
Charles River Media

vey Liverpool John Moores University

ae LEARNING & INFO SERVICES

CD-ROM X to

accompany this

book available

from Library Issue

Desk

Books are to be returned on or before

I

the last date below.

IV

3 il
L

LIBREX —

1142 5905 0

— 7 AN a ;

oe

Le
thor
a. Gi

- Pa

a »

i
_ /

a lps

’

=a

digi, ;

saree: : es i
| Fi 1 ee

Us Oe
ah ian oe

a maw oe _

are en
GPie Ply i vit EA -ceneennne

e

Game
Programming

Gems 5

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

THE CD-ROM THAT ACCOMPANIES THE BOOK MAY BE USED ON A SINGLE PC ONLY. THE

LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF ANY KIND). YOU FURTHER

AGREE THAT THIS LICENSE GRANTS PERMISSION TO USE THE PRODUCTS CONTAINED

HEREIN, BUT DOES NOT GIVE YOU RIGHT OF OWNERSHIP TO ANY OF THE CONTENT

OR PRODUCT CONTAINED ON THIS CD-ROM. USE OF THIRD-PARTY SOFTWARE CON-

TAINED ON THIS CD-ROM IS LIMITED TO AND SUBJECT TO LICENSING TERMS FOR THE

RESPECTIVE PRODUCTS.

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN INVOLVED IN

THE WRITING, CREATION, OR PRODUCTION OF THE ACCOMPANYING CODE (“THE

SOFTWARE”) OR THE THIRD-PARTY PRODUCTS CONTAINED ON THE CD-ROM OR TEX-

TUAL MATERIAL IN THE BOOK, CANNOT AND DO NOT WARRANT THE PERFORMANCE

OR RESULTS THAT MAY BE OBTAINED BY USING THE SOFTWARE OR CONTENTS OF THE

BOOK. THE AUTHOR AND PUBLISHER HAVE USED THEIR BEST EFFORTS TO ENSURE THE

ACCURACY AND FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS CON-

TAINED HEREIN. WE HOWEVER, MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IM-

PLIED, REGARDING THE PERFORMANCE OF THESE PROGRAMS OR CONTENTS. THE

SOFTWARE IS SOLD “AS IS” WITHOUT WARRANTY (EXCEPT FOR DEFECTIVE MATERIALS

USED IN MANUFACTURING THE DISK OR DUE TO FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, DEVELOPERS OF THIRD-PARTY SOFTWARE, AND ANY-

ONE INVOLVED IN THE PRODUCTION AND MANUFACTURING OF THIS WORK SHALL

NOT BE LIABLE FOR DAMAGES OF ANY KIND ARISING OUT OF THE USE OF (OR THE IN-

ABILITY TO USE) THE PROGRAMS, SOURCE CODE, OR TEXTUAL MATERIAL CONTAINED

IN THIS PUBLICATION. THIS INCLUDES, BUT IS NOT LIMITED TO, LOSS OF REVENUE OR

PROFIT, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY LIMITED TO

REPLACEMENT OF THE BOOK AND/OR CD-ROM, AND ONLY AT THE DISCRETION OF

CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARIES FROM STATE TO

STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

Game
Programming

Gems 5

Edited by

Kim Pallister

CHARLES RIVER MEDIA, INC.

Hingham, Massachusetts

Copyright 2005 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or trans-

mitted by any means or media, electronic or mechanical, including, but not limited to, photocopy, record-

ing, or scanning, without prior permission in writing from the publisher.

Publisher: Jenifer Niles

Cover Design: The Printed Image

Cover Image: © Sammy Studios, Inc.

CHARLES RIVER MEDIA, INC.

10 Downer Avenue

Hingham, Massachusetts 02043

781-740-0400

781-740-8816 (FAX)

info@charlesriver.com

www.charlesriver.com

This book is printed on acid-free paper.

Kim Pallister. Game Programming Gems 5.

ISBN: 1-58450-352-1

All brand names and product names mentioned in this book are trademarks or service marks of their

respective companies. Any omission or misuse (of any kind) of service marks or trademarks should not be

regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks

used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Game programming gems 5 / Kim Pallister, editor.— 1st ed.

p. cm.
Includes bibliographical references and index.

ISBN 1-58450-352-1 (hardcover with cd-rom : alk. paper)

1. Computer games—Programming. 2. Computer graphics. I. Pallister, Kim.

QA76.76.C672G3645 2005

794.8 1526—dc22
2004026858

Printed in the United States of America

05765 432 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups,

corporations, etc. For additional information, please contact the Special Sales Department at 781-740-
0400.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your mailing
address, telephone number, date of purchase, and purchase price. Please state the nature of the problem,

and send the information to CHARLES RIVER MEDIA, INC., 10 Downer Avenue, Hingham, Massachusetts
02043. CRM’s sole obligation to the purchaser is to replace the disc, based on defective materials or faulty
workmanship, but not on the operation or functionality of the product.

Contents
FOFEWOPG sires o/s is wis ge yw wade hebeerauin tMeineNE wetter es ux ks xi

Preface ir esi ern WT ras. Be DEMOS, OR, reeeeete AL... Be Xv

About the: Cover, limage isin ics dha sehen Spgs) antl ae eta eeena wii weer, ace xix

COntriDUlOm BOS i ia. tita is niata ne bys cata oe atenfa elace cn Rae eee se Ss xxi

SECTION 1 GENERAL PROGRAMMING........000cceeeuuuuecuuuase 1

INEFOGUCTIONPR iarctenita s aiehat a etukate te alee Gn a ha apanecue age a gheutten we cece 3

William E. Damon III

1.1 Context-Sensitive HUDs for Editors............55 RARE Sy ORE RTT 5

Adam Martin, Grex Games

1.2 Parsing Lext Data.in Games 2.22 ec ee ee le ee 17

Aurelio Reis

1.3 Component Based Object Management2000000ennnunne 25

Bjarne Rene, Circle Studio ltd

1.4 Using Templates for Reflection in C++0 0c e een eee eee 39

Dominic Filion, Artificial Mind & Movement

1.5 Sphere Trees for Speedy BSPs 2.0. ce ence een e eee 55

Dominic Filion, Artificial Mind & Movement

1.6 Improved Frustum Culling20cnccce nnn nen e nee eeeeee 65

Frank Puig Placeres

“ Fr Generic Pager « «i+ «incite a ad beret een bee ris Ce ns 79

Ignacio Incera Cruz

1.8 Large-Scale Stack-Based State Machines.02.0eeseenee 93

James Boer

1.9 CSG Construction Using BSP Trees00ncen ene e nen 103

Octavian Marius Chincisan

1.10 Building Lua into Games 2.0 c eee eee eee 115

Matthew Harmon, eV Interactive Corporation

1.11 Improving Freelists with Policy Based Design.....+:+ SPER HY 129

Nathan Mefford

1.12 A Real-Time Remote Debug Message Logger 2112220522558 143

Patrick Duquette, Microids Canada Inc.

1.13 A Transparent Class Saving and Loading Trick.......+0++++s05: 149

Patrick Meehan

1.14 An Effective Cache-Oblivious Implementation of the ABT Tree 159

Sébastien Schertenleib, Swiss Federal Institute of Technology (EPFL),

Virtual Reality Lab (VRlab)

1.15 Visual Design of State Machines.......02. 000 nn ene ee eee eeee 169

Scott Jacobs

1.16 A Generic Component Library.......0000ee eee eee eee es 177

Warrick Buchanan

1.17 Choose Your Path—A Menu System000 cee eee eee eee eee 189

Wendy Jones

SECTION 2 MATHEMATICS 2000 e eee eens IST

Introduction 2.00 snus sm cn ee ow Beare nets FOES SEOIE es x 199

Eric Lengyel, Naughty Dog Inc.

2.1 Using Geometric Algebra for Computer Graphics...... ae ae 201

Chris Lomont

2.2 Minimal Acceleration Hermite Curves....... 20000 ene e ene neeee 225

Tony Barrera, Barrera Kristiansen AB; Anders Hast, Creative Media Lab,

University of Gavle; and Ewert Bengtsson, Centre for Image Analysis,

Uppsala University

2.3 Spline-Based Time Control for Animation00000ee neues 233

James M. Van Verth, Red Storm Entertainment

2.4 Faster Quaternion Interpolation Using Approximations.247

Andy Thomason

2.5 Minimax Numerical Approximation ae te ae ere Oe eratatars ».. 269

Christopher Tremblay

2.6 Oblique View Frustums for Mirrors and Portals........ a as Patei dis . 281

Eric Lengyel

Contents vii

SECTION 3 ARTIFICIAL INTELLIGENCE.000eceeeacccas 295

AIPEEOCHICUIOU Mitte eterno umn nin waslthe citi cocsn a hig feces, s aie: 0S aiserveneuie i sate 297

Robin Hunicke, Northwestern University

3.1 Automatic Cover Finding with Navigation Meshes5 299

Borut Pfeifer, Radical Entertainment

3.2 Fast Target Ranking Using an Artificial Potential Field........... 307

Markus Breyer, Factor 5

3.3 Using Lanchester Attrition Models to Predict the

Resullsiof Gombatiin ogi fess susie © x pcice bm: ban. n wigainah en cee emma wn jan 317

John Bolton, Page 44 Studios, LLC

3.4 Implementing Practical Planning for Game Al.2000000008 329

Jamie Cheng, Relic Entertainment Inc., and Finnegan Southey, University of Alberta,
Department of Computing Science

3.5 Optimizing a Decision Tree Query Algorithm for

Multithreaded Architectures00000 een e eee 345

Chuck DeSylva, Intel Corporation

3.6 Parallel Al Development with PVM0000000ceeeuneueee 353

Michael Ramsey, 2015 Inc.

3.7 OVNI IAS fan 6 6 dia aa Hsin gta ayn vatis) shi gue ieun! min inee ta ielehetciets tea e ipa Eyes ener 367

Mario Grimani, Xtreme Strategy Games and Matthew Titelbaum, Monolith Productions

3.8 Advanced Pathfinding with Minimal Replanning Cost:

Dynamic A Star (D*).... an ewenss meses ete ee sevens earn bes as 383

Marco Tombesi

SECTION 4 PHYSICS... .. 2.00: cece eee 391

(AtFOGUCTION SUNG il. ee ec cee chee ES ET Eee ee es 393

Mike Dickheiser, Red Storm Entertainment

4.1 Back of the Envelope Aerodynamics for Game Physics 395

Graham Rhodes, Applied Research Associates, Inc.

4.2 Dynamic Grass Simulation and Other Natural Effects............ 411

Rishi Ramraj, The University of Waterloo

viii
Contents

4.3 Realistic Cloth Animation Using the Mass-Spring Model-...: 421

Juan M. Cordero, Dep. de Lenguajes y Sistemas Informdticos, Universidad de Sevilla

4.4 Practical Animation of Soft Bodies for Game Development: The

Pressurized Soft-Body Model-0.000eeeneenee ne ennnanee 435

Maciej Matyka, University of Wroclaw

4.5 Adding Life to Ragdoll Simulation Using Feedback

Control SysteMS 0c e eee eee eee 449

Michael Mandel, Apple Computer

4.6 Designing a Prescripted Physics System+20020e00eeees 457

Daniel E Higgins

4.7 Prescripted Physics: Techniques and Applications..........+..++5 473

Shawn Shoemaker

4.8 Realistic Camera Movement in a 3D Car Simulator.5:5 483

Barnabds Aszédi and Szaboles Czuczor, Budapest University of Technology and

Economics, Department of Control Engineering and Information Technology,

Computer Graphics Group

SECTION 5 GRAPHICS. 0000 eee w ee wee eee 495

IntroduCcTION %%4454445%%5.44 542. 2 2R SURE Pe eee = se 497

Jason L. Mitchell, ATI Research

5:1 Realistic Cloud Rendering on Modern GPUs........000enenaees 499

Jean-Francois Dubé, UBISOFT

5.2 Let It Snow, Let It Snow, Let It Snow (and Rain)000000 507

Niniane Wang, Google Inc., and Bretton Wade, Microsoft Corporation

5.3 Widgets: Rendering Fast and Persistent Foliage.0.20055 515

Martin Brownlow

5.4 2.5 Dimensional Impostors for Realistic Trees and Forests 527

Gabor Szijarté, Technical University of Budapest

5.5 Gridless Controllable Fire 0.0.00 ne eneen eee n eee eee eee 539

Neeharika Adabala, School of Computer Science, University of Central Florida, and

Charles E. Hughes, School of Computer Science and School of Film and Digital

Media, University of Central Florida

5.6 Powerful Explosion Effects Using Billboard Particles............ 551

Steve Rabin, Nintendo of America Inc.

Contents ix

5.7 A Simple Method for Rendering Gemstones000000ee00s 561

Thorsten Scheuermann, ATI Research

5.8 Volumetric Post-Processing0000 cn encecunenunncunues 571

Dominic Filion, Artificial Mind & Movement, and Sylvain Boissé, Motorola

5.9 Procedural Level Generation........00000neneeeeeneneneueae 579

Timothy E. Roden and Ian Parberry, University of North Texas

5.10 Recombinant Shaders oo nic. = sce c.acna.n soy olan elalecenae bod aes oe 589

Dominic Filion, Artificial Mind & Movement

SECTION 6 NETWORK AND MULTIPLAYER........20000ceenuuuese 599

PITELOCUCTION es. 05 'ss 5 craneyataya aiclarntubee: State o tate Se abetea gE TERerE 5 bean 601

Shekhar Dhupelia

6.1 Keeping a Massively Multiplayer Online Game Massive, .

Online: and Persistent vase nee ses els es ce ee ee ad Ole ek hy aca we 603

Shea Street, Tantrum Games

6.2 Implementing a Seamless World Server00000neunenunes 611

Patrick Duquette, UBISOFT Entertainment Inc.

6.3 Designing a Vulgarity Filtering System200ce een e eens 621

Shekhar Dhupelia

6.4 Fast and Efficient Implementation of a Remote Procedure
Catl'Systemn eri is Cae Be er a ee ee ee 627

Hyun-jik Bae

6.5 Overcoming Network Address Translation in Peer-to-Peer

Communications ire saw eee ee ee ee 643

Jon Watte

6.6 A Reliable Messaging Protocol00ce eee e eee nee e eee 665

Martin Brownlow

6.7 Safe Random Number Systems.......0000enc eee eee e eee 673

Shekhar Dhupelia

6.8 Secure by DeSign.... 22.00 ce eee ene e eee eee eee 681

Adam Martin, Grex Games

Contents
svnieeteenBbbi AMAL RAMALLAH

SECTION 7 AUDIO......cccececccecer crete reneereneeeeeess s OFS

qe

7.2

7.3

7.4

7.5

Introduction00cce eee w eee eee

Mark DeLoura

Multithreaded Audio Programming Techniques+++++2s+55

James Boer

Sound Management by Group.....2520200 seen eee e ee eee

Matthew Harmon, eV Interactive Corporation

Using 3D Surfaces as Audio Emitters0000e ee eee eee eeee

Sami Hamlaout

Fast Environmental Reverb Based on Feedback Delay Networks...

Christian Schiiler, Phenomic Game Development

Introduction to Single-Speaker Speech Recognition...........:+:.

Julien Hamaide

Foreword

Mark DeLoura

madsax@satori.org

elcome to the fifth volume of Game Programming Gems. By now you probably
know what we're all about: assisting you with your game programming chal-

lenges by tapping the wisdom of as many industry experts as we can possibly fit into
one book. Kim Pallister and his team of section editors have done an excellent job of
unearthing these gems and polishing them up for your reading pleasure. We all hope
that some of the nuggets you find in this book will help you on your next game pro-
gramming project.

The job of writing game engines has sure not gotten simpler since the launch of
the first book in our series. Nor have games and game teams been shrinking. It’s not
uncommon these days to hear of development taking 3—5 years, nor to hear of pro-
jects with 200-person teams. Can game development cycles keep increasing? Can
these teams possibly grow any larger? Well, we certainly hope not, but it seems quite
likely. However, we see Game Programming Gems as one of the many Forces of Good
that are lining up on the opposite side of the equation; we seek to provide you with as
much wisdom from the experts as possible, complete with code, so that you at least
have a chance of speeding up the process of developing your engine.

Engine Development
ns RA ENS eNOS UN IN RESTS A ONES EER NEN RETRAIN

Fortunately, there are also middleware companies that will happily help you with your

engine development, but recently they've begun consolidating just as the rest of the

industry has. A few have merged together to provide a more complete game engine as

a single package. A few others have been bought out by developers or publishers so

that they can take advantage of the technology internally, reducing your options.

While some of these packages are still available for you to purchase, the prospect of

using an engine owned by one of your competitors is not optimal—to say the least—

and must be considered carefully.

But as the cost of building an engine increases, does it really make sense to build

your engine from scratch with each new project? It used to, but now engine develop-

ment is such a complex and costly task that many studios are actively developing

strategies for increasing the life span of their code base. Most developers now at least

xi

xii 1 te Foreword
setinanenatnsancaecinneeaei eeceecle NENA ISAT MAGHSLAAASO RHR HRSRRONNNHO

overseers tenon teeta ayn cooee RARE SMAI eRRSR eNom

stretch the life spans of their engines by incrementally optimizing them with-each

SKU created during the lifespan of a platform. Publishers are also beginning to see the

wisdom of developing core technology, and some even encourage the studios they

work with to collaborate on common technology and toolsets.

So at least, on the technology side, we as an industry have some strategies to reduce

the development costs as we move forward onto new and more complex platforms.

Moving Forward
vc

LASS ROSIE S22 HENRI Rt UCP A SAN EEE SAI ean sem sens

One of the things that frightens many people regarding the next generation of consoles

and PCs is the sheer amount of art content that will need to be created to suitably take

advantage of these platforms. By one studio’s estimate, creating next-generation charac-

ter models will take approximately seven times as long, largely due to the need for

higher-polygon meshes and multiple texture layers. With gigantic art teams already

stretching the budgets and timelines, how will you cope?

We're clearly not going to solve these issues here, but as game development on

PCs and consoles continues to increase in complexity, as the cost for these titles con-

tinues to increase, and as the team sizes keep getting larger, the impact on our indus-

try takes a wide variety of forms. One of the most noticeable effects is that you see
fewer risks being taken in game design. Since the impact of an unsuccessful, expensive

title can put some of the smaller publishers out of business, there are more copycat

titles being created, with less focus on innovation and creativity. If we do see innova-
tion, it’s “in the small”: simply evolutionary tweaks to genres as opposed to any radi-
cal new concepts. Of course, this makes complete sense financially, but the more we
do this as an industry, the more we stand the risk of boring our players. There are
many other forms of entertainment competing for their attention and dollars.

One of the alternatives for studios is to create the more risky games on smaller
platforms, which are less expensive to produce for. With the coming of age of capable

mobile gaming platforms in the form of handheld game devices, game-capable cell
phones, and PDAs, companies will increasingly be able to try out their gameplay

innovations in a less risky setting. And from those titles that are successful, some of

the innovations will certainly find their way onto the “big budget” platforms.

Game Developer Education
SRI

The most hopeful sign for the growth of our industry is that these past few years have

seen enormous demand for schools to teach game development courses; according to

the International Game Developers Association (Attp://www.igda.org) there are cur-

rently over 280 schools now offering game-related classes. The result of this increase
in formal game development education is an increase in capable young developers
with interesting ideas. This new core of excited, educated students flowing into our

industry will bring with it many new and creative concepts, if we're just willing to lis-
ten. Of course, convincing a publisher to listen and then place a multimillion-dollar

Foreword xiii

bet on an untested game concept from a new hire fresh out of school is challenging,
admittedly.

As a result we've recently begun to see a rapid increase in the number of indepen-
dently developed games, game mods, and casual games from small, young develop-
ment teams. These small teams are able to test out risky ideas, and whether the results

are successful or not, they’re great experience for all involved—and excellent material
for a resume. Those projects that are successful are an interesting opportunity for for-
ward-thinking publishers.

The growth in demand for formal game development education is the fuel that
feeds the fires of innovation in the indie game scene. Many publishers are continuing
to simply evolve game concepts and play it safe, but revolutionary concepts can come
from the independent game developer community, if we support it.

For professional developers, this means it’s more important than ever for you to
get out there and share your expertise with students and hobbyists. There are also
more opportunities than ever for you to do so. Who knows, perhaps by working with
a small group of independent developers on a risky game design, you'll find your own
game development projects enriched and more exciting as a result.

ies. i
-

WL coed Gacy tee vod 4 paloem,’ vere nee whale

ya Dh almshartila einer cts nl
~golresb re Masters raves’ | at penn, ban ~etied

atlieag: och tad yin der ca heir pe ne veal Pamper nines

enassrn slbake tepeotaylowel Sheva ya's nl a weer anes

wi wi cir io ert Aya peel
" ectinidelmien =o

a ine eran DATE Lane
J 4 4 f if sae i = a aivcinns ia re peweia ne ne aaa 4 Aci a ea arate voy tal

Mitts PeS we, Yup ea . ft : $8 FEO? Yo rah

PURLe?
papel oa

pet ALIS

ies i

on yb
pape rook

mul git? oF obec
ok a base He ba K PREPAS TS hii

Ay RA Monae Bh Be yabey my i> ac

i<v weet a while “en; sf ome, hee af torn wa

4 (ieee te on + iL Yaetee ee cs Gace eee as pera! Ae

- fe ie Tike 4 . a By a ridblsy fait ‘pee “f: A teacher, | . aii ie van lols Garg etn’ gh!) a han Soman iit prey Se
7h, Hi : H an we "i a: , te sh 4a°*aary 1 . dies ee eotarin va

d b ; @ r , v9. * i 4 —
4 new <1" yes, y re b@ % 3 ok. 7 “Al Gyan ‘ender

DP a ee a of Warlog ook
a x» Mx: ny nabs » tatu ie a wai tet of fing > anasod

_ , tee | eh ai wad’? Ky e ¢ als nm Fe @ “iw snte Son

iw, HELD aw ~ a te wine fincd Mae Weds he crsmmie

20 a Kae vt a * $ re | ben NWezkd tlic devs

a we ete 7 - iv it -F GS F ie eble to

o hee @ oye § @ heew eer Oe lee ae

hut peasy ere =i &, * rapi fom “ae Vu te ale

Gn Cas tone Eduewtion es
wane a OO Ga

ae Sul vege, bs i im guieee® oll aap evhusany ow eh

aie“ tog oinainle (ee a3) giene dew le

a ae | eee (hnped

: 2 4 Pagal inves Ofer pg pre ahmed «

ofa: Aesclipwpees launion go ce indréese
3 ork | te ore sane af ee .

vat: 4 goes toe wan? < uw

- vas vitae «iy Naame ;

td

Preface

Kim Pallister, Intel Corporation

Kim.Pallister@Intel.com

W"’ am I the editor of this book?

This is a book about game development, and I am not a professional game devel-
oper. I have been on the “fringes” of the industry for the past dozen years, with Intel for
the past seven years, and with a graphics hardware vendor before that. In an industry
that has traditionally catered to a young market, and attracted a similar vein of people
to its ranks, this places me part way between bushy-tailed neophyte and grizzled
curmudgeon.

Those of curmudgeon age will remember that during the first few decades of this
industry, we saw a transition from one-person-shop development to an era of teams,
where people relied on one another's skills and efforts to realize their creative visions.
During the past decade, and perhaps the few years that preceded it, we have transi-

tioned to an age where groups of people rely on each other. Groups of programmers

and artists and designers make up development teams. Teams within a company lever-

age one another's tools and assets, and companies rely on one another at the meta level.

Inter-company relations aren’t new to the business; the developer-publisher rela-

tionship has existed for a long time. But the past decade has ushered in new struc-

tures, dependencies, and channels of communication. Developers now license

technology from other companies, looking to middleware, hardware, and platform

vendors for knowledge on how to exploit new technology. In return, these vendors

seek information on how to direct their technology efforts. Entities like CMP Game

Group (Game Developer Magazine, Game Developer Conference) and the Interna-

tional Game Developers Association foster dialogs about design, business practice,

and quality of life issues. A growing number of academic institutions, along with pub-

lishers like Charles River Media (who brings us the Gems series), work to educate and

inform the entire cluster. Looking at all these relationships, we see a circle of life—one

that is inherent to all successful industries.

However slowly, the industry is moving from a state of begrudging cooperation to

open, directed facilitation. We are sharing source code with middleware and hardware

xvi ae 2 7 Preface

companies and funding research in academic circles while increasing dialog and pub-

lication. Each member of the circle has a vested interest in the success of the medium

and of those who create it. That circle includes me, and thats why I'm editing this

book.

Where Do We Go from Here?
SR ATENEO

The near fapnee is a ee The a ee i continue to grow as new users come

on line (in both senses of the term), existing users grow older and continue to play,

and the production quality of games increases, which in turn attracts users who previ-
ously weren't avid gamers.

One of the most difficult and important inflection points facing our industry is

the move to multithreaded platforms and software development. At the time of this
writing, desktop PCs are exposing multithreading technology in processors, and true

multicore processors are around the corner. Server-side components of online games

are being developed on multiprocessor and distributed systems, and the next genera-

tion of consoles promises to bring multiprocessor platforms to consumer living rooms

in short order.

The transition to true multithreaded game engines and platforms looks to be a

formidable challenge. We'll need new tools, new techniques, and even new languages

if we hope to make this transition while still evolving our games. We'll also need to

focus on sound software engineering—principles and practices. Projects with budgets

of seven or eight (or—dare we say it—nine) figures with significantly larger teams will
require a new level of discipline and rigor.

During this transition, knowledge sharing (between individuals, between compa-

nies— at all levels) will be critical. I'd like to think that the Game Programming Gems

series will play a small part in this journey.

Further down the Road
PENNIES AERA CRE DAM EISNER EMER. OTR . occas Ss a

Looking efi skis iStaedings ‘eid rhe get yan i exciting! At the time of
this writing, Asia (particularly Korea and China) is seeing an explosion in popularity
of massive multiplayer online games. Several hundred million new broadband house-
holds will appear over the next four years. Game-capable cell phones and portable
devices will continue to proliferate and connect. Televisions and other consumer elec-
tronics devices will become increasingly interactive. And if it interacts, it games!

Many in our industry have been quick to draw comparisons between our games
and Hollywood movies. Usually the comparisons are between the revenues that the
respective industries generate or between the similarities in the production processes.
Another parallel exists.

At the 1939 World’s Fair, a new technology was introduced that promised to
entertain people: the television. Critics were skeptical. A New York Times article stated
“The problem with television is that people must sit and keep their eyes glued on a

Preface xvii
esac cstnsoneonicatensciestshnnne hia viannnsoontehinssnehr ees AMNAASAuaaiteteeiecatheinniecnnintansuannotsusneocttatniaiaiitaenseasen

screen; the average American family hasn't the time for it.” Laughable now, but no
one at that time, even proponents of the technology, could have imagined the impact

that this new entertainment medium would have.
During a GDC session a number of years ago, Chris Hecker forecasted that gam-

ing would be “The defining entertainment medium of the twenty-first century,” and
I can’t think of a better way to put it. We are only just beginning to grapple with the
possibilities of interactive entertainment mediums. We may call that interactive enter-
tainment “games” today, but already, we're stretching the definitions and boundaries

of the term; we are still figuring out what it all means.

Now it’s up to you to play a role in defining that medium. Hopefully we've given
you some tools to help you do so. Put them to good use forging your contribution to

the future.

saab SELON mS ER EES TUITE ESS EE SEE ION LIES NOE TESS LACES SED

I opened this preface questioning my position as the editor of this book. Let me close
by saying that I could not have done it without the direct and indirect contributions of
a lot of people. At the top of my list are series editor Mark DeLoura and series pub-

lisher Jenifer Niles. I'd like to thank both for giving me the opportunity and guiding

me through the journey with sage “Book Editing Gems” learned through the produc-

tion of Game Programming Gems I through 4.

While this work represents a lot of my time and effort, it would certainly not have

been possible without the many authors of the individual gems and the seven section

editors:

General Programming: William E. Damon III, ATI Research

Mathematics: Eric Lengyel, Terathon Entertainment

Artificial Intelligence: Robin Hunicke, Northwestern University

Physics: Michael Dickheiser, Red Storm Entertainment

Graphics: Jason Mitchell, ATI Research

Network and Multiplayer: Shekhar Dhupelia, Studio Gigante

Audio: Mark DeLoura, Sony Computer Entertainment

We really are privileged to work in an industry where knowledge-sharing is encour-

aged and practiced by so many.

On a similar note, Pete Baker and the rest of my management at Intel deserve

thanks for letting me contribute to the greater good. When I was adamant that work-

ing on this text wouldn't impact my day job, they knew better and let me do it anyway.

The biggest gratitude of all is owed to my wife, Alisa, for helping me pursue my

passions in editing this text. Doing so during the same year that we welcomed our set

of twins into the world meant a great deal more work for her as well as for me. Finally,

a note of thanks is due to my mother and father, for instilling in me an insatiable

curiosity about, well, everything (and for buying the Commodore64, which seems

like a pretty good investment in retrospect).

Bad src di sebten fio
2 gai oy fou yee a tm fe emma pained
oi a isa thai whats 3
uf = sg basa aka ei ge co Yon ae TED
ne bite claus ae-qeawr aa Yo thers jxamnicnasie gnanits hyo

/ apmoinad ire LER Bees cit ecard T @ ab poy qbt. nant dithCur ahd UnAnOSeRAt Eh a

OT By he =% Sn ey
re ~ PEA: |. tt

2g a ae ee ee

"ee A -
=, fae) ‘ We P na

+ m fs < {

Peg oe a - ~y »

~~" - ?

- ha » ge y na

- roltiois n ara , ' re ate pee se s dhe de ‘ “s

“trie fy rae ate ees

every ie ; ce a . ?

aes ie | dk seg

Firthes aawe tha. cod threes.
{anny aes

se WAC, es aah 29%
id wes ae hus

Mien Ri sith tials hy he fo we at | WAG Sha ae aa ™ *
; ty IN Ul ae mt :

2 — : iy 2 ~~ rt hee V5 aa ;

=. , : 4 a
Poe te Ra Tae. on os

hay iat a

vhR sb lal % ‘big wht Hs ae Wh tins vi # _ a y ; biioe

Pe lirer Feri b igen bp 3 +f at tc ine sain aN é y SS a
, eo lal See ey _

By FOUND :
qewune nob on It Gel EDAGgW T i faa a. Ay i

wait) Si > ih * a baie he iets Ryd

: in! i Cay Yidns 1 rhe re am ape Pit . « ys 7 : =

| ie i angen Df hyde cs.

nce a, ir t :

bibs) Si: MAL eet

«a '

About the Cover Image

© Sammy Studios

Charles River Media Edited by Kim Pallister

alf-vampire gunslinger, Jericho Cross, battles against the undead in the Old West

in Sammy Studios’ Darkwatch game, coming in 2005 for the Sony PlayStation®

2 and Microsoft® Xbox™ video game systems.

The environment and character were conceived in Sammy Studios’ Carlsbad stu-

dio, with rendering and lighting by Los Angeles based Brain Zoo Studios. The image

was art directed by Sammy Studios’ Creative Visual Director, Farzad Varahramyan

with additional artwork by Production Assistant, Dan Kit.

xix

od) wings aba’ wae) evtaiial a sgritlend

ORE ii | What |

ieherte: Srricg ng aha ™ yous

“1 Lipa) oie os m thy Mote ze

a abupih zed y 4a | Rpt iss DHT HM
ay > etd ‘wiland “a sesh i aah

payer
ais

Ci supe goats ved show: W eat yi thy

ae

a”

4) 7

7

pay
a at

ho

Contributor Bios

Contains bios for those contributors who submitted one.

Neeharika Adabala
SAMPSON RESERPINE UNIS A REE USS EERE NO a

nadabala@cs.ucf.edu

Neeharika Adabala obtained her doctorate for her work on modeling and rendering of

gaseous volumes in which she introduced the concept of particle maps. She worked in
Philips Research, MIRALab, University of Geneva, and the Media Convergence Lab,
University of Central Florida. She has research publications in both the areas of
dynamics simulation and realistic rendering. Her research interests include real-time
rendering, physics based dynamics, illumination models, perceptual issues in render-
ing, scientific visualization, and smart graphics.

Barnabas Aszodi
_siomapwmetorasgnretoece eta ec faa EEE HUMOR RISEN SNS

ab011@freemail.hu

Barnabas Aszédi is a Ph.D. student at Budapest University of Technology and Eco-
nomics. His areas of focus are computer graphics (e.g., real-time realistic shadow com-
putation), creating animations, and games. He contributed to WSCG ’04, CESCG

02, and other publications. He welcomes e-mail at the above address to provide him

feedback or exchange ideas.

veto RMR MS LPN TRCN An

Tony Barrera

tony.barrera@spray.se

Tony Barrera is a certified autodidact math genius. He has published 25 papers in dif-

ferent subjects, of which 18 are scientific papers in computer graphics, numerical

analysis, and mathemathics. Tony does research together with Ewert Bengtsson and

Anders Hast.

Ewert Bengtsson
eters anmeme tie

ewert@cb.uu.se

Ewert Bengtsson has been professor of computerized image analysis at Uppsala Uni-

versity since 1988. His main research interests are to develop methods and tools for

xxi

James Boer

John Bolton
SSeS EERE ressenate

Markus

Contributor Bios
scmaarseniovseennneneceneee nent ane NASA MANATEE HANH

biomedical applications of image analysis. This includes visualization and computer

graphics aspects, since the visualization of 3D biomedical images is nontrivial. He has

published about 120 international research papers. He received his Ph.D. from Upp-

sala University in 1974. He is a member of IEEE, SPIE, and IAPR.

CREAN RO IERIE NE NE LE NI TT

author@boarslair.com

James Boer has been an active participant in the game development industry since

1997, when he helped create the surprise hit Deer Hunter. He has also been a prolific

writer, contributing to no less than seven game programming books (including his

own book, Game Audio Programming) and several articles in trade magazines. James is

currently employed as a programmer at Amaze Entertainment, where he is helping to

develop new technologies for the Elemental Engine, Amaze’s in-house cross-platform

console engine.

johnjbolton@yahoo.com

John Bolton is a software engineer at Page 44 Studios in San Francisco. He is cur-

rently working on next year’s lineup of Sony’s hockey games for the PS2, PSP, and
PS3. He has been programming games professionally since 1992 and has been lead
programmer on several games including J Have No Mouth and I Must Scream, Heroes
of Might and Magic, and High Heat Baseball.

Breyer
LARC AE EEL LI ENTE LE TLL EI TND

thebreyers@comcast.net

Markus Breyer holds a master’s degree in technical computer science, and has been in
the game industry for eight years, working on numerous titles including Star Wars
Bounty Hunter, Gladius, and Return Fire. Markus is now with Factor 5 developing
technology for next generation platforms.

Martin Brownlow
a LE BOE P NE LT OEE LIED PLL CLI

mbrownlow@shiny.com

Martin started programming at age 10 on his friend’s ZX81. After completing his
education, Martin began his career at Virtuality, Ltd. (U.K.) writing VR arcade

Contributor Bios xxiii

games. After three years, he moved to the U.S. to work for Shiny Entertainment. He
has worked on several games for Shiny, including MDK and Sacrifice, and is currently
knee deep in the Matrix video game.

Warrick Buchanan
ALLDATA IT OE NE AE I SE ELMER ADE EEE PE ae EA RNS

warrick@chimeric.co.uk

Warrick Buchanan is development director at Chimeric Ltd, working on the Maxin-

ima and ScreenSaverMax products. Among working for various game development
companies over the years, he also did a stint in graphics card driver development for
Imagination Technologies Ltd. He enjoys playing with toys that range from cutting-
edge graphics cards to trampolines.

Jamie Cheng
_amsreeer ami RE LM AT NURSES SSS SSIES STL EE NR SPONGES EEE NNN

jcheng@relic.com

Jamie Cheng is an AI programmer at Relic Entertainment. He recently developed the

opponent AI in Warhammer 40,000: Dawn of War. He also serves as the core liaison
between Relic and the GAMES group in the University of Alberta, working together

to push the boundaries in commericial game AI. Away from work, Jamie enjoys col-

laborating with others to develop games that break away from the norm. Jamie

received his BSc in computing science from Simon Fraser University.

Octavian Marius Chi ncisan ee
eit tN EES SEENON OEE SORENTO TEE AA ELIE REWER ADR RS ANNES RE

mariuss@rogers.com

Octavian graduated from the Technical University of Cluj-Romania in 1987 with a

Master of Science in electrical engineering. One year later, he graduated with a post-

university diploma in applied electronics and he finalized a project on building a Z80

based personal computer compatible with Sinclair Spectrum. From 1988 to 1994, he

worked as a C++ programmer for a financial institution. He came to Canada in 1994

and worked for several companies as a C++ senior software programmer. In 2000,

another challenge arose: game programming. Self-taught in this field, the results of his

knowledge, passion, and work have been the creation of Getic 3D Editor and Getic

SDK, currently under development. Currently, Octavian is working at Zalsoft Inc. as

a software architect.

Ignacio Incera Cruz

Contributor Bios

ignacio@incera.net

Ignacio is a software engineer currently working on European Defense Area Projects

in Madrid, Spain. Specifically, he works on real-time simulations, 3D terrain, geo-

graphic information systems (GIS), and missions planning and debriefing systems.

He has a computer science degree and a master’s degree in virtual reality, both from

the University of Deusto. Also, he is currently getting a doctorate degree in computer

science and artificial intelligence at the Technical University of Madrid. His research

focuses on robotics, molecular computing, and artificial minds.

veka at lide stl at i as

cs007@ural2.hszk.bme.hu, czsz@freemail.hu

Szabolcs Czuczor is a Ph.D. student at the Computer Graphics Group of the Depart-

ment of Control Engineering and Information Technology at BUTE, Hungary. His

research interests include multimedia, video and image processing, Web and game

programming, and creating visual and sound effects for motion pictures. Szabolcs

contributed to WSCG ’04, CESCG ’02, and other publications.

William E. Damon
wdamon@ati.com

William is an engineer with ATI Research, Inc. His professional background at the
time of this publishing includes five years of technical experience within the games
industry, where he primarily focuses on software core technologies and platform per-
formance. William holds a bachelor’s degree with honors in computer science from
Virginia Polytechnic Institute and State University.

Mark DeLoura
SMELT SERRATE SO

madsax@satori.org

Mark is the creator and series editor of the Game Programming Gems series of books.
In his role as the manager of developer relations at Sony Computer Entertainment
America, he gets the opportunity to share information, both technical and nontechni-
cal, with game developers around the world. Mark is fascinated with the concept of
creating shared, entertaining experiences that educate people and encourage them to
communicate with each other. He has been pursuing ways to broaden the concept of

Contributor Bios XXxv
twnceancscesniattiaensstimmeean set eunanseceeaeneeein ehiunnsnnieiesinuahien

what an “entertaining experience” is through a variety of roles, including former posi-
tions as editor-in-chief of Game Developer magazine and lead software engineer of
Nintendo of America’s Developer Support group.

Chuck.V.DeSylva@Intel.com

Chuck DeSylva is a senior software applications engineer in Intel’s Software Solutions
Group in Folsom, California. He currently manages a team of engineers working on
optimization on some of the industry's leading software game and media titles. When
not squeezing performance out of software, he enjoys practicing bass/guitar, playing
first person shooters, and traveling the world.

Shekhar Dhupelia
UPA RE aD Na OC a am ea sr em sre

sdhupelia@gmail.com

Shekhar Dhupelia’s first foray into the games industry took the form of two years
working with the SCE-RT group of Sony (SCEA) in San Diego, developing the
online software and server infrastructure that powers SOCOM: US Navy Seals, Fre-

quency, Twisted Metal Black Online, NFL Gameday, and many other Playstation 2

titles. He then moved onto Microsoft’s NBA Inside Drive 2004 XBox Live implemen-

tation, before spending some time at Midway Games, working on NBA Ballers for
both PS2 and Xbox. Shekhar previously wrote for Game Programming Gems 4, and is

also contributing to Charles River Media’s Secrets of the Game Business, Revised Edi-

tion. He has spoken at the Game Developer's Conference (GDC) and the Penny

Arcade Expo (PAX) on topics surrounding game design, and is now developing the
Xbox Live gameplay for Studio Gigante and THQ’s WWE Wrestlemania XXI.

RRA ANN AER ETP AE LOLI SR ETN ELLOS 5 EET GIES EERO ET CLI TET IER WIE
Mike Dickheiser

mike.dickheiser@redstorm.com

Mike is a nine-year veteran of the games industry, and works as a software engineer for

Red Storm Entertainment. His career has involved work on flight simulators,

dynamic fluid modeling, collision systems, and vehicle physics models. Mike's current

focus is development of vehicle AI control systems for the Ghost Recon product line.

When not teaching helicopters how to: hunt down and destroy tanks, infantry, and

game designers, Mike enjoys computer games, sports, playing piano, and relaxing at

home with his ever-supportive wife, Jaye.

Xxvi
Contributor Bios

Jean-Frangois Dube

jfdube@ubisoft.qc.ca

Jean-Francois (a.k.a. deks on Gamedev.net) has been working in the game industry

for more than seven years. He’s currently the technical lead programmer of an upcom-

ing next generation console game at UbiSoft Montreal studio. Jean-Frangois previ-

ously worked as the lead programmer of Rainbow Six 3 on XBox and shipped several

other games like Batman Vengeance on PS2 and Speed Busters on PC.

Pavicneoizzeuae ee

gizmo@gizz-moo.com

Patrick, also known as Gizmo or “Gizz” for short, is like Pepsi: flat and still thinks that

15 degrees Celsius is the correct inside temperature to work, much to the general dismay

of his fellow co-workers. While still working on his Seamless Server and many tools, he

still longs for the day when he will find the time to finish his distributed raytracer.

Dominic Filion

dfiliong@videotron.ca

Dominic is senior 3D engine developer at Artificial Mind & Movement, performing

research on 3D effects and physics simulations. Previously, he held the position of

technical director at DC Studios, where he led the technology team to create the stu-

dio’s in-house cross-platform 3D engine. He has worked on four commercial 3D

engines before, acting as principal architect for two of the four. He also worked at

Microids and Fun Key Studios. Feel free to drop him a note about the articles or just

for a friendly chat. His Web site is found at itp://www.bingecoder.com.

Mario Grimani

mgrimani@san.rr.com

Mario Grimani is an industry veteran who joined the gaming industry almost two
decades ago. After publishing his first game in 1987, he poured all his development
effort into the Amiga platform. The early demise of the Amiga platform marked his
departure from the gaming industry, expecting never to come back. Since re-emerging
in mid ’90s, he has joined big name studios such as lon Storm, Ensemble Studios,

Verant Interactive, and Sony Online Entertainment. While at Ensemble Studios, he
was a dedicated AI specialist in charge of improving the computer player competitive-

ness. He has developed a scripting system and a computer player AI for the Age of

Contributor Bios xxvii
svete nein renect inborn Heatran seecinoaahinannbinncenetcunnntet

Empires I: The Age of Kings and Age of Empires II: The Conquerors. During the early
stages of Age of Mythology development, Mario served as AI lead in charge of AI archi-
tecture. After joining Verant Interactive, which later became Sony Online Entertain-
ment, he took over as lead programmer on Sovereign and later worked on the
EverQuest IT team. Mario is now a partner in Xtreme Strategy Games, where he is

using his technical expertise in bringing to market the next generation of games and
gaming technologies.

ACME GE TEE

julien_hamaide@hotmail.com

Julien started programming text games on his Commodore64 at the age of 8. He
wrote his first assembly program within the year. Years passed, but the passion
remained. He has always been self-taught, reading all the books his parents were able
to buy. He recently graduated as multitmedia electrical engineer at the Faculté Poly-
technique de Mons in Belgium at the age of 21 (2003). He is now working on speech

and image processing at TCTS/Multitel (Aztp-//tcts.fpms.ac. be; http://www.multitel. be).
He is working very hard to get into the game industry. Open-eXtnd is his latest pro-
ject (a free implementation of XTND), intented to be used in AI.

Sami Hamlaoui

disk_disaster@hotmail.com

Obsessed by AI, Sami was rather confused when he realized he'd written an article
about audio. When not going off topic, he spends most of his time trying to make
500 bots look smart while keeping the frame rate in frames-per-second and not sec-
onds-per-frame. Check out his Web site at Attp://members.gamedev.net/sami/, where
content is occasionally added!

Matthew Harmon “ne

matt@matthewharmon.com

Matthew Harmon has been developing games since college, working on Microsoft

Flight Simulator for subLogic Corporation while earning his degree in film theory

and criticism. Since then, he has served as lead programmer and director of develop-

ment at Mission Studios Corp. and Velocity Development. Recently, he co-founded

eV Interactive Corporation to continue developing games and use game technology

in the military training and simulation arena. In his spare time, Matt chases his sons,

Alex and Greg, around the house.

XXxvili
Contributor Bios

Anders Hast
ee LLL ALLEL LEE

aht@hig.se

Anders Hast has been a lecturer in computer science since 1996 and associate professor

since 2004 at the University of Gavle. He received his Ph.D. from Uppsala University

in 2004. Together with Barrera and Bengtsson, he has investigated fundamental algo-

rithms in computer graphics and searched for new ways of solving the math behind the

algorithms, which has led to about 20 research publications and book chapters.

Daniel F. Higgins
RIALS LATNA TNCENE EAL ELT LLL E LLL TLL LE LLL LL

dan@stainlesssteelstudios.com

Dan Higgins is a proud member of Stainless Steel Studios, the Cambridge-based His-

torical RTS game company lead by Rick Goodman. Prior to working for Stainless, his

background was not in games but writing both high-performance search engines for

the History Channel, A&E (Arts & Entertainment), and Biography Channel. A pas-

sionate programmer for SSSI, Dan works in a broad range of areas including military

Al, pathfinding, terrain analysis, optimization, animal AI, formations, and physics.

Originally from Maryland, Dan and his family are “wicked” in love with Boston and

feel like native New Englanders. He’s a computer science graduate from Frostburg

State University in Maryland, and most times when Dan is described in a conversa-

tion, the words “freak” and “spaz” seem to pop up with alarming frequency.

Charles E. Hughes
i IRL LE teammmmroncnes em eRe NN I ES

ceh@cs.ucf.edu

Charles E. Hughes is Professor and Graduate Coordinator in the School of Computer

Science at the University of Central Florida. He holds a joint faculty appointment in -

the School of Film and Digital Media, and serves as Chief Scientist for the Media

Convergence Laboratory, an interdisciplinary collaboration located within UCF's
Institute for Simulation and Training. He has authored or co-authored over 100 refer-
enced journal and proceedings articles, seven book chapters, and six books. His cur-
rent research interests are in mixed reality and models of distributed computation.

Robin Hunicke
hunicke@cs.northwestern.edu

Robin Hunicke is finishing her Ph.D. in AI and Games at Northwestern University.
In her copious free time, she strives to bridge the gap between academic study and

Contributor Bios Xxix es sinus cd nsesbeasdnocsinemmanniinoeedonaamecdecmmseamrintneereneeild pe

industry application—working with the IGDA’s Education Committee, teaching in
the GDC Game Design and Tuning Workshop, and participating in events like the
Experimental Gameplay Workshop and the Indie Game Jam. Her first love was
M:Urlaks

al li late

imays@hitel.net

Hyun-jik Bae thanks God for letting him be enlightened, the Gospel, and the little
talent afforded to him. He is a technical director at MowelSoft Co, which is currently

developing Blizz 1941™, an MMO game with World War II as a setting. He has
developed several 3D MMO games since 1997. The first game he authored is
SpeedGame (not™) for MSX BASIC, which required the user to smash the space key
rapidly, so it became the cause of the breakdown of computers in his elementary
school.

scott@escherichia.net

Scott Jacobs, educated to be a microbiologist, ditched that fancy college education to

pay the rent by working in the games industry. Purported to be a networking pro-
grammer, he is often suckered into working in all sorts of other areas, like scripting

engines, physics, and graphics. He has worked for Interactive Magic, Sinister Games

(UbiSoft), and Red Storm Entertainment (UbiSoft). Currently he works for

Sim Wars, where he yearns for them to put out Super Puzzle Americas Army IT: Turbo.

Wendy Jones

gamegirl@fasterkittycodecode.com

Wendy Jones is a game developer and industry evangelist. She's held roles ranging
from industry journalist to game programmer to author. She is active in the IGDA of
South Florida, participating as a board member of the local chapter. She currently

keeps herself busy doing freelance software development for handheld devices as well

as writing articles and books pertaining to game development.

lengyel@terathon.com

Eric Lengyel is a senior programmer in the advanced technology group at Naughty Dog,

Inc. He is the author of the bestselling book Mathematics for 3D Game Programming and

chris Loner’

Michael

Contributor Bios

Computer Graphics, and he has written many articles for industry publications ranging

from gamasutra.com to the Game Programming Gems series. Eric has been dedicated to

3D graphics research for over 10 years, during which time he has been the lead pro-

grammer for Quest for Glory 5 and the chief architect of the C4 Engine.

ae

Clomont@math.purdue.edu

Chris Lomont has been programming since the fifth grade, when he learned to make

simple games on his new TI-55 programmable calculator. Progressing through all

manner of computers, he got into PC programming in college, where he obtained a

triple BS in physics, math, and computer science, writing a chess program as a senior

project. A short time programming video games at Black Pearl (defunct) paid off his

school loans, and he went to Purdue, obtaining a Ph.D. in math in 2003. As a grad

student, he did consulting for many companies, mostly on graphics related develop-

ment, although he has developed many types of applications professionally, including

video games, financial modeling, robotics software, parsers and compilers, image pro-

cessing tools, crypto, and more. He currently does quantum computing research at

cybernet.com. Hobbies include piano, chess, sports, programming, puzzle design,

and attempting to write books. His Web site is www. math. purdue.edu/~clomont and

will hopefully move to www.lomont.org soon.

Mandel

mmandel@gmail.com

Michael Mandel is a recent graduate of Carnegie Mellon University, where he earned

his graduate and undergraduate degrees in computer science. His graduate work

examined using simulation and data-driven approaches to character animation. He

has various academic publications related to developing intelligent agents, and was a

visiting scholar at CMU while finishing his thesis work. He has been professionally

involved with the development of Xbox and PC game titles while at LucasArts and

Microsoft. Currently, he is working as an engineer for Apple Computer, Inc.

Adam Martin

adam@grexengine.com

Adam Martin is the CEO of Grex Games, an MMOG middleware company. Much
of Grex’s products were based on Adam's own patents, although he now concentrates
on strategy and business development. He has a degree in computer science from the

Contributor Bios XXxi
oer enncneniemeyutineneiianentcen artemisinin

University of Cambridge, and has worked as a developer and producer on two pub-
lished games. He has lectured at the MDC conference, and is often found on MUD-
DEV. In 2004, he founded the Java Games Factory (http://javagamesfactory.org) to
promote professional-quality java games development and help java games studios.

maq@panoramix.ift.uni.wroc.pl

Maciej Matyka was born in Wroclaw, Poland. He studies computational physics at the
University of Wroclaw (Theoretical Division of Physics and Astronomy Department),
where he has a scholarship for his outstanding academic performance. For eight years,
Maciej has been an active programmer in the Amiga and PC demo scene. His general
interest lies in physically based modeling. Maciej is the author of physics simulation
software, with awards for Fluid (second place in the Second Department Contest for
Physics Software in 1999) and for Waves (first place in Third event in 2000). He is

also the author of several publications in Polish journals, mostly related to physics
simulations. At the University of Wroclaw, he gave lectures for high school students,

and he speaks about his physics software at department seminars. Maciej is the author
of the book Computer Simulations in Physics, published in 2001 by Helion. He also
wrote an article about soft body dynamics for the book Graphics Programming Meth-
ods by Jeff Lander, published in 2003 by Charles River Media.

Bee ees eee ees

pmeehan@tenaciousgames.com

Patrick Meehan began his career at Nintendo Technology Development following his
graduation from DigiPen in 1996. He has worked in the industry since as a developer
for Interactive Imagination and Amaze Entertainment, among others. His experience

includes most aspects of game and engine development on a variety of platforms. At
the time of this publication, he is pursuing the bohemian life of a garage developer
under Tenacious Games, a Seattle production company.

al eld Maat oe cbalie te a RERUN ANIME RRA NOS

nmefford@yahoo.com

Nathan Mefford is a software engineer at Firaxis, where his focus is on software archi-

tecture, optimization, and 3D graphics technology. He has enjoyed this opportunity

to contribute to the Game Programming Gems series, which he has taken so much

from, and he welcomes your correspondence and feedback.

Xxxii
Contributor Bios

a ssntannasaeansssassnnetrosaananansinrnonanin tee ect OOiOO88°« MAO AAA NOLO ACN OOOD ALAA AA

stetcocnscessepsssnene ann EUAN EEEERRAUARO HOO HEHHVIN

Jecon a SN RETRO RCE GE RIEL TET LEGA BODEN A GEILE

jasonImitchell@comcast.net

Jason is the team lead of the 3D Application Research Group at ATI Research, where

he develops and writes about novel 3D graphics techniques. Jason has written for the

Game Programming Gems and ShaderX books, Game Developer Magazine, Gamasu-

tra.com, and academic publications on graphics and image processing. He regularly

presents at graphics and game development conferences around the world. Jason's

publications and past talks can be found at /t1p-//www. pixelmaven.com/jason/.

lan Parberry
SRILA LEONEAN NUANCE ORLA EL LLIN INO MNT LT DEIN TIO TIT aN

jan@cs.unt.edu

Ian Parberry is a professor in the Department of Computer Science and Engineering

at the University of North Texas, where he was an early pioneer of game programming

education. He is the author of six books, three of them on game programming, and

numerous papers in conferences and journals on a wide range of computing subjects

from theoretical computer science to computer games.

ini aeles cca
a

Kim.Pallister@Intel.com

Kim Pallister is an engineering manager and technical evangelist with Intel’s Software

Solutions Group. His areas of focus are graphics and gaming technologies. Kim con-

tributed to Game Programming Gems 2 and 3, as well as other publications. He wel-

comes email at the above address to provide him feedback or exchange ideas.

BonutsBieliee A SN AHMET REEI mone pe

borut_p@yahoo.com

Borut graduated from Georgia Tech in 1998 with a B.S. in computer science. After

working in various software development positions, he co-founded his own games

studio, White Knuckle Games, in 2001. He currently works at Radical Entertain-

ment as a game programmer on Scarface, and is the author of various articles on game

development.

Contributor Bios XXXiii

eee cores

fpuig2003@yahoo.com

Frank Puig is the Director of the Virtual Reality team at the University of Informatic
Sciences, located in Cuba. He designed and implemented the CAOSS Engine and
CAOSS Studios, which has been applied on several games titles like Herlec and
Knowledge Land. He also has designed and produced several tools for game develop-
ment that improve and simplify the treatment of motion capture data, advanced tex-
ture mapping, and animation blending, among others.

Steve Rabin
EONS ROSTER THOTT ETE TILE SS EE I NI ANNETTE NEES ELE SIT NO TEE

steve_rabin@hotmail.com

Steve Rabin has worked in the game industry for more than a decade and is currently

at Nintendo of America. He has written AI for three published games and was a con-

tributor to Game Programming Gems 1, 2, 3, and 4. Steve served as the AI section
editor of Game Programming Gems 2 and was also the founder and chief editor of

Introduction to Game Development and AI Game Programming Wisdom 1 and 2. He

has spoken at the Game Developers Conference and is an instructor in the Game

Development Certificate Program through the University of Washington Extension.

Steve holds a degree in computer engineering from the University of Washington and

is currently pursuing a master’s degree in computer science.

Rishi Ramraj Ute mea <A RARE Es a RES ITER TE BNET OO I IESE NEE EE ITI LIS SS SOE LEBEL EI LMA,

thereisnocowlevel@hotmail.com

Rishi Ramraj is an undergrad at the University of Waterloo who has just finished his

first year in systems design engineering. He spent the better part of his high school

career learning and programming in C++, appearing occasionally at school to annoy

his teachers. Rishi owes a great deal of his career to Jeff Molofee and the nehe. -

gamedev.net community. On his first work term he designed and built

VectorChrome™, a 3D vector analysis suite for Bedrock Research Corp.™. He is cur-

rently employed at Alias® on his second work term. When he is not playing chess,

designing code, or programming, he can be found studying. He has given up on any

aspiration of getting to sleep and has instead written a program to do so, which is

included in this book.

XXXiv
Contributor Bios

—ceesaaneainniataiaineneNtiNNnNNAINNNtttt
 NTC CC

Michael Ramsey

miker@masterempire.com

Mike Ramsey is a lead programmer at 2015, Inc., where he has just completed work

on Men of Valor for the Xbox and PC. He is currently developing technology for the

next generation of consoles. Mike has also been the lead 3D client engineer on Lost

Continents at VR1, wrote the 3D engine for Mike Piazza’s Strikezone, Master of the

Empire, and a slew of RPGs in the early 1990s. He has a B.S. in computer science

from MSCD. Mike has contributed to both Game Programming Gems and the AI Wis-

dom series. In his spare time, Mike enjoys spoiling his daughter Gwynn.

Aurelio Reis

AurelioReis@gmail.com

Aurelio is currently a gameplay and technology programmer at Raven Software where

he’s worked on such titles as Jedi Academy and Quake 4. In his spare time, he likes

researching new graphics algorithms, working on his own game engine, and coming

up with interesting and exciting new gameplay ideas.

Bjarne Rene

bjarne.rene@circle-studio.com

Bjarne joined the industry in 1995 when he got a job at Bullfrog Productions. He was
thrown in at the deep end, programming the computer opponent for the game
GeneWars, before programming game logic and A.I. on Theme Park World. He then
spent two years in his native Norway finishing his computer science degree at the
University of Bergen, before moving back to the UK to rejoin the industry. He is cur-
rently at Circle Studio, where he is working on the object management system and
the AI.

Graham Rhodes

grhodes@nc.rr.com

Graham Rhodes is a principal scientist at the Southeast Division of Applied Research
Associates, Inc. in Raleigh, North Carolina. He has nearly two decades of experience
creating software for interactive and real-time 3D graphics, gaming, and physical sim-
ulation. Graham has been the lead software developer for a variety of game projects
including: arcade-style games developed on Commodore VIC-20 and Atari 400
home computers as a teen; a series of sponsored educational mini-games for the World

Contributor Bios XOX
sacs sooeteeteumaesesnenen sunnaaneesrenaenntuunninntannnonenenane

Book Multimedia Encyclopedia; and first/third-person action games for commercial

industrial safety training, built on a state-of-the-art 3D game engine. He is currently

involved in developing software that provides physics-based solutions for military and
homeland defense simulation and training. Graham previously contributed a chapter
for Game Programming Gems 2 and was the Physics section editor for Game Program-
ming Gems 4. He is the moderator of the math and physics section of the gamedev.net
game development Internet portal, has presented at the annual Game Developer's
Conference (GDC), regularly attends GDC and the annual ACM/SIGGRAPH con-

ference, and is a member of ACM/SIGGRAPH and the International Game Devel-

opers Association (IGDA).

roden@cs.unt.edu

Timothy is a lecturer and Ph.D. candidate in the Department of Computer Science
and Engineering at the University of North Texas. At UNT, Timothy teaches courses
in programming and computer graphics. Before joining UNT he worked as a graph-
ics software developer in the simulation industry including six years with Evans &
Sutherland. His primary research interest is procedural content creation for 3D
graphics applications.

Thorsten Scheuermann 84 MUSEO EHP SMA EEN EMER NRT EEE EEL TOR NLL IEE,

thorsten@ati.com

Thorsten is a software engineer in ATI’s 3D Application Research Group where he

works on graphics demos and novel rendering techniques as part of ATT’s Demo

Team. Prior to working at ATI, he was a member of the Effective Virtual Environ-

ments research group at the University of North Carolina at Chapel Hill, which gave

him the opportunity to play with all sorts of expensive VR toys and to create sickness-

inducing immersive games. Thorsten received a master’s degree in computer science

from UNC and previously studied at the University of Karlsruhe in Germany.

shawnshoonaker sence ene EH PORN NNI EAS EEE LESSEE MOMMIES DMB ENR TPR RO

shansolox@yahoo.com

Shawn Shoemaker is in his seventh year in the game industry, currently working as

Assistant Lead Programmer for Stainless Steel Studios. His credits include physics, Al,

combat, graphic effects, and random maps for Empire Earth, Empires: Dawn of the

Modern World. At the moment, Shawn is hard at work on Stainless's next project,

XXXVI Contributor Bios
stones ttn HSH een iinnenenthtt MOLALLA AMMA AM MMA AOR AMAA A AAA A COCOA CAA AAA ALAA AA ALAA

which is still under wraps. Shawn holds a bachelor’s and master’s degree in computer

engineering from Virginia Tech. Before agreeing to sacrifice his summers for crunch,

Shawn worked in hardware at Intel and in a CAVE virtual reality environment. While

this is all well and good, Shawn is quick to point out that he never wanted to do this

for a living. He always wanted to be a lumberjack.

Dr. Finnegan Southey
ERIE AEE UNSERE ERI ODA IEE ON

fdjsouthey@uwaterloo.ca

Dr. Finnegan Southey is part of the University of Alberta GAMES group and the

Alberta Ingenuity Centre for Machine Learning. His Ph.D. is from the University of

Waterloo, in the area of artificial intelligence. His research is focused on commercial

games and includes planning, machine learning, and sampling methods for gameplay

analysis. Aside from his work with Relic Entertainment, his research efforts have been
used by industry partner Electronic Arts in the development of their FIFA 2005 title.

Shea Street
Ea SR ee ra NS A AR LEONA LI ITE TEE Coe eS RENAE encore:

shea.street@tantrumgames.com

Shea Street got his start in multiplayer programming by developing online games for
early dial-up service providers before the Internet became what it is today. He has
been programming games for well over 15 years and is entirely self taught but holds a
computer science degree from Full Sail in game design and development. Over those
years, he has had a helping hand in creating countless games as well as providing
private consulting to a number of companies for many of their project needs. Shea is
currently the lead programmer and co-founder of Tantrum Games. Shea would like
to thank everyone at Tantrum Games for all their hard work and dedication as well as
for being very understanding and patient with him while he was writing for this book.
He would also like to thank everyone in all the forums that took part in his discus-
sions and lectures, as well as anyone who shared a late night cup of coffee with him.

Last but not least, Shea would like to give thanks to all of his friends and family who
helped support him through life, especially his father. If it wasn’t for his father who
helped him buy his first computer and got him interested in programming, none of
this would have been possible.

Gabor Sano me #86 SRE NA RR OUP RRR TE ONE att

szijarto.gabor@freemail.hu

Gabor is a Ph.D. student at Technical University of Budapest, Hungary. He started
programming at age 10, and his master’s thesis was on 3D face modeling. He special-

Contributor Bios XXXxvii
wut snoneoneotcunceetersuttoantatett ioiomsnuetsoinaneneteienn cerneeseaansssssnenysiiussicsneneonnsanoneiunteeen pesca cin svoonoseuenenonennmssoereonpinneiateensenan

ized in shader programming and 3D graphics algorithms. Gabor’s publications and
programs can be found at Attp:/hwww.geocities.com/gabsprog.

Andy Thomason
EE EER IEEE ETE NES EEE LOE ED EN IE EELS EINE ELI LTR SLES SET EEE NED EEELE SEEN SENSEI LEESON EEE

athomason@acm.org

Andy Thomason has recently completed the game Galleon with Toby Gard, designer
of Lara Croft. Starting in the ’70s with home-built Z80 hardware, he has worked with
Psygnosis and Rage and is currently a freelance technology researcher and boat builder
in Bristol, England. He maintains a Web site at Attp://www.titibom.demon.co.ukl/.

Matthew Titelbaum
RSENS SEEN LLANELLI ELDON MTEL ELLE LE LE LE ELLIE LD E EEL EEL LED LEONE,

mtitelbaum@lith.com

Matthew Titelbaum is a senior software engineer at Monolith Productions, Inc.,

developing the AI systems for The Matrix Online MMORPG. After starting his career
in the industry working on console titles at Crystal Dynamics, DreamWorks Interac-
tive, and SCEA, he began his involvement with massively multiplayer games by join-

ing Sony Online Entertainment. At SOE, he worked on Sovereign (an experimental

MMO RTS title) and several EverQuest expansion packs; he is most proud of the con-

tributions he made in overhauling and optimizing EverQuest’s pathfinding system.

Matthew has a B.S. in computer science from Carnegie Mellon University.

Marco Tombesi
TRIP RIN EEE ROCA MINE SORELLE TRELLIS LEE ELLE EEL IN TE ITI NLT NTE I ET SION TE MT TTR

baggior@libero.it

Marco Tombesi is an Italian computer engineer, graduated from the University La

Sapienza of Rome in 2002 with a first class degree. He has been a freelance game devel-

oper for years and now is actually considered a C++ and OpenGL master. He has pub-

lished a successful article in Game Programming Gems 2, “3ds max Skin Exporter and

Animation Toolkit.” Currently he is working on a soccer game project.

Christopher Tremblay v
MAA LLL LALA LLL LLL LTT TTT LNT TT TT sete moreno

chris@Barney.zapto.org

Christopher Tremblay lives in the San Fransisco bay area. He holds a B.S. in software

engineering and is nearing a B.S. in mathematics. His work in the industry covers var-

ied subjects including game AI, core networking, software rendering algorithms, and

3D geometry algorithms down to low-level and optimization. He currently works for

XXXVili

Jon Watte

WI

Niniane

Contributor Bios
NOMA ANAT NNT NS

races innninnnnnsne eens

Motorola where he is building the next generation 2D/3D graphics rasterization

engine for the next generation of cell phones. In his spare time, you may find him

bruising himself with roller blades in the skate park, snowboarding, or yes, even with

the radiation of his monitor while programming.

brettonw@microsoft.com, Bretton_Wade@acm.org

Bretton Wade is a 10-year veteran of the games and graphics industries, currently

working as a manager in the Xbox system software team and as an instructor in the

highly praised University of Washington Extension Game Development course. Pre-

vious game development roles include title lead for an independent studio contracted

by Blizzard Entertainment, development lead on Microsoft's Flight Simulator, and

individual contributor roles in a variety of titles published by Microsoft Game Stu-

dios. Bretton worked on VR authoring tools at SGI, and was a research engineer

for Advanced Rendering Technology and Microsoft Research. He is a graduate of

Virginia Tech and holds a master’s degree from the Cornell University Program of

Computer Graphics.

niniane@gmail.com

niniane Wang worked for Microsoft Games for five years, most recently as a dev lead

on Flight Simulator 2004. Her work on weather graphics has been presented in SIG-
GRAPH, GDC, GDMag, and academic publications. She holds a bachelor’s in CS

from Caltech and a master’s in CS from the University of Washington. Currently, she
is a software engineer at Google.

hplus-gpg5@mindcontrol.org

At 10 years of age, Jon started creating software and has never stopped. He helped
deliver several large products, including the CodeWarrior development tools, the
BeOS multimedia operating system, and the There virtual world. Jon currently works
at Forterra Systems on a massively distributed simulation platform.

RE
SECTION

1
GENERAL

PROGRAMMING

’ ed = :
7

ie | ee

> 2
Worrsss a ppsaaliels
“HOrTQs | oe

-_

« ole wine Be viialicaale nit

- he Ad Arey urberadal) od igh eae? ps wes

. ¥ nt nites ely ey tia as nie aa As
vedanta wt be aceade Selle erga eS ee

* _ diese Ssh waren a os nitngthily 2 peal otget,

; oe hye Adee, ei Baki Yh ey a 8 eg ted

wihie’s Wel) font ak: + een Fie kik es
Mucaneteteny Cigee bal a

- > _ 7 a

at $y 7 ei

«

<a

i _
" iittinn Wael ’ a us

7 Olea ete. em @ ? Sie Pery ane m4 \@ f a'r eel lin eee - Per mm nen ea 4 h ‘ ve Sipe —ae ioe

: > : Ss ’ o: | haben
.] +k

ected pe S.Geo » J oe — ;

ripe “Ae, > rae a an) eo inp oes. 7 ome

SO we ed * elle | aPighsn rs ea

; APH, hod Cy ve i) Quebpapll ae Su

9 wal ehsch ahi ° > ae
re Be

» tli ware & eae

tog Wate q +
a ee ee | » _

4 [‘Qt a r

< > @,

+ -<- 4 e

- baat | * Seer.

Introduction

William E. Damon Iil

wdamon@ati.com

| ae background art, settings, locations, characters, plots, stories, and

actions that breathe life into the game experience—drives hit titles. For the pro-

duction staff, this means constructing their product around a solid premise and

employing outstanding, disciplined service organizations. The Information Technol-

ogy department might spring to mind, but the organization addressed here is actually

the software engineering team.
Software engineers solve problems. Sometimes problems in game programming

are solved with a tremendous amount of programming effort, but a transition in

thinking is occurring. Game programming is evolving into a disciplined practice of

engineering general solutions for broader and more reusable application, whether it is

adopting and adapting a middleware technology or creating something in-house. This

evolution is allowing engineers more time to solve the real problems faced by their

customers, the content creators, rather than reinventing old solutions. As a result,

content creators are enabled to more rapidly iterate over implementations, tuning and

tweaking details to achieve higher quality in the final product.

This is the common thread that runs through all the articles in this section.

Whether discussing improved designs for low-level libraries built for other engineers

on the project to use, general yet intelligent memory management techniques for the

core of the systems (game, editor, or otherwise), remote debuggers, and/or visual and

scriptable environments for designing user interfaces, all the articles in this section are

aimed at providing reusable components in the production pipeline.

You'll see a broad range of topics in this section—and even various solutions for

particularly large problems—to help guide you in building the best suite of tools for

the title at hand. Absorb these articles, for as an engineer who solves problems, you

never know when one will come in handy!

ae anumd i geciinnen getters wo ygotondoas rmwlbbitn ey isqeb
_ Wad vd bee! emaidery Lan arly ovloe om omnis saan cineiyas gira Oe

deen o 2h ancaules blo yumi sect waber ace eepinsct

foltgs aah in asin sty He Agvet et tek cele a
aimeigpes tarkin re} thiol aatonielil iavrakwel sat ingioh bevenqiei gmreuaib

>i

Po

i= ‘et 2 >a Gis:

7 rs

Sin delle colowahacl oivszal santa;
“ang tals 207 ants ea) wich —scalnarey sugges 08 ati wt
bie sitting Siee & basyow soutory woh pach tn rer
keadet activated afl snultasaggio- saVIe byailgioeibs 3
Mlewson zi sist bacenbhe moistaggie att nod sboaies 7 geeringe aes .

+ Meee eae

gumnevsrgin: sy hi madene asmivsntie? sesldany slog .
‘it iigenier aed mcs gaiswneagosg Yo sonome ayobmoemens & 43 .
te bse4 wee 2 aol ghviove a grimmenpay omcd _gitingsactai
dst wileabe .ootinwlgns adi swat bae rebeosd 2ei} mnniuslon | 219!

bes serene 2 Qa VOYO seer vibieper our we bokiso> 2

rondboorey bavi? salt oot sexiasegs

Aas

net 7a apinsttos) YRoudgatan yreenane rusyiltoani me teromng .aey.01 tonite 2¢ 1 ne =
baa leweiv vo\bee 2oqgueeh snes teehee in sents aang) emer as

one wicnitaces aisle tal rook’ sin att) Nhe .eaaniivgani lacostace Aleman
relive Housubing adit pi ermuogmos sidausn ye

101 eeetavles usher sores bp. nines alg Mh eorqen te agnut broyel & 322
10) alogs toy otis thod ad qaibliad 0) acy shlag led wn —emaldeng ;
Lin) oteeeitoy, wavlae ath Pabrulyion fe ws WH) ebsie sant dhoedA tase .

"vbr oi noo fiw sno cathe’

UL

Context-Sensitive

HUDs for Editors

Adam Martin, Grex Games

gpg@grexengine.com

ost games need custom graphical tools for content creation (level layout, Al

behavior editing, etc.). Really good tools can greatly increase the efficiency of

the content development team, often multiplying the amount of content created by a

large ratio. For instance, one good level-editing tool can easily make a single level-

designer become as productive as three equivalent designers working with inferior

tools. However, excellent tools often turn out to be inordinately expensive, making it

difficult to justify the risks of initial development, or the continued costs associated

with maintenance.

This gem provides an approach to heads-up editing using some very simple tech-

niques. It is designed to be extremely simple to maintain and should alleviate many of

the costs and difficulties of in-house editor development. It unlocks end-user

(designer) productivity boosts in earlier stages of the tool development process and

reduces some of the project risks.

Problems

There are four sets of problems that apply to custom editors, each of which we will

cover in detail to explain how and why the idea behind this gem works.

The first set of problems is due to the inherent complexity of a custom content

editor. Custom editors always become complex (some would say bloated) sooner or

later; if their work was simple, mainstream editors would have been sufficient in the

first place, and the cost of making a custom editor could have been avoided altogether.

The other sets of problems are each associated with a particular role in the devel-

opment team. For example, the ways in which content authors use the editor create

problems unique to those people.

Editor and GUI Complexity

Taking a 3D modeler as an example, we usually have four views of the object being

edited, each view represented in a dedicated viewport. Each viewport has to be

5

Section 1 General Programming
suneeinncmtihenineianicanmmmamsansnessannti mmm tite

independently controllable. Starting with basic camera control, the editor needs to

provide all of the following separately in each viewport:

Display Controls

Show the position of the look_at point Zooming in and out (i.e., altering FOV)

Show the positions of the different viewport Panning in two dimensions

cameras in the other viewports, where visible Rotation about three axes

Render the “document” (3D model) Translation in three dimensions

Render world-landmarks (primary Cartesian Select each and every option to act upon

axes, positive/negative axis directions, etc.) EITHER the camera OR the look_at

Render the precise Cartesian coordinates of point OR both of them

each salient item, at least the camera and the

look_at point

So, for an “editor” that lets you do nothing more than move the cameras about (and
without any fancy controls for doing so; just the basics!). We have five separate things
that have to be displayed and five separate sets of controls to provide. These 10 items
each requires unique algorithms, and although the algorithms themselves are simple

to implement, they still need to be written. Already, we have enough separate algorithms
(each of which we want to maintain, update, replace, and/or remove separately) that

it would be nontrivial to maintain, and we haven't yet added essential features such as

object selection and basic editing.
Typical game content editors consist of perhaps 50 unique display algorithms and

30 or more control algorithms, with continuous extension. This can be a nightmare
to maintain, and most editors soon become so unwieldy (in terms of both code and

architecture) that adding even the simplest of functionality incurs considerable cost.
This is especially hard to justify when the end consumers (players) are often not even
going to see the tool.

Users

The end users of content-editing tools are rarely the programmers. Although pro-
grammers do develop and use editors (including IDEs, of course) such tools are usu-

ally developed to make it easy for nontechnical people to create or customize content
for the game. On large projects, the primary users are usually artists (creating 2D and
3D graphical content), writers (creating quests, subplots, game-logic widgets, etc.),
and interpreted/proprietary-language programmers (e.g., developing AI scripts).

The main requirements for this set of users are:

¢ A powerful, feature-rich graphical user interface (GUI)
* Extendible, with the ability to add new features over time (an iterative process of

end users’ feedback to the tools’ developer(s) resulting in new functionality)
* Reliable; most editing should be quick and easy for the end user, and the tool(s)

must be stable

1.1 Context-Sensitive HUDs for Editors 7

The first requirement in the previous list is perhaps obvious, but common platform
utilities and APIs make it a surmountable task. The extendibility requirement, how-

ever, could prove to be a major challenge for the tool developers, because the tool is

itself a custom solution. The need for editing that is both quick and easy is perhaps

the most challenging requirement. How can the developers expose a long list of fea-

tures (which will only grow longer over time) without making every command

require some number of mouseclicks? To flatten the learning curve and make the end

user more productive, we will assume that it is sufficient to give the end user some

metacontrols allowing for GUI customization. That way, the end users can choose to

lay out the interface in a fashion familiar to them.

Unfortunately, editor bugs are some of the most harmful on the project. A level-

editor bug might, for instance, silently corrupt the save file. This has no long-term

effect on the game itself, since it only damages some content that was “in develop-

ment,” and as such, the temptation is to give such bugs low priority in the general

project (although, clearly, high priority in the content author's bug list). However, the

users lose a huge amount of time to wasted effort working around such problems,

especially since most damage cannot be retroactively fixed (when the data is lost, it’s

lost). Consequently, content authors must assume the bug could happen at any

moment and preemptively guard against it on every edit, even if it only happens on

average once every 100 edits. An unreliable editor can easily burn up most or all the

efficiency gains it was destined to otherwise provide (had the tool been reliable).

Worse, developers do not always appreciate that a “rare” bug slows the users down all

the time, not just when it occurs.

Developers

Generally, tools such as editors do not directly increase a game's review scores or sales

volume.
Editors, to put it bluntly, do not (in general) themselves make money.

Most games are developed with that in mind, and content-authoring tools tend

to come in quite low on the priority list. Also, we know that developers rarely write

editors for themselves; usually such tools are created to enable a wider range of people

to contribute to the game (i.e., all the nonprogrammers, or programmers who know

Al languages but not C++, etc.). The net effect is that the developer is usually devel-

oping something they do not expect to use, will likely not have to maintain, and that

is arguably taking them away from spending time on their core tasks.

New features are added sporadically, and the developer is probably spending a lot

of time on core code in the meantime, meaning that the editor source can often be

prone to bit rot (i.e., each time they come to add the next feature, so much time has

passed that even the original authors have forgotten how it works).

Some teams have highly skilled personnel dedicated to tools development, thus

reducing the impact of these issues. Even so, these people will often have a variety of

other tools to support, upgrade, and maintain, and to a lesser extent suffer the same

problems.

sonutnentovntenstnstnnanninenione NIHR EAaUionntabttenentnnit ec thaiicteretAnAAnuustntinnemAsencteorni
8 Section 1 General Programming

So, for the developer of an editor, the main requirements for a tool like a level edi-

tor are:

¢ Minimal time investment. That is, spend as little time as possible developing the

editor.
¢ Maintainability. Code must be very easy to understand after not looking at it for

a long time.
¢ Extendibility. Adding new features must be very rapid and never require a refac-

toring of the existing code.

Producers and Project Managers

Producers look at a project in terms of critical paths, advantage/cost and advantage/
risk ratios, etc. Custom editing tools look extremely good in terms of advantage/cost,
because they simultaneously reduce the costs of content development and usually also
enable the content authors to produce more complex content that they could not
otherwise have managed.

However, custom editing tools are often useless (or worse than useless, for
instance, if they only write to a file format that is no longer supported by the main
game engine) until almost all the development on the tool has been completed. If a
producer knows they may have to cancel or scale back tool development in the future
to meet a deadline that will otherwise slip, it’s a huge risk to spend time on such a
front-loaded activity.

Worse, in practical terms, editor development work often starts simultaneously with
the main team starting on the game project. Post-mortem articles by game producers fre-
quently cite the damage done by the content authors: either waiting months for an editor
to be ready or else using early versions only to have to delete everything and start again
when later revisions of the editor turned out to be non-backward-compatible. The usual
conclusion is to “try using more middleware next time,” but the practical reality is that
middleware can only provide the highest common factor functionality, if costs are to be
kept low. However, most of the value is in having a tool that is fully customized to the
game at hand (map formats, engine architectures, proprietary coding schemes, etc.),
thereby achieving the biggest possible gains in productivity.

Solutions
DR SERENE R PSEA DISA RELA MRE ARIE AO ER NN SRUN NOMAD RRC IGGL EE SL Ba OU

Having covered the problems in depth, it’s high time we discussed solutions. There
are several areas we'll cover, starting with heads-up-displays, or HUDs.

Most games developers are familiar with heads-up displays (HUDs) and frequently
use them in the same kind of situation they were originally invented for: fast-paced
games where the player can't risk bringing up a menu and looking away from the

1.1 Context-Sensitive HUDs for Editors 9

main viewport but requires instant access to certain key information at all times (e.g.,

current health, current ammo remaining, etc.).

The main benefits of HUDs for games and editors are:

e¢ Instant access to critical data. Show the most critical pieces of data culled from a

larger data set.
° Convenience. Merge data with the main viewport, enabling the user to see the

data without looking away from the main viewport.

¢ Clarity of visualization. Arranged so that the areas of screen that they are over-

writing are relatively unimportant information (e.g., targeting cursors appear as

brackets surrounding a target, rather than on top of the target, creating blind spots

over small uninteresting areas of sky or background rather than over the target

itself).

These benefits are useful in a complex editor. However, they do not seem to do much

to solve the problems highlighted in the earlier sections.

Context-Sensitive HUDs

We extend the concept of a single monolithic HUD to that of a context-sensitive

HUD. A context-sensitive HUD is one that responds in real time to user actions, with

a large amount of built-in intelligence. For example, a context-sensitive HUD for a

first-person shooter (FPS) might normally display ammo, health, and frag-count; how-

ever, if the player is somehow poisoned, so that health is dropping continuously, it

might replace everything with a simple thermometer reading of the player's health

because all the other information becomes relatively unimportant.

In an editor, the position of the mouse cursor at any given time is the best indica-

tion of what the user is doing or thinking about; therefore, a context-sensitive HUD

will typically be most sensitive to changes in cursor position. For example, the tool-tip

pop ups in a standard Windows application are an example of a context-sensitive

HUD, albeit a very simple one, which vanishes completely when the cursor is no

longer floating over any button.

Microsoft in particular has spearheaded the use of context-sensitive HUDs in

applications, showing great usability improvements, although so far they have barely

scratched the surface of what is possible. For instance, whenever the mouse cursor is

moved over any of the borders of a cell in Word, it changes to a resize cursor, and the

function of the mouseclick is temporarily changed to match this (only the cursor

change is a HUD change, but more on that later).

Heads-Up Editing

In the Word example mentioned earlier not only does the cursor change, but the

entire function of the mouse does, too. A context-sensitive HUD merely provides rich

and intelligent changes in what is being displayed; heads-up editing combines this

with automatic switching of the current tool or mode of the editor.

10 Section 1 General Programming
_svssoanosnesoeeontnnonettnnaionnnasnitesomeneistteieinceataaniininatinnionnninnnaaiadannnctoentincass:acanittmaninnconnnenennin —

A fully heads-up aware and capable editor is a step forward for users for the fol-

lowing reasons:

¢ Automation. Eliminates the need for manually changing tools all the time (the
cursor changes automatically according to context, simultaneously switching
tools as appropriate).

¢ User-interface simplification. Most of the little icons on toolbars can be removed,
since the user no longer needs to select them manually.

¢ Learning curve reduction and productivity increase. Learning how to use the edi-
tor takes much less time because it automatically presents the user with the cor-
rect tool, saving the user from having to hunt for it in a menu, toolbar, or

elsewhere.

But it gets better: heads-up editing can be implemented with a very simple architec-

ture that makes maintenance and extendibility much easier for the developers, staving
off bit rot almost indefinitely. The proposed architecture forces all new features to be
added as fully encapsulated modules, preserving existing code and making compo-
nents easy to replace in the future.

,

Implementation
SEEN ORAL REE RELL IE EELS OSA LE LEI O LEE EES ELLE LTO EOE LE LEE L ORL ELLOL ILL LL LEDS,

The implementation of the solutions covered thus far is broken down in a number of

areas: acetates, renderers, and tools. We'll also discuss details in sharing code between

components.

Acetates }

To the user, we present a conceptual model of acetates on an overhead projector
(OHP) as seen in most conference and lecture rooms. Each acetate is merely a trans-
parent sheet of plastic, which the lecturer can insert, remove, or edit independently of
the others. Each acetate contains one or more diagrams or text, and the grouping is
arranged to keep the number of acetates as small as possible (easier to manage) while
allowing however fine a granularity the lecturer needs to rapidly change diagrams.
Often the contents of a particular acetate make no sense on their own (for instance a
set of disembodied arrows), but when placed in the context of the other acetates, they
suddenly become meaningful.

With real acetates, it is easy to reorder them, to twist or translate individual layers,
to hide and reveal sections, etc. This particular approach has proven very powerful,
because it gives the user (the lecturer) the ability to instantly change the information
being displayed in many ways: the user can very rapidly add or remove content and
easily simplify or add more detail.

Our software approach is to build a system of layers, where each layer is akin to an
acetate. Like acetates, each layer is transparent and overlays the main data (viewport);
i.e, each layer is a HUD. However, unlike acetates, our layered HUDs have much

1.1 Context-Sensitive HUDs for Editors 11

richer control options, mainly because we have much more power with a computer
GUI. Furthermore, each layer has one or more control modes (a.k.a. tools) associated
with it; for instance, “translate selection” and “rotate selection.” This turns each layer

into an encapsulated context-sensitive HUD with associated editing modes.

Renderers

The main editor viewport is just like a traditional editor. It shows the current docu-
ment being edited, where the document may be a textual document, a 3D model, or

any arbitrary rendered data. The document is the set of data on the screen that is

saved or loaded as opposed to being part of the GUI/editor. The main viewport dis-

plays nothing else; everything else will be handled by HUDs (and this can provide a

convenient means for the user to see exactly what will be saved, without mistaking a

HUD-applied tint on a texture as part of the model plus texture that will be saved. All

they need to do is turn off all HUDs and they will then have a “What You See Is What

You Save.”
Where the document itself is particularly complicated, you may even render only

part of the document in the core renderer and do the rest in HUDs. For instance,

some 3D model formats save the vertex data, the texture data, the bones, and the ani-

mation all in one file. You can get an editor up and running quickly by implementing

only the vertex reading and rendering in the core renderer, and later adding a separate

HUDi/layer for each more advanced element, without needing to alter your existing

code. If there are any bugs in the texture renderer, for example, the user can always

simply disable that layer and carry on viewing the vertex renderer as if they were using

an early version of the editor.
Each HUD renders itself transparently on top of the editor viewport. As with

acetates, some careful planning is required to divide up the desired visual features

(selection highlighting, etc.) into HUDs, although generally it is better to have more

HUDs rather than fewer.

The user has a simple tool for choosing which layer they are editing in, and wiz-

ard actions may programmatically select a queue of layers, transferring the user auto-

matically from one to the next in order to complete the editing task.

This may sound familiar to the layers of modern paint programs: individual inde-

pendent layers, with user actions constrained to only those they explicitly choose at

any given moment. This interface should be immediately familiar to most artists. The

main difference is that we are using acetates for the actual GUI, whereas paint pro-

grams typically use layers for isolation of content (make changes only in one layer)

and for composition of content (e.g., blending to a background is very hard to undo

once done, so compositing temporarily via layers makes things much easier; it acts

like an instant preview without permanently committing the author to the current

composition).

Section 1 General Programming
saat naa agnnnntedeagaenteeth NOV nMen HAA NHE NSN ELH HNEEOAMLINAAAAAH

Tools

Each tool is either allotted a unique acetate of its own or shares one belonging to a dis-

play element (and zero or more other tools). If you are unsure, it is safest just to have

one tool per acetate.

Shared Code and Extending the Context

Dividing the code up into one or more classes per HUD presents some problems with

duplication of code. This is a natural side effect of attempting to make the HUDs as

independent of each other as possible. However, code duplication could easily under-

mine the ease of maintenance, and so we definitely want to avoid it if possible.

Most of the code that typically gets duplicated is common display code, not tool
code, such as x, y, and z coordinates of a point. It is duplicated because in any partic-
ular editor, the different tools tend to display or affect exactly the same information,
although in different ways. This is fortunate, because it means we can safely encapsu-
late that code in a single HUD renderer, introducing only a very narrow dependency
of each tool on that one single renderer (i.e., they are not dependent upon each other
in any way).

A better long-term solution is to completely avoid the dependency by making
rendering X a fundamental feature of the renderer (where X is some information that

will be set at different times in different ways by different tools). We do this by sup-

plementing our definition of context, which was originally just cursor position, to also
include the current value of X. We also need to supply at least one HUD that queries
that aspect of the context and renders it. One of the advantages of doing it this way is
that you can have multiple different HUDs rendering that context at once in different
ways (different formatting, different details, etc.) and leave it to the user to decide
which they want to see (using the show/hide HUDs controls).

For example, if you have multiple tools that need to pop up the (x, y, z) coordi-
nates of a point or for a vector, the context can be supplemented with a field current
point, which the tools will fill whenever appropriate, and then assume that one of the
HUDs will render it for them.

Source Code

There are two main elements to the source implementation, regardless of the win-
dowing system you are using: a HUD manager and the individual HUDs themselves
(all of which are of the same type).

The HUD manager is a Model in MVC (Model, View, Controller) terminology:
it has data-structures containing references to all the current HUDs and has methods
for adding or removing HUDs programmatically. It also keeps track of the state of the
GUI (e.g., managing the HUD stack, described in the “User Controls” section).

All HUDs are implementations of a template/interface that provides callbacks for
things like triggering rendering to a suitable surface (i.e., painting the HUD to a back
buffer) and for feeding in GUI events (e.g., mouseclicks).

1.1 Context-Sensitive HUDs for Editors 13

ON THE CD

By encapsulating all the logic for a particular HUD into one class, we make it
easy for the developer to add/remove HUDs from the editor and to alter existing ones
without having to edit more than one source file at a time. Obviously, a particularly
complex tool may itself consist of many classes, but the logic to activate that tool and
render the interactive HUD parts is all in one place.

The implementation given on the CD-ROM is simplistic, but should be easy to
extend as you desire. The HUD manager is net.tmachine.gpg.hud. HUDManager.
The interface/ADT for HUDs is net.tmachine.gpg.hud. HUD and the base abstract
class (contains some common methods) is net.tmachine.gpg.hud.BaseHUD. A demo

application is in net.tmachine.gpg.hud.HudDemo (which is run automatically if you
try to run heads-up-editor.jar).

User Controls

There are three aspects to the users’ interaction with the heads-up editing system:

¢ Interactive, heads-up selection of which tool to use
e Activation and de-activation of individual HUDs (and their tools)

¢ Peeking at the internal state of the heads-up editing system

Tool Selection

One HUD is a proxy for a set of other HUDs and tools. This HUD will have many

context-sensitive rendering features, including an activation symbol for each and

every HUD for which it is proxying. For instance, if it proxies for a translate object, a

rotate object, and a stretch object, it will have icons that appear for each within suit-

able activation areas (e.g., the translate icon is activated while the cursor is inside the

bounds of an object, rotate is activated when the outside object is within 10 pixels of

a corner, and stretch is activated when the outside object is outside 10 pixels of a cor-

ner but inside 10 pixels of any edge).

LMB on an activation area delegates to the other HUD + tool mapped to that

area, placing the current HUD + tool on a stack. When the delegated tool is finished,

it can automatically pop the activating HUD + tool. This allows arbitrary nesting of

proxying HUDs, which is good for extremely complex editing situations but also

allows one HUD/tool to be invoked from several different contexts, without needing

to be context aware, or having to be re-implemented with almost identical code once

for each different context.

HUD Activation

To manage the different HUDs, we simply copy the standard layer palette from high-

end paint programs. This is a well-established form of GUI—with which many users

will already be familiar—that shows all the layers in order as a list, with controls to

show/hide any particular layer and allow the layers to be dragged and dropped to

reorder them in the list.

14 Section 1 General Programming

With our HUDs, reordering can be useful since it controls which HUDs are

over-painting which other HUDS; with this feature, the user can usually resolve any

paint conflicts on screen, keeping the underlying code simple. Otherwise, the individ-

ual HUDs would need to interact with each other so that they could avoid overlap-

ping so as to negotiate use of screen space; e.g., to reserve particular screen regions for

painting in.

The show/hide feature is used just as in a paint program: hiding a HUD simply

turns off its painting code. This may be done to reduce clutter on the screen, to

increase rendering performance, or simply because the user doesn't need a particular

HUD during the current session. Since HUDs are persistent and identical across edit-

ing sessions (unlike layers in a paint program, which are ephemeral and tied only to

the current document), a helpful feature in particularly complex heads-up editors is

the ability for the user to quickly save and restore particular patterns of hidden

HUDs. A particularly neat way of doing this is to create a tab along the top of the dia-

log for each saved preset of hidden HUDs, with the user providing a name for each

preset when creating them. This allows extremely fast switching between different

editing modes, in keeping with the aim of the user being able to do most of his work

with minimal navigation of dialogs, menus, toolbars, etc.

Internal State

This serves two nonobvious purposes. Since the internal state of the system can arbi-
trarily mask out tools that would otherwise be available, it’s often important for users
to understand what they've selected mid-selection (e.g., if they make a mistake and
select the wrong element they typically won't know what they clicked on, only what
they intended to click on), and this acts as a navigation map. Secondly, it makes
debugging much easier, since users can easily quote the situation they got into, rather
than the developer having to guess or examine log files. This is especially helpful in
that it empowers users to avoid particular situations that are subject to outstanding
bugs; if they know that a certain part of the “map” causes crashes, it’s easier to avoid

ending up there.

Conclusion
‘Guam ssetceerea: NSS EN SER IUCN BR TR OS mary SEO

This gem has shown how a simple editor design can give more power to the users and
simultaneously make life easier for the developers. This is a virtuous circle that reduces
stress all around: developers spend less time getting tangled up in unmaintainable
code, and users spend less time waiting for seemingly simple (yet deceptively complex)
features to be added.

Organizing your editor around HUDs keeps it very flexible in terms of features:
adding a new feature is rarely difficult, thanks to the independence of individual
HUDs. At the same time, the editor is effortlessly able to simultaneously run alterna-
tive implementations of the same control: both run at once, and the user turns them

1.1 Context-Sensitive HUDs for Editors 15

on/off in real time as desired. This allows you to experiment more easily with unusual
features or new ideas for the editor, at a low development cost.

However, it doesn’t go much beyond the basics of what can be achieved with
heads-up editing (HUE). There are many ways this gem could be extended to provide
far greater support for HUE, although most of these require considerable extra pro-
gramming and are not to be attempted lightly. The core support presented in this gem
is cheap to develop and maintain, while providing most of the benefits.

G3 Errata and updates for the source on the CD-ROM will be available from [Mar-

onTHECD tin04]. The supplied code is minimal, but a library free for both commercial and per-
sonal use is being built on top of it, and later versions and improvements will be
available free on that site.

References

[Eclipse04] Eclipse. Available online at Attp://eclipse.org. 2004.

[Martin04] Martin, Adam, et al. Java Games Factory, “Libraries and Code Snip-
pets.” Attp://grexengine.com/people/adamlgpg5/ and _ http://grexengine.com/sections/
externalgames/.

[Popa99] Popa, Adrian. “Re: How Does a Heads-Up Display (HUD) Work on the
Aircraft?” Attp://www.madsci.org/posts/archivesijul9 9/93 1328936. Eg.r.html.

+ ls ee AP? : ; i : - : - : ’ — -

a
faueutst aplagsah er 69 kno a eae

we “out . eke holes Cees
sitrw bedava einer he asta nit ee ee eee
ahirveng oo hlnsbe witbede creat BK : —s ot La

“Fd iniza Slane eager sett WS wep , aod a
3 a wit <hdl bnee s gina hs

’ aie we (yy

As} ean i ie HiDA Bows ~mehoreers- 3 11, SL at ak

a hint levee 4 raed 6.0 ranean: et per poe en, ore

ad Hew vnbinsootlyrtty pete ersestoscod ese viv ae : arceereneip
ily Soaen Taitke soars uiw Palen power ets iy bi maarget —.

Pw cimeicn acum), « tips ‘eet ha 4 hh posrscabaty ; ih adhe i

ive foee the en ins ry. nich av —s rere j >
Bie Riatioetn on

FUT. A pag Re idkyo 4d ell

Py ‘ fs se arent cod ne
had ech has Tagen wrth) BU ha nae ck ys

Merona ena Tam — ines Mae Seton a ae aos

deo Waa? {0H alent gO shalt » ioe eats — naif
Awapatey ss a wey Arsaity avetarer, erie. case aiemalvagat “ft

tees A oP tee ite” fay or ‘y ui he vyresoal zene a yl

fall? i out’ ds Ma wre fe int cc} <heacila, Wu

in hinted) O03 dey'oe ah tan ye. meetea/bs Um abe

Hig iM “woe wtheirtgs hoo plete it ae w uh

ney ued we ihe}, ot Ree ca oly euvigation

Atha tet UN cba. Hine oh an « oD RRRE che. csr

thaan ef rr @ scr thay “<e ee sine tog A

ot ee ar] ae hil eee
a di A pos eer OT Pe nag ‘vans

VE buwarss

i » a ’ -

ols ii e :

wee 2) iene wae anh

a> — Gr ins é ovme 6

. —_
umes 0 garty S@o—sh poly

> a 1 aioe ’

g : ~ Oa, ~ | ne ee.

1.2

Parsing Text Data

in Games

Aurelio Reis

AurelioReis@gmail.com

NM: games require a vast amount of text data to be read and interpreted. From
scripting languages to shaders, the text must most often be taken from a stan-

dardized format and converted to binary data structures the program can use natively.
In this gem, we examine the creation and usage of a tokenizer: the module responsible
for converting textual data into discrete units, ready for interpretation and consolida-
tion into valid game information.

Before We Start __
For pit ae a hpi is sometimes Fier to asa stele and the tokenizer the lex-
ical analyzer (a word analyzer). We will use the terms token and tokenizer for this gem.
Many free tokenizers are on the Internet, and you should check them out, particularly
one of the more popular tokenizers, Lex (with Yacc) [Lex & Yacc], which is open

source and can function as a valuable learning tool. Tokenizer and parser theory is an

enormous field, and this gem will not attempt to cover every last facet. Instead, the

purpose of this gem is to serve as an introduction and explanation on the usefulness of

a tokenizer in game production, and how to approach implementing and using one in

a practical manner. For more information on the history and theory behind tokeniz-

ers and parsers, there is a “References” section at the end of this gem.

So Whattlstalioke tenner er
A token is melee an urdereive grouping ae cece used to represent individual

basic symbols. Basically, it is a grouping of characters that form a special ° ‘word.” As

an example, examine the small C++ program segment in Listing 1:

17

18 Section 1 General Programming
MMMM MMAAMAMAMMMMA NANA

stetnotomaustassesannnesnuitssynssentnnin Hasan tenuintonhieionnentnrnetoenteonuMuuatnaannninm tri innhinHneterernMrtHn sent

Listing 1.2.1 A Simple C++ Code Segment
a —

return false;

}

If you were to break Listing 1.2.1 down into tokens, you would have a list such as

that in Listing 1.2.2.

Listing 1.2.2 A List of Discovered Tokens Generated from the Code Segment in Listing 1.2.1
a

SLAF <string>

(<left parenthesis>

a <string>

aS <string>

0 <number>

) <right parenthesis>

{ <left brace>

return <string>

false <string>

F <semi-colon>

} <right brace>

As you can see, the tokens are classified into specific types. A tokenizer would blindly

read that segment as ASCII data and perform the classification process. We will get

into what we do with these tokens later, but for now just realize that we define the

basic types, then form a list of discovered tokens based on the data set (the text).

Making a Tokenizer
smareremine te Te ia DEE NOL SEERA RTOS SIE AD BE NI A ETE OI,

A tokenizer essentially works as a finite state machine (FSM), which generally func-
tions by performing a specific action or event based on the current global state. To
parallel with the world of games, an FSM might be used to guide an AI agent around
a virtual world. Its current state for instance might be “wander,” in which case it
might randomly walk through a node grid (or similar navigation scheme).

An input event such as seeing an enemy may trigger a state change to “search and
destroy” in which the agent hunts and attacks the enemy until it loses or kills it, at
which time the state may change again. In this instance, virtual visual and auditory
input functions as the input events. In a tokenizer, however, input events take the form

of special characters. Let’s examine one of the simplest situations; the comment. In

C++, a comment may exist in two forms; a line comment specified with two forward
slashes (//), or a block comment, specified by a forward slash and star to begin (/*) and
star and forward slash to end (*/). The tokenizer walks through every character in the

data set until it finds a forward slash (/). When it finds one, it skips ahead a character

to see if this is actually a comment. If it is, we have a state change to “In comment.”

1.2 Parsing Text Data in Games 19
"

The tokenizer then continues, skipping all new characters until either the end of the

line or the end block statement.
The tokenizer itself can be as complex as you wish to make it. If simple text data is

all you require, you can forgo token types entirely. All you would need to define are
your delimiters. A delimiter specifies how you want your data set broken up into
tokens much the same way punctuation does for the English language. The most com-
mon delimiter we use in written language is (of course) the space (). If you were to use

the space as the delimiter for tokenizing this sentence, each word would become a new
token. Notice however that a comma and period were also used. If you wanted to skip
these characters while using them to define your token boundaries, you would also
specify them as delimiters. The most common delimiters you might use are space (),
comma (,), newline (\n), line break (\r), and tab (\t). You might also want to use the

semicolon (;), but in some instances, it is better to reserve this as a special token type.

If you require more robust checking of token types, you need to represent them
with something more concrete than just a string token. This may be more desirable, as
doing so may allow for more straightforward parsing of tokens (more on this in a bit).

Using C++ methodology, you can derive a new token type inherited from a base token.
When a new token is to be created, it is matched with the token type most closely
matching its characteristics. General rules can also be created to allow for string group-
ing. For instance, a string token might begin with a quote, contain multiple characters
including would-be delimiters, then end with another quote (e.g., “This is a single
token”). Expressions (1 + 2 * 3) can also be defined in this manner, but most people

choose to define these after tokens have been created in the parsing stage.
As an example, examine Listings 1.2.1 and 1.2.2 again. Just from looking at the

token types, you can see a basic structure to the tokens’ placement. As you will see in

a moment, when parsing a segment like this, it is far easier to expect data types than

check for specific text at every token. For instance, a basic rule might be this: when an

if string token is encountered, we expect an open parenthesis, a number of inside val-

ues representing an expression, and a close parenthesis, followed by more tokens.

Instead of checking explicit names, we can merely ask for specific tokens by type. A

mere convenience, but this certainly helps in code readability and usage. Also, it guar-

antees proper syntax when parsing the data. With proper error checking, tokenizing

and parsing data is made much easier for the end user, which is why it is usually one

of the most important aspects of a good parser.

How It Works
UBLITERES LR ETE IES EA

G=% On the accompanying CD-ROM you can find a simple tokenizer with a test app. To

ONTHECD tokenize a string, the tokenizer follows a few simple steps. First, the file containing

our text data is read into a buffer or mapped to a view (if you are using file mapping).

We then call our tokenize function on this buffer, which goes through every character

and categorizes it based on the current state (with the initial state being TKS_INWHITE;

i.e., reading whitespace). The state changes many times during the entire process.

scene RU EUR AO ESE BOONE EATER LAT EE STONED LEE EOT TE ELLIE ITER ERTL EEL

20 Section 1 General Programming
nates nnntentsneneebtebidottepuanatecncntinnnnatnnteintanonnnnetetetenhHaRe AMAA

When a valid character is reached, the state turns to TKS_INTEXT, which means we. are

now reading actual characters. When a delimiter is reached, a token is created, catego-

rized into a type, and added to the token list. On the other hand, if a quote is encoun-

tered, our state suddenly changes to TKS_INQUOTES, which means we are now reading in

a text group. As soon as another quote is encountered, the text group ends and is final-

ized as a string token. The same process happens for single- and multiline comments.

The main function to examine is TokenizeString(). This is where the characters

are sequentially iterated over, and states change based on character conditions. The

token classification is done through the function ClassifyToken() (Listing 1.2.3),

which basically determines whether it matches the characteristics of a float, a special

character (from the special character table), or a string. This function is actually a

prime candidate for being recursive, but this has been skipped for illustrative purposes.

As you can see, it identifies whether a string can be converted to a digit, and if so,

whether it is negative. isdigit() is used to determine whether the string is a number,

but by comparison, it would be just as easy to scan the string for a period (denoting a

fractional number). IsSpecialCharacter() merely checks the first character of the

string to see if it is a one-character special token like an open brace, bracket, or quote.

If you were to add a semicolon as a token type, for instance, this would be the place to

check for it. When a token is ready to be made, the classified token is created with the

AllocToken() function. If the tokenization ends prematurely, the FinalizeToken()

function is called, which makes sure no token is left behind. After we have a token list,

it is time to parse through it, but what exactly are we parsing? First we must create
some kind of text format. Let’s quickly examine something called the BN Form, shown

in Listing 1.2.3.

Listing 1.2.3. Implementation of ClassifyToken() (Comments Removed for Clarity)

TOKENTYPE CTokenizer::ClassifyToken(const char *strText,

unsigned long ulFlags)

{
TOKENTYPE TokenType;

if (!(ulFlags & TKFLAG_STRINGSONLY) && (isdigit(strText[0]

) ||
(strlen(strText) >= 2 && (strText[0] == ‘-’ && isdigit(

nally aealleal i de My a) 3)

{
return TKT_FLOAT;

else if (TokenType = IsSpecialCharacter(strText[0]))

5
return TokenType;

}
else

{
return TKT_STRING;

}
}

1.2 Parsing Text Data in Games 21
osteo onermnme tanta ubaboeonesee Meat hiiareeitinsn stent RD MMAREG EB Enttaunsneoeahtlaeesnespnnncesteinta aia

Making Your Own Format
At this point we actually need to have something to tokenize. In the included test app
and code, you will find a very simple example. Basically, I started the foundations for
a format we will call the character file (we'll keep the extension .txt though so you
don’t have to register any new file types to read it). The character file will explain the
characteristics of a character in your game, non-player or player. For instance, imagine
a role-playing game where you must first create your character or start from a precre-
ated set of template characters. After your character is created, he needs to be saved.

The character file is the file we would save the character to (or in the case of precre-
ated characters, load from). The format is actually quite simple (perhaps too simple),
but to explain it, we must understand the concept of the Backus-Naur Form (BNF;

also referred to as Backus-Naur Notation). Basically, BNF is just an explanation of

how grammar syntax should be applied. An excellent example directly related to
everyday writing is available at [CS310] and an explanation of the symbols used at
[Estier]. BNF is based around unbreakable rules that define how strings may be used

together. My favorite example is the BNF for a date, shown in Listing 1.2.4.

Listing 1.2.4 The Backus-Naur Form (BNF) for a Calendar Date

<date> := <month> '/' <day> '/' <year>

<month> = 2

<day> = le pe ai

<year> ‘= 1900 .. 3000

As you can probably intuit, a BNF defines symbols and shows us what values a sym-

bol may be assigned. Using the previously defined grammar, and ignoring the fact

that some months don’t have 31 days in them (plus leap years), we could easily con-

struct a date—say, 12/25/04—and validate it using these defined rules. ‘Translating to

English, the BNF says “A date is a month, followed by a slash, followed by the day,

another slash, and then the year. A month is a value between 0 and 12. A day is a

value between 1 and 31. A valid year (to us) is between 1900 and 3000.”

It’s usually easy enough to go the other way around. Describe your “language”

and then translate to BNE If you would like a more detailed explanation, see

[Garshol03]. One last thing to note is that a lot of people don't follow a strict BNF

interpretation. If you want to separate the symbols with a +, for instance to signify

and “in addition,” the BNF would have been just as valid (although something like

that may be valid when using multiple string symbols next to each other as shown in

a moment). Find a system that works best for you but is not so esoteric that others

will be unable to interpret your instructions. Ambiguity (opening up the possibility

for too many possibilities to occur within your grammar without an idea of which one

is actually correct) is also something to avoid. BNF act more as a guide to help ratio-

nalize and think through key design decisions. As a fun exercise, see if you can make a

BNF for the C++ segment in Listing 1.2.1.

Section 1 General Programming

Now that you have an understanding of what a BNF is, take a quick look at our

example character file, Character.txt. A rule set for the grammar in our character file

format may be defined as shown in Listing 125:

Listing 1.2.5 A Rule Set for the Grammar of Our Character File Format

<CharacterFile> i= ‘Character’ + ‘{" <TextBody> ‘}’

<TextBody> i= <CharacterStat> <Value>

<CharacterStat> I= ‘Name’ | 'Strength' | ‘Dexterity |

Constitution | Intelligence | Wisdom | “Charisma | HitPoints

<Value> r= <Float> | <Bool> | <String>

<Float> cha OND OA ICE 740.02 21 Ox

<Bool> Ils TRUE | FALSE
<String> = Anon Ze AA See ZS

As you may have already guessed, a few ambiguities have been introduced here on

purpose. For starters, a CharacterStat right now can be one of three things: float,

bool, or string. Using the supplied grammar, a name technically can be assigned TRUE

or 3.14. This is obviously a fallacy. To remedy this, see Listing 1.2.6.

Listing 1.2.6 A Disambiguated Rule Set for the Grammar of Our Character File

<CharacterFile> = Character + { <TextBody> }

<TextBody> = <CharacterStat>

<CharacterStat> = (<FloatStat> <Float>) |

(<BooltStat> <Bool>) | (<StringStat> <String>)

<FloatStat> Dis Strength | Dexterity | Constitution |
Intelligence | Wisdom | “Charisma | HitPoints

<BooltStat> i= IsPlayer

<StringStat> = Name

<Float> i= Oa. OE Ate ot

<Bool> i= TRUE | FALSE

<String> re ALY Za] RAR Ze

As you can see, the ambiguity has been completely resolved by specifying explicitly
that a FloatStat may only take a float, Boolstat only a bool, and StringStat only a
string. A few liberties were taken with the BNF by adding the + after the number and
letter definitions, since it would be somewhat silly to define exactly what a number is
every time you write up a new BNF. Putting the + there basically states that there may
be an unlimited number of these values specified here. If you cross-reference this BNF
with our character text file, you will see that we meet all the requirements. As a mat-
ter of fact, it helps to write out the format as you want it to look even before creating
a BNF. As mentioned earlier, a BNF is an excellent way to poke holes in a format that
may look good at first but may later have disastrous loopholes (don’t laugh; it’s been

done).

1.2 Parsing Text Data in Games 23

ON THE CD

SH eee MOSM SEER AAS SOOE AER

Parsing Your Token List_
Now that we have a defined format, written a file with valid input, and converted the

text to discrete tokens, it is finally time to interpret these tokens and convert them to

valid binary data structures. The process of doing this is often calling parsing since
that collection of data is analyzed and processed individually. In our case, we process
it so the computer can understand it. Parsing data can be a very involved and in-depth
subject with many things that can go wrong. Some people prefer to parse recursively
(i.e., Recursive Descent Parsing [RecursiveDescent]), analyzing the data at different

levels and returning results as a whole. In our case, we will simply step through each
token linearly, following our grammar rules.

The most important part of parsing data is to remember that error checking is
essential. This cannot be stressed enough. If you do not ensure your data has been
parsed correctly, disaster will surely follow. You may choose to use exception handling
to take care of the situations where things break the format. It’s simple enough to
throw an exception when a rule has been broken. If you reference the code, you will
see that we first check for the Character and { statements to ensure we are starting a

new character entry. After this, we enter a loop that either terminates at a } or
assigns a value to our CharaterStats. If we run out of tokens or an error occurs
(using a BoolStat for a FloatStat, for instance), the loop terminates and kills further

processing, exiting the program with an error.
While not very exciting, the example application provided on the accompanying

CD-ROM can easily be extended. For starters, imagine attaching script behaviors to a
character with full expression checking and move/attitude commands. In addition to
the basic character loading, the code has been extended to read in a weapon as well,
but other items are easily added such as armor or shields. Also included is a neat trick

you can use that takes a CharacterStat and matches it directly to its class data mem-

ber using byte offsets into the Character class object (CCharacter). Using this tech-

nique, new class members are easily checked by the parser through the ccustomField

array (more specifics are in the code). This trick also comes in handy for network vari-

able synchronization or save/load functionality. There are lots of exciting ways to

expand the app; have fun trying it.

Conclusion
neaneaane RR SM REE SO RNR HIRT OCP

In this gem, we delved into the basics of implementing a versatile tokenizer, which we

use to break down text data into valid tokens, which in turn may be parsed into valid

game data. Using this knowledge, we created a very simple text format for storing a

game’s virtual character along with some stats. The accompanying code is commented

quite thoroughly so you should step through it in a debugger for a firmer understand-

ing of how the code flows. Then, put this knowledge to work in your own game!

24 Section 1 General Programming

References

[Aho, Sethi, Ullman85] Compilers: Principles, Techniques and Tools.

[CS310] Attp://marvin.ibest. uidaho.edul~ heckendo/CS3 1 0/grammar. html.

[Eli] Attp-//eli-project. sourceforge. net/elionline4. 4/lex_toc.html.

[Estier] Attp://cut.unige. ch/db-research/Enseignement/analyseinfo/AboutBNE html.

[Garshol03] Attp:/hwww.garshol. priv. no/download/text/bnf. html.

[Lex&Yacc] hrtp://dinosaur.compilertools.net/.

[Punctuation] Aitp://www.wordig. com/definition/Space_(punctuation).

[RecursiveDescent] /ttp://encyclopedia.thefreedictionary.com/
Recursive %20descent% 20parser.

1.3

Component Based

Object Management

Bjarne Rene, Circle Studio lid

bjarne.rene@circle-studio.com

D ceca object management models often rely on inheritance hierarchies to
share functionality between different types of objects. As games grow ever more

complex, this approach leads to a design that is hard to change and where functional-
ity is forced up the inheritance hierarchy if it is needed in several branches.

A good solution to this is to build objects from components, where each component

is responsible for the data and behavior of one specific task. An object-management
model based on this concept provides greater flexibility to create new objects and to mod-
ify existing behavior.

The first part of this gem outlines the differences between a traditional object-
management system and a component-based system, and the main benefits gained
from using the latter. The second part of the gem focuses on creating a component-
based system from scratch. We conclude with a strong foundation for production-
ready implementation.

senate TE NSAI IESE, ATUL Led Ld acd
In a traditional object-management system, objects derive from the same abstract base

class. For the purpose of this discussion, we consider such a system where all classes

derive from the class Cobject. The next step is to decide which classes derive from

CObject. More often than not, the classes that derive directly from CObject are also

abstract and represent a split in the tree between classes that have some functionality

and classes that do not. Typical examples of such splits would be renderable/nonren-

derable and animating/non-animating. Figure 1.3.1 shows a simple inheritance tree.

At first glance, this looks quite good, and the seduction of such a system is that it

often does look very good on paper, at least for a little while. One thing we know

about making games is that requirements change as development progresses. This

model is not one that accommodates change to a satisfactory degree. Let us look at a

few examples to illustrate.

25

26
Section 1 General Programming

snunstesnoosvninnsusssnsnensnsecte
nvtesnnnunnennenntenner nen nni MMe AnAscn Antenne eHASHSAAANHEONGOEISEOSMMIAAAMHesernenIItln te

FIGURE 1.3.1. Traditional inheritance tree.

What do we do if it is decided that weapons need to be able to animate? As it

stands, CWeapon and CAnimatingObject are in two different branches of the tree. A

solution to this problem is to make Cweapon inherit from CAnimatingObject. But wait!

A weapon is a collectable object, so we also have to make CCollectableObject inherit

from CAnimatingObject. The result can be seen in Figure 1.3.2.

CPhysicsObject

CAnimatingObject

CCollectableObject

CHealthpack

FIGURE 1.3.2 Some of the classes have been moved to
allow CWeapon objects to animate.

1.3. Component Based Object Management 27

This solves our problem (for now) but also introduces new problems. Now, all

collectable objects have become animating objects because one of the classes that
derived from CCollectableObject needed animation. That is quite a lot of baggage
for a lot of objects to carry around. It also means that our poor health pack and any
other collectable objects have to implement any pure virtual methods from CAni-
matingObject just to be valid objects, even if those methods do not make sense for

those objects.
Now let us consider what happens if we want to allow objects to take damage. We

should only need a couple of methods to be able to do that, so we decide to add those

methods to an existing class. Our design calls for objects deriving from the CActor
class to take damage (these are not shown here but would typically include at least
CPlayer and CEnemy/CAICharacter), so we go ahead and add the methods to CActor.

This seems like a sensible choice.
As time goes on, it is decided that doors are supposed to be able to take damage

and be destroyed as well. To give them the ability to do so, the damage methods are
moved up to CAnimatingObject, as that is the first common ancestor of CActor and

CDoor. It seems like a reasonable decision, and it gives us what we want. Another rea-

sonable decision might be to move the damage methods up to CRenderableObject if a
non-animating object needs the ability to take damage. The effect of a lot of these

“reasonable” decisions is that our tree becomes increasingly top-heavy. A class high up

the tree also ends up with a lot of methods that are not there because of what the class

does but because of where it is in the tree. Such classes lose their cohesion as they try

to be all things to all objects.

Components

We have seen that we run into quite a few problems if we rely on all objects being part

of a big inheritance tree. What we would really like instead is a system where we can

combine existing functionality into new objects and add new functionality to existing

objects without having to refactor a lot of code and reshuffle the inheritance tree every

time we want to do so.

A Simple Object

A good solution is to create an object from component parts. A component is a class

that contains all the data members and methods used for a particular task. An object

is in turn built up by compositing several components together. Figure 1.3.3 shows a

spoon object and the components from which it is made.

The Entity component allows us to place the object in the world. The Render

component allows us to associate a model with the object and render it according to

the settings of that component. The Collectable component allows us to pick up the

object and keep it in our inventory.

Section 1 General Programming
snare ner sevice ein ROSAASAenenay nnn nnmLttaM MASI OREN AMMAR REANIM

Spoon

FIGURE 1.3.3 A simple object built from components.

Interfaces

All components derive from a base component interface. We will imaginatively call
it IComponent. This interface contains a few methods that all components need to
implement. It is mainly of use to the object manager (discussed in the next section)

for being able to deal with all components through pointers to this base class.
We would prefer to concern ourselves only with the public interface that each com-

ponent exposes. To make any sense, each component needs to derive from an interface

that promises a bit of functionality. Let us use the Render component as an example.
Figure 1.3.4 shows the inheritance tree that leads to CCmpRenderer. At the top we

have IComponent. Then we have ICmpRenderer. Finally we have CCmpRenderer that

implements any functionality that the interfaces above it have promised.

IComponent

ICmpRenderer

CCmpRenderer

FIGURE 1.3.4 7/e CCmpRenderer

inheritance tree.

1.3 Component Based Object Management 29
eblonnestenetesssetetsinensnieieianion scenes setanasoe eens antenna MASE AAn Haan GuetineanaineteSa bain R ANAK EROmNRGEHELU ANEMIA

This looks an awful lot like we are doing a lot of the things we just said are wrong
with the traditional systems. Everything derives from one base class and we are using
inheritance all over the place. How is this different? It is different because now all our
inheritance chains lead to classes that perform a closely related set of tasks. In other
words, the classes have tight internal cohesion.

Keeping Track

We need to organize all these components somehow. For that purpose, we have the
object manager. It is really an interface to a database that the rest of our code is not
allowed to see very much of. The database does not have to be (and is unlikely to be)
of the Oracle or SQL kind; it just needs to keep track of all our components and make

the access methods exposed in the object manager as efficient as possible. The object
manager allows us to create, query, and destroy components, among other things. We
will have a closer look at the object manager and one possible implementation of the

database in the “Implementation” section.

There Is No Spoon

Let us go back to our spoon object example (illustrated in Figure 1.3.4). We have all

these components, but what has happened to our object in all this? There is none! It

may be tempting to keep a CObject class around for comfort, but we are not going to.

There is nothing that requires us to retain a CObject class; if we did, how would we

decide what was allowed to live in the CObject class and what would have to live in

components? If we make everything live in components, that is one less choice to

make when we are designing our system. All that remains of the object is an object

ID. This can be anything as long as it uniquely represents an object and is convenient

to pass around. Some kind of handle based on an int should do just fine. Of course,

it is still convenient to talk about objects, because that is what they appear to be to the

rest of the world. Any talk about objects from here on really means the collection of

components that form an object when combined.

We Need to Talk

The components that form our spoon object all perform their own well-defined tasks,

but it would be naive to think that they can accomplish this without communicating

with each other. The Render component needs to ask the Entity component about

the world position of the object when rendering, and the Collectable component

will probably have to tell the Render component to switch off rendering when the

object is picked up.
There are two ways that components can communicate. In the case that we know

of a particular interface that we would like to ask or tell something, we can ask the

object manager for a pointer to the particular interface and then call methods on the

particular component through that interface pointer. This would be a good solution

30 Section 1 General Programming

to the Render component asking the Entity component for the object's world posi-

tion. Any of the code in the game that has access to the object manager can query for

an interface belonging to a particular object. All that is needed is the object ID.

The second means of communication between components comes in the form of

messages. This is useful for the situation where a component has something to say, but

does not quite know to whom to say it. A message can be sent to an object or to all

objects. In the case of the Collectable component telling the object it belongs to that

it is picked up and wants to be hidden, it would post a message to all the components

in the object to say that it would like to be hidden. Each component type will tell the

object manager at initialization time which messages it is interested in receiving.

Extending Our Object

So what to do if we want to be able to bend the spoon? At the moment, our spoon

object is rigid and does not bend easily. The solution is simple enough: we add an ani-

mation component to the object.
Now, we have not really talked about how objects are defined. That bit seemed

easy in the traditional system: the object was defined by where it was in-the inheritance
tree and by the methods it exposed to the rest of the world. We could still make a class
for each object type and use aggregation so that each object class is built up from a
bunch of has-a relationships rather than the is-a relationships of old. This brings us one

step closer to what we want, but it still means that objects are set up in code, and that
means we need to compile every time we change the structure of an object.

What we would really like to have is the whole process of creating objects be com-
pletely data driven. That way, designers can play around with existing objects and
even create new object types without any programmer input. The system has every-
thing that is needed to make this happen. We simply need to derive file formats for
specifying components and objects and provide the designers with the tools they will
need.

Creating the System ERNIE EER RRR A RC TR TER UES

Now that we have a reasonable idea of what we want, we can go ahead and create the

©» system. The companion CD-ROM has all the code for a component-based object-
ONTHECD management system, including a few different components and messages to get

started using it. It is not a complete system, and there is not really any way that it can
be considering that all games are different, but it should be easy enough to extend the
system to make it work for a wide range of games.

The Component Interface

The first class that we are going to have a look at is the component interface. This is
the class from which all other component interfaces and components derive. It looks
like this:

1.3 Component Based Object Management 31

class IComponent

{
public:

IComponent() ;

virtual ~IComponent() = 0;

virtual bool Init(CParameterNode &) = 0;

virtual void Deinit(void) = 0;

virtual EMessageResult HandleMessage(const CMessage &);

virtual EComponentTypelId GetComponentTypelId(void) = 0;

CObjectid GetObjectId(void) const;

ICmpEntity *GetEntity() const;

private:

void SetObjectId(CObjectid old);

CObjectid mObjectId;

friend CObjectManager ;

}3

So now we know what it looks like, but what does it do? Let us have a look at each of
the declarations in turn. First we have the constructor and destructor. They do not
really do much other than the virtual destructor signaling that this class is meant to be

derived from and not instantiated. After that, it gets a bit more interesting. The next

two declarations:

virtual bool Init(CParameterNode &) = 0;

and

virtual void Deinit(void) = 0;

are called on each component at initialization and de-initialization time, respectively.

The one parameter to the Init() method is a reference to a CParameterNode object.

CParameterNode is a node in a tree of component data. Think of it as a node in the

XML datafile that lets us read data from it and its children without having to do all

the parsing that reading XML would normally entail. The Init() method of each

component then asks for the data it wants from this parameter node and initializes the

component appropriately. The Deinit() method is responsible for cleaning up after

the component, making sure to free any memory and release any handles that the

component owns.
The next declaration:

virtual EMessageResult HandleMessage(const CMessage &)5

is not declared pure virtual. Component classes do not have to override it if they do

not want to. Its return value is of the enumerated type EMessageResul1t that looks like

this:

Section 1 General Programming
sananitescesnnncaaiennnmsntinnennastiytiiNntn HINO HOOAAAUAIMAAN SUH A

cap

ON THE CD

enum EMessageResult

{
MR_FALSE,
MR_ TRUE,
MR IGNORED,
MR_ERROR

hs

where MR_FALSE, MR_TRUE, and MR_ERROR all indicate that the message was handled.

MR_IGNORED means that no attempt was made at handling the message. The imple-

mentation of HandleMessage() in IComponent simply returns MR_IGNORED without tak-

ing any further action.
The next declaration:

virtual EComponentTypelId GetComponentTypeld(void) = 0;

returns a value of the enumerated type EComponentTypeld. There is a one-to-one rela-

tion between the entries in the enum and instantiable component classes.

Then we have:

CObjectid GetObjectId(void) const;

CObjectid mObjectIid;

GetObjectId() is a nonvirtual member function, and we added the member variable

mObjectId. In a perfect world, we would not have this member variable, and GetOb-

jectId() would be pure virtual to make the IComponent class a proper interface. In

the real world, however, it makes a lot of sense to have mObjectId as a member vari-

able of the IComponent class and to give the object manager access to change it

through the two remaining declarations in the private section:

void SetObjectId(CObjectId old);

friend CObjectManager;

If we did not allow this, every component class would have to contain the same code
to set up the object ID, and we would be introducing plenty of scope for error.

Finally we have the public method:

ICmpEntity *GetEntity() const;

This is another situation where being practical is of greater importance than making

it look pretty. In our system, we have decided that all objects have to contain a com-
ponent that implements the ICmpEntity interface, so we add GetEntity() here to
facilitate the lookup of this component from any other component that belongs to
the same object. The IcmpEntity class can be seen on the companion CD-ROM.

1.3 Component Based Object Management 33

The Object Manager

The heart of the system is the object manager. The CobjectManager class is a bit too

large for us to go through it method by method here, so we are going to focus on the
core features. Refer to the code on the companion CD-ROM for the CObjectManager

declaration and implementation.
The most important feature of the object manager is the database. It is imple-

mented as a separate struct to hide the implementation details from users. We are
going to have a little peek at it here though. Here it is:

struct. SObjectManagerDB

{
// Static component type data
SComponentTypeInfo

mComponentTypeInfo[NUM_COMPONENT_TYPE_IDS] ;

std: :set<EComponentTypeld>

mInterfaceTypeToComponentTypes[NUM_INTERFACE_TYPE_IDS] ;

// Dynamic component data

std::map<CObjectIid, IComponent*>

mComponentTypeToComponentMap[NUM_COMPONENT_TYPE_IDS] ;

// Message data

std: :set<EComponentTypeld>
mMessageTypeToComponentTypes[NUM_MESSAGE_TYPE_IDS] ;

}5

All the members of SobjectManagerbDB are plain old arrays of more complex data

types. They can all be thought of as two-dimensional arrays where one dimension is

known at compile time because we know the number of component, interface, and

message types.

The first two data members of this struct are set up at system initialization time

and will not change while the game is running. Each component type calls Cobject -

Manager: :RegisterComponentType(), which sets up the data in these two arrays.

SComponentTypeInfo contains data that we need to create components. It looks like

this:

struct ComponentTypeInfo

{
ComponentCreationMethod mCreationMethod;

ComponentDestructionMethod mDestructionMethod;

CHash mTypeHash,;

}5

The creation and destruction method members are function pointer typedefs:

typedef IComponent* (*ComponentCreationMethod) (void) ;

typedef bool (*ComponentDestructionMethod) (IComponent ie

We are going to create functions with these signatures as static member functions of

each component class. They are responsible for creating and destroying components,

CoD

ON THE CD

Section 1 General Programming

respectively. The object manager only deals with pointers to components, which

leaves effective management of component memory as an exercise for the reader. For

the system implemented here, standard new and delete work just fine. The variable

mTypeHash is used to look up the component type ID based on the hashed name string

for the component.

For each interface type, we maintain a set of component types that implement it.

That information is stored in the array mInterfaceTypeToComponentTypes|]. This is

used in the queryInterface() method of the object manager. To simplify things, we

only allow one implementation of any interface in each object so that QueryInter-

face() either returns NULL if no components in the object implement that interface,

or a pointer to the only component in the object that does so.

During the course of the game, we will be using the mComponentTypeToCompo-

nentMap array a lot. Each element of this array is a map that maps IComponent point-

ers to the object IDs of the objects to which they belong. When a component is

created, its object ID and address (in the form of an IComponent pointer) gets added

to the map at the array index determined by its component type. The QueryInter-

face() method will ultimately have to look at mcomponentTypeToComponentMap to see

if it can match an interface via mInterfaceTypeToComponentTypes to a component

pointer. Look at the code on the companion CD-ROM for details of this method.
The last member of SObjectManagerDB is mMessageTypeToComponentTypes. [his

keeps track of which component types subscribe to which message types. Message

subscriptions tend to be set up at initialization time, although there is nothing stop-
ping subscriptions or unsubscriptions while the game is running.

A Sample Component

If our game involves dealing and taking damage, we are quite likely to need a health
component. The requirements are quite simple:

¢ Keep track of the current health of the object.

e Allow querying of the current health.

* Update the current health value when the message MT_TAKE_HIT is received.

¢ Send the message MT_HEALTH_DEPLETED when the health reaches zero.

The Interface Class

First we create the interface ICmpHealth. It looks like this:

class ICmpHealth : public IComponent

{
public:

virtual int32 GetHealth()=0;
protected:

static void RegisterInterface(EComponentTypeld) ;

}5

1.3 Component Based Object Management 35
otconsincenititnnnteinaisceronete nas nina nnottetaahceseetentnaneeeDrieeesevnetetetttemmsesettteetensotetnhimunsisrntcentniuntcimettexennuneniermaentcnmnetett

The method declaration GetHealth() is the reason we create this interface in the first

place. The implementation of the next method looks like this:

void ICmpHealth: :RegisterInterface(EComponentTypelId compId)

{
GetObjectManager().RegisterInterfaceWithComponent (

TID HEALTH,

compId) ;

}

This method needs to be called from the Init() method of any component that

implements this interface. The RegisterInterfaceWithComponent () function call tells

the object manager that the component of type compId implements IID_HEALTH.

GetObjectManager() as a global function.

The Component Class

We call our component class CCmpHealth, and it looks like this:

class CCmpHealth :°public ICmpHealth

{
public:

// Static methods

static void RegisterComponentType(void) ;

static IComponent* CreateMe() ;

static bool DestroyMe(IComponent *) ;

// Virtual IComponent methods

virtual bool Init(CParameterNode &) ;

virtual void Deinit (void) ;

virtual EMessageResult HandleMessage(const CMessage &);

virtual EComponentTypeld GetComponentTypeld (void)

{ return CID_HEALTH; }

// ICmpHealth methods

virtual int32 GetHealth() { return mHealth; }

private:

int mHealth;

}5

First, we look at the implementation of the static methods:

void CCmpHealth: :RegisterComponentType()

{
ICmpHealth: :RegisterInterface(CID_HEALTH) ;

GetObjectManager() .RegisterComponentType (

CID_HEALTH,

CCmpHealth: :CreateMe,

CCmpHealth: :DestroyMe,

CHash(“Health”)) ;

GetObjectManager() .SubscribeToMessageType (

CID HEALTH,

MT_TAKE_DAMAGE) ;

36 Section 1 General Programming

This is arguably the most interesting of the three. It begins by registering itself as an

implementer of the ICmpHealth interface. Then it calls RegisterComponentType() in the

object manager to tell it about the CreateMe() and Dest’ royMe() methods, and also

what name (in the form of a hash value) it would like to be known under. The last thing

it does is to register the component as a recipient of the MT_TAKE_DAMAGE message.

The next two methods take care of creating and destroying the component. We

simply use standard new and delete to do so.

IComponent *CCmpHealth: :CreateMe()

t
return new CCmpHealth;

bool CCmpHealth: :DestroyMe(IComponent* pComponent)

{
delete pComponent;

return true;

}

This is an area that would benefit from a little more work on a tailor-made memory-
management system, as we will be doing a lot of creating and destroying components.
Different component types could even use different allocation schemes as long as the
create and destroy methods match for each type.

Now we move on to the methods defined in IComponent. The method:

bool CCmpHealth: :Init(CParameterNode &compNode)

mHealth = compNode.GetInt(“Health”) ;

if (CParameterNode: :GetLastResult() != EPR_OK)

return false;

retunn sceues

}

reads the data that the component needs. compNode is the component level parameter
node. The call to Get Int (“Health”) asks for the int value of the child node with

name health. To simplify things, there is only one child layer of nodes

under compNode. If the request for data fails, the CParameterNode class flags an error.

That is checked for by calling GetLastResult().

The next method:

void CCmpHealth: :Deinit(void)

{
}

does absolutely nothing. Our only data member is an int value, so there is not much
to clean up. If the component had any memory allocated, we would have to free it
here.

1.3 Component Based Object Management 37

Let us look at the message-handling method:

EMessageResult CCmpHealth: :HandleMessage(

const CMessage &Message)

{
int newHealth;

switch(Message.mType)

{
case MT_TAKE_ DAMAGE:

newHealth = mHealth —
reinterpret_cast<int>(Message.mpData) ;

if (newHealth <= 0 && mHealth > 0)

GetObjectManager() .PostMessage (

GetObjectId(), MT HEALTH DEPLETED) ;

}
mHealth = newHealth;

return MR_TRUE;

}

return MR_ERROR;

}

When we receive the MT_TAKE_DAMAGE message, we know that its data field is of type

int and represents how much damage we have taken. If the health went from positive

to negative, our health is depleted and we need to tell the other components that

make up this object about that. We do this by calling the PostMessage() method in

the object manager. We have to specify the recipient object, and for that, we will use

the GetObjectId() method that we have inherited from IComponent. If we would like

all objects to hear about a message, we would call BroadcastMessage(). [hen we set

the new health value and return MR_TRUE to indicate that all went well. If we did not

recognize the message we received, that is an error. We use MR_IGNORED for messages to

which we know we have subscribed but decide to ignore.

The last two functions are so straightforward that we have defined them inline

with the declaration.

SRN SEE OLESEN OOD ITED LL LTTE LOE LLL LED SLL LLL LILES LEN

We have seen that static inheritance hierarchies do not stand up to the challenges of a

modern game. This article has presented a strong alternative in the form of a compo-

nent-based system. This system is flexible enough to cope with frequent changes of

requirements. The game designers get the power to create and modify objects without

programmer intervention. This leads to quicker turnaround time for testing a design

change, which leads to more design iterations, which tends to lead to better games.

The programmers no longer have to spend their time refactoring the system every

time the design changes but rather move the game forward by implementing the

functionality called for in the design.

jin sapheay she rena thecuehenree
a7 | - een ane OF 2 af

i) fM i ny to ase 5 aa
ohn ie Ls he Gamay 3 tes Ade) od
? Gxcw Vibe rap art we Doe Us & 2

T pre year tS qa mets Oued cee

fe « eomtord ae el At Gete Gataang 3NAT TD

fares $2 Vion sah raw thany inna! aie Mn
«x (ieee £60 +> ty Leupan

_ Pb i fay « a 2. o wa le

ipa ot {)eEge thon jonra

ot io Wi 2ATH OM GIT el e@Oted
WARBLER: cthests wae | (Comer d* viaguaes eas

jdt (qohean <= aeteade ’
oie'é Ctmgor RAT - AM row fen a ene
return ¢ 7 7 }- 7 —

ie:
’ ue Ge owen. Mee a

~e ie te Gh Gyde thice Quiet Wet -(™ feats a Toke tee rk an atl

antsy "i ‘op veheetinaeks
ser iy 2 begin ver 1 HAL See ae ih) SAMA Tl
mv irtacyey ord 113 Mg sris: 7 san? i ri ie iyi ae. Bantied peel goie

iu? Prasoqines hy aha Aba, a. baa ae be is | vay ich

ni laaghesess (pageaendrend ae -ynilas od ad) alps weds veel

tiat Hw ow adh ret Beer) oath 4 sate unsieientans
94th blac v7 tl toot wrenecH mest batfsyint ovael vy ave edn Coser a

hie pa neorl|’.()aqurcettapokeot tar bleow av Te eT ita S.

ton bib awl ew tiger (he aglaw se gu) Fa sagen ‘ce ainley chlnadt woe wth
OF Bilas 10t Ganon Aon i% sont ead tuelt lyewiboae See oe asingtagt

fj weeny a cate aert roel ing dus wentsnt workin Lalla ’

‘Stlint tas: boatish weed. sw yes baw ores rn) ra vit at nes Snr een i

_

ne > he = Ph + am ; 7 ' a l,

: WT sal ai f =*

ie we ¥ 7”

“ont eRe: i

& io eryralled> sit 61m te ye spt ID voilnarseé sacs

gists ¢ Tey cope tity ; «saengals gin eV 7B Daptng ng Le

to eyeesia ‘tn a vit Abew sii) > dovows aldical) ai res

tuadiw anata Mbox DNER ere) Sree oft rad atpcigeally

Weyer) 5 Rey! 1 | 1 hin@are ih) reds nw thes! iat

eoro.s Webi! Ge DO Pa i nahw erie Meal ngiesth —_——

ries Mr Oe pela Orta aia forge th alee a eit

Hh yiwogalqin, gh byeepol gure. ai) aepen, roAapa a

Coma op a

1.4

Using Templates for

Reflection in C++

Dominic Filion, Artificial Mind & Movement

dfilion@hotmail.com

he C++ language has evolved quite a bit since its humble evolution from the orig-

inal C language. It has grown from a language that was purposely devised to pro-

vide “readable assembler code” (C) to a programming language with a wide arsenal of

tools supporting structured, procedural, object-oriented, and/or generic program-

ming, depending on which style suits you best (or best fits your problem domain).

The latest variant on the C++ language, C#, adds on many features of its own—

garbage collection, just-in-time compiling, and many other things—but one feature is

most worthy of note: reflection.

Reflection is the ability for a program to inspect (and sometimes modify) its own

high-level structure at runtime. Compiling the program generally strips the assembled

code of any easily externally observable structure; in reflective programming lan-

guages, this structural information is kept as metadata. An enormous effort has been

put in by such notable companies as Microsoft into building reflective infrastructures,

from COM to .NET.

Now, all this highbrow stuff about code that is se/f aware is all very nice for Star

Trek fans out there, but how does it help us in the real world, and more to the point,

how does it make your four-legged furry zombie giant better than the other guy's

four-legged furry zombie giant?

There are many uses for reflection. One common use is to bind external inter-

preted script code to actual C++ engine code. As an example, you may write a class

CbigAssWhoopingWeapon. You may expose this class to a script language so that a script

engine could easily and automatically discover the class’s type and structural informa-

tion, such as properties and methods and automatically route script calls to CBigAss-

WhoopingWeapon’s methods and accessors.

Other examples of uses would be to automatically serialize (load/save) objects in

your game as XML data or to provide basic network persistence of class objects. We

will go more into applications of reflection after implementation details have been

discussed.

39

40 Section 1 General Programming
mntetntnntontsteenannetetetnee neta A ECLA nn ORNS -

As this gem will make ample use of advanced features of templates, it is assumed
that the reader is quite familiar with templates in general. More obscure details on
how the templates are used will be explained as we go along.

Requirements
SEEGER OEMS ECE NES RO SABRE PET HREON er NEA MN

Our goal is to build a user-friendly reflection system that can be used in C++. We
would like this system to be:

Efficient: Making games today often means making console games. We want this
reflection system to be lightweight so it runs on the limited memory footprint
available on console machines.

Cross platform: Again, this comes with the territory when making console games.
So, we cannot use compiler-specific knowledge, such as decoding PDB files.
Besides, nobody would be too keen at the prospect of bundling debug
information with a shipping game.

Transparent: Programmers should not need to change the way they normally code
to be able to use the reflection feature. It should be the reflection system's
burden to tie itself into the user programmer's code, not the reverse.

Without effect on compilation: The system should not adversely affect compile
performance or make the compiling process more complicated. This precludes
the possibility of making a separate C++ parser that would read the C++ code
to discover types at compile time; such processes are generally slow and
error-prone.

Flexible: Programmers should have exact control over which parts of their class
interface they would like to expose to the outside world. Often you may want
to expose a limited functionality from a class, not the whole class.

Robust: The system should be type-safe and catch any common errors (such as
trying to set a value of a certain type to a property of the wrong type in a script).
This should be the first hint that templates will be used in the system.

The functionality of the reflection system can be broken down into three main parts:

Registration: This deals with letting the programmer tell us which data members he
would like to expose to the external world.

Introspection: This allows the programmer to inspect what property and method
names are supported by the class and of what type.

Manipulation: This allows the world to call the programmer's code from an
external interface (which could be a script, a GUI, a file, etc.).

Reflection normally entails exposing code elements such as data members and class
functions. Because we will cover a lot of ground in this gem, we will focus on the
implementation of reflection to expose data member accessors; implementation of

1.4 Using Templates for Reflection in C++ 41

function methods will be left as an exercise for the reader. The technique exposed here

is easily extended to support exposure of class functions as well.

Properties are the central element in our reflection system. For the sake of defini-

tions, a property is simply a data attribute whose access is controlled by read and write

accessors. Often the accessors simply return or set a protected or private variable;

other times they will compute a result or change an internal state. We will start by

building the system around properties from the lower layers up, adding complexity as

the need arises.

Part: Runtime Type Information
At the most basic level, no reflection system can work without some notion of run-

time type information (RITI), or determining an object's type dynamically at runtime.

While the C++ runtime’s innate RTTI could be used for this purpose, using our own

RTTI system will simplify the implementation of the property system, help for exten-

sibility, and will ensure the system is optimal. While it may look like we are making a

rather large detour before getting to our main topic, the implementation of our cus-

tom RTTI system will become very handy later on. We will build upon the knowl-

edge gathered here to implement the reflection support in the second part of this gem.

We will be using templates for our RTT system as well, so this will prepare us for the

template work ahead for the reflection system itself.

To be able to find the type of an object at runtime, that object must implement a

virtual function overridden at each level in the class hierarchy that returns informa-

tion about the type of the object. Our type information structure will contain:

¢ The name of the class

¢ A unique class ID identifying the class

* A pointer to the ancestor's RTT information

¢ A function callback to a factory function

The class name will be the undecorated name of the class stored in a string. @T:The

class ID is a unique user-provided 32-bit number that will be provided for effective-

ness in terms of comparing class types, and in terms of serializing class type informa-

tion to a file or over a network protocol.

The pointer to the ancestor RTT is self explanatory.

The function callback will point to a factory function that will create a new

instance of an object of this class type. This can be quite useful when we want to cre-

ate an instance of an unknown type at runtime while only having its class ID.

The RTTI structure information should look something like this:

typedef DWORD ClassID;

typedef CBaseObject* (*ClassFactoryFunc) (ClassID);

const DWORD CLASSNAME_LENGTH = 32;

42 Section 1 General Programming

class CRTTI

{
public:

CRTTI(ClassID CLID, const char* szClassName,

CRTTI* pBaseClassRTTI, ClassFactoryFunc pFactory);

private:

ClassID m_CLID;

char m_szClassName[CLASSNAME_LENGTH] ;

CRE m_pBaseRTTI;

ClassFactoryFunc m_pObjectFactory;

};

Public data accessors (Get, Set) would normally be added to this class but are not

shown here for clarity. Each class in the application will contain a static instance of its

RTTI structure and will implement a virtual function returning a pointer to this sta-
tic RI'TT structure. Note that the RTTI structure is only stored once per class, not
once per class instance.

Vain stemplates for ALEL sa.
The RTTI system could be implemented using macros, but a more elegant technique
involves using templates to implement the RTTI.

Rather than using macros to effectively paste in the RTTI code in each applica-
tion class, we can derive all of our application classes from a templatized cSupport-
sRTTI class that will implement the RTTI functionality.

If all our engine classes inherit from CSupportsRTTI, how can they ultimately derive
from their true ancestor? Would this require us to write variants of CSupportsRTTI that
derive from every possible ancestor? It does not, because it is entirely legal to write the
template in this way:

template < class BaseClass >

class CSupportsRTTI: public BaseClass

{
};

Notice how the ancestor of the templatized class is actually a template parameter itself.
Thus, when deriving one of our application classes from CSupportsRTTI we can also
specify CSupportsRTTI’s ancestor, like this:

class CMyClass : public CSupportsRTTI<CMyBaseClass>
{
};

By deriving all application classes from CSupportsRTTI, we have our RTTI functional-
ity sandwiched conveniently between each class and its ancestor. What we are effec-
tively doing is injecting our RTTI code between each class and its ancestor, giving a
hierarchy like the one in Figure 1.4.1.

1.4 Using Templates for Reflection in C++

CSupportsRTTI<CMyClassA>

CMyClassA

CSupportsRTTI<CMyClassB>

CMyClassB

FIGURE 1.4.1 Zhe RTTI hierarchy.

We can thus review the rest of our RT'TI functionality.

#include <typeinfo.h>

template <class T, class BaseClass, ClassID CLID>

class CSupportsRTTI: public BaseClass

{
publicy:

const static ClassID ClassCLID = CLID;

CSupportsRTTI();

sitaticel * Create();

static void RegisterReflection() ;

static inline CRTTI* GetClassRTTI() { return &ms_RTTI; }

virtual CRITI* GetRTTI() { return &ms_RTTI; }

protected :

static CRTTI ms_RTTI;

}5

template <class T, class BaseClass, ClassID CLID>

CRITI CSupportsRATTI<T, BaseClass, CLID>::ms_RTTI

(@iCELD; typeid(T) .name(), BaseClass::GetClassRTTI(),

(ClassFactoryFunc)T::Create, NULL);

template <class T, class BaseClass, ClassID CLID>

inline CSupportsRTTI<T, BaseClass, CLID>: :CSupportsRTTI()

{
}

44g Section 1 General Programming
I Bite A ead icsnnec ies wenttnsie 9K The 8 a Ne

 werstcourenenstcic eect ctealanaustsiiannaniiasiceeannaiietenntaanaeeaettcneintahwrannniiiecialeinneteai

template <class T, class BaseClass, ClassID CLID>

T* CSupportsRTTI<T, BaseClass, CLID>::Create()

{

;
return new T();

template <class T, class BaseClass, ClassID CLID>

void CSupportsRTTI<T, BaseClass, CLID>::RegisterReflection()

{
}

The RTTI info structure is put in as a static member in the template. Each template
instance (we have one unique template instance per class type in our application) will
spawn its own instance of the static member, which is exactly what we want.
GetRTTI() is the virtual function that will return the correct RTTI information

depending on the type of polymorphic objects.
GetClassRTTI() is a function that can be used to query the RTTI information of

a specific class, as in CClassType::GetClassRTTI(). Note that static member func-

tions Aide static member functions in ancestor classes, which again is exactly what we
need here. CClassType: :GetClassRTTI() will hide CBaseClassType: :GetClassRTTI().

