
article by, GPG1: 581-583 
contact information, GPG1: xxv 

AI. See Artificial Intelligence (Al) 

AlControlStates, for massively multiplayer 
games (MMPs), GPG3: 509-510 

Aiming, tactical pathfinding and, GPG3: 298 

Air, cellular automata to model currents and 

pressure, GPG3: 200, GPG3: 206 
Aircraft, aerodynamics for, 407-408 
Alexander, Thor 

articles by, GPG3: 231-239, GPG3: 
506-519 : 

contact and bio info, GPG3: xxiii 

Algorithms 
for authentication, GPG3: 555 

bit packing algorithm, GPG4: 573-574 
Bloom Filter algorithm, GPG2: 133 

bones-based collision detection algorithm, 

GPG4: 506-513 
brute-force comparison algorithm, 

GPG?: 228 

collision detection, GPG2: 228-238 
combinatorial search algorithms, GPG2: 

354 
contact reduction algorithms, GPG4: 

253-263 
cPLP algorithm, GPG3: 355-358 
curvature simulation, GPG3: 425-426 
Cylinder-frustum intersection test, 

GPG1: 382-384 

data key evaluation algorithm, GPG4: 
498-500 

D* (dynamic A*), 383-389 

for decals, GPG2: 411-413 
decision tree query algorithm for multi- 

threaded architectures, 345-352 
Diamond-square algorithm, GPG1: 

505-507 
Dijkstra’s algorithm, GPG1: 294 
for dimensional impostors, 531-538 
DP (dynamic programming) algorithm, 

GPG4: 325-335 
dynamic gamma algorithm, GPG4: 

470-474 
for encryption, GPG3: 555 
Fast Fourier Transforms (FFT) and, 

GPGé4: 265 
Goertzel’s algorithm, GPG3: 172-174 
Graham’s algorithm, GPG3: 276 
group finding with, GPG2: 229 
for heat shimmer or haze distortion, 

GPG4: 477-478 
Heuristic costs algorithm, GPG1: 

276-278 

for infinite universes, GPG1: 136-139 
iWave algorithm, 411-414 
killing algorithms and real physics, 

GPG4: 209-219 

for landscaping, GPG1: 485-490 
LCA (linear congruential algorithm), 

GPG3: 623-624 
learning algorithms, GPG1: 345-350 
levels of detail (LOD) selection, GPG1: 

435-437 

Linear congruential algorithm (LCA), 

GPG3: 623-624 
line / line intersection, GPG2: 191 

Marching Cubes algorithm, GPG2: 229 
mazes, GPG1: 492-493 
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Metaball clusters and, GPG2: 229 

name generation, GPG1; 493-498 
natural element motion, simulation of, 

411-419 

negamax algorithm and game trees, 
GPGI1: 250-251 

occlusion, GPG3: 354-358 

Perlin noise algorithms, GPG3: 453 
PLP algorithm, GPG3: 354-358 
pseudo-random number generation, 

GPG3: 623-624 
randomness, GPG1: 135-136, GPG3: 

453, GPG3: 623-624 
random number generator algorithm, 

GPG?: 130 
RDC algorithm, GPG2: 229 

Recursive Dimensional Clustering 

(RDC), GPG2: 228-238, GPG2: 

copying of, GPG3: 51 
custom allocators, creating, GPG3: 

55-57 
deallocation, GPG3: 52 
default allocator object described, GPG3: 

54-55 
destruction, GPG3: 52-53 
freelists and allocation, 133-134 

per-object data and, GPG3: 57 

PlacementNewEmbeddedLink allocation 
policy, 139 

rebind, GPG3: 53-54 
SharedChunkPolicy allocation policy, 

139 

temporary register allocation, GPG3: 
406, GPG3: 411 

typedefs and, GPG3: 50-51 

utility functions, GPG3: 51 

Index 

texture coordinate animation, GPG1: 

549-550 
third-person control schemes for, GPG2: 

425-432 
3ds max skin exporter and animation 

toolkit, GPG2: 141-152 

time control, spline based, 233-246 

translational / rotational offsets, modifica- 

tion of, GPG3: 395-396 
water motion simulation, 411-414 

see also Bones 

Ansari, Marwan Y. 

article by, GPG4: 461463 
contact and bio info, GPG4: xxi 

Anti-aliasing 

jittered sampling distribution and, 
GPG4: 386-387 

pixel quality and, GPG4: 385-388 
235-236 

Remez algorithm, 274-276 
Remez Exchange algorithm, GPG3: 

180-181 

Retriangulation algorithm, GPG3: 
340-343 

Schur’s algorithm, GPG3: 617 
search algorithms, GPG1:254-262, 

GPG4: 217-219 
server scheduling algorithms, GPG4: 

Alpha-beta pruning, GPG1: 251-253 pixel with adjustments for, GPG4: 
Alpha blending, GPG1: 193, GPG1: 388-389 

522-523 Poisson disc sampling distribution and, 
“Alt-Tab” problem, GPG2: 82-83 GPG4: 387-388 
Ambient tag, XML audio tag, GPG4: random sampling distribution and, 

626-627 GPGé4: 386 
Anchored modifiers, GPG3: 402 API functions 
Animals, kill algorithms and hunter / prey explicit DLL loading and, GPG2: 36 

population dynamics, GPG4: 217-219 wrappers, 714 
Animation Approximations 

549-550 
sine and cosine calculation, GPG3: 

172-174 

sphere collision detection and bounding 

volumes, GPG1: 390-393 
Standard Template Library, C++ (STL), 

GPGI1: 42 

triangle-to-triangle collision detection 
algorithm, GPG1: 390 

tri-strip algorithm, pseudo-code for, 
GPG3: 364 

vertex-blending algorithm, GPG4: 
489-490 

visibility and, GPG3: 354-358 

voice compression and effects with LPC 
algorithm, GPG3: 613-621 

wall building algorithm, GPG4: 365-372 
warm starting for, GPG4: 255 
wave propagation, GPG4: 269-270 
Weiler-Atherton algorithm, GPG3: 367, 

GPG4: 427 
see also A* algorithm 

Aliasing 
bilinear filtering and, GPG2: 485 
“pre-jitter” technique, GPG2: 485-486 
shadows and aliasing problems, GPG2: 

484-486 
Alien voices, GPG3: 613-621 
Alignment, GPG1: 305-306 

flocking rule, GPG2; 330 
AllocateMemory() routine on CD, GPG2: 67 
Allocators 

allocation function, GPG3: 51-52 
allocation strategies, GPG3: 56 
on CD-ROM, GPG3: 58 

CompactableChunkPolicy allocation 

attractor / repulsor forces and animation 
system interactions, GPG4: 362-363 

bone animation keys, GPG2: 148 
clouds, procedural texture generation, 

GPG2: 463-473 
cloud shadows, GPG3: 436-438, GPG3: 

440-442, GPG3: 447-448 
foliage motion simulation, 414-419 
foot-sliding, GPG3: 396-399 
inverse kinematics and, GPG3: 192-198 
jittering or stuttering animations, GPG4: 

32, GPG4: 159, GPG4: 500-501 
keyframing for, GPG1: 465-470 
light motif, GPG1: 528-534 
lip-synching, GPG3: 589, GPG4: 

607-611 
mass-spring model for realistic cloth, 

421433 
mesh deformation and skin calculation, 

GPG2: 149 
movement to arbitrary targets, GPG3: 

394-396, GPG3: 399-400 
noise to add randomness, GPG3: 456 
pressurized soft-body model, 435-448 
projective self-shadowing techniques for 

characters, GPG2: 421-424 
ragdoll physics with feedback control 

system, 449-455 
realistic locomotion, GPG3: 394-413 
simple animation scheme, GPG2: 

429-431 

smooth transitions between motion 
captures, GPG3: 396, GPG3: 402 

spline-based time control, 233-246 
spring mass models and deformable 

Goertzel’s Algorithm for, GPG3: 
172-174 

minimax numerical approximations, 
269-280 

quaternion approximation methods, 
252-264 

range reduction for, GPG3: 176-179 
resonant filter for, GPG3: 171-172 
table-based trigonometric functions, 

GPG3: 175-177 

Taylor series approximating functions, 
GPG3: 179-180 

Trigonometric functions, GPG1: 
161-176, GPG3: 171-185 

see also Taylor series 
Architectures 

DirectPlay 8.1 architectures described, 
GPG3:; 561-562 

distributed-reasoning voting architecture, 
GPG4; 345-354 

GoCap, GPG3: 231-233 
multiserver architectures, GPG4: 

581-583 
object-oriented utility-based decision 

architecture, GPG4: 337-344 
online lobby, state-event system for, 

GPG4; 533-534 
Profiling modules, GPG2: 76-77 

see also Micro-threads, AI architecture 
Area navigation, AI path finding, GPG3: 

240-255 

algorithm summarized, GPG3: 245-246 
path transversal, GPG3: 249-253 
regularizing the world for, GPG3: 

247-249 

policy, 139 
comparing, GPG3: 54 
construction, GPG3: 51-53 
ConstructOnceStack allocation policy, 

139 

bodies, 436-437 Armies, GPG3: 272 
subdivision surfaces for, GPG3: ArrayProxy class, GPG1: 103 

372-383 Arrays 
Super Mario 64 controls, GPG2: 431 
system time and smooth animation, 

GPG?: 148 

address-space management of dynamic 
arrays, GPG4; 85-93 

bit arrays, GPG1: 101-103 
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Compiled Vertex Arrays (CVA), GPG1: 
356-360 

dynamic array management, GPG4: 
85-93 

growth of, GPG4: 88-89 
macro to determine number of elements 

in, GPG3: 30 
maximum array size, GPG4; 92 
serialization and, GPG3: 542 
see also Vectors 

Artifacts 
clock systems and avoidance of, GPG4: 

30-34 
flanging (audio artifact), GPG4: 622-623 

null objects and, GPG4: 66 
patching and shading artifacts, GPG3: 

351 
Rasterization artifacts, T-Junctions and, 

GPG3: 338-343 
Artificial Intelligence (AI) 

A* Algorithm modifications, 367-382 
- accidental complexity, GPG2: 258-259 

AlControlStates, for MMPs, GPG3: 

509-510 
architecture, GPG2: 251-272 
area navigation, GPG3: 240-255 

autotargeting systems, 307-315 
avoidance behaviors, attractors and 

repulsors, GPG4: 355-365 
Bayesian networks, GPG4: 301 
behavioral module, GPG2: 266 
choke points and, GPG3: 279-283 
cluster maps for floating-point valued 

rules, GPG3: 237-238 

concurrent AI systems, 353-366 
ControlState, GPG3: 233 
convex hulls and, GPG3: 273-277 
D* (dynamic A*) and pathfinding, 

383-389 
debugging and, GPG4: 15 
decision making, 345-352, GPG2: 287, 

GPG4: 337-344 

decision trees and multithreaded architec- 

ture, 345-352 
Dempster-Shafer Theory, GPG4: 301 
distributed processing, GPG2: 253 
distributed-reasoning voting architecture, 

GPG4: 345-354 

dynamic programming (DP) algorithm 

and, GPG4: 325-335 

emergent behavior to avoid scripting, 

GPG?: 255 
engine design, GPG1: 221-236 

event-driven behaviors, GPG2: 251-252 

Finite State Machines (FSMs), GPG1: 

237-248, GPG4: 338 

flocking, GPG2: 330-336, GPG4: 

358-359 

functional decomposition and decision 

making, 355-357 

function-based pointer FSMs, GPG3: 

256-266 

fuzzy logic, GPG1: 319-329, GPG2: 

343-350 

fuzzy state machines (FuSM), GPG2: 

337-341 

game Al, GPG3: 229-230, GPG4: 

301-302 

game programming vs. academic research, 

GPG?: 249-250 

GoCap for machine learning, GPG3: 

231-239 
hardware and, GPG4: 301-302 
inductive learning, 347 
influence mapping, GPG2: 287-297 
innovations in, GPG2: 256 
Lanchester Attrition models to predict 

combat results, 307-315 
Level-of-Detail Al, GPG2: 254 
manager entities and centralized coopera- 

tion, GPG2: 252-253 
movement-based AI, GPG3: 321-331 
navigation meshes, GPG3: 307-320 
neural networks, GPG1: 330-350, 

GPG2: 351-357, GPG4: 373-377 
pathfinding, 367-382, GPG2: 152, 

GPG2: 252, GPG2: 274-275, 
GPG3: 240-255, GPG3: 307-320 

personalities and, GPG2: 306, GPG2: 
332-333 

planning algorithms and practical 
planning, 329-342 

polling, GPG2: 251-252 
precomputing and preprocessing, GPG2: 

255, 
problem solving shortcuts, GPG2: 254 
processing issues, GPG2: 253-254 
racing game steering, GPG4: 362-363 
real-time strategy issues, GPG2: 272-306 
redundant calculations, reducing, GPG2: 

252 
rules-based systems, GPG4: 323 
rules definition, GPG3: 234-236 
scripting behavior outside code, GPG1: 

234 
in scripts, GPG1: 6 

simulation and schedulers, GPG3: 13 
soft computing and, GPG4: 301 
swapping control to Al, GPG3: 238-239 
tactical decisions, GPG2: 287-316 
tactical pathfinding, GPG3: 294-305 
terrain reasoning, GPG2: 307-316 
third-person camera navigation and, 

GPG4: 303-314 
training with GoCap, GPG3: 233-237 
trends, 297-298, GPG4: 301-302 
trigger systems, GPG3: 285-293 
updating data, GPG2: 255-256 
wall building algorithms, GPG4: 

365-372 
see also Micro-threads, AI architecture 

Artificial Life by Steven Levy, GPG2: 335 

ASE program, GPG3: 305 
Assert macros, GPG1: 109-114 

bug prevention and, GPG4: 16-17 
compile-time assert macro, GPG3: 30 

copy-and-paste, GPG1: 113-114 
cross-platform libraries and, GPG4: 39 
customizing, GPG1: 111-114 
descriptive comments, macro to add, 

GPG3: 29 
embedding and, GPG1: 110-111 
“Ignore Always” option, GPG1: 112-113 

superassert implementation, GPGI: 113 

Association 

auto-and heteroassociation, GPG1: 336 

Hopfield nets for, GPG1: 346-350 

neural nets and, GPG1: 332, GPG1: 336 

AST (abstract syntax trees) for programmable 

vertex shader compiler, GPG3: 410 
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A Star Explorer program, GPG3: 305 
Asynchronous I / O (AIO), GPG3: 523-524, 

GPG4: 548-549 
Asz6di, Barnabas 

article by, 483-494 
contact and bio info, xxi 

Atmospherics, haze and heat post-processing 
effects, GPG4: 477-485 

Attack trees used in threat models, 686-687 
Attenuation 

attenuation maps, GPG1: 543-548 
of audio, GPG4: 600-601 
per-pixel light sources, GPG3: 473-476 

Attraction and repulsion 
attraction curves, GPG4: 356-361 
attractors and repulsors, GPG4: 355-364 
planar and linear force emitters, GPG4: 

361 
Audio 

acoustic properties of materials, GPG4: 
654 

ADPCM compression format, GPG3: 
589, GPG3: 620-621 

ambient sound, 721-728, GPG4: 603, 

GPG4: 624, GPG4: 626-627 
audio engines, requirements for, GPG4: 

635-636 
axis-aligning bounding boxes for obstruc- 

tion, GPG3: 600-605 
band-pass filters, GPG3: 610 
biquad resonant filter, GPG3: 606-612 
caching decoded sound, GPG3: 590 
collisions and sound character, GPG4: 

654-655 
compression methods, GPG3: 585, 

GPG3: 588-589, GPG3: 620-621 
decoding speed, GPG3: 589-590 
demo on CD-ROM, GPG3: 598-599 
dialog, GPG4: 624-625 
digital filters described, GPG3: 606-607 
DirectSound, GPG3: 571, GPG3: 

595-599, GPG4: 625 
Doppler effects, GPG4: 604 
downmixing, GPG3: 588-589 
dynamic sound control and object 

properties, GPG4: 652-653 
dynamic variable and audio program- 

ming, GPG4: 613-619 
EAGLE (Environmental Audio Graphical 

Librarian Editor), GPG4: 635, 
GPG4: 637-638 

EAX audio extensions, GPG4: 638-644 

EAX environmental data, GPG4: 636 
echo and reverberation, GPG4: 

633-634 
effect audio, GPG4: 622-623 
envelope control of, GPG4: 613-619 
environmental audio, GPG4: 633-647 

environmental reverb based on feedback 

delay networks, 729-740 
filters, GPG3: 585 
FIR vs. IIR filters, GPG3: 607 
flanging (audio artifact), GPG4: 622-623 
frequency filtering, GPG4: 634-635 
helicopter sounds, GPG3: 627-628, 

GPG3: 635-636 
high-pass filters, GPG3: 610 
hybrid sound synthesis, GPG4: 651-652 
interactive sound, GPG3: 586, GPG3: 

630-638 
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lip-synching for real-time animations, 
GPG4: 607-611 

low-pass filters, GPG3: 610 
modular audio processing, real-time, 

GPG3: 630-638 
multichannel audio, GPG4: 602-603 
multithreading programming techniques, 

697-711 
noise generators, GPG3: 622-629 
obstruction of sound, GPG3: 600-605 
occlusion and obstructions, GPG4: 

634-635, GPG4: 637, GPG4: 644 
one-shot sounds, 718 
OpenAL, GPG3: 595-599 
OpenAL positional audio library, GPG4: 

595-606 
patches, GPG4: 651 
patch files, GPG3: 633-637 
pausing and resuming, 715 
physic engine integrated with, GPG4: 

649-656 
pitch, 715 
pitch filters, GPG4: 604 

positional audio rendering, GPG3: 
595-596 

potentially audible sets (PASs), GPG4: 
636-638 

procedural sound generation, GPG3: 631 
purpose of, GPG4: 621 

resampling, GPG3: 588-589 
resonators described, GPG3: 615 
reverberation models, GPG4: 635 

rocket engine sounds, GPG3: 627 
rolling sounds, GPG4: 655 
sampling tips, GPG3: 596-598 
scripting systems for, GPG4: 621-631 
shape and sound frequency, GPG4: 

653-654 
single-speaker speech recognition, 

741-750 
slipping sounds, GPG4: 655-656 
sonar pings, GPG3: 624-625, GPG3: 

637 
sound management by group, 713-719 
spatialization (attenuation and distance), 

GPG4: 600-601 
Sphinx MMOS systems, GPG3: 631-638 
stochastic synthesis of complex sounds, 

GPG3: 622-629 

synchronization with animation, GPG4: 
649-656 

synthesizers, GPG3: 630-631 
3D audio environments, GPG3: 595-599 
3D audio volumes, GPG4: 644-647 

3D surfaces as audio emitters, 721-728 
tracking playing sounds, 717-718 
trends in, GPG4: 593 
vocoders, GPG3: 613-621 
yoice communications with DirectPlay, 

GPG3: 569-571 
voice compression and effects, GPG3: 

613-621 
volume, 715 
wind sounds, GPG3: 624 
XML audio tag database, GPG4: 

625-628 

ZoomFX, GPG4: 644-647 
see also Music 

Audio class, GPG4: 629 
Audio design patterns 

Big Ball of Mud (spaghetti code) audio 
design pattern, GPG2: 518-519 

bridge audio design pattern, GPG2: 
514-515 

command audio design pattern, GPG2: 
517 

composite audio design pattern, GPG2: 
515-516 

decorator audio design pattern, GPG2: 
epg 

facade audio design pattern, GPG2: 515 
momento audio design pattern, GPG2: 

518 
observer audio design pattern, GPG2: 

518 
proxy audio design pattern, GPG2: 516 

AudioManager class, GPG4: 628-629 

Audio processing pipelines, interactive, 
GPG2: 529-538 

backfill buffers in, GPG2: 534-537 
Audio programming 

audio design patterns, GPG2: 514-520 
Digital Signal Processing (DSP) tech- 

niques, GPG2: 525-528 
interactive processing pipeline for digital 

audio, GPG2: 529-538 
low-level sound API, GPG2: 559-560 
music sequencers, GPG2: 539-558 
sample-based synthesizer for voices, 

GPG2:; 521-524 
Audio systems 

described, GPG2: 529-531 
schematic illustration of, GPG2: 530 

AudioTag class, GPG4: 629-630 
Authentication 

algorithms for, GPG3: 555 
described, GPG3: 546 
hash-based message authentication code 

(HMAC), GPG3: 550-551 
for online games, GPG4: 535 

performance and, GPG3: 555, 
Autolists, GPG3: 64-68 

cost of, GPG3: 66 
defined, GPG3: 68 
inheritance issues, GPG3: 66, GPG3: 

67-68 

nested iterations, GPG3: 66 
storage of classes, GPG3: 67 
without constructors and destructors, 

GPG3: 66 
Autonomous agents, GPG1: 305 
Avoidance, GPG1: 306 

flocking rule, GPG2: 330 
see also Attraction and repulsion 

Axis-aligned bounding boxes (AABB), GPG2: 
389, GPG4: 504 

for audio obstruction, GPG3: 600-605 
building AABB trees, GPG2: 390 
compressing AABB trees, GPG2: 390-391 
extent value approximation, GPG2: 391 
frustum culling and, 71-74, 76-77 
redundancy in, GPG2: 392 
resources required, runtime costs, GPG2:393 
trees described, GPG2: 388 

B 

Backfill buffers for underflow data, GPG2: 

534-537 
Backus-Naur Form (BNF; Backus-Naur 

Notation), 21 

Index 

Ball and socket constraints, GPG4:246 
Band-limited noise, GPG2: 466 

Bandwidth 
NetTool bandwidth simulator, GPG3: 

560 
packet compression and latency, GPG3: 

578 
secure sockets requirements for, GPG3: 

554 
wireless devices and, GPG3: 574, GPG3: 

578-579 
Barrera, Tony 

article by, 225-231 
contact and bio info, si 

Barriers. See Obstructions or barriers; Occlu- 

sion; Walls 

Barycentric coordinates, GPG3: 427 
Base-2 logarithms of integers, GPG3: 

157-159 
BaseResource class, GPG1: 80-83 

Basic object memory manager, GPG1: 68 
Bayesian networks, GPG4: 301 
Beams 

carving shadows with, GPG4: 427-435 
special effects, GPG3: 413-416 

Beardsley, Jason 

article by, GPG3: 534-545 
contact and bio info, GPG3: xxiii 

Behavioral classes, GPG2: 53 
hierarchy for, GPG2: 54-55 

Behaviors 

active behaviors and brain classes, GPG2: 
267 

AI design and, GPG2: 265-268 

attraction and repulsion curves to model, 
GPGé4: 355-365 

behavioral module example, GPG2: 266 
Combs method and fuzzy logic for, 

GPG2: 342-350 
emergent behaviors, GPG2: 255, GPG2: 

332-333 
event-driven behaviors for AI optimiza- 

tion, GPG?: 251-252 

flocking, GPG2: 330-336 
Template Method pattern for assigning, 

GPG2: 55 
utility theory and evaluation of, GPG4: 

339-340, GPG4: 343 
Bell, Ian, GPG1: 133 
Bengtsson, Ewert 

article by, 225-231 
contact and bio info, «xix«xiz 

Bernoulli's equations, GPG4: 266-267 
Bézier curves, GPG4: 171 
Bézier patches, GPG3: 349-351 
Big integers, GPG3: 168 
Bilas, Scott 

articles by, 56-57, 68-79, GPG1: 36-40, 
GPGI1: 56-57, GPG1: 68-79, 
GPG2: 3-4 

contact information, GPG1: xxv, GPG2: 
xix 

Billboards 

illusion of depth and, GPG3: 417-423 
matrix for beam effects, GPG3: 413-416 

Binary representations, macro, GPG3: 
28-29 

Binary space partitioning (BSP) trees, GPG2: 
388 

construction of, 56-57 
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Constructive Solid Geometry construc- 
tion with, 103-113 

defined and described, 55-56 
optimization of, 56-57, 59-63 
sphere trees for, 55-63 
splitter polygons, 55-56, 59-62, 

109-111 

Binary trees 
vs, ABT Trees, 162 

freelists and, GPG4: 48 
wavelets principle and, GPG1: 182-184 

Biquad resonant filters 
coefficient calculation for, GPG3: 

609-610 

control parameters, GPG3: 609 
denormalization and, GPG3: 609 
implementation of, GPG3: 607-608 
optimizations of, GPG3: 608-609 

Bison parser, GPG3: 91, GPG3: 406 
programmable vertex shader compilers, 

GPG3: 409-410 
BitArray class, GPG1: 101-102 
BitArray2D class, GPG1: 102-103 
Bit maps and bit mapping, fast bit blitter for, 

GPG?: 92-99 
Bitmask() function, GPG3: 158-159 

Bitpacking, data compression technique for 
network games, GPG4: 571-578 

BitProxy class, GPG1: 102 
Bit rot, 7 
Bitwise operations, GPG1: 101-103 
Blasco, Oscar 

article by, GPG3: 424-432 
contact and bio info, GPG3: xxiiiexiv 

BLAS libraries, GPG4: 373-377 
Blinn-Phong shading, normal distribution 

function (NDF) variation, GPG3: 477, 

GPG3: 479-482 
Blitters, GPG2: 92-99 
Blitting functions, GPG1: 523 
Bloom, Burton H., GPG2: 133 
Bloom Filters, GPG2: 133-140 

definitions related to, GPG2: 134-135 
described, GPG2: 134 

exceptions lists and, GPG2: 139-140 

flow chart illustrated, GPG2: 136 
tuning, GPG2: 135-138 

use fundamentals, GPG2: 137 

Blow, Johnathan 
article by, GPG4: 139-140 
contact and bio info, GPG4: xxi 

Blurs and blurring 

influence propagation (smoothing or 

blurring), GPG2?: 292-293 

per-pixel blurring for distortion simula- 

tion, GPG4: 482-484 

Poisson Disc sampling for, GPG4: 

482-483 

Board, Ben 

articles by, GPG3: 64-68, GPG3: 

240-255 
contact and bio info, GPG3: xxiv 

Boer, James 
articles by, 93-101, 697-711, GPG1: 

8-19, GPG1: 41-55, GPG1: 80-87, 
GPG2: 112-117, GPG2: 513, 

GPG4: 19-26, GPG4: 613-619 

contact and bio info, xxii, GPG1: xxv, 

GPG2: xix, GPG4: xxi 

Boids, GPG1: 305 
CBoid class, 314-317, GPG1: 311-312 

constraints on, GPG1: 308-309 
perception range of, GPG1: 308 

Boissé, Sylvain 
article by, 571-577 
contact info, 571 

Bolton, John 
article by, 317-328 
contact and bio info, xxii 

Bones 
applying motion constraints to, GPG3: 

195-198 
bone animation keys, GPG2: 148 
bone assignments, GPG2: 150-151 
collision detection 3D bones-based 

articulated characters, GPG4: 

503-514 

constrained inverse kinematics and, 
GPG3: 192-198 

cyclic coordinate descent (CCD), GPG3: 

193-194 
defined and described, GPG4: 504 
deformation of, GPG3: 384-393 
fast skinning method, GPG1: 471-472 
hierarchy of, GPG3: 192-193, GPG3: 

378 
joint flexion and shrinkage, GPG3: 

384-393 
joint weighting, GPG3: 388-392 
position and rotation of, GPG2: 148-149 
quaternions to store matrices in, GPG1: 

195-196 
reference pose of, GPG3: 384-385 
segmenting character geometry and, 

GPG2: 421-422 
skinning and, GPG3: 385-386 

stitching, GPG1: 477-480° 
vertex-accumulation buffer, GPG3: 378 
web address for archives, links, and 

resources, GPG3: 393 
weighting, GPG2: 146-148, GPG3: 

388-392 

Boolean operators 

Constructive Solid Geometry (CGS) and, 

103-108 

linking conditions with, GPG3: 

287-288 

Boolean values, text parsers, GPG2: 115 
Bot creation, GPG1: 6 

Bottlenecks 
custom allocators and, GPG3: 56 
profiling and, GPG3: 146 
profiling module for identifying, GPG2: 

74-79 
schedulers and, GPG3: 12 

Boundaries 
grid boundaries, GPGé4: 273 
periodic boundaries, GPG4: 273 
reflecting boundaries, GPG4: 273 
see also Obstructions or barriers 

Boundary conditions, GPG4: 10 
Bounding boxes 

covariance matrix to improve, GPG4: 

183-192 ' 
oriented bounding boxes (OBB), GPG4: 

504 
view-frustum culling and, GPG3: 

379-380 

757 

see also Axis-aligned bounding boxes 
(AABB); Bounding volumes 

Bounding volumes, GPG1: 380 
bounding volume trees, GPG2: 389 
building, GPG4: 189-191 
octrees and, GPG1: 440, GPGI1: 

445-446 
oriented bounding boxes, GPG4: 506 
principal axes of, GPG4: 185-186 
sphere collision detection algorithm, 

GPGI1: 390-393 
see also Bounding boxes 

Bounds violations, defined and described, 

GPG?: 69 

Braben, David, GPG1: 133 
Bragiel, Paul 

article by, GPG4: 221-230 
contact and bio info, GPG4: xxii 

Brains 
brain classes, GPG2: 267-269 
brain queues and cyclic commands, 

GPG2: 274-278 

Brakes, constraints and rigid body dynamics, 

GPG4: 249 
Branching instruction in script languages, 

GPG1: 5 
Breakpoints, conditional breakpoints and 

debugging, GPG4: 10 
Breyer, Markus 

article by, 307-315 
contact and bio info, xxti 

Bridge audio design pattern, GPG2: 
514-515 

Brownlow, Martin 
articles by, 665-671, GPG3: 59-63, 

GPG3: 349-352 
contact and bio info, 665, GPG3: xxiv, 

XXLI-NXTIL 
BSP (binary space partitioning) trees, GPG2: 

388 
memory-efficient BSP trees, 521-525 

B-splines 
camera control curves, GPG1: 374-376 
vs. hermite splines, GPG1: 470 

Buchanan, Warrick 
articles by, 177-187, GPG4: 393-398 

contact and bio info, xxiii, GPG4: xxii 

Budge, Bill 
article by, GPG4: 51-59 
contact and bio info, GPG4: xxiz 

Buffers 
allocation in multi-language games, 

GPG3: 106 
backfill buffers for underflow data, 

GPG?: 534-537 
buffer policy for logging, GPG3: 

132-133 
depth buffers for shadow mapping, 

GPG4: 411-414 

index buffers, GPG2: 372-375, GPG2: 

378-379 
in OpenAL, GPG4: 596 
priority buffers, GPG2: 481487 
shadow buffers, GPG4: 411-425 

Bugs 
bug prevention methods, GPG4: 16 

see also Debugging 
Buildings, GPG1: 490-498 

algorithms for, GPG1: 492-493 
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Bump maps, GPG3: 424-432, GPG3: 
481-482 

applying to objects, GPG1: 555-556 
curvature simulation using, GPG3: 

424-432 
Dot3 Bump mapping, GPG2: 456-459 
hand-made, GPG3: 430 
NDF shading and, GPG3: 481-482 
normals, choosing space for, GPG1: 

556-557 
tangent space bump mapping, GPG1: 

557-559 
texture space bump mapping, GPG1: 

559-561 
Buoyancy, simulating, GPG1: 191-193 
Burk, Phil 

articles by, GPG3: 606-612, GPG3: 
622-629 

contact and bio info, GPG3: xxiv 
Burning materials, modeling with cellular 

automata, GPG3: 210-211 
Byrd, John 

article by, GPG3:155 
contact and bio info, GPG3: xxv—x«xvi 

C 
C++, GPG4: 3 

deprecation facilities for, GPG2: 62-65 
exporting classes from DLLs, GPG2: 

28-32 

generic tree containers in, GPG4: 51-59 
implicit linking support in, GPG2: 

33-34 
Lua programming language and, 116, 

117-120, 121-122 

name-mangling facility of, GPG1: 65 
optimization techniques, GPG2: 5-15 
policies in, 131-133 
property class for generic member access, 

GPG2: 46-50 

public member variables, GPG4: 36 
recursive searching, GPG2: 89-90 
stack winding and, GPG2: 88-90 
states and, 96 

templates for reflection in, 39-54 
see also Standard Template Library, C++ 

(STL) 
Cache misses, 159-160, GPG2: 18 
Caches 

application-level caching for network 
games, GPG4; 550 

cache flushing for debugging, GPG4: 
12-13 

cache-oblivious implementation of ABT 
Trees, 159-167 

smart texture caches, GPG3: 460 
task processing and processor affinity, 

360 
Cafrelli, Charles 

article by, GPG2: 46-50 
contact and bio info, GPG2: xix 

Calderas, inverting, GPG1: 509-510 
Callbacks, GPG2: 545, GPG2: 547-549 

DirectPlay 8.1, GPG3: 566-569 
Calling conventions, GPG1: 61-62 
Calls 

function, function-binding code genera- 
tor, GPG3: 38-42 

profiler, GPG1: 123 

Index 
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remote procedure calls (RPCs), 627-641, 

GPGI1; 56-58 

Call-stack tracking in logging systems, GPG4: 
20-25 

Camera class and audio scripting, GPG4: 630 
Camera cuts, GPG2: 220, GPG2: 225-226 

Cameras 
auto-zoom features, 490-491 
B-spline curves for control, GPG1: 

374-376 
camera cuts, GPG2; 220, GPG2?: 

225-226 

camera movement in a 3D car simulator, 

483-494 

chase cameras, GPG4: 306-307 
control techniques for, GPG1: 371-379 
damped spring systems for camera 

movement, GPG4: 305 
damping, GPG1: 377-378 
dynamic camera spheres, GPG4: 308 

exposed functionality of, GPG1: 3 
extracting camera information, GPG4: 

151-156 

eye space and depth value, GPG1: 
363-364 

field-of-view angle calculation, GPG4: 
153 

first-person cameras, GPG1: 371-373 
flythrough paths for, GPG2: 220-227 
free-floating cameras, GPG2: 425 

human camera movement model, 
487-493 

impostoring and camera distance, GPG2: 
494 

“lazy” rotation vs, strafe mode, GPG4: 
306 

lens-flare effects, GPG1: 515-518, 
GPG?: 474-480 

level of detail and, GPG1: 433-434 
line-of-sight and occlusion, GPG4: 312 
movement of, GPG4: 303-307 
near and far distance calculation, GPG4: 

152-153 

occlusion and, GPG4: 311-313 
OpenGL and, 490 
orientation interpolation, GPG2: 

222-223 

orientation of, GPG1: 366, GPG1: 373 
pathfinding for third-person cameras, 

GPG4: 312-313 

physical camera collisions, GPG4: 
310-311 

position calculation, GPG4: 151-152, 

GPG4: 303-307 

position interpolation, GPG2: 220-222 
precipitation textures and, 510-511 

quaternions and control of, GPG1:; 379 
scene boundaries for, GPG4: 307-311 
scripted cameras, GPG1: 373-377 
simplifying camera scenes, GPG4: 313 
smoothing camera motion, GPG4; 

95-101 

spherical coordinates system for camera 
location, GPG4; 304-305 

spline-based controls, 233-246, GPG1: 
374-376 

third-person cameras, GPG1; 378, 
GPG4: 303-314 

updating, GPG4: 306-307 

user control over, GPG4: 307 
vector cameras, GPG1: 366-370 
view direction calculation, GPG4: 151 
virtual camera collisions, GPG4: 

308-310 
web cameras, GPG2: 153-162 

zooming, GPG1: 377 

Card, Drew 
article by, GPG3: 367-371 
contact and bio info, GPG3: xxv 

Carter, Simon 

article by, GPG2: 265-272 
contact and bio info, GPG2: xix 

Cartesian coordinates, spherical coordinate 
conversions, GPG4: 304-305 

Cartoon rendering 
programmable vertex shaders and, GPG2: 

444-45] 
silhouette edge detection and, GPG2: 

436-443 
texture mapping and, GPG2: 444-451 

Catmull-Rom splines, 462-464, GPG1: 266, 
GPG1: 267, GPG1: 376-377, GPG4: 
171 

Caustics, simulating, GPG1: 598-599, 

GPG?: 402-405 
CBoid class, GPG1: 311-312, GPGI1: 

314-317 

CBox class, GPG1: 309-310 

CCD (cyclic coordinate descent), GPG3: 
193-194 

CD-ROM contents, GPG3: 639-640, 

GPG4: 657-658 
CEaseInOutInterpolation class, GPG1: 149 

CEaseOutDividelnterpolation class, GPG1: 

147 
CEaseOutShiftInterpolation class, GPG1: 

147-148 
Celes, Waldemar 

article by, GPG4: 147-156 
contact and bio info, GPG4: xxii 

Cellular automata, GPG2: 506-508 
active scenery, GPG3: 203-204 
air, modeling air pressure, GPG3: 200, 

GPG3: 206 
converting polygons to cells, GPG3: 

203 
core processing model, GPG3: 204-205 
defined.and described, GPG3: 201-203 
dynamic update rates, GPG3: 212-213 
effects to be created with, GPG3: 

200-201 

fire models, GPG3: 210-212 
flow models, GPG3: 207-208 
fluid simulation, code listings, GPG3: 

205 
heat models, GPG3: 209-212 
neighbor cells, GPG3: 201 
octrees for storage, GPG3: 204 
Passive scenery, GPG3: 203 
physical size of cells, GPG3: 202 
physics routines for, GPG3: 204 
procedural textures and hardware-based 

creation of, GPG3: 456 
totally destructible worlds and, GPG3: 

203 
walls, modeling thin walls, GPG3: 

202-203 

water models, GPG3: 206-207 
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Cellular phones as game platforms, GPG3: 
573-581 

CED (computational fluid dynamics). See 

Cellular automata 
CFlock class, GPG1: 310-314 
Chaos, adding via messaging, GPG1: 223 
CharacterStateMgr class, GPG4: 565-568 
Chat rooms, vulgarity filters for, 621-626 
Cheating 

Internet Protocol Security (IPSec) 

standard, GPG4: 546-555 
online games and, GPG4: 538 
preventing in multiplayer games, GPG3: 

520-522 

Chemical agents, kill algorithms for, GPG4: 

216 

Cheng, Jamie 

article by, 329-342 
contact and bio info, xxiii 

Chess, Zobrist hash and, GPG4: 141-143 
Child classes, data, GPG2: 43-44 
Chincisan, Octavian Marius 

article by, 103-113 
contact and bio info, sxxiiz 

Chinese. See Multiple-language games 
Choke points, GPG3: 272, GPG3: 279-283 
Christensen, Christopher 

article by, GPG3: 307-320 
contact and bio info, GPG3: xxv 

Chunks, in Lua programming language, 117 
Ciphers as mixing functions, GPG2: 129 
Classes 

declaration of, GPG3: 33-36 
exporting from DLLs, GPG2: 28-30 

saving and loading, 149-157 
see also Classes, C++ classes; Specific classes 

Classes, C++ classes 
coupling, avoiding, GPG1: 15-16 
designing in Object-Oriented Program- 

ming (OOP), GPG1: 11-12 
finite-state machine class, GPG1: 

237-248 
handle class, GPG1: 70 

hierarchies, GPG2: 51-61 
manager classes, GPG1: 15-16 
proxy classes, GPG1: 102-103 
see also Specific classes 

ClassifyToken code listing, 20-21 
Class member functions, exporting from 

DLLs, GPG2: 30-31 

Client / Server environments 
for MMPs, GPG3: 506-507 
NAT and protocols for, 651-654 
for online gaming, GPG3: 496-497, 

GPG3: 501-502 

parallel-state machines in, GPG4: 

563-570 
security associations in, GPG3: 547 

time and consistency management for 

MMORPGs, GPG4: 579-589 

voice servers and clients with DirectPlay, 
GPG4: 569-571 

CLinearInterpolation, GPG1: 148 

Clocks, GPG3: 8, GPG4: 27-34 
precision of, GPG4: 33-34 

synchronization for online gaming, 

GPG3: 493-495 

Closed-form equations, used to calculate 

nearest points on lines, GPG2: 194-198 

Cloth 
elongation functions and limits, 428 
external forces effects on, 428-430 
fast deformations with multilayer physics, 

GPG4: 275-285 
internal forces (elasticity of fabric), 

425-428 
Kawabata Evaluation System (KES), 421 

mass-spring model for animation of, 
421-433 

Clouds 
animated cloud shadows, GPG3: 

436-438, GPG3: 440-442, GPG3: 
447-449 

characteristics of, GPG2: 463-464 
controlling density of, 500-503 
cube maps and cloud cover, GPG3: 

447-449 
FBM fractals used to create, GPG2: 245 
mapping to skyplane, GPG2: 469-470 
procedural clouds, 499-513, GPG2: 

463-473 
random number generation and, GPG2: 

464-465 
scalability of procedural generation 

techniques, GPG2: 471-472 
“vapor” creation, GPG2: 469 

Cluster maps, GPG3: 237-238 

Clutter. See Impostors 
Code 

in-game profiling, GPG1: 120-130 
reusing, GPG1: 8 

“self aware” code, 39 
shared code and HUDs, 12-13 
streaming classes to simplify, 628-630 

Code bloat, GPG2: 11-12 
accidental complexity in Al, GPG2: 

258-259 . 
inline functions and, GPG2: 18 

Codecs 
bitpacking codec, GPG4: 575-577 
Ogg Vorbis, GPG3: 589-593 

Code generators and code generation 
programmable vertex shader compilers, 

GPG3: 411 
state machines and, 169-175 

Cohesion, GPG1: 305-306 
flocking rule, GPG2: 330 

Collaborative work, UML game engine, 
GPG3: 73-82 

Collision detection, GPG1: 390-402 
altitude relative to collision plane, GPG2: 

182-183 

barycentric coordinates, GPG3; 427 
bounding sphere, GPG1: 390-393 
bounding volumes (proxy geometry), 

GPG4: 505-506 
brute-force comparison algorithm for, 

GPG2: 228 
camera scene boundaries and collision 

geometry, GPG4: 307-308 
character movement and, GPG3: 321 
collision errors, GPG4: 159 
collision meshes, GPG4: 505 
contact points and, GPG4: 253-263 
costs of, 468 

detection vs. resolution, GPG4: 503-504 

distance to collision point, GPG2: 
184-185 

finding pairs with RDC, GPG2: 234-235 
kickback collisions, GPG2: 187-188 

line / line intersections, GPG2: 191-204 
line-plane intersection, GPG1: 394-395 
location of collision point, GPG2: 

183-184 
message-based entity management 

systems and, GPG4: 81 
octree construction for culling, GPG1: 

439-443 
oriented bounding boxes, GPG4: 506 
path-finding and, GPG3: 321-332 
point-in-triangle test, GPG1: 396-397 
probes or sensory for, GPG3: 235 
real-time game engines and, GPG4: 

503-514 
Recursive Dimensional Clustering 

(RDC), GPG2: 228-238 

reflected vectors (bounces), GPG2: 

185-187 
sphere trees for, GPG3: 532 
triangle “flattening,” GPG1: 395-396 
triangle-to-triangle, GPG1: 390, GPG1: 

393-397 
vector / plane intersections, GPG2: 

182-190 

Verlet-based physics engine and, GPG4: 
236-237 

see also Bounding boxes; Collisions 

Collision model path-finding 
described, GPG3: 321-322 
fault-tolerant AI for, GPG3: 322-325 
implementing movement along the path, 

GPG3: 329-331 

layered collisions, GPG3: 328-329 
unobstructed space, GPG3: 325-328 

Collisions 
audio coordinated with, GPG4: 654-655 
with damping, GPG2: 188-190 
pathfinding and, GPG2: 317-323 
sphere-to-plane collisions, GPG2: 

189-190 
of 3D bones-based articulated characters, 

GPG4: 503-514 
see also Collision detection 

Collision shapes, selecting, GPG2: 318-321 
Color 

polygon tinting method to apply color, 
GPG4; 452, GPG4: 457 

sepia tone conversions, GPG4: 461-463 
team colors applied to 3D models, 

GPG4: 451-459 
Combat games 

AI to adjust difficulty and dramatic 
tension in, GPG4: 315-324 

artillery duel scenario, 322-325 
automatic cover finding with navigation 

meshes, 299-305 

boss scenario for RPGs, 325-327 
Lanchester Attrition models to predict 

results, 317-328 
melee (orcs vs. humans) scenario, 

318-320 
narrow staircase (orcs vs. humans) 

scenario, 320 

Combs, William, GPG2: 343 

Combs Method for managing exponential 

growth, GPG2: 343-349 
proof for, GPG2: 348-349 



COM interface search, alternatives to, GPG2: 
46-50 

Command audio design pattern, GPG2; 517 
Command queues, audio design and, GPG2: 

Bul 
Command stream servers, GPG4: 547 
Comments, macro to add to asserts, GPG3: 

29 
CompactableChunkPolicy allocation policy, 

139 
Compatibility issues 

cross-platform compatibility, GPG3: 69 
portable serialization for online games, 

GPG3: 536-545 
RTTI edit/save system and file compati- 

bility, GPG4: 120-122 
Compiled Vertex Arrays (CVA), GPG1: 

356-358, GPG1: 359-360 
Compilers and compiling 

bug prevention and, GPG4: 16 
calling conventions of, GPG1: 61-62 

conditional compilation, GPG4: 40 
floating-point exceptions and, GPG3: 70 
IDL compiler, 635-636 

internal compiler errors, GPG4: 13 

limitations of, GPG1: 24, GPG1: 31 

programmable vertex shader compiler, 
GPG3: 406-411 

templates as virtual, GPG1: 20-22 

tokenizers for, GPG3: 40 
Compile-time asserts, macro for, GPG3: 30 
Compile-time constants, macro for, GPG3: 

28-29 
Component-based object management, 25-37 
Component technologies, pie menus, GPG3: 

119-124 

Composable controllers, 450 

Composite audio design pattern, GPG2: 

515-516 
Composition, GPG1:; 12 
Composition tag, XML audio tag, GPG4: 627 
Compression 

audio compression, GPG3: 585, GPG3: 

587-594, GPG3: 613-621 
bitpacking for network games, GPG4: 

571-578 
image compression, GPG1: 185-186 
latency and, GPG3: 578 
motion capture data compression, GPG4: 

497-502 
of quaternions, GPG3: 187-191 

voice compression with vocoder, GPG3: 
613-621 

wavelets, GPG1; 182-186 
Computation, history and development of, 

GPG2: 165-166 
Computational fluid dynamics (CFD). See 

Cellular automata 
Concave solids and CGS, 108-109 
Concept stage of game development, GPG3: 

16 
Conditional compilation, GPG4: 40 
Conditions 

Boolean operators as connectors, GPG3: 

287-288 

defined and described, GPG3: 286 

Conduction, modeling with cellular automata, 
GPG3: 209-210 

Consistency management, GPG4: 579-589 

Console game systems 
data loading, GPG1: 90-91 
debugging, GPG1: 115-119 
depth-of-play technique, GPG1: 

133-140 
online services for, GPG4: 531 
physics and fast deformations, GPG4: 

283-284 
screenshots and memory usage, GPG4: 

390-391 
Constants, in data-driven design, GPG1: 3-4 

Constraints 

ball and socket constraints, GPG4: 246 
brakes and rigid body dynamics, GPG4: 

249 
friction, GPG4: 249 

Jacobian constraints, GPG4: 243 
motors and, GPG4: 249 
positional error corrections, GPG4: 

249-250 
rigid bodies and, GPG4: 241-250 

rope-and-pulley constraints, GPG4: 
245-246 

rotation and, GPG4: 243-245, GPG4: 

246 
screw constraints, GPG4: 246 
stacks with hard contacts, GPG4; 248 

velocity constraints, GPG4: 242-243 

Constructive Solid Geometry, BSP trees and, 
103-113 

ConstructOnceStack allocation policy, 139 

Constructors 
explicit vs. implicit, GPG2: 8 
optimization and, GPG2: 7-8 

Contact points 
clustering contacts, GPG4: 255, GPG4: 

259-261 

contact identifiers, GPG4: 262 
cube map clustering, GPG4: 259-260 
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Etherton, David 

article by, GPG4: 35-41 
contact and bio info, GPG4: xxiv—exv 

Euler angles, GPG1: 196, GPG1: 307-308, 
GPGI1: 371-372, GPG3: 195 

Euler method 
accuracy of, GPG1: 180-181 

Euler angles, GPG1: 196, GPG1: 

307-308, GPG1: 371-372, GPG3: 
195) 

explicit, GPG1: 178-179 

friction formulation, GPG3: 220-221 

geometric algebra and, 216-217 
gimbal lock and Euler angles, GPG1: 196 
implicit, GPG1: 179-181 
Jacobian Transpose method and, GPG4: 

198-203 

numerical stability and, GPG1: 177-181 
rigid body motion, GPG1: 150-160 

Even masks, GPG3: 372 

Event-driven objects, GPG1: 221-222 

Event-locking 
vs. frame-locking, GPG3: 488-490 
path-finding packet exchanges, GPG3: 

490-492 

TCP and, GPG3: 492 

time synchronization and, GPG3: 

493-495 
Event managers, GPG3: 6, GPG3: 9 

Event messages, trigger systems and, GPG3: 
289 

Events 
event-locking in online gaming, GPG3: 

489-495 
frame events, GPG3: 8 
input events and real-time, GPG3: 

113-114 

scheduling, GPG3: 5-13 
time events, GPG3: 8 

types of, GPG3: 8 
see also Trigger systems 

Evertt, Jeff 
article by, GPG2: 74-79 
contact and bio info, GPG2: xxii 

Exception lists, GPG2: 139-140 
Exceptions and exception handling 

floating-point exceptions, GPG3: 69-72 

types of floating-point exceptions, GPG3: 
70 

Exclusive-or (XOR) operators, GPG1: 107, 

GPGI1: 108 

Explosions 
audio for, 726 
billboard particles to create, 551-560 
cellular automata to model, GPG3: 200 

debris, 557 
initial flash, 551-552 
intense fireballs, 555 
kill algorithms for, GPG4: 216 

radial flares, 552-553 
randomness and, 558 
screen shake, 558 

smoke expanding after, 556 
white-hot inner core, 554 

Exponential decay smoothing, GPG4: 96-97 
Exponential growth, Combs Method to 

manage, GPG2: 343-349 
Exported classes, GPG2: 50, GPG2: 56-57 
Exporting, parsing text data exported, GPG3: 

87 
Extensions, OpenGL, GPG1: 357-358 
Eyes, simulating visual changes in response to 

light, GPG4: 465-475 
Eye space, GPG1: 363-364 
Eye vectors, calculating, GPG3: 414 

F 
Facade audio design pattern, GPG2: 515 
Fagade pattern, GPG1: 15-16 
Face normals, GPG3: 344 
Face vertex indices, precomputing, GPG3: 

380 
Factorial templates, GPG1: 22-23 
Factories 

abstract interfaces and, GPG2: 22-23 
child factories, 180-181 

component creation with Factory pattern, 
178-181 

defined and described, GPG2: 57-58 
DLL factories, 181 
Entity factories, GPG2: 57 
game entity factory, GPG2: 51-61 
menu factories, 194-196 
object creation with, GPG4: 119 
Singleton design pattern and, 180 

Factory patterns, 180-181, GPG1: 18-19 
Far positions (hybrid between fixed-point and 

floating-point numbers), GPG4: 

162-170 

Farris, Charles 
article by, GPG3:; 256-267 
contact and bio info, GPG3: xxvii 

Fastest Connection First (FCF), GPG4: 
549-550 

Fast Fourier Transforms (FFT), GPG4: 265 

Faults, fractal terrain generation, GPG1: 
499-502 

FBM (fractal brownian motion) fractals, See 

Fractal brownian motion (FBM) fractals 

FEA (finite element analysis). See Cellular 

automata 
Feedback, in Hopfield nets, GPG1: 346-347 
Feedback control systems, ragdoll simulations 

and, 449-455 
Feedback Delay Networks (FDNs) 

defined and described, 731-733 
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fast environmental reverb based on, 
729-740 : 

Feed-forward networks (multilayer percep- 
trons), GPG4: 374-375 

Feet 
for game objects, GPG1: 404 
sliding during animation, GPG3: 

396-399 
Feynman, Richard, GPG4: 207 
Fibers, cooperatively multi-tasking threads, 

GPG?2: 260 

Fibonacci numbers, GPG1: 20-22 

Fiedler, Glenn 

article by, GPG4: 515-527 
contact and bio info, GPG4: xxv 

Field-of-view culling, GPG1: 422-423, 

GPG1: 425-429 
File lump structure, GPG2: 101 

Files, management using resource files, 
GPG?: 100-104 

Filion, Dominic 
articles by, 39-63, 571-577, 589-597 
contact and bio info, xx«vi 

Filters and filtering 
to approximate trigonometric functions, 

GPG3: 171-172 

audio filters, GPG3: 585 

band-pass audio filters, GPG3: 610-611 
bilinear filtering and aliasing, GPG2: 485 
biquad resonant audio filter, GPG3: 

606-612 
Bloom Filters, GPG2: 133-140 
combining audio filters, GPG3: 611 

Finite Impulse Response (FIR) filters, 
GPG2?: 525-526, GPG3: 607 

high-pass audio filters, GPG3: 610-611 

low-pass audio filters, GPG3: 610 
NetTool network simulator filters, 

GPG3: 557-558 
textures and, GPG2: 418, GPG2: 479, 

GPG3: 462, GPG3: 464 
vulgarity filters for online games, 

621-626 
Finite element analysis (FEA). See Cellular 

automata 
Finite Impulse Response (FIR) filters, GPG2: 

525-526, GPG3: 607 

Finite State Machines (FSMs), GPG1: 
237-248 

CFSM, GPG3: 260-266 
creating states for, GPG1: 242-243 
decision trees and, GPG4: 338 
defined, GPG3: 256-258 
derived classes and behavior changes, 

GPG3: 265-266 
function pointer-based FSEs, GPG3: 

256-266 
implementation of, GPG3: 258-260 
inherited FSMs, GPG3: 258 
rationales for use, GPG3: 257-258 
switch implementation of, GPG3: 

258-259 
tokenizers as, 18-19 

using FSMclass, GPG1: 243 
weaknesses of, 329 

Fire 

cellular automata to model, GPG3: 200 
chemical evolution model for, 542—546 
dynamics model for, 540-542 
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gridless and controllable, 539-549 

intense fireballs, 555 
light motif, GPG1: 528-534 
procedural textures for, GPG3: 456 

FIR (Finite impulse response) filters, GPG1: 

501-502, GPG3: 607 
First-person shooters (FPSs), killing algo- 

rithms and, GPG4: 209-219 
Fischer, Mark 

article by, GPG2:133-140 
contact and bio info, GPG2: xxii 

Fish tanks, simulating refraction effects in, 
GPG2: 402-405 
clip planes and stencil buffer, GPG2: 

404-405 
precomputations, GPG2: 403 
scale factor for tank, GPG2: 403-404 
shear factor for tank, GPG2: 404 

Fixed Up method vs. parallel transport frames, 
GPG2: 218 

Flags 
debug flags, GPG3: 129-132 
dirty flags and persistent properties, 

GPG3: 511 
in trigger systems, GPG3: 290-292 

Flanging (audio artifact), GPG4: 622-623 

Flex parser (lexical analyzer), GPG3: 91, 

GPG3: 406, GPG3: 408-409 
Flight. see Aerodynamics 
Floating objects, water simulation and, 

GPGI1: 191-193 
Floating-point exceptions, GPG3: 69-72 

code to enable, GPG3: 71 
compilers and, GPG3: 70 
types of, GPG3: 70 

Floating-point numbers 
absolute values, GPG2: 174 
accuracy problems and large world 

coordinates, GPG4: 157-170 
arbitrary functions, GPG2: 177-179 
clamping values to a specific range, 

GPG2: 173-174 
defined, GPG2: 167 
float/int conversions, GPG2: 169-172 
IEEE floating points, GPG2: 168-169, 

GPG4: 157-158, GPG4: 574 
increasing size of, GPG4: 161 
initial state variations and, GPG2: 108 
integer comparisons, GPG2: 173 
Intel architecture and, GPG2: 261 
linear quantization, GPG2: 178 
logarithmic quantization, GPG2: 

178-179 
performance measurement after optimiza- 

tion, GPG2: 180 

propagated influence values and, GPG2: 

293 
sign test for, GPG2: 172 
square root optimization and, GPG2: 

176-177 
text parsers, GPG2: 115 

Floating-point optimizations, GPG3: 

182-184 

Floating-point representations, vs. vector 

fractions, GPG3: 163-164 

Floats. See Floating-point numbers 

Flocking, GPG1: 305-318, GPG2: 330-336 

alignment, GPG1: 305-306 
attraction and repulsion curves, GPG4: 

358-359 

avoidance, GPG1: 306 
boids, varieties of, GPG2: 332-333 
cohesion, GPG1: 305-306 
demo, Flocking with Teeth, GPG2: 

334 
memory and, GPG1: 306 

rules of, GPG2: 330-331 
separation, GPG1: 305-306 
steering behaviors, GPG1: 305-306 

Flow experience in game play, GPG4: 
316-319 

Fluid properties of atmosphere, 401-402 
Fluid simulation, code listings, GPG3: 205 
Flythrough paths 

natural cubic splines and, GPG2: 
221-222 

quaternion-based flythrough paths, 
GPG2?: 220-227 

Flyweight classes, GPG2: 53 

Flyweight objects 
described, GPG2: 52 
State And Media Manager (SAMMy), 

GPG?: 52-54 
Fog, range-based, GPG1: 548 

Fog-of-War (FOW) 

defined, GPG2: 280 
visibility and, GPG2: 279 

Foliage 
physics for wind effects on leaves, 

417-Al9 
widgets to render fast and persistent 

foliage, 515-526 
Fonts 

characters for multiple-language games, 
GPG3: 93-94 

double and multi-byte character sets, 
GPG3: 97 

single-byte character sets, GPG3: 96-97 
Foot-sliding, GPG3: 396-399 
Foreign languages 

fonts and, GPG3: 93 
spaces in, GPG3: 93-94 
see also Multiple-language games 

Forests, GPG3: 270 
Formats 

fast bit blitter for conversion of, GPG2: 
92-99 

MRC file format for exporting, GPG2: 
142-143 

Forsyth, Tom 
articles by, GPG2: 363-376, GPG2: 

488-496, GPG3: 459-466 

contact and bio info, GPG2: xxii, GPG3: 