The Create() function is our class factory function. Its simple implementation

allocates a new instance of the instantiated template type. T::Create() will resolve to
CSupportsRTTI<T, BaseClass, CLID>::Create(), which is T’s base class.

The lines that declare the static RT'TI structure merit our attention. Here, the

RTTI structure is statically constructed, and all relevant RTTI constructor parameters
are passed in to the RTT] structure:

* CLID is the 32-bit unique class identifier. This is a template parameter.
* Typeid(T).name() is the class's name string. It may appear that we are cheating

here: are we not using the C++ runtime type info system to build our own system
on top of it, which pretty much defeats the purpose of writing our own? Not
really: typeid(T) here will be resolved by the compiler at compile time, so we are
not really using the C++ dynamic RTTI structure. In fact, you will find that the
code works even with the C++ runtime type info system turned off. In effect, this
snippet of code will simply cause the compiler to create and fill the type_info
structure for T and return the associated string, which does not require any run-
time polymorphic checks.

° BaseClass::GetClassRTTI() is the base class RITI structure. BaseClass is a
template parameter.

* CSupportsRTTI<T, BaseClass, CLID>::Create() provides the pointer to our fac-
tory class function, which was automatically instantiated by the template. It’s use-
ful to create instances of classes when only knowing the class ID or class name as
a string.

When the static variable is initialized at application startup, all RTTI structures can
be added to a global RI'TI manager. Care must be taken to avoid dependencies

1.4 Using Templates for Reflection in C++ 45
cree ceumntsonesonoecotennnnnanensehtsttettaatcnetteiuiesonrisnmnteentatnnteennmnstiitenersthiectnetee aot eteMyomunensenununereninunneussneintiit

between each static variable’s constructor: the compiler cannot guarantee a specific
order of initialization for static variables, and having a static variable A referencing a
static variable B in its constructor can wreak havoc. Fortunately, there is no need for
such dependencies in our static variable’s constructor parameters, thus the order of
initialization is irrelevant to the RTT system.

Making an application class support our custom RTT] system is now very simple:

class CMyObject : public CSupportsRTTI< CMyObject, CBaseObject,

0x2e160f7a> // 0x2e160f7a is a user-provided random unique ID

{
}5

The RTTI system is thus complete.
To be able to create instances of classes by their class ID at runtime, we simply

need to add some code in the RTTI structure’s constructor so that all the RTT struc-

tures are registered into a globally managed list or map. This map could then be

searched by the RT'TI manager who could find the RTTI structure associated with a

class ID and call the factory function associated with the structure.

Other Comments about RIT!” ONSET

The RTTI system described previously could be tweaked on several aspects:

¢ The class ID is not truly essential. The RITI structures are unique static

instances for each class type in the application, thus you could use pointers to the

RTTI structures themselves as an ID of sorts for comparison and assignment pur-

poses. Class IDs will be required only if you intend to save the IDs to a file or pass

them over the network.

¢ The class factory function is optional if all you need is to query polymorphic class

types at runtime.

¢ Using typeid(T).name() syntax to retrieve the class name is not obligatory if it

causes problems with your compiler, but the syntax to bind the RTTI to the

application classes will certainly not be as elegant. The class name string can be

passed as a template parameter. However, it is not allowed to use unnamed objects

as parameters to a template, so doing this:

template <const char* szString> class CMyTemplate

{
}5

class CMyClass : public CMyTemplate<”Hello”>

will not be allowed, as the string “Hello” is an unnamed string variable. You will be

forced to make the string a constant with a specified name, like this:

char szHello[] = “Hello”;

class CMyClass : public CMyTemplate<szHello>

46 Section 1 General Programming
ssasconencntacuacstienausuan enentciienasenotonseonansnetenn HOA HER NMNAH tHe AON AARON RAHA HONORA REHOME OnONR

This will work fine but is somewhat messier.

Having built our own RTTI system, we can now reap the rewards dapilationt the

reflective property system. Putting reflection into our software means extending the

runtime type-information system so it includes metadata about supported properties,

and eventually, methods. Our RTTI structure will be extended to include a list of

property objects. We can now describe what these property objects will be.

Part Il: Property Objects
congener ctu zeae ea eee 8 ARE REI ONES SE SO AU ERE EEE URNA 8 REE ATT GRAAL SSIES EOE EE EONS,

A property object is a typed, named object that acts as a gateway to an internal data rep-
resentation. Properties are a very abstract concept that will draw on many definitions
and concepts that we will go through as we go along. We will build the property
object as a layered hierarchy of three classes:

As an abstract property: The base property class will be untyped and not associated
with any specific class type. This base class could be used for someone querying
for a property, knowing its name but not caring about type or any specifics.

As a typed property: Building on top of the base property class will be a
templatized typed version of the property object to be used when type-aware
queries to properties are made.

As a class member property: The last layer in the property object is another
templatized class where the property is actually bound as a member to a specific
class type. We will see later why this is needed and how it fits in the overall
picture.

We will examine the abstract property layer first:

enum ePropertyType

{
eptBOOL,

eptDWORD,

eptINT,

eptFLOAT,

eptSTRING,

eptCOLoR,

eptENUM,

Ep tRik;,

eptMAX_PROPERTY_TYPES

}5

class CAbstractProperty

{
public:

virtual ePropertyType GetType() const = 0;

protected:

const char* m_szName;

hs

1.4 Using Templates for Reflection in C++ 47

The abstract property layer simply contains the property’s name. It also contains an
abstract virtual function for describing the property's type; we will see how we can
describe property types later on in the article. This abstract property layer is very
lightweight.

template <class T> class CTypedProperty: public CAbstractProperty

{
public:

virtual ePropertyType GetType() const;

virtual T GetValue(CBaseObject* pObject) = 0;

virtual void SetValue(CBaseObject* pObject, T Value) = 0;

}5

It is at the next level of the property object that type-correctness is implemented. This
is a templatized class, with the type of the data type this property represents as a tem-

plate parameter. This layer contains abstract templatized functions for getting the

value and setting the value of the property. This layer is very abstract as well, and con-

tains little in the way of implementation. Again, we will see later how this class can

implement the GetType() function.

Notice that the property expects the owner of the property (the object on which

we are trying to access the property) to be passed in as parameter to the GetValue ()

and SetValue() functions. Our property class is not bound to any specific class

instance; it binds access to a specific data member on a class type. All instances of a

class will share the same property object. For this to work, all classes in our application

must ultimately derive from a common class such as CBase0bject. CBaseObject could

be empty; a common ancestor is just needed for consistency.

template <class OwnerType, class T> class CProperty : public

CTypedProperty<T>

{
public:

typedef T (OwnerType: :*GetterType) ();

typedef void (OwnerType::*SetterType) (T Value);

virtual T GetValue(CBaseObject* pObject);

virtual void SetValue(CBaseObject* pObject, T Value);

protected:
GetterType m_Getter;

SetterType m Setter;

};

At the level of the class member layer, we finally have enough information (type and

class type) to perform an actual implementation of the property class.

The property will guard its data member and access it through standard getter

and setter accessors. It would be possible for the property to have a pointer directly to

the data member it is guarding, but that would mean exposing private details about

48 Section 1 General Programming
seen ssccaununscnnsentoemnnetnniinnennnnnansninninnnsinonetonendumin MAA MMMM AMMA MMM NTC NIT,

classes. Using standard accessors will keep the data private to the system and be more

compliant to object-oriented development rules. The accessors will be expected to

have a standardized form, namely T Get() for getters and void Set(T Value) for

setters.
With that in mind, the templatized property can define typedefs (as was shown in

the previous code) for the accessor function callbacks it will use to access its associated

data. Pointers to the function pointers are stored in the property object itself.

Getting or setting a value via the property will call relevant function callbacks.

template <class T>
T CProperty <OwnerType, T>::GetValue(CBaseObject* pOwner)

{

}
return pOwner->*m Getter();

template <class T>
void CProperty<T>: :SetValue(CBaseObject * pOwner, T Value)

{
if (!m Setter)

{
assert(false) // Cannot write to a read-only property

return;
} .

pOwner->*m_Setter(Value);

}

You can see here that the ->* C++ pointer-to-member operator is used. This is neces-
sary as we are calling a function that is a member of a class object.

The property structure now has everything necessary to wrap the data type and
access it through standard getters and setters. The property structure can be used and
embedded in objects themselves.

Storing Properties

Properties are associated with a particular class type. It will be natural to extend our
class's RI'TI information to include a list of its properties. A global properties man-
ager will also be needed to manage the overall allocation and deletion of properties.

This gem’s implementation puts the properties in a C++ Standard Template
Library (STL) list, organized as illustrated in Figure 1.4.2.

The global property system manager will manage a global list of properties that
will contain all property objects. Properties are registered and added to the list
sequentially, i.e., all properties that belong to the same class type will be contiguous
in the list. Each class’s RT'TT structure also contains a list of its associated property
objects.

1.4 Using Templates for Reflection in C++ 49 | | | |
3 Property A

Properties

Manager

Property B

Property C

{Property D

Property E
FIGURE 1.4.2 Property storage organization.

A property is a typed construct. It must allow its type to be queried and compared with
other property types. A simple way to do this is to declare an enumeration specifying
every property type we plan to support: integers, floating-point values, bytes, words,

double words, strings, colors, enumerations, vectors, and pointers to objects. It would

be simple enough to have users of the reflection feature specify the type of a property

as a parameter to the registration function; however, this can be done more elegantly

by allowing the type of the property to be specified as a template parameter. Thus,

instead of using syntax like this:

RegisterProperty(“MyProperty”, eptINT);

RegisterProperty(“MyProperty2”, eptPTR);

Syntax like the following could be used, which is more natural and less error-prone:

RegisterProperty<int>(“MyProperty”);

RegisterProperty<CMyClass*>(“MyProperty2”);

To achieve this, template types must somehow be associated by the compiler with the

corresponding type enumeration value. We can do this by defining a CPropertyType

template class containing a static data member. A static data member in a template

will be instantiated once for every specification of the template. Thus CMyTemplate

<CMyObject>::ms_MyStaticDataMember will refer to a different static data member than

CMyTemplate<CMyOtherObject>: :ms_MyStaticDataMember. We can use this fact to cause

the compiler to automatically generate a static data member for every unique type that

we plan to use with properties (remember, not for every type reference but for every

unique type). In this way, we can associate a unique static data member with all types

referred in code used by properties.

50
vaoceowmstsctncnstatsenaatneeteneenenulntennane anit annmceenteinhninntonmnnoicntteitnntensteneneenabnhtnsneanet

Y cogido SO)

ON THE CD

Section 1 General Programming
sontonsntsusnusesntnoannctaeetnnmmasa nnn netnnenencntonaureteniineointecannsnnnrotaiaait

Using template specialization, we can associate our types with the correct enu-

meration type. Here are the results in code:

template <class T> class CPropertyType

{
public:

static ePropertyType ms_TypelID;

}5

template<class T> ePropertyType CPropertyType<T>::ms_TypeID =

eptUNKNOWN ;

template<> ePropertyType CPropertyType<bool>::ms_TypeID = eptBOOL;

template<> ePropertyType CPropertyType<DWORD>::ms_TypeID = eptDWORD;

template<> ePropertyType CPropertyType<int>: :ms_TypeID = eptINT;

template<> ePropertyType CPropertyType<float>::ms_TypeID = eptFLOAT ;

template<> ePropertyType CPropertyType<char*>::ms_TypeID = eptSTRING;

Specializations of the templates are specified for all known types; types that have

no specialization will get the enumeration member EUNKNOWN assigned to them

as in the default template implementation code. Pointer properties are special cases

and are handled through a separate property registration call (see-the code on the

accompanying CD-ROM).
We can use this to have the property code associate a unique, repeatable number

when it is given a property's type through a template parameter.

Property Registration Hook
SA RGR A NIE LEAST DEN SLR IIE IIE RENEE AION OIE EEE ONS LIL roo)

Each object will include a description of the properties it contains, along with name,

type, and access information. What is needed is a mechanism to initially describe the
properties of each class and store them into a list.

Because we want users of the reflection feature to have control over which data

members are to become reflective, properties will be registered manually by the pro-
grammer of the class who uses the properties. Those properties must be registered

very early in the application’s runtime so that they are usable as soon as possible.
We saw earlier how our RTT information is initialized by the RTT] system through

the use of instancing static variables. With static variables being initialized very early at

startup of the application, this is the ideal time window to initialize class properties as

well. What we need is a simple hook where each unique class type can register its specific
properties.

A RegisterReflection() static function call can be added to our CSupportsRTTI

templatized class. The RITI system has been modified so that T::Register-

Reflection() is passed in as a function pointer to the RTTI class’s constructor. As it

is being constructed, the RT'TI class will call the function pointer, providing the hook
that was mentioned earlier and giving a chance to the class designer to register its
properties for that class type.

1.4 Using Templates for Reflection in C++ 51
ona sna onus sinnnatiowesetesnethnnmsnsneermtetnntemintitt

The default implementation of CSupportsRTTI<T>::RegisterReflection() is

empty. The class designer can override this behavior by implementing Register -
Reflection() in a class that derives from CSupportsRTTI. A static function will hide

another static function with the same name in a derived base class. Thus, if

CMyClass::RegisterReflection() exists, the following code in CSupportsRTTI

<CMyClass> will pass CMyClass::RegisterReflection(); if CMyClass::Register-

Reflection() does not exist, the compiler will resolve it to CSupportsRTTI

<CMyClass>::RegisterReflection():

template <class T, class BaseClass, ClassID CLID>

CRITI CRTTIClass<T, BaseClass, CLID>::ms_RTTI

(CLID, typeid(T).name(), BaseClass::GetClassRTTI(),

(ClassFactoryFunc)T::Create,

(RegisterReflectionFunc)T::RegisterReflection());

If CMyClass::RegisterReflection() is not defined, CSupportsRTTI<CMyClass>

::RegisterReflection() will be called, which is an empty implementation and is

correct for RTTI classes that do not have any reflective data members.

Registering Properties
224 ALA LSE OG SIRENS EOI IE SL TAO SER EEE IN EE GT LG SALA SRE

We have defined a way for programmers to run code that is associated with each class

type at runtime, and now we can see how property descriptors that initialize the prop-

erties and bind them to classes can be declared.

Users of reflection will need to specify what the properties are in the Register-

Reflection() call. Each property registered will need to specify:

e Name

* Type
¢ Getter accessor callback

e Setter accessor callback

Before calling the hook, a unique static variable is set by the RTT system to keep

track of the current class for which we are registering properties.

Users of the reflection system then write code in the hook to make calls to the sta-

tic RegisterProperty() call, passing in the parameters enumerated previously:

void CMonster: :RegisterReflection()

{
RegisterProperty<int>(“Health”, GetHealth, SetHealth);

RegisterProperty<char*>(“Name”, GetName, SetName);

}

The parameters of the property are put into a new property object and linked into the

RTTI structure and the properties global list.

Section 1 General Programming
doshaltnce tet AD LIE ST NHL OE SS

ose . scacsecnacsnsnannnsicennicaenennimnasenssntessi

After this operation, each class’s RTT structure contains a list of its property

objects. Great care was put throughout the reflection system code to ensure that the

system was as transparent as possible to users of the reflection feature. Now it is time

to see some real applications.

Applications for Scripts
en email

BRITE I OR RELT PES ET LEIS ELLE

Finally, it is time to see how all the effort put into this abstract system can be used for

actual game production. The applications are diverse and can be very powerful. Our

properties provide an effortless way for programmers to expose a particular data mem-

ber to the outside world. The programmers do not need to change the internals of

their classes and simply need to write short hooks for each class type that will tell the

system what properties are available for a specific class.

The most common use of reflection use in games would be as a glue interface for

scripts. Scripts often need to make calls to the core engine to affect gameplay mechan-

ics. Reflection provides an ideal transport for such cross-boundaries communication.

A script could use a line of code such as:

Player.Health = Player.Health — Monster.AttackDamage ;

Global scope script calls could be wrapped into separate classes and registered as prop-

erties like this:

void CPlayer: :RegisterReflection()

// Assume CPlayer contains accessor functions GetHealth() and

// SetHealth() for accessing health data.

RegisterProperty<int>(“Health”, GetHealth, SetHealth);

}5

void CMonster: :RegisterReflection()

{
// Assume CMonster contains accessor functions

// GetAttackDamage()

// and SetAttackDamage() for accessing health data.

RegisterProperty<int>(“AttackDamage”, GetAttackDamage,

SetAttackDamage);

}

void CGlobalScript: :RegisterReflection()

{
// Assume CGlobalScript contains accessor functions GetPlayer ()

// and GetMonster () for accessing script sub objects.
// Read-only property

RegisterProperty<CPlayer*>(“Player”, GetPlayer(), NULL);

// Read-only property

RegisterProperty<CMonster*>(“Monster”, GetMonster(), NULL);

1.4 Using Templates for Reflection in C++ 53

A scripting engine could use reflection to look up what objects are exposed by the
global scope script class. It would thus find there is a property named Player; access-
ing this property would return a CPlayer object. This object can in turn be queried to
see if it supports a property named Health, at which point the script engine could use
reflection to directly retrieve the value of the player’s health. The script could do the
same to look up the value of the monster’s attack damage and compute the result. The
reflection system would call SetHealth() on the player object automatically to set the
new value. Each property contains its type ID so the script engine can also use the
reflection system to aid in type checking the script.

Applications for Tweakers
Property information exposed by objects can be very useful to automatically expose

<5 tweakable data for editor applications. This is the example that is showcased on the
ONTHECD companion CD-ROM.

In this scenario, a programmer writes a certain class, say, cPlayerStats, which

exposes certain properties. An editor application can then use this property informa-
tion to build a generic property page GUI interface for this object that will display a

GUI control for each property type.
This can greatly help in making a game more data-driven. A typical scenario may

be that an AI programmer has created a certain game class for controlling some AI.

After some experimentation, the AI programmer may realize that certain aspects of

the Al’s variables are somewhat arbitrary and that they would be better left to a

designer for tweaking. The AI programmer can easily make aspects of his code tweak-

able by exposing some of his accessors as properties. A “tweaker” application or editor

can scan for these properties and provide a dynamic interface to the designer. This

makes the whole process of data-driven design very fluid and tightly integrated.

Other Applications

Here are some more examples for applications of properties:

Implicit serialization: Properties could be used to automatically load and save

certain objects of a game in a generic, open format. XML lends itself very well as

a file format for saving property data.

Simple network persistence: Simple network persistence for game objects could be

achieved through a system that uses properties to discover what data types need

to be synchronized across the network.

Logging: Accesses to properties could be logged to aid in debugging scripts.

Conclusion

This gem outlines in detail a generic system that allows code to expose some if its

structure at runtime, more specifically, named data members. Using templates, the

system was made robust, cross-platform, type-safe, and transparent to the user.

54 Section 1 General Programming
leletinahichiac ahi a ere mute Ae ee

scsotanatenasamanassacnasenantetcrnit OOS?

We have only scratched the surface when it comes to the possible applications

that reflection can be used for. Also, although it was not discussed here, reflection can’

also include the exposure of class functions. Templates can be used in the case of class

functions as well, using template type parameters for type-correctness and binding to

the code.

References

[BIL00] Bilas, Scott. “A Generic Function-Binding Interface.” In Game Programming

Gems, 56-67. Charles River Media.

[CAFO1] Cafrelli, Charles. “A Property Class for Generic C++ Member Access.” In

Game Programming Gems 2, 46-50. Charles River Media.

[JENO1] Jensen, Lasse Staff. “A Generic Tweaker.” In Game Programming Gems 2,

118-126. Charles River Media.

[OLS00] Olsen, John. “Stats: Real-Time Statistics and In-Game Debugging.” In

Game Programming Gems, 115-119. Charles River Media.
[POU02] Pouratian, Allen. “Platform-Independent, Function-Binding Code Gener-

ator.” In Game Programming Gems 3, 38-42. Charles River Media.
[STR97] Stroustrup, Bjarne. “Templates.” In The C++ Programming Language, Third

Edition, 327-354. Addison Wesley, 2000.

[WAK01] Wakeling, Scott. “Dynamic Type Information.” In Game Programming
Gems 2, 38-45. Charles River Media.

1.5

Sphere Trees for

Speedy BSPs

Dominic Filion, Artificial Mind & Movement

dfilion@hotmail.com

Br Space Partition trees, or BSPs, have been the bread and butter of 3D pro-

grammers for years. While they are not as popular as they once were, BSPs are
still used in many crucial areas within 3D engines, such as visibility preprocessing,
collision detection, and polygon sorting. Few algorithms have been so successful at
solving so many diverse problems.

As hardware capabilities and gamers’ expectations evolve and the demand for
higher polygon counts increases, however, BSPs show one of their weaknesses: long
preprocessing time. Building a BSP is a process that is of the O(n log’(z)) order, and

with next-generation video cards now pushing millions of polygons every frame, hav-

ing an O(n log?(n)) preprocess algorithm passing on each polygon is simply not an

option. Even for smaller data sets, BSPs are often the single thing preventing an

engine’s tools chain from going from “can preview levels in 20 seconds” to “can pre-

a noticeable improvement that will keep your level designers »

view levels instantly,
working at top speeds.

This gem describes an algorithm to effectively reduce BSP construction from an

O(n log?(n)) process to an O(n log(7)) process. The technique involves using a coarser

but faster partitioning space (sphere trees) to optimize the BSPs’ preprocessing step.

BSPs
semen een HO RNA,

RAN ERNEST LON OLE LONE LEE LERNER TNE

BSPs will be reviewed very briefly here for completeness. However, for the most part,

it will be assumed that the reader is familiar with both algorithms. For a more thor-

ough review of BSPs, see [Ranta03].

ABSP isa partition of 3D space using infinite planes to split a space into recursive

halves. This space partition can then be used to discover relationships among the poly-

gons in a space; most commonly, if a polygon A lies in front or behind a polygon B.

A polygon soup is fed into the BSP construction algorithm. During BSP con-

struction, one of the polygons is chosen as the splitter. The plane of the splitter poly-

gon is computed, and other polygons are categorized as being either in front of or

55

56 Section 1 General Programming
ALAIseaseenaneneN Ne enneneneneninON iNT:

swsnononsstoneannstnnoinannnnnncaettiien anh ante etennntR SNM HntoretaSee ERMAN mtarAninenP OHO

behind the splitter polygon plane. If a polygon straddles the plane, it is normally cut

in two by the splitting plane, and the two halves are categorized as in front of or

behind the plane separately. The two halves of the space are then separate spaces, and

they are recursively partitioned by choosing splitter polygons in each half and again

computing which polygons in the halves are in front of or behind the splitter polygon.

The algorithm continues recursively until all polygons have been used as splitter poly-

gons. At that point, the 3D space will have been divided into a hierarchy of binary

spaces that form convex regions.

To fully understand how the BSP construction process can be optimized, so as to

remove one order of complexity, it will be helpful to review the BSP construction

process.
A good BSP tree must score highly with respect to two main criteria:

EY

Minimum splits: A strict BSP must not have any polygons that overlap into
neighbor BSP leaves. Thus, polygons organized in a BSP must be split so that
each polygon can be categorized in one, and only one, BSP leaf. Split polygons

add overhead to the BSP in terms of memory storage and complexity of the tree.
A good BSP tree must then avoid this overhead by choosing split planes that will
minimize the number of polygon splits.

Balance: Balance means having a roughly equal number of polygons on the front
and back children of each BSP node. Having a good balance ensures that the
BSP will, on average, be traversed with a uniform amount of steps. An

unbalanced tree is unreliable, as some of the branches may be tens or hundreds

of times longer than the shorter branches, thus making access times unreliable.

BSPs could also have other criteria depending on the situation, or may disregard some
of the criteria listed previously, but this does not change the core of the algorithm
optimizations presented here.

For the purposes of this gem, let’s assume the two criteria mentioned earlier are
the criteria for BSP fitness and that we are building a strict BSP, i.e., a BSP where each

polygon is categorized into one, and only one, BSP leaf. We will assume that the poly-
gon planes are used as BSP splitters and that the BSP is deemed complete when every
polygon’s plane has been used as a splitter in the BSP. As a review, a BSP is constructed
as follows.

First, the BSP will recursively split the space into binary halves 7 times, where 7 is
the number of polygons in the polygon soup; this is the first ” in the 7 log*(7) order
of complexity and forms our outer loop. An outer loop will always be needed to put
all polygons in the BSP so we cannot optimize out this loop.

Each split of the BSP must scan through all polygons in the current BSP half to
find the best plane candidates that will cause the least number of splits and provide
the best balance for the tree. Each polygon A scanned must be compared against all

1.5 Sphere Trees for Speedy BSPs 57
oceania EDEN ELAS MME ASL AH

other polygons in the current BSP space to determine how many splits that polygon
A’s plane would cause against polygons. Since we are splitting in halves recursively,
each iteration of these two embedded inner loops need only scan half as many poly-
gons as the last iteration (in the ideal case), and this is where the two log(7) powers

from 7 log?(2) come from. We will be optimizing out one of the log() powers from

the algorithm’s order of complexity.
Finally, once the best splitting plane candidate has been selected, all polygons in

the BSP space must be categorized into the respective front and back child BSP nodes
and clipped by the BSP as necessary. Technically, this would make the order of com-
plexity of the algorithm 7 (log’(z) + log(m)), but this does not include the second

(added in) log(z) term in the original algorithm complexity estimate for simplicity,

and because according to standard algorithm analytic rules, a quadratic function
dominates the complexity order over linear terms. Still, we will be optimizing out this
second (added in) log(7) term from the algorithm.

The Optimization: First Steps

We are removing the second log(7) loop, the one where a certain polygon’s plane is
tested against all other polygons to verify how many splits are caused and how bal-
anced the tree would be if that plane was used to split the BSP in two.

The first idea that may come to mind is using the age-old trick of testing bound-
ing spheres instead of actual objects (in this case, polygons) to get a rough idea of that
polygon’s location with respect to the plane. In the majority of cases, the polygons
bounding sphere will lie strictly on one side of the plane, and this will avoid the need
to test each polygon’s vertex individually.

Pushing the idea a little bit further is where it really starts to pay off though: using

sphere trees to divide and conquer. A sphere tree is simply a hierarchical tree of

spheres where each sphere in a tree node encloses all other spheres in the tree nodes

below it. Thus, using this idea, a single bounding sphere test could be used to deter-

mine the location of tens or hundreds of polygons at a time.

Building the Sphere Tree

What we are effectively doing here is using a coarse and loose space partitioning algo-

rithm (sphere trees) to optimize another refined and accurate space partitioning algo-

rithm (the BSP tree itself). Sphere trees are ideal for this, as they can be built very

quickly—orders of magnitude faster than the BSP tree. We wouldn't want the tree we

are using to optimize our main algorithm to actually take longer to build than the

time we are trying to save through the optimization.

So how do we go about building this sphere tree? We want a quick and dirty way of

partitioning the polygon soup, and optimality of the sphere tree is not truly essential.

One simple way to build a good sphere tree without much complexity goes as follows.

First, calculate a bounding sphere enclosing all the polygons in the polygon soup.

This will be the bounding sphere for the sphere tree root node. The sphere does not

58 Section 1 General Programming

have to be an optimal fit; simply calculate the bounding box for all polygon vertices,

use the center of that box as the center of the bounding sphere, and adjust the radius

of the bounding sphere accordingly.

Next, compute an axial plane on the x axis that coincides with the bounding

sphere’s center. Divide the polygons into two groups: those on the front of the plane

and those on the back of the plane. There is no need to split hairs here (or polygons

for that matter): if a polygon straddles the polygon, simply compute the number of

vertices on each side of the plane and categorize the polygon as being on the side of

the plane where it has more vertices. If it has just as many vertices in front of the plane

as behind it, just categorize it as being in front of the plane by default. The important
thing here is not accuracy but having a repeatable heuristic that will unambiguously
categorize the polygon as either part of group A (in front of axial plane) or group B
(behind axial plane).

Once the polygons are categorized, calculate the bounding spheres of each sub-
group, create two child nodes in the sphere tree, attach them to the parent, and assign
the enclosed polygons to the nodes. Continue the process recursively, this time using
an axial plane on the y axis (then the z, and then back to x). Cycling through the axes
allows a roughly even distribution through all dimensions. Recursively build the tree
until the area covered by the sphere leaf is as small as the smallest polygon’s bounding
sphere, or when there is only one polygon in the leaf.

It is also important to store the number of polygons that each sphere tree node
and all its children contain. The sphere tree root node will have a polygon count equal
to the total number of polygons in the scene, and sphere tree leaves will only count
polygons attached to the leaf itself. Sphere tree branches will count all polygons con-
tained in the leaves that can be reached from that branch.

This process will produce a sphere tree that loosely groups polygons that are close
to each other into clumps bounded by the spheres. See Figure 1.5.1 for an overview of
the sphere tree structure.

FIGURE 1.5.1 Overview of the sphere tree.

1.5 Sphere Trees for Speedy BSPs 59

Optimizing the BSP)

We are now ready to use the sphere tree to speed up the BSP building process.
Each polygon is tested as a splitter candidate. To determine if it is a good splitter

candidate, it is tested against all other polygons in this BSP branch to determine the

number of polygon splits and the tree balance. Using the sphere tree, we can now test
each splitter candidate against the spheres instead of individual polygons.

The test against the sphere tree begins at the root node, which bounds all poly-

gons. For each sphere tree node, the node’s bounding sphere is tested against the split-

ter candidate’s facet plane. If the bounding sphere lies entirely on the front or on the

back of the splitter plane, it is known that no polygon splits occur with any of the

polygons contained within that sphere tree branch. The tree balance can also be com-

puted by looking up the number of polygons contained in that tree branch.

If the sphere overlaps the plane, the polygons contained within the sphere tree

node may or may not overlap the plane as well. In this case, the sphere tree children

must be tested recursively against the plane until sphere nodes lying entirely on one

side or the other of the plane are reached.

If no such sphere can be reached—i.e., a sphere leaf is reached that still overlaps

the plane—the individual polygons within that sphere leaf must be tested against the

plane. This is actually the only case where individual polygons are tested.

In the majority of cases, all polygons in the space will be identified as in front of,

behind, or straddling the plane after traversing only a few nodes of the sphere trees.

This is where the bulk of the log(7) order is removed. Figure 1.5.2 shows how a BSP

tree plane is compared with sphere tree nodes. See Listing 1.5.1 for an overview of the

code that performs the BSP tests.

FIGURE 1.5.2 BSP using the sphere tree for plane testing.

60 Section 1 General Programming

Listing 1.5.1 Testing a Polygon Candidate

void CBSPTreeBuilder: :TestSplitCandidate(

CSphereTreeNode* pSphereTreeNode, bool& bTerminateEarly)

{
// Test sphere tree node with plane
float fDistance = m_pCurCandidate->m_Plane.GetDistance(

pSphereTreeNode->m_Bounds.m_vPosition);

if (fDistance < -pSphereTreeNode->m_Bounds.m fRadius)

{
// Sphere tree node completely in back
m_dwBackCount += pSphereTreeNode->m_dwPolyCount;

else if (fDistance > pSphereTreeNode->m_Bounds.m fRadius)

// Sphere tree node completely in front

m_dwFrontCount += pSphereTreeNode->m_dwPolyCount;

}
else

// Sphere tree node possibly straddles the plane

if (pSphereTreeNode->m_pPolygons)

// This is a sphere tree leaf, so we have to test the

// polygon individually
CPolygon* pCurPoly =

(CPolygon*) pSphereTreeNode->m_pPolygons;

while (pCurPoly)

{
// Check for splits with the current candidate
if (pCurPoly != m_pCurCandidate)

{
switch (pCurPoly->GetSide(

m_pCurCandidate->m_ Plane))

{
case CPolygon::epsFRONT :

m_dwFrontCount++;

break;

case CPolygon: :epsBACK :

m_dwBackCountt++;
break;

case CPolygon::epsBOTH :

// Ya, this one causes a split
m_dwSplits++;

if (m_dwSplits > m_dwBestSplit)

{
bTerminateEarly = true;

break;

// Too many splits — This candidates a
// loser, discard it early, seeya

}
break;

1.5 Sphere Trees for Speedy BSPs 61

Cutting Down Trees

pCurPoly = pCurPoly->m_pNext;

}
}
else

ch
// Sphere tree node, so test both children

if (pSphereTreeNode->m_pChildren[0] &&

pSphereTreeNode->m_pChildren[0]->m_dwPolyCount >

0)
{

TestSplitCandidate(pSphereTreeNode->

m_pChildren[0],

bTerminateEarly);

}
if (!bTerminateEarly && pSphereTreeNode ->

m_pChildren[1] &&

pSphereTreeNode->m_pChildren[1]->m_dwPolyCount >

0)
{

TestSplitCandidate(pSphereTreeNode->

m_pChildren[1],

bTerminateEarly);

}
}

There is still an important piece missing to the algorithm for it to actually work, how-

ever. As the BSP is split recursively, polygons are categorized into separate half spaces.

When choosing the next splitter candidate one level below in the BSP hierarchy, that

splitter candidate must only be compared with the polygons that are contained within

its own half space. It must not be compared with the polygon soup as a whole.

The sphere tree contains all the polygons. Using the same sphere tree for each

BSP split would not only not produce the correct or best splitter, but it would also

report an inaccurate balance of the tree for that half space. To solve this problem, as

we cut the space into successive halves, we must also split the sphere tree into two sep-

arate parts.
The sphere tree has a Split () function that will remove all sphere tree nodes that

are behind the plane from the sphere tree and put them in a separate back sphere tree

that will be returned by the function.

The splitting algorithm compares each sphere node with the splitting plane, as

was done for the polygon candidate tests. If the sphere node lies completely in front

of the plane, nothing is done; the sphere node is part of the front tree that is the cur-

rent tree. If the sphere node lies completely on the back of the plane, that sphere node

must be relinked to be the back tree. Relinking the node implicitly relinks all the

62 Section 1 General Programming
aso esanaonntenettcerennneinnennntteeneteconatcnscsnunndniaanetirmmmeti

sphere node’s children as well, thus adding a whole new branch to the back tree. If the

sphere overlaps the plane, further processing will depend on whether the sphere node

is actually a leaf.
If it is a sphere leaf, the polygons are compared individually against the splitting

plane. Each polygon will be individually relinked to the front sphere node or the back
tree node. If the polygon straddles the plane, this is where it will be clipped, and each
clipped subpolygon will be linked to its appropriate sphere node. Notice that actual
polygon clipping occurs as part of the sphere tree-splitting process, not directly as part
of the BSP build process. As far as the BSP builder is concerned, it is splitting sphere
trees not polygons.

If it is not a sphere leaf, a recursive split occurs. Splitting the node causes a recur-
sive split of the children. The Sp1it() call is called with each sphere node's child as a

parameter. A back node version of the parent is created. Node child A will then create
a back node version A of itself that will attach to the back node parent, and node child

B will create a back node version B of itself that will also attach to the back node par-
ent. See Figure 1.5.3 for an illustration.

a => Ad
BC DE Bor.GiwD +E

FIGURE 1.5.3 Recursive split condition.

Extra care must also be taken to update the polygon counts in the front and back
sphere trees respectively, especially after a sphere tree split operation.

1.5 Sphere Trees for Speedy BSPs 63
stun annsusneneetnetananneieeeknanscnsieinoanannrntscesssneonenetsnennnthinietestennaunaineereeenennsreetenaauninnnnmaunnuecnttii

Bee ieeesauoanhand Beyond fsa 2A RANE

The technique described earlier produces a well-optimized, well-behaved BSP. Sacri-

ficing some of the runtime optimality could further speed up the algorithm. It is
arguable that statistically a fairly good BSP splitter will be found by only looking at a
subset of all available polygon candidates, say 5% or 10% of all available candidates.
The resulting BSP may not be as efficient, but it could be produced in approximately
O(n log(n)*0.1), making it relatively close to the <Eqn015.eps> theoretical limit.

While suboptimal, the BSP produced by only evaluating a subset of polygon splitter

candidates would still be much more efficient than randomly choosing splitters. A

suboptimal BSP could be good enough for previewing levels or even when there is no

need to have a completely optimal BSP.

Soh ALE ara HAE EE

Using the previously described algorithms can bring BSP building to an almost inter-

active process. This can make the difference between making last-minute level

changes that take 10 to 20 minutes for each small change and level changes that take

seconds; a speed up that will be especially valuable when time is short.

References

[FAQ99] “BSP Tree FAQ.” Available online at http://www. gamedev.net/reference/arti-

cles/article657.asp. August 22, 1999.

[Ranta03] “BSP Trees: Theory and Implementation.” Available online at Attp://www.

devmaster.net/articles/bsp-trees/. November 9, 2003.

[RatCliff0l] RatCliff, John W. “Sphere ‘Trees for Fast Visibility Culling, Ray Tracing,

and Range Searching.” Game Programming Gems 2, 384-387. Charles River Media.

~s . Mienm & ell, due

bent 128 irr + mat
ah arirtnieghe elk agp Lana.

; och sxcsegon, ek ais
ater leaiee agent, es i peanreenyr- Sarid ial

vaawily cf Aa ~ ‘team inetd niiate
A veapilge qiacew's sthurghng: ane reall: sma Rowen od Hh sure semen
‘ib ai wpe Ay ito at ta a dav bg tt lace tienn

im ioe hs 0 tee. Photon NR adeget elegance steele
recur, + onl ob pave oF ay pecker . A wilt th
te a Pass <5 Hie Ye) dhs yates

| send on sande si Mehul noe

feet xine SMM Tee ONG, whe ase old a frag
sia; aids agqnuds feest hoy spiel: theme dose wit ntie BO TH ‘an ils:

videfe vi oeniz teat olfeaslav yy rage a er a Ba ? ae a

a,

. grist we agro: Dapilees
iba til elit Set

he? 64 vt ade ie ahen an int a

aM fe oes, cogeiidlls ales «

1.6

improved Frustum

Culling

Frank Puig Placeres

fpuig2003@yahoo.com

A”: game scene generally consists of many objects, which if not managed

appropriately may hinder rendering performance. Libraries such as OpenGL

and DirectX do some geometry management by clipping polygons that are partially

off-screen and early rejecting those that are completely out of view from further pro-

cessing. To perform the clip, however, each vertex in a polygon must go through the

library pipeline, be transformed to screen coordinates, and be checked with the active

viewport. When the polygon count is low, this process does the job, but when render-

ing many objects consisting of many hundreds (or thousands) of polygons, the high

cost of transmitting and processing all the vertices quickly overloads the system. A

higher-level per-object culling algorithm must be implemented to effectively manage

rendering a typical scene. This gem describes a clever improvement to an already well-

known scene-management technique: view frustum culling.

ene ne SRR PAS SEL ERO ES
Frustum Culling

SEARS TRELLIS EEE NEO IE

Frustum Culling works by defining a volume that wraps the space that is currently

visible from a given point of view. As shown in Figure 1.6.1, that view volume is built

by constructing a pyramid with the apex at the eye’s position and the four triangular

faces aligned with the screen borders. Two parallel planes, the near- and far- clipping

planes, slice this pyramid; nothing closer than the screen or farther than some prede-

fined distance will be included in the view volume. The resulting volume is known in

mathematics as a frustum, and the objects that are completely outside of this volume

have no chance to be seen by the camera and may be rejected on a per-object level.

Once the frustum is built, objects can be tested against it for visibility. Each

object in the scene may be completely enclosed by a bounding primitive, such as a

sphere, cube, cylinder, or cone, which is used to test against the frustum rather than

using the object itself. This avoids the overhead of duplicating the work already in the

rendering pipeline and allows a higher-level of efficiency than per-polygon culling. If

65

66 Section 1 General Programming

FIGURE 1.6.1. The geometrical object that bounds the visible section of the world
is called a frustum.

the simple bounding primitive falls completely outside the frustum, the entire object
(or objects) it contains may be rejected. The key is to use shapes that can be quickly
tested against the frustum, so the most commonly used primitives are spheres and
axis-aligned bounding boxes.

The Traditional Six Planes Approach

The most common representation of the frustum itself is six simple planes, which are
extracted from the matrix composed of a concatenation of the model view and projec-
tion matrices, as shown in Figure 1.6.2. Each plane divides the space into two halves;
the intersection of all the planes shapes a volume that defines what the camera sees.

Working with the six planes approach has some disadvantages, the first of which
is processing expense. Determining whether a point falls inside the frustum means
evaluating an equation for each plane. Only if the result is positive for every plane
evaluation may the point in question be determined to fall within the frustum. A sec-
ond drawback to this approach is that it is not so easy to extract the frustum’s position
and orientation, making operations such as an update quite difficult. This drawback
is the reason why almost all implementations recreate the frustum every time the cam-
era updates, which imposes a bit of overhead in the form of unnecessary floating-
point operations (including divides and square roots!) as the six planes shaping the
frustum are reconstructed [Morley00]

1.6 Improved Frustum Culling 67

FIGURE 1.6.2 The six planes that define a frustum.

The Radar Approach

This algorithm was first designed for a two-dimensional radar system. The only

intended purpose was to show the objects covered by a radar wave by leaving out

those objects that were not covered. The approach proved to be very fast if some

bounding primitives were inside the view, and the method was quickly extended to

work in three dimensions. Now, the algorithm has been used for frustum culling with

incredible results.

To describe how the radar approach works in a friendly way, let’s first go back and

introduce the two-dimensional algorithm and then extend it to the three-dimensional

world.
When working on a system with two dimensions, a frustum becomes a triangle,

and asa frustum is a symmetric object, the triangle is known to be isosceles as is shown

in Figure 1.6.3. The segment that starts in the apex and is perpendicular to the base is

called in mathematics the triangle height. The handy part of the height is that as the

frustum is symmetric; it splits the isosceles triangle into two equal halves. Coinciden-

tally, the height happens to be directionally parallel to the camera's forward vector.

Using the radar approach, a frustum is defined to be as intuitive as the camera, so

frustum construction is almost free. The two-dimensional radar only needs to know the

field-of-view angle (FOV), the forward vector, and the right vector. Conveniently enough,

these are the same three parameters that the camera uses, so they can be extracted

directly from the camera. The radar implementation does not, however, use the FOV

68 Section 1 General Programming

rward

ight

FIGURE 1.6.3. A two dimensional

frustum is represented as an isosceles

triangle where the height matches

the forward vector.

directly but the tangent of that angle; so that is the only thing that must be computed
when building the frustum. Even that, though, can be cached and only computed when

the camera changes the FOV (which, in most games, only occurs when a zoom is per-
formed, changing the perspective). While that angle remains unchanged, the frustum is
built by copying the forward and right vectors directly from the camera. This is far
cheaper than performing all the calculations required to build a frustum using the six
planes approach.

And now, let’s go to the really interesting part: knowing if something is inside the

frustum.

Isa Point Inside a Frustum?

First, let’s see what we need for knowing if a given point is inside the frustum; check
Figure 1.6.4. To know if the point P is in the frustum, the radar approach projects OP
to the forward and right vectors. The point P is known to be in the frustum if the for-
ward projection F is between the far and near values and the right projection Ris
between rLimit and —rLimit, otherwise, it is meant to be completely out.

As described earlier, the first thing that must be done is to compute the projec-
tions F and R. To project one vector into another, a dot product is performed and the
resulting scalar is multiplied by either of the two vectors to obtain the projection in
the desired axis. Figure 1.6.5 illustrates. There are two vectors V, and V,, and the dot
product of them returns a scalar s.

s=VdotV, =V,°V, =V,.x-V,.x+V,.y-V,y

1.6 Improved Frustum Culling 69

FIGURE 1.6.5 Pro-

jection of one vector

into another.

O

-rLimit O ff. tLimit

FIGURE 1.6.4 Classifying a
point against a frustum.

The projection of V, in V> is V>* s with the condition that V, be of length 1.

Using the previous equation and considering that the forward and right vectors

are unitary, it is possible to compute the values F and R by performing:

f= Forward ¢ OP And r= Right ¢ OP

If the condition (near < f< far) is not true, the point is out of the frustum. Check the

first part of the code:

bool cFrustum::IsPointIn(const cVector2f& Point)

{
cVector2f OP = Point - EyePosition;

float f = OP * ForwardVector; // OP dot ForwardVector

if (f < Nearz || FarZ < f) return false;

float r = OP * RightVector; // OP dot RightVector

float rLimit = rFactor * f;

if (r < -rLimit || rLimit < r) return false;

// Up to here the point is known to be in the frustum

return true;

}

Computing rLimit is trickier and involves the FOV tangent. The FOV tangent,

called the rFactor, was discussed previously and is computed as follows (see Figure 1.6.6).

f

70 Section 1 General Programming
setae nnetieitetiaseianensovvineantectesaeeenet uasannaneiiesina m

rLimit

FIGURE 1.6.6 Quantities

needed to find rFactor.

[a] opposite side Limit
rFactor = tan|] —— |= —— = ——_

aS adjacent side Fe

rLimit
rFactor = ———

rLimit = rFactor - f

The point is outside of the frustum if the condition (—rLimit < r < rLimit) evaluates

to not true. Otherwise, the point is known to be in the frustum.

That sums up all that must be done to determine whether a point is inside a two-
dimensional frustum.

Translating this to three dimensions is as easy as introducing another factor, the
uFactor, which is the rFactor multiplied by the ViewAspect used when defining the
perspective matrix so the frustum matches the viewport. Also, a new vector must be
taken into account: the Up vector. The Up vector may be directly extracted from the
camera exactly as the forward and right vectors. Using the point P, the Up vector, and
the uFactor, a projection U and a wLimit value may be calculated. If that projection is
not between the positive and negative values of ulimit, the point is outside of the
frustum.

Combining this with the previous two-dimensional example, the position of a
point with respect to a frustum in three dimensions can be known. The remarkable
aspect is that it takes less than half the math necessary for the six planes approach,
which is a great savings considering that there will be a lot of testing against the frus-
tum each frame.

The point math was the easy part; however, there are just a few times when it is nec-
essary to know whether a single point falls within a frustum. Most of the time, more
complex geometries are evaluated. The good news is that almost all bounding objects

1.6 Improved Frustum Culling 71
stonemasons tt eenniiitannatitetntennane th reennUnetetietennieti soennnatoenenennesnine nna RMAC

used to test against a frustum in today’s games follow the same point-to-frustum algo-

rithm. Therefore, one must clearly understand the point-to-frustum algorithm in order

to understand its application to more complex geometries. For this reason, it is recom-

mended that you go back through this section if bits of it were unclear.

Spheres, Where Are You?
Se ERE ER ERE SECO E

One of the faster and more commonly used bounding objects in today’s games is a

sphere. A sphere is defined as a center point and a radius. Spheres are quite easy to cre-

ate and are almost as fast as the point-to-frustum algorithm since it is just a variation

of it. Knowing the position of the sphere against the frustum can no longer be an

inside or outside issue, though, because that test can also return if the bounding

sphere is not completely inside or completely outside but intersecting the frustum

planes, which allows some clever optimizations that are going to be covered later. For

the purposes of this gem, however, we will only be covering the method that returns

if a bounding sphere is Visible or Completely Outside of the frustum. Please refer to

[Puig03] for more advanced methods.

Consider the definition of a sphere: a center point and a radius. With that in

mind, you can think of testing a point against a frustum like checking a bounding

sphere with radius zero against a frustum. Now all we do is extend that to include a

nonzero radius. See Figure 1.6.7.

Radius

rLimit
e e

IN INTERSECTING OUT

FIGURE 1.6.7 [f the projection lies in the Out

area, the sphere is reported as Completely Out;

otherwise, it is reported Visible because it has

to lie on the In or the Intersecting area.

72

: Cente SE)

ON THE CD

on

ON THE CD

Section 1 General Programming
nsastinoneomannniotsceratehiceneeunuinanneinicieessnis mest inennnasnstnsasne

The algorithm first checks if the sphere is in the frustum and returns trueor false

accordingly. This works much like the point code, but this time the limits are radius

units farther.

char cFrustum::ClassifySphere(const cVector3f& Center, const float

Radius)

{
cVector3f OP = Center - EyePosition;

float f = OP * ForwardVector; // OP dot ForwardVector

if (f < NearZ-Radius || FarZ+Radius < f) return false;

// Unoptimized but more understandable

float r = OP * RightVector;

floater Eun Gessrrackop. * wits

if (r < -rLimit-Radius || rLimit+Radius < r) return false;

// Optimized (a substraction is removed)

float u = OP * UpVector;

float uLimit = uFactor * f + Radius;

if (u < -uLimit || uLimit < u) return false;

return true;

}

As you can see, the test in the 7 axis is completely expanded here for illustration.
This can be optimized, and in fact, the code in the accompanying CD-ROM rewrites
that segment. Notice that the condition in the if statement (—rLimit — Radius) is the
same as —(—rLimit + Radius), which is the second condition of the check. With this
refactored math, the add operation is only performed once when computing rLimit,
and used in its negative and positive.

If the conditional checks fail, the bounding sphere is reported to be completely
outside of the frustum. At first glance, the code to retrieve the position of a sphere
according to a frustum can look a bit confusing, but once it has been carefully stepped
through, it becomes quite basic, not to mention incredibly fast when compared to the
six plane approach.

Bounding spheres may be fast but often grossly inaccurate, leaving large empty
spaces around the object in question. For this reason, the frustum has to provide some
functionality to determine the position of complex geometries like boxes, cylinders,
etc., but as this gem is just an introduction to the radar approach, discussion of those
methods is omitted. Nonetheless, the source code for these routines is provided on the
accompanying CD-ROM, which includes methods for testing against axis-aligned
bounding boxes and oriented boxes. Those two primitives in particular see compara-
tively big optimizations using the radar approach and behave as reliably in situations
where the six planes version fails by returning visible when the object is completely
outside of the frustum.

1.6 Improved Frustum Culling 73

Other Uses

Finding the eight vertices of the frustum was a huge task on the six planes approach

due to the involvement of computing the intersection of three planes eight times

which indeed is an expensive operation. However, this is very simple using the radar

approach. Take a look at Figure 1.6.8.

right

FIGURE 1.6.8 Computing the point

A by adding NVector and RVector.

The position of point A can be computed by adding the two vectors marked in

Figure 1.6.8. Computing the Vector is just a matter of multiplying the unit forward

vector by the “near” value. Finding the R vector is a little trickier; it is just the right

vector times a factor that comes from the following evaluation:

f _ opposite side __ factor

2

factor

rFactor = tan es ;
adjacent side near

rFactor =
ear

factor = rFactor - near

Therefore, the R vector is defined as rVector = Right - rFactor -near. Adding it to

the near vector gives point A, and the same can be applied to get all eight points.

Check the provided source for a full implementation.

74 Section 1 General Programming

Knowing the position of the eight points helps to do many handy things like
drawing the camera frustum, surrounding the visible section of the world with an

AABB or a bounding sphere, among others.

Further Improvement
Eee EET EHSL GAN I NA EY

The previous approach on its own is extremely fast, but there are some tips that can
help to increase efficiency and speed. Let’s check some of them in the order of the
more to less obvious.

Earlier, you learned methods for checking against a frustum using the radar
approach that only returns two values: completely outside or visible. The test against the
frustum, however, can be extended to determine whether the geometry is completely
inside, completely outside, or intersecting the frustum planes. This can be accom-

plished without too much trouble, and without a big speed sacrifice, allowing for the
optimizations in the following section.

i NCAR CORT SRE

Hierarchical Scene Organization

Think of a big scene populated with many objects. Testing each object against the
frustum and rendering the ones that are visible is actually faster than sending all the
objects to the graphics hardware and letting it reject the nonvisible polygons at a per-
vertex level. While that is the case, it is far from optimal taking into account that
every object has to be checked. Using a scene hierarchy reduces the huge amount of
tests required to reject all objects that are outside of the frustum by grouping objects
and surrounding them with concatenated bounding geometries. If a bounding geom-
etry is found completely outside of the view frustum, for example, all the objects that
it contains (all the objects contained within the bounding geometries that compose
the convex bounding geometry used in the test) are also completely outside of view.
The same applies for the branch that reports to be completely inside of view, which is
traversed but not checked again, since all the children of the bounding geometry are
going to be completely inside by definition.

Several space partition algorithms allow hierarchical traversal of the scene with a
frustum, rejecting nonvisible branches. The most widely used and simplest are
octrees, BSP trees, KD-trees (short for “k-dimensional trees”), and ABT. Each algo-
rithm keeps the scene organized in a hierarchical tree, but each has subtle differences
or properties that make it more suitable on some scenes. Which one you select will be
dependent on the application being implemented.

Plane Masking

Having the scene hierarchically organized allows rejecting groups of objects and by
that allows rejecting groups of objects, making it unnecessary to test every single

1.6 Improved Frustum Culling 75
cvoseticnanptsseeeiateannnaitnesesontonenunaseottiesnanmeunssonue

object against the frustum. However, if a parent object is known to be potentially vis-
ible (that is, it is not completely outside of the frustum) then all its children have to be
tested against the frustum. That works fine and is pretty fast but, in some situations,

can be optimized a bit.
When testing an object against the frustum—suppose a sphere for simplicity—

there are three checks to perform: the near-far test, the right test, and the wp test. If for

example, the right test returns that the object is completely within view, that test does

not have to be performed on the object’s children because each one will also return

completely inside (see Figure 1.6.9). Only tests that return intersecting must be

checked again. As a result, some operations can be avoided when checking against the

frustum, thereby gaining some extra performance.

FIGURE 1.6.9 The dot lines in the frustum

represent the near-far test returning Completely_In

for the object and all its children.

The plane masking can be archived by storing a byte in the bounding object that

links a bit to each of the three tests. So, if the binary code is 101, the first and third

tests are performed but not the second one. This works pretty fast because it only

involves clearing bits and checking them later rather than relying on more compli-

cated operations.

Plane Coherency

In most applications, especially games, the camera moves smoothly, producing just

small changes in the frustum configuration. Therefore it is very likely that if one of

Section 1 General Programming

the three frustum tests fails, it fails also in the next frame. Consequently, in the next

frame, the frustum must start checking by the test that previously failed. That will

allow the frustum to potentially reject objects with just one test when the object doesn’t

change too much in the frustum (see Figure 1.6.10).

Lite oe

Oo

Wall
Right :In _ Near-Far:Fails
Near-Far:Fails = Right :In

FIGURE 1.6.10 Kearranging the test order with

knowledge of the previous frame information poten-
tially allows rejecting the object in the first test.

The plane coherency can be implemented in many ways. The simplest is to store
a byte in the bounding object that keeps the test that fails in the previous frame.
When the frustum checks the object, it starts with the test that the byte points to, and
if it succeeds, it continues with the other two as usual.

Checking Whether the Object Is Inside the AABB

That Surrounds the Frustum

Determining intersection against an axis-align bounding box is almost always reduced
to six comparisons, two for each axis. No expensive operations have to be performed,
thus, it is incredibly fast compared to the usual frustum test. In the “Other Uses” sec-
tion, a method to determine the AABB that surrounds the frustum was shown. That
method is very proficient, and best of all, it only has to be called once per frame if the
frustum changes.

If an object is known to be outside of the AABB that surrounds the frustum, it has
to be also outside of the frustum (see Figure 1.6.11). Testing the object against the
AABB is fast and allows rejecting the object just by doing simple comparisons. However,
if the object is not completely outside, the usual test against the frustum is performed.

1.6 Improved Frustum Culling 77

FIGURE 1.6.11 Jf the object is
known to be completely out of the
AABB that surround the frustum,
it can be said without further
checking that it’s completely out
of the frustum, too.

Conclusion

Frustum culling is one of the most widely used culling techniques and allows rejecting

large amounts of primitives at the per-object level without much processing cost. In

the majority of today’s applications and games in which culling is implemented, it is

done so using the six planes approach with excellent results. However, as is shown in

this gem there is another fast alternative: the radar approach algorithm, which is more

memory friendly, allows faster object-in-frustum tests, and is more intuitive. Best of

all, it is possible to build the frustum almost for free.

References
COM I REE RENIN REA ATI IEEE EM sent SENTRA

[Jelinek&Sykora01] Jelinek, Josef and Daniel Sykora. “Efficient Frustum Culling.”

Available online at /ttp.//www.cg.tuwien.ac.at/studentwork/CESCG/CESCG-

2002/DSykorafJelinek/.

[Morley00] Morley, Mark. “Frustum Culling in OpenGL.” Available online at Attp://

http://www.markmorley. com/opengl/frustumculling. html. December, 2000.

[Puig04] Puig, Prank. “A Fast Frustum Class.” Available online at Attp://fpuig.

cjb.net/.

ar | giltoeha wwoll, ih endo gala tepid

mb works 6 ot

. “NOE oa SN vida

x 07 cL oe ‘ AT AL j ; . -

AY lo tet tty en
Moatiard ada nas, wae Pas.

note Sukh ad tease nat bisa 4 mac 9 . 0 eel ae 7
a Nery deve oa ' me : it. ae

wa rs _
ee i rangi oe 48 eat ab " bs.
rene ning. rte P Ncw, as Katey (emartlaat = —

ote - a aad rf vg ite Aad id feate hs re a _ Le
Z ,

wet

opi

é

= eats

ab some sri Ps) Liat bol aide an poe e ditt», ¢ ra “at i bps. 2a

da hom 2 tye a
4 ea aback acts (ve

if

oA dibs a

Bed Raw euaieiy oe Se itn

= \ ag, love + . ne P 4», soabign boa
' : pees

re PF OO = 6 ORs » = &

tn

re pratiy. y wa) rf Hit sana” srg ia" at | 2G. A tion sh 10 ts
SHAY Y TH .” * sb vay. ih “SANAE © pe. Hd a ne ay ee ¥ ;

ie “Sci oad ao Vegas te serio ie oe aa it — J scare de ig he mt de 4 OOM, Rte Ho GRA ti pei sie ‘
acest “ ati Wee mph "2 "why or

> “ x "ri¢ tee 3 Persea -
-

—— 7 ‘ \€2 > Ag oan (SEs

7 ue 4

‘ a _

Pa

1.7

Generic Pager

Ignacio Incera Cruz

ignacio@incera.net

W: frequently find a situation in which at any given time we need to unload
unnecessary information from our system in order to load new information.

This simple task carries with it complicated management baggage to track the infor-

mation that should be kept and that which may be excluded at any instant. The situ-

ation becomes even more complicated if there is more than one user that requires

access to the same information at the same time. The process around this manage-

ment of currently loaded data is commonly known as “paging.”

Traditionally, solving this problem means designing complicated systems that are

not always as efficient as we hope; they are also usually very limited because they are

specifically designed to solve a particular instance of the paging problem. This gem

introduces a more general, less complicated, and more efficient solution to the paging

problem, called the generic pager (GP). By meeting all these criteria, the GP allows the

system designer to completely forget about the challenges posed by creating a custom-

brewed solution, allotting more of his valuable time for designing and implementing

other critical parts of the title.
For you skeptics out there, I'd like to highlight the flexibility and efficiency of the

GP presented in this gem by referring you to two major projects from completely

unrelated domains.

° GP has been successfully integrated in an autonomous robots system where the

resources of the robots are limited, and efficient management of the information

needed at any given time is necessary.

¢ GP has been used in a navigation and visualization 3D terrain system.

The Old Paging Solution: Check Everything
= OLA TOLL ES LETT LET LT LENE ETE MAO

The most widespread (though not necessarily the best) solution consists of the follow-

ing steps:

79

80

The GP Paging Solution: Only Check What You Need Scena eee ZN

Thealndexds theiKey

Section 1 General Programming

. Define the information to load/unload.

. Define the size of each block of information.

. Divide the search space into blocks.

. Define the necessary structures to manage all the blocks.

. Every time it is needed, check the information to load/unload, walking
along all the blocks of the search space.

MWB OG NH Re

As you may have noticed, this solution is highly inefficient. It spends too much time
in the division of the search space and consumes many resources, which is necessary
in maintaining such complex structures with so much information for each block.
Checking everything is excessively costly, too, and this solution is limited to loading/
unloading the type of information defined by the design. If another type of informa-
tion is required, it may be necessary to redesign the entire paging system! Finally, all
these problems increase exponentially as soon as the search space grows, so let's go
ahead and take the time to do it well the first time around.

GP solves all the aforementioned problems in a really easy way through simple and
intuitive interfaces. The main features of GP include the following:

¢ Almost complete transparency for the designer and user

¢ Search-space size independence
* No preprocessing, space divisions, or complex structures
* Memory only contains indispensable data
¢ Multiuser transparency (for the designer and the user)
¢ Information agnostic

The following sections will progressively describe the design of GP and some details
of the implementation. It is worth noting that this implementation is not unique; GP
can be implemented as desired, using most high-level programming languages and
paradigms.

PALIT TO LAE RAT TORT

In GP, as well as in other traditional paging systems, it is necessary to define the size of
each block of information that will be loaded/unloaded. We will also define a mecha-
nism to locate each block in the search space, along with a unique identifier per block.

We begin with a class called Gpindex that manages this information, thereby ful-
filling three functions simultaneously:

* Define the size of the paging block.
¢ Locate the block in the search space.

° Uniquely identify the block.

1.7 Generic Pager 81

e

ON THE CD

cosstenncotatcecennnnntcntsateacieeseciamststet sseuauneoneicuanannoisiaaciieibananinieienaonmauaesceiniaasietiete

GPindex contains two attributes: position and size. Each contains m elements where

n represents the dimensions of the block. Usually the blocks are two-dimensional
such as memory, images, or digital terrain models. In these cases, the position of the

GPindex contains x and y (2D coordinates) while the size contains height and width.

However, we are not locked into 1D or 2D blocks; note that we can add as many ele-
ments to each attribute as dimensions the block has.

The attribute position defines, locates, and identifies each block. Since each block

determines a portion of the search space, its position is unique. Consequently and con-
veniently, the position of the block defines its location and unique identification.

GPindex provides another function that is extremely practical: it allows us to nav-
igate through the blocks without creating any structures, without a previous division,
and without loading anything into memory. It implements three methods:

GetIndex (position p);

// Gets the GPindex that contains the position p.

GetNext (int n)

// Gets the next n-th GPindex in any dimension.

GetPrevious(int n)

// Gets the previous n-th GPindex in any dimension.

For example:

GPindex GetIndex (int x, int y);

// Returns the GPindex that contains the position x, y

GPindex GetNextX(int n);

// Returns the next n-th GPindex in X

GPindex GetPreviousX(int n);

// Returns the previous n-th GPindex in X

GPindex GetNextY(int n);

// Returns the next n-th GPindex in Y

GPindex GetPreviousY(int n);

// Returns the previous n-th GPindex in Y

As shown in Figure 1.7.1, there is an index defined with position (100, 100) and size

(50, 50).
This is so versatile for the reason that, as soon as the index is defined, we can con-

sider that all the search space is divided, although it is not really divided (saving time

and memory) as shown in Figure 1.7.2.

We can now navigate freely, moving over 50 x 50 (size) blocks creating just an

index as Figure 1.7.3 illustrates.

A very interesting characteristic is that the position and the size can reference any

type of data. The example on the CD-ROM is implemented with integers, but you

can use any data type or data structure, provided you take into account the following

two criteria:

¢ Implement appropriately the methods Get Index(), GetNext (), and GetPrevious()

for every dimension of the block.

82 Section 1 General Programming —

¢ The data type must contain, at least, the following operators: ee

operator <
operator ==

operator <=

ae

FIGURE 1.7.1 GPindex at position (100, 100) with size (50, 50). Global Map used
in the images in this article courtesy of Earth Observatory: The Blue Marble Web site
(eobglossary.gsfc.nasa. gov).

FIGURE 1.7.2 Implicit division of search space.

1.7 Generic Pager 83

Gethndex(275.2 1)

FIGURE 1.7.3. Navigation through the search space.

Nevertheless, integer use is common in most cases (or at least a type that converts eas-

ily into integers), so the CD-ROM implementation should suffice.

It is not a problem that an index can surpass the search space, nor is it a problem

that there are potentially empty blocks. The solution for this is to check the limits and

? free space when the block must be loaded, as we will see in the next section. (See Fig-

ure 1.7.4.)

FIGURE 1.7.4 Out of limits and free space.

84

The Tile: The Block of the World

Section 1 General Programming
tesa HENAN MPMI EERO H LITHO ete

To review, the definition of the index in our system is almost ready to page:

GPindex

(
Position, //X, y,; .«..., n-dimensions

Size //width, height, ..., n-dimensions

Now that we know how to divide the search space and locate and identify a specific
block, let us define the block itself: GP holds a simple class called GPtile that basically

contains the GPindex that defines its position and size. This means that the zi/e is the

block of the search space and is determined by the index. In the example of the terrain
paging, every tile corresponds to a portion of terrain, with a position and size defined
by the index of the tile.

Once the tile is defined by assigning the index, all that remains is to load/unload

the data.

virtual void Load()

virtual void Unload()

The GP user simply has to design a class that carries out the next requirements:

1. Derive from GPtile

2. Implement the methods Load() and Unload()

In the implementation of these methods, the user can utilize the information con-
tained in the index of the tile and the class derived from GPtile in order to
load/unload the information.

Following the previous example, an index was defined with the position (100,
100) and the size (50, 50). Now we have the location and size of the block of the
search space, but it was not necessary to know what the block was or what kind of
information it contained. In our example, the information to manage is terrain por-
tions. At this point, we define a class derived from GPtile. See Figure 1.7.5.

In the Load method, we load the information situated in the position (100, 100)
and size (50, 50) as shown in Figure 1.7.6.

It is important to know that a GPindex can reference any data type, meaning the
GPtile can load/unload any kind of information (see Figure 1.7.7.). The information
contained by a GPtile can bea fragment of a 50 x 50 image, a height map, a portion
of a digital terrain model, etc.

Every GPtile contains a very useful attribute, state. There are four different
states for a tile:

LOAD: The GPtile is loaded.
LOADING: The GPtile is already loading but it is not completely loaded yet.
UNLOADED: The GPtile is unloaded.
UNLOADING: The GPtile is already unloading but is not completely unloaded yet.

1.7 Generic Pager 85

(108 , 100)
|@DoLoad{)
@DoUnLoad{)
*<cyirtual>> Load()
*<<yitual>> UnLoad(}

GPuserDerivedTile

*<<yirtual>> Load()
*<<yirtual>> UnLoadt)

FIGURE 1.7.5 GPtile definition.

FIGURE 1.7.6 GPtile Load.

The class GPtile manages these states in a transparent way for the GP user (see Fig-

ure 1.7.8). The user will only need to implement the methods Load() and Unload().

In some situations it will be necessary to load information of different types and

origin, but conceptually in the same tile. In the example, the index (100, 100) (50,

50) can reference a terrain portion located in coordinate (100, 100) and size (50, 50)

and, at the same time, it can reference to a fragment of an image with the same coor-

dinates and size that is going to be used as the texture in that portion of terrain, as

shown in Figure 1.7.9.

Section 1 General Programming
86 seecaauowseonenoseccoremmeaneosanesesentintenmnassanesnncinnyenbiannannesnns rnin sirthintttiihennnhnibicnitnsant i riiieGsMsGOeii/HANIRRiiCeasitCIIOGetMhAARAAdsGnenAbbirHHenMsbanttZiOrCironrontanny TIN Mn eenenenrnis/AGtHn

(100,100) :

nets
i50

. .
Sas was ws ap 0 ee Fe |

r aa
(100,100) (100,100)

AEDES) pice er mT Wee,
tovotcot i aes

jnrertotieaotiors 50 | Sat | 50
‘0b 101000100181 oy ;
ornrosor01 110107 iv d

a LIOIgIOL LigIO

50

FIGURE 1.7.7 Different types of information in the same GP index.

UNLOADING

Finish UnLoad

UNLOAD

Start Load

Start UnLoad

Finish Load

LOADING

FIGURE 1.7.8 States diagram.

To manage this, the GP provides two alternatives:

Global Conception: The methods Load() and Unload() load and unload all the
necessary information, respectively. The concept of tile includes all the
information, no matter its type, that is located by the index. In the example, we
load and unload both the portion of terrain and the fragment of texture, as
shown in Figure 1.7.9.

Specific Conception: This uses simultaneously different instances of GP. each to
page kind of information but updating simultaneously the navigation system
(window, which is examined in following next sections).

To review, now we just need two steps to get the GP paging system:

1. Define the GPindex.
2. Implement the Load / Unload methods of the GPtile.

1.7 Generic Pager 87

(100 100) (100,100)

\
(100,100)

Hrorsiiorloids
jto.o1002310101
co001 3121001103
intott03 200011013 50
“¥011101000100112
forirai9101 110107
qeiO101011 LIgIOIg

$0

FIGURE 1.7.9 Different information simultaneously in the same GPtile.

The World: The Search Space
RR HRI BL EEE EHS INN SEO IE LE IE EES BOE LIES ELITE SIT ILS LEELA ILE LEBER EOL EE,

After discussing the index and the tile, we need to cover another very important con-
cept that we referred to in several places earlier but did not fully explain: the search

space. The search space, in the GP context, is the world where the paging blocks

(@Ptiles) exist and are located through the indices.

GP models this world through a class GPworld. This class contains all the created

GPtiles that are in use. When a GPtile is needed, the GPworld creates it; when it is

not necessary anymore, its information is unloaded and the GPworld destroys it auto-

matically. This process optimizes the memory use and maintains in memory only

strictly what is necessary.
When GP needs a GPtile, it makes a request to the GPworld through the method

GetTile(), passing as parameter the GPindex of the sought after GPtile. At this

moment, the GPworld will check if it contains the GPtile. If the GPworld contains it,

this will return it, and if not, this will build it through its method BuildTile. When

GP wants to load/unload a GPtile it does it through the GPworld with its methods

LoadTile() and UnloadTile(). The GP user will just design a class derived from

GPworld and implement the virtual method BuildTile().

In the BuildTile() method, it is only necessary to build an object of the class

derived from GPtile. The use of the parameter is not really necessary. The GP system

will automatically assign to the created GPtile its corresponding GPindex. The user

will only need to take into account the construction of the derived class, which can be

a really easy task, as the following snippet shows, or as complicated as the system

where GP is being integrated requires.

Tile* BuildTile(const Index& index)

{
return (new GPuserDerivedTile())

}

88 Section 1 General Programming

There is also another method that can be implemented by the class derived-from the

world class.

virtual bool IsValidIndex(const GPRindex& index) ;

This method returns true by default; its purpose is to let us know if a specific GPindex
is valid inside this GPworld. This method is automatically used by GP. When GP
wants to create a GPtile for a given GPindex, it checks if this GPindex is valid, and if

the index is valid, the GPwor1d will create the GPtile through its method BuildTile()

(explained earlier), as shown in Figure 1.7.10. If the index is not valid, the GPworld

will not create anything, and the GetTile() method will return false. This validation

of a GPindex falling inside the GPworld along with the check against errors works

towards avoiding a subsequent wrong loading or other implications.

GetTile(index)

| :GPwindow | :GPworld | | :GPuserDerivedWorld :GPole | | :@PuserDerivestile |

IsValidIndex (index)

BuildTile(Index)

LoadTile (index)

DoLoad

UnLoadTile(tile)!
py op

sail Load()

DoUnLoad() '
\ UnLoad()

IsTileWindowListEmp lay () |
+_

DestroyTile()

u
be

1

FIGURE 1.7.10 Sequence diagram.

A world can include GPtiles that contain all the necessary information although
they are different types of information (global conception) or, on the other hand,
many different GPworlds can exist in GP, one for each data type, that is, one for each
instance of GP (specific conception).

1.7 Generic Pager 89

GP is almost formed, and we are only at three easy steps:

1. Define a GPindex.
2. Implement methods Load / Unload of GPtile.
3. Implement the method BuildTile of GPworld.

The Window: Navigating in the World

Once we have our world (GPworld) and we can get any block of it (@Ptile) just

through its position (GPindex), we only need to know which blocks we want to load
and unload. For this purpose, GP provides the GPwindow. With this, we can navigate
around the GPworld using the GPindexes of the GPtiles without needing to know the
information contained within them (see Figure 1.7.11).

The GPwindow has three main attributes:

CenterIndex: GPindex of the GPtile located in the center of the GPwindow

Radius: Indicates the number of GPtiles around the center GPtile

GPtilesList: Contains all the GPtiles of the GPwindow

FIGURE 1.7.11 Ze GPwindow.

The initialization of the GPwindow is really easy:

1. Provide it with a reference to its GPworld.

2. Give the GPwindow a GPindex, which will position it.

3. Give it a Radius.

Section 1 General Programming

After this, GP automatically fills out the GPtilesList, taking the GPindex given as the

center, using the methods GetNext Index() and GetPreviousIndex() of that GPindex,

and telling the GPworld to load the entire list, as shown in Figure 1.7.12.

FIGURE 1.7.12 Loaded GPwindow.

To navigate, we simply give positions to the GPwindow through its update method,
Update(). Every time this method is called, it will check if the new position is inside
the center GPtile, meaning it is contained in the center GPindex. If the new position
is inside the center GPtile, the GPwindow will not update itself; if not, we will take as a
new center the GPindex that contains the new position, and the GPwindow will be
updated with its new center and radius.

In the update process, the tiles list is modified, adding the new GPtiles that are
inside the GPwindow and removing the GPtiles that are not inside. The GPwindow
tells the GPwor1d to load the new ones and to unload the GPtiles deleted from its list.
This process is automatic, transparent to the user, and completely independent of the
type of information contained in the tiles, as shown in Figure 1.7.13.

If the radius is modified, the update process is the same, but note that in this case,
the center remains invariable.

FIGURE 1.7.13 GPwindow update process.

Finally we are ready to use GP. Here are all the steps:

Define a GPindex.

Implement the methods Load() and Unload() of the GPtile.

Implement the method BuildTile of the GPworld.

Initialize the GPwindow by assigning:

e The GPworld

e A Center

e A Radius

5. Update the position of the GPwindow.

ae ee

Multiple Windows, Multiple Users
RESELL AD DOORS NEEL L TLE LE LMT ELLIE LISI DOL LEI RSPR SELENE TIES

GP is multiuser in a natural and transparent way. The right term is multiwindow,

because each user can have several GPwindows, and there can be several users at the

same time (see Figure 1.7.14). GP takes each GPwindow as a different user. When a

GPwindow calls to the GPworld for loading or unloading a GPtile, this realizes some

easy checks:

GPtile::Load(): If the GPtile is already loaded, the world does nothing.

GPtile::Load(): The GPtile is unloaded only if there are not other GPwindows that

need it. After unloading the tile, the world destroys the tile.

This entire process is transparent to the user, who only has to take care of updating

the locally owned GPwindow (or GPwindows) when necessaty.

92 Section 1 General Programming

 GPwindow3

FIGURE 1.7.14 Multiple windows, multiple users.

Optimizing: Multithreaded Paging
aT SSA RRR AES RH UI ESS a A es SED ELA LLL SET NTT,

An optimization of GP is to avoid the GPworld realizing the calls to the methods
Load() and Unload() of the GPtiles immediately. The world will realize these tasks in
a separate thread so as to avoid any interference of the load/unload processes with the
rest of the system, and thus increase performance.

‘To do this, the world has a list of GPtiles. When a GPwindow calls to the GPworld
for loading (or unloading) a GPtile, the GPworld adds this GPtile to the list and
marks it as loadable (or unloadable). In the main loop of the load/unload thread, each
element of the list is removed and processed.

Conclusion
ROLLIE LM EES ALE LEE ETT NLA DERE EE IER TED I TER ERD HES AI

This gem described a complete, multiuser general paging system (GP), capable of
managing any type of information in an easy and efficient way, optimizing the
resources of the system. The scope of GP is global, so it may be integrated into any
other system that requires management of the loading and unloading of information.

The design of the GP follows some of the design suggestions of [Lakos96] and
[Alexandrescu01]. The implementation of GP uses some of the suggestions of [Mey-
ers96].

References
RSE LEP TREATISE ERT RO ten RT

01] Alexandrescu, Andrei. Modern C++ Design. Addison Wesley, 2001.
[Lakos96] Lakos, John. Large-Scale C++ Software Design. Addison Wesley, 1996.
[Meyers96] Meyers, Scott. More Effective C++. Addison Wesley, 1996.

[Alexandrescu

1.8

Large-Scale Stack-Based

State Machines

James Boer

author@boarslair.com

i: this gem, we examine a unique synthesis of traditional state objects with a stack-

based management and queuing system. These combine into what might be called

stack-based state machines. This mechanism is remarkably superior to traditional state

machines, especially when dealing with traditionally messy logic flow, such as in deeply

nested user interface screens. Stacked state machines also make it simple to handle

other thorny state-related issues, such as how to implement a global state such as a

game pause state without writing special-case code everywhere, or building intrinsic

knowledge into the state about where it should return to when it is finished executing.

An advanced state-manager system is also demonstrated, adding functionality

such as queued state commands, delayed state transitions, and centralized state timing

functionality. States are, as expected, represented as hierarchical C++ objects and are

designed to automatically handle details such as knowledge of previous and next states

when entering and exiting, as well as stacking events (pushing and popping of states

on top of other states). This system is an extremely effective way of managing large-

scale state systems, such as the concept of a global application state (or game state)

within a program.

Traditional State Machine Code and

Associated Problems —
SRE SDD LISS E TI NOL ET LL LIE SLI ODE EEE ELLIO NOELLE TOTS

SS POEL ROT ASE SLING ELE TONING

One of the most fundamental tasks of any game is representing an internal “state” that

represents the visual and logical elements that are currently presented to the user.

Generally, games divide into two distinct sections of states: frontend user interface

states and in-game states. For example, each user interface screen in the front end

should likely be considered a unique state, since each screen has unique functionality

as well as unique transitions to other states. Dialog boxes and other major screen ele-

ments with which the user must interact might also be considered unique states,

although these have specific issues that will be addressed later.

93

94 Section 1 General Programming
seconde tetiniettitetaemmtbntimmi itinerant AA atnand eine eRamMESGESOHOiCRNNAREONStt Snes tena

Likewise, a game may have one to any number of unique global states within the
actual gameplay. For example, a traditional first-person shooter (FPS) might allow the
player to interface with a computer in the game. At this point, the game enters a dif-
ferent state: the rendering path changes, and the interface to the game is different. In
essence, it is as though a completely different minigame is playing instead of the pri-
mary control mechanism. Figure 1.8.1 demonstrates how a standard state machine
diagram might represent typical states such as these.

New Game

Tae

oni
 at i

 e
S

pes an
n

Minigame 1 | Minigame 2

Game Options :
Ga

FIGURE 1.8.1 A typical game-state diagram.

It’s fairly easy to create a simple state machine in C or C++ code. All you need is
an enum variable and a switch statement, as demonstrated in Listing 1.8.1.

Listing 1.8.1 A Simple State Machine
I

—————

enum GameState

{
STATE_OPENING TITLE,
STATE_MAIN MENU,
STATE_RUN_ GAME

}5

GameState m_State;

Lf

1.8 Large-Scale Stack-Based State Machines 95
srausaeeetsnseesittiennnaecnsinineneneenesmhaunc nasa aonmens eo necnenacaS sasiyacetbascnnysiuraei gamit AiNieoiei ana SUciAeeOttinectSeeMeAANSHE IRENE

switch(m_State)

{
STATE_OPENING_TITLE:
// Do opening title code

break;

STATE_MAIN MENU:

// Do opening main menu code

break;

STATE_RUN_GAME:

// Do main game code
break;

}5

Unfortunately, the real world is not quite so simplistic. A number of thorny issues

often quickly arise. For instance, what happens if you need notification on the first

update when switching states? A quick solution is simple enough: just add a counter

that tracks updates and resets whenever the state changes. What about when leaving a

state? Well, you could add separate sets of switch statements for entering, exiting, and

updating states. How about if you need to change to a state at some specified time in

the future? Again, you could add a timer with a delay element. What if you want to be

able to queue up a number of state changes in sequence? By now, your simple C-style

state machine is growing into a bit of a mess, with a number of variables, switch state-

ments, and functions all lumped together. Although this C-style state machine may

be highly functional at this point, readability, usability, and maintenance all become

serious issues. Even worse, where exactly does one store data specific to any of these

states? Since all you have are functions, it becomes much messier to actually create

and use data specific to the lifetime of any particular state. To top it all off, this state

machine is only usable for a single set of states; the code is not re-usable except to the

extent of cut and paste.
Now, how about dealing with some even more fundamental problems? How

exactly would you represent a state such as “pause game”? The behavior is unlike other

states in that you probably expect it to return to whatever previous state existed before

you paused the game. Likewise, many menu systems operate in a hierarchical fashion,

with layers added upon layers. Using a traditional state machine to transition between

these different user interface screens (such as when a confirmation dialog pops up over a

user interface screen) is certainly possible, but may be less than optimal. Scott Meyers, a

well-known C++ authority and writer makes the point if you find yourself writing code

in the form of “if an object is of type TI, then do something, but if it’s of type T2, do

something else;” you should stop because that isn't how it’s done in C++ [Meyers98].

The intent of this article is not to extol the virtues of C++, but rather to demon-

strate why object-oriented solutions are often vastly superior to their functional

equivalents. As such, we will demonstrate how an object-oriented solution to the

game state problem can vastly simplify your programming efforts and keep your code

much cleaner.

96 Section 1 General Programming
a pease encase ftrntnimmntnitinunuannnsaisiasianinsiiusstioceunmutiermentinicimutceteteitottommants .

The C++ Approach to Game States
While most programmers are quite used to the concept of designing classes based on
physical entities (i.e., a Weapon or Player class), C++ classes can also be highly effective
when modeling more abstract concepts, such as states [Gamma94]. If we standardize

the meanings of specific functions, we can achieve a straightforward approach to
modeling a single state with a class. Listing 1.8.2 demonstrates how this might
look.

Listing 1.8.2 Modeling a Single State with a Class

class SomeState

{
public:

void OnEnter();

void Update();

void OnExit();

}5

Each function represents a specific event in the handling of this particular state.
When the game requires this particular state to be activated, the class’s onEnter()
function is called. This gives the state a chance to initialize, allocate, or activate any-
thing necessary for this state to operate. On each update tick (update or render cycle)
of the game, the class’s update () function is called to process any events that may need
handling. Depending on your particular engine’s design, you may or may not need a
separate function call for doing any rendering work. Finally, when the state exits,
meaning another state is about to become active, the OnExit() function is called to
allow the state to clean up after itself.

This gives a nice home to any initialization, updating, and cleanup functionality
required to represent this game state. However, almost as important is the fact that we
now have a logical place to store any persistent data on which this functionality
must operate. For instance, if this state represented a user interface screen, the class
could contain all the various user interface elements that the screen must display and
manage.

The State Interface Class
SA MANE ANSE HERO TI ATTEN RAIS OSCE soem

To ensure each state’s compliance with this interface, and to be able to operate on dif-
ferent states through a common system, we can use a base state that acts as a standard-
ized interface for all other states derived from it. Additionally, let’s assume that we will
add some functionality to the system: the names of states will be passed to the state
object via these functions. Listing 1.8.3 shows what this class looks like.

1.8 Large-Scale Stack-Based State Machines 97

Listing 1.8.3 State Interface Class

class IBaseState

4
public:

virtual ~IBaseState() {}

virtual void OnEnter(const char* szPrevious) = 0;

virtual void Update() = 0;

virtual void OnExit(const char* szNext) = 0;

virtual void OnSuspend(const char* szNext) = 0;

virtual void OnResume(const char* szPrevious) = 0;

}5

You can see that when switching states, any state object will have easy access to the

previous or next state, which can be useful when dealing with transition-specific code.

You may have noticed the OnSuspend() and OnResume() functions and wondered what

those are for. The next section will explain their significance. In fact, part of their

functionality is designed to actually reduce the necessity of transition-specific code,

which tends to complicate state machine design and maintenance.

Stacking States—Why Three Dimensions Work

Better Than Two
SEDER ROE NOISIER ERD NNN SOE ELIT I IE STOLE EE ELLE EE EL ELIT

Ina typical game, it is not uncommon to have many different modes of gameplay rep-

resented by different state objects. As an example, a typical role-playing game may

have a dozen different game states depending on whether the player is walking around

outside, in a town, purchasing goods from a store, in combat, or playing a mini-game.

At any point in the game, you would like the user to be able to bring up the same

options screen then return to where the game left off. It may be desirable to leave the

game rendering in the background, but in a paused state. Exiting completely out of

the game state and coming back in is problematic in this case.

Another form of this problem comes up quite often in user interface screens.

Often, it is desirable for a screen to continue rendering while a dialog box is drawn in

front of it. There is no clean way of dealing with this in a traditional state machine,

because we really do not want to completely exit the current state in order to enter a

new one. Rather, we want to be able to suspend (or pause) one state while another

supercedes its functionality, but then return to the original state and resume (or

unpause) its behavior.

These types of issues can easily be solved with the concept of a state stack: the abil-

ity to push and pop states on top of other concurrently running states. This is what the

OnSuspend() and OnResume() functions are for. When a state is pushed on top of

another state, the original state’s OnSuspend() function is called. However, the Update ()

function is still called each frame. Figure 1.8.2 shows how a state machine can work in

three dimensions instead of in two through a stack mechanism.

teccmmninensnmassssinuamnmtentanctcsetenaaa sraenenetesivonnnniniasanenttiutrtenesattaeaninne cents
98 Section 1 General Programming

Normal State Transitions Represented

Gameviay |

>) ee Active State

\ seers’)

Gamedsy .

Inactive States a

Wicigarme 7
aS

Inactive States

Active State

Garnae OPtons

Wieriqarme 2 \

Suspended State

“Game Options” Pushed Onto the State “Minigame 2”

FIGURE 1.8.2 Adding a third dimension to a typical
game-state diagram.

This gives the state two options. The first is, it may wish to pause itself when another
state is pushed on top of it. This is a simple matter of setting an m_bPaused flag when

OnSuspend() is called and clearing it when OnResume() is cleared. A simple check in

the update loop could then prevent code from executing when another state overrides
this state. Alternatively, the state object may wish to continue updating in the back-
ground, effectively allowing two states to execute in parallel. You may even wish to
build this sort of functionality into the base class for consistent operation of all classes.
For the sake of simplicity, we leave these options out of the base class interface (for
this gem).

A State-Object Management System

You may note that we are emphasizing game states as opposed to other types of states
that occur within a game, such as various states within a single AI entity or states of a
UI widget. This is because an object-oriented state machine works best for more com-
plex state systems, such as those representing the state of an entire game. The reason is
two-fold. First, each state must be represented by an entire class; typically one derived
from a base class (or implemented using templates) for reasons of polymorphism.
This is a considerable amount of work to invest in a single state, and only pays off if
the state itself is somewhat complex in nature. Second, these states must all be man-
aged by an external system to be used effectively. Let’s examine what such a state-man-

“es agement system would have to consist of. Listing 1.8.4 shows the interface to the
ONTHECD StateManager class found on the accompanying CD-ROM .

1.8 Large-Scale Stack-Based State Machines
seaessssrmnnantnasntestnienasnansecsicegtennsscs

Listing 1.8.4 Interface to the StateManager Class

class StateManager

{
public:

StateManager() ;

~StateManager();

void Init();

void Term();

// Register a state object and associate it

// with a string identifier
bool RegisterState(const char* szStateName,

IBaseState* pState) ;

// Checks if the current state will change

// on the next update cycle

bool IsStateChangePending() const;

// Returns the current state

const char* GetState() const;

99

// Get the state object based on the string ID

IBaseState* GetStateClass(const char* szState) ;

// Get the state object on top of the current

// state stack
IBaseState* GetCurrentStateClass();

// Returns the size of the state stack

int GetStateStackSize() const;

// Passing bFlush = true will override any previous

// state changing commands that may be pending.

// Otherwise, state commands will queue and be

// executed in the order of the calls made.

// Changes the current state on the next

// update cycle.

void ChangeState(const char* szState,

float fDelay = 0.0f, bool bFlush = false);

// Pushes a new state on top of the existing

// one on the next update cycle.

void PushState(const char* szState,

float fDelay = 0.0f, bool bFlush = false);

// Pops off the current state or states to reveal

// a stored state underneath. You may not pop off

// the last state

void PopState(int iStatesToPop =

float fDelay = 0.0f, bool bFlush = false);

LIVERF OOL JOr

LEARNING & JNFORMATION
SERVICES

100

ON THE CD

Section 1 General Programming

// Pops all but the last state.
void PopAllStates(float fDelay = 0.0f,

bool bFlush = false);

//

// Updates the state machine internal mechanism.

// This function is called once by the main update

// loop and should not be called by anyone else.

void Update(float dt);

}5

Tnsert CD Icon Here

In the interest in saving space, we're not showing the internal workings of the class

(private data or function contents), but you can browse the source code on the

accompanying CD-ROM in the files StateManager.h and StateManager.cpp.
As is apparent by the interface, our state manager associates states with simple

string identifiers. We chose string identifiers for two reasons. First, strings are handy
when printing the state for debugging purposes. Second, there is no reason to use
enumerated identifiers for reasons of efficiency. We assume that state switching will
occur relatively infrequently, especially if we use this system exclusively for tracking
game states. Additionally, the use of strings to represent states is much easier to inte-
grate with scripting systems.

The state manager easily and automatically handles problems such as queued
and/or delayed states, in addition to allowing states to be pushed and popped on each
other. This mechanism ensures a robust and uniform mechanism for handling all
state-based transitions and situations. Additional functionality required by your game
or engine may easily be added as needed, and other projects will be able to take advan-
tage of these improvements if this system is utilized as a library (or engine) level com-
ponent instead of a game-only component.

One of the benefits of standardizing on a uniform game-state transition and def-
inition mechanism is that various library elements can represent entire game states
rather than simple functional components. For instance, a library widget that repre-
sents an on-screen keyboard (a necessary component of many console games) can not
only contain the widget element, but also the complete state code necessary to set up
and handle all events that occur in this sort of complex screen. As games become more
complex, developers need to think about ways of efficiently reusing larger and more
complex components in order to reduce development time and avoid having to rein-
vent the same technology for every new title.

Conclusion

The simple concept of objects as states is certainly nothing new, even when combined
with the technique of state stacking and implementing via a centralized state-manage-
ment system. Unfortunately, all too often in the game programming field, these types
of fundamental building blocks are eschewed in favor of an “evolutionary” design,

1.8 Large-Scale Stack-Based State Machines 101
otienaaonsuitautetanoneon: stenoses ensues uauatttnuiotrraionitentcngvrmnnermnenaomannin

meaning no thought is given to these systems before coding begins. This can, in the

worse case, lead to nightmarishly twisted and complex code paths as your game

evolves.
In truth, the detailed inner workings of the state manager are less important than

the concept of how to organize large-scale states in your project. Whatever methodol-

ogy or code you decide to use for managing these sorts of state-related problems—as

long as your systems are able to overcome fundamental problems related to program-

ming states in large-scale, complex software systems such as games—you will have a

much easier time avoiding buggy, unmaintainable code in the long run.

References

[Gamma94] Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented Soft-

ware, 305-313. Addison Wesley, 1994.

[Meyers98] Meyers, Scott. Effective C++, Second Edition, 176-177. Addison Wesley,

1998.

co as
ae Te es

Pre ee id. suiedsp
ane He 1 ery OG i

nurs hagtondti sis! Aue “ens

lobotranevesied nly RL fle 7
seogtresirie er uate ‘7 alo

ay or iy eles x iy fio

wth New ike + unthigadeel Aviey te z ;

' my anol Hem Sa is ae a ote Sguibie a ie
‘8

ne ea om pacer

} is “lll y peg ver P-9 marks * on ’

= Seu can lowed the set 9 a ¢ " ,

ini « te ae eer s omer Pet a
8 or ee

led ob et pe a esc? - 5 ao kph 1004 ee if oa

P fuk ' i; ; : as. Oe oe ihere™ Te Tea : a iNet
r Foe (Cheers We omer Gees x eh ve

> weg Ay + oF Ue Is qe 2

ehisar Ht ee Terentia auch ee aa
- a " rs x

, LULL om bvcocedle paca ubldana ‘sigh one

: Fay io p oante) oo juebiats Oitred er

a toren sagen vim iat : ing afl

af , _ pure avonabigy reeves ary
' 7 - ~*~ saan be al het :@

"= ; oat be
Sa dunt nv ees .

= wig) wai ea asa

: y seatae oa) MPTOIe eit ath

: © ecehpatenant eet ee
onineia _ ee? OP eny

2 me comptes aiene-cenke ors

: eacagocainees: Angaeaeali ai
on fw:

| , i. Ty peas > nine = 4 2 — it.

’ n c 7 ee
~ ” ie : . ’ #

; =
A ae : . 7 a b a

a ety a

le

1.9

CSG Construction Using

BSP Trees

Octavian Marius Chincisan

mariuss@rogers.com

Cea Solid Geometry (CSG) is a method that combines fundamental

shapes, such as boxes, spheres, cylinders, and cones, to build more complex

shapes, which may then be used throughout a game engine for a variety of applica-

tions. These fundamental shapes are generally referred to as primitives, and the opera-

tions that combine these primitives together in CSG construction are known as

Union (+), Intersection (&), and Subtraction (_).

In this gem, we will see that CSG and Binary Space Partitioning (BSP) algo-

rithms are actually quite simple and rely on no more than the partitioning and split-

ting of polygons against planes (and a little careful housekeeping). Additionally, we

will step through the application of Boolean operations—such as those previously

listed—between primitives, and even take the concept to the extreme to combine sets

of complex results.

CSG Boolean Operations

Although classic CSG is not the subject of this gem, a brief explanation of all the fun-

damental Boolean operations is provided here for completeness.

The fundamental CSG operations between two solids are illustrated in Figure 1.9.1;

where (b) is Union, (c) Intersection, and (d) and (e) Subtraction. To better illustrate the

algorithms, the solids taken in the samples are reduced to simple 2D segments, where

each line segment represents a face. All solid faces are facing outward; therefore, the con-

tents of X and Y are considered solid. Exterior (outer) spaces are considered empty.

Union

The Union between two or more solids is realized by discarding geometry that ends

up in solid space. In Figure 1.9.2, we have to discard faces C”C, CE, and EC’. A little

later in this gem, all segments are referred to as faces, and all laying planes faces as

planes. To perform a Union operation, all the faces of solid X have to be clipped by

solid Y, and all solid Y faces clipped by solid X. The remaining geometry
after the clip

builds the final resulting solid is shown in Figure 1.9.3.
103

104 Section 1 General Programming

RAR
(a) XY (b) X+Y (c)X&Y (d) X-Y

FIGURE 1.9.1 Boolean CSG operations between X and Y.

Cc

FIGURE 1.9.2 Clipping ABC against DEE FIGURE 1.9.3 X clipped by Y.

We take one by one solid X faces (AB, BC, and CA) and clip them against solid Y
planes (P1, P2, and P3) (see Figure 1.9.2). Clipping means we classify all of X’s faces
against all of Y’s faces laying planes. The following function shows a split-face-by-plane
function that is used in the clipping process. The function returns —1 if the face is
completely in back of the plane, 1 if it is in front, and 0 if the plane splits the face.
The frontFace and backFace variables carry out returned new faces. Further on, the
clipping process drops off one of the two face fragments.

int Face::Split(Plane& plane, Face& frontFace,
Face& backFace)

{

1.9 CSG Construction Using BSP Trees 105

Vertex vertex! = m_points.first() ;

Vertex vertex2 = m_points.back();

Vloeks alse

float fA = plane.DistTo(vertex2._xyZ);

for_each(vertex in m_poins)

{
vertex1 = *vertex;

fB = plane.DistTo(vertex1._xyZ);

if (fB > EPSILON)

{
if(fA < -EPSILON)

{
float t = -fA /(fB - fA);

Vertex midvertex = vertex1 +

(vertex2-

vertex1)*t;

frontFace << midvertex;

backFace << midvertex;

}
frontFace<<vertex1 ;

}
else if(fB < -EPSILON)

{
if (fA > EPSILON)

Float te =e -tAe/ (iB = ofA)

Vertex midvertex = vertex1 +

(vertex2-

vertex1)*t;

frontFace<<midvertex ;

backFace <<midvertex;

}
backFace <<vertex1;

}
else

if
frontFace << vertex;

backFace << vertex1;

}
vertex2 = vertex;

TA) = TBs

}
.

if (m_points.size(==frontFace.size())

return 1;

else if m_points.size()==backFace.size()

return -1;

return 0;

}

During the clipping process, some of X’s faces are split in two by Y’s planes. If a face

ends up behind one of P1, P2, or P3, it continues to be clipped until it has been

clipped by all planes P1, P2, and P3. If that face survives, ending up being behind all

Section 1 General Programming

Y’s planes, the face is dropped. The other faces, or fragment faces, are added to the

final resulting solid.

We start by clipping faces AB, BC, and CA against planes P1, P2, and P3. AB is

split by P1 in AA" and A"B. AA" is in front of P1, and therefore is no longer clipped

forward by P2 and P3 and is added to the final brush before splitting on A' by P2. AB
is added to the final brush result. A"B ends up behind P1, and is clipped by P2 and
P3. Clipped by P2, A"B ends up in front (both ends are in front), and therefore face
A"B is added to the final brush (and is no longer clipped by P3).

Next, face BC ends up behind P1 (both segment ends are behind P1). Because

BC is in back, we send this face on to be clipped by P2, and BC ends up in front of

P2 so it, too, is added to the final result solid (see Figure 1.9.3). One more face to go.

Face CA, clipped by P1, yields AC’ and C'C. AC is in front of P1, and so is added
to the final solid (see Figure 1.9.3). C'C is clipped forward by P2; as we can see in Fig-
ure 1.9.2, C'C is split by P2 in two faces, C'C" and C"C. C"C is the face fragment in
front of P2 and is added to the final solid (see Figure 1.9.3). C'C", however, is clipped
by the last Y plane, P3. C'C" is totally behind P3. Consequently, C'C" is dropped and
not added to the final solid.

At this point, we have solved half of the problem. The next step is to clip the Y
faces against the X planes (see Figure 1.9.4). We take the original faces (AB, BC, and
CA) and their laying planes and clip faces DE, DE, and FD against them. We follow
the same algorithm as before. Any face that ends up in back is clipped (Figure 1.9.5).
If a face is clipped by all of P1, P2, and P3, that face is not added to the final solid (see
Figure 1.9.4).

We start with face DE. DE is totally in back of P1 and is clipped by P2. DE is
split by P2 in two faces. DD' is in front while D'E is in back of P2. DD’ is added to
the final result while D'E is clipped forward. D'E ends up in back of P3, and so is not
added to the final solid. Following the same logic with EF, EE' ends up being
dropped, and EF is added.

FIGURE 1.9.4 Clipping DEF by
Pl, P2, and P3.

1.9 CSG Construction Using BSP Trees 107

FIGURE 1.9.5 Y clipped by X.

All the faces that have been added to the final solid realize the union between

ABC and DEB as Figure 1.9.6 illustrates. Don’t worry about the resulting solid look-

ing a little bit sliced. AB is in fact AA’ plus A’B (refer to Figure 1.9.7). When we ana-

lyze the BSP approach of CSG we are going to handle the unnecessary cuts due to the

CSG operations.

B os . PS

att FIGURE 1.9.6 Zhe final result FIGURE 1.9.7 Multiple CSGs.

of the Union operation.

Don’t be surprised, but at this point we have already managed to cover 90% of

classic CSG construction. Intersection and Subtraction are no more than variations of

Union.

108 Section 1 General Programming

Intersection

Intersection (Figure 1.9.1(c)) is performed by inverting the both solids, performing a
Union on them, and inverting them back to achieve the final result. Inverting solids

means reversing all faces’ planes (plane normal and plane constant). By inverting the
solids, they become empty and their surroundings become solid. Classic Union will
eliminate any geometry ending up in solid AB, BC, AC’, and CC" (see Figure 1.9.2)
and DD", EE’, and DF (see Figure 1.9.4).

Subtraction

Subtraction (Figure 1.9.1(d) and 1.9.1(e)) is performed as follows: we subtract B from
A by inverting A, performing classic Union with B, and then reverting to get the final
result. On the other hand, if we want to subtract A from B, we invert B, union reverse
B with A, then revert back for the final result. The following table shows the mapping
of operations to their symbolic equivalents:

Operation Symbol
Union +

Intersection &

Subtraction re

Reversed solid !

Using these operators, Intersection and Subtraction may be defined as follows:

A & B =!(!A+!B)
A-B=\(!A + B)

and

BA =\(As!B)

Why BSP?
A oncSAT ANRC

BSP comes into the picture when one of the solids participating in the Boolean CSG
operation is no longer convex. In Figure 1.9.7, we may want to subtract C from A. As
we can see in the illustration, A is no longer a convex solid. If a solid has at least one
of its faces’ planes splitting itself, it is called concave. In Figure 1.9.7, the P2 and P1
planes are splitting A itself, therefore A is concave. Let’s see how the classic CSG we
covered in the earlier section fails to union A with C. We can assume we have already
clipped all A faces and are now working on B faces. We clip face EF against P2, P3,
P4, and P5 planes. Right away we can determine that EF’ will be dropped because it is inside A. FE is behind P3 and is therefore clipped forward, ending up being behind
P4, behind P2, but on front of PI. Being in front of at least one of P2, P3, P4, and P5, EE is added to the final solid. Allowing EE' to be part of the final result is wrong,
however, because it is inside A. What do we do?

1.9 CSG Construction Using BSP Trees 109

The solution is to split the concave solid into small convex regions and perform

CSG operations between these regions. It is widely known that a BSP leafy tree solves

this problem. Leafy BSP, or Beam Tiree, helps us to partition any solid into small, con-

vex regions.

The BSP

All you need for a good BSP is a good splitting polygon function and good house-

keeping. For housekeeping, we threw in a node structure that caries a splitting plane

and two references to front and back nodes, and a leaf structure that caries the BSP

polygons. See Figure 1.9.8.

Front List

E
Back List

G

FIGURE 1.9.8 Splitting A by plane P2.

Gera The implementation provided on the accompanying CD-ROM has the full Leafy

ont#ecD ~~ BSP implementation. Here we will summarize the basic steps for building a BSP out

of solid A, as illustrated in Figure 1.9.8.

1. We pick a random face to be root splitter. Let’s say EF laying on P2.

2. We flag the face that its laying plane has chosen as being the splitter.

110

WN

Section 1 General Programming

. We split the solid by this splitter plane.

. All faces or fragment faces ending up in front of the splitter are added on
the front list. If a face is coplanar with the splitting plane, that face is parti-
tioned by the plane’s orientation as follows: if the normal of the face has the
same orientation as the splitting plane, it is added to the front, otherwise, on
the back.

. All faces, or fragment faces, ending up in back are added to the back list.

. We reference the front and back lists to the original splitter as front and back
nodes.

. We repeat the process for back and front lists starting at Step 1 but we always
choose a nonflagged face for the next splitter as follows:
¢ For the front list, we stop the recursive process when all polygons have

been used as splitters or when front polygon’s size is 1, and we create a ter-
minal leaf node where we add all polygons from the front list.

* On the back list, we continue the recursive process until no polygons are
left in the list. At this stage, we create a terminal leaf node and flag it

solid.

The BSP built by this algorithm has internal nodes with only splitter planes and point-
ers to front and back nodes. Figure 1.9.9 shows the final BSP tree for the solid A.

Root

P2

nS: fur
5 EF

Hie of Cre
solid AE

solid BD

FIGURE 1.9.9 Final BSP for solid A.

1.9 CSG Construction Using BSP Trees 111

Cute ee coeMer
Finally, we have the elements necessary to complete our CSG algorithm. Using the

BSP, we no longer clip solid polygons against other solid polygons. Instead, we clip

the polygons against the other solid BSP and vice versa. The CSG pipeline between X

and Y looks like this:

1. Make X BSP.
2. Clip Y against X BSP and retain appropriate polygons.

3. Make Y BSP.
4. Clip X against Y BSP and retain appropriate polygons.

Clipping a solid with a BSP tree consists of partitioning all solid polygons with all

partition nodes (the BSP tree's splitting planes). The clipping process starts at the root

and continues down to the leaves. The following sample exemplifies the recursive

process:

void Bsp::Recurs Clip(int node,
list<Polygon>& polys2Clip,

list<Polygon>& finalList)

BspNode node = GetNode(node) ;

if (node->IsLeaf ())

{
if (node->IsSolid())

{
if (m_csgUnion)

{

}
finalList << polys2Clip;

return;

}
else

{
if (!m_csgUnion)

{

}
finalList << polys2Clip;

return;

}
return;

}

for_each(pSpPoly in polys2Clip)

{
Where_Is rp1 = pSpPoly.Classify (

node->GetPlane());

switch (rp1)

{
case ON PLANE:

if (SameFacing(pSpPoly,node.GetPlane()))

112 Section 1 General Programming

{
backPolys.push_back(pSpPoly) ;

}
else

{
if (m_csgUnion == FALSE)

frontPolys.push_back(pSpPoly) ;

else

backPolys.push_back(pSpPoly) ;

}
break;

case ON FRONT:

frontPolys.push_back(pSpPoly) ;

break;

case ON BACK:

backPolys.push_back(pSpPoly) ;

break;

case ON_SPLIT:

{
Polygon fp, bp;

pSpPoly.Split(node->GetPlane() ,fp,bp) ;

frontPolys.push_back(fp);

backPolys.push_back (bp) ;

}
break;

}
}
if (backPolys.size())

Recurs_Clip(node->BackNodeIndex(),

backPolys, finalList) ;
if (frontPolys.size())

Recurs_Clip(node->FrontNodeIndex(),

frontPolys, finalList) ;

}

The polygons are partitioned into front and back lists at the root node. If we particu-
larize our explanation, we end up dropping polygons DE, ER, and FD (see Figure
1.9.7) from the BSP root node (see Figure 1.9.9), All the polygons that make up C are
clipped by the root node. Some of them end up being split, some not. All polygons
ending up in front are added to a front list, all those ending up in back, to a back list.
For the standard algorithm, all coplanar polygons with the splitting node planes are
pushed onto the back list. There may be variations of how we process these, which
depends on the current CSG operation. You can see this algorithm at work in the
accompanying source to this gem. The front and back lists are forward clipped by P3
and P1, respectively. The process is repeated until the remaining polygons have
reached the leaf level. When a list reaches the leaf depth, we decide which polygons we
drop and which we retain to build the final CSG solid. If we refer back to Figure
1.9.1, here are the particular conditions for all enumerated CSG operations:

1.9 CSG Construction Using BSP Trees 113
solar cuasnusesneicsmaonoceovnmnannsonnesoananetciitinenieioiniusonreeenient

CSG Operation Description
Union Drop all lists that end with a solid leaf

Subtraction Apply the formula !(!A + B) or !(!BA + AB), or slightly
change the clipping algorithm without reversing front
and back too many times (see the example source)

Intersection Apply !(!A + !B), or simply drop all lists ending with an

empty leaf

Conclusion i.

The CSG algorithm exposed in this gem covers two solids at a time, but it can be

recursively adapted to perform complex CSG Boolean operations between multiple

solids, as the accompanying example implementation demonstrates. The performance

of the algorithm can be improved by eliminating unnecessarily splits, i.e., building the

BSP tree out of polygons that are coming into contact with the other solid. This

requires maintaining a bounding box for each face and testing the faces prior to CSG

construction against the other solid’s bounding box. The polygons untouched by the

other solid’s bounding box are simply copied into the final result. A second approach

for reducing the splits is to track how many times a polygon has been split along with

a reference of the polygon in each of its fragments. Finally, if all fragments having the

same original polygon as a reference have survived safely, we replace the fragments

with the original polygon. Now, go fire up the sample code, and enjoy the beauty of

CSG!

Reference

[Rottensteiner] Rottensteiner, Franz. “Constructive Solid Geometry.” Available

online at http://www. ipf- tuwien.ac.at/frlbuildings/diss/node38. html.

UN hoo ;
ait oad A

.

BE ie vO STE
= . _

ad es ah nid aii een on at aes ay anon |
shyetlian. creme sod vat eat) este heitos oy t
Saniieetied 1T aoxeranemi ree seg = an ‘

‘ wiht 2" lingreg200 nplinile ye anearo iat
Tie slag rae Ole yrimion sae anes ane

BD-evwirg cued attr gictfios linn socPalaga/tel ~y a 53 nae
oth yd hodowonse anaigtiog ad? xix sibansd rh ree a a i a '
cFaengyn Beto A pos logit odds cau: Teuqon: qa am gies m
si ghalttilye nagd aad noguiog p minn (acta wod domino es
Sit yoived asomged ile ti visa ii@kengen alc dass nb "eee
armingent ah ralgse sn glotcs hovivrue ovad sconce © 6 mogtiog bankai
We Giud ath qnjns bins shea slamplodiqu mit og wo cog(log ienigive
; “ Gxevrg Cliginoge Backhoge ieee? |,

: ’ Secetalyy, Pinaslgegie ;' oe

1)? roth: vb at 79) ! s 54

Heoure 5. Livieete.PF eontadetnged
‘i — Toe vy oe

aldidigwt “wremee,) bilo® wins)" ‘asia eanistenss oA fro
er J Be sunlninve wast wie rH Averitt 1g) sh lag He The a9 gray ate 43 cy uate Fy mt nl ei A ea aa

~,

Lertza yee, We ete ais ily sping, yontyiget OR. &

9.7) teen The BS?! root ed 6 Pause? 4.9). All the
iin 2 ie Gee coat ncwte. S mr of hem ena Ly a Sa

0 From ate oddest tu 9 Areas ligt, hehe orsaliney ta iw
Deg Wet wankers algorithm. ol! enplacar polly Sigs - nbe plan ar

7” o da® t. There map bev Arran — : us i
te . R43 nee CSC. ore A Yong Sf, ver a ' ag wood:

— ot | ie a, . od wen 4. he one ond elec Tis

Vv) ere, ~~ Lee . Proce is ‘openaad ansid chy i

pat che WF hese! When lien Ataehees ‘ve teal

~ars wad obi x Pin Wm boryilel ive tial eke

wee ofe Lae feroruty comligous Pa ae

1.10

Building Lua into Games

Matthew Harmon, eV Interactive

Corporation

matt@ev-interactive.com

I: the past decade, computer and console games have become less hardcoded and

more data driven. The benefits have been numerous, from easier development to a

whole subculture of user-extended products. In fact, when examined from a technical

standpoint, many games now resemble a virtual machine or operating system more

than a single special-purpose application.

The most powerful constituent of the movement toward data-driven design is

undoubtedly the use of embedded languages. Simple data-driven design focuses on

the externalization of hard game data: maps data, entity parameters, if/then triggers,

and other arguments to the game engine. By using an embedded, or “scripting,” lan-

guage, games can also externalize logic. This has opened entire new worlds of end-user

customization as well as produced sweeping changes in the way games, and game

systems, are developed.

Unfortunately, creating an embedded language from scratch can be a significant

undertaking. Even with a wide variety of tools available to assist in this endeavor, end-

ing up with a complete, robust, and flexible system can consume many man-hours.

Luckily, today there are several ready-made solutions that can be quickly integrated

into a project. Languages such as Python, Ruby, and Lua are proven, reliable, and in

heavy use. Other solutions exist, and some are even tailored specifically toward games,

but those do not yet share the popularity of these general purpose languages.

This gem is designed to show how quickly and easily an existing embedded lan-

guage can be added to a game system. The language of choice for this gem is a pack-

age that is being rapidly embraced by the game development community: Lua.

An Overview of Lua TAS aS Wear neal

Lua is a simple yet robust language with many features that make it attractive to game

developers. It is already being used in many professional games, and many more are

integrating it. By paying a visit to the Lua “uses” site (www.lua.org/uses. html), you can

immediately see how the language has made inroads into the game industry. It’s quite

possible that game developers will look back at the 2000s as the “decade of Lua.”

115

rape

ON THE CD

Section 1 General Programming

The following are some features that make Lua particularly suited to game
development:

¢ Lua is lightweight. A full Win32 library includes only a couple hundred KB of
code. In fact, the entire demo executable on the CD-ROM is only 145 KB!

¢ Lua can run text scripts, or pretranslated byte-code files. Developers can expose
some scripts, hide others, and even omit Lua’s lexer, parser, and code generator.

By doing this, some have reduced Lua’s footprint to under 25 KB!
¢ Lua is a complete and surprisingly powerful programming language.
¢ Lua is suitable for “semiprogrammers.” It is dynamically typed and includes auto-

matic memory management and garbage collection.
¢ Lua is proven and reliable, with a very active user community.

¢ And, most of all, Lua is easy to embed and interface with C.

A Quick Program

The structure of a Lua program is quite straightforward. While a complete descrip-
tion of the language is beyond the scope of this gem, it is safe to say that most C pro-
grammers will quickly pick up the basics of Lua. Following is a snippet of Lua code to
help familiarize ourselves:

— define a function (“—” signals a comment)

function EruptSequence()

Camera.SetMode(CAMMODE_ORBIT) ;

Camera.SetOrbitRate(PIOVERZ2) ;

ent = Entity.Find(“Volcano”) ;

Camera.SetTargetEntity (ent) ;

end

— Run the erupt sequence every 20 minutes
while (1) do

Script.WaitSeconds(20 * 60);
EruptSequence() ;

end

This code shows some simple Lua syntax. The bulk of the code actually involves call-
ing functions from our game engine that we have registered with Lua.

Dynamic Typing

Lua is a dynamically typed language. You do not declare variables or even define their
types; you simply start using them. For example, in Lua it is perfectly valid to say:

b = 24.5;
b = “Wait! Now b is a string. How wild!”;

1.10 Building Lua into Games 117

Automatic Memory Management

Lua manages memory automatically. When a value is no longer referenced, it is made

available for garbage collection. Thus, there is no need to specifically free any mem-

ory. Keep in mind, though, that holding references to unneeded objects will prevent

them from being cleaned up.

The Lua State

There are a few Lua terms that warrant quick definitions, and the first is the Lua state.

Essentially, a Lua state is a single operating environment for the Lua interpreter

including the stack, execution state, global variables, and so forth. The Lua state is the

object with which we interface when embedding the language into a game. Most

architectures will need only one Lua state.

Lua Chunks

A chunk is a sequence of statements that are translated, and optionally executed, by

Lua. Chunks can be thought of as programs, or fragments of programs, that are

loaded into the Lua environment and made available for use. Chunks usually come

from files in the form of scripts but can also come from static text strings within

another chunk, or even directly from a command console. In the latter case, a chunk

can be a single statement typed in by the user.

Interfacing Lua with C

From a game programmer’s point of view, one of the most attractive aspects of Lua

is how simply it interfaces with C. Before examining how to actually embed Lua

and feed it with scripts, we will explore how to make C functions available to the

interpreter.

Communication between the two languages is provided via a stack, which serves

both as an insulation layer as well as a translation mechanism. Because Lua is dynam-

ically typed, a single stack entry can represent data of any Lua type, so translation rou-

tines are provided to get the data into a format usable by C.

Calling C Code from Lua

The first task most programmers want to accomplish is to expose some functionality

of their game engine to Lua and make it available for script-based control. This is

done by registering simple “glue” routines with Lua. Say we want a Lua script to be

able to control where our in-game camera is looking. We want the Lua script to look

something like this: |

— Point the camera at the volcano

Camera.SetTargetPos(100.0, 40.0), 280/10) 5

118 Section 1 General Programming

We first write a C-language “glue” routine to get the parameters from the Lua-script to
the C side, and then call our engine’s camera function with those values. Glue rou-

tines take this form:

static int LuaSetTargetPos(lua_ State* luaState)

{
TUOG GX

Toate SVG

LOA te Zs

x = (float)lua_tonumber(luaState, 1);

y = (float)lua_tonumber(luaState, 2);

z = (float)lua_tonumber(luaState, 3);

CameraSetTargetPos(x, y, Z);

return(0O);

[

When Lua calls a C function, it pushes the arguments found in the script, in order,
onto the communication stack. It then calls the registered glue routine for the
given function, passing it a pointer to the 1ua_state in which the script is running.
Remember, the Lua state is simply an object that represents the entire state of the Lua
interpreter, including all data, the communication stack, and any functions you have
registered with Lua.

The sample glue routine then attempts to pull three values from the communica-
tion stack, namely the camera’s coordinates (x, ys 2). Values are read from the stack
using the lua_toxxx() calls, which convert the Lua values at the given stack offset to
C types as requested. Note that we can arbitrarily address any stack position, and our
first parameter starts at index 1, not 0. Next, we call our engine’s camera code to make
it all happen. Finally, the routine returns 0, which signifies that we have not pushed
anything back on the communication stack as a return value to our Lua script.

Because Lua is dynamically typed, we must somehow know the types of parame-
ters we are expecting and convert them appropriately. In the previous example, we
need three floating-point values to represent the camera’s position. Lua represents all
numeric quantities as doubles, so while 1ua_tonumber() will convert the dynamic Lua
value to a double, we still need to cast it down to a float. Lua includes many facilities
for manipulating the communication stack, including the ability to check if a stack
entry is of a given type. This allows the glue routine to present detailed errors to the
user when incorrect or insufficient parameters are found.

Returning Values Back to Lua

Now suppose we need to let our Lua script query the player’s current score. In Lua, we
may want to do something like this:

— End the level after the player has scored 9 points
if Game .GetPlayerScore() > 9 then

TriggerEndOfLevel();
end;

1.10 Building Lua into Games 119

Returning the player’s score to the Lua script is accomplished by creating a glue rou-
tine that pushes a number value onto the communication stack as in:

static int LuaGetPlayerScore(lua_State* luaState)

{
lua_pushnumber(luaState, game->playerScore) ;

return(1);

}

In this case, our glue routine takes no parameters from the communication stack but

does push one value onto the stack and alerts Lua by returning 1. In fact, Lua func-

tions can have multiple return values, and it is perfectly legal for a C glue routine to

return multiple values on the communication stack.

Registering the Glue Routines

Now that we know how to create glue routines, we need to register them with Lua to

make them available to our scripts. The easiest way to register a set of functions is to

use Lua’s library management calls. These calls are provided to simplify the process of

registering a group of related functions with the language.

First, we create a null-terminated array of function pointers and the symbolic

names by which Lua scripts will recognize them.

// camera library glue routines and function names

static const luaL_reg cameraLib[] =

{ :
{“SetMode”, LuaSetMode },

{“GetMode”, LuaGetMode },

{“SetTargetPos”, LuaSetTargetPos },

{“SetTargetEnt”, LuaSetTargetEnt },

{“SetOrbitRadius”, LuaSetOrbitRadius},

{“SetOrbitRate”, LuaSetOrbitRate },

{“SetFov”, LuaSetFov },

{“SetWobble”, LuaSetWobble ie

{“SetZoomPos” , LuaSetZoomPos Ps

{“SetPivot”, LuaSetPivot };

{“EnableShake” , LuaEnableShake Vee

{NULL, NULL }

}5

Next, we call a handy Lua utility function that registers each function in the array

with Lua.

luaL_openlib(luaState, “Camera”, cameraLib, 0);

The first parameter is the Lua state with which we are working. The second parameter

is the name we are giving to this library, and the third parameter is our array of func-

tion pointers and names. After this call, our functions will be available to Lua scripts,

and their names will be prefixed with the library name. Thus, the C glue routine

LuaSetOrbitRate() can now be called from a Lua script as Camera. SetOrbitRate().

120 Section 1 General Programming

That's all there is to it. With just a handful of code, functionality of a game’s
engine can be quickly and easily exposed to Lua. There are many more sophisticated
ways to link Lua and C, but they are beyond the scope of this introductory overview.
Lua is not limited to integration with C either. Tools such as Luabind can also be used
to help create relationships between Lua and C++ classes.

Now that we understand how to create a linkage between a game engine and Lua, we
explore how Lua is embedded into a game.

Creating and Destroying States

To use Lua in a game, we must first create a Lua state and then load and execute
chunks of Lua code. A Lua state is created as follows:

lua_State* luaState = lua_open();

When we are ready to shut down our game, we close the state:

lua_close(luaState)

This frees up all memory used by the interpreter and triggers any remaining garbage
collection on code that has been loaded into the state.

Loading and Executing Code

Once Lua is initialized and we have registered our new functions as shown previously,
it is time to start loading and executing Lua code. Lua provides support for feeding
the interpreter with data from any arbitrary source. For this example, we will use some
of Lua’s helper routines that take input from files and strings. Executing a script from
disk can be done with:

lua_dofile(luaState, “LuaScriptFile.1lua”) ;

This will compile and execute the script, if any execution point exists. If a file consists
of nothing but function definitions, all the functions will be defined and added to the
Lua state, but no actual code will be executed.

Likewise, the Lua code in a text string can be executed with:

lua_dostring(luaState, ~8=14% b=73") 5

As you can now surmise, creating an interactive command console with Lua requires
only a few simple lines of code.

A very interesting feature of Lua’s script loading is that any of these routines can take either text scripts or pretranslated binary Lua code. The Lua distribution ships with a pretranslator called luac that can compile scripts into a binary form. When this

1.10 Building Lua into Games 121

is done, applications can choose to omit the lexer and parser components of Lua,

making the code overhead even smaller. This also gives developers the option of leav-

ing some scripts available for modification in their original text form but others com-

piled, and thus hidden from prying eyes.
Code can also be loaded and translated without executing it, as follows:

luaL_loadfile(luaState, “LuaScriptFile.lua”);

Calling Lua Functions from C

As shown earlier, it is often useful to load a script into Lua but not actually execute

any code until a later time. A good example of this is the scripting of logic for game

entities. Each class of entity may load a Lua script on startup that defines its in-game

behavior. There may be separate Lua routines for setup, movement, and rendering. A

simple entity’s Lua code may look like this:

— functions for fictional “walker” entity

function WalkerSetup (walker)

— our poor walker only lives for 1 minute

timer = 60.0;

end;

function WalkerMove(walker, elapsedSec)

timer = timer — elapsedSec;

if (timer > 0.0) then

Walker.DoAI(walker, elapsedSec) ;

Walker.UpdateControls (walker) ;

Walker.DoPhysics(walker, elapsedSec) ;

Walker .UpdateAccelAndPos (walker, elapsedSec) ;

end;

else
Walker .Destroy (walker) ;

end;

end;

function WalkerRender (walker)

visible = Walker.GetVisibility (walker)

if (visible == 1) then

matrix = Walker.GetMatrix(walker) ;

Game .SetModelMatrix (matrix) ;

Game .RenderModel (Walker .GetModel (walker)) ;

end;

end;

When the entity class is initialized, it can use luaL_loadfile() to read and compile

the script. Then, the entity’s C code can call the Lua script routines as needed during

the game loop. Calling a specific Lua function from C involves pushing the function
,

as well as all parameters, onto the communication stack and then calling lua_call1().

An example of calling the walker’s Move() routine is as follows:

122 Section 1 General Programming

— call this entity’s Move script

lua_getglobal(luaState, “WalkerMove”) ;

lua_pushlightuserdata(luaState, this);

lua_pushnumber(luaState, elapsedSec) ;

lua_call(luaState, 2, 0);

The first call pushes onto the stack a global value whose name is “WalkerMove”. That
value happens to be a function in the script we loaded when the walker class was
initialized.

The next call pushes our C++ entity’s this pointer onto the communication stack
for use by Lua. Really, Lua isn’t going to use this value since it doesn’t understand our
C++ object at all. Instead, it will just pass this value right back to the C glue functions
so they know which object pointer to use. To push our this pointer, we made a call to
lua_pushlightuserdata(). “Light user data” is a special Lua data type that can be
used when C code needs to give Lua data that it does not inherently understand. Most
of the time, as in this example, light user data is used to hold pointers to C/C++
objects and structures.

Next, we simply call 1ua_pushnumber() to push the elapsed seconds since the last
frame. Now that the function and all the parameters are correctly on the stack, we can
execute the Lua code by calling

lua_call(luaState, 2, 0);

The second parameter (2) tells Lua how many arguments have been pushed on the
stack, and the third parameter (0) tells how many return values we expect back. Lua
will execute the entire function and, upon returning, the communication stack will
contain any return values we expected.

Now we can call C functions from Lua and Lua functions from C. We're well on
our way to making our game Lua enabled . . . or are we?

Real-Time Considerations

Notice that when we load and execute a chunk with lua_dofile(), or we call a func-
tion in a Lua script with 1ua_cal1(), the call does not return until the requested Lua
script is done processing. This may be fine for some applications and architectures,
but in many games this will not suffice. We need to be able to schedule events over
time.

A Time Based Example

Say, for example, we want to use Lua to script the movement of a camera when a vol-
cano erupts. We could call a Movecamera() function in our Lua script every frame, and
that Lua function would internally update timers and call out to different subfunc-
tions as the timers trigger new camera states, This is messy, however, and we prefer a
simple linear script that looks something like this:

1.10 Building Lua into Games 123

— script to trigger volcano eruption

— every 20 minutes throughout the entire game

function EruptSequence()

— start shaking the camera gently for 10 seconds

Camera.SetShakeMag (0.002) ;

Script .WaitSeconds (10) ;

— suspend player control

Game.SuspendPlayer() ;

— set the camera to slowly orbit the volcano

entTarget = Entity.FindByName(“Volcano”) ;

Camera.SetMode(CMX_ORBIT) ;

Camera.SetTargetEnt(entTarget) ;

Camera.SetOrbitRadius (500.0) ;

Camera.SetOrbitRate (0.003) ;

— and jack up the shaking!

Camera.SetShakeMag(0.01) ;

Script .WaitSeconds(5) ;

— ok, after 5 seconds ease up on the shake

Camera.SetBankShakeMag (0.002) ;

— and put the camera back in the player’s eyes

entPlayer = Entity .FindByName(“Player”) ;

Camera.SetTargetEnt(entPlayer) ;

Camera.SetMode (CMX_FIRSTPERSON) ;

Game.ResumePlayer();

Script .WaitSeconds(10) ;

— after 10 seconds, turn shake off all together

Camera.SetShakeMag(0.0) ;

end

— This is the first executable code in the script;

— an implied main(), if you will

— Run the erupt sequence every 20 minutes

while (1) do

Script .WaitSeconds(20 * 60) ;

EruptSequence();

end

This code first defines a function that handles our camera sequence. Then, the script

calls that function repeatedly every 20 minutes. We schedule the various events using

a new routine we registered called Script .WaitSeconds(), which simply delays for the

given time.

This works great in theory, but if executing Lua code doesn’t return until the code

is complete, how can we ever expect to run our actual game loop? The answer lies in

our implementation of the Script .WaitSeconds() function, and a Lua feature called

coroutines.

124 Section 1 General Programming

Coroutine Support

Simply put, Lua’s coroutine support provides a way for a Lua script to halt execution
mid-stream and yield control back to the C program that called it. This is a form of
cooperative multitasking, where it is up to the code itself, not the operating system, to

suspend execution and transfer control back to the caller. This is known as yielding and
can be done from either a Lua script, via yield, or from the C API via lua_yield().

As you can imagine, our C implementation of Script .WaitSeconds() includes a

call to lua_yield(), which returns control back to the game so we can render frames

while the script is suspended. When our script management system has determined
that enough time has passed, we call 1ua_resume() to continue processing where that
script left off. To a game developer, coroutine support is one of the more attractive
and important features of the Lua package.

Multiple Scripts

While it may be possible to get good results from using a single Lua script, it is far
more practical to have many scripts running concurrently, waking up to perform
actions as needed, or being called directly from C code on demand. Lua supports the
concurrent execution of multiple scripts through a threading system.

Unfortunately, Lua’s use of the term “thread” is somewhat confusing to beginners:
that particular term carries with it an implication of preemptive multitasking, which
is not the case in Lua. A Lua thread can be thought of as a child state of the main
lua_State and can run its own script. A new state, or thread, is created with:

lua_State* newState = lua_newthread(mainLuaState) ;

Each new state shares all the global function and variables of the original lua_State
but gets its own stack and execution state. Also, each new state can be independently
yielded, allowing the system to manage many scripts, all potentially yielding for dif-
ferent reasons.

Thus, a common architecture for embedding Lua into games is to develop a
script manager that creates a new child state for every script the system is running.
The manager tracks why each script is yielded and resumes it as needed.

A Script Management Framework

Using what we know about states and coroutines, we can construct a basic script- Management system to handle the details of creating and running multiple Lua scripts. The manager’s most important job is to encapsulate the work of tracking and waking up any scripts that have yielded. We will allow scripts to yield for a given dura- tion, for a number of frames, or until a given time. Additional conditions can be
added easily.

1.10 Building Lua into Games 125

ON THE CD

€ ey 3)

This sample framework is implemented via two classes: a LUAMANAGER and a

LUASCRIPT. While some details have been omitted from the text for brevity, a com-

plete and functional skeleton is available on the CD-ROM.

The Manager Class

The manager initializes Lua by calling 1ua_open() to create a lua_State. It maintains

a linked list of running LUASCRIPT objects by providing a CreateScript() facility as

the only way script objects can be created. The manager also includes an Update ()

function, which is called once every time through the game loop and calls down to

each script object’s respective Update(). This is where yielded scripts are checked for

resumption.

A simplified skeleton for the manager object looks like this:

class LUAMANAGER

{
public:

LUAMANAGER (void) ;
~LUAMANAGER (void) ;

LUASCRIPT* CreateScript (void) ;

void DestroyScript (LUASCRIPT* s);

void Update (float elapsedSec) ;

private:

lua_State* masterState;

LUASCRIPT* head;

}5

The manager also registers a library of common script-management glue routines

with the Lua interpreter, including those that allow a script to yield based on time or

elapsed frames. From Lua, these routines look as follows:

Script .WaitSec (seconds) ;

Script .WaitFrame(frames) ;

Script .WaitTime (timestamp) ;

These routines are described in more detail in the following section.

The Script Object

A script object represents a single child 1lua_State derived from the masterState cre-

ated by the manager. Each script object can run a Lua program as a (Lua) thread,

yielding and resuming as needed. The script object maintains some additional data

that lets us know why a script has yielded and when to reactivate it. The following

code shows a simple skeleton of a LUASCRIPT object:

126 Section 1 General Programming

typedef enum

YM_NONE, // not yielded

YM_FRAME , // waiting for x frames to elapse

YM_TIME, // waiting for x seconds to elapse

} YIELDMODE;

class LUASCRIPT

{
public:

void RunFile (char* fileName) ;

int RunString (char* buffer) ;

LUASCRIPT* Update (UDWORD elapsedSec) ;

private:

lua_State* childState;

LUAMANAGER* manager;

LUASCRIPT* next;

YIELDMODE yieldMode;

int waitFrame;

float waitTime;

LUASCRIPT (void);

~LUASCRIPT (void);

}5

The LUASCRIPT script class gives us mechanisms to actually execute Lua code. RunFile()
and RunString() feed the Lua interpreter from the given source. The script will execute
until it is finished, or it yields.

As expected, the class creates and maintains a pointer to the new lua_State that
it manages. However, as we will soon see, it is also important for Lua to know which
C object owns a particular lua_state. To do this, we will store some data in a Lua
construct called a table. A full explanation of tables is a bit beyond the scope of this
gem, but think of them as arrays that can be indexed with any value.

To associate the address of our LUASCRIPT object with the lua State that it
created, we add an entry to a global table in the masterstate. We use the lua State
pointer itself as the index, because we know it will be unique. We can then later
retrieve the LUASCRIPT object pointer by using the address of the lua State that is
passed into our glue routines. This can be done when the child state is created:

// create a new state (thread) from the master
childState = lua_newthread(mgr->masterState) ;

// save a pointer to this script object in the global
// table using the new state’s pointer as a key
lua_pushlightuserdata(mgr->masterState, childState)
lua_pushlightuserdata(mgr->masterState, this);
lua_settable(mgr->masterState, LUA_GLOBALSINDEX);

.
BI

1.10 Building Lua into Games 127

ON THE CD

eect nanan tenntiinseeon etter naa iinet oeiinnseoeoninaannncnetretanin sneer sunsteinaonnsennete

This sounds complex, but it is very much like storing the address of a window han-

dling object in the GWL_USERDATA of a dialog box. This way, when a glue routine is
called, it can determine the LUASCRIPT object that issued the call.

Yielding Routines

One of the keys to the script-management system is allowing Lua threads to yield for
different reasons and resume when needed. To do this, we implement a few new func-

tions and register them with Lua. For example, wed certainly like to yield a script for

a given amount of time with a call such as:

Script .WaitSeconds(seconds) ;

Following is the glue routine that implements this call:

static int LuaWaitSeconds(lua_State* 1)

LUASCRIPT* 5;

// get a pointer to the C++ object associated

// with this script

lua_pushlightuserdata(1, 1);

lua_gettable(1, LUA_GLOBALSINDEX) ;

s = (LUASCRIPT*)lua_touserdata(1l, -1);

// save our sleep time and wait state

s->waitTime = lua_tonumber(1);

s->state YM_TIME;

// tell Lua to return, yielding this thread

return(lua_yield(1, 0));

}

When the glue routine is called from a Lua script, we don't know which C++

LUASCRIPT object is managing it. So, we must first retrieve a pointer to our object

from the global Lua table where we previously stored it. Then, the number of seconds

to yield are retrieved from the stack and saved. We also tell the object what type of

wait we are performing. Finally, we call lua_yield() to suspend the script and return

to'C,

Now, it is simply a matter of checking the timer during the scripts Update() rou-

tine. If enough time has elapsed, the script is resumed by calling lua_resume().

By following this model, scripts can be made to resume based on time, elapsed

frames, or even when a flag is raised. With some clever management, actions per-

formed by one script can even trigger the resumption of other scripts. A complete

working example of this simple manager can be found on the CD-ROM.

128 Section 1 General Programming

Conclusion

This gem has shown that with very little work, developers can quickly embed the Lua
language into their game. With a little more management, a game can easily take
advantage of many of Lua’s useful features, including running multiple scripts, yield-
ing script execution, and resuming it again as needed.

To get a script up and running quickly, this article has glossed over many details
of Lua that should be explored by any developer seriously considering embedding the
language into their game. In particular, the concept of Lua tables and a more in-depth

understanding of the communication stack are valuable to understand more com-
pletely. A visit to www.lua.org is the best starting place for anyone working with the
language. r

Lua has found its way into quite a few games to date, and readers are encouraged
to give the language a try. If you are contemplating embedding a language into your
game but have not yet begun the task, take a few hours and integrate Lua. They may
be some of the most rewarding hours you spend on your project. You may even find
yourself looking at your game code with a whole new perspective, thinking over and
over: “How can I give more control of my game to Lua?”

References

[lerusalimschy03] Roberto Ierusalimschy. Programming in Lua. Published by Lua.org,
December 2003. www.lua.org.luabind.sourceforge.net

1.11

Improving Freelists with

Policy Based Design

Nathan Mefford

nmefford@yahoo.com

Gr. are expected to be more and more dynamic every day, and our strategies for

dealing with memory must keep up with that demand. Unfortunately, dynamic-

memory allocation has downsides that limit our ability to treat memory as a truly

dynamic resource. In Game Programming Gems 4, we were introduced to the concept

of the freelist [Glinker04], a special-purpose allocator that solves the problems of

dynamic-memory allocation by restricting itself to allocating objects of a single type.

In fact, freelists are such a powerful tool for improving allocation performance in

games that they are appropriate to use in almost every project. Yet even with such a

basic concept, design and implementation are filled with questions that have no clear

answer. Should the list be allowed to grow? How should the chunks of memory be

allocated? How should chunks and free blocks be tracked internally? Should objects

be constructed and destroyed only once or with every allocation? Should chunks that

are completely unused be returned to the memory manager? To accommodate differ-

ent requirements, some projects end up with multiple freelist implementations. Other

freelists wind up with complicated interfaces in an effort to achieve flexibility, making

them harder for clients to understand and use.

Policy-based design allows the users of a library to provide the answers to such

design questions, yielding classes that are flexible and highly reusable without sacrific-

ing speed or introducing interface complexity. In this gem, a policy-based freelist is

presented that can easily be configured with different behaviors suitable for different

requirements and allocation patterns. In addition, we develop a default parameteriza-

tion that improves upon the implementation in [Glinker04] by closely mimicking the

behavior of operators new and delete, removing the need for applications to initialize

nontrivial classes and reducing the per-allocation overhead to zero.

UY

a SSRN ETON ELEN NIT TTT TR Overview of Freelists is
‘ROAR LOE LEELA ELLE LEM LITO LE

A thorough discussion of the issues associated with dynamic memory management in

games appears in the prequel to this gem [Glinker04]. Besides being slow, we are

129

130 Section 1 General Programming
cousin insu neongnssnstabnevnasennamnieeeetnnateorenennannenenieeniuetectntonmnsintes

shown that allocation and release of memory from a general-purpose memory man-

ager can cause poor locality of reference and—even worse—memory fragmentation.
Additionally, most memory managers add some invisible bookkeeping overhead to
each allocation. It may not sound like much, but even just 16 bytes of overhead per
allocation can quickly add up to a megabyte or more of wasted memory with even a
modest number of allocations.

A solution to these problems is then provided in the form of a freelist: a class
made suitable for runtime allocations by restricting itself to allocating and freeing
objects of a single type and, hence, size. You might question the usefulness of a mem-
ory allocator that is only capable of allocating objects of a single type, but it turns out
there are many situations in a typical game where freelist allocation might be appro-
priate. Objects allocated by inherently dynamic effects like particles and decals are
perfect candidates for freelist allocation. Freelists can provide a natural mechanism for
recycling objects like vehicles and pedestrians in a sprawling world where it is imprac-
tical to allocate every instance of these objects up front. Nodes in common data struc-
tures such as linked lists and trees can also effectively use a freelist allocation strategy.
In fact, the default allocator of the popular standard template library (STL) imple-
mentation STZPort [STLPort04] is a custom freelist allocator. Many modern design

patterns result in a large number of small classes working together to accomplish a
complex task. For example, applying the strategy, state, or decorator pattern [GoF95]
sometimes results in many small objects being allocated that may be best managed by
a freelist. In short, any type that needs to be allocated and freed frequently at runtime,
and whose memory can be recycled many times, may benefit from allocation out of a
specialized freelist.

While providing a freelist implementation, the previous gem rigidly hardcoded a
series of design decisions resulting in a relatively inflexible library. For example, it has
an immutable capacity and uses an additional list to track free memory blocks.
Another example is the decision to store fully allocated objects in the list, avoiding
calls to constructors and destructors on each allocation. This may lead to increased
performance but at the expense of less-intuitive allocation behavior that requires the
application to perform per-allocation initialization and cleanup. For many situations,
these choices are entirely appropriate, and the freelist previously presented may be
used as is. Unfortunately, the tradeoffs in that specific implementation ultimately
limit its applicability across a wide range of requirements and allocation patterns.
Some situations may call for a freelist that can grow and/or shrink its capacity, other
situations may benefit from behavior that closely mimics operators new and delete,
and still others may not be able to afford the additional memory overhead imposed by
a separate list for tracking free blocks.

Instead of forcing a particular set of tradeoffs onto the user, we entertain the pos-
sibility of designing a single freelist implementation that permits its users to select the
appropriate tradeoffs for their situation. Of course, this flexibility and reusability
must come without compromising ease of use, safety, or performance.

1.11. Improving Freelists with Policy Based Design 131
pneu uuiaassstuannsceiete en agtnnn eben NAU aati

Policies to the Rescue

There is a design mechanism in C++ that offers the promise of enabling safe, efficient,

and highly customizable behavior: policies. What exactly is a policy in the context of

C++ design? At a fundamental level, a policy simply defines an interface, which may

include member functions, member variables, and type definitions. Any class that

implements this interface is referred to as a policy class. A given policy can have an

unlimited number of policy class implementations. Policies and policy classes by

themselves are useless. Their power is realized only when other classes are designed to

exploit a given policy. Classes that use policies and policy classes are called hosts or host

classes.
With these basic definitions outlined, how do policies, policy classes, and hosts

actually fit together, and what benefits do they give us? Game programmers are prag-

matic people by nature, so I think we've reached the point where a few lines of code

will help illustrate policies better than another paragraph of definitions and theory.

template <class APolicy>

class AHost : public APolicy

{

void DoSomething()

{

APolicy::Foo();

¥
}3

// Later on in client code

AHost< MyPolicy > hostInstance;

hostInstance.DoSomething() ;

It may not look like much is going on here at first glance, but if we look closely, we

will see that there is actually a surprising amount of power, flexibility, and elegance

contained in those few lines of code. In this simple example, Ahost is our host class,

which has been designed around a policy named APolicy. Whenever an AHost is

instantiated, a policy class that implements the APolicy interface needs to be provided

as a template parameter, giving our host class access to a concrete policy implementa-

tion. When a call to AHost: :DoSomething() is made, AHost defers some of its imple-

mentation to the policy class by calling APolicy: :Foo(); allowing an aspect of AHost’s

behavior to be configured by users instead of being hardcoded by AHost’s author. This

open-ended ability to configure the behavior of a host class is at the heart of policy-

based class design.

It gets even better. In the previous example, notice that the host class publicly

derives from the policy class, which conveniently accomplishes the task of binding the

host class to a specific policy class as well as aggregating any structure defined by the

132

policy class. Because we have chosen to make the policy class a public base class.of the
host, the policy class can extend the interface of the host with public functions of its
own. Complex policy classes can expose an enriched interface specifically tailored to
their features and idiosyncrasies without requiring modification of the host class or
complicating the base interface with functions and arguments used only by some
implementations. If a user later switches to a policy with a more minimal interface,
the compiler will catch any calls not supported by the new policy class, effectively
enforcing design constraints.

This method of implementing policies also leverages incomplete instantiation. In
C++, ifa template function is never called, it will never be instantiated, and the com-

piler will never even look at it, except perhaps for syntax checking. In our example,
this means that AHost can be configured with policies that do not even declare or
define Foo(), perhaps because Foo() would be nonsensical for certain concrete policy

classes. If AHost : :DoSomething() is later called and Foo() is unimplemented, the com-

piler will immediately report the error, strictly and automatically enforcing both the
policy design and the policy class’s restriction. With this ability, host classes can take
advantage of a potentially rich policy interface while still working with truly minimal
policy classes, albeit with reduced functionality. Combined with the ability for policy
classes to expose additional functionality, we have a truly powerful mechanism for
customizing the functionality of our host class.

Using templates to bind the policy class to the host has a few other notable bene-
fits. One of the biggest is that, because the binding is done statically, the compiler is
capable of generating very optimal code, comparable to a handcrafted equivalent.
Also, unlike classic interfaces, which consist of virtual functions, policy interfaces are
more loosely defined. Policy classes need only conform to the interface syntactically,
as opposed to overriding an exact virtual function signature. In our previous example,
policy classes implementing APolicy are free to define Foo() as static, virtual, or nei-
ther. Finally, this method scales easily to more than one policy simply by adding addi-
tional template parameters and deriving our host class from each additional policy
class. In fact, the real power of policy-based design is only realized with multiple poli-
cies, providing for a combinatorial explosion of behaviors with only a linear amount
of additional code.

Now that we understand the mechanics of policies, how do we actually apply
them to solve real design problems? A good way to start is to identify the high-level
design decisions involved in crafting your class. Anything that can be reasonably
implemented multiple ways or that involves making a tradeoff should be extracted
from the class and delegated to a policy. Taken to an extreme, a host class may delegate
all its meaningful design decisions to policies, in which case the host becomes a sim-
ple shell whose sole purpose is to assemble a combination of policy classes to perform
the necessary tasks.

When decomposing a class into policies, it is imperative to strive towards policies
that are orthogonal to each other. Orthogonal policies are policies that can be safely

1.11 Improving Freelists with Policy Based Design 133

varied independently from one another. Non-orthogonal policies lead to complica-

tions in both the host and policy classes, which results in a class that is less type-safe

and harder to use. An easy way to spot nonorthogonal policy decomposition is when

two policies need to communicate with each other, or worse, when some combina-

tions of policies result in an invalid host.

Unfortunately, this section has really only been able to scratch the surface of pol-

icy-based design. For much more information on both the theory and practice of

using policies to enhance your C++ classes, | encourage you to read [Alexandrescu0 1]

and [Vandervoorde03].

Decomposing the Freelist
Policies sound like a pretty promising candidate for achieving our goal of developing

a reusable freelist that does not compromise ease of use or performance. Before we

jump into creating a policy-based freelist, however, let’s quickly review how freelists

operate at a high level. The freelists that we are interested in pretty much all start out

by allocating a relatively large chunk of memory capable of satisfying a large number

of individual allocations. This large chunk of memory is then split up into memory

blocks, which are cached for future retrieval. When an object-allocation request is

received, a block of memory is popped from the list of available blocks, initialized for

use as the given type, and returned to the application. If no free blocks exist in the list,

a new large chunk of memory may optionally be allocated to repopulate the list of free

blocks. Finally, when the application returns an object to the freelist, it is converted

back into a simple memory block and placed back in the list of free blocks ready to be

quickly recycled for a future allocation. With this high-level overview in hand, we can

now begin to identify behaviors that should be split out into policies.

A good first step would be to separate out the growth behavior of our freelist.

Some freelists may simply pre-allocate a single chunk of memory and not allow any

future growth. Other situations may call for a constant number of blocks to be allo-

cated each time the freelist is empty. The growth policy will give users the ability to

configure this behavior, giving them relatively fine grain control over the number of

free blocks a freelist will allocate and when. It will also provide a convenient hook for

any custom behavior when our freelist has run out of free blocks.

It also makes sense to avoid hardcoding the method used to allocate and free the

large contiguous chunks of memory that are later split into individual blocks. Some

freelists might call malloc () to get an uninitialized chunk of memory from the heap,

while others may allocate a fully initialized block of objects with operator new().

Deferring this to a policy will also enable our freelist to take advantage of custom

memory managers without requiring a change to the actual freelist class.

Another responsibility that should be deferred to a policy is the manner in which

free blocks are converted into objects of a specified type and back to blocks again. A

freelist will be most natural to use if it fully constructs and destroys objects each time

134 Section 1 General Programming

they are allocated and freed, respectively; however, this may be too costly in-some sit-
uations. Customizing this behavior allows users to choose between various levels of
performance and safety. More generally, this policy gives us a good place to perform
any initialization and cleanup of an object just before and after an application uses it.

Finally, we need a policy that is responsible for storing the list of memory blocks
that are currently available for allocation. There are a variety of methods for tracking
blocks of memory, each with its own set of functionality, performance, and memory
tradeofts. This policy is slightly different from the others, because it is responsible for
defining the structure of the freelist as well as aspects of its behavior. This ability to
parameterize structure is one of the most powerful features of policies and is some-
thing that cannot be done with simple virtual functions.

It appears that we have now identified four policies that our freelist will use:
growth, allocation, creation, and storage. Unfortunately, upon close scrutiny, the allo-
cation, creation, and storage policies are not truly orthogonal to each other. Certain
methods of storing free blocks may interfere with valid ways to create and allocate
blocks. Some strategies for storing objects require a specific creation policy for some
types of objects. Other nasty implied dependencies between these three policies also
exist. Since a clean policy-based design is heavily dependent upon finding an orthog-
onal set of policies, we must solve this problem before moving forward.

The simplest solution is to combine the responsibilities of those three policies
into a single policy that we will refer to as the allocation policy from here on out.
Making this choice results in some tradeoffs. On the one hand, this new policy will
have a more complex interface, which will make it more involved to author new pol-
icy classes. On the other hand, this new policy will enable more powerful and com-
plex policy class implementations since it will control more aspects of our freelist. The
fact that combining these policies enables implementations that would not have
otherwise been possible is a good sign that they were never orthogonal to begin with.
In the end, there is little choice but to consolidate them to avoid all the pitfalls associ-
ated with non-orthogonal policies.

So we will proceed with a freelist design involving two policies. One will be the
growth policy, responsible for choosing how many blocks to allocate and what to do
when our list is empty. The other is the allocation policy, which will define how our
freelist allocates chunks of memory, partitions them into blocks, and converts blocks
to and from objects.

Implementing the Freelist: Is That It?
ee, SITET

With the policies and their roles identified, actually coding the freelist class becomes
surprisingly straightforward. Applying what we learned earlier, the declaration of our
freelist class writes itself.

1.11. Improving Freelists with Policy Based Design 135
ssnaupasnnnennnnentaanaeanstetecenaa sone seeeteAancniseeeeennninnnanne Minin Htet nei moe MASHER

template< typename T, class GrowthPolicy,

class AllocationPolicy >

class FreeList : public GrowthPolicy,

public AllocationPolicy

{

}5

Let’s start simple and look at our class constructor first. It needs to ask the growth pol-

icy for a number of blocks to pre-allocate and give the allocation policy a chance to

prepare this many blocks for allocation. Omitting template parameters for clarity, this

is how that looks in code:

FreeList: :FreeList()

{
unsigned int numToPrealloc =

GrowthPolicy: :GetNumberToPreallocate() ;

if (numToPrealloc > 0)

AllocationPolicy: :Grow(numToPrealloc) ;

}

At its most basic level, the only responsibilities of a freelist are to perform fast alloca-

tion and release of objects of type T, so our freelist only needs two public member

functions, Allocate() and Free(). Here is how Freelist implements them.

T* FreeList: :Allocate()

{
voids pBlock = AllocationPolicy::Pop();

asf (ae! PBLOcKs)

A
unsigned int numAlloced =

AllocationPolicy: :GetNumAllocated() ;

unsigned int growSize =

GrowthPolicy: :GetNumberToGrow(numAlloced) ;

if(growSize > O)

AllocationPolicy: :Grow(growSize) ;

pBlock = AllocationPolicy: :Pop();

}
}

if(pBlock)

return AllocationPolicy: :Create(pBlock);

else
return 0;

136

Choosing the Best Policy

Section 1 General Programming

FreeList::Free(T* pObject)

{
if(!pObject)

return;

AllocationPolicy::Destroy(pObject);

AllocationPolicy::Push(pObject);

}

FreeList::Allocate() requests a block of memory from the allocation policy. If that

request cannot be satisfied, it queries the growth policy to determine how many new
memory blocks should be reserved, if any, and the allocation policy is told to add that
number of free memory blocks to its list. If the allocation still cannot be handled, NULL is
returned; otherwise, the allocation policy is given a chance to make sure that the memory
block being returned is a properly initialized object of type T. FreeList::Free() simply
asks the allocation policy to convert the object back into a memory block, and then
returns this memory block back to the allocation policy, ready to be quickly recycled in
the future.

Notice that in all these functions, our FreeList host class is doing very little
actual work of its own and is serving mostly as a framework to coordinate the behav-
ior of its policies. This is typical of a policy-based design.

Earlier, it was stated that there were only two public member functions, which for
all intents and purposes is mostly true. There are, however, additional overloaded
template member functions that take a number of arguments of arbitrary type and
pass them along to AllocationPolicy::Create(). As we will see later, these functions
are used to make our freelist more natural and safer to use. There is also a template
constructor that passes its single template argument to GrowthPolicy’s constructor.
This can be used to conveniently configure a growth policy class at runtime. Thanks
to the power of incomplete instantiation, the compiler will only bother to compile
these functions if they are used, allowing policy classes and users to blissfully ignore
them until they are actually needed.

That truly is all the code that is necessary to define our freelist and the policy
interfaces it depends on. Once our policies were identified, implementing the freelist
became straightforward and mechanical.

astaiielaieiteeatibetendibaieeeas tania neces eee cee ate ee

Now that our freelist has been defined and our policy interfaces have been solidified,
all that remains is providing some concrete policy classes.

Let's take a look at the relatively simple growth policy first. Its interface consists of
only two functions: GetNumberToPreallocate() and GetNumberToGrow(). An example
of a simple yet effective class implementing this policy might look like this:

1.11 Improving Freelists with Policy Based Design 137

struct ConstantGrowth

{
ConstantGrowth(int pre = 16, int grow = 16)

: preAllocate(pre), numToGrow(grow)

{}
protected:

int GetNumberToPreallocate() const

{
return preAllocate;

int GetNumberToAllocate(int unused) const

{
return numToGrow;

}
private:

int preAllocate, numToGrow;

}5

This class is ready for immediate use by FreeList. That is how easy it can be to create

new policy classes, giving completely new and customized functionality to your host

class. No arcane language tricks or special C++ prowess is required.

The interface for the allocation policy is slightly more complicated. It consist
s of

interface functions to push and pop memory blocks capable of holding a certain type

of object, functions to convert a memory block to and from that type, and a function

to grow the capacity of the list. One such policy class that implements this interface is

PlacementNewEmbeddedLink. Let’s take a look how this class works starting with its

class declaration and the data members.

template< typename T > class PlacementNewEmbeddedLink

{
public:

private:
struct FreeBlock

FreeBlock* pNext;

}5
FreeBlock* pFreeBlocks;

std::vector< void* > chunks;

}3

This particular allocation policy allocates chunks of contiguous memory and parti-

tions them into blocks just large enough to hold an object of type T. The first four

bytes of each memory block are then used to point to the next available block, and

each block is pushed onto the head of a singly linked list. The Grow() function shows

this in action.

138 Section 1 General Programming

void PlacementNewEmbeddedLink: :Grow(int numBlocks)

void* pChunk = malloc(numBlocks * sizeof(T));

chunks.push_back(pChunk);

for(int ix = 0; ix < numBlocks; ++ix)

Pushi(s(char*)pChunk toix.* sizeorg)e)s

}

The Push() and Pop() functions are responsible for maintaining these simple links as

well as adding and removing blocks at the head of the list. Their implementation is as
simple as you would expect.

void PlacementNewEmbeddedLink: :Push(void* pBlock)

FreeBlock* pNewHead = (FreeBlock*)pBlock;

pNewHead->pNext = pFreeBlocks;

pFreeBlocks = pNewHead;

}

void* PlacementNewEmbeddedLink: :Pop()

{
if(!pFreeBlocks) return 0;

void* pNewBlock = pFreeBlocks;

pFreeBlocks = pFreeBlocks->pNext;

return pNewBlock;

}

The major benefit of using the beginning of each block of memory to point to the
next block of memory is that there is no per-block memory overhead. This can
amount to hundreds of kilobytes of savings when compared to the overhead involved
with many general-purpose memory managers. The obvious downside is that any
data that may have been in that memory to begin with is overwritten by the pointer;
including possibly a virtual function table. This policy’s Create() and Destroy()
functions solve the problem very elegantly while ensuring that our raw memory is
converted into a full-fledged object.

static T* PlacementNewEmbeddedLink: :Create(void* pBlock)
{

return new(pBlock) T;

}

static void PlacementNewEmbeddedLink: : Destroy (T* pObject)
{

pObject->~T();

}

Create() uses the placement new operator, which instructs the compiler to create a
fully constructed object of type T at a given memory address. Since it makes no
assumptions about the contents of the memory, the problem of overwriting poten-
tially important data with our free block link is implicitly addressed.

1.11 Improving Freelists with Policy Based Design 139
connie sieoteieonananonatnnas snpsscedoenensnstetsnssteuunnsn nent nena uananaaannnsiteteeanatnnnleibiaraciauunentntoreMoiAsbiiteinHtinneMMteirerTe NY RAM OM NHR

Far more importantly, it makes freelists configured with this policy safer and eas-

ier to use. Because placement new invokes the object’s constructor, this policy's create

function naturally mimics the way objects are constructed when they are created by a

call to operator new(). As an added bonus, defining templated overloads of Create()

that pass arbitrary parameters to our class constructor becomes relatively trivial,

allowing any public constructor to be called. Of course, the natural complement to

initialization in a constructor is cleanup by a destructor, and that is exactly what hap-

pens in the Destroy() function.

Examining the result of configuring FreeList with this policy shows that we have

met all our goals with flying colors. Allocating and freeing objects is certainly fast,

consisting of only a few pointer operations plus a call to a constructor or destructor. It

also has zero memory overhead per allocation. Most importantly though, using con-

structors and destructors to automate initialization and cleanup makes using our

freelist a very safe and natural replacement for calls to operator new() and operator

delete().

Possibilities
tL MLM MLL LLL LE LALALLELETETLAM st URE NN

If this were the end of the story, all the effort to split our freelist into policies would

have been a waste. It would be great if the previously mentioned policies solved all our

problems all the time, but unfortunately they do not. To illustrate just how versatile

our policy-based design has made our freelist class, the following sections provide four

separate allocation policies with varying behaviors and associated tradeoffs.

PlacementNewEmbeddedLink

This is the allocation policy described earlier. Its combination of performance, zero

per-block memory overhead, type safety, and ease of use makes it a versatile choice.

Due to all these positive factors, this is the allocation policy with which FreeList is

configured by default. It is not without limitations, however. For one, freelists config-

ured with this policy never return memory back to the global heap and do not share

their free blocks in any way. Depending on your allocation patterns, a large amount of

memory may end up just sitting in freelists as free blocks, unavailable for any other

purposes. Also, in extremely performance critical areas, PlacementNewEmbeddedLink

may not be appropriate for classes with expensive constructors and destructors.

Because of its ease of use, however, this is the default allocation policy.

ConstructOnceStack

This allocation policy exactly matches the design and behavior of the freelist in

[Glinker04]. The full set of that implementation’s benefits and tradeoffs described in

the beginning of this gem are encoded in ConstructOnceStack. The ability of our

freelist to easily and perfectly emulate such a different implementation is a testament

to the power of policies. This policy even exposes the additional function provided by

the previous gems freelist, FreeAl1(), making the imitation complete.

ON THE CD

WOES 2

ON THE CD

Section 1 General Programming

CompactableChunkPolicy

A slightly more unusual allocation policy class is CompactableChunkPolicy. This pol-
icy behaves similarly to PlacementNewEmbeddedLink but with a twist. In this policy,
each chunk maintains a count of how many free blocks are being used from that par-
ticular chunk. If two chunks have no blocks in use by the application, this policy will
actually return the larger of the two free chunks to the heap. The tradeoff comes in
the form of a significantly more expensive free operation. This policy might be bene-
ficial in a situation where objects are allocated and freed in relatively infrequent
bursts, or when many freelists will be instantiated, but many of them are empty at any
given time.

SharedChunkPolicy

Finally, the most exotic allocation policy class on the accompanying CD-ROM is
SharedChunkPolicy. Internally, all instances of this policy class share a static set of
freelists. This means that two separate freelists managing objects of similar size and
configured with this policy will share memory blocks. If an application uses a large
number of freelists that aren't always near peak usage, this can significantly reduce the
amount of memory just sitting in freelists waiting for later use. The main tradeoff this
policy makes is that objects allocated from a single freelist can no longer be counted
on to be located near each other in memory, degrading locality of reference. There is
also the potential for a small amount of per-object overhead depending on how this
policy is configured. Some general-purpose memory managers actually operate this
way internally, and this is almost exactly how the default allocator in STLPort works.

All the allocation policies on the accompanying CD-ROM expose two additional
member functions, GetNumBlocksInUse() and GetPeakBlocksInUse(), which can be
used during development to tune your growth policy for optimal memory usage. Sev-
eral growth policies are also provided, including one that will double in size, one that
will grow linearly up to a fixed maximum capacity, and one that will ensure that each
contiguous block fits tightly into a page of memory.

Of course, if none of these policy classes meet your particular requirements,
changing behaviors is as easy as writing another policy class, and it can be done with-
out changing one line of code in FreeList. That's the true beauty of a policy-based
design.

Conclusion
aR RRREE AID er OIE SA IRINA NLR RRO Ne te

The goal of this gem was to develop a freelist class that would be fast, easy to use, and
flexible enough to be used in as many circumstances as possible without compromise.
To meet these goals, we developed a freelist with a simple, consistent interface but
open-ended behavior. In the end, we did not end up with a single freelist, but a highly
configurable freelist framework. Not one but four different implementations are pro-
vided, each providing subtly different tradeoffs. Even if you are unhappy with all four

1.11 Improving Freelists with Policy Based Design 141
sss nn nsaononytctenetnttensnntnitninasnatiasineietaunnnn ntl tainontntneanatotnecnnnntentinnitnennteieti

of these implementations, it doesn’t matter, because you can easily provide one that

suits your particular needs without changing one line of the provided code, and most

importantly, without altering the interface or core design.
Policy-based design was the key to achieving our goal. Even if you never use this

freelist class, by reading this far, hopefully you've seen the power that can be wielded

with policies. When it comes to developing flexible and configurable classes or even

complete class libraries, this technique is simply unrivaled. It is a tool that every devel-

oper who strives for robust, reusable code should add to his toolbox.

References

[Alexandrescu01] Alexandrescu, Andrei. Modern C++ Design. Addison Wesley, 2001.

[GoF95] Gamma, Erich, et al. Design Patterns. Addison Wesley, 1995.

[Glinker04] Glinker, Paul. “Fight Memory Fragmentation with Templated Freelists.”

In Game Programming Gems 4. Charles River Media, 2004.

[STLPort04] STLPort Web page. Available online at www, stlport.org. September 20,

2004.

[Vandevoorde03] Vandevoorde, David, and Nicolai M. Josuttis. C++ Templates: The

Complete Guide. Addison Wesley, 2003.

7

slums
ere. Ye

ergy ot

rm kav ERNE pre re >
apie pe oe

[We 05

sarit 900 ANNES FY OSS vormar niet
teotey Lenn Heated teh erin ail ter ist! dbus qeangonul ion

©) be Sines vonalagghenty s¥omeomanity
ete se) ¥ aoe arse: Wi eee aon nae yates

boblslw pliers aexit sito ware ue vvAiwn

aie calatlanddadtalin lhe ghdivSli etaiioes Asana
ob armies » picmayrerive Pera.

Mu posses ici aa bons
aa, oF RELY fees Bad WAR AS LAE

) ween pee ce i Le ‘ ’ .

— Ae eS ATE

LO, ol TRS RAORTARES «> eolaot seth speaassth (0 .
c<ts wei ooh cramp qsoenty! afin iad oid dete Soy f
aint & olgere bine oniineomgatd ghorbA woh tt Frei pe eth ever a

Ses VybiiicetinMoeid gad dosti ray ed ese =
AVS padivnicquet ge enartege pis cagthrerys Shella aay dl aces om 2 Ae OP eile “> o° Ae

act). TER UWS NOt FES wee. thc shale f e

ey 5 et — “? oe a rekicivs Sinisd bien. Cae i deoll —— i

Selec rakes si thar ebseoces al wash ielnaX eaguabebille rive | d
Sil ini a cache A memory igmiug halle ite mee, 2 ie

‘ah fed» al avtesent? OF he ahs wecheed depen : Ra

a“ ie are ernie eres atures poem ’ ei

trw-chér @ alyfcnt te ‘iy (aw che dataul algcenye SU Mort wei)

ae - lath. (tim, Derik joke] Aime,) pe ve toa schtin he “

ra / hen’ PAVED MM Oise hs Abi gooFankx cy ky oyyrnal . aay yr:
eo Ucwts ara dha otk 1, etodicg ste Chae aalbdeuan +. fie, tae th + celbyoot as ed tee wha weit non hee paupos tock igh mar 1 page yt Terry ~< aS

jiare, 3 igo af vy HOC (eae qucet pout peers
wine ive Oe bok Sey of Whig mae) peolict sane, and barnes ¢ cole rt Sree ai shacs be qe}

Gors. ste

Ps tench cleat lal

= ain CASS

i lan

1.12

A Real-Time Remote

Debug Message Logger

Patrick Duquette, Microids Canada Inc.

gizmo@gizz-moo.com

or some years now, we have seen a rise in the interest for in-game, on-screen

debugging panels. Although they are great and they normally do the job, they

have the uncanny ability to clutter your game screen. Whenever we want to see more

than the current frames-per-second (fps) stat counter, we end up losing a big chunk of

the screen space. Consoles games are the worst, as their screen resolution is not very

high to begin with, and to see something, we have to use a big font. It’s hard to fit a

lot of information on a 640 X 480 screen and still see something behind all this text.

There’s also the trusted outputDebugString(). But due to its single output pane

and scrolling list type of display, real-time logging of frequently changing values is a

nightmare. On one particular project, we used the output window on a regular basis

for debug information. While it is true that the information was there, you cannot

expect to easily find anything. This simply does not meet my vision of a productive

debugging session.

For this gem, we will skip over the topic of log files as we try to focus on a real-

time monitoring solution.

The Need for a Standardized Debug Log _
0 SELES NRE EE

NCTE TE ANTE

With game projects now requiring 20 to 30 full-time programmers, it’s important to

have a standard way to manage and manipulate in-game debug information. If the

data is present but in an unreadable format, it is almost useless. The same holds true

for nonpractical data logging procedures. If we have too many steps to do before

enabling data logging, chances are people will not use it.

Debug data should be presented in a concise, and more importantly, in a quan-

tifiable manner. Having unrelated numbers scroll before us would not only give us a

headache, but if we are not the person who created the logging function, we might as

well not see the debug log, as the numbers will likely mean little to us.

143

144 Section 1 General Programming

Organize your debug data in related sections or pages. Having lots of unrelated

data in a single page, as in the output window when using OutputDebugString, forces

us to paddle through a lot of unnecessary lines. It takes time and might make us skip

over the line we were looking for.

Debug pages should not be hardcoded, either. Although it might be tempting to

hardcode the debug pages, we should restrain from this practice. There is no way we
will foresee every debug data category while designing our debug logger, and as such,
we should make provisions for dynamic page creation. Of course, some pages will
most certainly appear in all our projects, but by letting the end user have the possibil-
ity to specify each page’s properties, we aim to provide a convenient solution on top of

a practical one.

Data Presentation: Do You See What I See?
SRST ANGE SILENT OLE PERRO REE

Data presentation is one of the most important things. Making sure that the end user,
be it a programmer, an artist, or a technical producer, interprets the results as we
intended, is of utmost importance. Scrolling loggers are fine if we need to have a pre-
cise log of a value over time, but a graph might be better if we only need to see the vari-
ations over time. For variables where we only need the current values, a single line with
the value being modified as needed is probably better than showing the last 500 values.

In a perfect world, the logged application should never experience any slowdown
due to the logging process. That, of course, is impossible (since we do have to gather

the information and send it), but we should aim for the smallest CPU and memory
footprint possible. Asynchronous functions for sending the data should be used when-
ever possible. If the debug logger is not present, we also should not process the debug
information gathering; this will give us the possibility to pause our logger if the need
arises.

The logging solution should also support the same features on all the platforms
on which the logged game is executed. Having a standard way to log the debug infor-
mation, no matter which platform the game is running on, will alleviate the debug
reviewer of having to learn different interfaces.

The Proposed Solution
SHEE ESERIES i SAME AEN RLS TONS CN SAE APN ON TIAN CaM, MME eR.

The solution we will look into here is quite simple; a client/server where the debug
console acts as the client and a cross-platform game module is the server. We could
make the game module act as the client instead, but that would force us to tell the
game module where and when it should connect. Having the game module act as the
server enables us to connect to it from any station, at any time during the course of
game execution.

How will the data be represented? We already know that the data should be
divided into categories to help quickly find what we are looking for. But inside those
categories, how are individual data segments displayed? Depending on the type and
the needed visual representation, we have many possibilities:

1.12 A Real-Time Remote Debug Message Logger 145
woetincusinenpnetineuataisssieananansnnennelesoonnnntioieninanenieraauiioiternnecmentaees

Scroll: The standard representation where values are appended one after the other
Current value only: Only shows the most recent value
Graph: A quick visual representation of the evolution of the variable values over

time

The Scrolling Representation

The values are shown via a standard ListBox, each entry mapping to a line. New val-

ues are added at the end of the list. No provision for sorting items is made, as this

would slow down the insertion process.

To speed up the insertion process, we will preallocate a number of rows via the

InitStorage ListBox. A context menu is present to help us manage the ListBox content:

Clear list: Clear the ListBox of all entries.

Copy: Copy on the clipboard the selected lines.

Copy all: Copy on the clipboard the whole ListBox content.

Save: Save the list content to a file.

Current Value

This representation is the simplest. It is done via a read-only EditBox. Having an

EditBox instead of a static control will let us select the text for copy/paste operation

using the standard EditBox context menu.

Graph/Datagram

Graphs are probably the representation that will give you the fastest clear view of

what’s going on in your game. When plotting data as received, though, one thing we

have to watch for is the data going out of range. Two possible solutions to get around

this caveat: give the user the possibility to change the range values and/or have the

Graph invoke an adjustment when the data is out of range for an extended period. It is

convenient to have both since manually overriding the Graph range will let the user

see the previous value as he sees fit.

Many different Graph types can be incorporated in our logger, and a system to

expand the graph library should be put in place early on. For an example of some

Graph types, see Figure 1.12.1. The sample code has only one Graph type available, but

improvements will be made available through the author’s Web site [Gizz04].

While the debug data is categorized and kept together, it’s important to let the

debug logger show different data types on one page. The best data representation for

one type of debug information might be different from others in the same category.

146 Section 1 General Programming

FIGURE 1.12.1 Example of a graph from a logger.

Putting It All Together

A TabControl inside a dialog-based window manages the displayed information. The
TabPages are created dynamically from information sent by the debugged game.

For an example of a TabControl and TabPages, see figure 1.12.2.

Be ist variable

. _| 2nd variable
_| 3rd variable

FIGURE 1.12.2 Example of TabControl and TabPages.

After starting the debug logger, we will try to connect to the logged game we want

to log. Once connected, the logged game will send the TabPages name that it wants to

register with the logger. These names will have an index associated, and only the index

will be sent in further communication. Then it will send the list of the names it wants

to have logged along with the type of representation that should be used and specific
data if needed (such as a range, for Graphs).

Once it is connected and initialized, the logger will then start to receive the data.
Each data packet contains the TabPage index, the ValueName index, and the actual

data. A quick lookup tells us exactly which part of a specific page to update. The data
representation class takes care of displaying the data as intended.

1.12 A Real-Time Remote Debug Message Logger 147
stentnanateonntteaccoscse asin taennsaneseitu sine iLAUHLAnSSeSicLastenNtnOMantleaetttnmnitttetNasii terete

The Game Log Module

The LogModule is implemented inside a singleton. This gives us safe access to a glob-
ally available object. When the LogModule is created, it initializes the platform-specific
network library.

TabPages and logged variables registration are done via one static function, which

is called during the LogModule init phase. Enums are used for the TabPages and vari-

ables index. A macro is used to convert the enum member in the variable name used

in the debug logger.
7 While the LogModule is considered as a server, in the code sample, it only accepts

one connection at a time. No provision was made to let multiple loggers register for

the LogModule debug info. Until the current connection is closed, the LogModule stops

accepting incoming connections.

Because we specifically aim for a CPU-light logging system, the communication

part is handled via asynchronous network function. This and network initialization

are the two code sections that are platform specific.

Logging

The log function is a variable argument function to give the programmer using the

debug logging system an easy-to-use system. It takes out the burden of having to for-

mat the debug info before giving it to the log function. That way, we still have the

ability to send strings to the logger as when we were using OutputDebugString, only

with more flexibility.

The entire debug log LogModule code is wrapped with an #ifdef barrier in order

to take it out easily when we want to exclude the log information. The call to the log

function is done via a defined macro. This will remove the need for further #ifdef

wrappers in the game code as they will be defined to nothing when the logging system

is not to be included in the build.

Possible Improvements or Extensions
nner eee eeaeranienileamnenaemmaiaaammmmanmmeel

The following is a list of possibilities for improving or extending the debug message

logger:

¢ Scrolling representation should have the possibility to limit the number of lines

that will be kept. Even a global variable that could be overridden in each list if the

user wants, would be a step in the right direction.

° Let the user switch representation type for given debug information.

© Let the user modify the range of the Graph.

* Have the Graph modify its range when it detects that the data is out of bounds for

a certain amount of time.

* Give the possibility to log to a file every received bit of information or by page.

Every page should have a different file.

¢ Allow more than one debug logger to register with the LogModule.

Section 1 General Programming 148

Conclusion

In this gem, we presented a simple, extensible, yet efficient way to display our debug

information while not cluttering the game screen. While not always high on the pri-

ority list, a good debug message logger/viewer can often save the day in crunch time

where features are too often bugs in disguise.

Reference

[Gizz04] My Web site, http://www.gizz-moo.com.

1.13

A Transparent Class

Saving and Loading Trick

Patrick Meehan

gems@tenaciousgames.com

7 Ween method for minimizing load time is to pack structured data into a

contiguous block for immediate use upon loading [Olsen00]. One limitation is

that pointers (including virtual function table pointers) are not preserved, which

makes it difficult to save and restore complex data structures or classes that include

virtual functions.

The first part of this gem presents a simple way to preserve user-defined pointers

and a trick for safely restoring virtual function table pointers. This means that game

data may be freely described using classes, virtual functions, and pointers with no

need to implement tedious per-class methods to serialize or restore them.

The rest of this gem tackles the design and implementation of a sample API. The

implementation provides transparent class saving and loading functionality with few

limitations placed on the end user. Details of the implementation are discussed in

hopes that the reader will improve and extend it.

The Trick | at

The trick turns out to be a straightforward use of pointer arithmetic and the place-

ment new operator.

ssc Oes PAN ERE RELEASE LTE AION ELT ETE EMRE ELE

Saving and Restoring User-Defined Pointers

If we dont want to deal with relative offsets at runtime, we can simply resolve them at

load time by building a table of pointer remaps and storing it at the end of the file.

Each entry contains the offset to the pointer that needs to be remapped and the offset

to whatever the pointer remaps to. Both offsets are relative to the base of the file, so

we can just add the address of the file’s destination to resolve them.

Saving and Restoring Virtual Function Table Pointers

When you declare a virtual function in your class, the compiler adds a virtual func-

tion table pointer to the class's memory footprint. When the class is constructed, the

149

150 Section 1 General Programming

pointer is filled with the address of whatever virtual function table is appropriate.

Unfortunately, the virtual function table pointer is only valid during the session in

which it was created. If you store a class with a virtual function table pointer in a file,

the pointer will probably be garbage when you load the file back in during the next

session.

So, to phrase the problem: how can we safely restore a class's virtual function table

pointer when that class was constructed in a previous session?

The solution lies in the placement new operator. The placement new operator

constructs an object “in place” using memory specified by the user. Unlike operator

new, the placement new operator does not allocate any memory.

char rawMem [sizeof (Foo)]; // Raw memory to hold a Foo.

Foo* foo = new (rawMem) Foo (); // Construct a Foo in place.

If you want the class’s destructor to be called, you will have to do so manually.

foo->Foo::~Foo(); // Explicitly call the destructor.

Calling placement new for constructing an object over memory already occupied by
an object of the same type will ensure that its virtual function table pointer is valid. If
we leave the constructors empty, we can restore objects saved during a previous ses-
sion. The constructors are left empty to avoid reinitialization upon loading. An alter-
native is to create a separate constructor specifically for placement new restoration.

Implementing the FreezeMgr
a

ON THE CD

era Nt Ma me LRH ESPN ER EEE ONE BIOL EONS NN USS HS TOP EEE DEEN NACA ET NS

In this section, we move away from background information and actually go through

the design of the implementation provided on the accompanying CD-ROM. It is
assumed that you are a systems or engine programmer interested in a solution for use
by other members of your team. The user to which this article refers is a game or tools
programmer who will use (but probably not alter) the implementation.

It is hoped that you will read through this explanation and experiment with the
sample, and go on to either write your own or modify this implementation to suit
your needs. The sample under discussion is a limited version of an implementation,
with some features combined and some glossed over to stay focused.

Usage Model

We want the end user to be able to create game data in whatever order pleases him.
This includes classes, structs, and arrays of both compound and simple types. We also
want the user's pointers to be automatically restored upon loading.

We need a way to keep track of data created by the user and to provide an inter-
face for saving and restoring it. To do this, we'll use a singleton class called the
Freezemgr. I'he metaphor is that whatever data the user creates is frozen whole, in its
natural state, ready to be thawed and used again later with no additional preparation.

1.13 Transparent Class Saving and Loading Trick 151

For this reason, the key operations of the FreezeMgr are Freeze() and Thaw(). Since

the Freezemgr has to keep track of user-created data, its interface will also include

methods for allocation and deletion.

As for the singleton design pattern used, we'll implement the singleton interface

for this sample in the most basic way; see [Bilas00] for a more sophisticated approach.
From the end user’s perspective, the process will be:

° Use the FreezeMgr to create game data.

¢ Initialize the data in whatever manner is appropriate.

¢ Command the Freezemgr to pack all relevant data into a file and save it for opti-

mal reloading.

Tracking User Allocated Memory

Whenever the user asks the FreezeMgr to create something, the Freezemgr will allo-

cate a memory block and store an internal record of it. This record includes the

block’s size and address. We'll provide the following method for allocating memory:

template < typename TYPE >

TYPE* FreezeMgr::AllocTyped (u32 elements);

AlloctTyped() is a template method that will use both malloc() and the placement

new operator to create a user-specified type (or array of types) and call the appropriate

constructor(s). We use malloc() instead of new because we want to control exactly

when the class is constructed, independent of when its memory is allocated.

The record used to track memory allocations is called a MemBlock. MemBlocks are

stored by the FreezeMgr in a map of addresses onto MemBlocks. The MemBlock contains

a method that will check to see if a given address falls in its range. The method is:

bool MemBlock::ContainsAddress (void* addr) const;

In turn, the FreezeMgr contains a method that, given an arbitrary address, will return

the MemBlock that contains the address, should such a MemBlock exist:

MemBlock* FreezeMgr::FindContainingMemBlock (void* addr) const;

Tracking User Declared Pointers

User declared pointers are tracked with the help of a template class called FreezePtr.

Its template parameter is the pointer type. The only data member is the pointer itself.

Upon construction, FreezePtr will attempt to register itself with the FreezeMgr.

If the FreezePtr falls within a MemBlock, a record of it will be stored in that MemBlock.

Otherwise, the FreezePtr is ignored.

Determining whether a FreezePtr falls within a MemBlock is just a matter of call-

ing FreezeMgr: : FindContainingMemBlock ().

152 Section 1 General Programming

Building a File

At this stage, we can accomplish two of our goals:

° We'll pack the user's data into a contiguous block of memory that can be loaded

in one shot.

¢ We'll crawl through that memory at load time and patch all the pointers so that

the user will not have to mess with relative offsets.

It follows that classes and structs will work right out of the box, as long as they do not

include virtual functions (we'll cover virtual function tables in the next section).

Before we pack a file for the user, we have to think about how the user will want

to access the data once it’s loaded back into memory. Users will probably want to

access their data through some class or struct that they themselves define. They will

want to treat the file as though it has some root type through which they have access

to the data. For example, if the file represents a game level, its type might be a

GameLevel class created by the user, which contains pointers (FreezePtrs, of course)

to things like spawn points, collision geometry, node graphs, etc.

The decision to ask the user to specify a root type suggests the method by which

files are actually packed. The user will call FreezeMgr: : Freeze () with a class of the

root type as its parameter. The Freezemgr will find the MemBlock that contains the

class and pack it into the file. It will then recursively iterate through any other Mem-

Blocks associated with the root type by walking along the FreezePtrs known to each

MemBlock.

As we “flood fill” the network of MemBlocks connected by FreezePtrs, we do sev-

eral things:

e Add each MemBlock encountered to a list of blocks to be included in the freeze

¢ Compute the block’s location in the contiguous packed block
¢ Compute each FreezePtr’s value as an offset into the contiguous block

¢ Add each FreezePtr to a list of pointers to be included in the freeze

During the process, we assume that each FreezePtr points into valid memory tracked

by MemBlocks or to NULL. In other words, if the pointer is not NULL, a call to
FreezeMgr: :FindContainingMemBlock() should always return a valid MemBlock.

Once the list of MemBlocks has been built, we scan through it and pack each block

into the file. We then write out the table of pointers. Each entry in the table contains
the offset of the pointer and the offset of the contents of the pointer.

The process for thawing a file, as intended, is simple and fast.
To load a file, we allocate a chunk of memory large enough to hold the con-

tiguous block before pulling it in with a single read. Patching the pointers is then
accomplished by scanning through the pointer remap table and performing pointer
arithmetic.

1.13 Transparent Class Saving and Loading Trick 153

Note that pointers are not sensitive about the order in which they are remapped, so
sort the remap table (prior to output) in whatever order will most improve performance.

Restoring Virtual Function Table Pointers

As discussed earlier, we can use placement new to restore virtual function table point-
ers. For this reason, the FreezeMgr is also a factory class that can look at an instance of
a class and restore it using placement new. You may use a discrete factory class; for the
sake of our discussion we'll package that functionality into the Freezemgr.

For this implementation to work, any class that contains virtual functions must

inherit an abstract base class that will identify it. The class has only one data member,

a 32-bit type identification number. We'll call the base class Freezable, though this is

a bit of a misnomer, because it is used to qualify only a subset of what can actually be

frozen.

A Freezable may be allocated whole or may be embedded in another class. Like

the FreezePtr, Freezables are tracked by the MemBlocks that contain them.

To construct Freezables upon loading, the FreezeMgr keeps an internal table of

abstract creator classes. Each type of Freezable must have its own concrete creator

class. The abstract creator is called AbstractCreator. A template class called Con-

creteCreator<> is provided to save users the trouble of having to write a creator for

each Freezable. The method used to register a user-defined class is also a template:

template <typename TYPE>

void FreezeMgr: :RegisterFreezableType(void) ;

This function declares a static ConcreteCreator<TYPE> and assigns it to the next

sequentially available AvstractCreator table entry. The index of the table entry then

becomes the 32-bit identification number for that class. We could use a map to con-

vert user-defined identifiers into table entries, but it is more efficient to directly index

into the table as we inspect the type of each Freezable at load time. The trade-off is

that for the data created by the FreezeMgr to remain valid from session to session, the

order in which types are registered must be respected as new types are added.

To make sure the right 32-bit type identifier is mapped to a given instance of a

Freezable, we ask the user to overload a pure virtual method in Freezable:

char const* Freezable::GetClassName(void) const;

To figure out the identifier for a given class, the Freezemgr keeps a map of class names

onto identifiers. Any Freezable may determine its identifier by calling GetClass-

Name() and using that name to see if the class has been assigned an identifier.

There are more robust and useful ways to deal with runtime type information

[Wakeling01] that should be explored to replace the way it’s been done here.

Section 1 General Programming

Since the Freezable’s constructor will be called during the thaw, the user must

take care not to reinitialize its members. For example, if a Freezable initializes its

members to NULL at construction, the members will be reinitialized to NULL during the

thaw.

We could work around the problem of reinitialization by providing an alternative

constructor that only gets called by placement new during the thaw. The problem is
that there is no way to extend this to the Freezable’s members unless the user imple-

ments an alternative constructor for each member and sets up explicit calls to it down

the constructor chain. That is a lot of hassle for what will probably amount to a bunch
of empty constructors. A more pragmatic approach is to expose the problem from the
start (so the user will be aware of it) and ask the user to check for reinitialization by

calling FreezeMgr: : IsThawing().

To review the limitations placed on the end user:

¢ The user must derive all classes containing virtual functions from Freezable.

e The user must overload GetClassName().

¢ The user must declare all Freezable types before using the FreezeMgr.

¢ The user must not change the order in which Freezable types are declared.
¢ The user should either do nothing in the Freezable’s constructor or its member

class constructors, or should check to see if a thaw is in progress and only perform

initialization if there is not.

To manage and freeze the user’s classes:

¢ Track the Freezables as they are created.

¢ After all the MemBlocks and FreezePtrs have remapped, remap the Freezables.

¢ Write out the FreezePtr remap table.

¢ Write out a table of Freezables. This table just contains the relative offset of each
Freezable.

To thaw from a file:

¢ Read in the contiguous data block.
* Patch all the pointers.
* Find each Freezable in memory and determine its 32-bit type number,
* Use the type number to index the table of AbstractCreators.
* Pass the Freezable to the AbstractCreator: :Construct().

A Few More Features
8ST NSA CRS CARRS RSCG RFRA ES RRM OOMC ATER OR GS ERAN IR BRE TENG PRT GLUES serra RHEE ORES ERRNO

The Freezemgr is still not quite ready for prime time. More features are necessary for
it to be useful.

1.13 Transparent Class Saving and Loading Trick 155
aos gseunnaneteoneieitotg ster neonanananesieeneeeamaassnnenette seston tetennenneetenennniitce nahi aannsienasceenabnnuciiit sh NnHH MAAS

Serialized Data

There remain cases where we want to approach parts of our data as serialized streams.
To support this, we add two virtual methods to Freezable:

virtual void Freezable::SerializeIn (FILE* file);

virtual void Freezable::SerializeOut (FILE* file);

The user may add serialized data to a Freezable class by overloading these methods. As
would be expected, SerializeOut() is called during the freeze, and SerializeIn() is

called during the thaw. In both cases, the user is given direct control over the file. The

FreezeMgr remembers how many bytes (if any) are written by SerializeOut(), so

SerializeIn() must read the same number of bytes.

Loading in Edit Mode

Up to this point we've assumed that the user will create and modify game data in one

session and will load it in read-only mode for use in another session.

Implementing an edit or read-write mode option is a matter of rebuilding the

FreezeMgr’s internal tables, including the memory block table and the pointer remap-

ping table upon load. Once this is done, the user is free to augment or modify the

data and then refreeze it.

This extension to FreezeMgr may dovetail with existing schemes for allowing

players to save their games at any time [Brownlow02].

File References

You may give users the option of initializing FreezePtrs in such a way that they will

resolve into files when loaded:

mFoo.PointAtFile ("bar.bin"); // mFoo is a FreezePtr

When the file containing mFoo is loaded, the resource manager will automatically load

in “bar.bin” and point mFoo at it. To package this in a standalone sample implementa-

tion would either require ties to a resource manager [Boer00] or a callback interface,

both of which are outside the scope of this gem. Nonetheless, it is a useful feature and

you should consider implementing it.

Using the Sample Implementation
COLL MMBLLLLL LAL LTUL TON ETE TELL TO TR HIE

You can use the provided sample as is, but you should try reworking it to suit your

own needs. It was composed for this gem as a standalone version of the utility used by

the author, It is offered as is. There is no warranty for commercial use and no plans to

support it, so it is recommended that you familiarize yourself with it, understand its

flaws, and create exciting new flaws of your own. The FreezeMgr can become a key

part of your project, so please accept this disclaimer and give your own implementa-

tion the careful attention it deserves.

156 Section 1 General Programming

For a variety of design reasons, the mechanism that calls the destructors of thawed

classes is not included. This will be an issue if you use the serialized data feature, as

you will probably be allocating memory. For this reason, you will have to decide how

you want to handle freeing the memory allocated by serialized classes.

The FreezePtr Template Class

The FreezePtr automatically registers itself with the FreezeMgr upon construction.

Just include it in your data and use it like a regular pointer. In a struct or class, declare:

FreezePtr<Foo> mFooPtr; // A pointer of type Foo

You should only point the FreezePtr at memory allocated using the FreezeMgr, or the

FreezeMgr will assert() when you freeze your data.

The Freezable Class

If a class contains any virtual functions, it must inherit the abstract base class Freez-

able. Its interface is:

virtual char const* GetClassName(void): A pure virtual. You must overload this

to return a constant to identify the class.
virtual void SerializeIn(FILE* file): Called at the end of the thaw, after the

pointers and virtual function tables have been restored.

virtual void SerializeOut(FILE* file): Called at the end of the freeze.

Overload this method to output data in whatever format you wish.

Because the class’s constructor must be called upon loading to restore the virtual func-

tion table pointer, make sure you do not do anything in the constructor unless you
call FreezeMgr: : IsThawing() to determine whether a thaw is in progress.

You will need to call FreezeMgr: :RegisterType() to map the type name onto a

32-bit identifier prior to freezing or thawing.

The FreezeMgr Singleton

The FreezeMmgr singleton controls file creation, loading, and saving. It also provides

memory allocation and class creation methods to create data that may be frozen. The
Freezemgr regards data it did not create with disdain and will assert() if you try to
freeze it. It will also assert() if you point a FreezePtr at unmanaged data.

The interface is:

template<typename TYPE>TYPE* AllocTyped(int total=1): Allocate and return a

class or array of type TYPE. To create an array, just pass in its size.
void Flush(void): Releases memory allocated by the FreezeMgr and purges the

internal lists.
void Free(void): Delete memory allocated by the Freezemgr. This includes files

that have been loaded via Thaw().

1.13 Transparent Class Saving and Loading Trick 157

void Freeze(char const* filename, void* addr): Walks the graph of data to be

frozen starting at the address provided and writes out a file. The address
provided must be an address returned by AllocTyped<>().

static FreezeMgr* Get(void): Returns the FreezeMgr singleton.

bool IsThawing(void): Returns true if a thaw is in progress. This is relevant to

Freezable constructors that wish to avoid reinitialization.

template<typename TYPE>void RegisterType(u32 typeID): Register a class derived

from Freezable with the Freezemgr.

template<typename TYPE>TYPE* ThawTyped(char const* filename, bool

edit=false): Load a file created by Freeze() and restore it for use.

If you are creating classes that derive from Freezable, you will have to register them

with the FreezeMgr in your initialization code and before any calls to FreezeMgr are

made. Remember that the FreezeMgr assigns type identifiers based on the order of

registration, so the order must stay the same. If that is too limiting, it is easy to change

at the cost of a slight performance hit.
It's possible to void pointers in Freeze() and Thaw(). This is dangerous, but

removes the requirement to use Freezables. The hope is that the user will not abuse

this feature. If you do not share this optimism, then again, this is easy to change.

Conclusion

This particular utility represents a large expanse of extremely uninteresting code that

basically does a lot of behind-the-scenes bookkeeping. That said, we've laid the foun-

dation for a turnkey API that can be used to manage a lot of the mess and hassle asso-

ciated with writing and maintaining game files.

The sample implementation is heavily commented, so you should dive in and

extend it to include the ideas of the many excellent authors whose work makes up the

body of Game Programming Gems.

References ier

[Bilas00] Bilas, Scott, “An Automatic Singleton Utility.” Game Programming Gems.

Charles River Media, Inc., 2000.

[Boer00] Boer, James. “Resource and Memory Management.” Game Programming

Gems. Charles River Media, Inc., 2000.

[Brownlow02] Brownlow, Martin. “Save Me Now!” Game Programming Gems 3.

Charles River Media, Inc., 2002.

[Olsen00] Olsen, John. “Fast Data Load Trick.” Game Programming Gems. Charles

River Media, Inc., 2000.

[Wakelin01] Wakeling, Scott. “Dynamic Type Information.” Game Programming

Gems 2. Charles River Media, Inc., 2001.

eat ee ee
een Tk oe ote)
Rr? dade ’ ~

. e =

°) ‘#

‘a ae

Ts ta ee
‘% dea prewcte si i “ai

on ems

dt snl No hay spleen gn tnd
a resthbastl a letruheaaasanel

ae pons ved, panera Riad dares? I
ae yuri wansuellemnntiniae Sdegntonn Slit
a F, Pree hire scetenpy tepone 9 ~s

wet. te FtaneaanereClnipioninn besancn caer silt eva
eae} evicsh sabe weal, siGher cee aS

wee itch et ib vou! data ard

sood
a 2S

oe a » >

-eenneli? *t2r09 apd wo eyT* ; -
2 7

aren |

ot ; nas vot Benansrbntetys start yy bearish) a toe. ae, in

a sade coc ie i age meet sragh a8 pi orn pee

ee ‘th WoMtes e992. 01 digo xo ragiod bie, aka, pihaad pcr Bom m3

eae : Ww vabio ode 10 bseed esc bsaht oqui acrgizae ‘vgMoxeen4 ont rae 3

cw agtteds or weepitamoiiny! gpace tt! u piesa, ott) Yara Tey ina
: : ji oneonaa aad é 610 THD f
“ ; mei Pe adt” {Vaart Van ijet Seay it ‘poking’ w fy fe fr j

eal say pei ei Pa) age dst JeLda.aeTs 2U-O) min

rotor eats sinirlywniegs seaele jarears! ee ont nraiteane cbroaate We
wth ¢ Conder co khhasife tbe class

: > a >. Whetwe? wele Feriflizcet« ss tile): Cale iba’ ond af i *

setae

pl oe Viftila Parcrior Taney Let, oe tar) abo ae x haingr arte 3 ARG? 2 2H } & ale
-nucl os bis! sy . bigs ual Ts anne lac oh apnoea

: i ~Geeh azz bis oun 349 sol 1 & gerne at bar . is 7 ar sph aati : +

MK, Fequaae the clad s conscrucaslia antag “adie chee Rue! getter

Saco te i svibdhvadécoriae \basabsasnes wylivesal e-e atnalggemg o
; Sy ith qu anlacet how seoi)ve rw drus an iene erie crersaty War awbad sete doelaicop a

Vou wi? a FANT ey 2

: S75) eect P7h 20 frecring >

The Prec ae en a tt

aw gnuntrnneperd’s artind » ‘iin Aunt Somat,

wn we in / Ay my, alii

re geiromareefh ny , eeeeeenald YM, Dee spond, st

icbae it Ta will vluo sicrea)) O00, all gia gene
€. eed yolertinegeest) mane -lwoll oM ove” valing wols

GEL onl veibaiv
ate ot Ae RRA “4 Rous i y ; mer sane oe -

Ahi Oe af f e ‘ye
a, Hey ¥

ghcaeumrstyo FL” duh qBisthind mae Jive fae a pT pee
— 7 SS pe: ? -

E hr, ate 4 AT ‘¢

eeGa@ Viepveadas: 13 a. ® ate
_

wey Piet sn

1.14

An Effective Cache-

Oblivious Implementation

of the ABT Tree

Sébastien Schertenleib, Swiss Federal
Institute of Technology (EPFL), Virtual

Reality Lab (VRiab)

Sebastien.Schertenleib@epfl.ch

| pean computer architectures describe multiple levels of memory becoming suc-

cessively slower and larger. Those levels include registers, level-1 cache, level-2

cache, main memory, and disk. The access time increases from one cycle for registers

to around 10, 100, and 100,000 cycles for cache, main memory, and disk, respectively

(see Figure 1.14.1). According to the current and future CPUs and memory evolu-

tions [Moore65], [Hennessy03], the penalty for algorithms that do not take benefit of

this hierarchical memory representation will increase through many caches misses.

For addressing this problem, cache-oblivious algorithms were introduce by [Frigo99].

The idea was to optimize the I/O model’s scheme without specific knowledge about

the memory block size. They describe that basic problems can be solved using optimal

algorithms being cache-oblivious [Frigo99]. First attempts were dedicated to matrix

and FET transformation. Later, [Bender00] gives additional proposals for B-tree and

search tree representation. Cache-oblivious algorithms differ from cache-aware algo-

rithms, as they adapt themselves to any architecture.

Computer Memory Architecture
eee

SONNE NEAR LE NTN pen sn we ett IAN

Most algorithms ignore memory architecture. Those driven by small data structures

like binary trees suffer huge penalties in accessing their data. Each memory layer

works in a similar fashion and is composed of cache blocks. Current architectures use

cache lines of approximately 32-64 bytes. Notable improvement can be achieved by

accessing data within the same cache line [Patterson97], [Hennessy03]. A cache line’s

lifetime depends on hardware-specific heuristics [Smith87]. Decisions are made on a

159

160 Section 1 General Programming

Roughly:

1 cycle

~1-5 cycles

~5-20 cycles

~40-100 cycles

FIGURE 1.14.1 Memory multilevel hierarchy.

replacement and associative policy within the cache. Sometimes, cache misses are

unavoidable [Hill02] such as in the following cases:

Compulsory: A cache miss cannot be avoided; this occurs when some data is

accessed for the first time.
Capacity: The data fit in the cache in previous steps, but due to the renewal policy

of the cache, the data was removed from this cache level.
Conflict: Cache trashing due to data mapping to the same cache lines.

Data Structure and Cache Coherence

Spatial alignments have an impact on the cache usage. Notably, data structures mak-
ing intensive use of pointers are not good candidates. Pointers or data that will likely
be accessed together should as well be stored together for optimizing memory access
[Ericson03], [Ding04]. In some circumstances, they may not fulfill the object-ori-

ented programming methodology.

Van Emde Boas Layout

The van Emde Boas layout [van Emde Boas77] (see Figure 1.14.2) is the standard

way of laying out a balanced tree in memory so that a root-leaf path can be traversed
efficiently in the cache-obliviously model using O(4 * logg(z)) B = NbElement/Cache

Line memory transfers [Agarwal03].

aN: 090 aN: 696 b\Ve O00 b\\
10;11;12;13 17;18;19;20 58;60;61;62

FIGURE 1.14.2 Van Emde Boas’ tree representation. In this example, each subtree
is composed of seven nodes.

1.14 An Effective Cache-Oblivious Implementation of the ABT Tree 161

ABT Tree 2

ABT trees are very similar to KD trees [Szécsi03]. At each step, two children may be

created based on an axis-aligned splitter. One difference with KD trees is that the

algorithm will minimize the resulting children’s AABBs and store all the geometry
exclusively in the leaves. Thus, each node becomes a totally enclosed region in space
where the internal nodes are used for rejecting the traversal of nonvisible parts of the

environment.

ABT Tree Creation

The creation of such a tree begins with the root node containing a reference to the.

whole scene AABB. The recursive building method subdivides the local current

AABB into two parts along an axis-aligned splitter. Then, each face is assigned to one

child depending on their median (see Figure 1.14.3).

FIGURE 1.14.3 Axis aligned bounding

box readjustment.

Once the distribution of all faces has occurred, each child recomputes its own

AABB containing unique faces on this level. The ending criterion depends on the spe-

cific 3D environments and hardware envisaged. The splitting policy will try to mini-

mize the following attributes:

* Space localization, as in Equation 1.14.1:

f,(n)= Min(Area(boxLeft) + Area(boxRight)) (1.14.1)

* Tree balancing, as in Equations 1.14.2 and 1.14.3:

fi(n)= Min| A(Area(boxLeft) - Area(boxRight)) | (1.14.2)

f,(n) = Min| A(! (ExtendedArea) - > (Area) |< e (1.14.3)

° Epsilon should stay below 5—10% before a noticeable performance penalty. In

most cases, 90% of the faces will be contained in this 5% extended AABB

162 Section 1 General Programming
entre nnanNRDe AES

Scene complexity, as in Equations 1.14.4 and 1.14.5:

i,(m= Min| (> faces(boxLeft) — Me faces(boxRight)) | (1.14.4)

(n= Min| A([ressources(boxLeft dt - {ressources(boxRight dt) (1.14.5)

The final equation becomes that shown in Equation 1.14.6:

fny=w,* f(n)t+w,*fi(n)+w;* f(r) t+w,* f,+ws* fs) (1.14.6)

The weights will change during the traversal with regard to the engine bottlenecks

and scene organization (scenegraph, special effects, etc.). The methodology will also

differ for the preprocessing stage and during runtime.

At runtime, typically each point of view will do a full or partial traversal during

the different rendering phases (culling, shadow, collision detection, etc.). Thankfully,

ABT-tree traversals are really simple and fast to compute. Starting from the last local

root, the recursive function tests if either of the two children is in the frustum and if

so, continues the tree traversal. When a leaf is reached, all geometry contained can be
sent to the next stage in the rendering pipeline. Since each face is unique, no addi-
tional tests are needed (like for collision detection). We can also keep a small vertex
buffer by leaf and local materials. For reducing the number of vertex buffers used, we
can benefit from the neighbor child’s location. Therefore, a single vertex buffer could
be shared within their limits (generally 65K of 16-bit indices) among leaves. This pro-

vides a more efficient branching when neighbors need to be proceeding altogether,
improving the rendering performance [Wloka03].

ABT-trees can also be tuned dynamically by simply reordering each moving
AABB among their subtrees. One downside with dynamic trees is that they tend to
degenerate with time.

Efficiency

All binary trees, notably BSP and KD trees, suffer from depth level. Even with ABT
trees’ abilities, it remains a significant issue. Assuming that the tree implementation is
using pointers instead of implicit pointers, we can consider that every time the tree
needs to follow a pointer, a CPU cache misses will occur. Relative to the depth level,
the number of caches misses will increase accordingly up to a limit where they become
more expensive than testing intersections. However, cache-oblivious trees reduce
cache misses relative to the cache line size. The traversal then becomes less sensitive to
memory access rather than CPU performance.

1.14 An Effective Cache-Oblivious Implementation of the ABT Tree 163

Complexity

ABT trees, like all binary trees, have an O(log 7) search time [Sedgewick90]. By using
the van Boas cache-oblivious layout representation, the search time can be majored to

O(4 * log, (2)) where B = CoupleNodesByCacheLines [Brodal03] (see Figure 1.14.4).

Search Complexity

2 —1_ Standard B-Tree

| |~2_Cache-Oblivious B-Tree
(32Bytes Cache Line)

7 = | -3-cache-Obiivious B-Tree
|| (64Bytes Cache Line)

FIGURE 1.14.4 Searching time order.

Each node needs to store its local AABB and a pointer (or index) to its two chil-

dren. Using a naive implementation, the memory consumption becomes relatively

important:

¢ AABB described by six floating-point values: 6 * 4 bytes

¢ Pointers to its two children: 2 * 4 bytes (32-bit CPU) or 2*8 bytes (64-bit CPU)

Total memory requirement per node is therefore 32 bytes (32-bit CPU) or 40 bytes

(64-bit CPU).
However, [Gomez01] has shown that we only need to keep the relative extents for

each child, which can be truncated to an 8-bit integer value. This conservative esti-

mate will have a relative error of 1/255, or approximately 0.4%, which is covered by

the average 5—10% AABB overlapping.

Exploiting Redundancy

[Gomez01] has described practical ways for reducing the memory footprint. At each

subdivision, 6 extents from the 12 defining the children’s AABB come directly from

164 Section 1 General Programming

the parent, as all faces will be propagated to the leaves. For saving a few bytes by-node,

we store them by couple. Thus, instead of keeping the absolute AABB locally, each

couple of nodes will keep the proportion to their direct parents AABB.

Consequently, six bytes are needed to represent the children relative ratio. An

additional byte specified through different flags will use this relative position from the

two children and reuse the parent value. During runtime traversal, the recursive

method will recompute the local AABB on the fly. Finally, since the last byte has

unused two bits at this stage, we specify whether the left or right children are nodes or

leaves (see Figure 1.14.5). For keeping a cache-oblivious data structure, we store them

in eight bytes, leaving seven bits unused for the tree itself. For instance, they allow

specifying whether the following subtree was loaded, which may be useful for stream-

ing worlds.

63 62 61 60 59 58 57 56 S5 48 47-40 39-32 31-24 23-16 15-8 7-10

LX|LY|LZ|RX/RY|RZ}LL|RL| LX LY LZ RX RY RZ
Ratio Ratio | Ratio Ratio | Ratio | Ratio Ue

Since computer cache-line architecture is always a power of two, we aligned

our data structure to be 64 bits or 8 bytes.

¢ L? specify if it’s a node or a leaf.

¢ Ratio Lx,y,z: relative ratio based on the lowest part of the specific axis

to enforce that the truncated AABB will be equal to or bigger than the

absolute one. The ratio is split into 255 elements.

Ratio Rx,y,z as above but using the higher part.

Flags: Bit 63-58 specifies which child extend belongs to his parent

(1 Left child, 0 Right Child). Bit 57-56 indicates if the left and right

children are leaves elements (1 Leaf, 0 Node).

FIGURE 1.14.5 ABT trees node data representation (couple).

Finally, as the subtree will always be a power of two minus one, and as the cache
line size is always a power of two, we have eight bytes available for linking this subtree
to the next subtree. As the hierarchy tends to use implicit pointers, four bytes are used
to provide the index to the first child available. Parts of the four additional bytes spec-
ify which end node is connected to a child’s subtree. Depending on the cache line size,

some bits may remain unused (see Figure 1.14.6).
The build routine is done so that all subtrees coming from the last subtree are

direct neighbors (see Figure 1.14.7).

1.14 An Effective Cache-Oblivious Implementation of the ABT Tree 165

N= cache Lines Size (Bytes)

Byte N Byte8 Byte7 Byte 4 Byte3 Byte 0

e Bytes 0-3: Index to the first next child sub tree. All sub trees are direct

neighbors.

e Bytes 4-7: Cx?: Flag specifying if the end-node i is connected to a sub

tree.

e Byte 8-N: Each group of 8 bytes represents a couple of nodes or a leaf.

FIGURE 1.14.6 Cache line organization.

Sub-Tree Index

FIGURE 1.14.7 Subtree organization with linking to following subtrees.

Now consider a leaf, whose composition is made of eight bytes. One bit is used to

specify its condition. Then again, it may depend on the number of nodes the system

may use. On 32-bit systems, 31 bits are generally enough; leaving four bytes that can

be used for additional information (mainly for dynamic management of resources; see

Figure 1.14.8). However, 64-bit programs may want to use more nodes and therefore

take more than 31 bits.

166 Section 1 General Programming

63 62 61 60 59 58 57 56 55 48 47-40 39-32 31-24 23-16 15-8 7-10 ~~.

e L? Specify if it’s a node or a leaf.

e Inthis configuration, 31 bits are used for referencing the leaf, the last 4

bytes aren’t used for the tree itself, but can store extra information (like

for streaming worlds).

FIGURE 1.14.8 ABT trees leaf data representation.

Performance

For analyzing the performance of this approach, three different implementations were
used (see Figure 1.14.9):

Intuitive: 6 * 4 bytes for storing the AABB and 8 bytes for the children’s pointers
(32-bit CPU), or 64 bytes for a couple.

Using redundancy: 8 bytes for the AABB, 8 bytes for children’s pointers, or
48 bytes per couple.

Cache-Oblivious (64 byte cache lines): 8 bytes per couple + 8/7 extra bytes
needed for implicit pointers, giving an average of 9.14 bytes. The global
memory requirement depends on the tree balancing (see Figure 1.14.7).

Memory Consumption

;
@ [=] o

& =)

—1_ Naive

~2_ Reuse Elements

—3_ Cache-Oblivious ~

® 200

;
:
g

FEE EEE ES ES
Nodes

FIGURE 1.14.9 Memory usage across implementation. The memory
consumption for the cache-oblivious depends on the tree’ balancing.

1.14 An Effective Cache-Oblivious Implementation of the ABT Tree 167

With regard to the eight-bit integer value for representing the children’s extents,

the overhead to convert them back was measured. Experiments made on 16 K ran-

domly distributed leaves have shown an overhead of about 7%, which is clearly com-

pensated by the better cache-friendly design.

Validation Phase

Validations were made through several tools. [VTune04] was used for observing

memory access and discovering nonrelated bottlenecks. Using [PAPI04] allows us to

monitor hardware counters as well. They can keep track of cache misses, TLB misses,

and similar events. However, specific measurements have required the creation of a

dedicated profiler. Through the several implementations from RAM-based to cache-

oblivious ones, statistics were collected for improving and understanding the cache-

oblivious implementation.

Conclusion

Even if this gem was focused on culling algorithms, ABT trees are also useful for many

others elements including AI or 3D sound management. This allows sharing the rep-

resentation of the world using multiple views [Bar-Zeev03}.

Current hardware evolutions require studying the cost of accessing data through

the different layers of memory. CPU speeds will continue to improve greatly, but the

memory evolution cannot follow. Computers will become more and more dependent

on memory access rather than on pure raw performance.

Real-time simulation using large data sets will become limited by the memory

bottleneck, reducing the impact of CPU evolutions. Finally, the adaptive nature of

cache-oblivious algorithms provides a better alternative over cache-aware algorithms,

while offering near to similar performance.

Reference

[Agarwal03] Agarwal, Arge and Bryan Danner. “Cache-Oblivious Data Structures for

Orthogonal Ranger Searching.” ACM Proceedings of the 19th Annual Symposium

on Conceptual Geometry. 2003.

[Bar-Zeev03] Bar-Zeev. “Scenegraphs: Past, Present and Future.” Available online at

http://www.realityprime. com/scenegraph.php. 2003.

[Bender00] Bender, Demaine and Farach-Colton. “Cache-oblivious B-trees.” In Proc.

41st Ann. Symp. on Foundations of Computer Science, 399-409. IEEE Computer

Society Press, 2000.

[Brodal03] Brodal. “Cache Oblivious Searching and Sorting.” Seminar, IT University

of Copenhagen. Copenhagen, Denmark. 2003.

[Ding04] Ding, C. “Data Layout Optimizations, Computer Organization.” Lecture,

Rochester, NY, 2004.

168 Section 1 General Programming

[Ericson03] Ericson, Christer. “Memory Optimization.” CDC 2003, Santa Monica.

Sony Computer Entertainment, 2003.

[Frigo99] Frigo, Leiserson and Ramachandran Prokop. “Cache-Oblivious Algo-

rithms.” In Proc. 40th Annual Symposium on Foundations of Computer Science

(FOCS), 285-297. 1999.

[Gomez01] Gomez, Loura. Compressed Axis-Aligned Bounding Box Trees. Charles

River Media, 2001.

[Hennessy03] Hennessy, Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers Inc., 2003.

(Hill02] Hill, Lipasti. Cache Performance. University of Wisconsin-Madison, 2002.

[Moore65] Moore. “Cramming more components onto integrated circuits.” In Elec-
tronic Magazine 38, 114-117. 1965.

[PAPI04] PAPI. “Performance application programming interface.” Available online
at Attp://icl.cs.utk.edu/projects/papi. 2004.

[Patterson97] Patterson, Hennessy. Computer Organization and Design Second Edi-

tion: The Hardware/Software Interface. Morgan Kaufmann, 1997.

[Sedgewick90] Sedgewick. Algorithms in C. Addison Wesley, 1990.

[Smith87] Smith. “Line (block) size choice for CPU cache memories.” In JEEE Trans-

actions on Computers, 1987.

[Szécsi03] Szécsi. “An Effective Implementation of the K-D Tree.” In Graphics Pro-
gramming Methods, Charles River Media, 2003.

[van Emde Boas77] van Emde Boas. “Preserving order in a forest in less than logarith-
mic time and linear space.” Inf. Process. Lett., 6:830-82. 1977.

[VTune04] VZune. Intel Corp, 2004.

[Wloka03] Wloka. “Batch, Batch, Batch: What Does It Really Mean?” GDC, 2003.

1.15

Visual Design of State

Machines

Scott Jacobs

scott@escherichia.net

Nc all the code that goes into a game needs to be written by programmers. Many

activities that a game must accomplish may be better expressed using a special-

ized description that is converted during development into data and code. This

process, known as code generation, potentially works very well for systems that can be

implemented with state machines. For a more complete discussion of code genera-

tion, see [Herrington03]. Code generation requires expressing the requirements of the

intended system completely and unambiguously prior to the generation process.

Describing a state machine with this level of detail—the topic of this gem—can be

accomplished visually using flow charts.

Why Code Generation?

Incorporating some level of automatic code generation into your development process

has several benefits. For example, you could write (and debug) once the code that con-

verts state machine descriptions into data and code has run, and you can reuse that

converter throughout your project. This is also possible for the state machine itself that

actually uses the generated data and code. Once written, debugged, and tested, those

components may be used and reused to power UI screens, complex particle effects, in-

game cinematic sequences, and even game logic. Building this level of runtime data

and code generation into the system along with the ability to execute it on the fly pro-

vides enormous flexibility and freedom to content creators. The generation of a state

machine from a specialized visual state machine description offers a number of advan-

tages over the standard and all too common practice of having a designer write a

description of a system in text as a specification for a programmer to implement.

Perhaps the biggest advantage of such a system is the most obvious one. The state

machine description is expressed visually, and the final result is generated directly from

the visual design, providing on-the-fly synchronicity
between design and functionality.

169

170 Section 1 General Programming

A change in the design results directly and immediately in a change in runtime opera-
tion of the state machine. Another advantage is that special-purpose data creation and
visualization tools can ease layout of the state machines.

An obvious first choice for data creation and editing would be a flow chart dia-
gramming tool. As opposed to a textual description of a system’s operation, a designer
or programmer can take a look at a flow chart describing the entire system and spot
logic flaws or design problems visually before any coding time is spent implementing
the problematic system. Working within the constraints of a visual tool also enforces
that the system is consistent and viable. Instead of a programmer running back to
design to find out whether or not the player can fire his weapon while jumping,
designers can make this decision at design time by either linking the weapon firing
state from the jumping state or not. Rapid reconfigurations of logic flow can take
place, and a number of different approaches towards runtime actions can be per-
formed, without any manual code modification.

SR A

To make visual design of state machines viable, a number of game engine parameters
and methods will need to be predefined and presented to the state machine designer.
These are parameters and methods that will also need to be exposed to the state
machine engine from inside the game engine. They may be as simple as a global set of
Booleans describing the current state of input from the player, or they could be a
more complex scripting system exposing timers, event generation, game object man-
agement, and more.

A number of small, easily testable, possibly unrelated variables, methods, and
modules can be linked together with a state machine to create the intended in-game
activity. An example would be a simple state machine that modeled the actions of a
pistol. A programmer could implement a number of discrete activities necessary for
incorporating a gun in a game like providing hooks to play sounds, generate particle
effects, and damage game objects. Then, a state machine can be laid out with a visual
design tool, and a number of gameplay actions can be experimented with and iterated
over, as will be discussed later in this article.

Applying General Tools

A number of different tools could be used to diagram the state machine flow. Perhaps
a custom tool written to take advantage of your specific application would be the best
solution, but a good starting point for your first experiments with visual state
machine design and code generation is an existing flow chart editor. One such editor
is UMLPad [Bignami04]. This GPL-licensed application runs on a number of plat- forms and works reasonably well as a simple state machine editor. Basic flow charts are easily composed with this tool, and the text-based file format is very easy to under- stand and parse, making the conversion of flow chart definitions into state machines that can run in your game engine a straightforward exercise.

1.15 Visual Design of State Machines 171
cssnsanaannmnnancoperneicicinnntetmaaiani

Generic state machine engines that read visually designed state machine descrip-

tions could be written in a variety of languages, but here we will use one written in

Lua [Lua04]. In its tenth year, Lua is in ever-increasing use within the game develop-

ment community [Burns04] and seems a natural fit for implementing our state

machine engine.

Exposing game engine variables and methods via Lua to state machine designers is

quite straightforward, and a number of readily available resources describe approaches

for doing so. The process can often be made even more efficient with the help of a tool

like tolua++ [Manzur04], which automatically generates the code that exposes C/C++

types to Lua. For help with Lua, you should check out the short but very comprehen-

sive Lua manual [Ierusalimschy03a] and the book Programming In Lua by Roberto

lerusalimschy, available both in hardcopy and online [Ierusalimschy03b].

Lua is a dynamic scripting language where functions are first-class objects. This

gives a lot of flexibility, as the flow chart to state machine conversion process can

result in a mixture of data and machine-generated code. States can contain lists of

methods that are run to determine if the machine should be advanced to a new state.

Using a feature of Lua called meta tables, simple generic state machine management

code can be written that operates the same for all instances of state machines in the

game. Because all state machines share the same meta table, they all present the same

interface, making the game engine’s use of the state machines consistent. The unique-

ness of each state machine is contained entirely in the (visually designed) data.

State Management

The state machine engine described here is concise but powerful. It seems even sim-

pler if you keep in mind the fact that the data structures, methods, and relationships

described here are all generated automatically by the conversion script based on the

UMLPad file. Each state is implemented as a Lua table, and the state machine engine

keeps track of which table is the current state. The table may contain any number of

standard methods that the engine looks for and runs at appropriate times.

Among these methods, which need not exist for any given state, are methods run

when a state is entered or exited. The current state is also given an opportunity to update

‘tself when the state machine engine is updated. Each state table contains a list of links

to the other states that are possible to enter from the current state, and each link may

have an advancement conditional method that is run to determine whether the state

machine engine should follow that link. Absence of a conditional means the engine will

always follow the link. Following a link makes the linked state become the current state.

During each state machine's update cycle the
current state’s links’ advancement con-

ditionals are sequentially evaluated. If none of the conditions for advancement are met,

the state machine remains at the current state. An advancement conditional is associated

with a given link in the visual state machine design tool and can be as simple as a single

Boolean (is input button X currently pressed?) or may be a more complicated function.

(Has timer X expired or is the amount of ammunition left in the inventory sufficient to

allow reloading?) Each state has its own table of state-specific data that is available to all

172 Section 1 General Programming

the enter, exit, and update methods as well as each link advancement conditional
method. This state-specific data area is a convenient place to put timers or counters.

State machines are created by asking a state machine factory for an instance of a
named state machine. The state machine factory loads the file that was generated
from the visual state machine datafile, installs the state machine engine meta table,
and returns the object to the caller. Once the caller has this table, it can begin to
update the state machine. The user of the state machine factory can be another Lua
script, game engine C/C++ code, or any other code for which a Lua interface exists.
Once the state machine starts, the user of the state machine should run Update()at an
appropriate periodic rate. If the state machine completes, Update()returns the Lua
value nil, which evaluates to false in conditional statements.

Putting It All Together ssmienrrsemetpaciehemnietipss sicher renee aroieentiouastneia eecesettieanctoanemeumeesinoeet
For a concrete example of this technique, let’s design a state machine to operate a sim-
ple gun. The gun should be able to fire bullets, run out of ammunition, be reloaded
from ammunition stored in an inventory, and perform a dry fire when there is no
more ammunition left. To see the visual design, you can use UMLPad and open the

<<» file Gunl.uss from the accompanying CD-ROM; a snapshot of the state machine
onTHECD design is illustrated in Figure 1.15.1.

Dry Firing

OnEnter: print(“Click”)

state.timer = 0

OnUpdate:

state.timer = state.timer + frameTime

[state. timer >= 0.1]
[trigger Down and machine.numRounds == 0]

{ ene Down and machine.numRounds > 0)

OnEnter: print(“Idle”)

[machine.numRounds < 5 and reloadDown and machine.roundsininventory > 0}

On€Enter: print(“Bang!")

machine.numRounds = machine.numRounds - 1

Recoil and Recovering

OnEnter: print(“Recoiling”)

State.timer = 0
OnUpdate: state.timer = state.timer + frameTime

(state.timer > 1,5]

Reloading

OnEnter: print(Reloading”)

state.timer = 0

OnUpdate: state.timer = state.timer + frameTime
Onexit: state.roundsNeeded = 5 - machine.numRounds
State.roundsToLoad = math.min(machine.roundsinInventory, state.roundsNeeded)
print(“loading " ., state.roundsToLoad)
machine.numRounds = machine.numRounds + State. roundsToLoad
machine.roundsininventory = machine.roundsininventory - state.roundsToLoad

FIGURE 1.15.1 A simple state machine describing the actions a pistol may perform.

1.15 Visual Design of State Machines 173
snaostnnspenepssccantnnminnnnnHASAchsansentteMNNEHAe RRC

This state machine has a beginning (the large black dot) and no end. When

begun, the state machine will progress immediately to the Idle state. Because we have

repurposed a general state machine editor, we must be careful to follow a few conven-

tions when filling in the data for each state. In the Activities and Description field, the

code generation script will look for the special strings OnEnter:, OnExit:, and OnUp-

date:. All text after each string will become the methods the state machine engine runs

at the appropriate time. The methods will be supplied a single argument: state, which

is a state-specific table that can be used to store data. If you incorporate this gem into

your production pipeline, you may wish to alter UMLPad to include separate fields

for each method. In the Idle state, only one method is defined: OnEnter. Every time

the state machine engine progresses the state machine into the Idle state, the OnEnter

method is run. In this example, the OnEnter method prints Idle to the screen.

From inspection, we can see that there are three ways for the state machine to

leave the Idle state. The conditions required for advancement are detailed on each

link. Every state machine update cycle, those conditions are evaluated in turn and

if/when one is met, the state machine engine makes the linked state the current state,

first running the OnExit method of the old current state, if it exists, then the OnEn-

ter method of the new current state, if it exists.

In this case, pretend that triggerDown has become true because the game engine

set this variable in response to the player pressing a fire button. The Firing state

becomes the current state. In a real implementation, Firing’s OnEnter method would

probably call methods to play a gunshot sound and create an instance of a bullet in

the game world. On the next update cycle, the state machine finds only one link out

of the Firing state, and since there is no conditional, the link is immediately followed.

In the Recoil and Recovering state, there is also only one link out (back to the Idle

state), but it cannot be followed until the timer has reached a certain threshold. Each

update cycle, the state machine engine runs Recoil and Recovering’s OnUpdate

method, which increases the timer by the amount in frameTime, a variable set by the

game engine. The rest of the state operates similarly.

A Showcase of Data Driven Design

Running the conversion script ussToState.lua on Gun1.uss results in a file Gun.lua that

the state machine factory in StateMachineFactory.lua can use to provide gun state

machines to requesting code. The script testGun.lua does just that, requesting a Gun

state machine from StateMachineFactory, then simulating the role of a game engine by

providing variables like frameTime, triggerDown, and reloadDown. The script test-

Gun.lua runs the gun through the Idle, Fire, Recover, and Reload states until all the

ammunition is spent, then the gun falls into an endless loop of idling and dry firing.

Now comes the beauty of this gem: reconfiguration of the existing state machine

to meet new design requirements. Perhaps the design department would like to do

some gameplay experiments with a weapon that automatically reloads when it is out

of ammunition and the trigger is released. To facilitate this, a second link from the

174 Section 1 General Programming

Idle state to the Reload state with the conditional of not triggerDown and num-
Rounds == 0 is created, and the state machine now has the desired behavior. Figure
1.15.2 shows Gun2.uss with the new link from Idle to Reload.

Dry Firing

OnEnter: print(“Click”)

state.timer = 0

OnUpdate:

state.timer = state. timer + frameTime

[state.timer >= 0.1]

{trigger Down and machine.numRounds == 0]

{trigger Down and machine.numRounds > 0] OnEnter: print(“Bang!”)

machine.numRounds = machine.numRounds - 1

OnEnter: print(‘Idle”) [state.timer >=0. Recoil and Recovering

[machine.numRounds < 5 and reloadDown and machine.roundsininventory > 0} OnEnter: print(“Recoiling”)
: ; 1 ! F state.timer = 0 ne.numRounds == 0 and machine.roundsininventory > 0 .

agi UU Lg : veh OnUpdate: state.timer = state.timer + frameTime
[State.timer 115)

Reloading

OnEnter: print(“Reloading”)

state.timer = 0

OnUpdate: state.timer = state.timer + frameTime

OnExit: state.roundsNeeded = 5 - machine.numRounds

State.roundsToLoad = math.min(machine.roundsIninventory, state.roundsNeeded)

print(“loading ” .. state.roundsToLoad)

machine.numRounds = machine.numRounds + state.roundsToLoad

machine.roundsininventory = machine.roundsinInventory - state.roundsToLoad

FIGURE 1.15.2 A second link has been created from the “Idle” to the “Reload” state, which is followed
when the gun is out of ammunition.

Compare running the Gun.lua generated from Gun1.uss and Gun2.uss through
testGun.lua with reloadDown hardcoded to false to see the effect of the new behavior.
The gun will reload when out of ammunition, even though reloadDown is never true.
Now pretend there is a new requirement from design. The gun needs to have a 4%
chance of jamming, which requires three seconds to clear. Change the Idle state to cal-
culate a chance of jamming during each OnUpdate cycle. When the trigger is down
and there are rounds to fire, if the chance to jam is less than 0.04, the state machine
makes the jammed state the new state. The jammed state’s timer must be increased to
three seconds before Idle becomes the current state again. We have just created two
new game object behaviors with a few mouseclicks and a tiny amount of typing!

1.15 Visual Design of State Machines 175

Hopefully, the potential to use something besides a text editor to create in-game

actions and behaviors has intrigued you. The tools and languages presented in this

gem, while a good basis for beginning your experimentation with state machine code

generation, are not as important as being inspired by the concept that the core struc-

ture of systems like state machines can be abstracted, written, and debugged once,

then enabled by data and code provided from tools that sport a number of benefits

including self documentation of systems, rapid behavior modification, enforcement

of system constraints, and no specific language knowledge requirements for system

designers.

References

[Bignami04] Bignami, Luigi. UMLPad. Available online at Attp://web.tiscali.it/ggb-

home/umlpad/umlpad. htm.

(Burns04] Burns, Jon and David Eichorn. “GDC 2004—Lua in the Gaming Indus-

try Roundtable Report.” Available online at /ttp://lua-users.org/lists/lua-U/2004-

04/msg00164.html.

[Herrington03] Herrington, Jack. Code Generation in Action. Manning Publications,

2003.

[Ierusalimschy03a] Ierusalimschy, Roberto., L. H. de Figueiredo, and W. Celes. “Lua

5.0 Reference Manual.” Technical Report MCC-14/03, PUC-Rio, 2003. Avail-

able online at Http://www. lua.org/manuall5. 0/.

[Ierusalimschy03b] Ierusalimschy, Roberto. Programming in Lua. Lua.org, 2003. Also

available online at http://www. inf.puc-rio. br/~robertol book’.

[Lua04] Lua. Available online at http://www. lua.org/.

(Manzur04] Manzur, Ariel. toluat+. Available online at /ttp://vww.codenix.com/

~tolual.

“Halt aicharkeriy Shore bat alogs 4gT-

Sirenaotn oie ods penis: Law aiping in: War
tic

) his Sai. tres thy gricagelt yes ae dirih hai al riheegrrad bwithedesnihaunstt ve

*. Heanee EDS . al ely eek re M. netadt loins bp. y slieseughtt ans 1.2, 4 a ’

tar ise. i 7) eo pt sid: ve palpi, lig : "
< ne ney ~ '

ty sere a sigh e Nan 1M. 3k pate vi ules P ‘és peshesh, aah use e

ehh
8 nsf)

aug ui Me < ‘th ‘lies 1

-aibages serattiacte 001- fien nerneaaiepe tiers cians a

‘aang eA MNDY “la ahely aefaiya salt uel hestijeri goioed be ance 30
sSheats bogeasirlab! tbr: tient. shaniyinde we nos enidtiieh sagt 2

canines vdtniit? % Weeiasioh, tea haieveag ybeo iene ie 13

aman sul sweat hot tg tering Hog wa ai e

Vibe cy <tae sehaae FIO sep eee
oa B >. A ; Scale aameet ait = —_ a at aT _ cig -

“ys nigga ae. a ath is sila, ities ‘batt, BAU iomund ses [epee ue
» fe? ee e = a —— 4 > wea Se Pe rer a a _)

ahs

siti tion? ihe stinind 200 0G P open Grins kent mie el aie
aendaindierees rey eliine ee: soft keine i 13 Sb ae

~ teen. atte ea raey: acta ne : ’ ee 8
Bini Sig pruned ae ‘atie ite ne te oe. ‘ Banal [eveoradnatl)

: i) a il ce ; OS

’

Se

bore F —— Paco ent algal 3

“ath iii hs ge aittnethoate gh dt qrbepiheaugst Mb

atlantis Yen soya hed satus hinge in sation sduliegd
“agp te

<\ 2a ; ’ mt a

‘€ ig og ~~ is aes 1 ei ae
¥ ; Bets di ices avis a ibeee i ye | Bie ao hag aed

ow dettaion, oto oki cam 2
Wt eu wecucrt fia won Tu pana atone i
ieihi ss Ute eee chewy Chgege

per < Foeren 0 aos ele eng
a 3 ' va fe mwa kadhea adorn

Ns ae Camyned exate’s Runvey an
Me ee: , - *gemein We bit

1.16

A Generic Component

Library

Warrick Buchanan

warrick@argonaut.com

WW: the increasing size and complexity of computer games, it becomes more crit-
ical that we embrace techniques that allow a more structured design methodol-

ogy. The concept of viewing a software system as using a series of reusable components

is not new, but it is still a practice that is not always applied where it should be within

our industry.
This gem presents a configurable C++ template library that is designed to ease the

process of developing reusable software components with support for features such as

factories, interfaces, interface versioning, type identification policies, and reference

counting.

First, we will introduce a number of elemental concepts that the library relies

upon that are useful and usable separately in their own right. From these, we will

build the foundation for the component system and demonstrate its use.

ERE IE GONE NATL SEL EE ELITE LL,
Type Identification System

The library is reliant upon a means of identifying the type of a class at runtime. As

there are many preferences to how one can implement a type identification system, it

is presented as a configurable parameter to the library. It is a simple user-defined class

that must be implemented at least in the form of:

struct TypeID

{
template<class Type> TypeID(const Type* type);

TypeID();

int operator==(const TypeID& typeID) const;

bool operator<(const TypeID& typeID) const;

static TypeID FromName(const char* const name) ;

}5

177

178 Section 1 General Programming
eee A

This allows the relevant TypeID object to be created from a pointer to a class and from

a string name of the class by means of a static member function. It also allows two

TypeID objects to be tested for equality and provides an ordering method that is use-

ful for when this class is used with STL container classes.

The type identification parameter is used as a template parameter to all the classes

provided in the library so they are not tied to any specific type identification system.

A sample implementation that uses the C++ type_info support as found in Microsoft

Visual C++ 7 can be found in the supplied header file RTTITypeID.hpp.

Factories

A method of creating our components in a manner that insulates the client code from

the actual component details is to use a Factory pattern [Gamma95]. If we temporar-

ily view our components under the more generic moniker of an object it will allow us

to design a Factory class that is useful in a more general sense.
The first requirement we wish the Factory object to fulfill is that, given the type

of the object we wish to create, it will create an instance of the object:

template<class TypeID, class Base>

struct Factory

{

}5
Base* Create(const TypeID& typeID) ;

The first issue we see from this fragment of pseudocode is that we must decide what
type of object is returned by the factory’s creation method. For this implementation,
we have all objects derived from a common base type, and that is what is returned
from the creation method, as this keeps the actual concrete class of the object that is
to be created further hidden from the client code.

The second issue is that of how we communicate to the factory which object it is
we wish to create. We simply pass an instance of our type identification object that
identifies the object we wish to create to the creation method.

As we wish to make our library as generic as possible, we also template our factory
class on a type identification class parameter discussed previously and the actual base
class that is returned from the creation method. This eliminates an unneeded reliance
upon the rest of the component library.

Such a “sushi: pick and choose the pieces you wish” mentality to library design is
crucial for users to achieve the most out of any library. It makes the difference
between a generic library that has a long and productive lifespan and a library that is
more an inflexible framework that continually needs refactoring.

We can now add overloaded versions of the creation method to allow C++ syntac-
tic sugar that will make the use of the factory class even easier:

1.16 A Generic Component Library 179

template<class TypeID, class Base>

struct Factory

{
Base* Create(const char* const name);

Base* Create(const TypeID& typeID) ;

template<class Type> Base* Create();

}5

This allows the following creation patterns:

Pattern 1:

Factory factory;

TypeID typeID;

Base* base = factory.Create(typelID) ;

Pattern 2:

class MyObject;

ie tc
Factory factory;

Base* base = factory.Create<MyObject>() 5;

Pattern 3:

Factory factory;

Base* base = factory.Create("MyObjectName") ;

Pattern 4:

class MyObject;

ite ace
MyObject* myObject = 0;

Factory factory; :

Base* base = factory.Create(myObject) ;

The first three creation patterns tend to be the most useful; and patterns 1 and 3 are

paramount when the object to be created is not known at compile time, which is

essential functionality for data-driven applications.

At this point, you may be wondering how the factories know how to create the

objects we ask for. They must be told how to do so, and if we ask for an object the fac-

tories do not know how to create, they shall return NULL from their creation meth-

ods. We extend the factories class definition like so:

template<class TypeID, class Base>

struct Factory

{
Base* Create(const char* const name) ;

Base* Create(const TypeID& typelID) ;

template<class Type> Base* Create();

180

The Factory Singleton and Child Factories SURE aeRO: a

Section 1 General Programming

template<class Type> void RemoveSupport() ;

template<class Type> void Support();

}s5

We now have two methods with which we can add support dynamically to our fac-

tory for any object type we wish (note that we are making the assumption that all

classes have a default constructor). Given an implementation of an object we wish to

create that is derived from the appropriate base class, that we will call Myobject, we

can add support to a factory for it as follows:

class MyObject : public Base

MyObject();

Ieee

};

Factory factory;

factory .Support<MyObject>();

Our factory object will now be able to create instances of the supported class. The

ability to dynamically add and remove support of specific object types can be

extremely useful and is not always available in other factory system designs.

The actual specifics of how the factory object is able to do this so simply will not

be described here but is provided in the accompanying source code. A brief descrip-

tion is that the factory keeps a map of templated constructor objects for each sup-

ported object type with each constructor object knowing how to create the specific

object type.

It can be helpful to apply the singleton design pattern to factories for a myriad of rea-
sons, the most significant of which is simplicity. We can easily provide this by adding

the following static method to our Factory class:

struct Factory

{
Maer

static Factory& Singleton()

{
static Factory factory;

return factory;

oa
}5

Employing the singleton design pattern allows us to access a single instance of our
factory object from almost anywhere simply by referring to the factory object as
Factory::Singleton(). Not only is this a helpful convenience but also safer. Further,

1.16 A Generic Component Library 181

we can add support for child factories, meaning we can connect factories in a hierar-
chal fashion to affect object creation in one simple way. If a factory does not know
how to create the object we requested, we recursively descend its children until we
find a child factory that does know how to create the object. For this support, we
extend the factory class as follows:

struct Factory

{
void RemoveChild(Factory* factory) ;

void AddChild(Factory* factory) ;

}5

Through these two new methods, our factory class can now maintain a list of point-
ers to child class objects (constructors). In this implementation, there is no support
for cases where a child factory is destroyed elsewhere but is still referenced by another
factory object. The system could be extended to cope with such circumstances by
adding reference counting functionality (or some similar safety net) to the factory

classes.

DLL Factories

For the Microsoft Windows operating system, we can enhance our factories even

further to support the concept of dynamically loadable factories using Dynamic Link

Libraries (DLLs). We achieve this by creating a class, DLLFactory, derived from

Factory, that wraps the loading of the DLLs and binding to the factories exposed

through them. The DLLs only have to export a function to return a pointer to the

factory object to be exposed. Remember multiple factories can be exposed from a

DLL by the use of child factories.
The implementation can be found in the supplied source code in the file, DLL-

Factory.hpp, and an example of its use in the supplied example workspace. Note that

care must be taken if the factory DLL is to be unloaded. Objects created using the

DLL may still be around, which will result in access violations. Objects created

through a DLL factory must also be released by that DLL, so the base class from

which all factory creatable objects are derived should provide a method of self-dele-

tion. An implementation of this typically follows the form:

struct Base

void DeleteThis()

delete this;

}
}5

More complicated and robust functionality in such circumstances could be added by

requiring the factory objects to track and play a more active part in the lifetime of the

objects they create, but that is beyond the scope of this gem.

182 Section 1 General Programming
——-senreninsiaanni iets ce ti ie aa

Components
Now that we have the basic building blocks of our library in place, we can concentrate

on the actual implementation details of the components themselves. Conceptually, a

component should be a unit of code whose implementation details are hidden from

the client code. Communication between the component and the client code should

be abstracted through the use of interfaces. From this, we have two key concepts: the

component and its interfaces.

The lifetime of the component must be managed in some way. Our factory class

will provide creation facilities, but we can use a reference counting system to keep

track of our components and provide the details of their destruction. The class pro-

vides reference-counting functionality as follows:

struct ReferenceCount

{
ieee

void Reference();

void Release();

}5

The full implementation of ReferenceCount can be found in ReferenceCount.hpp.

The methods provided allow the increase and decrease of an object’s reference count,

respectively. When the reference count of the object becomes zero, the object will
automatically delete itself. From this we can configure a specific Component class
implementation by deriving from the ReferenceCount class and a base Component class

provided by the library (This is shown in the file ExampleConfiguration.hpp). Addi-
tionally, we can define a Clone() method in our Component class implementation in

the form of:

virtual Component* Clone() { return 0; }

This allows a transparent way for client code to duplicate the component, and is
optional for the component to implement. This still does not allow us to get much
use from our components, as we can only create and destroy them. We need to add
support for interfaces onto the components to make them usable.

Component Interfaces
SL TENE EAN ELD ASE RHINOS TERN OREN

The standard way of achieving this is to use what is known as a QueryInterface()

method. We call this method with an identifier for the interface we wish to obtain,

and we either get back a pointer to the requested interface or NULL:

struct Component

{
template<class Type> Type* QueryForInterface();
Mowe

}5

1.16 A Generic Component Library 183

We could use our type identification system to specify the interface we are after, but
we shall arrange things so that we can use yet another class if need be. Our component
class will actually have two template parameters: the type identification system to use
and the interface identification system to use.

template<class TypeID, class InterfaceID >
struct Component

{

}s

[fas

The InterfaceID class parameter is very similar to the defined type identification
class; it should have the form:

struct InterfaceID

{
template<class Type> InterfaceID(const Type* type);

InterfaceID();

int operator==(const InterfaceID& interfaceID) const;

bool operator<(InterfaceID const& interfaceID) const;

}5

In fact, it is so similar that we can still use our type identification system in its place if
we wish. The reason to allow the possibility of an interface identification system that
can be different from the type identification system used is that doing so allows us to
add support for a feature called interface versioning.

Interface Versioning

Interface versioning in the library is supplied as an optional feature and was designed

to overcome the problem of minor interface changes occurring during code develop-

ment. In an ideal world, we would define an interface once and it would never

change. If we wished to extend or change the interface, we would keep the old inter-

face and add a new one to provide the new functionality.

This is all well and good if you are talking about official code releases meant for

public consumption, but typically in practice, the frequency that the interfaces will be

changed during internal development is quite high. It is simply impractical to create

new interfaces that often. The catastrophic effect of this is that units of code that are

compiled separately end up with definitions of interfaces that they believe are the

same but in fact are not. If these units of code try to communicate with each other

through these interfaces, the effect is often terminal.

A solution to this dilemma is to simply assign each interface a version number.

When an interface is queried for on a component, part of the interface identification

includes this version number. The version numbers must match for the query to be

successful. It is much simpler for a programmer to increment a simple version num-

ber if he changes the interface than the alternative. It should also be possible to set up

184
Section 1 General Programming

aa ea
n

an auto-incrementing version number scheme when the code for interfaces is checked

in or changed to further guard against such interface incompatibilities.

To add a version number to an interface, we simply derive it from the following

template class with the version number as its parameter:

template<unsigned Number>

struct Version

#ifdef DEBUG
enum { VersionNumber

#else

enum { VersionNumber = (int)Number };

#endif

-(int)Number };

}5

So an example versioned interface would be:

struct MyInterface : Version<2>

{
i].

}5

If the code is compiled in debug mode, we assign all interfaces negative version num-

bers. This is useful because we do not wish debug components to be used or mixed

with release components (and have their use flagged as errors) in certain cases. In the

case where we are allowed to freely mix debug and release code, only the absolute

value of the interface version will be taken for interface identification comparisons.

This behavior is optional and could be controlled by a compile time setting.

We can be even more flexible by allowing version numbers to be optionally spec-

ified. If they are not specified, version numbers default to zero or some other value, so

they are called relaxed versioning. The provided file InterfacelD.hpp includes three
interface identification classes that allow you to choose between strict versioning,

relaxed versioning, or no versioning. For example, to select strict versioning you
would declare your interface identification class as:

typedef InterfaceID WithStrictVersion <TypeID> MyInterfacelID;

Note that the class still requires an underlying type identification system with which
to function, the one provided in RT'TTTypeID.hpp being ample for most purposes.
The Interface1D class provides its versioning functionality with C++ trickery that is

evident in the code provided.

Defining Components and Their Interfaces
‘ensneer pe anonertaartcioeter aie area Se er A ENR RTE

All that background information and setup code still does not tell us how we can
implement a component and its interfaces. To best illustrate the implementation and

binding of components and interfaces, a direct example follows.

ES I HCL

1.16 A Generic Component Library 185

// Define an interface
struct Movable

{
virtual void GetPosition(float& x, float& y) = 0;

virtual void SetPosition(float x, float y) = 0;

}5

// The components implementation
struct Player : Component, Movable

{
float x, y;

Player ()

{
ExposeInterface<Movable>(this) ;

}

void GetPosition(float& x, float& y)

{
xX = this->x;

y = this->y;

}

void SetPosition(float x, float y)

{
this->x = x;

this->y = y;

}
}5

The key is the templated ExposeInterface() method (inherited from the component

class) that takes a pointer to the interface to expose. The base component class keeps

a map of interface identifications to actual interface pointers that are used in the look-

up when an interface is queried for.
One nice feature of this system is that interfaces do not have to be implemented

by inheritance; they can also use object composition that can be preferable in many

cases. For example, the previous component could have alternatively been imple-

mented as:

// Define an interface

struct Movable

virtual void GetPosition(float& x, float& y) = 0;

virtual void SetPosition(float x, float y) = 0;

}5

// Define an interface implementation

struct MovableHelper : Movable

float x, y;

186
Section 1 General Programming

een enti

void GetPosition(float& x, float& y)

{
x = this->x;

this->y; —
ii}

}

void SetPosition(float x, float y)

this->x = X;

this->y Y;

}5

// The components implementation

struct Player : Component

MovableHelper movableHelper;

Player ()

{
ExposeInterface<Movable>(&movableHelper) ;

}
}5

Actually, a factory object may even create the previously defined component; we sim-

ply expose it to the factory class singleton in one line:

Factory: :Singleton() .Support<Player>();

Then, to use the component we would typically write the following:

Component* component = Factory::Singleton().Create<Player>() ;

if (component)

{
Movable* movable = component->QueryForInterface<Movable>() ;

if (movable)

movable->SetPosition(3.2f, 4.0f);

component ->Release() ;

}

One thing to note is that unlike some component systems, such as Microsoft's COM
(Component Object Model), management of the component lifetime is not done

through the component’s interface. This separation allows greater flexibility in compo-
nent implementations because an interface is not tied to a component by inheritance.

1.16 A Generic Component Library 187

Configuring the Library _
Generally, users of the component library provided with this gem will use typedefs for
particular configurations due to the complexity of the syntax associated with the tem-
plate library classes. Even in the example code, some of the template parameters have
been omitted for reasons of clarity. In the sample code provided on the CD-ROM,
typedef configurations are given in the header file ExampleConfiguration.hpp.

eSATA hi.
A generic library that facilitates the structuring of code into reusable software compo-
nent has been presented. It can easily form the basis of an off-the-shelf plug-in frame-
work for many applications, and it has a syntax that is quite elegant compared to that
of many other designs of such systems.

Many thanks to Achim Stremplat for the idea of interface versioning and Alan
McDonald for various suggestions.

Reference :

[Gamma95] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley Professional, 1995.

ia : . : . re ae:

a Ae ; wore darts ty ape eee FS ae
Pe je: el

- sd er9beq? sas roe area 21 dive Latoarayecnadil 26 . . a, he. E

“as its Aso byraiooas caus Wiatenslagusica ac ica vei ane '
gad arr oysiqtirs sd to ne Se aay? wt al nas eat he ae.

©) MOB-CD sehr co babiverg thon olgemacadeoal ino gegen 8 aoe ae
7 . ay! oe: Kua mare § ali) = welt mi vin na el : r : ui

-_ i “n94 eye ¢ ’
: } one. a.
¥ ane ada a

1 (> -seggpace swewiiee sidsusrs onal shor to grbwsaenie ods entind selon

5) gra al-guily ierte-sdr fo nx to seed att; onal qliee ma al pecan

" mh ree agate 3 ® of aly Paks AA Bie Hoimiiqge Yanan

a ecahan., “ 7 crea

S, sul, base os Borst Wr) wermcueeseré + mritinAy OF al pial
sh

aaciveagin one senate
= / Lo

fece/Wovapls tothe i
“i ——

Fay of

Feynue Y
, el

a -etbhinllV nat bet: ‘ioral ta: oS anbH treat aod srt | |

a : lag a i lenoiestes'l ‘ole nodbha taal
ieee 7 i

¥ Kinin © eee —— . i yy <-
4g fae =a 2 oe? = ho ” s en ee = =e

aa : , p
7; ACtitisn 4 > we hay ove mel ie 4a uly lett S

iy Sy , ‘ Lee = on ore! Lisle > eu

a e sta _ LS ern
“a

an" ' we DS whee: :. Lépp0rtreageerees a ’

m7 ™ : > To o we

iy > Phin: dep? a ee. Seer ee Coble

>} : . ¢ : sng ‘ Pie) ae

. . ca * - "ak ats Sx we om”

4 ae aoe =

— L) a

>
* e =

ale’ GheGie © 4 aga eet om awk
: : -_ >

‘ ¥ oe" _ _

ie ee oo es | _ at by 7
aa) a" Up leage

1.17

Choose Your Path—

A Menu System

Wendy Jones

wendy2032@yahoo.com

he question of how to implement the menu system of a game is usually answered
haphazardly near the end of the project, causing the implementation to be gener-

ally sloppy. Developers are typically more excited about the more challenging and
seemingly more pressing issues, but menus hold a special importance to the overall
perception and quality of the game. The game menus are the first thing the player sees

upon sitting down to play the game, and if the players’ first experience is with an
interface that is hard to navigate, their perception of the game—along with its fun

factor—will instantly diminish.
This gem focuses on the design and construction of a flexible and scalable generic

menu system.

Why Do You Need a Menu System?
nosieotnneepeeonentntom oS RASA Lae nee sett ettte tennant

Most menus are rated 4 in a hurry ea very little concern for good design or code
reuse. When the next project comes around, the menus are once again started from
scratch and tossed in. Menus can be a pain to work on, but racers want car selections
and shooters need weapon choices, so menus are definitely necessary. When it comes to
menu systems, you might as well start off with a good design to make your life easier.

Designing a menu system that will scale with an evolving project as well as be
reused is not too difficult. Menus need only to perform a few basic tasks:

* Display a series of options
¢ Allow the user to easily select options using a given input method
* Move on to the next menu in the sequence based on the selection made

Taking these tasks into account, it is easy to see how they can translate into pieces of

a menu system. Let’s take a moment to break these tasks out into their abstract com-

ponents and outline what each one’s purpose is and what it does.

189

190
Section 1 General Programming

Let’s start with the menu component. The menu component can be thought of as

a single screen of options. For instance, the first menu in a game will normally present

the user with a few high-level options such as Play, Setup, or Number of Players. This

series of options would constitute a single menu component in your game. Each suc-

cessive menu in your game would then be another menu component.

The next component is user controls. You may be familiar with common controls

typically found in any windowing environment, i.e., buttons, listboxes, sliders, etc.

These controls give the user a simple and consistent way of interacting with the system.

Each menu component aggregates a series of controls to collect input from a user.

The final component is a menu manager. The menu manager ts the primary con-

troller of the menuing system. It creates the menus when necessary, collects information

from the menus, and keeps track of the user’s path through the system. The simplicity

and elegance of the menu manager allows the designer of the user interface to create

complex menu paths while allowing the programmer a minimal, one-time investment

in development time. The general menu manager tracks the user's path through menu

navigation, loading and presenting only the necessary menu components.

The Menu System Objects
SELLA TALIS REO a RADE SERIE SNELL ONS NOOO ENCE TTR Mt IESE EE ERE YE ET BEST

Now that we have outlined the three major components and their associated tasks, we

can start laying out the implementation details, such as what classes we need.

The menuing system consists of three main classes, each based on a menu task:

the menuScreen class, menuControl class, and the menuManager class.

The menuScreen Class

The menuScreen class is the basis for all the menus that will be displayed. This abstract

class includes a set of pure virtual methods providing a common interface to which all

menus must adhere. By enforcing that all menus adhere to this interface, the menu

system does not need to know the details of how each menu works. This allows new

menus to be created quickly and plugged into the menu system easily. To take advan-
tage of this feature, all menus in the system must inherit from the menuScreen class.

The menuScreen class contains three virtual methods that must be implemented

by each concrete menu component class: init(), update(), and render().

The init() function provides a single place to load the images for a menu as well
as set up any controls needed. The init() function is called before the menu is dis-

played.
The update() function handles user input and updates the states of any onscreen

items. Update() is called once per frame, right before the menu is drawn. Finally, the

render() function performs the actual drawing of the menu to the screen. Within the

render() function, you can modify the order in which menu items are drawn.
The menuScreen class also includes the loadBackground() method as well as a

pointer to a background image. Since all menus will normally contain a background

1.17 Choose Your Path—A Menu System 191
scocnrnnneanenecenaeetie

graphic, this function was placed in the menuScreen class for easy access. The back-
ground image stored in the parent class can be drawn during the call to the render
function. Listing 1.17.1 shows the description of the menuScreen class.

Listing 1.17.1 Description of the menuScreen Class

class menuScreen

{
public

// menuReturn code

// The update method will return one of these codes to inform

// the menuManager of its status.

// NONE - no action, continue showing current menu

// NEXT - current menu should end and go to the next menu

// PREV - current menu ends, display the previous menu
// POPUP - the menu is requesting a popup menu be displayed

// END - This is the last menu and the menus are done

static enum menuReturn { NONE=0, NEXT, PREV, POPUP, END };

menuScreen(void) ;

virtual ~menuScreen(void) ;

// load all the resources needed for this menu

virtual bool init(void) = 0;

// called each frame to update the menu
virtual int update(BYTE keys[]) = 0;

// called each frame to draw the current menu

virtual void render(void) = 0;

// returns a string that represents the name

// of the next menu
std::string& getNextMenu(void) ;

protected:

// loads the background image

bool loadBackground(std::string imageName) ;

// all menus have a background image associated with them

resourceImage *bkgrdImg;

// the name of the next menu

std::string nextMenu;

};

Adding User Controls

User controls needed to gather input from the user are created with the menuControl

class. MenuControl is implemented as an abstract class; all controls used in concrete

menu classes will inherit their base functionality from this class.

Section 1 General Programming
eel tatataet cae ne tn

The menuControl class contains information that is common to most types of

user controls, such as control location, control type, and the curren t state. MenuCon-

trol also offers a render() function, again allowing the system to treat all controls

similarly. Additionally,

ity, giving you complete control over w

Listing 1.17.2 contains the description of the menuControl class.

Listing 1.17.2 Description of the menuControl Class

class menuControl

the menuControl class contains methods for altering the visibil-

hether a certain menu object will be displayed.

{
public:

static enum controlType {

NONE = -1,

BUTTON = 0,

STATIC,

SLIDER,

LIST

}5

static enum controlState { ACTIVE=0, DISABLED };

static enum controlView { VISIBLE=0, HIDDEN };

menuControl(void) ;

virtual ~menuControl(void) ;

virtual void render(void) = 0;

void setControlxXY(int X, int Y) { locX = X; locY = Y; }

int getType(void) { return type; }

void activateControl(void) { state = controlState::ACTIVE; }

void disableControl(void) { state = controlState::DISABLED; }

bool getControlState(void) { return state; }

void showControl(void) { view = controlState::VISIBLE; }

void hideControl(void) { view = controlState::HIDDEN; }

bool getControlView(void) { return view; }

protected:
// properties of a control

int type; // the type of control

int locx; // the X location

tae OC Ys // the Y location

bool state; // whether the control is active

bool view; // whether the control is visible

}s

1.17 Choose Your Path—A Menu System 193
evnnnerst MAAN AH NL etna

Controlling It All: The menuManager Class

The menuManager class is the real workhorse of the menuing system, as its description
hinted earlier. Implemented as a singleton, the menuManager ensures that only one
instance is ever created, providing a single control center for creating and rendering
menus as well as tracking the user’s path through the system. The menuManager con-
sists of two main pieces, the manager itself and the menu factory.

The Manager

Depending on the game, the amount of menus can become unwieldy very quickly;
the menu manager keeps this in check. The manager accomplishes this by keeping a
list of all the menus the user has already visited. The last menu in this list is seen as the
current menu. When updating or rendering a menu, the manager simply accesses the
last object in the list and passes on the command.

The list of menus, known as the menu trail, is how the menu manager tracks

which menus the user has visited. At times, there may be multiple pathways that lead
to a single menu, making it difficult to return the user to the correct previous screen.

The menu trail solves this problem. If the user wants to backtrack through the menus,

the manager need only traverse the menu trail in reverse.

We have only discussed how the menu manager uses the menus in the trail so far;

in the next section, we will cover how the menus are created.

Listing 1.17.3 shows the menuManager class.

Listing 1.17.3 The menuManager Class

class menuManager

{
public:

// singleton to ensure only one instance of the

// menu system
static menuManager& getInstance()

{
if (pInstance == NULL) pInstance = new menuManager() ;

return *pInstance;

}5

// initialize the menu system

bool init(void) ;

// close and release the menu system

void shutdown(void) ;

// passes down update messages to the menus

int update(BYTE keys[]);

// draws the menus

void render(void) ;

veustnssennmnaunneenesncscnonsvensrsstsuniinunnnnnmtenemansannse
nnnaihinoretatoainiaunsinnii

Section 1 General Programming

private:

static menuManager *pInstance;

menuManager (void) ;

~menuManager (void) ;

menuScreen *popupMenu ;

// flag to keep track of whether a popup window

// is active

bool popupActive;

// the menu trail keeps track of the menus that the

// user has gone through. This gives the system the

// ability to track back the path the user took through

// the system

std: :vector<menuScreen*> menuTrail;

// menu factory implementation

#define REGISTERMENU(a) registerMenu(#a, &CreateObject<a>) ;

std::map<std::string, menuCreateFunc> menuList;

// function that registers a menu with the factory

void registerMenu(std::string menuName,

menuCreateFunc menuFunc) ;

// creates a new menu

menuScreen* createMenu(std::string menuName) ;

// removes a menu from the system

void destroyMenu(menuScreen* menu) ;

}5

The Menu Factory

The job of the menu factory is the on-demand creation of menus. When a new menu

is needed, the factory receives a request to create it. The factory then creates the menu

and sends a menu pointer back to the caller. The manager then uses this pointer to

interact with the new menu.

The factory also provides the benefit of limiting the amount of menus created to

just the ones the user visits. In most cases, only a portion of the total menus are ever

shown during a single session. For instance, if someone wants to just jump in and

play, they most likely will not visit the options or credits screen beforehand. The

menu factory keeps these menus from being instantiated, saving time and memory.
The menu factory is implemented using a set of function pointers and a Standard

Template Library (STL) map. The map stores a pointer to the constructor for each menu
and allows the menu manager access to these when required by simply using the menu
name (string) as the look-up key. When a new menu is about to be created, the manager

sends to the factory the name of the menu it wants. The factory looks this name up in the
map and uses this to create the new menu. A pointer to the new (requested) menu is then
sent back to the manager for use. Figure 1.17.1 shows this process.

1.17 Choose Your Path—A Menu System 195
ee rotten inhibin cree oM HIN HYAHUMHO SOTHO AMSA HANNAH AUER NNO CNL ae tHe HA nnn ennite

Menu Manager Menu created
i and returned

Request

anew menu |
lial

Menu Factory

FIGURE 1.17.1 How a menu factory

creates a menu.

In most menuing systems, the creation of menus is handled by using a switch

statement. The constructors for each menu are hidden behind a label that the switch

uses to figure out which menu needs to be created. For systems with only a few

menus, this is all that is needed, but when the number of menus starts growing, this

method quickly becomes problematic to maintain. By using a factory, the amount of

code necessary to add a new menu to the system can be kept to a minimum.
Listing 1.17.4 shows the factory implementation.

Listing 1.17.4 The Factory Implementation

typedef menuScreen *(*menuCreateFunc) () ;

typedef std::map<std::string, menuCreateFunc>::iterator Iterator;

template<typename ClassType>

menuScreen *CreateObject()

{

}
return new ClassType;

void menuManager: :registerMenu(std::string menuName,

menuCreateFunc menuFunc)

{
menuList[menuName] = menuFunc;

}

menuScreen* menuManager::createMenu(std::string menuName)

{
// find the menu being requested in the list

// of registered menus

Iterator iter = menuList.find(menuName) ;

// if the menu is not in the list, return null

if (iter == menuList.end())

return NULL;

196
Section 1 General Programming

// second is the value, first would be the key

// this should generate the constructor

return ((*iter).second) ();

}

void menuManager: :destroyMenu(menuScreen* menu)

{
if (menu)

delete menu;

menu = NULL;

}
}

Extendibility
i

iaemmmmeeenaiammmaell SLO NESTON A ENNIO LORE LEE ELE TOTO

The classes that make up the system discussed for this gem were designed to be cross-

platform compatible with minimal changes. Since the requirements for each game are

different, the menuing system presented here will provide you with a good base to

expand on. Here is a short list of a few suggestions to extend the feature set of the system.

Scripting support: Each menu can be described in an external file that can be

loaded at runtime. The placement of controls and even their behavior can be

scripted, giving you a completely dynamic way to create menus.

Additional user controls: New controls can be added easily and plugged into the

system allowing for menus to behave in any manner necessary.

Multiple input devices: Currently, the system supports only keyboard input, but

this can be easily changed to include a gamepad or mouse device.

Conclusion
SSIES ESC ERC ELC TTT EE EEC ELSE EE IE ELLE NEEL a Re ASIST ETA NE ENE

You can find a sample implementation of this menu system-on the accompanying

€<) CD-ROM. The sample project provided uses Microsoft Windows GDI calls for its

ONTHECD graphics to keep things simple, though the system may easily be adapted for

OpenGL, DirectX, or any other rendering API. As you can see, building a powerful

menu system does not have to be overly complicated, and by keeping to and enforc-

ing a simple yet extendible design, the system can grow to fit the needs of your game

without too much—if any—additional overhead.

Reference
25 SE RASA PN ANNE DEALT SO LN PTE ETH NN ITT

[Gamma95] Gamma, Erich, et al. Design Patterns. Addison Wesley, 1995.

ina

SECTION

MATHEMATICS

SOM hsen ’

SE tT id
RE TED

eorrs alec so S, he aa

ery » na

ate Se on eae wert ae aa
2 ee vey = o_o

.

a --o

‘vee ae 9 aera a

ae - 7 . sh Ke wid tu this een wert de

ae aoe 1) An eee ga? se dhe requricrementy fs

. a OL oo hak Seek well proeiie your
itce..\s Digi ars ote ‘ntpigag yo toond che fe atime

“ vpyel is ahi yw ce aatnliad iy sa excel fi

oo pe nnarene parse
eh eeeaic war te create mei — ‘

Miwa «ss i ~~ ae muds ame tee aching s nasil? tguel im

ia 4 2 hile atey acy * nagisany!
sian, @ 24 Z = % pena parts only teal

be pees eon x oi ee. =
bone, 7‘ hae ’

ah sient - pate - ee ee ’

il a er Sa$ » 6 iy chs paca

ras The) : Ae ae icon Minkeke Wi

ons ght > : © at the ‘vrata ae
‘yar . ate \'you Oar see Bo

4 wwnphicared, ators
+ geek Sm aertene me

erent, epee —

a .

ver

Introduction

Eric Lengyel, Naughty Dog Inc.

lengyel@terathon.com

Me modern video games take place within some kind of simulated virtual envi-
ronment. They usually attempt to make that environment appear and behave like

the real world, at least to the degree that the computer hardware allows at an acceptable
frame rate. Displaying a realistic representation of a 3D environment and simulating

dynamic systems that follow the laws of physics requires that programmers understand
the mathematics used to model what we experience in the world around us.

Mathematics as a whole is an unending series of generalizations—many are known,
and many more await discovery. Two seemingly different mathematical notions applied
in separate manners at one level can often be unified at some higher level of thinking
and regarded as two cases of a single generalized concept. Our first gem, by Chris
Lomont, discusses the branch of mathematics known as geometric algebra and presents
the multivector generalization of commonly used operations such as rotations and cross
products.

During the course of game development, it is often desirable for some set of data
points to be smoothly interpolated. Examples of such data are a set of camera positions,

animation keyframes, and even the vertices of a low-resolution mesh. A commonly used

tool for performing smooth interpolation is splines, usually the cubic variety. This sec-
tion continues with two gems that pertain to splines. The first, by Tony Barrera, Anders

Hast, and Ewert Bengtsson, discusses a technique for minimizing the curvature of
Hermite curves while maintaining smooth interpolation. The second is a gem by James

Van Verth that discusses applications of splines to animation control.
Although game engines aim to simulate realistic environments as best they can, the

result is inescapably an approximation at many different levels. In the realm of compu-

tation, precision and speed are opposing forces that need to be balanced in the way that

best suits the application. Our next two gems offer approximation techniques whose

goal is achieving the best possible speed while sacrificing as little precision as possible.

Andy Thomason first describes approximations for quaternion interpolation, and

Christopher Tremblay next discusses the minimax approximation technique.

We wrap up the mathematics section with a projection matrix modification trick

written by Eric Lengyel. The mathematics behind the perspective projection matrix

and the properties of homogeneous clip space are sometimes unintuitive, but a deeper

understanding of their nature can lead to many useful adjustments. The technique

described in the final gem distorts the view frustum so that the near plane is replaced

by an arbitrary clipping plane and shows how to minimize the effect on depth buffer

precision.

199

pb

Pree bande letelomls to Laid seem Wii soebyy ohag soeriey) wtbiw' robe

self asst ia eos. <vanecrsatoer rool soliceryn argon bioweet wotT ae
vm rites Tinie, peeetalop eatenttnena eats a mangle oft on teak ae .bhaw

ree aa hii 2aeantuhe, CE tu | Tee be aaa, & gaitvolqai@ ot * a

Faber egress rcgensy jetty emp | courtly “ses awl ali arathel seeds eemeaae ye

. wos bint Eye: Sat Ree; aie ye te yethie heer 7 bcvens

Fa Rea a cae plea gallon men ohilors a

sity Grleh taaddin autre sseciib ebgailcraa owl rwesub itewa sors Ymca “ee

qoetrat ted anighhaeine re Rov au a nile nat lawl seto er

se) at arp sent sh? sige Lavhosa alnel: 0 le age over ex bobarger Gee 7

arecy bie erdogif ower, 3 avaquladingrendia te donurd wiht eoeaartih 30
seek tig ew eT Fe fined yudbe jo 198: dorian. to naatesilenanag 20f20y a> _

are toxberina sol sibs i dete “uw ADopingotwrats mtigy tas serosal gear =
sages Fisnettniy toF4y ie Wt Wage colegnnse 4 ieaeeeer eae oe

tay Aikaninatyy 4 desrcnciguleen: jek ss We ayy set taka eee aay gfits

a abl weatee aithre oat Hen sonige « *eamotsui dhoomz gaimctrg 16) loor i - ii
mobHA oral! veo) va Jr on nie wep ruler iwy ters 20mg owt dhiw euALNAS GOW

© queens th avhninot aot amp nts & ameil dorergel rowed hoe | veh _
<n PE Sy ¢ ge on eT ieee iy Feortin yeienetaet slvby aun wine ’

UME A NEONA ENT Hep to sontendlggy pono ertessizy tices
Srniy ailidoe! s1poriazhani on thoy otelumtis of ie enagN® ommEg art
quite Wt wie ee OE) vireig we niwcrianay ea \Meccenb atte -

eit Gove on Petgltdsds > luda pil ecae) soRonge 78 by Ins sini ain a

~einlies RNIN) MueeTety i? dhs cites ove pon Ww roteilgge oy

48) ua | iiat } peaty ay) fiestas shite born fe aieliv ang read attr gritvvleton of .

a miploreye ied tal enmiiedige rye extemal sav, nesenodl

ep(ereLs es Do aa Ee A xl? eomeuanals ree neler

rie neh nO E mongae) & Avie Rorooe saivnenadtssen 3M qu ge
oe bce nol air bil 65 MAE TRE of} ny .
Av yet, i j Milt» GQae ie ‘ity “uty 2wODEsgy ’

vu ore gees oll) eats’ tert iy ten a unas ne ran a

Healt Ji ly ware et ae reaiiye Ht sheply od: ane 29

cHhiyet re fey! ra: ot Goin oe sud eo bie

2.1

Introduction

Using Geometric Algebra

for Computer Graphics

Chris Lomont

Clomont@math.purdue.edu

Gor Algebra (GA) is a compact way of representing many geometric ideas
useful for computer graphics, which allows one to perform calculations in a more

unified manner, simplifying equation derivation and algorithm design.

GA provides a single language that unifies many areas of computer geometry and has
applications to physics, computer vision, differential geometry, and other areas. The
power of GA for computer graphics lies in the concise way it handles seemingly unre-
lated structures such as linear algebra, rotations in any dimension (including quater-

nions), intersections of subspaces, Pliickerspace, dot and cross products, and even

calculus and surface representations. For example, GA has a single formula giving the
intersection of any subspace with another: line with line, line with plane, plane with

plane, etc. Most derivations of intersection formulas need special cases and do not scale

easily to higher dimensions. These are just a few areas where GA simplifies notation and

thinking about geometric problems. Before continuing, the reader may wish to read the

examples at the end of this gem to gain a better understanding of the benefits of GA.

Recall how long it took to master linear algebra, then quaternions (admit it—

they are still weird!), thus don’t assume GA will make sense and be useful after a sin-

gle 10-minute reading. Although GA also seems weird at first pass, like quaternions,

it becomes a powerful way to do geometric calculation, and the effort spent mastering

it will be repaid with interest by simplifying future geometric calculations. Next, we'll

capture the “flavor” of GA with an example capturing the essential ideas.

The Motivating Example

To illustrate GA, we consider a simple example starting with the two-dimensional

vector space represented by the usual x-y plane. Treating the points (x), y,) and (2, 2)

shown in Figure 2.1.1 oly as points does not give much computational power, but

if we think of them as vectors (each point defines an arrow from the origin to the

201

202
Section 2 Mathematics

one STITT rc

point), we can add vectors in the usual way. This gives more structure to the plane

and some added tools for solving problems. Next, we can create a way to “multiply”

the points (or vectors) in a manner that behaves nicely with our addition. Of the

many possible ways to do this, we will choose to think of each point as a complex

number, that is, we treat (x,, y)) as x; + iy; Using iz = —1, we can multiply via

(x, + iyy)(X2 + iV2) = (1X2 — Wo) + 112 FX y,), which is another point (or vector).

This is a very powerful way to think of points and vectors, because this “multiplica-

tion” of vectors is invertible, that is, we can divide by a point (i.e., a vector, or a com-

plex number), allowing a richer framework in which to perform computations. This

choice of multiplication is intuitive (after some study) since addition and multiplica-

tion of points acts very much like the usual operations on real numbers.

Note that the map (x;, y;) > x + iy sends the usual basis {e; = (1,0), e, = (0,1)}

to the complex numbers 1 and i. So we can think of a basis for the space we have

constructed as 1 (the scalar part) and i (the complex part). Thus, another basis for the

x-y plane is {1,7}.

A illustrative and powerful idea using this representation is that we can rotate a

point (or entire drawing) by multiplication. Multiplying the point (x), ¥,) by the

point exp (i) = cos@ + i sinO = (cos@,sin6) will rotate (x), ;) by an angle @. Multi-

plication of vectors now has geometric meaning: multiplying by a general point

becomes a rotation followed by a stretching. Figure 2.1.1 yields Equation 2.1.1,

(x,.,)(x,.»,)=(ne")(ne*)
i(6,+8,) =rr,e ; (2.1.1)

which represents the point (x1, y;) rotated by the angle from the x-axis to (x, v2) and

then stretched by the length r, of the vector to (x, y). We have made algebra out of

2-space, which means we can multiply any two elements of the 2-space and get

another 2-space element.

Now we extend these ideas to any dimension.

} (X11)

(X2,Y2) ry

i) 62 0;

|

FIGURE 2.1.1 he complex plane defines “mul-
tiplication” of vectors in real 2D space.

2.1 Using Geometric Algebra for Computer Graphics 203
osteo eortnnomasiesneoneteanenabilses:etenethnsssasonstonilainntananstteiniininatetan usneeneeeveeenonnnedeenmrmnasceitmansscietenicteannetnutesnstneecettaensaneytaenumannntninnenenceescenmalsneieethia

Geometric Algebra PRR SLSR SENSE MEISE IE IRN i J

We fix some notation to clarify the presentation: Greek letters like a B, ¥, and 6 will
denote real numbers. Standard vectors will be bold lowercase letters like a, b, c. Later,

we will use capital bold letters like A, B, M, R for multivectors, which are general ele-

ments of the geometric algebra, in the same manner vectors are general elements of a

vector space.

The Algebra

Given an n-dimensional vector space V", we construct a new vector space CV (C for

Clifford from mathematics), the geometric algebra of V, as follows. We usually think

of Vasa collection of vectors, which are just one-dimensional oriented magnitudes.

The geometric algebra will extend this to handle tracking all two-dimensional oriented

areas, all three-dimensional oriented volumes, etc. We start by defining what the objects

of CV are, beginning with the outer product.

The Outer Product

For any two vectors a and b in V, we create a bivector, written a A b. This represents

the plane spanned by a and b, the orientation of the plane, and also encodes the mag-

nitude of the area of the parallelogram with sides defined by a and b. See Figure

2.1.2(c) for a rough idea. A bivector is also called a 2-blade or a 2-vector. The opera-

tor A is called the outer product (also known as the wedge product or exterior product)

and satisfies the properties outlined in Equation 2.1.2 for any scalars @, B, ¥, and vec-

tors a, b, ¢:

Ana=ard=h)a vector and scalar commute

avb=-baa anticommutative on vectors

(Aa) Ab= A(a A b) associative with scalars

Aa A b) = (a A b) A commutative with scalars

(a+ Bb)vAc=aarct bac bilinearity

an (ab + Be) =agarb+ Ppaac (linear in both factors) Q.4..2)

We extend the outer product in the same manner to products of three or more

vectors. One important rule we find is that for any vector a, anticommutativity gives

aj az=-—aaa. Since the only quantity that equals its negative is zero, we must have

a a a= 0, areal number.

The geometric intuition for the outer product is illustrated in Figure 2.1.2. A vec-

tor a isa directed one-dimensional object. It has magnitude and direction. We extend

this to scalars by treating as a zero-dimensional point with magnitude ov. A bivector

204
Section 2 Mathematics

seeessusesteetcciuanpaestenonomecnntntnuign estes etennenetniiAiAsbNGRntennan or Anant

(a) (b) (c) (d)

FIGURE 2.1.2 One way to think of the outer product 1s using

distance, area, and volume elements.

is an oriented area (two-dimensional), which has magnitude and orientation. A-trivec-

tor is an oriented 3-space, etc. This is why the outer product is anticommutative;

reversing the order of the defining vectors will negate the orientation. Only the sub-

space, orientation, and magnitude are unique, not the exact parallelogram shape; for

example, the following bivectors are equal, but the defining edges are different:

(2a) \ (3b) =(6a) A b = (3a) (2b) = 6(arb).

Now fix an orthonormal basis {€,,€5,...,¢, }of V to simplify the presentation.

Define the geometric algebra CV associated with V to be the vector space having
basis consisting of all the outer powers of the basis elements of V, along with the scalar
1. For example, if V has dimension 3, we have a basis of CV in Equation 2.1.3. We
don’ get any other outer products since once a basis vector appears twice, the outer

product result is 0, and we can order the subscripts into increasing order using the fact
that swapping adjacent e; negates the answer: e; A e; = —€; A @;.

Vemtse,,€, ,€7,€, A €,,€, AG, se AG, ee ne. (2.1.3)
Se ee ey ee LE ge

scalars vectors bivectors , trivector ,

2-blades 3-blade

So CV is a vector space made of all linear combinations of the basis elements in Equa-
tion 2.1.3. If the dimension of Vis 2, then the dimension of CV is 2” (checking this

would be a good exercise). The general vector of CV is called a multivector to distin-

guish it from the ordinary vectors in V. For example, a multivector in CV could be A

= 3 + 2e, + 4e; a e@) A e;. Any two multivectors of CV can be multiplied using the

outer product with the rules given earlier. We define a few more terms. A k-blade! is
the outer product of & vectors. This does not have to be a product of only the e,; for

4 ats : . ; In other areas of math this is called a &-form, and CV is the exterior algebra. We use the terminology common to GA
since it has a more geometric feel to it.

2.1 Using Geometric Algebra for Computer Graphics 205
sticrvinneetciec ant etannatOEHSiecensON set ieumnnnannitieitumanl , ve ct e tomarasectesitnampeseecaitnnssssee senses iaessosesssensnsnnuonnssastanaoianassssnsvususstoieummassteeetaanans seine

example, (e, + 2e,)A (3e, - e,) is a 2-blade. A k-vector is a sum of k-blades. Thus a
k-blade is a k-vector but not vice versa. The number & is called the step (or grade) of

a blade. A multivector is a general element of the geometric algebra and is a sum of

k-blades, possibly for differing & values. Thus, a bivector aA Db is a 2-blade and has
step 2. Note a vector is also a multivector.

As an example, if a=@,e,+@,e, and b= Be, Ge we can calculate, as in

Equation 2.1.4,

avb=(a,e,+a,e,) (Be, + e,)

=a, Be, Ae,+a Be, re, +a,Be, re, FOO, A es

=0+a,B,e,re,—a,Be, re, +0

=(a,B,-a,B,)e, re,. (2.1.4)

Note the scalar value is the area of the parallelogram defined by vectors a and b.

For an n-dimensional space, we denote the outer product of all orthonormal basis

elements as I, =e, Ae, A-:-Ae,. This is called the pseudoscalar and is often denoted

simply as I.

The Geometric Product

The geometric product is the most important product, so we do not use any symbol

for it; we merely place multivectors adjacent. We start by defining the geometric

product of two vectors a and b from V using the dot product (also called inner prod-

uct) and outer product, as shown in Equation 2.1.5:

ab=a-b+anb. (231.5)

This has the nice property that it is invertible. That is, if a is nonzero, we can divide

ab by a to recover b, and likewise divide by b to recover a. Note that the inverse of a

isa = a/(a . a) and satisfies aa | = a a=1. Now we have a product we can cancel,

making this product similar to the product in the complex number example.

Next in Equation 2.1.6, we extend the geometric product to arbitrary elements of

CV with the following rules for scalars a, B, vectors a, b, and multivectors A, B, C:

aB and ab have the usual meaning

aA=Aa scalars commute

ab=a-b+aab vector and vector

A(BC)=(AB)C associative

A(B+C)=AB+AC distributes left

(A+B)C = AC+BC distributes right (2.1.6)

206 ; Section 2 Mathematics

To show how to compute with these, we simplify and give formulas for an orthonor-

mal basis—there are general formulas, but they are more involved. Any vector can be

written using an orthonormal basis fe, ey suse, } . We can then expand any multivec-

tor into the basis of CV. From the vector definition, we easily compute Equation 2.1.7.

e,Ae, =e e,, df BEE;
ee, = (O37 }

Ib ibe.

We write e,, , =e,e,--e, as shorthand for the geometric product of & basis
v2" iy 2 ‘k

elements. Then we claim without proof that e,, , =€,€, ---€, =e, A€, Av AE,
Ue he ty Wa 1 7:

for any h distinct basis vectors. So now, to compute the geometric product of any two

multivectors, we proceed as follows:

1. Expand multivectors into outer products of basis elements.

2. Write (as earlier) the outer products as geometric products.

3. Multiply out using associativity of the geometric product, keeping track of

order.
4. In each product, swap subscripts in adjacent pairs to get the desired order.

Each swap causes a sign change if the subscripts differ, and when two iden-

tical subscripts are adjacent, both terms are replaced with 1.

5. Finally, write the simplified products in terms of the outer product (this
step requires unique subscripts, so we must swap and replace with 1 when-

ever possible in the previous step).

This computation should be mastered—it is essential. For example, consider Equa-

tion 2.1.8:

ie +e, Ae,)(e, +e, Ae,)= (e, t+e,,)(e, ee

=O, FEs, O35) F Oo313

= —€,,—€),, FED, TC 33

Are, Cyne, : 1+ €,CCichk Ge; -]

Set NE Pe Pe rAe, RE re Nee. a. ti)

With these rules, we could construct a multiplication table for the eight basis ele-
ments of CV, which is a good exercise. And we can now by hand calculate outer and
geometric products of any two elements in the entire algebra CV. Note the general
geometric product has many terms: the geometric product of an m-blade and a k-blade
potentially has terms of all grades from |\m - k| tom+k.

2.1 Using Geometric Algebra for Computer Graphics 207
nonce nana iiidanenentttetomanano SESE tte eee nianiioiiitntennlttienennoneeneitnsitontt

The Contraction Product

The final product that we use is the (left) contraction product, which generalizes the
inner product (also called dot product) of two vectors to an inner product on general
multivectors in a manner that works well for computer graphics. This is sometimes

called the /eft projection; there is a right projection, the dual of the left, but we do not
cover it here. This product is used to project spaces onto other spaces, much like the
inner product is used to project one vector onto another. The contraction product is
denoted by the symbol 4 and expands across multivector grades in the same manner
as the outer product. It is read as “a contract b” or “a left contract b.”

We need some notation: for a k-blade A=a, Aa, A---Aa,, we denote the
pr

reverse of its terms by ne a,Aa,_,A7Aa, = (- . For a multivector A, we

denote the grade r part as (A), or sometimes A_ if no confusion results.
r

The general definition of the contraction product of multivectors is

AB "7 (A,B, aa y

What does this mean? To compute the contraction product of an 7-blade A with an

s-blade B, we compute the geometric product, then take the s — r grade component,

which may be zero. The contraction product is 0 when r >, since there are no neg-

ative grade elements. To compute the contraction product of multivectors, we expand

into blades and compute each combination separately. Geometrically, the contraction

product A 4 B of two blades returns a blade contained in B that is perpendicular to

A. Figure 2.1.3 shows an example of a vector a contracted into a plane B.

FIGURE 2.1.3 The contraction product projects spaces

onto perpendicular components in other spaces.

We also require that the contraction product reduce to the dot product for vectors

and be linear in both components. These requirements give the relations outlined in

Equation 2.1.9.

208
Section 2 Mathematics

a ssn gomensonnai MMMM AMMMAMAMMMMIMMMMMMAOM AAA AAA NT
sceteeyanunasnssnseiansennnaaiinesgt Sc REMNANTS sonaanonerete vacensssoae

ai Bp=ap scalars

ai Bp=0 vector and scalar

a ib=ab scalar and vector

aib=a-b usual dot product on vectors

a.(brC)=(aisb)AC-ba(a sC) expansion formula

(A,B):C=A.(B_C) distribution formulas

A A(B.C)=(A.B).C eae)

Note the contraction product is not associative: (A.B).C#A 3(B.iC). So paren-

theses are needed to avoid ambiguity. As a simplifying notation to avoid having to

parenthesize every product combination, the precedence conventions shown in Equa-

tion 2.1.10 are used:

(AAB)C=AABC #Aa(BC)

(A.B)C=A.BC #A.(BC)

A.(BAC)=AsBAC #(AB)AC. (2.1.10)

This says that when there are ambiguous mixtures of types of products, outer prod-

ucts are performed first, then contraction products, and then geometric products.

We show an example computation before we continue. Being able to compute

the following example covers most of what we have explained so far. Given multivec-

tors A=1+2e,—3e, Ae, and B=2e,+7e,, compute the outer, geometric, and

contraction products, as shown in Equation 2.1.11:

AAB=2e,+7e, Ae, Ae, +4:0+14-0—-6e, Ae, Ae, — 21-0

= 2e, + 13e, Ae, Ae,

AB = 2e, + 7e,,, + 4e,, +14e 6e,,, —2le Apa 0 tae) 13123

+ 6¢,,, —2le

= 2e, Hedi +4 -— l4e,, oo 6e4 — Zle;

= Ze; + fhe +4-—14e
1223 11233

=4-19e, —I4e Ae, +13e, WE, Ae,

AJ B=24¢,+7 Je,,,+4e, ie, +146, se.,—6.0—2le ie),

z 24@))i-4 4 ena ae 4(e, goat lAlece ane 21ejegy) oh

=2e, + /e,,,¢4—14e,, — 2 ie

=4—19e —l4e AG +76 AGan Ge. (2.1501)

2.1 Using Geometric Algebra for Computer Graphics 209
remnant ennnntonmennasasnse *CoTSesh AAR AACS TEEN AMOS EH HHH AA UAHA A/C eae annette tect orotate,

Inverses

The contraction product allows easy computation of inverses for many multivectors.
A multivector is called a versor if it can be written as the outer product of vectors.”

Thus, a &-blade is a versor, and a versor can be written as a &-blade. Some &-vectors are

not obviously versors, and some &-vectors are not versors. For example, e,,—€,, +€,,

is not a k-blade (but is a 2-vector) for any & as written, but it is a versor since it can be

rewritten as €,,—€,, +€,, = (e, +e,)a(e, +e,). A good exercise is to show that in

three or fewer dimensions, every &-vector is actually a versor, although this is not true

in higher dimensions. For a nonzero versor A a can be written as the outer prod-

uct of r vectors, the (left and right) inverse is At = = A/ (A if A), which reduces to the

special case inverse of a vector a being a7! = a/ 6 4 a) =a/a-a, as we saw earlier. For

fun, prove that 1+e, has no (left or right) inverse in any dimension. Then find the

inverse of 1+e, Ae,. Finally, show that 1+e,+e,Ae, and 1—e,—e, Ae, are

inverses, but neither are versors. You must be careful with inverses since there are dis-

tinct left and right inverses in some cases (or so the literature says). Keeping to

inverses of versors is safe since the formula produces an inverse that works as both a

left and a right inverse.

Old School Revisited
RESERPINE TET EERE 2 REE ATI LLIN IE I ELIS LD NEL IER SELES EE LES

Now that we have sie geometric algebra and know how to manipulate a few
products, we show how some ideas from linear algebra are already present in this

formulation.

The Complex Numbers

Complex numbers exist in any plane! Given a plane, pick two orthogonal unit vectors

u and vu, and label the bivector i=uAv. Then any vector a=au-+ Pv in this

plane can be rotated just like the example in the Introduction, using this bivector as

the imaginary unit. Multiplying by the multivector R, =cos@+isin@ gives Equa-

tion: 2le12,

R,a= (acosO + Bsin@)u + (Bcos@ - asin®)v =aR ,. (Ql eh2)

Note that the rotation direction depends on left and right multiplication, and to

make this look more like the general rotation we write a> R,,,aR_,,,. The 6/2

angles make this transform behave like quaternion rotations, which we examine next.

2Note a versor can then always be written as an outer product of orthonormal basis elements spanning the same sub-

space times a scalar “volume.” This can be useful in calculations.

210
spnsscariuntasnnunennettionetnatveestn naan MAAS NISRA TNR MAHAN HH OREN RRNA

Section 2 Mathematics

The Quaternions

If we define the following bivectors in 3-space

i=e, Ae,

then the quaternion relations apply: i =j =k’ =-1, j=k (and cyclic combina-

tions), where the multiplication is the geometric product. The bivectors have been

chosen to make i denote rotation about the x axis, etc., and so that there is a nice

relationship between the usual notion of a quaternion and the geometric algebra

notion. The set of multivectors of the form a+ Bit yj+6k is precisely the quater-

nions, but when viewed as elements of the geometric algebra, extend rotations from

acting only on vectors (as we usually use the quaternions) to rotations on any multi-

vector! And the usual quaternion inverse, for nonzero quaternions, is exactly the geo-

metric inverse!

The quaternion method to rotate a plane requires moving all the defining para-

meters one at a time with the quaternion. The geometric algebra method rotates the

plane (bivector) directly by the quaternion, which is conceptually more elegant.

Now instead of thinking of a quaternion as a unit vector on a four-dimensional

sphere with a continuous group law, we can picture one as a planar piece (which

defines an axis of rotation), and an angle of rotation, as in Figure 2.1.4 (the axis-angle

view). So it seems complex numbers give rotations in two dimensions, quaternions

give rotations in three dimensions, and geometric algebra unifies them both. Rota-

tions in any dimension use the same rules, of which quaternions and complex num-

bers were special cases (note they both used bivectors to rotate)!

q

UAV

\~)

FIGURE 2.1.4 A quaternion can be viewed as an

oriented area element with a magnitude.

Reflections and Rotations

The reflection of a multivector K through a &-blade A (both through the origin) is com-
puted with the transform X— —(-1 "AXA. This is illustrated in Figure 2.1.5,

2.1 Using Geometric Algebra for Computer Graphics 211
nano uacennienentacnteneetunisiorenetteassitietiiinanaetttteuomnttbannotonetiiatit

which shows how to reflect a vector X through a vector a, by the transform x > axa.

This is a useful formula, since it works in any dimension, and is the basis for rotation for-

mulas that are dimension-independent.

FIGURE 2.1.5 Reflection has a simple GA notation.

By reflecting twice over vectors a and a with an angle 6/2 between them, we can

rotate the objects encoded in multivectors by an angle 8. The object R = ab is called

a rotor, and performs rotation on any multivector X in any dimension, by the transfor-

mation X— RXR". They are more efficient to compose than matrices and are

numerically more stable. And they rotate multivectors, not just vectors (see the exam-

ples that follow). In 3D, expanding a rotor in terms of basis elements shows it is just

a quaternion, as we would expect.
There are several equivalent ways to construct a rotor. It is useful to take a and b

to be unit vectors, since then R™ = ba is easy to compute. In 3D, a way to'construct

a rotor that rotates by @ around an axis ¢ is to take R =cos(6/ 2)-sin(6/ 2)Ic.

With these different and concise formulas to construct rotations, GA provides a sim-

pler way to work out computations. And in any dimension, composition of rotors is

computed with the geometric product. It’s even possible to do calculus on rotors to

give velocities, accelerations, interpolations, minimizing paths, camera orientation,

etc., but this will require more gems. As in all mathematics, this goes much deeper

than there is space to present completely. Another advantage is that the rotor also

keeps track of the direction of rotation, unlike a scalar-valued angle or rotation

matrix, allowing subdivision and interpolation of rotations. In three dimensions,

rotor interpolation is the usual SLERP, as shown in Equation 2.1.13

ee sin((1-2)@)R, +sin(20)R, rts)
sin@

212 m ‘ Section 2 Mathematics

This simplifies for the midpoint between two rotations:

sin(6/2)
R(1/2)=———(R, + R,).

sin@

Linear Algebra Connection

Given a linear transformation f:V"—V" (a matrix multiplication, for example), f

acts naturally on k-blades as f (a) =. We add the rule on scalars f (a) =q and

extend linearly to get a transform f{:CV — CV defined for any multivector in the

geometric algebra. This extension plays nicely with our notions of geometry. For

example, a linear transform moves lines to lines, planes to planes, etc. To see a linear

transform move a line to another line, we apply f to both sides of the general line

equation (x- a) Au=0, resulting in Equation 2.1.14

f ((x-a)au)= f(0)

f(x-a)a f(u)
(F(x)- f(a))a (4)

(x’-a’)Au

0

0

0. (2.1.14)

The Dictionary
es SEL ASO ALR TEES SRS ER RR SLES RE GTO IO ON TELE LEE LIBERA ELERELLLLDL DEL LAD OLLL EAE BEVEL LLLELIRERLEELLLLLAELLLLLE LEELA,

Before we show how GA can simplify the derivation of equations, we first list some

common geometric relations and how these relations translate into GA. There is not

space in this gem to derive and explain each one, so we merely list facts and simplify-

ing computational rules that can be applied.

1. The geometric product is the most fundamental product; the others can be

written in terms of it®. For example, consider Equation 2.1.15

aAb=+(ab—ba)

a:b =+(ab + ba)

axb=(anb)i1, =-L(aab)=-(anb)l,

asb=(ab).. 2.115)

2. The usual 3D cross product is a x b = (a A b) Al, =-L(anb)=—(anb)L..

This is easy to verify by choosing an orthonormal basis for the span of a Ab,
extending it to a 3D basis, and evaluating each expression.

: : : , : , There is an axiomatic way to define the geometric product first, and derive the others from it, so we are not using
circular definitions. This presentation way is easier to learn.

2.1 Using Geometric Algebra for Computer Graphics

Li.

12.

213
posses anesnnnssiuaionnetetttet eutneneonepnanenentcneaan nineteen aethnotentetinenetotecenneoiteteteottiuteansctanatoneifeomane teontattiettete

. Vectors are perpendicular if and only if the dot product is 0. This extends to
the contraction product applied to &-blades!

. Linear (in)dependence: the outer product of vectors is 0 if and only if the

vectors are linearly dependent. Thus two vectors are parallel if and only if
their outer product is 0. This allows simple line and plane equations.

. The equation of a line through a point a and with direction wu is
(x _ a) Au=0. This works in any dimension, so it is more concise than the
dimension-dependent forms.

. Similarly, a plane through a point a and parallel to the bivector uv is

(x- a) Auav=0. Again, this is dimension-independent.
. The orthogonal projection of a blade A onto a blade B is given by P, (A) s

(A B)B-. This is nice since it is the same expression for any two spaces:
points onto lines, lines onto planes, planes onto planes, etc., in any dimen-

sion.

. Extending the projection, the expression A—P,(A) must represent the
perpendicular component of A with respect to B.

. The pseudoscalar I commutes with all elements in odd-dimensional spaces.
. Given a vector N, a plane perpendicular to it in 3-space is —nl, and given a
plane defined by uv, the normal vector is -(u A v)I. This is shown in

Figure 2.1.6. Recall this plane has an orientation, so we include the minus

signs to make this agree with the “dual.”

n

UAV

FIGURE 2.1.6 2 3D, perpendicular vectors are
“dual” to plane elements.

Duality: the dual of a multivector A is defined by A‘ =ALLI. This is useful

for exchanging “spanning” relations and “perpendicularity” relations. This

generalizes the previous fact. In 3D, this exchanges bivectors with normal

direction vectors, so it can be used to quickly find the normal to a plane.

This is shown in 3D for a normal and plane in Figure 2.1.6.

The norm of a multivector generalizes the length of a vector and is written

JAJ=VA 4 A . It returns the area of a bivector, the length of a vector, etc.

13. Given two versors A and B, each defines a subspace of V; the intersection of

these subspaces is called their meet and is denoted by M = AQB. It can be

computed via AA B= A’ i B= (A i) 1B. The dual concept is the jozn,

which is the smallest subspace of V containing the two subspaces, written as

J=AUB. For example, the meet of two nonparallel planes in 3D is the

line of their intersection, as shown in Figure 2.1.7. The meet of two versors

can be thought of as the greatest common divisor of the defining vectors,

and the join as the least common multiple. Knowing one allows easy com-

putation of the other via the relations shown in Equation 2.1.16.

J=AA(M".B) |

M=(BiJ')sA (2.1.16)

ANB —
re

FIGURE 2.1.7. Think of the “meet” as the intersec-

tion of subspaces.

Examples

In this section, we present several example computations that show GA in action. The
point of this gem is to show that GA simplifies hand derivations and reduces code com=
plexity. So when working through these examples, the reader should consider the coding

complexity involved for each of two geometry engines: one with basic linear algebra
routines and one supporting the geometric product. In each case, these derivations are
short by hand and would only involve a few lines of code in the GA engine. However,
the coding work for the linear algebra methods would involve quite a bit of code for
most of the examples. Quod erat demonstrandum and touché, to mix languages!

1. Given vectors x and a, suppose we want to find the component x, of x that
is perpendicular to the vector a, as illustrated in Figure 2.1.8. The perpendic-
ular condition is x, ;a=0, and magnitude conditions require another

2.1 Using Geometric Algebra for Computer Graphics 215
eee tenntitonmnnnntninieneonetlan inorstemcnetoeneettt

condition: the magnitude of the area spanned by a and x is the same as that
by aand x, (this just says the area of the parallelogram is base times height).
Thus, x, Aa=xAa. Adding these two equations gives the geometric
product x, Aa+x, sa=xAa+0=x,a, and this we can divide by x to
get X, = (x A a) a '. To see how this fits into standard linear algebra, we pick
a basis such that a= ae, and X= Be, + 6e,, plug in and expand, getting

xX, = ((Be, + de,) A ae,)(e, /ax) = 0€, as we would expect.

FIGURE 2.1.8 GA has a simple notation for decompos-
ing objects into parallel and perpendicular components.

Now for the kicker. What if we want the vector component of x that is per-
pendicular to a plane given by a bivector A? We do the same math and ob-
taint x, = (x A A)A™. Elegant indeed! (Or we just project x to the normal
—AI, of the plane, which is equivalent by duality).

2. Next, we reflect a point through a plane. In Figure 2.1.9, B is the side view
of a plane, and a is a vector that we want to reflect through the plane. We
do this with the reflection through a vector idea, getting a nice formula. Let
n be the normal to the plane. From earlier, we know the reflection of a

through n is just nan”, and from Figure 2.1.8, the reflection of the point

through the plane is —nan"'. To avoid making errors by believing nice pic-

tures, note this formula still works with the “other” normal to the plane.

Computing a concrete example is instructive. So given the point and plane,

it is one line of code to project like this, and the equation works in any

dimension as usual.