XXVIL 

Fox, David 
article by, GPG3: 573-581 
contact and bio info, GPG3: xxvit 

Fractal brownian motion (FBM) fractals 

clouds created with, GPG2: 245 

described, GPG2: 241-242 

landscapes created with, GPG2: 245 

noise generator implementation, GPG2: 

242-245 

turbulent noise function, GPG2: 467 

Fractals 
defined, GPG2: 239 
fault fractals, GPG2: 240-241 
multifractals, GPG2: 244-245 
plasma fractals, GPG2: 240 
programming, GPG2: 239-246 

765 

see also Fractal brownian motion (FBM) 

fractals; Fractal terrain generation 

Fractal terrain generation, GPG2: 239, 

GPG?: 246 

fault formation, GPG1: 499-502 
midpoint displacement, GPG1: 503-507 

Fractional errors, vector fractions for exact 

geometry, GPG3: 160-161 
Fragmentation, GPG1: 92-100, GPG4: 

43-49 
Frame-based operation, vs. function-based 

operation, GPG3: 18 
Frame events, GPG3: 8, GPG3: 11 
Frame-locking, GPG3: 488-489 

Frames 
as handles, GPG1: 95 
memory allocation, frame-based, GPG1: 

92-100 

Frameworks 
game-independent ws. -dependent, 

GPG3: 17 
implementation, GPG3: 20-23 
object-composition game framework, 

GPG3: 15-24 
platform-independent vs. -dependent, 

GPG3: 17 
Free(), GPG2: 9, GPG4: 37 

Free form deformation, 435 
FreeLibrary, GPG2: 34 
Free lists 

defined and described, 129-130, 
133-134 

implementation of, 135-136 

memory management and, GPG2: 9, 
GPG4: 43-49 

policy-based design and, 129-141 
Freese, Peter 

article by, GPG4: 157-170 
contact and bio info, GPG4: «xv 

Freezable class, 156 
FreezeMgr class, 150-157 
FreezePtr Template class, 156 
Freitas, Jorge, contact information, GPGI1: 

XXV 
Frenet Frames vs. parallel transport frames, 

GPG?: 217-218 

Fresnel term 
for reflections, GPG1: 581-585 
refraction mapping, GPG1: 594 

Freudenburg, Bert 

article by, GPG4: 443-449 
contact and bio info, GPG4: xxv 

Friction 
constraints and rigid body dynamics, 

GPG4: 249 
Coulomb friction, GPG3; 215-219 

curvature and, GPG3: 225 
deceleration and, GPG3: 216 
dry friction forces, GPG3: 215-216 
dynamic (kinetic) friction, GPG3: 

215-218, GPG3: 219 

Euler’s method to simulate, GPG3: 

220-221 

geometric issues and, GPG3: 225-226 
gravity and, GPG3: 217 
nonsmoothness and, GPG3: 222-223 

numerical methods for simulation of, 

GPG3: 219-224 
reformulation method to simulate, 

GPG3: 221 
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regularizing friction, GPG3: 221 
smoothness and geometric issues, GPG3: 

225 
static friction (stiction), GPG3: 215, 

GPG3: 218-219 

surfaces in contact, GPG3: 217 

Taylor method (Taylor series), GPG3: 

222-223 

three-dimensional formulation, GPG3: 
224-225 

transitioning between static and dynamic, 
GPG3: 223-224 

viscous damping and, GPG3: 221 

Front-end processing for multiplayer games, 
GPG3: 528-530 

Frustums 

culling, 65-77, GPG1: 422-423 
cylinder-frustum intersection test, GPG1: 

380-389 
extracting frustum and camera informa- 

tion, GPG4: 147-156 
oblique view frustums for mirrors and 

portals, 281-294 
plane transformation and view frustum, 

GPG4;: 147-149 
post-perspective space and, GPG4: 402 
projection matrix and, 283-285 

view frustums, GPG1: 381-382 
FSMs. See Finite State Machines (FSMs) 

Functional decomposition, 355-357 
Functionality, exporting, GPG1: 56-67 

Function-based operation, vs. frame-based 
operation, GPG3: 18 

Function binding, GPG3: 38-42 
networking and, GPG3: 42 
scripting and, GPG3: 42 

Function Identifiers, 633 

Function objects, GPG1: 52 

Function overhead, GPG1: 353-354 
Function pointers 

within C++ classes, GPG2: 59-60 

CStateTemplate class to avoid class- 
specificity, GPG3: 261-262 

defined and described, GPG3: 259-260 
Finite State Machine implementation, 

GPG3: 260 
Functions 

calling functions, GPG1:; 63-64 
chaining and TempRet routine, GPG2: 

86-87 

deprecated functions, GPG2; 62-65 
domains and ranges of, GPG1: 163-166 
exporting, GPG1: 56-67 
exporting from DLLs, GPG2: 28 

Functors, GPG1: 52 

FuSM. See Fuzzy State Machines (FuSM) 

Fuzzy logic, GPG1: 319-329 
combinatorial explosions and, GPG2: 

342-350 
Combs Method and, GPG2: 343, GPG2; 

348-349 
Combs Method rules for, GPG2: 

344-348 
defined, GPG2: 337 
defuzzification methods, GPG1: 327-328 
fuzzy control, GPG1; 322-328 
fuzzy landscaping, GPG1: 484-485 
fuzzy sets, GPG1: 320-321 
linguistic variables of, GPG1: 323 

operations, GPG1; 321-322 
sets in, GPG2: 342 
vs. traditional logic, GPG1: 319-320 
traditional rules for, GPG2: 343-344 
utility theory and, GPG4; 339-340, 

GPG4: 344 
variables in, GPG2: 342 

Fuzzy state machines (FuSM), GPG2: 

337-341 
adapting generic FSMs, GPG2: 339-341 
increasing gameplay with, GPG2: 

338-339 
uses in games, GPG2: 339 

G 
Game engines 

data-driven development, GPG2: 51-61 
DirectScene game engine, GPG4: 

649-651 
GPU / CPU parallelism, GPG2: 475 
input recording and, GPG2: 105-111 
trends in development, xii 
Universal Modeling Language engines, 

GPG3: 73-82 
“Game of Life,” GPG2: 506-508 
Game-path planning, GPG1: 254-262 
Game trees, GPG1: 249-253 

alpha-beta pruning, GPG1: 251-253 
move-ordering methods, GPG1: 

252-253 
negamax algorithm, GPG1: 250-251 

Garrabrant, Byon 
article by, GPG3: 146-152 

contact and bio info, GPG3: xxvii 
Gaussian elimination, GPG2: 196-197 
Gemstones, rendering, 561-570 
Generic component library, type identifica- 

tion system for, 177-178 
Generic Pagers (GPs), 79-92 

GPindex for, 80-84 
multiuser GP, 91-93 
search space for, 87-89 
tiles for searching, 84-87 

GenRand(), GPG2: 131-132 

Geometric algebra (GA) 

application examples, 214-221 
complex numbers and, 209 
contraction (left) product, 207-208 

described, 201-209 
geometric product, 205-206 
inverses and, 209 
multivectors, 203-209, 213 
outer products and, 203-204 
quaternions and, 210-212 
reflection and rotation, 210-212, 217 
translating common geometric relations 

into, 212-214 

Geometry management of 3D models 
axis-aligned bounding box (AABB) trees 

and, GPG2: 388-393 

cube environment mapping, GPG2: 419 
decals on complex surface, GPG2: 

411-415 
projective self-shadowing techniques, 

GPG2; 421-424 
quadtree lookup, direct access, GPG2: 

394-401 
segmenting character geometry, GPG2: 

421-422 

Index 

skyboxes and distant scenery, GPG2: 
416-420 . 

sphere trees and, GPG2: 384-387 

terrain creation with interlocking tiles, 

GPG2: 377-383 
VIPM methods, comparison of, GPG2: 

363-376 
GetProcAddress function, GPG2: 34 

GetProfileIn History, GPG1: 129-130 
Gimbal lock, GPG1: 196, GPG3: 155, 

GPG3: 195 

Ginsburg, Dan 
articles by, GPG1: 439-443, GPG2: 

452-462 
contact and bio info, GPG1: xxv, GPG2: 

xxi 

Glass, rendering, GPG1: 586-593 

colored glass, GPG1: 592-593 
multipass, GPG1: 593 

reflections on, GPG1: 592 

single-pass, GPG1: 593 
Glinker, Paul 

article by, GPG4: 43-49 
contact and bio info, GPG4: xvi 

Global objects, vs. singletons, GPG1: 37 
Goals 

difficulty and, adjusting to player skill, 
GPGé4: 315-324 

practical planning and AI, 329-342 
GoCap 

ActionState class, 233-234, GPG3: 
231-232 

Actor class, GPG3: 232 

AlControlState, GPG3: 233 
architecture of, GPG3: 231-233 
ControlState class, GPG3: 232 
TrainingControlState, GPG3: 233 
UserControlState class, GPG3: 232-233 

Goertzel’s Algorithm, sine and cosine calcula- 
tion, GPG3: 172-174 

Gomez, Miguel 
articles by, GPG1: 150-160, GPG1: 

177-181, GPG1: 187-194, GPG2: 

388-393 
contact and bio info, GPG1: xxv, GPG2: 

xxiii, GPG3: xxvii 

Gosselin, Dave 
articles by, 452-462, GPG2: 421-424 
contact and bio info, GPG2: xxiii 

Graham’s algorithm, GPG3: 276 

Grammars, Yacc parsers, GPG3: 40-41 
Granularity 

assigning to tasks, 356-357 
large world coordinate accuracy and, 

GPG4: 159-160 
Graphical User Interfaces (GUIs) 

Feng GUI of, GPG3: 117-118 
property page GUIs, 53 
tweaker interface GUI, GPG2: 124-125 

Graphics 
combined shadow buffers for shadow 

mapping, GPG4: 411-425 
dimensional impostors for realistic trees 

and forests, 526-538 
fire, gridless and controllable, 539-549 
foliage, rendering fast and persistent, 

515-526 

geometric algebra (GA) and, 201-223 

halftones, GPG4: 443-449 
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non-photographic rendering styles, 
GPG4: 443-449 

screenshots, poster quality, GPG4: 
383-393 

sepia tone conversions, GPG4: 461-463 
shadow volumes and GPUs, GPG4: 

393-398 
trends in, GPG4: 381-382 
volumetric post-processing, 571-577 
see also Graphics display; Graphics 

Processing Units (GPUs); Resolution 

Graphics display 
hardware accelerated procedural texture 

animation and, GPG2: 497-509 
hardware limitations and, GPG2: 508 
impostoring, GPG2: 488-496 

industry history and trends, GPG3: 
335-337 

lens flare using texture masking, GPG2: 

474-480 
per-pixel lighting techniques, GPG2: 

452-462 
pipeline stalls, GPG2: 475-477 
print-resolution of screenshots, GPG2: 

406-410 

silhouette edge detection and rendering, 

GPG?: 436-443 
texture mapping and programmable 

vertex shaders, GPG2: 444-451 
Graphics Processing Units (GPUs) 

cloud rendering on, 499-513 
neural networks and programmable 

GPUs, GPG4: 373-377 
recombinant shaders, 589-597 

Graphic User Interfaces (GUIs), editors and 

complexity of, 5—6 

Graph planners, 338-339 
Grass, physics for simulating movement of, 

414-416 
Green, Robin 

article by, GPG3: 170-186 
contact and bio info, GPG3: xxviii 

Greer, Jim 
article by, GPG3: 488-495 
contact and bio info, GPG3: xxvizi 

Grid boundaries, GPG4: 273 

Grids 
calculating neighboring states, GPGI: 

259 
rectangular grid space partitions, GPG1: 

258 
search space optimizations, GPGI: 273 

used in mapping, GPG1: 403 
Grimani, Mario 

article by, GPG4: 365-372 
contact and bio info, xxvi-xxvii, GPG4: 

xxvi > 

Grouping in DirectPlay 8.1, GPG3: 565-566 

Groups 
algorithms for group finding, GPG2: 229 

cover seeking behavior for, 304 
flocking behaviors, GPG1: 305-318 
moving, GPG1: 271 

sound management by group, 713-719 

Group tag, XML audio tag, GPG4: 627-628 

/GR switch, GPG2: 42 

Guided missiles, shortest arc quaternion and, 

GPG: 214-215 
GUIDs, text parsers, GPG2: 116 

GUIs. See Graphical User Interfaces (GUIs) 

H 
Haar wavelets, GPG1: 184-186 
Hacking 

online game protocols, GPG1: 104-108 
online games, GPG4: 544 

port forwarding and NAT routers, 
654-656 

preventing in multiplayer games, GPG3: 
520-522, GPG3: 546-555 

SYN-flood attacks, GPG4: 544 
Hagland, Torgeir 

article by, GPG1: 471-475 
contact information, GPG1: xxv 

Half-edge data structures, subdivision sur- 
faces, GPG3: 375-378 

Half-Life, GPG1: 307 
Half-tones and half-toning, GPG4: 443-449 

creating halftone screens, GPG4: 
444-446 

threshold functions for, GPG4: 446-447 
Hamaide, Julien 

article by, 741-750 
contact and bio info, xxvzi 

Hamlaoui, Sami 
article by, 721-728 
contact and bio info, xxvii 

Hancock, John A. 
articles by, GPG4: 337-344, GPG4: 

345-354 
contact and bio info, GPG4: xxvi 

Handheld devices. See Wireless devices 
HandleMegr class, GPG1: 71-72 
Handles, GPG3: 45-46 

frames and memory, GPG1: 95-96 
handle class, GPG1: 70 
HandleMegr class, GPG1: oe 
pointers and resources, GPG4: 62 
proxy audio design and, GPG2: 516 
in ResManager, GPG1: 85-86 
resource managers and, GPG1: 69-70 
as weak references, GPG4: 63-66 
see also Smart pointers, handle-based 

Hannibal, Soren 
article by, GPG3: 69-82, GPG4: 

497-502 

contact and bio info, GPG3: xxviii, 
GPGA: xxvii 

Hapgood, Bryon 
articles by, 91-99, GPG2: 85-90, GPG2: 

85-99 
contact and bio info, GPG2: xxiii 

Hard coding, avoiding, GPG1: 3-4 
Hardware 

bump mapping, GPG1: 555-561 
cloud generation with, GPG2: 463-473 
disadvantages when used for procedural 

textures, GPG2: 471 
procedural texture animation and, GPG2: 

497-509 
procedural textures and acceleration, 

GPG3: 456 
programmable graphics hardware neural 

networks, GPG4: 373-377 
rendering print-resolution screenshots 

with, GPG2: 406-410 

rendering refraction with, GPG1: 

597-598 
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as source for random numbers, GPG2: 

129) 

world market and configuration of, 

GPG3: 106-107 

Harmon, Matthew 
articles by, 115-128, 713-719, GPG4: 

69-83 
contact and bio info, xxvii, GPG4: xxvii 

Hart, Evan 
article by, GPG2: 406-410 
contact and bio info, GPG2: xxiii 

Harvey, Michael 
article by, GPG3: 5-14 
contact and bio info, GPG3: xxviii 

Hashing functions, GPG2: 129, GPG2: 134 
contact points and hashing, GPG4: 262 

Hash keys, Zobrist hash to calculate, GPG4: 

141-146 
Hash maps, for AI training, GPG3: 237-239 

Hash tables, GPG1: 280-281 
for massively multiplayer games (MMPs), 

GPG3: 508 
template, GPG2: 48 
used in copy-on-write data structures, 

GPG4: 556-561 
Hast, Anders 

article by, 225-231 
contact and bio info, xxviii 

Hawkins, Brian 
articles by, GPG3: 44-48, GPG3: 

129-135, GPG3: 413-416 

contact and bio info, GPG3: xxix 

Haze, post-processing effects, GPG4: 

477-485 
Header files, GPG1: 104, GPG2: 101-102, 

GPG?: 113-114 

precompiled headers, GPG4: 40 

Heads-up-displays (HUDs) 
context-sensitive HUD’s for editors, 5—15 
defined and described, 8—9 
implementation of, 10-13 

Heads-up-editing (HUE), 5-15 
Heartbeat (system messages), defined, 665 

Heat 
heat waves (inferior mirages), 571-577, 

GPG4: 477-485 
modeling with cellular automata, GPG3: 

200, GPG3: 209-212 

Hebb, Donald, GPG1: 345 
Hebbian nets, GPG1: 345-346 

Hecker, Chris, xvii 
Height advantage, as tactical assessment 

factor, GPG2: 296 

Heightfields 
dynamic, fast calculation methods for, 

GPG3: 344-348 

fast heightfield normal calculation, 

GPG3: 344-348 
lighting heightfield terrains, GPG3: 

433-444 
Heim, Oliver 

article by, GPG4: 503-513 
contact and bio info, GPG4: xxvii 

Hejl, Jim 
article by, GPG4: 487-495 
contact and bio info, GPG4: xxvii 

Helicopters, sound effects, GPG3: 627-628, 

GPG3: 635-636 

Helper struct, GPG4: 341 
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Herding, GPG1: 305-318, GPG3: 272 

see also Flocking 
Hermite interpolant, GPG4: 281 

Hermite splines 
keyframing and, GPG1: 467-470 
minimal acceleration curves and, 

225-231 

normalized, equation for, 237 
spline-based time control for animation, 

233-246 
Heun integrator, 443-444 
Heuristic costs algorithm, GPG1: 276-278 
Hiebert, Garin 

article by, GPG3: 595-599 
contact and bio info, GPG3: xxix 

Hierarchical pathfinding, GPG1: 275-276 

Hierarchical scene organization, 74 

Hierarchies 

Behavior class hierarchy, GPG2: 54—55 
of bones, GPG3: 192-193, GPG3: 378 
of C++ classes, method for describing, 

GPG?: 51-61 

object hierarchy, GPG3: 78 
real-time profiling systems, GPG3: 

146-152 
skeleton node heirarchy, GPG4: 488-489 

Hierarchy design, GPG1: 12 
Higgins, Daniel F. 

article by, GPG3: 268-284 
contact and bio info, xxviii, GPG3: xxix 

High-level languages, GPG3: 3 
High-Level Shading Language (HLSL), 

GPG4: 462-463 
Growable Poisson Disc blurring, pixel 

shader code for, GPG4: 483-484 

Hills, GPG3: 269 
Hjelstom, Greg 

article by, GPG3: 146-152 
contact and bio info, GPG3: xxix 

Hoffman, Naty 

article by, GPG3: 433-443 
contact and bio info, GPG3: xxx 

Hook’s Law, 425-428 

Hopfield, John, GPG1: 346 

Hopfield nets, GPG1: 346-350 
Hopkins, Don 

article by, GPG3: 117-128 
contact and bio info, GPG3: xxx 

Horizon effect, GPG1: 253 

Horizons 
horizon angles and horizon mapping, 

GPG3: 436-437 
occlusion horizon and horizon culling, 

GPG4; 515-527 

Host classes or hosts, 131, 665 
Hosting facilities for online games, 657-658 
Hot swappable services, 607 
Householder method to calculate eigenvec- 

tors, GPG4: 188-189 
HTML, logging and debugging systems, 

HTML-based, GPG4: 19-26 
HTTP, GPG3: 575-577 
Hughes, Charles E., contact and bio info, 

XXVIIL 

Hulls, convex, GPG3: 273-277 
Graham’s algorithm, GPG3: 276 

Hungarian notation, GPG1; 9-11 
Hunicke, Robin 

article by, 297-298 

contact and bio info, xxviti—exix 
Hurley, Kenneth 

article by, GPG3: 444-451 
contact and bio info, GPG3: xx 

Hybrid simulation 
modal analysis and, GPG4: 295-296 
multilayer physics and fast deformations, 

GPG4: 276-277 
HyperThread technology, 701-702 
Hysteresis thresholding, GPG1: 435 
Hyun-jik, Bae 

article by, 627-641 
contact and bio info, xxix 

I 
TAudioListener class, GPG4: 629 
ICV (integrity check values), GPG3: 550 

ID-based shadow buffers, GPG4: 413-414 
in combined shadow buffers, GPG4: 

414 422 

Ideal gas law, 438-440 

Identifiers, for pointers, GPG3: 46 
Identity matrices, GPG1: 26-27 
IEEE floating-point format, GPG2: 168-169, 

GPG4: 157-158 

If statements, GPG4: 17 

“Ignore Always” option in assert, GPG1: 
112-113 

IIR (Infinite impulse response) filters, GPG3: 

606-612 
Images 

recognition and neural nets, GPG1: 
341-344 

wavelets for compression, GPG1: 

185-186 
Immediate mode functions, GPG1: 353-354 
Implicit serialization, 53 
Impostors 

billboard quad rendering, GPG2: 490 
bounding object rendering, GPG2: 

491-492 
camera distance and updates, GPG2: 494 
cuboid rendering, GPG2: 490-491 

described, GPG2: 488 
game-specific updates, GPG2: 494 
image warping and, GPG2: 492 
lighting and updates, GPG2: 494 
prediction of impostor states, GPG2: 495 
rendering, GPG2: 489-493 
update heuristics, GPG2: 493-494 
uses of, GPG2: 495-496 
viewing angles and updates, GPG2: 494 

Increment functions, optimization and, 
GPG2: 7 

Index buffers 
in sliding window VIPM, GPG2: 

372-375 
as tile templates, GPG2: 380 

Industry trends, xi—xiti, xv—xviti, GPG3: 487, 
GPGA: xvii-xix 
see also World markets, designing for 
Inertial tensor matrix, GPG4: 192 
Inexact Result Exceptions, GPG3: 70 
Infinite impulse response (IIR) filters, 

GPG3: 606-612 

Infinite loops, macro to prevent, GPG3: 
31-32 

Infinite universes, algorithms for, GPG1: 
136-139 

Index 
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Influence maps : 
AI optimizations, GPG2: 256 
cell data types, GPG2: 289-290 
cell size, determining optimal, GPG2: 

292 
described, GPG2: 287-289 
desirability values, GPG2: 290-292 

falloff rules, GPG2: 292-293 
influence propagation (smoothing or 

blurring), GPG2: 292-293 
refreshing influence maps, GPG2: 

295-296 
terrain and impacts on, GPG2: 293-297 
in 3D environments, GPG2: 296 

Inheritance, GPG1: 6, GPG1: 12 
abstract interfaces as traits and, GPG2: 

23-26 
downward casting and autolists, GPG3: 

66 
IsA function and dynamic type informa- 

tion (DTI) class, GPG2: 40-41 

multiple inheritance, GPG2: 45, GPG3: 
67 

vs. object composition, GPG3: 18 
ownership issues, GPG3: 19 

Initialization vector, GPG3: 549 
Initializer lists, GPG2: 6-7 
Initial value problems, GPG1: 177-178 
Inking for nonphotorealistic rendering 

advanced texture features and inking, 
GPG2: 442 

edge-based inking, GPG2: 438-440 
inking described, GPG2: 436-437 
programmable vertex shader inking, 

GPG2: 440-442 
Inline functions, GPG2: 11-12 

advantages of, GPG2: 16-18 
code bloat and, GPG2: 18 
vs. macros, GPG2: 16-19 
parameter types and, GPG2: 18 

Inline keywords, Microsoft specific keywords, 
GPG?2: 19 

Inlining. See Inline functions 
Inner (dot) product, 207 

Input recording 
bug reproduction with, GPG2: 105-106 
game movie creation, GPG2: 107 
measuring optimization with, GPG2: 107 
multiplayer uses of, GPG2: 107, GPG2: 

110 

predictability and, GPG2: 107-108 
replaying interesting games, GPG2: 106 
testing techniques for, GPG2: 110 
uses of, GPG2: 105-107 

Inputs 

asynchronous I / O, GPG3: 523-524 
buffered data mode, GPG3: 113-114 
converting player’s input for third-person 

control systems, GPG2: 425-427 
input events for tokenizers, 18 
Input Method Editors (IMEs), GPG3: 

94-95 
keyboard input, GPG3: 113 
lag times, GPG3: 115, GPG3: 488-495 
mouse and joystick input, GPG3: 114 
mouse input, GPG3: 114 
onscreen virtual keyboards, GPG3: 94-95 
random number generators and, GPG2: 

128-129 
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real-time input, GPG3: 109-116 
steering and, GPG4: 224-226 
touchscreens, GPG3: 124 
world market design considerations, 

GPG3: 99-100 
see also Input recording; User interfaces 

(UD) 
Instability, explicit vs. implicit methods, 

GPG1: 177-178 
Instant replay features, random pools and, 

673-679 
Instruction pointers, GPG2: 260-261 
Integers 

integer / float conversions, GPG2: 
169-172 

text parsers, GPG2: 115 
Integrators, defined and described, GPG4: 

232-234 

Integrity check value (ICV), GPG3: 550 

Interaction detection, multi-resolution maps 
for, GPG1: 403-411 

Interactivity 
deformations with multilayer physics, 

GPG4: 275-285 
dramatic tension and, GPG4: 315-324 
interactive audio processing pipeline, 

GPG2: 529-538 
interactive music sequencer, GPG2: 

551-558 
music and, GPG4: 623-624 
web-cams for multiplayer games, GPG2: 

153 
Interface Definition Language (IDL), 

633-634 
IDL Compiler, 635-636 

Interface functions, deprecation facilities and, 
GPG2: 62-65 

Interfaces 
component interfaces, 28-29, 30-33 
for components, 182-186 
debug flags, GPG3: 129-130 
dramatic model as design paradigm for, 

GPGé4: 317 
generic function-binding interface, 

GPGI1: 56-67 

libraries and, GPG4: 35 
macro to simplify class interfaces, GPG3: 

33-36 
network interfaces, 644 
for packable data types, GPG4: 574, 

GPG4: 575 
single-speaker speech recognition and, 

741-750 
for spline-based time control, 244-245 
Stats system used during prototyping, 

GPG1: 119 
systems_t class and, GPG3: 20-21 

TaskSys_t class, GPG3: 21 

for trees, GPG4: 56-58 
user interface testing, GPG3: 107-108 
world market design considerations, 

GPG3: 99-101, GPG3: 107-108 

see also Graphical User Interfaces (GUIs); 

User Interfaces (UIs) 

Interface versioning, 183-184 
International markets. See World markets, 

developing games for 

Internet Protocol Security (IPSec) standard, 

GPG3: 546-555 

Interpolations, GPG1: 141-149 
CEaseInOutInterpolation, GPG1: 149 
CEaseOutDividelnterpolation, GPG1: 

147 
CEaseOutShiftInterpolation, GPG1: 

147-148 

CLinearInterpolation, GPG1: 148 
cubemap normalizer to correct problems, 

GPG2: 459-460 
defined, GPG2: 527 
DSP and linear interpolation, GPG2: 528 

floating-point math in, GPG1: 141-142 
frame-rate-dependent ease-out, GPG1: 

141-144 
frame-rate-independent ease-in and -out, 

GPG1: 144-146 
frame-rate-independent linear interpola- 

tion, GPGI1: 144 

integer math in, GPG1: 142-144 
limitations of, GPG1: 146 
linear interpolation (lerp), GPG1: 206, 

GPGI1: 209-211 

spherical cubic interpolation (squad), 

GPGI1: 207-208 

spherical line interpolation (slerp), 
GPGI1: 206-207, GPG4: 491-492 

spline interpolations, GPG1: 208, GPGI: 
211-213, GPG2: 224-225 

vectors across line or plane, GPG2: 189 

Intersection, CSG Boolean operator, 103-107 
Intersections 

techniques for calculating, GPG2: 

191-204 

vector fractions and, GPG3: 160-169 

Invalid Exceptions, GPG3: 70 

Inverse kinematics 
applying to bones, GPG3: 195-198 
constraint of, GPG3: 192-198 
cyclic coordinate descent, GPG3: 

193-194 
rotational constraints, GPG3: 195 

Inverse Kinematics (IK), Jacobian Transpose 

method, GPG4: 193-204 
I/O, asynchronous, GPG3: 523-524 
IOCP asynchronous I / O, GPG3: 523 
IP addresses, 644-645 
IPSec (Internet Protocol Security) standard, 

GPG3: 546-555 
Iridescence, creating, GPG3: 472-473 
Irradiance, terrain lighting and, GPG3: 434 
IsA function, dynamic type information 

(DTI) class and inheritance, GPG2: 

40-41 

Isensee, Pete 

articles by, GPG1: 20-35, GPG2: 
127-132, GPG3: 49-58, GPG3: 

546-556, GPG4: 571-578 
contact and bio info, GPG1: xxv, GPG2: 

xxiii, GPG3: xxxi, GPG4: xxviti 

Isidoro, John 
article by, GPG2: 220-227, GPG3: 

467-476 

contact and bio info, GPG2: xxiv, GPG3: 

XXXT : 

Islands, as boundary conditions, GPG1: 190 

Isometric engines, 3D tricks for, GPG3: 

417-423 
Iterated deepening, GPG1: 252-253 
Iterators, reverse, GPG1: 49-50 

IW ave, water surface wave propagation 

calculator, 411-414, GPG4: 265-274 

J 
Jacobian constraints, GPG4: 243 
Jacobian Transpose method, IK and, GPG4: 

193-194 
Jacobi matrix, GPG4: 194-199 

stiffness matrix in modal analysis, GPG4: 
290-291 

Jacobs, Scott 
article by, 169-175 
contact and bio info, xxix 

Jam, GPG4: 37 

James, Greg 
article by, GPG2: 497-509 
contact and bio info, GPG2: xxiv 

Japanese. See Multiple-language games 
Java 2 Micro Edition (J2ME) 

described, GPG3: 574-575 
HTTP and, GPG3: 575-577 
image retrieval, GPG3: 579-580 
MIDlets, GPG3: 575, GPG3: 579 
multiple connections, GPG3: 577 
networking on, GPG3: 575-576 
optimizing packets, GPG3: 577-579 
proxies, GPG3: 577 