3. We demonstrate the meet of two blades by computing the intersection of

two nonparallel planes through the origin, as shown in Figure 2.1.7. We

take planes that we can easily visualize, and get the answer we expect, as

shown in Equation 2.1.17.

4Actually, you need to know that for any vector x and bivector A, xA =x)A+x A Aandx , A=0 if and only if

X LA, both of which are easy to prove. The vector case inspires this.

216 Section 2 Mathematics

-1
2 n nan

ye

We

/

ye -nan-!

FIGURE 2.1.9 Negating reflections of vectors gives

reflection through a plane.

(e, ae, |n(e, Ae)=

=-e, 2 t7)

4, We prove a theorem of Euler stating that the product of two rotations is
another rotation by obtaining a concrete formula for the resulting rotation.

We view a quaternion in the normal way as a scalar B, plus an axis of
rotation q= fe +f,e,+B,e,, written B,+q. Assume that any single
rotation can be represented as a quaternion.? Recalling the pseudoscalar
[=e,Ae,Ae, and using the previous definitions, we rewrite this
quaternion representation with the GA version using the transformation
B, +q— B, —1,q. Now multiply two quaternions, and one can easily read
from Equation 2.1.18 both the scalar and the vector defining the resulting
quaternion. This proves the theorem of Euler and also obtains a concrete
answer for the resulting scalar and vector. Computing this relation is messy
and ad hoc using usual quaternions but is straightforward using geometric
algebra.

*We assume any rotation can be represented by a quaternion. I have a proof, but it won’t fit in this margin.

2.1 Using Geometric Algebra for Computer Graphics 217
otensvnttetennaonies yanncieentpnerneiner cantata Ulta aD Atesteest om

(p, _ P)(4, zi q) td (p, -Lp)(q, —I,q)

= PI — Pol,4- 4% 1,p + Lplq

= Py, —P4- P,1,4-9,1,P

=P) -P:4-PAq-p,l,q-49,Lp

= Py -P-4-1,(p,4+ q,P +4 P)
> (2,4) -P:4)+(P,4+4,P +4 P) (2.1.18)

5. A concrete rotation example is in order: the composition of rotation by

7/2 around e, preceded by a rotation of 7/2 around e, results ina 27/3

rotation around the vector (e, +e Fre,) / NB . The calculation uses the

quaternion representation from the previous example. Recall that we divide

angles by 2. The proof is provided in Equation 2.1.19.

eosate sin sey: ane me (lee y= (Ieee) 4 1 4 4 2 4 V2 32 9. 13

\
=Z(I+e,, +e,, fe

1 _3,(¢, +6, +¢,)
WHI 3

% (€-6+¢,) | 4
— cos— + ——— sin— (2.1.19

6. An example of the rotation of an entire multivector at once is given by

rotating the plane defined by the bivector B=e, Ae, by 60 degrees around

the vector a=e, + e,. There is no need to decompose the plane into com-

onent vectors first. We start with the normalized rotor R= cos(z/ 6)-

la/ J2)sin(z/ 6). Then the rotated plane is as shown in Equation 2.1.20

Tm e€.-e 1 m7 ©.-e.,.. £
RBR™ =| cos——-—2—# sin— |(e, ve,)| cos—+ + —4 sin—

[cost J2 aC al ge a
1 V6

a Ne +(e; +x): CIE

6And this avoids the problem of applying a rotation to a plane and having to recompute the normal. Recall that the

normal of a rotated plane is not the rotated normal of the plane! Usually a plane is defined by a point and normal, and

rotating the plane requires getting two linearly independent vectors orthogonal to the normal, rotating these two vec-

tors, computing a new normal, and obtaining a new point.

218 Section 2 Mathematics

tia
7. Given vectors a, b, and ¢ in the plane, we can find a vector x so that “a is to

b as € is to x,” as illustrated in Figure 2.1.10. If these were real numbers, we

would solve x:¢=b:a. GA behaves the same since we can now divide
5 2 ; = =

vectors by multiplying the ratios by ¢ to obtain the answer x = bac.

b

FIGURE 2.1.10 Ratios make sense

for vector magnitude and direction.

8. Again in the plane, we find the distance from a line with equation

(x - a) Au= 0 to the origin, shown in Figure 2.1.11. We find the vector d

perpendicular to the line and passing through the origin, whose length is
the distance. The same reasoning using the normal condition and area con-

dition used in Example 2.1.1 gives d= (an u) u |, which gives the distance

d|. Does this work for the distance from a plane to the origin?
. To show an example of the projection formula, we project the vector

a=a.e,+a,e, +a,e, onto the plane B=e, Ae,, where we have picked
the plane so we can easily verify the answer. Since the plane is in a nice ori-

entation, we know the answer should be @,e, + @,e,. Computation verifies
this, as shown in Equation 2.1.21.

F,(a) (a.B)B"

(ae, + Oe, + O,€, le, Voss (G,.)

(ae, +e,)(e,,)

ae, +a,e, (2.821)

10. We find a general formula for the intersection of two lines in the plane
(which is just Cramer’s Rule, except we derive it completely intuitively and
geometrically). See Figure 2.1.12; this is hard to see the first time around.

2.1 Using Geometric Algebra for Computer Graphics 219
Se rrancrccnnenccneetemnnt en nT RCD

FIGURE 2.1.11 Computing distance from a

point to a line is simple.

We can write two given lines (x-a)Au=0 and (x—b)Av —(in

expanded form as XAU=aAU and xAV=DaAv. Set U=aau and
V =Dbav,. It is clear the intersection is a linear combination of u and v. To

find the coefficients, we look at the picture. The area corresponding to V
divided by the area corresponding to uA V gives the multiple of u needed,

and dividing U by uv gives the v multiple. However, since the orienta-

tion of the bivectors must be taken into account, we need to reverse UAV

in the v direction. So the final answer must be

¥,
ut

UAV VAU
x= V.

Someone fluent with geometric algebra would sketch the picture and be
able to write out this equation instantly. With a GA engine, there is no need
for a complicated line intersection routine—only the geometric product!

Vv
~*~ i

V \

qe

FIGURE 2.1.12 Here is a graphical way to

visualize Cramer’s Rule.

220 Section 2 Mathematics
poncoconnnrsssisssssansconnnnaenen seer

11. A do at home exercise: given a plane triangle with corners (x,.9,),

i=1,2,3, show the area is the absolute value of the determinant in Equa-

tion 2.1.22. Using only analytic geometry, this proof is a lot of work, but is

very short using GA (about a half page). Hint: this is easy from using the

outer product. Generalize to higher dimensions:

ey > A

1
Area = 5 Ae, LE (2.1.22)

wm y, 1

12. As a final example, consider the problem of finding a rotation that will

move one orientation to another, as shown in Figure 2.1.13.

a1 b

a3 3

a2 b,

SaaS Se

b2
FIGURE 2.1.13 Computing the transform to

move one orientation to another is simple.

For example, we might want to align an Al-controlled spaceship with a
player-controlled one. If we have stored orientations as quaternions, then
this is just an invert and multiply, but if we only have three linearly inde-
pendent vectors defining each orientation, finding this rotation is a lot of
work. We don’t require the vectors to be orthogonal, only linearly indepen-
dent. Assume there is a rotation (rotor) R such that b, =RaR" for
i=1,2,3. We want to solve these three equations for R. Lett R= a—B for
some bivector B (thus R’'=@+B). The adventurous reader should
attempt to solve this using linear algebra before proceeding. We define a
reciprocal frame (which acts somewhat like an orthonormal frame) written
with superscripts: set

2.1 Using Geometric Algebra for Computer Graphics
oso nna RRO MULAMA SNe et cse eNOS t setts

221
secession sercnaansecueeunanonncnnntracieseeete

a,aal
al =—_2—_3 _

a, Aa, Aa,I

which is a vector (easily checked), and similarly define a’ and a’. Note

a’-a, =0'. Then we compute (carefully) the expression in Equation 2.1.23,

which allows us to isolate R. Next, we solve for R in terms of the a’ and b..

To get rid of the unknown @, we normalize: set T=1+ > ba’, and then

R= T/ IT| gives the desired rotor. The derivation is a bit of work to check,

but the final answer is short, easy to compute, and takes very little code in a

GA engine. Programming this given only linear algebra routines is a lot of

work! As a final note on this example, one may need to check the sign of the

final rotation, as shown in Equation 2.1.23, and watch out for 180 degree

rotations.

y'b a’ = y’Ra Ra’

=)’Ra,(a@+B)a'

= R(3a+B)

=-R(a-B-4a)

=-R(R™—4a:)

=-1+4aR (2.1.23)

Conclusion and Future Directions
RAMONE HERE ETT TAPIA NE NEI at

We have presented the definition of geometric algebra and given rules for hand com-
putations, which can be turned into libraries for doing the work on a computer. Basic

geometric ideas like projections and rotations were presented, and many examples

were given to show how to use GA for geometric calculations. It should be clear GA

unifies many ideas into a single framework and provides a much more concise and

powerful framework than linear algebra. So what's next?

Well, there is a lot more math, computer science, and physics already developed

and written in the language of GA. There is a complete description of classical

mechanics in GA [Hestenes86]; GA seems very well suited for physics. You can per-

form calculus on GA objects, allowing minima and maxima problems to be solved

and allowing differential equations to be written to describe motions, interactions,

and physical properties. We saw that GA incorporates quaternions, complex num-

bers, projections, intersections, linear (in)dependence, and more. It also encompasses

Pliickerspace and unites all of the following geometries into a single framework:

Euclidean, affine, projective, spherical, inverse, hyperbolic, and conformal. This uni-

fication makes moving from one system to another much easier and provides quicker

croseient es

access to the methods in each area.

222 Section 2 Mathematics
sseteenomennuniisienasuniunannsntineanisnanna eiseinnnies

Oddly enough, it seems GA best represents 3D geometry and interaction by

embedding 3-space into a 5-space, called the “double homogeneous model” [Dorst-

Fontijne04]. The power of this is that it gives spheres in a nice manner, and intersec-

tions work in a better manner among different geometric primitives. However, this

topic is beyond the scope of this gem.

The most important question that the reader might still have is “Can GA replace

linear algebra in my future game engines?” Realistically, GA is not ready due to per-

formance reasons in fast action games. It took linear algebra/computer graphics 30+

years of refinement to get to the performance level it is now, and GA is just being

adapted to computer graphics. Current hardware does linear algebra, making linear

algebra needed for 3D engines. However the code simplicity and shortened time to

create algorithms makes GA suitable for tools, testing, prototyping, and many other

areas. In the same manner, subdivision surfaces were once too inefficient for real-time

games but are now becoming widespread; it is possible that in the next several years

GA will become an indispensable tool for developing professional games.’ Some

experimental results can be found in [Gaigen04], where they have implemented ray

tracers in C/C++ using both linear algebra and geometric algebra and have done vari-

ous comparisons.

The papers [Dorst-Fontijne04], [Dorst-Mann02a], [Dorst-Mann02b], and

[Suter03] should provide good starting points for more information. [Hestenes98]

discusses calculus with GA material and contains references. Finally, Web searches for
the authors Doran, Dorst, and Hestenes yield a lot more references. As a final note, it

is important to be aware of differing notation used by some authors.

References

[Dorst-Fontijne04] Dorst, Leo and Daniel Fontijne. “An Algebraic Foundation for
Object-Oriented Euclidean Geometry.” In preparation; available online at
http://www.science.uva.nl/ga/publications/itm. pdf.

[Dorst-Mann02a] Dorst, Leo and Stephen Mann. “Geometric Algebra: a computa-
tional framework for geometrical applications (part 1: algebra).” JEEE Computer
Graphics and Applications, May/June 2002. Available online at Attp://www.
science.uva.nl/-leo/clifford/dorst-mann- pdf.

[Dorst-Mann02b] Dorst, Leo and Stephen Mann. “Geometric Algebra: a computa-
tional framework for geometrical applications (part 2: applications).” JEEE Com-

puter Graphics and Applications, July/August 2002. Available online at http://www.
science.uva.nl/~leo/clifford/dorst-mann-II. pdf.

’Researchers think GA will only be slightly (less than 2-fold) more costly to use than linear algebra, and since many
games spend only a fraction of their time doing math, the development time and code savings should make GA an
attractive alternative in many situations.

2.1 Using Geometric Algebra for Computer Graphics 223
nate ont eee o/c NRe NE tecestaoenieetetemnnneinnaioitnsiannnnannaeniensst

[Gaigen04] A C++ Library to generate geometric algebras. Available online at Aitp://
www.science.uva.nl/ga/eaigen/index.html. 2004.

[Hestenes86] Hestenes, David. New Foundations for Classical Mechanics. Dordrecht:

Kluwer Academic Publishing, 1986.
[Hestenes98] Hestenes, David. New Foundations for Mathematical Physics. Two chap-

ters are available online at Attp://modelingnts.la.asu.edu/html/NEMP html.
[Suter03] Suter, Jaap. “Geometric Algebra Primer.” Available online at Aztp://www.

jaapsuter.com/.

er
cw

7) 1

sts < a . +z art a. ra

‘ : agg + ee gp ey i Bayh a

Gea 1b aa i

teats a | ay v
£

xpos au Sear aa

en ay
GEA i Be

- ae 7
_ e

’ 7 y
_ _ 7; 7

=)
i a ’ aan 4

2 i. 7 ou be
i yy

- ee : vy

\ a aS IeP
6 a *

ee, a } BS a ‘

"

eee ; 4 o!

a " ™

. - = >:

ad 2

*

j &
%

-

=

.
“ ‘

a va -

- be

wT)

ES
‘=
, -

‘ ry

4

a

~

aol

“

or 4 vs
as. :

i 4
- .

wa
rs

7
a

ot) 4 eee

sarees

_ oaks =e

inead agers : “te aie Rpwtk &

=r mud ows decloping “pt Tree i

ee ane tg Tog chr s, amaking th

aoe a oat

2

es Prong "an

srex:

ome are

anak GA ag
~ on a

a — Pe 7 =

yee y a

5 Svgnad, uecerere ement
pie ead ye tenerrin ath AO DAVE €

2 -

, “- ~ 1 7 Los ‘

* (Thegst- Marat al. ithe A). _

= pony far man ~ ial

> pantaled sclera Fale: , » Sie
me cold s jut viger cotenpegy. “cot

1.e (a0 n used ty = cyl
a

a. i we ee

a il SrepAnAIOWY,
Dios pelf, hae

‘ Maan. Caine b

ope Neiyees (gar i, ihn *

SKS avaliMe -«

im pal i 7 -

ehoe Malti “Nats

edearionéd pir 4

“npn LOO, Ateall
“ Ay. pal}.

2.2

Minimal Acceleration

Hermite Curves

Tony Barrera, Barrera Kristiansen AB

tony.barrera@spray.se

Anders Hast, Creative Media Lab,
University of Gavle

aht@hig.se

Ewert Bengtsson, Centre for Image
Analysis, Uppsala University

ewert@cb.uu.se

his gem shows how a curve with minimal acceleration can be obtained using Her-

mite splines [Hearn04]. Acceleration is higher in the bends and therefore this

type of curve is a minimal bending curve. This type of curve can be useful for subdi-
vision surfaces when it is required that the surface has this property, which assures that
the surface is as smooth as possible. A similar approach for Bézier curves and subdivi-

sion can be found in [Overveld97]. It could also be very useful for camera movements

[Vlachos01] since it allows both the position and the direction of the camera to be set

for the curve. Moreover, we show how several such curves can be connected to achieve

C! continuity between the curve segments.

A cubic Hermite curve is defined by four constraints: the two endpoints p, and
Pp, and the tangents at those points t, and t,. The idea behind this gem is to make

the curve have a minimum of acceleration along the curve, and this can be achieved by

modifying the lengths of the tangents. Thus, the endpoints and the direction of the

tangents are the same, but the magnitude of the tangents is set to an optimal value in

order to obtain a minimal bending curve. We use the variable (for this purpose. Figure

2.2.1 shows three different Hermite curves with different tangent lengths. The dotted

curve with the longest tangents has a noticéable bend in the middle, while the dotted

curve with the shortest tangents is rather flat in the middle but has a noticeable bend

close to each endpoint. The solid curve however, has the minimal bending property.

Note that the lengths of the tangents have been scaled down to 25% in all the figures

so that the curve is not so small compared to the tangents.

225

226 _ Section 2 Mathematics
setehsasnnntenenetaetanvnonnentnestotoniunnenentauiesnte tats toasesneniisentitietsenlinnnnrniehSoRSAAsnehHnrAiantieenesRtierereeeteaniioienteet

FIGURE 2.1.1 Three different curves with different tan-
gent lengths. The solid curve possesses the minimal bending
property.

Let a general cubic Hermite spline curve be defined as

h(u)=aw +bu? +eu+d.

Then the Hermite spline coefficients [Hearn04] are given by

a 2972 guido kipep;

Die Antttaia 2 aeaon bill Pe

c OO eke UL Gat

|! eqns Qed ono mM pent:

(2:2.1)

(2.2.2)

Note that variables @, and Ql, are used later to set the optimal tangent lengths. Let

the vector between p, and p, be denoted p,,. Thus p,, =p,—p,, and the coeffi-

cients for Equation 2.2.1 are given by Equation 2.2.3

a=at + at, - 2P,,

b=3p,, —2a,t, —@,t,

C= at,

d=p,. (2.2.5)

A common method for minimizing the difference between two functions is the least
square approximation [Burden89]. We use the same basic idea; however, we minimize

2.2 Minimal Acceleration Hermite Curves 227
seventeen totennnonnenneieenantscntetetneenelt reteset tsar eneees nner StAA AGG

the acceleration instead. The minimal acceleration for each 0, is found by solving the
pair of equations

h’(u)| du=0. (2.2.4)
aie

al
This equation can be interpreted as follows. The acceleration of the curve h, (i.e., the
second derivative of h) is squared in order to avoid negative values, and these are

summed over the whole interval by the integral. This sum depends on the different @.
To find the optimal coefficients, the result is differentiated and set to zero. Hence, the
minimum of the function is obtained, giving the minimal acceleration over the whole

interval. The necessary computations are shown in Equations 2.2.5, 2.2.6, and 2.2.7

h”(u) = 6au + 2b (2.2.5)

h”(u)|) =36a°u? +24a-bu+ 4b? (2.2.6)
1

Jha du = 1207 +12a-b+4b% O27)
0

(We use the notation a” =a-a in order to make the equations easier to read.) Substi-

tuting the values given by Equation 2.2.3 into Equation 2.2.7 and differentiating

with respect to each @, gives Equation 2.2.8

Dine ia! h’(u)| du =80,0? +4a,,t, t,-12p,,t,

0 2 2 poe h’(u)| du = 80,03 + 4a,t, -t, -12p,,t,. (2.2.8)
a, 0

Setting both equations to zero yields the following system of equations

2 ae 8a,17+40.,t, t, =12p,,-t
1

4a,t, -t, +80,t; =12p,,-t (2.2.9) 2°

Or in matrix form after dividing by 4, we have

oP oat ta O.| . | 3p,, oh;
3 7 (2.2.10)

t,t, 2 {Lo 3p. °t,

228 Section 2 Mathematics

Multiplying both sides by the inverse of the first matrix gives

1
a Di peat 3p,,-t

oe oe a) (2.2.11)
at, t,-t, or 3p,7t

The solution is Equation 2.2.12

= 3(2t; (p,, Tat -t,)(P,; ‘t,))

Se oma aie
9 32H (Pat) “(ht (Ppt) (2.2.12)

; Att, ate ‘t, c

These two values of (were used for the solid curve shown in Figure 2.2.1. Now we

have the mathematical tools we need to put several curves together. Actually, we can
define several curve segments where the endpoint of the first curve is the same as the

starting point of the second curve. Moreover, if the tangent at the endpoint of the first

curve is pointing in the same direction as the tangent of the first point of the second

curve, then we have G' continuity [Foley97]. However, if we want the tangents to

have the same length in order to achieve C’ continuity, we have to proceed in a
slightly different way, as shown in the next section.

Connected Minimal Bending Curves with

C1 Continuity

If Seal Hermite curves are eee wid Ch continuity, as shown in Figure 2.2.2,

we have to solve a system of equations generated by the integral in Equation 2.2.13.

0 | 2
ay } + h’(w)|

220

We do not show all the calculations for this since they are basically the same as previ-
ously explained, but the system of equations has k +1 unknowns if there are & curves

hy(u) h”_(u)| du=0 (2.2.13)

and thus k+1 values of @ Once again, let the vector between p, and p,,, be
denoted p, ,,,. In this case we obtain

pie 2 a h/(u)| du =8a,r? +40.,t, t, -12p,,-t, (2.2.14)
1 0

aly 2
aa, 4 h?(u)| du =4ort,-t, +1600; +4e,t,-t,-12p,,-t,-12p,,-t, (2.2.15)

Jam 2
5 J Ihe (u)

3.0

=4a,t, t, +16a,f, + 4a,t,-t,-12p,,-t,-12p,,-t, (2.2.16)

2.2 Minimal Acceleration Hermite Curves 229

and so forth, and finally we get Equation 2.2.17

1

Fly, (wf d= Art, t, +B I2Ppaa tage (2217) k+1-k+1

00.41 0

Once again we divide Equations 2.2.14 through 2.2.17 by four and rewrite them into
matrix form, just as we did for Equation 2.2.8 to get the matrix in Equation 2.2.10.
Note that if the tangents are normalized prior to solving the system, then t? = 1. This
makes the matrix even simpler, but this is not done here. The system that needs to be

solved looks like Equation 2.2.18

pL adres Oe AV "++ 56 0 Ia, 2 Oy

CRNA» Tpeste had OT eG Or ten 3t, -(P,, +P,,)

Oren trod nate 1 tout fg 0 | a, |=|3t,-(@,,+pP,,) |. (2.2.18)

0 0 0 Overs Spry, ti Oe Stas Peis

Note that nonzero entries appear only on the main diagonal and immediately above
and below it. A system involving a matrix of this form is called a tridiagonal system
and can be solved very efficiently using a specialized algorithm [Lengyel04].

Ps

Po P.

P1

FIGURE 2.2.2 Zhree connected minimal bend-

ing Hermite curves.

230 Section 2 Mathematics

A Closed Loop of Minimal Bending Curves
tr i Smt es MMe RE eA EE SZ TANASE NOT EL NL TE

If a closed loop is desired as shown in Figure 2.2.3, the system can be simplified, since

the first point and tangent are the same as the last point and tangent. We do not show

all the computations here, but the resulting system is

4t; t, “t, 0 0 eG 0 t,;t, a, at, (DS. st Deol

tt, At; tts 0 ss 0 0 a, ot. (ft Da)

Ott) 40 te te re 0 0 ja, |=} 3t,-(P,+P,,) |. 2.2.19)

t,t, 0 0 Doo ty att ha a eh ot Ri ee

This system gives unknowns instead of the k +1 unknowns associated with a non-
closed loop connected curve. The presence of the nonzero entries in the lower-left and
upper-right corners make this system a cyclic tridiagonal system. It can be solved by
applying the Sherman-Morrison formula to the ordinary tridiagonal system as dis-
cussed in [Press92].

Ps

Pi

FIGURE 2.2.3 A closed loop of three connected

minimal bending curves.

Conclusion
eat RENO HE ARC EO Se seenteeennsiaremnnesnsnietite SRS IRS HER eR a

We have shown how a cubic Hermite spline can be modified in such a way that a
minimal acceleration curve, or as it is sometimes called a minimal bending curve, is
obtained. This is done by computing the least square acceleration over the curve and

2.2 Minimal Acceleration Hermite Curves 231

setting the tangent lengths to optimal values. We have also shown the necessary com-

putations for connecting several such curves with C’ continuity. This yields a simple
system of equations to be solved. Moreover, it is possible to construct a closed loop of
such connected curves. Possible uses for a minimal bending curve is for surface sub-

division, and the connected version can be used for camera movements.

References
msl

[Burden89] R. L. Burden and J. D. Faires. Numerical Analysis, 439, 440. Boston:

PWS-KENT Publishing Company, 1989.

[Foley97] Foley, J. D., et al. Computer Graphics: Principles and Practice, 2nd ed, 480.
Addison Wesley, 1997.

[Hearn04] D. Hearn and M.P Baker. Computer Graphics with OpenGL, 426-429.

Pearson Education Inc., 2004.

[Lengyel04] E. Lengyel. Mathematics for 3D Game Programming and Computer

Graphics, 2nd ed., 433-436. Charles River Media, 2004.

[Overveld97] C. W. A. M. van Overveld and B.Wyvill. “An algorithm for polygon
subdivision based on vertex normals,” Computer Graphics International, 3-12.

June 23-27, 1997.

[Press92] W. H. Press, et al. Numerical Recipes in C, 74-75. Cambridge University

Press, 1992.

[Vlachos01] A. Vlachos and J. Isidoro. “Smooth C? Quaternion-based Flythrough

Paths.” In Game Programming Gems 2 (Mark DeLoura, ed.), 220-227. Charles

River Media, 2001.

; ~ . = ae

a a ae encima aieee Gea a tle

re neae ae _ am we 4

pit peri

ae ah ilincatiey lounenains
‘tigre Teepe.” sm Yt ore |
he Gaui hugh eFai- iG th aha Jani ie Borie
Se a RR ttt a RK

: ehirodiy eet Ha ’ oer

. ad = es

ig. R,. S S v {

‘ . —~ eas

a : z t,” * *) on 7 <atee

dwraet bbe Reb pth Saran \ 2stiat a A huutl iT id. :
NE 4+ oon J

| BCE <cingerwtd goer ASA 2HE
DBF tn. bas Saints 2a lagravel sca sleep y oes a a T ney f

c
icy ene wis aii bana ae

PER Bone Varn oh a ee ee a th
$004 ,. alg

bots y Sete Sea, a ETA, ‘ rf
- yp’ tte” 4 ort Ly’ ere . ro

nfegiten ohaathag.i. Wh alas ae fiLiDo ebie NASA .
o41* Senne “eRe PY ate Ta et OE

Beard a Prensa) Ree) Seta a
(imevin ogbiidmig T-Sh 5). ni coast lors: Ik oo ar HME IS

= Ley, 7

dguoaded®l inesti-ncineealS >. shoo Cy ‘natal Those eorlanly dy [1p i

shad .TSS-OL5 Abe vitlntoCl sel) $e qittemecergy . ‘

e
/

7 gy

pes,

ou 9 UA ied ing af vowe

re ee

~~

‘ote git ea
“% a5 ee

vations teal apes

2.3

Spline-Based Time

Control for Animation

James M. Van Verth, Red Storm
Entertainment

jimvv@redstorm.com

oO" of the standard problems of animation is moving an object along a path rep-
resented by a parametric curve Q(u). For most curves, using the standard para-

meterization does not give constant speed, so it is necessary to reparameterize the
curve by distance d to get Q(d). Then time is mapped to distance using another
function, d (t). For constant speed, the function d(t) is a line, but we can use any

function that maps time to distance.

Previous articles ([Olsen00], [Krome04]) have discussed ease-in/ease-out functions

to manage velocity along a curve. This gem describes how to construct a general dis-

tance-time function using piecewise splines. Various parameters are used to constrain

this function. For example, there can be distance keys requiring that a particular point

must be hit at a particular time. A speed can also be attached to such a key requiring that

a particular velocity be reached at the given time. Less-specific parameters can be set at

each key, like fast-in/fast-out (approach/leave quickly) or slow-in/slow-out (approach/

leave with zero speed), or smooth (move as smoothly as possible). The goal is to provide

a flexible system for animators to use within internally built animation tools, in particu-

lar for camera animation with in-game cinematics.

To build the distance-time functions, we use piecewise Hermite splines. Some

knowledge of such splines is assumed, and basic information about them is provided as a

refresher, but [Burden93] and [Rogers90] cover this in more detail for those who need it.

The purpose of the particular functions that we create here is to control our speed as

we move along a fixed path in space. This path is usually generated by a parametric

curve, but for our purposes, we don’t actually care whether it’s a series of piecewise lin-

ear functions, a Bézier curve, or a B-spline. All we care about is that we have a general

function of the form Q(w): we enter a value u, and out comes a point Q in 3D space.

As u increases, the function traces out a path in space.

sAectUONNO AONE CNMI NNER TMNT TN TC NIN

233

234 Section 2 Mathematics

Before we add our own time control, we need the object that we're animating to

move at a constant speed along the length of the curve, using only the parameter wu.

However, with cubic curves (the most common case), the relationship between dis-

tance along the curve and the parameter u is not linear. In some places, we move a

short distance along the curve for a step of Au, and in some places, we move farther.

This is because to provide the curvature we want, we have to vary the first derivative

and hence the speed at which we move along the curve.

Obviously, if we want to maintain constant speed, this is not desirable; in some
areas of the curve we are moving faster than in others. The solution is to reparameter-
ize the curve by distance. Rather than find a point on the curve using the parameter
u, we find a point using a parameter d, where d represents the distance along the curve
from the start of the curve. As we increase d at a constant rate, we move along the
curve at a constant rate. In most cases, computing the reparameterization for a cubic

curve is not practical with analytical methods. Handling this involves using numerical

methods, usually either root finding or table-generated solutions, which are described

in more detail in [Eberly01], [Parent02], or [VanVerth04]. For our purposes, we
assume that we already have such a parameterization for our curve.

General Distance-Time Functions
se een re REAR ESC ea.

Rather than moving along the curve by distance, we generally want to move via time;
that is, determine where we are on the curve at time ¢. So we need some means to

convert time into distance and use that as input to our reparameterized curve. We can

represent this by a distance-time function d(t), which varies the distance parameter
based on time. A point on the curve corresponding to a time ¢ is given by evaluating

Q(d (t)). For example, traveling at constant speed is a linear function that starts at
(0,0) and ends at some maximum time and distance. This is commonly normalized
so that maximum time and distance are both 1 (see Figure 2.3.1), so it can be used
with multiple curves. To adjust our input ¢ to work with our normalized function, we
can use Equation 2.3.1

t= x (2.3.1)

where ¢, and tf, are the arrival times for the start and the end of the curve, respec-
tively. To adjust our output, we multiply the result d (t) by the total length of the
curve. We then plug that into our reparameterized curve to obtain our final position.
For simplicity’s sake, we assume that we are performing these corrections by default,
and any time and distance values we refer to below lies between 0 and 1.

There is no reason to limit our distance-time function to just linear functions.
Let's look at another example: the ease-in/ease-out function (see Figure 2.3.2). There
are a number of ways of computing a function of this type ([Parent02], [Olsen00)]),
but they all have the same basic shape. Using this as our distance-time function gives
the following result: we start at zero speed at the beginning of the curve, ramp up to

2.3 Spline-Based Time Control for Animation 235

d
A

My

SS > |

0 1
FIGURE 2.3.1 Linear distance-time function.

+» f

0 1

FIGURE 2.3.2 Ease-in/ease-out distance-time

function.

maximum speed at the middle of the curve, and then slow down to zero speed at the

end. This gives a very natural look to movement along the curve. Rather than starting

abruptly at a given velocity, maintaining it along the curve, and then stopping

abruptly at the end, it looks much more like the acceleration and deceleration needed

to move a physical object.

We don't have to stop there. We can use any function of t with domain [0,1] that

doesn't have a range outside of [0,1] (i.e., time and distance remain clamped to the

236 Section 2 Mathematics

normalized intervals). Beyond the basic constraints, how we lay out our function con-
trols how we move along the curve. Figure 2.3.3 shows a distance-time function for
which the slope is always nonnegative. In this case, we never move backward along the
curve as f increases. If the function has negative slope at any point, we do move back-
ward along the curve for that segment. Figure 2.3.4 shows such a curve; the gray sec-
tion indicates the segment with negative slope. Note that in this function, we also
delay departure, and then arrive early and wait. Using this technique gives us a great
deal of flexibility for controlling speed and arrival times on our animation path.

rQ

SS

0 1

FIGURE 2.3.3 Distance-time function
with non-negative slope.

as

0 etre

FIGURE 2.3.4 = Distance-time function with
one section of negative slope and showing
delayed departure and early arrival.

2.3 Spline-Based Time Control for Animation 237
osssosteateonntone ete nent emanate ete tteansnsiveeteineaane iste ian eiteennnae eee eneteiaaeieoteeteiaceeenbtehhiacnttiettdenes netted Anais aan

Creating Distance-Time Functions with Splines

In general, we can use any function that satisfies the previously stated criteria, but for

ease of construction, we use piecewise Hermite splines because they have a few advan-
tages. They are fairly easy to compute, and they provide simple handles for control:
endpoint positions and velocities. However, we use them here in a slightly different
way than they are usually presented. Since we are only interpolating across distance
not points in space, the positions are real numbers rather than multivalued vectors.

Similarly, the tangent at each control point becomes the slope of the curve at that

point, and velocity becomes speed.
The standard definition of a Hermite curve between positions p, and p,,, and

slopes py and pj,, is shown in Equation 2.3.2.

H(t)=(28 -37 +1)p, +(-20° +30?) p,,,+(0 - 20 +1) 7, +(f -0) pf, (23.2)

This is also called a normalized Hermite curve, because the parameter f lies in the

interval [0,1] . In our case, there are multiple sample positions P,.-.,P,,. Each inte-

rior sample position p, has two slopes: the outgoing slope P;,» and the incoming

slope p/,. These slopes can match if we want a smooth curve or not match if we

want a “kink” in the curve. To generate a continuous function from py) to Pp, we

create subcurves that interpolate between succeeding pairs of positions. So subcurve

H, interpolates between Py and p,, H, interpolates between p, and p,, etc. This

is called a piecewise Hermite curve. Figures 2.3.6 through 2.3.9 show examples of

such curves.

In our case, the positions represent distance values along the path. Associated

with each distance value p, is atime f,: the time at which we want to arrive at that

distance. Each pair of values is called a distance key. These t, values are in increasing

order, so that t, <t,,,- This means that each subcurve has a different interval

[7 pt i | for its local domain, which is not necessarily [0,1]. Clearly we can’t use the

standard definition; the solution is to use a slightly more complex but more flexible

representation for our Hermite curves.

There are two parts to this. First, we have to convert our input time to something

usable in the standard formula. Given a time ¢, we first find a subcurve for which

t, <t<t,,,. We then apply Equation 2.3.1, where t,=t, and t, =t,,,- As before,

this will map ¢ to a value f that lies within [0.1], which we can use in the standard

formula for a Hermite curve. Secondly, we must also correct the slopes at each sample

position. The original slopes assume that we are moving the same number of units in

t as we are in d. However, we've scaled our ¢ value by | (t ied | ne so we correct for

this by scaling our slopes by te -t,). So for a given p;, DP, =P; (ta: —t,). The

combination of these two adjustments allows our time inputs to be used with the

standard equation for a Hermite curve.

238 Section 2 Mathematics

So computing the distance-time function is fairly simple: we find the correct sub-
curve by searching for the time key pairs such that t, <¢ <t,,,. From that, we com-
pute 7, and then use the result in the standard Hermite formula with the corrected

slopes for that subcurve. The result is our distance value d. However, how do we cre-
ate the Hermite spline in the first place?

Incoming and Outgoing Speeds

One way to make a spline-based distance-time function is to specify the incoming
and outgoing speeds at each key, which are used as the endpoint slopes for our piece-
wise Hermite curve. There are a few possibilities for setting the speeds. First, the user
can define them. Usually the user wants to specify the speeds in game space, so these
have to be converted into an equivalent speed in the normalized distance-time func-
tion by multiplying by the total desired time for the space curve and dividing by the
total length of the curve. As before, these speeds have to be corrected for the non-

normalized Hermite curves by multiplying by the time interval of the subcurve. One
concern is when the user sets a speed value with a large magnitude; the curve may
loop outside the desired range interval of [0,1] (Figure 2.3.5). However, if a graphic
display and enough error feedback are provided, this can work quite well.

FQ

0 mmr ts

FIGURE 2.3.5 Large user speed leads to

invalid distance-time function.

For another approach, we notice that there are some standard cases for which we
can set default values, and that can be used in combination to create functions with-
out the user needing to set slopes directly. Standard animation parlance talks about
slow-in, slow-out, fast-in, and fast-out. The -in and -out parts refer to the arrival and

2.3 Spline-Based Time Control for Animation 239

departure speeds for the key, respectively. Slow means the speed is 0 at the key. Fast is
less well defined but basically means that the object leaves the key as quickly as possi-
ble. Assuming that keys are increasing in distance and the user wants to avoid the
object backing along the curve, we define “fast” so that the minimum speed along the
resulting curve is 0. If the keys are decreasing in distance, we just negate that so that

the maximum speed is 0. Slow-out from one key to a slow-in at another key gives us
something like the familiar ease-in/ease-out curve. Fast-out to fast-in gives us the
reverse: we start out fast, then slow to 0, and then speed back up again. Figure 2.3.6

shows a function that does a fast-out to a fast-in, followed by a slow-out to a slow-in.

Setting up slow-in and slow-out is simple; we just set the in or out speeds to 0 at

that key. If we want something closer to the ease-in/ease-out curve, we can add an
additional key at the average point between the original keys and set it to have fast-
in/fast-out speed.

We can derive the speeds for fast-in and fast-out by using two constraints. First,

the speed at the midpoint of the curve is 0. We can represent this by taking the deriv-
ative of a standard Hermite curve at the halfway point and setting it equal to 0, as

shown in Equation 2.3.3

Oe 2 42)

= (6(1/2)' -6(1/2))p, +(-6(1/2)' +6(1/2)}P,,

+(3(1/2) -4(1/2)+ 1) pi +(3(1/2) -2(1/2)) Phar
= 6 Pi — 9D, — Peg ~ Prats (23:3)

Second, the speed at the start of the subcurve needs to match the speed at the end of

the subcurve. This allows us to rewrite Equation 2.3.3 as Equation 2.3.4

0= 6(Pear —p,)-20%,,

Po = 3(Pear a P,): (2.3.4)

This speed will be used for fast-out at key & and the same for fast-in at key k+1. We

can use this speed with our normalized Hermite equation, so we don't have to correct

it by (tx — 7) as we did in the other cases. However, if we're correcting all speeds as

a final processing step, we can set the fast-in/fast-out speed to iat =D ie = t,)

instead.
Other standard parameters exist. Linear means that the distance-time curve takes

a straight line from one key to the next key. The outgoing speed at the start key and

the incoming speed at the end key are set to the slope of the line specified by the two

points. Step means that the distance-time curve remains at one key until the time

interval has elapsed and then immediately jumps to the next key. This is not as conve-

nient to represent with a single spline, as there is a discontinuity in the curve. One

240 Section 2 Mathematics

rQ

0 1 :

FIGURE 2.3.6 Fast-out/fast-in followed

by slow-out/slow-in.

solution is to create a new key at the same distance as the first key but just before the
second key in time, and then create two linear steps: from the first to the hidden key,

and then the new key to the second key. The other is to simply break the spline at that
point and start a new spline. Figure 2.3.7 shows a function with two linear sections,
separated by a step.

FQ.

[A eho
0 1
FIGURE 2.3.7. Distance-time curve showing

linear sections and a step key.

2.3 Spline-Based Time Control for Animation 241
rneonecnetconnntaeygataieen senescent emanating te " wm sous ena ate ROM RNR eden ttineoeonnteanicensnenanon

At
0

Figures 2.3.6 and 2.3.7 show that there is no reason that the incoming and out-
going speeds at a given key have to match; while not physically realistic, it is some-
times useful to have an object arrive slowly at a point and then immediately tear off at
high velocity. As another example, animators can use fast-in/slow-out to create a

quick reaction time to an event and then a slow recovery. Similarly, we don’t have to
have matching -out and -in speeds on a given subcurve. For example, we could start
off with a slow-out at one key and end with a fast-in at the next one. The end result
would ramp up the object from rest from the first key to a high speed once it reaches
the second. It’s all up to the needs of the animator.

Automatic Curve Generation

An alternative to setting the speeds directly is to set a series of distance keys, as described
earlier, and then automatically generate the subcurves that interpolate between those

- keys. While we have “positions” that define the ends of each subcurve, we still need
speeds at each key that can be used in the piecewise spline. We'll usually want a smooth
curve, so in this case, we'll assume that the incoming and outgoing speeds are the same.

There are a number of approaches that can work, but the method that gives the

smoothest result is to use a natural piecewise Hermite spline. This involves setting up a

series of linear equations that maintain C * continuity for interior points on the spline

and zero-valued second derivatives at the endpoints; more detail can be found in both

[Burden93] and [Rogers90]. For non-normalized Hermite splines, this looks like Equa-

tion 2.3.5

3
ay, (Po)

1 Pp ;

At? (p,—p,)+ At’ (p,-p
2(Ar, + At,) At, Pp fer ni 2 J ri 1 |

r (2:3:5)

Mt Ae ee) AP | pe 3 ’ ,
n-2 (n-2 n ol n-1 ; a Te [at? (p, -p,,)+ At (p,,., — Pi)]

l 2 P,, n-2 n-1

3
s ogpa 2 =p.)

n-1 al

where At, = (t,., _ peyi Solving this set of linear equations for ee gives us

the slopes at each key and the information we need to build our Hermite spline. Since

the left matrix is sparse and tridiagonal, solving this can be done in linear time; [Bur-

den93] has more details. Note that this solution doesn't correct our slopes for the

non-normalized time interval, so we still have to multiply them by the appropriate

At,. An example of such a distance-time curve can be seen in Figure 2.3.8.

242 Section 2 Mathematics

=> Sy,

0 1

FIGURE 2.3.8 = Distance-time function cre-
ated by natural spline through distance keys.

Combining Smoothing and Speed Specification

For full generality, the user should be allowed to create a curve with fixed arrival and
departure speeds at certain keys as well as automatically generated sections for the
remainder. For this we add smooth-in and smooth-out keys. A sequence of smooth-in
and smooth-out keys indicates a section of curve that the user wants automatically
generated. If we see a smooth key, we start tracking a smooth section of curve and
progressively store the parameters for our linear system until a non-smooth key is
reached. Then we run the parameters through our tridiagonal matrix solver to gener-
ate the slopes for that section of curve.

Because of the flexibility of our system, we might end up with given speeds at the
endpoints of our smooth section. For example, suppose we have a slow-out key followed
by a smooth-in key. The curve will start at speed 0, and then smoothly blend to the
following distance key. The initial endpoint is known as a clamped condition. Con-
structing the matrix for this is just a modification of the setup for a natural spline. We
replace the first matrix row with a 1 in the diagonal, and the corresponding entry in
the right vector with our given speed. If we were to end at a non-smooth key, we
would do the same for the last matrix row. So for our example, the linear system looks
like Equation 2.3.6

(2.3.6)

2.3 Spline-Based Time Control for Animation 243

The following pseudocode shows how the tracking of the smooth sections is handled.
We iterate through the keys and either set given speeds or set up parameters for the
smooth sections. A Boolean inSmooth is used to indicate whether we're currently
tracking a smooth section.

inSmooth = false

for each key do

if current in-speed is not smooth

if inSmooth

finish clamped spline

inSmooth = false

else

set given speed

else

if !inSmooth

start clamped spline

inSmooth = true

if not at end and out key is smooth

add to middle of smooth spline

else

finish natural spline

inSmooth = false

if current out-speed is not smooth

set given speed

else if !inSmooth

start natural spline

inSmooth = true

Some details have been skipped here for clarity. For example, we don't consider the in-

speed for the first key or the out-speed for the last key, as they're not valid. The full

details can be found in the sample code.

Example

As an example, let's assume that the user has set three time-distance pairs, with the fol-

lowing speed parameters:

Time Distance In-Speed FS: Out-Speed

0.0 0.0 — Linear
ST Ee AN a Sa a a DN enc Se

0.45 0.60 Fast Smooth

1.0 1.0 Slow —

The outgoing speed at the first key is linear, so its value is (0.6-0.0)/(0.45- 0.0),

however, we correct this by multiplying by (0.45—0.0), so the final stored speed is

0.6. The incoming speed at the second key is fast-out, so its value is 3(0.6 — 0.0). The

outgoing speed at the second key is smooth, so we start building a linear system. In this

simple example, we stop building it immediately at the next key since it is slow-in and

thus non-smooth. Our linear system for this section of curve looks like Equation 2.3.7.

244 Section 2 Mathematics

2 iT r’,] |3t0=28 |
* |=] 1.0-0.45 (2.3.7)

0 1), Px, a

Solving this gives us intermediate values of p;, = 1.09091 and p;, = 0.0. Correcting

both by (1.0- 0.45) = 0.55 gives us final elie of p,,=0.6 and p;, =0.0. Our

final parameters for our Hermite curves are

Time _Distance In-Speed Out-Speed

0.0 0.0 — 0.6

0.45 0.60 1.8 0.6

1.0 1.0 0.0 —-

The resulting curve can be seen in Figure 2.3.9.

d
A

I al,

0 pasty

FIGURE 2.3.9 Distance-time function

created by example keys.

Interface Choices

While the earlier OES ene aS orice amet RES ce for the technique,
it’s no good unless it can be controlled. One possibility is to provide an interface to set
arrival times at each interpolating control point for the spatial curve, and then use the
distance along the curve to those points to create keys for the distance-time function.

2.3 Spline-Based Time Control for Animation 245

The parameters for smoothness and/or incoming/outgoing speeds can also be set at
the spatial control points. Together with this, it is useful to be able to display the cur-
rent distance-time graph, with the distance keys plotted as points. These can be
clicked and moved left to right in the time axis. Their distance values can’t be changed
since they are fixed by their position on the spatial curve. Errors should be reported if
the function falls outside of 0 or 1 along the range.

Alternatively, the spatial curve and the distance-time function can be set up sepa-
rately, so the function has a completely independent set of keys. However, in this case
it’s usually wise to place icons on the distance-time display to show where the spatial
control points lie, so that the user has some sense of arrival time at those points. The
arrival time data can also be copied back into the-display for the spatial curve.

A hybrid approach is also possible, with the starting distance keys derived from
the spatial control points, and additional points added that have no correlation in the
spatial domain but are only used to control the distance-time function.

Conclusion

This gem has presented a method for computing distance-time functions for anima-
tion by using piecewise Hermite splines. Hermite splines allow a lot of user input,
particularly as the tangents on the curves provide an intuitive way for managing speed
control. Automatic creation of splines, such as natural splines, and default settings for
speed control are also useful for allowing users to quickly create distance-time func-
tions. It may be possible to extend these ideas to other spline types, such as piecewise

Bézier curves or B-splines, as long as the basic requirements for a distance-time func-

tion are maintained.
This technique can also be used for other applications. For example, the slerp func-

tion for quaternion interpolation maps a ¢ value between 0 and 1 to two interpolants,

where the result of each interpolant is also between 0 and 1. These interpolants are then

used to blend two quaternions. The entire function normally requires three sines and a

floating-point division. We can approximate each interpolant function instead by piece-

wise Hermite curves. The result won't be as exact as slerp but will be faster and will still

be better than straight linear interpolation.

LT TT abl ec

[Burden93] Burden, Richard L. and J. Douglas Faires. Numerical Analysis. PWS Pub-

lishing Company, 1993.

[Eberly01] Eberly, David. “Moving at Constant Speed.” Available online at /ttp://

www.magic-software.com. January 2001.

[Krome04] Lowe, Thomas. “Critically Damped Ease-In/Ease-Out Smoothing.” In

Game Programming Gems 4, 95-101. Charles River, 2004.

246 Section 2 Mathematics
sevoatecetinassscaeusiepmsnsotennateieetamanannetetnnynnaainnrnnoin wnnnnsseson 7 chemi mnsssnavinussasanassinsnieetecirentmmamaioiinanainnsnn

[Olsen00] Olsen, John. “Interpolation Methods.” In Game Programming Gems,

141-149. Charles River, 2000.

[Parent02] Parent, Rick. Computer Animation: Algorithms and Techniques. Morgan

Kaufmann Publishers, 2002.

[Rogers90] Rogers, David F. and J. Alan Adams. Mathematical Elements for Computer
Graphics. McGraw-Hill, 1993.

[VanVerth04] Van Verth, James M. and Lars M. Bishop. Essential Mathematics for

Games and Interactive Applications. Morgan Kaufmann Publishers, 2004.

2.4

Faster Quaternion

Interpolation Using

Approximations

Andy Thomason

athomason@acm.org

© atin are used extensively in game development because they provide a
simple and effective way to represent a rotation. A quaternion takes up 4/9 of the

storage required for a rotation matrix, can smoothly interpolate between rotations, and

has many other properties that make it useful for skinned, hierarchical animation. In
particular, quaternions are used to represent the joints of characters that can only

rotate about a particular point.
As games become more complex, we must move to more advanced methods sim-

ilar to the linear algebra techniques used by supercomputers. Methods like the Struc-

tures Of Arrays (SOA) method can improve computational efficiency by an order of

magnitude or more by grouping together similar operations, reducing memory access,

and using all available ALUs (Arithmetic and Logic Units) by way of SIMD (Single

Instruction, Multiple Data) instructions.

The trouble with using batch linear algebra techniques is that the trigonometric

functions normally associated with quaternion interpolation cannot be used. So by

using an approximation, not only can we speed up the process by sacrificing some

precision, but we can enable the calculations to be done using adds, subtracts, multi-

plies, divides, and square roots.
In the game Galleon, we were able to have dozens of figures fighting hand to hand,

each with cloth dynamics, real-time footstep placement, and Al. If we wanted thou-

sands of such figures using the same hardware, the skinning and animation load would

dominate, principally because of the cost of quaternion interpolation used for key

expansion, animation blending, and collision.

With vertex shaders increasing in complexity, it is now possible to use quaternions

for skinning [Hejl04]. We can use approximations to generate batches of quaternions

from animation data and quickly feed these results to vertex shaders.

247

248 ‘Section 2M Mathematics

These methods should be suited for use on the specialist vector units that are
becoming more common on consoles and computers alike. Examples are provided in
C++, but feel free to recode them using native assembly language or intrinsics.

Using Quaternions as Rotations
LRH EAN SS SERA RENN OE ERT TER SOT TTS TE EIS

Recall that a quaternion q is a Bie -component quantity that can be written as follows.

q=(w,x,y,z)= wt xit yj+zk (2.4.1)

It consists of one scalar component w and three vector components x, y, and z.

Quaternion multiplication is defined using the ordinary distributive law with the fol-

lowing rules for the products of the “imaginary” numbers /, /, and k.

tO nd ee |

=i
jk=-kj=

ki=—ik = j (2.4.2)

Using these rules, the product of two quaternions a and b can be expanded to

ab= (a,b, -a,b —a,b, —a.b.)

ms 3(a,,b, +a,b,+a,b,—a_b,)i

+3(a,b,-a,b, +a,b, +4,b,)j

+3(a,,b, +4,b,-a,b, +a.b,)k (2.4.3)

Every nonzero quaternion q= w+xi+)j+2zk has an inverse q | given by

gre (2.4.4)
q

eas the quantity q= w-xi- yj—zk is the conjugate of q. For a unit quaternion,
gq’ =1, and the conjugate and inverse are the same quantity.

A quaternion representing a rotation through an angle @ about the unit-length
axis A=(A_,4,,A_) is usually written in the following form.

q rotation
= tpg arene (2.4.5)

2 Zz

2.4 Faster Quaternion Interpolation Using Approximations 249

The way in which a quaternion is used to rotate a vector V is to treat the vector as a
quaternion with zero scalar component and evaluate the product

Rotate(v,q) = qvq (2.4.6)

This leads to the familiar quaternion-to-matrix conversion formula:

pg wi eee ted Toul

qvg = 24,4, P2gq. , l= 2q° - 2q° 24,9, aed ally (2.4.7)

2:4 -= 24,Gere 2G grt 2Ghgs WAGs alg an hy:

Note that if we don’t make the usual assumption that

q+¢,+9,+4, =1 (2.4.8)

then we get an alternative formula

Get ae-¢, Ia 24,9, 24,4,424,4, |,
?}

qvd=| 29,¢,+2¢,9, / ¢,+¢%-@-@ 29,9,-24,4, || v,| 249)
?)

24,4,329,8, $24,9,$29,9, ~ 7g deg || ¥,

and we can incorporate a scaling factor s into the quaternions as follows.

Rotate(v,+vsq) = qvqs. (2.4.10)

This only works because we are using the conjugate of the quaternion, not the

inverse, for our rotation formula. But clearly, a negative scaling factor cannot be used.

Note that negating a quaternion does not affect the rotation that is produced. That is,

Rotate(v,—q) = Rotate(v,q). (2.4.11)

For the most part, the techniques described in the following sections assume a unit

scaling factor, so be very careful how nonunit quaternions are used. However, the

extra scaling factor can be very useful when using quaternions in vertex shaders.

Interpolating Quaternion Rotations
SL LIEEL ELLE LLL BELLE LEI,

In computer games, animations consist of a series of keys, usually rotations represent-

ing the angles of joints of a character. To smoothly interpolate between the keys and

thus to avoid using precious storage to store a key for each frame, we use a method

250
ssc netomat attested niotetenanneimc etait RHAnALGntataneecHAinhiniiinmehAiAhAetenenntmasanntt

Section 2 Mathematics

called spherical linear interpolation or slerp for short. The goal of the slerp function is

to interpolate smoothly between two quaternions a and b, sweeping a constant angle
per unit time and maintaining a constant unit length.

So why can’t we just use linear interpolation? The answer is that we need to main-
tain the unit length of the interpolated quaternion to avoid introducing a scaling fac-
tor. Even if we renormalize the result of linear interpolation, the angular velocity of
the resulting animation will not be constant, resulting in jerky movement.

An example of a slerp in real life is the great circle taken by a passenger jet over the

surface of the Earth. The jet keeps a constant distance from the center of the Earth
and moves with a constant speed over the shortest arc. Thus, if we want to fly from

Amsterdam to Berlin, we apply the function:

Slerp(Amsterdam, Berlin) (2.4.12)

How do we achieve this?

(1-10 &

Bb

0

FIGURE 2.4.1 An illustration of the
slerp function.

In Figure 2.4.1, Amsterdam is represented by the vector a and Berlin by b. The
position p of the jet sweeps out an arc of @ radians during the journey, taking one
hour. At time ¢, we have moved Of radians.

This position can be represented as a linear combination of the vectors a and b:

p(9,t)=a(0,t)a+ B(O,t)b. (2.4.13)

We can calculate a and b by using the triangle drawn on the diagram. Using the sine
formula for triangle area in three different ways for the triangle ope, with op =1,
oc =, cp=B,

2.4 Faster Quaternion Interpolation Using Approximations 251

aBsind = —asin (10) =~ Bsin((1-1)6). (2.4.14)

These equalities give us a and B leading to the well-known formula

p(9,r) = Slerp(a,b,t) = sin(1-1)6 + su betes arccos(a : b). (2.4.15)
sin@ sin@

So if x=a-b, then

ms sin((1- t)arccosx) a sin(¢arccosx)
OL LS capers cape iat) misoay prea (2.4.16)

because

sin(arccosx)=V1—x’. QAly)

Figure 2.4.2 shows a plot of (x,t). Notice how the graph is quite flat where x = 1

but curves steeply when x =—1. This is the source of potential problems with an

approximation.

beta(x,t)

FIGURE 2.4.2 A 3D plot of the function B(x,2).

Approximation Methods |

Now we can discuss some methods of approximation. To illustrate the methods we

can use, we use examples of Maple procedures.

252 Section 2 Mathematics
sssecetcnsnnanasscneetennatetninsnneisaeneesnhit teeta ivtn ernment Hist nents AH HMNRRALALAiAKSOHHORAR

We discuss several methods of approximation and summarize their strengths and
weaknesses. One of the golden rules of numerical approximation is that no one
method is best. The context in which the approximation is to be used must be consid-
ered when determining the specific method.

In computer games, we may have to ask ourselves a number of questions, notably:

¢ How many CPU cycles can we spare?

¢ How much precision do we need?
¢ Can we cheaply use functions such as sqrt (x) and exp(x)?

¢ Can we use SIMD instructions, like VU macro mode, paired float, SSE, or 3 DNow?
¢ Are we going to be blending more than two quaternions at once?
e What is the maximum angle between our keys?

We present various methods here, but it is up to the reader to decide which is most
appropriate for a particular application.

Direct Method

We start with the direct approach. We just examine the beta function formula and
approximate the various components. This is actually the best method if very high pre-
cision is necessary, but it can be very costly, especially when evaluating large batches of
slerps.

Almost every game engine contains something like the code in Listing 2.4.1, and
many games spend significant proportions of their time executing it.

Listing 2.4.1 Reference Slerp Class
SSS a a

class SlerpReference

{
public:

SlerpReference(const Quat &a, const Quat &b) : mA(a),

mB(b)
{

Float™adotb = a.X * b.X + a@.¥ * b.Y + a.Ze* b.Z + a.W * b.W;
adotb = Min(adotb, 0.99999f);

mTheta = acosf(adotb);

mRecipSqrt = RecipSqrt(1 - adotb * adotb ys
}

Quat Interpolate(float t) const

{
float alpha = sinf((1 - +t) * mTheta) * mRecipSqrt;
float beta = sinf(t * mTheta) * mRecipSqrt;
return Quat(alpha * mA.X + beta * mB.X, alpha * mA.Y +

beta * mB.Y, alpha * mA.Z + beta * mB.Z,
alpha * mA.W + beta * mB.W);

’

2.4 Faster Quaternion Interpolation Using Approximations
ssegnssusi

253
ose tttaA AAAS CNL ALLAAH AALAND HI OHHH QA RERRESOEO// EOE SEE EEE LCI HRSA SOOO

private:

float mTheta;

float mRecipSqrt;

const Quat &mA;

const Quat &mB;

}3

Here we have used trig functions to create a reference slerp class. The class has a con-

structor and a method to calculate individual interpolated quaternions. We have taken
pains to avoid using branches that will cause lengthy pipeline stalls by using the Min

function to avoid overflows. Note that although the results near adotb = 1 will be con-

sistent, if the quaternions point away from each other, the result will be unpredictable.

To turn this into an approximation, we have to approximate sin(x) and arccos(x).

The sin(x) component is simple, as this responds to traditional polynomial

approximation tools. In Maple, there is a package called numapprox that contains

polynomial approximation tools that can convert an arbitrary function into a polyno-

mial over a certain range of values.

A Taylor series turns a function of x into a polynomial in x that matches the func-

tion exactly at one point. Maple has a built-in Taylor series command that gives a

result like this:

ae
taylorseries = x — a + = + Ole). (2.4.18)

Unfortunately, Taylor series are not very useful for approximation as they are exact in

one place only, but they are simple to calculate and are useful for showing us the gen-

eral form of a function. A polynomial can be made to be exact in n or more different

places, where n is the degree of the polynomial, or highest power term. This can be

used to significantly reduce the error.

In the numapprox package, Maple has a command called minimax that chooses the

best places to make a polynomial exact in such a way as the maximum error is mini-

mized, hence the name.

minimaxSeries = minimax(sin(x), x=— 7.7, 3)=(.824535+(-.08692x)x}x (2.4.19)

Figure 2.4.3 shows a plot of taylorseries, minimaxsertes, and sin(x). Here we see that

the Taylor series shoots off to infinity when a Figure 2.4.4 shows a plot of

the error, which shows that the Taylor series is exact only at the origin, whereas the

minimax polynomial is exact in five separate places, spreading out the error over the

interval.

i thematics 254 Month Liens ml =

Legend

taylor series
—_-——— minimax
fae are oe sin(x)

FIGURE 2.4.3 Plot of taylorseries, minimaxseries, and sin(x) showing the differences.

Legend

taylor series error
minimax error

FIGURE 2.4.4 Plot of the error of a Taylor series versus a minimax series.

This is how the built-in functions in C++ are created. The following is an approx-
imation to COs(x) on the interval x €[—2/ 2,7 /2] that we can use to approxi-

2.4 Faster Quaternion Interpolation Using Approximations
rns Nett Se NNN

255

mate sin(x) on x €[0,77]. In this case, cos(x) is an easier function to approximate
than sin(x), as it is even and hence uses only terms in x’.

cos(x) = sin(x+2/2)=1+(-.4999991 + (.416636+(-.0138537+.000231540x")x?)x? x? (2.4.20)

Figure 2.4.5 shows a plot of the error for the previous approximation.

4e-08

2e-08 |

-2e-08 4

-4e-08 4

Legend
f(x)-sin(x)

FIGURE 2.4.5 Showing the error in the approximation to cos(x) shifted into

the range used by the slerp function.

The arccos(x) function does not respond to this kind of treatment. Figure 2.4.6

shows a plot of the error for eight terms, which is shockingly bad.

The reason for this can be seen by looking at the arccos function itself, shown in

Figure 2.4.7. There are singularities at x =1 and x=—1l that behave as VJ—x and

/1+ x » respectively. It is very hard for a polynomial to approximate this kind of func-

tion. These kinds of behaviors can be discovered using the Maple “series” command.

Making an approximation in terms of nonlinear terms works much better:

arccos(x) =

\2.218480716 — 2.441884385x + 0.2234036692x* —

/2.218480716 + 2.441884385x + 0.2234036692x° +

1/2 +0.6391287330x.
(2.4.21)

256
ssatoonenesasnsnsncnonumacecnnstcietnnsiennsnnutenen

n nemo nAeonenrete conn HMIMAOMUAMAATSSERREN HTS HAHAHAHA

Section 2 Mathematics

Naive Arccos Error Plot

0.04 |

4

|

0.02 |

So — —

08] 06 -04 0.2 0.2 0.4 0.6 08

-0.0 4

FIGURE 2.4.6 = The result of using Maple’ minimax on the arccos function.

Plot of Arccos(x)

|
35

xX

FIGURE 2.4.7 A plot of arccos(x) showing singularities at x = +1,

2.4 Faster Quaternion Interpolation Using Approximations

ON THE CD

257
iste ienieensrcoeonetteasosest naevus aatesomannsanteeemmise tenets tttentSNHGHettneatnotteetenti onesies AMANO ORLA AAMAMEEE EMO wosnie

The error for this approximation to arccos(x) is plotted in Figure 2.4.8. Note that

these functions only work over our required range. If functions that work over other
ranges are needed, they will have to be made separately. The accompanying CD-
ROM contains some example Maple worksheets.

Arccos(x) - arccos(x)

|

6e-05 |

de-05 |

| 2e-08

-0.6 -0.4 407 1 0.2 0.4 0.6 0.8

26-05 |

-4e-05 4

-6e-05 4

FIGURE 2.4.8 A better approximation to arccos(x).

The reciprocal square root is available on most modern processors using the division

unit. One should be careful to allow for latency, however, and calculate this first so

that the result is available later. An approximate reciprocal square root is also often

available in a single-cycle form to 16 bits with SIMD instructions.

The proportional error in the rotation can be calculated to be of the same order as

the error in the alpha and beta functions. To perform this calculation, we may assume

an error ein the function and use the Maple “series” command. Decrease the number

of series terms until the order O e) is the last remaining term in e.

Figure 2.4.9 shows a series of error plots of beta functions for various angles of

separation of the quaternions

Sin(t Arccos(x)) sin(tarccosx)
= 4 2.4.22 a (2.4.22)

l-x°

Where Sin(x) and Arccos(x) are the approximations.

i ics
258 Section 2 Mathematic

Plot of Errors of Various Beta(x,t)

FIGURE 2.4.9 Plots of errors in B(x,t) for various x.

Use of SIMD architectures enables the calculation of both sine functions together, as

shown in Listing 2.4.2.

Listing 2.4.2 Direct Slerp Method Class

class SlerpDirect

{
public:

SlerpDirect(const Quat &a, const Quat &b) : mA(a), mB(b)

{
float=adoth*="aex-* bi Xa wy =*ebey teas 2a becesnta. W * Jb. Ws

adotb = Min(adotb, 0.99995f);

float even = 2.218480716f + .2234036692f * adotb * adotb;

float odd = 2.441884385f * adotb;

mTheta = Sqrt(even - odd) - Sqrt(even + odd) +

1.570796327f + .6391287330f * adotb;

mRecipSqrt = RecipSqrt(1 - adotb * adotb);

}

Quat Interpolate(float t) const

float A= (1 - t.) * mTheta - 1.570796327f; A = A * A;

float B = t * mTheta - 1.570796327f; B = B * B;

float sinA = .9999999535f+(-.4999990537f+(.4166358517e-1f

+(-.1385370794e -2f+.2315401401e-4f*A) *A) *A) *A;

2.4 Faster Quaternion Interpolation Using Approximations 259
isinsenennscse eterna nttna nna ouaunnneegtnnneesonentieiionaaiosn is nvieoneymanecediumnmnanieronennimanolenreininttn

float sinB = .9999999535f+(- .4999990537f+(.4166358517e-1f

+(-.1385370794e -2f+.2315401401e-4f*B) *B) *B) *B;

float alpha = sinA * mRecipSqrt;

float beta = sinB * mRecipSaqrt;

return Quat(alpha * mA.X + beta * mB.X, alpha * mA.Y +

beta * mB.Y,

alpha * mA.Z + beta * mB.Z, alpha * mA.W + beta *

mB.W);

}
private:

float mTheta;

float mRecipSqrt;

const Quat &mA;

const Quat &mB;

}5

This class shows the result we obtain when we simply approximate the component

functions of the tradional slerp function.

Matrix Approximation

Because B(x,t) is simply a function of two variables, we can, in theory, represent the

entire result as a two-dimensional polynomial in x and t. That is,

B(x,t)=XMT (2.4.23)

where M isan NX N, matrix and

x1 Mee)

Tal {nee oe oa (2.4.24)

Applying the same process as in the analysis of arccos(x), namely using the Maple

series command, we see that we have a problem approximating the whole polynomial

because

lim B(x,t) =<. (2.4.25)

We need to take this singularity out of the function so that we can approximate it

with fewer terms.
If we evaluate

g(x.t)= B(x,1)(1+x) (2.4.26)

instead, then we end up with a much better behaved function over the range

ms e[-11], as illustrated in Figure 2.4.10. We can then multiply by 1/(1+.x) to

obtain B(x,t).

260

ON THE CD

sienna nts

Section 2 Mathematics

|

1

FIGURE 2.4.10 ¢(x,t), a better alternative to approximating B(x,t).

Unfortunately, Maple does not come with a 2D version of the minimax command,

and besides, uniform error distribution is useful only in certain conditions.
We can make a 2D version of the Chebyshev approximation method, which con-

structs a function in the form

Ni» IN)
t x

Dee Mae) DUT) (497)
j=0 i=0

where 7'(i,x) and T(j,t) are Chebyshev Polynomials of the first kind, given by

x)= 4x — 3%. (2.4.28)

When we have constructed a function of this form, it is easy to convert it to a regular
polynomial by multiplying out and collecting terms in x and t. A Maple procedure
that does this is included on the accompanying CD-ROM.

2.4 Faster Quaternion Interpolation Using Approximations 261
steerage aocecsinu muaosscessasetansistnsvitittianaaanrnamantecnannnnnstitenatinnnnrenissnteinitt

Applying this to g(x,t) gives

1.570994357 -0.6461396421 0.07949824672 —0.004354110679

0.5642929825 0.5945659091 -0.1730440015 —0.01418982936

M= (2.4.29)
_0.1783657609 0.08610292588 0.1079287872 —0.01567243477

0.04319948653 -—0.03465102568 —0.01439451411 0.005849053560

for best accuracy in 0<a-b<1. Clearly, more terms can be used, and each row adds

two SIMD instructions and more precision to the x expansion.

One of the most useful features of this method is that once the vector

1
—§ XM 2.4.30
l+x ies)

is evaluated, multiple a(t) and [(t) values can be generated with simple algebra.

Listing 2.4.3 shows an implementation.

Listing 2.4.3 Matrix Slerp Method Class

class SlerpMatrix

{
public:

SlerpMatrix(const Quat &a, const Quat &b) : mA(a), mB(b)

{
float adotb = a.X * b.X + a.Y * b.Y + a.Z * b.Z + a.W * D.W;

mRecipOnePlusAdotB = Recip(1 + adotb);

mC1 = 1.570994357f+(.5642929859f+(-.1783657717f

+.4319949352e-1f*adotb) *adotb) *adotb;

mC3 = -.6461396382f+(.5945657936f+ (.8610323953e - 1f

- .3465122928e-1f*adotb) *adotb) *adotb;

mC5 = .7949823521e-1ft+(-.1730436931f+(.1079279599f

- .1439397801e-1f*adotb) *adotb) *adotb;

mC7 = -.4354102836e -2f+(.1418962736e- 1f+(- .1567189691e-1Ff

+,5848706227e-2f*adotb) *adotb) *adotb;

}

Quat Interpolate(float t) const

float | = ent tee tt, Te = T * TF;

float alpha = (mC1+(mC3+(mC5+mC7*T2) *T2)*T2)*T ce

mRecipOnePlusAdotB;

float beta = (mC1+(mC3+(mC5+mC7*t2)*t2)*t2)*t *

mRecipOnePlusAdotB;

return Quat(alpha * mA.X + beta * mB.X, alpha * mA.Y +

beta * mB.Y, alpha * mA.Z + beta * mB.Z,

alpha * mA.W + beta * mB.W);

Section 2 Mathematics

private:
float mRecipOnePlusAdotB;

float mC1, mC3, mC5, mC7;

const Quat &mA;

const Quat &mB;

}5

Here, we precalculate polynomial coefficients that enable us to simply calculate a

series of interpolations. In practice, we would probably recode this using native

SIMD instructions.

Renormalization

A quick and dirty approximation, where accuracy is not important, is to simply linear
interpolate (lerp) the quaternions and renormalize the result. This produces a result

that is good to about four to eight bits in normal use, which is quite often enough. If

the angle between the quaternions is very small, the result is quite accurate.
This is the method that has been used in vertex shaders as it is possible to blend

between several quaternions in a way that is superior to conventional matrix blending.
However, except for the setup time, the interpolation is slower than the Matrix

slerp method presented earlier and has significantly less precision.

Listing 2.4.4 shows an implementation.

Listing 2.4.4 Simple Lerp and Renormalization

class SlerpSimpleRenormal

{
public:

SlerpSimpleRenormal(const Quat &a, const Quat &b)

mA(a), mB(b)

{
}5

Quat Interpolate(float t) const

{
float alpha = 1 - t;

float beta = t;

Quat result(alpha * mA.X + beta * mB.X, alpha * mA.Y +

beta * mB.Y, alpha * mA.Z + beta * mB.Z,

alpha * mA.W + beta * mB.W);

float recip = RecipSqrt(result.X * result.X + result.Y *

result.Y

+ result.c ~ Pesultec -F "result W * result.W)s

return Quat(result.X * recip, result.Y * recip,

result.Z * recip, result.W * recip);

2.4 Faster Quaternion Interpolation Using Approximations 263

private:

const Quat &mA;

const Quat &mB;

};

The simple lerp can be improved by approximating

sin(tarccos x)
B(x,t) o(x,t)=1-B(x,t), (2.4.31)

z sin(tarccosx) a sin((1 = t)arccos x) :

instead, and then renormalizing. Alternatively, the angle subdivision methods can be

used before the lerp and renormalization operations.

Renormalization can also significantly improve the accuracy of the direct and

matrix methods, but at the cost of extra time.

Listing 2.4.5 shows an implementation of the improved renormalization method.

Listing 2.4.5 An Improved Renormalization Method (Rather Cumbersome, However)

class SlerpRenormal

{
public:

SlerpRenormal(const Quat &a, const Quat &b)

mA(a), mB(bd)

{ ;
float adotb =a.x * b.X + a.Y * b.Y + a.Z * b.Z + a.W *

b.W;

adotb = Min(adotb, 0.995f);

float even = 2.218480716f + .2234036692f * adotb * adotb;

float odd = 2.441884385f * adotb;

mTheta = Sqrt(even - odd) - Sqrt(even + odd)

+ 1.570796327f + .6391287330f * adotb;

}

Quat Interpolate(float t) const

{
float T=1 - ee ten el eens

iddteAl——(seenCe ee amne tals

float B = t * mTheta;

float sinA = -.67044e-5f + (1.000271283fF +

(-.17990919e-2f

- .556099983e-2f +

(.1198086481e-1f

Ws e7ri20o2ise-2f * Ay * AY * A) * A) RA) * A;

float sinB = -.67044e-5f + (1.000271283f +

(-.47990919e-2f

+ (-,1621365372T + (- .556099983e-2f +

(.1198086481e-1f

dorin'e7 12092 066227 Bi) * Bi et 1B peteBe) 4 [33 J) ake

float recipAB = Recip(sinA + sinB);

float alpha = sinA * recipAB ;

float beta = sinB * recipAB;

ct ct ib) iT]

+ (-.1621365372F + (

264 Section 2 Mathematics

// renormalise ~.

Quat result(alpha * mA.X + beta * mB.X, alpha * MA.Y +

beta * mB.Y,

alpha * mA.Z + beta * mB.Z, alpha * mA.W + beta *

mB.W);

float recip = RecipSqrt(result.X * result.X + result.Y *

result.Y

+ result.Z * result.Z + result.W * result.W);

return Quat(result.X * recip, result.Y * recip,

fFesult.2 * Lecip, heSUlt We sreclpm)s

}
private:

float mTheta;

const Quat &mA;

const Quat &mB;

}5

Angle Subdivision Methods

We can bisect the angle between two quaternions by noting that

a) = 1 B(x3)= (2,3 Trivagtly lose pyaciarpen:

This is exact for half the angle and can be extended for any value of ¢ that is composed
of quarters, eights, sixteenths, and so on. A Maple worksheet is included on the

Es accompanying CD-ROM that calculates the subdivision beta functions in terms of
ONTHECD square roots using bisection.

) iL sin(4arccos(x)) 1

B(x,0)=0,

B(x,1/4)= 1+V2+2x

J24N24 20225

ha ATEE S.
] B(ag3 4) a or

(x V24+V24+2xV24+2x

Pi 2, ewe (2.4.33)

Comparison of Methods
sicinemesscanten aren seein ~— sous

We Be eo the Raat aye accuracy eae “speed The test data were three sets of
quaternion encodings with large, medium, and tiny rotations.

2.4 Faster Quaternion Interpolation Using Approximations 265
stn ionnnnasntearoteeestconentensnnnenes Sree Attest thAsenetent nH UbuAeAaNr Hn ihren HHUMMOH RHEE rm wm

We expect the small rotations to be more accurate, as the distance between the

quaternions is smaller. Large rotations are less common in animation data, but an

algorithm must cope with these as well. Table 2.4.1 summarizes the accuracy of the

methods for different classes of input data.

Table 2.4.1 Approximate Precision in Bits Equivalent

Data set Large angles Medium angles Tiny angles

Worst Avg Worst Avg Worst Avg

SlerpDirect 11 13 11 11 11 i

SlerpRenormal 16 18 Ny 19 1) 19

SlerpMatrix 13 16 14 15) 15 15

SlerpSimpleRenormal 4 8 11 15 19 19

Table 2.4.2 lists the time taken (in arbitrary units) to slerp 50,000 quaternions. The

test consists of one setup and 10 interpolations using a wide range of data.

Table 2.4.2 Slerp Time

SlerpReference 22906

SlerpDirect 13077

SlerpRenormal 24115

SlerpMatrix 7829

SlerpSimpleRenormal ; IPSs}

This shows that the approximate functions are quite a bit faster than the reference

function, although to get real speed improvement, we would need to code using

native instruction sets.

The Matrix method is the clear winner, beating even the simple lerp and renor-

malization method, probably because of the slow implementation of sqrt on the fpu.

This would work especially well on the PS2 VUO coprocessor, where micro mode

could be used to calculate large batches of quaternions for skinning.

Squad Derivative Calculation

ON THE CD

We also investigated speeding up the “squad” or spherical quadrangle approximation

often mistaken for a Bézier slerp.

Using the approximate arccos and sin functions and a nicely reduced function,

we found it was possible to simplify the traditional method that uses log and expo-

nent of quaternions.

Listing 2.4.6 shows a function that contains relatively benign components, easily

codeable using SIMD instructions. The approximate functions ArccosFast and SinFast

in Listing 2.4.6 are included on the accompanying CD-ROM.

266

Listing 2.4.6 Elegant Squad Derivative Generator

Section 2 Mathematics

// Squad derivative calculation, optimized by hand

// This is quite fast and gives excellent results (~16 bits)

// try to remove the branches implicit in the ? operators.

Quat DerivativeCompact(const Quat &a, const Quat &b,

{

const Quat &c)

Quat bconj = Conj(b);

Quat arel = Mul(a, bconj);

Quat crel = Mul(c, bconj);

float aScale = arel.W > 0.9999f ? -0.25f :

-0.25f*ArccosFast(arel.W) * RecipSqrt(1 - arel.W * arel.W);

float cScale = crel.W > 0.9999f ? -0.25f

-0.25f*ArccosFast(crel.W) * RecipSqrt(1 - crel.W * crel.W);

float

float

float

float

float

float

float

logx = aScale * arel.X + cScale * crel.X;

logy = aScale * arel.Y + cScale * crel.Y;

logz = aScale * arel.Z + cScale * crel.Z;

length = Sqrt (logx * logx + logy * logy + logz * logz);

sinLength = SinFast(length);

cosLength = Sqrt(1 - sinLength * sinLength);

xyzScale = length < 1e-5f ? 1 : sinLength / length;

return Mul(b, Quat(xyzScale * logx, xyzScale * logy,

pes
}

xyzScale * logz, cosLength

// This function can be used like this:

Quat d1 = DerivativeCompact(q0O, qi, q2);

Quat d2 = DerivativeCompact(q3, q2, qi);

Quat qi2 = SlerpMatrix(qi, q2).Interpolate(fract);

Quat di2 = SlerpMatrix(di, d2).Interpolate(fract);

Quat squad = SlerpMatrix(q12, di2).Interpolate(2 * fract *

(CA SG aC Bae)

// Where gO,...,q3 are a sequence of keys, fract is the

fractional time.

Further Reading
vate ee a a at ma NCR SRR ETAL

The reader iene ei ek See Siggraph paper [Shoe85] for a background to

the quaternion slerp process. Not only does this introduce us to the concept, but it is
also a very readable introduction to quaternion rotations.

It is worth noting that [(x,t) is almost identical to a Chebyshev polynomial of
the second kind, unlike the Chebyshev polynomials of the first kind we used for the
2D approximation.

2.4 Faster Quaternion Interpolation Using Approximations 267

Blat}=U, (x) (2.4.34)

These are solutions of a Sturm-Louiville differential equation:

2

(1- 1°)“ B(x) x= B(x.) +(# -1)B(x,t)=0 (2.4.35)

Normally for Chebyshev Polynomials, the parameter t would be an integer, in which

case the function would be a polynomial. However, as our parameter f is a real value,

we have a nonpolynomial result.

Read Chapter 11 of [Rich02] for further information. This book contains a good

introduction to Maple, power series, and approximate methods.

While doing the research for this gem, we explored using forward differences to

solve this equation for a(t) and B(t). Although this was nota good method for eval-

uating the function at a spot value, it would probably be useful for evaluating a series

of quaternion interpolations. It is also possible to use multiple-angle formulae to iter-

ate successive slerp results.

Conclusion
a OSE SE EE ROE EET ETE sue Me EAE TERETE

We have explored many methods of approximating the quaternion slerp function, which

is used extensively in character-based games. We have developed a simple matrix-based

method that requires only a few multiplies and adds to produce accurate interpolated

rotation quaternions.

Angle subdivision methods using only square roots were also discussed that enable

very specific slerp values to be calculated simply.

We have also investigated the squad interpolation function and found a simple

function to generate the extra quaternions required for smooth interpolation of a

series of keys.

References
ALLELE LLL LLL LOLI LTT

[Hejl04] Hejl, Jim. “Hardware Skinning with Quaternions” Games Programming

Gems 4, 5.12. Charles River Media, 2004.

[Rich02] Richards, D. Advanced Mathematical Methods with Maple. Cambridge Uni-

versity Press, 2002.

[Shoe85] Shoemake, Ken. “Animating Rotations with Quaternion Curves,” ACM

SIGGRAPH, 1985.

1) 5h a ie belt ahaa
=e, 7) - 7

q)

\j :
_ : a ia ras

~ ™~ ‘i me = / .

* “ Sn

- » Pens pie bd ice + yer s 7 ——

= ’ ’ - " ye ie:

ere st antag oredined bre ey
a ae ' e468 40 Aa Fea oc? ~ . A

= 7) 52 saad Soot ra me, ¥ porte

ee 2) fhe free of Pe te ‘tale ¥ Fhe ates

he :
c: 1 oe

A, Wes Asie ab aepin Ae “ gp | + 5 orenagey, 34)

2 tiles haw et waar unde sien: arvenwrotd domi ad bi
- 7 m eae « are. * Oe

* hangs eimai deve aay, dolydastcs eet t gay ke y

ei: Lede marusenpepe (qe zones VRE IRE
areal brews) getae tetas vetaiieg Bese Aon. 00 ty be

Ol haes-404 badinn) bows 4 spi hr, - bet (3 ai Sea geed

- : ms ona < glietsy. wr tea bora aoa haber nlyaw, iL & XA? = te

; arti on sebiiinoagi vigne sid win Sete Aiviicect patie: oD rnigtalegas:
7 | Ye Ahad scr’. }' - i.

- vise as sys 716 © gyagin per +m

etiam Mus, -@. Gnattaygecete > ror, arstonte ty

‘Tiouse © AUG, veeenge =

t Ps Pa a OE ee

Haute * nena sig pechervaiey caf) Mt YU ateare Ee TH ebortem nat berolines 0 be

; beweed-ertien sigue + f ssepokoresly 20 i SUF es ree } bay ced-s33 aateety To an ee :

heapaloerroi:: ateuth re Sayles nd ou Lae | ie aifetvlsase “ool t, "yt = rigens reds bottreety'?: |

. ec Lenlis oo) ge. O, qiengioeap Reber
55) aidade taith) bowtzseih seb: oti tA ep. Lies attic sous der iN ’

py Tle he ae a6 Pane 5 res

Sige & bnael bas nosrrasl, ngiulaoopes lage ade baie tea 7
a

& de eoidloaynia moore vol boiep eee dup tine at sisisting poste

are a 1 oui Of, aa_e@ <A
Cn

nolew bahrain th
a RTH

a Nae ae ST eons i) drew ani cut aos 715 whuk"

j ‘ ea: my +9 n .

; on ¥.) a
mi “ah , f i... ri ‘i al rm Heat ayy) ees ink Rh ae \ j

P Le (eae Saad al

; 7 i sb

MOA "avi, nore ah Me: wit om Ragactic a aa, ft ear de
rok 7 de: bi iq . s 4 f

Day at, a.
‘ “)/ J d

-

2.9

Minimax Numerical

Approximation

Christopher Tremblay

ti_chris@yahoo.com

oO: field of game programming that is often disregarded but ever so present is

that of approximation. Approximation is extremely important in a game's per-

spective since the game as a whole is really an approximation of something that we

want to represent. Consequently, the characters are approximated with polygons, and

the physics is approximated with given models. A more mathematical, but still pretty

interesting, type of approximation is that of complex functions with simpler, faster

functions. For example, computations involving the sine and cosine functions are

notorious for being pretty slow. It would indeed be beneficial in many cases if we

could come up with a function that is faster, but perhaps a little less accurate, than

that provided by the floating-point unit (FPU). Such functions can often define the

movement or position of certain objects within the world, and not obtaining full

accuracy typically does not significantly impair the final output. In such situations, it

can be pretty useful to find faster functions that approximate the original.

Well-Known Optimizations tenement ” poem MELEE a
eee sete NNT SAEED

During the study of calculus, one typically learns a common function approximation

technique known as the Taylor series. A Taylor series approximates a curve using a

polynomial function of a given degree. The polynomial function is chosen for its

speedy evaluation and its ease of use. A polynomial function can be quickly computed

since it involves operations that are relatively fast on a CPU today (when compared to

a cosine/sine or exponential function, for example). Furthermore, they can be written

in the Horner form, thus making them a mere set of multiplications and additions.

The Horner form of a polynomial is a form that writes the polynomial by factoring

the variable x out of the polynomial. For example, the polynomial given by

ax+ bx? +ex'+dx' +e (2.5.1)

269

What Makes a Good Approximation?

Section 2 Mathematics
an nT nT NT TITTINNTNTTTITTT TTT

can easily be rewritten in the Horner form:

e+x(at+x(b+x(c+xd))). (252)

A Taylor series approximates a curve by copying certain properties of the curve at a

given point. More specifically, it copies the position, slope, acceleration, etc. of the

curve, or more precisely, it is a polynomial for which the derivatives (up to a certain

level) match those of the original curve at a given point.

oe 5 Ra RSS eR

The Taylor approximation unfortunately comes with several issues. Notably, the

approximation converges very slowly (many terms are required to get a decent

approximation). Because of that, the error on a curve at a given point can be large. If

we compute a sine function approximation using a Taylor series and obtain an error of

0.5, then the approximation clearly is not really a good one since the curve has an

range of [-11]. For instance, note the difference in the sine function and its fourth-
degree MacLaurin series approximation (i.e., Taylor series expanded about x =0)
shown in Figures 2.5.1 and 2.5.2. In these figures, we see that the approximation

is not terribly good near the end of the interval, while it is pretty accurate at the

beginning.

FIGURE 2.5.1 Zhe sine function over the range [0,7].

2.5 Minimax Numerical Approximation 271

FIGURE 2.5.2 The sine function’ fourth-degree MacLaurin

approximation over the range [0,7].

The curve is an excellent approximation at x =0 but is indeed a very poor one at

x= 7. A better approximation to the curve would be achieved by choosing x = 27/2,

because the average error in the interval [0,7 | would be smaller. Thus, one thing

obviously needs to be defined at this point. What exactly makes an approximation a

good approximation? For one, it must closely resemble the initial function, and for our

purposes, it must be fast. It is well known that the Taylor series approximation is more

accurate if the degree of the polynomial is higher. In other words, the curve is a better

approximation if more derivatives match, but this comes at the cost of greater evalua-

tion time of the approximation. If the approximation turns out to be slower than the

actual function, we do have a problem, and the approximation cant possibly be

deemed “good.”

Now comes the problem of actually defining what “closely resembles” really means.

It is a very vague definition that needs to be specified in mathematical terms to make

any sense. The first thing we want to do is to define an interval upon which the function

will be approximated. We can yield a better approximation if we limit our approxima-

tion to a given domain. With this in mind, we can say that the best approximation is a

function that minimizes the maximum error over an interval [a,b]. Furthermore, we

can state that one approximation is better than another if it is more accurate for a given

polynomial degree. For instance, the fourth-degree MacLaurin series for the sine func-

tion is

Introducing the Minimax Approximation
REAR HES

Section 2 Mathematics
<n AACA Al ill lll lll lll Tll—ll—lll CellC

x?

sink =X So (2.5.3)

but the Taylor series centered about x= is given by

mw {1 aa ea Wi
nx To — +) = — Lit et sinx = 7 6 5) xX D) 6

0 a nx 1
2 ox | ——1 xl ee (2.5.4)

TS ecatially Kioey:

The latter in Horner form has more terms than the previous, and thus although the

error is smaller in the second case but still comparable, the first approximation is bet-

ter since it involves less computational complexity. If we were to add more terms to

the first approximation such that it would match the number of terms of the second

approximation, the first approximation would provide a smaller error for the same

number of terms and thus would be deemed a better approximation than the latter.

2

sinx = x Lenin (2:55)

More generally, x° can be factored out for any degree, significantly reducing the com-

putational complexity for a given precision since the MacLaurin approximation of the

sine function has a coefficient of zero for all terms of even degree. Consequently, it is

not only important to look at how a given function approximates another one very
well, it is also important to look at the computational complexity. This makes it easier
to speak of the best approximation as the function that for a given degree of multi-
plicative complexity minimizes the maximum error over an interval [a,b].

EA ca OSLER i ORI PRE RELI NT TE ISU LE EON EST REI Aa HANT

Now that we have defined the properties for “the best approximation” as far as we are
concerned, we can define the minimax approximation. The minimax approximation is
the best approximation for a given polynomial degree. It has no relation or knowledge
of computational complexity (i.e., how much work it takes to compute) and thus
differs a little bit from our definition of best approximation. Consequently for our pur-
poses, in a single line, the minimax approximation is a polynomial approximation of
degree m that minimizes the maximum error of a given function. By construction, the
minimax approximation is the holy grail of approximation for a given polynomial
degree, and it is unique up to permutations of equivalent equations. Because it has no
knowledge of complexity, it should be noted that some other approximations could
sometimes yield “better approximations.” In other words, for the same degree, the
minimax approximation will still be better or equal to the better approximation, but

2.5 Minimax Numerical Approximation 273
sighs gaguninrniee onsets stenoses NAAN eS ANNES . . . Aneta gnneneanaannnnaneeenurninnsenieeteinnsteeieeienhninetenasnnitintnaniniineniennomntntieeoumenecencenceroresreteieten

because the amount of CPU work required to compute the better approximation
makes it faster than the minimax approximation, the minimax approximation isn't the

best approximation. For example, this is true for the sine function when we approxi-
mate for a total of 13 bits of accuracy. In this case, the Taylor approximation is our

“best approximation” because of the Horner form that allows us to rewrite the equa-

tions in a more efficient way.

To make the notation easier, we can rewrite a general mth degree polynomial
- 2 hx) =Gtc xt c.x +--¢ x. as the:dot product

Calle (2.5.6)

where we define the row vector as ¢ and the column vector as x. We are primarily

interested in finding the values for the coefficients ¢, in the vector ¢. The key to the

minimax polynomial is defined by a theorem called the Chebyshev Equioscillation

Theorem. Let f be a continuous function with range [a,b] ER. The polynomial

p(x) of degree n is the minimax polynomial of degree n if and only if there exists

n+2 points aSx,<x,<-<x,,, $5 for which f(x,)- p(x,) = (-1)’ E with

Jae Oe ati eat, Hee +(f-p). Put into words, this implies that the error func-

tion actually has (n + 2) extrema. As a result of the theorem’s alternating sign equa-

tion, the two functions are equal exactly (n + 1) times for an approximation of degree

nand of course, all this is true unless the error E is zero, in which case the polynomial

is a perfect approximation of the original curve within its defined range.

Given that there are more extrema than times where the functions are equal as

well as the previously mentioned theorems, we can easily deduce that the first and last

point on the approximation are two points where the error is maximal. Furthermore

for this to make sense at all, the signed error must alternate sign. Given this much

information, we can actually solve simple problems with simple math. As an example,

consider the case in which we want to approximate a parabola with a single line. We

can solve the problem if we simply state the previously mentioned theorems and

lemma in terms of mathematics. We want to find the coefficient vector ¢= [a b|

for a line f (1) =a+bt such that the error E between it and the parabola g(t) Sin

over the range [0,1] attains the same maximum absolute value at three locations (two

of which are f=0 and t=1). This is summarized by the following equations

274
Section 2 Mathematics

debe laelrail rachis tsar si

f(0)-8(0)=£
f(x)-8(x)=-8
f(l)-s(l)=2

£1 ¢(x)-g(x)]=0. 2.5.7)

Substituting everything shows us that we are actually dealing with a system of

four unknowns with four equations:

a+b-0-3-0°=E

a+bx—3x° =—-E

a+b

b-6x=0. (2.5.8)

This system can easily be solved by any method we wish to apply. Doing so reveals

that the answer to this specific problem is (a,b) = (-3,3). We can also try the same

method against any reference function g(t) to notice how easy it is to compute the

minimax approximation for the second level. The maximum error of a minimax

approximation is always given by the difference of the original function and the

approximation at either of the endpoints of the interval over which the approxima-

tion is applied. We can obtain the values for the third degree minimax approximation

using the same logic expressed here. Where it becomes tricky is when we want to

compute the minimax approximation for polynomials of degree higher than three.

We reach a point where we have fewer knowns than unknowns, and we thus cannot

solve the system. In these cases, we must resort to more sophisticated mathematical

techniques to solve the problem at hand.

Solving the Minimax Approximations

for Arbitrary Degrees

It is by no means trivial to obtain the coefficients of an arbitrary minimax approxima-
tion. There are no strict speed requirements in finding the solution because it does
not need to be solved in real time. The Remez algorithm can help us solve the prob-
lem at hand and goes as follows.

1. Choose an initial guess for the coefficient vector ¢.
2. If the error F is satisfactory, stop. Otherwise, find the maximum vector x in

h(x) = g(x)- f (x) given ¢.

3. Find the values for the coefficient vector ¢ (forget about the previous value
for ¢) for the linear system g(x)- f(x)=(-1) E, given the maximum
vector X, and go back to step 2.

-5 Minimax Numerical Approximation 275
esas

In a nutshell, we choose an initial guess for the coefficient and find the values of the

maxima, which we iteratively use to refine the solution (¢ finds x, which finds ¢, etc.).

As an example of the solution, let us take the previous example and run it through the
algorithm. Suppose we make an initial guess of ¢ =(4,1). Now we need to find the
maxima (i.e., the roots of the derivative). There are ample methods out there for find-

ing roots of polynomials, and they are left as a reference (see [Math]). For this partic-

ular problem, the math is pretty simple and direct:

Q59)

We thus find a general equation that tells us that there is a maximum every time at

x= b/6. Quite obviously, due to the construct, there is also a maximum at x =0

and x =1 because they are the boundaries of the minimax approximation.

Now that we have an estimate for x (in fact the only unknown maximum for this

case), we can proceed to step 2 to find our coefficient:

' 1
at+bx+E=3x’,x= {0.2.1

i of 1 0
a

I 1
ja = =i! b\=| — 2.5.10 é 13 (2.5.10)

fs ea Se he

Solving the linear system, we find that the solution is (a,b,E) = (—1,3,14), which is

not too far from the minimax solution of our previous calculations. Going through

the second iteration of the loop, we find that x = 3/6 = 1/2, changing the equation to

the following.

|
thee B=3rx={0.0|

(0 Ie al
a

pelea Aya a (2.5.11)
2 4

miei! \3

276
Section 2 Mathematics

socntonnousysssseanevsssunsceni naan HeterHOnAKnsAAAlSH OHHH TNS MAMAS AA

Solving this linear system gives the exact solution we have known for quitea bit:

c= (-3,3). Obviously, not all approximations are this easy to compute.

Sometimes the root-finding process is tedious and requires an iterative process

such as the Newton-Raphson method or Haley's method, and the linear system

is sometimes tedious to process. The beauty about it is that we only need to

compute the coefficient once to compute the approximation to the function;

thus, there exists no true efficiency requirements. Figure 2.5.3 shows the graph

of the error between the approximation and the true function. We can clearly

see that it follows the theorems stated earlier in terms of extrema and null-errors.

FIGURE 2.5.3 Graph of the error between the first-degree

minimax approximation of f(x) and g(x):

Error Analysis
Sc RR OREO NODE AEN RTOS OE HSE AR PMO EERE ANS PRE ANRUAERST CCEA. OST ARERR SOR CRO

An especially true fact of approximation is that error analysis is a crucial part of the
work. The minimax approximation does not directly define the best approximation.
It merely defines the approximation giving the lowest maximal error for a particular
polynomial degree. It does not in any way guarantee that it is the fastest method given
a bit-accuracy. As a proof of this statement, suppose we wanted to approximate the
sine function over the interval [0,7/ 2]. We can easily compute the remaining values
of the function using simple trigonometric identities. The fourth-degree minimax
approximation for the sine function is given by the coefficient vector

2.5 Minimax Numerical Approximation 277
zanettntcenearonentnettetnne ence nmannricteonaacnetietne irr ne AOA HMA namo

c= (0.000107652,0.9964223759,0.0190787764,—0.2026644465,0.0284 1900366) (2.oind2,)

In Horner form, this equation takes a total of four multiplications. On the other
hand, we can write the Taylor series of the sine function for four multiplications in

Horner form:

sin(x) = x] 1+27 benef eeas (2.5.13) xX xX xX 3) X 5) 7 oe

If we consider that x? is precomputed as a single value, we have that the error func-

tion for this approximation is slightly better than the minimax approximation of
equal complexity as shown in Figures 2.5.4 and 2.5.5. This all means that the mini-
max approximation is an excellent approximation, but others can sometimes be better

depending on the bit depth. Thus, we should be careful as we go about computing

this to make sure that the minimax approximation is indeed the best one for a given

complexity.

0.0001

0.00005

FIGURE 2.5.4 Fourth degree minimax approximation to the sine function.

If we compare a minimax approximation in Figure 2.5.4 with a Taylor series of

similar degree in Figure 2.5.5, it is quite clear that the minimax approximation is the

undisputed winner. One has a maximal error of about 0.0001 while the other hosts an

error of 0.00016. The best part is that the minimax approximation offers a faster alter-

native to every single FPU function in existence, regardless of the precision. If we take

278 sie ae te Sotto 2M et en
tvaisescnsscrntnenetnnenunstetv rekon aneemnannt teeter AAAS

0.00016

0.00012

0.00008

0.00004

0 0.2 0.4 0.6 0.8 1 1.2 1.4

X

FIGURE 2.5.5 Seventh degree Taylor approximation to the sine function.

the previously mentioned approximation for the sine curve for example, the sine func-

tion is twice as fast as what is provided by the FPU, and ina reasonable approximation’s

case, the precision losses are not that high as shown in Tables 2.5.1 and 2.5.2. It gets

even better if we implement this technique using a SIMD (Single Instruction, Multiple

Data) processor. By doing so, we can basically compute four sine functions simultane-

ously, improving the speed almost seven times the speed of a single sine function, or

minimally six times for a function that has full 23 mantissa bits of accuracy.

Table 2.5.1 Error for Sin(x) Taylor Series

Degree Taylor Equations for sin x Max Error for 0 = [0,1/2]

0 0 1

1 E 0.5707

2 x 0.5707

3 x —x?/6 O751G > 10>

4 x — «3/6 Ske S< Ua

5 x— 7/6 + «°/120 —0.4524 < 107

2.5 Minimax Numerical Approximation 279
Seon SALAAM PLO HOLDS EEL NEEDLE UNO ARAOE MEM RED REUTER OE

Table 2.5.2 Error for Minimax of Sin(x)

Degree Minimax Equation for sin x Max Error for 6 = [0,7/2]

0 0.5 0.5

1 0.1051 + 0.6366 - x 0.1051

2, —0.1385 - 107! + 1.1748 - x -0.3314 + x? 0.1385 X 1071

3) —0.1365 X 10-2 + 1.0252 - x—0.7068 X 107! - x? 0.1365 X 107

—0.1125 - x?

4 —~0.1076 X 103+ 0.9964 - x + 0.19078 X 1071 - x? 0.1076 X 103

—0.2026 - x3 + 0.2841 X 107 - x4

3) 0.7064 X 10> + 0.9996 - x + 0.2193 X 10 - x? 0.706482 X 10°

—0.1722 - x3 + 0.6097 X 10°? - x4 + 0.57217 - x?

From this point on, computing an approximation for a function is pretty trivial. In

practice, we can approximate every single FPU function, and we can almost always at

least double the speed of the functions if we simply use a few identities.

Further Improving the Approximation

There are three methods for decreasing the approximation’s error. The most obvious

one is to increase the polynomial degree and thus increase the complexity of the

computations. This is not the ideal method, since it does involve increasing the com-

plexity. The other technique we may consider is to convert the function into a combi-

nation of other functions. For instance, if we want to compute the numerical

approximation of sinx-cosx, we should consider whether it is faster to compute two

approximations (one for sine and one for cosine) than to compute one approximation

for the entire function. In this specific case, it is not. Computing the approximation

of the entire function yields faster results when compared to approximating two func-

tions, but it is something to be considered at all times, as it may well not be the case

for more complex functions. This is especially true for rational functions.

The very last method that can be used to improve an approximation is to simply

reduce the range of the approximation. In the first example, the sine function was

approximated only on the interval [0,7/ 2|; and trigonometric identities can be used

to compute values outside this range. Sometimes, it may be wise to compute piece-

wise approximations to a function to reduce its complexity. For example, if we want

to compute the approximation to the sine function once more, we could do so by

computing 18 linear (first-degree) evenly spaced approximations. It is very easy to

know which approximation to use if the function is evenly spaced-the range is a division

of the entire curve, and we can store the coefficient in a table to compute the value. In

embedded devices, sine/cosine tables are often used, and they represent the values of the

functions for a given degree. If we use this technique, we can achieve a greater precision

with less static footprint, given an extra multiplication/addition per computation. It is

well worth the effort and rather easy to compute as was shown earlier.

280
Section 2 Mathematics

Finally, the last piece of advice that can be given is to use identities or geometric

relationships when possible. All transcendental FPU functions can be accelerated with

the minimax approximation. It is really only a matter of knowing what geometrical

relationships exist within the functions in order to reduce the range of approximation.

For instance, consider the function tan x. At first view, it is a very hard function to

approximate because of its asymptotic behavior. Fortunately, if we consider the identity

l
(P=

1
at |e

ls

we can significantly reduce the precision issues by creating an approximation of tanx

from angles 0 to 1/ 4. As another example, consider the inverse of the tan function:

the arctan function. This function is also very ugly because it is asymptotic in x and

thus has an unlimited range. Fortunately with a quirky identity, we can reduce the

approximation’s range to a mere 0) to 1:

(2.5.14)

7|x| \!
arctan x = —— — arctan] — |. A Fei Ba,

gE: x

As long as the identity we find is not more complicated than computing the function

itself with the EPU, it should not be a problem. For the two examples presented, the

cost of the divisions and extra work required doesn’t really hurt that much since the

equivalent FPU functions for theses two functions are even slower than the sine/cosine

functions, thus compensating for the more complex logic required to compute the

function.

Reference
SMS ARNEL RNS ROLE AIS EE TEE MM TENET DRIES INC PARES HN REE ORTRONICS BSR EE GES,

Mer ener on-line at http://mathworld.wolfram.com/Root-FindingAlgorithm.

tml.

2.6

Oblique View Frustums

for Mirrors and Portals

Eric Lengyel

lengyel@terathon.com

So" techniques have been developed to render 3D images containing elements

that are inherently recursive in nature. Some examples are mirrors that reflect

their immediate surroundings, portals through which a remote region of the scene

can be viewed, and water surfaces through which refractive transparency is applied.

Each of these situations requires that part of the scene be rendered from the perspec-

tive of some imaginary camera whose position and orientation are calculated using

certain rules that take into account the position of the real camera through which the

user is looking. For example, the image visible in a mirror is rendered using a camera

that is the reflection of the real camera through the plane of the mirror.

Once such a component of an image is rendered through an imaginary camera, it

is usually treated as a geometrically planar object when rendering from the perspective

of the real camera. The plane chosen to represent the image is simply the plane that

naturally separates the image from the rest of the environment, such as the plane of a

mirror, portal, or water surface. In the process of rendering from an imaginary cam-

era, it is possible that geometry lies closer to the camera than the plane representing

the surface of the mirror, portal, etc. If such geometry is rendered, it can lead to

unwanted artifacts in the final image.

The simplest solution to this problem is to enable a user-defined clipping plane to

truncate all geometry at the surface. Unfortunately, older GPUs do not support user-

defined clipping planes and must resort to a software-based vertex processing path

when they are enabled. Other more modern GPUs do support generalized user-

defined clipping operations but using them requires that the vertex programs in use

be modified—a task that may not be convenient since it requires two versions of each

vertex program to be kept around.

This gem presents an alternative solution that exploits the clipping planes that

already exist for every rendered scene. Normally, every geometric primitive is clipped

to the six sides of the view frustum: four side planes, a near plane, and a far plane.

Adding a seventh clipping plane that represents the surface through which we are

looking almost always results in a redundancy with the near plane, since we are now

281

282
Oe ee Section 2 Mathematics

clipping against a plane that slices through the view frustum further away from the

camera. Thus, our strategy is to modify the projection matrix in such a way that the

near plane is moved to coincide with the surface plane. Since we are still clipping only

against the six planes of the view frustum, such a modification gives us our desired

result at absolutely no performance cost. Furthermore, this technique can be applied

to any projection matrix, including the conventional perspective and orthographic

projections as well as the infinite projection matrix used by stencil shadow volume

algorithms.

Plane Representation SUH RTARTA TSE TL ETE MALLE EL TITTLE TTT RRMA

Before examining the projection matrix and how it defines the six planes of the view

frustum, we quickly review how planes work in 3D graphics. A plane C is mathemat-

ically represented bya four-dimensional vector of the form

C=(N,,N,,N,.-N-Q), (2.6.1)

where N is the normal vector pointing away from the front side of the plane, and Q is

any point lying in the plane itself. A homogeneous point C= (N,,N,,N,,-N-Q)

lies in the plane if and only if the four-dimensional dot product C-P is zero. For

points lying on the front (or positive) side of the plane, this dot product is positive,

and for points lying on the back (or negative) side of the plane, this dot product is

negative.

A plane C scaled by any nonzero scalar still represents the same plane. Likewise, a

homogeneous point P scaled by any nonzero scalar still represents the same point. If

the normal vector N of a plane C is unit length, and the w-coordinate of a point P is

1, then the dot product C-P measures the signed perpendicular distance from the

point P to the plane C.

A plane is a covariant vector and therefore must be transformed from one coordi-

nate system to another using the inverse transpose of the matrix that transforms ordi-

nary points (which are contravariant vectors). This is particularly important when

transforming planes with the projection matrix, since it is not orthogonal. Given a

camera-space point P and a camera-space plane C, the projection matrix M produces

a clip-space point P’ and a clip-space plane C’ as follows

P’=MP
eds ad (2.6.2)

Inverting these equations gives us the following formulas, which transform from clip
space to camera space

P=M'P’

C=M'C’. (2.6.3)

2.6 Oblique View Frustums for Mirrors and Portals 283

The Projection Matrix

We spend some time now reviewing the function of the projection matrix and its rela-
tionship to the view frustum’s clipping planes. We avoid examining any particular
form of the projection matrix and require only that it be invertible. This allows our
results to be applied to arbitrary projection matrices that may have already been mod-
ified from the standard forms.

Recall that in OpenGL camera space (also known as eye space), the camera lies at
the origin and points in the —z direction, as shown in Figure 2.6.1. To complete a
righthanded coordinate system, the x-axis points to the right, and the y-axis points
upward. (In Direct3D, the z-axis is reversed and camera space is lefthanded.) Vertices
are normally transformed from whatever space in which they are specified into cam-
era space by the model-view matrix. In this gem, we do not worry about the model-
view matrix and assume that vertex positions are specified directly in camera space.

Z

FIGURE 2.6.1. OpenGL camera space and the standard view

frustum. The near and far planes are perpendicular to the z-axts

and lie at the distances n and from the camera, respectively.

The standard view frustum is the six-sided truncated pyramid that encloses the vol-

ume of space visible to the camera. As shown in Figure 2.6.1, it is bounded by four

side planes representing the four edges of the viewport, a near plane at z=—n, anda

far plane at z=—f. The near and far planes are normally perpendicular to the cam-

era’s viewing direction, but our modifications to the projection matrix will move these

two planes and change the fundamental shape of the view frustum.

The projection matrix transforms vertices from camera space to homogeneous

clip space. In OpenGLs homogeneous clip space, a four-dimensional point ee Wises w)

284
Section 2 Mathematics

cee ONAN AAACN OCONnnnnNnnnes

lies inside the projection of the camera-space
view frustum if the following conditions

are satisfied

—wsxsw

—-wsysw

—wszsw.
(2.6.4)

Performing the perspective division by the w-coordinate moves points into normalized

device coordinates, where each coordinate of a point in the view frustum lies in the

interval [-11]. Our goal is to modify the projection matrix so that points lying on a

given arbitrary plane have a z-coordinate of —1 in normalized device coordinates.

Figure 2.6.2 shows the x and z components of a three-dimensional slice of the

four-dimensional homogeneous clip space. Within this slice, the w-coordinate of

every point is 1, and the projection of the view frustum described by Equation 2.6.4

is bounded by six planes forming a cube. The w-coordinate of each plane is 1, exactly

one of the x-, y-, and z-coordinates is +1, and the rest of the components are zero, as

shown in Table 2.6.1. Given an arbitrary projection matrix M, Equation 2.6.3 can be

used to map these planes into camera space. This produces the remarkably simple for-

mulas listed in Table 2.6.1 in which each camera-space plane is expressed as a sum or

difference of two rows of the projection matrix.

{0F0) 1 a1)

(1, 0, 0, 1) (-1:0;091)

FIGURE 2.6.2 A three-dimensional slice of OpenGLs
homogeneous clip space at w=1 and four of the six
clipping planes that form a cube in this space.

2.6 Oblique View Frustums for Mirrors and Portals 285

Table 2.6.1 OpenGL clip-space and camera-space view frustum planes. The matrix M
represents the projection matrix that transforms points from camera space to clip space.
The notation represents the j-th row of the matrix M.

Frustum Plane Clip-space Coordinates Camera-space Coordinates

Near (0,0,1,1) M, + M;

Far (0,0,-1,1) M,-—M;

Left (1,0,0,1) M,+M,
Right (-1,0,0,1) M,-—M,
Bottom (0,1,0,1) M,+M,

Top £0,—1,0,1) M,-—M,

Clipping Plane Modification | << Sen

Let G= (Gn GRE Ga) be the plane shown in Figure 2.6.3, having coordinates

specified in camera space, to which we would like to clip our geometry. The camera
should lie on the negative side of the plane, so we can assume that C, <0. The plane
C will replace the ordinary near plane of the view frustum. As shown in Table 2.6.1,
the camera-space near plane is given by the sum of the last two rows of the projection

matrix M, so we must somehow satisfy

C=M,+M,. (2.6.5)

We cannot modify the fourth row of the projection matrix, because perspective pro-

jections use it to move the negation of the z-coordinate into the w-coordinate, and

this is necessary for perspective-correct interpolation of vertex attributes such as tex-

ture coordinates. Thus, we are left with no choice but to replace the third row of the

projection matrix with

M’=C-M,. (2.6.6)
4

Far Plane

Near Plane

FIGURE 2.6.3 The near plane of the view frus-

tum is replaced with the arbitrary plane C.

286
Section 2 Mathematics

After making the replacement shown in Equation 2.6.6, the far plane F of the

view frustum becomes
‘

F=M,-M,

= 2M, -C. (2.6.7)

This fact presents a significant problem for perspective projections. A perspective pro-

jection matrix must have a fourth row given by M, = (0,0,-1,0) so that the clip-

space w-coordinate receives the negation of the camera-space z-coordinate. As a

consequence, the near plane and far plane are no longer parallel if either C, or C, is

nonzero. This is extremely unintuitive and results in a view frustum having a very

undesirable shape. By observing that any point P= dons y,0, w) for which C-P =0

implies that we also have F-P=0, we can conclude that the intersection of the near

and far planes occurs in the x-y plane, as shown in Figure 2.6.4(a).

Since the maximum projected depth of a point is achieved at the far plane, pro-

jected depth no longer represents the distance along the z-axis, but rather a value cor-

responding to the position between the new near and far planes. This has a severe

impact on depth-buffer precision along different directions in the view frustum. For-

tunately, we have a recourse for minimizing this effect, and it is to make the angle

between the near and far planes as small as possible. The plane C possesses an implicit

scale factor that we have not yet restricted in any way. Changing the scale of C causes

the orientation of the far plane F to change, so we need to calculate the appropriate

scale that minimizes the angle between C and F without clipping any part of the orig-

inal view frustum, as shown in Figure 2.6.4(b).

Let C’= (M" y" C be the projection of the new near plane into clip space (using

the original projection matrix M). The corner Q’ of the view frustum lying opposite

the plane C’ is given by

Q’ = (sgn(C’),sgn(C’), 1,1) (2.6.8)

where the sgn function returns the sign of its argument as follows.

+1, ifk>0;
sen(k)=4 0, ifk=0; (2.6.9)

-1, ifk<0.

(For most perspective projections, it is safe to assume that the signs of C’and C ’ are
. y

the same as C, and C,,, so the projection of C into clip space can be avoided.) Once

2.6 Oblique View Frustums for Mirrors and Portals 287
-seretensnsnnnsornsennnneivnniisieittssestennenencotbieitatsnereoerontesr:czucnnten iSite nanny toto tnARHE stonnutnnnnesseettanASSHE SEALE ALHMMAL ASEH LAS LAOLAAL AS AA LA HA ALanta adenine niet tee At Ane nae Ree EASE MA OES

we have determined the value of Q’, we obtain its camera-space counterpart Q by

computing Q=M 'Q’. For a standard view frustum, Q coincides with the point

opposite the plane C where two side planes meet the far plane.
To force the far plane to contain the point Q, we must require that F-Q=0.

The only part of Equation 2.6.7 that we can modify is the scale of the plane C, so we
introduce a factor a as follows:

F=2M, -aC. (2.6.10)

Solving the equation F-Q=0 for a yields

12M Q
> 2.6.11 ao (2.6.11)

replacing C with aC in Equation 2.6.6 gives us

2M, :
eae (2.6.12)

and this produces the optimal far plane orientation shown in Figure 2.6.4(b). It

should be noted that this technique also works correctly in the case that M is an in-

finite projection matrix (i.e., one that places the conventional far plane at infinity) by

forcing the far plane to be parallel to one of the edges of the view frustum where two

side planes meet.
As mentioned earlier, modifying the view frustum to perform clipping against an

arbitrary plane impacts depth-buffer precision, because the full range of depth values

may not be used along different directions in camera space. It can be shown that the

maximum attainable normalized device z-coordinate along the camera-space direc-

tion V is given by

a(C-V)+V
Zz oor (2.6.13)

Zz

In general, the depth buffer precision decreases as the angle between the normal direc-

tion of the clipping plane C and the z-axis increases and as the distance from the cam-

era to the clipping plane increases. More information about depth precision issues can

be found in [Leng04].

288
Section 2 Mathematics

(a)

FIGURE 2.6.4 (a) The modified far plane F given by Equation

2.6.7 intersects the modified near plane C in the x-y plane.

(b) Scaling the near plane C by the value a given by Equation

2.6.11 adjusts the far plane so that the angle between the near

and far planes is as small as possible without clipping any part of

the original view frustum. The shaded area represents the volume

of space that is not clipped by the modified view frustum.

2.6 Oblique View Frustums for Mirrors and Portals 289

posto nementauon
The standard OpenGL perspective projection matrix M is given by

2n 0 r+l 0

r—-l r—l

0 2n t+b 0

M= t-b t-b (2.6.14)

0 0 cite 2h

f-n fen

0 0 —] 0

where 7 is the distance to the near plane, f is the distance to the far plane, and the
values /, 7, 6, and ¢ represent the left, right, bottom, and top edges of the rectangle
carved out of the near plane by the four side planes of the view frustum. Since
M, = (0,0,-1,0) , Equation 2.6.12 simplifies to

—
M, = 2. © +(0,0,1,0). (2.6.15)

C:Q

The point Q is given by

Q=M" (sgn(C,),sgn(C,), 11), (2.6.16)

applying the inverse of M, we have

gamle tek

sen(C,) an oat

bab Vier
Q= son) et f (2:6,17)

—]

i/f

nasntyrusssssnsannnstinesnnesninicernnnenannnicincHnatsnrneneni 290
Section 2 Mathematics

ssunnbsoneneescnenanntonmcnunnnnnieonet

Listing 2.6.1 demonstrates how the modification to the projection matrix can be

implemented in an OpenGL-based application for a typical projection matrix. It

assumes that the projection matrix M is a perspective projection having the form

a 0 b O

0 aad “=
M= ‘ (2.6.18)

Or OP se ey)

00-1 0

where a>0, c>0,and f #0. The code makes direct use of the general inverse of

M, given by

idee Orn J0r abhe

On tlices Ome, dic
M'= i (2.6.19)

(= s0am cy =~

OemOmey yt eh

Listing 2.6.1 Implementation of the Projection Matrix Modification for an OpenGL

Projection Matrix Having the Form Shown in Equation 2.6.18 (The clipPlane parameter

passed to the ModifyProjectionMatrix function represents the camera-space plane

to which clipping is to occur.)

inline float sgn(float a)

{
if (a > 0.0F) return (1.0F);

if (a <s0,0F) *netunn (10m).

return (0.0F);

}

struct Vector4D

{
ATL OCs MX yee Wa

Vector4D() {}

Vector4D(float a, float b, float c, float d)

{

}
x = as y = bi Z = Cy) Weed;

2.6 Oblique View Frustums for Mirrors and Portals ; 291
ECR te NE EAM MRE NRE

// Scalar product
Vector4D operator *(float s) const

{

}
ReCUrMEMECLORAID (Xs 78S, Vi oS sez. * Si, Was):

// Dot product
float operator *(const Vector4D& v) const

{
mene) (Ok 82 Wee ie A FS WA era Wey sa oP AZT

}
}5

void ModifyProjectionMatrix(const Vector4D& clipPlane)

{
float matrix[16];

Vector4D lr

// Grab the current projection matrix from OpenGL
glGetFloatv(GL_PROJECTION MATRIX, matrix);

// Transform the clip-space corner point opposite the

// clipping plane into camera space by multiplying it

// by the inverse of the projection matrix

q.x = (sgn(clipPlane.x) + matrix[8]) / matrix[0];

q.y = (sgn(clipPlane.y) + matrix[9]) / matrix[5];

q.z = -1.0F;

q.w = (1.0F + matrix[10]) / matrix[14];

// Calculate the scaled plane vector

Vector4D c = clipPlane * (-2.0F / (clipPlane * q));

// Replace the third row of the projection matrix

matrix[2] = C.x;

matrix[6] = c.y;

MatrexdeO = coz ciOR:

matrix[14] = c.w;

// Load it back into OpenGL

glMatrixMode(GL_PROJECTION) ;

glLoadMatrix(matrix) ;

}

In the Direct3D environment, camera space is lefthanded, and the near plane cor-

responds to the set of points for which the clip-space z-coordinate is 0. Thus, the

value of the near clip plane listed in Table 2.6.1 should be changed to (0,0,1,0) for

Direct3D applications. Consequently, the camera-space value of the near clip plane is

simply given by M,. This means that the entries of the third row of the projection

AAMAMA:AAMAMMAMMAAM
MAAAMAANAA AN

Section 2 Mathematics

matrix are exactly the coordinates of the near clip plane in camera space. The far clip

plane F is still given by M, —M,, so we have

F=M,-aC (2.6.20)

after replacing the third row of the projection matrix with an arbitrary plane C. Solv-

ing for the scale factor a that causes the far plane to include the point Q given by the

inverse projection of Equation 2.6.8, we have

,_M,:Q M)= ao

The standard Direct3D perspective projection matrix M is given by

C (2.6.21)

2n rt+l
— 0 — 0
r-l r—-l

0 2n t+b 0

M= iD, shel j (2.6.22)

frn fon

0 0 1 0

Ve oe

where each value has the same meaning as it does for the OpenGL projection matrix

given by Equation 2.6.14. In this case, Equation 2.6.21 simplifies to

M) = 2. ¢ (2.6.23)
C:Q

Equation 2.6.16 gives the value of the point Q in Direct3D as well as OpenGL.

Applying the inverse of the projection matrix M given by Equation 2.6.22, we obtain

the same coordinates for Q shown in 2.6.17, except that the z-coordinate is negated.

Listing 2.6.2 demonstrates how the modification to the projection matrix can be
implemented in a Direct3D-based application for a typical projection matrix. It
assumes that the projection matrix M is a perspective projection having the form

ao

GO ind
(2.6.24)

oO [o> o es —_ ® o +8 o 2c

2.6 Oblique View Frustums for Mirrors and Portals 293
renee Enna NEE SEES MSNA SEES LEH NHL OAM MLLER SLGL HMA HAA A H

where a>0, c>0, and f #0. The code makes direct use of the general inverse of
M, given by

We Oo On eb)

i thiodk Veal 0 onl fio
M'= 0625)

(aes 0 1

UE els ena

Listing 2.6.2 Implementation of the Projection Matrix Modification for a Direct3D
Projection Matrix Having the Form Shown in Equation 2.6.24 (The clipPlane parameter
passed to the ModifyProjectionMatrix function represents the camera-space plane
to which clipping is to occur. This code uses the Vector4D class shown in Listing 2.6.1.)

void ModifyProjectionMatrix(const Vector4D& clipPlane)

{
D3DXMatrix matrix;

Vector4D q;

// Grab the current projection matrix from Direct3D

D3DDevice.GetTransform(D3DTS_ PROJECTION, &matrix) ;

// Transform the clip-space corner point opposite the

// clipping plane into camera space by multiplying it

// by the inverse of the projection matrix

q.x = (sgn(clipPlane.x) - matrix._31) / matrix._11;

q.y = (sgn(clipPlane.y) - matrix._32) / matrix._22;

Caze= dmn0hy

q.w = (1.0F - matrix._33) / matrix._43;

// Calculate the scaled plane vector

Vector4D c = clipPlane * (1.0F / (clipPlane * q));

// Replace the third row of the projection matrix

MAtEUX< aid = C.X;

matrix. 23 = C.y;

matrix, 33. = ¢.Z;

matrix. 43 = C.w;

// Load it back into Direct3D

D3DDevice.SetTransform(D3DTS PROJECTION, &matrix) ;

294
Section 2 Mathematics

Acknowledgments

Thanks to Cass Everitt at Nvidia for many interesting discussions about this topic and

the original idea of moving the near plane to an arbitrary orientation. Also thanks to

Yann Lombard for the first adaptation of this technique to the Direct3D environment.

Reference

[Leng04] Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping.” In

Journal of Game Development, Vol. 1, No 2, 2005.

ee

SECTION

3
ARTIFICIAL

INTELLIGENCE

hen o@ Nuts ee :

siete a «4 ae mar ae

Canad pte

Ranaid, Lena, Une. \ehigar Came
i Si gem Leakerverns, Ved. 1 er 2, 2005 _

: _ saocTaA | a
eas

1 aa - @OMZ01II3T nie
=< ie : cS

2 as nad a)
6° fale ae

_ ee.
7 eh

ow. +. ee :

: ’ ~ Pt: eh ool
a

ne ars,
? _ ele

Introduction

Robin Hunicke, Northwestern

University

hunicke@cs.northwestern.edu

ene cee you look—at GDC and E3 or in the gaming and popular press—people
are talking about “next generation” games. Pundits and players alike agree: innova-

tion in game AI has the power to take us beyond stunning graphics and familiar genres

to exciting, unexplored territories. If it’s done right, AI can help diversify content,

streamline development processes, and lower the production costs of games, while

strengthening and broadening their overall appeal.

Easier said than done! It’s clear that the “simple” or “known” AI techniques cham-

pioned just a few years ago won't vault us to the next level, but when we look ahead,

things get fuzzy. Preparing for new hardware (with new, unexplored capabilities),

developers ask, what is the next logical step for game AI? And will we have the time

and resources to take it?
A few developers have already begun experimenting with narrative, characters

and emotion, procedural content, persistence, reputation, and consequence. On these

teams, AI and game design tasks intertwine, and communication strategies and

reporting structures change. And as new techniques are integrated, existing standards

for game balance, player control, feedback, and “fun” must be met. The work is differ-

ent and more difficult at the same time.

Experimentation and innovation are a focus, but solid engineering is a must.

Beneath the investigation into game Al’s new forms and roles, there is a critical push

towards clarity and optimization. Programmers strive to leverage fast, predictable

algorithms wherever possible, while maintaining efficient and debuggable code.

Design tools must be consistent and transparent to programmers and nonprogram-

mers alike. Parallelization, for all its benefits, seriously impacts these concerns.

This section reflects the growing array of issues and considerations that surround

modern game AI. Many of the gems are exploratory, and some present overviews of

larger, complex subject areas—a bit of a break from the traditional “gems” form. To

round this out, weve included some down-and-dirty discussions of familiar topics,

including search and pathfinding, targeting, strategy, and combat analysis. And even

here, we hope you'll find a few surprises.

Looking to the future, it’s hard to say whether any of our AI dreams will pan out

(though our track record, so far, is a bit discouraging). Looking beyond that, if we

achieve even the simplest of our goals, what will the next crop of problems be?

297

298
Section 3 Artificial Intelligence

SENT

As characters grow increasingly autonomous, will they also become difficult to

“control” from a design perspective? Will procedural content give its games a “cookie

cutter” feel that detracts from the player experience? Will persistence bite dedicated

players in the butt, leading to complex but unforeseeable (and undesired) con-

sequences, far from the incidents that initiated change? Will we see something analo-

gous to global warming in the saved games of our future?

As Al and game design become increasingly enmeshed, how can we abstract away

from game-specific issues and implementations? Do we have the right language to

discuss and design broader, repeatable solutions? Can we even pinpoint the AI com-

ponents of our games as such? In a few years, will this chapter have a new heading or

three? There are so many unknowns, it’s almost overwhelming!

Unless, of course, youre like the rest of us: the authors, developers, researchers,

and players who work (and play) hard to make tomorrow’s great games. For us, these

questions don't depress, they excite! Because for us (as with all things), the challenge is

really just part of the fun.

Hopefully you consider yourself part of our camp. And if not, consider joining

us. Take that next step, beyond this chapter to other volumes, from those volumes

into your practice, studies, and discussions. The work is far from over, and there’s

always room for fresh faces, innovative ideas, and fun!

Enjoy!

3.1

Navigation Meshes
Se unnmemcmtca ni RISERS AEA T

Automatic Cover Finding

with Navigation Meshes

Borut Pfeifer, Radical Entertainment

borut_p@yahoo.com

n many combat-related games, NPC cover finding is implemented by placing

hidden volumes, which denote areas that can be used for cover under fire. Whether

separate from a navigation graph or incorporated in it, level designers must place

these points manually. In very large levels and open, freely explorable worlds, this

rapidly becomes a time consuming task.

This gem describes how navigation meshes can be combined with collision infor-

mation, enabling NPCs to find cover points automatically. By augmenting the navi-

gation mesh with additional information regarding the navigability of neighboring

links, we can use standard, runtime search algorithms to find a valid cover position for

NPCs, saving developers much time and effort.

In his article “Simplified 3D Movement and Pathfinding Using Navigation Meshes,”

Greg Snook elaborates upon the use of navigation meshes in games ({Snook00}).

Other gems ([Tozour02], [White02]) discuss specific techniques for simplifying

meshes or speeding up searching on them. The type of mesh used in this gem is a tri-

angle-based mesh, which is the same mesh used for in-game world collision detection.

Specifically, for each walkable triangle in the navigation mesh, there is a direct

correspondence to a triangle in the collision mesh (the triangle data itself is shared),

but the collision mesh may have many more nonwalkable triangles with no represen-

tation in the navigation mesh.

Building the Navigation Mesh

Each triangle in the mesh can have up to three neighbors; while only some neighbors

may represent walkable triangles, all are stored for use by other applications (such as

decaling). Each triangle also has a bitfield for each neighbor denoting possible
 traversal

options (in this case, walkable, standing cover, crouching cover, and non-walkable).

299

300 Section 3 Artificial Intelligence
Lpaltclhaanictiatilmedtbct sn mlactonmnti ee

stent

To determine the flag for each link in a preprocessing step, we perform-ray casts

along each side of the link at the appropriate heights (Figure 3.1.1). Once we've deter-

mined the applicable cover or lack thereof for each edge, we can store that information

in less than one byte per triangle (since there are only two bits of information per edge).

Triangle A Triangle B

FIGURE 3.1.1 Front view of per edge ray test during

preprocessing.

These two simple cover distinctions (standing and crouching) assume human-sized
opponents. To accommodate a wider variety of heights in the NPCs searching for cover,
simply increase the number of cover ranges above two (a flag for each meter of cover, for
instance) or store the height of the link in the navigation graph (which has other poten-
tial applications, like determining if an NPC can climb or jump to the linked triangle).

Testing a Triangle for Cover

To determine if a given triangle is acceptable as a cover position, we have to do two
things:

1. Test for a straight line path from the center of a given triangle to the target
point (that we wish to be in cover from). This can use simplified two dimen-
sional line segment intersections tests, as in Snook’s article [Snook02].

2. If the triangle does not have a straight path to the target point, find the edge
that is between the center of this triangle and the target; if that link was
flagged in our preprocessing step as crouching or standing cover, this triangle
can be considered to be in cover from the target.

Limitations

With this type of graph and cover test, we do face a couple of limitations. To start, because
the navigation is preprocessed, our algorithm can only find static cover (the list of large
enough dynamic objects can then be iterated through quickly for additional cover points).

In addition, the two-dimensional math for fast line-of-sight operations limits us
to wall-based cover. The ground itself will never be used as cover, as in the case of a
hill that lies between an NPC and its target. For many environments, such as urban
settings or interiors, this is not much of a concern.

3.1. Automatic Cover Finding with Navigation Meshes 301
cnanebnscecn on sneninenenenarnttttetannsaseonenatnenutnr enamine Hetansasnn eect teenie ntnteaintabsinntiatenuonntteeoennitneceenne Nh HAAN HMMM enn ntoetRoRLSHN

Open Goal Pathfinding

To search for a cover point, our pathfinding system needs to support the concept of

open goal search. In a typical pathfinding request, the search is from a start point to a

specific end point; we know the exact element that meets our goal, so it’s a closed goal

search. An open goal search is simply looking for an element that meets the given con-

ditions, without knowing exactly what the element is.
We need to parameterize our search on two categories to achieve this:

The heuristic: A test that the A-star algorithm uses to weight each node.

The goal test: Defines if a given node meets the goal parameters for the search.

The pathfinding function might look like:

template<class PathSearch>

PathResult FindPath(NodeID startNode,

Path* pInputPath,

PathSearch searchParam) ;

Alternately, you could use a base class with virtual goal and heuristic functions, or

function pointers, as ways of parameterizing this data, but in theory, the templates

improve code locality for consoles with a small instruction cache, such as the PS2 (by

avoiding per-node virtual function calls).

Some games implement these open-goal searches (such as finding cover locations)

outside of the pathfinding system. However, using the previous method, you can take

advantage of all the existing search code in your pathfinding engine, as well as other

features (such as timeslicing).

Searching For a Cover Position
sae OE ERS ELE LLL LLL LL ERE MALE MARES EES ATLAS LIES EE TES,

Since the notion of what defines cover is relative, and constantly changing, we have to

test for cover given a few input parameters. The two main parameters are the agents

position (the start of the search) and the targets position (the point from which to

ensure we're in cover).

Additionally, a given direction and acceptable angle within that direction allow us

to weight nodes in the direction the NPC is already intending to move. A maximum

distance allows us to limit the search to reasonable cover positions, since the NPC

would only consider the area nearby in the middle of heated combat.

The template parameter PathSearch class, passed into the previous FindPath

function, would look like this:

class PathSearchForCover

PathSearchForCover(Vector start,

Vector coverFrom,
Vector inDirection,

float angle,

float maxDist) ;

302
Section 3 Artificial Intelligence

bool TestGoal(NodelID) ;

float GuessRemaining(NodelID) ;

}

The goal test is simply the cover test defined earlier. If a node qualifies as cover, we've

found an acceptable end to our search (this doesn’t guarantee we will find the best

cover, but in practice, this was never a concern). The heuristic acts like a standard

point-A-to-B path heuristic, in that it will return the straight line distance to the goal

(or a similar heuristic, such as the Manhattan distance).

There are two additional rules to its method of weighting cells:

© Cells that lie beyond the target point (so we would have to travel from our start-

ing position, past the target, into cover) are weighted much higher (10 times).

This helps to prevent the undesirable behavior of NPCs running past the player

to get to cover.

© Cells that lie in our given direction, within the given angle, are weighted as a third

of their normal value. This ensures the search will move in the direction the NPC

desires to move.

Once our search is over and we've found a cover point, we're close, but not quite finished.

Since our cover test uses the center of each triangle, we need to calculate the most desir-

able position on the triangle for cover.
If we know the path-requesting agent’s width, we can simply take the edge of the

triangle that is providing us cover and offset the cover point from the vertex of the edge

that is closest to the target point. See Figure 3.1.2.

Cover edge

Midpoint

Cover point &
direction

FIGURE 3.1.2 Determining the cover point on the

found triangle.

3.1 Automatic Cover Finding with Navigation Meshes 303
snasnnsanomnnnnancieeseonnasanestnezcnsstesteeatetmentrsatnsnepaenaniiunenniettiinonayniieemnanunninetoniiatananenisrnnnretre:

Now we have a point offset from the wall by the agent’s width, and we know the

direction the agent needs to move along the wall to pop out of cover. Based on the flag of
the cover edge (standing or crouching), we can adjust the cover point to be at the correct
height, telling an agent if it needs to crouch to stay in cover here.

The cover test will occasionally give us false-positive results, in that it may flag a
wall that is adjacent to another wall as cover. To avoid this problem, we can test adja-

cent triangles for cover edges that share a vertex with our current cover edge; this

would indicate our edge is actually along a wall. The false-positive scenario is also

dependent on the target position; it will only produce a false-positive if the target

position is opposite the center of two triangles whose edges form a wall.

In practice, since the problem is by definition hidden from the player (the NPC

would think they were able to move to see the player when it was actually behind a

larger wall), it did not seem worth the extra per node memory retrieval costs on the

PS2. The test does not, however, have a problem with false negatives (finding a cover

position that is actually out in the open and able to be fired on from the target).

Moving through Cover — SU NREENERNN SSEREA ED LEEE SEERA ESE NEE TNE

Now that we can find cover points, we can also generate paths between two points

that attempt to stay in cover. This simply means we do a normal search from one

point to another, but if we come across a node that is acceptable cover, we weight it

much lower (so the search will consider it over other, closer nodes).

Then, in the path smoothing step, we ensure that acceptable cover locations do

not get removed from the path by the regular line of sight tests. See Figure Bled

FIGURE 3.1.3 The smoothed path with cover

points kept as waypoints.

304
Section 3 Artificial Intelligence

Group Cover Behavior
Bp RS ADE REORDER SET CUTER IES MRA ARap ARAN OE EEC NEE LOL LE LLL LENE ELLA,

It may be desirable to have NPCs use cover positions on the player as a group; for

example, teammates providing covering fire or flanking the player by advancing from

opposite cover points. To accomplish this, we have to modify the search slightly. We

are no longer seeking one particular goal but a set of goal positions. While the search

isn’t normally set up for this sort of scenario, it’s easy to include it as part of the open

goal search.
The search itself, because we need to find all the cover points around a given

point, becomes a breadth first search. There's no heuristic we can use to simplify the

search, but we can use the same architecture to find the desired results.

As before, the heuristic function tests for cover from a given point. Now it also

stores the valid cover points; as the search tests nearby nodes, the heuristic records

applicable nodes. The goal function returns true only when the heuristic has recorded

the desired number of cover points.

A team of NPCs can share these points to advance on the player and provide cov-

ering fire for each other. Once the nearby cover points have been found, one NPC can

fire at the player while the others spread out to the various cover locations. Then the

remaining NPC can run for cover (assuming he’s still alive) as the other NPCs alter-

nate popping out and providing cover fire.

If an NPC is looking for a player it recently lost sight of, this search can provide a

list of potential hiding places. You can find all the nearby triangles that have an edge

that blocks the NPC’s line of sight, so the NPC can patrol its environment going

from obstacle to obstacle, looking for its lost target.

Additional Functionality
WEES RRR 8 SS IDR EEE ONT RIE TN

The following sections describe additional functionality you may wish to add.

Reserving Cover Points

If your pathfinding system allows for simple reservation of path nodes (preventing

them from being considered for other path searches), NPCs can reserve their cover
points such that other NPCs will not consider them in their path searches. This pre-
vents NPCs from bunching up at the same cover point.

More Data

It becomes trivial to embed additional collision information into the navigation mesh.
Although cover is detected automatically, designers can disable/enable areas as being

applicable for cover searching by using a 3D tool to paint these values on the naviga-
tion mesh. We could automatically detect other pathfinding concerns such as jumps by
testing for cliff edges that have equivalent height triangles a set distance away.

3.1 Automatic Cover Finding with Navigation Meshes 305
esse ctecteienis saan caieaneenneimneaaaanen cnt ctemanitsceeneteonnttigtnt kites iinet Absentee bnebuNmn eter tala napOntieeHinnanenateninennntt

Other Searches

It is also easy to extend the system by adding additional searches. For NPCs that have
to run away from the player, simply forcing them to run in the direction opposite the
player can cause artifacts like the NPCs getting stuck on walls. An open goal search
for a position outside a certain radius of the player will give the NPC a surer path out
of harm’s way (although it may still need to start moving in the given direction while
the path finishes processing). Additionally, we can weight this path search slightly,
biasing the NPC towards cover locations if we want the NPC to avoid fire as it flees.

Conclusion

While games that are heavily focused on combat in small, tight locations may still

need the use of a manual cover-placement system to allow for designer control, larger

games can allow for tactical combat without requiring the same effort in the produc-

tion process. The technique described here is fairly simplistic but still provides mean-

ingful results without having the same workflow requirements for designers. In

addition, such approaches allow behavior to emerge from the system, as NPCs find

available cover in all manner of situations.

Thanks to Tinman, Stan Jang, Marcin Chady, Ben Geisler, and Adrian Johnston

for their input and related work.

References
st SSE LENO OLE TELE LE DILL LILLE LLL AEE LEE TEI

[Snook00] Snook, Greg. “Simplified 3D Movement and Pathfinding Using Naviga-

tion Meshes.” In Game Programming Gems. Charles River Media, 2000.

[Tozour02] Tozour, Paul. “Building a Near Optimal Navigation Mesh.” In AJ Game

Programming Wisdom. Charles River Media, 2002.

[White02] White, Stephen and Christopher Christensen. “A Fast Approach to Navi-

gation Meshes.” In Game Programming Gems 3. Charles River Media, 2002.

————— a,

= : 7

. —

mA

at eo sci, tentaiiatasiaciee em

Seoup Cores Boteovior
nn Fy aw ala Aa me

v8 tity o IT, 0k paren lanraiitls Utena a

) bs steoqgqa-euriagatibieda mn 0¢77, poeta ua paste Ses nitag
ptnagee Ino Opa anlar bart gieteng stiles Se cei pec ‘sig
ahd ang tte cots cota Scenic eta Na a exh i A he

alike noi ere iode tent Ghee pombe 0 ;
wie ote on:

* webrigil chvgeneiheng sacl nigiow an a wilenpilbbs Rape no. 5 Da hay q ts at

‘and 4) wa onl) Titee etn tol eee anatewal ated: at

’
— ieee Ser oe

¢

ad | : Srl ~— hem: Tey bau we oi BRE ap! oe

: 3+ & e on ghw Dimer 2 Gnd che dearad ats seen
~ a 2 + m1 ; . son eine rf

(tine ick rina 1 ro at LP Ais aie Ny 5 oy hk jnow ea

ragid Very 7? “aa ia 34 * iy of & te Le wine +0" ads, 6 FE . 1

~pastagt? sf Ll ty tty Pak ira i sis 4} sea at diend; Teo nw 5 Te fs

* ape wits antes Hihy $F ie Hd? adits ; Ae a holy ‘ valved aupin (hoy bg ne ua ;

nb agent: fe ie hie vine weave mertihe Se greed ‘tbo nee a

a babe “YY S npaise oh mn) war ip mee waht ae 4%
A ve. Thea a *

ay tee tN soy “fle i ss NRCan 1
aout asivs ese ee ee eat ‘. hie awit ais.

; oo wo ey a rate ity
r ; ; - ST LPO OL boro wee a

" 53 ec oi des n¢ hs, _tebanigles ’ va _

~ . fa 7 iat any - ont eayed® be tty on ane ei A ar fe 7

» " A, 0 " » " : a

ait 0 a gl mrivtna’t baie ber eal Se ty Able “aoe po) edn (iloon?) 7

ti Ah Suet olla)) pe gitercgaeh, sre nl “esi ide | ml +:
“st

Sara Anh 2d aie: Sper, tatige4’ (aA nygettiyd — ith sunset (ROwexdT} oe | “a

. Ligh 92) Seiler >-maieaittl yeoman 2 sie. 27 99
th oi fiw ah et 4 gas) ol) agp bee ain? ad (SQandWj- > | os es

GOO wheat we joy Mig, iwi; A gitvy ee: grt ned al* asilel\, Rois, 7
> La

, eh x
cede wey vated. ob path ‘nodes <p Peta
pee @0eGumi, NJ oe ree tie ep

ede: them in dhe path sean "

; oe aa wee mM +.
~ y=

uv

_ ar
J ae oh ovarlons tone he a

i~. in age a

ee A cod 1 seit Olt a

at loon wi

3.2

Ene essioce=

Fast Target Ranking

Using an Artificial

Potential Field

Markus Breyer, Factor 5

me@markusbreyer.com

| Pee autotargeting and AI agents often have to select a target from a number of

game objects arranged arbitrarily in 3D space. Whether attacking opponents, pick-

ing up items, selecting an agent to engage in a conversation, finding the optimal place

to take cover, or choosing the best landing spot, target selection is everywhere in games.

In most target-selection algorithms, items are ranked based on distance and

angle: near objects are picked over those that are far away, and targets straight ahead

are chosen over those at the sides or behind. This is because the observer has to spend

time turning around to interact with objects behind it, making such targets somewhat

less preferable. However, a target behind can be preferred to a target straight ahead if

it is somewhat closer. It becomes clear here that distance and angle are two competing

goals that must be properly combined into a single metric for decision making. The

formula presented in this gem uses a simple and computationally inexpensive rational

function to compute a 3D pseudo potential that incorporates this distance/ angle

trade-off in a smooth, very natural fashion and yields a single scalar value by which

targets can be prioritized.

NR

Our goal is to derive a scalar metric for objects in an arbitrary scene and use it to rank

targets in order of preference. We want to find a scalar value function that takes the

position and orientation of a target and those of the observer and returns a ranking

(our implementation interprets lower values as higher preference, but this is simply an

implementation choice).

There are two approaches to this problem. Commonly, points are ranked by

distance (or distance squared). When the distance is interpreted as a potential, a 2D

contour plot of such potential (i-e., a plot of isocontours comprises lines connecting

points of equal potential) looks like Figure 3.2.1.

307

poe sections ea eee

FIGURE 3.2.1 A potential field based solely on

distance. Points of equal potential form concentric

circles (or in 3D, spheres) around the observer.

Ranking based solely on distance treats targets behind the observer equal to those

in front of the observer. If we would like to favor targets in front of the observer, we

can select based on the angle from the view axis (or local z-axis) of the observer. A

contour plot of a potential field ranked by angle looks like Figure 3.2.2.

FIGURE 3.2.2 A potential field based solely on angle.
Points of equal potential form V shaped pairs of rays
(or in 3D, cones) originating at the observer.

3.2 Fast Target Ranking Using an Artificial Potential Field 309

To consider both distance and angle for target selection, we could compare and
amalgamate the distance and angle potentials in some fashion to derive a single result.
Instead, we could approach the problem from the other end: imagine that isocontours
in the 2D space are connecting points of equal preference, as shown in Figure 3.2.3.

FIGURE 3.2.3 A potential field based

on both distance and angle.

With this approach, a target far away (but straight ahead) ranks the same as a

target to the side or behind (but near). That means near targets are preferred over far

targets, and straight ahead targets are preferred over those by the side at the same

time, as was our goal. In the following, we will examine a way to derive a function

that produces such a field.

The Formula }
SLE LESLIE LLE LIS NTL OEIC SIAL AE EL TEE EAE

A function to satisfy the desired requirements should have a global extremum (maxi-

mum or minimum) at the position of the observer. It should be monotonous over its

entire domain, laterally symmetrical, and assume some constant value at a number of

selected points along one of the equipotential curves. If the function is chosen cor-

rectly, the rest will fall into place.

To start, let us look at each of the three coordinate directions. In z direction, we

would like the function to be steep behind the observer, have a minimum at the

observer, and then slowly rise again. In x and y direction, the function should be

symmetrical and have a minimum at the z axis (x = y = 0). A set of functions that

accomplishes this for each axis independently is:

310
Section 3 Artificial Intelligence

JTTTTTTITTTOTOOT eee

24 +e

if ah ls “y= dy hey, fy a2 (3.2.1)
: pz+q

Vv

Adding the terms up, canceling, combining, and renaming coefficients yields:

z? +(ax’ +by +ejztax’ tdy +f

pz+q

x ztax’ztbyztcx +dy’ +ez+ f

y, pz+q j

Vives) Vay :, +V,=

(3.2.2)

Now, we need to find eight boundary conditions that will enable us to solve for the

eight coefficients.

We will assume that the potential is zero and minimal at the position of the

observer (i.e., smaller values of v mean a better pick) and require that the isocontour

v = 1 (or in 3D, isosurface) goes through certain points in space.’

The extent of the desired isosurface bubble v = 1 can be defined-in terms of five

intuitive parameters as illustrated in Figure 3.2.4.

Xfars Vfar

FIGURE 3.2.4 Isosurface bubble defined

by Shap Xfap js far RXV fay S rear

; ee MM nc ;
The value 1 is arbitrarily picked here since we need some non-zero valued isocontour to pinpoint the shape of the field.

3.2 Fast Target Ranking Using an Artificial Potential Field 311

Varying the parameters Zi. Xfae Vfmr 20 far Zrear allows us to shape the bubble as

needed. We can in particular make its horizontal and vertical extents different to
define a selector that is more sensitive in either horizontal or vertical direction. Expe-
rience shows that a designer can usually define the parameters right away and yield a
satisfactory result that requires little or no subsequent tweaking.

Together with the requirement that the potential at (0,0,0) be zero and minimal,

and have maximal lateral extent at z = zxyg,, we can then specify the following eight
boundary conditions:

v(0,0,2,,)=1 v(0,0,0)=0

%) v(0,0,-z._)=1 <= —(0,0,0)=0
rear Oz

\ ed) Vv

VX fa 29 Z yar) = 55 ar? y Z star) = 0

ov
VON Aaa ap (02 Y sar? Znpar) = 9

Solving for the coefficients yields:

Des ise qt+z ‘
Pp=2Z,--Z ip eet C= eee e=0

far rear 2 x?

gh far

Dect qt+z. .
G=Z,,2 jg Sas d=—* 7(=0

far” rear 2

D ie a

Now, v can be defined in terms of Zf Xfi Jah Zar ANA Z eq With e and f removed,

the potential function looks like this:

wy +(az+c)x° +(bz+d)y? (3:25)
pz+q

Evaluating the Potential Function Ae

When evaluating the potential function, we must pay attention to three things to

ensure the function yields the expected results:

1. The denominator must not become zero or negative. Otherwise, this would

not only allow the potential to assume infinity but also would make the po-

tential field discontinuous and nonmonotonous.