Jay, Lee 

articles by, GPG4: 563-570 
contact and bio info, GPG4: xxix 

Jensen, Lasse Staff 
article by, GPG2: 118-126 
contact and bio info, GPG2: xxiv 

Jewels, rendering, 561-570 
Joins, geometric algebra, 214 
Joints 

ball and socket constraints, GPG4: 
246-247 

distortions and deformations, GPG4: 
487-488 

flexion and shrinkage problems, GPG3: 
384-393 

hinge joint constraints, GPG4: 248 
rigid body simulation and joint con- 

straints, GPG4: 241-250 
spherical joint blending, GPG4: 488, 

GPG4: 490-491 
weights and weighting, GPG3: 388-392 
see also constraints 

Jones, Toby 
article by, GPG4: 141-146 
contact and bio info, GPG4: xxviii _ 

Jones, Wendy 
article by, 189-196 
contact and bio info, xxix 

Journaling services 
architecture of, GPG3: 137-140 
information reports, GPG3: 143 
interactive reports, GPG3: 145 
interface for, GPG3: 141-142 
tracing information, GPG3: 143-144 

Joysticks, GPG3: 114 

K 
Kaiser, Kevin 

article by, GPG1: 390-402 
contact information, GPG1: xxv 

Kautz, Jan 
article by, GPG3: 477-483 
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contact and bio info, GPG3: xxi 
Kawabata Evaluation System (KES), 421 

K-d trees, GPG2: 388 

Kelly, Paul 
article by, GPG3: 83-91 
contact and bio info, GPG3: xx«xi 

Keyboards 
input in multiple-language games, GPG3: 

99-100 
onscreen virtual, GPG3: 94-95 
real-time input, GPG3: 113 

Keyframing 
hermite spline, GPG1: 467-469 
interpolated 3D, GPG1: 465-470 
linear interpolation, GPG1: 465-467 
spline interpolating vertices, GPG1: 

469-470 
vertices and normals, interpolation of, 

GPGI1: 467 

Keys, 249 
data keys, evaluating for data compres- 

sion, GPG4: 498-500 
Qualities copy-on-write structure and 

key-value pairs, GPG4: 556-561 

Keywords, text parsers, GPG2: 115 
Killing algorithms 

area magic, GPG4: 216 
artillery and catapult rounds, GPG4: 

213-214 

“bull’s eye” (round) targets, GPG4: 
210-211 

chemical weapons, GPG4: 216 
probability and the “kill thermometer,” 

GPG4: 214-216 

rectangular targets, GPG4: 211-212 
“ribbon” targets, GPG4: 209-210 

shotgun blasts, GPG4: 212-213 

shrapnel, GPG4: 216-217 
weapons of mass destruction, GPG4: 216 

Kills, mobility and firepower kills, GPG4: 

214-216 

Kinematics, translation and rotation, GPG1: 

150-154 
King, Yossarian 

articles by, GPG1: 432-438, GPGI1: 
515-518, GPG1: 562-566, GPG2: 
167-181 

contact and bio info, GPG1: xxv, GPG2: 
XXIV 

Kirmse, Andrew 
articles by, GPG1: 101-108, GPG2: 

5-15, GPG3: 487, GPG3: 557-560 
contact and bio info, «xvii, GPG1: xxv, 

GPG2: xxiv-xxv, GPG3: xxxi 
Kline, Christopher, GPG1: 317-318 

Klowsowski, James 
article by, GPG3: 353-358 
contact and bio info, GPG3: xxxii 

K-means clustering, GPG4: 260 

Knuth, Donald, quoted, GPG3:; 4 

Kochanek-Bartels splines, GPG4; 171 
Krten, Robert, GPG1: 501 
Kutta-Joukowski theorem, 401 

L 
Ladders for online games, GPG4: 537-538 
Laeuchli, Jesse 

article by, GPG2: 239-246 
contact and bio info, GPG2: xxv 

Lagrange series, 541, GPG1: 162-176 
vs. Taylor series, GPG1: 174-175 

Lag times. See Latency 
Lake, Adam 

articles by, GPG2: 444-451, GPG3: 
404-412, GPG4: 503-513 

contact and bio info, GPG2: xxv, GPG3: 
xxxii, GPG4: xxviii 

LaMothe, André 
article by, GPG1: 330-350 
contact information, GPG1: xxv 

Lanchester Attrition models to predict results 
of combat, 317—328 

Lander, Jeff 
article by, GPG3:; 335-337 
contact and bio info, GPG3: xx«x1iz 

Landscaping, GPG1: 484-490 

Fault Line generation, GPG1: 488-490 
fuzzy landscaping, GPG1: 484485 

see also Terrains 
Languages 

Lua programing language, 115-128 
macro for specialized languages, GPG3: 

32-33 
Larameé, Francois Dominic 

article by, GPG2: 51-61 

contact and bio info, GPG2: xxv 

Laser beams, billboard beam effects, GPG3: 

413-416 

Latency 
defined, GPG3: 573 
front end processing and, GPG3: 529 
input, GPG3: 115 
NetTool, network latency simulator, 

GPG3: 557-560 

in online games, GPG3: 488-495, 
GPG3: 500-501, GPG3: 502 

packet compression and, GPG3: 578 

simulating network lag time, GPG3: 
557-560 

wireless devices and, GPG3: 573-574, 
GPG3: 578 

Laurel, Brenda, GPG4: 317 
Lava 

flow simulation, GPG1: 508-511 
heat shimmer, GPG4: 479-480 

Layering, GPG1:; 12 
Layers 

FramePlayer_t to manage, GPG3: 21-23 

heads-up-displays and acetates as, 10-11 
Lazy evaluation, GPG2: 254 
LCA (linear congruential algorithm), GPG3: 

623-624 
Leader boards for online games, GPG4: 

537-538 
Leaks 

abstraction leaks, GPG4: 14 
memory leaks, GPG4; 15, GPG4: 61 

Learning algorithms, 345-352, GPG1: 
345-350 

Leaves, physics for wind effects on, 417-419 
Le Chevalier, Loic 

article by, GPG1: 182-186 
contact information, GPG1; xxv 

Lecky-Thompson, Guy W. 
articles by, GPG1: 133-140, GPG1: 

484-498 

contact information, GPG1: xxv 
Lee, Jay 

Index 

article by, GPG4: 563-570 

contact and bio info, GPG4: xxix 
Leeson, William 

article by, GPG3: 372-383 
contact and bio info, GPG3: xx«xiii 

Left (contraction) product, 207—208 

Lengyel, Eric 
articles by, 199, 281-294, GPG1: 

361-365, GPG1: 380-389, GPG2: 

361-362, GPG2: 411-415, GPG3: 
338-344 

contact and bio info; xxix, GPG1: 
xxv, GPG2: xxv, GPG3: xxxiti 

Lens flares 
asynchronous readback of buffer data, 

GPG?: 480 

geometry-based approaches, GPG2: 480 
hardware issues, GPG2: 475-477 
occlusion, GPG2: 474 
simulations of, GPG1: 515-518 
texture masking, GPG2: 474, GPG2: 

477-478, GPG?: 479-480 

Lerp (linear interpolation), GPG1: 206, 

GPGI1: 209-211 

optimizing calculations, GPG3: 175 
substitutes for, GPG3: 179-185 

Level-of-Detail (LOD), GPG1: 432-438 

AI optimization, GPG2: 254 
Algorithm and selection, GPG1: 

435-437 
algorithm for selection, GPG1: 435-437 
cameras and, GPG1: 433-434 
hysteresis thresholding, GPG1: 435 
implementation, GPG1: 435-437 
Level-of-Detail AI, GPG2: 254 
magnification factors, GPG1: 434, 

GPG1: 437 
physics-based animation and, GPG4: 

276-277 

selection of, GPG1: 433-434 
threshold selection, GPG1: 437 
tile landscapes and determination of 

detail, GPG2: 380 
triangle strips and continuous LOD, 

GPG3: 366 

view-independent progressive meshes, 
GPGI1: 454-464 

visual quality, GPG1; 432-438 
Levels 

level design, 580-581 
prefabricated geometry for, 581-582, 

585-586 
procedural level generation, 579-588 

Levy, Steven, author of Artificial Life, GPG2: 
335 

Lewis, Ian 

articles by, GPG2: 525-528, GPG2: 

559-560 
contact and bio info, GPG2: xxvi 

Lexemes, 17 

Lexers, GPG3: 84-85 

Flex, GPG3: 91, GPG3: 406, GPG3: 
408-409 

Lex, GPG3: 83-91 
Lexical analysis 

Flex, GPG3: 91, GPG3: 406, GPG3: 
408-409 

Lex, GPG3: 83-91 
tokenizers, 17-19 



Index 771 

Lex (lexer), GPG3: 83-91 

code listing for custom data file, GPG3: 
88-89 

Yacc parser generator used with, GPG3: 
85-86 

Libraries 
BLAS libraries, GPG4: 373-377 
cross-platform libraries, design and 

maintenance, GPG4; 35-41 
designing libraries, GPG4: 35-37 
EAGLE (Environmental Audio Graphical 

Librarian Editor), GPG4: 635, 

GPG4: 637-638 

generic component library, 177-187 
OpenAL positional audio library, GPG4: 

595-606 
reusable tree containers and C libraries, 

GPG4: 51-52 
XDS Lite library, GPG4: 131-133 
See also Dynamic Link Libraries (DLLs); 

Standard Template Library, C++ 
(STL); Standard Template Library 

(STL) 
Lifetimes, dynamic vs. static, GPG3: 19 
Lift, aerodynamics and, 396-398, 401-402 

Lights and lighting 
ambient, GPG1: 419-420 
attenuation of, GPG1: 543-548, GPG3: 

473-476 
beam effects, GPG3: 413-416 
bump mapping for, GPG1: 555-561 
changes, GPG1: 419-420 
cloud lighting, 503-504 
code for 3D lightmap with quadratic 

falloff, GPG2: 453-455 
of container interiors, GPG1: 596-597 
conventional static lighting, GPG1: 

524-527 
cube maps, encoding lights in, GPG3: 

449-450 
curvature simulation and, GPG3: 

424-432 
day / night effects, GPG3: 450 
diffuse lighting, GPG1: 526, GPG1: 

555-556, GPG3: 449, GPG4: 
440-441, GPG4: 465-475 

disco ball effects, GPG3: 449 
Dot3 Bump mapping, GPG2: 456-459 
dynamic, realistic, GPG3: 433-443 
dynamic gamma using sampled scene 

luminance, GPG4: 465-475 
fog, range based, GPG1: 548 
gem-rendering techniques, 562-565 
impostoring and, GPG2: 494 
irradiance, GPG3: 434 
light coordinate systems, GPG1: 

571-574 
light flares, 567-569 
light maps, GPG2: 452-459 
luminance of images, GPG4: 466 

modulus lighting, dynamic gamma to 
adjust, GPG4: 465-475 

motif-based static lighting, GPG1: 

528-534 
omni-lights, GPG1: 526-527 

optimized meshes and real-time lighting, 

GPG4: 437-441 
parallel light sources, GPG4: 403-404 

per-pixel lighting, GPG2: 452-462, 

GPG3: 467-476 
in post-perspective space, GPG4: 

402-404 

radiance, GPG3: 433-434, GPG3: 

436-438 
real-time simulations, GPG1: 535-542 
reflections, GPG1: 553-554, GPGI1: 

581-585, GPGI1: 592 
refraction through water, GPG1: 

193-194 

shadow volumes and visibility, GPG3: 
367-371 

static lights, GPG3: 449 
sunlight, calculation of radiance, GPG3: 

436-438 

sunset / rise effects, GPG3: 450 
of terrain, GPG3: 433-443 
transparency, rendering, GPG1: 586-593 
vertex color interpolation for, GPG1: 

537-542 

vertex normal calculation, GPG3: 
344-348, GPG3: 349-352 

video-based, GPG3: 442 

see also Shadows 
Linear congruential algorithm (LCA), GPG3: 

623-624 
Linear interpolation (lerp), GPG1: 206, 

GPGI1: 209-211 

optimizing calculations, GPG3: 175 

substitutes for, GPG3: 179-185 
Linearized potential flow model, 401 
Linear predictive coding (LPC), voice com- 

pression and effects, GPG3: 613-621 
Linear programming 

“Alt-Tab” problem in multitasking, 
GPG2: 82-83 

multithreading, GPG2: 81-84 
surfaces, video memory and loss of 

information, GPG2: 83-84 
for Windows-based games, GPG2: 80-84 

Linear quantization and floating-point 
numbers, GPG2: 178 

Line breaks, foreign languages and, GPG3: 
93-94 

Line-of-Sight (LOS) 
defined, GPG2: 280 
killing algorithms and, GPG4: 209 
Line-of-sight / fire tests, GPG3: 302-304 
LOS radius defined, GPG2: 280 
LOS search systems, GPG2: 279-286 
templates, GPG2: 281—283 

Line-plane intersection in collision detection, 
GPG1: 394-395 

Lines and line segments 
degenerate lines, GPG2: 198-199 
finite line segments, GPG2: 200-203 
intersection calculation, GPG2: 191-204 
nearest points calculated with closed-form 

solution equations, GPG4: 194-200 
nearest points on finite segments, GPG?: 

200-202 

parallel lines, GPG2: 199, GPG?: 
201-202 - 

Line-swept-spheres, GPG4: 308 
Linguistic variables, GPG1: 323 

Linking, explicit vs. implicit, GPG2: 33-34 
Lint tools, GPG4: 38 

Lip-synching, GPG3: 589 
real-time lip-synching system, GPG4: 

607-611 
Liquids, refraction maps for, GPG1: 594-600 

caustic effects inside container, GPG1: 

598-599 
containers and, GPG1: 595-597 
Fresnel term, GPG1: 594, GPG1: 597 

particulate matter, modeling, GPG1: 
599 

Snell’s Law, GPG1: 594-595 
see also Water 

Lists 
autolists, GPG3: 64-68 
Open lists, GPG1: 282-286 
polygon overlap, GPG1: 442 
Standard Template Library (STL), 

GPG1: 46-48 
STL containers, GPG1: 41-42 

List::splice, GPG3: 57 
Llopis, Noel 

articles by, GPG2: 20-25, GPG2: 62-65, 
GPG4: 27-35, GPG4: 61-68 

contact and bio info, GPG2: «xvi, GPG4: 

XXIX 
Loading, load manager on CD-ROM, GPG3: 

63 
LoadLibrary function, GPG2; 34 
Loads, optimizing, GPG1: 88-91 
Lobby design and development for online 

games, GPG4: 533-539 
Locality of reference, GPG4: 44, GPG4: 47 
Localization 

process for world-market games, GPG3: 
101-103 

testing, GPG3: 107 
user interfaces and, GPG3: 112 

Locations 
path search states, GPG1: 257-259 
tactical analysis of, GPG2: 309-310, 

GPG2: 315 
terrain reasoning for 3D games, GPG2: 

307-316 
Lockstep protocols, GPG3: 496-505 

event-locking, GPG3: 489-495 
frame-locking, GPG3: 488-489 
game-turn rates, updates, GPG3: 

498-500 
interpolating between turns, GPG3: 

498-500 
pointer-to-unique-ID, GPG3: 502-503, 

GPG3: 504 
single-player gaming, GPG3: 502 
updates, game turn rates, GPG3: 

498-500 
Locomotion 

anchored modifiers, GPG3: 402 
to arbitrary targets, GPG3: 394-396 
pauses in, GPG3: 402 
single-step animations, GPG3: 402 
smooth transitions between animations, 

GPG3: 396-398 
translational / rotational offsets, modifica- 

tion of, GPG3: 395-396 
tween ratios, GPG3: 398-399 

LOF (line-of-fire) tests, GPG3: 302-304 

Logarithmic quantization and floating-point 

numbers, GPG2: 178 
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Logarithms, base-2 logarithms of integers, 

GPG3: 157-159 
Logic 

vs, data in data driven design, GPG1: 3 
scripting, GPG1: 4—6 

Logic functions 
AND, GPGI1: 338-341 
OR, GPGI1: 338-341 
XOR, GPGI1: 338-341 

LoginServers, 612, 614 
Logs and logging 

audio system activity and, GPG2: 519 
call-stack tracking, GPG4: 20-25 
debugging and, GPG1: 233, GPG3: 129, 

GPG4: 15, GPG4: 19-26 
event logging defined and described, 

GPG4: 19-26 
HTML-based logging systems, GPG4: 

19-26 
lightweight, policy-based logging system, 

GPG3: 129-135 
Logs of messages and state transitions, 

GPG1: 232-233 
memory manager logging, GPG2: 68-70 
random pool systems for, 679 
real-time remote debug message loader, 

143-148 
reflection and, 53 
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article by, 201-223 

contact and bio info, xxx 
Look-at utilities, GPG1: 371 
LookupManager for massively multiplayer 

games, GPG3: 515 

Lookup tables, for trig functions, GPG2: 
174-176 

Loops 
infinite loops, macro to prevent, GPG3: 

31-32 
loop statements, GPG4: 17 
loop subdivision scheme, GPG3: 

373-374, GPG3: 380-381, GPG3: 
382 

main game loops, GPG4: 27-28 
message-based game loop, GPG4: 76-77 
object construction and, GPG2: 6 

pathfinding and, GPG3: 310-311 
LOS. See Line-of-Sight (LOS) 
Lowe, Thomas 

articles by, GPG4: 95-101, GPG4: 
171-181 

contact and bio info, GPG4: xxix 
LPC vocoder, 744-745, GPG3: 613-621 
Lua programming language, 115-128 

C and, 116, 117-120, 121-122 

chunks as used in, 117 
coroutines in, 124 
dynamic typing for variables, 116 
embedding into games, 120-122 
“glue” routines in, 117-119 
memory management and, 117 
meta tables in, 171 
multiple scripts in, 124 
overview of, 115-117 
real-time processing and, 122-124 
script management framework of, 

124-127 
states as used in, 117, 120 

visual state machine design and, 171-174 
yielding routines, 127 
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contact and bio info, GPG3: xxxii1, 

GPG4: xxix—«xx 

M 
Machine learning, GoCap, GPG3: 231-239 
MacLaurin series, 271-272 

Macros 
class interface simplification, GPG3: 

33-36 
compile-time constants from binary 

representations, GPG3: 28-29 
C-style for state machines, GPG1: 

225-227 
debugging, GPG3: 31-32 
DEPRECATE macro, GPG2: 64-65 
descriptive comments, GPG3: 29 
enum to string transformation, GPG3: 

27-28 

for infinite loop prevention, GPG3: 
31-32 

vs. inline functions, GPG2: 16-19 
journaling service macros, GPG3: 

143-145 
_LINE_ to string conversion, GPG3: 

31-32 
number of elements in array, GPG3: 30 
profiling systems, GPG3: 147-149 
save tables created with, GPG3: 61-62 
state machine languages, GPG3: 32-33 
state machines created with, GPG2: 19 
utility of, GPG3: 26 
see also Assert macros 

Magic, dynamic programming algorithm and 
spellcasting, GPG4: 334 

Magic (hardcoded) numbers, GPG4: 17 
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articles by, GPG4: 275-285 
contact and bio info, GPG4: xx«x 

Magnification factors, GPG1: 434, GPG1: 
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Make, GPGA: 37 
Malloc(), GPG2: 9, GPG2: 67-68, GPG4: 
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Manager classes, GPG1: 15-16 
Mandel, Michael 
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Manslow, John 
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contact and bio info, GPG2: xxvi 

Maps and mapping 
combined visibility maps, GPG2: 

283-286 

cube maps, GPG2: 459-460, GPG3: 
444-45] 

curvature simulation with, GPG3: 
424-432 

elevation mapping for depth, GPG3: 
418-420 

environment maps, GPG1: 193, GPG1: 
581 

grid-based maps, GPG1: 403 
height maps, GPG2: 503-504 
horizon mapping, GPG3: 436-437 
interlocking landscape tiles and height 

maps, GPG2: 379-380 
layer mapping for textures, GPG3: 461 
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light coordinate systems for, GPG1: 
571-574 

light maps, GPG1; 543-548, GPG2: 
452-459 

mipmaps, GPG3: 464, GPG3: 465, 
GPG4: 385 

multi-resolution maps, GPG1: 405-411 
n.h. / h.h. maps, GPG3: 467-469 
(n.h)k maps, GPG3: 469 
normal maps, GPG3: 425, GPG3: 429, 

GPG3: 430 
perspective shadow maps, GPG4: 

399-410 
perturbation maps for distortion simula- 

tion, GPG4: 482 
player visibility maps, GPG2: 281-282 
PTMs (polynomial texture maps), GPG3: 

438 
reflection, environment mapped, GPG1: 

581-585 
refraction mapping, GPG1: 594-600 
shadow maps, GPG1: 567-580, GPG2: 

422, GPG4: 399-410 
size variation problems, GPG1: 403-404 
specular maps, 469-472, GPG3: 450 
spherical reflection maps, GPG1: 

553-554 
Standard Template Library, GPG1: 

50-53 
triangle strip mapping alternatives, 

GPG3: 415-416 
UV mapping of triangle strips, GPG3: 

415-416 
see also Bump maps 
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465-570, GPG2: 28-37 
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XXX 
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subdivision surfaces and, GPG3: 372-376 
texture masks for team color, GPG4: 

453-456, GPG4: 458 
Massively multiplayer games (MMPs), 

603-610, GPG4: 555-561 
action requests, GPG3: 516 
action scheduling, GPG3: 516-517 
ActionStates class, GPG3: 509 
ActorProxy class, GPG3: 513 
Actors and Actor class, GPG3: 512-513 
AlControlStates class, GPG3: 509-510 
architecture overview, GPG3: 506-508 

BaseSimulation class, GPG3: 515 

ControlStates class, GPG3: 509 

core classes for, GPG3: 510-513 
crashes, preventing, 607-608 
dictionaries for, GPG3: 508 

DirectPlay 8.1 for, GPG3: 565 
event broadcasting and handling, GPG3: 

517-518 



Index 

grouping players, GPG3: 565-566 
hash tables for, GPG3: 508 
killing algorithms and, GPG4: 209-219 
LookupManager, GPG3: 515 
managers and factories, GPG3: 513-515 
MMORPGs (massively multiplayer 

online role-playing games), GPG4: 
579-589 

Nonperformer class, GPG3: 513 
Performer class, GPG3: 511-512 
persistence of game data, 608-609 
properties of SimulationObjects, GPG3: 

511 
proxies, simulation by, GPG3: 507-508 
server requirements for, 605-607 
simulation events for, GPG3: 508 
SimulationObject (SOB) class, GPG3: 

509-511 
SimulationState class, GPG3: 508-509 
SOBFactory, GPG3: 514 
SOBManager, GPG3: 514 
state storage for, GPG4: 555-561 
support classes for, GPG3: 508-510 
top-level interface for, GPG3: 515-518 
UserControlSrates class, GPG3: 509-510 

Massively multiplayer online role-playing 
games (MMORPGs ), GPG4: 579-589 

Mass-spring physics, GPG4: 277-284 
realistic cloth animation modeling with, 

421-433 

Master node list, GPG1: 282 
Masuch, Maic, contact and bio info, GPG4: 

XXXI 
Matchbox containers, Major Matchbox, 

GPG3: 277-283 
data members for, GPG3: 278 
methods in, GPG3: 278-279 

Matchmaking for online games, GPG4: 535, 
GPG4: 537 

Mathematics 
game programming and, 199, GPG4: 

139-140 
rationales for using, GPG3: 155-156 
trigonometric functions, approximations 

to, GPG3: 170-185 

see also Specific topics i.e. Splines 
Matrices 

efficiency of templatized, GPG1: 29-30 
identity matrices, GPG1: 26-27 
initialization of, GPG1: 27 
local-to-world matrix, GPG1: 368-370 
matrix-based cameras, GPG1: 366-370 
multiplication of, GPG1:; 28-29 
projection matrix, GPG1: 361-362 

quaternions as replacements for, GPG1: 

195-196 
state transition matrix, GPG1: 238 
transposition of, GPG1: 27-28 

Matrix-quaternion conversions, GPGI: 

200-204 
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DP (dynamic programming) and, GPG4: 
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pathfinding and, GPG4: 325-335 
MBE (molecular beam epitaxy), GPG1: 508 
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article by, GPG3: 157-159 
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Memory 
AABB tree optimizations, GPG2: 

388-393 
A* algorithm and, GPG1: 272, GPG1: 

278-280 

address space management as memory 
management, GPG4: 87-88 

bounds violations, GPG2:'69 
BSP trees, memory efficiency of, 

521-525 
cache lines and architecture, 159-161 
cache-oblivious implementation of ABT 

Trees, 159-167 
code bloat and, GPG2: 11-12 

committed memory, GPG4: 87 
composited screenshots and, GPG4: 

390-391 
corruption of, GPG1; 98-99 
data compression techniques, GPG4: 

497-502 

debugging and, GPG4: 16 
drop-in debug memory manager, GPG2: 

66-73 
flocking and, GPG1: 306 
fragmentation of, GPG1: 92-100, 

GPG2: 13-14 

frame-based allocation of, GPG1; 92-100 
free(), GPG2: 9, GPG2: 67-68, GPG4: 

37 
heaps, GPG1: 94-96 
inline functions and, GPG2: 18 
iterative autoassociative memory, GPG1: 

347, GPG1: 350 
leaks, GPG1: 86, GPG2: 70-71, GPG4: 

15, GPG4: 61 F 
management of, 16, GPG1: 80-87, 

GPG2: 9 

memepy(), GPG2: 13 
memory tracking, GPG2: 29, GPG2: 

66-73 
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MFC’s memory manager, GPG2; 72 
neural nets as, GPG1: 332, GPG1: 336 
OpenGL extensions and, GPG1: 

357-358 
procedural textures to spare, GPG2: 497 
releasing, GPG1: 95-100 
reliable messaging systems, memory 

requirements for, 670-671 
resource management and, GPG4: 61-62 
shared memory, 359, 608-609 
Standard Template Library and, GPG2: 

12-14 

state storage for MMP games, GPG4: 

555-561 
stomp, avoiding, GPG1: 90-91 
templated freelists to avoiding fragmenta- 

tion, GPG4: 43-49 

tracking user allocated memory with 
FreezeMgr, 151 

vectors, GPG1: 43, GPG1: 45 
VIPM memory costs, GPG2: 363-364 
see also Memory allocation; Memory 

managers 
Memory allocation, GPG4: 58, GPG4: 

87-88 

allocating for stacks, GPG2: 262 
alternatives to malloc(), calloc(), realloc(), 

and free(), GPG4: 67-68 

character sets and, GPG3: 97-98 
custom STL allocators, GPG3: 49-58 
debugging and, GPG4: 15 
malloc(), GPG2: 9, GPG2: 67-68, 

GPG4: 37 
web camera allocation, GPG2: 155-156 

Memory managers 
basic object memory manager, GPG1: 68 
debugging and, GPG4: 16 

drop-in debug memory manager, GPG2: 
66-73 

fragmentation and, GPG4: 44 
logs and logging, GPG2: 68-70 
in Lua programming language, 117 
MEC’s memory manager, GPG2: 72 

Menus 
menu factories, 194-196 
menu managers, 190, 193-194 
menu systems, 189-196 

pie menus, GPG3: 117-128 
user controls and, 190, 191-192 

Mersenne Twister, pseudorandom number 

generator, GPG4: 143-146 

Meshes 
arbitrary meshes, GPG3: 344-345 
collision meshes, GPG4: 505 
cracks in mesh seams, GPG4: 159 
deformation and physics layers, GPG4: 

281-284 

deformation and skin calculations, 

GPG2: 149 
exporting to file, GPG2: 149-150 
extruding for shadow volumes, GPG4: 

438 
heightfield meshes, GPG3: 344-348 
lighting and shadow volumes for opti- 

mized meshes, GPG4: 437-441 

navigation meshes, GPG1: 288-304 
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GPG4: 393-398 

optimization for stencil shadow volumes, 

GPG4: 430-432 
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(VDPM), GPG2: 377-378 
View-Independent Progressive Meshing 
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debugging for, GPG4: 82 
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entity manager, GPG4: 75-76 
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multiplayer networked games and, 
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Messaging protocols, 665-671 
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Metadata, 39 

Metaprogramming, templates, GPG1: 20-35 
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stack management, GPG2: 262 
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MLPs. See Multiplayer perceptrons (MLPs) 
MMORPGs (massively multiplayer online 
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MMPs (Massively multiplayer games). See 

Massively multiplayer games (MMPs) 
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equation for deformable simulation, 
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initial conditions and external forces, 
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modal decomposition, GPG4: 288, 
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modal simulation, GPG4: 288 
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stiffness matrix of system, GPG4: 291 
updating modes, GPG4: 294-295 
uses for, GPG4: 288-289 

Modal simulation. See modal analysis 
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440-442, GPG3: 447-449 
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503-507 
Mouse, input with, GPG3: 114 
Movement 

to arbitrary targets, GPG3: 394-396, 
GPG3: 399-400 

collision model path-finding and, GPG3: 
329-331 

movement-based AI, GPG3: 321-331 
navigation meshes and 3D, GPGI1: 

288-304 

test or other items moved via smoothing, 
GPG4: 95-101 

Move-ordering methods, GPG1: 252-253 
Movies, input recording to create game 

movies, GPG2: 107 
MRC file format, GPG2: 142-143 
Multiplatform portability, serialization and, 

GPG3: 536-545 
Multiplayer games 

data encryption methods, GPG3: 
521-522, GPG3: 549-552, GPG3: 
554-555 

data security and cheating, GPG3: 
520-522, GPG3: 546-555 

DirectPlay 8.1 to create, GPG3: 561-572 
input recording and, GPG2: 107, GPG2: 

110 
message-based entity management and, 

GPG4: 81-82 
MMPs, GPG3: 506-519 
scaling multiplayer servers, GPG3: 

520-533 
trends, GPG4: 531 
web-cam interaction for, GPG2: 153 
wireless extensions for, GPG3: 573 
see also Massively multiplayer games 

(MMPs); Network games (online 
games) 

Multiplayer perceptrons (MLPs) 

collecting data for, GPG2: 354-355 
described, GPG2: 351-353 
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input selection and training, GPG2: 

353-354 
perturbation searches and, GPG2: 

355-356 
resources required for, GPG2: 356-357 
training, GPG2: 353-356 

Multiple-language games 
character sets, GPG3: 96-98 
developing games for world markets, 

GPG3: 92-108 

Input Method Editors (IMEs), GPG3: 94 

line breaks and sorting, GPG3: 93-94 
localization and user interface for, GPG3: 

112 

memory allocation and character sets for, 
GPG3: 97-98 

Multiresolution LOD models, multilayer 
physics and fast deformations, GPG4: 
ON ih 

Multi-resolution maps, GPG1: 405-411 
Multitasking in games, GPG2: 82-83 
Multithreading, xvi, GPG2: 81-84, GPG3: 

13 
audio programming techniques, 697-711 
Benchmarking application, code listing, 

703-708 

decision tree optimization, 345-352 
defined and described, 697-699 
DirectPlay 8.1, GPG3: 566-569 
generic pagers (GPs) and, 92 

HyperThread technology, 701-702 

Parallel Virtual Machines (PVMs) and, 

353-366 
query algorithm, 345-352 
real-time streaming data mechanisms for, 

708 
Multitime management for multiserver 

systems, GPG4: 581-588 
Multivectors in geometric algebra, 203-209, 

213 
Music 

associations with, GPG2: 551-552 

basic music sequencer, GPG2: 539-550 
callbacks, GPG2: 545, GPG2: 547-549 
as clue for player, GPG4: 323 
control granularity, GPG2: 554-555 
DirectMusic, GPG4: 625 
event blocks, GPG2: 540-541 

event data structures, GPG2: 546-547 

interactive music, GPG4: 623-624 

meanings of, GPG2: 552-553 

MIDI (Musical Instrument Digital 

Interface), GPG2: 541-543 
modifications, GPG2: 544 

mood and, GPG4: 621, GPG4: 623-624 

note control, GPG2: 544 

sequencer data structures, GPG2: 
545-546 

sequencer implementation, GPG?2: 

543-549 
sequencing methods, GPG2: 539-540 

streaming method, GPG2: 539-540 

synthesizer / sequencer connection, 

GPG2: 549-550 

timing calculations, GPG2: 548-549 

transitions in, GPG2: 553-554 

volume control, GPG2: 554-555 

see also Audio 

Musical Instrument Digital Interface (MIDI), 

GPG2: 541-543 

Music design, factors for interactive music, 
GPG2: 556-558 

Music tag, XML audio tag, GPG4: 627 
My, Frederic 

articles by, GPG4: 111-124 
contact and bio info, GPG4: xxx 

N 
Nagy, Gabor 

articles by, GPG1: 567-580, GPG1: 
586-593 

contact information, GPG1: xxvi 
Name-mangling facility of C++, GPG1: 65 
Names and naming, GPG1: 10-11 

algorithm for realistic names, GPG1: 
493-498 

Hungarian notation conventions, GPGI: 

9-11 
name-mangling facility of C++, GPG1: 

65 
for variables, GPG4: 17 

Narrative 
AI to enhance tension in action games, 

GPGé4: 315-324 
dialog and, GPG4: 624-625 
dramatic structure of stories, GPG4: 

316-319 

N-ary trees, GPG3: 147 
NAT. See Network Address Translation 

(NAT) 

Natural cubic splines, GPG4: 171 
Navier-Stokes equation, 398-399, 401, 

540-541 
Navigation, for Generic Pager (GP), 89-91 
NavigationCell, GPG1: 292 

NavigationMesh, GPG1: 292-293 
Navigation meshes, GPG1: 288-304 

automatic cover finding and, 299-305 
construction of, 299-300, GPG1: 290 * 
controlling object movement, GPG1: 

290-293 
creatures, representing on, GPG3: 

314-316 
described, GPG3: 308-309 
dynamic obstacles, GPG3: 316-319 
portals and, GPG3: 309-311, GPG3: 

313-314 

precomputing tables for, GPG3: 

311-313 
static obstacles, GPG3: 318-319 
static vs. dynamic obstacles and, GPG3: 

307 

Navimesh, GPG1: 289 
Nearest-point calculation, closed-form 

equations for, GPG2: 194-198 
Negamax variation on minimax algorithm, 

GPG1: 250-251 

NetTool, online game monitor and network 
simulator, GPG3: 557-560 

Network Address Translation (NAT) 

Client / Server protocols, 651-654 
defined and described, 648-650 
Peer-to-peer protocols, 654-656 
port forwarding, 654-656 

Network games (online games) 

bitpacking compression technique, 
GPG4: 571-578 

crashes, preventing, 607-608 

distributed service systems for, 603-604 

hosting facilities for games, 657-658 

775 

incoming communication and, 616-617 
IP addresses, 644-645 
messaging systems, 665-67 1 
network protocols for, GPG1: 104-108 
safe random numbers for, 673-679 
security design for, 681-691 
time and consistency management, 

GPG4: 579-589 
vulgarity filtering for, 621-626 
see also Massively multiplayer games 

(MMPs); Online games (network 

games); Servers 

Network interfaces, 644 
Network Time Protocol (NTP), online 

gaming and, GPG3: 493 
Neural networks, GPG1: 330-350 

algorithm for, GPG1: 345-350 
biological analogs for, GPG1: 330-331 
classification and recognition, GPG1: 

341-344 
feed-forward networks (multilayer 

perceptrons), GPG4: 374-375 
game applications for, GPG1: 331-332 
Hebbian neural nets, GPG1: 345-346 
Hopfield neural nets, GPG1: 346-350 
multiplayer perceptrons (MLPs), GPG2: 

351-357 
neurodes, GPG1: 332-338 

plasticity of, GPG1: 336 
programmable graphics hardware and, 

GPG4: 373-377 
stability, GPG1: 336 
temporal topics, GPG1: 335-336 

Neurodes, GPG1: 332-338 
Newton-Euler equations, GPG1: 150-160 

integrating, GPG1: 158-159 
Newton’s law of motion, GPG4: 242 
N.h. / h.h. maps as lookup tables, GPG3: 

467-469 
Nicholls, Aaron 
articles by, GPG2: 205-214, GPG3: 

92-108 
contact and bio info, GPG2: xxvii, 

GPG3: xxiv 
NLS (normalized light space), GPG3: 

473-474 
Node Object, GPG1: 283 
Nodes 

allocation of, GPG3: 53-54 
calculating start and end node velocities, 

GPG4: 180 
dummy nodes, GPG4: 56 
effector nodes, GPG4: 194 
export routines and, GPG2: 144-145 
in matchbox containers, GPG3: 

278-279 

pathfinding, GPG1: 278-280 

decoupling, GPG1: 278-279 
master node list for storage, GPG1: 

280-281 

root nodes, GPG4: 194, GPG4: 488 
.spline nodes, GPG4: 171 
tree nodes, GPG4: 53-56 

NodeServers, 612, 614-619 

Noise 
animating an octave of noise, 500, 

GPG2: 466-468 
band-limited noise, GPG2: 466 

clouds as animated noise, 500 

fractals and pink noise, GPG2: 241-242 
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Perlin noise, 500, GPG2: 466, GPG3: 
453 

stochastic synthesis of, GPG3: 622-629 
turbulent noise creation, GPG2: 467-468 
see also audio; sound 

Nondeterminism, GPG4: 542-543, GPG4: 
546, GPG4: 547-548 

Nonperformer class for massively multiplayer 
games, GPG3: 513 

Nonphotorealistic rendering (NPR), GPG4: 

443-449 
inking for cartoon rendering, GPG2: 

436-443 
painting for cartoon rendering, GPG2: 

444-451 
Nonplayer characters, AI and decision 

making, GPG4: 325-335 
Normal distribution function (NDF) shading, 

GPG3: 477, GPG3: 479-482 
rendering, GPG3: 479-480 
storing as texture maps, GPG3: 479 

Normalized light space (NLS), GPG3: 
473-474 

Normal maps 
saving, GPG3: 429 

UV mapping and, GPG3: 430 
Normals 

on arbitrary meshes, GPG3: 344-345 
face normals, GPG3: 344 
heightfield normals, GPG3: 346-348 
surface normals, fast patches, GPG3: 

349-351 
vertex normals, GPG3: 344-345 

Norms of multivectors, 213 
NPCs, pathfinding, GPG4: 325-335 
NTP (Network Time Protocol), online 

gaming and, GPG3: 493 
NTSC video systems, updating and clocks, 

GPG4: 27 
Null objects, GPG4: 67 
NULL pointers, GPG4: 62, GPG4: 67 
NURBS 

defined and described, GPG4: 172 
physics envelopes to control NURBS 

surfaces, GPG4; 281-283 
Nvidia’s Developer Web site, GPG2: 509 
NyLink (nVidia), 591 

Nyquist Sampling Theorem, GPG4; 352 

oO 
Oat, Chris 

articles by, GPG3: 467-476, GPGA4: 
437-441, GPG4: 477-485 

contact and bio info, GPG3: xxx», 
GPGA4: xxxii 

Object-composition game framework, GPG3: 
15-24 

ObjectContainer class, GPG4; 107-108 
Object management 

component based, 25-37 
on-the-fly object management, GPG4: 

103-110 

ObjectManager class, GPG4: 106-107 
Object-Oriented Programming (OOP), 

GPGI: 8-19, GPG3: 73, GPG4: 3 
classes, designing, GPG1: 11-12 
coding styles in, GPG1; 9-11 
design techniques and, GPG1: 8-19 
facade pattern in, GPG1: 15-16 
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factory pattern in, GPG1: 18-19 
Hungarian notation, GPG1; 9-11 
singleton patterns, GPG1: 13-15 
singletons, GPG1: 36-40 
state patterns in, GPG1: 16-18 
utility-based decision architecture, GPG4: 

337-344 
Objects 

composition vs. inheritance, 27, 37, 
GPG3: 18 

construction and destruction of, GPG2: 

5-8 
creating from components, 27-30 
creating with factories, GPG4; 119-120 

destruction of, GPG4: 108-110 

editing properties with RTTI edit/save 
system, GPG4: 116-118 

event-driven vs. polling, GPG1: 221-222 
generic member access, GPG2: 46-50 
generic objects, GPG2: 41-43 

on-the-fly management, GPG4: 103-110 
orientation of moving objects, GPG2: 

215-219 

preallocation and caching of, GPG2: 8 
property objects, 46-48 
proxy and master objects, 617 
RDC algorithm to find groups, GPG2: 

229 

saving in XML format, GPG4: 118-119 
serialization of, GPG3: 534-545 
tagging for type safety, GPG3: 544 

O’Brien, James F. 

articles by, GPG4: 287-297 
contact and bio info, GPG4: xxxii 

Observer audio design pattern, GPG2: 518 
Observer pattern, 617 
Obstructions or barriers 

defined, GPG2: 331 
interactive water surfaces and, GPG4: 

271-272 

natural barriers, GPG4: 369-370 
oceans, rivers, and lakes, GPG4: 366-368 
pathfinding and, GPG3: 307, GPG3: 

316-320 

stacks of rigid bodies, GPG4: 248 
Occlusion, GPG1; 423 

audio occlusion and obstruction, GPG3: 
600-605, GPG4: 634-635, GPG4: 
637, GPG4: 644 

camera occlusion, GPG4; 311-313 
cPLP algorithm, GPG3: 355-358 
culling, GPG1: 421-431, GPG3: 

353-358, GPG4: 515-527 
horizon and occlusion of terrain objects, 

GPG4: 524 
horizon mapping, GPG3: 436-437 
occlusion horizon and horizon culling, 

GPG4: 515-527 
PLP algorithm, GPG3: 354-355, GPG3: 

356-358 
shadow ellipses, GPG3: 437 

Occlusion Culling Code, GPG1: 429-431 
Octrees, GPG2: 388 

bounding volumes of, GPG1: 445-446 
cellular automata and, GPG3: 204 

construction of, GPG1: 439-443 
data contained in, GPG1; 440 
loose octrees, GPG1: 448-453, GPG3: 

204 

Index 

neighbors, GPG1: 442 Bu 
polygon overlap lists, GPG1: 442 
for ray collision tests, GPG1: 443 
regular vs. loose octrees, GPG1: 451-453 
vs. sphere trees, GPG2: 385 
used to partition objects, GPG1: 

446-448 
Odd masks, GPG3: 372 
Offline calculation, progressive meshes and, 

GPGI1: 462 

Ogg Vorbis, audio compression 
code example using, GPG3: 591-592 
decoding, real-time, GPG3: 592-593 
encoding, GPG3: 593 
psychoacoustic compression described, 

GPG3: 587-589 
OggVorbisFile class, GPG4: 630 
Oil, cellular automata to model, GPG3: 200 
Olsen, John M. 

articles by, GPG1: 88-91, GPG1: 
115-119, GPG1: 141-149, GPG2: 

182-190, GPG4: 355-364 

contact and bio info, GPG1: »xvi, GPG2: 
xxviit, GPGA4: xxii 

Omni-lights, GPG1: 526-527 
Online games 

authentication, GPG4: 535 
chat sessions and, GPG4: 536 
cheating and, GPG4: 538 
client / server systems for, GPG3: 

496-497, GPG3: 501-502, GPG3: 

506-507, GPG3: 522-533 
content download, GPG4: 536-537 
event-locking, GPG3: 489-495 
frame-locking, GPG3: 488-490 
freezing and frame-locking, GPG3: 

488-489 
function binding, GPG3: 42 
game-turn rates, updates, GPG3: 

498-500 

high mode elimination for synchroniza- 
tion, GPG3: 493-495 

industry trends, GPG3: 487 
large-scale servers, GPG4: 541-553 
leaderbaords and tournaments, GPG4: 

537-538 

lobby design and development, GPG4: 
533-539 

lockstep protocols, GPG3: 488-495 
matchmaking, GPG4: 535, GPG4: 537 
monitoring network activity, GPG3: 

557-560 
network failures, GPG4: 543 
network protocol for, GPG1: 104-108 
out-of-synchs, debugging, GPG3: 

503-504 
packet loss, GPG3: 503 
path-finding packet exchanges, GPG3: 

490-492 
peer-to-peer protocols, GPG3: 496-497 
player access to, GPG4: 535 
privacy and legal issues, GPG4: 535, 

GPG4: 536 
protocols for online games, GPG1: 

104-108 

scale issues, GPG4: 543 
scheduling client access, GPG4: 544 
serialization methods for, GPG3; 

534-545 
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slow computers and, GPG3: 502 
synchronization, GPG3: 493-495, 

GPG3: 500-501, GPG3: 503-504 
TCP-based systems, GPG3: 492 
time synchronization, GPG3: 493-495 
time zone “lock up” bugs, GPG3: 494 
UDP-based systems, GPG3: 492, GPG3: 

493 
voice communications in, GPG3: 

569-571 
see also Latency; Network games (online 

games) 

Onscreen virtual keyboards, GPG3: 94-95 

Opacity vs. transparency, GPG1: 587-598 
OpenAL positional audio library, GPG3: 

595-599, GPG4: 595-606 
compatibility issues, GPG4: 604-605 
described, GPG4: 596-602 
devices in, GPG4: 596 
enumerated values in, GPG4: 603 
extensions, standardized, GPG4: 605 
implementations of, GPG4: 602 
listeners in, GPG4: 596 
source attributes in, GPG4: 598-600 
spatialization and, GPG4: 600-601 
speaker placement, GPG4: 604-605 
troubleshooting, GPG4: 602-604 
web addresses for library, GPG4: 606 

Open fields, hierarchical pathfinding, GPG1: 
269-270 

OpenGL 
cameras and GLUT graphics in, 490 
extensions for, GPG1: 357-358 
implementation of projection matrix, 

289-290 

optimizing vertex submission for, GPG1: 

353-360 
sprite effects, GPG1: 519-523 
texture wrapping settings for skyboxes, 

GPG?: 418 
Open lists, GPG1: 282-286 
Operations, dynamic ws. static operation 

order, GPG3: 19 
Operators 

optimization and return by value, GPG2: 

iL 
predicate logic and, 333 
text parsers, GPG2: 115 

Optimizations 
Artificial Intelligence strategies, GPG2: 

251-257 

of binary space partitioning (BSP) trees, 

56-57, 59-63 
for C++ games, GPG2: 5-15 
code size and, GPG2: 11-12 

constructors and, GPG2: 7-8 

crashes to analyze performance, GPG3: 

69 
for decision trees, 345-352 

event-driven behaviors vs. polling, GPG2: 

251-252 

floating-point optimizations, GPG3: 

182-184 

high-speed trigonometric approximations, 

GPG3: 170-185 

impostoring and render targets, GPG2: 

494-495 

increment functions and, GPG2: 7 

initializer lists, GPG2: 6-7 

for iWave algorithm, 413-414 
LOS templates for player visibility 

systems, GPG2: 281-283 
manager entities to centralize coopera- 

tion, GPG2: 252-253 
measuring with input recording, GPG2: 

106 
memory management techniques for, 

GPG2: 9 
memory usage, GPG2: 66-73 
object construction and destruction, 

GPG2: 5-8 
object preallocation and caching, GPG2: 

8 

operators, GPG2: 7 
for planning, 341-342 
of points-of-visibility pathfinding, GPG2: 

324-329 
profiling strategies, GPG2: 5, GPG3: 

146-156 
quadtree access routines, GPG2: 

394-401 
redundant calculations, GPG2: 252 

shaders and, 596 
StackAlloc for memory allocation, GPG3: 

50 
Standard Template Library and, GPG2: 

12-14 
template-based object serialization, 

GPG3: 542-544 
templates and, GPG2: 14 
triangle-strips, GPG3: 364-365 
trigonometric functions and, GPG2: 

213-214 
vector fraction implementation, GPG3: 

168-169 
virtual functions and, GPG2:; 9-11 

Orientation, GPG1: 307-308" 
Orthogonality, GPG1: 337-338 
OS threads, GPG2: 260 
Oswald span efficiency factor, 404 
Otaegui, Javier F. 

article by, GPG2: 80-84 
contact and bio info, GPG2: xxviii 

Out-of-synchs, online gaming, GPG3: 
503-504 

Overflow Exceptions, GPG3: 70 
Overload chain reactions in servers, GPG4: 

543 

P 
Pacing of games, GPG4: 315-324 
Packets, GPG1:; 104 

defined, 665 
identifiers for, 667-668 
packet queues for messaging systems, 

668-670 
relay attacks, GPG1: 105-106 
tampering, GPG1: 105 
UDP packets, 647-648 

Packing, data compression, GPG4: 571-578 
Packweights, GPG3: 392 i 

Padding, GPG3: 549-550, GPG3: 552 

Page faults, GPG2: 18 
Paging, generic pager, 79-92 

Painting for nonphotorealistic rendering 

computing Toon texture coordinates, 
GPG2: 438-440, GPG2: 446-448 

painting described, GPG2: 444-445 

programmable vertex shaders, GPG2: 
448-450 

Pallister, Kim 
articles by, xv—xvii, GPG2: 463-473, 

GPG3: 3-4 
contact and bio info, xxxii, GPG2: xxviii, 

GPG3: xxxv 
PAL video systems, updating and clocks, 

GPG4: 27 
Pancewicz, Marcin 

article by, GPG4; 221-230 
contact and bio info, GPG4: sxxii 

Parallax, snow or rain rendering and, 510 
Parallax values, GPG2: 492-493 
Parallel computation, debugging and, GPG4: 

10 
Parallel processing, in water simulations, 

GPGI: 190-191 
Parallel-state machines, in client-server 

environments, GPG4: 563-570 

Parallel transport frames 
calculation of, GPG2: 215-216 
vs. Fixed Up method, GPG2: 218 
vs. Frenet Frames, GPG2: 217-218 
used to orient objects, GPG2: 215-219 

Parallel Virtual Machines (PVMs), 353-366 

implementation of, 361-363 
task decomposition for, 354-355 

Parameter types, inline functions and, GPG2: 

18 
Parberry, Ian, contact and bio info, xxi 
Parser class of parsing system, GPG2: 

114-116 
Parsers and parsing 

bison, GPG3: 91, GPG3: 406, GPG3: 
409-410 

of custom data files, GPG3: 83-91 
for programmable vertex shader compiler, 

409-410, GPG3: 406 

recursive descent parsing, 23 

syntax trees and, GPG3: 406 
of text data in games, 17-24 
vulgarity filters and, 622 
XML, GPG3: 112 
Yacc parser generator, GPG3: 40-41, 

GPG3: 83-91 
Particle bundles, precipitation rendering, 

507-513 
Particle deposition, fractal terrain generation, 

GPG1: 508-511 

Particle systems, aerodynamics for wind- 
driven storms, 407, 408 

Partitioning 
loose octrees used for, GPG1: 446-448 

neural nets as, GPG1: 336-337 
space, GPG1: 257-259 

Passability, as tactical assessment factor, 

GPG?: 296 
PASs (potentially audible sets), GPG4: 

636-638 

Patches, surface, fast patch normals, GPG3: 

349-351 

Pathfinding 
A* algorithm, 367-368, GPG3: 294-305 

Al pathfinding, GPG2: 152, GPG2: 

274-275 
area navigation method, GPG3: 243-246 

attraction and repulsion, GPG3: 
249-251 
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attractors and repulsors as influences, 
GPGé4: 362 

breadcrumb pathfinding, GPG4: 

312-313 
collisions and, GPG2: 317-323 
cost function and heuristic for evaluating 

shortest paths, code listing, GPG3: 
295-296 

costs, GPG3: 295-296, GPG3: 298-300, 
GPG3: 304-305, GPG4: 327 

cover finding and, 301-304 
D* (dynamic A*) for, 383-389 
3-D environments, GPG3:; 253-254 
distributed processing for optimization, 

GPG2: 253-254 
dynamic landscapes and, GPG3: 

251-253 
dynamic programming (DP) and, GPG4: 

325-335 
hierarchical on-demand pathfinding, 

GPG2:; 254-255 
looping and forking paths, GPG3: 

310-311 
with navigation meshes, GPG1: 293 
navigation meshes and, GPG1: 288-304, 

GPG3: 307-320 
obstacles and, 316-319, GPG3: 307 
open goal pathfinding, 301, 305 

path transversal, GPG3: 249-253 

precomputing propagated influence 
values, GPG2: 294-295 

redundant computations and, GPG2: 
252 

shortest paths, GPG3: 295-296 
tactical path cost evaluation, code listing, 

GPG3: 296 
for third-person cameras, GPG4: 

312-313 
tile-based pathfinding, GPG2: 325 
traditional methods, inefficiency of, 

GPG3: 241-243 
valid (unobstructed) space, GPG3: 

325-328 
vector fractions for exact geometry, 

GPG3: 160, GPG3: 162-163 
waypoint queuing and, GPG2: 274-275 
see also Collision model path-finding; 

Path planning; Points-of-visibility 
pathfinding 

Path planning, GPG1; 254-263 
A* for, GPG1: 254-262 
cost functions for paths, GPG1:; 259-260 
neighboring states, GPG1: 259 
partitioning space for, GPG1; 257—259 

Paths 

aesthetic optimizations for, GPG1: 
264-271 

B-spline curves, GPG1: 374-376 
Catmull-Rom spline, GPG1; 266-267, 

GPGI1: 376-377 
decoupling pathfinding data, GPG1: 

278-279 
hierarchical pathing, GPG1: 268-270, 

GPGI1: 275-276 
maximizing responsiveness, GPG1: 

270-271 

movement along curves, 233-246 

navigation meshes, GPG1: 288-304 
node data, GPG1: 278-280 

pauses, GPG1: 270, GPG1: 276 
quaternion-based flythrough paths, 

GPG2: 220-227 
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Persistent type information, GPG2: 43=44 
Personality, creating in Al, GPG2: 306, 

smoothing, GPG4: 95-101 

smooth paths, GPG1: 265-266 
straight paths, GPG1: 264-265 
visibility testing, GPG1: 296 
see also Pathfinding; Path planning; 

Trajectories 
Patrolling, GPG1: 233 

command queuing in RTS, GPG2:; 
275-278 

Patterns 
designing, GPG1: 12-19 
factory patterns, 180-181, GPG1: 18-19 
Observer pattern, 617 

Patterson, Scott 
articles by, GPG2: 514-520, GPG2: 

539-550, GPG2: 551-558, GPG3: 
15-25, GPG3: 585-586 
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article by, GPG1: 366-370 
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Pauses, GPG1: 270, GPG1: 276 
in audio design, GPG2: 518 

Payloads, 551, GPG1: 104-105, GPG3: 549 
PC-lint(tm), GPG4: 36 

PD controller, 451-453 
Peasley, Mark 

article by, GPG1: xxiii 
contact information, GPG1: xxvi 

Peer-to-peer systems, GPG3: 522 
DirectPlayVoice configuration, GPG3: 

571 
network address translation for, 643-664 
peer-to-peer protocols, GPG3: 496-497 
security associations in, GPG3: 547 

Peizer, Kurt 
articles by, GPG4: 411-425 
contact and bio info, GPG4: »eviii 

Pen-and-ink style rendering, GPG4: 443-449 
Perception ranges, GPG1: 308 
Performance 

Bloom Filter to improve, GPG2: 
133-140 

commercially available tools for tuning, 
GPG2: 75 

cycle counters, GPG2: 180 
floating-point numbers and, GPG2: 

167-181 

GPG2: 332-333 
Perspective shadow maps (PSMs), GPG4: 

399-410 
limitations of, GPG4: 405-408 
OpenGL extensions for, GPG4: 408-409 

Perturbation searches, GPG2: 355-356 

Pfeifer, Borut 
articles by, 299-305, GPG4: 315-324, 

GPG4: 621-631 
contact and bio info, xxxii, GPG4: xx«xiii 

Phones, mobile phones as game platforms, 
GPG3: 573-581 

Phong shading, GPG3: 477-478 
(n.h)k maps and, GPG3: 469-472 

Photoshop, unique textures created with, 
462-463, GPG3: 460 

Physics 
acceleration / deceleration, GPG4: 

221-225 

aerodynamics, 395-409 
contact point reduction, GPG4: 253-263 
damping, GPG4: 97-98, GPG4: 291, 

GPG4: 293, GPG4: 305 
game programming and, GPG4: 

207-208 

for grass motion simulations, 414-416 
ideal gas law, 438-440 
Jacobian constraints, GPG4: 243 
killing algorithms and, GPG4: 209-219 
mass-spring model for realistic cloth 

animation, 421-433 
mass-spring physics, GPG4: 277-284 
motion, equations of, GPG4: 242 
multilayer physics and fast deformations, 

GPG4: 275-285 
Newton’s law of motion, GPG4: 242 
prescripted physics, 457-481 
ragdoll physics, 449-455 
rigid body simulations and, GPG4: 

231-240, GPG4: 241-250 
spring mass models, 436-437, 440-442 
steering in racing games, GPG4: 221, 

GPG4: 225-226 
terrains and, GPG4: 226-227 
velocity constraints, GPG4: 242-243 
Verlet-based physics engine, GPG4: 

231-240 

Verlet integrators, GPG4: 260-261 
for water motion simulations, 411-414 

logging and, GPG3: 133-134 
measuring, GPG2:; 180 
monitoring, GPG3; 12 
optimizing, GPG3: 69 
profiling module, GPG2: 74-79 
profiling strategies, GPG3: 146-152 
searching systems for tile-based games, 

GPG2:; 279 

tuning with commercially available tools, 
GPG2: 75 

see also Optimizations 

Performance monitors, GPG3; 12 
Performer class for massively multiplayer 

games, GPG3: 511-512 
Per-pixel spotlights, GPG2: 460-461 
Persistence 

for MMP game data, 608-609 

Physics engines, GPG1: 390-402 
Pie menus, GPG3: 117-128 

effectiveness of, GPG3: 118-119 

Feng GUI design considerations, GPG3: 
117-118 

implementing, GPG3: 119-124 
JavaScript pie menus, GPG3: 119-122 
learning curve for, GPG3: 118-119 
in Sim games, GPG3: 124-127 

touch screens and motion detectors used 
with, GPG3: 124 

PIMPL design pattern, debugging flags, 
GPG3: 131 

Pitch, audio, 715, GPG4: 604 
Pitch and yaw, 396, 405, 406, GPG1: 