312
Section 3 Artificial Intelligence

evaeisnssnewnseressietei inessasnenrnnesncranenenet omen

2. The terms (az+c) and (bz +d) must not become negative. If they became

negative, the potential would be allowed to fall beyond a certain z, which

would produce inconsistent behavior, i.e., lower values even though the

pick is worse.

3. The boundary contour v = 1 must be placed at the outmost rim of the selec-

tion volume, i.e., the maximum range of the target selector. Only values of

v <1 can be relied upon for correct ranking. A value v > 1 reliably tells you

that the target is out of range, but values v > 1 cannot be relied upon for

ranking, since the potential function starts losing the desired properties for

values that go beyond v = 1.

With all this in mind, evaluation should go as follows:

R=max(az+ c,0); (3.2.4)

S =max(bz+d,0); (3.2.5)

D=max(pz+ q,eps); (3.2.6)

2? + Rx’ + Sy’
=== eee D 3.279

Here, eps is some very small positive value, e.g., 0.001. This is a computationally very

inexpensive formula that can be easily executed every frame for dozens of targets.

Visualization
TRAE

To aid in development and debugging, a game engine is usually capable of visualizing

its inner workings through graphical debug markers (boxes, spheres, etc.). Similarly,

you may find it useful to visualize the potential field through one or more of its iso-

surfaces, in particular, the surface v = 1.

Even though the field is defined through an implicit formula, an explicit formula

can be derived to describe an isosurface v = v,. It is parameterized in distance along the

view axis z and angle @ around the observer's view axis, consisting of a series of ellipses

perpendicular to the z axis. Using the constants R, S and D defined above, compute

the radii of the ellipses’ principal axes for each value of z as follows:

Dv. -2* Dv -—2
ss | a (3.2.8)

? R y 5

3.2 Fast Target Ranking Using an Artificial Potential Field 313

Then render the point cloud (z = Zypig-Zmax» Q = —Il..T):

R_ sing

P=| R,cos@ |. (3:29)

Z

Here, zmin and zmax can be found by solving the equation Dy —z* =0.
In case Zp > Zean the best way to solve for Zniq ANd Znqx is defining S=v_p and

T =v_q, and to compute Zi, aNd Zpg. by:

cde =5[s+Vs* +4r |

y Md G20)

Note that for v, = 1, Zin ANd Zna are simply —Zeq, aNd Zf» 80 if you do not need to

plot the surface for other values of v,, then you do not need the previous formula.
The resulting point cloud can be easily tessellated if so desired. Remember that v,

must be between 0 and 1 for useful results (however, it may be possible to find appli-

cations for other values of v!). An example plot looks like Figure 3.2.5

OKT) (OATS

iM Nsteates
Wiens
WO XY IANS

FIGURE 3.2.5 Resultant 3D potential field.

314
Section 3 Artificial Intelligence

cmannniasiteaansntunassanaarenitiinenaunnnscnnmanmmaiinnanianinn
tttia

Use as a Directional Field

The potential function might also be used for more applications like a damage,

thrust, or suction field. You might define a field magnitude by H = max (1—v,0)},

then use H (or H”) as the damage of a flame thrower or the strength of a thrust or suc-

tion field. For direction, use the normalized gradient (negate as needed). To calculate

the gradient, define two new constants as follows:

M =aq-cp

N =bq- dp.

Then using these constants, compute the gradient of v as follows:

dv / ax 2xRi D

Vv=| dv/ody |= 2yS/D

av / dz [Mx? + Ny* + (pz+ 2q)zV/D*

Such a suction field (in 2D) could look like Figure 3.2.6.

(3.2.11)

(Ay 2e%2)

Vale bot
earn -as lasrettitce Chae! ¢ Haye ¢ Dy URE < eC

ghee aA ae Ny ele Fab See ae
a oe Me CL a de NON ane all pee

= ENN Nenana LEPEy Loe
ey Gal >. NSONINe eee 1 het Bas Wak Pe 7 aes ee

SN Asie ide SSRN ei evi I eptblawifoenf ade lronte Le A a
Se PPS SN eeealene Dae Le fs fee ae ane
nike Vay Gembns SSN Ss SpA A alle a (OSL Th POA ea
ee SSS SS A he a the be the Dae Oh eer ee

2 SSANNA NN YE | ef DRE AR Hier: | Sea
—eorwy . ~SSNNNNN SNS YS RLS A a Oe eee

Bite eS NNN MY Dawineaen eon: Oo tate
NSN NN Gt a A Pe ee

SS NN NN YL 00 fh PRO POE occ eee
SS ESE W's MAL ff

meneame NN NNN) ET OLD ge 0 na me

Ee EN I RE FO a gr ae
ee ENN WD CRM et titted retire RAR
ey es

2h ae ue RN Oh 0). ee ee eT
ONE VL LS oo
NY \ \ l pile eS es COPE

Se NN LR ee
NN \ | eRe ee

4 NY \ L1Li2<-—-—~.-.—‘““-

4 2 \ LLiiacn—cceeooOQ
42 \ \ ne a age Na. 11m, els, | oe uP a

ee re ee fe ee ak

A 4 Aa \ i bs BEE RT 5) sar i Sees

SLAP E SA
PLAS HEN RE NN

LTS 2 ee ww
OVA AION SN NT 8s Pe

—

FIGURE 3.2.6 Potential field in the case of 2D “suction.

3.2 Fast Target Ranking Using an Artificial Potential Field 315

Expanding in More Dimensions

seer eesannse eeeeteintnmaieneeiticnevaoe inn desnan iansnsionianineoienunininesteenansiet ee sememny te eteunataneietennaaineirtennt i

FS ENS EPR

The application we have discussed in this gem centers around using two parameters:
Distance and Angle. It is not difficult to reach the hypothesis that this could be
extended to an increased number of dimensions, such as “target threat level,” “target

vulnerability,” or any number of other examples. The use of potential fields with iso-
surfaces could certainly be extended into multidimensions, however, the particular
rational function derived in this gem is very specific to the distance/angle problem of a
3D observer and not necessarily extensible to a general potential field approach. How-
ever, by applying a similar kind of reasoning that lead us to the particular rational func-
tion introduced in this gem, you can derive other potential functions specific to
different boundary conditions.

For example, in the case of a value/threat trade off, you might find a parabolic look-
ing potential field by requiring that even a low-threat target has to have a certain min-
imum value to make it worth attacking, that value should be somewhat proportional
to threat, while for high-threat targets the value parameter increases more rapidly,

resulting in something like v = 1/(a*value — b*threat’2). Again, here the denominator

would have to be clamped to some small, positive value. Several such potential func-

tions could then be combined, for example by simply adding them, resulting in a par-

abolic looking plot. This again could be represented as a simple potential function.

Still, there may be some potential future application here. Experiment!

Conclusion

< OS

ON THE CD

sae

This gem presents a simple, computationally inexpensive method employing an arti-

ficial potential field to rank objects of interest smoothly and naturally by both dis-

tance and angle. We describe a simple method for rendering the isosurfaces of such

fields, and a method for computing the gradient of the field to be used, as a direction

vector of suction, thrust, or damage. An example source file with C++ implementa-

tions of all presented formulas is included on the companion CD-ROM.

Peer
a pe scbikuld Bacdatssteneg ben otal Epeok panna

7 ee
ay >

* ben
2

*.

gear
eeciniransan png A a 5 nati

san hale | J atsigndil ipl

* bevel napart: Segeet!” toorhaue Jaren sinaeiots

eee & Dirceue t!
i etieeneritiintia

elesizug ahh gréeorod preuorertergair et <7 fais = — re

Bo netdomg iar wtipaea te att OF peat re si soetioh i .

~wkt thmemarge IyboZ) ining Ueteray 4 Co shdbeapna, a ee:

Den lignensie: achieve 3) wl ee ew a ;

lee aikiacege anvoezacalt tals viel yoAae wilted Med Her

tak .< » cine he ort

tied ciler re xia Ndgie en ed dew pe ed upset

lig atv 6 eer! ce Rae ATT nent gees See

BAG wqiig tctevordes 2 bhaeily su ar aoilosise aq

i mot Srki yy aet enced Ah std arsyit ay est ast ‘Oe ry

sumeRIeAod okt 3d eA AL JAaptie abit" ab wy 4d ae * oi sant

aan tebuoo dove hasest cubs svitiag leone stpoe-oF apa ao

eg Ri palibbess wnat Lgelbby alerted ‘glipmasics tod ihgnad ducted insely

sean liiitaog siqide « ut ba Miata od bines aisgé aif? solg

bins ege: 4 ora peti: feqtyn rere iRtteeayiny Sore a4 ven: 3)

doen

alae

ij ;
‘ 5 7 eo io

me memento a nt omc a

minis ne yuuyolqins bods aigndy ih Gian nayginey Aligekig a ettupatn a ;

sails hod vd yileeren bes yletiomie view he aided bends oy) Gnnees .

fine ho zopehwieoei ih one vat den lown ot or eae nie

DOE KY tp bee tows od ar bly al: ut rin: ucts Sob sore an 900 are :

sarangi +4 oD thtive fs Liles Sqn = A spepriphy Piet OF

MO8-Q) nigkgings *') no is shan | e slereene

Sages S00 2%

)

hulle 7!

~ kia

3.3

Using Lanchester

Attrition Models to

Predict the Results

of Combat

John Bolton, Page 44 Studios, LLC

johnjbolton@yahoo.com

| Boi to World War I, E W. Lanchester formalized a set of basic mathematical mod-

els for describing combat in terms of the number of units and the rates at which

the units are destroyed. These models are known as Lanchester Attrition models and

have become a foundation for the mathematical analysis of warfare. This gem shows

how these models can be used to predict the results of combat in games quickly and

efficiently. The general principals of Lanchester Attrition are reviewed, and models for

evaluating several combat systems and scenarios are demonstrated.

Overview
samme eR NH ye OS SRIAREL SHIRE RINE

Using a system of differential equations, Lanchester Attrition models describe the rate

at which units are lost in a battle. The system of equations can be solved to answer a

number of questions, including

¢ Who wins?

¢ How long does the battle last?

¢ How many units does a side have at any time?

¢ How many units does the winner have at the end of the battle?

The equations are determined by the type of combat, the conditions of combat, and

the combat system. In the models presented, combat ends when all the units on one

side are destroyed. In general, combat is assumed to be continuous and simultaneous,

and all the units on a side are assumed to be identical.

What follows are several scenarios (or combat systems) that typically occur in

games. In each scenario, the appropriate model and solutions are listed. In all the sce-

narios, there are two armies: Blue and Red. The number of units in each army during

317

318
Section 3 Artificial Intelligence

veieneitcnsnamnnnncasnnaninsnescnentennnebnnsen

combat is represented by the variables B and R. The initial numbers of units in each

army are represented by the constants By and Ry. Units of both armies have a combat

rating, which is represented by the constants ¢p and cp. The combat rating generally

represents the rate at which a unit destroys units in the opposing army. This constant

can include factors such as weather and terrain, defensive and offensive capabilities.

The combat rating is discussed in further detail following the scenarios.

Scenario 1: All-Out Melee
In this scenario, an army of 1,000 orcs (the Blue army) battles an army of 200

humans (the Red army) on an open plain. The humans are well equipped and well

trained, and each can kill 10 orcs per minute. The orcs are slow and stupid, and each

can kill only one human per minute. How does this battle play out? In this scenario,

all the units are constantly fighting. The rate at which units are lost is simply the

number of units in an army times the rate at which a unit destroys units in the other

army. The following system of equations describes this scenario:

dB = —-c,Radt

dR = —c,Bdt. (3.51)

In our example, Bo is 1,000, Ro is 200, cg is 1, and cp is 10.

Who Wins?

To determine who wins, the equations are combined as follows:

dB —c,Rdt _ c,Rdt

dR -c,Bdt_ —c,Bdt" (3.3.2)

This is a separable first-order differential equation. Given the initial condition that

B = By when R = Rj, the solution is this:

c,(B? - B:) = ¢ (R? - R°)
R

9 Bs Sas — R?)+ Be. (3.3.3)
B

By our definition, Blue wins if B > 0 when R = 0, which gives the following result

(noting that if B > 0, then B, > 0):

0 < a (0- R)+ 85

penta per (3.3.4)

3.3 Using Lanchester Attrition Models to Predict the Results of Combat 319

In this scenario, the humans lose as shown here:

10 ‘Be 2

pee en), zs ppaalld 9 10.225, (3.3.5)
Goad R 200

0

This is an important result. It shows that for open melee, while the battle outcome
depends on the combat rating of individual units, it also depends on the square of the

initial number of units in each army. That is, the Blue army needs only J2 times
as many units to defeat an army whose units are twice as effective. This model is
Lanchester’s Square Law.

How Many Units Remain at Time t?

The number of units remaining at a particular time is given by these equations.

B = Booosh(Jfc,c,t)-R, JX sinh CC, 1)
B

R,cosh(,[c,c, t)— B, | -&sinh(,/e,c, 1) (3.3.6)
CR

Despite the superior ability of the humans, they are vastly outnumbered and losing

quickly. After only three seconds (.05 minutes), nearly a quarter of the humans are

gone, while most of the orcs remain.

10>.
1000-cosh(f10-1.05)~ 2002 sinh fi0e-05) = 912

200: cosh V10-1-.05)- 1000-4]. sinne[0-1-05) = 152 (3.3.7)

R

B

R

How Many Units Are Left When One Army Loses?

The number of units remaining when the battle is over is given by these equations.

The result is valid only for the winning army:

B.. = ,|Be-2R
R=0 0 be 0

ee ee Be (3.3.8)
B=0 0 Cc

320
Section 3 Artificial Intelligence

neti CONN OAD AD ADDO —

When the battle is over, 775 orcs remain in the Blue army ready to battle another army,

Bo = 1000? -~*-200' Et Fp: (3.3.9)
=0

How Long Does the Combat Last?

The amount of time it takes for the losing army to be destroyed is given by one of

these equations. The result is valid only for the winning army. One important thing

to note is that if the two armies are equally matched, the combat will last forever.

tanh! Ry fe

B, CE

oot |
0 VOR

tooo aoe ak eee (3.3.10)

CECR

In this scenario, if nearly one quarter of the Red army is destroyed in three seconds

with minimal losses to the Blue army, it is expected that the rest of the Red army is

destroyed nearly as quickly. The actual duration of the battle is .236 minutes or 14

seconds.

tanh’ "ahs ae
1000 VY 1

1p Rn Ee 2G 310
a) J10-1

Scenario 2: The Narrow Staircase
erence aR TAT SO SE

In this scenario, the orcs and humans instead meet on a staircase cut into the face of a
cliff. Despite the size of the armies (200 humans versus 1,000 orcs), there is only
room for two units to fight at a time. The difference between this scenario and the
previous scenario is that only a fixed number of units (as opposed to all the units) are
fighting in this scenario, so the rate that units are lost is proportional to the number
of units fighting rather than the total number of units. The following system of equa-
tions describes this scenario. The model assumes that an equal number of units fight

3.3 Using Lanchester Attrition Models to Predict the Results of Combat 321
rere sossetnteseeonetentihoneeeorotessaeeeoeensiautnsytesthtnnauileyeeneiaenaiaorteyttneabetentotteinnot ot teahannneneeteonenmn eee nine eteunmainsteenmennGreteaieininesteeeenbamnetenetitatce

concurrently in each army, but it can be easily modified to describe a scenario with an
unequal number of units fighting concurrently:

dB = —c,ndt

dR = ~—c,ndt. (3.3.12)

Again, in our case, By is 1,000, Ro is 200, cg is 1, and cp is 10. In this scenario, 7 is 2.

Who Wins?

Blue wins if B > 0 when R = 0, which is the case when,

< 5, R . (333,13)

In this scenario, the tables are turned, and the Blue army loses:

c, 10 B, 1000
—-=—, — = — _ =5, 10>5. G4

C 1 R 200
(3.3.14)

B 0

This is also an important result. It shows that a smaller army with superior units has a
better chance of winning in this scenario than in the previous scenario. This is Lan-

chester’s Linear Law.

How Many Units Are Remaining at Time t?

The number of units remaining at a particular time is given by these equations:

II B

R

B -c, nt
ae Gi3i5)

Liss Cait.

After 30 minutes of battle, both armies have lost many units, but the humans are win-

ning (70% remaining versus 40% remaining):

1000-10:2:30 = 400

200-1-2-30 = 140. (3.3.16)

B

R

How Many Units Are Left When One Army Loses?

The number of units remaining when the battle is over is given by these equations.

The result is valid only for the winning army:

322 . Section 3 Artificial Intelligence

eneunneinmusiansicttmnnne

Cc

B., = B,-=R
R=0 0 on 0

Cc

Re a (3.3.17)
R

In this scenario, though half of the Red army was destroyed, it has won the battle:

B=0
R = 200-—1000 = 100. (3.3.18)

How Long Does the Combat Last?

The amount of time it takes for the losing army to be destroyed is given by one of

these equations. The result is valid only for the winning army:

teo = fo.
Se nC,

B
tele ge me (3.3.19)

nc,

In our example, the Red army wins in 50 minutes:

1000
Cian eae (3.3.20)

Scenario 3: Artillery Duel ikGsooieebasenseesntticsiniiapeendieeteesaeeeecialcoeeeeainoel

Imagine a game similar to Battleship, where neither army knows the locations of the

other army’s units. Each army has 100 units placed on a 100 by 100 grid, and the

units can move anywhere on the grid at any time. A unit fires a shell and hits a point

on the opposing army’s grid. If that point is occupied by a unit, the unit is destroyed.

The rate at which a unit fires is determined by an external factor and it is the same for

all units in the army. For this scenario, the Blue units fire twice per second and the

Red units fire once per second. The results of this scenario depend on probability.
Thus, we can’t compute the exact results, but we can predict the expected results.

In this scenario, the rate of loss for an army is proportional to the number and
combat rating of the opposition, and also the density of its units. If Ay is the area
occupied by army X, then the density of its units, Px, is given by these equations:

asa nanetreanssinintiteesain tte na iterate nnacwis preteen Aen HNs

B R
Pe or are (3.3.21)

In our example, both Ag and Ap are 10,000:

B R

Pa To000° P®~ 10000' (3.3.22)

The following system of equations describes this scenario:

dB = —c,Rp,dt

NERA L A FORTS (3.3.23)

In our scenario, By is 100, Ro is 100, cp is 2, and cp is 1.

Assuming that the area occupied by an army is constant, the equations can be
simplified by combining the area with the constant term. We introduce a modified
combat rating constant:

i ny = (3.3.24) ieee, RE 4:39 R A, B A,

In our example,

= = 0001 Se 215002 3.3.25
temo) GOO (3.3.25)

The simplified model is the following.

dB = —y, RBdt

dR = —y7,BRadt (313-26)

Who Wins?

Blue wins if B > 0 when R = 0, which is the case when,

(30027)

324 9 co rien Sectioaro wl ARITCEN Sasa

In this scenario, Blue’s rate of fire is twice Red’s and Blue wins easily:

Bo Hq _ 0001 _ 5 sha al, ea" (3.3.28)
0 %, 0002 100 |

How Many Units Remain at Time t?

The number of units remaining at a particular time is given by these equations:

Kaho ‘e bees
Bath earn) aa ae

Hed Ged exp((2.R) - 15,)e)

Paes AR — XwBo (3.3.29) R ; "y R,-LpB, exp((7,B, = _R,)t)

Here are the results of this scenario after the first 100 seconds. The situation does not

look good for Red.

1,8, = 0002-100 = .02

xR, = 0001-100 = .01

is SH ON (2G Bat

02.01 -exp((.01-.02)-100)

01-.0
Ro etob a ee Oe eee

",01—.02-exp((.02—.01)-100)

How Many Units Are Left When One Army Loses?

As explained in the next section, the combat in this scenario always lasts forever, but as

time goes to infinity, the number of units in each army approaches a value. If the armies

are equally matched, the number of units remaining in both armies approaches 0.

x, Vis 1B
Bee % Bee. gene

Xx Xp 0

B Rope Seckee AEanm Spee (3.3.31)
Xr Xs 0

In this scenario, Red loses and the number of its units approaches 0. The final num-

ber of units in Blue approaches 50.

3.3 Using Lanchester Attrition Models to Predict the Results of Combat 325

.0001
B = 100————_-100 = 50 oe

.0002 Oey R=0

How Long Does the Combat Last?

The combat in this scenario lasts forever because as the number of units in an army
gets smaller, the units are less likely to be hit. However as time goes to infinity, the
number of units in one or both armies always approaches 0. A modification to this
scenario that would limit the time of combat would be to declare a winner when the
number of remaining units in an army is less than a certain number or less than a per-
centage of the army’s original size.

Scenario 4: The Boss

In an RPG, a boss with 5,000 points fights three members of a party with a total of
1,000 points. In this system, the boss does a constant amount of damage, 90 points
per turn, and each character does an amount of damage proportional to its health, 1
point per health point per turn.

In this scenario, the Blue side is fighting a single Red boss unit. The boss is

destroyed when its “health” reaches 0, and the party is destroyed when its combined

health reaches 0. This scenario is a combination of scenarios 1 and 2, except in this case,

the number of units remaining is replaced by the number of points remaining. This sce-

nario is also an example of how a combat system can be modeled when the rules are dif-

ferent for each side. The following system of equations describes this scenario.

AB 9= wenicy dt
(3.3.33)

aR” =" ac, Bde.

In this scenario, By is 1,000, Ro is 5000, cg is 1, and cp is 90.

Who Wins?

Blue wins if B > 0 when R = 0, which is the case when,

1 Cy 2 Ree 8, (3.3.34)
Da R

In this scenario, the party defeats the boss, but it is close.

5000 <== 1000, 5000 < 5556. (3.3.35)

326
Section 3 Artificial Intelligence

onan

How Many Units Remain at Time t?

The number of units remaining at a particular time is given by these equations.

B= By Segt

I
R R,-(Beate} (3.3.36)

In this scenario, after five turns, the party’s health (and thus the amount of damage it

does) is down to almost half, but the boss's health is down to only 20%. Still, the

battle is close because the party has lost much of its ability to do damage and the boss

has not.

B = 1000-90-:5 = 550

R
1

so00-[1000-1-5-5-1.905 =. 1125 33.37)

How Much Health Does One Side Have When the

Other Side Loses?

The health remaining when the battle is over is given by these equations. The result is

valid only for the winning side:

G

By = By aio
B

Rie Dipti e (3.3.38)
B=0 0 ae OF r=?

In this scenario, the boss loses; however, the combined health of the party is now only

316 (of the original 1,000). The party is in such bad shape that perhaps it would be

better to stop and recuperate:

4 90
Bes = 1000° —2- rico =e Os (3:35.99)

How Long Does the Combat Last?

The amount of time it takes for the losing side to be destroyed is given by one of these
equations. The result is valid only for the winning army:

3.3 Using Lanchester Attrition Models to Predict the Results of Combat 327

By
too = ~ (3.3.40)

R

In this scenario, if the boss won, it would have taken about 11 turns (1,000 points at
90 points per turn), but the party managed to defeat the boss in 7.6 turns:

1000 — ,{10007 =2.-*-5000
fo lean aera Pear io orITI0 Til WS (3.3.41)

More abou the Comber natn
The combat rating constant is generally the rate at which a unit destroys opposing

units. The value depends on the combat system and can include several factors. For

example, units might have an attack value, ay, which is the number of points of dam-

age done in a unit of time, and a “health” or “hit points” value, /y, which is the num-

ber of points the unit must receive to be destroyed. Thus, the rate at which a unit in the

Blue army can destroy units of the Red army is ag//p, s0 cp = ap/hp (and cg = ap/ hp).

The combat rating might include a special defensive ability that would reduce the

amount of damage received by a constant percentage. Units with heavy armor or units

that are highly maneuverable would modify the other army’s combat rating to

account for its defensive ability.

The combat rating can also include the effect of weather or terrain. Certain

weather conditions might reduce the effectiveness of one army and have no effect on

another. Certain types of units might be more effective on some types of terrain. As

long as these factors are constant for the entire army, they can all be combined into a

single combat rating.

Limitations
These models assume that combat is continuous and simultaneous. Frequently, com-

bat in a game is implemented such that attacks occur at specific intervals rather than

continuously, or each army takes turns attacking. Combat may also be implemented

with no fractional units, and each individual unit fights at full strength until it is

destroyed. In these cases, quantization results in a difference between the models and

ys ene &

Vuri

Section 3 Artificial Intelligence
328

the actual outcome, and the model can only be used as an approximation or predic-

tion of the outcome. However, if the number of units is large compared to the rate at

which they are destroyed, the approximation will be reasonably close to the actual

outcome.
Even when the attrition models are not suitable for determining the outcome of

combat in the game, they can be useful aids in designing a combat system and balanc-

ing the units in the game. The models presented here could also be used for determin-

ing battles occurring out of player view or for rapidly determining battle outcomes if

“fast-forwarding” through time, evolving a game world, or similar.

Conclusion
OS MMMM LLL LLL LLL LLL RAL LLL LAL cd

This gem has provided an introduction to Lanchester Attrition models and their use

in predicting the outcome of combat in games. Several examples of the application of

attrition models to combat scenarios that are common in computer war games and

strategy games were given. The models described in this gem can be modified and

extended to fit other scenarios and combat systems that are not listed here.

References
CE US ELSE EES RE SLE BEES LEE ELLIE IESE EEE SEE ALR RE LDEEL DLE LEAD IESE BELLE PR ESE,

[DarilekO1] Darilek, R., et al. “Measures of Effectiveness for the Information-

Age Army.” Ch. 4 Available online at ttp://www.rand.org/publications/MR/

MR1155/MR1155.ch4.pdf. August 2004.

[Lanchester16] Lanchester, E W. “Aircraft in Warfare: The Dawn of the Fourth Arm.”

In Engineering 98, 422-423; reprinted in World of Mathematics, ed. J.Newman,

vol. IV, pp. 2138-2148. Simon and Schuster, 1956.

[Saperstein01] Saperstein, A. “Simple Models Suggest Answers to Complex Ques-
tions: Do We Need Satellite Surveillance for Land Warfare? A Lancastrian View.”

Peace Economics, Peace Science and Public Policy, Volume 8 no. 1: 21-29. Available

online at Attp://www.crp.cornell.edu/peps/journal.htm. August 2004.
[Veale04] Veale, T. “Strategy and Tactics in Military War Games: The Role and

Potential of Artificial Intelligence.” Lecture III. Available online at Attp://www.

compapp.dcu.ie/~ tonyv/gamesAl/war3. rtf. August 2004.

3.4

Implementing Practical

Planning for Game Al

Jamie Cheng, Relic Entertainment Inc.,

jcheng@relic.com

Finnegan Southey, University of Alberta,

Department of Computing Science

fdjsouthey@uwaterloo.ca

he increasing complexity of game worlds and the growing focus on team-based

gameplay have pushed the development of game Al beyond the limits of finite

state machines (FSMs). FSM approaches are typically brittle with respect to changes

in the game design and engine, are hard to debug, and are difficult to extend beyond

their originally designed purpose. Designing multiple FSMs to interact intelligently

and cooperatively is very tricky, and unforeseen situations during the game can throw

the AI into disarray.

Planning addresses these issues by abstracting the reasoning to a new level and

expressing them in a concise language that describes the effects of actions in the world.

Using planning, most of the reasoning process is handled automatically by the plan-

ning engine. Changes to the game design can be quickly reflected in the planning

domain, and because the planner reasons explicitly about the goals and subgoals to be

obtained, it is able to effectively distribute tasks, allowing cooperative action between

multiple agents.
This gem explains our work on the concepts and tools for implementing practical

planning, including mixing planning with other types of control (e.g., pathfinding,

FSMs, and scripting), communications between the game engine and the planning

engine, optimizations, and other important issues.

For the purposes of this introduction, we present a Sims-like game, but one in

which the player specifies goals for their simulated people instead of specific actions.

However, the planning approach applies equally well to a wide range of games. We

have given substantial thought to its use in RPGs, tactical squad-based FPSs, high-

level strategy in RTSs, and stealth/espionage games; and we foresee many new types of

gameplay both in and out of these genres.

329

330 me) Section 3 Artificial Intelligence

The Planning Framework
nh ESSN TEE NNR LOE EE NEL NEEL ALLS ERED sai IE CEE

sateen:

Conceptually, a planning framework works with a set of world states that contain the

essential information about the game world at a given point in time. When we are

about to plan, we must provide an initial state, describing the world we want to rea-

son about. For example:

¢ Bob is in the kitchen.

¢ The cabinet key is in the kitchen.

¢ The cabinet is in the den.

¢ The silver plate is in the cabinet.

° The cabinet is locked.

States are transformed into other states via actions, so part of our abstract description

includes details on how actions alter states. Here, a move action would allow Bob to

move between the kitchen and the den. Similarly, a take action would allow Bob

to pick up objects in the same room as himself. If Bob used the take action on the key,

the new state would be:

¢ Bob is in the kitchen.

* Bob is carrying the key.
The cabinet is in the den.

The silver plate is in the cabinet.

The cabinet is locked.

Using this model, the designer can specify goal conditions such as “Bob is carrying the
plate.” We are interested in any state where Bob is carrying the plate. We will call

these goal states. There can be multiple possible goal states, because the only condition

we specified is that Bob is carrying the plate. The rest of the world can be in any state.
Planning is a search for a sequence of actions that will transform the initial state into

a goal state. During the search, the planner will, explicitly or implicitly, construct many

possible world states, heading toward the goal. These states do not map directly to the

game engine but are instead based on the initial state fed to the planner. If the planner
succeeds, it formulates a plan: the set of actions needed to reach the goal state. This is

then executed step by step, transforming the actual game world. See Figure 3.4.1.

Planning Domains
2 SE 7 BEL NAM AI USTED ET NS RE een aI HU UE sR IT SME

We call the abstraction of the game world the planning domain for the world. Classi-
cal planning views the world as a logical construct where there are certain facts about

the world associated with each state. It is common to introduce planning using
propositional logic, which simply uses a set of propositions that are either true or false
(essentially, a set of Boolean variables). A proposition might consist of a statement like

“Bob is carrying the key,” and that statement can be either true or false. Think of the
proposition as a Boolean variable named BOB_CARRIES_KEY.

3.4 Implementing Practical Planning for Game Al 331
coe znnsggncsitennsaeentencomsecsnilscan nice neste

Initial State

Goal State

FIGURE 3.4.1 Example of plan to reach goal state.

Predicate logic would instead represent the same statement as a Boolean function

that takes objects as arguments. Our example would become something like carry-

ing(Bob, key). This allows for a much more concise planning language and is used

in most contemporary planners. Predicate logic is the basis for what is probably

the best-known planner, STRIPS [Fikes71]. The STRIPS planning language is still

used today, along with many variations-arid extensions. The most widely accepted

planning language at present is PDDL, used by most contemporary research planners

[McDermott98]. PDDL uses a LISP-like syntax, which is not widely used in the

games industry, so we have developed our own syntax and parser, better suited to the

industry at large and more readable by designers who may have only limited program-

ming experience.

Objects

Predicate logic describes truth statements over a set of objects. Objects are the entities

that make up the world. In our earlier example, objects would include “Bob,” “key,”

“silver plate,” “den,” “kitchen,” etc. These objects are not the same as objects in the

object-oriented (OO) sense; they do not have methods or any associated dynamics.

However, it is quite natural (and even desirable) to relate planning objects to OO

game engine objects in a one-to-one fashion, so that the planner’s proposed actions

can be translated directly into game object manipulations.

Objects do have types, much as in the object-oriented framework. This mecha-

nism affords type checking, so errors can be caught earlier in development. We allow

multiple type inheritance, so types form a lattice. We identify one special type,

“Object,” often called the universal type, from which all other types inherit. This leads

us to the first kind of statement, which declares types to the planner.

332 Section 3 Artificial Intelligence

type Locatable;

type Location;

type Creature isa Locatable;

type Person isa Creature;

type Item isa Locatable;

type Key isa Item;

type ValuablePlate isa Item, Decoration; // multiple inheritance

Once we have declared types, we can declare objects.

object alice isa Person;

object bob isa Person;

object cabinetkey isa Key;

object silverplate isa ValuablePlate;

object kitchen isa Location;

object den isa Location

Predicates

Predicates help us state facts about the objects in the world. They map tuples of
objects to true or false values. For example, we can have a predicate carrying that
takes two arguments, the first a Creature and the second an Item. We can now express

ideas like: carrying(bob, cabinetkey) or carrying(bob, silverplate).

Facts expressed as predicates make up the states in our planner. A state is simply a
collection of all the facts about the world. In general, we store only the true facts in

the world: the predicates that evaluate to true. Every other predicate expression is
assumed to be false. This is known as the closed world assumption and it is motivated
by the expectation that more predicates will be false than true in the world, and so it’s
more efficient to store the true ones.

There are a few different ways to use predicates. In some cases, we will assert

predicates, making our expression true in the current state. So we might assert
carrying(bob, cabinetkey) to add that fact to the state. Alternately, we may use the

predicate as a query: “Is Bob carrying the cabinet key?” If that is a fact in the current
state, the predicate will return true.

In our planning language, the arguments of predicates have types and predicates
must be explicitly declared.

predicate carrying(Creature, Item);

predicate inroom(Locatable, Location) ;.

Variables

Predicates capture relationships between objects. We can ask whether a relation exists
or not, but we can go further and ask for sets of relationships. This is done with
variables. For example, if we would like a list of things carried by Bob, we can query
carrying(bob, ?x), where ?x is the notation to we use to indicate that x is a variable.

3.4 Implementing Practical Planning for Game Al 333 -
runneth etn OHSSEHrAA NEMS MAH Stent HS HAI nA NIKON

It’s easiest to think about the process as pattern matching. The query checks all
the carrying facts in the state, picks only those whose first argument is Bob, and sets x

to each value for the second argument in succession. If the query finds one or
more suitable matches, it returns true for each such match and binds the variable(s)

accordingly.

Logical Connectors

Using conjunctions (logical AND) and negations (logical NOT), we can create much

more interesting queries. For example, we can check whether Bob and the key are in
the same room:

inroom(bob, ?x) and inroom(cabinetkey, ?x)

Here, the first inroom() query finds a match corresponding to Bob and binds ?x to

kitchen. The second query now becomes inroom(key1, kitchen).

It is also important to allow for a special kind of predicate to represent inequali-
ties, only true if its two arguments are different objects; for example: ?x != ty.

Operators

We use operators to transform one state into another. In their simplest form, operators

have a precondition, a query that must be true before the action can be performed, and
effects, a set of changes to be made to the world. Both can be stated using simple logic

expressions formed from predicates, conjunctions, and negations.

operator take(Creature ?c, Item ?i)

precondition: inroom (?c, ?r) and inroom(?i, ?r)

effect: not inroom (?i, ?r) and carrying(?c, ?r);

This operator takes two arguments (note their types). The preconditions state that the

creature must be in the same location as the item. The effect creates a new state, iden-

tical to the original state, removing the fact that the item is in the room, and adding

the fact that the creature is carrying the item.

{ Note that the ?r variable is not one of the arguments of the operator. Thats because

‘% it isn't really essential to the action, it’s just some information we need to know to exe-

cute it. Think of it as a local variable for the operator. When the game engine needs

to actually execute the action, it only needs to know the creature and the item.

Once we have operators, we can examine a state and automatically determine what

actions are possible by testing the precondition for each action. Each match of the

preconditions for each operator is a possible action. We now have everything we need

to search for a plan except for the actual search algorithm.

334 Section 3 Artificial Intelligence
bill 2c atalethccchdoh Soap erste in ene AN i EPS

A Multi-Agent Planner Example

Putting all this together, we can look at a simple example that clearly shows the power

of a planner. In this example, we create a state where there is a trivial solution, and

then expand the problem to one that requires two agents working together to solve

the problem.

type Locatable;

type Location;

type Creature isa Locatable;

type Person isa Creature;

type Dog isa Creature;

type Container isa Locatable;

type Item isa Locatable;

type Key isa Item;

type Plate isa Item;

type ValuablePlate isa Plate, Decoration;

// multiple inheritance

type Food isa Item;

Once we have declared types, we can declare objects.

object alice isa Person;

object bob isa Person;

object cabinetkey isa Key;

object silverplate isa ValuablePlate;

object kitchen isa Location;

object den isa Location;

object cabinet isa Container;

object nelly isa Dog;

object lasagna isa Food;

object fridge isa Container;

predicate inroom(Locatable ?a, Location ?b);

// Object is in location

predicate carrying(Creature ?c, Item ?1i);

// Creature carries item
predicate locked(Container ?c);

// Container is locked

predicate unlocks(Key ?k, Container ?c);

// Key unlocks container

predicate hungry(Creature ?c);

// Creature his hungry
predicate prepared(Food ?f);

// Food is prepared

predicate inside(Item ?i1, Container ?c);

// Item is inside container

// Pick up something in the room.

operator take(Person ?p, Item ?i)

precondition: inroom(?p, ?r) and inroom (?i, ?r)

effect: not inroom (?i, ?r) and carrying(?p, ?r);

3.4 Implementing Practical Planning for Game Al 335
Ne cesT POSES RE SHSHOLLL AAS EEt iaseinsssonauitinnrnninane r sono 0

// move to another room
operator goto(Person ?p, Room ?r)

precondition: inroom(?p, ?0) and ?0 != ?r

effect: inroom (?p, ?r) and not inroom(?p, ?0);

// drop something carried

operator drop(Person ?p, Item ?i)

precondition: inroom(?p, ?r) and carrying(?p, 71)

effect: inroom (?1, ?r) and not carrying(?p, ?1);

// remove something from a container

operator remove(Person ?c, Item 7?i)

precondition: inside(?i, ?v) and inroom(?c, ?r) and

inroom(?v, ?r) and unlocked(?v)

effect: carrying(?c, ?i) and not inside(?i, ?v);

// unlock a container with a key
operator unlock(Person ?c, Container ?v)

precondition: locked(?v) and unlocks(?k, ?v)

and carrying(?c, ?k)

effect: not locked(?v);

// prepare some food

operator prepare(Person ?c, Food ?f)

precondition: carrying(?c, ?f) and not prepared(?f)

effect: prepared(?f);

// eat some prepared food from a plate

operator eat(Person ?c, Food ?f, Plate ?p)

precondition: carrying(?c, ?f) and carrying(?c, ?p)

and hungry(?c) and prepared(?f)

effect: not hungry(?c) and not carrying(?c, ?f);

Now we define our initial state and goal state. The trivial case is that Bob wants the

plate and it is in the den while Bob is in the kitchen:

//define initial state
inroom(bob, kitchen)

inroom(silverplate, den)

//define goal state

goal carrying(bob, silverplate)

Given this, the planner returns to us:

goto(bob, den)

take(bob, silverplate)

Now watch how easily we can expand the problem, defining a new initial state where

the plate is locked in the cabinet in the den and Alice carries the key. We will try to

achieve the same goal:

336 Section 3 Artificial Intelligence

sroveesnaptensnnanoanenn niet patter oS HHS A ONAL OSLAHAOAN KHL AMAL

//define initial state

inroom(alice, den)

inroom(bob, kitchen)

carrying(alice, cabinetkey)

inroom(cabinet, den)

unlocks(cabinetkey, cabinet)

inside(silverplate, cabinet)

locked(cabinet)

One possible plan is:

unlock(alice, cabinet)

remove(alice, silverplate)

goto(alice, kitchen)

drop(alice, silverplate)

take(bob, silverplate)

Now consider a new situation where Alice is hungry and we want her to be fed:

//define initial state
inroom(alice, den)

inroom(bob, kitchen)

carrying(alice, cabinetkey)

inroom(cabinet, den)

unlocks(cabinetkey, cabinet)

locked (cabinet)

hungry (alice)

inside(silverplate, cabinet)

inside(lasagna, fridge)

//define goal state
not hungry(alice)

A plan to achieve this is:

unlock(alice, cabinet)

remove(alice, silverplate)

goto(alice, kitchen)

remove(bob, lasagna)

prepare(bob, lasagna)

drop(bob, lasagna)

eat(alice, lasgna, silverplate)

These simple examples have immense ramifications. Suddenly, designers can easily
create scenarios that may require the AI to cooperate to solve a problem! Even better,
as the player changes the world, the AI automatically replans and acts accordingly.
Over the course of the game, new predicates can be asserted or operators added that
allow creatures to do more things. Other options include designers writing simple
scripts that assign goals for the planner to carry out, or players asking a cooperative Al
for help. The possibilities are endless.

3.4 Implementing Practical Planning for Game Al 337
ut AANA tennete nee EKA REHASH nso sooo othennteteotttaanuaanieicnnet anil ntanneton :sonnuianentetnoctsse nents ete anise aianuunnnnteuanaioneiitaeuatetetesnaaoeeeeeien

The best way to see the possibilities is to think about them. Given the earlier
domain, spend some time thinking about how you could quickly implement the
following:

¢ Add a way for people to give items directly to each other.
¢ Describe the layout of the house and add doors.
¢ Add a thief who only steals valuable stuff and uses unlocked doors.
¢ Add an operator for the dog to eat food when no people are in the room.
¢ Make Bob not tall enough to reach the plate in the cabinet, requiring Alice to help.
¢ Forbid Alice from unlocking the cabinet while Bob is in the room.
¢ Require two people to move the fridge.
¢ Require food to be heated before eating.
* Create messes as a result of cooking (e.g., dirty dishes) that require cleaning up.
¢ Allow only trained people to cook.
e Add driving out to get food to prepare (someone needs a license).

¢ Require that people like each other or be in the right mood to cooperate.
° Give Alice a sword, Bob some skimpy armor, and the dog three heads to make an

RPG.
* Give Alice night vision, Bob a guard’s outfit, and the dog a sense of smell to make

a stealth game.

Even with automated planning by the agents in our household simulation game,
there’s plenty of compelling gameplay here: setting a sequence of goals for agents
much as actions are set in current games, dropping new objects into the world to help

them, adding attributes and training the agents so they can gain new abilities, or

directing the actions of one agent with the other working around it.

Planning Search —
HF NIE ED REL EEO OPEL LR IE SELIG LTE ING ser 2 & sear se

All these benefits are not without cost. There are overhead costs associated with plan-

ning, both in terms of development and machine resources. Developers must specify

the planning domain, essentially a secondary description of the game world, and

ensure that the actions in the domain do not produce nonsensical states (e.g., the

player is in two places at once). Planning domains must be designed and debugged

like regular programs. Like a compiler, the planner can only work with what it is

given, and if garbage goes in, garbage is all that will come out. However, this develop-

ment cost is likely to be saved by having simpler low-level mechanisms and, further-

more, we stand to gain more intelligent behavior.

The real expense of planning is search. Depending on the specific methods used,

planning search may consume substantial memory. To account for this, planning

search can be implemented in different ways.

The first distinction is between forward and backward planning. In forward plan-

ning, we start from the initial state and consider actions until we discover a goal state.

In backward planning, we start with the goals and consider those actions that can

338
Section 3 Artificial Intelligence

nonsense scence
ssmsnsnnarenoiosessnnicnsennsns sesso nn netlist NSB AOC HAH OHA

achieve the goals. The preconditions for those actions now form a new goal; so we

continue the search backward. Backward planning has the advantage that it tends to

have a smaller branching factor because it never considers actions that do not satisfy

some necessary goal, whereas forward planning can conceivably try all possible

actions. On the other hand, forward planning is the more natural direction; it only

considers states reachable from the initial state, and even an incomplete forward

sequence makes sense and can be executed.

The other major difference between search strategies is whether they search in

state space ot in plan space. In state space, we explore states, eventually constructing a

sequence of states that achieves the goal. We can then extract the plan by listing the

actions necessary for each state. In plan space, we consider sets or sequences of actions

directly, testing to see whether they achieve the goals, refining and extending the

collection of actions as we search.

Most contemporary planners fall into one of three classes: heuristic search plan-

ners, planning graph planners, and satisfiability planners. We will briefly describe all

three of these but focus on heuristic search planners, which we believe to be the best

choice for games for a variety of reasons that will form part of the discussion.

Heuristic Search Planning

Heuristic search planning is a state space planning approach that can run forward or

backward. The search is much like pathfinding. Familiar algorithms such as A* can be

directly applied, and existing A* code reused. As in pathfinding, it is easy to associate

costs with the actions and thus be able to compute “good” plans instead of just feasi-

ble plans. It is comparatively easy to encode specific knowledge about the game in the

costs and also in the heuristics used by A*.
Another key advantages is that even if forward planning fails to find the goal,

either because no sequence exists or because we have limited the running time of the
planner, we can always use the best path found so far as a plan so that game characters
will at least do something that is likely to reasonable. It is even likely that in sub-
sequent re-planning, these partial actions may have helped to put us in a situation to
find a complete plan.

Finally, heuristic search planning offers state-of-the-art performance, especially
on nonoptimal planners (optimal planners find plans with minimal plan length or
cost, whereas nonoptimal planners search for “good enough” plans; for games, we

probably don’t need optimal solutions) with planners like FF [Hoffmann01] among
recent planning competition winners.

A good introduction to heuristic search planning [Bonet01] is available at:
http://www.tecn.upf.es/~hgeffner/index. html.

Graph Planning and Satisfiability Planning

Graph plans are essentially backward planners that work in plan space. From a high-
level perspective, they work by constructing a planning graph, a data structure that

3.4 Implementing Practical Planning for Game Al 339

considers the effects of all possible actions starting from the initial state, pretending
they never conflict with each other. While constructing the graph, information about
mutually exclusive actions is kept, and when the graph is complete, a backward search

from the goals takes place to find a set of legal actions within the graph [Weld99].

Graph planning produces partially ordered plans, where the exact ordering of
actions is not always specified. Some actions can therefore be performed in any order
or, in the case where the actions are performed by multiple agents, at the same time.
This is particularly appealing when we wish to control multiple agents. However, the
backward planning means that if we run out of time constructing a plan, there is no
partial plan to execute. While this approach has potential for games, it not as readily
adaptable as heuristic searching. However, it is worth noting that planning graphs are
sometimes used to compute heuristics for other kinds of planners (e.g., the FF plan-
ner mentioned earlier).

Satisfiability (SAT) planners encode planning problems as SAT problems, which
are classic NP-complete problems with lots of high-performance solvers readily avail-
able. These planners differ chiefly in how they encode the problem, but once
encoded, they can simply call the latest and greatest SAT solver to generate a solution.
This means that these planners can be improved from year to year using off-the-shelf
components. However, SAT planning is arguably more obscure and less hackable,
since the CNF instances are too large to understand and the SAT solver is essentially
a black box where it is difficult to encode any extra knowledge you may have about

the problem. We will not discuss this approach further here, but it is worth consider-

ing because of the rapid advance of SAT solvers.
A good introduction to both graph planning and satisfiability planning [Weld99]

is available at: http://www.cs. washington. edulhomes/weld/papers/pi2.pdf.

Practical Issues _
The following sections discuss some practical issues.

Limitations

Planning is a powerful tool, one that should be combined with our existing tools to be

effective. By using planning, a lot of the complexity being built into FSMs and rules

can be better expressed in the planning domain, leaving us with simpler versions of

these lower level constructs. However, it also has some limitations:

1. A symbolic approach like planning is poorly suited to continuous problems

(for example, one wouldn't use it to drive a car or aim at targets). Existing

mechanisms should be used to handle these tasks, with the planner directing

the actions. The planner is best seen as a mechanism to coordinate simple,

low-level actions that are implemented in the best way available.

340 we Section 3 Artificial Intelligence

2. In addition to its somewhat limited scope, classical planning makes. some

strong assumptions. It assumes that a world behaves as described and that

actions will succeed. This is clearly not the case because of randomness,

because we abstract the gaming world, and above all, because of the human

player. This is why we must replan periodically to reflect the changing

world and the failure of earlier plans.

3. Classical planning is not adversarial. It does not take into account that

someone may be working to thwart it. However, very few game Als address

this problem with more than some basic heuristics and rules. Most of these

basic strategies can be reflected as goal selection, with a top-level strategy

module picking overall goals that the planner figures out how to accom-

plish, executing the low-level behavior by instructing FSMs.

4. The symbolic approach is also not good for making value judgments, like

the relative strengths of two creatures. Existing heuristic functions should

be used in this case and a predicate used in the planner that calls the heuris-

tic and applies a threshold (e.g., a cankill(Creature, Creature) predicate

might check that one unit’s strength is double that of the other unit).

Integration with the Game Engine

In addition to these concerns, it is important to consider how to integrate the planner

to the game engine. This depends at least partially on how reusable you want the

planning code to be, but we will address a few key points.

We first consider the initial state for planning, which must be obtained by the

game engine. Subsequent states generated during planning must be copies of this

initial state; we don’t want to change variables in the game engine directly while plan-

ning. There are a few strategies for getting the facts for the initial state.

In a “pull” strategy, the planner requests information from the game engine to

construct states. The planner examines all the predicates when we are about to plan,

determines their values from the game engine, and stores them in the initial state.

However, the expense of repeated copy operations here is nontrivial, and it is possible
that a lot of useless state information will be stored

One solution to this is to use a read-on-demand approach. In this case, the value is

only read when the predicate is evaluated. Another approach is to use a “push” model,

where the game engine sends changes to the planner as they occur. This is a good

strategy if planning occurs frequently. With infrequent planning, a lot of update oper-
ations will be performed needlessly.

It is also necessary to associate planning objects and actions with the correspond-
ing data structures and functions in the game engine. This mapping is fairly straight-

forward but should be thought about carefully during design. In addition, different
modules should be able to interact with the planner. We built a custom planning lan-
guage to set up the planning domain (types, objects, predicates, operators) but used
Lua, a popular scripting language, to drive the initial state and goals and bind objects

3.4 Implementing Practical Planning for Game Al 341

and actions to the game engine [Lua]. Our planner can also be controlled directly via
C++. Designers can use their favorite scripting language to fine tune levels and, in the
same script, ask agents to solve interesting problems without resorting to loading a
separate script with different syntax.

Note that it is possible to skip writing a custom parser entirely and drive the
entire planner through Lua scripts (or your favorite scripting language). This gem
used a custom parser, because we found it more instructional for the reader and easier

to read for development, but it is not essential.

Optimizations
Planning is known to be hard in theory, and it is easy to build hard planning prob-
lems. However, games represent an instance where we have a lot of control. In robot-
ics and industry, the world is uncontrolled. In games, the world is perfectly observable
and carefully engineered. Games are built to be reliable, and a lot of the qualities QA

looks for in a game lead to easy planning domains. Most games are carefully designed
so that the player cannot become trapped. Every state of the game should lead to
some definite outcome (even if it’s just death). This lack of limbo states is good for

planning.
Many games also have a lot of monotonicity in their actions. This means that once

an action is taken, the effect it has on the world is never removed. Examples of this are

objects that are never dropped once picked up, doors that can be unlocked but are
never locked again, and creatures that do not respawn once killed. Think about the

games you have played and you will begin to see a lot of monotonicity. This is because

good game design often leads to monotonicity by attempting to keep actions simple.

If there is no reason for doors to be relocked or a switch to be flipped twice, making

the action monotonic simplifies the controls, the player’s options in the game, and

debugging/playtesting.
Monotonicity leads to easy planning domains. Moreover, many planning algo-

rithms pretend the domain is monotonic as a heuristic. Such algorithms will be highly

effective in largely monotonic game worlds. Nonetheless, nonmonotonicity is going to

arise as a natural part of interesting gameplay, and contemporary planning algorithms

can still perform well. Exceptionally difficult nonmonotonic subtasks that prove to be

a problem can be addressed by a custom solution, a specialized algorithm that solves

the hard problem. This can be treated as an action by the planner, effectively removing

the hard part of the domain by ensuring that it’s done as a single, special action.

For example, an agent might be required to navigate a very complicated maze of

doors with switches that must be flipped and reflipped to escape. If the planner is too

slow at solving this problem, a specialized algorithm or scripted solution could be

associated with a navigateMaze action. At the planning level, the action would simply

require that the agent be at the start of the maze and the effect would be to put the

agent at the end of the maze. Some such problems might be puzzles, which begs the

342 Section 3 Artificial Intelligence

TTT ETTTTTNTTNTTTNTTTTTTSNITTTOTNNTTTTS Trci
c

question of whether a game designer should pose puzzles for the game Al to solve.

Since the usual point of a puzzle is to challenge humans, it might be better to auto-

matically bypass the puzzle or force the player to solve it.

A lot of other optimizations are possible, such as setting an order in which to

explore actions if we have some idea of which might be important. We can automati-

cally reject certain states if they have some undesirable property, thus pruning the

search. Finally, there is a large research literature and a range of excellent tutorials that

can suggest good optimizations and heuristics.

Conclusion
‘Sessa ata

References

ee SEEN EIN ss MESSRS RONEN LLL SLE LLL REED LE LLL LION TET,

Planning algorithms can add a new dimension to intelligent behavior in games and

reduce the complexity of existing game Al implementations. Planning and games are

a great match, and recent A* based strategies are both familiar to game developers and

state of the art in planning research. The time is ripe to adopt planning into games.

For example, Jeff Orkin of Monolith Productions has already incorporated plan-

ning into their upcoming FPS game, FE.A.R. It uses a propositional planner, planning

for single agents with a small number of facts (around 20), but it provides dynamic,

forward-looking AI in the fast-paced, real-time FPS setting [Orkin04]. With more

sophisticated heuristics and optimizations, multiple agents and larger scenarios are

within reach. Our own planner is more general, and the first iteration took about a

month to implement from scratch.

In less immediate games such as RPGs, we believe that much larger environments

can be modeled. Tactical and stealth-based games also stand to gain from this technol-

ogy, addressing the somewhat shortsighted behavior exhibited by their characters.

Whether for allies or opponents, a richer and more vivid experience can be offered to
the player and a new generation of gameplay opened for designers to play with. We
don’t just think it’s possible, we're sure it’s inevitable.

A demo is available from Attp://www.cs.ualberta.ca/-finnegan/planning4games.

5 SC SCRE NIA SENSO NS NS EIR PE RE ROTEL NON TOE TNL TT TLE NTE ESS TT,

[Bonet01] Bonet, Blai and Hector Geffner. “Planning as Heuristic Search.” In Artifi-
cial Intelligence-Special Issue on Heuristic Search, Vol. 129, No. 1-2, 2001. Avail-
able online at /ttp://www.tecn.upf.es/~ hgeffner/index. html.

[Fikes71] Fikes, R. and N. Nilsson. “STRIPS: A new approach to the application of
theorem proving to problem solving.” In Artificial Intelligence, vol. 2, No. 3-4,

1971: pp. 189-208.

[Ghallab04] Ghallab, Malik, Dana Nau, and Traverso Paolo. Automated Planning-

Theory and Practice. Morgan Kaufmann, 2004.

3.4 Implementing Practical Planning for Game Al 343

(Hoffmann01] Hoffmann, J. and B. Nebel. “The FF Planning System: Fast Plan
Generation Through Heuristic Search.” In Journal of Artificial Intelligence
Research, Vol. 14, 2001: pp. 253-302. Available online at http://www. informatik.
unt-freiburg.de/-hoffmann/ff- html.

[Lua] “Lua The Programming Language.” /itp://www.lua.org.

[McDermott98] McDermott, Drew, et al. “Planning Domain Definition Language.”
1998. Available online at Attp://www.informatik.uni-freiburg.del-hoffman/ipc-4/
paal.html.

[Orkin04] Orkin, Jeff. “Symbolic Representation of Game World State: Toward

Real-Time Planning in Games.” In AAAI Workshop Technical Report WS-04-04:
Challenges in Game Artificial Intelligence (July, 2004): pp. 26-30.

[Weld99] Weld, Daniel S. “Recent Advances in AI Planning.” In AJ Magazine (1999):

pp. 93-123. Available online at Attp://www.cs.washington.edu/homes/weld/papers/
pi2.paf.

= a eta ~, we
z = 7

aan - , :

; ~

_. ener oe teal bet al

Gufi ial cormased. goirnamlll Sa. he, lade eA a i ray |
angles A\ are ig ah, Aoadew th rd wth 4 ae ; 7 . te

Airaaie yd neqyalienee he a ae apnithnages é. nate oe oe pits ,
pee ;

’ - ee. ae

= cuipiamenece ey: ?—s tthe re | ie oo
“ aarasta! gies! \ ptt Vl singe: me grieugnls enema les aa. Hae

Te eaten oe gaediet scasdatatihaiapiniichaver
: a ae

=e me BR Wiles ae te) ©

news! “are bhe? y sfin.! iF Weyer onus diodarye Fol i e
ee -

Goesng Hace” wawedas eben? URNA ai * extttin? ak geanenns: “aah - eas

ay mrmryin Qaorgeg et tet APE att POE NET Bee *,

(OUP 1 i oni aa Ara Rian ae Lx Ay edits id RGR daa inp aah J

Ve ; ‘ei i 4 A = s * 5 7 - why siedaeh aah OS Ue ¥ are lel lewth | Bs | 3 ay ot ore
ne “eA tl Tp) AL. eh a Me

wm Tix rk i hey ¢ he pee » ef ta] adage gran wire —
bm

c ‘ort 4. SURE o Adoctiel wee 1 lucene ivnn ah my = 1 tee :

‘ tits c i? , gh! i A - i Ur a preneciinn

be : nt et al fos 2 AO) kant . y

niking A oul ais: 9S sacg a 0
‘- Pia | : wea . . Sey cia aad “ asl ages abe a

bs ben
» fear i at Ny ‘ ‘ pi ave Pane ORG

ag. teint bow thie tag Getdiel, cohen ep

vei | Hate Os log agy Seer itd espoeee eae
ye “baw apd te] ea rec! 4 lor des ii 3 rw play wich

fewek pant thee) ine pale hie, ocag eure He wermheee ong wil ware
A ees gn orale Wus “Pr ie aL eaer eae nthe f ray

: i : Seti |
nantes EES Dee oe ‘ie

re- aire _ =

1 Bane, bly ut os Golly. “ig eae Sint a
-I ; ep 7 ms A “eto

\y 1f Hel Om

pre +s. ’ 4 as} yi ig | Arygion. ~~ 7 ey

mm 18 af

=a 7 | ;
i he) - _ I

. bs . ere 7 _ on

i bite Gila 9 Sis + ula aly, al rwd frame r a

{ Wma’ “Boy Kaeser Me ea = - 7 ©

As
™

3.9

Overview

Optimizing a Decision

Tree Query Algorithm

for Multithreaded

Architectures

Chuck DeSylva, Intel Corporation

chuck.v.desylva@intel.com

ecision Trees facilitate slim, fast game AI that is easy to implement and maintain.
Although Neural Nets may be better in the long term (once educated), Decision

Trees are ideal for a finite set of expectations, like those defined in typical games.
This article presents a simple method for modifying an implementation of the

basic Decision Tree algorithm. The method is fairly straightforward and easy to
implement and more importantly can result in faster AI response. It is especially
applicable to Als with large determination sets, where many units in the game use the

same tree(s) spawned from a single main thread of execution, for a given set of Al

responses (e.g., attack, movement, etc.).

IE

Essentially, a Decision Tree is a way of assessing data from a set of questions and sug-

gesting a model that explains the data so that accurate predictions can be made. It is

constructed of questions to be asked by AI characters based on data from the scene.

There are numerous varieties of questions for a given set of data, and a typical game Al

could (and should) have numerous Decision Trees (i.e., pathfinding, spontaneous

reaction, Q&A, and to some extent, physics itself, such as avoidance and response). For

more complex systems, such as agents, Decision Trees become even more important.

Decision Trees can operate on finite or infinite sets of data, though for the case of

games, the finite set is of the most importance. The obvious value of Decision Trees

over other algorithms is twofold: they offer a simple and discrete explanation of

regression sets as well as an easy “explanation” of Decision rationale. One of the most

widely used Decision Tree algorithms is Quinlan’s [D3 algorithm for constructing a

345

346
Section 3 Artificial Intelligence

scttetnaneteyeniusinnnesnenebitesstestie Niner nANICONSAAAE ENEMA RH NON NET

Decision Tree AI. Documentation for this algorithm and how it works is readily avail-

able on the Internet.

Decision Trees are essentially computer science binary tree structures, enabling a

conclusion state to be reached from a root node (which denotes the start of a decision

category) via a set of Decision states. In the example used in this document, the states

are 2, as shown in Figure 3.5.1. The tree provides a technique to allow a conclusion to

be made based on a specified problem definition.

Root Node for 2-way

“Attack” Decision Tree

Defender

Vulnerable

(Attack)?

Can Ally

Attack?
Is Defender a

ground unit?

Can All
Is Defender Is Defender Send attack , ey :

a tank an air unit? directive to se ht
x Attacker? Ally

Yes No

FIGURE 3.5.1 Example 2-way based “Attack” Decision Tree.

Since Decision Trees are a good way to turn an educated set of questions into
nodes that result in answers, they are useful in classification systems as well as in com-
puter game AI. The architecture of the Decision Tree typically requires a lot of input

from the design in question and can vary from one design to the next. Although most
problems in modern games are simple, the time is closely approaching where it will be

possible to create game-independent AI characters that use multithreaded algorithms
such as this. For now we'll constrain the topic to a simple optimization method of one
implementation of this algorithm with the intent that it could be scaled to others
similar to it (i.e., n-way trees, that is, more than one answer per node).

3.5 Optimizing a Decision Tree Query Algorithm for Multithreaded Architectures 347
son NONE EERE LEMURS EDULE OSE PE OOS EE UDR NERS OSLO me EEE aE A HER RIO EH USES LANAIN NANCIE et

Caveats

Some Decision Trees involve decisions that can be answered in a variety of ways (in
addition to the binary yes/no). In inductive learning, as this type of Al is referred to,
the goal is to find some rule or function that lets you draw useful conclusions based
on a decision case you obtain at any point in the tree. For any particular decision set,
the various inputs are classified via entropy functions, typically based on logarithmic
functions. Since these functions are detailed in countless sources on this subject and
don't have a great impact on the performance of the algorithm (most modern compil-
ers automatically optimize math functions with special switches'), we'll forego a
discussion on the nuances of the inner workings of the algorithm and stick to the

“biggest bang for the optimization buck.”
The original Decision Tree implementation was riddled with command-line

input statements. To make the algorithm more useful for the purposes of profiling, it
was modified to take input from a memory-mapped file (to simulate real-time input
from a typical game). Further, the tree was made significantly deep enough (as it
would be in a typically robust AI) to make profiling the algorithm closer to a real-

world implementation.

Optimization :
saan een SR eS eee ARTO sa ocean 2A morass tame ae RENEE

Most game developers don’t want their AI to assume more than ~20% of the (frame)

compute cycle (depending on the game implementation) time. This is a rather liberal

request given all the rigors of a robust gaming experience. If you have a well-balanced

Decision Tree (one with equally distributed yes and no branches; see Figure 3.5.2)

you might be able to gain that 10% back on a multithreading aware system? using this

technique.

The algorithms detailed in this article are based on material available at the Gen-

eration 5 Web site, which details a simple yet robust and easily adaptable Decision

Tree implementation.

The code modifications in this example were done using a compiler? that sup-

ports OpenMP (see OpenMP specification 2.0) directives. Since the majority of the

(running) time spent in this algorithm is in searching for answers, the search part of

the algorithm was chosen for optimization.

The algorithm itself is recursive, so some additional routines are needed. It starts

by a call to the member function DecisionTree: :Query() (see Listing 3.5.1). This in

turn calls the member function DecisionTree: :QueryBinaryTree(*dt node). As the

tree is searched, a set of recursive calls {6: where, 6 is the depth of the tree} between

'Intel’s C/C++ Compiler (v.8.0), for example, will vectorize math functions using certain switches (i.e. /QaxW for

Netburst architecture)
2Such as any multi-processor based system.

3Intel’s C/C++ 8.0 Compiler. Microsoft’s Visual Studio .Net 2005 is also intending to support OpenMP as of this

writing.

i ificial Intelligence
348

Section 3 Artificia g
snare totatnANLALa NHANES

Well Balanced Tree

Poorly Balanced Tree

FIGURE 3.5.2 Example of a well balanced and poorly balanced
Tree, each of depth (6) 4.

this function and DecisionTree: :AskQuestion(*dt node) call each other until the

answer node is obtained or no answer is found.
As the desktop CPU industry moves closer to simultaneous 80 x 86-based 32 and

64 bit computing, performance is being challenged once again. Expectations are that
80 x 86 based processors* with these technologies will require application software to
scale appropriately to maintain on-par performance with the hardware capabilities.
Proper threading of applications will be critical to application performance as Dual-
core and Multi-core trends redefine scalability for today’s modern application software.

4 Which are expected to start shipping mid 2005 as of this writing.

3.5 Optimizing a Decision Tree Query Algorithm for Multithreaded Architectures 349
even tevtlnantectnnnnhnoineeneteteotetesnaaiieetininnoteommenenneiteetii sessanennehnnctcnenene ante

Listing 3.5.1 Initial Decision Tree Search Source

void DecisionTree::Query() {

QueryBinaryTree(m_pRootNode) ;

}

void DecisionTree: :QueryBinaryTree(TreeNode* currentNode) {

//Error Checking ... otherwise default to asking the question

//at currentNode

AskQuestion(CurrentNode) ;

//otherwise default to asking the question at the currentN-

ode

}

void DecisionTree: :AskQuestion(TreeNode *node) {

//Error Checking

if (answer == "yes")

QueryBinaryTree(node->m-_pYesBranch) ;

else if(answer == "no")

QueryBinaryTree(node->m-_pNoBranch) ;

else { //Error on input

AskQuestion(node) ;

}
}

In keeping with this, the proposed optimization for this algorithm is targeted for

a two-CPU (logical or physical) system. Branching out into 4-, 8-, 16-, etc. way

implementation would mean further changes to accommodate this method by

branching out and calling the first threaded routine on the Nth recursive iteration

(from the root). That is, the starting point for threading is at 6 = 2V. The best way to

do this is to base the threading starting point where the number of nodes at depth 6

equals the number of available CPUs.’
Though the compiler determines the number of threads to generate based on

CPUs, it does not determine where to spawn the threads. The new algorithm (Listing

3.5.2) breaks out the call to the threaded routine once the proper depth is attained in

the query using modified data decomposition.

Listing 3.5.2 A 2-Way Threaded Decision Tree Implementation®

#include <omp.h>

void DecisionTree::Query() {

QueryBinaryTreeFirstTime(m_pNode) ;

}

5tn the Microsoft Win32 API this can be obtained by calling the Platform SDK function GetSystemInfo(...).

6Compiled with the Intel Compiler’s /Qopenmp switch.

350
Section 3. Artificial Intelligence
Se it Et BleicD— AA ce IO, ARS TE

tsa NN

void DecisionTree: :QueryBinaryTreeFirstTime (TreeNode* currentNode) {

//Error Checking ... otherwise default to asking the question

//at currentNode

AskFirstQuestion(CurrentNode) ;

:

void DecisionTree: :QueryBinaryTree(TreeNode* currentNode) {

//Error Checking ... otherwise default to asking the question

//at currentNode

AskNextQuestion(CurrentNode) ;

}

void DecisionTree: :AskFirstQuestion(TreeNode *node) {

#pragma omp parallel sections

{
if(answer == "yes")

#pragma omp section

QueryBinaryTree(node->m-_pYesBranch) ;

else if(answer == "no")

#pragma omp section

QueryBinaryTree(node->m-_pNoBranch) ;

}
else // Wrong input

AskNextQuestion(node) ;

}

void DecisionTree: :AskNextQuestion(TreeNode *node) {

//Error Checking

if (answer == "yes")

QueryBinaryTree(node->m-_pYesBranch) ;

else if(answer == "no")

QueryBinaryTree(node->m-_pNoBranch) ;

else

{ //Error on input
AskNextQuestion(node) ;

In keeping with the 10% factor stated earlier for AI compute cycle, the workload

was tested with a rendering load averaging 30 FPS. Doing a bit of math, this amounts

to ~33 ms time per frame (neglecting the 0.3333 for extra-frame processing). 10% of
1 second is 10 ms. So, this was the allotted time per second allocated to AI cycles at

30 FPS chosen. That amounts to ~1/3 of 1 frame per second. Not a whole lot of time.
So the test was run to generate one AI cycle per every 33 frames at 30 FPS. This

would also allow for stabilizing the thread synchronization setup by OpenMP’s inter-
nal thread pooling mechanisms.

The next step was to decide upon a coherent decision set for the workload. In an
average game, there may be multiple Decision Trees active at a time per unit. Assume

that each AI unit has from between 10—200 decisions (nodes) it can make. This is of

course completely an assumption, as robust Als could have more options (especially
when m-way decisions are available). The geometric mean of this range is -45. Given

cuneate asessnseeeS ets AMSLA SNL Ng Aas ane NA MO CPOE nasteoneonetaotesncomann cscs AEE EAA sete .
3.5 Optimizing a Decision Tree Query Algorithm for Multithreaded Architectures 351

a worst case scenario of 300 AI units per scene (perhaps a large RTS), this amounts to
a total of 13,500 nodes (or decisions) to be made per scene—a substantial number of

nodes to parse in 1 second. Testing was performed on a Pentium 4 running at 3.2
GHz with HyperThreading enabled (see Figure 3.5.3).

Decision Tree Scaling with Sample Workload

1.4 =) .

a

Uo 12

¥ 1

=)
a 08 s) —@— 1 CPU

N 06 —a— 2CPU

Dd)

£& 04
Toc}
ay O2

1 2200 4400 6600 8800 11000 13200

Num Nodes (Decisions)

FIGURE 3.5.3 = Zest results for Decision Tree workload.

Notice the OpenMP directives for sections in Listing 3.5.2. In this case, two

threads are scheduled by the OS for each section. This is done by compiling the code

with the /Qopenmp switch and including the OpenMP header (omp.h). The pragma

omp parallel sections informs the compiler that the following compound statement is

parallelizable code, and that each work unit (function call in this case) is identified

using the omp section directives. Refer to the OpenMP specification for more details

on this and other directives.

Conclusion
—

This method illustrates a simple way to modify an existing Decision Tree search algo-

rithm. For more information on the usage models of Decision Trees see some of the

references listed. The coding techniques presented using OpenMP are applicable

where data sets are significantly large enough and where the Decision Tree itself is

as close to evenly balanced as possible. Performance gains will vary based on this as

well as CPU cache resources and how often the search algorithm is called in a partic-

ular scene. As shown here, to gain real benefits for SMP systems, often a slight re-

architecting of the algorithm with respect to load balancing is necessary. Additionally,

note that there may be some trade-offs such as higher memory requirements along

with code complexity.

352
Section 3 Artificial Intelligence

srmatansnnsurencresietn snot eriassessnannnntscsesnnientnnene

References . ‘eA SPORE I AE EE SES RT

Decision Trees. Available online at /ttp://www2. cs.uregina.cal~ hamilton/courses/831/

notes/ml/d Irees.

Generation 5 Implementation. Available online at hetp://www. generation 5.org/content!

2004/bdt-implementation. asp.

Intel® C/C++ Compiler Users Guide and Reference. Available online at Attp://www.

intel. com/software/products/compilers/cwin/.

Microsoft Visual Studio 2005 OpenMP Support. Available online at http://msdn.

microsoft.com/msdnmaglissues/04/05/visualc2005/default. aspx.

OpenMP Specification 2.0. Available online at http-//www.openmp. org/specs/.

3.6

Powerful, Not Free

Parallel Al Development

with PVM

Michael Ramsey, 2015 Inc.

miker@masterempire.com

Re. trends in chip development support the basic infrastructure for concurrent

r parallel processing systems in games. The Parallel Virtual Machine (PVM) is a

software system that allows an AI developer to write an AI that can run on multiple

processors and systems. This gem will focus on the aspects of PVM development, pri-

marily real-time games, with target architectures for Microsoft Windows or Linux.

While this gem is targeted toward development of an AI with PVM, many of the

concepts as well as the framework, are extensible towards other areas that might

benefit from parallelization and may be of use on platforms that expose multithread-

ing concurrency technologies, such as Intel's Hyper-Threading technology or future

generations of consoles.

st RSL

A concurrent AI is usually branded as either a parallel or distributed system. PVM is

both. With PVM, a game can use multiple processors on one machine or a series of

computers on a local LAN for an enhanced gameplay experience.

A key proposition in PVM development is its wide use of a message-passing

model to utilize a distributed environment. Retrofitting an existing system for such

message passing will not yield better gameplay or a smarter AI. To reap the benefits of

PVM, you must start with a general framework that will allow for the development of

a concurrent AI system. This upfront work will allow for offloaded AI tasks, to com-

municate with and work with the core game executable. With a minimal framework

in place, an AI developer can have his bots constantly evaluating the best path to take

or have a separate task constantly evaluating the best tactical avenue by which to

approach an elusive player. By constructing all AI queries into tasks that are executed

on other processors, we allow AI tasks to be constantly executing in the background.

353

354
Section 3 Artificial Intelligence

sscennlesbnettotnncnnamaetnnentsAtAAAAeN MAAR AANSTARIN

Any AI developer would relish the thought of not having his AI relinquished to a

frame dependent clamp!

tA RUE ERENT RA REDE BEASTIE LMR OE NEN IM IR AOI
Core Terms and Concepts

Before we can discuss the details and benefits of a PVM enhanced game, we need to

first define some terminology. Instead of reviewing generic parallel-programming

techniques, we'll focus on the components that are needed to efficiently develop a

PVM framework. See Figure 3.6.1.

1 For a more in-depth discussion of PVM, readers are encouraged to consult

[Geist1994].

| iene |
Element 2 Element 3

Task Manager/Router ;

Task ID and Data Block Be

. Task ID and Data Block

Task ID and Data Block

FIGURE 3.6.1 Components of a PVM AI system.

All tasks occur within process elements (PEs), such as on-board processors or LAN com-
puter resources. It is easiest to visualize the relationship between the main game and the
ancillary PEs by understanding that the main game is the master, and all the available

PEs are its slaves. PEs do not instigate work, they are there to process tasks for the game.
Tasks are subdivided elements of a larger problem, such as path generation, influ-

ence map generation, military disposition assessment, terrain analysis, spatial determi-
nations for unit placement, wall building, economic analysis, and other game-related
actions.

Task Decomposition

A fundamental component of parallel AI development is the concept of solving a task
by dividing it into a number of subtasks, each of which is processed by separate ele-
ments or workers. This infrastructure allows for a breakdown of fundamental tasks
that can be easily evaluated by multiple processors.

3.6 Parallel Al Development with PVM 355
seen ttnonoersneiesnassenteoestlalaneeenetnmatnonensenenioinnegeaiitonstannnioeantaaisvnttiataniannnerenaneniseenentdnnsieit

Task decomposition generally falls into two categories: functional decomposition
and data decomposition. Data decomposition is an algorithmic approach on task
breakdown. Data decomposition is the more complex of the two categories. Func-
tional decomposition is the simpler method, in that an encapsulated function can be

passed off to another processor for execution. While this approach requires a shift in
how we approach the design and implementation of an Al, it is the approach that our
PVM system will use for game processing.

With functional decomposition, each task instigates a specific operation on
another processor. For example, if you want to execute a background task to analyze
potential enemy movement, you would create a task that initiates a unit analysis pro-
gram with a series of prearranged parameters. These parameters would dictate things
like preferred target rankings, previous diplomatic constraints, unit biases for forma-

tions, and so on. In designing the analysis task, the developer must take into consid-

eration how each aspect will be executed in a concurrent system.

Sreatingaigenss ei ae EES UMMA NRT eae

To illustrate how a larger problem can be decomposed into smaller elements, in Fig-

ure 3.6.2, we examine a common problem for real-time strategy (RT'S) Al: distin-

guishing destructive short-term decisions from more cognizant long-term actions.

FIGURE 3.6.2 A sample scenario from a real-time strategy (RTS) game.

356 Section 3 Artificial Intelligence

In Figure 3.6.2, we see that an AI player has discovered an enemy city with some

tanks around it. In this example, we have a player massing troops on the western

slope. The AI has a corresponding detachment of units on the eastern slope. The Al

would like to attempt an invasion of the belligerent city. Should it use the most direct

route (A) or the alternate (B—C) route?

Ideally, the AI can react with a degree of prescience. At the strategic level, we

assume that the AI already knows it needs to take the city. To accomplish this, the AI

would need to evaluate the available routes and form a plan.

Here are three possible plans:

Plan A: March forces through the mountain pass.

Plan B: March forces to the port city and then transport them around to the

southern flank.

Plan C: March part of the forces through the mountain pass to occupy the

enemy while the main force executes plan B.

These plans all have similar components; let’s look at the components that go into

plan C, as it encompasses components of both plans A and B:

Update the influence map: In this specific instance, the AI needs to know if

his forces can be mobilized through the choke point before his forces would be

engaged. This will require an up-to-date influence map.

Generate unit paths: We need paths for units that are going to enter the

mountain pass and for the units that are moving via route B-C.

Provide Transportation: Tasks to either build transports at the city or route

transports to help in moving the units.
Provide Attack Formations: This will direct the units once they reach the

western slope of the mountain range.
Assess Diplomatic Constraints: Ascertain what type of political fallout will

occur if the AI attacks the city on the western slope.

Just by deciding how the AI should attack, we've generated several potential tasks. In
addition to these new tasks, we may have high-level, behind-the-scenes, strategic

plans and tasks in process. Some tasks will be quick and easy to compute (usually on
the local processor); others will be bulky and require assignment to other PEs. As we
shall see, the size or granularity of the task will dictate how each task needs to be
scheduled.

Granularity

Each task is assigned a granularity, which helps determine its scheduling position

inside the task manager. A task’s granularity is a reflection of the following:

¢ The size of the task

¢ The amount of computational effort required to accomplish the task
¢ The bandwidth that will be required to facilitate a solution

3.6 Parallel Al Development with PVM 357

PVM is generally friendlier to tasks that are larger. There is an appreciable overhead
that occurs during the creation of a task—its addition to the task pool—to the actual
processing of that task. In attempts to maintain PVM-friendly tasks, we will generally
allocate tasks that are fairly large in scope, as shown in Table 3.6.1.

Table 3.6.1. Varying Task Granularities

Sample Task Granularity

Influence Map Analysis Large

Generating Unit LOS Medium

Wall building Medium

Squad of units pathfinding Medium

Analyzing surrounding cells Small

Single unit pathfinding Small

Tactical influence map analysis Small

Combined arms formations Small

While it is possible to hand-tune tasks for execution, we automatically assign a granu-

larity based on task processing time, as observed during development. Execution

times are cross-referenced with a master timing table, which assigns a granularity to

this “type” of task. The task reference is then stored inside the task manager's granu-

larity table, which is updated when new tasks are performed. By performing runtime

analysis of task execution length, we can group or link related tasks together.

Task Management
ae

ceeeaanaienl

Once created, new tasks are placed in the task pool data structure for distribution to

the task management/routing system. Depending on the state of the tasks being

executed, it may take a long time for tasks to make it from the task pool onto the

appropriate number of PEs. It is important to consider this when designing your

tasks, assigning granularity, and constructing distribution algorithms.

Distributing tasks among PEs depends upon two factors:

¢ How many processor elements are available

° The types of tasks that are suitable for distributed processing

Continuing our earlier example, lets look at the factors that will determine how our

attack task will be distributed. In a system that contains just two processors, one

processor should be delegated as the ancillary processor, which deals with tasks of

large or medium complexity. The other processor should service small tasks, or tasks

that require immediate execution. This processor will also serve as the processor that

runs the main game executable.

Section 3 Artificial Intelligence

Updating the entire influence map or generating pathing routes for-an_entire

squad of units (which would also include dealing with potential troop formations)

should be routed off to the secondary processor for execution. With something as cru-

cial as pathfinding for a squad of units, why do we want the task offloaded to another

processor for execution? Shouldn't we want the AI to immediately generate a series of

paths for us? Most certainly; but this individual task is only one task in a handful of

tasks that are going to be required, for a complete plan of action.

Not all your AI tasks should or will be distributed. Some instances will require

immediate execution on the local PE, which the PVM architecture accounts for. For

example, if our game is executing on a dual-processor system, PVM will handle the

task normally, assigning it a higher priority, such that the task manager immediately

schedules it for local execution. For example, if we have a lone soldier that just came

under attack from an enemy, and it is unable to defend itself, the soldier should flee

from the attacker. Finding a quick and dirty location to escape to takes precedence

over a unit’s potential long-term goals. This fight-or-flight response is purely reac-

tionary, and this type of task should be scheduled for immediate execution. Once the

danger has been avoided, the unit can then again begin to make long-term goals that

are more amiable to an ancillary processor.

Dependencies

Task dependency is a potential byproduct of a task that is reliant upon a previously exe-

cuted task’s output. Still using our previous RTS example, the AI player needs to not

only path to the opponent's city, but he also needs to be aware of any potential enemy

movement surrounding the city. What is required is an enemy unit disposition analysis

task, so that the most currently available influence map is used to assess and analyze the

unit’s strengths and movement history, as well as formulate the Al's response. One way
to deal with this chain of dependencies (the simplest possible scheduling solution, in

fact) is to ignore it. In this scenario, the accuracy of your AI depends on the (arbitrary)

ordering of update tasks for your influence map and analysis algorithms.

Arbitrary scheduling, while simple, is inefficient and prone to errors. In a perfor-
mance-critical application such as games, one must consider the myriad of possible
relationships between tasks and schedule accordingly. Should we schedule tasks sev-
eral frames in advance, with a reservation policy? This ensures that important tasks get
completed on time and reserves bank PEs for work on tasks that are essential but

large. If we reserve, should tasks be interrupted? Task interruption is discussed later.

Grouping

A simple approach is to group like tasks into execution packets when they are small
enough to be lumped together on a single PE. This grouping eliminates the extrane-
ous overhead of task setup, bandwidth wastage, and in general allows for the more
efficient use of processor resources. In addition, when several similar tasks are exe-
cuted on the same PE, the data required to process the tasks remains local to that PE.

3.6 Parallel Al Development with PVM 359
oct enadtoenssietoeenaoanteneocntnnanoretnn ene itonhanh EH cA etentdnetet lA niceieLnnstGeoteorumnteoHoretiadrecnnaniitninenti

This data locality saves us memory reads and communication overhead. See Figure
3.6.3 for an example in which similar tasks are grouped together.

The dynamic grouping of tasks requires a management class, which evaluates and
groups tasks by type. This class sits between the task pool and the general task man-
ager and serves as selection mechanism and a pump into the general task manager.

Processing Element 1

Tank Pathfinding

Soldier Pathfinding

Soldier Pathfinding

|
Build a wall around city |

Generate Tactical Influence Map] ie
Task Pool

FIGURE 3.6.3 Grouping of similar tasks

before they are scheduled for distri buted

processing. Here, three similar pathing
commands are grouped for efficiency.

To facilitate execution, we can adjust the granularity of an operation and spread it

out among available PEs. While this has benefits, some tasks (regenerating an influ-

ence map, spatial calculations for unit dispositions, and potential terrain analysis),

when refactored, can lead to increased interprocess communication. In general, tasks

that rely upon data that has been previously calculated and placed into shared mem-

ory will encourage the increase of interprocess communication.

Shared memory is one of the most familiar mechanisms for interprocess communication

(IPC), allowing a series of processor elements access to the same memory pool. When one

processor element changes the shared memory pool, the memory pool changes for all the

processor elements. Within Microsoft Windows or Linux, you will have to provide your

own synchronization mechanisms for accessing shared memory, using semaphores.

Linking

An ancillary variation to grouping, linking is useful when larger tasks are dependent

upon smaller tasks for initialization input. Inside the task ID, an unsigned integer is

reserved for linking to another task packet. The task scheduler takes note of this, and

360 Section 3 Artificial Intelligence
sstesssioaensnntetenenshee CANOSA NeNe ANNAN LRAT NOOO

before the ancillary packet is routed to a PE, the linked packet is scheduled for execu-

tion. Linked packets should be used with care, as they are extremely susceptible to

race conditions and deadlock issues that can also lead to thread leakage (discussed

later).

While implementing a task scheduler is fairly straightforward, individual task

selection mechanisms are highly game-specific. One key component is data process-

ing. If the PEs are being starved (waiting for data), the AI routines that supply tasks to

the pool need to take this into consideration. When starvation ts observed, it is

important to rework the AI routines and scheduling logic so that it is more anticipa-

tory of potential processing holdups.

Caching or Processor Affinity

Caching or processor affinity encourages similar tasks to be executed on processors that

have executed identical or similar tasks, an important consideration when offloading

tasks to PEs. To accommodate this processor affinity, the task manager should contain

a basic history tracking system. The basic history tracking contains a list of differing

tasks and the most recent processor element that executed it.

Interruption

Once a task is routed off to a processor element for execution, it is critical that the task

proceed uninterrupted. We allow any offloaded task to be completed before another
task is routed to that processor element. This eliminates an entirely cumbersome
mechanism of stalling processes, storing the entire state of a processor element, just

because a higher priority task was entered into the task manager. If you find that a

task needs to be interrupted, the task is most likely too large and needs to be broken
down into smaller tasks.

A typical example from an RTS game is the generation of an influence map. A

unit attacking a group of enemy tanks may not necessarily need the entire influence
map regenerated, which can potentially become a bottleneck during normal gameplay
due to the size of most influence maps. Instead, the creation of a tactical influence map

can be used. A tactical influence map is just a smaller influence map that is focused on

a particular region of interest. This allows all the normal operations of the larger influ-
ence map to occur, just on a finer scale. You don’t have to limit the scope of your tasks;
designing a smaller data set to work with will alleviate the possible task interruptions.

Load Balancing

When creating a task for execution, we must consider the actual size of the workload
that a PE will be expected to. process. If the workload is too small, the PE will be
starved for data, spending more time preparing and communicating then actually
processing tasks. If the task is large and takes too long to execute, it may cause data
dependency issues. Worse, it may delay the delivery ofa crucial result to the game, such
that a gap in the decision-making process becomes evident.

3.6 Parallel Al Development with PVM 361
susoeamtitecentoacinrmanang an oneovsternemncenoieoteesc inne tucssonsessisenshitrsitst Noninst neeroreisdrntoeniei:sancinicstesianiinnnaanichnaa sri

To maximize the PVM architecture, it is critical that threads are kept busy. Tasks

can finish out of sequence, but you want to avoid any condition where one processor
element is serving as direct input into another. Dependencies can cause stalls and can
turn our parallel AI system into a sequential AI system if left to proliferate unchecked.

An example of a series of tasks that could have been designed to be dependent is
presented in our previous RTS example. As discussed in the dependencies section of
this article, we have a series of tasks that constitute the AI’s plan. These tasks are

updating our influence map, assessing unit positions, analyzing the units strengths,

and tracking movement history. There are definitely more tasks that could be created

for a real-life RTS. If all four of these tasks are grouped as a single larger task and

routed for execution, the influence map task would have to complete before the unit

assessment task could start. This would then have the undesirable side-effect of a PE

waiting for completion of another task before it starts its execution. This delay would

have a negative impact on the other waiting tasks inside the task manager. The queued

unassociated tasks would just sit there and wait, while the previous tasks stall the

entire pipeline.

Threading Pools

The majority of your tasks will be managed by the task manager, which will create

threads to facilitate the execution of the various PEs. A thread pool allows the runtime

creation of a bank of threads, which the task manager can access for process element

execution. This shifts the cost of continuous thread and stack creation to a one-time

operation executed at startup.

Thread pools are subject to all the same issues that a normal parallel process can be

subject to, such as deadlock, synchronization issues, resource thrashing, and thread

leakage [Gerber04].

An important aspect to using thread pools is the reliance upon the thread pool being

the proper size. By carefully tuning the number of threads available to game tasks, you

will avoid the waste of system resources as well as reduce or eliminate thread thrashing

by allowing excess thread requests to be queued.

PVM Implementation -
ct CASALL LMM LLL NNT MNT

It takes work to design and implement a parallel-friendly game. Fundamental

assumptions (and often your previous experiences with AI implementation) must be

re-evaluated.

Modularizing your design will facilitate the transition from serial to parallel. Cre-

ate a bank of common game libraries to which all components (PEs or the main game

executable) have access. The goal is to construct a modular framework in which all

PEs (including the game executable) can share common code without requiring spe-

cial one-off implementations.

362 Section 3 Artificial Intelligence

Wrappers also facilitate the modularity of your implementation, distancing your

code from any PVM-specific calls. While PVM supports the basic pack and unpack-

ing mechanisms of strings, integers, and the like, you will have to write some of your

own. These game-specific data-packing routines will increase modularity, allowing

you to create data classes that can be automatically archived and unarchived by your

wrapper without any direct dependencies upon the PVM system. They will also help

keep the same game processes going without interruption, if the game is executed on

a single processor system.

The example design includes a base class for fundamental behaviors, alongside

parallel implementations. This allows the game to target single processor or PVM-

friendly machines; see Figure 3.6.4.

cCoreParallelObject

cPVM Object

1 cParallelShell Object

Task Objects |

cCustom Object

cCoreTask Object

FIGURE 3.6.4 Class diagram of a sample parallel Al. The task manager
shell (cTaskManagerShe11) resides inside the games Al workspace. The

task manager shell holds both the parallel shell object (cParalle1she11)
and the core task object (cCoretask). Both of these classes are created via

simple factory methods.

PVM has a rudimentary resource manager that will handle the placement of
tasks. This simple resource manager should be used only as a simple routing mecha-
nism to the available processors. Complex, game-specific resource management
should occur within your task manager/router implementation. This will allow you to
identify which processor elements have recently executed an identical or similar task,

which in turn will aid in using previously cached data evaluations. Data evaluations
are usually stored in shared memory to speed up processing.

PVM uses the user datagram protocol (UDP) for interprocess communication.
To customize, consider adding a fault tolerance system. The addition of fault toler-
ance allows the game to continue executing, even if communication is lost with a PE
processing a task. With a basic system in place, the task manager/router would verify

3.6 Parallel Al Development with PVM 363

APP

einaencanin sratosneaenqtnnetetienenmnncotsanemnsennoieesstscatensaeesseattcteinhbteet eo htAiningatauiotnnnAeietenananeeteteMninomninnnnanNsceinommmncnenet L/MRAM AN HiT NHRAZaMH IFA DRIONMRVHAO IESE

if a task terminated prematurely or never failed to terminate. When this condition

occurs, the current task is terminated and it is resent. The small amount of overhead

required to verify a task’s current state is far less than the cost of preparing an entirely

new task.

lication: RTS
Now that we have all the components of our PVM, what’s going to turn our normally

productive AI into an AI that looks like its thinking ahead, behaving more realisti-

cally, and anticipating the player's actions? Let’s look at a prototypical real-time strat-

egy (RTS) example.

We have two belligerents facing off on a secluded island. The island is just one of

many landmasses in our game world. In a typical sequential AI, level heuristics would

determine if the units should attack (and if they could survive the attack), if the units

need support, and where that support will come from.

In a PVM-based implementation, the AI can reason about the situation in the

background, precomputing potential game situations and choosing among them when

action is required. With the right prognostic actions in place, the AI can reason about

the current situation and react to future player strategies and tactics more effectively.

Specifically, the AI can ask the following:

© Can I afford to lose this island?

© What will the effect be if I lose the island immediately?

© Will I be able to reclaim the island if I lose it now?

¢ If] want to take the island back, where can I recruit an army:

¢ How quickly can an army get to the island?

* Will there be political/diplomatic fallout among my allies?

e What would that look like?

Instead of performing a few serial evaluations, the AI can now “think on its feet,” pur-

suing multiple threads of reasoning at once. As the situation changes, certain threads

will bear fruit while others die, but on the whole, the AI will be much more prepared.

The real work (as with all AI programming) is in translating relatively vague

strategic queries into concrete computational actions. The question, “Can I afford to

lose this island” is actually an evaluation of the Al’s current military and unit power,

land holdings, and diplomatic standings as they compare to the opponent's perceived

rankings.

Simple in and of themselves, such comparisons are powerful in aggregate. Coupled

with a dozen other guiding analysis tasks, they create an AI that is constantly evaluat-

ing the most important overall scenario: the what-if scenario.

Enhanced Gameplay
LAL LLL LL ITLL LLL LA

eer

Just because we have an Al that executes what-if scenarios in the background doesnt

necessarily mean we want an AI that exhibits a more difficult game experience for the

Section 3 Artificial Intelligence

player, though this is a definite benefit of a properly developed PVM-based AT. Another

benefit of this AI system is that we can develop more complex simulators for the players

to interact with. Let’s look at our prototypical RTS example again.

Diplomacy

In a typical RTS when a player instigates political negotiations with an AI, the AI nor-

mally replies with preformulated responses. These responses are most often based

upon limited heuristic data, generated by the enemy empire's stats (military power,

proximity of enemy units to the Als cities or bases, etc.).
If the Al could evaluate potential player actions, it might create political situations

that are more responsive to individual players and more representative of real-world
situations. Using the techniques discussed in this article, an AI developer can write a
series of evaluation tasks, which can be executed based upon currently occurring

events.
Let’s say a player enters into a diplomatic negotiation with an AI opponent. The

player doesn’t have any of his units near the Al’s bases, but he has been progressively
and consistently moving towards the Al’s base from multiple countries. The AI can
have a background task executing that evaluates enemy troop movement. By keeping
track of troop movements, the AI is able to ascertain that the player might be trying
to mass groups from various positions on the map, allowing for a potential assault on
the Al’s base.

This type of evaluator logic would most certainly play a role in diplomatic nego-
tiations. The AI could suggest that the player reduce military power in one of the
countries that potentially threatens a strategic base. This task may be a small part of
the overall diplomatic picture, one small part of a more informed and responsive
negotiation logic.

A PVM-based AI can also evaluate a player's tendencies to honor long-term agree-
ments by executing background tasks. As in real-world negotiation, the AI would
evaluate what the other party has done in the past, how it could effect the current sit-
uation, and how the current decision could impact future actions.

Production

Another fairly straightforward aspect of normal RTS development is the ability for an
AI to manage unit production, food harvesting, research and development, and other
economic activities. These all serve as ideal background tasks that can execute on
other PEs, while the central control mechanisms reside in the main game executable.

In a typical RTS, a core game unit serves as the harvesting unit for particular
resources. T’hese resources are then transported to various buildings to produce differ-
ent units or supplies. A PVM task could be written that would do a flow analysis on
the buildings. This flow analysis involves making sure that each building has the proper
resources available for production/manufacturing of a particular unit or resource. Each
building may also have a direct or indirect consumer that relies upon their output.

3.6 Parallel Al Development with PVM 365
tse Ase SERMETC HAM EES scerrcen osssueuettannnetenanetetoenmmaitin ” os stent roost sete cmaatteseasunansnninansenanonaietennmaniit snonesnoesoeunonnnenenaunaianennneninniainin asstosnnereonnanonet

Consider a baker that is reliant upon the flour mill for flour to produce his baked

goods. A PVM flow task would make sure that the baker is constantly supplied with

flour so he may make his bread goods available for the town. The task would evaluate

the past, current, and future needs and inputs for the baker. If the flow task finds a

part of the production system lacking, it could have the task manager/router start a

task that deals with work scheduling. This new task could produce more harvesters

that would allow the flour mill a higher output.

This system is not only available for the AI but also the player. Many RT'Ss have

ministers or governors that run or control cities and bases. The same logic that drives

the AI can also run the player’s town, with only a marginal CPU hit. Any one of these

tasks could be accomplished with current AI systems, but the capabilities of having

these systems run in the background will free traditional resources for new tasks and

allow for a more immersive and complete game experience.

Other Domains

In a traditional first-person shooter, players are generally happy that bots can pathfind

their way to the players and engage them in combat, perhaps executing some pre-

scripted behavior en route, in an attempt to add some illusionary realism to the bot.

With a parallel AI system, we can in the background continuously process things

like:

© The bor’s threat level relative to the player

* How threatening the player is to the other NPCs in the scene

¢ Which NPC potentially needs backup

¢ Potential flanking moves

¢ Appropriate use of cover or distractions

The potential decisions that a bot can make are endless. With this large number of

potential actions running in parallel, repeat decisions are unlikely, allowing for a truly

unique, potentially emergent, nonscripted experience for the players.

Conclusion

Building intelligent, reactive, and forward-looking AI is a challenging task. In this

introduction to parallel AI development, we cover the fundamental | principles

required to implement a PVM-based AI. We have shown how the framework can dis-

tribute AI tasks, allowing for concurrent, complete, background evaluation. With this

framework, AI developers can add more depth to their opponents and agents, increase

an Al’s strategic opportunism, and supply users with powerful management tools.

It is often said that AI developers focus on the artificial aspect of Al, attempt-

ing to create the illusion of intelligent behavior with smoke, mirrors, and window

dressing. We believe that PVM is more than just window dressing and that parallel

techniques will help developers realize the intelligence aspect of Al. While parallel

implementations require a departure from standard techniques and tools, the rise of

366 Section 3 Artificial Intelligence

multiprocessors in desktops and consoles makes that effort all the more feasible and

worthwhile.

The time is right for PVM!

References
ce cers casa ae

[Geist94] Geist, A. PVM. MIT Press, 1996.

[Gerber04] Gerber, Richard. Programming with Hyper-Threading Technology. Intel

Press, 2004.

[Hughes04] Hughes, Cameron. Parallel and Distributed Programming Using C++.

Addison-Wesley, 2004.

[Ramsey03] Ramsey, Michael. “Setting up PVM for an AI System.” Available online

at www.masterempire.com/OpenKimono.html. November 10, 2003.
[Ramsey04] Ramsey, Michael. “PVM Gotchas!” Available online at www.masterem-

pire.com/OpenKimono.html. March 15, 2004.

[Tozour01] Tozour, P. “Influence Mapping.” In Game Programming Gems 2. Charles

River Media, 2001.
[Woodcock02] Woodcock, S. “Recognizing Strategic Dispositions: Engaging the

Enemy.” In Al Game Programming Wisdom. Charles River Media, 2002.

3.f

Defining the Problem ‘care

Beyond A*

Mario Grimani, Xtreme Strategy Games

mgrimani@xtremestrategy.com

Matthew Titelbaum, Monolith

Productions

matt@lith.com

M: games use some form of artificial intelligence (AI), and pathfinding is usually

an integral part of it. The A* algorithm is a well-known approach for solving gen-

eral-purpose pathfinding problems [Stout00]. A* is a greedy algorithm [Cormen01]

that combines keeping track of the cost from start, used by Dijkstra’s algorithm, with

the heuristic estimate of the remaining cost to target. It is the fastest known solution for

finding minimal cost paths, and it works well for basic pathfinding problems.

As good as it is, A* has its limitations. For one, the algorithm performance

decreases drastically as the search space grows and the demands on CPU and memory

resources increase, making it impractical for problems with a large search space. To

make matters worse, queries from high-level Al modules can generate numerous calls

to the A* algorithm, putting even more demand on CPU resources. Because of these

limitations, some games have opted for less-optimal solutions while others have used

less query-intensive high-level Al.

Although there are solutions for dealing with large search space [Botea04] and

other search space problems [Stout96], very little work has been done on integration

of pathfinding with the rest of AI with the goal of reducing query cost. A cost reduc-

tion would allow for an increased number of queries, generating more knowledge for

high-level AI. This additional knowledge would improve both tactical and strategic

decision-making in many genres of games.

We begin by formally defining the problem domain as a connectivity graph with

nodes representing locations and cost-bearing edges representing the cost of move-

ment between those locations.

367

368

The A
RE NSE

Igorithm hy

Section 3 Artificial Intelligence

The A* algorithm executing in this domain would require the following-parame-

ters: start node, target node, heuristic estimate function, and agent movement criteria.

The start node and target node are the nodes we are trying to connect by the minimal

cost path, with the graph traversal beginning at the start node and completing when

the target node is reached. As we already mentioned, the heuristic estimate function is

a distinguishing characteristic of the A* algorithm and it represents a heuristic esti-

mate of the remaining cost to target.

The last parameter, agent movement criteria, is not necessarily part of every A*

analysis but it happens to be part of almost every A* implementation. It represents the

ability of an agent to move across nodes and consequently the ability of nodes to

obstruct agent movement. Because this ability needs to be taken into account during

the graph traversal, the traversal logic needs to ignore movement-obstructing nodes.

For the purpose of this gem, we define a query as an inquiry or a request for infor-

mation initiated by high-level AI, an answer to which is dynamically generated by

underlying code. This definition is not to be confused with the usual definition of a

query as a formal request to a database or search engine. Of course, the information

we are requesting could be precalculated and stored in a database or cached, but those

concepts are outside the scope of this gem, which is to demonstrate how to generate

the information on demand.
High-level AI usually operates on and issues queries for more than one domain.

In this gem, we will focus on queries that operate on the connectivity graph domain
we just defined. Furthermore, we will restrict queries to the class of queries that
involve pathfinding. A typical query in this class calls underlying code, which makes
successive calls to the pathfinding algorithm while changing one or more parameters.
Each iteration creates a unique set of parameters, which when passed to A*, produces
one optimal result. After gathering all the results and selecting an optimal one, the
underlying code chooses the parameter set that produced it and returns the parameter
set along with the result.

A good example of one such query is a request to choose among exit locations

around a building an exit location that produces the minimal cost path to a given des-
tination location. In this case, the underlying code would make one call to A* for

every exit location and return the exit location that yields the minimal cost path along
with the path. As we have already discussed, making many successive calls to the A*

algorithm quickly becomes a source of performance slowdown, leaving us with the

need for a more efficient solution to this problem.

RANI sR ARE RR TROON NG ENR ND

m and problem domain, we are ready to start working on the
solution. We plan to use the existing A* algorithm as a starting point and derive an
algorithm that is more suitable for high-level AI queries we have just described. As the
first step, for reference purposes, we present the A* algorithm in pseudocode form:

le Knowing the prob

Sotien i Aili = sain soos nsantnann niet

List OpenList, ClosedList

AStarPathfinder (Node StartNode,

Node TargetNode,

MovementCriteria MovementCriteria,

Path PathFound)

{
Node StartNode, BestNode, SuccessorNode

Cost NewCost

reset OpenList and ClosedList

if (StartNode fails MovementCriteria) return as failure

set StartNode cost to 0

set StartNode estimate to heuristic estimate of remaining cost

to TargetNode

set StartNode value to sum of cost and estimate

set StartNode parent to NoParent

add StartNode to OpenList

while OpenList is not empty

{
remove best node BestNode from OpenList

if BestNode is TargetNode

construct path and save it in PathFound

return as success

for each successor SuccessorNode of BestNode

if (SuccessorNode fails MovementCriteria) continue

set NewCost to sum of BestNode cost and cost of

moving from BestNode to SuccessorNode

if ((SuccessorNode is in OpenList or ClosedList) and

(NewCost is not less than SuccessorNode cost))

continue

set SuccessorNode cost to NewCost

set SuccessorNode estimate to heuristic estimate of

remaining cost to TargetNode

set SuccessorNode value to sum of cost and estimate

set SuccessorNode parent to BestNode

if SuccessorNode is in ClosedList

remove SuccessorNode from ClosedList

if SuccessorNode is not in OpenList

add SuccessorNode to OpenList

}
add BestNode to ClosedList

}
return as failure

}

The pseudocode uses only a handful of data types. List is a generic data type that rep-

resents a collection of nodes and can be implemented in many different ways, as we

will see later in the gem. Node is a data structure that contains information relevant to

370

Improvements
_ sinner

Section 3 Artificial Intelligence
<caaaiiassamatinassammiisatttttntnnnieatttteaNtC

a single node. The node data structure includes a cost of reaching the node, a heuris-

tic estimate of the remaining cost to target, a heuristic value equal to the sum of the

cost and the heuristic estimate, and a link to parent node. MovementCriteria is an

aggregate data structure that represents a set of variables that define an ability of an

agent to move across nodes. Cost is an actual cost of reaching a node from the start

node. In a typical implementation, the cost is represented as a floating-point number.

Path is a data type that contains path data.

We can now set about improving the algorithm’s performance. A sensible

approach to finding the solution would be to bundle all instances of parameters we

are planning to use and pass them to the pathfinding algorithm in one call. With this

extra information, the algorithm ought to be able to execute the combined requests

more efficiently.

By looking at the A* algorithm pseudocode, we can see that the most significant

savings can be achieved by reducing the number of graph traversals needed to produce

a solution. The parameters used inside the traversal loop are part of the logic that

decides on how the traversal unravels. They cannot change during the execution of

the loop without breaking the algorithm. Passing in more than one value for such

parameters has no benefit since only one value can be used at a time. In fact, of all

parameters passed to the algorithm, only the start node is unused by the traversal

logic, making it a sole candidate for this optimization.

How can we use these findings to modify the A* algorithm so that it accepts multiple
start nodes and chooses between them as part of the single search space traversal? It
turns out that the solution to this problem is rather simple. We can see from the orig-
inal A* pseudocode that there is nothing in the logic of the algorithm to prevent us
from using more than one start node. Instead of passing in a single start node, we pass
in all of them and handle each one of them the way we would handle a single node.
This means that during the initialization step, every start node becomes an open node
and is added to the open list. The open list, which provides the ordering of currently
open nodes by design, will assist us in the selection of a start node by returning the
best one as part of the final path.

Naturally, we would like to know whether something similar is possible on the
other end of the resultant path. Is there is a way to choose between multiple ending
locations? If we look closely at the original pseudocode, we can see that the target
node has a dual purpose. One is to provide information for the calculation performed
by the cost estimate function and steer the traversal of the search space towards the
target node. The other one is to act as a stopping point for the traversal. Could we
split the target node functionality and relieve the target node from being the stopping
point?

It turns out that is possible. We could have multiple stop nodes, which in order to
be effective, need to be nodes that are encountered en route to the target node. The

3.7 Beyond A* 371

stop nodes, very much like the target node, can be used only after they have been
removed from the open list and not before. After taking all the changes in considera-
tion, we are ready to present a derived pathfinding algorithm in pseudocode form:

List OpenList, ClosedList

BeyondAStarPathfinder (List StartList,

List StopList,

Node TargetNode,

MovementCriteria MovementCriteria,

Path PathFound)

{
Node StartNode, BestNode, SuccessorNode

Cost NewCost

reset OpenList and ClosedList

for each StartNode in StartList

{

{

if (StartNode fails MovementCriteria) continue

set

set

StartNode cost to 0

StartNode estimate to heuristic estimate of remaining

cost to TargetNode

set

set

add

StartNode value to sum of cost and estimate

StartNode parent to NoParent

StartNode to OpenList

while OpenList is not empty

remove best node BestNode from OpenList

if BestNode is in StopList

construct path and save it in PathFound

return as success

each successor SuccessorNode of BestNode

if (SuccessorNode fails MovementCriteria) continue

set NewCost to sum of BestNode cost and cost of

moving from BestNode to SuccessorNode

if ((SuccessorNode is in OpenList or ClosedList) and

(NewCost is not less than SuccessorNode cost))

continue

set SuccessorNode cost to NewCost

set SuccessorNode estimate to heuristic estimate of

remaining cost to TargetNode

set SuccessorNode value to sum of cost and estimate

set SuccessorNode parent to BestNode

if SuccessorNode is in ClosedList

remove SuccessorNode from ClosedList

if SuccessorNode is not in OpenList

add SuccessorNode to OpenList

372

Detail

Practical Examples

Section 3 Artificial Intelligence

}
add BestNode to ClosedList

}
return as failure

}

When compared to the A* algorithm, the derived algorithm has a few major differ-

ences: its parameter list accepts multiple start and stop nodes, multiple start nodes all

become open nodes, and any stop node can stop the algorithm traversal.

How can we know that the derived algorithm is guaranteed to produce minimal

cost paths? Although proving this is beyond the scope of the gem, we will give a few

pointers on the subject. First, we need to define any algorithm guaranteed to find an

optimal path to the goal as admissible. Next, we need to look at the admissibility of

the A* algorithm [Nilsson98] and use that as a starting point. The key to our proof

would be introducing an extra node that connects to all start nodes. This new node

acts as a single start node and essentially changes our derived algorithm into the stan-

dard A* algorithm.

s of Implementation I AL IERIE: RES SSCS RGSS ISIN TLE NL IO TE TAREE EE

A typical implementation of the derived algorithm is not drastically different from

a typical A* implementation. Since the nuances of A* implementation are well

known [Pinter01], we will focus on how to implement features unique to the

derived algorithm.

The derived algorithm passes in multiple start and stop nodes. As we would
expect, passing multiple start and stop nodes as parameters increases the amount of

data involved and adds extra overhead to the performance. To reduce this overhead,

we store the multiple node data in arrays, which themselves are passed by reference.
Many practical implementations dealing with similar problems, in addition, store the

node data separately and use the arrays to store references, handles, or object Ids for
accessing the actual node data.

The derived algorithm also uses multiple stop nodes to halt execution of the algo-
rithm. It is advisable that stop nodes are explicitly tagged as such. The tags should be
stored in some sort of node data structure, which also contains all other node runtime

data (cost values and a link to parent node). By tagging nodes, we no longer need to
compare each traversed node with the entire list of stop nodes. Instead, the node tag can

be checked immediately. When traversing m nodes looking for one of 7 stop nodes, an

implementation with untagged stop nodes would require m X m comparisons. Using
tagged nodes cuts the number of comparisons to m, one for every traversed node.

SBCA BRET:

Put into practice, the derived algorithm allows for some advanced functionality. Let’s
consider a typical RT'S game with game objects that may garrison units and assign

3.7 Beyond A* . 373

rally points to which the garrisoned units should move upon exit. For the purpose of

this gem, we will refer to these game objects as containing game objects. In the actual
game, containing game objects are usually implemented as buildings or a variation of

transport vehicles.

Examples with Multiple Start Nodes

One of the common problems related to garrisoning is how to choose where, among

all the exit locations around the containing game object, to place the exiting unit. The

simplest and the fastest approach would be to use a predefined order of exit locations

and choose the first unobstructed location. Since this approach does not take into

consideration the location of the rally point, more frequently than not the exiting unit

is forced to move around the object it exited before heading towards the rally point.

In an attempt to avoid this problem, we might choose the exit location with the

shortest straight-line distance to the rally point. Although this is clearly a better

approach, it still has its problems. For one, it does not take into account any obstruc-

tions that might lie between the exit locations and the rally point. As a result, there is

no guarantee that the chosen exit location is the optimal exit location that is a starting

point of the minimal cost path leading to the rally point. Worse still, sometimes the

obstructions cut off the chosen exit location from the rally point, stalling the exiting

unit and thoroughly diminishing the unit's usefulness to the player.

One way to account for the obstructions is to find minimal cost paths between

every exit location and the rally point and choose the exit location that yields the path

with the lowest overall cost. Unfortunately, with the exception of situations with very

few exit locations, the performance cost of this implementation is prohibitive.

This problem can be avoided if, instead of making many successive calls to the A*

algorithm, we make a single call to our derived algorithm. Possible exit locations will

provide us with multiple start nodes, and the rally point will provide us with a target

node, which will act as a stop node as well. By using these parameters, the derived

algorithm will find an optimal exit location and an associated minimal cost path to

the rally point in one search space traversal.

Figure 3.7.1 shows an example with a building as a containing object, a dozen or

more exit locations, a rally point obstructed by a wall-like structure, and an optimal

exit location as a starting point of a minimal cost path leading to the rally point. The

example also demonstrates how an exit location that has the shortest straight-line dis-

tance to the target, which in this case is the location in the lower-right corner of the

building, is not necessarily an optimal exit location.

There are other practical uses for the pathfinding algorithm with multiple start

nodes, One of them is determining, among several possible buildings, which one

would be the best choice to produce units needed at a given target location, such as a

hotly contested area. The chosen building would be the one that can produce units

capable of getting to the battlefield the quickest. A call to the derived algorithm can

374 Section 3 Artificial Intelligence

e | Exit Location = Rally Point Location

e| Optimal Exit Location NM Optimal Path

ee Movement Obstruction

FIGURE 3.7.1. Az example of using multiple start nodes to find
an optimal exit location.

provide a quick answer to this request. The exit locations of all the buildings will pro-
vide us with multiple start nodes, and the target location will provide us with a target
node. With these parameters, the derived algorithm will have no problems finding a
minimal cost path to the target location, which will also give us an optimal exit loca-
tion and the building associated with that location.

Figure 3.7.2 shows an example with the buildings A, B, and C as candidates for
production of units needed at the target location. Building B happens to have an opti-
mal exit location that is a starting point for the path with the minimal cost. It is
important to notice that building A has the exit locations that have a shorter straight-
line distance to the target location, but because of the wall-like obstruction to the

right of the building, those exit locations are nonoptimal.

Building

C

e| Exit Location Target Location

Optimal Exit Location _ Optimal Path

By Movement Obstruction

FIGURE 3.7.2 Az example of using multiple start nodes to find

the best building to produce units.

Examples with Multiple Stop Nodes

Now let’s change things around and assume that there is a unit ordered to garrison in

a given containing game object. Our task is to choose the entry location, among all

the entry locations around the containing game object, from which the unit will enter

the object. Choosing the entry location with the shortest straight-line distance to the

unit is a possibility, but this approach is plagued with the same obstruction problems

that we encountered when we were dealing with exiting units moving towards a rally

point. Another possibility, not available when we were dealing with exiting units, is to

ignore the containing game object as an obstruction during this pathfinding traversal

and make the unit just enter when it collides with the object. Unfortunately, this

approach works only for containing game objects of convex shape. In any other case,

we may not be able to find an optimal solution.

376 Section 3 Artificial Intelligence
seonenmanasessamcctcnnannt siren ntiesesssnnetteeneneaANit

A better and more general solution is to consider paths between the unit and every

entry location. As we have done with exiting units we need to forgo making successive

calls to the A* algorithm and make a single call to our derived algorithm. The unit's

location will provide us with a start node, and possible entry locations will provide us

with multiple stop nodes. To make sure the algorithm converges on the containing

game object, we will need a target node inside the containing game object, preferably

close to the center location of the object. Passing these parameters to the derived algo-

rithm will give us a minimal cost path leading to the optimal entry location.

Figure 3.7.3 shows an example with a building as a containing object, a dozen or

more entry locations, an initial location of the unit looking to garrison, and a mini-

e | Start Location

ha Movement Obstruction

= | Entry Location

= Optimal Entry Location

J Optimal Path

FIGURE 3.7.3 An example of using multiple stop nodes to find an
optimal entry location.

3.7 Beyond A* 377

mal cost path ending in optimal entry location. Similar to the example in Figure

3.7.1, this example also demonstrates how an entry location that has the shortest
straight-line distance to the unit’s location—in this case, the location in the upper-left
corner of the building—is not necessarily an optimal entry location.

Examples with Both Multiple Start and Stop Nodes

Now that we have seen how multiple start nodes and multiple stop nodes work on their
own, it is time to examine how they work together. Consider a situation when there is a
unit garrisoned inside a containing game object. The unit is ordered to exit the contain-
ing game object and immediately enter another. It is our task to find a minimal cost
path between the two objects while taking into consideration potential obstructions.

Using what we have learned from the previous examples, it is obvious that the exit
locations around the first object will provide us with multiple start nodes, and the entry
locations around the second object with provide us with stop nodes. In addition, a tar-

get node needs to be placed inside the second object, close to the object's center point.

Using these parameters, the derived algorithm can determine where the unit exits the

first game object, where it enters the second game object, and the path it should follow

in the process. The algorithm guarantees that the path found is a minimal cost path.

The situation presented is not necessarily an unusual situation, and we can find it

in many games. For example, we could have a unit producing building that automat-

ically sends units into a defensive structure that allows garrisoning, such as a bunker

or a tower. To set this up, a player could set a rally point from the unit producing

building to the defensive structure.

Figure 3.7.4 shows an example of two buildings, A and B, and a minimal cost

path connecting them. As with previous examples, there are wall-like structures

obstructing the direct path between the buildings, demonstrating that the straight-

line approach does not work.
The techniques we have presented so far also prove very useful when applied to a

search space represented by a waypoint graph [Tozour03]. In such a system, points in

continuous 2D or 3D space, known as waypoints, define nodes of the graph. The

placement of waypoints is usually rather sparse, due to the nature of the world and the

graph data used to represent it.

When trying to find a path in this search space, the main problem is pathing

object’s current location, which can be quite far from the graph. Because of this,

choosing proper start and stop nodes becomes a bit of a challenge. If we use the node

with the shortest straight-line distance to the pathing object as the start node, the

unusual results might happen. The movement of the object onto the start node can

render the actual path to be suboptimal, which would manifest itself as an object

moving away from the target location before moving towards it. Figure 3.7.5a shows

an example of a situation where this kind of movement happens.

378 De _ Section 3. Artificial Intelligence

secsneymncsanunntnvnttneneetttcsmennicnetenienscntnoAanasnntnnaii tannins ety ementoFeOAMMAHNAONr HAH AMSRAnite

Lsielealiae| " lit

e | Exit Location = | Entry Location

® | Optimal Exit Location pee Optimal Entry Location

ao Movement Obstruction M Optimal Path

FIGURE 3.7.4 Ax example of using multiple start nodes and multi-
ple stop nodes to find a minimal cost path between two buildings.

We could attempt to find a solution to this problem by searching for the nearest
point on the nearest edge of the graph to the pathing object, but the performance cost
associated with this search is prohibitive. These issues are present on both ends of
the desired path. Using our derived algorithm with multiple start and stop nodes
solves this problem rather nicely by allowing the submission of several good candidate
start and stop nodes. The algorithm accepts the candidate nodes and, as part of the
pathfinding process, it figures out which should be the actual start and stop nodes of
the resultant path. Figure 3.7.5b shows the same situation as Figure 3.7.5a, but this
time we are using our derived algorithm, so the awkward movement is gone.

SOMUSGRINMA Sree 379

e—— Connectivity Graph

e@—----e Unit Movement

e——e Connectivity Graph

e----e Unit Movement

B)

FIGURE 3.7.5 (a) An example of a unit using a waypoint graph (b) and how

our derived algorithm can improve a unit’ selection of start and stop nodes.

Performance Considerations

To make a fair overall comparison, we will contrast the performance of a single iteration

of the derived algorithm with the performance of multiple iterations of the original A*

algorithm. This functionality is typical of high-level AI queries. For querying purposes,

380
Section 3 Artificial Intelligence

this derivative A* traversal takes the place of multiple calls to the original A* algorithm

and is comparable in functionality to multiple iterations of the original A* algorithm.

Unlike the original A* algorithm, though, since multiple inputs are used simultaneously

and the nodes between start and stop nodes are traversed only once, the overall perfor-

mance improvement can be an order of magnitude or larger.

Given a set of start nodes /, a set of stop nodes m, and the set of nodes that need

to be examined between /and m, n, one can really begin to see the real difference that

this derived algorithm makes. Using multiple consecutive iterations using the original

A* algorithm, a query will require 1X m Xn individual nodes to be examined to find

the solution to what the shortest path is between / and m. Each node in » will be

examined roughly / x m times, one for each permutation of start and stop nodes.

Using the derived algorithm, though, since it aggregates the inputs, will require only

n individual nodes to be examined to find the same solution.

To drive this point home, we can look at the performance improvements for

some of the examples we have presented earlier. For the example in Figure 3.7.1, the

derived algorithm yields a 20-fold performance increase; for the example in the Figure

3.7.2, the performance increase is 45-fold; and for the example in the Figure 3.7.4, it

is an impressive 208-fold increase.

Advanced Issues I aa east SEE PE DSI SE ARDS SARTRE LR NEO I

The following sections address some advanced issues.

Multiple Start Nodes with Heuristics

As we can see from the algorithm pseudocode, as part of the initialization step, all
start nodes become open nodes and are added to the open list. Since every open node
in the list has to have a cost and a heuristic estimate associated with it, start nodes get

those values assigned to them as well. For all new open nodes, the cost value is set to
zero and the heuristic estimate value is set to the estimated cost to target.

By using the same cost value for all start nodes, which in this case is a zero, we are

assuming that all of them are of equal importance to the high-level AI. In the actual

game, this is rarely true. The high-level AI not only looks at start nodes with different

importance, but their importance varies depending on the situation. For example, in

some cases the AI might be looking for nodes that are less vulnerable to attack, while

in the others it might be looking for nodes closer to resources. In situations that are

more complex, the AI might be even looking at the combination of several different
traits.

To accommodate the AI needs, we should allow start nodes to have different ini-

tial cost values. This feature lets us attach heuristic values to the start nodes and rank

them by importance. As it is case with all heuristic values, these values need to be
picked carefully and with regard to the other costs the algorithm will use during the

3.7 Beyond A* 381
nebennensecoteteetovooeescomanasnsairteteoteteianinn etettttneina Mane heen sCoieeaoeeseNSieteae SEA NRE nt teeter itntdeoeteeeenlassotetecetetrnnaene atone

execution. Otherwise, the initial cost values might render the algorithm heuristics

useless. We can implement this feature by attaching the initial cost values to every

start node passed to the algorithm and using those values during the initialization.

Returning Multiple Solutions

So far, we have assumed that queries using the algorithm require a solution with a sin-

gle stop node. That is why the algorithm, as presented, terminates when it reaches the
first stop node. In practice, some queries might prefer to receive the results for all stop
nodes and combine them with some other data before deciding which stop node to
choose.

To accommodate this new requirement, we modify the current algorithm so

when it reaches the first stop node, it stores the path to that first stop node and con-

tinues looking for the other stop nodes. When the next stop node is reached, the path

to it is saved as well, and the algorithm continues until all stop nodes produce a result

or the algorithm runs out of open nodes. Running out of open nodes would indicate

that one or more stop nodes are unreachable. The result returned by this modified

algorithm is an array of paths, one path per reachable stop node.

One potential pitfall worth pointing out is the danger of a severe performance

hit. Our derived algorithm, very much like the original A* algorithm, now has a bad

worst-case scenario. Because the algorithm is designed to keep traversing the search

space until a path is found, the algorithm will traverse the entire search space if no

stop can be found. By attempting to reach more than one stop node, the likeliness of

the worst-case scenario happening increases significantly. This pitfall is substantial,

and we should take it into account when deciding whether to use a version of the

algorithm that returns multiple solutions.

Conclusion os
LLL LLM LET NNN TL TM STL LCE LL NN

The A* algorithm is an important part of many AI implementations and a proven

solution for basic pathfinding needs. Unfortunately, queries from high-level Al mod-

ules can generate a large number of calls to the A* algorithm and have a negative

impact on performance. One way of solving this problem is to design a pathfinding

algorithm that performs the work of many calls to the A* algorithm in a single perfor-

mance-efficient call. In this gem, we have presented one such algorithm.

The algorithm presented here is an A* derivative, which accepts multiple start

and stop nodes. By taking advantage of this additional information, the algorithm

manages to find a query solution in a single search space traversal. This efficiency is

reflected in performance improvements that can be as large as a couple of orders of

magnitude. The presented algorithm has many practical applications, some of which

were discussed in this gem. The material presented is a good reference and a starting

point for writing further derivative A* algorithms that can be used by high-level AI.

382 Section 3 Artificial Intelligence
“soteewnancninasonanecetce ci eae cosine CtAmnnanonennnmanannanta eh

LLAMA AAAMMAAOADCOcAWAw@aM ACCOMM MOC AQ OO AN AAA AA A

References
ican gS REAR SNH ENA ARE a

[Botea04] Botea, A., M. Miiller, and J. Schaeffer. “Near Optimal Hierarchical Path-

Finding.” In the Journal of Game Development. March, 2004.

[Cormen01] Cormen, Thomas H., et al. Introduction to Algorithms, Second Edition,

370-404. MIT Press, 2001.

[Nilsson98] Nilsson, Nils J. Artificial Intelligence: A New Synthesis, 145-150. Morgan

Kaufmann Publishers, Inc., 1998.

[Pinter01] Pinter, Marco. “Toward More Realistic Pathfinding.” In Gamasutra. Avail-

able online at www.gamasutra.com/features/2001031 4/pinter_O1.htm. March 14,

2001.

[Stout00] Stout, Bryan. “The Basics of A* for Path Planning.” In Game Programming

Gems, 254-263. Charles River Media, 2000.

[Stout96] Stout, Bryan. “Smart Moves: Intelligent Pathfinding.” In Game Developer

Magazine. October 1996. Available online at www.gamasutra.com/features/

19970801/pathfinding.htm.

[Tozour03] Tozour, Paul. “Search Space Representation.” In Al Game Programming

Wisdom 2, 85-102. Charles River Media, 2003.

3.8

Advanced Pathfinding

with Minimal Replanning

Cost: Dynamic A Star (D*)

Marco Tombesi

baggior@libero.it

athfinding is one of the most famous theoretical problems in game development.

There is vast documentation in literature covering many aspects of the problem.

This is because pathfinding issues are present not only in computer science but also in

robotics, mining, and automation technology.

In games, our maps approximate reality. In most cases, maps are graphs that rep-

resent the environment using a regular grid, where each node matches a point in the

map with a particular scale or resolution (see Figure Bal):

ste ee

FIGURE 3.8.1. A regular grid

graph representing a map with a
one foot resolution.

Given a start point and a goal point in the map, how do we find the shortest path

between them? The most common algorithm used to solve this problem is A*, whose

performance is far better than Dijkstra, or any other SSSP (Single Source Shortest

383

384

The D*Algorithm

enastnctonmocessnconsannuaenaetonetnnnnnnnnncnennnanansnncnsienaaniienen case mos

Section 3 Artificial Intelligence
plinth Ai

Path) algorithm [Stout96]. While A* works very well in static environments, it is inef

ficient on dynamic maps, where any map modification requires replanning.

Because there is a high probability that a given change affects only a small portion

of the already computed path, it is a waste of time to recompute the entire path. A

dynamic version of A* (known as D*) helps solve this problem.

As stated previously, we have to use a graph that represents a real map. If two points

in the map are connected, there is an edge from the two nodes representing them in

the graph. Generally (but this is not mandatory) every edge has associated a cost that

represents the price we have to pay for passing over it.

In Figure 3.8.2, we assume that if the cost associated to a particular edge is > 7,

then that arc is not drawn in the graph representing the map.

In this gem, we assume that if from point A we can reach point B, we represent that

as Cost| Edge(A,B) | <n, where n is the number of nodes on the map. If the two

points are not connected, we represent that as Cost| Edge(A,B) | > ne

FIGURE 3.8.2 A map with obstacles and the resulting graph.

The D* algorithm takes a map graph as input. During traversal, the algorithm
checks to see if there have been any modifications in any points of the map. When a
modification in the graph is detected, D* starts from the node in which there has been
a change and modifies the proposed path only in the affected area.

In essence, the algorithm focuses replanning within a very small area. Real-time
tests [Stentz94] show clearly that the advantage of D* over A* increases exponentially
with the number of points in the map.

3.8 Advanced Pathfinding with Minimal Replanning Cost: Dynamic A Star (D*) 385

D* in Detail
ssa sc zcsemnnnteeeaceeneemrcenrnaS

Suppose that the environment is a square with edge M, and that the input of D* is a

graph that maps the ambient environment. (We assume without loss of generality that

only horizontal and vertical movements are allowed between nodes—no diagonals.)
D* maintains a list of open states, which is used to process states and to expand

the computing to the affected neighbors of the current examined node. At the begin-

ning, all nodes are marked NEW. They become OPEN when they are inserted in the

open list. After their computation, they are marked CLOSED.
D* maintains an explicit list of these tags for each node; we will refer to it as

Tag(x).

Backpointer(x) is intended as the direction to follow to arrive to the goal. From

each node x, if we follow Backpointer(x), we arrive at the goal following a shortest path

(in fact, there can be more paths with the same cost). The cost of a path is the sum of

all edges traversed when following it.

H (x) is defined as the estimated distance from x to the goal. After a replan, H(x)

is the minimal distance from the goal.
The key function K(x) is defined as the minimum between:

¢ H(x) before a modification occurs

¢ All A(x) values since x was placed in the open list

This is an important threshold in classifying the nodes in two classes. Based on K(x)

value and H(x) value, we consider two types of nodes:

Raise K (x) <H (x): The class of nodes used when there is a cost increase in the

graph and we must propagate this information to all nodes affected. .

Lower K (x) af (x): The class of nodes used when there is a cost decrease in the

graph and we must propagate this information to all nodes affected.

As we will see shortly, the algorithm treats each type of node in a different way.

An Example

Now that we have focused the practical key issues of the algorithm, it should be use-

<> ful to see how it works on a real example. In the accompanying CD-ROM there is an

ONTHECD easy algorithm implementation that you can check to understand how it works in

detail. There is a win32 demo application, too.

Suppose (for simplicity) that we have a 5 x 5 map with obstacles (Figure 3.8.3).

Each square can be FREE (white) or OBSTACLE (black). This ZERO-ONE choice

is again made to better clarify the steps of the algorithm. We start in the upper-left

corner; our goal is at lower-right corner.

LCOS LAN NESE OSI

386
Section 3 Artificial Intelligence

The algorithm performs an initial pathfinding by calling ProcessState() repeat-

edly. In Figure 3.8.4, the arrows show the backpointer of each node. Remember that

the backpointers tell us which direction we should follow to minimize the total cost of

our path.

FIGURE 3.8.3 A5 xX 5 map with FIGURE 3.8.4 [nitial back-

obstacles. pointers configuration.

In Figure 3.8.5, we show the path that is followed if we start from upper-left

corner ({0] [0] if we use a C notation and read the map as a matrix).

FIGURE 3.8.5 The path from

start to goal.

Our agent starts following the path depicted. Suppose that when it is at location
[4][1], the square at [4][2] becomes an OBSTACLE. Let’s see how D* handles this.

When the algorithm detects that there has been a change in the environment, it

calls the function ModifyCost(x, y, value); it changes the arc cost from x to y and

3.8 Advanced Pathfinding with Minimal Replanning Cost: Dynamic A Star (D*) 387

then inserts the node x in the open list if it’s a closed node. Next, the function
ProcessState() is called while there are nodes on the open list whose distance from

the goal is lower than the one of the current node. In this way, D* modifies only the

backpointers of affected nodes, saving the already computed work where possible.
In Figure 3.8.6, we show in dark gray only the recomputed nodes after the algo-

rithm detected a change in the environment. Figure 3.8.6 should convince you that

D* analyzes only the minimum number of nodes needed to correctly compute a new
shortest path. The strength of the algorithm is made clear here.

FIGURE 3.8.6 Affected nodes FIGURE 3.8.7 New back-

by the modification. pointer configuration after

modification in [4] [2].

FIGURE 3.8.8 New path
computed from [4][1].

Let’s see how the backpointers configuration changes after the modification (Fig-

ure 3.8.7). Starting from [4][1] (depicted in darker gray), Figure 3.8.8 shows the new

path computed.

388 Section 3 Artificial Intelligence

And in the Game? |
‘sgaragnanneneactnonN mar ee AR SN EELS HT su i258 acta ea ERC AO EN LE SOT RESET TPT BESTEL IOS

Actually there aren’t many real games that uses D* in any way to perform any sort of

pathfinding algorithm. This is due to the intrinsic nature of the game simulation,

which privileges the illusion of the AI over the real AI, so is far simpler to find a

pseudonatural way to get a unit move between two points in a well-known (a-priori)

environment than let it discover the best path during the way. The search maps actu-

ally in use are spatially limited and not very detailed, letting A* be efficient enough.

Obviously, this is an AI limitation caused by the minimal CPU resources allocated to

AI in current and past games.

D* is ideal for each situation where the programmer wants to give some learning

capabilities to a game agent. In this scenario, the agent doesn’t know anything a priori

about the surrounding environment: all information is detected from its sensors dur-

ing its lifetime.

D* agents can move on larger maps, because the environment needs to be

scanned only locally to perform a path search and when any perturbation occurs (a

new obstacle is discovered or removed), the replanning only affects a small search area.

Thus, CPU resources allocated for agent path planning would be enough.
Currently, many game developers think that the next generation of games will

spend more time performing AI, because the focus will be on the behavioral realism,

so more sophisticated algorithms like this will come into the game development

world.

Conclusion
OS RSC EE Se aS ee EAL NCE TITS aeRO OSSETIAN

nalyzed the basic D* implementation. As you can see in [Stentz94] the
benefit of using D* instead A* becomes stronger as the size of the environment

increases. This is simply because the computational cost of replanning from scratch
increases as the number of nodes in the graph becomes higher, and D* avoids as much
recomputation as possible.

It is possible to use a focused D*, which can lower the number of examined node

in case of a world change; this is achieved by using a heuristic to drive the research

only for promising nodes. Interested readers should consult [Stentz95].
A final note on the demo included with the book: it makes use of the Leonardo

Library [Leonardo03], which is mentioned in the references, for interested readers.

This gem has a

References
LAI ROMS NTH

[Leonardo03] Leonardo Computing Environment. Available online at www.
leonardo-vm.org.

[Stentz94] Stentz, T. “Original D*.” In ICRA 94. Available online at www.frc.
ri.cmu.edul~ axs/doclicra94. pdf.

Setotacnstonebe st HA ASEH AAAS EEE

3.8 Advanced Pathfinding with Minimal Replanning Cost: Dynamic A Star (D*) 389

[Stentz95] Stentz, T. “Focused D*.” In IJCAI 95. Available online at www.fre.ri.

cmu.edul~ axs/docltjcai95. pdf.
[Stentz96] Stentz, T. “Map strategies for using D*.” In AAAI 96 workshop. Available

online at www.fre.ri.cmu.edul-axs/doclaaai96.pdf.
[Stentz01] Stentz, T. “Constrained D*.” In AAAI 02. Available online at www,fre.

ri.cmu.edu/~axs/doc/aaai02.pdf.

[Stentz98] Stentz, T. “Framed Quad-trees with D*.” In ICRA 98. Available online at

www.fre.ri.cmu.edul~ axs/doclicra98.2. pdf.

[Stout96] Stout, B. “Smart Moves: Intelligent Pathfinding.” In Game Developer Mag-

azine. October, 1996.

ener le < aoe an a
SUP Pe ee ‘ a ewe -0.Gers, poe sea Ae

> qwrt tAlcaene 20 PY nie . ma cee ame 4 fae at

— iy veh | ie
3001 3

— * ah graces Walite t

7 a 4 fa pane’ = o STR, 7 rhag’ pa

~ a r 1 ioenanen 24 pede

i : ? % ’

a, } P - ;
| ‘ a eis M seaaaam sh det and wie ity per

Ys >) y uri iglanscing a) sites bn Prd

: ; Etats woud ba towel

‘ia nom pcan of &

. ia ua he. ve | ieee, at y “ae) ;

i)

3
ts

7

7 a ' ve vill Give HT (eee @

. ~
— ‘ os

: :
X

dela : :

% - Os st 4 + 9) Can we OL: ar
— 2 —_ . :
iy eins 44 Te Cte Ol the eee

na # : “a quay « y opening front alk 7

7 PN 4, (ee®ruce higher, aid D* qvantle ae mach: «

oe Sia wap

ms oe ee sie wa ney covet Hie DSTA af evar i

5 clog 2 » w A ete a cite che re

= | > i anid Oona ere),

u/- a L the eas 44 atvalces Ts of the

= ; ‘i sie arenes. foe inesrented., =
oie. is

ef ————————

My | :
ae P* ts kA

er.

: " J seurgonen. Awolhatay ne : ae

case ee na
SECTION

4

PHYSICS

4

et

Introduction

Mike Dickheiser, Red Storm

Entertainment

mike.dickheiser@redstorm.com

he next time you are outside, pause for a moment to take in the sights around

you. Everywhere you look the world is full of motion on both grand and subtle

scales, from the great, mechanized products of human ingenuity to the dancing of

nature’s freshly fallen leaves. Each movement pervades our senses, adding to our

understanding of the world and defining our expectations of reality.

It is natural for us to use the real world as a basis for comprehension, experimen-

tation, and enjoyment of other, fictional, worlds. After all, this world is what we

know, and everything we see, feel, or imagine is filtered through our understanding of

the familiar. If a fictional world fails to meet the standard (in the ways that matter),

we are led to boredom, confusion, or disappointment. As creators of such worlds, this

simply won't do. Thus, we seek to meet the standard, so that we may immerse our-

selves in new worlds that keep us amazed, excited, and absorbed.

Returning our attention to computer games, we see how far we have come. This

year marks another step in the evolution of realism achieved in the virtual worlds we

create as game developers. More than ever, physical simulation in games approaches a

degree of fidelity that eerily matches much of what we see around us. Clearly, our

craft has advanced considerably over the past several years. In the following section,

several gems demonstrate the progress that has been made and offer ideas for getting

to the next level.

Graham Rhodes starts things off at full speed by presenting a solid and intuitive

look at aerodynamics and its various applications in games. From the airborne to the

wind swept, we next move to Rishi Ramraj’s discussion of dynamic grass simulation

and other effects, including water surfaces and the motion of leaves. Our realism

toolset is then rounded out with Juan Cordero’s look at cloth animation, followed by

Maciej Matyka’s discussion of an innovative technique for animating soft bodies.

The next gems remind us that the art of computer game development is a

dichotomy: a simultaneous effort in maximizing the degree to which we can emulate

the real world but also our skill at creating masterful illusions. Michael Mandel

manipulates the puppet strings of game characters by adding feedback control systems

to rag doll simulation. We then reach the opposite end of the rich spectrum of physi-

cal realism with two gems on prescripted physics. The basic architectural considera-

tions are handled by Dan Higgins, and Shawn Shoemaker presents a variety of

applications.

393

394 Section 4 Physics

The section closes where it begins: with a good look at the world. This time the

view is provided by Barnabas Aszédi and Szabolcs Czuczor, who present several ideas

for realistic control of camera motion in 3D car simulations.

The gems in this section cover a wide variety of topics and illustrate the tremen-

dous progress that has been made in computer game physics. At the same time, they
only hint at the exciting possibilities that have yet to be realized, teasing us with still
just-out-of-reach capabilities that will immerse us even deeper. With every closer
glance at the real world, we notice more details of reality that defy our imitative efforts
and challenge us to go to the next level. The hope is that these gems will serve as step-
ping stones on the exciting path up that next level and will inspire new entrants to the

discipline to take up the cause.

4.1

Background

Back of the Envelope

Aerodynamics for Game

Physics

Graham Rhodes, Applied Research

Associates, Inc.

grhodes@nc.rr.com

2 real life, aerodynamics enable heavier-than-air vehicles to fly, make the curve ball

possible, and cause palm trees to sway above beautiful girls on exotic beaches. Aero-

dynamics have long played a role in gaming, primarily in flight simulators, and in

some cases have been used to improve the realism of effects such as particle systems.

Many game developers take an ad-hoc approach to aerodynamics that is based more

on numerical experimentation than on sound principles. This gem will provide a

portfolio of simple, low-CPU/GPU-cost, back-of-the-envelope formulas, derived

from sound engineering principles and strictly controlled wind-tunnel experiments,

that game programmers can use to support a wide variety of aerodynamic effects in

many game genres. While we use the term aerodynamics, in fact the formulas here

work equally well for objects moving through a fluid such as water, as long as veloci-

ties are fairly high.

The gem is developed in two sections. The first section describes how different

aerodynamic primitives can serve as proxies to game geometry and presents simple

equations for calculating aerodynamic forces on those primitives. You can reasonably

use these equations for objects that are moving through the air or other fluids at a

Mach number of less than approximately 0.75. While the presentation is short on

theory due to limited print space, certain key principles from aerodynamics theory are

present. The second section of the gem focuses on applications of back-of-the-enve-

lope aerodynamics to achieve way cool effects in action games, complete with source

code.

SEALE LEIS LTA ERR

The following sections provide some background on the topic of aerodynamics.

395

396
sozozetenstencnenenemanstitsunsetaunsnsyninseateocgeeibai oA AAlut nt eohbiineinnnAneaniereni tii AiAereiennihtAAerinoesi

Section 4 Physics
NCC A@dAMQ AAMC AAD A AOA ACC TT TOO SDA QT NO

Aerodynamic Loads and Rigid Body Dynamics

The formulas presented herein will help you to calculate approximate aerodynamic

loads—forces and moments (also known as torques)—that can be applied to rigid

bodies. The loads calculated with these formulas can simply feed your existing rigid

body physics system!
In the engineering world of aircraft flight dynamics, there are six standard aerody-

namic load quantities: three forces (lift, drag, and side force, which is perpendicular to

the other two) and three moments (pitching moment, yawing moment, and rolling

moment). However, the manner in which this gem treats geometry allows us to sim-

plify the situation, modeling only lift, drag, and a single moment. The full set of three

forces and three moments is simply a generalization. Figure 4.1.1 illustrates the orien-

tation of these three load quantities.

> Center of Gravity

@ Location of Force

Zw

Se
Pitching

Moment

Gravity

FIGURE 4.1.1 Location and orientation of lift, drag, and pitching moment. Drag
acts in the direction of the relative wind, and lift acts perpendicular to the relative
wind—both often through a location other than the center of gravity. Pitching
moment acts about an axis through the center of gravity and perpendicular to the
lifi/drag plane.

Here, the axis system Xw, Zw represents the world space coordinate system, and
the axis system Xo, Zo represents an object-aligned coordinate system. For 3D objects,
there are of course Yw and Yo directions, and the two coordinate systems will often be
more arbitrarily oriented. The object’s orientation is unimportant as long as it is
known. The orientation of the relative wind, defined later, is critical to calculation of

the forces.

4.1 Back of the Envelope Aerodynamics for Game Physics 397
nonanoesnisiiestraemntn on neotsicteeiameitiichs nares ansehen EEN eed NCEA RANA LEO LAMNAA HQ aaaniisaananscinnnnannnceienusuneciitoruannsoteiioousitaabie

The orientation of these loads, which are defined here in the so-called wind axes,

may surprise you. You may have been expecting the lift force to act vertically straight

up (opposite gravity) and the drag force to act horizontally—both acting through the

center of gravity, since many simplistic introductions to aerodynamics present the
forces in this way. You may have never heard of pitching moment. Be assured, the wind
axis representation is both realistic and fundamental to simple aerodynamic theory.

The force calculations depend only on the object’s orientation relative to the
wind and not to the world. While lift on airplane wings normally does have a vertical
component that balances the object’s weight, causing the object to move horizontally
or with a constant vertical velocity, lift can in fact act in any direction, even horizon-
tally! It is recognition of this that makes it reasonable for us to ignore the side force,
for example, as a special case, since side force is often just a horizontally oriented lift-

ing force.

Dimensionless Forms

It is common practice to represent all the aerodynamic loads in terms of dimension-

less coefficients. Equations 4.1.1 through 4.1.3 are equations for computing the loads

given the value of a dimensionless coefficient.

VES
D=Drag=—2* (4:.1,1)

OM
L= Lit =_—s (4.1.2)

Vers lage
M = Pitching Moment = ae (4.1.3)

Here, Cp is the drag coefficient, C; is the lift coefficient, and Cy is the pitching

moment coefficient. The variable S,,r is a constant reference area, usually taken to be

a projected area of the geometry, such as a cross-section area or a top-down projected

area. The variable J,,., is a reference length, usually taken to be one of the physical

dimensions of the object, such as the chord width of a wing or the diameter of a

sphere-like object. The variable p is the fluid density, which for gaming applications will

most often be taken to be constant.

Finally, the variable Vis the speed of the fluid, measured relative to the object; that is,

it is the speed of the fluid moving past the object, measured in world space. Given the

velocity of the point on the body where the force is applied to an object, Vi. iion-of— force?

in world space, and a wind velocity in world space, V _j it is easy to find the wind
WL

velocity relative to the object, Vi irive ying? USING Equation 4.1.4, The geometry of this
rei

398
Section 4 Physics

<cautisenuarasinaasnannimmaninuannainemssisiisiisa
aiamnmnitinatNtClattNtNNNLt NCTC A

situation is illustrated in Figure 4.1.2. The quantity Vin Equations 4.1.1 through 4.1.3

is simply the magnitude of Viiv. wings When calculating Vi. ion-of— force? be sure to

include the translational velocity due to object rotation, since this will affect the forces.
a

Specifically, let V, = K wx \ocation-of — force rr T joint-of -rotation 2 location—of — force point—of —rotation

with 7 being the location of a point, measured in world space, and @ being the rota-

tional velocity about an axis through the point 7 , measured in radians per
point—of —rotation

second, as shown in Equation 4.1.4.

— — =

(4.1.4)
relative_wind wind location—of — force

—>

V location-of-force

FIGURE 4.1.2 The geometry of relative wind.

Fluid Properties and the Standard Atmosphere

The equations presented herein are dependent on the fluid properties, be that fluid
air, water, or something else. At sea level, air has an average density, p, of 1.225 kg/m?
(23.77 x 10-4 slugs/ft*), and dynamic viscosity, {l, of 1.789 x 10-5 Newton-sec-
onds/m? (3.737 x 10-7 lb-seconds/ft*). At 20 degrees Centigrade, pure water has an
average density of 1000 kg/m? (1.94 slugs/ft’) and a dynamic viscosity of 1.0 x 10-3
Newton-seconds/m? (2.09 x 10—5 Ib-seconds/ft?).

For air, at any given moment in time, the properties vary with altitude, as well as

with weather conditions, etc. There is a model, called the Standard Atmosphere (U.S.

and International versions exist), which represents the average air properties over a
range of altitudes. An Internet search on that phrase will produce numerous links,
including table listings of the properties and software for querying the tables.

Aerodynamic Primitives

While there have been a few developments that simulate variants of the Navier-Stokes
equations of fluid flow in real time [Stam03, Lander02], for the purpose of simulating

4.1 Back of the Envelope Aerodynamics for Game Physics 399
me sntentestentnaront enor OESSEHE HAMAS MONEE AMANO HAEELLEEAGAMAS SHO ORLA ALN ALAA onc nti aun enEiLeoionpeRatntote onan oCEE

smoke, clouds, and water flow in games, these methods are usually overkill when the
goal is to find the net force and moment on a rigid body object. For games, in many
cases, a very approximate solution is realistic enough. To that end, the remainder of
this gem will discuss aerodynamic load calculations for a number of aerodynamic
primitives. These primitives have simple shapes for which the engineering world long

ago has developed closed form, simple algebraic equations. Some of these develop-
ments date back centuries. To apply these equations in your game, you simply need to
choose the most appropriate aerodynamic primitive—usually the one whose shape is

closest to your in-game object—and apply the equations associated with that primi-
tive. You can also represent a more complex shape as a composite of several aerody-
namic primitives (e.g., a sphere plus a simple wing, linked together as a rigid set) to

approximate the loads. To be sure, this approach often produces very approximate,
first or zeroeth order estimates that ignore object-to-object interference effects, among
other things. Fortunately, these estimates are extremely cheap to compute and are

often absolutely convincing!