307-308, GPG1: 371-372, GPG3: 188, 
GPG3: 190 
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PlacementNewEmbeddedLink allocation 
policy, 139 

Placement new operator, GPG3: 52-53 
Placeres, Frank Puig 

article by, 65-77 
contact and bio info, xxiii 

Plane coherency, 75-76 
Plane masking, 74-75 
Planning 

costs of, 337 
forward vs. backward, 337-338 
graph planners, 338-339 
heuristic search planning, 338 
integrating a practical planner with the 

game engine, 340-341 
limitations of, 339-340 
multi-agent planner, 334-337 
optimizations for, 341-342 

planning algorithms and practical 
planning for AI, 329-342 

predicate logic and, 331-333 
satisfiability planners, 338-339 
STRIPS planner, 330-331 
see also path planning 

Planning domains, 330-331 
Plasma fractal algorithm, GPG1: 505-507 

Plasticity, neural nets and, GPG1: 336 

Platform issues, Verlet-based physics engine, 

platform-specific consideration, GPG4: 

236 
Platforms 

cellular phones as game platforms, GPG3: 

573-581 
cross-platform compatibility, GPG3: 69 

frameworks, platform-independent vs. - 

dependent, GPG3: 17 
serialization and multiplatform portabil- 

ity, GPG3: 536-545 
Playability stage of game development, 

GPG3: 16 
Players 

defined, GPG2: 280 
dummy profiles for online games, GPG4: 

538 
personalities for Al players, GPG2?: 306 

skill level and pleasure, GPG4: 315-318 

Player visibility systems, GPG2: 279-286 

combined visibility maps, GPG2: 

283-286 

LOS templates, GPG2: 281-283 
maps, GPG2: 281-286 
mirages, GPG2: 286 

player visibility maps, GPG2: 281-282 

Pointers, GPG1: 69 

dumb pointers, GPG3: 45 

FreezePtr Template class, 151, 156 

function pointers used within C++ 

classes, GPG2: 59-60 

handle-based smart pointers, GPG3: 

44-48 
instruction pointers, GPG2: 260-261 

linking pointer properties to memory 

addresses, GPG4: 119-120 

in multiplayer games, GPG3: 502-503, 

GPG3: 542 

NULL pointers, GPG4: 62 
pointer properties and RTTI edit/save 

system, GPG4: 118-119 

in preprocessing data, GPG]: 88 

resource management and, GPG1: 86 
resource pointer holder class, GPG4: 65 
saving and using function table pointers, 

149-150, 153-154 
saving and using user-defined pointers, 

149 
serialization and, GPG3: 542 
smart pointers, GPG2: 269, GPG4: 63, 

GPG4: 64-65 
stack pointers, GPG2: 260-261 
tracking pointers, 151, GPG2: 271 
unique identifiers for, GPG3: 46 
vs, unique IDs in messaging, GPG1: 230 
user-declared pointers, 149, 151 
uses of, GPG1: 89, GPG4: 61-62 
virtual function table pointers, GPG4: 39 

Point-in-triangle test, GPG1: 396-397 
Points-of-visibility pathfinding 

collision models for, GPG2: 318 
collision shape selection, GPG2: 322-323 
expanded geometry for, GPG2: 317-323 
Minkowski sums of polygons, GPG2: 

319-322 
optimization of, GPG2: 324-329 
silhouette points and, GPG2: 325-326 

silhouette zones and, GPG2: 327-329 

spatial partitioning, GPG2: 329 
vs, tile-based pathfinding, GPG2: 325 

Poisson Disc sampling, GPG4: 482-483 

Policies and policy-based design 
CompactableChunkPolicy allocation 

policy, 139 
ConstructOnceStack allocation policy, 

139 7 
defined and described, 131-133, GPG3: 

129 
evaluation of policy classes for specific 

purposes, 136-139 
freelists and, 129-141 

PlacementNewEmbeddedLink allocation 

policy, 139 
SharedChunkPolicy allocation policy, 

139 
Poll(), GPG3: 523 
Polling objects, GPG1: 221-222 
Polygonal pathfinding. See Points-of-visibility 

pathfinding 
Polygon floors, GPG1: 273-274 

Polygon overlaps algorithm, GPG1: 442 

Polygons, adjacent polygons and common 

edges, GPG3: 338-339 
Polymorphism, GPG4: 105 
Polynomial approximations, GPG3: 179-185 

accuracy and degree of, GPG3: 184-185 

Polynomials, GPG1: 162-163 
approximations to trigonometric func- 

tions, GPG1: 160-176 

discontinuities and, GPG1: 175-176 

domains and ranges of, GPG1: 163-166 

even and odd, GPG1: 166-167 
Lagrange series, GPG1: 172-175 
Taylor series, GPG1: 167-171 

Polynomial texture maps (PTMs), to calculate 

sunlight, GPG3: 438 
Popping 

779 

vs, morphing vertices, GPG1: 460 
reducing, GPG1: 432-438 

Porcino, Nick 
article by, GPG4: 231-240 
contact and bio info, GPG4: sxxxiti-xxxiv 

Portals, navigation meshes and, GPG3: 
309-311, GPG3: 313-314 

PortAudio, GPG3: 611 
Port forwarding, 654-656 
Ports and port numbers, 644 
POSIX2 asynchronous I/O system, GPG3: 

523 
Postincrement functions, GPG2: 7 
Post-perspective space and shadow maps, 

GPG4: 399-404 
Post-processing 

dynamic gamma lighting adjustment, 
GPG4: 465-475 

graphics, GPG4: 381 
heat and haze effects, GPG4: 477-485 

Potential fields, autotargeting systems and, 

307-315 
Potentially audible sets (PASs), GPG4: 

636-638 
Pouratian, Allen 

article by, GPG3: 38-43 
contact and bio info, GPG3: xxxv-.xxvt 

PowerStroke patches, audio files, GPG3: 

634-635 
Precalculating. See Preprocessing 
Precipitation, rendering of, 507-513 

Precomputing. See Preprocessing 

Predators and Prey flocking demo, GPG2: 

330-336 
Predicate logic, 331-333 
Predictability, GPG2: 105 

genuine randomness and, GPG2: 

127-128 
initial state predictability, GPG2: 108 
inputs and, GPG2: 109-110 
protecting game predictability, GPG2: 

107-108 
pseudo-random numbers and, GPG?: 

127 
random numbers, GPG2: 109 

Prefiltering, glossy, GPG1: 581-585 
Preincrement functions, GPG2: 7 

Preprocessing 
Al optimization and, GPG2: 255 
of data files, GPG2: 113-114 
influence maps, GPG2: 293-297 

propagated influence values, GPG2: 

294-295 
segmenting character geometry, GPG2: 

421-422 

Prescripted physics 
defined and describe, 457-461 
engine for, 461-465 
mapping to terrain or objects, 466-467 

ramps for modification of speed, 
465-466 

reactions and, 468 
rotations and, 467-468 
tornado physics event, code listing, 

469-471 
Pressurized spring based model, implementa- 

tion of, 440 
Prey, kill algorithms and hunter / prey 

dynamics, GPG4: 217-219 
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article by, GPG4; 125-135 
contact and bio info, GPG4: xx«xiv 

Primitives 
aerodynamic primitives, 398-406 
CSG construction using BSP trees, 

103-113 

culling, GPG3: 353 
Print resolution of screen shots, GPG2: 

406-410 
algorithm for, GPG2: 406-409 

Priority buffers 
vs. depth buffers, GPG2: 483 
described, GPG2: 483 
shadows with, GPG2: 481-487 

Priority Queue Object, GPG1: 283 
Priority queues, GPG1: 54 

A* speed optimizations, GPG1: 281-282, 
GPGI1: 283-286 

Pritchard, Matt 
articles by, GPG2: 279-286, GPG2: 

394-401, GPG4: 85-93 
contact and bio info, GPG2: xxviti-xxix, 

GPG4: xaxiv 
Private address spaces, GPG4: 86-87 
Probability, strategic inference using depen- 

dency graphs, GPG2: 305 
Procedural level generation, 579-588 
Procedural modeling, GPG3: 456 
Procedural textures 

advantages of use, GPG3: 454 

cloud generation, GPG2: 463-473 
dependent texture addressing, GPG2: 

505-506 
hardware accelerated animations, GPG2: 

497-509 
heightfield water as, GPG2: 501-503 
natural phenomena represented by, 

GPG3: 454 
neighbor sampling and, GPG2: 498-504 
noise algorithms and, GPG3: 453 
optimization and, GPG3: 454-456 
parameters and, GPG3: 452-453 
real-time vs. regenerated, GPG3: 

455-456 
sample code explicated, GPG3: 457-458 
sampling methods, GPG2: 485-504 
scalability of, GPG2: 471-472 
solid texturing, GPG3: 455 

Processor affinity, 360 

Production, unit production or economic 
activity in gameplay, 364 

Production stage of game development, 
GPG3: 16 

ProfileBegin, GPG1: 124-125, GPG1: 126 
ProfileDumpOutputToBuffer, GPG1: 

128-129 

ProfileEnd, GPG1: 124-125, GPG1: 
127-128 

Profilers 
calls, adding, GPG1; 123 
implementation, GPG1; 123-124 
real-time in-game profiling, GPG1: 

120-130 
Profile trees, GPG3: 147 
Profiling modules 

architecture, GPG2: 76-77 
basic mechanisms for, GPG2: 74-75 
built-in game profiling module, GPG2: 

74-79 

data analysis, GPG2: 78 
implementation, GPG2: 78-79 
performance counter manager (IPerf- 

CounterMan), GPG2: 76 
Profiling systems 

browsing profile data, GPG3: 149-150 
implementation of, GPG3: 150-152 
real-time hierarchical profiling, GPG3: 

146-152 

usage example, GPG3: 147-150 
Profiling tools, RPCs and, 640 
Projection matrices, GPG1: 361-362 

and frustum clipping plane, 283-285 
Projective shadowing techniques, GPG2: 

421-424 
Properties 

alternatives to Borland’s proprietary, 
GPG?2: 46-50 

defined and described, GPG4: 114 
“functions” properties, GPG4: 122-123 
hiding property values, GPG4: 123 
mapping multiple properties on a 

variable, GPG4; 123 
property registration, 50-52 
property types, 49-50 
RTTI edit/save system and, GPG4: 

114-120, GPG4: 122-124 

storage of, 48-49 
Property objects, 46-48 
Prototype stage of game development, GPG3: 

16 
Proxies 

ActorProxy class, GPG3: 513 
Java Micro Edition HTTP proxies, 

GPG3: 577 
MMPs and, GPG3: 507-508, GPG3: 

513 
RPC systems and, 633, 634-635, 

636-637 
Proximity tests, reducing number of, GPG1: 

403-411 
Proxy audio design pattern, GPG2: 516 
Proxy classes, GPG1: 102-103 
ProxyServers, 612, 613-619, 616 
PseudoRandom class, GPG1: 136 
Pseudo-random number generators, GPG2: 

109, GPG2: 465 
linear congruential algorithm (LCA), 

GPG3: 623-624 
Mersenne Twister, GPG4: 143-145 
noise and, GPG3: 453 
simple pseudo-random number generator 

code, GPG2: 465 
Pseudo-random numbers 

cloud generation and, GPG2: 464-465 
pseudorandomness described, GPG2: 

127 
see also Pseudo-random number genera- 

tors 
Psychoacoustic sound compression, GPG3: 

587-589 
PT'Ms (polynomial texture maps), to calculate 

sunlight, GPG3:; 438 
PVMs (Parallel Virtual Machines). See Parallel 

Virtual Machines (PVMs) 

Q 
Quadtrees, GPG1: 444-445 

access routine optimization, GPG2: 
394-401 
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direct access lookup. conditions.and 
requirements, GPG2: 395-396 ~ 
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location of target node, GPG2: 399 
space partitioning, GPG1: 258 
vs. sphere trees, GPG2: 385 
traversing, GPG2: 399 
tuning, GPG2: 399-400 

Qualities (copy-on-write data structure), 

GPG4: 556-561 
Quaternions, 464, GPG1: 195-199 

angle subdivision approximation method, 
264 

antipodal quaternions, GPG4: 494 
calculus functions of, GPG1: 205-206 
camera control and, GPG1: 379 
compression of, GPG3: 187-191 
described, GPG3: 187 
direct approximation method, 252-259 

as extension of complex numbers, GPG1: 
197-198 

fast interpolation with approximations, 
247-267 

flythrough paths and, GPG2: 220-227 
geometric algebra and, 210-212 
hardware skinning with, GPG4: 487-495 
interpolating techniques, 247-267, 

GPG1: 205-213 
linear interpolation (lerp), GPG1: 206, 

GPGI1: 209-211 

matrix approximation method, 259-262 
matrix-quaternion conversions, GPG1: 

200-204, GPG4: 493-494 
as matrix replacements, GPG1: 195-196 
numerical stability and shortest arc, 

GPG1: 214-217 
as orientation data, GPG2: 222-223 
physical significance of numbers in, 

GPGI1: 196-197 
polar compression methods, GPG3: 188, 

GPG3: 189-190 
renormalization approximation methods, 

259-264 
as rotations, 248-249, GPG1: 199 
selective negation to preprocess, GPG2: 

220, GPG2: 223-224 

shortest arc quaternion, GPG1: 
214-218 

singularity in rational mapping, GPG2: 

225 
smallest three compression method, 

GPG3: 187-188, GPG3: 189 
spherical cubic interpolation (squad), 

GPG1: 207-208 

spherical joint blending and, GPG4: 
491492 

spherical linear interpolation (slerp), 
GPGI1:; 206-207, GPG1: 209-211 

spline interpolations, 211-213, GPG1: 
208, GPG1: 211-213, GPG2: 
224-225 

Quaternion-to-matrix conversion, GPG1: 
200-201, GPG4: 493-494 

Queues, GPG1: 54 

freelists and, GPG4; 48 
of state machines, GPG1: 233 
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XXX 
Racing games 
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221-225 

AI and, GPG4: 362-363 
CPU-limited systems and, GPG4: 

221-230 

physics and vehicle simulation, GPG4: 
221-230 

realistic camera movement in 3D car 

simulators, 483-494 
steering, GPG4: 221, GPG4: 225-226 

Radar approach, frustum culling, 67-68 
Radiance, terrain lighting and, GPG3: 

433-434 
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GPG3: 209-210, GPG3: 211-212 

Radiosity, skylight, GPG3: 438— 439 
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rendering precipitation, 507-513 
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Raleigh damping, GPG4: 291 
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contact and bio info, GPG3: xvi 

Rand() function, 677-678, GPGI: 106 

alternatives to, GPG2: 109 

Random number generation, 673-679 

bit masks and, GPG3: 158-159 

cross-platform libraries and, GPG4: 37 

implementation of, GPG2: 130-131 

noise generation using, GPG2: 242-244 

procedural cloud generation and, GPG2: 

464-465 
seeding pools for, 674-677 
speed limitations of process, GPG2: 

129-130 

Random numbers and randomness, 673-679 

debugging process and, GPG4: 10 

explosions and, 558 

fractals, random line generation, GPGI: 

500-501 

hardware as source, GPG2: 129 

mixing functions and, GPG2: 129 

NPC decision making and, GPG4: 

325-335 

Perlin noise algorithms, GPG3: 453 
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predictable, GPG1: 133-140 
predictable, algorithm for generating, 

GPG: 135-136 
procedural textures and, GPG3: 456 
random number generators, GPG2: 

127-132 

rand search, GPG1: 134-135 
srand, GPG1: 134-135 

Random tag, XML audio tag, GPG4: 

627-628 
Range reduction, GPG3: 176-179 
Rasterization artifacts, T-Junctions and, 

GPG3: 338-343 
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contact and bio info, GPG2: xxix 

Ray collision tests, octrees for, GPG1: 443 
Ray tracing 

curvature simulation and, GPG3: 
426-430 

sphere trees for, GPG2: 384-387 

Real time 
input and user interfaces, GPG3: 

109-116 
journaling services for real-time debug- 

ging, GPG3: 136-145 
Lua programming language and, 

122-124 

schedulers, GPG3: 6-8 
Real-Time Optimally Adapting Meshes 

(ROAM), GPG2: 377-378 
Real-time remote debug message loader, 

143-148 
Real-time strategy games (RTSs) 

command queuing for, GPG2: 273-278 
cyclic commands (patrolling example), 

GPG2: 275-278 
distributed reasoning voting architecture 

and, GPG4: 352-353 
game-turn rates, updates, GPG3: 

498-500 
industry trends, GPG3: 487 

interpolating between turns, GPG3: 500 

Line-of-Sight searching systems for, 
GPG?: 279-286 

minimizing latency in, GPG3: 488-495 

network protocols for, GPG3: 496-505 
slow computers and, GPG3: 502 
wall building algorithm for, GPG4: 

365-372 
waypoint queuing and pathfinding, 

GPG?: 274-275 
Rebind, GPG3: 53-54 
Receiver objects, shadow maps, GPG1: 

578-579 
Recombinant shaders, 589-597 
Recursion, trees and, GPG4: 53 

Recursive Dimensional Clustering (RDC), 

GPG2: 228-238 

pseudocode for RDC algorithm, GPG2: 

235-236 

recursion and time complexity, GPG2: 

236-237 

steps for, GPG2: 232, GPG2: 234 

Red noise, GPG3: 623 
Reflection 

C++ templates for, 39-54 
described and defined, 39 
geometric algebra and, 210-212 

Reflections, GPG2: 405 

environment mapped, GPG1: 581-585 
Fresnel term and, GPG1: 581-585, 

GPG1: 597 
in gemstones, 565-567 
on glass, GPG1: 592 
inter-reflection of sunlight on terrain, 

GPG3: 438 
mapping, GPGI: 553-554 
oblique view frustums for mirrors and 

portals, 281-294 
Refraction 

mapping, GPG1: 193 
simulating refraction effects, GPG2: 

402-405 
Snell’s Law, GPG1: 594-595 

Registers, for programmable vertex shader 
compilers, GPG3: 411 

Regularization, area navigation, GPG3: 
247-249 

Reis, Aurelio, contact and bio info, xxxiv 
Release stage of game development, GPG3: 

16-17 
Relief textures, GPG3: 420-423 
Remez algorithm, 274-276 
Remez Exchange Algorithm, GPG3: 

‘180-181 
RemoteController for server startups, 

612-613, 619 
Remote procedure calls (RPCs), GPG1: 

56-58 
defined and described, 630-631, 

630-634 
implementation of system for, 634-637 
proxies and, 633, 636-637 
synchronous RPC, 640-641 
systems for, 627-641 
uses of, 637-639 

Rendering 
with hardware, GPG1: 597-598, GPG2: 

406-410 
heads-up-displays and renderers, 11 
impostors, GPG2: 489-493 
Nonphotorealistic rendering (NPR), 

GPG4: 443-449 
non-photorealistic rendering styles, 

GPG4: 443-449 
pen-and-ink style rendering, GPG4: 

443-449 
position vectors and, GPG4: 166-170 
shadows, GPG1: 565-566, GPG2: 423 
skyboxes for rendering distant scenery, 

GPG2: 416-420 
T-Junction elimination to avoid errors, 

GPG3: 338-343 
transparency, GPG1: 193 

triangle strips (tri-strips), GPG3: 365 

water, GPG1: 193-194 

Rene, Bjarne 
article by, 25-37 
contact and bio info, xxiv 

Replay attacks, GPG1: 105-106, GPG3: 

546-555 
Replays, input recording to replay interesting 

games, GPG2: 106 

Repulsors and attractors, GPG4: 355-364 

Request-response servers, GPG4: 547 

Resampling audio, GPG3: 588-589 

ResManager class, GPG1: 83-86 

Resolution 
anti-aliasing to improve, GPG4: 385-389 
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compositing methods to improve, GPG4: 
383-385 

infinite universes, GPG1: 137 

macro- and micro-infinite, GPG1: 
133-134, GPG1: 137 

pixel quality and increased resolution, 
GPG4: 389-391 

screenshots, poster quality graphics, 
GPG4: 383-392 

Resonant filter, sine and cosine calculation, 
GPG3: 171-172 

Resonators, GPG3: 615 
Resource allocation, GPG2: 298-300, GPG4: 

544-545 
current resource allocation, determining, 

GPG2: 300-301 
dependency graphs, GPG2: 302-304 
desired resource allocation, calculating, 

GPG2; 300 

measuring values in branches of, GPG2: 
302 

personality creation and, GPG2: 306 
strategic decision making, GPG2: 

301-302 
Resource files 

defined and described, GPG2: 100 
implementation of modules, GPG2: 

102-104 

resource system design, GPG2: 101-102 
used for file management, GPG2: 

100-104 

Resource managers, GPG4: 65-66 
basic object memory manager, GPG1: 68 
handle-based, GPG1: 68-79 
handles, GPG1: 69-70 
memory management and, GPG1: 80-87 
pointers, GPG1: 69 

Resources, locking and unlocking, GPG1: 86 
Responses, defined and described, GPG3: 

288-289 

Responsiveness, controller, GPG1: 270-271 

Retriangulation algorithm, GPG3: 340-343 
Reverb audio effects, 729-740 
Reynolds, Craig, GPG1: 305-306 
Reynold’s Number, 399 
Rhodes, Graham 

articles by, GPG2:191—204, GPG4: 
207-208 

contact and bio info, xxxiv—xxxv, GPG2: 
xxix—xxx, GPG4: xxxv 

Rigid bodies 
aerodynamic loads and rigid body 

dynamics, 396-397 
constraints and, GPG4; 241-250 
degrees of freedom, 243-245, GPG4: 

242 

described and defined, GPG4: 232 
integrators and, GPG4: 232-234 
positional error corrections, GPG4: 

249-250 

simple body constraints listed and 
described, GPG4: 243-245 

special properties of, GPG1: 155-158 
Verlet-based physics engine and, GPG4;: 

234-240 

- see also Rigid body motion 
Rigid body motion 

dynamics of, GPG1: 154 
kinematics, GPG1: 150-154 
quaternion rotation, GPG1: 214-218 

rotation, GPG1: 150-154 

simulating, GPG1; 150-160 
Risk, decision making and, GPG4; 343 
Robert, Eric 

article by, GPG3: 136-145 
contact and bio info, GPG3: xxi 

Robot voices, GPG3: 613-621 

Rocket engine sounds, GPG3: 627 

Roden, Timothy E. 
article by, 579-588 
contact and bio info, xxxv 

Rohweder, Gabriel 

article by, GPG3:; 561-572 
contact and bio info, GPG3: xxxui 

Role playing games (RPGs) 

boss combat scenario for, 325-327 
massively multiplayer online role-playing 

games (MMORPGs ), GPG4: 

579-589 
Rolfes, Thomas 

article by, GPG4: 373-377 
contact and bio info, GPG4: xxv 

Roll, 396, GPG1: 307-308, GPG1: 371-372 

Rope-and-pulley constraints, GPG4: 245-246 
Rotational offsets, modification of, GPG3: 

395-396, GPG3: 400 

RotationArc () routine, GPG1; 214-218 
Rotations 

aerodynamics of spinning bodies, 
401-403 

constraint and, GPG4: 243-245 
quaternion rotations, 210-212, GPG1: 

200 

quaternions for representing, GPG1: 199 
screw constraints, GPG4: 246 

Round, Tim 

article by, GPG1: 421-431 
contact information, GPG1: xvi 

Rounded Nonuniform Splines (RNS), GPG4: 
171, GPG4: 174-176 

Round-off errors, vector fractions for exact 
geometry, GPG3: 160-161 

Routers 

peer-to-peer networked gaming and, 
646-647 

state machine message routing, GPG1: 

227-229, GPGI1: 235-236 

RTSs. See Real-time strategy games (RTSs) 
RTTI. See Runtime Type Identification 

(RTTI) 

Rules, AI training, GPG3: 234-239 
Runga-Kutta method, 430, GPG1: 177-178 
Runtime Type Identification (RTTT) 

code bloat and, GPG2: 12 

Component Object Model (COM) as 
alternative to, GPG2; 24 

custom RTTI design, GPG4: 112-113 
defined and described, GPG4: 105 
edit/save system, GPG4: 111-124 
extended RTTI, GPG4: 111-113 
on-the-fly object management and, 

GPG4: 105 
optimization, GPG2: 14 
reflection systems and, 42-46 
RTTI typeid(), GPG2: 125-126 

S 
Satisfiability planners, 338-339 
Saving 

code for saving classes, GPG3: 62-63 

Index 

macros to create save tables, GPG3: 
61-62 

overriding defaults, GPG3: 62 
save/load manager on CD-ROM, GPG3: 

63 
SAVEMGER class, GPG3: 60 
SAVEOB]J class, GPG3: 60-61 
saving game at arbitrary positions, GPG3: 

59-63 
Scalar type sizes, GPG4: 38 
Scaling, GPG1: 523 

textures and scalability, GPG3: 464 
Scan codes, characters, GPG3: 99-100 

Scanners (lexical analyzers), GPG3: 408-409 

Scheduling and schedulers 
clocks and, GPG3: 8 
design for simple scheduler, GPG3: 9-11 
event managers, GPG3: 6 
multithreading, GPG3: 13 
real-time schedulers, GPG3: 6-8 
scalability of, GPG3: 11-13 

simulation systems and, GPG3: 13 
task managers, GPG3: 6, GPG3: 9 

uses for, GPG3: 5 
virtual time schedulers, GPG3: 6-8 

Schertenlieb, Sébastien, article by, 159-167 
Scheurmann, Thorsten 

article by, 561-570 
contact and bio info, »««v 

Schiiler, Christian 
article by, 729-740 
contact info, 729 

Schur’s algorithm, GPG3: 617 
Screenshots 

poster quality, GPG4: 383-392 
print resolution, GPG2: 406-410 

Screw constraints, GPG4: 246 

Scripting languages, GPG1: 5 
Scripts and scripting, GPG1: 4-6 

Al engines and, GPG1: 234 
alternatives to, GPG2: 51-60 
audio scripting systems, GPG4: 621-631 
branching instructions in, GPG1: 5 
vs. code, GPG1: 6 
emergent behaviors as alternative to, 

GPG2: 255 
as finite state machines, GPG1: 5 
function binding and, GPG3: 42 
micro-threads and scripting languages, 

GPG?: 264 
reflection in C++ and, 52-53 
scripted cameras, GPG1: 373-377 
scripting engines, GPG1: 56-67 
trigger systems vs. scripting languages, 

GPG3: 292 
Universal Modeling Language (UML) 

and, GPG3: 81 
see also Lua programming language 

S-curve smoothing, GPG4: 96 
Seamless worlds 

defined and described, 611 
servers for, 611-620 
WorldManager, 618 

Seams, visible, elimination of, GPG3: 
338-343 

Search algorithms, GPG1; 254-262 

kill algorithms and prey, GPG4: 217-219 
Searches 

COM interface searches, alternatives to, 
GPG2: 46-50 



Index 

perturbation searches, GPG2: 355-356 
quadtree search implementation code, 

GPG2: 400 
recursive searching and C++, GPG2: 

89-90 
sphere trees for range searching, GPG2: 

384-387 
tile-based game search systems, GPG2: 

279-286 
Secure sockets 

authentication, GPG3: 546, GPG3: 551, 
GPG3: 555 

bandwidth requirements, GPG3: 554 
classes on CD-ROM, GPG3: 552 
CryptoAPI, GPG3: 554 
IPSec, GPG3: 546-547 
packet format for, GPG3: 548-550 
peer-to-peer communications and, 

645-646 
performance issues, GPG3: 554-555 
receiving data, GPG3: 551-554 
security parameters index (SPI), GPG3: 

548-549, GPG3: 550, GPG3: 551 
sending and receiving secure packets, 

code listings for, GPG3: 553-554 
sequence numbers, GPG3: 549, GPG3: 

550, GPG3: 551-552 
WinSock, code listing for workaround, 

661-663 
Security 

attack trees used in threat models, 
686-687 

confidentiality, GPG3: 546 
hacking, prevention of, GPG3: 520-522, 

GPG3: 546-555 
integrity, GPG3: 546 
Java applications and, GPG3: 574 

message dispatching systems, GPG3: 
525-527 

Network Address Translation and, 
648-663 

network security design, 681-691 

online gaming features, GPG1: 104-108 

peer-to-peer systems and, 643 
reverse engineering for, GPG1: 107 

security associations and SecureAssocia- 

tion class, GPG3: 547-548 
security policies, 687—688 
threat model to measure insecurity of 

system, 683-687 
type safety of servers, GPG3: 524-525 

see also authentication; Encryption; 

Secure sockets 

Security associations and SecureAssociation 

class 
code listing for, GPG3: 553 
described, GPG3: 547-548 

establishing, GPG3: 550 

Security parameters index (SPI), GPG3: 

548-549, GPG3: 550, GPG3: 551 

Security policies, 687-689 

Seeding random generator, algorithm for, 

GPGI1: 139 
Seegert, Greg 

articles by, GPG3: 109-116, GPG4: 

451-459 

contact and bio info, GPG3: xxxvit, 

GPG4: xxxvi 

Self-modifying code 
defined and described, GPG2: 91-92 

fast bit blitter example, GPG2: 92-99 
Self-shadowing 

aliasing problems and, GPG2: 484-486 
hybrid approaches, GPG2: 486-487 
with projective textures, GPG2: 421-424 