Forces on Bluff Bodies

We define a bluff body to be any object that is not slender or streamlined, and that

does not contain wings for generating lift. For the purposes of this gem, consider any-

thing that is shaped somewhat like a sphere, or a cylinder whose center axis is perpen-

dicular to the relative wind, to be a bluff body. This includes arbitrary blobs, cubes,

tubes, etc. Consider the location of the force of a bluff body to be located at the

object’s centroid.

Drag (Aerodynamic Primitive: The Sphere)

For bluff bodies, Cp is largely a function of a dimensionless parameter called the

Reynold’ Number, defined by Equation 4.1.5. The Reynold’s Number represents the

ratio of inertial to viscous forces in the fluid.

pv, 7
Reynold's Number = R, = ak ft (4.15)

Three of the variables you recognize. The fourth, jt, is the dynamic viscosity of the

fluid (units are force-time/length-squared). Figure 4.1.3 illustrates the variation of Cp

for a sphere over a large range of Reynold’s Number values.

To calculate the drag on a sphere-like bluff body: first calculate its R,, with /,.rset

to be the diameter; next, pick a Cp value from Figure 4.1.3; finally, plug the Cp into

Equation 4.1.1, with S,,r equal to a represéntative, front-projected area for the body.

Section 4 Physics

1000

100

0.1

0.01

0.01 0.1 1 10 100 1000 10000 100000 1000000 1£E+07

Re

FIGURE 4.1.3 Variation of Cp on a spherical bluff body over a range of

Reynolds Numbers.

For convenience, White [White74] presents a simple equation, reproduced as Equa-

tion 4.1.6, for estimating drag on a sphere that is fairly accurate for R, below approx-

imately 200,000. This equation was produced as a curve fit to experimental data,

24 6
Cc ims tp +0.4

D, sphere R. ee JR, (4.1.6)

For R, values between approximately 2,000 and 200,000, just pick Cp equal to 0.4.
For higher Reynold’s Numbers, use whatever works best between 0.1 and 0.4.

In some cases, a sphere is not the best way to represent a given shape. While Cp
versus R, charts aren't often available for other shapes, there are resources that will

provide you with a reasonable guess at a Cp for different shapes. In particular, the
JavaScript-based Bluff Body Drag Calculator provided by Professor M. S. Cramer of
Virginia Tech [Cramer98] is an excellent and recommended resource.

Bet You Thought Drag Varied Linearly

with Velocity, Didn’t You?

As presented earlier, by definition, drag and the other aerodynamic forces are propor-
tional to a dimensionless coefficient multiplied by the square of velocity. This relation-
ship is always correct, no matter what the fluid, no matter what the speed of travel, no

matter what the object. It is a definition! But, as you may have read, it is also true that

4.1 Back of the Envelope Aerodynamics for Game Physics 401
-teemennnnunasnt nis oeaninsttonnaninss seit istaecteaceivenbeHahinntetntetentiteiaianieeapnotetestouiianseetntieotemanynensie

in some circumstances, drag varies linearly with velocity. How are both possible? The
truth lies in the variability of Cp. It turns out that for R, below approximately 1,000,
Cp varies approximately proportional to the inverse of R,, which effectively puts an
extra V in the denominator of Equation 4.1.1, thus making drag a linear function of
V. But, the relationship defined by Equation 4.1.1 also remains perfectly valid!

Lift on Spinning Bluff Bodies (Aerodynamic

Primitive: The Cylinder)

Lift is a force that acts perpendicular to the relative wind, caused by fluid pressure dif-

ferences that result from flow acceleration and deceleration over the surfaces of an

object. The fine details of the physics that ultimately cause this to happen are beyond
the scope of this gem; however, we can take advantage of one of the early develop-
ments in theoretical aerodynamics to obtain a handy equation for estimating the lift
force on bluff bodies. One of the classical simplifications of the Navier-Stokes equa-

tions of fluid flow is the so-called linearized potential flow model. With this model, it

is possible to represent a full flow field as a superposition (summation) of elemental

flow fields. The flow about a general object in a fluid can be approximated as a back-

ground flow in which the fluid velocity is balanced (and no lift is generated) plus a

so-called circulation flow, which represents an acceleration of the fluid on one side of

the object and a deceleration on the other side. The easiest way to begin to understand

circulation is to consider it to be a concentric flow, a vortex, superimposed on top of

a background flow. The vortex flow is additive, incrementing the fluid velocity on one

side of the object, producing lower pressure, and decrementing the fluid velocity on

the other side of the object, producing higher pressure. The pressure difference

between the sides causes the lift force.

In the early 1900s, two scientists, Kutta and Joukowski, each independently

determined that if the relative wind is nonzero and if there is a circulation, then a lift

force exists and can be quantified with a simple equation. Equation 4.1.7 is a general-

ization of the Kutta-Joukowski Theorem, which defines the lift force in terms of a

known circulation.

per _unit_length a p Y ceeatae feed x r (4:1,7)

Here, I’ is a vector representing circulation per unit-length, oriented in a certain

direction, and the resulting force, ay 2s aos is the lift force per unit-length, with

length being the object length along the circulation direction. In real life, the circula-

tion is a variable along the length, and Equation 4.1.7 must be integrated along the

length to obtain the total lift force.

Circulation can be the result of geometric asymmetry in the curvature of an object

(e.g., an airfoil that has more curvature on the top than on the bottom), and can also

result due to rotational motion—spinning. The curve of a curveball is due largely to

lift caused by circulation flow around a spinning baseball. The circulation is due to skin

friction on one side of the ball accelerating air molecules faster in the direction of the

402
Section 4 Physics

eT aT EN TNT TTT TOTTI CT cs

relative wind (lower pressure), while skin friction on the other side of the ball deceler-

ates the air molecules against the relative wind (higher pressure). The direction of cir-

culation for a spinning ball is the ball’s spin direction, as shown in Figure 4.1.4.

FIGURE 4.1.4 Circulation generated on a spinning baseball and a cylinder, due to circu-

lation caused by skin friction.

The real-world fluid flow around any general object is quite complex, and its cir-

culation situation is nontrivial. To greatly simplify matters for games, simply treat the

object as a cylinder. The aerodynamic primitive is a bounding cylinder, aligned with
the spin axis. In this case, the circulation per unit length is approximated for a cylin-
der. The total lift can be approximated by multiplying the result of Equation 4.1.7 by
the length of the bounding cylinder. For such a cylinder, with radius r and spinning at
a rate of @ radians per second (positive or negative), the circulation per unit length is
given by Equation 4.1.8.

= 2x0? (4.1.8)

From here, the total, approximate lift on the bluff body with bounding cylinder
length / can be calculated using Equation 4.1.9. Here, @,,,, is a unit vector indicating
the axis of spin, and @é,. is the rotational velocity in radians per second. The extra
factor of 0.785 approximates three-dimensional losses that occur for finite length
cylinders. The equation is more accurate for longer cylinders.

L=0.78510V, sive wind X(20Or'€,,,,) (4.1.9)

If you consider the force associated with the spin of a baseball as being due to the so-
called Magnus Effect (also called the Robins Effect), you are quite correct. These are

4.1 Back of the Envelope Aerodynamics for Game Physics 403
aerate testnanssaecesnetonanaui nn siie ends oiouiiauinuiiyudinsapnaseiesesemunsHettlene qn ievonmimateeotitibeat

terms given to the phenomenon long before Kutta and Joukowski formulated the
math, though in reality, there are factors other than circulation at play.

Forces on Streamlined Bodies
ELEN NRA

In ere olin sections, we ll faa at a number As yee affecting the behavior of

streamlined bodies.

Lift and Drag on Wing-Like Bodies (Aerodynamic

Primitive: Quadrilateral Plate/Wing)

Objects that are shaped like airplane wings are especially good at generating circula-
tion, and hence, lift. For our purposes, consider any object that is basically flat, and
aligned within 10-15 degrees of the relative wind, to be a wing—an efficient lifting
body. The engineering world derived thin wing theory, which led to the development of
convenient equations for Cp and C; of thin wings. These equations are perfectly fine

for many gaming applications outside of realistic flight simulation. Figure 4.1.5 illus-
trates a number of geometric parameters required to evaluate the following equations.

Top View

relative_wind
@=Location of Land D

i

FIGURE 4.1.5 The geometry of wing-like bodies. The XY

plane of the object-aligned coordinate system is aligned with a

representative center plane of the object.

404
Section 4 Physics

Here, A is the leading edge sweep angle, the C values are the chord lengths at the

root and tip of the wing, 0.54 is the semi span length, and is the angle of attack of

the wing, measured relative to Vite wing? Ehere is a simple formula, due to Hale

[Hale84], for approximating the lift on such wing-like bodies at small (less than

10-15 degrees) angles of attack, given by Equation 4.1.10.

A
Co ee ee (4.1.10)

LE LO 2

1+,/1+ a
2cosA

Note that the equation requires @ in radians. Here, C;,9 is the lift generated when

the wing is at zero angle of attack. This is nonzero when the wing curvature is differ-

ent on the top and bottom surfaces. For approximate solutions in games, assume it is

zero. A is the aspect ratio, equal to the span, b, divided by the average chord length.

For @ greater than 10-15 degrees, the variation of C,; with @ will become nonlinear.

See Bertin and Smith [Bertin79] or Raymer [Raymer92] for information on the more

realistic behavior of CL for higher values of @.
Drag on wing-like bodies consists of two primary components: a parasite drag

component that is the same drag as that encountered by bluff bodies and a vortex-

induced drag that is a side effect of the generation of lift. From thin-wing theory, drag

on wings can be approximated by a parabolic drag polar, given by Equation 4.1.11.

l
Cr (4.1.11)

Here, Cp, is the parasite drag component, and the remaining term is the induced drag

component. Normally, since wings are streamlined, Cp, is quite small. A reasonable

value is 0.045, though certainly you can tweak this as needed. A is the wing aspect
ratio, and e is the so-called Oswald span efficiency factor. Outside of flight simulation

games, just pick e equal to 0.8.
It is important to pay careful attention to the location where the lift and drag

forces act, since these forces will contribute to moment loads. To locate the center of
lift and drag, first find the chord along the location y = 2b/31. This location assumes
a semi-elliptic, span-wise lift distribution. The lift and drag act approximately at the
intersection point of that chord and the quarter-chord line, which occurs one quarter
of the chord length behind the leading edge, along the entire span. It is also critically
important that you include the translational velocity at the force location due to
object rotational velocity. This velocity component contributes to physically based
pitch damping. Without it, your simulation may exhibit instabilities.

There are a couple of important observations to make. First, Equation 4.1.10 was
developed under the assumption that the wing is symmetric across the XZ plane, e.g.,

4.1 Back of the Envelope Aerodynamics for Game Physics 405
stents tte HL neeeterneicnrteNSinenNtiOHeot

there are two halves. Regardless of this fact, if you only have half a wing, e.g., a
quadrilateral fin stuck to the side of a missile, Equation 4.1.10 will work perfectly as
long as you choose S,.¢in Equation 4.1.2 to be the area of the portion of the wing that
exists in your model. Second, if you have a full wing that is symmetric about the XZ

plane, you need to include the lift and drag for both halves, doubling the net force.
Notice that the net lift and drag for the two halves will act at a point that has the same
X coordinate value as the individual halves, but a Y coordinate value of 0, e.g., lift and

drag act at a point down the centerline between the two wing halves.
Raymer [Raymer92] provides a much more comprehensive introduction to the

lift and drag of wing-like bodies, and provides a wider range of still-simple formulas.

This is a highly recommended resource that should be available in most major engi-

neering university libraries.

Pitching Moment

In reality, lift and drag are not generated at the center of gravity of an object. They are
the integrated result of a pressure and friction force distribution over the surface of the

object. The actual centroid of the forces almost never coincides with the center of

gravity of the object. We merely use center of gravity for our rigid body simulations

for convenience of the time integration of the rigid body equations of motion. If you

apply lift and drag at the location given earlier, you will have a reasonable approxima-

tion to the pitching moment produced by the wing.

Moments in General

When you think about it carefully, you will realize that any of the aerodynamic forces

(lift, drag, side force as a variant of lift) can produce a moment about the center of

gravity of the object that must be applied during a simulation. If an object has a bluff

body component producing drag, and the vector from the object's center-of-gravity

through the bluff body component’s center is not parallel to the relative wind, then the

drag will produce a moment about the center-of-gravity. Lifting forces in any direction

usually produce the largest moments. Bottom line: if you ensure that your forces are

applied at the correct locations, approximations to the aerodynamic moments will

result naturally.

Forces on Slender Bodies (Aerodynamic Primitive:

Slender Ellipses of Revolution, or Missiles)

Some objects are neither bluff bodies nor are they shaped somewhat like airplane

wings or flat plates. Among these are the so-called slender bodies, objects that are

shaped similar to capsules or missiles, with a high length-to-diameter ratio (the slen-

derness ratio), which fly through the air with their length axis approximately aligned

with the relative wind. These objects can in real life generate lift, drag, and pitching

moments. Unfortunately, due to space limitations, it is not possible to delve into a

406

Sample Applications

ee

ON THE CD

Section 4 Physics

detailed discussion of slender body aerodynamics here; however, Karamcheti[Karam-

cheti80] presents a comprehensive theoretical introduction in his book. In a pinch,

you can approximate a pitching moment using the following variant of the formula

presented by Karamcheti, which is fairly realistic for @ less than approximately 10

degrees. Equation 4.1.12 defines the magnitude of the pitching moment coefficient.

Cu slender_body * [2a (a in radians) (4. 1. 12)

Here, a is the angle between the axis of the slender body and the relative wind. In

this case, the product Sreflref in Equation 4.1.3 is taken to be the volume of the

slender body. The pitching moment acts about the center of gravity of the body, and

the orientation of the moment is given by the cross product, V. sAA
relative_ wind ‘slender _ body?

where A), iy hogy 1S an axis from the nose to the tail of the slender body, through its

center of gravity. Note that this moment is destabilizing, e.g., if the slender body ever

becomes misaligned with the relative wind, the pitching moment will seek to push the

slender body further out of alignment. To make a slender body stable, add fins behind

the center of gravity. Fins are wings that will counteract the pitching moment to sta-

bilize the object.

For the quick-and-dirty case, slender bodies generate no lift, and so you can

choose C, = 0. For drag, try a Cp value of 0.1 or less, and use the maximum cross-

section area perpendicular through the body axis for S,,.,

Let’s look at applying the principles covered thus far in three different examples: a
wind-driven particle storm, a curve-ball simulation, and a simple airplane simulation.

Impementations of all three are included on the CD-ROM.

A Wind-Driven Particle Storm

This example uses the equations for drag on a spherical bluff body to simulate parti-
cles in a windstorm, a simple tornado. In this case, we model the windstorm using a

so-called potential vortex, with a strength that varies quadratically with altitude. The
center, base point of the vortex is (0, 0, 0). The world Z direction represents altitude.

The storm is assumed to have a strength that varies quadratically from So at sea level
to S599 at 500 meters, as given by Equation 4.1.13.

2
Z

S(z)=S, + is = Ss lanos (4.1.13)

—

From this, the local wind velocity, V,,,,, at any point in space due to the storm is
given by Equation 4.1.14.

4.1 Back of the Envelope Aerodynamics for Game Physics 407

yt) —xS(Z) 5
Ve x, 9Z = 5 oan o Vo = =
pnts J) Qnr mere gal yy, Z) Inr ? 0 (4.1.14)

wind ,z

Here, 7 is the perpendicular distance from the point to the core axis of the vortex. In
this case, ~ = ./x24 y® » since the vortex is located at the origin. Care must be taken

when r is very small. Bertin [Bertin79] provides a more comprehensive introduction
to the potential vortex.

The drag force on each particle is evaluated by first calculating V,,, at the loca-
tion of the particle, due to the storm, then computing the relative wind, and finally by

calculating Cp and the actual drag force. The drag force is then added with the

object’s weight to obtain the total force acting on the particle. This total force is

applied within a simple particle physics simulator.

A Simulated Curve Ball

This example uses the equations for drag on a spherical bluff body and lift on a spin-

ning bluff body to simulate a curve ball pitch in a baseball game. In this case, we

assume that the wind velocity is zero, so that the relative wind is simply the opposite

of the ball’s current velocity. This example is illustrated earlier in Figure 4.1.4, with

the exception that the spin axis is vertical, resulting in a horizontally oriented lift

force. You can vary the pitch speed from 70 to 90 miles per hour (a/s keys), and you

can vary the spin rate from —100 revolutions per minute to 100 revolutions per

minute (+/— keys). The pitch always begins horizontally, along the —X axis (towards

home plate), and the spin axis is the Z axis. Gravity acts along the negative Z axis

(straight down). Press the g key to begin the simulation, p to pause, and r restart.

A Simple, Longitudinal Airplane

This example demonstrates the calculation of lift and drag on a very simple airplane

(see Figure 4.1.6). This airplane is of the canard style, meaning its main wing is

behind the horizontal stabilizer, and the center of gravity lies between the two wings.

The purpose of this example is to demonstrate the stabilizing nature of the pitching

moment that results from wing lift when the centers of lift of the two wings are posi-

tioned properly relative to the center of gravity. For simplicity, this example ignores

the phenomenon known as downwash, which causes the angle of attack of the rear

wing to be reduced by the presence of the forward wing. The simulation does include

airplane rotation when calculating the relative wind for each wing, and the physically

based pitch damping that results helps make the airplane dynamically stable for small

angles of attack. The pitching oscillations that occur are realistic—they occur in life

and damp themselves out naturally.

In this example, you can adjust the orientation angle of the forward wing relative

to the rear wing (+/— keys). As you adjust the parameters, notice that the airplane ori-

entation changes but over time finds rotational equilibrium. This is due to the balanc-

ing of the pitching moments of the two wings. This is a longitudinally stable airplane.

408 Slheskiiannatle chores fae LE

front L rear

rela

FIGURE 4.1.6 A simple, canard style longitudinal airplane configuration.

Conclusio = Se ae - ee ae

This gem introduces a series of fundamental aerodynamic concepts and provides sim-

ple equations that you can use to quickly calculate interesting aerodynamic effects

within your game. Depending on your gaming platform, you may have a number of

options available for implementing aerodynamics. If you use a custom, freeware, or

licensed physics engine, you will need to implement callback functions that can com-

pute the aerodynamic loads about the center of gravity of a rigid body, given its cur-

rent state and the current wind velocity. Once the loads are computed in the wind

axes, map them into world space and apply them to the rigid body. The physics

engine will simply incorporate the additional loads into its numerical time integration

with no additional work on your part. With the advent of programmable graphics

hardware, it has become possible to perform limited physics calculations on the GPU.

The formulas presented herein are simple enough that they can be implemented in a

vertex shader using current or emerging GPUs. This is an especially compelling

approach when adding aerodynamics to a particle system. These simple formulas are

cheap enough that you may be able to use them, limitedly, on handheld gaming plat-

forms. The challenge here will be optimizing the formulas to run quickly using fixed-

point math or on floating-point capable-but-limited CPUs.
Though these equations are based on occasionally severe assumptions and ignore

many higher-order effects, including object-to-object interference and ground effects,
you can reasonably use them to provide extremely cheap illusions that will make your
game worlds appear more realistic to your players. Aerodynamics alone cannot make
a game, but can contribute to a much richer gaming experience when used in con-
junction with other more traditional visual, physical, and animation effects. The most

interesting results are often obtained via experimentation and play. For this reason,

feel free to apply the techniques described here in unexpected ways. Make your next
game world live, with aerodynamics!

4.1 Back of the Envelope Aerodynamics for Game Physics 409
stoner nnnanneteieneetensunagineieiaisennioternmannrenantcnt

References *.

[Bertin79] Bertin, John J., and Michael L. Smith. Aerodynamics for Engineers. Prentice
Eiall,, 1979:

[Cramer98] Cramer, M.S. Bluff Body Drag Calculator. Available online at http://
www.fluidmech.net/jscalc/cdcal26.htm. 1998.

[Hale84] Hale, Francis J. Introduction to Aircraft Performance, Selection, and Design.
John Wiley & Sons, 1984.

[Karamcheti80] Karamcheti, Krishnamurty. Principles of Ideal-Fluid Aerodynamics.
Robert E. Krieger Publishing Company, 1980.

[Lander02] Lander, Jeff. “Taming a Wild River.” Presented at the Game Developers

Conference 2002. Available at Attp://www.darwin3d.com/confpage.htm.
[Raymer92] Raymer, Daniel P. Aircraft Design: A Conceptual Approach. ALAA Educa-

tion Series. American Institute of Aeronautics and Astronautics, Inc., 1992.

[Stam03] Stam, Jos. “Real-Time Fluid Dynamics for Games.” Presented at the Game

Developers Conference, 2003. Available online at Attp://www.dgp.toronto.edu/
people/stam/reality/Research/pdf]GDCO3. pdf.

[White74] White, Frank M. Viscous Fluid Flow. McGraw-Hill, 1974. Available online

at http://hyperphysics.phy-astr.gsu.edu/hbaselfluids/kutta. html.

er eee ee ST) 4.

‘ete Yeoleyrit emad wit
a _ — as a ee

re Tea

= i

NIT). EA o" oh fie’ J lac rbot, betel

—
un ceil thdeliawl ada eC vholl Tale a:

- etd § “pe Ne OP we

Day a L keen, gerbe, setGrecsret\ Becih, ot se pares <> {

i
wrdees), SF nT PY Ad 7 ai wes i aioe

Gaet siaqentt> gldalderlaa
preaolsvetl sci D ort mm been “awit SW age” ‘haa alk

oe ayy Aneer wees Neeurets sanasias! avd olevA S00 rat

Al dl we Wald Jap yaa aarti) A an , Ter 7 u te“ wed

‘nel sen eae PET EL TT PLEIN,

re fee eT dele et ii A Sine te
y 1

AN

anh / Siri

wh» asnyt 4 hu ehacuwlade caine Beirne

Nia FANE
esheets! 2 DGS pry A a le

. “ab savy aang Hig
: ; hs. a Ws Je one sapere :

j 9 tn et a shen ri i Jee Wa Acai

, thes att. weiSd-ceace etl andy deen,
" vey uit ty ‘ang Lhe extol at Wels Ate it. (ure

baw vt AP we! alc = - ae Pats the ie our cies

Pua rae’ ph) im ce) sense rel ne sf ohyncs oa

[See fig J oronre deehin dn dy Seg thee hey.

4 . ie cuir of elie a Tee &

p ser ato nie a;
¥ 2 a (OE Reedy, a

pinga Sue endiw wii ittqcivy Ut tienehiiiie

(ears mya ot ole sliin> Tiagylgiie erie 4

Tahar st > rat ivauellip ie
cull je AL i ;

eeeriie

=}

<2
«

yysically animated cloth COLOR PLATE 1B = Physically animated cloth COLOR PLATE 1A 7,

from Article 4.3. from Article 4.3, draped over a sphere.

Soft Body 3.0 by Maciej Matyka, http://panoramix.ift. uni.wroc. p¥-mag

: COLOR PLATE 2 A deformable rabbit model showing Article 4.45

ractical animation of soft bodies.

No Controller Fall Controller

COLOR PLATE 3 Comparison of two ragdoll-physics character falls from Article
4.5, on the left without feedback control, on the right with feedback control.

COLOR PLATE 4A Applications of prescripted physics from Article 4.7.

COLOR PLATE 4B Applications of prescripted physics from Article 4.7.

Fy Sie ae Bk
COLOR PLATE6 Screenshot of snow moving at high velocity from technique presented in
Article 5.2.

COLOR PLATE 7 Gridless fire technique from Article 5.5.

Fireball Smoke Debris Frame

oe |
- COLOR PLATE 8A Components of explosions used in technique from Article 5.6.

(a) (a)
COLOR PLATE 9A Components used in gem rendering technique from Article 5.7.

ore

(b) (d)

COLOR PLATE 9C = Screenshot from ATIs demo “Ruby: The Double Cross”
showing the gem rendering technique from Article 5.7 in action.

4.2

Dynamic Grass

Simulation and Other

Natural Effects

Rishi Ramraj, The University

of Waterloo

thereisnocowlevel@hotmail.com

evelopments in games like Half Life 2 have demonstrated that the physical
behavior of a game’s environment plays a large role in providing an immersive

feel to the user. However, simulating complex natural effects involves significant com-

putational overhead.

Overhead can be reduced by examining an existing algorithm used for water sim-
ulation. The memory requirements of this methodology can be reduced by up to
50%, while still maintaining (if not enhancing) the quality of the simulation. This

methodology can then be extended to simulate effects such as wind blowing over grass

and through leaves.
This gem has three goals. First, a method is presented for optimizing the memory

requirements of water simulation under certain circumstances. The resulting model is

then used to provide a robust and easily implemented algorithm for simulating

dynamic grass. Finally, these methods are generalized to provide an approach for sim-

ulating effects involving the impact of change through a network of similar or dissim-

ilar objects.

The Water Effect
PARE TER LEAL LLL LLL NLT ET TELE EE TELLIN ELE ELITE ENT NRE SIT TEM TO

The approach to natural effects described in this article was derived from an algo-

rithm outlined in Game Programming Gems 4 called “iWave” [GPG04]. A simplified

version of the algorithm can be found at [Willemse00]. Both algorithms described are

essentially the same, but for simplicity’s sake, we will discuss the latter.

The Algorithm

The iWave algorithm approximates a planar body of water by a grid of points. The

vertical motion of each point on the grid simulates ripples moving over the water, as

depicted in Figure 4.2.1.

411

Section 4 Physics

FIGURE 4.2.1 The iWave approximation of a planar body of water. Three-

dimensional (left) and two-dimensional (right) depictions are shown.

To animate the system, two grids are used, representing the pre and post state of

a time step. One grid stores the current height values of the system. It is then used to

calculate the values of the next time step, stored in the other grid. Using two grids

ensures the calculations performed on the (i — J, j)) point for example, do not bleed

over onto point (i, /).

To make waves move through the system, we look at each point (i, j) individually,

The resulting height at that point is calculated by summing the heights of the point

around it, dividing the result by two, and subtracting the height of the current point:

pres iis |. = (sreohisatiio*
Srecn[Salad
Sroliltsd- 1 kos

srech (1,7 +e fe 2 src hpiggis

The result is a system where waves move through the grid. The waves maintain the
same amplitude, so energy has to be removed from the system. The solution is to

simply remove a portion of the energy from the system every update by subtracting a
portion of the height:

res h[i,j] -= res_h[i,j] * damp_factor;

To create a ripple on the surface, simply set the height point on the surface to a value
other than 0. The effect is that the change produced moves throughout the system,
affecting points around the selected point. A wave, in turn, ripples out from the
selected point.

Specifics as to how and why these formulas are used and why they work are found
in [Willemse00] and are more thoroughly discussed in [GPG04] (including how to

animate over a variable time step). The effect conserves water mass; as a surface rises

4.2 Dynamic Grass Simulation and Other Natural Effects 413
yanssossete sansa yi ttes it oteAnee IEAM ALON HE HELA nett teenie ttettntnteotttet

in one location, it falls in another. [GPG04] also discusses how obstacles that cause

waves to rebound are modeled.
These specifics, however, exceed the scope of this gem. Next we will look at the

aspects of this simulation that relate to change propagation.

Analyzing the Approach

Intuitively, we view this system as an approximation using a planar mesh because that
is how it is rendered. If, on the other hand, we view the system as a network, we can

make several interesting observations.

The network is composed of several nodes, each the same, with at most four and

at least two connections to other nodes. Each node is used to store a height value, and

their logical position in the network is used to determine their physical position in the
render.

Links used in the network tell the system that change occurs between the linked
nodes. Nodes on either side of this link can mutually affect each other. Thus, if we

change the height of one node in the system, it would affect the heights of its neigh-

bors during a time step, and would later be affected by its neighbors in the succeeding
time step. The result, over a period of time is a rendition of the affect of change in one
node on the entire system.

The function defined earlier is part of each link. It defines how the properties of
one node affect the properties of its neighboring node and characterizes how change
propagates throughout the network. The function is integral to the operation of

simulation. For example, the entire effect can be changed into a blur (as mentioned in

[Willemse00]) by averaging the heights of the nodes. It also characterizes the stability

of the simulation. Without the aforementioned damp_factor, for example, the entire

simulation would become very sporadic; waves would never fade out.

Optimization

[GPG04] mentions that iWave is not very effective at generating ambient ocean

waves. This optimization creates a simple approximation of ambient waves, while

reducing the memory requirements of the effect, making an ocean feasible. It also

adds an interesting quirk to the change propagation model.

The optimization is simple: use one planar grid instead of two. This approach

keeps the concept of a time step between calculations while eliminating half the bulk

memory requirement of the system. As the update proceeds through this one grid, the

point (i, /) is calculated with a mix of updated points, (i — J, j) for example, and cur-

rent points like (i + /, /). Instead of waves radiating outwards from a point in all

directions, they radiate from a point in the direction of the update. The result is a

water simulation that seems as though it is being blown by the wind; it resembles the

large ambient waves of an ocean. The result is presented in Figure 4.2.2.

414
Section 4 Physics

Calculate (i,j) Calculate (i+1,j)

Update

Next Point

Direction

of Update

FIGURE 4.2.2 The iWave approximation with optimization. As the update proceeds

through the mesh, a point (i, j) is calculated. It is then used to calculate (i+ 1, j).

Why is this happening? We are of course removing the “double buffering”

approach the initial algorithm used. The original algorithm used double buffering to

ensure one time step’s data wasn’t polluted by interim calculations of the next time

step. However, this is only problematic depending on the goal of the simulation. If

the goal is accuracy, which is required for certain simulation, then eliminating the sec-

ond buffer is not an option. If the goal is a simulation that looks “good enough,” then
eliminating the second grid is not only beneficial to memory, it can also look good as

in the case of iWave.
There are many situations where an accurate time step is necessary. This is not the

case in most natural effects because the simulations are usually cosmetic. The remain-
ing effects discussed in this gem do not use a second buffer to accommodate for an
accurate time step. The next example, grass simulation, starts to exploit aspects of net-
work analysis.

Simulating Grass
nem

There is very little difference between simulating grass and the water effect. In a large
field of grass, when energy is applied to one stalk, it in turn affects those around it. It
should be noted that the term energy is used colloquially. In this sense, it describes a
quantity that affects or is possessed by an object. It is used as such for the remainder
of the gem. If sufficient energy is applied, like a gust of wind, then a wave of energy
moves through the field of grass.

4.2 Dynamic Grass Simulation and Other Natural Effects 415
acsectet maaan nninseetneaioitteua bd nataunnlttdunmnnnee tonanteneianaennntenententstnuionrenatiee

The Algorithm

If we analyze the water effect using the previous network approach, we can pick out

elements that we can preserve. Grass, like water, uses the same planar grid to represent

its elements. Each node can represent a stalk of grass and is surrounded by up to four
other stalks. Energy moves through both systems similarly, so the function we use

between links does not change. The only difference between the systems is the way
the property of the node is interpreted. In the case of a water simulation, each node

represents a height value. In the case of grass, it is more complex. When energy affects

a stalk of grass, the stalk rotates (e.g., bends) in the direction of the energy flow. This

process requires two things: a direction of the application of this energy and a scalar
representation of energy to determine the extent to which the stalk is affected.

We can use the value at each node as a representation of energy. That is, the

height of a wave instead becomes the degree to which the grass rotates. We can define

a vector as the direction of the energy. This lets us control which way the wind blows.
The vector is scaled by the energy scalar. It is then divided into components along the
x and z axes. Rotation along these axes is proportional to the resulting components.
There are different ways to convert the components of the vector into angles, the eas-

iest being to simply scale the components. The result is demonstrated in Figure 4.2.3.

Pre Rotation Post Rotation

SJ
=e
—

;

ef

FIGURE 4.2.3 The rotation or “tilt” of a stalk of grass. The vector Wx is calculated from

W. It is then scaled with a value r to produce (rWx)° of rotation. A similar rotation is

preformed in the z direction.

Repeat this process for a large amount of grass over a field, and you create the illu-

sion of a plain of grass being blown by the wind. We are now capable of converting a

water simulation to a grass effect with little effort. Next, we will take a look at the

rules of the change propagation model.

ssematennencnaenerescenasieti 416
Section 4 Physics

The Change Propagation Model
ANNA

LATS SAAS STN NESE

Over the past discussion, we have highlighted several components required for a

change propagation model. It is composed of a network of nodes connected to other

nodes, each used to store some value. These nodes are linked together if they change

each other and the change that occurs is controlled by some function. Next, we will

take a look at each component of the model to identify the essential parts.

The Network

The networks described so far have all been girded matrices. In both examples, the

logical arrangement of the network (i.e., a grid) maps directly to the physical repre-

sentation. However, these examples are simply implementations of an abstract con-

cept. We can generalize the concept; the network is responsible for defining the

interconnections between nodes. It is not restricted by architecture or any physical

mapping to reality (as the next effect will demonstrate). The architecture of the net-

work can also change over time.

The Nodes/Interpretation

Nodes in previous examples have all been composed of one value. This value has been

some floating-point scalar that has been mapped to a physical element. Every network

presented has been a collection of the same node.

In general, a node can be considered a thing that can be changed. It can represent

any quantity, from a single floating-point variable to a linked list of arbitrary classes.

Nodes do not have to be mapped to any physical quantity; they can just as easily

represent something abstract, like the weights of a neural network [Buckland01}. Fur-

thermore, nodes do not have to be replicas of their neighbors, so long as they fulfill

the requirements of the links and functions, which we will discuss next.

The Functions

The functions presented have worked with scalar values to produce scalar values.
iWave, for example, uses the heights of a mesh to produce a new height. In general,

however, we can say that a function, in this model, is a relation that maps the output
of a node to the input of another node (or back to the original node). To address the

earlier problem with dissimilar nodes, a function could be written to convert the out-
put of one node to the input of another. Further, these functions do not have to be

bidirectional.

The relevance and derivation of functions have been in part influenced by the
application that uses them. iWave, for example, derived its function from the linearized

Bernoulli equations [|GPG04], functions that describe fluid dynamics. Although we

cannot totally avoid the end application, it should be noted that the function does not
have to be justified mathematically. It is a relation between the causal input and the
resulting output. Approximations and arbitrary associations are acceptable, provided
they produce the desired effect.

4.2 Dynamic Grass Simulation and Other Natural Effects : 417
ntti ansinoeeneneentmma teeters CSE Anean eb GEeo FF AMA HEARN AAS AAMAS nent Umm enanaemnsndimennomotnnene:

The Links

The previous examples have not covered the concept of links. In general, a link is the
set of functions between nodes and acts as a bridge between nodes where changes
occur. One link may use more than one function. Functions can in turn be swapped
between nodes as the simulation continues. If the architecture of the network
changes, then a standard input/output type is required. The conversion could be pre-
formed by a function inserted in the middle of a link.

Simulating Leaves: Applying the Model
aan ESR aS HN a a SERRE TEE SERIE, ITI ni ioe osrsnniantee:

In the next exercise, we will use the change propagation model to simulate the effect
of wind blowing through leaves. In this effect, the leaves of a tree react more violently
on the side of the tree facing the wind. As energy moves through the tree, leaves closer
to the source of energy obstruct leaves farther away. To reproduce this effect, we will
take a look at individual components of the change propagation model and decide on
reasonable solutions to the problems they pose.

The Network

The network is responsible for defining the interconnections between nodes. In real-
ity, the effect between leaves on a tree is fairly minimal. Leaves do not regularly make
contact with each other. However, leaves do obstruct each other from wind, which

implies that they induce change. In this case, the architecture of the network does not

change over time.

Ideally, each leaf would affect all others; the wind could come from any direction

such that each leaf could obstruct others. The function would be based on the flow of

wind around the leaf. It is obvious that this is overkill. Instead, we can simplify the

simulation by making a few observations. The basis of the simulation is that energy is

dissipated from one or several points in the network. We can say that a node is con-

nected to three of its closest neighbors and the energy transferred between nodes is

proportional to the distance between them. The value three is arbitrary and in prac-

tice has proven to be a fairly good compromise between an accurate fully meshed sim-

ulation and a mesh of single links.

The Nodes/Interpretation

A node is a thing that can be changed. In this case, we want to store some sort of

scalar, which represents how much the leaf blows in the direction of the wind. Each

leaf must be aware of its current orientation and the overall orientation of the wind so

that it can be blown in the proper direction. Note that we could design the system so

that the leaves would be blown in random directions. In this case, the orientation of

the wind could be inferred by the way energy flows through the system.

Interpreting the energy scalar poses several interesting problems. We have two

vectors, one defining the orientation of the leaf and the other defining the orientation

scarteeiaitti

Section 4 Physics
ee

of the wind. The energy scalar indicates how closely the leaf rests on the wind vector.

When there is no energy, the leaf settles back into its original position. When there is

a lot of energy, the leaf moves violently in the direction of the wind.

There are several mathematical ways to tackle this problem. We could use quater-

nion and spherical linear interpolation [Wattenberg97]. Using this approach, we

would run into problems when trying to introduce randomness to the behavior as

well as problems rendering the leaves in the desired directions. Instead, we could con-

sider the problem in spherical coordinates [Bobick03]. The initial orientation of each

leaf and the orientation of the wind are specified by an azimuth and an inclination.

The energy scalar is used to specify how much of an angle we add from the current

leaf orientation towards the wind orientation. We will also be adding small random

angles to produce noise. The algorithm for calculating the new orientation for the leaf

is presented in Figure 4.2.4.

Step 1

The first step is to determine

the angle between the leaf's -

current orientation and the

wind's orientation.

Wind F

Orientation ~

Leaf

Orientation

Step 2

We then multiply this value,

d@, by the energy scalar to ie

produce dE. / a@ xX ENERGY = 1 dE

Step 3

A random value R is added

to dE to produce dF.
i R ot 1 dE + \ = ; oF

Step 4
Final

dF is then added to the Leaf's ga

original orientation to produce e

the Final orientation, which + "f dF f=

is rendered. a
Orientation

/

Leaf

Orientation

FIGURE 4.2.4 Algorithm for calculating the new orientation
of a leaf.

The Function

When wind blows through a tree, the leaves closer to the source of the wind are
affected the most. When the wind stops, the energy affecting the leaves dies off.

4.2 Dynamic Grass Simulation and Other Natural Effects 419
cunusascesteuainunssceenieaetnt se iSisAnsasSOis isanunnencsaeesstasasaabonnntesaniii at NAMA E HAASE DRONE ICN

Energy on those affected the most dies off last. This type of behavior is best repro-
duced by a blurring algorithm, as discussed in the water effect portion of the gem. In
a typical blur, the point (i, /) results from taking the average of points around it and
itself.

Although this function emulates the behavior we seek, over time, the energy of

the system increases permanently as more energy is added. Take, for example, a grid
that uses this function. If we apply an increase in energy at (i, j), then when the dis-
tribution of energy settles over a time ¢, all points in the grid will possess some of the
initial energy. The energy applied to the system initially will be evenly divided among
the points in the grid.

We want a system where energy fades back to zero: a return to equilibrium. We
can make the interchange of energy proportional to the distance between nodes. This
way, only a portion of energy is transferred between nodes; as the distance between
nodes increases, the energy transfer decreases. The result is then summed. Distances

between nodes will be constantly reducing the amount of energy in the system over
time, and as a result, the system will return to equilibrium.

The Links

In this particular simulation, the role played by the links is minimal. Analysis using
links becomes important when considering networks with dynamic architecture.

ED ae
Throughout this gem, we have considered three simulations: water, grass, and leaves.

Each simulation uses the same basic idea: the change propagation model. The intent

is for the reader to consider the examples presented and use them along with the

change propagation model to create new effects.

References
1 A tl ERNE NER ERODE EE

[Bobick03] Bobick, Nick. “Rotating Objects Using Quaternions.” Available online at

hitp://www.gamasutra. com/features/19980703/quaternions_O1 htm. June 3, 2003.

[Buckland01] Buckland, Mat. “Neural Networks in Plain English.” Available online

at http://www.ai-junkie. com/ann/evolved/nnt1.html. June 12, 2001.

[GPG04] Tessendorf, Jerry. Game Programming Gems 4. Charles River Media, 2004.

[Wattenberg97] Wattenberg, Frank. “Spherical Coordinates.” Available online at

http://www.math.montana.edulfrankw/ecp/multiworld/multiplel VP/spherical/body.h

tm. May 21, 1997.

[Willemse00] Willemse, Roy. “The Water Effect Explained.” Available online at

http://www.gamedev.net/reference/articles/article915.asp. February 15, 2000.

Is

1 eee rea .bae.s
| Coe

TN eet Hl \aieanead fe nae ae : roe Put — of ee es :

al wie rr) aie Ml waht pe ‘unit wigs

‘aye 7) hunter RBA to to-apatiein pti eT pIrernyS
PSepile, ad beens o Pay 1

: ’ : ee TTY) oe

ike 40" 2! ny ay Ole a) socope iiss Lond ; ‘eee an ‘ _ Se hig , te

bia ayiree Le “yeti oo , ares Ms morgan — a PY

iY, ois wea Se ent Se ons Mini, wets to re 9 Lo “dew spe r
i sth p 4 7701S A al uy } 5 =

iff 7 ’ is are til vy f a ® ‘

gnats Wits Vain 3 pie ation, 7 tS = A = ee

bo Soe a
A 2 ‘one few S er,

SH serie ages Iiie-tahaue Li sah Adelie roast te one
a ae abrgnraieiae Lwauhhh all a Vania i

tr vic? yp mena ory vet yr Wisi agile aorpiestus ‘ 4 ‘ph 10 ware evga gid nf ee =

apni egotis col Shdtitl dridubsiell: ® fier on |’ ixaesecne ©

T3) (VOR r; oft A Bpete bey saps wi gt rilfievy Pye ides a tw pene a hoe

perce inp» Te a — emetey > Winwe abe een

- > r <

oe. : — _

~ . J ley

' oa
aries) candle \noteato eats od) od bake Stee aie pins Jajiere J

sires Aasw erie Thee et alti perat palteb Wp tara j Wi ae

S . P
7

> = — apyeenn

Mane DHE 245 ry} oh laren * 1 Uri: mAs td om aameig

ite, oT gho0t hy OA wan 30) ‘Lot pabel giice ght ice 4

oily Aki ghee eyeseit el Dacehes i; ein, rey oe inane “a 8

iti tee Qibiiu, Shee nel
i‘ ry , =,

ee Ge imme ep

venules: ede! iach” ateontite ind ahd Fail byes” eel id ET

a Ha oot \ solgaacatt NTS (evitcwh ines arepeanretom nena eS ©

ope ittog letatisvA, *.Asndaea'T tious Abia ied?” a, basbioad {10 ‘ an mee]

“ore, Paget “oot \ bev gNanpanreieiegarey sete: wien “ay

LEME alba! oh 0/88 qatteel ote cone) yrqwiegern Sarma orwenl Taesbectene

lk td Abd | Haynie. sa east ie ,

7c MAMRTE beeen ocean idee san corer diary sana

ROO Said ae
2 ane silstiod. “ta odie cot woe atl Tl vol eee

(nue ~ ee gy " +6) rat alba i ian erage a ay \ “99

ae es om Oe lesnalaiaiel
rw ne Od ~ vu, he © x alias ;

P omar

ig
(ue

7 > A

4.3

Realistic Cloth

Animation Using the

Mass-Spring Model

Juan M. Cordero, Dep. de Lenguajes

y Sistemas Informdaticos, Universidad

de Sevilla

cordero@Isi.us.es

Although cloth is a common object, the physical laws that govern its dynamics are

complex. Continually, algorithms for cloth animation are improved by focusing on

two main aspects: the efficiency of the models and the search for realistic results.
Since the mid-eighties, several cloth simulation models have been proposed based

on geometric [Weil86], physical [Provot95, House00], and hybrid [Tsopelas9 1] prop-

erties. For the moment, only models based on physics provide realistic results. How-

ever, physical models are time-consuming processes due to the complexity of

calculations and the difficulty of creating user-friendly methods for specifying mater-

ial characteristics.

In recent years, the Kawabata Evaluation System (KES) [Kawabata75] has been

used in cloth simulation models to empirically obtain parameters intrinsic to a partic-

ular type of cloth. However, KES is a costly technique, and in most cases, relatively

few of the obtained results are used in the simulation models.

This gem details a new simulation method based on the mass-spring model that

achieves high-quality results with a low computational cost. In the next section, we

describe a computational model for cloth based on masses and springs. After that, we

present the forces involved in cloth dynamics. We then outline the equations of the

dynamic system and provide an approach to resolve them. Finally, we present our

conclusions and identify directions for further research.

A Discrete Representation of Cloth
cca RUBNEREE ERR LEER NOL ME LTT ELIE EEL TTT eit A RASTA RSE CANINE REEL ERE

A rectangular piece of cloth can be Me ented by a coe of nXm mass particles

linked by springs, as shown in Figure 4.3.1.

421

=
ae: ae Section 4 Physics

FIGURE 4.3.1 A discrete represen-

tation of cloth using a mesh.

The mass of each particle represents the mass of the material situated around the

particle. Springs, linking particles, generate forces that make the distances between

the particles constant. A mesh is oriented such that for every particle of the mesh, a

normal vector to the surface is defined. The normal vector that describes the orienta-

tion of the mesh has the expression shown in Equation 4.3.1.

N, tied sy

) | N,4+N, +N, +N, |

where , is the normal vector of each triangle that defines the mesh around the par-

ticle (see Figure 4.3.2).

FIGURE 4.3.2 = Zhe normal vector of the mesh
at a particle position is a combination of the
normal vectors of the triangles that surround
the particle.

4.3 Realistic Cloth Animation Using the Mass-Spring Model 423
eset stenasenencontaianrnetnionuaneiasneitnuananantaninnnnntetenenanenstenceninannestet

As we will show, it is important to know the surface normal for each particle in
order to decide if a force is internal or external to the plane of the mesh. For every par-
ticle of the mesh, there are three sets of neighboring particles: stretching (or structural)
neighbors, shearing neighbors, and bending neighbors. The internal forces of the mesh

will be described once the sets of neighboring particles are defined. Starting from a
particle of the mesh situated at (i, 7), the stretching neighbors are described in Equa-

tion 4.3.2

Fics See ed ale A 8 (4.3.2)

for the case involving four neighbors. If the particle is localized at the edge of the

mesh, it will have three neighbors, and if at a corner of the mesh, it will only have two

(see Figure 4.3.3).

FIGURE 4.3.3 Stretching neighbors

representation.

The set of stretching neighbors, V7, is divided into two subsets that correspond to

the principal directions of the mesh:

Vis S [Baebes i}

Vioey = ors ? Pi jot i,

where V7"? is the subset of stretching neighbors in the direction of the warp and Vt

is the subset in the direction of the weft.

The set of shearing neighbors is expressed as in Equation 4.3.3 (see Figure 4.3.4).

(4.3.3)
S i+1,j+1?~ i-1,j+1? eee
Se (eG?

= Section 4 Physies
steumangrtctncsonasscnenessensanenessianesnnteneenaiisli{ dente Llane Ateen eh inant OnennontAnonneet mH nMnanHtaei

Note that there are one, two, or three neighbors, depending on the situation of the

particle under study.

FIGURE 4.3.4 Shearing neighbors

representation.

We will later show that the set of shearing neighbors does not need to be divided.

The set of bending neighbors is expressed as:

4 cadena nce Sart Ag (4.3.4) i=23f? b,gt2?~ i,j-2

As with stretching neighbors, the set can consist of four, three, or two elements,

depending on the position of the particle within the mesh (see Figure 4.3.5).

x
x
FIGURE 4.3.5 Bending neighbors

representation.

The set VB is also divided into two subsets:

4.3 Realistic Cloth Animation Using the Mass-Spring Model 425
tence eens EALLE EISSN RSS ONE EEN ose nenninanenesrehnaeesteeneniscenneitesaannat

Vee PS PST
Veen tye t

These represent the neighbors in the directions of the warp and the weft of the cloth,
respectively.

To simplify the notation, we use R to designate the set of subindexes related to

sets 1, 2, and 3 along with their respective subsets:

R,={(i+ Ls) (iba) (6541) (6I- Vf
={(i+17).(i-L)}
eter

R, ={(i+1,j+1),(i- (i-1,/+1),(i+1,j-1),(i-L 7-1}

R,={(i+2,/),(?-2./),(44+2),(64-2)}
Ryo ={(i+2,/),(7-2./)
Ry ={(i,5+2),(6.5-2)}

Forces
iS CARD EEE ISR ER ESLER EEE SORES. LION ES EE TC NESE ED RIL EEL LTR ROTTED SANE

Once the mesh of the cloth is obtained and the orientation of the particle is defined

along with its set of neighbors, we can express the forces related to each particle. Two

different groups of forces will be determined: internal forces and external forces.

Internal Forces

The internal forces relate to the quasi-elastic behavior of the cloth. There are stretch-

ing forces, bending forces, and shearing forces. Stretching and shearing forces are in-

plane forces while bending forces are out-of-plane forces. This means that stretching

and shearing forces follow the directions defined by the mesh, while bending forces

are normal to the surface of the mesh. Therefore, to define the forces, we must first

know the orientation of each particle within the mesh.

The stretching force is predominant among the internal forces. Due to the simi-

larity of the stretching properties of cloth in general, this force does not discriminate

against different types of cloth during the simulation. Therefore, many authors do not

consider the effect of the stretching force, and instead they impose a fundamental

assumption on the mesh: the distance between stretching neighbors is constant

[Witkin90]. This paper takes into account stretching forces. Hooks Law gives the fol-

lowing expression for the stretching force of a mesh particle P;;:

426
Section 4 Physics

svsnsaaneteseneneentniasnansny een nitsneneninioichicoionAinseetecnmiiHti Assis HMnsenntterieAtsGneiee

peau Sybe(c\ ee ere (43.5)
(KER wp (AER wp

where

me Ls

Lg = “ Py

e ss | Vina | ¥ Lia —> SGraia
> sf =

Ve

where

14/9 is the length of the spring that links P;9 to P;;0 when the mesh is at rest.

That is:

lp as Fs Pa >

where K,»e(E) and K,»/(E) depends on the elongation, €. Together K;wr(§) and

K,f(&) model the quasi-elastic behaviour of the cloth.

The other in-plane force is the shearing force. This force represents the lateral

deformations of the cloth. The force over a particle P; is:

Fa== > Ble) Opiee (4.3.6)
(k,lJeR,

[O-==D
where > hey £6 doe iG es

ijkl

and n, is the normal vector at P;; particle, as seen earlier.
The parameter @;,, can be explained as follows: the shearing force is an in-plane

force that attains its maximum value when @j,)is 1. This occurs when the normal at

P, and the vector /,,, are perpendicular. When the vectors are not perpendicular, the

ununonnntionntennnnanntenionnakansnyennnilanenanntnenanennmunnesiennsinnnnaie:
4.3 Realistic Cloth Animation Using the Mass-Spring Model 427

value of @;; decreases as the force changes from a shearing force to a bending force, as

shown in Figure 4.3.6.

(b)

FIGURE 4.3.6 he longitude of a shearing spring has

been modified (a). The elongation of the spring is applied

perpendicular to the plane of the mesh, so there are no

shearing forces (b).

There is no absolute coordinate system for the mesh, so we cannot express shear-

ing forces based on the warp and the weft of the cloth. Therefore, when a lateral

deformation occurs, we assume both directions are equally affected. So, instead of

Ky» and Kgs, a combination of both functions Ks is used.

428 Section 4 Physics
seheunmasssscenarn nacre

Bending forces are the only out-of-plane forces and can be expressed as:
aoe

a Fo=t 2) Ko (6) Vg ug es 1K ys (E)V up) (4.3.7)
y

(KE)ER up (KER wy . CF j

“\. | where (s |

? & f a

2. reall by de 1, Sep : Mi.

| Hogicoll, Che advoas | (dig = Tre es

fia WITF cA
A ,

a

| ijkl ‘ikl®
; ,

es y ijkl Da lu

> > ¢ =

; A

Lol | ijkl Chi4g C coy)/
Lave been~ sNsSe COA ou : \

laccident. Chus chould rob See oF is
accident, Chas Shavit nat Va! ij” 1° Ne LE\W x | t) j we a [3 n#ere,

A : \ (5) } U

Wh NK es ee aes Miki na

a)
\\ Yi ina a 1 By es 5 flay ; : 4

tf AS te a a

The value of the parameter Y;,,,, similar to @;4), represents the force applied out of the

plane. Then, when W,,;= 0, the normal 7%, and the vector /,,, are perpendicular and
the force is applied within the plane. However, if Wj,)= 1, the vectors are parallel and

the force is applied out of the plane, as shown in Figure 4.3.7.

Elongation Functions

The K (€) functions, previously introduced, determine the force variation due to elon-

gation. If we consider these functions linear, the springs’ behavior will also be linear.

This would mean that stretching forces, lateral deformations, or flexions of the cloth
obey Hooks Law. However, the elastic behavior of cloth is nonlinear. When elongation
extends beyond a certain limit, the force opposing the motion increases exponentially
(as seen in the graphics of KES). This way, the functions K (&) introduce the quasi-
elastic behavior of cloth into the force expressions. Therefore, to obtain coherent
results in the animation, K (&) has to meet at least two conditions:

K(0)=0
K(&) is monotonically non-decreasing

External Forces

The set of forces that are not produced by the quasi-elastic behavior of the cloth are
known as external forces. These forces are gravity, air friction, and others. In the pro-
posed model, every particle mass corresponds to the mass of the area over which that

n ssseeecanmsacoteonescumaseettetetsononenanonnetittlntenenetnnnaonnmnhnrmedNetsomncre

4.3 Realistic Cloth Animation Using the Mass-Spring Model 429

(b)

Gj) GH) 25)

FIGURE 4.3.7. The length of a shearing spring has been modified

(a). The spring elongation is applied within the mesh plane, so no

bending forces exist (b).

particle dominates. Thus, gravity is applied over all the particles. We use the common

expression for gravity:

CG _ =

F, = Nye,

where m,; is the mass of the particle P,, and g is the acceleration due to gravity. The

influence of air over the cloth depends on the speed and direction of the air as well as

the speed of the cloth itself. This force is estimated as:

430 Section 4 Physics
en NNentttitNtmeintt et

FA =C,/a,-(@,-9,)]-A, (4.3.8)
i ij

where C,, is the air viscosity constant, , is a vector that defines the speed and direc-

tion of the air, ¥, is the speed of the particle P; and 1, is the normal vector of the

particle P;;, When the air speed vector u,, is equal to 0, the air remains immobile and

the previous expression can be considered as air friction. Many other forces that are

applied over the cloth are categorized as external forces. Examples of such forces are:

the resulting force when manipulating the cloth and the force produced when hang-

ing the cloth from one corner.

Dynamic System Approach _
After obtaining the forces applied over the particles of the mesh, we can formulate a

dynamic representation of the system. To accomplish this, the particles must follow
Newton’ Second Law, as shown in Equation 4.3.9.

F.=m,a, (4.3.9)

where F,, represents the forces applied over each particle P,, mj is the mass of the par-
ticle, and 4, = P, the acceleration. From Equation 4.3.5, for each particle of the mesh
we can obtain the differential equations in Equation 4.3.10.

ijx yx

1

m..
y

1
i Dix aa

ij

l

m.. ijz
pts (4.3.10)

The computational methods used to solve differential systems can also be employed
to resolve the cloth dynamics problem [Volino00]. In this particular case, due to the
use of elongation functions instead of elongation constants, time-step techniques are
recommended for solving the previous equations. In most cases, forces will not
increase much, but they may increase to oppose the effects of severe elongations. By
using the Runge-Kutta-Fehlberg method of fourth-fifth order, good results can be

obtained.

After presenting the model and the equations that describe the dynamic behavior of the
mesh, we can outline the description of the cloth animation method (see Figure 4.3.8).

4.3 Realistic Cloth Animation Using the Mass-Spring Model 431
onsnsticotrsnas ne eivnannesnnneietesoeseetegttstan/ ANNEMARIE: cent AnteCME tnnAEIRnA ELLAND . saree a

Discrete
Representation

Normals

and Forces

DIFF. EQS|

Numerical
Integration

At

FIGURE 4.3.8 Scheme of the
proposed simulation method.

First, we model an associated mesh from a cloth object. A suitable mesh is chosen that

will have an adequate number of particles to allow the representation of the surface to

be as smooth as possible.

Second, we calculate the normal vectors of the surface at each particle. We then

obtain the internal and external forces applied to each particle and formulate the dif

ferential equation system as previously shown.

Finally, we resolve the system by applying an incremental interval of time, with

which a new position of the mesh can be obtained. Repetition of these steps results in

a real-time animation of the cloth system.

Conclusion
SRRITCUL OTESLIIELIU TELE NSE ELLEN SELL IEEE SELLE ELE LE LILLE ELE

We have proposed a model for realistic cloth animation. The advantage of the model

resides in the simplicity of its implementation. The mesh representation is based on a

familiar mass-spring system and provides an efficient computational system viable for

computer game application.

By considering the behavior of cloth as quasi-elastic, rather than perfectly elastic,

we increase the realism and avoid undesired effects such as super-elastic effects

[Cordero01].

Furthermore, distinguishing between in-plane and out-of-plane forces produces a

more accurate simulation, avoiding (for example) the appearance of bending forces

when only shearing forces exist.

Figures 4.3.9 and 4.3.10 (see Color Plates 1A and 1B) have been generated using

the proposed method.

ion 4 Physics 432 Section y

FIGURE 4.3.9 A flag flying.

FIGURE 4.3.10 A cloth draping over a sphere.

Any future work proposed should strive to find the K (§) functions capable of sim-
ulating cloth more realistically. That is, to find the best parametric function K(&) and the
value of its parameters, to minimize the error between the real motion of a cloth and

4.3 Realistic Cloth Animation Using: the Mass-Spring Model — 433
“tsseanotenntnnnnonininimtonsonssnenet ete ean nnaraegvsaneisisonessnntt seston enactment HAM tna ans ttttenoeneninete

its simulation. Also, the method we have presented uses a mesh of a rectangular cloth.

Future models should strive toward the mesh representation of any cloth, indepen-
dent of its form.

References
Sa Rios ane Ene Erte Ear BRE sp EUAN E OSS STS SN TE RR a HRN EEN

[Cordero01] Cordero, J.M., J. Matellanes,, and J. Cortés. Correccién del Efecto Super-

eldstico en Dindmica de Telas. X1 Congreso Espafiol de Informatica Grafica
(CEIG’2001), Girona, pp:141-147. 2001.

[House00] House, D.H. and D. E. Breen. Cloth Modeling and eee A K Peters,

Ltd, 2000.

[Kawabata75] Kawabata, S. The Standardization and Analysis of Hand Evaluation.

Committee of the Textile Machinery Society of Japan, 1975.

[Provot95] Provot, X. Deformation Constraints in a Mass-Spring Model to Describe

Rigid Cloth Behavior. Graphics Interface ‘95 Proceedings, 147-154. Quebec,

Canaca, 1995.
[Tsopelas91] Tsopelas, N. Animating the Crupling Behavior of Garments, 11-24. Proc.

2nd Eurographics Workshop on Animation and Simulation. Blackwell, UK,

1991"

[Volino00] Volino, P, N. Magnenat-Thalmann. Virtual Clothing. Theory and Practice.

Springer-Verlag, 2000.

[Weil86] Weil, J. The Synthesis of Cloth Objects. Computer Graphics (Proc. Siggraph),

20:49-54, 1986.

[Witkin90] Witkin, A., M. Gleicher, and W. Welch. Interactive Dynamic. Computer

Graphics (Proc. Symposium on 3D Interactive Graphics), 24(2):11—21. 1990.

OF aphasia dor
i eotlietc eaebenel tsb} :

7? Por ecianival tae
- rr

ha

ay =
7) ou. ‘ 7 . F ' | ; y

TF Phere ws th gti aie | wid
: » leattdeo eRe

“es egyesches Me om
7 : | iG. _

: he 7 ae ve, Ms s

ell 4 -1 onewa)y shal
'

_ r. ‘ ’

- ec wo Meverdlh Mes rprdapeaa 4 vere. lee erin wi : Si * mi Y » yb , * = a

neva 4 fing Pe ’ _

? ms soonde’ Sb eet a oS onnht, nl Tachi 3 ai oobi HH
. bs at ¥ : pa = wo »

_ddiygrggl« HRY naartye ied fi

=} i =a

"i : Rane ee ee

Dee! . ARUP mo

pram aha ip Gnd dee

cet Ss as ve 75

sl ome t

|

7

4.4

Practical Animation

of Soft Bodies for

Game Development:

The Pressurized Soft-

Body Model

Maciej Matyka, University of Wroclaw

maq@panoramix.ift.uni.wroc.pl

n Computer Graphics (CG) research, a number of approaches for simulating soft
bodies exist. Generally, these can be divided into two primary models: geometric

and physically based. Fast and simple geometric models (known as free form deforma-

tions [Sedenberg86]) are not feasible in game development because of limited control.

For purposes of realistic computer animation, other methods—particularly physically

based—have been proposed.
Physically based application of the theory of elasticity gives a mathematically com-

plicated and complex solution for the problem of soft body motion. Using finite vol-

ume methods [Irving04], we are able to simulate the behavior of viscoelastic bodies

accurately. Unfortunately, use of these engineering methods results in non real-time

animation, and is therefore inappropriate for games. Even classic computational fluid

dynamics (CFD) found its place here; in [Nixon02] the authors build a model of com-

pressible fluid enclosed by a mesh that introduces additional forces into the model.

That approach is discussed further because of its similarity to our model of pressurized

soft bodies. Note that the CFD approach is not considered here because it is not a real-

time solution due to the complexity of solving the Navier-Stokes equations.

We will not go deeper into non-real-time soft body models. We mention them

because it is important to know that more accurate and physically correct models exist

in current CG research that may serve as basis for future game development application.

Several different approaches have been proposed for the application of real-time

soft body simulation, but none of them seem to be particularly suitable for game devel-

opment. Simple spring-mass (SM) models were introduced mostly because of their

ease of implementation and computation speed (see [Lander03]). However, SM models

435

436
Section 4 Physics

do not generally yield very good realism, and increasing the number of springs with the

hope of increasing realism does not automatically result in an ideal solution; it comes

with its own problems. Using a large number of springs typically creates difficulties

with the “stiffness” of the simulation. Also, animators working with SM models will

have to play with a large number of physics constraints, which involves dubious

changes to the simulation model (imagine an object with 1,500 springs and an anima-

tor attempting to anticipate the effect of changing the properties of a single spring).

Simplified Spring Mass Models
RR TEE SEEN NE DOE ESET IRE OEE EE POOLE ET OE ETC IELTS TLE LL LL ELLIO DES IT

Because of the problems with SM models in deformable body simulation, some mod-

ifications have been proposed to avoid introducing additional spring connections.

Consider the geometric object shown in Figure 4.4.1a. Its construction would be

nearly useless in a typical SM simulation; running the simulation in the presence of

gravity would cause the object to immediately collapse. We need some kind of inter-

nal system of forces that will keep the object stable. The easiest and most intuitive way

to do that is to add supporting springs between all vertices in the object.

A model constructed in this manner is presented in Figure 4.4.1b. Such a model

should behave reasonably well as a deformable body in a typical SM simulation. Note

the addition of connections between all pairs of points. This means that for NV points

we will need to do N? spring calculations. This is really too much for objects com-

posed of more than a few thousand vertices, and in fact, we are probably quite close to

precluding real-time SM simulation altogether. By increasing the number of springs,

we have also increased the difficulty of maintaining rigidity and managing unwanted
internal motion. There are two ways to reduce this “stiffness” problem. One way is to

use implicit integration that is applied for calculation of the motion equations [Bar-

raf98]. Another is to use inverse dynamics constraints as corrective measures for the

explicit integration method [Lander03, Provot95]. Both methods would help to some

degree, but they of course incur additional costs in processing speed.

a)

FIGURE 4.4.1 Typical Spring-Mass models showing a) a simple hull without
internal support and b) a hull supported with internal connections.

4.4 Practical Animation of Soft Bodies for Game Development 437
asneeterooiteasocenenis nts aco ANA NSH NEE ALAA AE om AKA einen eens

These issues have been successfully avoided in computer graphics research involv-
ing models composed of simplified spring-mass constructions (see [Matyka03,
Nixon02, Meseure00]). Nixon et al. [Nixon02] build a three-dimensional mesh filled

with compressible fluid, and they solve Navier-Stokes equations inside of the object.
This approach seems to be an accurate and very interesting new idea for physically

based models. Unfortunately, the solution is completely inappropriate for efficient

real-time simulation because of the complexity of the solutions to the Navier-Stokes

equations and the need to construct a time-dependent grid.
The fields of medical imaging and virtual reality have also delved into real-time

deformable bodies and have produced very interesting results. Meseure et al.
[Meseure00] claim that models composed only of springs are not viable for surgical

applications because of the complexity of geometric construction for objects contain-
ing a large number of points. They built an SM mesh in the same way Nixon et al.
did, but without filling the object with fluid. Instead, the object is filled with a “vir-

tual rigid component.” The rigid component is called “virtual” because it does not
interact with the simulation environment.

The idea of a virtual rigid component introduced by Meseure et al. seems to be
interesting for game development. However, one disadvantage is that it introduces
some complications over the simple model. For example, the physics background of

the model is somewhat abstruse. Of course, in results-oriented game development we

are only interested in getting a good deformable body simulation, but when working
with a model of physically based animation, we should be reasonably up to speed
about the physics behind it.

Physics behind the PSB Model
SLUT NSERC AIM INSEE NESTON EEN TIEN ETM ial

In the Pressurized Soft Body (PSB) model, we consider a geometric object consisting

of a mesh made of nodes (mass material points) and spring connections (Hooke lin-

ear springs), as shown in Figure 4.4.1. We assume that the shape of the object is

closed, which means that there are no holes (discontinuities) occurring in it. Because

of the similarity to SM construction of cloth-like objects [Barraf98, Provot95], we

generally consider it to be similar to an object sewn out of cloth.

To get deformable body behavior out of the “sewn cloth” object we introduce the

PSB model. The basic idea is illustrated in Figure 4.4.2, in which a small pipe has

been inserted into the object.

The pipe has been connected to a gas container. Inside the container, a gas with

pressure P, > 0 exists. Because of the difference between the pressure inside the body

(P, = 0) and pressure inside the connected container (P, > 0), gas will flow from the

container to the object as long as P, is not equal to P,. The pipe is then removed.

After that, the simulation model will be slightly different from that shown in Figure

4.4.1. It will have been reshaped (expanded) due to the fact that the gas inside of it is

under a pressure that exceeds that of the atmosphere (P; > P,).

438
Section 4 Physics

FIGURE 4.4.2 A pipe has been put inside of the object with

an initial pressure, P,, of zero. It is connected to a container of

a gas under pressure P, in an environment with atmospheric

pressure P,,.

An Ideal Gas Approximation

Because of the macroscopic size of the simulated object and microscopic size of the

particles in the gas, we can neglect the interactions between gas particles and use an

approximation of an ideal gas with non-colliding particles [Callen85]. This means

that we will be able to use the familiar zdeal gas law, shown in Equation 4.4.1.

PV =nRT (4.4.1)

where:

Nees
e P | is the pressure of the gas.

e V [m*] is the volume occupied by the gas.

* nis the number of moles of the gas.

¢ R is the gas constant.
¢ Tis the gas temperature.

In this expression, we assume that n, R, and T are constant and will not change dur-

ing the simulation. We also assume that we know how to calculate the volume of the

body. As a result, we will get a simple expression for the calculation of the pressure
inside of the object that changes only according to changes in the volume, as shown in
Equation 4.4.2.

4.4 Practical Animation of Soft Bodies for Game Development 439

w nRT

V
ip (4.4.2)

On the right side of Equation 4.4.2, we have three constants (n, R, T) and one
variable quantity, V. The volume calculation will be discussed later.

We will use the pressure calculated directly from the ideal gas law to calculate the
forces acting on the mesh nodes. It is a straightforward and rather easy procedure;
however, it is useful to review the physics and math behind it.

Because of the physics dimension of pressure P * , we will need to determine

the force by using a pressure value calculated from Equation 4.4.2. Pressure roughly
entails a dimension of the force acting on a unitary field.

By considering one triangular face of the three-dimensional object as shown in
Figure 4.4.3, we can write a simple expression for the force that acts on mesh node
material points.

0 xX

FIGURE 4.4.3 A triangular face consisting of three mass nodes and three

spring connections. The light gray vectors represent point normal vectors.

Using the notation given in Figure 4.4.3, we express the force acting on a triangle

by Equation 4.4.3:

FP=P-n-A (4.4.3)

where:

¢ P is the pressure calculated using an equation (4.4.2)

¢ Aisa field of the face

e ii, is the normal vector to the i-th point

At this point, two things need to be addressed. First, we must determine how to cal-

culate the normal to the point. This is simply the sum of the normal vectors of all

faces to which the point belongs.

440
Section 4 Physics

To calculate the field of the face we use simple vector multiplication. Using nota-

tion from Figure 4.4.3, the field of the triangular face from that figure can be

expressed as in Equation 4.4.4.

A=(%,-7)x(i-4) a)
Equation 4.4.4 expresses the length of a vector generated by multiplying two vectors

that lie on two of the edges of the triangulated face.

PSB Model Implementation _ ‘HERALDED RERANIANEEO I ETI

In [Matyka03] the pressure based model is introduced, and the basis of its implementa-

tion is presented. A brief outline of the proposed algorithm will be presented here in

subsequent sections. We will introduce the reader to the PSB model by giving a full

description of the workings of the simulation program. We refer the reader to

[Matyka03] for further reading. However, we believe that the code can be written

from scratch with the descriptions that follow.

First, let us summarize where we are so far. We have defined the physical model of

the deformable body that is filled by an ideal gas. In the previous section, we outlined

the mathematical model but we still did not explain how to use those equations and

where they fit in the overall scheme.

Understanding how the model works requires the reader to be familiar with the

spring-mass simulation ideology. We see no need to introduce it in detail here, due to

the wealth of documented research available to the reader (see [Lander03, Provot95,

Barraf98]). However, we briefly outline the technique used in soft body application

later.

We start with a model of a closed 3D mesh composed of triangles with mass

points placed at every node of the mesh as in Figure 4.4.1. All edges of the mesh rep-

resent spring connections. (We leave it up to reader to determine how to keep the

object in computer memory. For simplicity of the code, we use STL vectors.)

" st , SERA RNIN IEP AB ELEN SE TOO ETS

Typical Spring-Mass Model
STEP IT

The procedure for the typical SM engine is straightforward. The object being simu-

lated is presented as input to the procedure, and after processing one time step, the
updated (changed) object is produced as output. The new version of the object is then
presented again to the procedure and the cycle continues.

The high-level algorithm for an SM system can be expressed in three simple steps:

1. Calculation of the forces acting on all material points
2. Integration of equations of motion with collision detection and response
3. Results visualization

4.4 Practical Animation of Soft Bodies for Game Development 441
so tonenencnnaneresoentsnsas neta teiaaneeozetoinnstear teint Aunt tH ene AMINE EAGAN havnt neonate tetrenttsieonanett

The first of these steps requires closer examination. It can be further broken down

into the following steps:

1. External force calculation. We first iterate over all the material points (repre-
sented by mesh nodes), calculate the external forces, and store them in the
material point force accumulator. By assuming that only one external force
(gravity) exists in the system, the total force acting on th point at this level
will look like Equation 4.4.5.

De cata ie (4.4.5)

where m, is the mass of the point, and ¢g is the gravity vector.
2. Node interaction forces. Loop over all spring connections and calculate

mesh node-to-node interaction forces. We use an expression for Hooke’s
force with damping, which can be written in the form of a force vector, as
shown in Equation 4.4.6.

ip aa (i -7)-d)-A,, +k, (9, -9,)-A, |-A (4.4.6) 12

where the normal vector can be expressed by Equation 4.4.7.

{

. (4.4.7)
a LGN

Here, k, is the spring elasticity factor, and k, is the spring damping factor.
Typical values for these are given in the results section. Note that vectors cal-
culated with Equation 4.4.6 are accumulated by two interacting points with

opposite signs.
3. The PSB model step is discussed in a later section.

4, Integration. The integration step should be applied now. Note that even a

first-order Euler integrator works quite well for some limited set of physics

properties. We refer to [Ancona02] as a reference for numerical integration.

The simple Euler integrator gives us an expression for the movement of

all the points of the geometrical model that make up the deformable body.

By looping over all points, assuming that we have accumulated all the forces

acting on them, we can write a discrete form of Newton's second law, as

shown in Equation 4.4.8.

Fela ew At (4.4.8)

442

Volume Calculation
SEERA NTL ATR TLL LOE ROT TT ELE SOI LE ELLEN SITE LNT TR TE srk

Section 4 Physics
alin seonenioisansasscnioneainntnasnmatinsanney et a a

PSB Step

Here, n/n + 1 enumerates the time step (n indicates “at the previous time

step”). By applying this simple integrator, we can simulate deformable bod-

ies using a PSB model. Later, we will present an application of the predic-

tor-corrector Heun integrator in the deformable body simulation.

As we can see in the previous algorithm, the deformable body simulation we present

is based strongly on SM simulation (see Figure 4.4.4). Note that this model can be

viewed as an enhancement of the general SM system and is therefore applicable to any

physical system that currently handles simple SM simulations.

(Spring-Mass Model)

4-

=(SoftBody
=

FIGURE 4.4.4 Summary of the PSB model; two enhancements added

to cloth dynamics yields real-time deformable bodies.

SP LAB ILI TUN ETM OE LEE ELLE ONLY LEAL LAM LOE LEELA ONE LAT

In the previous section, we noted that following the force calculations we should call

a PSB step procedure. That procedure is called together with all the other force calcu-
lation functions because it also calculates the result force of the gas that has been put

into the object.
We discussed earlier how the pressure value should be calculated using Equation

4.4.2. By assuming that the reference atmospheric pressure is zero, we can reuse the

pressure value in Equation 4.4.3. We simply iterate over all the faces of the object,

determining the pressure value for each and distributing the pressure over all nodes
that belong to each face.

So EL eee

In order to calculate the forces, we will need to determine the volume of the simulated
body. For purposes of [Matyka03], we use the simple idea of generating bounding
boxes for the object and calculating the total volume from those boxes.

However, it turns out that such an approximation introduces a number of prob-
lems into the simulation. Unexpected oscillations and object growth to infinity (as
well as growing pressure) are examples of the errors that can come from a naive

4.4 Practical Animation of Soft Bodies for Game Development 443
evermore ottiihinneecc oem eontet tte ncn tenet ecg tnnualeneteotenncdee

approximation of the volume. We pointed out in [Matyka03] that we are looking for
a good approximation of the exact volume of the body, and we found that for closed
shapes without holes or integral faces (for example, balloon-shaped objects) we could
use Gauss’s theorem to find an elegant, fast, and very accurate value for the volume.
We will skip mathematical derivation of Equation 4.4.9 and leave the reader with a
reference to [Feynman01], where Gauss’s theorem is well explained. For those who are
going to derive the volume integration equation, we simply assume that our object
has been placed in a vector field (for example) in the form (x,y,z) = x. We are then
able to calculate the divergence of that field, which is equal to 1. If we put these results

into Gauss’s integration theorem in specified vector fields, we end up with a simple
expression for volume that can be written as in Equation 4.4.9.

V= —: FX+F,X+F,x)- x: A, (4.4.9) i=l

where 7; is the node position, n is the normal to the triangle, A; is the field of the ith
triangle, and NUMF is number of faces.

Predictor-Corrector Heun Integration
Mei HRN EOE NES LOE REMOTE NEEL LANE EAI ELL LEE IT ESS ION EN ELLE

Euler integration is the simplest means of integrating equations of motion and gener-
ally requires small time steps. The stiffness problem occurs, too, and is a well-known

disadvantage of low-order schemes of ODE integration. To make the solution more
accurate and stable, we consider using more complex integrators. This may be an
explicit scheme from the Runge-Kutta family (second-order mid-point method could
be good choice, see [Matyka03, Ancona02]) or one of several unconditionally stable
implicit schemes, such as Backwards Euler.

We propose using something between explicit and implicit schemes. A semi-

implicit predictor-corrector Heun integrator will give us second-order accuracy and
will still be somewhat as simple as the explicit schemes. We will not go very deeply

into the derivation of that scheme, which the reader can find in any book about
numerical computation, e.g., [Ancona02].

The semi-implicit Heun integrator consists of two main steps, and for a typical

problem is given by Equation 4.4.10.

2 - rv’) (4.4.10)

The first step of the integration (called the “predictor”) is exactly the same as in the

Euler integrator and is used to calculate the estimated value of y in the next time step,

as shown in Equation 4.4.11.

pyr = y"+At- f(y,t) (4.4.11)

444

Time Step Calculation Speed

Section 4 Physics

Normally, the procedure ends here and the next time step is ready to start. However

in the Heun integrator, some of the values are used in the next step (called the correc-

tion step), as shown in the second term of Equation Ath W2e

ym = y+ S(¢(r er) soe") (4.4.12)

The entire semi-implicit integration scheme has been written with two equations:

Equations 4.4.11 and 4.4.12. Note that the “dashed” y is distinct from the normal y,

as it is retained separately between the two steps.

To give the reader an idea how fast the presented method is, we performed a bench-

mark test similar to the one presented in [Meseure00]. We performed a simulation ofa

toroid falling to the ground without any additional collision detection (only collisions

between deformable body and the ground were taken into account). Figure 4.4.5 pre-

sents a comparison between the PSB model and that presented by [Meseure00]. The

simulation was performed on an AMD Athlon with a 1.4 Ghz processor. It should be

noted that test performed by (Meseure00] was run on a R10000, 194 Mhz processor,

so the comparison in Figure 4.4.5 is qualitative only.

[ms}

Ree =| Raat te
0 500 1000 1500 2000 2500 3000 3500 4000 4500

FIGURE 4.4.5 Time calculations for one full simulation step of a
toroid falling to the ground. The PSB model (indicated with
circles with straight line) is compared with results presented in

[MeseureO0O] (dashed line with black points).

4.4 Practical Animation of Soft Bodies for Game Development 445
eeenanannecnninnnnane

As Figure 4.4.5 indicates, using the PSB model, we obtain real-time performance
(less than 25 ms per time step) for the simulation of objects containing up to 4500
nodes.

Examples |

Figure 4.4.6a shows the initial state of a rabbit object without internal pressure. In
Figure 4.4.6b, we have this same rabbit with some internal pressure P > 0. Figure
4.4.6c shows the same object after the user has captured it during motion. Finally, Fig-
ure 4.4.6d shows the rabbit with one mesh node fixed in place while still under the
force of gravity. These pictures are from the Soft Body 3.0 application. The simulated
object has 690 vertices and 1,376 faces. The physical constants used in that simulation

are: k, = 350000, ky = 10, P = 53000, and single node mass m = 1.0. The simulation
runs at 50 fps on an Athlon 1.4 Mhz computer with a Radeon9200 graphics card.

FIGURE 4.4.6 Simulation snapshots of a deformable rabbit object.

446
Section 4 Physics

In Figure 4.4.7, we present a second example of real-time animation using the

PSB method applied to a ball containing 642 vertices and 1,280 faces. The ball <.

dropped and allowed to collide with the ground. In this example, collision detection

is simply performed between the mesh nodes and the ground (y = 0), using the

following physical parameters: k, = 121100, k, = 110, P = 611120, and node mass

m = 1.0. The simulation runs at 50 fps on an Athlon 1.4 Ghz computer with

Radeon9200 graphics card.

FIGURE 4.4.7. Simulation of a bouncing deformable ball.

Future Development
The PSB model of deformable body simulation is in the early stages of development.

Several projects have been created that are based on this model [OpenCAL, Jello,

MotionPlan] and attempt to develop the model in a variety of ways. We see a lot of

ideas for improving the PSB model, including the following:

¢ Implementation of implicit integration as done previously in “Large Steps in Soft

Body Simulation” [Barraf98]
¢ Application of inverse dynamics constraints as done before in [Provot95], includ-

ing experimentation with the behavior parameters
¢ Separation of the physical model from its graphical representation, which allows

more focused work on simulating simple models as the basis for more compli-
cated shapes (see [Meseure00])

¢ Implementation of object-object collision detection and response, a “detail”

omitted here to facilitate presentation of the material (see [Matyka03])

4.4 Practical Animation of Soft t Bodies for Game Development 447 sound niaonacanaon ant teeeereeeteeceteienamsanieieteesoratsonehbanaee tanec evanescent aeeneee omnes

* Application and testing of the use of nonlinear springs in the object mesh
* Real-time PSB simulation with collisions computed on the GPU

These ideas represent possible ways for future developments of the presented model.
It should be noted that a lot of research in cloth animation could be used here as back-
ground material and developed further according to specific geometric shape of the
simulated PSB objects.

Conclusion
LEE IRRONNNEEIG SAEED LEN LST TT TI EI NINE RTE Ee EAA LEN HLT ESSN NSIS ee

We have presented a system for real-time deformable body simulation. The main
reasons why it is worth it to go more deeply into development of this model is that
it is based on the well-known spring-mass model, which can be easy updated and
extended to handle soft bodies. We also have observed that objects simulated with our
method behave very well in comparison to other previously developed systems.

Because of the model simplicity, we lose little computational time by calculating
the additional forces used beyond those in the simple spring-mass model. All the
effort during development of the system has been focused on proper object construc-
tion and selection of the simulation parameters.

We hope that the model will fit the requirements of those in the game develop-
ment community. All the updates, new versions of the source code, and applications
will be available on the home page of the author [Matyka05].

Source Code
YT SRS RRA EBT ITED ESI a TN RE CT ES UTI

Te source code for this gem contains portions of the Soft Body 3.0 program. It has
been developed using MS Visual C++ compiler. Updates of the code can be found on
the Web page of the authors (see [Matyka05]). The code provides the solution to

three-dimensional deformable body real-time simulation with user interaction.

Acknowledgments
NOES RSTCRTESE ee CDS LRRD OI A LOE IT ERE TELE TEA NT SLO ENE I TREE

Special thanks to me see ee eantabuted! an idea about volume calculation of soft

bodies using Gauss’s theorem. Thanks also to Mariusz Jarosz for providing the 3D

renderings presented as illustration.

CMELS 1S i cle a ee

[Ancona02] Ancona, M. G. Computational Methods for Applied Science and Engineer-
ing: An Interactive Approach. Rinton Press, 2002.

[Barraf98] Baraff, David and Andrew P. Witkin. “Large Steps in Cloth Simulation.”

Proceedings of SIGGRAPH 98, pp. 43-54, 1998.

[Callen85] Callen, H.B. Thermodynamics and an Introduction to Thermostatistics. New

York: John Wiley & Sons, 1985.

448
Section 4 Physics

ommsnoucimeat

[Feynman01] Feynman, Richard P. “The Feynman Lectures on Physics, Vobk~2.1.”

PWN, Warszawa, 2001.

“Geometric Models.” Computer Graphics (Proceedings of SIGGRAPH 86), 20(4),

pp. 151-160, 1986.

[Irving04] Irving, G., J. Teran, and R. Fedkiw. “Invertible Finite Elements for Robust

Simulation of Large Deformation.” ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation (SCA), 2004.

[Jello] Mecklenburg, P. and C. Miller. Jello Simulation. Available online at Attp://vor-

lon.cwru.edul-prms]eecs466/overview. html.

[Lander03] Matyka, M. “Inverse Dynamic Displacement Constraints in Real-Time

Cloth and Soft-Body Models.” In Graphics Programming Methods (edited by Jeff

Lander). Charles River, 2003.

[Matyka03] Matyka, M. and M. Ollila. “A pressure model for soft body simulation.”

Proc. of Sigrad. UMEA, November 2003.

[Matyka05] Matyka, M. http:/Ipanoramix. ift.uni.wroc.pl/~mag/eng/. Author’s home

page. .

[Meseure00] Meseure, P. and C. Chaillou. “A deformable body model for surgical

simulation.” J. Visual. Comput. Animat., pp. 197-208, 2000.

[MotionPlan] Gayle, R. Motion Planning for Physically-based Deformable Objects.

Available online at http://www.cs.unc.edu/- rgayle/Courses/Comp259/MPDO/mpdo.

html.

[Nixon02] Nixon, D. and R. Lobb. “A fluid-based soft-object model.” Comp. Graph.

and App., IEEE, Vol. 22 Iss. 4, pp. 68-75, 2002.

[OpenCAL] Dierckx, J. Open CAL Project. Available online at http://sourceforge.

net!/projects/opencal/.

[Provot95] Provot, Xavier. “Deformation Constraints in a Mass-Spring Model to

Describe Rigid Cloth Behavior.” Graphics Interface ’95, pp. 147-154, 1995.

[Sedenberg86] Sederberg, Thomas W. and Scott R. Parry. “Free-Form Deformation

of Solid Geometric Models,” Computer Graphics (Proceedings of SIGGRAPH

86) 20(4), pp. 151-160, 1986.

4.5

Adding Life to

Ragdoll Simulation

Using Feedback

Control Systems

Michael Mandel, Apple Computer

mmandel@gmail.com

haracters in games sometimes look unrealistic when interacting with dynamic
environments, because their movements are predetermined by an animator’s

keyframes or a motion capture actor's movements. Ragdoll physics has been used to
combat this problem by modeling the physics of the body as it collides with the envi-
ronment and other characters. At their best, ragdolls can be applied in games to allow
players to send enemies hurling through the air, reacting quite dynamically to objects
they encounter in the environment. Unfortunately, their usefulness is limited to the

lifeless, flopping motion seen in these death animations, because they lack control sys-

tems to produce more realistic behavior. If developers could control the muscles of the
ragdoll, they could direct the arms to protect the body from injury before impact,
much as a real person would do.

This gem looks at how to control a character's body during simulation, while still

retaining the realistic qualities obtained by enforcing physical laws between the body
and its environment. We cannot yet hope to replace all our animation data with sim-
ulation due to the complex and coordinated movements required for many human
behaviors. We can, however, produce better results in many situations by using simple
feedback controllers to generate muscle torques that naturally direct simulated limbs.
Color Plate 3 shows a side-by-side example of how controllers can improve the
human-like nature of a fall over ordinary ragdoll simulation. The tools presented in

this gem provide a generic means to drive the movements of a typical ragdoll simula-

tion, enabling you to generate protective falling behaviors, balancing reactions, and

even jumping or tackling motions. You can be as inventive as you like, provided you

can model the underlying control laws of a particular behavior.

449

<nninnaamnnimiinaaaiaitan nett 450
Section 4 Physics

snneenscoassenssneinvnnvessnstsitent
aetonese ree ean AEH NAA AMAMAIHTHR HHA H HAHAHA

Motivating Work
ao DUA EES A EE

A number of researchers have used physical controllers to generate motion for a vati-

ety of human behaviors. Hand-tuned feedback controllers have been demonstrated

for simulating athletic behaviors including running, vaulting, and bicycling [Hod-

gins95]. Faloutsos further developed the idea of creating composable controllers by

stringing together many behaviors like falling, standing, and balancing to create a

virtual stuntman [FaloutsosO1]. Interactively controlling a physically simulated

character has the potential to open up doors to new gameplay mechanics. Laszlo et al.

explored using intuitive interfaces to allow players to take direct control of a simu-

lated human to produce running, climbing, and gymnastics movements [Laszlo00].

It is also important to have the ability to interface your physically controlled

behaviors with existing motion data. Techniques have been developed that allow char-

acters to react physically to external forces followed by a smooth return to existing

animation through trajectory tracking [Zordan02]. There are other methods that

allow simulation-and ahimation data to vie for control of the character, using either

approach in a context-dependent way [Mandel04], [Shapiro03]. The biomechanics

literature is another starting point for a low-level understanding of how the body per-

forms a particular movement. Capable rigid body simulators like Open Dynamics

Engine [Smith04] are freely available to enable you to experiment with controller

development. The methods presented in this gem are the low-level control mecha-

nisms crucial to many of the works referenced earlier.

Controlling the Simulation
EEL LEE LLL TIO EOD

Ragdoll characters are represented as an articulated figure consisting of a series of rigid

links connected by joints. A rigid body simulation engine is supplied with a set of

primitives to represent each body part, each with mass and inertial properties, joints

of appropriate type connecting the parts, and constraints to keep the movement of

each joint to human physical limitations. The basic building blocks for controlling a

ragdoll simulation are target poses for the joints, as well as a method to compute the

joint torques that drive the motion towards these desired targets. For computing the

muscle torques, this gem will cover the commonly used proportional derivative (PD)

controller. One option for specifying target poses is to use sparse artist-directed poses

separated by time or event-based transitions. Known as a pose controller, these target

poses guide the simulation to key elements of a behavior, such as the twist and tuck

positions of a diving motion [Wooten96]. A continuous controller generates target

poses automatically from the current state of the system (positions and velocities of
limbs). This tight coupling with feedback from the simulation allows continuous con-
trollers to be more dynamic than pose controllers but is potentially harder to specify.
A continuous falling controller might look at how the shoulder and hip velocity
evolve during the simulation and constantly adjust the target position of the arms to
break the fall.

4.5 Adding Life to Ragdoll Simulation Using Feedback Control Systems 451
ravenna

Isn’t This Just Keyframing?

While controlling the simulation with guiding sequences of target poses may sound
like keyframing, there are a number of important distinctions. First, the inputs to the
controller are desired joint angles, not actual joint angles. The controller computes
muscle torques to drive the joints towards the desired values, but the limb’s motion

remains the result of all the applied forces, including those from the environment.
The joints may never reach the desired values because of the environmental forces.
For example, an arm might be pinned by the body to an object in the world causing
the joint controller to be unable to generate enough force to move to the desired posi-
tion. Second, the character’s global position and orientation is not specified directly
but evolves from the natural interactions between the character and the environment.
The character will always fall under gravity, for example. Finally, the desired pose isn’t
always predetermined as static keyframes are. When using continuous control, the
pose is adaptively determined as a function of the system’s state.

Computing Torques with a PD Controller

The PD controller is a valuable tool, representing the low-level control system that

drives the desired movements of a simulated character. For a more thorough introduc-

tion to control systems, see Dorf [Dorf89]. The inputs to the controller are the

desired joint angles 4,,,, the state of the system x=| ¢q|, and various sensor data such

as the contact state of the hands. The output of the controller is the internal muscle
torques T, applied to each joint, driving it towards the desired value. This is the clas-
sic setup for a closed-loop system (closed because it requires feedback of the system’s
state). Figure 4.5.1 is a graphical representation of this basic controller feedback loop.

Desired Joint Angles Joint Torques

Controller Simulator

State: x =[4q]

Sensors Feedback Loop
; External Forces

FIGURE 4.5.1 Structure of a basic closed-loop feedback system.

For each joint, the PD controller computes the required torque using the equation:

t,=k,(8,,,-9)-k,9,

452
Section 4 Physics

sassy NMO
L NHANES osc

where k, and ky are the proportional and derivative gains @and 0,., are the current

and desired joint angles, and @ is the current velocity of the joint (generates angular

velocity in its attached bodies). Clamping the torque at a reasonable maximum value

is a good idea to maintain a stable simulation. The following code snippet imple-

ments the computation made by the PD controller:

void ApplyPDControlTorques (Vec3 *Kp, Vec3 *Kd, Vec3 *des,

int numJoints)

{
for(int i= 0 ; i < numJoints ; ee)

{
Vec3 torque;

Vec3 vel = GetJointVelocity(1) ;

Vec3 cur = GetCurrentAngleForJoint (i);

torque[0] = Kp[i][0]*(des[0] — cur[0]) — Kd[i][0]*vel[0];

torque[1] = Kp[i][1]*(des[1] — cur[1]) — Kd[i][1]*vel[i];

torque[2] = Kp[i][2]*(des[2] — cur[2]) — Kd[i][2]*vel[2];

if (torque.length() > MAX_TORQUE)

torque = MAX_TORQUE*torque.normalize();

ApplyTorqueAtJoint(i, torque) ;

}
}

Tuning Controller Gains

The PD controller behaves like a spring and damper, with the proportional and deriv-

ative gain parameters, k, and k,, controlling the resulting response curve. Tuning

these parameters is critical to achieving natural looking movement, The proportional

(stiffness) gain controls the strength of the spring while the derivative (damper) gain

adjusts how smoothly the joint arrives at the desired value. Under-damp and you

will get an oscillating response as the joint overshoots the desired value, while over-

damping will give an overly slow progression towards the desired value. Somewhere in

the middle, you will achieve critical damping, the perfect balance where the joint

arrives at the desired value quickly, with little to no overshoot. Traditionally, the gain

values are hand-tuned, and this process can be somewhat time-consuming. If you

plan on hand-tuning the gains, a good rule of thumb is to start with a 10:1 ratio

between the proportional and derivative gains.

One technique that can drastically reduce the number of hand-tuned parameters

is to scale the computed torques by the effective moment of inertia of the chain of

bodies affected by each joint [Zordan02]. For instance, the shoulders would be

affected by the relative moment of inertia of the upper arm, lower arm, and hand, as

illustrated in Figure 4.5.2. Using this technique, the number of tuned parameters can
be reduced to one stiffness and damping parameter for the entire body because the
final gains will be adjusted by the affected chain of bodies for each joint. Collect the

4.5 Adding Life to Ragdoll Simulation Using Feedback Control Systems 453 Se eam achat rpniemroiacicouniec crac moumonararenonann

affected bodies per joint and compute the relative moment of inertia according to this
equation:

H= dAmy, og i Ly,O;)>
i t

where m; is mass of the body, r; is the relative center of mass (CM) of the body com-
pared to the chain’s CM, v; is the relative velocity of the body CM compared to the
chain's CM, Joy; is the inertia tensor of the body about its CM, and @; is the angular

velocity of the body (see [Kwon98]). In addition to this technique, you may also try
learning the appropriate gains for a given behavior using optimization techniques like
simulated annealing or genetic algorithms; see [Sims94].

FIGURE 4.5.2 An example chain of bodies affecting the
movement of the shoulder joint. By estimating the relative
moment of inertia of these bodies to the shoulder, its con-
troller gains can be tuned efficiently.

Building Behaviors

Now that you have a low-level mechanism for controlling the joints of a simulated

character, you can begin developing specific behaviors. Finite state machines are a com-

mon representation for managing transitions between motor control states. Transitions

between states are typically time or event based, and may ease in new controller gains

454
Section 4 Physics

saocscnetunnnnnmttt teense otras rtttnanitaaih reste NHe AHH ovens

or desired values tailored to the state’s goals. For instance, a fall controller may have a

number of states that throw one or both arms in the direction of a fall, requiring the

gains to keep the body somewhat rigid, but still give the arms a rapid response. When

the arms contact the ground, a transition is made to a controller state that will absorb

the impact and reduce the velocity of the hips and upper body. Figure 4.5.3 demon-

strates an example of a fall controller simulating a backwards fall.

FIGURE 4.5.3 An example fall controller. The predicted

shoulder landing positions, indicated with spheres, are

used as reference points to compute desired arm positions.

The forward velocity and facing direction are indicated

with vectors and are used to determine the current state,

based on fall direction. © 2004 Reprinted with permission from

Tikka Keranen & Rich Carlson.

Observing the raw state of the simulation may not provide controller states with

the most useful information. It is helpful to implement sensors that provide informa-

tion to controllers such as support polygon, center of mass, body part contacts, and

facing direction. Using this information, personal intuition, and perhaps some bio-

mechanical knowledge, you can break down a behavior into its fundamental control
states. Plan ahead to make sure your controller can robustly respond to the variety of
inputs that could occur during gameplay. Keep your goals manageable; building a
controller that generates a stable running gait is much more difficult than one that
simply needs to make sure the body ends up on the ground. Building simulated
behaviors is difficult, but as a game developer, this is where your creativity and inge-
nuity greatly impacts the results.

Conclusion
This gem presents techniques to augment your existing ragdoll characters with more
interesting behavior. PD controllers allow you to drive the limbs of your characters in
a physically grounded way. While computing the desired joint values and tuning the
controller gains can be tricky, the methods described can lower the number of manu-
ally tuned parameters. Being creative with this technology is up to you, but the possi-
bilities are endless as we discover better ways to model human behaviors.

Acknowledgment
PIES RT AREER,

Thanks to David Cherry, likka Keranen, and Rich Carlson for providing the world
geometry appearing in some of the figures.

References

[Dorf89] Dorf, R. C. Modern Control Systems. Addison-Wesley, 1989.

[Faloutsos01] Faloutsos, Petros, et al. “The Virtual Stuntman: Dynamic Characters

with a Repertoire of Autonomous Motor Skills.” In Computer Graphics, Vol. 25,

no. 6: pp. 933-953.
[Hodgins95] Hodgins, Jessica, et al. “Animating Human Athletics.” In Computer

Graphics, Vol 29, Annual Conference Series: pp. 71-78.

[Kwon98] Kwon, Young-Hoo. “Mechanical Basis of Motion Analysis.” SIGGRAPH

2000, Computer Graphics Proceedings: pp. 201-208.
Available online at Attp://kwon3d.com/theories.html.

[Mandel04] Michael, Mandel. “Versatile and Interactive Virtual Humans: Hybrid use

of Kinematic and Dynamic Motion Synthesis.” Master’s thesis, Carnegie Mellon
University, available online at Attp://www.city-net.com/~amandel/portfolio/masters.

html.

[Shapiro03] Shapiro, Ari, et al. “Hybrid Control for Interactive Character Anima-

tion.” In Pacific Graphics 2003: pp. 455-461.

[Sims94] Sims, Karl. “Evolving Virtual Creatures.” SIGGRAPH 1994, Computer

Graphics Proceedings: pp. 15-22.

[Smith04] Smith, Russell. “The Open Dynamics Engine.” Available online at

http://ode.org/.

[Wooten96] Wooten, Wayne, et al. “Animation of Human Diving.” Computer Graph-

ics Forum, Vol 15, no. 1: pp. 3-14.

[Zordan02] Zordan, Victor, et al. “Motion capture-driven simulations that hit and

react.” In ACM SIGGRAPH Symposium on Computer Animation: pp. 89-96.

er ee
 8

7 ele
phe apr i —

 gual a —

Mal ay

yom sinew ox ‘ ahs ia PB iv See
‘ hie iy Mat r ye & mies , Fe

nosy ia ioe ‘saan
sty gnu aaslen lt tenis ms

ry babar ny

waaese Yo 2etiat fie 99 taba Lod » ty Ps: Ae a0 Naren

fadasey sets nied ere ' g ve oe loners “ v i "wha - . nip |

iratwestad-ierivuti hiberte om aque sorpadl rem tora tat hats ali ea
“Ray <

| F ; _—— *

bhow orld geietivcragy vol m0 iE 4
— od

ne

ony | i

rar Srey) omer

x +" bev SAH) Vyas oven

= eed ea

sarin. nl” ayiepuded a ¥: 4 '
DOTY AS SGC eanereiig SF Tawa os a

MTP RIO “aiegien? wu ras ‘idk Beata aLgaaar’, fun,

7 ROT “s
: Seed oy? WES pore

sey bndgs asmur) teyotY aiimal bi ON igs ae oa
hioikd/ yg) ics ate fad hare tine We SPAT ae a

creda pate 98m igecs hae Bees + Series St degre

nernise? ‘monte wrakerd! it lous.) wiht le 7 WA cit ei, , i a

| ees eb, ay (EDS pr nite gow k Si, ee:

satenerta) OR PVE ASL an he Ms jeagy\¥i ‘apie oer LOOMED o. a :
ia be pa beep A

 wileg abet Fin Pee. carmuny, - yi ie SE

7 sh Lome!
> vag - ot) teenak> Yo bier) phat

oy hehe fA 5 Rh
wr ‘etlbes tial vehi” eat tay hres “sh o Aik axa vi

AON OG ASME aaa ms Hy Piers ay aha)
t

4.6

What is

Designing a Prescripted

Physics System

Daniel F. Higgins

webmaster@programming.org

Ga development is, without a doubt, an intense, high-endurance sport. Its lead-
ing developers have seasoned teams who dominate genres because of their

incredible focus, innovation, and fierce passion. As if playing a game of high-stakes

poker, developers tend to gather around the same no-limit table and constantly raise

the pot to the sky. We hold our cards close, counting on our new game's technology,
“fun factor,” and the love of our fans to win the hand. Therefore it’s no surprise that
when a competitor reveals a winning hand, we watch slack jawed as our chips disap-
pear in the blink of an eye.

To strengthen our hand of cards, we-have to look everywhere for inspiration. It

can be found in the battle for Helms Deep in The Two Towers, watching silly skate-
board tricks at the skate park, or observing a border collie’s leap for a slimy tennis ball.

This gem describes an engine born from inspiration. That inspiration served as a
challenge to design a system that could produce the illusion of a big-budgeted physics

engine, allow for rapid development, and avoid a large development price tag. Addi-

tionally, it should be designed to be usable by novice and expert programmers alike

while still maintaining enough flexibility to be integrated into an out-of-game physics

tool. Eventually, that system was created, and its name is prescripted physics.

Froscripsed Physics?
On a typical day, a conversation with a game developer about physics will include

words like velocity, friction, rigid body, gravity, and acceleration. You'll also probably

hear the term “ragdoll.” In the old days, game physics operated mostly as a vehicle,

drearily moving objects from point A to point B along a path like a painfully dull

merry-go-round. In today’s competitive game development arena, kiddy rides are no

longer cutting the mustard. Today's engines not only move objects along paths, they

hurl them through the air, crash them through walls, and cause cascades of bricks to

come loose and eventually pile up in dynamically formed rubble. Our competitors,

armed with big-budget engines, can be scary to face in hand-to-hand combat on the

457

458
Section 4 Physics

seinsasnsseessiennneenenennsnnne UNA ANNNINNCNSICLLNHANNNRARHH

fields of game development. How can we rush into the melee against powerful adver-

saries who are so well armed? Simple; we fake it by creating the illusion of compli-

cated physics when in actuality, we're just moving these objects on a preplanned track

like a roller coaster.

Even if using a “real” physics system, prescripted physics may be useful to drive

the behaviors of some of the more “ambient” elements of the simulation. For exam-

ple, arcing and bouncing bits of debris from explosions might be prescripted while

vehicles are not.

How Prescripted Physics Works

Prescripted physics works by connecting a series of 3D points together using a curved

path. A simple way to visualize it is to think of each point as a clothespin on a clothes-

line. Now imagine that the clothesline was on the ground with a dozen or so pins

stuck at fairly regular intervals along it. If that clothesline is slack, the line between the

clothespins looks curved. In prescripted physics, we use waypoints for our clothespins

and use splines as our clothesline.

The first step in creating a prescripted physics event begins with the artistic skill

of observation. The creator has to observe the event they wish to duplicate by either

seeing it on screen, in real-life, or in the mind’s eye. Next, they break it down into

keyframes of movement such as a head turning here, rotation there, an explosive start,

or bouncy ending. Once the keyframes have been identified, the programmer then

has to “reverse engineer” how the event took place by coding the physics from a time

perspective instead of one using the traditional velocity accumulation. In simple

terms, for each keyframe (or waypoint), the programmer records what the object's

orientation and 3D position should be for that point as well as how much time has

passed since the event started. The list of waypoints is then passed to the physics

engine. The engine is responsible for ensuring that the object appears at each point at

the given time, that it moves correctly in both orientation and position between

points, and finally that it possesses all the properties specified (e.g., final orientation

and animation).

To demonstrate how this works, let’s make a physics event. In this event, we want

to hurl Edgar the Chicken dramatically through the air. Our event begins by identify-
ing what we want the outcome of the physics to look like, then marking waypoints
along the flight path.

The simplest physics event we could make for Edgar would be to just move him
along a path as seen in Figure 4.6.1. Besides being possibly the world’s most boring
physics, anyone watching it would boggle in confusion as to why something so “fake”
was allowed into the game. We can cure this problem by fixing one of the most unnat-
ural things about the physics: Edgar is still maintaining fantastic posture. Great pos-
ture is no doubt an admirable trait, however since were going more for the “under
nature’s force” look, we'll need to pitch him forward a bit as he flies (Figure 4.6.2).

4.6 Designing a Prescripted Physics System 459
settee ese emnnniennonatolet ett asetegeeaiAaan Aeon AGESe Ao eet Antennnnnnecinrnmamnncne tracted

FIGURE 4.6.1 Edgar on a boring ride.

FIGURE 4.6.2 Edgar tilting on his journey.

That was an improvement, but it’s still not very believable. Let’s try changing

Edgar into a panic animation as he hits one of the early waypoints. The animation

will make a big difference, but we can't stop there. The battle is won or lost in the

details! An interior decorator knows the job isn’t finished without lots of pillows and

a throw on a sofa; likewise, we need that extra something that brings the hurling

Edgar to life. That extra something could be a graphical effect like random feathers

erupting into the air as he transitions from a casual animation to one of panic (see

460 Section 4 Physics

Figure 4.6.3). Finally, playing a loud “SQUAWK” as he transitions should make it

just right. Let’s stop here, even though we could continue to embellish on the event.

FIGURE 4.6.3 Animation and other effects help to sell
the illusion of Edgar’ flying.

Thanks to Edgar, we can see how moving an object through a series of points can
have the same end result as more traditional physics engines. Remember that while
prescripted physics simulates more complex,.“real” physics by reducing an object's
movement into simple keyframes and the lines that connect them, it’s all about the
details you add to the event that make it come alive and mask the simplicity of the
underlying technology.

Prescripted Physics Pros and Cons

Like almost everything in life, prescripted physics has its ups and downs. Those peaks
and valleys are due in large part because the system doesn’t compute physics in real-
time; instead, it’s done at the start of the event. Understanding this difference is the
key to realizing the strengths and weaknesses that come with prescripted physics.

Following is a list of the strengths of prescripted physics:

Ease of use: Prescripted physics systems are built from the ground up with the
intention of being used by people who aren't versed in the complex math of
more advanced physics systems.

Rapid development: Building the prescripted physics engine takes less than a
weekend to prototype and under a week to develop to its game-ready state. The
real benefit of rapid development becomes evident when creating new custom

4.6 Designing a Prescripted Physics System 461

physics events. Instead of days implementing complicated math for new physics,
most should take only a few hours and require little code from the programmer.

Tools: Prescripted physics can be made into a tool that artists and designers use to
generate “physics files” for objects in the world. This can take the programmer
completely out of the loop once the engine is built and game-ready.

Performance: A common barrier people face when using physics is the fear of
performance. Since prescripted physics events are by definition precomputed,
the real-time performance cost can be very light on the CPU.

Replay: The prescripted physics engine is ideal for “rewinding” an object's
movement through the game world as if it were in a sports “instant replay.”

Following is a list of the weaknesses of prescripted physics:

Reactions: If you want prescripted physics to interact with other objects in real
time, like a baseball being interrupted by a baseball bat, then it requires extra

code to support that reaction. Since this system computes the path the object

will travel at the beginning of the physics event, reactions can only work if the

engine supports both collision detection and the ability to morph the event into

a reaction event. Coding this functionality can potentially take as much time as

coding the prescripted physics engine itself.

Unique and unfamiliar: Ifa tool isn’t built for artists or designers to use, you

must rely on programmers to produce the physics events. Programmers need to

understand that they have to think differently to use prescripted physics. It doesnt

take a math genius to write these events, but it does take skills in observation and

the ability to transfer those observations into steps. With such a foreign system

of physics, it’s not surprising that some of the most mathematically gifted

programmers struggle with this system at the beginning or outright refuse to use

it. Once they toss aside their calculus books and think of the physics as if they

were watching a movie, it generally “clicks.”

Compound physics: Compound physics, like reactions, requires extra effort to get

right. As a general rule, when an object is under the influence of prescripted

physics, no other physics in the world should be affecting the object unless you

write special code to support it.

The most basic prescripted physics engine has two main parts: the movement of 3D

points and the changing of an object's orientation. Both the movement and orienta-

tion use a percentage value computed using time as the basis for interpolation. For

location, the time converts to a percentage indicating where an object is on the spline

from point A to point B. As for orientation, that same percentage is used to determine

the object’s yaw, pitch, and roll. For example, if a waypoint started at world time 100

ms and went until 250 ms, giving us a total of 150 ms in length, at world time 175,

462 Section 4 Physics
Sn nenncents SNES SS,

we would be 50% complete: (175—100)/150. Using that percentage, we can deter-

mine both its position and orientation by using splines and quaternions.

Movement of 3D Points

Think of the physics event as if you were going to play connect-the-dots. In this ver-

sion of the game, the dots are already numbered in order, and you already know that

the shape you're tracing is a person’s face. Since most faces aren't square, when you

trace between the dots, you decide to put in an artistic touch by making the lines

between the dots have gentle curves instead of harsh straight lines. The end result is

that the curves make the face look natural and far more pleasing than if you had sim-

ply used a ruler. }
Like playing connect-the-dots, the manner/in which you draw the lines between

the dots (or waypoints) determines the overall picture that the customer will see. Most

prescripted physics engines can easily support multiple connect-the-dot movement

algorithms, including basic linear methods and several implementations of splines. In
this gem, we'll focus on just using Catmull-Rom splines [Dunlop00] to move our
objects from point to point.

Velocity is a great example of how topsy-turvy this new physics can be. Velocity
is determined based on where we place our waypoints and how much time we allow
for an objett to travel between a pair of waypoints. It’s one of the many backward-
thinking Hurdles programmers face when using this method of physics. We're so used
to giving an object acceleration and velocity, then sending it off into the world, that it
can get confusing when we realize that an object traveling X distance for J amount of
time plugs nicely into the old velocity formula.

Listing 4.6.1 is a basic function that uses percent complete, percent squared, per-
cent cubed, our X, Y, or Z position for spline points at nm — 2, n — 1, and n + 1 inter-
vals, and our given X, Y, or Z position to generate our current position.

Listing 4.6.1 Catmull-Rom Computation for a Given X, Y, or Z

inline float GetSpline(float inOurPoint, float inPercent,

float inTSquared, float inTCubed,

float inBack2, float inBack1, float inNext)

return (O.5f * (230fF ~ dnBackt +

((-inBack2 + inOurPoint) * inPercent) +

((2:,0f * inBack2 - 5.0f * inBackl + 4.0f *

inOurPoint - inNext) * inTSquared) +

((-inBack2 + 3.0f * inBack1 - 3.0f * inOurPoint)

+ inNext)* inTCubed)));

}

Listing 4.6.2 is a simplified function that advances an object to its next waypoint
given a percentage. It uses the GetSpline method with this waypoint’s ending world

4.6 Designing a Prescripted Physics System 463
ssn eotetannennsioce eanunnntenHainunnseneitennaiiteteteetnani tes sn sesso ovens eas NLALAS EC EUMNARCSUE

position to determine the current 3D location. For example, if inPercent is 0.5, the
object’s current position will end up halfway between the last waypoint and the cur-
rent waypoint.

Listing 4.6.2 Advancing a Point Along a Spline Path

void AdvanceSpline(float inPercent, GE3DPoint& ioPoint, const

GE3DPoint& inBack2, const GE3DPoint& inBack1,

const GE3DPoint& inNext)

{
inPercent = min(1.0F, inPercent) ;

float theTSquared = inPercent * inPercent;

float theTCubed = theTSquared * inPercent;

/*oSpline for X17 /
ioPoint.mX = ::GetSpline(mPoint.mx,

inPercent, theTSquared, theTCubed,

inBack2.mX, inBack1.mX, inNext.mX) ;

{> Spline at Ons Yos

ioPoint.mY = ::GetSpline(mPoint.my,

inPercent, theTSquared, theTCubed,

inBack2.mY, inBack1.mY, inNext.mY);

(AsSplinesfioraZes /
ioPoint.mZ = ::GetSpline(mPoint.mZ,

inPercent, theTSquared, theTCubed,
inBack2.mZ, inBack1.mZ, inNext.mZ) ;

}

Listing 4.6.3 shows AdvanceSpline using mostly precomputed splines. If you want to

use faster spline calculations, precompute most of the math into a look-up table as

shown. (Note, you'll see in later sections of this gem that it’s possible to affect an

object’s physics path during runtime. In that case, go with the normal, slower spline

calculations since you will end up recomputing the splines every time the physics path

changes.).

Listing 4.6.3 Cached Spline Calculations

/* uses a precomputed array to compute a fast spline */

inline float GetFastSpline(float* inArray, float inSquared,

float inCubed, float inPercent) :

{
return (0.5f * (inArray[O] + (inArray[1] * inPercent) +

(inArray[2] * theTSquared) + (inArray[3] * theTCubed))) ;

}

464 Section 4 Physics
ee anncnintuenaciNettastntta—eenummntntnmttcnntmmemtetnattt

/* simplified Advance spline method */

void AdvanceSpline(float inPercent, GE3DPoint& ioPoint)

ioPoint.mX = GetFastSpline(mOptimizedSplines,

theSqd, theCube, thePercent) ;

ioPoint.mY = GetFastSpline(mOptimizedSplines + 4,

theSqd, theCube, thePercent) ;

ioPoint.mZ = GetFastSpline(mOptimizedSplines + 8,

theSqd, theCube, thePercent) ;

}

Orientations and Quaternions

Orientations describe an object’s yaw, pitch, and roll. In short, orientation is not an

object’s location, but rather which direction it is facing while at that position. If the

object is facing upside down, angled sideways, or head over heels, that refers to its

orientation. Luckily for us, quaternions are great for orientations. Quaternions not

only do an amazing job of modifying an object’s orientation smoothly, they also fit
neatly into the time-percent paradigm that we use with our 3D movement and
splines. If that wasn’t enough, using quaternions to advance orientation is so simple it
should be a crime. Quaternions work their magic on an object's orientation by using
a spherical linear interpolation, known as “slerping,” which smoothly scales its orien-
tation along a curve (see [Svarovsky00)]).

Start Your Engines!

Time to put all the pieces together into a roaring engine that will thrill our game fans.
The heart of a basic engine is simple. Its job is to process all the physics nodes,
advance object positions using splines, and then advance orientations using quater-
nions. Finally, the correct orientation is applied and the object's location is set.

Walking through Listing 4.6.4, we can see what the update code of the pre-
scripted physics engine looks like. The first operation in the update is to pop off our
nodes until we are in the correct time range. For example, if world time is 200 and
node 3 goes from 195 to 220, we will pop off nodes 1 and 2 to ensure we are ready at
node 3 for processing. Once we have the current node, we advance the orientation
(using time and quaternions), followed by advancing the 3D position (using time and

splines). Lastly, we ensure that we are rotating around the correct point on the object
(feet, head, middle, wherever) before finishing our update. It’s simple, it’s fast, and it’s

almost too easy.

Listing 4.6.4 Update Method of the Prescripted Physics Engine

float thePercent;

bool theResult = true;

bool thePointMatches;

4.6 Designing a Prescripted Physics System 465

/* Ensure our next point is the right one (time-wise) */

AdjustToCorrectPointUsingTime(inWorldTime) ;

/* any physics nodes? */
if (mPhysicsNodes.empty() == false)

{
GE3DPoint thePoint;

peEgetr our point 47
inCurrentLocation.GetPosition(thePoint) ;

/* get the first item */
FPNode& theNode = mPhysicsNodes.front() ;

/* compute the percent(it will be 0-1.0F because

of the “AdjustToCorrectPoint method” */

thePercent = ((float)(inWorldTime —

theNode.mStartTime)) * theNode.mInverseTotalTime;

/* advance Orientation */

theNode.AdvanceOrientation(thePercent,

mQuatOrientation) ;

outResultOrientation = mQuatOrientation;

/* Advance our location */
theNode.AdvanceSpline(thePercent, thePoint,

theNode.mSplines[0], theNode.mSplines[1],

theNode.mSplines[2]);

/* Rotate it at the correct spot. (head/middle/etc) */
ApplyRotation(theNode, outTransform, thePoint);

else

theResult = false;

Polish It to a Shine!

As with almost everything in the games industry, the details are where you can pull

away from the crowd or fall back with the pack. Some polish items that make a large

impact on how well the physics appears to our customers come from adding accelera-

tion ramps, animations, and effects to waypoints. Other items include mapping

points onto objects or terrain, rotating about an arbitrary point on the object, rewind-

ing physics, or causing reactions to occur.

ssa se

Ramps and Rewind

At almost every turn, prescripted physics seems to be battling the traditional notion of

physics. How can we possibly move an object through a series of points naturally

without using acceleration? It’s lucky for us that quaternions needed a percentage

466
Section 4 Physics

cee emmiataapnaaarissisnnssmmnnnnennisisannincnmnaatmnmmumnmeertnitatten

from 0% to 100% to orient things correctly, because it’s the secret that makes custom

ramps so useful for us.
“Normal physics moves objects from point A to point B by applying forces that

result in acceleration, which in turn changes their velocity and acceleration over time

until a desired velocity or position is reached. In prescripted physics, we use ramps to

affect our percentage from 0-1, which in turn tells us how far along the path we are.

Imagine pushing Edgar the Chicken in a straight line from point A to point B. If

we use no ramps, Edgar will move along the path at exactly the same speed. However,

if we apply a sine or cosine ramp that affects the current percentage, Edgar can be

moved quickly away only to slow as he approaches his destination, or moved slowly at

first, only to speed up at the end. The net result of a ramp might be, given a percent-

age of 25%, to modify it and return 12%. We then execute our spline and orientation

thinking that we are at 12% along instead of 25%. We can also use a ramp modifier

that can be used as a scratch variable for our ramps. Let’s say we want to use a cosine

ramp, we might only want to use half of the curve, so by using a floating-point mod-

ifier we control how our ramp changes the percentage. Naturally, these ramps must be

integrated into our AdvanceSpline and AdvanceOrientation methods as seen in List-

ing 4.6.5. Don't forget to use different ramps for orientation and movement since

they advance independently.

Listing 4.6.5 AdvanceOrientation with a Ramp

void AdvanceOrientation(float inPercent, Quaternion& outQ)

{
/* Change the incoming percent by using a ramp */
inPercent = ProcessRamp(inPercent, mOrientationRamp,

mOrientationRampModifier) ;

/* slerp to my-lou my darling. */

mStartQuat.Slerp(mQuaternion, inPercent, outQ);

}

Rewinding is a simple feature to add and operates in much the same fashion as ramps.
If all the event nodes are stored after they are fully executed, then either by flipping
the percentages (25% ends up at 75%) or rewinding time, we can watch Edgar
rewind his movement and orientation, going from the ending waypoint all the way
back to the first.

Mapping to Terrain and Objects

One of the big fears of applying prescripted physics is that if we plan a path for the
object during the beginning of the event, any time something unexpected happens in
the world that affects the object’s path, the physics event breaks. For example, imag-
ine that an object falls off a high-rise building, and we determine that the final resting

4.6 Designing a Prescripted Physics System 467

place would be a nice grassy hilltop. Halfway down, an explosion annihilates the hill
leaving it a deformed pile of dirt far below where we expected our object to land. All
hope is not lost! We can change our path during real time, but doing so requires that
we adjust our times and splines for the surrounding (or all) waypoints in the event.
This is not the pinnacle of CPU efficiency, so overall we don't like surprises during
prescripted physics events.

One of the tools we can use to get out of this jam is mapping waypoints onto ter-
rain or other objects. When we map a point to terrain during the creation phase, we
know that whatever else happens during prescripted physics, this waypoint will be
firmly on the ground. Likewise, mapping a point onto an object means that wherever
the mapped-to object moves, the waypoint will remain locked onto it. If you decide
to use mapping, remember that when waypoints move, they must have their time
scaled so their perceived velocity doesn’t change. That requires that you adjust the
ending time and possibly the start and end times of all future nodes. It's very impor-
tant to also adjust the waypoint spline positions for the current waypoint (as well
as the next two waypoints), because spline calculations use the positions of waypoints

(m — 2) in reverse.

Rotations

When we apply rotations in the engine, they happen about the 3D position of the

object. If the object is at the exact position we want to rotate, perfect for us! Other-

wise, we have an object whose defined center isn’t at the center of its geometry, and we

may have to do some transformations to ensure that we rotate about the right area.

For example, in an RTS game, you might have the 3D point of an object be at its feet,

but you probably want to rotate objects from its center instead. Perhaps you even

want to make something flip lopsided by starting the rotation point at the feet and

sliding up to the head over the lifetime of the physics event. Listing 4.6.6 is an unop-

timized function that demonstrates how we can rotate using transformations:

Listing 4.6.6 Using the Current Quaternion to Rotate about the Desired Point on the Object
Seen errr

GETransformation theRotateCenter ;

GETransformation theRotateCenterInverse;

GETransformation theTranslation;

GETransformation theRotation;

GETransformation theResult1;

GETransformation theResult2;

GE3DPoint thePoint;

/* put it into transform. “y}

this->mQuatOrientation.ConvertToTransform(theRota
tion) ;

468 Section 4 Physics

/* set the translation */

theTranslation.SetPosition(inPoint) ;

/* set the rotation center (adjusting for Z, not XY) */

theRotateCenter.SetZ(mHeight * ioNode.mRotationModifier) ;

/* make inverse (cache this and the main transform) */

theRotateCenter.MakeInverse(theRotateCenterInverse) ;

/* apply the rotation center to the world translation “7

theTranslation.Apply(theRotateCenter, theResult1) ;

/* apply the world/rotated to the result */

theResult1.Apply(theRotation, theResult2) ;

/* convert from local space to world space. */

theResult2.Apply(theRotateCenterInverse, ioFinalTransform) ;

Reactions

Reactions are the weakest part of prescripted physics compared to using traditional
physics. It’s all planned out ahead of time, so the engine doesn’t take well to surprises
unless you code in the ability for it to handle them. In general, reactions should focus
on creating “reaction events” in response to things like collision with walls or other
objects. When the collision happens, a special reaction event should examine the cur-
rent situation, create the appropriate reaction physics event, and follow the path of
the reaction instead of the old physics event. Like mapping to terrain and objects,
reactions affect the path in real time but cause more catastrophic changes.

Imagine we're using prescripted physics to pitch a baseball. As the ball flies towards
the catcher, a bat pops into its way and hits it. That is a catastrophic change to the
object’s path that causes a reaction. The reaction is handled by creating a new physics
event, taking into account things like velocity, current position, bat swing strength—
you name it—then giving it to the physics engine, which kills the old event and
continues life with the new one.

Optimization tip: Collision detection can be expensive, so try turning it on and off

on a per-waypoint basis when you know that it’ safe to skip.

Out-of-Game Tool

Even though prescripted physics events are easy to create for a programmer, it’s
inevitable that changes from an artist or designer will likely be needed. Ideally, once
prescripted physics has demonstrated its value to a game engine, an out-of-game tool
should be written to allow artists and designers the ability to generate descriptions of

4.6 Designing a Prescripted Physics System 469

physics events. This can be a very complicated tool to design since so much of the cre-
ation needs to involve examining the world in which the physics event is created. It is
generally a good idea to make a few simple physics events in code to prove that
prescripted physics works in your game engine before embarking on tool creation.
Otherwise, the “days” estimate to get a prescripted physics engine up and running
could easily turn into weeks as the programmer tweaks user interface details, such as
ways for artists and designers to “simulate gravity” or “add points around a circle.”

Twister: Right Foot on Red

After putting together the prescripted physics engine, it’s finally time to have some
fun writing a physics event! As a quick example, if we were to write a tornado event,
we could derive a class from a physics event base, overload the Create method, and
have our own tornado in one simple function. Listing 4.6.7 provides a very simple
version of a tornado that swirls an object about in the air.

Listing 4.6.7 A Simple Tornado Physics Event

/* using velocity and distance, get the time */

unsigned long theTimePerIteration =

::FloatToUnsignedLong((kPI * (2.0F * inRadius)) / inVelocity) *

1000;

/* compute the iterations needed */

long theTornadoWaypointsPerPI = 35;

float theFloatIters = ((float)inTime / (float) theTimePerItera-

ELON ies

float theInterval = (theTimePerIteration / theTornadoWaypointsPerPI) ;

float theIncPerLoop = (1.0F / theTornadoWaypointsPerP1I) ;

/* set the starting point. */

thePNode.SetStartingQuat (inCurrentQuat) ;

theRotationTransform.SetPosition(inCenter) ;

theNewPoint = inStartPoint;

/* animation */

thePNode.SetAnimation(inAnimation) ;

/* set the point */

thePNode.SetPoint (theNewPoint) ;

/* Start NEW POINT */
long theNextYPRCounter = 0;

long theZCounter = 0;

/* Rotation amount we’1l use */

float theRotationAmount = -((kTwoPI / 35.0F) * 2.0F);

thezCounter = (theTornadoWaypointsPerPI / 4);

470
Section 4 Physics

susstsnsssulnoenennesnssntosetestesettetantenennvesnnH AHN AS HH PRAHA HMMA NFO HHS

/* Loop over all the points */
for(theFLoop = 0.0F;

theFLoop < theFloatIters;

theFLoop += theIncPerLoop,

theZCounter-, theNextYPRCounter—)

/* Cache the last Z for use later */

theLastZ = theNewPoint.GetZ();

/* Reset yaw/pitch/roll increments? */

if (theNextYPRCounter == 0)

{ |

/* setup next */

theNextYPRCounter = 4;

/* Inverse instead of dividing 3 times */
theInverse = 1.0F / (float)theNextYPRCounter ;

/* compute the change range */

theYaw = GetRandom(-TwoPI, TwoPI) * theInverse;

thePitch = GetRandom(-TwoPI, TwoPI) * theInverse;

theRoll = GetRandom(-TwoPI, TwoPI) * theInverse;

}

/* Orientation setup */
thePNode.SetOriYPR(theOri.mYaw + theYaw,

theOri.mPitch + thePitch,

theOri.mRoll + theRoll) ;

/* Vector/destination point */
theRotationTransform.RotateByYaw(theRotationAmount) ;

theRotationYaw = theRotationTransform.GetYaw() ;

/* Tip: Tweak radius and time to make a funnel */

/* Compute the local point spacing in relation to the

radius and transform into world space */

theLocal.SetY(inRadius) ;

theRotationTransform.Apply(theLocal, theWorld) ;

/* Rotate world. */
theFloatPoint = theWorld;

theFloatPoint.RotatePointAroundZero(theRotationYaw) ;

theFloatPoint.SetZ(theWorld.GetZ());

theNewPoint = inCenter;

theNewPoint += theFloatPoint;

/* Get a new Z? */
if(theZCounter == 0)

{
/*ene set eaitiee/
theZCounter = (theTornadoWaypointsPerPI / 4);

4.6 Designing a Prescripted Physics System 471

/* compute Z Change (0.0F = TERRAIN Z) */
theZChange = GetRandom(0.5F, 5.0F) + 0.0F;
theZChange = (theZChange - theLastZ) /

(float) theZCounter;

}

/* Set the position, and add the Z to our current Z */

thePNode.SetPoint(theNewPoint.GetX(),

theNewPoint.GetY(),

theLastZ + theZChange) ;

/* Time this will take. */
theCurrentTime = thePNode.SetTime(theCurrentTime,

theCurrentTime + theInterval) ;

/* add to our list of waypoints we’1l use later */

theNodes.push_back(thePNode) ;

}

/* add those waypoints to the physics event, your done! */

AddPoints(theNodes) 5

Soneiueoae
The key points from this gem you should remember include the following:

Physics is important: Today’s market demands game physics that can rival movies

and special effects software. Don't be afraid to take the challenge! There is
almost always a solution that is off the beaten path. It just has to be found.

Prescripted physics has strengths: Use prescripted physics for special physics events

like throwing objects, recoil physics, and other cinematic moments.

Prescripted physics has weaknesses: Don’t use prescripted physics where traditional

linear physics is superior such as walking soldiers in an RT'S world.

Quick to code: The prescripted physics engine is quick to create, and it's even

quicker to program events. Don't be afraid to use all that extra time to

experiment with new ramps, splines, and other polish items.

Wait on the tool: Don’t create a physics tool until you have created the engine and

in-code events. After all, getting it up and running is the first step.

Optimize splines: If you're not applying real-time forces to your physics points (like

an object being carried off in a moving tornado), then cache your splines into an

array to reduce math computations.

Quaternions are incredible: If you don't already have one, write a quaternion class

for your application and slerp your orientations for smooth rotations.

Modify those rotations: Change how you rotate an object by using a floating-point

modifier from 0.0F (feet) to 1.0F (head). Otherwise all rotations for the object

will occur about the actual 3D position, which could be anywhere.

472 Section 4 Physics
nunneenr teiuiannsieicinasnsneenenntenmaitinminnetcenannnnntennennntiin

Polish it: This gem details a basic prescripted physics engine, but there are many

ways to improve it. Be sure to add ramps, rewinding, animations, sounds,

graphical effects, or whatever else you can think of that will add excitement to

your game.

In today’s competitive game industry, physics is just as important as graphics. Graph-

ics draws the world the user sees, but if we don’t make a world worth looking at, no

amount of graphics will help. Prescripted physics can be a great solution for develop-

ers who want exciting physics in their game at a fraction of the time needed to create

a traditional big-budget physics engine.

Every year we sit at the World Series of Poker for game developers, guarding our

hands, feeling both nervous and confident at the same time. What will you do with

your next hand of cards? Will you play tight and aggressive? Will you stick to what

you know? Will you be innovative, and work on building those cards? Whatever style

you choose, be sure to keep raising the pot for all of us. In the end, it’s what keeps us

pushing the envelope and making our customers happy.

Thanks to Richard Woolford for the use of Edgar the Chicken. (No chickens were actu-

ally harmed in the writing of this gem).

References

([Bourg01] Bourg, David, M. “Physics for Game Developers.” 2001.

[Dunlop00] Dunlop, Robert. “Introduction to Catmull-Rom Splines.”

Available online at http://www.mups.org/directx/articles/catmull. 2000.
[Svarovsky00] Svarovsky, Jan. “Quaternions for Game Programming.” In Game Pro-

gramming Gems, Charles River Media, 2000.

4.7

Prescripted Physics:

Techniques and

Applications

Shawn Shoemaker

shansolox@yahoo.com

Re physics simulation in games provides robust results but can be quite expensive
in terms of processing, especially on more modest platforms and in Web applica-

tions. Also, “true” physics simulation generates arbitrary locations and orientations
for units, which can result in unexpected (and undesirable) situations. Many games
require that units obtain a particular location and orientation as a result of physics
motion, and some also require hundreds of units to be simulated simultaneously. This

gem describes the merits of implementing a prescripted physics system to generate the

illusion of actual physics, and demonstrates how Hollywood effects normally available

to games with sophisticated physics engines can be achieved inexpensively and

quickly while sticking to the rules of the game world.

While there are many published articles on rigid body physics and general

dynamics, there are few devoted to prescripted physics systems. This gem discusses an

actual game example of a prescripted physics system, detailing the physics used for the

paratrooper drop in the RTS game Empires: Dawn of the Modern World developed by

Stainless Steel Studios. It is assumed that the reader has some knowledge of basic

game physics, quaternions, and splines, and has become familiar with the mechanics

of a general prescripted physics system, such as that described by Dan Higgins [Hig-

gins05].

Why Prescripted Physics?

Why not just stick to real physics in a game? Often, real physics does not allow the

designers to specify exactly what should happen in the game, because often what

should happen does not actually follow the laws of physics. Most games prefer the

look of Hollywood physics: explosive, fantastic, and exaggerated. Usually this is

hardly what real physics simulation will result in. For example, consider an explosion

near infantry units. Actual physics simulation would toss all the units away from the

473

474
Section 4 Physics

sce sAteAAAaeAte LAN NNN NEENAH NNO

explosion location, with a bit of rotation for some of the units. By contrast, the Hol-

lywood model calls for all of the infantry units to fly high in the air, flip a few times,

and then crash to the ground—a much more dramatic and visually pleasing effect.

Some may argue that a solid, working knowledge of physics and the underlying

equations allow the programmer to alter environment parameters to result in the

desired look of the system. While this is true, the prescripted physics route gives the

programmer—and more importantly, the designers (who may not be fully versed in

physics simulation)—complete control. Further, altering global physics parameters

can throw the physics simulation off unpredictably in other areas, as the system is typ-

ically tuned for one particular result. If the programmer is stuck tuning the physics

simulation for each particular behavior, there is no good reason to have run on a real-

istic system in the first place. Instead, the exact desired results for each situation may

be attained every time with a prescripted system.

Not only does prescripted physics help attain the desired visual look, it also pro-

vides for a known end state of the simulation. In true physics simulation, the initial

state and inputs are known, but the final result usually is not known, leading to some

complicated possible situations. This is not the case in a prescripted system; the pro-

grammer or designer determines what the end result will be and plans the physics

route accordingly. This is much more flexible in games with thousands of units, where

some of the more computationally expensive techniques are not feasible, and units are

restricted in their pathfinding.
The final selling point is the big benefit that the producer will enjoy: short devel-

opment time. A simple prescripted physics system can be up and running in two
weeks. A robust rigid body system would require considerably more time, perhaps
several months. The prescripted system avoids some of the challenges of rigid body
simulation, such as integrator instability, friction, resting constraints, and penetration
issues. The bottom line is, prescripted physics is very inexpensive to implement,
debug, and maintain.

The Prescripted Physics System

A detailed design of prescripted physics is beyond the scope of this gem, but the basic

mechanics are worth mentioning here. Briefly, a combination of Catmull-Rom
splines and quaternions make up the chief components. Units are moved along the
spline segments at a particular rate, rotating and animating as they go.

Each spline control point has various parameters that can be set to control the
motion. First, each control point has the total time for the unit to traverse that partic-
ular segment. Next, each control point has a time function, used to control the “accel-
eration” of the motion along the spline segment. This time function can simply be
linear, or based on some higher-order function of time. The total time combined with

the time function dictates the speed of the spline segment.
The control points also specify a goal rotation in the form of a quaternion. This

allows units to rotate towards an explicit orientation as they move along the spline

ssc scoeonootortttuunansasne earnestness
4.7 Prescripted Physics: Techniques and Applications 475

isto deianannennceheianeseeitieer mt aaneeicei ne niacin nenngene ate

segment, with the orientation at any given point along the spline coming from in-
terpolation between control points. Finally, each control point specifies a particular

animation that is to be played while the unit is traveling along the segment. The con-

trol point parameters may be set in real time or predetermined by design. All that
matters is that “good” values are chosen.

Choosing “Good” Prescripted Values

For a prescripted physics system to work, it needs to look believable. For example,

units should appear to fall realistically and bounce when they hit an obstacle. To sell
the look of the system, it’s important that it has some of the same properties of a real
simulation. The problem, then, is determining how to partially model the effects of a

realistic system in the prescripted world.
Dynamics provides all the equations that are needed for a realistic simulation.

Typically, an examination is made of the real-world equations that are necessary to
model particular effects, such as gravity, buoyancy, drag, and friction. The equations

are then combined, and some time points are chosen for motion and are plugged into
the appropriate parameters. The equation is then solved for each time point, and the
resulting table of time inputs and equation outputs can be fed right into the pre-
scripted simulation. Note that increasing the granularity of the time points will

increase the approximation of the real system.
Another way to arrive at the input values for the prescripted system is to run a real

simulation “offline” and record the position data over time. The “fake” simulation can

then be made to match the real simulation data, resulting in a natural look and feel to

the motion.

Once a prescripted physics system has been developed and a method for selecting

values has been chosen, it’s easy to use the system to cover a variety of situations.

What follows are a number of examples of prescripted physics applications.

Application: RTS Building Destruction
Seem SO EE OC ELECT LEE LLL ELLEN LLL LLELLLLLDEL LASSE LLL ALLELE ELA ALLEGE

In 3D RTS games, buildings generally build up out of the ground and fall back into

the ground once they are destroyed. This simple behavior can easily be modeled using

prescripted physics. A number of short spline segments are needed, positioned from

the building’s center point to a point below the terrain, at a total distance sufficient to

hide the top of the building under the terrain. Each control point’s quaternion con-

tains a small pitch or roll amount, to simulate the building's shaking. The speed of the

control points should increase as they go down, so that the building appears to accel-

erate on its way to the ground. Figure 4.7.1 shows five control points for building

destruction. In this example, five points are sufficient to show the varied speed and

rotation for the destruction.

476 Section 4 Physics
perenne paler sida wa Sg. a on, Pl

FIGURE 4.7.1 Spline control points for building destruction.

SPVICAMONE JUMPING 1...
Jumping is another straightforward application for a prescripted physics system. From
a stop, a unit runs a small distance, bends down, and leaps up. After a small amount
of time, the unit comes down and lands. As shown in Figure 4.7.2, the unit should
play a run animation and accelerate from control point A to B. At point B, the unit

should play a “jump into the air” animation and begin with high velocity towards
point C. The velocity should slow towards point D. While it is not possible to alter
vertical and not horizontal velocity in this system, this simulation does not need such

accuracy to look convincing. There is a slight pause in velocity about point D, at
which point the acceleration due to gravity overcomes the unit’s upward velocity. The
unit accelerates through point E and quickly arrives at point E. At point §, the unit
plays a landing animation, which is accompanied by an appropriate visual effect for
the terrain on which the unit lands. Point G completes the effect, allowing room for
the unit to recover or stutter following the jump.

FIGURE 4.7.2 Spline control points for a jumping effect.

4.7 Prescripted Physics: Techniques and Applications 477

Application: Explosion Displacement

Explosions are another great application for a prescripted physics system. As shown in
Figure 4.7.3, units follow a somewhat parabolic spline. However, as opposed to actual

physics, units will flip as they fly through the air. All units fly away from the center of
the explosion. Units choose from a number of predetermined splines based on both
their distance to the center of the explosion and some randomization factor. This,
along with control point height and rotation randomization, provides for a lot of vari-
ety in the flight taken by units.

FIGURE 4.7.3. Units following a parabolic path follow-

ing an explosion. © 2004. Reprinted with permission from

Stainless Steel Studios.

Rotations are broken up over a few control points so that no single spline seg-

ment has too much rotation for its spline segment length. Breaking up the rotation

also allows for the units to flip completely over. A unit should only rotate in one direc-

tion throughout the spline. While flips are a Hollywood effect, changing direction

mid flight would be an obvious red flag to the player. At the end of the spline, any

rotation must leave the unit on its back or on its stomach in preparation for the land-

ing animation.

Animations are added to show the unit flying up off of the ground. Units can

either fly forward on their stomach, or backward on their back. Once airborne, units

play a mid-air flailing animation. For landing, “land-on-stomach” and “land-on-

back” animations are used, as appropriate. The landing animation will sell the physics

effect even better if it includes some amount of bounce for the unit on impact.

Finally, an appropriate visual effect for the terrain collision should be added when the

unit hits the ground, such as a dust cloud or tossing of other debris.

Application: Buoyancy

The effect for buoyancy is easy to simulate. What is really needed to convince a player

of buoyancy? Units must fall to the water, at which point their descent is greatly

seeseouuuaasuannnuimnttaiansontniunannn encanto esteem nnetimnnntceietauanerectaieibeto neem rntennnaunmattnetin

Section 4 Physics

reduced. After falling down through the water, the unit will stop, and then begin to

rise. The unit rises faster and faster, until it breaks the surface of the water. Perhaps the

unit breaks the water plane again on the way down and then resurfaces before coming

to a resting position on top of the water. This is all that needs to be shown to sell the

idea of buoyancy.

Water level

Sea floor

FIGURE 4.7.4 Spline control points for a prescripted buoyancy effect.

Figure 4.7.4 shows additional details of the buoyancy described. The speed
between splines control points A and B should greatly reduce. This deceleration
should continue to point C, at which point the buoyancy of the unit has overcome
the force of gravity. The unit accelerates from a stop up to point D, with additional
increases in speed to point E. From point E, the unit again accelerates from a stop.

Points F and G repeat the process of gravity and buoyancy for the secondary splash-
down but with greatly reduced time durations for each control point.

To add realism, as usual some animations are added. Units should use a tread
water animation for points G and E, and a swim animation for points C, D, and FE
Points A and B call for a falling animation. Each break of the water’s surface should be
accompanied by a visual splash effect. To add variety to the physics, a unit’s density
and mass should affect the depth of control points as well as the speed. Finally, should
the unit have sufficient velocity, or if the water is shallow enough, the unit should kick
off of the sea floor, and thus have an increased speed for points D and E.

4.7 Prescripted Physics: Techniques and Applications 479
winrestamannecestinstesstnteunutenateetetnceteisenentnsnnsnotetaamngteneteiestemannitei

Application: Paratroopers
For Empires: Dawn of the Modern World, some number of paratroopers were required

to drop out of their C-47. The paratroopers needed to follow a realistic-looking path
to the ground. Further, the paratroopers needed to land near the player-specified
landing zone. Paratroopers were not allowed to land on illegal map locations, as this

would frustrate players.
Each paratrooper had six spline control points created to move the paratrooper to

its pre-calculated landing location. The positions of the spline control points were
slightly randomized per paratrooper, creating unique flight paths for each. Further,

subsequent splines would move the paratroopers in opposite directions, to further dis-
tribute their descent.

Figure 4.7.5 (also Color Plate 4A) shows these six spline control points for one
paratrooper. Control point 1 is the location from which the paratrooper begins his

descent and is located on a tag point on the C-47 airplane model. As mentioned pre-
viously, control points 2, 3, and 4 are slightly random, so that subsequent paratroop-
ers have varying flight paths. This variation is easier to see in Figure 4.7.6 (also Color

Plate 4B), which provides a better perspective on the scene and features a whole stick

of paratroopers. Control points 5 and 6 add a hook at the end of the spline. This hook

ensures that the paratrooper intersects the terrain at the correct predetermined loca-
tion. Note that control point 6 is actually below the terrain.

Heri ie 2a ae Sah Aca ee

FIGURE 4.7.5 Control points for one trooper. © 2004.
Reprinted with permission from Stainless Steel Studios.

Each physics tick, the amount of time passed combined with the paratroopers

acceleration, was used to calculate the distance the paratrooper had traveled. Each

spline segment had its length calculated before the simulation began. In this manner,

the paratrooper could determine which segment of the spline it was currently follow-

ing. Once the trooper knew its current spline segment, its new position along that

480 Section 4 Physics

FIGURE 4.7.6 Line of troopers with variance. © 2004.
Reprinted with permission from Stainless Steel Studios.

\

particular segment was determined based on the distance traveled and the total length
of that particular segment.

To help make the motion of the paratroopers more believable, animations were

combined with the prescripted physics paths. A “snap” animation was added for the
point at which the units left the C-47. A wobble animation was used for most of the
descent through the air. Two different animations were used for landing, including

one in which the unit raised its legs in preparation for landing and an animation in
which it absorbed the shock of landing with its legs. The look of the paratroopers
along the spline benefited from the combination of the prescripted motion and the
animations. For example, the “raising legs” animation was combined with a nearly
smooth path over the terrain, yielding a natural looking glide that is often seen in real
life landings.

Random rotation of the paratroopers was also added to help simulate the effects
of wind. This rotation slowed as the units got closer to the ground. Also, as the units
approached the ground they were scaled up in size. This was due to the fact that the
scale of the C-47 was accurate to that of the buildings and paratroopers. Hence, the

paratroopers begin very small and actually get larger as they fall to the ground.

Conclusion

This gem demonstrates some applications for a prescripted physics system for use in
RTS and other games. A few points are worth reiterating. A prescripted physics sys-
tem can provide many benefits including low implementation time, a Hollywood
look, and a final result that matches designers’ vision. Actual physics simulation can
be measured to produce starting values for a prescripted system. Further, splines and
quaternions are the key elements driving movement in such a system. But movement
alone is not enough; it’s also crucial to combine animation with the prescripted motion.

4.7 Prescripted Physics: Techniques and Applications 481
susan ugceenteenui tte tSSStecint RASS RRNA NAA Non AHA

There are obviously some drawbacks to a prescripted physics system. It is pre-

planned and therefore not reactive. Units may not collide with other units if that pos-
sibility has not been accounted for. Further, a prescripted system requires that each

particular path of motion is either programmed or created in some sort of application.
For example, if a path of motion is created for a unit falling from a 40-story building,
a different path of motion will be necessary for a unit falling down a flight of stairs.

These issues aside, the prescripted system is very useful in RTS games or any

other genre in which hundreds of units are in need of exciting Hollywood physics. It

can also be applied to many other areas of the game wherever units require motion

that is not covered by simple object dynamics. All of this can be achieved in a very

short amount of time, allowing developers to spend more time creating interesting

behaviors for their games.

po ces nents SS ESR NEE NY ERED ER EER A ET SENSI SPS LOT NTI OE

[Higgins05] Higgins, Dan. “Designing a Prescripted Physics System.” In Game Pro-
gramming Gems 5. Charles River Media, 2005.

ae 4 =
‘CREE A So i ~

my a cares eri te aah ve

<u rods asta verre one

foe seth estivast tt 44 a

narisarlerge ip poe een a nea

entiliod voi a nme

pian le niga & es wh ;
a

une ie enka 714 ni Sa io.

0 asked borerdiich | at: me y
“ 7 . >

hen suupST clnw * ee Ce ba

vee¥ 6 al beetishon &! =

ry ’ aa a

a

|
7 a Py © we o or Pa

gonernal poices ot Pea ; — On EEOrieh grails, 5600
PRR ATA Low of porpe nich iii Jes

Ie FRAOPA } ieemal’ jwerypals * eye Wa? eats ‘eed seat

ae eet.

ees Tt ane cia Lejeune ‘lent ciahh
of tra: particu ageseet DOS sibs wil chit 2x

Pa iin wake che roouan vé ihe peratroapers reare belie
&

ba

sumbion! wary oh prescigred phrekee Gate. A one anixnstion

noire ac ate the omit ms (A) | ech: sccraghun wie eed le
Aten Gem the oie Two differant anrniriode sete fed Bet tively,

eer while Ceca eniccel let lees ter oehedetad Bae iyhging and wet anins r

; navy 2 ahvartes 4 of jar fue with) th waa the look of che 6

Heng Var erat dete’ trom Mo carehinadios oF dhe fimgcnpeet sore a
parte, Fos exatngly Uhy ‘ocag lee” olunation wat combined Hides
ae y | es k fang eo! , pe@eeal Ac! 4} 4 aa ak: Ji¥, Nike dar iv oft see da

ve i, Zi ae ; i

bt 4 sen OF Che We djreape rT added: hardianiaes e
hea Te, Sue a gusk i lone * to the enon) Alva, ay the itn

; a hed Bed rece ie i» ore T hit war dde on the fact ny ;

he id phages ra ot aow ae Pac OF the bo Hoge and paratscpers: Mendis,” xe ‘ou
Parent dager: Migs see's Clg? nt shally get larger aay tall bah so,

ail oe

‘ ize bet 4 prewerigeteat Fpissa’ if orate a

1° om ~ povpe ase wot pelea, AL gy x
ci en wing. bow oe i Ny 4 mth 2

a) vn OL ERS rm Siegen 1% spite bs res
a m Ur kr irnicsigel ae , f prise

Sonne nsmncgriony boeaiaiell w typ rive
— OW so soning od

hae
“ %

4.8

What Do We Need? Physical Principles

Realistic Camera

Movement in a 3D

Car Simulator

Barnabas Aszodi, Szabolcs Czuczor,

Budapest University of Technology and

Economics, Department of Control

Engineering and Information

Technology, Computer Graphics Group

ab011@hszk.bme.hu, cs007@hszk.bme.hu

[I a car simulator or driving game, there can often be several different camera posi-

tions used throughout the course of the game, with most of the virtual cameras

attached to the moving car (i.e., internal cameras in the cockpit, on the top of the

hood, etc.). In the case of an internal cockpit camera, it is not only acceptable but also

desirable that every little car movement also causes movement of the camera, in order

to enhance the realism. In other cases, such as when the virtual camera is placed

beside the path of the car, it can be very disturbing if every little movement of the car

shakes the camera. Additionally, in a collision that stops the car very rapidly, the cam-

era stops rapidly as well, which can be quite jarring. In this gem, we propose a camera

model that can enhance the realism of our virtual camera movement. Our virtual

camera could have weight and inertia, but primarily its behavior is based on human

nature. As a result, the car, due to its movement in the world, may not always be in

the center of the screen, but may fall behind or go ahead, enhancing the realism of the

representation.

coat AREA

In reality, every object follows the rule of continuity, meaning that a real object can-

not change its position with sudden jumps through space. Without this, the object's

speed would need to be infinite, which is impossible. Therefore, when we define our

object’s position as a function of time, it should be continuous if it is a simple straight

line or a path with lots of curves or angles, as in Equation 4.8.1.

483

Section 4 Physics
sco satsesnqnensenmasstesttt SPLASH nH HeEAAHHSH HAHAH

r=r(t) (4.8.1)

Here, r is the actual position of an object, which is represented as a three-dimensional

vector whose actual value depends on time. A real object can change its speed just as

continuously as its position, as defined in Newton’s second axiom, provided in Equa-

tion 4.8.2.

{

= |
(4.8.2)

F (force) and a (acceleration) are vectors, and m (mass or weight) is a scalar. The speed

can change with a jump only when the acceleration is infinite. This expression means
that it can happen only when the force is infinite or the mass is zero. Of course, both are
impossible in real life, so when we want to control a virtual camera in a virtual scene, we
have to care about these two major rules, otherwise, its movements will be unrealistic.

A real camera has mass and, as a result, inertia. To simplify our task in calculating

our camera's movement, we represent it with two points: an eye and a target. The cam-
era looks from the eye to the target, which means that the target will be always in the
center of the screen. We define the orientation of the camera based upon the relative
position of these two points. Because the eye and the target have mass, and because
the acceleration must be finite, the speed of a real object cannot change discontinu-

ously. We cannot change the force discontinuously either, so the function that repre-
sents the force can only be continuous. Let us see this problem in reverse.

Using Figure 4.8.1, we will review what we mean when we talk about different
degrees of continuity. This will be important when discussing the continuity of Equa-

tion 4.8.1, which defines the position of an object in time. On the far-left column of
Figure 4.8.1, we show a discontinuous motion that fails the laws of physics. If there

are no instantaneous jumps in the function, as shown in the second column of Figure
4.8.1, we can refer it as a C® continuous curve. To calculate the velocity of the object

aC) not aC) ct AG) Cc! ta) Cc?
continuous continuous ~ continuous / continuous

ee ee BS Ura eecene oer Seer t marl es t

fi ty SV fo

/ Ca oe ite eal i j t t
f' ft" t") i'w

ee eel t LN Ri nee. t

FIGURE 4.8.1 § Curves with discontinuity, C° continuity, C! continuity, and C?
continuity. The top row is the initial function of time. The second and third rows
are the first and second derivatives of each function.

4.8 Realistic Camera Movement in a 3D Car Simulator 485
sncsonse ets

on its path, we take the derivative with respect to time. If the derivative is also contin-
uous, as shown in the third column of Figure 4.8.1, it is referred to as a C! continu-

ous curve. Finally, if we examine the second derivative of our path, which is the
acceleration of the moving object on the path, and find that it is also continuous, then

our path can be referred as a C? continuous curve as shown on the far-right column
of Figure 4.8.1. If we want to make the movement of our virtual camera realistic, its
path must be at least C® continuous, but it would be better if it could fulfill the

requirements of a C* continuous path as well.

What Do We Get? Sometimes Unrealistic Movements
There is a huge variety of 3D driving games on the market today. Some of them invite
the player into a realistic world, while the others transport the player into fictional
places. In some games and simulators, we need to observe traffic laws, while in the

others, we can drive with reckless abandon. In either case, however, it is generally

expected that the virtual cars have realistic movement.

Even for racing games that offer the player a cockpit view, there is often a race

replay mode, during which we can review details of our race from external points of

view. In addition to inside views, we can often watch our race from stable cameras

placed beside the speedway. Imagine that you are a camera operator whose task is to

follow a racing car with his TV camera. The camera is fixed on a tripod and you can

rotate it around a vertical (Y) and a horizontal (X) axis. In this case, we can say that

the eye position is stable and the target is moveable. These two points can be defined

as two 3D vectors. There is also a third vector, called wp, which defines the default ver-

tical axis of the camera as shown in Figure 4.8.2. By default, you can pitch and yaw

your camera. If you want to roll it too, you need to change this assumed up vector and

use another formulation such as the Euler angles shown in Figure 4.8.3.

FIGURE 4.8.2 A camera and its important vectors. The

eye defines the viewpoint, the target defines the ortenta-

tion (it will be in the center of the rendered screen), and

the up defines the vertical axis of the camera.

486
; ray Section 4 Physics

senmnntntesononnnnansnsistonnsssstpsssisionses OMA ia NAHAS HMRAA RIANA ASH SAAN
svenssocseromunntenenie sae

Xx

FIGURE 4.8.3 An object can be rotated around

three axes: pitch (X), yaw (Y), and roll (Z). These

rotations are defined by Euler angles.

Now, your job as a camera operator in a fantasy race has already begun, and the

cars are coming towards your viewpoint, as shown in Figure 4.8.4. The car that you

need to record appears on the horizon and you start following it with your camera's

target point. It comes with very high speed, but the driver accelerates even more. You

knew that he would likely accelerate since your assigned section of the track is a long

straightaway, so you keep right up. Eventually, the car is nearly in front of you, when

a giant creature made of stone suddenly appears just in front of the car! The creature

is too stupid to jump away and the driver does not have enough time to step on the

brake to avoid the collision. CRASH!!! The creature seems to have felt nothing but

the car is in pieces on the track. Because of the mass of the camera and the unexpected

accident, your rotation of the camera continues. After you recognize what happened,

you rotate back to the car wreck.

IWWYW-L1L,”
CRASH point q

a car with high speed

camera
on a tripod

FIGURE 4.8.4 An example situation where a roadside camera tries to follow a racing
car, which stops suddenly.

4.8 Realistic Camera Movement in a 3D Car Simulator 487

Examining the Camera Control :

As we discussed earlier, we would like to define the path of a camera as a C* curve. In

a car racing game, a stable camera beside the road always looks at the car no matter

what kind of maneuvers the player of the driving game makes. As we know, computer

games do their physics and graphics calculations at a series of discrete points in time.

As a result, we must process the paths of the moving objects and cameras as sampled

curves. But how do we define a C? continuous curve based on discrete samples?

Working with Parametric Curves

What if we define parametric curves aligned to the actual positions of the given

object? This solution results in several problems. As mentioned earlier, the followed

object (i.e., the car) can have unrealistic movements, yet we need to use its sampled

path to create the C? continuous path of our camera. One of the problems is that the

sudden movements, which may have discontinuous jumps, cannot result in a C :

curve. Besides, how could we generate a curve from the sample points of an object's

position that is controlled by the player in real time if we don’t know the future?

Expanding the curve with a new point might change the whole shape of the curve.

We could partition the path to several smaller curves, but the problem of adding a

new point to it would still exist. We will put aside this mathematical approach and

start again from another point of view.

Observing Human Behavior

Recall the camera movement described in the previous story. Of course, there are the

mass and inertia of the camera, but the most important source of our fictional cam-

era’s behavior is human control. In fact, hereafter we will refer to realistic camera

movement as human camera control. If we had a bigger and heavier camera, its move-

ment would be much smoother, according to Newton’s second axiom. That is, even

though we have limited force to accelerate the camera, reaching a given speed is just a

question of time. So, we can move or rotate our heavy camera as fast as a handy cam

but with not so much detail in the movement. Smoothness means that we can follow

the slow and the fast movements well (sometimes with some delay), but we cannot

follow sudden direction changes. The frequency is a typical parameter of movements

that can be described by curves, thus smoothness can be represented by a frequency

limit. This limit can be applied by some kind of low-pass filtering method.

Human behavior means not just smoothing the movement of the camera, but

also taking the thinking of the camera operator into account. First, he sees something

in the viewfinder and starts following it. Then, he recognizes the speed of the object,

but still follows it. If the object is accelerating, the camera operator notices it and tries

to keep it in the screen. The overshooting in case of a sudden movement of the object

can be explained with both properties: thinking, because the camera operator wants to

be too smart and he has some delay after an unexpected event, and smoothing, because

488
Section 4 Physics

the bodies of the camera operator and the camera have mass and the muscles-of the

camera operator can apply finite force.

Actually, if we are able to create smooth paths having the ability of human predic-

tion on the future shape of the path, we can approximate C* continuous curves prop-

erly enough.

Final Decision: Realizing Human Behavior
ANESTESIOL Li ORES ELAR UNTER OIE LE PEIN DESPISED ELETET

We saw that the mathematical approach is very proper and scientific. However, it

needs much time to explain, to understand, and to implement. Besides, we thought

that the theory of human behavior represents the problem that we want to solve much

better. Additionally, its implementation is not too difficult. So, let us find out which

algorithms can be used to implement the two main human behaviors of smoothing ©

and thinking.

Smoothing Curves with Inertia

As we mentioned earlier, the main result of inertia is smoothing of the paths of

motion. How do we apply this to our discrete set of sample points? How do we

smooth them or apply low-pass filtering on them? If you are familiar with digital sig-

nal processing, you are aware that because of Shannon's sampling theorem (also

known as the Nyquist criterion), a waveform can store components only up to half of

the sampling rate. For example, if we have 120 samples in a second, we can store

sounds up to a maximum 60 Hz frequency.

Let us take the average of two neighboring samples of a signal, keeping the original

sampling rate, as shown in Figure 4.8.5. This procedure is similar to downsampling the
waveform to 60 samples per second, limiting the maximum frequency to 30 Hz. If we

take the average of three neighboring samples, the maximum frequency will be 20 Hz,

Wt
(i

FIGURE 4.8.5 Averaging neighboring samples of a list.

original sample list

orig[0...n]

|

|
I

=
(orig[i - 1] + origfi]) / 2;

averaged (LPF) sample list

aver[0...n]
SSS SS

aver[{i] =

Of course, in camera control we have three-dimensional position vectors coming
one after another, frame by frame. The sampling rate in the previous example corre-
sponds to the frame rate in the case of motion control. First, we need a list where we

4.8 Realistic Camera Movement in a 3D Car Simulator 489

can store the position vectors of the target object. We need another list, into which we

can calculate the low-pass filtered values of the input position list. This smoothing is

one step toward human camera control.

Thinking: Extrapolating Position Samples

Remember your behavior as a camera operator. You tried to anticipate where the tar-

get object will be and how fast it will be moving. During the preceding step of inter-

polation, we had two or more key-samples and we tried to find out what would be

between them as shown in Figure 4.8.6a. During extrapolation, we have the same two

or more samples and we will try to find out what the next sample point will be, as

illustrated in Figure 4.8.6b. Taking just the differences of the known position samples

into account, we can predict a new position. Taking the differences of differences into

account, we can also predict velocity, and with this, we can correct our first prediction

for the new location. In addition, taking the differences of these differences of differ-

ences into account, we can make a prediction for acceleration, so we can correct our

speed and, in turn, the location prediction. While the first extrapolation needs at least

two samples, the last one needs at least four. However, if we have just few samples, the

result of our prediction can be somewhat inaccurate. To improve this, we can consider

even more samples. We can also weight the samples to define their importance. For

example, the recent past can be taken into account with more weight than the distant

past.

smp[i-1] smp[i] smp[i+1] smp[i-1] smp[i] smp[i+1]

newsmp

’ " £[0,1)eR
newsmp = smp[i]*(1-t) + smp [it1]*t; newsmp = smp[i+1] + (smp[i+1]-smp[i]) *t;

(a) (b)

FIGURE 4.8.6 Interpolation (a) and extrapolation (b) of sample points.

By choosing the length of the extrapolation, we can define the “watchfulness” of

our virtual camera operator. As mentioned earlier, we need at least two samples to

extrapolate the next position of the target object. This newly predicted position will

be used in the very next moment. In this case, we can tell that our camera operator is

very watchful and fast, because a tiny little sudden change in the movement of the fol-

lowed object is taken into account just in the next frame. If the frame rate is high, for

example 120 frames per second, this speed is too fast for a human. It would mean that

our camera operator perceives changes in movement in 8.3 milliseconds. Generally,

people can perceive sudden changes in 0.7 seconds, which causes some delay in

490
Section 4 Physics

MMMM AMAL NNO DANS

motion. To compensate, the prediction about the actual position of the followed

object is born 0.7 seconds earlier. Therefore, the sample buffer holding the extrapo-

lated positions needs to store samples from the last 0.7 seconds, which is easy to solve

in case of a constant frame rate. However, the frame rate of a computer game is always

changing depending on the complexity of the rendered scene. As a result, we must use

a variable length sample buffer for extrapolated positions.

Programming Issues
MLR AMAL NAMM LM IT

This gem was implemented in C++ language using OpenGL and GLUT graphics

support in the Win32 environment. In this section, we will present our virtual cam-

era model and other helper data structures, which are applicable to OpenGL easily.

Camera in OpenGL

First of all, let us see how we can define a perspective view in OpenGL using GLUT.

We used two functions to define a view. The first is

gluPerspective(fov, width/height, nearDist, farDist);

The fov (field of view) is the vertical viewing angle of a camera in degrees. This can be

a small value when using a telephoto lens and can be large in the case of a wide-angle

lens. If you want to simulate zooming, you have to change this variable from time to

time. The value width/height defines the aspect ratio of the rendered view, which

should be the same as the screen to avoid distortion. The last two parameters,

nearDist and farDist, define the distance of the camera’s eye from the near and far

clipping planes. The scene appears between these two planes.
The basic function for the camera definition is as follows:

gluLookAt(eye.X(), eye.Y(), eye.Z(),

target.X(), target.Y(), target.Z(),

up.X(), up.Y¥(), up.Z());

With this call, we can define the actual position of the camera's eye, the target point,

and the camera’s up vector. In a computer game, the scene is always changing. If the
camera is changing too, we need to recalculate these variables frame by frame in both

functions.

Changeable Field of View, Auto-Zoom

Our camera model has an auto-zoom feature. Our camera can take into account the

size of the followed object and its distance from the camera, allowing it to calculate

the fov at every time step:

fov = 2.0 *

atan((targetSize / 2.0) / (target - eye).Length()) *

180.0 / MPI;

4.8 Realistic Camera Movement in a 3D Car Simulator 491

You can notice that in our code snippet, we used the distance between the camera's eye

and its target instead of the distance between the cameras eye and the object itself. The

argument for doing this is that the camera's target always represents the direct or indirect

position of the followed object. An indirect case occurs when the target deviates from

the actual position of the object after applying low-pass filtering and extrapolation.

Implementing Human Behavior

We will now discuss the implementation of our human camera movement model in

our camera model. The Camera has a variety of data members and member functions.

Here, we will introduce the most important ones.

At the beginning of the camera.h header file, where the Camera class is defined,

there are some global constants. One of them defines the maximum length of arrays

that are used in extrapolation of the camera's target. It is called MAXEXTRAPOLLENGTH

and its value, used by us, is 1000. This value should be greater then the maximum

frame rate of the rendered scene in the used computer, because the lists defined with

this length should store vectors of a second collected frame by frame.

Other important members of the camera class are the Vector3f variables, which

define the camera itself (eye, target, and up). The Vector3f arrays (objPosList,

objPosDifList, objPosDifDifList, and lpfObjPosList) and float arrays

(objFrameWeightList and sumWeight) are used in the extrapolation. The first three

arrays are the collections of position, speed-like, and acceleration-like samples, while

the fourth one is reserved for the low-pass filtered position samples. The first float

array stores weights where we define the importance of the corresponding objPosDi-

fList and objPosDifDifList elements, while the second list contains a precalculated

sum of weights for each element number used in averaging.

These arrays store data chronologically. The elements indexed by 0 correspond to

the actual frame, while another indexed by 7 represents the past, 7 frames ago.

Here you can see the spirit of the human behavior for our virtual camera model.

This function (called placeObjectHereToFollow()) gets the actual position (objPos)

of the followed object with a flag (lookAtItExactly) to know that the target should

follow it directly or with human nature.

void placeObjectHereToFollow(Vector3f
objPos,

bool lookAtItExactly = false) {

if (actualFPS == 0.0) return; }

The function starts with a control. If the actual frame rate ts zero, which can happen for

a while when the application first starts, we skip this execution to avoid malfunction.

Then we define those time-dependent parameters, which are calculated from the

actual frame rate (actualFPs). The floating-point variables lengthForExtrp1 and

LengthForLPF and their integer versions (called iLengthForExtrpl and iLengthForLPF)

contain the number of samples used in extrapolation or low-pass filtering. In other

Section 4 Physics

words, they represent the time constant of extrapolation (in our example, it is 0.7 sec-

onds) and low-pass filtering (0.4 seconds, which is the 2.5 Hz limit frequency of LPF).

float lengthForExtrpl =

min(actualFPS, (float)MAXEXTRAPOLLENGTH) * 0.7;

float lengthForLPF =

min(actualFPS, (float)MAXEXTRAPOLLENGTH) * 0.4;

In the next part of the code, we calculate the next low-pass filtered sample using a set

of the original samples of the followed object stored in objPosList.

Vector3f lpfObjectLastPos = objPos;

for(int 2 = 0; 1,<. ({Lengthrorepra- yy se)

lpfObjectLastPos += objPosList[i];

if (iLengthForLPF != 0)

lpfObjectLastPos *= (1 / (float)iLengthForLPF) ;

else lpfObjectLastPos = objPos;

Whatever happens, we always shift the previously mentioned lists frame by frame in

full length.

for (int i = MAXEXTRAPOLLENGTH - 1; i > 0; i-)

{
objPosList[i] = objPosList[i - 1];

lpfObjPosList[i] = lpfObjPosList[i - 1];
objPosDifList[i] = objPosDifList[i - 1];

objPosDifDifList[i] = objPosDifDifList[i - 1];

i

After shifting, insert a new value into the 0 position. Notice that the list, which stores

the speed-like data, has the differences of LPF samples as new element.

objPosList[0] = objPos;

lpfObjPosList[0] = ipfObjectLastPos;

objPosDifList[0] = lpfObjPosList[0] - lpfObjPosList[1];

objPosDifDifList[0] = objPosDifList[0] - objPosDifList[1];

Here, we calculate the weighted average of the speed-like and acceleration-like data.

Vector3f averageTargetStep;

Vector3f averagePosDifDif ;

for (int 2 = Oj}eie<)ilengthFornExtrpl 8139444)

{
averageTargetStep +=

(objPosDifList[i] * objFrameWeightList[i]);
averagePosDifDif +=

(obj]PosDifDifList[i] *

objFrameWeightList[iLengthForExtrpl - i - 1]);

averageTargetStep *= (1 / sumWeight[iLengthForExtrpl - 1]);

averagePosDifDif *= (1 / sumWeight[iLengthForExtrpl - 1];

4.8 Realistic Camera Movement in a 3D Car Simulator 493

If we want to follow directly, we just leave the function “attaching” the target onto the

object. Else, we take the element of the low-pass filtered position list at the beginning

of the extrapolation (by 0.7 seconds in the past) and increment it with the average

speed multiplied by the time of extrapolation and the half of the low-pass filtering. As

a final correction, add the average acceleration to it.

if (lookAtItExactly) { target = objPos; return; }

target = lpfObjPosList[iLengthForExtrpl] +

averagelargetStep *

(lengthForExtrpl + lengthForLPF i. Zo) ae

averagePosDifDif ;

}

You could ask why exactly the half of the LPF time constant was used in the calcula-

tion. The answer is simple: generating the low-pass filtered position data, we per-

formed averaging. Let us examine a straight-lined, even-paced movement of an object

that we need to follow with the target of our camera. Take iLengthForLPF pieces of

neighboring position samples and get their average. This results in the arithmetic

mean of those samples. In the case of such movement, the arithmetic mean of vectors

will be the center of the section defined by those sample vectors. Chronologically, that

center point is in the center of that section in time, too. If we take the first element of

1pf0bjPosList (indexed by 0), which was generated during such movement, It points

to a location that was passed by a half of lengthForLPF time ago. Therefore, the delay

is (lengthForLPF/2). If we take the element of this list indexed by iLengthForExtrpl,

the summed delay will be (LengthForExtrpl + lengthForLPF / 2). This time multi-

plied by the average speed will result in the actual position of the followed object in

case of straight-lined, even-paced movement. This is the reason why the algorithm is

able to keep up with the object in straight sections. In other kinds of movements, the

nature of following will be more human-like.

Conclusion
LEELA N SELENE LILLE

LMR MMA LLL LLL LIONEL LALA D

We have described an algorithm for adding human camera control to driving applica-

tions. The algorithm is straightforward to implement and simulates the inertia and

the struggle of the camera operator to keep up with the movement of a virtual car.

The performance of our algorithm does not depend on the frame rate or the speed of

the car. The main advantage of this algorithm is that it demands very little processing

time, so it does not degrade the performance appreciably.

494
Section 4 Physics

vn ecicnte autistic TE

Sample Application

We have implemented our algorithm in a simple demo application, which can be

<s% found on the companion CD-ROM. The demo shows a car in a three-dimensional

ONTHEGD environment followed by a camera on a tripod. The car can be controlled using the

arrow keys. The camera follows the car as if it were controlled by a virtual camera

operator. Pressing the Q key toggles the human behavior of the camera.

ee |
SECTION

J
GRAPHICS

aes ¥ ors ydeaca how? ‘oor akggnnitens now ee — 7s

oe an. dhe caw Ain Cis FAM, ‘Fhe Zama rat 2 f

aunt fallkrerd & Td catih coiled print at Ge ’
7 Theiss 2 feltanes ee tax ou 08 Wenn " i - od ‘a

nperutns Uvenng oie hey gh ein a ne ime .

a x D F

~ is = a si =
a

» / "

Introduction

Jason L. Mitchell, ATI Research

JasonM@ati.com

Nas GPU processing power increasing at a rate that outstrips the ability of the

rest of the system to feed it—not to mention the increasing cost of authoring

content—you will notice a trend toward data amplification through instancing and

proceduralism in the coming years. As a result, we have chosen to focus on both data

amplification and natural phenomena in the graphics gems in this fifth edition of the

Game Programming Gems series.

In the first graphics gem, “Realistic Cloud Rendering on Modern GPUs,” Jean-

Francois Dubé of UBISOFT discusses a technique that uses advanced pixel shaders

and precomputed noise textures to generate procedural clouds with sophisticated

dynamic illumination. In the gem “Let It Snow, Let It Snow, Let It Snow (and Rain),”

Niniane Wang and Bretton Wade describe the technique they developed for rendering

precipitation in the game Microsoft Flight Simulator 2004: A Century of Flight. This

technique is both efficient and controllable, allowing artists to tweak the model to suit

the desired look of the game.

We then move from the sky to the ground, with a focus on efficient and realistic

foliage rendering. In his gem, “Widgets: Rendering Fast and Persistent Foliage,” Mar-

tin Brownlow describes techniques for using current graphics hardware to efficiently

render large numbers of instanced objects to act as ground cover. This includes both

GPU and CPU techniques for maintaining maximum performance. In the gem “2.5

Dimension Impostors for Realistic Trees and Forests,” Gabor Szijarté discusses a tech-

nique that uses dynamic depth sprites to render realistic tree canopies.

Interactive virtual worlds with procedural skies and foliage may be beautiful, but

you can't make a game without a little destruction, right? To that end, Neeharika Ada-

bala and Charles E. Hughes present a technique in “Grid-less Controllable Fire” that

enables the simulation and rendering of highly realistic flames. Sometimes you want

something even more dramatic, with that over-the-top Hollywood flair. In his gem,

“Powerful Explosion Effects Using Billboard Particles,” Steve Rabin of Nintendo

describes a technique for creating powerful over-the-top explosions that are realistic,

controllable, and efficient to render.

For the first time in the Game Programming Gems series, we have an article on ren-

dering—you guessed it—gems! In the gem, “A Simple Method for Rendering Gem-

stones,” Thorsten Scheuermann of ATI Research describes the technique used in the

ATI demo Ruby: The DoubleCross to efficiently render a realistic diamond. Dominic

497

498
Section 5 Graphics

intansunncnscnesnrnncnnnenaniinennnnnnnenennii

Filion and Sylvain Boissé then present a method for integrating realistic refraction and

heat haze effects into 3D scenes in their gem, “Volumetric Post-Processing. ”

As noted earlier, the cost of content creation is increasing with the ability of

GPUs to consume large data sets. In their gem, “Procedural Level Generation,” Tim-

othy Roden and Ian Parberry present a framework for generating game worlds proce-

durally—drastically reducing the tedium of creating certain classes of game levels. In

our final graphics gem, Dominic Filion presents a technique in “Recombinant

Shaders” that enables graphics application programmers to effectively manage the

large numbers of shaders that must be generated to effectively render increasingly

complex game worlds.

The ideal gem is one that is quick and easy for you to drop into an existing game

programming project without a major rewrite. As a result, we have chosen topics that

meet this need and address the increasingly important topics of data amplification

and natural phenomena. >

3.1

Realistic Cloud Rendering

on Modern GPUs

Jean-Francois Dubé, UBISOFT

jfdube@ubisoft.qc.ca

ith the new generation of rendering hardware, games are becoming more and

more realistic. Per-pixel lighting and shadowing, volumetric lighting, and atmos-

pheric effects are now possible. Despite these advances, if you take a look at any modern

game, youll notice something that they all have in common: a static (and sometimes

ugly) cubemap for the sky. More advanced solutions add a moving layer of clouds, which

helps but is still not as realistic as we would like. In this chapter, we'll discover how to ren-

der and light realistic, dynamic clouds all on the GPU, using shader model 3.0.

In this gem, we'll see how to procedurally generate an animated noise texture that

looks like real clouds, all on the GPU. This texture will then be mapped on a plane

over the camera, similar to a skybox. Firially, we'll see how to add realistic lighting by

actually integrating along rays through the clouds with ps3.0 shaders with loops, as

we see in Figure 5.1.1.

ate

FIGURE 5.1.1 Realistic real-time procedural clouds.

499

500
Section 5 Graphics

Making Noise
MOE NTT EL ELENA EL BEER RE ESE

Cloud Density ».
Sr ee

The basic idea behind cloud rendering is to generate and animate noise over time to

make the clouds change shape in a plausible way. As we want to perform all our com-

putations on the GPU, current implementations of 3D Perlin Noise aren't well suited

for our task. Instead, we will composite multiple precomputed noise textures at differ-

ent octaves and weights. Each octave of noise adds detail to the final texture—the first

octave gives the rough shape, and the more octaves we use, the more details we add.

We have found that using eight octaves of noise is a good trade-off between perfor-

mance and visual quality.

/

Octave Compositions /

Each noise octave is represented by a smoothed 128 x 128 noise texture. This noise is

generated with random numbers, and smoothing is performed with simple neighbor-

hood filtering. Because the noise is signed, you may have to perform some scaling and

biasing to pack the data into the textures and when you sample from them in your

pixel shaders, depending on the texture format youre using. In our pixel shader, all

eight octaves are added together with different scales and weights to achieve the

desired effect. That is, the first octave is not tiled, giving the rough shape of the final

composite noise. As we continue to add in higher octaves, they are repeated more fre-

quently and weighted less, giving more and more fine detail, as shown in Figure 5.1.2.

Playing with the tiling rates and weight factors allows you to tune the look of your

clouds. Giving more weight to higher octaves results in smaller cloud formations, but

still provides the rough shape defined by the lower octaves. Good starting values are l,

2, 4, 8, and so on for octave scales, and 1, 1/2, 1/4, 1/8, and so on for octave weights.

Animating the Noise

Animating the noise texture is simply a matter of animating the octave textures over

time, as discussed in [Elias] and [Pallister01]. Low octaves should animate more

slowly than high octaves. This way, the basic shape of our clouds will change slowly,

while finer details will change faster. For each octave, we keep two noise textures and

interpolate slowly between them at different rates. We will return to this step later

when we discuss optimizations.

eS eR ARF a RE IAEA ERE AAEM AR ANN SUE EERE EE EAN AS HTN

So far, we have created our basic building block: dynamic noise with controllable
octaves. A typical image of eight octaves of noise is shown in Figure 5.1.3a. We must
now perform a few more steps to make this noise appear more cloudlike. For example,

we need to be able to control the percentage of clouds in the sky. To do this, we sub-

5.1 Realistic Cloud Rendering on Modern GPUs 501

FIGURE 5.1.2 (a) First octave gives the rough shape of the clouds. (b) Second octave adds

detail. (c) Third octave adds finer detail. (d) Fourth octave and higher add more detail

but are more and more subtle.

tract a value called “cloud cover” from the noise and clamp the result to zero, thus

removing a certain quantity of noise, as shown in Figure 5.1.3b. The cloud cover vari-

able ranges from [0..1] and represents the amount of blue sky that we want to see

(0 creates a fully clouded sky, and 1 creates a fully clear blue sky). At this point, we

still don’t quite have clouds, so we exponentiate our current result to obtain the fluffy

look of clouds that we’re looking for, as shown in Figure 5.1.3c.

502 __._ sone Section 5 Graphics

Wi. —

FIGURE 5.1.3 (a) The eight octaves noise texture. (b) The same noise texture after we

subtracted the cloud cover value and clamped it. (c) The same noise texture, after

exponentiation. Notice how it starts to look like clouds.

The following HLSL code performs the computations described earlier (the rest

of the shader will be given later in the article):

01. float cloud cover = 0.457;

02. float clouds sharpness = 0.94f;

03. float3 tex = tex2D(OctaveO, uv * OctavesScalesO.x) *

OctavesWeightsO.x;

04. tex += tex2D(Octave1, uv * OctavesScalesO.y) *

OctavesWeights0O.y;

05. tex += tex2D(Octave2, uv * OctavesScalesO.z) *

OctavesWeights0.z;

06. tex += tex2D(Octave3, uv * OctavesScalesO.w) *

OctavesWeights0O.w;

07. tex += tex2D(Octave4, uv * OctavesScales1.x) *

OctavesWeights1.x;

5.1 Realistic Cloud Rendering on Modern GPUs 503

08. tex += tex2D(Octave5, uv * OctavesScalesi1.y) *

OctavesWeights1.y;
09. tex += tex2D(Octave6, uv * OctavesScales1.z) *

OctavesWeights1.z;

10. tex += tex2D(Octave7, uv * OctavesScales1.w) *

OctavesWeights1.w;

141. tex = max(tex * 0.5f + 0.5f - cloud_cover, 0.0f);

12. tex = 1.0f — pow(clouds_sharpness, tex * 255.0f);

Lines 3 to 10 perform the compositing of the eight octaves of noise. The value uv con-

tains the texture coordinates of the cloud plane, which get scaled prior to sampling.

The values fetched from the noise textures are weighted as well. This shader assumes

that the noise is stored in a signed texture format, hence the value of tex is signed. As

a result, Line 11 converts the noise range from [-1..1] to [0..1], subtracts the cloud

cover value, and clamps the result to zero. Line 12 performs the exponentiation.

So far, we have used fairly traditional methods to compute plausible cloud density

in real time. To fully integrate our animating clouds into our game worlds, however,

we must light them in a realistic way.

Cloud Lighting

Real cloud lighting is very complex, exhibiting light scattering, which is difficult to

evaluate in real time. Even sophisticated solutions still leave much to be desired [Har-

risO1], [Harris02]. As a result, we have chosen to ignore physically correct computa-

tions and tried to approximate the desired look.

Light Scattering

In real life, clouds receive light from the sun. What we see from below is the amount

of light coming out of the underside of the clouds. As light travels in the cloud vol-

ume, it is scattered in all directions as it hits water particles, resulting in dark gray por-

tions in the bottom of clouds. Ideally, for every pixel rendered in our cloud plane, we

would like to trace a ray from the sun to the pixel, accumulating the distance traveled

within the clouds to approximate the light scattering integral. This would be quite

expensive to do in real time, so we have come up with approximations that make this

usable for games.

Cloud Density Field Tracing

To perform the trace from the sun through the clouds to a given pixel on the under-

side of the clouds, we use the noise composited previously as a density field very sim-

ilar to a height field. To reduce aliasing, our cloud lighting is performed using only the

first four octaves of noise. At the beginning of every frame, we render the first four

octaves of the cloud density into a 512 x 512 render target, which will be used in the

final shader as the density field. The following HLSL code performs the path tracing.

This code follows the previous code and tex.r is the current cloud density.

504

Tana

ON THE CD

TATE ET aati

Section 5 Graphics

01. float Density = 0.0f;

02. float3 EndTracePos = float3(uv, -tex.r);

03. float3 TraceDir = EndTracePos - SunPos;

04. TraceDir = normalize(TraceDir) ;

05. float3 CurTracePos = SunPos + TraceDir * 1.25f;

06. tex = 1.0f — pow(clouds_sharpness, tex * 255i Onn) 5

07. TraceDir *= 2.0f;

08. for(int i=0; i<64; i++)

09. {

AO} CurTracePos += TraceDir;

ale float4 tex2 = tex2D(DensityFieldTexture, CurTracePos. xy)

2550s ets

We Density += 0.1f * step(CurTracePos.z*2, tex2.r*2);

}
14. float Light = 1.0f / exp(Scattering* 0.4f);

15. return float4(Light, Light, Light, tex.r);

In line 2, notice that we use —tex.r as the end position of the sun to cloud ray. This is

because in real life, clouds aren’t mapped on a plane: they are three-dimensional. So in

the trace loop, the cloud height field is going in both directions (equal distances above

and below the cloud plane). Also notice that we perform the exponentiation after

computing the ray information: this is because exponentiation is only-a trick to make

clouds look better. Lines 7 to 13 are the heart of the shader: the actual sun to cloud

density field tracing loop. As you can see, we perform ray marching in 64 increments

of 2 units, accumulating the density traversed during the trace. Line 12 performs the

actual check to see if the current ray position is inside the clouds. Essentially, we're

checking to see if the current trace Z position is inside the clouds. On line 14, we

roughly approximate light scattering, and then return the final lit cloud pixel in line

15. The complete shader and a demo are included in the companion CD-ROM—

including videos for people without shader model 3.0 video cards.

Performance

This technique is highly fill-rate dependent, due to the tracing loop. Development

was done on a GeForce6 graphics card, and the sky runs at 60 frames per second at a

resolution of 640 x 480. As the resolution increases, performance drops dramatically.
It is also possible to run this technique on ps2.0 hardware by replacing the tracing
loop by direct illumination: this is left as an exercise for the reader.

on wanes PS ASA RR IEE ITS AARNE NSPE SRM NERA MRE

Some steps of this algorithm can be precomputed each frame, notably the animation
of noise octaves. Instead of interpolating from two textures for each octave at every
pixel, it is possible to precompute them using a render target for each octave. We
slowly interpolate between the two, and we use the render targets as input textures for
our cloud shader. Also, as we render the first four octaves in the density texture each

5.1 Realistic Cloud Rendering on Modern GPUs 505

frame, we do not need to compute them again in the final cloud shader: we simply

fetch them from the density texture and add the final details with the last four octaves.

Conclusion

Simulating clouds that look realistic is very difficult, but we showed that it is possible,

with modern graphics hardware, to get very good results in real time. We anticipate

that the coming generation of game consoles will have enough rendering power to per-

form techniques like the one described in this gem at the target HDTV resolutions.

References

[Elias] betp://freespace. virgin. net/hugo. elias/models/m_clouds. htm.

(HarrisO1] Harris, Mark J. and Anselmo Lastra. “Real-Time Cloud Rendering.” Com-

puter Graphics Forum (Eurographics 2001 Proceedings), 20(3):76-84. September

2001.

(Harris02] Harris, Mark J. “Real-Time Cloud Rendering for Games.” Proceedings of

Game Developers Conference. March 2002.

(PallisterO1] Pallister, Kim. “Generating Procedural Clouds Using 3D Hardware.” In

Game Programming Gems 2 (edited by Mark Deloura). Charles River Media, 2001.

ae 3 Ue pee en
7 ro >

~~

Jak ood

pantech ep ar oa ope nee

en

onan

Lis

tas " goaaie * Ges 44 sy} Sone ae _

' a od ‘ener | Ree ee

A toes jexnt taal pe MS wey eek

iiidionany a "wists be raAvanr: nestled od olen See saps
beepeszeen SE fin Kien HONE biting Axil Wag) eae gee
“TF? ek Hwa © oo xy" ik favors wd Age eae wo hoy elk . ies wig .

anainileeny TPO eg stat carrey aitsy eesti #1 amare ope ¥
a] @4 ; gu’

ren<sis uw. if 4 gadn iter

—

a 2

vat
fi

, ee 7

a 14ia8 jue? 2009 orpiat ottan

> ote, re qT ss keg ne TR

ie.” shan hes pir seis T cae faren] oss peers

1 ea |

Wee a,

toch e-% Nie, dys ap’ A his “as
Py cOCeielg Saye at ae

Mt a res, “op . ‘Sy ee ing a 4

Va giant pect ity. J, tert ry abs what Smt pape Bite as)

eet PaO Te nai «rR Sita A

al ate ne Wi SA) eh ey tegibe ‘aT aap cert. lly
ae eihsy Pt ery apheir. viral Had {Palast Ss

so. 65 Vita eas wir, ey

/ > « wailh? ow aletin rT eho ey ~~) heer the crate, boo is (c=

st ‘al iio fit “hed ¢ Meeps iy vuafstphe ia brows cab tale. Lantustslige il po

wx bie he vate? sere F ponte a ixnge diz Sanh) On line 14,

" ; ae WENT yeortes Lig fi thes jetiien the Sra oJ <a pra Uo

, es deo wevooreh balay a dono we fiche ete — panjony |

~ mee iBecys om wit } ecg: Wea TR wide Odes Cs rn > a
~— .

slow = iF : a :

Pee. veel = Ps ys t “ye > : rye oot hate Q ep iPass 3 hen gf i

‘ er = 4 ' f | ¥, d thes sr aha wt av se pe

re vate sail ; PhirT i Liles ey A) 4) eis ceria) aagcr ange dt

be Se leas grimace tw sta dule loca, oe ol san pay the
—- et mse 7) ut 1? 2? 6 ot vie Tim (oe grader. oe

e 5 7

stivuy zz 3434)

= ~ " et a te

’ te ee thes % Hs ae , 0 foyer, be

a4 <n iba _ ry “G2 q 7 vebarnicay fo @

mre aes ~ ot oa ; alice
is i perdes a ao J r st dene nant wet

d ‘ i 8 ai “ee

5.2

Let It Snow, Let It Snow,

Let It Snow (and Rain)

Niniane Wang, Google Inc.

niniane@gmail.com

Bretton Wade, Microsoft Corporation

brettonw@microsoft.com

ether youre creating a driving game, a first-person shooter, or the next big

RPG, realistic-looking rain and snow can add realism to your outdoor scenes.

Your cars, armored soldiers, and two-headed monsters can all benefit from being

viewed through a sheet of rain or dense snow.

Many games have modeled precipitation with particle systems [Reeves83], which

produce realistic motion by simulating every drop of rain or snow. For example, each

snowflake can travel on its own path, caught in flurries of wind. However, this is often

expensive, and the cost increases with denser precipitation since that requires simulat-

ing more particles.

In this article, we present a technique for rendering precipitation with less perfor-

mance overhead by mapping textures onto a double cone and then translating and

elongating the flakes or drops via hardware texture transforms. Our approach, which

was implemented in Microsoft Flight Simulator 2004: A Century of Flight as shown in

Figures 5.2.1 and 5.2.2, also yields more artistic control over motion factors and drop

appearance than typical particle systems.

Modeling Particle Bundles Using a Texture
SI RUE REE AIDS ITE REE TOTO 8 NE SBE SAO STO ELST TTS OLE TE LEE ETE OT,

We build upon the basic idea of using a texture to simulate precipitation, with low

performance overhead. The textures consist of a bundle of drops created by our

artists, an example of which can be seen in Figure 5.2.3.

507

Section5 Graphics soe eee

> ~e RE

Se cage | a hake ~~.

FIGURE 5.2.2 Screenshot of snow moving at high velocity.

We need to apply translation to the texture so that the precipitation appears to be
falling over time. We started with the obvious approach of translating the texture at a
rate proportional to the desired speed of precipitation according to the game clock.

5.2 Let It Snow, Let It Snow, Let It Snow (and Rain) 509
sosetcenenmeceeteteentennenennnnnnaneetntetorinnntnnteniaeeest Het

FIGURE 5.2.3. An example rain texture.

This simple approach produced two visual artifacts. First, when the translation is

much larger than the size of an individual raindrop, the eye does not connect the rain-

drop in one frame with the same translated raindrop in the next frame, due to the lack

of motion blur and large spatial separation. Thus, it looks as though disconnected

raindrops are randomly flitting past the camera, rather than one raindrop making a

continuous movement. If the texture coordinate translation is even larger—so that it

is almost the length of the entire texture from one frame to the next—the rain can

appear to move backward, much like the typical wagon-wheel effect in old western

movies. To fix this, we translate the texture by a fixed size of one raindrop width each

frame. This ensures the eye will connect the movement of each raindrop across

frames.

Note that the translation is constant regardless of precipitation speed and also of

framerate. Since we want the precipitation to appear to fall at a constant rate regard-

less of framerate, we must account for varying frame times—otherwise, it will fall

faster with higher framerates and slower with lower framerates. To this end, we scroll

the texture each frame by D,,.<ip, described in Equation 5.2.1:

t
pas * _ delta

2 l

precip iv. Oran
(5. ®)

const

1 3

where tf, 1s a fixed frame time, €.g-, 30 seconds.

To simulate motion blur, we use the aforementioned stretch factor. This factor is

proportional to the speed of movement, such that longer streaks occur when the cam-

era is moving quickly.

510
Section 5 Graphics

sanseinenassnmnnnansinnmnmennanasniit —_manasieanaainaanatinit
 NLT NANA LOCA CCC CC AN

We compute the stretch factor, described in Equation 5.2.2, based on VeCyrecip» Sp

(a precomputed scale factor to scale down successive textures so they appear further

away), Chie) (a conversion factor specifying the world space equivalent for each pixel

in the texture), and Sie, (an artist-controlled scale factor to give different lengths of

streaks to different types and intensities of rain, e.g., light rain has longer streaks than

heavy rain).

S fee streak (S22)

eee ce : Ae
pixel precip streak

Rendering Snow or Rain in Parallax SIREN REINER EERIE SRLS EON ERT IE EMI

In addition to providing the sense of particles moving past the player, we want to pro-

vide a sense of depth and parallax. Raindrops or snowflakes in the distance should

look smaller and fall slower than ones close by [Langer03]. To simulate this, we apply

our texture scrolling technique to multiple textures. Our system used four textures,

a

scaling down the texture coordinates progressively on each one to produce smaller

precipitation drops and slower scrolling. We use Direct3D fixed function multitextur-

ing to blend the four textures together.

The amount of scaling down depends on the type and intensity of precipitation,

and is controlled by our artists.

Although this produces the parallax effect, the Z information is incorrect. The

textures are designed to look far from the camera, but they are actually rendered on

a plane at a close distance. When the drops are small enough, however, this is not a

noticeable artifact.

Simulating Camera Movement with a Cone
SARE LANL LEE MEE EL LALLA ON LEE DOLL LIONEL LEA LIAO een HE eS

When the camera is traveling forward, the rain or snow should tilt so that it appears

to be shooting at and past the camera. Similarly, when the camera moves sideways, the
precipitation streaks are expected to have a sideways component to their motion. To
simulate these effects, we map the four precipitation textures onto a double cone, as
shown in Figure 5.2.4. Our textures are designed to tile so that no seams are visible
when they are repeated across the cone surface, or as they scroll across the cone.

To reduce the visibility of the singularities at the cones’ tips, we make the cones
more transparent at those points, gradually fading in toward the circle at which the
cones meet. We also select an appropriate cone height to tune the angle at which the
rain appears to fall. If the cone is too short, when the camera is stationary, the rain will

fall at an unrealistic slanted angle rather than straight down due to the cone’s steep
edges. On the other hand, the cone must not be too tall. This ensures that when the
camera is moving and the cone is rotated, the rain will fall from the middle of the
screen toward the edges as desired.

5.2 Let It Snow, Let It Snow, Let It Snow (and Rain) 511

FIGURE 5.2.4 Double cone onto which

we mapped textures.

As the camera moves, we pivot the double cone so that precipitation appears to

fall toward the camera from the direction of movement. We do this by setting the

cone’s world matrix to look along the precipitation travel vector VéCprecips described in

Equation 5.2.3.

Vee ay =(Cp* VE ny +V El roay |” tt (5.2.3)
precip camera gravity

where Velimen is the camera velocity, Cp is an artist-controlled damping constant to

limit the tilting of the cone, Vélyayin is the velocity of the precipitation due to gravity,
‘gravity

and typ, is the time elapsed since the last frame.

Together in One Matrix
een

 SRST RELEASE RRM
ASAT LRG

Dprecip and the elongation factor E are combined in the texture transform matrix

shown in Equation 5.2.4. Dprecip 18 represented in pixel space and converted to real-

world space by £, which also slows down scrolling in successive textures.

512
Section 5 Graphics

Ss ‘ 0 OU

0 Psa 0 0
M- s,* oe WOK epee Sia

0 S__, * il 20

0 0 = Orel (5.2.4)

We can also simulate different precipitation intensities by varying the scaling and

translation on the matrix. For example, heavy precipitation is modeled with larger

drops (less scaling down) and faster movement (larger translation). A big advantage to

designing a system with so many tweakable variables is that it can be controlled by the

artists.

Adding Artist Control ARES PEELE ID LTE. LETTE

We designed our system to give our artists fine-grained control over the final look and

feel. First, the artists create the textures, so they control the distribution of raindrops

and snowflakes. We use a different set of textures for light rain versus heavy rain, and

the artists can adjust the drop density for each intensity. The artists can also add a haze

or fog into the texture, which obscures objects in the scene. The fog can be heavier in

some parts of the textures to add variety.

We also grant artists control in the rainfall/ snowfall equations by allowing them

to adjust damping and scaling factors at several points. We wrote a tool that interfaces

with our in-game rendering engine that allows tweaking of visual parameters using

sliders.

Artists can adjust Spto change the drop size and scrolling speed. They can also

adjust Sire the streak length (to give lighter rain longer streaks than heavy rain, for

example) and Cyto limit the cone tilting.

For each intensity of rain and snow, our artists experimented with parameter set-

tings until they found the right combination of streak length, drop size, speed, and

cone damping. Immediate visual feedback and artistic control over the parameters

was key to creating a high-quality end result.

Conclusion
up eR a RE ERI NEARS ENT ONE ERIE I RN ARES LO TETRIS IE RNIN IIT DIETER MOE ETE TTI OIE LON TERE ERD

Our system looks most realistic for rain and heavy snow. In real life, light snow tum-

bles and flutters as it falls, which is not well simulated with our current system. Shift-

ing around the texture coordinates over time may approximate the effect and is an

area for future work.

5.2 Let It Snow, Let It Snow, Let It Snow (and Rain) 513

The system is also more suited for games with relatively steady framerates. When
the game framerate stutters drastically, the scrolling of the precipitation texture also
stutters, which is more noticeable than the rest of the frame. In particular, the stretch
emphasizes stutters, possibly causing the effect to appear to run backward.

Our technique has negligible impact on the game’s overall framerate and has the

same performance overhead for heavy precipitation as light precipitation, unlike a

particle system. It ships with Microsoft Flight Simulator 2004: A Century of Flight,

which maintains framerates of 15 to 60 fps across a range of consumer PCs.

References
LE EERE RESELL EE NS BEE EEE LINE EIN EINE EERE ELLE DEEL BERS LEIA EEE ELLIE.

[Langer03] Langer, Michael and Lingiao Zhang. “Rendering Falling Snow Using an

Inverse Fourier Transform.” SIGGRAPH Technical Sketch, 2003.

[Reeves83] Reeve, William T. “Particle Systems—A Technique for Modeling a Class

of Fuzzy Objects.” SIGGRAPH 1983, ACM. Detroit, Michigan.

Z : dl

:
=~

+

wal'Y cxorernsh vbr tion ibiw ooeg os mal

habe Papen acraiginng: aly Haulers? sets) 2 a

: Seat aa Se mhisacr st aih SOME A CPE Rs

roe! aye vga lt Ht a em
only awl bing sramsenart | ab joruie 2 HO Paget

nd

_ nani in ag 2 Geb

t shitter (Poy? 719 i au) pare
PH eae

yy Seats

digg he cesses OOL qornhoenesi?. sigh Tow WL abso ects sh tray ¥
2.5% weeusace 1 Seay.) @ BOE aqt 02 w fl tows , 4

a We an see af <ieo dilkeren whup spesenies by

. cee tor a7 Wie

(reeves: @@ UDF ita. <OFr Siar pic Tar peers a

rin inal F RINE ES NEE Sits ey (lal A +
ae Sea ANS RR BANAT VPRO” el Sage oie,
= dD & gniBATK ah sppintbet A—<cratey? ote? wi? T nallid esalt

i¢ agit gtr? MDD ER RARROOU, =atO
} Aatiiere Bertie Soniral

enna are pala ng TIES aKa . ons
‘he vbe meee cud ~@ ore io hat ts Mir ~finew ocean!

| fed. Fitts, ght so dae elm dw extutes, 00 Che al paket ae
J iset. oto thai 4 “4 Cora at OM Petre for light mae rg

7 thor sete cc, eines the @eoty Toy cach teins The atelenneai ail he

in ce fing harm che staaegy, whind Macon atjecye te We gee. 6 Be fog can te Tim vee ft

|
; ‘

=

wee Pets te Centunty &) omiery > > , ;

Wi wing gprqnn artiars woritea wi Uvemaueialt otal euationa

EPI OER Meiaplaly, 10 } calle (ere wt aescrel porn. We serare a rem! dhiad se

BOE ease wegen condoning, Soypme he aoe pedinies
si Pots

> al

anit ,4 Tik (egarTr —~ ie “usher ai? Ua hoi pact ip na “hee ly

soil nck L ba svi nh ee: Nig : _~
ata A , OF %& a> yterw, (Xr OTe F sperinctbiet why pail

° i * > mi
cheney acverd! ‘> Hal une ay ify Swi Por < 4 +t thik, boxy, eh - nat

ant jee it yi fer ci a nen sot : def spe ole

ten Sey Km oF ethane Prd fetotis
; ’

7 7 ; ae —

Caw hahstown a
_— = Pe a oa a <i ~> - S

: Weer Se altar tye ren = aay | ‘al |
ie drvko:

_ ’ =i & ad vel nw 7

—

_ = wa ants so od difyy am

5.3

Meshes for Widgets

Widgets: Rendering Fast

and Persistent Foliage

Martin Brownlow

martinbrownlow@msn.com

(Gz that render outdoor environments face a common problem: to look realis-

tic, vast amounts of foliage must be drawn. For the purposes of this gem, foliage

includes such features as plants, bushes, boulders, grass stalks, and other low-to-the-

ground objects. These objects serve to obscure the ground textures in complex layers,

lending a more realistic, voluminous appearance to the ground.

The objects used as foliage, which we shall refer to as widgets, are generally inert

(they cannot be interacted with) and are there just to give the eround depth. Although

these widgets could be randomly generated as new areas of the world are activated, an

astute player might notice any differences when revisiting a previous location. Addi-

tionally, artists generally want control over everything that affects the look of their

levels, and so prefer to define which types of foliage appear in which areas and how

often they appear. In extreme cases, an artist might even want to go in and individu-

ally place several widgets to achieve a specific look.

Another consideration is that of destructibility: although widgets are essentially

inert, it is often desirable to have world events affect them. For instance, if your game

has huge explosions that change the underlying landscape textures to represent dam-

age to the ground, it would be ridiculous for all the little tufts of grass to survive the

blast unscathed. Some method of temporary or permanent removal of individual wid-

gets or groups of widgets from the world will help the sense of immersion.

For efficient rendering of foliage, we need to address two distinct problems: we

need to be able to quickly generate only those widgets that fall within the view frus-

tum, and then to efficiently draw the resulting list of models.

Although our intent is to render highly complex scenes covered with foliage, the indi-

vidual meshes that make up the widgets need not be complex at all. In fact, the most

effective models used as widgets generally use only a handful of double-sided poly-

gons and a single texture. This simplicity allows us to render many more instances

515

ahd eee a Section 5 See

than we otherwise could, and so adds to the overall complexity of the scene. Figure

5.3.1 shows a simple example mesh that can be used as a widget, consisting of eight

double-sided triangles and a texture map.

FIGURE 5.3.1 A simple ground cover mesh.

Unfortunately, although the meshes themselves are simple, drawing them effi-

ciently is not. Today’s graphics hardware is designed to render huge amounts of trian-

gles but performs best when rendering in blocks consisting of thousands of vertices.

Rendering a thousand different copies of our eight triangle mesh is not going to be

making the best use of graphics hardware.

Drawing Widgets Efficiently
Ea SRE

If we put aside for the moment the question of how to generate a list of the widgets

that are to be drawn, we can look at how we are to efficiently draw a large number of

tiny models. We have already determined that our widget meshes are to consist of a

small amount of triangles and a single, simple material. We can further insist that each

widget mesh should consist of exactly one triangle strip of indeterminate length.

To get the best throughput from our graphics hardware, we must submit as few
batches of triangles to the hardware as possible, with each batch being as large as we can
make it. This, then, is our objective: to find some way to batch together a large num-
ber of small models whose positions can change independently of one another from
frame to frame (as the view changes, different sets of widgets will need to be drawn).
This obviously rules out a large vertex buffer containing pretransformed widgets, since
we would need to keep editing this buffer as the viewpoint moves around the world.

5.3 Widgets: Rendering Fast and Persistent Foliage 517

Widget Batches

Although filling a vertex buffer with pretransformed widgets is out of the question,

can we find a way to make the graphics hardware transform each widget by the correct

matrix for us? In fact, we can; this is a similar problem to skinning, where each vertex

indexes into a palette of matrices for its transform. By adding a matrix index to each

vertex in the widget, we can make each widget index its own transformation matrix,

then add multiple copies of the same widget to the buffer. Each individual widget

must have the same index value for every vertex it contains, but consecutive widgets

can and should have different values. Using an indexing system like this, we can place

as many widgets in a single vertex buffer as there is room for matrices in the vertex

constants. This method was employed by Gosselin, et al. for rendering large crowds of

characters, but due to the skeletal animation, only four characters could be rendered

in one API call [Gosselin04]. For foliage, we can render more widgets per API call.

The following structure shows a possible vertex format for describing widgets:

typedef struct

float position[3];

float uv[2];

u32 mtxIndex;

} WIDGETVTX;

Now that we have created a vertex buffer containing several copies of the same

widget, each with its own matrix index, we must figure out how to draw them in a

single batch. We already know that each widget consists of a single triangle strip; we

just need to stitch together the strips of consecutive widgets. This is done through the

use of degenerate triangles; triangles that have two or more vertices that are coinci-

dent. To join two triangle strips together, we need to add four degenerate triangles, in

the form of two indices. For example, to join the two strips, (1,2,3,4) and (8,9,10,11)

we would repeat the last vertex of the first strip and the first vertex of the second strip

to form the strip (1,2,3,4,4,8,8,9,10,11). In this example, our four degenerate trian-

gles are (3,4,4), (4,4,8), (4,8,8), and (8,8,9). Each degenerate triangle produces no

pixels, and so the net result is the appearance of drawing two disconnected strips of

triangles but with a single draw call.

However, joining strips in this fashion requires that the first strip be of an even

number of indices. If the first strip is not an even number of indices in length, the

winding order for the second strip will be wrong, since the winding order of the trian-

gles in a strip is reversed for every other triangle. To get around this, if the first strip is

an odd number of indices in length, we must first make it an even length by repeating

the last vertex. For example, joining the two strips (1,2,3,4,5) and (8,9,10,11) results

in a single strip of 12 vertices: (1,2,3,4,5,5,5,8,8,9, 10,11). :

Along with the vertex buffer containing multiple instances of a single widget, we

must also create an index buffer containing a single strip to draw all these widgets.

When creating this buffer, we must remember that the base vertex for each consecutive

518
Section 5 Graphics

NNN
svonatietsannnnnannnnensniunnnesscennehnnrynmntnnne

widget must be incremented by the number of vertices in a single widget in-order to

address the correct set of vertices. The following code will generate a single strip for

nw widgets, each consisting of nv vertices and ni indices, and returns the number of

indices generated in the strip:

u32 CreateWidgetIndices (

u16 *pOutput, // ouput. buffer

u32 nw, // number of widgets

u32 nv, // # verts per widget

u32 ni, // # indices per widget

u16 *pIndices) // ptr to indices for 1 widget

u32 i,basev,j;

u16 *pout;

// base vertex = 0
basev = 0;

pout = pOutput;

// for each widget
for(i=1;i<=nw;i++)

i
// copy the widget’s indices, offset by base vertex

for(j=0;j<ni;j++)

pout[j] = pIndices[j] + basev;

pout += ni;

// if the widget is an odd length

af (eel)
{ // repeat the last index

pout[O] = pout[-1];

pout++;

}

// if we’re not the last widget, add degenerates

if(i!=nw)

{
// create degenerate tris:
// repeat the last index

pout[O] = pout[-1];

// increase the base vertex

basev += nv;

// repeat the first vertex of the next widget

pout[1] = pIndices[0] + basev;

pout += 2;

}
}
// return the # of indices
return pout — pOutput;

5.3 Widgets: Rendering Fast and Persistent Foliage 519
sonitentenseoseenssevsinitnnnnstcnnetcceannteetunantsnenennascuateennitsnantstaetnne issn ceiner ett anhAlieneneAROVAtitinetRSMMAEHVA TENGE

Drawing Widget Batches

Once we have our vertex and index buffers, we can now draw multiple widgets in a

single draw call. To do this, we must first generate a list of widgets that must be drawn

and their respective transformation matrices. We will then send the transformation

matrices for the first batch of widgets to the corresponding vertex shader constants

and draw the primitive. If there are more widgets than can be sent in a single batch,

we simply send multiple batches containing as many widgets as possible.

As long as we draw full widget batches, this is relatively simple, but what happens

when we cannot completely fill a batch? In cases like this, we simply reduce the num-

ber of indices that we render from the strip to cut out some widgets. If a widget is

n indices long, and we want to draw m copies of the widget, then we need to draw

(((n + 1) & (~1))*m + ((m — 1)*2)) indices. That is, we need to draw the number of

indices required for a single widget, rounded up to an even number, times the num-

ber of widgets to be drawn, plus two extra indices between each drawn widget.

Compressing Widget Transforms

As we have previously seen, we can now draw as many widgets in a single batch as we

have room for transformation matrices in the vertex shader constant registers. Gener-

ally, a matrix transform takes up three vertex constant registers, but we can impose

some limitations on our widgets that help reduce this to two constant registers,

increasing the number of widgets that can be drawn. We know that our widgets are

supposed to lie on the ground; therefore, we can restrict the degrees of freedom given

to each widget. Specifically, we will restrict the widget to five degrees of freedom; a

3D position, a single rotation around the vertical axis, and a scale factor. The matrix

for such a transformation is as follows:

sin(@) - scale 0 cos(ar) ‘scale x

0 scale

—

0

cos(or) - scale — sin(@) - scale

0 0 0

As we can see, this matrix contains very few distinct values. Given a vertex processor

with arbitrary element swizzling capabilities, we can easily compress the needed values

into the following two vertex constants:

(x Vow scale)

(sin(a) cos(a) —sin(@) 0)

As we will see when we look at the HLSL vertex shader code in the next section, it is

a simple matter to reconstruct the transformation matrix from these constants. By

520

ON THE CD

c

Section 5 Graphics

compressing the transformation matrix for each widget in such a fashion, we-can draw

50% more widgets in a single batch than we otherwise could if we had used a es)

matrix to represent a more general transform for each widget.

Widgets in Practice

Now that weve looked at the theory of drawing widgets, let’s look at an example

implementation. On the companion CD-ROM in the directory containing the

FoliageDemo (/chapter5-Graphics/ 5.03-widgets_Brownlow) is the source for a sim-

ple foliage demo. The files widgetmesh.h and widgetmesh.cpp define a class, CWid-

getMesh, which handles all the steps involved in optimally rendering a number of

instances of a given widget.

The FoliageDemo program requires PC graphics hardware capable of running vertex

and pixel shader programs compiled for Version 1.1 or later. It must also be capable

of displaying four simultaneous textures. If your graphics hardware is not capable of

this, the FoliageDemo program will not execute.

The member function Create is responsible for creating a widget mesh from a regu-

lar mesh. It takes as parameters a pointer to an array of vertices, a pointer to an array

of indices, the number of vertices and indices in the arrays, and the name of a texture.

This function creates a vertex buffer and an index buffer with enough space in them

for WIDGET_MAXINSTANCES (defined in ‘widgetmesh.h’) copies of the input data, and

then fills the buffers as described earlier in this gem.

To draw a series of instances, we must first call the Begin member function. This

function sets up the rendering pipeline to render the widgets. It sets the vertex and

index buffers associated with the mesh as well as the vertex and pixel shaders, vertex

format, and texture. After calling Begin, we can then iterate through the instances that

we want to be drawn, calling AddInstance for each. Each time that AddInstance is

executed, it stores a record of the instance in a static array. If at any point this array

becomes full, FlushInstances is automatically called.

The FlushInstances member function is responsible for drawing a batch of wid-

gets. It first sends the array of instances created by AddInstance to the appropriate ver-
tex shader constants. After this, a DrawIndexedPrimitive command is issued, using the

appropriate number of indices and vertices, as calculated from the number of instances
in the array. Finally, it clears the count of instances in the array and returns. The final
function of interest in the FoliageDemo class is the End function. This function simply
issues a FlushInstances call to ensure that all the instances added are drawn.

The vertex shader program for drawing widgets is located in the file widget.hlsl.
It is a fairly basic vertex shader; the only real point of interest lies in the transforma-
tion of each vertex by the compressed instance’s matrix. The shader uses swizzling to
recreate the first and third rows of the uncompressed rotation matrix (the second row

5.3 Widgets: Rendering Fast and Persistent Foliage 521
ocsucontnmeoreeuauaasitnntnanunnesicanatrtyepbttnshenticchemsecee eer Hent erence

contains only a single element, scale, and so is trivial to implement) and uses them to

rotate the input point, adding the instance position afterwards. This is represented by

the following code fragment:

float4 pos;

pos.x = dot (vtxin.pos,mtxInstances[vtxin.index+1] .xwy);

pos.y = vtxin.pos.y;

pos.z = dot (vtxin.pos,mtxInstances[vtxin.index+1] .ywz) ;

pos.w = 1;

POSEY 2 = pos.xyz*mtxInstances[vtxin.index].w +

mtxInstances[vtxin.index].xyZ;

Once the rotated and scaled position has been calculated, the point is transformed

into clip space and passed to the pixel shader as usual.

culling Wicgets romana

Now that we can efficiently draw a large number of instances, we must look at ways

to generate the relevant instances from a constantly changing viewpoint. There are

two main ways to approach this. In the first, instances are generated semirandomly

(but deterministically!) as new areas of the world are revealed and instances that are no

longer visible are deleted. The second method—the one that this gem will concen-

trate on—involves precalculating the positions of all the widget instances in the world

and creating an efficient representation of them that can be used to quickly generate a

visible set of widgets.

Although more memory intensive, the main advantage of this method is that the

position of these widgets will be constant—players can leave an area and return later

to find the foliage in the same position as earlier. Moreover, using this method, wid-

gets can be deleted when necessary with little effort on the programmer’s part. This

allows players to leave their mark on the foliage of the world with explosives and

whatever else they care to fire at it.

BSP Trees

The method that we will use to store the positions for the widget instances in the

world is a modified BSP tree. The use of a BSP tree over a quad- or octree allows the

world to be irregular in shape without using any extra memory for empty nodes. For

those unfamiliar with BSP trees, they consist of a hierarchy of planes. Each plane cuts

the world into two pieces, with each object in the world ostensibly falling on one side

or the other of each plane. Figure 5.3.2 shows an example of the first two planes of a

BSP tree. The first plane separates the world into two halves, while the second plane

separates one of those halves into two more halves. In this way, the objects in the

world are arranged into a binary tree.

522
Section 5 Graphics

FIGURE 5.3.2 BSP tree construction.

A typical BSP node can be represented by the following structure:

typedef struct

{
float plane[4]; // the cutting plane

BSPNODE *front; // nodes in front of the plane

BSPNODE *back; // nodes behind the plane

BSPLEAF *coplanar; // elements that are coplanar

} BSPNODE;

This structure is 28 bytes long (assuming, for now, that the target machine's pointers

are 32 bits in length), which is a little excessive. Additionally, because the structure

contains three pointers that may need dereferencing, the data access pattern for any

code using this representation of a BSP node will be erratic at best, causing havoc with

the data cache. Finally, the length of the structure, in addition to being excessive, is

not a multiple (or even a divisor) of the cache line size. This means that each time the

CPU pulls this structure into the data cache, it has to fill at least one, and possibly
two, cache lines, depending on the memory address of the node. Figure 5.3.3 illus-

trates these two possibilities for a machine with 32-byte cache lines.

Node A

Node B

FIGURE 5.3.3 = Cache line usage for two unaligned BSP nodes.

5.3 Widgets: Rendering Fast and Persistent Foliage 523
sinoemnmaneetccentcnssaansnsscnnnetecssucasnsaanitovaonnnanareieotnniei sisstmctsnscncssnnavestonnnccctettceise reste cAAan ANA HMASAUAAS ALANNA

In each of the large blocks in Figure 5.3.3, the white area represents the memory

taken up by the BSP node and the gray area represents memory that is read into the

cache whose contents are not known. Upon examination of Figure 5.3.3, it is easy to

see that there is potentially a lot of unused data being pulled into the data cache when

randomly accessing a BSP node. Even if nodes are stored consecutively in memory, we

are still going to be accessing them randomly (from the point of view of the memory

controller; the actual access pattern is defined by the view position and BSP tree lay-

out). This means that we will be pulling almost as much unused data into the data

cache as used data, with a commensurate loss in performance. Clearly, we would like

to modify our algorithm and our data structure in some way to avoid this poor cache

behavior.

A Memory-Efficient BSP Tree

The two most obvious ways to improve our CPU cache usage are to reduce the size of

the BSP node structure and to impose some kind of predictable pattern on the mem-

ory accesses. Examining our initial definition of the node structure, we can see that it

is divided into two, roughly equal sections. The first of these sections contains the

cutting plane and the second contains the locations of the child nodes.

We can greatly reduce the memory required to store the cutting plane of each

node by ensuring that each plane chosen is axis-aligned to one of the three ordinal

axes. By doing this, we can reduce the 16 bytes required by the plane to 4 bytes (to

store the plane’s distance from the origin) and 2 bits (representing which axis to use).

This leaves us with 30 more bits to use to store the tree pointers, in order to occupy a

measly 8 total bytes. Let’s look at how we can do this.

In addition to reducing the memory taken by pointer storage, we also need to

impose some sort of memory access pattern on tree searches. If we always ensure that

the front child of a given node is stored immediately after the parent, then we remove

the need for a front node pointer at all. Additionally, we can use an extra two bits to

record whether the front and back nodes are leaf nodes, containing only data (in this

case, widget instances). Finally, to reduce the memory required to store the pointer to

the back node, we can store it instead as a positive offset from the current node. These

changes result in a definition ofa BSP node that takes only 8 total bytes, as shown by

the following structure:

typedef struct

{
u32 axis ire

u32 numFrontLeaves Ay

u32 numBackLeaves : 4;

u3s2 backNodeOffset . 22

float distance;

} WIDGETNODE ;

524

ON THE CD

Section 5 Graphics

If we can ensure that any code searching through the BSP tree always visits the front

child of a node before the back node, we make maximal use of the data cache. This is

because the data for the front child is very likely to be located in the data cache due to

its proximity to its parent node.

Creating the BSP Tree

Creating this BSP tree is almost trivial, especially if we treat each widget instance as a
point. After creating an array of all the widget instances in the world, we calculate an
axis-aligned bounding box for them. At each node, we find the longest axis of this
box. This axis becomes the splitting plane. After sorting the nodes by their position
along this axis, we then position the plane between the two median widgets. That is,
if there are 63 widgets in the world, the cutting plane would be placed between the

31st and 32nd widgets.
We continue creating nodes in this fashion until there are only a small number of

widget instances remaining in each node; the node is then said to be a leaf node. A

leaf node in this instance is considered to be an array of WIDGETLEAF structures. The
count of widgets remaining in the array is located inside each element of the array.
The WIDGETLEAF structure as described also takes only 16 bytes of memory, maintain-
ing efficiency and cache-friendliness.

typedef struct

{
float position[3]; // position of the widget

s8 sinAngle; // sin of its orientation (*127)
s8 cosAngle; // cos of its orientation (*127)
u8 scale; // scale of this widget (*32)
us pad;

} WIDGETLEAF ;

The FoliageDemo application included on the CD-ROM contains the files widgetbsp.
cpp and widgetbsp.h, which describe the cwidgetBsP class. This class is responsible for
the creation and management of a widget BSP tree. The CreateTree member function
takes an array of WIDGETLEAF structures as a parameter and creates a BSP tree from
them, as described in this section. Once the tree has been created, we can efficiently
search it to find the list of widget instances that must be drawn.

Searching the BSP Tree

Now that we have a compact, memory access-efficient BSP tree definition, we can
look at how to calculate the set of widgets that should be rendered. To do this, we
must retrieve from the BSP tree all the widgets within the view frustum that are
within a certain distance of the view position. We can use the size of the viewport, the
camera matrix, and the field of view to construct an axis-aligned box that encloses the
area of interest, as shown in Figure 5.3.4.

525

FIGURE 5.3.4 An axis-aligned

view box.

Armed with this box, searching the BSP tree becomes trivial; at each node, we can

compare the distance associated with it with the precalculated minimum and maxi-

mum values of the view box in the relevant axis to determine which child or children

to visit. We must remember that, to maintain cache coherency, if the front child of a

node is to be visited, it should always be visited before the rear child of the node.

When passed the view parameters and a maximum draw distance, the Draw mem-

ber function of the cWidgetBsP class will construct a view box and then perform a

view-based search of the widget BSP tree. For each widget instance that is found within

the view box, the AddInstance member function of the appropriate CWidgetMesh class

is called.

Conclusion
LLM A NA

NT TI SOLIS TOAST ELL E
ELS ELT eM MLE LTE LION,

We have seen in this gem that by reducing the number of API calls required to draw a

set of models, we can greatly decrease both the CPU and GPU cost involved in pro-

cessing and rendering these models. This premise forms an efficient way to draw a

large number of small models, which also works well with older (vertex shader 1.0)

graphics hardware.

We also saw how to construct a memory-efficient and cache-friendly version of a

BSP tree. These optimizations allow us to create and navigate a BSP tree that can con-

tain enough foliage to cover a sizable world. The memory layout and access patterns

of this BSP tree allow it to function efficiently even on systems where memory speed

is relatively slow, such as the Sony Playstation 2 console. With selective use of any

available cache prefetch instructions, the efficiency of this BSP tree can be further

increased.

Combining these two techniques allows us to populate a world with a large num-

ber of foliage models and be able to efficiently draw views from anywhere within the

world.

526 Section 5 Graphics
FE renner enagsaateacamcentnti tO AAA

One possible avenue of advancement is to create an algorithm to deterministically

place foliage in a small area, and then create BSP trees for these areas as they approach

the viewpoint. Such an algorithm would allow us to take advantage of the memory

cache efficiency of the BSP tree while keeping actual memory usage to a minimum.

This would give us the ability to populate worlds of increasing size with foliage for a

constant memory cost, since only BSP trees that could possibly be rendered with the

current viewpoint need to exist at any given time.

References

[Gosselin04] Gosselin, David, Pedro V. Sander, and Jason L. Mitchell, “Drawing a
Crowd: Instancing in Current Hardware.” In ShaderX? (edited by Wolfgang
Engel). Charles River Media, 2004.

5.4

Introduction

2.5 Dimensional

Impostors for Realistic

Trees and Forests

Gabor Szijart6, Technical University

of Budapest

szijarto.gabor@freemail.hu

@): of the major challenges in developing techniques for realistic and high-

performance visualization of outdoor environments is the rendering of vegeta-

tion. Convincing modeling of trees and bushes requires a very large number of

polygons that exceed the limits posed by the current rendering hardware. A number

of methods have been proposed in the past to address the issue, most of which are

variants of multiresolution modeling and level-of-detail algorithms.

In this gem, a 2.5 dimension impostor based method [Szijarto03] is developed

for high-resolution tree rendering, which uses the structure of conventional trees.

Moreover, it takes advantage of the programmable rendering pipelines available on

the recent video cards. The algorithm uses view-dependent 2.5 dimensional impos-

tors to visualize convincing trees in most levels of detail. Due to the use of impostors,

the performance depends heavily on the fill rate of the video card.

eee REE

It is often useful to define specific scales of simulation at which a vegetation-rendering

algorithm should provide the required level of realism. Most applications can be

assigned to one.or more of the following categories:

Insect scale: The level of simulation where a consistent, realistic depiction of

individual branches and leaves is expected. (The avatar can climb the tree.)

Human scale: Scenes must look realistic at distances ranging from an arm's reach to

some tens of meters away. Consistency is desired but not required. (The avatar

can bump into trees, even dash through bushes, but does not focus on specific

details.)

527

528
Section 5 Graphics

eon sii smanirininienissienieantssiiaannmniinninnnsichannsininnsacaiintCaee tN NNN ACCT CLAN ae a

Vehicle scale: At this level, vegetation serves as little more than a backdrop.

Individual trees are almost never focused upon, and consistency is not required.

Viewing distance may exceed several hundred meters. (The avatar is usually

moving through the environment at some altitude above the ground at faster

than running speeds.)

The focus of this research has been an algorithm for human and vehicle scale sim-

ulation, with possible application in low-altitude (helicopter and glider) flight, land

vehicle simulators, and first person shooters.

Vegetation visualization seems to be a hard nut to crack. There are two general

approaches: geometry- and image-based methods. As its name suggests, techniques of

the former group use geometric representations of the foliage. As it takes roughly one

hundred thousand triangles to build a convincing model of a single tree, some form of

Level of Detail (LoD) rendering technique must be applied to reduce the polygon

count for a given frame to a reasonable level ([Remolar03], [Puppo97]). Visually

pleasing results can only be achieved with complex algorithms or significant memory

overheads. At this point in time, geometry-based methods are not acceptable for real-
time applications. Image-based methods represent a trade-off of consistency and
physical precision in favor of more photorealistic visuals.

The simplest of all image-based methods is sprite rendering, shown in Figures 5.4.1
and 5.4.2. This technique is analogous to using a cardboard cut-out with a tree-like
image painted on it that always faces the camera. Though the resulting visuals are far
from satisfactory, the technique is often used to depict smaller plants.

Projection .”
Plane

FIGURE 5.4.1 Sprite rendering. The textured polygon is always facing the camera.

5.4 2.5 Dimensional Impostors for Realistic Trees and Forests 529
sanasstnonnaseetnctteniteeteenenonn ti nena such AKO

MG ha
v

Projection ..”

Plane -«

Ge oncn cee ceeneac cas same cease anaemia aaa

FIGURE 5.4.2 Billboard with arbitrary position and orientation.

Two obvious improvements introducing some form of view dependence are sets of

view-dependent sprites and more complex cutouts. The view-dependent sprite

method simply pregenerates a finite set (usually 4 or 8) of views and, at runtime, pre-

sents the one closest in alignment with the viewing direction. A popping artifact is

visible when there is an alignment change and another view is selected. The complex

cutout approach uses texture transparency and blending to render more than one

view at the same time onto properly aligned surfaces, as shown in Figure 5.4.3. Both

methods yield surprisingly acceptable results in vehicle scale simulations but fail to

deliver quality in close-up views. It is also not trivial to introduce varying shapes and

sizes of trees without overtaxing memory. Lighting is also a concern with this method.

One of the most advanced methods actually implemented in commercial enter-

tainment software is the basic freeform textured tree model with some LoD applied,

as shown in Figure 5.4.4. Though the idea is quite straightforward, only in the last

few years has hardware become powerful enough to handle the task. Resulting visuals

are satisfactory, although, due to the simple geometric model used, close-up views

usually look artificial and variations are usually introduced through new models or

through combining model parts. Increasing the number of trees in a scene quickly

reduces performance. Most recent human.scale simulators rely on this technique, and

on the raw hardware power to cope with it.

530 Section 5 Graphics

Projection .” :

Plane

View eras ae.
Point Vahl TT Estee sate nee ti at coe a clare ee ey LE

FIGURE 5.4.3 Complex cutout with two faces.

Projection .” ;

Plane ictal

View 722227777" Bo
POiiit Are Paria saascnin ty ss cee An Oot Oe PF

FIGURE 5.4.4 Freeform textured tree model.

Improving on Previous Methods

The techniques described so far all take advantage of the fact that it is much faster to
render a recorded image of a tree than to actually process the geometric information
describing the tree model. There are two key reasons for this:

5.4 2.5 Dimensional Impostors for Realistic Trees and Forests 531

¢ A leaf on a tree is usually mapped to only a few pixels. On today’s hardware, ren-
dering a pixel is much faster than transforming a triangle.

¢ The number of obscured leaves is very large. Thus, a significant number of trans-
formations would be performed in vain.

Image-based methods suffer from two significant drawbacks: fixed perspective and
invariance to motion and rotation. Fortunately, in tree rendering, the fixed perspec-
tive is not so disturbing. The tree canopy is a fairly irregular structure, and the human
eye is far less sensitive to perspective distortions of irregular shapes than regular ones.
The other problem is far more disturbing. Leaves are static as the camera moves, while
it would be expected for some leaves to appear and others to become obscured as the

viewer moves relative to the tree. This issue has to be addressed in some way to raise

rendering quality to an acceptable level. Popping artifacts are about as disturbing to

the human eye as static textures in motion. Thus, we can conclude that to achieve

convincing visuals, the geometry of leaves has to be processed to some extent.

The algorithm described in the following sections renders the tree canopy as a

collection several small leaf clouds. A leaf cloud consists of only a fraction of the total

leaves needed to model the entire tree. The amount of geometry needed to render a

leaf cloud is small enough to handle on a per-frame basis. The idea is to process a leaf

cloud, render it to a texture, and apply that texture multiple times to render the tree

canopy, thus introducing the motion parallax missing from previous image-based

methods. However, because the leaf cloud textures overlap, artifacts will occur unless

depth information is handled correctly. Introducing depth-consistent impostor ren-

dering results in images where leaf clouds can correctly overlap with other leaf clouds,

branch geometry, other trees, or any other object in the scene.

The Algorithm

The proposed technique is an improvement to traditional impostor rendering.

Impostor rendering has two stages. The first stage is a view-dependent render-to-tex-

ture operation (drawing the impostor), the result of which is used in the second stage

usually as sprite or billboard texture (see Figures 5.4.5 and 5.4.6).

The idea is to represent the tree canopy with more than one sprite, as shown in

Figure 5.4.5. Sufficient variations can be introduced by the perturbation of the rela-

tive positions of the sprites in space. Rendering two or three different textures for

sprites can introduce even more diversity. Individual sprites can also be blended using

different colors, again to introduce variations, and even lighting. A canopy depicted

using 10 to 100 sprites can look very convincing in still images, as shown in Figure

5.4.8, even if the same texture 1s repeated over all sprites.

However, the view independence of sprites makes the previous method quite use-

less for real-time rendering when the viewer is in motion. As sprites are always facing

the camera, if their appearance is constant, they upset the motion parallax, producing

very unrealistic results. The introduction of view dependence through the use of

532 . Section 5 Graphics
seottctnsanemaaenevttatstsestsnsvenencesesn teeta ateeennne HH SSAStsl HSS NHHHAIIRNAUA HR ERAMASROSA ORR NN

'

.

BS eee eS = SS Ge ome oe Projection |” ie

Plane -< ‘ Se

View feesce

Pointiais | ass a Ob i eS Als ie eee ee Se ©

FIGURE 5.4.5 Using multiple sprites to render the tree.

Center point

of tree

a Nts
Janes

POV

wee ‘Sie os : “+ Seell

a
ae

OS.

FIGURE 5.4.6 Rendering the impostor texture from a group of leaves assumed to
be positioned at the center point of the tree.

impostors updated every frame instead of static sprites successfully eliminates this
problem.

In the stage of impostor rendering, depth and color information are stored in tar-
get textures. The result is a 2.5 dimensional impostor. The z-near and z-far planes are
adjusted to approximate a reasonable bounding box for the rendered group of leaves,

as shown in Figure 5.4.6. In the final phase of rendering, the stored depth values are

5.4 2.5 Dimensional Impostors for Realistic Trees and Forests 533

appropriately scaled and clipped to the final depth buffer before depth testing is per-
formed, yielding a volumetric feel to the textured sprites, which can overlap in a spa-
tially coherent manner.

The artificial look resulting from repetition of the same image over many sprites
is almost completely eliminated, as volumetric overlapping obscures this arrangement
to the point where it is almost impossible to discern any single impostor.

implementation

The proposed technique produces very convincing results and can be efficiently
implemented using the GPU of recent video cards, as shown schematically in Figure

5.4.7. Figure 5.4.8 shows the tree canopy rendered using impostors.

Leaves

Vertices

Blocks

Vertices

Leaves

Texture

Leaves

Depth

Buffer

Leaves

Texture

FIGURE 5.4.7 Block diagram for implementation using two vertex and two

pixel shaders.

The implementation assumes Version 2.0 vertex and pixel shaders and uses only stan-

dard techniques. The code is written in C++ with DirectX 9 [Microsoft04]. The

shader program is written in Cg [NVIDIAO2]. The example program shows a tree

equivalent to 1.6 million polygons.

Leaves are rendered into an impostor texture at the resolution of the final image

to avoid resizing artifacts and performance overhead. Allocating impostor textures

every frame would have large performance overhead, thus it is recommended that

applications pre-allocate big enough impostor textures for all cases.

534
Section 5 Graphics

FIGURE 5.4.8 Tree canopy rendered using impostors.

Depth Precision

Current graphics cards do not provide efficient access to the depth buffer because of
internal optimization considerations. Because of this, the pixel program of the first
pass stores depth information in the alpha channel, thus enabling the next stage to
access it. Since the alpha channel has 8-bit precision, the projection matrix should be
set carefully to minimize information loss.

The front clipping plane is moved to the front of the leaf cloud, and the far clip-
ping plane is moved to its back. Additionally, the center of the window is moved to
the center of the foliage. In the Direct3D rendering pipeline, the corresponding es
jection matrix is [Szirmay95]:

w 0 0 0

0 h’ 0 0

z
M,,, =| opt Vopier az I

5.4 2.5 Dimensional Impostors for Realistic Trees and Forests 535

,
Ww =W:-a.

impostor

h'=w'-a
impostorXY

,
Z2 =Z a be

n center impostor

,
LPL BEG,

iis center impostor

where w is the half window width (which can be computed from the horizontal field

of view as w=1/ tan(fov/ 2)), impostor 1S the ratio of the number of pixel columns in

the frame buffer, and in the impostor texture, Z;ene, is distance along axis z between

the eye position and the center of the foliage, and Tnpotor is the radius of leaf cloud.

To move the leaf cloud to the center of the impostor texture, x,go aNd Jopier are

determined. These values are calculated by transforming the center of the foliage with

the standard model, view, and projection transformations, which determines the cen-

ter of the foliage in screen coordinates. The computed x,4.,, and yg; values are the first

two screen coordinates multiplied by —1.

Rendering the Impostors

As mentioned earlier, this rendering algorithm has two passes. The first pass computes

the impostors and uses the following vertex shader:

vertout main(appin IN,
uniform float4x4 mModelViewProj,

uniform float4 invTrSunDir,

uniform float4 colorParam)

{
vertout OUT;

float4 pos = IN.Pos.xyzz;

pos.w = 15

pos = mul(pos, mModelViewProj) ;

pos /= pos.w;

OUT.Pos = pos;

OUT.Col.a = pos.Z;

float light = max(0, dot(IN.Normal.xyz, invTrSunDir. xyz));

OUT.Col.rgb = IN.Col * (light * colorParam.x +

colorParam.y) ;

return OUT;

}

The leaf cloud will be rendered into the impostor using this vertex shader. Each ver-

tex has a position, normal, and color. The vertex shader also gets two additional para-

meters defining the direction of the sun and its directional and ambient intensities.

The diffuse illumination model is applied to compute the reflected intensity.

536 | Section 5 Graphics
eens ssn ce enveennsusnnnnnnnnarenoseniainnnoninit eroerconassnnncnnannsi

The output of the vertex shader is the transformed position and the lit color

value. The color value contains the pixel color and the depth in the alpha channel.

The pixel shader program of impostor rendering is very simple. Since in this case,

the alpha channel contains depth values, we have to disable alpha blending before exe-

cuting this code.

void main(vertout IN,
out float4 color : COLOR)

{
color.rgba = IN.Col.rgba;

}

Mipmaping of impostors is unnecessary, because the impostor texels have the same

orientation and approximately similar size as the pixels. The effect of rescaling the

impostors due to perspective correction is not significant.

Using the Impostor

The second pass that renders the tree canopy into the final image as a collection of

impostors is far more interesting. The vertex shader is used to calculate the projected

size and the position of the impostor texture. The application loads these values into

the vertex shader constant store as if the impostor were located in the center of the

foliage. The vertex program makes the appropriate corrections based on the actual

location of the leaf cloud in the image and passes the associated depth value to the
pixel shader. The pixel shader is responsible for rendering the impostor texture,

including correct depth information.
Two triangles are needed to draw each impostor to the screen. At first, the vertex

shader calculates the impostor center. The impostor texture contains the depth of
leaves from the impostor’s front clipping plane. Thus, we add the z distance of the leaf
cloud to the z coordinates stored in the impostor. Additionally, the impostor is scaled
according to the perspective distortion.

vertout main(appin IN,

uniform float4x4 ModelView,

uniform float4x4 PEO.

uniform float4 constans,

uniform float impostorSize,

uniform float centerBlockSize,

uniform float impostorZSize,

)

vertout OUT;

float4 pos = IN.POS.XYZZ;

pos.w = 1;

5.4 2.5 Dimensional Impostors for Realistic Trees and Forests 537

// calculate center point of the impostor from view

Pos = mul(pos, ModelView) ;

float4 scl = float4(0, impostorSize, pos.z, 1);

// projection transformation
pos = mul(pos, Proj);

pos /= pos.w;

pos.z -= impostorZSize;

// calculate size of the impostor

scl = mul(scl, Proj);

scl /= scl.w;

// calculate scale factor
float scale = scl.x / centerBlockSize;

// calculate impostor corner

float2 uvp = (IN.uv - 0.5) * constans.xy * scale;

pos = pos + float4(uvp.x, uvp.y, 0, 0);

// calculate impostor uv parameter

float2 uv = IN.uv * constans.z + constans.w;

OUT .Pos = pos;

OUT.Col.rgb = IN.Col;

OUT.Col.w = 0;
OUT .uv = RLOAtA GUM: x, SUE V 9 DOSmZ st);

return OUT;

}

The pixel program has to determine the real depth of impostor texels and ignore any

invisible ones. If the scaled z value of a texel is greater than 1, it is not visible. Current

pixel shaders do not support pixel pipeline breaking, thus the final depth values of

these invisible texels have to be set big enough to let the z-buffer hardware ignore

them. The pixel shader gets constant depthScale, which scales the depth values of the

impostors. Finally, the scaled depth value is added to the depth of the front clipping

plane used in the impostor computation.

void main(vertout IN,

uniform sampler2D impostorTexture,

uniform float depthScale,

out float4 color : COLOR,

out float depth :. DEPTH)

float4 texCol = tex2D(impostorTexture, IN.uv.xy);

if (texCol.a >= 1.f) {

depth =e dis

} else {

depth = IN.uv.z + texCol.a * depthScale;

}
color.xyz = texCol.xyz * IN.Col.xyz;

color.a =F ie

538
Section 5 Graphics

sovetenanmaon ost eumseesnesesh narcneerensioii suniseeasaaastaninnicnmaiaonsnsenensnincmassninsnsanenentie acncnneremnaannnsin ssa

Conclusion
{sin ra RE Ds NN EERE

In this gem, depth impostors were used to render foliage. The power of the technique

becomes obvious when the objects are in motion, as there are no popping artifacts, no

obvious flat sprites turning, etc. We can obtain a high level of detail since the number

of leaves perceived can easily surpass one million for an average forest canopy.

The algorithm presented can be used in vehicle and human scale simulators to

render realistic looking trees and forests in real time. The technique takes full advan-

tage of the programmable rendering pipeline available on recent graphics accelerators.

see EA I spa A EP OE AER EOINE

References
scammer MLN NE NT TT NT I NE NT TT

[Microsoft04] Microsoft Corporation. DirectX 9.0. Available online at Attp://www.

msdn.com/directx.

[NVIDIA02] NVIDIA Corporation. C, Language Toolkit. Available online at Attp://

www.nvidia.com.

[Puppo97] Puppo, E. and R. Scopigno. Simplification, LOD, and Multiresolution—

Principles and Applications. Eurographics’97. Tutorial Notes, 1997.

[Remolar03] Remolar, I., M. Chover, J. Ribelles, and O. Belmonte. View-Dependent

Multiresolution Model For Foliage, 370-378. WSCG 2003, 2003.

[Szijarto03] Szijarté, G. and K. Jézsef. High Resolution Foliage Rendering for Real-time

Applications. Budmerice, Slovak Republic: SCCG, 2003.

[Szijarto032] Szijarté, G. and K. Jézsef. High Resolution Foliage Rendering for Real-

time Applications. Budapest, Hungary: GrafGeo, 2003.
[Szijarto04] Szijarté, G. and K. Jézsef. Real-time Hardware Accelerated Rendering of

Forests at Human Scale. Plzen, Czech Republic: WSCG 2004.

[Szirmay95] Szirmay-Kalos, L. Theory of Three-Dimensional Computer Graphics.
Budapest: Akadémia Kiadé, 1995. Available online at Attp://www.tit.bme.hu/

~szirmay/book. html.

3.9

Gridless Controllable Fire

Neeharika Adabala, School of

Computer Science, University

of Central Florida

nadabala@cs.ucf.edu

Charles E. Hughes, School of Computer

Science and School of Film and Digital

Media, University of Central Florida

ceh@cs.ucf.edu

aming scenarios often involve fire: objects/vehicles/ buildings on fire, torches of

fire, fireplaces, etc. Fire is a phenomenon created by glowing combustion prod-

ucts in turbulent motion. Fire simulation techniques used in computer graphics usu-

ally involve solving the equations for dynamics of fluids on grids. These approaches

are often computationally intensive and do not work in real time [Nguyen01]. Other

approaches [Wei02] work in real time; however, they are based on computations on

three-dimensional grids that introduce significant design issues in terms of choice of

grid size, resolution, and position. For example, what should be done when a wind

blows on a fire? Should a grid be defined so that it encompasses the whole region that

may ever contain the fire or should it be designed to move with the fire? In the latter

case, knowledge of the possible regions the fire could flow into is required. Also, grid-

based computations are often not guaranteed to be stable and relate to the resolution

of the selected grid, adding to the complexity of applying these approaches. Thus,

grid-based simulations of fire demand skillful choice of grid size, position, and resolu-

tion in every scenario that involves fire, which can be a tedious task.

In this chapter, we present a eridless technique for modeling fire, based on a sto-

chastic Lagrangian process [Pope00]. In this approach, the equations for dynamics

simulation define the trajectory of each particle. As a result, they can be directly eval-

uated to yield the position of each particle at successive time steps. The stochastic

nature of the approach makes the computations relatively stable.

539

540
Section 5 Graphics

MMMM MAMAN NAN Nst senenentesatonnenasenntetniesettn ASAIO ON NR INSANE URAHARA MRNAS

Most fires that are created in gaming scenarios are diffusion fires, or fires in which

the oxidizer and fuel are not premixed (unlike the steady flame of a burner where the

fuel and oxidizer are premixed). The fuel or object that is burning has to evaporate

and come in contact with the oxidizer before it can burn. Since this process does not

occur uniformly, fires flicker and exhibit a characteristic “jumping” behavior. Most of

the existing approaches do not allow us to capture this distinctive property of fire. In

this chapter, we present a simplified approach to modeling flickering fire in order to

enhance realism. The work of Lamorlette and Foster [Lamorlette02] identifies the

intermittent flame region in fire, but their model is designed for an offline production

environment rather than real-time applications. In this chapter, the flickering of fire is

captured by creating a simplified model for the “global extinction” behavior of fire.

Global extinction refers to the moment when the combustion in the fire is so low that

no flame is visible. Our technique also models “flame brushes,” which are regions of

greater brightness in flames that occur in areas of the flame where there is higher rate

of chemical reaction.

An additional issue in modeling of fire in games is the need to have parameters to

control the appearance of fire. The approach presented in this chapter, enables control

of the flicker rate, flame height, and number of flame regions in the fire. In addition

to the simulation, a technique for real-time fire rendering that uses the programma-

bility of graphics hardware is described.
Our fire model is presented in the next section. There are two main aspects to

our model: the stochastic Lagrangian model for the dynamics and the chemical evolu-

tion model that represents the combustion accompanying the fire. The rendering of
the model using programmable graphics hardware is then detailed. This is followed by

a discussion with examples demonstrating the capabilities of the technique. Conclu-

sions are given in the final section.

Model of Fire
ses RRO ET SN EET EPR REO EINE EES CTON GOERS PRETEEN IR

The key aspects that have to be modeled while simulating fire are turbulent dynamics

and the chemical reaction accompanying them.

Dynamics Model

The flow of hot gaseous products in a diffusion flame can be modeled as an incom-
pressible turbulent flow. The equations that define this flow are the equation for con-
servation of mass, shown in Equation 5.5.1.

Vsruted (5.5.4)

and the Navier-Stokes equation, shown in Equation 5.5.2.

5.5 Gridless Controllable Fire 541

Du 1 2

in Bea u+F (5.5.2)

where Du/Dt is the material derivative 0/dt-+ud/dx + vd / dy + wd / dz =0/dt+u-V,

u is the velocity vector (u,v,W), p is the pressure, V* is the Laplacian operator, p is the

density, v is the coefficient of kinematic viscosity, and F represents the external and

body forces.
These equations can be solved by the Eulerian approach, where one solves for the

vector fields that define the flow at fixed points of a grid, or by the Lagrangian

approach, where one solves for the trajectory of a set of particles evolving in the flow. In

the case of turbulent flow, the chaotic nature of the flow makes the problem of defin-

ing the size, shape, placement, and resolution of the grid tricky. Also grid-based tech-

niques require significant insight into the expected behavior of the flow. For example,

the grid should be shifted in the direction of an external wind field to keep the solu-

tions on the grid points relevant. Because of these issues, we choose a Lagrangian

approach because it is gridless.

When computations are applied for real-time simulations, they must be stable.

Turbulent flows are chaotic and notoriously sensitive to small changes in initial con-

ditions. Therefore, the stability of the computations cannot be guaranteed. However,

this sensitivity of flow to small changes in initial conditions makes it suitable to sto-

chastic modeling. The stochastic Lagrangian approach to maintain the gridless nature

of the computations is used here. In this approach, the fluid flow is modeled by a set

of particles whose statistical characteristics are the same as those of particles that

evolve based on the equations of flow. These approaches are numerically more stable

than the deterministic solutions to the equations.

The turbulent motion of the particles is simulated by using a stochastic

Lagrangian approach. Equations 5.5.3 through 5.5.5 define the evolution of the ith

particle in the simulation [Pope00].

dx” =U dt (525;5)

dU = “¢, (@)U (t)—(U) dt + C,k(@)dW (5.5.4)

do =—(0 -(@))C,(@) + (20? (@)@C,())aw” (5.5.5)

Equation 5.5.3 defines the position of a particle based on its velocity. The computa-

tion of velocity is based on the simplified Langevin model for stationary isotropic tur-

bulence with constant density. The details of the derivation are beyond the scope of

this chapter and can be found in the book on turbulent flows by Pope [Pope00]. The

terms that are enclosed in) represent the local mean values of the enclosed vari-

ables. In combustion studies, they are evaluated by dividing the region occupied by

Section 5 Graphics

the particles into a grid and considering the particles that lie in the same grid cell as

the i” particle. In our approach, we use a kd tree to store the particle system and eval-

uate these local mean values on 1 nearest neighboring particles of the i” particle. The

value of n used in our work typically falls in the range of 10 to 20. This approach of

storing particles in a kd tree was introduced earlier in [Adabala00] and is called the

particle map approach. The constant Cy = 2.1 is the standard value used in turbulent

flow simulations, and k is the turbulent kinetic energy. In the simulations presented in

this work, the value of k is taken as 1.5. d and W represents an increment in the

isotropic Wiener process W(t). It is implemented as a vector of three independent

samples of the standard normal distribution. The next equation represents the evolu-

tion of the turbulent frequency. The value of the constant C; is 1, and W* represents

an increment in a scalar Wiener process W*(t), which is independent of the Wiener

process in the previous equation.

The previous equations enable us to model the turbulent motion of fire. We will

now describe our model of the chemical aspects of fire.

Chemical Evolution Model

The chemical evolution model simulates the changing composition of fuel in the fire

as the reaction progresses. Modeling of global extinction requires identification of the

stage in the reaction’s progress when it is no longer able to sustain a visible flame. At

this stage, global extinction occurs. After global extinction, the diffusion of fuel and
oxidizer continues, and the conditions for combustion are again met and a flame

reappears. The whole process occurs in a fraction of a second. Therefore the actual

moment when no flame exists is not actually perceived but rather a flicker in the
flame is observed. This phenomenon has not been modeled by the typical approaches
to fire modeling in computer graphics that concentrate on modeling the variation of

temperature in the flame.
Various approaches to model the chemical aspect of fire exist in combustion stud-

ies. Many of these results are based on empirical studies of fire [Drysdale99]. There is

still a large gap between models of combustion and the actual phenomena, as several
simplifying assumptions have to be made. For example, each fuel has its own unique
way of burning, depending on its chemical composition, diffusivity of fuel, oxidizer,
and products. The Euclidian Minimum Spanning Tree (EMST) mixing model, pro-
posed by Subramaniam and Pope [Subramaniam98], is a general model for modeling

evolution of composition of fuel during combustion in a turbulent flow. This model
is compared with other approaches to model combustion in [Subramaniam99]; the
comparison is done by applying the techniques to simulate the evolution of composi-
tion in a simple periodic thermochemical model [Lee95]. The fundamental concept
of this model is to associate chemical composition parameters with the particles
involved in the combustion process. The composition of the particles is initially
defined using a periodic thermochemical model. The composition of the particles is
subsequently evolved by constructing an EMST in composition space and updating
the composition by considering the particles’ neighboring nodes in the tree. This

5.5 Gridless Controllable Fire 543
nme sosonseescesonennmnetenttenmansaiitetteeenenotihinarteeontbetennnss iio: th ninnnh tt aaneOteetetanetnbtettinneaieaeteenneniMAHiinhinsnontauoceiiicieeseneeatnneatonetiatnnneitichsinsnarnannntiit

approach of updating the composition helps to maintain the locality of chemical
composition evolution with combustion. Visually, this results in the ability to simu-
late flame brushes. In this approach, global extinction is estimated by computing the
expected value of the reaction progress variable and comparing it with a threshold. If

the value is less than the threshold, global extinction occurs.
We formulate a simplified model that mimics the main aspects of the EMST model

for real-time applications. In the EMST model with the simplified thermochemistry,

the initial composition of the particles at equilibrium is as shown by the solid line in Fig-

ure 5.5.1. The composition then evolves with time to a distribution along the dotted

line in Figure 5.5.1. The extent to which it evolves towards the dotted line depends on

the nature of the combustion. When the combustion is steady, the time for mixing of

oxidizer and fuel is comparable to the time of combustion. Hence, the line remains close

to the equilibrium state indicated by the solid line. However, when the reaction is not

steady (when there is global extinction), the time taken for diffusion is significantly

larger than the time for chemical reaction. As a result, the composition of particles

evolves to the dotted line in Figure 5.5.1. The exact distribution of the compositions

may vary significantly, depending on the value of several parameters that define the

EMST mixing model [Subramaniam99]. The essence of the composition evolution in

the EMST model can be summarized as a shift from the solid curve to the dotted curve

in Figure 5.5.1 while maintaining the neighborhood in composition space.

[— =< T ai) 7 i T = aes =e Sas Sa ee
— intitial composition | |

-» final composition

Fi ot, ae % RE RE A" he ‘ ie h

0 0.2 0.4 0.6 0.8 1- 1.2 14 1.6 1.8 2

x

FIGURE 5.5.1 Plots of main curve along which composition values are distributed

at the initial and final (before global extinction) time step for the EMST mixing

model simulation. The x axis is the mixture fraction &(X,t), and the y axis 1s the

reaction progress variable Y(X,t).

544
Section 5 Graphics

a nnsnsicninenusenctiemmeaneineimemanannssiiuisciaennntenie seenntomaensasosunerteennesemmnitet

The x axis in Figure 5.5.1 is the mixture fraction E(X,t), and the y axis is the reac-

tion progress variable Y(X,t). Here X is the position vector of the particle (x,,x,,,).

The reaction progress variable is the mass fraction of product where the chemical

reaction considered is fuel + oxidant <> product [Subramaniam99].

In our simplified model, we do not evolve the values of the mixture fraction.

Therefore, we represent it by 6(X) by removing its dependence on time. The values of

E(X) for a particle are defined such that the gradient 0g / Ox, is a constant as in the

case of [Subramaniam99]. We defined a constant as a parameter 7) €(0.0,c¢] in our

approach. This parameter is used to control the number of flame brushes. The num-

ber of flame brushes that occur in a spatial region where the value of x, varies by one

unit is equal to the value of 7. Therefore when 7 = 1.0, there is a single flame brush

in the spatial region, where the value of x, varies by one unit. The value of Y(X,f) at

t = 0 in our model is defined in Equation 5.5.6.

¥(X,t) = Y(E(X)) = exp(-(6(X) | 6(X) |)- 0.5)" / A). (5.5.6)

This is the representation of adjacent overlapping Gaussian distributions. The para-

meter 2 €(0.0,-] controls the overlap between two neighboring flame brushes.

Lower values result in less overlap and well-separated flame brushes, while higher
values result in greater overlap. Figure 5.5.2 gives the plot of the values of Y(X,2) with

n=1.0andA=0.8.

1 T a T | a eae oa ls T 1 ip Rees T —— w

— initial composition

++ final composition

FIGURE 5.5.2 = Plots of main curve along which composition values are distrib-
uted at the initial and final (before global extinction) time step for our model that
mimics the EMST mixing model. The x axis is the mixture fraction E(X), and the
y axis is the reaction progress variable Y(X,t).

5.5 Gridless Controllable Fire 545

In our model, we begin by distributing the composition of particles as a Gaussian
distribution as given by Equation 5.5.6 and illustrated in Figure 5.5.2. We then
evolve the composition to values about the curve shown in dotted lines in Figure
5.5.2. We choose the Gaussian distribution as the starting distribution, because it has

been shown empirically and numerically that the distribution of composition should

relax to a Gaussian with time. The EMST model is formulated so that the composi-

tion distribution relaxes to a Gaussian with successive updates of composition. In our

simplified approach, we start the fire visualization from the first step of simulation.

There are no preprocessing simulation steps that allow the distribution to relax to a

Gaussian. Therefore, the distribution of composition should be a Gaussian from the

start. This is ensured by the use of Equation 5.5.6 to initialize the composition.

We evolve the composition Y(X,f) with Equation 5.5.7:

V(X) =7 td) CX —1), OSA)

where ¥ is the rate of decrease of the reaction progress variable. rd €[0,0.01* 7] isa

small random perturbation in the value of x. This simple approach to updating the

composition mimics the essence of the EMST mixing model as the neighborhood

regions are maintained in composition space and there is an evolution between the

initial and final curves that have a similar appearance. The value of x can be in the

range (0, 1.0]. It was found that values of ¥ in the range [0.85, 1.0] give visually real-

istic results. Values of x tending towards 1.0 result in high flames, as the reaction

progress of the particle remains in the visible range for more time steps of the dynam-

ics simulation.

Global extinction is identified as the stage during combustion when the overall

reaction progress is not enough to sustain the flame. At this stage, the flame reduces in

intensity and reappears in the next time step when the compositions of the particles

are redistributed at thermochemical equilibrium (the values at Y(X,0). In the EMST

model, the stage of global extinction is predicted by computing an extinction index

that relates directly to the expected value of the reaction progress variable. The extinc-

tion index is compared with a fixed value. If the index is less, global extinction is said

to occur. In our simplified approach, we compute the mean value of the reaction

progress variable of all the particles involved in the simulation. If it is less than a

threshold value, global extinction occurs and we restart the simulation with new par-

ticles and composition, as the old particles are no longer visible after global extinc-

tion. Thus, Equation 5.5.8:

if mean (Y(X,0))<@ global extinction, (.8)

where @ is a threshold parameter that can be adjusted to control the frequency of

global extinction. The justification for varying the value of threshold 6 is that various

fuels produce different kind of flames, and depending on the fuel, a different value of

546 hae vi Section5 Graphics
nnuasstcncvemmnsednnsnsiereietatacrmesnennstaetcccemeneesihsssitseet

minimum reaction progress is needed to sustain a flame. The value of @ is.chosen in

the range [0.0, 0.4] for a visually realistic appearance. We use the mean| Y 2 ,0)

rather than the sum of the reaction progress values to estimate the overall reaction

progress in the system so that the threshold value is independent of the number of

particles involved in the simulation.

A model of flickering fire that works in real time is achieved with the techniques

described in this section. In the following section, we describe a method for rendering

the particle system that evolves according to the model presented thus far.

Real-Time Rendering
HOON EEN ERR LR INES TLS EOS IRE EB EEN IO MI

A programmable graphics card is used to realize the rendering of the particle system

evolving based on the model presented in the previous section. Specifically, the

approach exploits the ability to render to an OpenGL p-buffer.

The particle system is rendered as streaks of light extending from the current

position of the particle to its previous position. This approach is adopted because

when a bright light-emitting particle moves with high velocity, we perceive a streak

due to persistence of vision. The composition parameter is used to define the texture

coordinates of the line. The current value of composition is used as the texture coor-
dinate at the current particle position, and the composition at the previous time step

is used for the other end of the line. Since a particle composition and location repre-

sent the characteristics of a small volume of the fuel located at a given position, a

thickness is associated with these lines. These lines are rendered into the p-buffer. A

blur/halo is created in the upward direction to represent the scattering of particle light
by hot gaseous products resulting from combustion. Two random textures are used to

obtain offsets to the texture coordinates for blurring. The result of the computation is

stored back in the p-buffer that is being used as the source to obtain the texture coor-

dinates. This enables creating a cumulative blur.
The blurred texture is then used as a texture coordinate index into a one-dimensional

texture that represents the variation of light emitted with the progress of combustion.

SAARI

Examples and Discussion

The examples presented here are implemented in C++ and OpenGL and run‘on
machines with the Linux operating system. The algorithm performs at the rate of
approximately 60 frames per second on both a 2.2 GHz Pentium 4 with 768 MB of
RAM and GeForce 5800 graphics card and a 1.46 GHz Athlon XP with 512 MB
RAM with a GeForce 5900 Ultra graphics card. The number of particles used in all
the images and animation is 300.

Figure 5.5.3 shows some images of fire between two stages of global extinction.
The fire in the image is generated with 1 = 2, and the spread of the fire is two units in
the x; direction. Therefore there are four flame brushes. The value of A is one and y is
0.97. The threshold 6 is 0.1. Values of @ in the range 0.1 to 0.4 give the most visually
appealing results.

5.5 Gridless Controllable Fire 547

FIGURE 5.5.3 Images of fire between two stages of global extinction. Several frames exist

between two time instances of global extinction; these are not consecutive frames.

Figure 5.5.4 shows fire generated with 7 = 1.0 and 7) = 2.0. In both cases, A was

chosen to be 1.0. This creates an overlap of flame brushes that gives the fire a realistic

appearance.

FIGURE 5.5.4 Comparison of fire with different numbers

of flame brushes. The fire on the left has two main regions

(n = 1.0) while the one on the right has four regions

(Hive 2:0):

Figure 5.5.5 shows fires of different heights created with our model. For the tall

flames, the value of is close to 1. Tall flames undergo little or no global extinction.

When the value of y is lower, global extinction occurs more frequently. This is consis-

tent with the intuitive idea that when a flame is extinguished frequently, it has to start

again from the fuel source and cannot propagate to a great height before it is extin-

guished again.

In this implementation, the particles are introduced into the simulation by

assigning an initial velocity in the upward direction to represent the initial upward

velocity due to thermal buoyancy. Apart from controlling with the parameter 7, the

height of the flames can also be controlled to some extent with the value of upward

548 Section 5 Graphics

FIGURE 5.5.5 Comparison of fire with different heights of flames. Left

image created with x = 0.99999, middle image created with x = 0.97, and
right image generated with x = 0.9.

velocity assigned to the particles as they are introduced into the simulation. Higher

initial upward velocity results in greater flame height. This is consistent with the fact

that a larger flame results when a fuel is injected or introduced into an oxidizer with
greater velocity. It should be noted that particles evolved with the turbulent flow
(Equations 5.5.3 to 5.5.5), are not always guaranteed to move upward. When a parti-

cle moves significantly in the outward direction, it is deleted from the system and a
new particle is introduced for every deleted particle. When the composition of a par-
ticle reduces so that it no longer emits enough light to be visible, such a particle is

deleted from the simulation. In the examples, we have not simulated smoke. A tech-

nique for simulating smoke can be introduced on top of the fire as described in [Lam-

orlette02}. In that case, a particle that is no longer emitting light can be introduced

into the smoke simulation system.

These images are created with constant threshold @ value. The examples demon-

strate that it is possible to design fires with desired visual properties using the simple
intuitive parameters 7), ¥, and 0.

Conclusion

In this chapter, we have presented an approach to synthesize fire in real time for com-

puter graphics applications. The features of this work include:

¢ A gridless stable numerical simulation technique for turbulent flow in the form of
a stochastic Lagrangian approach-based solution.

5.5 Gridless Controllable Fire 549

¢ A model for the phenomena of global extinction that enables capture of flicker in
fire. This property of fire was not previously included in computer graphics mod-

els of fire.
e A parametric model such that flicker rate, flame height, and number of flame

brushes can be controlled in the model.

¢ A hardware accelerated technique for rendering the fire particle system.

The dynamics technique is implemented with particle maps, making the approach

gridless, and thus overcoming the problem of addressing grid design related issues like

choice of grid size, grid resolution, and grid placement in space. The technique pro-

posed is inspired by the physics and thermochemistry based models, however it is tai-

lored for computer graphics and gaming applications where control of the visual

aspects of fire is more important than physical accuracy.

References
espe a RINE ERSTE SOUL CON POTTER ROTI LEE TEE TIN IO TE TTT RTM I IOI ER

[Adabala00] Adabala, N. and S. Manohar. “Modeling and rendering of gaseous phe-

nomena using particle maps.” Journal of Visualization and ComputerAnimatin,

11:279-293, 2000.

[Bentley75] Bentley, J. L. “Multidimensional Binary Search Trees Used for Associative

Searching.” In Communications of the ACM, 18(9):509-517, 1975}

[Drysdale99] Drysdale, D. An introduction to fire dynamics. Chichester, New York:

John Wiley and Sons, 1999.

[Lamorlette02] Lamorlette, A. and N. Foster. “Structural modeling of natural

flames.” Proceedings of ACM SIGGRAPH 2002, pages 729-735, July 2002.

[Lee95] Lee, Y. Y. and S. B. Pope. “Nonpremixed turbulent reacting flow near extinc-

tion.” Combustion and Flame, 101:501-528, 1995.

[Nguyen01] Nguyen, D. O., R. Fedkiw, and H. W. Jensen. “Physically based model-

ing and animation of fire.” Proceedings of ACM SIGGRAPH 2002, 21:721—728,

July 2002.

[Pope00] Pope, S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2000.

[Subramaniam98] Subramaniam, S. and S. B. Pope. “A mixing model for turbulent

reactive flows based on Euclidean minimum spanning trees.” Combustion and

Flame, 115(4):487-514, 1998.

[Subramaniam99] Subramaniam, S. and S. B. Pope. “Comparison of mixing model

performance for nonpremixed turbulent reactive flow.” Combustion and Flame,

117(4):732-754, 1999.

[Wei02] Wei, X., W. Li, K. Mueller, and A. Kaufman. “Simulating fire with texture

splats.” [EEE Visualization 2002, pages 227-237, August 2002.

aaicon dehy sition ie.

toa
7 " ¥V | Tors | ora + 7 j

ay. 6 at ta ae . io oo

<7

tity Supiititoo 27

9d &) Hi. TeVewOs

lewniv set Ye Ip

ee : ie

ei “
., a at a. ¥ oan) a

Wane 68.4 faction of te ol bd fag wish Wf »

was eae + FIIL edd imgr crenged with x wy

athe seseng Yo pm sbae deste verse WV prlodkit .¢ brie. ViswladebA [O0s!

Srehasinkoowiggess wes, wormeilonly Yo » Yom w\“aqamn sbinieg griten
> def CLOTS

Pyi Ts} eek 16 bei) ayvil dows? yuna lenowesenibialsFA” 1.1 avid ER sean 3

SRD ob cae (OFE 1 sds Yo etn a hl a Ante!
re wo Wverincdadt’o seaitietht yf ae Cfo Wy A 4 stetivact ine ees

| ates oul inns Se» iat eS
leasrigns Ver saaiali merrivele? “9 Oe rs air & rex! tte Peaks

SOS RE AE"- GOS ae CRE Yl we eae
tones waesiwredt it Be Asychvors boundcaetady ow in ea

al MG ae HOF hy Sam

Shem bate tei eth Sorin! ako Sa

SET FEO IS OG VOIR Va viewiah st lt ky a

= Weer By iia, ares

DOGS. sas ariconpi a Tqegbiey 4 ire or. imp, Y aug cite tb

colychus HM oBecr grote tN ne 2° anineanmelties §

hn a agrees
é et

be duee eo io

ta no pres tintin!
wi stopmeadenn.) Cae? avis et eld pas lo ggF

news et
baie pada gree tage yer BS hye Bie

eons Aah aystradie Se ine) (ini) ope

CS eH

J a A f * Wig

Ba estat. * LeV AS oY

5.6

ON THE CD

Powerful Explosion

Effects Using Billboard

Particles

Steve Rabin, Nintendo of America Inc.

steve_rabin@hotmail.com, steve@aiwisdom.com

xplosion effects are common in games, but often they lack punch or intensity.

This article explains how to create an impressive fuel explosion effect out of bill-

board particles on any 3D hardware platform, including portable devices. Since com-

puters and video game consoles are currently not powerful enough to simulate real

explosions or even replay precanned explosion simulations consisting of thousands of

particles, game explosions must be caricatures of the real thing. Therefore, the goal is

not to directly simulate an explosion, but rather to convey the impression that a pow-

erful explosion has taken place. This requires a careful blend of approximation and

caricature. The in-game explosion must attempt to look like a real explosion, but also

exaggerate certain aspects to sell the effect.

The explosion effect in this article is a combination of seven different particle

effects: initial flash, radial flares, white hot inner core, intense fireball, expanding

smoke, and debris. The effect is shown in Color Plates 8A and 8B, as well as in several

videos on the CD-ROM. While the explosion does not resemble any kind of simula-

tion, research in simulating both explosions and smoke inspired many of the tech-

niques [Fedkiw01, Feldman03, Stam03}.

Initial Flash
—LLG LLAMA LEAL

TMT LT TT SEN ROARED MCI IE E EEM OI

When an explosion occurs, there is a moment at the very beginning when the viewer

is blinded by light. While this effect is missing from most video game explosions, it is

a critical cue that the explosion was both intense and powerful.

One way to simulate the initial flash is to create a single semitransparent particle

with a very bright yellow/white glow that falls off completely at the edges. An effective

method is to place a Photoshop lens flare in the alpha channel of the texture, as shown

in Figure 5.6.1. The color component of the texture should be a solid yellow/white.

551

552 a Section 5 Graphics

FIGURE 5.6.1. Alpha channel of a flash texture.

At the time of the explosion, the particle should spawn from the center of the

explosion and uniformly scale up very quickly, taking up the entire screen. Starting at
fully transparent, it should fade up quickly, then after about 0.3 seconds, it should

fade down very quickly until it is fully transparent (at which time it can be destroyed).
This sequence is shown in the far left column of Color Plate 8A.

This technique works best for explosions taking place in the sky, since the rapidly
expanding flash particles will intersect with the ground, buildings, and other objects,
causing the familiar z-buffer intersection of the billboard particles with the scene
geometry. If this artifact is unacceptable, another option is to create the flash using a
post-processing effect on the entire rendered image.

Radial Flares

As you can see in Figure 5.6.1, the initial flash contained some radial flares. However,
this technique is so effective that it’s worth emphasizing in the explosion. The effect
involves creating 10 to 30 pointy flares that are randomly placed around the explo-
sion, as shown in Figure 5.6.2.

These flares won't be scaled but should protrude out enough so that they are seen
sticking out of the initial explosion, with each being a random length. Each flare
should be started randomly between 0 and 0.2 seconds after the start of the explosion.
They should be fully visible on initialization and then start fading out after 0.1 sec-
onds. Note that the explosion will seem cartoonish if the flares are long or if they fade
out more slowly than this. If the flares are short and fade out quickly, the effect is

5.6 Powerful Explosion Effects Using Billboard Particles 553

FIGURE 5.6.2 Radial flares randomly pointing away

from the center of the explosion.

almost subliminal yet very effective in conveying the intensity of the explosion. This

sequence can be seen in the second column of Color Plate 8A.

Each radial flare billboard should be a narrow quad that points in the direction of

the explosion, as shown in Figure 5.6.3. A solid colored texture with a cloud-like blob

in the alpha channel works well for these billboards. A good color scheme is for the

flares to be a dusty light gray at the center and then blend to a dirty light yellow at the

tips. This colorization and gradient can be easily achieved by using a monochrome

texture map blended with interpolated vertex colors to provide the yellowish tint.

We
ris

FIGURE 5.6.3 Radial flare billboards made up of quads.

554 Section 5 Graphics

White Hot Inner Core
SF ERENT REN ae aT State A et PSY mR EHS REARS I S L EES

The white hot inner core is a key component of the explosion effect. It starts out as a
small fully opaque white circle fringed in yellow and orange. It then expands at a very
high rate, yet the expansion exponentially decays over time until it ceases to grow. At
its largest, the white hot inner core is a cloud-like white, yellow, and orange mass, as
shown in the third column of Color Plate 8A.

From the time of creation, the core should remain at full visibility for about one
second and then start fading out very slowly. This effect will act as a backdrop for the
fireball and smoke effects, which will be described shortly. As the smoke and fireball
expand, this white hot inner core will show through any empty spots and add to the
mottled look of the explosion.

There are two ways to render the inner core. The first method is the cheapest,
both for the CPU and GPU, and only requires one particle. The second method is
more expensive and requires about 100 particles. As we will see later, games can choose

between the cheap and expensive methods in order to scale performance depending
on the platform or the complexity of the scene.

The cheap method uses a single texture shaped as an amorphous solid white blob
with a very thin fringe of yellow and orange around the edges. The texture should
have a sharp but smooth edge in the alpha layer. This single particle will start off
rapidly expanding (scaling up), but then slow down exponentially until it stops grow-
ing. Then it will fade out slowly after one second.

The expensive method uses about 100 solid white particles, each with a cloud-
like blob in the alpha channel. By coloring the vertices of each particle yellow-orange
and rendering them using an additive blend, hot white spots will appear on overlap-
ping particles, fading out to yellow-orange at the edges. One effective color scheme is
to use bright yellow-orange on the top-right vertex, medium yellow-orange on the
bottom-right vertex, medium gray on the top-left vertex, and dark gray on the bot-
tom-left vertex. It also helps to make different octants of the explosion have different
intensities of the color scheme so that the core appears less uniform.

With the expensive method, each particle will remain the same size during the
entire effect. However, the particles shoot out randomly from the center with a high
velocity, exponentially decaying until the particle is motionless. Once all particles
have stopped moving, the core will have reached its full size. After about one second,
the particles should begin to fade slowly.

In reality, a lingering explosion will rise slowly due to its thermal buoyancy in the
air and then drift in a given direction due to the wind. Both of these effects can be
simulated by defining a wind force that blows softly in some horizontal direction with
a slight vertical component to represent the thermal buoyancy. This wind should be
applied to any hot inner core particles. This small touch helps to sell the effect.

5.6 Powerful Explosion Effects Using Billboard Particles 555
ycvocsieecenncnsenetrnetnnmitnie sennennnannsonnessstetcenpnanastteentosnnteeentateinstnc ants ita one eneenecHOAnSEA HREM MAINTAIN

picese reba £8 IR SRST AEE ERED EI LEE AOE IO EI TEN SE UES

The fireball is a secondary effect that kicks in after the first three effects. It starts at

about 0.1 seconds after the start of the explosion and shoots outward from the center

of the explosion. The fireball should start fully opaque and then fade out slowly after

0.3 seconds (as seen in the fourth column of Color Plate 8A).

As with the hot inner core, there are two ways that you can choose to render the

fireball component of this explosion effect. The first method is the cheapest and

involves a single particle. The second requires about 50 particles and is more expensive.

The cheap method uses a single texture shaped as an amorphous blob, similar to

the cheap hot inner core step. The texture itself should be a mottled red fireball with

black cloud-like edges within the texture, while the alpha channel should have a

cloud-like density and amorphous shape. This particle will basically crossfade with

the white hot inner core, scaling up at a similar rate with the exponential decay. After

0.3 seconds, the particle should slowly fade out.

The expensive method involves spawning roughly 50 particles in the center of the

explosion. Each uses a texture similar to the cheap effect and each starts off very small

and scales up slowly to a capped size. Each particle shoots from the center at a very

high velocity in a random direction. The velocity will then exponentially decay until

the particles are still, with only the combined wind and thermal buoyancy causing

them to drift. Each particle should then fade out slowly after 0.3 seconds. To make

the fireball more mottled, it helps to darken particle vertex colors in particular octants

of the explosion. :

An important aspect of the expensive method is stretching of the fireball particles

in the direction of motion. As each fireball particle moves away from the center, it

relaxes into a square shape. This effect is very important in creating the feeling of power

bursting from the center. Figure 5.6.4 shows how the billboard quad transforms over

the particle’s lifetime. Note that the particles become larger and more square as they

expand outward and slow down.

FIGURE 5.6.4 The transformation of the fireball billboard quad

over its lifetime. Note how the quad starts out narrow in the direc-

tion of the explosion and then relaxes into a square shape.

556 Section 5 Graphics

ait ~
The expanding smoke is another secondary effect that occurs after the flash, flares,
and core. It happens at about the same time as the fireball and generally overlays on
top of all the previous effects. Starting at 0.1 seconds, about 30 to 50 smoke particles
shoot from the center of the explosion (as seen in the fifth column of Color Plate 8A).

The particle’s texture should be a light gray smoke cloud with lots of billowing detail.
The alpha channel should have a cloudlike density and amorphous shape.

The smoke effect is fairly important to the explosion since it will expand the far-
thest and linger the longest. There is no cheap way to create the smoke effect, espe-
cially since it provides the cover for the cheap core and fireball effects, masking their
simplicity. Even with the expensive core and fireball, the smoke needs to be rather
detailed to sell the effect. Many game explosions ignore smoke, but it is a rather con-

vincing detail.

As the smoke shoots out of the center, it will use the same basic technique as the
fireball. Each particle will shoot in a random direction with a very high velocity and
exponential decay. Each particle should start out stretched in the direction of its
velocity and then relax into the shape of a square over time as shown in Figure 5.6.4.
After about 0.3 seconds, the smoke should begin to fade out very slowly (slower than

the fireball step).

During the course of each smoke particle’s lifetime, it should be carried by the wind
and thermal buoyancy just like the core and fireball. However, there is one more effect
that can add a nice touch. Normally, smoke has lots of billowing and interesting turbu-
lence. This can be caricatured by rotating the smoke particles. The trick is to determine
the wind direction as projected to screen space and rotate the particles to simulate sub-
tle vorticity. All smoke particles on the left side of the wind direction should rotate
counterclockwise, and all smoke particles on the right side of the wind direction should
rotate clockwise, as shown in Figure 5.6.5. The rotations should be very slow, and each
particle should have a different randomly determined angular velocity.

Wind and Thermal
Buoyancy Direction

FIGURE 5.6.5 Fizked rotational turbulence based
on the wind and thermal buoyancy direction.

5.6 Powerful Explosion Effects Using Billboard Particles

Debris

Effects Table
es RETA IER LORE EPO

ssscsueseueteneonen

No explosion would be complete without debris flying from it. The debris can be

embers, small dark chunks of dirt/metal, pieces on fire leaving smoke trails, or whole

pieces of whatever just blew up. The debris should be given a high initial velocity and

should not decay like the other gaseous effects. Instead, the initial velocity coupled

with gravity should drive its motion.

Dark debris is quite effective, since it has a high contrast with the explosion itself.

A cartoonish look can be achieved by having chunks of debris give off smoke trails as

they sail away from the explosion. Usually these smoke trails give off smoke particles

that start off hot white and change over time to yellow, orange, light gray, then finally

dark gray. Of course, these smoke trails require rendering of even more particles, so

the effect has to be used judiciously to maintain acceptable performance.

OE ELE ASLO L ELLE LLL LLL LLL DL ELLE LOT NN

The previous effects involved many precise timings, ve ocities, and forces. Table 5.6.1

lists each effect with all the relevant data so that you can easily compare and recreate

the explosion effect. Referring to Color Plate 8A will also help you understand the

precise timing of each effect.

Table 5.6.1 Comparison of the Timings, Velocities, and Forces Involved for Each Effect

Start Outward Other

Effect Particles | Time (sec) | Fade Up | Fade Down Scale Up Velocity | Forces

Initial Flash | 1 0.0 quickly very quickly | very quickly | none |_none

Radial Flares | 10 to 30 0.0 to 0.2 instantly quickly after | none none none

0.1 seconds

White Hot | 1 0.0 instantly | very slowly quickly with | none wind and

Inner Core after one exponential thermal

(cheap) second decay buoyancy

White Hot | 100 0.0 instantly | very slowly none very fast with | wind and

Inner Core after one exponential thermal

(expensive)
second decay buoyancy

Intense 1 0.1 instantly slowly after | quickly with | none wind and

Fireball
0.3 seconds | exponential thermal

(cheap) he decay | buoyancy

Intense 50 0.1 instantly slowly after | slowly until | very fast with | wind and

Fireball
0.3 seconds | square exponential thermal

(expensive)
‘4 decay buoyancy

Smoke 30 to 50 0.1 instantly very slowly slowly until | very fast with wind and

after ().3 square exponential thermal

seconds decay buoyancy

Debris 10 to 100 | 0.0 to 0.2 instantly | depends none fast with gravity

exponential
decay

er
OO

558 Section 5 Graphics
poses rssmaacencirerruerinatmnnsci oeesomenseena na sccteeacnsccevanattan anulaicistanenatetinanicelaaciesecnscesornmactmeenneretemancesicannanstbt

Soe
The Billboded effects presented so far will create a nice explosion, but the following
extra touches can help make the explosion really come alive.

Randomness

While this article presented a great deal of timing information for start times, fading
rates, and velocities, the entire effect is much more effective if each particle is unique
and isn’t in lockstep with the others. Randomness should be used to tweak all these
times, rates, and velocities, but it helps to keep the randomness within narrow ranges.
Most of the particles need to behave similarly, so the randomness shouldn't introduce
any large variations.

Screen Shake

When a powerful explosion takes place, the perceived intensity can be amplified by
briefly shaking the camera up and down (not left and right). Not every explosion
might warrant this effect, but close or powerful explosions will certainly be enhanced
by the brief shaking.

Efficiency Concerns | ,
RESTA CT TIEN NS

There are several efficiency concerns that are raised when many explosion effects
occur at the same time. The following explains how to deal with three such concerns.

Controlling the Number of Particles

In a game, it is typically difficult to control how many near-simultaneous explosions
occur at a time, due to the unpredictability of the players or AI. Therefore, the cost of
each explosion effect should be relatively small since the cumulative cost can sky-
rocket quickly. Not only must each particle be updated every frame, but all particles
from all explosions must be sorted on the CPU in order to blend correctly with the
frame buffer. As more particles are drawn, the sorting cost will rise exponentially.

The explosion effect described in this article showed how to make a cheap white
hot inner core and a cheap fireball in order to limit the number of particles. The
cheaper explosion effect uses about 43 particles (not including optional debris). The
more expensive explosion effect uses about 230 particles (not including optional
debris) and has considerable overdraw, which can be expensive for the GPU.

Choosing whether to use cheap or expensive explosions is one way to limit parti-
cles, but an equally important technique is to put a hard limit on the number of
drawn particles and recycle the oldest ones when the limit is about to be hit. For
example, a limit of 1,000 particles may be imposed so that the fifth overlapping
explosion will start to recycle particles from the first explosion. Since the first explo-

5.6 Powerful Explosion Effects Using Billboard Particles 559

sion is probably far into its lifetime and already fading out, the removal of these older

particles is generally not noticeable, especially since new explosions are very distract-

ing to the eye.

Optimizing Billboard Orientation

During gameplay, it might be common to see half a dozen simultaneous explosions

represented by thousands of particles. Each particle must recalculate its orientation in

order to face the camera each frame. This represents some serious computation, but it

isn't necessary or even desirable.

Within a single explosion, if each particle faced the camera based on its center

point, the particles would intersect with each other and cause ugly artifacts. There-

fore, the particles within an explosion must all be oriented in the same direction. The

solution is for each spawned explosion to have a single center point that travels with

the explosion during its lifetime (affected by wind and thermal buoyancy). This ori-

entation can be calculated once per frame for each explosion. All particles belonging

to a given explosion then use this same orientation, reducing the number of orienta-

tion calculations from over a thousand to less than a dozen.

Sorting Particles within Framerate Constraints

With thousands of potential semitransparent particles, all must be sorted with respect

to the camera so that they can be rendered properly. Unfortunately, this task falls on

the CPU, so efficiency is a major concern.

It is well known that the quicksort algorithm is ideal for this type of sorting, tak-

ing on average O(7 log). However, the time that quicksort takes can fluctuate wildly

each frame, even up to O(n’) in the worst case. This can be a big problem for games

that are trying to maintain a fixed or respectable framerate.

One solution is to use a sorting algorithm that can be stopped after taking a spec-

ified amount of time, thus ensuring that it will never take too long. Obviously, this

will cause some artifacts, as not all particles are properly sorted on every rendered

frame, but this is a concession that may be acceptable in practice. The chosen algo-

rithm must be incremental in that whenever the sorting is interrupted, the list is more

sorted than when it started. Since explosions stay confined to small areas and don't

move quickly, the sorted list of particles will be relatively unchanged from frame to

frame.
One sorting algorithm that can solve the problem is the infamous bubblesort.

This very simple sorting algorithm is well known to perform poorly, but it has two

nice properties. First, it can steadily sort a list and be interrupted at any time while

leaving the list intact and partially sorted..Second, if the list is sorted, it can escape

early with as little work as O(n). Therefore, the bubblesort algorithm can be capped,

for example, to never take more than 3% of the frame time.

Section5 Graphics
itt etstAaNe ASSN NNN NOCC NNN AAAS NAOMI

Conclusion
tate A ROR NN RE A

ON THE CD

References
2 ERE Mr

RUE

The combined explosion effect presented in this article is a detailed account of one

type of explosion, performed completely with billboard particles. Since there are

many types of explosions, it will take some careful tuning and creativity to caricature

the explosion that you're interested in for your particular game, but hopefully many of
the techniques presented in this article can be applied. The key is to study the type of
explosion you're trying to recreate. This can be done by looking at reference material
from the Internet, movies, and military documentaries.

Many game explosions focus on the white hot core or the fireball but could be
enhanced by considering the other effects such as the flash, smoke, and camera shake.
One of the key innovations in this article, shown in Figure 5.6.4, was applied to the
fireball and smoke. This innovation of making the fire and smoke forcefully explode
from the center is very convincing in showing a sense of intensity and power. Without
it, the fireball and smoke just seem to be static puffs that quickly move away from the
center. This disparity can best be seen in two of the example movies on the CD-
ROM. The file explosion1.mpg uses the pointy fireball and smoke technique, while
explosion2.mpg does not. The other explosion movies on the CD-ROM are supplied
to show different variations.

Creating good explosions for games is a balancing act of trying to get the best
effect within the limits of the hardware. Until we can simulate or replay explosion
simulations with tens of thousands of particles per explosion, it will surely take both
programming wizardry and artistic creativity to get the most bang for the buck.

SRE RN LACT IOS TE EU NN EE

[Fedkiw01] Fedkiw, R., J. Stam, and H. W. Jensen. “Visual Simulation of Smoke.”
The Proceedings of ACM SIGGRAPH, 2001.

[Feldman03] Feldman, B. E., J. EK O’Brien, and O. Arikan. “Animating Suspended
Particle Explosions.” The Proceedings of ACM SIGGRAPH, 2003.

[Stam03] Stam, Joe. “Real-Time Fluid Dynamics for Games.” Proceedings of the Game
Developers Conference, 2003.

0.f

A Simple Method for

Rendering Gemstones

Thorsten Scheuermann, ATI Research

thorsten@ati.com

M games require players to find or earn treasure in order to advance in the

game environment. This article discusses a technique for rendering gemstones

that could be used to reward successful treasure-hunting players with neat eye candy.

The beautiful and complex appearance of gemstones is mainly due to their trans-

parent material that has a high index of refraction. This causes chromatic dispersion

and total internal reflection of light rays traveling through the gem.

The gem-rendering technique for this article was used in ATI’s Radeon X800

launch demo Ruby: The Double Cross (see Figure Se).

- +

FIGURE 5.7.1 A screenshot from ATT’ demo Ruby: The Double Cross showing

the gem rendering technique in action. © ATI Technologies, Inc. 2004.

561

562 Section 5 Graphics
sessed anenenannsteecnententeeemnocbnesusoninsneaishintsnnainsy estate seSeAtte yneenanenerttemmmntitntiebnuninone Olin

eee oie

the Technique
ct et

Our gem-rendering technique combines lighting terms for light transmitted through

the gem, reflections (using a cubic environment map), and specular highlights. For the

transmitted lighting term we render the back and front faces of the gem separately. The
reflections and specular highlights are only computed for the front-facing geometry.

The appearance of a gem is dominated by light traveling through the gem and
bouncing around its interior due to total internal reflection, which unfortunately is
expensive to simulate properly. The gem-rendering technique described in [Guy04]
performs fairly accurate simulation of light transmission in gemstones at interactive
frame rates, but its performance is not acceptable for a game scenario on current-
generation hardware. We use a “refraction” cubemap for computing a simple approx-
imation of the transmitted lighting term. Several samples from this cubemap are accu-
mulated to give the appearance of total internal reflection and several light bounces
inside the gem.

Finally, to make the gem look very shiny, we render a number of light flares over

its brightest regions using screen-aligned billboards.

Normals and Cubemap Sampling Issue

Cut gemstones have flat facets and hard edges, which introduce shading discontinu-
ities. However, when using gem geometry with unshared vertices and vertex normals
set to face normals, the reflected and refracted view vector will not change much over

each face. When these vectors are used to look up into the reflection and refraction
cubemaps, only small regions of the cubemaps are sampled and magnified over the
gem's facets (Figure 5.7.2a). Using smooth vertex normals improves cubemap sam-
pling coverage, but the shading discontinuities along face edges disappear (Figure
5.7.2b). As a compromise, our gem geometry contains both face and smooth nor-
mals. For reflection and refraction vector computations, we use the average of both
normals which results in a reasonable rate of change for normals interpolated across
faces. This improves cubemap sampling coverage while still maintaining edge discon-
tinuities (Figure 5.7.2c).

setae to et RAE MMSECAOINS

Transmitted Light
cam

To compute the transmitted lighting term, we use a very simple approximate form of
precomputation: an offline renderer that can account for total internal reflection
through raytracing generates a cubemap from inside the gem looking out. Figure
5.7.3a shows the refraction cubemap used in the screenshots of this article. It was gen-
erated in Maya using raytracing with the recursion depth set to four bounces. The
lighting environment in the offline renderer was approximated with an environment
map. Although the gem geometry is simple, the cubemap captures a lot of the visual
complexity due to the complex path light rays follow when traveling through the gem.

5.7 A Simple Method for Rendering Gemstones 563

(a) (b) (c)

FIGURE 5.7.2 Visual effect of using different normals: (a) face normals,

(b) smooth normals, (c) averaged normals.

FIGURE 5.7.3 Zextures used in the examples: (a) refraction cubemap,

(b) environment cubemap, (c) rainbow cubemap, (d) edge map.

The gem pixel shader performs two looktips from the refraction cubemap and accu-

mulates them. The gem’s back and front faces are rendered in separate passes with the

front faces using additive blending, so that ultimately a total of four refraction cube-

map samples are accumulated for the final image. Figure 5.7.4 illustrates how the

transmitted lighting term is computed.

564 Section 5 Graphics

For each pass, the vectors used to look up into the refraction cubemap.are two

refraction vectors computed with a different index of refraction. Additionally, the sec-

ond refraction vector undergoes a reflection in a per-face random direction and an

additional arbitrarily chosen swizzle. The random reflection direction is looked up in

a 1D texture containing random values with a texture coordinate computed in the

vertex shader based on the face normal in model space:

rndTexcoord = dot(N face model, float3(1, 1, 1));

The semirandom reflection and swizzling causes the two vectors to look up into dif-

ferent regions of the refraction cubemap, which results in a more complex appearance
of the transmission term. Rendering two passes instead of just performing four cube-
map lookups on just the front-facing geometry has the advantage that different nor-

mals are used in the computation on back and front faces, which yields more diverse

sampling locations in the cubemap.

An additional way to increase visual complexity is by mapping a texture ae hard

edges (the “edge map”) on the gem’s geometry and modulating it with the transmis-

sion term (see Figure 5.7.4). In our example, we use a simple colored checkerboard

pattern (see Figure 5.7.3d). The colors of the edge map help to give the illusion of
chromatic dispersion (light splitting into a color spectrum due to the physics of

refraction). The strength of this effect is controllable by a parameter that blends the

edge map to white.

Transmitted
Lighting Term

FIGURE 5.7.4 Breakdown of the steps for computing the transmitted lighting term.

5.7 A Simple Method for Rendering Gemstones 565
ssnneesnnnencesescnetners omens nites nace nleettetenetA SOA . sunsets eseeneiinnsntsonnonnnneceneicyesteeiesctahauainnnetrauntetnananianmitanneotintoursoonit

Here is the HLSL function for the transmitted light term:

sampler tRefraction; // refraction cubemap

sampler tEdge; // edge map

sampler tRandom; // 1D texture with random RGB values

float3 TransmissionTerm (float3 N_curved, // averaged normal

float3 V, // view vector

float2 edgeUV,

float rndTexcoord,

float brightness,

float edgeStrength)

// Compute refraction vectors

float3 vTransmission1 = refract(V, N_curved, 2.4);

float3 vTransmission2 = refract(V, N curved, 1.8);

// Reflect second vector by a unit vector random to each face.

// rndTexcoord is computed in the vertex shader based on the

// face normal in model space.

float3 rnd = tex1D(tRandom, rndTexcoord) ;

rnd = normalize(2.0 * rnd — 1.0);

vTransmission2 = reflect(vTransmission2, rnd) ;

// Lookup into refraction cubemap and apply gamma

float3 cRefract = texCUBE(tRefraction, vTransmission1) ;

// Look up again, swizzling the vector for additional

// “randomness” ‘

cRefract += texCUBE(tRefraction, vTransmission2.yxZ) ;

// Apply gamma curve to cubemap to bring out bright regions

// (this could be folded into the cubemap)

cRefract = pow(cRefract, 4.0);

// Edge term

float3 edge = tex2D(tEdge, edgeUV) ;

edge = lerp(1.0, edge, edgeStrength) ;

// Modulate with edge term and scale overall brightness

return cRefract * edge * brightness;

aa eeemmnmememmell Reflections :

The reflection term of the gem shader is a combination of a specular highlight from a

point light source and reflections from an environment cubemap modulated by a

Fresnel term. To increase the dispersion effect, we use a cubemap in which each face

contains a rainbow color gradient and modulate it with the environment map (see

Figure 5.7.3). Together with the Fresnel term, this creates discolorations around the

edge of the gem (see the final result in Figure 5.7.5e). As with the dispersion from the

edge map, the strength of this effect can be controlled by brightening the rainbow

cubemap.

566 Section 5 Graphics

FIGURE 5.7.5 Breakdown of the steps for computing reflections with dispersion.

(a) Environment map reflections, (b) rainbow cubemap samples, (c) Fresnel term,

(d) product of (a) and (b), (e) final result.

Here is the HLSL code to compute the reflection term:

sampler tEnvironment; // environment cubemap

sampler tRainbow; // rainbow cubemap

float3 ReflectionTerm (float3 N curved, // averaged normal

float3 N face, // flat face normal
float3 V, // view vector

floaters // light vector
float3 lightColor,

float shininess, // specular exonent
float dispersionStrength)

// Reflection vectors

float3 R_face = reflect(V, N face);

float3 R_curved = reflect(V, N curved);

// Specular highlight

float RdotL = clamp(dot(R_face, L));
float3 specular = pow(RdotL, shininess) * lightColor;

// Fresnel term approximation
float fresnel = pow(1.0 — Cclamp(dot(N_face, V)), 2.0);

5.7 ASimple Method for Rendering Gemstones 567

// Look up in environment map
float3 cEnv = texCUBE(tEnvironment, R_curved) ;

float3 cRainbow = texCUBE(tRainbow, R_curved);

// Modulate environment map by fresnel term and dispersion

cRainbow = lerp(1.0, cRainbow, dispersionStrength) ;

cEnv = cEnv * cRainbow * fresnel;

return saturate(specular) + cEnv;

ei NSS ERNE EE HID SSRN RESET.

Rendering light flares over the gem’s brightest regions can give it a more brilliant look.

We place static flare billboard geometry on the gem’s surface and throughout its inte-

rior (see Figures 5.7.6b and 5.7.6c). The flare centers stay fixed relative to the gem

while the flare geometry is screen-aligned in the vertex shader.

The flares are rendered with additive blending on top of the final image as a post-

processing effect. Before rendering the flares, the frame buffer contents must be copied

into a texture so that they are accessible in the flare pixel shader. The flare intensity is

chosen in the shader depending on the luminance of the frame buffer at the flare’s cen-

ter position. If the luminance is below a threshold, all fragments of the flare are dis-

carded. This causes flares to only appear over the brightest spots on the gem. Moreover,

they will rapidly turn on and off as the viewing angle and the position of the gem

change, which hides the fixed position of the flares relative to the gem. Additionally,

the flare intensity can be modulated by a noise value dependent on the flare’s screen

space position and the current view direction for a more sparkly appearance.

(a) (b)

FIGURE 5.7.6 (a) Flare geometry, (b) and (c) flares distributed throughout the gem.

Rendering a lot of flares—most of which will be faded out at any time—can be

expensive because of the high overdraw involved. To save fill overhead, it is advisable to

create flare geometry that tightly bounds the nontransparent area of the flare texture (as

568 Section 5 Graphics

shown in Figure 5.7.6a), which can result in better performance when compared to

simple billboarded quads, which would have large empty areas.

For the billboarding vertex shader that follows to work properly, all vertices that

belong to a flare have to have the same vertex position located at the flare center. The

flare’s shape is determined by the 2D texture coordinates, as shown in the shader code.