Separating axis theorem, GPG4: 506 

Separation, GPG1: 305-306 
flocking rule, GPG2: 330 

Sepia tone conversions, GPG4: 461463 
Sequence containers, GPG1: 42 
Sequence numbers, secure sockets, GPG3: 

549, GPG3: 550, GPG3: 551-552 
Sequencers, music 

basic music sequencer, GPG2: 539-550 
interactive sequencer, GPG2: 551-558 

target controls, GPG2: 555-556 
Sequencing, event managers and, GPG3: 9 
Serialization 

of callbacks in DirectPlay 8.1, GPG3: 
569 

keyed serialization, GPG3: 543 
object tagging for type safety, GPG3: 

544 
partial serialization, GPG3: 543-544 
pointers and arrays, GPG3: 542 
portability, GPG3: 536-537 
STL containers, GPG3: 539-541 
struct / memcopy() for, GPG3: 534-535 
template-based object serialization, 

537-542, GPG3: 534-545 
type-based storage and retrieval, GPG3: 

535-536 
of user-defined classes, GPG3: 541-542 
variable-length types, GPG3: 539 

Servers 
application-level caching, GPG4: 550 
asynchronous I / O, GPG4: 548-549 
automated testing, GPG4: 547-548 
command stream servers, GPG4: 547 
distributed service systems, GPG3: 

528-530 
front-end processes, GPG3: 528-529 
frontend service, 6104-6105 
large-scale servers for online games, 

GPG4: 541-553 
load distribution, GPG3: 527-530 
LoginServers, 612, 614 
multiserver systems, synchronization in, 

GPG4: 579-589 
network server design, GPG4: 550-552 
NodeServers, 612, 614-619 
nondeterminism and online games, 

GPG4: 542-543 
overload, GPG4: 549 
overload chain reactions, GPG4: 543 

parallel-state machines in client-server 
environments, GPG4: 563-570 

ProxyServers, 612, 613-619, 616 

RemoteController for server startups, 

612-613, 619 
request-response servers, GPG4: 547 

resource allocation, GPG4: 544-545 

scalable servers, GPG3: 522-533 
scale issues, GPG4: 543 
scheduling algorithms, GPG4: 549-550 

scheduling network client access, GPG4: 

544 
seamless world servers, 611-620 

server optimizations, GPG3: 530-533 

subscription channel servers, GPG4: 547 
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synchronization of client and server, 

GPG4: 566-568 
time and consistency management for 

multiserver systems, GPG4: 579-589 
type safety, GPG3: 524-525 
usage spikes and crashes, GPG4: 544 

Service version control, 607—608 
Session-based games, GPG4: 533-539 
Shading and shaders 

activation pixel shaders (fragment 
shaders), GPG4: 373 

additive and subtractive methods for 
variants, 592-593 

Blinn-Phong shading, GPG3: 477-478 
colored highlights, GPG3: 480-481 
D3DxX fragment linker, 591 
High-Level Shading Language (HLSL), 

GPG4: 462-463 
hybrid shaders, 593-594 
microfacet-based shading models, GPG3: 

478-479, GPG3: 482 

normal distribution function (NDF) 

shading, GPG3: 477-483 
NvLink (nVidia), 591 
patching and shading artifacts, GPG3: 

351 
Phong shading, GPG3: 469-472, GPG3: 

477-478 
pipeline plug-ins for, 593 
recombinant shaders, 589-597 

variants for, 589-597 
see also Vertex shaders 

Shadow maps, GPG2: 421-424 

Shadows 
adaptive projections, GPG1: 575-577 
aliasing problems, GPG2: 484-486 
beams to carve, GPG4: 427-435 
brute-force rendering, GPG2: 423 
cast by procedural clouds, GPG2: 470 

cloud shadows, animated, GPG3: 
440-442, GPG3: 447-449 

combined shadow buffers for shadow 
mapping, GPG4: 411-425 

on complex objects, GPG1: 567-580 
composited shadow maps, GPG3: 463 
decal shadow texture projections, GPG3: 

442-443 
GPU shadow volumes for nonclosed 

meshes, GPG4: 393-398 

ground-plane shadows, GPG]: 562-566 

hybrid approaches for, GPG2: 486-487 

inter-object shadows, GPG2: 486-487 

light coordinate systems for maps, GPG1: 

571-574 
light source, blockers, and receivers, 

GPGI1: 567-569, GPG1: 577-579 

mapping techniques compared, GPG4: 

414 
mathematics of, GPG1: 562-565 
multiple light sources, GPG1: 580 

perspective projections, GPG1: 575 
perspective shadow maps, GPG4: 

399-410 
priority buffer shadows, GPG2: 

481-487 

real-time lighting and, GPG4: 437-441 

real-time techniques compared, GPG2: 

481482 

rendering implementation, GPG1: 

565-566 



784 
wesceouerenneansuae anne stsnieencoscentenosscseunnssetonounsaottoeienscestet 

self-shadowing, GPG2: 421-424, GPG2: 
484-487, GPG4: 411-425, GPG4: 
437-441 

shadow buffers, GPG4: 411-425 
shadow ellipses, GPG3: 437 
shadow maps, GPG2: 421-424, GPG4: 

411-412 

stencil shadows for dynamic objects, 
GPG4: 433-434 

stencil shadow volumes, GPG4: 427-435 
trends in shadow mapping, GPG4: 381 
vertex shaders and shadow volumes, 

GPG4: 394-398 
volumes of, GPG1: 568-569 

Shadow services, 607 
Shadow volumes, optimizations for, GPG3: 

367-371 

Shankel, Jason 
articles by, GPG1: 200-213, GPG1: 

499-511, GPG2: 416-420, GPG3: 

344-348 
contact and bio info, GPG1: xxvi, GPG2: 

xxx, GPG3: xxvii 
SharedChunkPolicy allocation policy, 139 
Shi, Larry, article by, GPG4: 579-589 

Shields, sound effects for, 726 
Shine-through, GPG1: 552 
Shoemaker, Shawn 

article by, 473-482 
contact and bio info, xxxv—vexxvi 

Shorelines, as boundary conditions, GPG1: 
190 

Shoreline walls, GPG4: 366-368 
Shore rings, GPG3: 269-270 

Shore tiles, GPG3: 269 
Shortest Remaining Processing Time (SRPT), 

GPG4: 549-550 
Shrapnel, kill algorithms and, GPG4: 

216-217 

SICLump module, GPG2: 102-103 
SICResourceFile module, GPG2: 103-104 
Sideforce, aerodynamics and, 396-398 
SIGGRAPH, GPG3: 335 
Sign test (positive / negative) for floating- 

point numbers, GPG2: 172 

Silhouette edge detection (SED) 

advanced texture features and inking, 
GPG2: 442 

boundary edges, GPG2: 437-438 
crease edges, GPG2: 437-438 
edge-based inking, GPG2: 438-440 
inking described, GPG2: 436-437 
programmable vertex shader inking, 

GPG2: 440-442 
Silhouette points and zones, pathfinding, 

GPG2: 325-329 

Silhouette regions, pathfinding and, GPG3: 
162-163 

Silva, Cléudio 
article by, GPG3: 353-358 
contact and bio info, GPG3: xxvii 

Simonyi, Charles, GPG1; 9 
Simple Network Time Protocol (SNTP), 

online gaming and, GPG3: 493 
Simpson, Jake 

article by, GPG4: 607-611 
contact and bio info, GPG4: xxxvi 

Simpson, Zack Booth 
article by, GPG3: 488-495 
contact and bio info, GPG3: xxvii 

Simulation, schedulers for, GPG3: 13 
Simulation events, for massively multiplayer 

games (MMPs), GPG3: 508 

SimulationObject (SOB), for massively 

multiplayer games, GPG3: 509-511 
SimulationState, for massively multiplayer 

games (MMPs), GPG3: 508-509 

Simulation time, GPG3: 7 
Sine approximation techniques. See Trigono- 

metric functions 
Sine functions, lookup tables for, GPG2: 

174-175 
Singletons, GPG1: 36-40 

automatic singleton utility, GPG1: 36-40 
singleton patterns, GPG1; 13-15 

Size of game objects, GPG1: 403-404 
magnification factors, GPG1: 434 

Skeletal motion 
inverse kinematics and, GPG3: 192-198 
rotational constraints, GPG3: 195 

Skeletons 
backbone layer and fast deformations, 

GPG4: 278 
described, GPG4; 488-489 
heirarchy in, GPG4: 488-489 
see also Bones 

Skies, color changes, GPG3: 450 
Skill level of player 

AI to adjust pacing and tension of games, 
GPG4: 315-324 

player skill measurements, GPG4: 

320-322 

Skinning, GPG1: 480-483 
defined and described, GPG4: 504-505 
fast and simple method for, GPG]: 

471-475 
fast deformations with multilayer physics, 

GPG4; 275-285 
hardware skinning with quaternions, 

GPG4: 487-495 
quaternions used for, 247 

stitching and, GPG1: 476-483 

Skip strips, VIPM method described, GPG2: 
368-370 
mixed-mode skip strips, GPG2: 372 
multilevel skip strips, GPG2: 369-370 

Skyboxes 
alternatives to, GPG2: 419 
described, GPG2: 416 

rendering, GPG2: 418 
rendering distant scenery with, GPG2; 

416-420 
resolution, GPG2: 416-417 
size, calculating maximum, GPG2: 418 
textures for, GPG2: 419 

Skylight, radiosity approximations and 
patches, GPG3: 438-439 

Skyplanes, mapping procedural clouds to, 
GPG2; 469-470 

Slerp, 464, GPG1: 206-207, GPG4: 
491-492 

defined and described, 249-251 
quaternion approximation methods, 

252-264 
Smart pointers, handle-based, GPG3; 44-49 

construction and destruction of, GPG3: 
46-47 

dereferencing, GPG3: 47 
equality and inequality testing, GPG3:; 47 
validation of, GPG3: 47 

Index 

Smith, Roger 
article by, GPG4: 209-219 
contact and bio info, GPG4: xx«xvi 

Smith, Russ 
articles by, GPG4: 241-251 
contact and bio info, GPG4: xxvii 

Smoke 
cellular automata to model, GPG3: 200 
expanding smoke from explosions, 556 

Smoothing 
critically damped ease-in / ease-out 

smoothing, GPG4: 95 
damped spring and critical damping, 

GPG4: 97-98 
exponential decay smoothing, GPG4: 

96-97 
maximum smooth speed, GPG4: 100 
S-curve smoothing, GPG4: 96 
smooth time functions, GPG4: 98-100 

Smoothness, friction and, GPG3: 225 
Smooth Nonuniform Splines (SNS), GPG4: 

76-178, GPG4: 171 

Snell’s Law, GPG1: 594-595 
Sniffing, preventing, GPG3: 546-555 
Snook, Greg 

articles by, GPG1: 288-304, GPG2: 
377-383, GPG3: 417-423 

contact and bio info, GPG1: xvi, GPG2: 
xxx, GPG3: xxviii 

Snow, rendering precipitation, 507-513 
SNTP (Simple Network Time Protocol), 

online gaming and, GPG3: 493 
SOBFactory for massively multiplayer games, 

GPG3: 514 
SOBManager for massively multiplayer 

games, GPG3: 514 
Sockets, secure. See Secure sockets 
Soft-body simulations, fast deformations with 

multilayer physics, GPG4: 275-285 
Sonar pings, GPG3: 624-625, GPG3: 637 
Sorting methods, hierarchical, GPG2: 

388-389 
Sound 

abstract interface to create sound system, 
GPG2: 20-22 

ambient sound, GPG2: 516 
defined, GPG2: 522 
echoes, GPG2: 527 
low-level sound API, GPG2: 559-560 
predictability and playback, GPG2: 

108 

reverberation effects, GPG2: 527 
sample-based synthesizer to reuse voices, 

GPG2: 521-524 

speech systems and command queuing, 
GPG2: 517 

troubleshooting, GPG2: 519 
volume controls, GPG2: 554-555 
see also Audio; Audio design patterns; 

Audio programming; Music 
Sound effects 

DirectSound for, GPG3: 571 
helicopters, GPG3: 627-628, GPG3: 

635-636 
motor vehicles, GPG3: 627, GPG3: 

634-635 
rocket engine sounds, GPG3: 627 

sonar pings, GPG3: 624-625, GPG3: 
637 

submarines, GPG3: 637 



voices, robot or alien voice synthesis, 
GPG3: 613-621 

white noise, GPG3: 622-629 
wind sounds, GPG3: 624 

Sounds, culling, GPG1: 425 
Sousa, Bruno 

article by, GPG2: 100-104 
contact and bio info, GPG2: xxx 

Southey, Dr. Finnegan, contact and bio info, 
dvi 

South Korea, as game market, GPG3: 92-93 
Space 

flocking and local space, GPG1: 307 
local space optimization, GPG1: 

368-370 
model space, GPG1: 368 
neural nets as partitioning, GPG1: 

336-337 
partitioning, GPG1: 257-259 
search space optimizations, GPG1: 

272-276 
simplified movement in 3D, GPG1: 

288-304 

tangent space, GPG1: 556-559 
3D movement, GPGI1: 288-304 
world space, GPG1: 368-369 

Spatial partitioning, used with silhouette 
zones, GPG2: 329 ; 

Specular maps, cube mapping and, GPG3: 

450 
Speech 

command queuing and speech systems, 

GPG2: 517 
linear predictive coding and speech 

modeling, GPG3: 614-621 
lip-synching systems, GPG4: 607-611 
see also Speech recognition 

Speech recognition, 741-750 
feature extraction for, 743-744 
signal energy, 746 
training for, 749 

Speed 
locality of reference and, GPG4: 47 
see also Speed, optimizing for 

Speed, optimizing for 
A* optimizations, GPG1: 272-287 
data loading, GPG1: 88-91 
fast math template metaprogramming, 

GPGI1: 20 

memory allocation, GPG1: 92-100 

and visual quality, GPG1: 194 

XML speed optimizations, GPG4: 

125-135 
see also Optimizations 

Sphere mapping, GPGI1: 553-554 

Spheres, as bounding object for frustum 

culling, 71-72 
Sphere trees, GPG2: 384-387 

for Binary space partitioning (BSP) trees, 

55-63 
building, 57-59 

bounding spheres, GPG2: 384-385 

demo and algorithm, GPG2: 385-387 

described, GPG3: 531 
multiplayer game optimization, GPG3: 

530-533 
uses of, GPG2: 385 

Spherical cubic interpolation (squad), GPGI: 

207-208 

Spherical linear interpolation (slerp), GPG1: 

206-207, GPG4: 491-492 
Sphinx MMOS system, audio processor, 

GPG3: 631-638 
patch files, GPG3: 633-638 
source code, GPG3: 637-638 

Spikes, avoiding artifacts, GPG4: 30-32 
Spinning objects, shortest are quaternion, 

GPG1: 211-218 

Splashes, simulating, GPG1: 191 
Splice function, GPG3: 57 
Spline interpolations, GPG1: 208, GPG1: 

211-213 

Splines 
basic cubic spline theory, GPG4: 

172-173 
calculating start and end node velocities, 

GPG4: 180 
defined and described, GPG4: 171 
Hermite splines, 225-231, GPG1: 

467-470 
natural. cubic splines and flythrough 

paths, GPG2: 221-222 
nonuniform cubic splines, GPG4: 

171-181 
open vs. closed, GPG2: 221-222 
precomputed splines, 463-464 
spline-based time control for animation, 

233-246 
velocity and acceleration on, GPG4: 180 

Splitter polygons, 55-56, 59-62, 109-111 
Spoerl, Marco 

articles by, GPG4: 193-204 
contact and bio info, GPG4: xxxvii 

Spoofing, preventing, GPG3: 546-555 

Spotlights, per-pixel, GPG2: 460-461, 
GPG3: 474-476 

Spring mass models, 436-437, 440-442 
Sprite effects, GPG1: 519-523 

alpha blending, GPG1: 522-523 
drawing 3D, GPG1: 520-522 
rotating, GPG1: 523 
scaling, GPG1: 523 
textures for, GPG1: 520 

Sprites. See Impostors 
Squad, GPG1: 207-208 

squad derivative calculation, 265-266 

Square roots, logarithmic optimization of, 

GPG2: 176-177 
Srand(), 677-678, GPG1: 134-135, GPG2: 

109 
StackAlloc, GPG3: 50, GPG3: 55-56 
Stacking states, large scale stack-based state 

machines, 93-101 
Stack pointers, GPG2: 260-261 
Stacks, GPG1: 53-54 

copying, GPG2: 262 
freelists and, GPG4: 48 
of rigid bodies, GPG4: 248 
stack management and micro-threads, 

GPG2: 262 

see also Stack winding 
Stack traces, GPG3: 143-144 
Stack winding, GPG2: 85-90 

recursion and, GPG2: 89-90 
temporary return routine, GPG2: 85-86 

thunking and, GPG2: 88-89 

Staircases, narrow staircase (orcs vs. humans) 

combat scenario, 320 

785 

Stamminger, Marc 
article by, GPG4: 399-410 
contact and bio info, GPG4: xxxvii 

Standard Atmosphere, 398 
Standard Template Library, C++ (STL), 

GPG1: 41-55, GPGA4: 3 
algorithms, GPG1: 42 
container adapters, GPG1: 53-54 
containers, GPG1: 41-42 
deques, GPG1: 48-50 
generic component library, 177-187 
iterators, GPG1: 42 
lists, GPG1: 46-48 
maps, GPG1: 50-53 
priority queues, GPG1: 54, GPG1: 

281-282 

queues, GPG1: 54 
ranges, methods to determine, GPG1: 

42-43 
stacks, GPG1: 53-54 
tree interfaces and, GPG4: 56-58 
vectors, GPG1: 43-45 

Standard Template Library (STL) 
allocation and deallocation methods, 

GPG3: 49-50 
memory fragmentation, GPG2;: 13-14 
optimization and, GPG2: 12-14 
see also Standard Template Library, C++ 

(STL) 
State And Media Manager (SAMMy), GPG2: 

52-54 
State changes, smoothing, GPG4: 95-101 
State-event systems, for online lobbies, GPG4: 

533-534 
State interface class, 96-97 
State machines, GPG1: 223-225 

code generation and, 169-175 
creating with macros, GPG2: 19 
C-style macros for, GPG1: 225-227 
deleting game objects within, GPG1: 230 
event-driven using messages, GPG1: 

223-225 
Finite State Machines (FSM), GPG1: 

237-248 
large-scale stack-based state machines, 

93-101 
Lua scripting language and, 171-174 
macro languages, GPG3: 32-33 
message routing, GPG1: 227-229 
multiple state machines, GPG1: 233 
pseudocode for, GPG1: 224 
queues of, GPG1: 233 
simple state machine, code listing for, 

94-96 
swapping, GPG1: 233 
visual design of, 169-175 
see also Finite State Machines (FSMs); 

Micro-threads, AI architecture 

StateManager Class, code listing for, 99-100 

State-object management systems, 98-100 

State patterns, GPG1: 16-18 
States, GPG1: 237 

A* algorithm for path planning, GPG1: 

254-255 
CharacterStateMegr class, GPG4: 

565-568 
creating for FSM, GPG1: 242-243 

defined and described, GPG4: 563-565 

FSM state, GPG1: 239-240 
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in Lua programming language, 117, 120 
neighboring states, GPG1: 259 
planning and, 330 
restoring game states for MMPs, 609 
transition matrices, GPG1; 238 
see also State machines 

State stacks, 97-98 

State storage for massively multiplayer games 
(MMPs), GPG4: 555-561 

State transitions, decision trees architectures 
and, GPG4: 337-344 

Static areas, terrain analysis of, GPG3: 
268-270 

Statistics, real-time and in-game debugging, 
GPGI: 115-119 

Status functions in audio design, GPG2: 519 
Steering 

attractor / repulsor forces and, GPG4: 

362-363 
behaviors, GPG1: 305-306 
distributed reasoning voting architecture 

for, GPG4: 348-351 
input devices and, GPG4: 224-226 

physics and racing game steering, GPG4: 
221, GPG4: 225-226 

Sticky plane problem, loose octrees for, 
GPG1: 444-453 

Stiction (static friction), GPG3: 215, GPG3: 

218-219, GPG3: 223-224 

Stitching, GPG1: 477-480 
STL. See Standard Template Library, C++ 

(STL) 
STL containers, template-based object 

serialization and, GPG3: 539-541 
Stochastic synthesis of sound, GPG3: 

622-629 
Stone, Jonathon 

article by, GPG4: 303-314 
contact and bio info, GPG4: xxvii 

Stoner, Dan 

article by, GPG4: 209-219 
contact and bio info, GPG4: xxxviti 

StoreProfileIn History, GPG1: 129-130 
Stout, Bryan 

article by, GPG1: 254-263 
contact information, GPG1: xxvi 

Strategic assessment techniques, GPG2: 
298-306 
resource allocation trees, GPG2:; 298-300 

Strategic decision making 
and resource allocation trees, GPG2: 

301-302 

strategic inference, GPG2: 305 
Strategy games 

Line-of-Sight searching systems for, 
GPG2: 279-286 

strategic assessment techniques, GPG2; 
298-306 

Streaming 
multithreading and, 708-710 
vs. sequencing method for music, GPG2; 

539-540 
Street, Shea 

article by, 603-610 
contact and bio info, xxxvi 

Strings 
concatenating and world markets, GPG3: 

103 
macro to transform enums to, GPG3: 

27-28 

text parsers, GPG2: 115 
STRIPS planner, 330-331 
Strothotte, Thomas 

article by, GPG4: 443-449 
contact and bio info, GPG4: xxxviit 

Structured exception handling (Win 32), 

GPG2?: 263 
Subdivision, sphere trees, GPG3: 531-533 
Subdivision surfaces, GPG3:; 372-383 

arrays for data storage, GPG3: 381 
bones and, GPG3: 378 
butterfly subdivision schemes, GPG3: 

374-375, GPG3: 380, GPG3: 382 

data structures for, GPG3: 375-378 
hierarchical half-edge meshes, GPG3: 

375-378 
interpolating schemes, GPG3: 374-375 
loop subdivision scheme, GPG3: 

373-374, GPG3: 380-381, GPG3: 

382 

masks and, GPG3: 372-376 

optimizations for, GPG3: 378-381 

physics envelopes to control, GPG4: 
281-283 

rendering, GPG3: 382 

vertex-accumulation buffers and, GPG3: 
378 

Submarines, sound effects, GPG3: 624-625, 

GPG3: 636-637 
Subscription channel servers, GPG4: 547 
Subsumption architecture, GPG4: 347 
Subtraction, CSG Boolean operator, 103-107 
Sunlight, calculation of radiance, GPG3: 

436-438 

Suns, static lights, GPG3: 449 
Super Mario 64, third-person control scheme, 

GPG2: 425-432 
animation analyzed, GPG2: 431 

Surfaces 

loss of surface information, GPG2: 83-84 
see also Subdivision surfaces 

Surface tension and waves, GPG4: 274 
Survival, flocking rule, GPG2: 331 
Svarovsky, Jan 

articles by, GPG1; 195-199, GPG1: 
249-253, GPG1: 403-411, GPGI1: 
454-464, GPG3: 496-505 

contact and bio info, GPG1: x«vi, GPG3: 
XXXVIIT 

SwapThreads () routine, GPG2: 261 

Swarming, GPG1: 305-318 

see also Flocking 
Sweeping, FDN and reverb audio effects, 

736-739 
Symbol tables, for programmable vertex 

shader compilers, GPG3: 410-411 
Synchronization, GPG3: 493-495, GPG3: 

500-501 

clock synchronization, GPG4: 580 
out-of-synchs, debugging, GPG3: 

503-504 

time and consistency management in 
multiserver systems, GPG4: 579-589 

Syntax errors, memory tracking and, GPG2: 
71 

System messages, defined, 665 
System requirements, GPG4: 658 
Szijarté, Gabor 

article by, 527-538 
contact and bio info, xxxvirexxuii 
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T 
Tactical analysis and assessment 

height advantage, GPG2: 296 

of locations, GPG2: 309-310 
tactical analysis of locations, GPG2: 

309-310 
tactical values, converting to waypoint 

properties, GPG2:310 
visibility, GPG2: 296-297 

Tactical path-finding, GPG3: 294-305 
dynamic threats and, GPG3: 300-301 
enemy modeling and exposure time, 

GPG3: 297-298 
line-of-sight / fire tests, GPG3: 302-304 

Tags 
audio tag database (XML), GPG4: 

625-628 

in XDS format, GPG4: 127 
XML attributes listed, GPG4: 626 

Tangent space, GPG1: 556-559 
Targets 

identification with Line-of Sight systems, 

GPG2: 279-286 
ranking with artificial potential fields, 

307-315 
Task managers, GPG3: 6, GPG3: 9 
Tasks 

decomposition of tasks for PVMs, 
354-361 

dependency of, 358 
granularity of, 356-357 
grouping of, 358-359 
horizontal vs. vertical integration of, 

GPG3: 19 
interface with task system, GPG3: 21 
interruption of, 360 
linking of, 359-360 
load balancing and, 360-361 
managing, GPG3: 6, GPG3: 9 
thread pools and task management, 361 
time budgets and scheduling, GPG3: 12 

Tatarchuk, Natalya 
article by, GPG4: 103-110 
contact and bio info, GPG4: xxviii 

Taylor, Chris, GPG1: 7 
Taylor series, 269-272, GPG1: 161-162, 

GPGI1: 167-171, GPG1: GPG3: 
179-180 

friction simulation and, GPG3: 222-223 
vs. Lagrange series, GPG1: 174-175 
truncated, GPG1: 171 

TGR 
addresses, 644-645 
Java 2 Micro Edition networking, GPG3: | 

575 
NAT routers and, 656 
simulation with NetTool, GPG3: 559 
TCP-based game systems, GPG3: 492 

Team colors 
algorithms for, GPG4: 451-457 
applying to 3D models, GPG4: 451-459 

Technology, trends in development, GPG4: 
xviti-xix 

Template metaprogramming, GPG4: 3 
Template Method pattern, GPG2: 55 
Templates 

binding policy classes to hosts with, 132 
C++, 39-54, GPG1: 20-35, GPG1: 

41-55 
C++ standards compliance, GPG1: 25 
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factorial, GPG1: 22-23 
Fibonacci numbers, GPG1: 20-22 

matrix operations, GPG1: 25-30 
for metaprogramming, GPG1: 20-35 
optimization and, GPG2: 14 
for reflection, 39-54 
RTTI implementation with, 42-46 

for trigonometry, GPG1: 23-25 
as virtual compilers, GPG1: 20-22 

Template specialization, type information 
provided using, GPG2: 120-121 

Temporal topics and neural nets, GPG1: 

335-336 
Tension, AI to adjust level in games, GPG4: 

315-324 
Terdiman, Pierre 

articles by, GPG4: 253-263 
- contact and bio info, GPG4: xxviii 

Terrain analysis 
armies, GPG3: 272 

choke points, GPG3: 272, GPG3: 
279-283 

continents, GPG3: 269 
convex hulls, GPG3: 273-277 
dynamic areas, GPG3: 270-272 
forests, GPG3: 270 
generic areas, GPG3: 272-273 

herds, GPG3: 272 

hills, GPG3: 269 
Major Matchbox (U2DMatchboxCon- 

tainer class), GPG3: 277-283 

shore rings, GPG3: 269-270 

shore tiles, GPG3: 269 
static areas, GPG3: 268-270 

towns, GPG3: 270-272 

Terrain reasoning 
computing waypoint properties, GPG2: 

310-313 
resources required for algorithm, GPG2: 

314-315 
waypoints, GPG2: 308-309 

Terrains 
buildings, GPG1: 490-498 
erosion simulation, GPG1: 501-502 
fault line generation, GPG1: 488-490, 

GPG: 499-502 
fractal terrain generation, GPG1: 

499-511, GPG2: 239, GPG2: 246 

fuzzy landscaping, GPG1: 484485 
generic areas, creating, GPG3: 272-273 

influence maps and, GPG2: 293-297 

interlocking tiles method, GPG@?: 

377-383 
landscaping, GPG1: 484-490 

lighting of, dynamic and realistic, GPG3: 

433-443 
mazes, GPG1: 490-493 
mountains, GPG1: 503-511 

occlusion culling with horizons, GPG4: 

515-527 
particle deposition, GPG1: 508-511 

racing games and physics, GPG4: 

226-227 

real-time, realistic, GPG1: 484-498 

reasoning for 3D games, GPG2: 307-316 

skyboxes for rendering distant scenery, 

GPG2: 416-420 

volcanos, GPG1: 508-511 

see also Terrain analysis; Terrain reasoning 

Tessendorf, Jerry 
article by, GPG4: 265-274 
contact and bio info; GPG4: xxxix 

Testing 
danger characters, GPG3: 105-106 
libraries and use-case testing, GPG4: 41 
multiple language games, GPG3: 

104-106 

NetTool network simulator for, GPG3: 

560 
stage of game development, GPG3: 16 
verification of code coverage, GPG4: 17 

Text files 
advantages and disadvantages, GPG2: 

112 

in game development, GPG1: 3 
Text parsers, GPG2: 112-117 

Boolean values, GPG2: 115 
floating-point numbers, GPG2: 115 

GUIDs, GPG2: 116 

integers, GPG2: 115 

keywords, GPG2: 115 
operators, GPG2: 115 
Parser class, GPG2: 116 

strings, GPG2: 115 
Token class, GPG2: 114-115 
TokenFile class, GPG2: 116 
TokenList class, GPG2: 116 

variables, GPG2: 115 

Textures 
blending with stacked layers, GPG3: 460 
bump mapping for, GPG1: 555-561 
caching textures, GPG3: 460 
compositing and, GPG3: 462-463, 

GPG3: 465 
creating unique textures, GPG3: 

459-466 
cube maps and, GPG3: 445-446 

dependent texture reads, GPG2: 497 
dimensional impostors, 527-538 
dynamic textures, GPG3: 463-464 
filtering to reduce stretching, GPG2: 418 
filters and, GPG2: 418, GPG2: 479, 

GPG3: 462, GPG3: 464 
four-sample texture sampling, GPG2: 

497-498 
green-blue texture addressing, GPG2: 

497-498, GPG2: 505-506 
iridescent color-shifting, GPG3: 472-473 
layer mapping and transforms, GPG3: 

461 
layer sources, GPG3: 462 

lookup tables for per-pixel lighting, 
GPG3: 467-476 

mipmaps, GPG3: 464, GPG3: 465, 
GPG4: 385 

normal distribution function (NDF) 

shading, GPG3: 477-483 
number controls for texturing systems, 

GPG3: 463 
optimization, GPG3: 454-456 
procedural textures, GPG3: 452-460 
projection of, GPG1: 550-552 
reflection mapping, GPG1: 553-554 
scalability, GPG3: 464 
self-shadowing with projective textures, 

GPG2: 421-424 

shadow maps and, GPG1: 578 

shine-thorough problem, GPG1: 552 

787 

for skyboxes, GPG2: 419 
solid texturing, GPG3: 455 
stretching, reducing, GPG2: 418 
team colors applied to 3D models, 

GPGé4: 451-457 
texture coordinate generation, GPG1: 

549-554 
3D textures for light mapping, GPG2: 

452-459 
triadic blends, GPG3: 462-463 
uploading web-cam data, GPG2: 

160-161 
vertically interlaced textures, GPG3: 

422-423 

warping (relief textures), GPG3: 420-421 

see also Procedural textures 
Texture space, GPG3: 425, GPG3: 428 

Thin wing theory, 403 
Thomason, Andy 

article by, 247-267 
contact and bio info, xxvii 

Thread pools, 361 
Threads and threading 

deadlocks, 699 
defined and described, 697-699 
DirectPlay 8.1 and multithreading, 

GPG3: 566-569 
fibers (multi-tasking threads), GPG2: 260 

HyperThread technology, 701-702 
locked threads, 699 
OS threads, GPG2: 160 
priority failures, 700 
race conditions, 699-700 
starvation failures, 700 
see also Micro-threads, AI architecture; 

Multithreading 
Threat model to measure insecurity of system, 

683-687 
3D models, horizon culling for 3D terrains, 

GPG4: 521-524 
3ds max skin exporter and animation toolkit 

bone animation keys, GPG2: 148 
bone structure and hierarchy, GPG2: 146 
bone weighting (influence values), GPG2: 

146-148 
mesh data and, GPG2: 145-146 
MRC file format for exporting, 

GPG2:142-143 

nodes and, GPG2: 144-145 
steps to use, GPG2: 148-149 

Thresholds 
hysteresis thresholding, GPG1: 435 
selection, GPG1: 437 

Thunks and thunking, defined and described, 

GPG?: 88 

Tile-based games, Line-of-Sight searching 
systems for, GPG2: 279-286 

Tiles 
defined, GPG2: 280 
searching systems for tile-based games, 

GPG2: 279 
tile-based pathfinding, GPG2: 325 
see also Tiles, interlocking landscape 

Tiles, interlocking landscape 
detail levels for, GPG2: 380-382 
and height maps, GPG2: 379-380 
linking pieces explained, GPG2: 

381-382 
rendering method for, GPG2: 382 
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Time 
event scheduling, GPG3: 5 
game clocks, GPG4: 27-34 
MMORPG time and consistency 

management, GPG4: 579-589 
position and velocity as function of, 

GPG2?: 206-207 
simulation time, GPG3: 6-8 
smooth animation and, GPG2: 148 
time complexity and RDC, GPG2: 

236-237 
virtual time, GPG3: 6-8 

Time control for animation, spline-based, 
233-246 
distance-time functions, 234-244 
Timed nonuniform splines (TNS), 

GPG4: 171, GPG4: 178-180 
Time events, GPG3: 8 
Timers, for AI agents, GPG2: 253 
Titelbaum, Matthew 
article by, 367-382 
contact and bio info, xxvii 

T-Junctions 

defined and described, GPG3: 338-339 
elimination of, GPG3: 339-340 

rasterization artifacts and, GPG3: 
338-343 

retriangulation, GPG3: 340-342 
T-junctions, GPG4: 429-430 
Token class of parsing system, GPG2: 

114-116 
TokenFiles class of parsing system, GPG2: 

117 
TokenList class of parsing system, GPG2: 116 
Tokens, tokenizers, 17-19, GPG3: 40 
Tombesi, Marco 

articles by, 383-389, GPG2: 141-152 
contact and bio info, xxvii, GPG2: xxx 

Tools, GPG2: 3-4 
object creation tools, GPG2: 51-61 
performance tuning, commercially 

available, GPG2: 75 
profiling module, GPG2: 74-79 
XDS toolkit, GPG4; 127-134 

Tornadoes, prescripted physics event, 
469-471 

Torque, 396, GPG1: 154 

PD controllers to calculate, 451-452 
Total Annihilation, GPG1: 7 
Totally destructible worlds, GPG3: 203 
Towns, GPG3: 270-272 
Tozour, Paul 

articles by, GPG2: 287-306, GPGA4: 
301-302 

contact and bio info, GPG2: xxxi, GPG4: 
XxIX 

Trackballs, virtual, GPG1: 217 
Tracks, audio, defined, GPG2: 543 
Traffic, fuzzy logic for modeling, GPG1: 

322-328 

TrainingControlState, GPG3: 233 
Trajectories 

angles of elevation and, GPG2: 207-210 
flight time calculations, GPG2: 212 

gravity’s influence, GPG2: 205-206 
initial velocity, GPG2: 210-211 
inverse trajectory determination, GPG2: 

205-214 

maximum height calculations, GPG2: 
211-212 

multiple variables and, GPG2: 212-213 
time, position and velocity as function of, 

GPG2: 206-207 

Translational offsets, modification of, GPG3: 
395-396, GPG3: 400-401 

Transparency 
exported classes and, GPG2: 56-57 
glass, GPG1: 586-593 
rendering, GPG1: 193 

Trees 
binary, GPG1: 182-184 
defined and described, GPG4: 52-53 
game trees, GPG1: 249-253 
generic tree containers, GPG4: 51-59 
implementation of, GPG4: 53-56 

interfaces for, GPG4: 56-58 

quadtrees, GPG1: 258, GPG1: 444-445 
traversing and navigation functions, 

GPG4: 53-56 
see also Decision trees; Octrees 

Trees, vegetation 
dimensional impostors for realistic trees 

and forest, 526-538 
widgets to render fast and persistent 

foliage, 515-526 
Treglia, Dante, II 

articles by, GPG1: 371-379, GPG3: 
XU-XUIL 

contact and bio info, GPG1: xxvi, GPG3: 
XXXVILI-XNXIX 

Tremblay, Christopher 

article by, 269-280 
contact and bio info, xxxvit—xxxviti 

Triangle strips (tri-strips) 
beam effects and, GPG3: 414 
cache-friendly triangle strips, GPG3: 

365-366 
connecting, GPG3: 364 
creation of, GPG3: 361-364 
defined and described, GPG3: 359-361 
level-of-detail, GPG3: 366 
mapping alternatives and, GPG3: 

415-416 
rendering, GPG3: 365 

tri-strip algorithm, pseudo-code for, 
GPG3: 364 

Triangle-to-triangle collision detection 
algorithm, GPG1: 390, GPG1: 393-397 

Triggers. See Trigger systems 
Trigger systems 

conditions, defining, GPG3: 286 
conditions and responses, GPG3: 

286-289 

defined and described, GPG3: 285-286 
evaluating triggers, GPG3: 289-290 
event messages and, GPG3: 289 
extensible trigger system for Al agents, 

objects and quests, GPG3: 285-293 
flags and counters, GPG3: 290-292 
object-owned trigger systems, GPG3: 286 
vs, scripting languages, GPG3: 292 
single shot and reload times, properties of 

triggers, GPG3: 290 
Trigonometric functions 

cosine calculation, GPG3: 172-174 
cosine functions, lookup tables for, 

GPG2: 174-175 
Goertzel’s Algorithm for approximations, 

GPG3: 172-174 

lookup tables for, GPG2: 174-176 

Index 

optimizations and, GPG2: 213-214 
polynomial approximations for, GPG1: 

161-176, GPG3: 179-185 
range reduction for approximations, 

GPG3: 176-179 
Resonant filter, sine and cosine calcula- 

tion, GPG3: 171-172 

resonant filter for approximations, 
GPG3: 171-172 

table-based for approximations, GPG3: 
175-177 

templates for, GPG1: 23-25 
Tri-strips. See Triangle strips (tri-strips) 
Troubleshooting 

adjacent object won’t align, GPG4: 159 
audio design, GPG2: 519 
collision errors, GPG4: 159 
cracks in mesh seams, GPG4: 159 
jittering or stuttering animations, GPG4: 

32, GPG4: 159, GPG4: 500-501 
joint distortions and deformations, 

GPG4: 487-488 

memory tracking programs, GPG2: 29 
network failures, GPG4: 543 
voices in synthesizers, GPG2: 521-524 

TweakableBase_c class, GPG2: 121-122 

Tweaker_c class, GPG2: 122-123 

TweakerlnstanceDB_c class, GPG2: 123 

Tweaker interface, GPG2: 118-126 
classes, schematic illustrating, GPG2: 119 
design, GPG2: 118 
type information for, GPG2: 120-121 

Tweakers, 53 
TwoBitArray class, GPG1: 103 
2D images, depth-enabled, GPG3: 417-423 
Two-dimensional sprite effects, GPG1: 

519-523 
2-Way threaded decision tree implementa- 

tion, code listing, 349-350 
Typedefs, allocators and, GPG3: 50-51 
Type information code of tweaker interface, 

GPG2: 125 
Types 

defined and described, GPG2: 38 
dynamic type information (DTI) class, 

GPG2: 38-43 
dynamic types in audio design, GPG2: 

518 

identification of, 177-178 
persistent type information, GPG2: 

43-44 
Type safety, GPG3: 524-525 

serialization and, GPG3: 544 

U 
UDP 

addresses, 644-645 
DirectPlay 8.1 and, GPG3: 563-564 
Java 2 Micro Edition networking, GPG3: 

57D 
simulation with NetTool, GPG3: 559 

Uls. See User interfaces (UIs) 
Ulrich, Thatcher 

article by, GPG1: 444-453 
contact information, GPG1: xxv 

UML. See Universal Modeling Language 
(UML) 

UMLPad flow chart editor, 170 
Underflow Exceptions, GPG3: 70 
Unicode, GPG3: 98 
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Union, CSG Boolean operator, 103-107 
Universal Modeling Language (UML), 

GPG4: 3 
class diagram for clock system, GPG4: 29 
class diagrams for, GPG3: 76-78 
game engines and, GPG3: 73-82 
implementation issues, GPG3: 80-82 
iterative modeling, GPG3: 78-80 

sequence diagrams and interprocess 
exploits, GPG3: 530 

tools, GPG3: 82 

Unreal, GPG1: 307 
Updates 

Artificial Intelligence (AI) data updates, 
GPG?: 255-256 

audio frame and intervals, GPG2: 547 

cellular automata, update rates, GPG3: 

212-213 

entities and, GPG4: 78 
in MMP games, 608 
motion detection to avoid unnecessary, 

GPG?: 157-158 

polling updates as triggers, GPG3: 

289-290 

tweaking update rates, GPG2: 494 
update heuristics for impostors, GPG2: 

493-494 
UpdateWorld function, GPG?: 80-81 
Uplift, simulating, GPG1: 503-507 
Use cases, GPG3: 75-76 
UserControlState class, GPG3: 232-233 

for MMPs, GPG3: 509-510 

User interfaces (UIs) 
Feng GUI of, GPG3: 117-118 
heads-up-displays and, 13-15 
localization considerations, GPG3: 112 
pie menus, GPG3: 117-128 

real-time input and, GPG3: 109-1 16 
specifying elements in, GPG3: 110-112 
XML and, GPG3: 110-112 

Utility theory, GPG4: 343 

Vv 
Valenzuela, Joe 

articles by, GPG4: 595-606 
contact and bio info, GPG4: xxxix 

Valid space, in path-finding, GPG3: 325-328 

Values 
absolute values, GPG2: 174 

clamping to a specific range, GPG2: 

173-174 

floating-point number tricks, GPG2: 

*173-174 
property values, modifying, GPG4: 

116-118 

tactical values, converting to waypoint 
properties, GPG2: 310 

Van der Sterren, William 

articles by, GPG2: 307-316, GPG3: 

294-306 
contact and bio info, GPG2: xxx, GPG3: 

XXXULIT 

Van Emde Boas tree layout, 160 

Van Verth, James M. 
articles by, 233-246, GPG4: 183-192 

contact and bio info, GPG4: sxxix 

Variables 
abstract variables as MLP inputs, GPG2: 

354 

bug prevention and, GPG4: 17 
debugging and runtime variable changes, 

GPG4: 15 
dynamic variables, GPG4: 613-619 
fuzzy variables, GPG2: 342 
influence maps to track, GPG2: 289-290 
initializing, GPG4: 17 
Lua and dynamic typing of, 116 
names and naming conventions, GPG4: 

17 
practical planning and, 332-333 
public member variables, GPG4: 36 
“smart” variables, GPG4: 613-619 
text parsers, GPG2: 115 
tweaking, GPG2: 118-126 

Vector fractions, GPG3: 160-169 

big integers and, GPG3: 168 
vs. floating-point representations, GPG3: 

160-161, GPG3: 163-164 
number ranges, GPG3: 167-168 
operations using, GPG3: 165-166 
optimizations, GPG3: 168-169 
order of intersection, GPG3: 166 
pathfinding and, GPG3: 162-163 
rationale for use, GPG3: 161-163 
3D line and plane intersections, GPG3: 

165 
transversals and, GPG3: 162-163, 

GPG3: 166, GPG3: 168 
2D line intersections, GPG3: 164-165 

Vectors, GPG1: 41-45 
assert macro for normalizing, GPG1: 

109-111 

bivectors, 203 
damped reflection vectors, GPG2: 

188-190 
eigenvectors, GPGI1: 156 

flocking implementation; GPGI1: 

307-308 
interpolating across line or plane, GPG2: 

189 
in MAX, GPG2: 145 
memory of, GPG1: 45 
multivectors, 203-209 
orthogonality of, GPG1: 337-338 
reflected off collision planes, GPG2: 

185-188 

representing finite rotation with, GPG1: 

151-154 
Standard Template Library vectors, 

GPG?: 12-13 

trivectors, 204 
used by vector cameras, GPG1: 367-378 
yaw and pitch, GPG3: 188, GPG3: 190, 

GPG3: 195 
Vegetation 

dimensional impostors for realistic trees 

and forest, 526-538 
simulating natural motion in grass and 

leaves, 414-419 
sprite rendering of vegetation, 528-530 

Velasquez, Scott 
articles by, GPG4: 633-647 
contact and bio info, GPG4: x/ 

Verlet-based physics engine, GPG4: 231-240 

Verlet integration, deformations and, GPG4: 

260-261 

Vertex-blending algorithm, GPG4: 489-490 

Vertex buffers, GPG3: 378 

789 

cube maps and, GPG3: 446 
Vertex-cache coherency, GPG2: 364, GPG2: 

37) 
Vertex indices, precomputing, GPG3: 

380-381 

Vertex normals 
described, GPG3: 344-345 
fast heightfield normal calculation, 

GPG3: 344-348 
Vertex shader, programmable compiler 

abstract syntax trees for, GPG3: 410 
code generator for, GPG3: 411 
key components described, GPG3: 406 
language for, GPG3: 407-408 
parsers for, GPG3: 406, GPG3: 409-410 

scanner (flex lexical analyzer), 408-409, 

GPG3: 406 
symbol tables for, GPG3: 410-411 
temporary registers, GPG3: 406, GPG3: 

411 

Vertex shaders, GPG3: 350 
attenuation of per-pixel point lights, 

GPG3: 473-476 
cartoon vertex shader, code listing, 

GPG3: 406 
defined and described, GPG3: 404-405 
GPU shadow volume construction and, 

GPG4: 393-398 
see also Vertex shader, programmable 

compiler 
Vertical derivative operator for waves, GPG4: 

267-269 
Vertices 

binned vertices, GPG2: 365 
compiled vertex arrays, GPG1: 356-357 
data format for submission, GPG1: 

358-359 
interleaved data, GPG1: 354-355 
optimizing submission for OpenGl, 

GPGI1: 353-360 
ordinary vs. extraordinary, GPG3: 372 
popping vs. morphing, GPG1: 460 
projected depth values, GPG1: 361-365 
rendering performance, GPG1: 359 
strided and streamed data, GPG1: 

355-356 
T-Junction elimination and retriangula- 

tion, GPG3: 338-343 
vertex-blending algorithm, GPG4: 

489-490 
vertex collapse and split, GPG1: 

455-456 
vertex removal and shadow volumes, 

GPG3: 369-370 

vertex removal for mesh optimization, 

GPG4: 431 

Video 
artifacts, avoiding with clocks, GPGA4: 

31-34 
frame duration, GPG4: 32 

lighting with video sequences, GPG3: 

436-438 

Video game consoles 
data loading, GPG1: 90-91 
debugging for, GPG1: 115-1 19 

depth of play techniques, GPG1: 

133-140 

View-Dependent Progressive Meshes 

(VDPM), GPG2: 377-378 



View-Independent Progressive Meshing 

(VIPM) 
comparison of methods, GPG2: 376 
mixed-mode method described, GPG2: 

365-368 
resources required for, GPG2: 363-364 
skip strips method described, GPG2: 

368-370 
sliding window method described, 

GPG2: 372-375 
vanilla method described, GPG2: 

365-368 
Viewpoints, GPG1: 296 

Virtual class member functions, exporting 
from DLLs, GPG2: 31-32 

Virtual functions, GPG2; 9-11 
Virtual time schedulers, GPG3: 6-8 
Visibility 

collision detection and, 586-587 
conservative vs. approximate, GPG3: 354 
cPLP algorithm, GPG3: 355-358 
from-point vs. from-region, GPG3: 354 
front cap geometry, GPG3: 367-369 
frustum culling, 65-77, GPG1: 422-423 
object space vs. image space, GPG3: 354 
occlusion culling, GPG1: 421-431, 

GPG3: 353-358 
PLP algorithm, GPG3: 354-355, GPG3: 

356-358 
points of, GPG1: 258, GPG1: 274-275 
precomputed vs. online, GPG3: 354 

procedural level generation and, 586-587 
as tactical assessment factor, GPG2: 

296-297 

visibility testing, GPG1: 296 
see also Player visibility systems 

Visual quality 
levels of detail, GPG1: 432-438 

popping, GPG1: 432-438 
Visual systems, dynamic switching of, GPG3: 

21 

Vlachos, Alex 
articles by, 381-382, 402-405, 406-410, 

421-424, 427-435, 437-441, 
467-476, GPG2: 220-227, GPG2: 
402-410, GPG2: 421-424, GPG3: 
367-371, GPG3: 467-476, GPG4: 
381-382, GPG4: 427-435, GPG4: 
437-441 

contact and bio info, GPG1: xxvi, GPG2: 
xaxi, GPG3: xxxix, GPG4: x1 

Vocoders, GPG3: 613-621 
described, GPG3: 613-614 
filters in, GPG3: 615-616 
modeling speech production, GPG3: 

614-621 

Vogelsang, Carlo 
article by, GPG3: 600-605 
contact and bio info, GPG3: xxxix 

Voice communications, DirectPlay 8.1 for, 
GPG3: 569-571 

Voice compression and effects, linear predic- 
tive coding for, GPG3: 613-621 

Voices 
defined, GPG2: 543 
sample-based synthesizers to reuse, 

GPG2: 521-524 
speech recognition, 741-750 

Volcanos 
lava, heat shimmer over, GPG4: 479-480 

terrain generation, GPG1: 508-511 
Volume calculation of simulated soft bodies, 

442-443 
Volumetric post-processing, 571-577 
Voting architectures, GPG4: 345-354 
Voxels, GPG1: 442 
V-table pointers, GPG4: 39 
Vulgarity 

block-and-refuse method for managing, 
623 

filtering program for, 621-626 
human intervention to control, 625 

IDL grammars and detection of, 639 
search-and replace methods for managing, 

622-623 
word stripping method for managing, 

623 

workarounds to evade filtering, 624-625 

Vulnerability, as tactical assessment factor, 
GPG2: 296 

W 
Wade, Bretton, contact and bio info, xxxviii 

Wagner, T. J., GPG4: xix 

Wakeling, Scott 

article by, GPG2: 38-45 
contact and bio info, GPG2: xx«xz 

Wakes, GPG4: 272 

Walk cycles, attractor / repulsor forces and, 
GPG4: 362 

Walking, failure to track properly, GPG4: 
159 

Wall building algorithms, GPG4: 365-372 
Walls 

cellular automata and modeling thin 
walls, GPG3: 202 

reusing, GPG4: 368-369 

shoreline walls (water barriers), GPG4: 

366-368 

wall building algorithms, GPG4: 
365-372 

walled cities, GPG4: 370-372 
Wang, Niniane 

article by, 507-513 
contact and bio info, xxviii 

Warping textures, GPG3; 420-421 
Watchdog services, 607 

Watches, memory and register watches as 
debugging tools, GPG4: 10 

Water 

alpha blending for transparency, GPG1: 
193 

boundary conditions, GPG1: 190 
buoyant objects, GPG1:; 191-193 
cellular automata to model, GPG3: 200, 

GPG3;: 206-207 

environmental audio, water sounds, 

GPG4: 644-647 

heightfield water as procedural texture, 
GPG2: 501-503 

instability of integration method, GPG1; 
190 

interactive simulations, GPG1: 187-194 
interactive water surfaces, GPG4: 

265-274 

iWave propagation calculator, 411—414, 
GPG4:; 265-274 

light refraction, GPG1: 193-194 
linearized Bernoulli’s equations and 

surface waves, GPG4: 266-267 

parallel processing, GPG1: 190-19 1 

particulate matter in, GPG1: 599 

procedural textures for, GPG3: 456 
rendering, GPG1: 193-194 

shoreline walls, GPG4: 366-368 
simulating refraction in a fish tank, 

GPG2: 402-405 
speed and visual quality, GPG1: 194 
splashes, GPG1: 191 
surface tension, GPG4: 274 
wave equations, GPG1: 187-189 
see also Liquids, refraction maps for 

Watte, Jon 

article by, 643-664 
contact and bio info, xx«xviii 

Wave equations, GPG1: 187-189 
WaveFile class, GPG4: 630 

Wavelets, GPG1: 182-186 

Haar wavelets, GPG1: 184-186 
image compression, GPG1: 185-186 

Waves 
ambient waves, GPG4: 272-273 
iWave wave propagation calculator, 

411-414, GPG4: 265-274 
linearized Bernoulli's equations, GPG4: 

266-267 
obstructions and, GPG4: 271-272 
vertical derivative operator, GPG4: 

267-269 

wakes, GPG4: 272 
wave propagation, GPG4: 269-270 

Waypoints, GPG2: 308 
A* pathfinding and, GPG2: 315 
uses of waypoint-based reasoning, GPG2: 

315 
waypoint properties, GPG2: 310-313 

Weapons 
decision making and selection of, GPG4: 

342-343 
kill algorithms for, GPG4: 216 

Weather 
aerodynamics for wind-driven storms, 

407, 408 

precipitation, rain or snow, 513-517 
tornadoes, prescripted physics event, 

469-471 
Web addresses 

artificial intelligence sites, GPG2: 336 
bones (archives, links, and resources), 

GPG3: 393 
contributors (See Specific individuals) 
CSyn audio engine, GPG2: 558 
flocking and steering behaviors, GPG2: 

335 
Game Programming Gems, GPG3: 640 
graph and satisfiability planning informa- 

tion, 339 
heuristic search planning information, 

338 
Lua language, 128 
Nvidia’s Developer site, GPG2: 509 
PortAudio updates, GPG3: 611 
practical planning demo, 342 
Squid web-caching program, GPG2: 140 

Web cameras 
BGR pixels, GPG2: 158 
capture window initialization, GPG2: 

153-158 
cartoon-like images, GPG2: 159-160 
data manipulation, GPG2: 158-162 



Index 

data retrieval, GPG2: 156 
destroying windows, GPG2: 161-162 
grayscale conversion, GPG2: 159 
memory allocation for, GPG2: 155-156 
motion detection, GPG2: 157-158 

in multi-player games, GPG2: 153 
textures, uploading, GPG2: 160-161 

Weber, Jason 
articles by, GPG3: 192-199, GPG3: 

384-393 
contact and bio info, GPG3: xxix 

Weights and weighting 
bones, GPG2: 146-148, GPG3: 

388-392 
at joints, GPG3: 388-392 

mesh deformation and, GPG2: 149 
precomputing, GPG3: 380-381 

Weiler-Atherton algorithm, GPG3: 367, 
GPG4: 427 

Weiner, Kieth 
article by, GPG2: 529-538 
contact and bio info, GPG2: xxx 

Welding, GPG3: 339 
White, Stephen 

article by, GPG3: 307-320 
contact and bio info, GPG3: sxxix—xl 

White noise, stochastic synthesis, GPG3: 

622-629 
Widgets to render fast and persistent foliage, 

515-526 
Wind 

simulating natural motion in grass and 

leaves, 414-419 
tornadoes, prescripted physics event, 

469-471 
wind sounds, GPG3: 624 

Windows OS, address-space management of 

dynamic arrays, GPG4: 85-93 
Wind sounds, GPG3: 624 
Wireless devices 

CLDC, GPG3: 575 
game development for, GPG3: 573-581 
image retrieval, GPG3: 579-580 

Woodcock, Steven 

articles by, GPG1: 305-318, GPG2: 

330-336, GPG3: 229 

contact and bio info, GPG1: xxvi, GPG2: 

xxxii, GPG3: x! 

Woodland, Ryan 
articles by, GPG1: 476-483, GPG]: 

549-554 
contact information, GPG1: xxv 

WorldManager for seamless worlds, 618 
World markets, developing games for, 

xvi-xvit, GPG3: 92-108 
audio / video and string concatenation, 

GPG3: 103 

buffer allocation, GPG3: 106 
culture-neutrality, GPG3: 101 
cursor-movement testing, GPG3: 107 

design and planning considerations, 
GPG3: 103-104 

hardware configuration, GPG3: 106-107 

input, GPG3: 107 
interface and design considerations for, 

GPG3: 98-101 

keyboard input, GPG3: 99-100 
localization, GPG3: 101-103, GPG3: 

107 

modifying existing games, GPG3: 104 

political sensitivity and, GPG3: 101 
system configuration, GPG3: 107 
video output, GPG3: 99 
see also Multiple-language games 

WorldObject, GPG4: 630 
Worlds 

defined for tile-based games, GPG2: 280 

seamless worlds, 611-620, 618 
WorldManager, 618 

Wrapping stage of game development, GPG3: 

16 
Wrinkles in cloth, GPG4: 277 

xX 
XBox, GPG3: 465, GPG3: 546-547 

address-space management of dynamic 
arrays, GPG4: 85-93 

XDS (eXtensible Data Stream), GPG4: 

125-135 
data migration for, GPG4: 135 
Data Stream Definition (DSD), GPG4: 

127 

791 

described, GPG4: 126-137 
toolkit for, GPG4: 127-134 
XDS Lite library, GPG4: 131-133 

XDS Lite library, GPG4: 131-133 
XML, GPG4: 3 

audio tag database, GPG4: 625-628 
pie menus, GPG3: 119-122 
rationale for use, GPG4: 125-126 

tag attributes listed, GPG4: 626 
user interfaces and, GPG3: 110-112 

XDS format and, GPG4: 125-135 
XOR (exclusive-or operator), GPG1: 107, 

GPGI: 108 

neural nets and, GPG1: 338-341 

Y 
Yacc (parser generator), GPG3: 40-41, 

GPG3: 83-91 
code listing for custom data file, GPG3: 

89-90 

Lex used with, GPG3: 85-86 

Yaw and pitch, 396, GPG1: 307-308, GPG1: 
371-372, GPG3: 188, GPG3: 190 

Euler angles and, GPG3: 195 

Young, Thomas 
articles by, GPG2: 317-329, GPG3: 

160-169, GPG3: 321-332, GPG3: 

394-403 
contact and bio info, GPG2: xxxii, 

GPG3: xl 

Z 
Zarb-Adami, Mark 

article by, GPG3: 187-191 
contact and bio info, GPG3: x/ 

Zarozinski, Michael 
article by, GPG2: 342-350 
contact and bio info, GPG2: xxxii 

Zero-sum games, GPG1: 249 
Zhang, Tao 

article by, GPG4: 579-589 
contact and bio info, GPG4: x/ 

Zobrist hash, GPG4: 141-146 

ZoomFX, GPG4: 644-647 

Zooms, auto-zoom features for cameras, 

490-491 
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