Following is a flare vertex shader:

float4x4 mWorldViewProj;

float4x4 mWorld;

float4x4 mView;

float3 worldCamPos;

float flareRadius;

struct VsInput

{
float4 pos : POSITIONO;

float2 uv : TEXCOORDO;

}5

struct VsOutput

float4 pos : POSITIONO;

float2 uv : TEXCOORDO;

float2 noiseUV : TEXCOORD4 ;

float2 screenUV : TEXCOORD2;

}5

VsOutput main (VsInput i)

{
VsOutput 0;

// Screen-align billboard geometry and transform

// Note that all vertices of one flare must be set to the flare

// center position. The shape of the flare is determined by the
// texture coordinates.
float2 pos2D = i.uv — 0.5;

float4 pos = i.pos + (pos2D.x * mView[0] +

pos2D.y * mView[1]) * flareRadius;
0.pos = mul(pos, mWorldViewProj);

// Compute screen space position of flare center

float4 flareCenterPos = mul (i.pos, mWorldViewProj);

o.screenUV = flareCenterPos.xy/flareCenterPos.w;

o.screenUV.y = -o.screenUV.y;

o.screenuUV = 0.5 * o.screenUV + 0.5;

// View vector to flare center

float3 V = normalize(worldCamPos — mul(i.pos, mWorld));

// Pass along texture coordinate
O.UuV = i.UV;

5.7 A Simple Method for Rendering Gemstones 569
sos rsastsngnensinrene

// Compute some “random” texture coordinates depending on the

// position and view vector, which are used to look up into a

// noise texture in the pixel shader.

o.noiseUV.x = fmod(abs(dot(pos.xyz, float3(1, 1 uh) eee
o.noiseUV.y = fmod(abs(2.0 * dot(V, float3(1, 1, 1

), 2.0);
))), 2.0);

return 0;

}

Following is a flare pixel shader:

sampler tFlare; // flare texture

sampler tNoise; // 2D noise texture

sampler tScreen; // back buffer contents

float flareIntensity;

struct PsInput

float2 uv : TEXCOORDO;

float2 noiseUV : TEXCOORD1;

float2 screenUV : TEXCOORD2;

}5

float4 main (PsInput i) : COLOR

{
// Sample flare texture

float fAlpha = tex2D(tFlare, i.uv);

// Get noise value for flare intensity

float noise = tex2D(tNoise, i.noiseUV) ;

noise = lerp(0.6, 1.0, noise);

// Get screen luminance at flare center

float3 cScreen = tex2D(tScreen, i.screenuUV) ;

float lum = dot(cScreen, float3(0.3, 0.59, Oeil) is

// Discard fragment if luminance is less then 0.8

clip(lum - 0.8);

// Pull luminance for visible flares into [0, 1] range

// and apply a gamma

lum = smoothstep(0.8, 1.0, lum);

lum *= lum;

float4 o = 0;

o.rgb = noise * lum * fAlpha * flareIntensity;

return 0;

570 Section 5 Graphics

Conclusion
SORBENT SANE GR ROIS EGE SBI TNC

This Aes eee a Paane fos radadae gemstones that performs well on cur-

rent graphics hardware. This method largely ignores physical accuracy and instead

concentrates on an interesting look that would fit in a typical game environment.

Transmitted light is approximated using lookups into a precomputed refraction cube-

map. The reflection term is a combination of a reflection cubemap and specular light-

ing. The illusion of chromatic dispersion is created by simple blending of different

textures. Flares are rendered over bright spots on the gem using billboards in a post-

processing pass.
Our rendering technique uses tricks that could be applied in other scenarios:

averaging face and smooth normals can be useful for shaders on geometry with hard
edges. The flare post-processing technique can be generalized to cover the complete
image and used for special effects. Finally, complex particle geometry that bounds the
nonempty regions of a particle texture—as used for the flares—might help improve
performance on fill-bound particle systems.

Reference
PSS RECESSES ET EE EINER NS LEE LL OE LE OT EEELLDNL LEN LE LLL NIALL TLE LAD IE LELLNILEEELD NS OO LL ELLE LE LEELA

[Guy04] Guy, Ste phate and Cyril Soler. “Graphics Gems Revisited.” ACM Transac-
tions on Graphics (Proceedings of the SIGGRAPH conference), 2004.

5.8

Volumetric Post-Processing

Dominic Filion, Artificial Mind & Movement

dfilion@hotmail.com

Sylvain Boissé, Motorola

sylvainboisse@hotmail.com

WwW the ubiquity of programmable graphics hardware, we are seeing increasing

interest in customized. post-processing effects. Effects such as pixel displace-

ments, blooms, and glows are common post-processing effects in today’s games. lypi-

cally, post-processing effects are inherently 2D. Pixel displacement effects, for example,

will transform pixels so as to warp the image, simulating refraction due to heat or some

special effect. This process is typically applied to a specific subregion of the image and

does not take into account issues of object ordering and shape. As an example, consider

a heat shimmer effect shown in Figure 5.8.1. The heat given off by the fire should warp

objects seen through it, displacing pixels to form an undulating wave pattern. Done

naively, the heat shimmer effect will warp not only objects behind the fire but also

objects in front of it, which is incorrect. Clearly, the post-processing effect needs some

form of depth awareness. This gem will discuss how we can integrate depth informa-

tion into our image-space operations using volumetric post-processing.

FIGURE 5.8.1 Correct post-processing. The heat from the fire

should distort the wall seen behind it. However, if an object such

as a column is put in front of the object, the column should not be

affected by the heat shimmer.

571

572 Section 5 Graphics
“oreoniaaanenenanieinmasicerenetcouesteateintnamasetiuintiihioms snitevcineniennionncsainsennunncenia i

Volumetric Post-Processing

To apply our volumetric post-process, we will define the concept of a post-process

volume. The post-process volume is a 3D object that will affect any scene pixels that are

behind it. Figure 5.8.2 shows an example of a post-process volume.

FIGURE 5.8.2 = he post-process volume.

Unlike standard post-processes, we are using a 3D shape, not a 2D image-space rec-

tangle, as our post-process region. The post-process volume defines a region—it is not
meant to be rendered directly. The post-process volume could be a simple cube as
shown in Figure 5.8.2 or it could be defined by a more arbitrary shape as discussed in
[Oat04]. Naturally, some scene objects may penetrate the post-process volume, caus-
ing only a portion of the object to be distorted.

Depth Awareness

With our post-process volume defined, we can classify our scene in two sets: regions
that are behind the front of the volume and regions that are in front of it. We could
simply sort the objects in our scene to try and figure out the spatial relationship with
the post-process volume; however, this would not work for objects intersecting the
volume and would not be robust in general for arbitrary scenes.

In effect, we need to:

* Render only objects that are behind or contained by our post-process volume to
an offscreen render target.

* Apply the post-process effect (i.e., a warp to simulate refraction due to heat) to
the render target.

* Render objects that are in front of the post-process volume.

The first problem is how to render only objects that are behind the post-process vol-
ume in image space. We would like to compare the z-values of the pixels of the scene

5.8 Volumetric Post-Processing 573
svousnanancaaneconessenatnannnncinerhis

that we render to the z-values of the pixels of the post-process volume and only allow

those z-values that are greater than the post-process volume’s z-values.

This would suggest that using a simple z-buffer greater-than comparison mode

would do the trick; unfortunately, changing the z-buffer test from its normal less-or-

equal value to greater-than will ruin the hidden surface removal for the scene in gen-

eral. Essentially, we want the nearest pixel that is behind the front of the post-process

volume to remain in the frame buffer. Having two z-buffer tests that would each com-

pare values from separate source frame buffers would do the trick (greater-than post-

process volume and less-or-equal current frame buffer z-value) but no such concept

exists in hardware depth buffering.

Using Shaders for z-Compares
Since the graphics card does not natively support multiple depth buffer tests, the solu-

tion is to add this functionality to the videocard through the use of vertex and pixel

shaders. We will implement the comparison with the post-process volume this way.

Naturally, we first need a value with which to compare. The post-process volume’s

z-values must be calculated and stored in an image buffer that will be the same size as

the main framebuffer. We cannot use the z-values in the videocard z-buffer directly,

since these values are typically encoded or compressed in a hardware-specific format.

Instead, we can use a vertex shader to compute these z-values ourselves. These val-

ues can be passed to a pixel shader through an interpolator and stored in a texture.

Since high precision is needed on values computed, it is necessary to use a floating-

point texture. We only need to store a single floating-point value per pixel, so we use

a D3DFMT_R32F format texture in Direct3D. Since not all hardware supports float tex-

tures, a standard color texture still can be used as a fallback. This can result in preci-

sion limitations that create subtle artifacts on screen, though this can be reduced using

workarounds such as reducing the Far/Near ratio when computing the depth values.

Storing the z-values of our post-process volume into a single-component floating-

point texture gives us the values we need so we can find objects that are behind the

post-process volume. We will refer to this texture with the post-process volume’s 2-

values as the volume’ depth texture. We want only objects behind and within our post-

process volume to be affected by the post-process.

Pixel-Perfect Clipping MAMMAL LOL MTEL TTL NLT

The volume’s depth texture can now be compared with the pixels of the scene. The

depth texture is first selected as an active texture. As before, a vertex shader will com-

pute the z-values in the scene and transfer them to a pixel shader.

We will also need to know which pixels in our frame buffer correspond to which pix-

els in the depth texture. To achieve this, the vertex shader will perform the perspective

transformation to screen space. The screen space coordinates will then be normalized by

the vertex shader to a normalized 0..1 range so that the screen coordinates correspond to

UV coordinates on the depth texture. These UV coordinates are passed to a pixel shader

574 Section 5 Graphics

using an interpolator. The pixel shader can then use these UV coordinates to look up the

post-process volume’s z-value in the depth texture, as illustrated in Figure 5.8.3.

Frame buffer Depth texture

Pixel in frame buffer image is compared with

corresponding pixel in depth texture. In this image,

darker pixels in the depth texture correspond to

larger depth values.

FIGURE 5.8.3 Looking up the depth value.

These two z-values are compared in the pixel shader, and alpha testing is used to

mask which pixels get written to the frame buffer. If the z-value of the scene pixel is

greater than the post-process volume’s, the alpha of the resulting pixel is set to 1, oth-

erwise, it is set to 0. With an alpha test compare function of greater-than and an alpha

reference value of 0, this allows us to kill pixels that are in front of the post-process

volume. We could alternatively use the assembly texkill (or HLSL clip() intrinsic)

to perform this conditional pixel killing.
After our rendering pass, what we will have is a rendered scene that is “clipped away”

by our post-process volume mesh at the pixel level. The post-process volume mesh used
for this clipping operation can be arbitrarily complicated, as shown in Figure 5.8.4.

FIGURE 5.8.4 = The “clipping” operation.

5.8 Volumetric Post-Processing 575

The Post-Process .

As mentioned earlier, there are many post-process transforms such as distortions,

blurs, and color transforms that can be applied in image space. In our example, we are

modeling a heat shimmer effect, which can be suitably modeled by a traveling sine

wave distortion with a slight blur. Please refer to the sample code included on the

(<=) companion CD-ROM for a detailed implementation. The effect is applied by select-

onTHECD ing the proper post-process shader (blur, displacement, bloom, etc.) and re-rendering

the post-process volume. This will apply the post-process only to pixels within the

volume.

The Final Pass

At this stage, we will have rendered what is behind the post-process volume and

applied our effect to our post-process area. We now must render the undistorted poly-

gons that are in front of the post-process volume. This is exactly the reverse of the

operation conducted in the first pass of the algorithm. Here, pixel alpha will be 1

when the z-value of the scene polygon is /ess than the post-process volume’s and 0 oth-

erwise. At this point, the image will be completed.

Multiple Volune2 an
Our technique could be used with multiple post-process volumes as long as the vol-

umes are nonintersecting and are easily sortable by their z-order. Given these condi-

tions, our algorithm extends to:

1. Clear frame buffer.

2. Clear depth texture to zero.

3. Select greater-than z-buffer comparison test and render all post-process vol-

umes into depth texture, storing z-values as floating-point values in depth

texture.

4. Set z-buffer test to /ess, not /ess-or-equal, to save on fillrate (we will be ren-

: dering the same polygons multiple times) and render the scene with a vertex

shader calculating z-values and a pixel shader filtering out pixels that are in

front of z-values calculated in depth texture.

. Apply post-processing effect of farthest post-process volume to screen.

6. Go back to step 2, this time excluding the post-process volume that is far-

thest away from the viewer. Loop through steps 2 to 5 multiple times,

removing the next farthest post-process volume on each loop until there are

A

no volumes left.

For an example of how this process works with multiple volumes, refer to the top-

down view shown in Figure 5.8.5. Say a scene contains nonintersecting post-process

volumes A, B, and C. On the first loop, all three volumes are rendered into the depth

576

Conclusion

Section 5 Graphics
ttetneneeeneNetnt ANNAN LANNE ENN eS

texture. This will cause our pixel shader to only render pixels that are behind all three

volumes (region 1). Setting the z-buffer test to greater-than will ensure that the

farthest front-facing polygons from the set of three volumes are stored in the depth

texture. The post-process effect for C is then applied to the scene.

On the second loop, the depth texture is cleared and post-process volume A and

B are rendered in the depth texture. We re-render the scene, allowing pixels that were

behind A and B but were in front of C (region 2) to be written to the scene. We then

apply the post-process for volume B (the farthest away in the current post-process vol-

ume set). On the third loop, only post-process volume A is rendered into the depth

texture, thus adding pixels that are behind A but were in front of B and C (region 3).

The post-process for volume A can then be applied. Finally, objects that were in front

of all three post-process volumes are rendered (region 4). No post-process effect is

applied on these.

Region 1

Region 2

Region 3

FIGURE 5.8.5 Multiple post-process volumes.

RATED RNAS BSR ETN LOL Si REINER

The technique presented in this gem allows an arbitrary 3D volume to be affected by
a post-process effect. This can be used for dramatic effect with localized image filters.

The algorithm does rely on some recent features of videocard hardware such as
shader functionality and, most importantly, floating-point textures. There can be
some overhead as the scene geometry is rendered multiple times, but this can be alle-
viated through clever culling and a good visibility system.

The technique can also be used in many other situations where pixel-perfect 3D
clipping with a volume must be achieved. One could easily imagine using this tech-
nique to provide “cutaway” views of objects or to perform voxel-based processing.

5.8 Volumetric Post-Processing 577
saataunsssestcetestnntnesneeneteaunnnnnneneencnissststye

 tense eaten tO UAH AtontnHNALLA ARAM OAR ENMAO AMA EOE

References
ERNE REIS

[Isidoro02] Isidoro, John, Guennadi Riguer, and Chris Brennan. “Texture Perturba-

tion Effects.” In Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks,

337-346. Available online at http://www.ati.com/developer/shaderx/ShaderX_

TexturePerturbationEffects.pdf.

[Michell02] Mitchell, Jason L. “Image Processing with 1.4 Pixel Shaders in Direct3D.”

In Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks, 25 8-269. Available

online at /ttp://www.ati.com/developer/shaderx/ShaderX_ImageProcessing. pay:

[Oat04] Oat, Christopher and Natalya Tatarchuk. “Heat and Haze Post-Processing

Effects.” In Game Programming Gems 4, Charles River Media, 2004.

=i ae

>, aconget. Thin will couse oul wnt Poder ly wlag pixt wi
_— oan . tthe con if oe fam sty S sk tia yy F

ee ee
= ys eee Attn a priest’ OO Wie be saree cs ub oF

_ ss: “Reon alt, oirtern netbsed Ee fades slip |

: py Pep Oeree 49 txt ran suature. We ae

7 “Pieeaichal tohanlé, dort e+ ave tas eno ei

Pa Meiers ith Wen wil recom MENA oe hay
ras Hh psa at neal opaaalcenes hp hwalegss Bhi Car eal ab
. alien seg. vot nage lesinal lane Wed ba ei Aer Hae

= . rare hein ok) eaMepar veMeh Bap bs baie Ripon
Py “<3 ae grasi ps ee. volun ch are # sidered egy so Nog et fa

aa

eee myers Uw ow

any a 5 i;

4 {
= |

7 |
:

;
}

7 : ;

'

wre 1.4 bindived post-pe oy oie. ia S te 7

ae a ‘Ba

é Ai

i 4 ’ i) :

le BAGS > ie a t - : ‘ it

— pt - i eee

7 : roet ni howe at sloraty ST sth ;

‘ Sec a tiated jo dey lt a

when woe ole a: nem (ieee
oF —"OteRey aad, eax eotiuks Coc

‘al ‘Se ric oe maser m siden

ernst alr ited A Sain

eo ee

“ orc casas 4

2 on ham ee
nw ys

a _

5.9

General Methodology

Procedural Level

Generation

Timothy Roden and Ian Parberry,

University of North Texas

roden@cs.unt.edu

ian@cs.unt.edu

raditionally, a typical 3D game development project proceeds concurrently on

two fronts. Programmers design, code, and test a game engine at the same time

that artists create content for the game. There are compelling reasons to suggest that

this paradigm may no longer be desirable or even feasible for some projects. Technical

advances in hardware have enabled the use of art assets that are much more detailed

than ever before. Increased storage and available RAM translates into larger game

worlds. Some games require an enormous amount of content such as online multi-

player games and games that aim to provide a high level of replay. Still another factor

‘s the increased availability of licensed engines and other high-quality middleware,

which can cut engine development time significantly. What this means is high-defin-

tion art assets, which take artists longer to create, will likely be needed sooner rather

than later in the development cycle. One obvious solution to this problem is to create

art assets procedurally. This gem presents the ideas and techniques behind a proce-

dural level generator. We illustrate its use to create a simple 3D dungeon.

en
e

We have several goals for the level generator. First, we want a prototype system to cre-

ate an integrated collection of portal-rendered indoor 3D geometry—a level. The sys-

tem should be as generic as possible so it can be adapted to specific needs. We want to

generate levels of arbitrary size and complexity. We want the system to run fast so we

can use it to generate levels dynamically during program execution. Finally, we want

the level generator to rely upon human-created artwork as little as possible. Ideally,

the entire level will be synthesized by the computer. In practice, however, a small

amount of human-created artwork will be required to make a better quality level.

579

580 Section 5 Graphics

Creating a level consists of five steps:

. Design the level.

. Create a set of prefabricated 3D geometry.

. Procedurally generate a 3D graph.

. Procedurally map the prefabs to the nodes of the graph.

. Procedurally add content (details) to the level. WW HY Go Nb re

Level Design
BRL ROLLIE AEE EDEL ES EMT LILLIE LEER LLE LEE LL DO ELLA

Designing a Pay ert evel has some strong similarities to designing a

level by hand, at least initially. Questions have to be answered such as, what is the
theme of the level? What is the general size and shape of the level? How many rooms
are there? How many corridors? Since the level will be created procedurally, we get to
specify some of this information parametrically. For the purposes of this gem, we cre-
ate a simple dungeon consisting of corridors, stairs, and rooms.

Out of necessity, we envision our dungeon positioned on a 3D grid that parti-

tions world space into cubic sections called cells, as shown in Figure 5.9.1a. Using a

grid will simplify many implementation details, including welding of geometry, map-

ping world coordinates to local coordinates, automatically generating portals, and

instancing of geometry. Each grid cell will be 90 feet high, 90 feet wide, and 50 feet
high, as shown in Figure 5.9.1b. Each cell can contain either a corridor or a room.

Geometry in each cell can connect with the geometry of up to four adjacent cells

(north, south, east, and west). We allow connections between cells at either the same

height or in a sloping manner. For example, we allow a corridor to connect to an adja-
cent corridor that is higher or lower, as shown in Figure 5.9.4. In such cases, we gen-

erate stairs to connect the two cells.

nimi are
90!

(a) (b)

FIGURE 5.9.1 (2) World space partitioned into cubic cells by means
of a 3D grid. (b) One 3D grid “cell.”

5.9 Procedural Level Generation 581
er reeeecen enmmmenunentmaraneen=onsannnnnsanienntananasnsunanssnnnasenstnaanamntn

anmnaimisiamnnnnmnmtniniiin

Corridors, both flat and with stairs, are 10 feet wide. Flat corridors have 10 foot

ceilings while stairs have 15 foot ceilings. Rooms are 30 by 30 feet square with 10 foot

ceilings and have 10 foot open entrances (no doors). All horizontal connections

between corridors are at right angles. Given these dimensions, we could lay out a 4-

connected corridor in a cell, as shown in Figure 5.9.2a, or a 4-connected room, as

shown in Figure 5.9.2b.

10' 10'

30'
(a) (b)

FIGURE 5.9.2 (a) Top view of cell containing a 4-connected corridor.

(b) Top view of cell containing a 4-connected 30'X 30' room.

Using Prefabricated Geometry
In contrast to a purely procedural approach that would take our preceding definition

of the level and generate the geometry for each cell, we add a human element. We

want the level to look as good as possible, so it's a good idea to have an artist create

portions of the actual level geometry. We use a modeling program to create a set of

prefabricated geometry pieces. Using prefabs as building blocks for more complex

geometry is a straightforward approach already in use in more conventional human-

centered level design [Perry02].

The goal is to create a prefab for each possible cell layout. The problem with this

is that even with the simple dungeon we've described
 so far, there is a large number of

possible cell variations. Consider a cell containing a corridor. The cell could be 1-con-

nected, 2-connected, 3-connected, or 4-connected. With 1-, 2-, or 3-connected cells,

there are four different orientations. For example, a 1-connected cell could be con-

nected to another cell to the north, south, east, or west. To make matters worse, con-

nections can occur between cells at the same or different heights. A 2-connected cell,

for example, has nine different variations, which when multiplied by its four possible

orientations, gives 36 possible layouts. A 4-connected cell has 80 possible layouts, and

so on.

582 Section5 Graphics

To make the job of creating prefabs more manageable and to reuse as much geom-

etry as possible, we subdivide each cell horizontally into 3 x 3 sub-cells, each 30 x 30 x

50 feet in dimension. Our aim is to populate a cell with geometry by welding together

several smaller prefabs at execution time. As it turns out, we only need the nine small

prefabs shown in Figure 5.9.3 to do this. To augment this set of sub-cell prefabs we

could optionally create one or more full-cell (or sub-cell) “special” prefabs. This could

be useful if our design called for the inclusion of special rooms or locations in the dun-

geon that couldn't be readily constructed using only the nine smaller prefabs.

cor_lway cor_2way cor_2wayangle

cor_3way cor_4way cor_down

small_room small_room_wall small_room_door
(floor & ceiling)

FIGURE 5.9.3 Jop view of nine prefabs needed for basic dun-
geon level, each shown on a 90'X 90'cell, subdivided into 3 x

3 sub-cells, each 30'X 30'

Graph Generation
HER HEN ERNE NI ANC RO a 8

With a design in hand and a set of prefabs to work with, we're now ready to imple-
ment the procedural part of the level generator. We generate a 3D graph data struc-
ture as a high-level representation of the procedural game level. Each node in the
graph will correspond to one cell of geometry in world space. We store the nodes of
the graph in an array. Each node in the graph contains the following data:

5.9 Procedural Level Generation
583

svat ents NT MNRAS

struct GraphNode {

int x, y, z; // in graph coordinates, (0,0,0 = start node)

int dir[4]; // array index of 4 adjacent nodes (O=none,

ib} else connect to node

ALE // dir[x]-1 in array)

Generating a random graph presents myriad possibilities. Whatever method we devise

should be driven by the design. Our design may include constraints to be placed on

the graph generator. For example, we may want to enable specific sequences of rooms

in the dungeon that can only be visited in a particular order.

For the purposes of this article, we generate a graph with a tentacle-like topology

that radiates from the starting node in the eraph (the entrance to the dungeon). With

knowledge of the intended geometry, we place one constraint on the graph genera-

tor—a new node in the graph cannot be created directly under an existing node that

has a connection to a lower node. The reason for this can be seen in Figure 5a. in

case a cell needs to connect to a lower cell, the actual geometry for the cell will drop

below the cell into the adjacent lower cell. We therefore require this lower cell to

remain empty since we will assume the geometry if a descending cell occupies not

only the space contained by the cell but also the cell directly be
neath it.

Reserved

for !

Node A

|

FIGURE 5.9.4 Side view showing how two corridor nodes (cells)

can connect to each other diagonally using stairs. The graph node

below Node A is reserved for use by Node A.

We begin by specifying a minimum and maximum number of nodes for the

graph. We control the height of the graph by supplying a parameter that specifies the

percentage of connections between nodes that will be at different heights. For exam-

ple, using a value of 25% means each new node added to the graph will be at the same

height as the node it is connected to about 75% of the time and at a different height

about 25% of the time.

584 Section 5 Graphics

The basic algorithm works as follows. We generate a starting node that becomes

the entry point into the dungeon. Since this node can have up to four connections to

other nodes, we add four entries into an “available” list. Then, in a loop that executes

once for each additional node we want to generate, we do the following:

1. Create a new node.

2. Randomly select from the available list an existing node as the attachment

point.

. Verify that all constraints remain satisfied.

. Attach the new node to the graph.

. Remove one entry in the available list for the existing node.

. Add three entries in the available list for the new node. ON WN HR BO

If we find that attaching the new node will violate any constraints, we select another
attachment point. For very complex constraints, there may not be a valid attachment

point. In that case, we can either terminate the algorithm, if the minimum number of

nodes have already been generated, or optionally, restart the algorithm from the begin-

ning. When implementing a new graph generation algorithm or modifying an exist-
ing algorithm, automated testing should always be done to prove the algorithm works
reasonably well.

When selecting a new node from the available list, we prefer to choose nodes cre-

ated more recently as attachment points. This allows the graph to grow outward, pro-
ducing a more interesting graph. A simple method for selecting an available node is to

generate a random number between 1 and the number of entries in the available list.

Call this value 7. Next, generate a second random number between r and the number

of entries in the available list. Use this second number as the index into the available

list.

After the graph is created, we save the graph in both binary and text file formats.
Along with the graph data, the files contain some statistics including seed values used
by the random number generator. The seed values can be very useful. For example,
given a fully generated level, we can regenerate it again at any time using only the seed
values. An example text file is as follows:

num_nodes: 99

max_level: 5

adjacency: 4

min_nodes: 50

max_nodes: 100

percent_vertical connects: 0
percent_sloping_horizontal_connects: 25
random_type: 0

random_start_seed: 1076104227

random_end_seed: 1359372770

Node: 0

location (x,y,z): 0,0,0

connected to nodes: 1(N)

5.9 Procedural Level Generation
585

cnnaerissinascansnennniniisssuaumennucnmmesiusu
mmnnaiinnanuimmmnmmnimiiie

Node: 1
TOGat Tone (Xe VarZ)) ee Obsealasil

connected to nodes: 0(S) 2(E) 3(W)

ON THE CD

ss LE

al aah

The companion CD-ROM contains the source code for the graph generator.

The next step in generating the level is to cycle through each node in the graph, map-

ping geometry to it. We tag each node according to the type of geometry we want in

the corresponding cell. Some nodes become rooms while others are tagged as corri-

dors. We can enforce additional constraints at this point such as no two rooms are

adjacent to each other.

Mapping prefabs to the graph is purely mechanical. We initialize an empty list of

full-cell models. This cell-model list, when built, stores every possible variation of cell

geometry found in the level. It is highly possible that multiple cells will be of the same

type (room, corridor) and have the same spatial connectivity. In this case, we don't

want to duplicate actual model geometry. Instead, we allow multiple nodes in our

graph to instance the same geometry in the cell-model list as shown in Figure 5.9.5.

Potentially, we end up with a fairly large list of models, but it is likely a smaller set

than all possible variations.

CellContents

Model3D

FIGURE 5.9.5 The major data structures that make up a level.

Using the sub-cell prefabs, we have basically shifted work from the artist to the

computer by eliminating the need to generate all possible variations of cell geometry

ahead of time. We also reduce the run-time storage requirements of the level by only

storing the cell geometries used in the level.

For each node in the graph, we examine its connectivity information and look for

previously generated geometry in the cell-model list. If identical geometry is found,

586 Section 5 Graphics

we instance this geometry. Otherwise, we create the geometry for the cell and place it

in the cell-model list. Creating new cell geometry proceeds as follows:

. Gather the sub-cell prefabs needed.

. Translate/Rotate each prefab as necessary.
Weld all the prefabs into a single model (see Figure 5.9.6).

. Add this new model to the cell-model list.

Translate (0,0,-30) Rotate (180) Rotate (90)

Rotate (90)
Translate (0,0,-30)

Ueselieras Sauenyfoac Connect

Down

, To

Lo me a | emer Res i Lower Cell

FIGURE 5.9.6 Welding four sub-cell prefabs into a single model.

Since our sub-cell prefabs tend to be small in terms of number of vertices, we pre-
fer not to render them as distinct models with individual API draw calls. Instead, for
efficiency and for simplicity, we want to treat the geometry of each cell in the level as
a single model. To combine several smaller models into one, we must reorient and
weld the geometry of all the sub-cell prefabs together into a single model for each cell,
as illustrated in Figure 5.9.6. This sufficiently reduces the API overhead and allows for
efficient rendering.

Visibility and Collision Detection

Once all cell geometries have been built, we dynamically generate data needed for
rendering and collision detection. For each model in the cell-model list, we create an
associated set of up to four portals, depending on the connectivity of the cell. Each
portal is a 2D rectangle that encloses all vertices of the cell’s geometry that lie on the
plane connecting the cell to the adjacent cell. We use these portals to enable portal

5.9 Procedural Level Generation
587

cnseionmmsseinsinnieteiieeteenD Dee SC TENNANT NHN ESMMH HN

rendering of the level [Luebke95]. In contrast to the standard portal rendering philos-

ophy of using convex cells connected via portals, we place no restrictions on the

geometry in each cell. A disadvantage of using non-convex cells is that it can result in

overdraw during rendering. This is outweighed, however, by the flexibility we gain

from placing no limits on the cell geometry and the ease with which we can automat-

ically create the portals.

To enable collision detection, we create a binary tree of axis-aligned bounding

boxes (AABBs) for each model in the cell-model list in a manner similar to

(Schroeder01]. Finally, since there is no direct relationship between a cell in the level

(in world space) and its corresponding node in the graph, we create a hash table that

maps world coordinates to nodes in the graph. Making the hash table efficient is vital

since every reference to data in the level, using world coordinates, maps through the

hash table. Some general knowledge of the potential layout of the level is helpful to

make the hash function fast.

Adding Level Content
LONE TN TTL LL I E SARL ITLL OTITIS

At this point, we have a basic level, perhaps large but nonetheless empty, as shown in

Figure 5.9.7. Using a rule-based system, with rules derived from the design, several

types of content can be added. Nodes in the graph can be annotated with environ-

mental audio properties and other sound effects based on the size, shape, and content

FIGURE 5.9.7 Basic dungeon of corridors and rooms generat
ed using a

“‘entacle” graph (inset). Entrance to the dungeon is via a small corridor

shown at the top of the graph.

588 Section 5 Graphics

of each node’s geometry. Adding actual geometry falls into two categories..Static
geometry includes augmentations to the level geometry such as pillars or statues.
These are items we may want to weld to the existing cell geometry. If so, we need to
make sure the cell geometry is not being instanced by more than one node in the
eraph. If it is, we will need to create a separate version of the cell geometry before we
weld any new geometry to the cell. Welding new geometric features also requires an
update to the cell’s AABB tree and possibly the recalculation of portals. Nonstatic
geometry can simply be added at the node level without welding.

Conclusion

We have presented a process for generating procedural game levels to address the large
amount of content required by growing game genres such as massively multiplayer
online games. Given an appropriate set of rules, our algorithm provides amplification
of a simple data structure into a complex geometric game level [Roden04]. Our
process begins by generating a 3D graph with appropriate rules. Prefabricated 3D
geometric level pieces are then mapped to nodes of our graph. Identical geometry is
instanced instead of being copied, taking care to weld sub-cell prefabs into a single
model to reduce the number of redundant vertices and save on rendering time. We
then compute visibility and collision detection information for later use by our portal
algorithm. Finally, we add level content such as static geometry and environmental
audio.

The method presented should be considered as a foundation for the reader in
building their own level generator. One important issue we have not touched upon is
lighting. A procedure for adding realistic lighting would depend not only on the design
but also on how the level generator is used. If levels are generated as a pre-process,
lighting can be computed using pre-processing techniques, whereas for dynamically
generated levels, a different set of lighting techniques would be employed.

References
eae ii

[Luebke95] Luebke, David and Chris Georges. “Portals and Mirrors: Simple, Fast
Evaluation of Potentially Visible Sets.” In (Pat Hanrahan and Jim Winget, edi-
tors) ACM Symposium on Interactive 3D Graphics (April 1995): pp. 105-106.

[Perry02] Perry, Lee. “Modular Level and Component Design.” In Game Developer
Magazine (November 2002): pp. 30-35.

[Roden04] Roden, Timothy, and Ian Parberry, “From Artistry to Automation: A
Structured Methodology for Procedural Content Creation.” 3rd International
Conference on Entertainment Computing (September 2004).

[Schroeder01] Schroeder, Tim. “Collision Detection Using Ray Casting.” In Game
Developer Magazine (August 2001): pp. 50-56.

5.10

Recombinant Shaders

Dominic Filion, Artificial Mind &

Movement

dfilion@hotmail.com

Graphics Processing Units (GPUs) were recently brought much closer to their CPU

counterparts with the introduction of shaders. GPUs went from rigid graphics pro-

cessing devices to more general chips, as can be seen in the increasing amount of

research being put into using shaders for physics, math computations, and raytracing.

It was only a matter of time before the advent of GPU compilers would make

shaders even more useful. GPUs are indeed seeing the same evolution as their CPU

counterparts (specialized chips, evolution to general purpose, compiling tools, and

optimizers) but at a much faster pace.

GPUs are at this time, however, very far behind their CPU counterparts when it

comes to flexibility and ease of integration.

Some issues with GPUs include:

Limited length of programs: Limited length of microprograms means that the

whole application’s graphics pipeline cannot be put into a single program or

function, as it may have been for a software renderer.

Limited or missing branching: Lack of branching instructions in most

programming models is a severe limitation that inhibits flexibility in the

pipeline.

No general scatter-gather: GPUs don't have a general memory model, as their

memory is not randomly accessible.

No interaction with fixed pipeline: On an APLlevel, shaders run on a completely

different path than the standard fixed pipeline. An effect implemented in a

shader must supply its own implementation for skinning, lighting, and other

features that may already be present in the fixed pipeline. There is no way to

effectively make “calls” into fixed pipeline circuits.

Combining Effects AMMEN NSMBL ARLE ALLTEL
 see ERIN

In practice, the very linear nature and limited scope of the graphics pipeline along

with the limitations of shader programming models described earlier tend to force

589

590 Section 5 Graphics

applications to treat shaders as a fairly hardcoded, precanned process. This is exactly

what shaders were designed to prevent!

Consider the collision of a technique like matrix palette skinning and a typical

special effect. It is quite common for special effect shaders to only affect lighting, tex-

ture coordinates, or any other vertex component besides position. Yet, to be com-

bined with skinning, the vertex shader implementer must write specialized variants of
an effect for skinned and unskinned versions. The combinatoric explosion that this
implies for even a moderately complex graphics engine means that it becomes impos-
sible to write a single shader that will work for all situations. In fact, just supporting
the full fixed-function pipeline as specified in DirectX® 9 is not possible using a sin-
gle shader [Sander03]. Thus, for maximum optimality, a different vertex shader

would have to be written for every possible fixed pipeline setting combination.
In this gem, we will explore ways to handle the problem of multiple shader vari-

ants, along with effective techniques to generate the variants, store them, and gener-

ally integrate a flexible shader pipeline into a 3D engine. One specific approach for
flexible shader integration is presented here, but this gem will also provide many start-

ing points that could be used for further research into novel approaches to shader
integration.

Dealing with Combinatoric Explosion .

First, let's categorize some of the approaches to dealing with this proliferation of

shader variants.

Close-ended: This is the most common approach to the problem. Most games
will write between 5 and 60+ highly specialized shaders that will handle the
most common effects a game will implement. It is a viable approach when the
feature set of the graphics pipeline is very clearly defined, but it does limit
creativity and makes any engine code rather inflexible to changes in the game
design. With this strategy, the shader variants problem is side-stepped by simply
not allowing an arbitrary number of effect types to be applied in the game.

Open-ended. Generate shader variants at runtime: The most flexible approach
is to actually build the shader variants at runtime. The engine renderer must
analyze the current renderer settings, determine the appropriate vertex shader
code fragments needed, and assemble this into a single shader. There are several
ways to approach this.

° Nvidia's NVlink

¢ DirectX Fragment linker

HES

Methods to generate shader variants can be classified as additive or subtractive. Addi-
tive methods work by adding, copying, or linking fragments of code, while subtrac-
tive methods will take a large generic shader and refine it to create a specialized variant
with only the relevant subset of functionality. Here, we present a brief overview of

5.10 Recombinant Shaders 591
sascnsoveorsthesenmnsatsntsnesstestnuntnennnnnnsiitesemssssnt nanos huaatonn nnn neereeennnnn nin HamHMMHHHHEoHNE 2 stare sveenoebcoansnnsnsseeepsateemnconnnannuuasnnpenti

these methods so that we can understand and point out the advantages of the novel

method that we will propose.

NVIDIA’S NvLink

The NvLink tool provided by NVIDIA is an older additive method used to sew

together assembly language vertex shader fragments. The #beginfragment and

#endfragment keywords are placed within the shader code to delimit fragments. The

INVLink interface (obtained from a library provided by NVIDIA) can then be used

to link the fragments together at runtime. We will not dwell more on this technique,

as its restricted use for assembly shaders severely limits its usefulness; it is mostly of

historic value.

D3DX Fragment Linker

The D3DX fragment linker consists of a set of sparsely documented functions in the

D3DxX library. The key entrypoints are D3DXAssembleFragments(), LinkShader(),

and LinkVertexShader(). These functions can be used to additively link shader frag-

ments written in DirectX assembly language or compiled from HLSL.

To use the linker, a semantic prefixed with r_ is assigned to some function para-

meters. These parameters then act as the glue between the shader fragments, serving

as their communication channel. The vertex fragment also has to be declared with a

special vertexfragment keyword, as shown in the following example:

void Transform(

float4 vPos : POSITION,

float4 vNormal : NORMAL,

float3 vPositionResult : r_TransformedPosition,

float4 vNormalResult : r_TransformedNormal)

vPositionResult = mul(vPos, mWorldView);

vNormalResult = mul(vNormal, (float3x3)mWorldView ie

}

Vertexfragment Transform = compile fragment vs_1_1 Transform();

D3DXAssembleFragments() can then be used to load all shader fragments from a given

file, and LinkShader() can be used to combine them to construct shaders [Boyd].

Using the fragment linker is a lightweight process that can be done at runtime.

The linker will resolve symbol tables, optimize register use, and remove dead code.

Generating Shader Variants through HLSL

AMM, LLL LLL
ou senna

MMMM LLL LLL LLL 2A ALENT

Since shaders can be written in a high-level language, it is only natural to use the

shader compiler to concatenate shader code strings together to build a more complex

shader. Generating shader variants through a high-level shader language can be done

using either additive or subtractive methods.

Section 5 Graphics
cxsennoiseninevnonenuntssneieinisaaeN NNN NNN LON NNN ELON NLC NLL NCO CO

Additive Methods

Through additive methods, the shader code is built from smaller fragments of

shaders. This has the advantage that small shader fragments can be written without

the need to know the complete shader pipeline. In the simplest form, we are merely

pasting HLSL strings together. To be truly effective, however, a strict set of rules

should be defined to allow the shader fragments to interoperate.

We can view the shader pipeline as a set of atomic component blocks operating

together, not unlike hardware component blocks. These blocks have input and output

ports that can be used for communication. Adding fragments to HLSL code is quite

simple, since they can be written as separate functions. A runtime shader combiner

can then paste in the code to call the function at the relevant point in the code.

Subtractive Methods

Subtractive methods use a completely different approach to generating shader vari-
ants. A large generic shader that describes a game’s complete pipeline, including skin-
ning, effects, uv animations, etc., is written. Specialized versions of this generic shader

are then derived through the use of constants and/or defines, as shown in the follow-

ing example:

struct Input

float4 Position : POSITION;

float4 Normal : NORMAL;

};

struct Output

{
float4 Position : POSITION;

float4 Coloro : COLORO;

}5

// Parameters
float4 Diffuse[8];

float4 LightDir[8];

void Main(in Input In, out Output Out)

{
// Insertion Point

Out.Position = mul(view_proj_matrix, In.Position he

float3 NormView = mul((float3x3)view_matrix, In.Normal.xyz);

// Lighting

Out.ColorO = AmbientCol;

for (float i = 0; i < LightCount; i++.)

// Directional light

5.10 Recombinant Shaders 593
sinister netennnternt atten OLN AARONIERO HEHEHE Hn HORNET

Out.Color0O.xyz += Diffuse[i] * dot(NormView, -

LightDir[i].xyz);

}

The previous example shows sample HLSL code for a simple lighting pipeline using a

variable number of point lights. The previous example would actually not compile

using the vs_1_ compile target since loops and conditionals are not supported.

We can prefix the code right where the Insertion Point comment is with:

LightCount = 3;

We have just generated a specialized variant of the code, taking a generic vertex shader

and specializing it as a shader for three point lights. The shader compiler will analyze

the code and find out the loop can be unrolled three times. Also notice that if we were

to set LightCount to zero instead, the shader compiler would optimize out the whole

lighting loop as well as the calculation of NormView.

This allows us to write a single, monolithic shader for our game. We can ignore

limitations of shader microprogram length and limited registers in this generic shader

as the specialized variants will weed out any unused elements.

Both additive and subtractive methods have their advantages. The additive method

is closer to the true concept of recombining shaders as it glues shader fragments together

and allows each shader fragment to be developed independently, as well as being more

flexible. The subtractive approach is much simpler to use and facilitates debugging by

having the programmer preassemble all fragments together early on.

Some code may need to be “switchable” through the use of #defines and #ifdef

in the HLSL code. Vertex structure members that are not needed (extra uv coordi-

nates, etc.) can be culled out through the use of #ifdef statements. The shader com-

biner can then add the necessary #def ine to include the necessary vertex components

as needed.

Hybrids

One good compromise is to use a hybrid of the two methods. The subtractive method

is used for the common, standard parts of the pipeline—skinning, lighting, uv anima-

tions, and so forth—while a large, generic shader is written that supports all the main

pipeline features, as shown in Figure 5.10.1. Multiple attachment points are defined in

this generic shader code where the shader code can inject function calls to pipeline

plug-ins. These pipeline plug-ins are specialized, optional effects such as toon shaders

and shadow volumes. Such pipeline plug-ins can be exposed through the art package

and eventually be written by tech-savvy artists as well as programmers.

594 Section5 Graphics
venntetietsssnsunsanete sii SO svnoevtnttvsocennnumesnsecunnnneetiommattcteuauasennnannenannninnianunnnsinussnnnnivtsanteettestin

VertexPos

rea Nonna —— Score
{snc
asa il eco
Beer

cae Point Lighting 4

Diese Direct Lighting

Spot Lighting

Homogenous

Vertex Pos

[TransformNorma

iew Space

PosViewSpace

Normal ViewSpace

FIGURE 5.10.1 Ax example pipeline using the hybrid approach.

For the technique to work in a generalized fashion, the communication channels
(function parameters and variables) between all components of the pipeline must be
clearly defined and have standardized names. These are indicated in the diagram on
top of the communication channel lines.

In the example, the lighting subcomponent needs the vertex position in view
space. It could compute it itself, but to avoid recomputing it for each light, this task is

delegated to a TransformPosViewSpace component that performs the transformation.
The lighting subcomponent can then retrieve the view space position through the
PosViewSpace communication channel coming out of TransformPosViewSpace. Com-

ponents of the pipeline must be carefully planned and thought out to maximize reuse
cases such as this one.

The circles in the diagram represent attachment points where “external” shader
pipeline plug-ins can be attached, effectively pasted in the generic shader code at spec-
ified injection points.

Integrating Recombinant Shaders
BROAN LE SAREE RIL BRONTE STE ZS SLNE MI GRISEA BINS RET BRST BN RECT EON cat a a

Having described ways in which shaders can be combined together at runtime, we
can examine what would be an effective setup for tying this system into a 3D engine.

5.10 Recombinant Shaders 595

Most graphics API such as Direct3D and OpenGL are mainly state machines. Sev-

eral render states are set and a batch of polygons is sent to the hardware using the speci-

fied render states. Our shader system rendering interface will use the same mechanism.

States will be set by an interface to our graphics subsystem and stored by the shader

system until a call is made to prepare a shader to render the next batch of polygons.

Having recorded all active states, the shader system can gather all the relevant

states and encode them in bit field with 64 or 128 bits. For example, the lowest 2 bits

may encode the number of skinning weights that need to be used while the next 3 bits

may contain the number of lights, etc. This shader key only describes what effects need

to be activated. It does not contain specific parameters such as light positions, direc-

tion, color, etc., as these do not affect which shader fragments need to be linked in.

The shader system can then look up the key value in a STL Map. If the key is

found, that particular combination of effects was used recently and thus the precom-

piled shader can be retrieved from the map immediately. Otherwise, a new shader

variant must be generated. This generated shader can be built by taking the generic

shader code, finding a proper insertion point, and using code specialization for sub-

tractive shader combining: setting number of lights as a constant, number of skinning

weights, and so forth. The shader key can be used to derive all code specialization.

To add fragments using the additive method, the shader combiner must find

which shader functions it will graft to at which attachment points. Each shader frag-

ment has a standard call form string for each compatible attachment point, which will

be pasted into the main shader body at the specified attachment point in the main

shader code’s body. '

After the shader is compiled, we can query the shader compiler to find which

shader parameters are needed for this shader. These parameters can be uploaded to the

GPU in succession, retrieving them from the active render states.

The generated shader is added to the map and associated with its key, thus giving

us a cache of recently used shaders. As we generate shaders, their compiled binary size

is computed. If a newly compiled shader causes the cache to exceed a threshold, the

least recently used shader will be destroyed.

At this point, the shader has been compiled and activated, and the parameters

have been set up. The renderer can proceed to rendering the polygon batch.

Building a Complete Pipeline through Shaders ee

The approach described herein allows us to achieve a flexible, unified pipeline where all

shader effects can be combined together. It is actually possible using this approach to

have a 3D engine using shader variants for 100% of all rendering. At the moment, this

may not be ideal on all cards, as older video cards still use a specialized hardware path

for fixed function transform that may make the standard fixed pipeline faster than the

shader pipeline. Video cards such as the AT RADEON™ 9600 and above, however,

actually use shaders internally for all rendering, whether the fixed function pipeline

API is used or not.

596

ON THE CD

Section 5 Graphics

The sample CD-ROM contains an example of a typical fixed-function_ style

pipeline, completely built using recombinant shaders. The sample pipeline supports:

¢ Skinning with one to four weights

¢ Arbitrary number of lights

¢ Point, spot, and omnidirectional lights with specular component

e Environment mapping

¢ UV transformations

* Multiple coloring modes: white, material color, vertex colors, dynamic lighting,

vertex color + dynamic lights, vertex color * dynamic lights

Other Issues|
REGRETTED SLR NATE

Conclusi
WAC REGS

LEAL LIE LT II AEN RY A ESTERS AIT

The flocs sections Penk some er issues you should be aware of.

Shaders Version 2.0 and Beyond

It could be tempting to think that a recombinant shader system is overkill for a system
that is planned to support shaders 2.0 and above only. Shaders 2.0 and above support

longer shaders, some forms of branching, conditions, and loops.

Although migrating to a higher version of the shader model implies a certain

amount of performance headroom, the fact remains that a short shader will still out-

pace a longer shader. Recombinant shaders can still be relevant for shaders above 2.0

by optimizing out major shaders variants that are often used.

Optimizing Combinations

The shader system makes all effects combinable in myriad ways. Care must still be
taken to watch for excessive generation of shader variants, as any machine will buckle
when handling thousands of shader variants. Compiling shaders takes time, and any
steps taken to pregenerate shader variants for static assets at export time will help
reduce the load. Certain similar shader variants can also be regrouped into a slightly
suboptimal shader variant representing a whole shader category.

The recombinant shader system gives complete control to artists over creative
aspects of special effects in games, but they should be made aware that “one effect per
polygon” is not the way to go. Switching shaders often takes some time, thus polygons
using the same shader keys should be batched up together.

mente “ne ROR A ee NRE A TRE

Gecletaltaiaes ean an engine erasttiad shadetd ithott er into the pattern of precanned
effects and inflexible setups is not an easy task. However, a well-built recombinant
shader system can pay off in the long run by allowing those hard-earned effects to be
assembled in new and creative ways. Artists can insert small, specialized effects with-
out requiring a complete knowledge of the shader pipeline or can even create new

5.10 Recombinant Shaders 597

ON cents senescen
ce

effects by starting from basic shader building blocks that can be recombined. Instead

of having a programmer build a specialized ice shader, artists can be set loose to make

their own effects by assembling more complex shaders from more elementary build-

ing blocks of the pipeline. Through recombinant shaders, the artist is truly given total

control of the graphics pipeline.

References

(Bean04] Bean, Scott. ShaderWorksXT. Available online at http://www.shaderworks.

com!/shaderworks/shaderworks-main.html. 2004.

[Boyd02] “Direct3D Tools.” Available online at /ttp://www. microsoft.com/koreal

events/directx/ppt/Direct3D Tools. ppt. 2002.

[Frick02] Frick, Ingo. “Visualization with the Krass Game Engine.” In Direct3D

ShaderX: Vertex and Pixel Shader Tips and Tricks, 453-462.

(Lake02] Lake, Adam. “A programmable vertex shader compiler.” In Game Program-

ming Gems 3, 404-412. Charles River Media.

[O’Rorke04] O’Rorke, John. “Integrating Shaders into Applications.” In GPU Gems,

601-616. Charles River Media.

(Pharr04] Pharr, Matt. “An Introduction to Shader Interfaces.” In GPU Gems,

537-550. Charles River Media.

([Sander03] Sander, Pedro. “A Fixed Function Shader in HLSL.” ATI Whitepaper,

October 2003. Available online at hetp:/www2.ati.com/misclsamples/dx 1 Fixed-

FuncShader.pdf- ;

¥ fWiagt Apes ier soll phys jin olhiec.

PSE ara on fe SL deiark Shasta ae ape

di ir asian
Pag ti egy ail why ’ etal ’ p

’ aT } sail; fale atte ea -
« Pet. yore oud iatipenees wit ali he t :

¢ Eaves cupeny , .
o Ty Aes pet ’ _—

aarti « nase

Suics ink ma ghee ele va A
MATA stony ye ‘sii sidelicuA "“2lodT. GEs3i@™ [0

arg Sl Le hos, na doikpenCloaaprtahae
ppt pram, aa Zh ods. Sine ontasibagaly ee ee 7

hee eka’) sb carl was Wes bon Sane? Foie

“wNUTAEL Smardaitl? valvnse ehedarmayakiemineigeny AY mes ‘sda! [SOs a
4 an gibohd yovill iohad-) C1 MOE s€ ant) isu >

ares WU} a pngaed A Cereeek ed iss ‘ aT .

vl hs a gore ibs 1
47 ‘a Balen it tobsde,” a iiSSuibutis ce Bit,

Sabai vt ahs) We
Maqeqadl Wi te “ie TH os eat apis ear) Wi a rsbeiae
“evita eat ‘ Batali in st ote sae) i ea Wak FoaeS

bers | Tk SS7e Cereal) (tee aie ADaT ae

Awana

Split jing Camusa'ion:

. Phat Bud? (ey qibes ve coieiecatile if"eeiad nek Cone ame ae
byt oe waited] YS Ole ery (roti Wade- wartaars ma ait) mactuac will }

ee harcili; ‘ a regi ats’ Pal) Gat inl Get; wln § Bindeap tees sons

(fie. chr’ “Fal acer Wablatn¢ fou ohatig aaeett ag port xt

Tux re +" erealv Le i irote Vural Ceti awa be : bet nyt ip eas

fur eay nace sme ty serie fc “finn q™ holed Led | ALS eth : 7 he eas.
7 =

4 Res) ONGC! 7 ve) TD ce CoOAiy vf 7 area we = a:

wocet ro? aoe Picts Ai Wie, DY cry beta ty \Veie aware hes ‘ener mers

A oa, 2 ocr ’ uh? "| mers heen cokes soTrg rene, & ,

y Ne -¢ite* eG ate ht: iia bear Dest up ‘<tc.

Co.chee on | .
- wm. a Se Recetas

ete aing en engin itoand shades withour Piling ine phe
da ine quae is eT at) ay toa bbriiadet

arr vite aw od? im the long run bya a
2

Tpian | oe OEAC w2ys Ante @ al

Coy i: Grins a is tec of the
=
P|

_

Peas ene sec

SECTION

6
NETWORKING AND

MULTIPLAYER

Ae ie Pyar

worrose
" mane
a

:

:

7

i oie fie

_ _ "

,’ .

_ Z

-

oa

< | a

ava ouianowTa ie
— RavAsdiTIuM :

Introduction

Shekhar Dhupelia

sdhupelia@gmail.com

he number of networked, online games is growing. Some titles offer discrete

“offline” and “online” modes, while more and more are unfolding entirely online.

While the hardware and low-level technology has stayed fairly constant over the past

few years, the quality of services found on each platform, and within each game, is

getting better and better every year. For evidence, witness the growing number of peo-

ple playing Massively Multiplayer Online Games (MMOs), or look to the popularity

of Sony and Microsoft’s respective online console services.

As more and more games are designed from the beginning to take advantage of

this community of players, more and more teams have taken on full-time network

engineers and online game designers, to exclusively focus on these gameplay aspects.

While many problems have been solved, and have been neatly wrapped up for some

time now, there are many new lessons to be learned every day.

This section tries to address the myriad types of online games, and should have

something for everyone. Starting with MMOs, Shea Street breaks down how to use a

distributed service approach to better handle the server side. Patrick “Gizz” Duquette

continues with an article on implementing seamless world servers, without the zone-

to-zone transitions found in titles today. This is followed by a brief look at various

schemes of vulgarity filtering, applicable to all types of online games. Hyun-Jik Bae

then gives a detailed explanation of how to use RPC calls for the network layer of a

client/server game.

Many people with broadband connections have installed NATs in their homes;

Jon Watte takes a look at how to best get through this restriction. Martin Bromlow

then describes how to design a reliable messaging layer for game communication, fol-

lowed by a demonstration of a random number system that is safer to use for online

gameplay than standard C/C++ calls. Finally, Adam Martin returns to the series to

look at how to design your game with a focus on security, no matter the type of game,

to provide a better player experience.

Whether you're a commercial game developer, implementing online features in a

big-budget title, or an independent developer hoping to add networked gameplay to

your next great demo, these articles will both stimulate and serve as a reference for

years to come.

601

ne y _ _ Wty = : _ ¥
j _ hes :

. 7 x. w- ‘

ee

e %

je

seemetl ifo ely omot griwor 1 mney outlet besten

adilng srtises gniblotng a1 nom bie worn slider -eabon
sen) ade ave wistenuo ehict hover eoth ygalontigas lwo ee

@ armeg dics aidiiw bic. sectiaiq doe no hdl Ra

424 ta wixienun meteor arb reaatiw soombive tell porate C3 trad ‘gaily:

Yritnltuges alt cx ool 10 OM) eomed saleO ryalqirluM ~dlavicasM yaisguley ale
anives sloanoo sniine sviasqest 2 tigeoni

Yo agmnsvbe sic7 0 qainniged ats oot beagieh ns ao From bas migmr aA, ry a es
“hows siete ao cole: ved emmy rom has som taalg 6 a nine f oS

JAnsget yulgorasg 3230) 90 muset > wovieular> 0 ervacrgieab pita Bas 7

rae wa qh Ieqqere (uthoit asad red bas bavi ase Saad zmagidiory yan 4 _ me

eh ‘ave. bomue! sd a7 enoml weeds at sun ses seo gems a <
Svat blivorte hrs mNttey aiiine to z2q77 baivyen ott aeobbs 1 pha cone ait. * K
ut worl ewob adend nad ead? 2OMM deiw aairade jncensys wh gaybomer on

sererput) “exited” Ariuel obid ovis ob sthastl 12d or doeqags aanase bsuadivelb —
aenx se? Tuarbiw Jovi bhow woleuee gapasnalqmi so abinu ae roe euniraoy t ms

avoir ic sul tend e vd jaevollo 2i iat yeboteslis ni hauet snolieass 2nd? —

onfi dil-cuvtl anti ausiieo Yo ney te ot admailqag aningalii vineghvy to mnnodons 2) : hal

§ to wees! hows ait vol alleo OLA seu ow wor lo negenalqve boliash & evi tod = a

~ ae to
Semtod- wsdl ui wa bollavnt sved enoitaeton bandimcnd diiw sigdeg yaa a
wolewad ainsi .coiswen aid: dguoud 19g wd of worl te dool s ral 2087 nol F es

let. Woltsodyramos Simy r0l ts! gnignzeom atduitsr 4 gieab on worl wdinzesb mgd” ‘os
snilno xt seu/on dig bi aac mane rode mbbier « Io aimee SAS Ts ba
MM eines odt oF sermon afns mabdA. elear ates OW bixbrute ands qilqoene,

2meg to ogy) seb voiaeey ot apinasao sole chiw singy wey aghsb oF wend

snsinngas Tole wan
2 ai eee said gain snobgini ateloib anpy ley nnies EouOY 1s
an velysitcg bouhrrson Bean gaiqht! qobeet tobe ian to phy #
101 coreyday_s ax svis8 bee azelerane sod Hw wloins'seady some 4

ron i

6.1

Keeping a Massively

Multiplayer Online Game

Massive, Online, and

Persistent

Shea Street, Tantrum Games

shea.street@tantrumgames.com

[; our world of fast food, fast cars, and even faster Internet, we struggle to keep

things mass produced, always available, and high quality. Creating and hosting a

massively multiplayer game is no different. Our players demand the game to be just

that: massive, always online, and never miss a beat. Unfortunately, we live in a world

always short on time and full of unforeseen events. However, up to a certain level, we

can provide these things to the player. In this article, we will discuss how to achieve

these levels of uptime, by expanding on the distributed services approach [Street05].

Quick Review MI ISLE IED 0 LR NAL ES LEE LE ee

The distributed services approach is a system of services distributed across multiple

servers all connected to a unified network (see Figure 6.1" 1)

Unified Network

Client

Frontend Service
Service Server

Service Server

FIGURE 6.1.1 Distributed service system diagram.

603

604 Section 6 Networking and Multiplayer
: ‘ : :

These services provide task-specific game functionality to the entire game world.

Services provide a way for the game world to distribute its load on an individual task-

by-task basis. Examples of typical game services include chat services, item services,

position services, AI services, and combat services (See Figure 6.1.2). By using distrib-

uted services, the entire simulation of the game is now no longer run on just a single

server.

Service

NamingService | | ExecutionService | | AdminService | | FrontendService GameService

ItemService CombatService PositionService AIService DatabaseService

FIGURE 6.1.2 Distributed services example breakdown.

Being Massive
LEMPIRA RELEASE TERNS IE ITE RET NEE EE CO Terence es mittee

As the total number of online gamers grows, the need to support greater amounts. of
concurrent players also increases. There are a number of ways to tackle this obstacle.

Streamline the Frontend Service

The frontend service is secretly the hardest worker in the entire distributed services sys-
tem. At first glance, it may appear to be just another generic gateway into an online
game, but in actuality, it is so much more than that. It is important to understand the
full scope of the frontend service and the best approaches to optimizing this process.

6.1 Keeping a Massively Multiplayer Online Game Massive, Online, and Persistent 605

But before it could ever be optimized, its operating goals need to be properly defined.

These goals and their implementations will always be game specific but are still built

upon a common underlying framework of ideas. These include:

* Being an entry point for all players
¢ Serving as the first line of defense
¢ Performing sanity and error checking
¢ Managing and balancing bandwidth usage

¢ Ensuring proper routing of game information

¢ Providing the fastest response times possible

The frontend service acts as a middleman between the clients and the game’s backend.

It concentrates data from all the backend services into a single filtered usable stream

for all its connected players, and vice versa. By using game specific knowledge, the

frontend service can provide faster player response times while saving the backend

from unwanted traffic. Creating flow charts and use cases can greatly help target,

study, and develop these potential optimizations (See Figure 6.1.3).

One possible optimization is with the addition of a local spatial database. This

database can merely be a sphere tree [Ratcliff01] that holds positions, state data, and

static statistical information. Since this database can end up holding data on all the

players, items, and NPCs that are currently active in the game, it is best to keep this

information as simple as possible. When designed right, the spatial database will take

up very few resources and allow the frontend service to do more optimal work. The

reason for this database and the local caching of this amount information Is to allow

for a quick out. If the system never has to go beyond the frontend service to provide a

client with information, it never will. Also, when a player performs an action, it can

be quickly perceived by everyone else connected to that same frontend service, while

it is still being propagated through the rest of the system. Performing sanity checking

and keeping communications to a need-to-know basis can prevent the backend from

being flooded and overworked. This is true in the case of all services; once these

guidelines have been implemented, there are subsequent methods to further guaran-

tee quality and stability.

Increasing and Upgrading Servers

When talking about increasing or upgrading servers, we primarily concern ourselves

with dealing with the machines upon which the frontend services are run. The num-

ber of players supported by a distributed services system is directly proportional to the

number and power of these frontend services. The system is designed in such a way

that more players can be supported just by adding more frontend services, without

ever having to touch the backend. This by no means suggests that the backend will

never have to be changed. As a game matures and evolves, it may need more services

to accomplish its goals, and thus need additional and more powerful servers to be able

to reach this.

606 Section 6 Networking and Multiplayer

Client Fronted Service | State Tracking Service ! Combat Service ' item Service

'

’ : Resolve Update item

Bley erates gup ! combat information
t
i
1
'

Record ! Contact Item Record in

Send action player state ; Service to subtract item database
1 ammo and reduce

i
'
1
1

t

1
1

request
weapon quilaity

Action
valid? Send player states

to Frontends

Send attacked

Yes player’s condition
Update local state to State
database with Tracker

player state

Recieve

Recieve action player state

request

Check local
database if target

can not be targeted

target?

No

Player hit only air.
Contact Item

Service to subtract

ammo and reduce
weapon quality

Ignore

action

Recieve player

states and update
local database

\
\
'
\
'
1
i
\

Recieve update Send update !
to players 1

\
'
I
\

FIGURE 6.1.3 Example of a frontend service optimization flow chart.

'
i}
i
1
i
1
{
1
'
i
1
1
1
1
1
1
t
1
1
1
1
1
i}
1
1
1
i
1
i
1
f
i
1
1
i
'
i
1
'
i
1
1
i
i
i

1
'
'
1
'
1
'
1
1
'
1
1

'
1
1
1
1
1
1

1
1

Overall, this process is quite simple. Typically, all it takes to add or upgrade a
piece of hardware is to install the needed services and set up the admin service to des-
ignate when and how these services should be run on this specific machine. It has
always been the goal of the distributed services approach to be able to use consumer
off-the-shelf hardware, but the sheer amount of required servers may get out of hand.
At some point, it may be more fruitful to move to an enterprise server solution or a

6.1 Keeping a Massively Multiplayer Online Game Massive, Online, and Persistent 607
sssanenneaneneoncnnsneneinsiiessnneanenssnessneneegenetsintc une bettneaeromuninsnnenitneineetotieeeinetetotentehiiiensWnantenteteinontinniei teal

hybrid approach to save on space. This design ensures that a game never has less or

more than what it absolutely needs to properly function. The whole concept of

increasing and upgrading servers in general is obvious, but it needs to be remembered

when dealing with a distributed services system.

Staying Online
RATTLE LM ILO LLL TTL OLE SEL LEN

There is no way to guarantee bug-free code. The important thing is to prevent a crash

from taking down the entire game. When a system crashes, it must be transparent to

the players. This involves monitoring for crashes, keeping track of buggy service ver-

sions, and very fast resumption of the game execution.

Watchdog and Shadow Services

If any part of the game ever goes down, you need to know when it went down and

how to get it back up and running as fast as possible. The best way to do that is by

using automated processes that can handle the most common causes of downtime.

The watchdog service is a program that keeps an eye on other running services in

case of any unscheduled termination. In some cases, the service being watched will be

able to catch the terminating signal and perform some form of a shutdown procedure.

As a precaution, the watchdog looks after this service, so even if there is an abrupt ter-

mination that cannot be handled by that program, the watchdog will still notice.

When this happens, the watchdog will launch the waiting shadow service into action.

Shadow services are copies of whatever service programs they are shadowing.

Every time a service is started, a shadow of that program is created as a clone of that

service. Though the shadow service is a copy of its partnered service program, it sits

idle, waiting to take its place if any critical, abrupt termination of that service occurs.

The watchdog and shadow services can be consolidated into the same program.

Hot Swappable Services

In the event of hardware failure, the watchdog and shadow service become irrelevant.

There may be a need to have a separate piece of hardware waiting in standby to pick

up the dropped service as soon as a failure is detected.

The admin service will determine if this is the case, and is responsible for telling

the execution service (running on the spare server) to start the necessary service. If a

spare service server is not available, the admin service could tell a service server that

isn't as heavily loaded to become the temporary backup for that service.

Service Version Control

If a critical event happens that causes a termination of a service, there needs to be a

way to flag it and revert back to a stable version. In the event of a service's terminating

unexpectedly, the version would be flagged, and after a set number of flagged crash

occurrences, a reversion to a previous build would begin. A service version table would

608 Section 6 Networking and Multiplayer

be kept to distinguish between the current, stable, unstable, and unusable versions

(see Table 6.1.1).

Table 6.1.1 Service Version Table

Service Name Version _ Flags — —

Chat Service 32, Current, Stable

Chat Service 1.24 Unstable

Chat Service eT Stable

Chat Service 1.0 ; Stable, Not Usable

Item Service 2.23 Unstable

Item Service 2.0 Current, Stable

When a service is reverted to a previous version, the shadow service loads the previous

stable version of that service and takes control of its responsibilities. The shadow ser-

vice will never revert to a previously flagged unstable version or a version marked
unusable. Instead, the shadow service will make sure to always run a revision known

to be stable.

Live Updates

With the previously mentioned methods in place, we are now able to ingeniously

handle live updates. We push the updates to the revision tables, have the service
servers launch the new services in standby, switch control from the old services to the

new services, and then shut down the old services to clear up resources.

Keeping Persistent
LLANE ERR EERE NUS TR ELE NEE IR EE RT NTE TR EN REELS MELO EE BEER NEE HARUN ESE ERNIE ESHA eR EE NE i opm

To resume functionality in the event of a crash, data must be stored persistently, and
in more than just a statistical database. We need valid game state data in order to con-
tinue from where we left off. Currently, some online games write the entire game state
to disk about every 20 minutes. If a crash were to occur, that saved game state would
be reloaded. The problem with this is, since we do not know when a crash will occur,
the state may be up to 20 minutes old.

Backing up Game States

The solution to this is shared memory. Anything loaded into shared memory stays
around until you explicitly destroy it, so it is safe for each service to store its game
state data in this memory block. In the event of a non-hardware crash, the shadow ser-
vice can simply attach to its shared memory segment and have all its previously avail-

6.1 Keeping a Massively Multiplayer Online Game Massive, Online, and Persistent 609

able data. In addition, a snapshot of that shared memory can be taken every few min-

utes and copied to another segment of memory as a backup. Normally, this process

should be very fast and take up few resources. The backing up to disk could then be

done at leisure in the background from these backup segments of memory. Synchro-

nizing these game state snapshots across the services can be done with a simple mes-

sage sent to all the services. Since each service performs a specific task, and those tasks

are done in small steps, they are allowed to process their current event, queue all

incoming events, copy current shared memory, and then resume normal operation.

Once this has taken place, the new active service can begin sending its own snapshots

to other servers. This is done so that a game state backup can always be found on the

network and easily retrieved when needed.

Restoring Saved Game States

Depending on the game’s architecture, there are two methods to restoring a saved

game state when a service goes down. The first method is appropriate when the game's

state requires it to be time synced; all services would then need to be reverted. The

second method is used when your services are structured to be independent enough to

allow only single services to be reverted.

When only one service needs to be reverted, the system finds the service server

that failed, locates a server with enough spare resources to run the needed service, and

then tells it to start that service up. A running server with the dead service's most

recent snapshot then pushes its snapshot to that new server, and the system instructs

that service to load its previously saved snapshot.

However, in a game architecture that requires all services to be reverted on failure

of a single service, the process is basically a domino effect. As before, the system

locates a spare service server, has the dead service’s saved game state pushed to it, and

then instructs the server to load that previously dead service in an idle state. After the

service is loaded, the system takes down each individual service, has them restarted,

and loads a snapshot of the same timestamp. When all services have been restarted,

the system then resumes normal game operation. The restoration of the game state is

based on the frequency that the snapshots are saved and sent to other servers.

Conclusion eee LEASES WRT IE it

eee
CARERS AOS IE IE

Online games are rapidly maturing and evolving and so are the players. Their

demands and expectations will always continue to increase just as fast. As with any

progress, the problems of the past will no longer be viewed as acceptable. The distrib-

uted services approach and the improvements discussed in this article are just the

tools to help keep up with this pace. With-all these tools in place, we can now meet

the current demands of these players. In the end, size, duration, and continuity are

just a few of the keys to winning their hearts.

Section 6 Networking and Multiplayer 610

References
cos SUM RESO ST TRS TORR TE TINE

[Ratcliff0l] Ratcliff, John W. “Sphere Trees for Fast Visibility Culling, Ray Tracing,

and Range Searching.” Game Programming Gems 2. Charles River Media, Inc.,

2001

[Street05] Street, Shea. “Massively Multiplayer Games Using a Distributed Services

Approach.” In Massively Multiplayer Game Development 2. Charles River Media,

Inc., 2005

6.2

Implementing a

Seamless World Server

Patrick Duquette, UBISOFT

Entertainment Inc.

gizmo@gizz-moo.com

i [Beardsley03], the author provided an introduction to seamless world servers and

their pros and cons. He did a great job of making us think of the many issues inher-

ent with a seamless world. This article relates a journey, in the world of a too-many-

times-shunned server design. It will focus on the actual implementation of a seamless

world server, complete with world nodes, a proxy, and a login server. In the course of

the article, we will look at the design decision normally encountered with this type of

server and wrap the article with a “where to go from here” section outlining some

areas for further exploration.

The Mandatory Definition

By definition, a seamless world is a world where the player is free to roam, explore, and

travel to his heart’s content. No physical barriers between “zones” to hinder your

travel and no loading screen while transitioning between the zones. Designers no

longer need to put mazes between zone borders in a seamless world and, having fewer

constraints, they can let their imaginations run free.

Although seamless worlds can benefit any game genre since it’s the core of the

server and the game specific world should reside on top of it, the immersive gains will

vary depending on genres and gameplay designs. RPG games benefit from having a

huge, continuous world through which the player can travel. And FPS games can now

have wars that can unroll on vast expanses of terrain. Taking away the physical zones

greatly boosts the player's immersion in the game.

Of course, this level of freedom comes at a cost. The artists need to create transi-

tion areas to join different climates, just like in real life. While in traditional zoned

worlds, you could have sub-tropical zones next to zones with frosty mountain ranges

without disorienting the player, because you expect the hard cut between the two

parts of the world and you have time to “disconnect” from the game when changing

611

612 Section 6 Networking and Multiplayer

zone or loading. It’s like loading a new map and you expect something different when

it will finish loading.

From a programmer's perspective, the challenge resides mostly near the borders.

When a player moves from one server to another or is exchanging items in the border

area, having players managed by different servers can lead to many potential problems

if not handled correctly. Another problem is the loading of visual assets as we move

around between servers. It needs to be done in the background, if you don’t want the

player noticing.
And since we can have interactions between players, NPCs, objects, etc. that are

on different servers, we have to keep an eye on the number of messages that are sent
internally, server to server. Those can skyrocket in no time if care is not taken while

working out the inter-server communication details. Even if today’s network hard-
ware is more than able to manage our expected LAN traffic, we have to keep in mind
that we not only need to send the packets, the recipient must process them, too.
Fewer data exchange between servers means less processing.

The implementation |

the different types of servers fou A brief explanation of nd in our seamless world:

RemoteController: The login coordinator and the process giving the okay to the
ProxyServer to start accepting client connections.

ProxyServer: The bridge between the outside world and our server layout.

LoginServer: Authenticates the clients.

NodeServer: Manages a segment of the world.
WorldManager: Distributes the world segment to the NodeServers.

From the start, you will have a minimum of three servers: ProxyServer, LoginServer,

and NodeServer. Since the number of NodeServers could vary, and we don’t want to
manually add lines in an ini file, we will use an autoregister system. The different
servers will register themselves with the ProxyServer upon starting up (well, actually it’s
with the WorldManager, but that will be discussed later). This strategy lets us change
the number of NodeServers as often as we like without changing a single line in an ini
file.

The RemoteController, or How to Manage

the Server’s Startup Period
cnitemaasee 2: ik

Of course, this way of doing things led us to another potential problem. When do we
start to accept incoming connections? The naive solution would be to put a wait delay
on the proxy before it starts accepting connections. Although it could work, it isn’t
flexible and it’s quite dangerous, as you don’t know if everything will be booted before
it goes online.

6.2 Implementing a Seamless World Server 613

maxes

vesusstitsqensnansnunnsenneneonnnnssnynse ae bussaintetensnis iit nesasasnennesaentisLtbHiMnH eNO RMN AM UHI SHOT

The second option is to have the proxy wait on a special packet containing a “go

online” command. This way you can control precisely when is the proxy server goes

online. This packet will be sent only when all the conditions of the RemoteController

are met. Some conditions are: making sure that the LoginServer is up, that the World-

Manager has handed all the world segments to the NodeServers, etc.

The RemoteController is more than just a convenience, it is an invaluable tool to

schedule the server boot up period. The alternative would be to manually control the

ProxyServer, which can lead to human error and everything that comes with it.

rver
SSS STREET ELLE LE LLL SLO L LLL LL ALLEL LET ELL LED LLL ATP

As with many online games, you don't want to expose your server architecture to the

outside world. One way to achieve that is to make all communication pass through a

proxy server that will relay the packets to the right recipient. This technique has the

advantage of having only one external entry point and hiding the actual servers’ lay-

out from the client. If you need to change your server layout, number, or internal pro-

tocol, you can do so and the client will be none the wiser, since the only thing it

knows is the proxy.
This server will handle all the incoming and outgoing packets between the clients

and our servers and thus handle the most traffic. With that in mind, the proxy server

can be implemented using IO Completion Port (IOCP), since it doesn't take much

resource, while being able to service many concurrent clients’ connections. For a good

introduction to IOCP and other relevant windows socket paradigm, please refer to

[Jones02]. :

On a live setup, you would want to have many ProxyServers to spread the load. The

client would connect to a master redirector, which will tell the client which ProxyServer

to use based on current work load and latency (ping time) from the client. This will

enable you to have ProxyServers distributed in the world while maintaining a single

connection point for the client.

When the ProxyServer receives an incoming connection from an unknown client,

it forwards it to the LoginServer for authentication. Once the credentials of the client

are verified, the LoginServer notifies the ProxyServer of the client’s spawn point and

NodeServer handling the spawn location.

The client connections are internally maintained via a simple array that does the

translation between the ClientID and the NodeServer to which it should connect.

The ClientID is the index of the array and is handed by the ProxyServer when it

receives the authentication confirmation from the LoginServer. The ProxyServer allo-

cates at boot time the array, knowing the maximum number of connections it will

support. It also keeps a list of unused connections for fast management of client con-

nections and disconnections. To minimize the possibility of a malicious user spoofing

a client while it is connected, we store the connection details alongside the Node-

Server to which it will connect. Once ina while, we check that the packet we received

is really coming from the legitimate client.

614 Section 6 Networking and Multiplayer

LoginServer
CORBET MEA NEEDS SL EE TRE TESDOESTTID mac ace

The LoginServer handles client authentication. The LoginServer take up the matter

of checking the player profile for his spawn point coordinate and looking up the cor-

rect NodeServer to switch the connection to. This is done by asking the WorldManager

which NodeServer handles this part of the world. The LoginServer handles the data-

base lookup and calling up the WorldManager, since we want to have the ProxyServer

as lightweight as we can.
The player’s information is stored in a standard SQL database. For simpler imple-

mentations, mySQL [mySQL] might be a good choice, as it is more than capable of
handling smaller needs, and it is free. Other database solutions for a live setup that

you might want to look at are [Oracle] and [SQLServer]. In a production environ-

ment, you might also consider having a proxy/queue server in front of the database to
queue the query/update by order of importance. Also, if you are able, keep your data-
base in memory; it will greatly speed up your transactions with the database if it doesn’t
need to access the disk. Of course, schedule physical dumps once in a while to have a
physical copy of the database in case the server crashes. However, keep it to a mini-

mum, and if possible, do it on another server (using replication).

NodeServer
‘atau

The NodeServers are the keepers of the world, the final arbiter of conflicts between
the client representation of the world and the one kept internally. They perform san-
ity checks on player interactions with his surroundings, making sure everything is
kept tidy, but also giving a life to the many parts of the world. For example, while it
might not control directly the gust of wind that moves some leaves near the player's
feet, it will notify the client that a 5 km/h wind is blowing in a certain direction.

Since online games tend to have huge open worlds for player exploration, each
NodeServer has a small segment to manage. Alas, with this splitting of the game
world comes a non-negligible complexity cost for a seamless world implementation
that is not present in a traditional zoned online world (at least, not in this magni-
tude). Interactions between players and/or with NPCs take a new meaning, as they
now can be on two different servers when the interaction is initiated. This can lead to
various exploits, and great care has to be taken when designing the transaction system
used when the player is acquiring/exchanging/giving “items.” For the sake of clarity,
anything that can be exchanged between players or with an NPC and that has a reper-
cussion in the game like physical items, quest parts (physical or “spoken”), etc., will be
put in the “item” category.

To manage across border interactions, the NodeServers not only need to manage
what is in their segment of the world, but they also need to be aware of things just
outside it, in what we call the BorderZone. The BorderZone stretches a little past the
border between two segments. This space, while really belonging to another server,
will let the NodeServer tell his client situated near the border what is in their aware-
ness area, even if it’s situated in a part of the world managed by another NodeServer.

6.2 Implementing a Seamless World Server 615
sevice tna nA AASNDAAAA HASEENO,

To have the same object on two servers at the same time, we must introduce the

concept of proxy objects, a server-side object representing a ghost of the master object,

which is on another NodeServer. When a transaction between two players is initiated

and each one is on a different side of the border, the server will perform the transaction

with the proxy object instead of the real copy situated on another NodeServer.

One last thing on BorderZones: as noted in [Beardsley03] and other articles on

the subject, the minimum BorderZone size has to be at least the size of the player

awareness radius to circumvent problems where two players, each one on different

sides of a border, may not see the same things, or worse, one might not see the other,

and thus open the door to exploit. Also, having the BorderZone slightly larger than

the player awareness radius will lessen the possibility of visual popping as new objects

are replicated as proxy on the neighboring NodeServers.

Performance Consideration

This server will need to process a lot of packets, both from the outside world (via the

proxy server) and the inside (inter-server communication). It will also need to manage

a large object base and moving characters (players and Al). It will also need to update

things that are game specific, like weather modification and quests/missions handed

out by NPCs or even other players. Astral objects like stars and the sun(s)/moon(s)

should be managed by a global server and not by a NodeServer, if your online world

does not span more than one solar system.

Looking at all this, it adds up to quite a lot of processing per server. To alleviate

the NodeServer from some extra processing, at the cost of taking more inter-server

bandwidth, the game AI entities can be managed on separate dedicated server(s) and

be treated as normal clients by the NodeServer.

The world is divided in many segments, which lead to many borders and more

importantly, many border junctions. For simplicity, an easier starting point might be

a stripped world, with only two border junctions per NodeServer, with no UT of

“cross” junctions. See Figure 6.2.1 for a visual representation.

FIGURE 6.2.1 Zivo border junctions and “cross” junctions.

616 Section 6 Networking and Multiplayer

Registering with the ProxyServer

When registering with the ProxyServer, the NodeServer is only telling it “I'm online

and ready to serve.” Nothing has been decided concerning which portion of the world

is to be managed by this server. Of course, an ini file could solve the problem but that

means that you will have to manually manage the file, for all the servers, every time.
Instead, the servers get their “work order” from another server, the WorldManager.

Upon booting up, before registering with the ProxyServer, the NodeServer negotiates
with the WorldManager for a segment of the world to take care of. The NodeServers

each have a copy of the complete world. While this causes a burden when updating the
game content since it has to be replicated on all the NodeServers, it also alleviates us of
having all the NodeServers trying to fetch the world data at the same time during the
boot process. Having everything locally will also permit dynamic resizing of the Node-
Server borders, a technique discussed in the “Where to Go from Here” section.

The bulk of the work of this server is the validation of the player input. Be it item
exchanging/acquiring, player navigation in the world, or the rate-of-attack during a
combat, the NodeServer has to look over everything that comes from the player. This
is the old networking idiom, “never trust the client” at its best.

To do so, the server has to keep a simulation of the world, and this simulation
acts as the reference when a disparity between the client and the server representation

happens. If anything isn’t as in the master copy kept by the node server, the client
must be notified and action should be taken to correct the situation.

Handling the Communication with

the Outside World

Knowing that this server will need a quick way to associate incoming network traffic
to the managed object it is destined to, we must make sure that it is as efficient as pos-
sible. A map of the objects in the managed world might be in order, as a list traversal
might be too time consuming for our needs. The drawback with mappping is that
insertion may turn up as being one of the bottlenecks in the connection processing,
but since we shouldn't have too much object creation/deletion at any one time, we
shouldn't experience any slowdown. Another possibility is to have every object have a
unique ID throughout the world and use the same technique as for the ProxyServer.
This would even be faster than the map search, without the insertion/deletion penal-
ties but at a greater memory footprint. (Imagine an array for all the world objects.) If
the objects are handed a new ID when crossing borders, you only need to keep an
array for the maximum number of objects that will be present at any time on the
NodeServer. Add to that the possibility to grow the array in an emergency situation,
and we should be okay.

Each object is represented on the server, and network messages can be addressed
to them. When a player interacts with an NPC, the player’s actions are sent to the
server and validated. When a player tries to hit a monster, it actually sends a message
to the NodeServer telling it “I target MonsterX.” The NodeServer validates that the

6.2 Implementing a Seamless World Server 617
snattatstcteetnomnasannsnsissstnisetnenareeneneNNAtnsene tenner neHR RM AAHIEHMON

player is able to see the monster, to target it from where he stands, and that he is

allowed to target it. The player then sends an “I swing at MonsterX” message. The

NodeServer validates that the player is near enough to swing at MonsterX and tells

the monster if it was hit, and if so, tells the player how much damage he has caused. If

any of these steps fail, the NodeServer might log the attempt for later review. It could

be a latency issue or a player's trying to fool the NodeServer.

The client should always receive the world information on a need-to-know basis.

Only when a player is near a game object should its relevant information be sent to

the player. For example, only when a beast is slain and searched should the server send

the loot description.

While the Al is updated often on the server, a message containing the current sta-

tus/position of the AI will only be sent once in a while to the client, once per 10th of a

second, maybe less often when there’s no situation asking for more frequent update.

The client will use dead reckoning to extrapolate the Al position based on the last

update. Of course, the client will have to make a correction when it receives an update

from the server. For more information on dead reckoning, please refer to [Aronson97].

X Proxy Objects for a Master

How do we keep in sync an unknown number of proxy and a master? Since we can

have an unknown number of proxy objects for any given “master object,” we need to

keep track of everyone to update them whenever the internal states change. Luckily, a

design pattern is designed just for that: the Observer pattern (also known as the Pub-

lish-Subscribe pattern). For a formal explication of this pattern (and many others),

please refer to [Gamma95]. Briefly, this pattern defines a one-to-many relationship

between objects and is used to synchronize the objects between them. The beauty is

that you don’t need to know beforehand how many objects there will be.

Our application of this pattern has the proxy notify the master of change, and the

master replicates those change to the registered proxy’s objects. While not really rele-

vant to our current implementation, it was done in prevision of having border junc-

tions with more than two node servers. The master object is the final arbiter in case of

discrepancy between the proxy objects and the master.

Proxy Objects Notification

Since the proxy objects can be created and deleted as the master moves throughout

the world, we need a sure way to manage their life span on the node server. Sure, the

proxies are part of a observer pattern, which will cover the death of un-needed objects

when the master moves outside the border zone, but what happens when the master

moves from the center of the managed segment of the world to the border zone

between two servers? No proxies are created at this time. The master object, when

crossing a border zone threshold, notifies the correct neighbor that a proxy should be

created. The proxy, once created, registers itself with the master, which will then send

the updated state of the object and start the Observer relation.

618 Section 6 Networking and Multiplayer

Neighbors

The NodeServer can request from the WorldManager its neighbors. This can be done

at boot up or every time you need to check if you have dynamic borders (see the

“Where to Go from Here” section at the end of the chapter). In the simpler “strip

world” example, we can only have two neighbors. Our implementation is simplified

greatly by this, and as such, we only have two member variables keeping the informa-
tion associated with the neighbors. If the info is not set, we ask the WorldManager

who they are and then we initiate a communication channel with them that will be

kept until the server is shut down.

The WorldManager
SSP EEE SERRE STEIN OS ISDE SIS EB WTR DE SSS SLL HEE SITE DEEN IRS EERO IRIE LOLI R

The WorldManager server is responsible for splitting the world into different manage-

able segments and giving each segment to a different NodeServer. When the manager
has handed out all the world segments, it sends a message to the RemoteController,

telling it that the world is distributed. This will ensure that we can‘ start receiving player
connection while segments of the world won't be managed and thus inaccessible.

Subsequent connections to the WorldManager asking for a piece of the world are

ignored in a Strip World implementation, as there’s no provision for backup Node-

Servers; this is discussed in the “Where to Go from Here” section. Also, the number

of segments of the world is already known at boot time, so that when the node servers

connect, they are handed a segment of the world immediately.

Another task of the WorldManager is to answer requests from the LoginServer

and NodeServers as to which NodeServer handles a certain part of the world. This is
vital since from one player session to another, if the server was shut down, we can’t
guarantee which NodeServer will handle the part of the world from which the player
disconnected. This may seem strange and inefficient, but it does free us from having
to manually specify world boundaries for each NodeServer, and it makes an auto-
mated process when introducing new NodeServer in our layout, be it from expansion
or because a server crashed.

Where to Go from Here
SCARRED ISA ARTUR ERB EE A BEES ABIES AIS NI RET ABE DARIN OTS unaeee erase RNR RNR

Dynamically managing the world segments, instead of statically, is one area for
improvement. If a NodeServer is overcrowded, the WorldManager could receive a
request for backup processing. By resizing the borders or splitting the current world
segment in two, giving the other half to a backup NodeServer would alleviate the
server if the need arises. The NodeServer will have to support direct transfer of man-
aged entities without going through the ProxyObject creation normally associated
with entities crossing the NodeServers border.

Having backup NodeServers registered to take the load of a dying NodeServer
could also help recover from hardware fault without interrupting the service. If a
NodeServer monitors the hardware notifications, it can react to them. Instead of clos-

6.2 Implementing a Seamless World Server 619

1oCP

References
mmr NRA

ing the game service for maintenance because one of the redundant power supplies

died, the NodeServer tells the WorldManager its status. The WorldManager takes one

of the backup NodeServers and assigns it to the world segment managed by the dying

server. When the transfer of all the managed entities is done, the dying NodeServer

can be safely removed.

Because of the sheer size of the entity transfer, we might want to do it progres-

sively. If we transfer the entire load from NodeServer A to NodeServer B, doing it in

one operation may be noticeable. Instead, by moving the NodeServer borders and

migrating only a part of the total world segment area at a time, the transitions, albeit

the fact that many proxy objects will be created and destroyed while the borders are

moving, will be smoother.

With dynamic borders, the RemoteController could also act as a world segments

interface, giving the administrators the capacity to control their exact layout and size,

enabling concrete management of the world division. No longer confined to static

division, the administrators could modify the world segment'’s size before planned

game events where a large number of players are expected.

Instead of computing the AI directly on the NodeServer, it can be done on dedi-

cated servers. While the NodeServer will treat the AI like a normal client, having

them connected through a dedicated port (the port used for inter-server communica-

tion) will give us the possibility for further optimization, since they can be considered

“rusted” clients. Some double-checking for physics with the world or AI action valid-

ity could be skipped. Some might wonder if this doesn’t lead to a possibility for

exploits, and they would have been right-if the AI server wasn't connecting through

another port than the one used by the communication with the outside world. (On a

live server, that would have been through another network card altogether.) Only at

the time of connection, when the server will start to manage the Al entity, will the flag

“trusted entity” be set.

Some of these “next steps” can be found on the [Gizz04] Web site, where they are

continuously implemented.

LEE LLL LAR LEAL
zi

While IOCP was discussed in this article, please keep in mind that it is Windows-

specific. For information on the difference between the IOCP concept and its *nix

counterpart, “dev/poll,” please refer to the article by Ian Baril [Baril04].

LN LEC LL meee

[Aronson97] Aronson, Jesse. “Dead Reckoning: Latency Hiding for Networked

Games.” Available online at /étp://www. gamasutra.com/features/19970919/

aronson_01.htm. September 19, 1997.

[Beardsley03] Beardsley, Jason. “Ceamless Servers: The Case For and Against.” Mas-

sively Multiplayer Game Development. Charles River Media, 2003.

620 Section 6 Networking and Multiplayer

[Baril04] Baril, Ian. “I/O Multiplexing & Scalable Socket Servers.” Dr. Dobbs Journal

(February 2004): pp. 42-45.
[Gamma95] Gamma, Erich, et al. Design Patterns: Elements of Reusable Olject-

Oriented Software. Addison-Wesley, 1995.
[Gizz04] http://www.gizz-moo.com/.
[Jones02] Jones, Anthony and Jim Ohlund. Network Programming for Microsoft Win-

dows, Second Edition. Microsoft Press, 2002.

[mySQL] Attp://dev.mysql.com/.

[Oracle] Attp://www.oracle.com/.
[SQLServer] Attp:/hwww.microsoft.com/sql/.

6.3

Designing a Vulgarity

Filtering System

Shekhar Dhupelia

sdhupelia@gmail.com

Ns online usernames and chat rooms more and more prevalent in recent online

games, so too becomes the problem of adult content (especially when trying to

ship an E-rated game!). Everyone at this point would acknowledge that it’s impossible

to catch every possible use of vulgarity while also trying to remain efficient and user

friendly. However, there are methods that will catch a lot of the more obvious cases.

This article discusses the components that go into a fast word-search vulgarity fil-

ter, including how to organize the “bad words” in a data source, how to search

through all of this data, and the various options for what to do with the violating text.

Also discussed are some best practices and. additional points of reference when build-

ing such a system.

Syntax Versus Context
stat enn nomcoc LMKMBMMMMABMM

LLLLADALL ALLAN MALL LALLA LLM AAT SMMMSMMALAS ASL LLL LEI TTS

It’s important to keep in mind that most games cannot afford to attack the problem of

“context.” Context suggests the actual meaning ofa sentence, or a full thought. While

some standard sentences might be blocked in their entirety, a very high level of artifi-

cial intelligence would be needed to determine the meaning of a sentence and refuse

potential rule violations; this is especially true since the Al would need to be running

in real time. .

Further, it is far beyond the scope of this gem to discuss voice chat. While it is

admirable to want to provide a “family friendly” environment within a game, espe-

cially one geared towards all age levels, it is far beyond the scope of our average game

hardware to monitor voice chat and do anything particularly useful with it.

The discussion here is of syntax. Syntax refers to the words themselves; while

“A#$% YOU!” still confers quite a bit of meaning, the point is that the effect is still

dulled from not allowing full expletives to be transmitted back and forth.

621

622 Section 6 Networking and Multiplayer

Dictionaries

A dictionary, or data dictionary, is where the lookup table of bad words exists. The
options here are endless; the application might already have a database system or
filesystem in place, probably using some sort of relational or token lookup. The goal
is to have a consistent, easy-to-manage data source that can store all the designated
“bad words” in one place.

If constructing from scratch, a good place to start is XML files. For the uniniti-
ated, XML is a form of information identification, assigning tokens to data that can
quickly be searched and referenced. A good reference for XML can be found at the
O’Reilly Network’s XML.com [Oreilly01].

Parsers

Having a dictionary to store the bad words is only a start. The more resource-intensive
part involves searching through the data dictionary for matches against a string. While

most C/C++ programmers and Java programmers will be familiar with string manipu-
lation, parsing can be slow and turn into a bottleneck for the game if not implemented

carefully.

Again, this is a subsystem that may already be in place with many existing game
engines. Parsing through a data source is useful in many other areas of a game besides
this one feature. When building a new engine with XML in mind, however, Xerces is

a good place to start [Xerces01]. The Xerces library is an open source C++ library that

allows very fast searching through XML file sources.

Elitening =
ODEN SANA

So far, the game will have a lookup dictionary for bad words and strings, and a parser
to actively go through and root out any violations against this dictionary. The next
step is to filter the text and either block it or change it accordingly. However, the
method used in the game is dependent on the specific design in mind, as there are
several different ways to filter the violating strings.

Search-and-Replace, Predetermined Strings

The first filtering method is to do a search-and-replace operation on the string, with a
predetermined string. This involves setting up a second word or list of words that act
as suitable replacements. An example predetermined string might be:

char szReplacementText[] = “[censored]”

In this case, the bad word would be replaced with [censored]. To add variety in a
place where there might be many violations, you might loop through a list of 10 or 20
variations, such as banned, blocked, and not allowed.

6.3 Designing a Vulgarity Filtering System 623
secetauaneesorcntesencusstetenenetnmanttccseaaneissssnenceieteesonanrens . sararmnsnsssstemansneetiestsntaunsasovisaanunecnienesnenansmustacneneanatacesteneennetetannmsnnntniseriinnieernns

Search-and-Replace, Random Strings

This method is similar to the previous, except that it uses random characters to pro-

vide variety. For example, English-speaking comic strips often use something like

&°*$ to designate a curse word. However, there’s no set standard on the number of

symbols to use, or even what particular symbols to draw from. With that in mind,

more variety could be presented by choosing a random number of letters, as well as

choosing randomly from a list of characters or substitute words. This might look like

the following process:

Define a list of substitute characters.

Get the violating string.

Choose a random number of characters.

Loop through the bad string, character-by-character.

Choose random replacement characters from the list.

Return the filtered string. See ee

Word Stripping

Word stripping is useful in that it helps remove some of the meaning from a block of

text. Sometimes, a sentence such as I want to %#@$@% might still confer some mean-

ing in the context of the conversation or situation. However, word stripping might

change this into I want to, which just eliminates the violating string completely, with

no substitutions. Of course, this doesn’t stop the user from simply entering the string

with substitute characters in place; this is where human intervention is sometimes

necessary, a topic discussed further later.

Block-and-Refuse

This is the most forceful method, but does the most to try and automatically block

violating context, instead of just the syntax. Block-and-refuse detects the violating

string, then refuses the entire submission. For example in a chat room construct, the

user entering a sentence word word2 word3 violator would not even get to send word

word2 word3 or word word2 word3 %#$*. Instead, they would get an error message

informing them of the violation, with the string thrown away.

Best Filtering Practices NAMES ERE RT

While the various filtering methods can be implemented efficiently, either alone or

together, there are several key practices that will help make the process quicker and

less frustrating for the end user, as well as provide efficiencies to the game servers.

These are described in the following section.

MM MCSLLMGRLLARMAAELLLL LLL ALLL SEL LLL ALAA

624 — Section 6 Networking and Multiplayer

Use Both an Offline and Online Dictionary

While not possible for some embedded systems (such as game consoles without large

local storage), it’s a good idea to use an offline dictionary, in addition to the server-

side dictionary file. This allows some checks to be performed quickly and locally,

without spending extra bandwidth to verify every string. The online dictionary might

serve as a second form of protection; for example, a static offline dictionary might do

a quick first check on every string, while the dynamic, updateable online dictionary

can do another pass on the strings as they are transmitted.

Filter Offline First

As mentioned previously, don’t waste large amounts of bandwidth unnecessarily on
anything that is not part of the core gameplay. Filtering offline first can save a lot of
time and cost, and actually make some processes more user friendly. An example of
this might be during user registration; as the player enters a username or an avatar

tagline or some other string, a quick check can be made against the offline dictionary.
This could at least let the user finish the registration process and then proceed online.
The online portion might simply check the suspect strings again without requiring re-
entry of the entire form.

Again, while not possible for all systems, a dynamically updated dictionary file is
a great tool; as players come up with new or overlooked vulgarity or questionable jar-
gon, the dictionaries should be updated regularly with these additions. Even in cases
where the offline dictionary cannot be modified, the online dictionaries should have

regular review periods.

Dictionary Change Control

While it’s established that regular dictionary updates are important, care should be

taken to control these changes and track them, similar to source code changes or source
art modifications. Updates should be scheduled on regular time intervals (while neces-
sary), tracked and revised similar to source code, and done with a minimal impact on

users (if not in real time, than as part of other updates such as bug fixes or content
changes).

Continually Monitor Any Workarounds

When filtering is based on a dictionary, there will always be words that fool the sys-
tems you have in place but still convey some illicit or angry tone. Regular Internet
users have grown accustomed to writing their words with symbols or numbers in
place of standard characters. For an example, pretend that the word “FOOL” was in
the dictionary file. Now, if the user instead types “FOOL” or “F@@L,” the meaning is
still clear, but the word escapes the attention of the system.

If these modified words are not addressed, the entire vulgarity filtering system is
rendered useless. Unfortunately, no automated method has shown itself to date that

6.3 Designing a Vulgarity Filtering System 625
ssnsonosentnenennninnnstentnsenctsiannnannntnenenan titan Aleta ann test tenn in EE RARASASCOreRRDRMUOHeR HAHAH

can efficiently handle all the possible word permutations from a given dictionary. This

reality suggests the need for constant, vigilant human intervention.

Human Intervention
SSE 2 TUTTE EU SEU SE IESE RAR AIEEE NLT NE ad

After all this technology, there’s still the major concern that none of these tactics will

fully provide a “safe,” family-friendly environment. The fact is, any one or combined

approach to filtering that fits within reasonable CPU/memory constraints will have

easy workarounds.

Unfortunately, the best one can hope for is to make a reasonable effort from a

technology standpoint, and hope that it covers a large majority of potential violators.

But this technology will fail under many cases. If the game is still likely to suffer heavy

abuse despite these safeguards, there is often no choice but to add a layer of human

intervention. There are two often-used methods that help weed out a large majority of

the worst-case users: the in-game supervisors and player feedback.

In-Game Supervision

In-game supervision refers to an actual moderator or team of moderators, who

actively play and patrol the online game, basically looking for any sort of violation.

These moderators may choose whether to be listed as administrators, versus serving

“undercover.” While the consequences for bad behavior may include a ban from

future play, often a looser punishment might solve the problem (for instance, a 30-

day ban on chatting).

Player Feedback

Player feedback can be quite powerful if handled correctly. With this technology, the

other players themselves have a means to report unruly behavior. This allows the com-

munity to actively police themselves and potentially weed out more cases of unwanted

actions than a team of moderators could hope to find. While this still requires people

to read the feedback and act accordingly, as well as handle cases of fraudulent feed-

back, this also allows more active reporters to become “senior” members of the com-

munity, and likely will serve as the game’s staunchest advocates.

Conclusion ft
MMMM ARMA AMAALLLLABLLALLAA LLL HN ASRS ESATO ESI

This article discussed a couple of different ways to implement vulgarity filtering in an

online game. Further, this article talked about ways in which this filtering can—and

will—fail, and where human intervention is still necessary. Fortunately, the methods

discussed here will severely blunt the blow of a malicious user, to the point where it

may become too difficult or frustrating for the user to try and continue his bad behav-

‘or, Between combinations of these methods, users can be assured of a safer, protected

game environment.

626 Section 6 Networking and Multiplayer

References

[Fepproject01] The Free Expression Policy Project. “Fact Sheet on Internet Filtering.”

Available online at hitp://www.fepproject.org/factsheets/filtering. html.

[IGN01] IGN Xbox. “Xbox Live Etiquette.” Available online at http-//xbox.ign.com/

articles/3771377569p1.html.

[Oreilly01] O’Reilly Network. “XML.com: XML from the Inside Out.” Available

online at Attp://www.xml.com/.

[Xerces01] “Xerces C++ Parser.” Available online at http://xml.apache.org/xerces-c/.

6.4

Fast and Efficient

implementation of a

Remote Procedure

Call System

Hyun-jik Bae

imays@hitel.net

7 fee are many articles on network game development focused on aspects such as

dead reckoning, distributed game servers, throttling, load balancing, smart seeds,

and so on. These are very useful and important ideas and can be applied to many

projects. All these techniques share a common characteristic in that they all require

sending and receiving at least one message; this code is typically one of the greatest

sources of redundant network code.

Many network game programmers tend to write redundant code that treats every

network message the same but could easily be consolidated. Sending and receiving

messages involves many switch-case statements and structure definitions. This redun-

dancy only grows as messages are added or changed during the development process.

This article introduces a solution to reduce this burden, focusing on a code-level

perspective.

First, let’s take a look at a typical problem area for most network games. Listing 6.4.1

shows an example that processes two messages: “move knight” and “attack enemy.”

Listing 6.4.1 Our Familiar Networking Code

/////// on both sides

#define Message _Knight_Move_ID 12

#define Message Knight_Attack_ID 13

struct Message

{
int m_msgID;

}5

627

Section 6 Networking and Multiplayer

struct Message _Knight_Move:public Message

{
int m_id;
float m_x,m_y,m_Z;

}5

struct Message Knight_Attack:public Message

{
int m_id;

int m_target;

int m_damage;

}5

/////// on sender side

void Knight_Move(int id,float x,float y,float z)

{
Message Knight_Move msg;

msg.m_msgID=Message_Knight_Move_ID;

msg.m_id=id;

msg.M_X=X;

msg.m_y=y;
msg.m_Z=Z;

}

void Knight_Attack(int id,int target,int damage)

{
Message Knight_Attack msg;

msg.m_msgID=Message_ Knight_Attack_ID;

msg.m_id=id;

msg.m_target=target ;

msg.m_damage=damage;

}

void DoReceivedMessage(Message* msg)

it
switch(msg->m_msgID)
{

case Message Knight_Move_ID:

{
Message Knight_Move* msg2=

(Message _Knight_Move*)msg;

}
Do_Knight_Move(

msg2->m_id,

msg2->m_x,

msg2->m_y,

msg2->m_Z);

break;

// ... Cases for other message types

case Message Knight_Attack_ID:

{
Message _Knight_Attack* msg2=

(Message _Knight_Attack*)msg;

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 629

}
Do _Knight_Attack (

msg2->m_id,

msg2->m_target,

msg2->m_damage) ;

break;

// ... cases for other message types

}

Let’s now assume a case where we must add another message type. We must modify

four spots in Listing 6.4.1 for the new message: a new message ID, a new message

structure, a new function sending the message, and a new case for reading the mes-

sage. This cumbersome work can be reduced by using streaming classes, such as

Carchive or std::istream, or by writing your own. With these classes, Listing 6.4.1

can be simplified to look like Listing 6.4.2.

Listing 6.4.2 Another Style of Our Familiar Networking Code

///11// on both sides

#define Message Knight_Move_ID 12

#define Message _Knight_Attack_ID 13

/////// on sender side

void Knight_Move (int id, float x,float y,float Z)

{
Message msg;

msg<<(int)Message_Knight_Move_ID;
msg<<id<<x<<y<<Z;

}

void Knight_Attack(int id,int target,int damage)

{
Message msg;

msg<<(int)Message_Knight_Attack_ID,

msg<<id<<target<<damage;

}

/////] on receiver side

void DoReceivedMessage (Message* msg)

{
int msgID;

(*msg)>>msgID;

switch(msgID)

{ ;

case Message_Knight_Move_ID:

{
int id;

float X,V,Z;

(*msg)>>1d>>x>>y>>Z ;

Do_Knight_Move(id,x,y,2Z);

630 — Section 6 Networking and Multiplayer

}
break;

case Message _Knight_Attack_ID:

{
int id,target,damage;

(*msg)>>id>>target>>damage;

Do_Knight_Attack(id, target, damage) ;

break;

// ... cases for other message types

}

}

Either way, we can send, receive, and process messages by calling Knight_Move() on

the send side and calling Do_Knight_Move() on the receiver side, as well as the mes-

sages Knight_Attack() and Do_Knight_attack().

Notice the pattern in these examples, in that they're very redundant. They can be

abstracted for now to just read as one-line declarations, such as Listing 6.4.3, which is

the goal for how we want our actual game code to look.

Knight_Move(int id,float x,float y,float z);

Knight_Attack(int id,int target,int damage) ;

Listing 6.4.3. The ultimate style we desire

We can refer to Listings 6.4.1 and 6.4.2 as the manual send- receive-switch-case code

and refer to Listing 6.4.3 as the automatic send-receive-switch-case code. Later in this

gem, we'll discuss how these send-receive-switch-case codes can be generated auto-

matically, which is one of the major benefits of Remote Procedure Calls (RPC).

RPC: Introduction
TESLA LE LISELI SEINE NE AALS ETON mentee eeepc ammd RNRA: ERROR RE RPMS Em SERN IN

RPC is a message-passing tte: on is Sileptdent of the underlying network layer
and allows a distributed application to call services available on various computers in

that network. Put more simply, RPC abstracts the technique of a program on one
computer requesting a function call on another computer. For a complete introduc-
tion to generic RPC usage, refer to an operating system textbook [Silberschatz02].

There are many RPC implementations, some available by several major compa-
nies. Some of the more well known are MS-RPC, DEC-RPC, DCOM, CORBA, and

Java RMI. (DCOM, CORBA, and Java RMI have object-oriented behavior, but their

concepts are also based on RPC.) In this article, let’s call these implementations legacy
RPC systems. Legacy RPC systems are stable and support many features such as secu-
rity, authentication, and many protocol compatibilities. However, because many of
these implementations have some drawbacks for game programming, we want to
write our own RPC system and avoid the following problems with legacy RPC:

* Hard to understand and use
* Too redundant and cumbersome for game applications

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 631

* Do not allow for complete control of message formats

* Do not allow for complete control of message transmission, such as with throttling

¢ Legacy asynchronous models are much more complex than synchronous models

in practice

In this article, we introduce a guide to implementing an RPC system for game pro-

gramming, composed of an RPC compiler and a runtime engine. Because this RPC sys-

tem is fully under application control, it can be optimized or streamlined as necessary.

The example presented here is very simple and should be fast enough for a quick

start. For further simplicity, we'll intentionally ignore some lower-level topics such as

the actual socket code and error recovery with this RPC system, because the more fea-

tures we add, the more complicated the examples will become.

We refer to a module that makes RPC calls as an RPC client, while a module receiv-

ing these RPCs is an RPC server. Note that the RPC client and server are different from

the game client and server. Ordinarily, a game server and a client have two heteroge-

neous RPCs for calling client-to-server and server-to-client in their program modules,

while a game peer has a homogeneous RPC, calling and receiving mutually. The

included example RPCDuel is a case of the latter.

There are two networking models of RPC: asynchronous and synchronous. Syn-

chronous RPC has output parameters. If your RPC client program sends a synchronous

RPC to your RPC server, the RPC client will wait until the RPC server accomplishes

execution and the return values are received. On the other hand, asynchronous RPC

differs in two aspects:

¢ Asynchronous RPC doesn't wait for return calls.

¢ Asynchronous RPC cannot have output parameters.

* Asynchronous RPC allows for unreliable messaging. Since some messages may be

lost during transmission, RPCs with unreliable messages may be missing as well.

Game programs rarely require synchronous RPC; most RPC server programs have no

case that waits for execution on the RPC client by design, because it may be a cause of

bottleneck or deadlock. Instead, they define two messages for requests to the RPC

server and replies from it. Moreover, RPC client programs have a few cases that wait

for execution on the RPC server. Many games have to wait for replies from the RPC

server, showing a wait animation and permitting users to push a Cancel button.

Moreover, synchronous RPC is hard to implement, for reasons we'll explain later.

The example code with this article contains a compiler as well as parser. There are

some further readings about grammar definitions, parsers, and lexical analyzers

[Sebesta02].

cine LLL
NCE LATENT,

Here is a simplified presentation of a well-known sequence design of a generic RPC

implementation. In short, it works like Figure 6.4.1.

632 Section 6 Networking and Multiplayer

FIGURE 6.4.1 RPC sequence diagram with reply.

As we are just interested in the asynchronous model, we do not need phases that
wait for replies. After trimming them, it works like Figure 6.4.2.

FIGURE 6.4.2 RPC sequence diagram without reply.

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 633

When an RPC function is called from an RPC client, it cannot directly execute

the function body on the RPC server, of course. Instead, it collects function parame-

ters and adds these parameters into a message, as well as a message header, to identify

the desired function call. ‘The code that performs this phase is called the proxy,

because it runs another function with the same name, which serializes (marshals) func-

tion identifiers and parameters to a data stream and sends a message, instead of calling

the actual function.
When a message is received on an RPC server, it passes the message to a function

that reads the message, determines which RPC body should take the control, extracts

message data into parameters, and calls an RPC function body. This is called the stub,

due to its role of selecting one of many functions and invoking the appropriate call.

Notice that we are only discussing asynchronous RPC here, so we can safely ignore

the RPC response phase.
As an RPC call is converted to a message and analyzed at the other side, every

RPC message should be formed in a specific manner. When an RPC is called on the

proxy side, the generated message must include all needed information about the

function call. This includes:

¢ Function Identifier tag

¢ Serialization of function parameters

The Function Identifier is a predefined number whose value is incremented whenever

another RPC function is declared. This is necessary to detect where the message is

serialized. ;

Serialization of function parameters is basically a concatenated data block of each

parameter listed one by one, built by the proxy. Ignoring error detection and recovery

for now, only the parameter values themselves are needed, because we can deduce how

many parameters and which type they are when we look at the Function Identifier.

There are several ways to serialize parameters of various data types. The example

presented with this article shows an example of a message class and several serializa-

tion functions with the same function name and different parameter types (function

overloading), like the following example:

void Message_Read(CMessage& m,double &val);

void Message_Read(CMessage& m,std::string &val);

void Message _Write(CMessage& m,const double &val) ;

void Message _Write(CMessage& m,const std::string &val) ;

Figure 6.4.3 shows how developers adopt RPC for their own networking applications.

We want to generate all our networking code with simple, one-line declarations.

RPC introduces Interface Definition Language (IDL) for this type of declaration. The

IDL file is where we write RPC function declarations, as well as these one-line decla-

rations. Keep in mind that the IDL file cannot be directly identified by our applica-

tion source files. Instead, IDL files should be compiled by the JDL compiler, which

generates the proxy and stub code files. The proxy code is then linked to a program

634 Section 6 Networking and Multiplayer

Amodule
calling RPC

C++ Compiler objfiles

RPC Server

Executable

Generated C++ Compiler obj File Linker
Proxy File

DS
‘ RPC

te IDL Compiler Common

Libraby

Generated

Stub File .obj File

sage

RPC Server

Executable

 Amodule
_ fecieving RPC C++ Compiler

calls & RPC

FIGURE 6.4.3 Design-time sequence diagram.

where RPC functions are remotely called; meanwhile, the stub code is linked to the
program where they are invoked.

As at least one helper function or class exists for both the stub and the proxy, we

may want to move them into a library, which we call the common runtime.
Do not include the generated proxy and stub code in your source control system,

however. As the IDL compiler overwrites the proxy and stub code when an IDL file.is
modified, it may cause a build error when the proxy and stub codes are not checked
out and are read-only.

RPC: Implementation
STEER NRO RE a I GEE ARS RE NCR HRA OMAN: SERBIAN NO

The following sections dannih RPC ‘inpledadneiien

Proxy and Stub

An RPC function cannot be called directly, since its actual body is on another process.
However, the local function with the same prototype should be available. It surrogates

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 635

the call by creating a message and sending it to the remote process, where the actual

function body exists. These local versions of the remote calls are what we refer to as

proxy code.
The IDL compiler is responsible for generating the proxy code. Our IDL com-

piler generates proxy code using a code pattern that we specify. One easy way of defin-

ing this specification is to write an example proxy code, deduce code patterns from it,

and use this model within our IDL compiler.

When a message is received, it should be passed to a function that will have a giant

switch-case. At first, we identify what the receive message is requesting by reading the

Function Identifier in the message header. Then, we go to one of the switch-cases.

Each switch-case routine deserializes (unmarshals) the messages into each parameter

value. Then we call the RPC function body. Our stub code consists of only a function

with many switch-cases inside it. The function bodies are outside the stub code. The

IDL compiler can also be responsible for generating the stub code. Like our proxy code

patterns, we feed stub code models to the IDL compiler.

IDL Compiler

To start the IDL compiler, we have to make a compiler that takes IDL files as input

and then generates output code of stub and proxy. Let's start with the parser, which

analyses what RPC functions the IDL file declares. We choose ANTLR [Parr04] for

our implementation here, which is more comprehensive and easy to use than Lex and

Yacc. ANTLR is a top-down parser generator written in Java, but we can generate

parser code in C++ as well. :

For simplicity, we'll stick to a basic grammar for our IDL files. When you look at

IDL files of legacy RPC systems, they have more parameters such as network proto-

cols, parameter-passing directions, and unique IDs. For now, let’s see a basic example:

Knight_Move(int id, float Xi lLoain Va tloatez)a

Knight_Attack(int id,int target,int damage) ;

With this model in mind, Listing 6.4.4 provides an example of a complete grammar

in ANTLR format.

Listing 6.4.4 A Snippet of Our IDL Grammar

// an RPC function definition

functionDefinition :

IDENT // function name

LPAREN

(parameterDefinition

(COMMA! param=parameterDefinition es

636 Section 6 Networking and Multiplayer

2

RPAREN

SEMI

b

// an RPC parameter

parameterDefinition

IDENT // type

IDENT // name

b]

The first function identifier number can be defined anywhere, even outside of the

IDL file, but it’s usually less confusing to keep the definition within the IDL file.

The backend of our compiler should generate these files based on the semantic

information from the frontend (discovered by the parser). In general, an IDL output

consists of several source code files:

* Proxy source code and its header
e Stub source code and its header

Going back and looking at Listings 6.4.1 and 6.4.2, we can see that these code pat-

terns correlate to Listing 6.4.4, where FunctionName stands for an RPC function

name, ParameterDeclarations stands for C++ declarations for all the function para-

meters in the RPC function, and Parameters stands for the parameter list separated

by commas. See Listing 6.4.5.

Listing 6.4.5 Our Proxy and Stub Code Pattern

// common

static const RPCHeader RPC_ID_FunctionName=(10+0) ;

FunctionIdentifierDefinitionsForOtherFunctions

// proxy

RPCResult FunctionName(RPCSendTo sendTo,RPCSendContext

sendContext ,ParameterDeclarations)

{
CMessage m;

Message Write(m,RPC_ID FunctionName) ;

Message Write(m,FirstParameter) ;

Message Write(m,LastParameter) ;

return RPC_Send(sendTo,sendContext,m) ;

}

ProxyDefinitionsForOtherFunctions

// stub

RPCResult RPC_DoStub(RPCSendTo recvFrom,RPCSendContext

recvContext,CMessage& m)

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 637

RPC: Usage
_eeaeeeeuaeucnancetoamanno ENE

smcsecciseetncnneonnssnnseensiesee svoetstenannnasesoecstaansennneenoeiteinmmenetennetiomaatetesetenialienoteteennlliilineusietttittensnenrenennn es

{
RPCHeader msgID;

m.SetCursor (0) ;

Message _Read(m,msgID) ;

switch(msgID)

case RPC_ID FunctionName:

{
FirstParameterDefinition;

Message _Read(m,FirstParameter) ;

LastParameterDefinition ;

Message Read(m,LastParameter) ;

FunctionName (

recvFrom,

recvContext,

Parameters) ;

}
break;

CasesForOtherFunctions

}
}

Note that RPCHeader, RPCSendTo, and RPCSendContext are just our own local type

definitions. In these examples, they're defined as unsigned int.

For simplicity, the backend code described here uses printf() or cout, with sev-

eral for{} statements. However, this will get cumbersome when the code patterns get

more complex. So it will be helpful to adopt a text generator based on text templates

such as eNITL [Breck99].

It may be hard to keep maintaining and modifying the IDL compiler as we add

more functionality to our RPC system. We can drive some parts of them into a com-

mon library, which contains several typedefs, helper functions, and some classes. The

example in this article has a very little common library called MyRPC. MyRPC has a class

CMessage and several read and write functions for the most frequently used primitive

data types such as int, float, and std::string.

<<< MSL LLAMA LALLA MALLE ANSE NNN TTS NALIN

To use our RPC implementation within our application, we should add the IDL file

to our project and configure custom build options for the IDL files. In the case of

Visual Studio.Net, we may configure these per Figure 6.4.4.

In addition, the compiled output files and common library need to be added to

our project configurations. As the generated proxy and stub code is a kind of compi-

lation output, it is recommended to add generated proxy and stub .h and .cpp files

indirectly to your source code using #include clauses.

RPCHeader, RPCSendTo, and RPCSendContext are used for sending and receiving

tasks via your networking module. If the number of RPC functions defined is under

255, a traffic conservation trick would be to change RPCHeader to unsigned char.

638 Section 6 Networking and Multiplayer
: Sn

seceynamaigeecnannsctecermmanscrnes sin anissttittseananennnenasniHianansn tit sassrarnennnnnnnnn

Test.IDL Property Pages .

Configuration: eae x] Platform: [Active win32) | Canfiguration Manager... ei

Configuration Propertie Command Line |DLComp,exe “$(InputPath) Ng

ies ame ; Description Compiling MyAPC $(InputName), IDS.

@y Custom Build Step | | Outputs Se a » $(inputNarne)— proxy, h:$(nputNlame)_proxy, cpp: 3$(inp

» General Additional Dependencies

Outputs

$(InputName)_proxy.h
$(InputName)_proxy, cpp
$(InputName)_stub.h
$(nputharne)_stub, cpp

; Macros>>

Outputs , :
Specifies the output files the custo Cancel _| __ Hels |

FIGURE 6.4.4 Configuration of Test.IDL.

RPCSendTo identifies the remote computer that receives the messages. RPCSendContext
defines other parameters such as protocol selection (TCP or UDP), timeout options,
or invocation identifiers for multiple asynchronous responses. You may change these
typedefs as you wish. This RPC implementation automatically adds RPCSendTo and

RPCSendContext into generated RPC functions’ declarations as the first and second

parameter, respectively.

You then need to add a networking module to the application, because our RPC
system itself doesn’t have any. When the proxy constructs a message, it calls RPC_Send()

to pass it to your network modules. Meanwhile, when a message is received at your

network modules, it should pass the message to the stub through RPC_Stub(), which
exists in the generated stub file.

Sample Programs
ONG 2 NSB RATA ETN LATTE LOS MOE LE ES ETT AOE ST TRG EERE I STO INGE IEE ETE IN OE RRC TS MORRO

There are two executable examples with this article: Simple Test and RPCDuel. SimpleTest
is basically a Hello World application. It has an IDL file and a main() function, which
calls some RPC proxy functions, which just saves the generated message to its local mem-
ory. Then assuming it has already received the message sent by the proxy, it calls a stub
function, which resolves the message and calls the appropriate RPC body. While trivial, it
should serve as a quick example of how the more complex RPC samples work.

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 639
sunmsasasssssinenataiomaiesssitannnss set ssanss Aenea cteneM x s:ennntnnnieeetemeateaansstieinnetete oe tetnnaemenniaeanseenceneenteeinineneinoHemnenett

RPCDuel is a modified version of a simple game called Duel in the Microsoft

DirectX SDK sample. RPCDuel is an example of RPC based on DirectPlay, which

Duel is also based on. The original application messages have been changed to MyRPC

ones, while commenting out the original portions. You can examine how RPC works

by searching for the comment before RPC in the RPCDuel source files.

Further Features
OE ISENSESESISPEOCLSSSBEB ESE IT LETS NEE EES SEER ELE LE RELL AL LALDEEELE SELLE SS ELLE LENA EL LAELIA.

There is a proverb in Korea, “A journey of a thousand miles starts with but a single

step.” Although the implementation here, as a first footstep, is written in a simple

manner and only begins to show the practical use of RPC, it should be easy to

improve and extend the system based on your needs. Here are some areas for improve-

ments worth investigating.

Allow Multiple Proxy/Stub Instances

of an IDL in a Program

This implementation generates global functions and typedefs. This means there’s a

limitation on multiple instantiations of the RPC functions for multiple game sessions

or other re-use. One solution is to have the IDL compiler generate a proxy class and

an abstract stub class, capable of handling several clients at once.

Error Detection and Recovery

Most online game servers or peers have to’ program in a tolerance against erroneous

messages, which may cause various exceptions such as buffer overrun, invalid message

format, and networking failure. One of the solutions is to add boundary checking to

our serialization and deserialization functions. Of course, if you enable your IDL

grammar to accept value ranges specified by the game programmers, it may reduce

having to write vulgarity checking codes.

More Data Types

In our example, only some primitive data types such as integer, floating number, and

strings have serialization and deserialization functions. However, we may want to

support more data types in our RPC functions, even arrays and structures. There is a

serializable class Vector3D in the SimpleTest example. It has these two functions.

void Message Write (CMessage& m,const Vector3D &val) ;

void Message_Read(CMessage& m,Vector3D &val) ;

We can continue defining as many serialization and deserialization functions as neces-

sary. Some C++ template functions might be more convenient for generic structures

such as array and list, however.

640 Section 6 Networking and Multiplayer
stotscteoemnnenennneasecnceicttentne RNAse HEALD NAOH

Message Encryption

In many online games, not all the messages need highly secured encryption, and due

to performance issues, only a few types of communicated messages are made secure.

When we add an encryption option to our IDL grammar, and IDL output code

pattern and encryption facilities to our streaming class, we can make use of encryp-

tion easily just with one definition such as:

[encrypted] RequestLogin(string id,string password) ;

Message Compression

Message compression is easily implemented by enhancing our streaming class and our

IDL grammar. For example, we may want to add a “number of bits” option for each

parameter, which we can define like this:

Knight_Attack(int type:4,int magicBuff:7,int critically;

Variable type takes four bits and magicBuff takes seven bits, while critical takes

one bit. Of course, we would then need to modify our streaming class for bitwise

manipulation.

Switch-Case Optimization

For better performance, it is also a good approach to substitute switch-cases in RPC
stub to a binary search tree, to get O(logm) for 7 as number of RPC functions.

Debugging and Profiling Tools

It may be easier to profile servers by adding some probe code to the RPC proxy and

stub code templates. For example, when we want to trace every incoming or outgoing

message, we can do so just by adding code that prints the function name and parame-
ter values to console or debug output. Of course, we can also view the trace log

records showing what functions and parameters have been passed. This is a great way

to help detect vulgarity received from a bad game client or RPC body functions that
cause long process times.

Synchronous RPC

Most games will typically not require synchronous RPC; however, if it is needed for

your programs, you can add this faculty to your RPC at runtime.
Adding synchronous RPC to our example requires some more work:

¢ We need to define more sequences that wait until the RPC body returns and
passes the return values to the RPC function caller.

¢ Only guaranteed messages are acceptable with synchronous RPC.
* We need to add a parameter direction option, which are input parameters

(inparam) and output parameters (outparam). Inparam is sent to the RPC server

6.4 Fast and Efficient Implementation of a Remote Procedure Call System 641

while Outparam is received from the RPC server after the RPC body executes.
For this difference, we should add parameter direction grammar to our IDL com-

piler and add code that serializes outparams at the stub and deserializes inparams
at the proxy. Here is one example of synchronous RPC.

UserLogin([in] string id,[in] string password,

[out] int loginResult) ;

¢ We need to consider exceptional cases such as timeouts and exceptions, to prevent

deadlock.
¢ We need to manage function call sequence number. When RPC outparam mes-

sages are received by the proxy, it can determine which thread is waiting by the

call sequence number. To only wake a thread that corresponds to that sequence

number, we need to prepare a queue containing outstanding RPC calls waiting

for outparam messages.

Conclusion

Writing an RPC implementation normally has some prerequisites not associated with

game programmers. This gem was an attempt to euide you towards getting started

with your own RPC system, and you're encouraged to explore and see the productiv-

ity and efficiency, as well as performance, you can get via RPC systems. To get the best

understanding from this article, you may want to look at some of the references. Now

it is your turn!

References
LiL LLL LLL LLL ELLE LLL ALLO LL LAT NT

[Breck99] eNITL. The Network Improv Template Language. Available online at /itp://

networkimprov.com/enitl/enitl. html.

[Parr04] Parr, Terence. ANTLR Parser Generator v2.7.4. Available online at /ttp://

www.antlr.org.

[Sebesta02] Sebesta, Robert W. Concepts of Programming Languages 5th Edition,

109-123, 155-159. Addison Wesley, 2002.

[Silberschatz02] Silberschatz, Galvin, and Gagne, Operating System Concepts 6th Edi-

tion, 121-124. Wiley, 2002.

a _ enshoet MHD eternal

somrasey aid Bian en PU Ady 2
“(ite ICih agra acne Luniyye neh pee 3

cevepras gr sco aecater gts dacsy. Magy. v's THe #4

Tir, ow nopecomin Ail

ater i pein 5 Pa TNE +7
. Gal}i) <9 leuinatoad me

asverg oF PaetiqngEs BE eben Pla eale le

=e ‘2 oe el ¥ F, sh re,

Ape 1 TEN GwreRniGh » nip: ov) aE: Rarne nee ort

sli yd gabtider -of ousirhy- doin on ‘eps Lents aivar mech ty 9 diciga

sanoupe: 1th ia ce oaeriles sednhterdecsicdymodecu kébdd BTU},
gained allow OMY) au tbtiaieune penieeeso leoRpie: TUK basa 2

j git A®cacerigt: tspele, ie a

(Ate us iz TOSS ers bites base Sie Q [ea eae =e is

Hive besiege ae cashes pri ty pete ecel vilsamon soneiedaara Dy ne

bn vere gnitiag teats wov shine a7 2Qrftene he vow mtg et! zee
WEE ION YAS ghee lebep tan SA HRyO>ND voy bee Mises? OA nw rai
F965 4 ts ry ol mT HY ht ¥ i3,.Q63 Ley TUK abet vod ae hwy Sat ay

wal ea 2f xi 3) a cu 14 wethoe Fe. iti Bt nd oitiow ¢ Sere ' . SRL ay ‘Adj

cre wRarey . Oo get zl Yor aiciuficher ue

ete | is

Golan io etd Pretideg looks

bk aay be cp Oa eae ee a

rei A iL afte “yh tic Ry peuautd sha msit Laguav aan’ ree:

mene i ect (ved ae n dtl

‘road se omit itt aon o) re MELT Alawar comme al
jacoacs Aewing whal burcsiens and geramuters have Dew

near, oe begs ART! WH ins el hea Ae capil aides
niine bea pore ete of as alesW noeibbA Ce feel tSi-

a’ ard caaaen.) pening: cq) origer) bre salves stuttsersdlie, (£0
Myechrens te APO ras OlW PS1—ASL aia
Mion ‘asbies oll tonic moguire engl niga APC owen eas |

ro Cae wiih de bate vot RPC at Hasetinne.

fing wre tires | fm oly exe fry ye paaeeeicnigi

» ete try LF. : i a 4) we ® ee iPLae. wai

ve tae ¢ dome att tbe TU" fiagtion

pe Toke oie tomate with
ent owtee: fiona

ne pweanelcns

@s

6.5

Overcoming Network

Address Translation

in Peer-to-Peer

Communications

Jon Watte

hplus-gpg5@mindcontrol.org

{ eatnayee computing revolutionized the way we compute. From the early

research Internet of the late 1970s through the dial-up Internet revolution in the

early 1990s to today’s bonanza of fat broadband pipes, everyone is using computer

networking for fun and for profit. More than 50% of all Internet users will have

broadband when this gem is published. Although, with this popularity comes all

kinds of problems: self-replicating worms, pings of death, and Windows security

problems, coupled with heavy vendor scare tactics, cause most users to set up firewalls

to protect their computers. Connection-sharing firewalls are a hot selling item, as

homes with multiple computers find that sharing a single broadband connection is

the easiest route; prices having fallen to under $100 for a feature-rich wireless access

point with router, switch, and firewall.

Online games are maybe one of the more exciting applications of computer net-

working technology, where the ability to compete with players from all over the world

from the comfort of your own office, living room, or coffee shop has subtly changed

how we view the term “buddy” and how we choose to interact online. Companies like

Sony Online Entertainment and NCSoft make it their business to run large server

clusters where players from all over the world can meet and play together. However,

these big server clusters come with big leasing, power, and networking bills, and such

services usually come with a monthly price tag for the end user. Thus, another popu-

lar form of online gaming is peer-to-peer gaming, where one player's computer also

serves as the server for the game, and all the other players connect to this player, who

is said to be hosting the game.

Unfortunately, some games are not as good at supporting this model of connec-

tion as others. Frequently, firewalls and connection sharing software get in the way of

643

PNIERDNN! JAMIN AANORES LINIVERCITYV vy

644 Section 6 Networking and Multiplayer
enn ISINTN UNNI TC

hosting games, and sometimes even joining games. While some users may be techni-

cal enough to configure a DMZ or port forwarding in their firewalls, many are not.

And even for the technical users, pleading with a Starbucks® employee to give you

access to their wireless access “hot spot” is unlikely to make that hosted game of War-

crafi® III come any closer. As a developer of a networked game, you would like to do

better, and this gem will show you how.

Audience
Se act aU NR SEG EES A ESSE tenes OLE LOE LSAT

This chapter is intended for all game programmers who want their game to work as

well as possible on the Internet. It is especially important for programmers who want

their games to use peer-to-peer, player-hosted servers, and want to extend to as many

users as possible without telling users to configure port forwarding, set up a DMZ, or

remove their firewall.

We assume that you are familiar with general Berkeley sockets programming

(Unix) or Windows WinSock Version 2 (Windows). The technique shown will work

equally well under either operating environment. For purposes of this gem, MacOS X

(and higher) works a lot like Unix, but the code has not been verified on MacOS X.

This chapter uses C++ for its code samples, but the techniques can be expressed in any
language capable of using networking at the sockets layer.

Penccrasse
At the core of all networking is the network address. The Internet at large uses an

address format called IPv4, which is short for Internet Protocol Version 4. What the

first three versions looked like has long since lost its relevance. There is also an up-

and-coming version called IPv6 that has so far failed to gain mainstream acceptance.
In this article, “IP address” is synonymous with “IPv4 address.”

An IP address is simply a series of four bytes. Typically, it will be written out in
dotted notation, such as 192.168.1.2. An IP address identifies a specific network card

or modem connected to a specific device on the Internet; these individual hardware

devices are called network interfaces.

Devices connected to the Internet may run multiple services; for example, a Web

server will often also run a Secure Shell Daemon (SSHD) that allows administrators

to access the command-line interface of the server for monitoring and maintenance.

To distinguish network packets destined for the Web server from network packets
destined for the SSHD, the two most common Internet protocols add the concept of
a port number. Each service uses its own port; for Web servers, the port is 80 unen-

crypted services and 443 for encrypted services. For the SSHD, the port is 22.
For games, the developer will often choose an arbitrary port within the allowable

range. Ports in TCP and UDP addresses are two bytes, and thus the range is between
0 and 65535 inclusive, although tradition dictates that the port number is chosen in
the range 1024-49151, inclusive. This tradition likely started with the arbitrary

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 645
sototeeesmesinnseieneoinuaasanensinesttancnet ocean eentassecsetcasneenenernnmin An MSE AMAIA IARHE

implementation choice on Unix, where ports 1 through 1023 are reserved for the spe-

cial administrative user “root” on the machine, and only root may open new sockets

listening for traffic on these ports. For more information, see [Man3rresvport] and

[RFG793)}:
A UDP or TCP address thus consists of six bytes: four single-byte numbers in the

range 0-255, inclusive, called the IP address, and one two-byte number in the range

0-65535, inclusive, called simply the port. The IP protocol suite specifies that all

numbers larger than a single byte be sent with the high-order byte first (big-endian),

and most sockets implementations supply functions or macros named hton1(),

htons(), ntohl(), and ntohs() to convert between the local machine representation

and the well-defined network representation of numbers.

sat heb Sic EE LTE LLL LON DEL LLL NOOR ELLE LL TRL DE ALLL LL TELE NOON

A program running on a machine (we will call these programs “processes” and the

machines “nodes” in the rest of this chapter) will typically play one of two roles: server

or client. A server process will create a socket using : :socket() and bind it to a local

port and one of many local addresses if the node has multiple network interfaces,

using ::bind(). If the socket is used for TCP connections, the server will then call

::listen() and enter a loop where it calls ::accept() to wait for and accept incom-

ing connections from clients. ::accept() returns a new socket for each new client,

and data is exchanged using : :send() and ::recv() using this socket. To tell the dif-

ferent connections apart, each TCP connection on the client side automatically allo-

cates a new, unused port for the specific server connection.

If the socket is instead used for UDP connections, the process will enter a loop

where it calls ::recvfrom() on the socket directly after ::bind(). All incoming traffic

from all clients will arrive at the same socket. The network layer has no notion of con-

nectedness, so if multiple, related packets are to be exchanged over UDP, some higher

layer software (such as the process itself) has to take care of the coordination thereof.

Return traffic for servers using UDP is usually sent using ::sendto().

For a client of a TCP service, after calling :: socket (), the process will call ::con-

nect() to establish a connection to the intended recipient; once connected, ::send()

and ::recv() are used for data exchange. The argument to ::connect() is a LGP

address that may have been looked up from a textual name (such as “www.there.com:

80”), using name server functions such as ::gethostbyname(). Meanwhile, clients of

UDP just call ::sendto(), passing in the IP address (again, possibly derived from

textual form using the name resolution library), and receive data back using

:rrecvfrom().

In a typical process, many things will be going on at the same time, so thinking of

“send” and “receive” as sequential events is usually misleading. Physics simulation,

graphics drawing, audio mixing, and disk I/O are examples of other actions often

happening at the same time as networking in a typical action-oriented networked

computer game. The approach to managing these overlapping tasks is usually either

646 Section 6 Networking and Multiplayer
sccttheseeechentessttN NNN NNN NOOO wt OA

sotnonnetssescnsnnseunacnstctnnnnetnnsetuaannenntnerinmmunersooissstnaennen niin neunaninaniaaern

to poll the network using ::select() to determine what can be productively-done, or

to spawn multiple threads to deal with operations in different parts of the program.

The supporting code for this article uses ::select()(or on Linux, the : :select ()-like

function ::poll()), because it causes less synchronization overhead and leads to fewer

threading bugs; the techniques presented are equally useful in either world view.

A specific process can be a server and a client at the same time. For TCP, this usu-

ally means creating at least two sockets; one that is listening and accepting new

incoming connections and a separate socket that is connected as a client to some

server on the other end. For UDP processes, multiple sockets are not necessary,

because it is possible to ::sendto() and ::recvfrom() on a socket to and from an

arbitrary number of peers. In fact, when using UDP, the concept of “client” and

“server” is only visible at the application level, not in the network layers below.

Purists will note that the TCP protocol doesn’t specify “clients” and “servers,” but

in reality, a process that calls ::accept() is a server, and a process that calls ::con-

nect() is a client. See [Stevens94] for more details.

Routers, Peers, Protocols
TS NAN IESE SSA NUNN SEER A SOO TSE SAILS SY

A few more preliminaries are needed to flesh out the background against which to

examine peer-to-peer networked gaming.
First, the Internet does not work like a telephone, where a wire is hooked up to

the handset on one side and, conceptually, is hooked up through switches to a wire
leading to the handset on the other side, forming a closed electrical circuit. Instead,
from the point of view of the Internet infrastructure, each IP packet is separate from

each other packet. When a process causes a packet to be sent, the local node makes a
determination on which interface to send the packet; the packet then makes it
through that interface to a router on the other end of that specific connection (the

first router along this path is referred to as a gateway for the local node). That router
then makes a determination as to where to forward the packet among its possibly
many interfaces, passes it along, and so on. The process is repeated until the packet
makes it to one of the interfaces on the recipient node and is delivered to the receiv-
ing process, or delivery fails. It is important to keep in mind that each router inspects

all incoming packets and follows some kind of rule to figure out which interface to
forward the packet to, or whether to just ignore the packet (known as “dropping the

packet”).

Second, because every node participating in the Internet has its own IP address
(and, for most services, a socket listening on a specific port), there is no way to inspect

just the IP address of a packet and know whether the packet is sent by a client or a
server. On the Internet, all nodes are logically equivalent; they are said to be peers of
each other. The notion of client and server is something that is constructed by the
users of the Internet, typically implemented into the software running the processes
on each node.

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 647

Third, there are a large number of protocols in use on the Internet. Some of the

more common ones include 802.3 (for regular wired Ethernet), IP (packets contain-

ing an IP address), UDP (specifying a source and destination port number), and DNS

(used for querying name servers to resolve textual node names to IP addresses). A

given packet will usually make use of many of these protocols at the same time; a

DNS query will be sent on port 53 in a UDP packet to some name server IP address,

transmitted over Ethernet through the first jump to the DSL or cable modem. Each

protocol is layered on top of the underlying protocols, so UDP 1s layered on top of IP,

and DNS is layered on top of UDP (in this case).

UD rac nee Ol sotn ALN MMM LE LN LM LTT EE

An example DNS query packet, as explained earlier, is shown in Figure 6.5.1 at the IP

layer. Below IP, there will be additional framing, such as Ethernet, ATM, or PPP,

which we have excluded for clarity because this gem deals only with phenomena

observable at the IP protocol layer and above. We also disregard minutiae like packet

fragmentation or van Jacobsen header compression, which do not modify the basic

operation of IP networks at the level visible in this gem.

bit 0
bit 3

Eola Packet Length (bytes)

DIM ff: BBG Fragment Offset

Protocol Header CRC

Source IP Address

Destination IP Address

Source Port

UDP Length

FIGURE 6.5.1 Anatomy of a UDP packet, with IP header, UDP header, and payload

data.

648 Section 6 Networking and Multiplayer

Given all this knowledge, you should be able to write a networked game that

works over the Internet as it looked in the early 90s. However, time has moved on,

and the introduction of NAT (Network Address Translation) changed all that.

nWiNEAAL aed sc EE seen Eee LL NCAA OS HNL AE NTRS MOEA IO EMRE ES OR ECCT TET

The Internet started growing rapidly in 1992 and has kept on growing ever since.

Because it is a peer-to-peer network, each node on the Internet needs its own, unique

address. These addresses take the form of four bytes, so there is a total available of a

little over four billion addresses in the world.

The Problem (IP Address Space)

At some point, we are going to want to add more nodes (or at least interfaces) in the

world than supported by four-byte addresses, and even worse, the way that addresses

are used at the routing level causes a certain amount of waste. In addition, the alloca-

tion between different parts of the world is sometimes grossly skewed; it is said that

MIT has more Internet addresses allocated for its internal use than the entire country
of China! Whether this is true or not, the Internet has been facing an address crunch,

growing faster than the ability to allocate addresses.

Another Problem (Security)

Nodes connected to the Internet are peers to all other nodes. This means that you can
type in any URL in a Web browser, and send network traffic to whatever other node
that URL resolves to. Unfortunately, it also means that any peer on the Internet can
send your node whatever network packet it wishes. Some network services are

designed with more careful attention to this fact than others are, and a number of

remote exploits (security holes) have been found, using bugs in networked software or

even in an OS like Windows itself to take over virtually any node on the Internet,
bypassing the need for a password.

Most users will be unable to fix application bugs on their own, and a better way
of avoiding security holes through application bugs than just unplugging the machine
from the network is necessary.

The Fix

A popular fix to the dual problems of IP address space shortage and keeping
unwanted network traffic away has emerged; it is known as Network Address Transla-
tion or NAT for short. Most DSL routers, cable modems, and Internet Connection
Sharing devices use NAT to work their magic.

The idea is simple: most network protocols use UDP or TCP for their underlying
transport. A port number and an IP address identify the endpoints communicating in
those protocols. If multiple nodes can share a single IP address but use different port
numbers, and the network could somehow distinguish which node to forward a

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 649
osetsevemanannsnensutsoinnnnnnnenseteeeiersemeaetentntenanunieorcencntt snsnennanoeninsioeeunponsnnnnentnaattnyennhunetaeasineetenineonne

packet to, based on the port in addition to the address, then you would only need a

single IP address per household, company, or other subnetwork using less than

65,000 simultaneous connections.

The low-level network protocols like ARP that make the packets flow between

nodes do not work well if more than one node share the same IP address, but there’s a

higher-level entity that fits the bill perfectly to implement this address sharing: the

gateway router. If all nodes wishing to share one address (from the point of view of the

Internet) sit on one end of the router, and the router is the only visible node to the

Internet, then everything will be happy, assuming we can find some addresses for the

internal nodes to use when talking to each other and to the router.

Luckily, some address ranges of the IP address space are reserved for experimental

or private use. These ranges are 10.x.x.x (with space for 16 million internal nodes),

172.16+x.y.z (with space for a million internal nodes), and 192.168.x.y (with space

for about 65,000 internal nodes). These addresses are guaranteed to never be used on

the publicly visible Internet, so using those addresses inside a NAT-routed network is

guaranteed to not clash with anything outside the NAT. For more information, see

[RFC1918].

In our example, the NAT device has address 10.0.0.1 on the inside and address

381.226.155.187 on the outside (with apologies to whoever currently uses that

address). The nodes on the inside of the NAT are 10.0.0.2 and 10.0.0.3, and the

sample site we are trying to connect to is 64.125.216.191 (again with suitable apolo-

gies to whoever uses that currently). Presumably, the ISP for the user with the NAT

box has allocated the 81.x address, and the 64.x address has been allocated by the

hosting provider for the destination server, and found by the user using DNS.

Putting it all together, when nodes inside the NAT start up, they are assigned

addresses out of a private address range, and their gateway is configured to be the

NAT router. When they want to communicate with some node on the outside (say,

64.125.216.191:80 for a Web connection), they form their network packets as usual

(say, using source address 10.0.0.2: 6000), and forward them to the NAT router. The

NAT router then notices that the source address is from within its private network,

and substitutes its own, public, address as the source address, so for a device on the

outside, it looks like the packet comes from the NAT router.

Unfortunately, more than one internal node may use the same port number for

the source port. Thus, the NAT router must substitute a new port number for the

original port number, in addition to its own IP address for the private source IP

address.

Finally, in turn for returning network packets to make their way back to the right

node, the NAT router maintains a table of (source IP, source port, substitute IP, substi-

tute port, destination IP, destination port) tuples to be able to rewrite returning packets.

In our example, illustrated in Figure 6.5.2, the tuple for a simple Web request is the first

line of the table: (10.0.0.2,6000, 81.226.155.187,11001, 64.125.216.191,80). Once

the port number 11001 has been allocated on the NAT to be used for the node

650 Section 6 Networking and Multiplayer
evssicennsussennunonnenteneseentatasnsnitacese nen nna inieinananenennioirinenrenAtnenina

10.0.0.2 port 6000, this port number should remain allocated for that address/

port pair for as long as the connection is open, or a returning packet addressed to

81.226. 155.187:11001 will not make it back to the right place.

Third parties cannot send traffic to the internal node, because the private address

of the internal node makes no sense when interpreted in the open Internet; a packet

addressed to 10.0.0.2 from the outside would not even make it to the gateway. Simi-

larly, if a packet arrives at the NAT router with a source address or port that the inter-

nal node has not recently sent data to, there will be no tuple recorded in the gateway

to translate the destination address to an internal address, and the gateway will simply

drop the packet. In this way, a NAT router works a lot like a stateful firewall and often
provides all the protection a typical home user needs from remote network attacks. It
still cannot protect against attacks that rely on user behavior, such as sending Trojans
through e-mail or enticing the user to click on malicious Web links, but it is a good

first defense.

81.226.155.187

64.125.216.191

Public

NAT + Firewall Internet
Public

2OROR 10.0.0.3

\ Internal Network (behind NAT)

Internal Address Public Address

10.0.0.2:6000 817220 ghoul erie Od. 64.125.216.191:80

ORO a sos Olr22Orloon ei ToS DOS 679.27 5S

LOMO ROR 2 23 81.226.155.87:53 1956721995282 53

10.0.0.4:53 Si220e Looe o7 sro! ESTO 7/5199 27 353

FIGURE 6.5.2 Example NAT-ed Internet connection.

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 651
sncttsetetetenstoasaienanessaoeennnnensssssesnetcovneanesoneoetenaeeeo eon taeseaiinethnenternete Mobi HaHOetaenceoe tn <cntahaaicanasbaadnaanas fa ssi

POE, AIST Rach Ltr ted bed ed etme SASSER RRA AN LS AIT EEN TE TIT

The NAT router substitutes a public source address/port pair for the private address/

port pair, remembers the destination address/port, and forwards the packet. For

returning packets, it does the reverse translation, and the node on the internal net-

work can communicate flawlessly with the outside world.

Unfortunately, this does not work for all protocols, especially protocols designed

before NAT gained widespread acceptance, or without proper understanding of the

needs of NAT. One prime example is the File Transfer Protocol (FTP) that is com-

monly used to download files on the Internet. When FTP was designed, it was

designed so that one node could set up a file transfer between two other nodes

([RFC959], [RFC1123]. The controlling node C would connect to node A, tell node

A to expect a file, node A would start listening on a port, and tell node C what this

port is. Node C would then connect node B, and tell node B to connect to node A on

that port, sending the file. This also allows the control connection to remain open and

issue more commands while data is being transferred on the data connection.

The common case of transferring a file to the controlling node C from the server

node B is handled as a special case in the FTP protocol, where the port and address of

node C are forwarded to node B, and node B connects back to node C to actually

send the data.
The problem is that, because the receiving node listens on a port, rather than

actively connecting to the external server, if a NAT router is in the way, the local port

and address of node C makes no sense to node B when instructed to connect back.

The NAT router translates the source address of the outgoing request to connect back

to node C, but it does not have any knowledge of the actual data stream inside the

ETP control connection, and thus the internal address and port of the socket waiting

for the connection passes through untouched as data on the wire.

An example of how a UDP-based game may make the same mistake as the FTP

protocol is found in Listing 6.5.1.

Listing 6.5.1 Embedded Address Code Sample

1: Embedded Address Code Sample// An example packet structure for

// connecting to a server.

struct CmdHello {

char cmd;

char len;

unsigned short port;

unsigned int addr;

}3

// Get the local address of a socket; this is not

// something that’s generally

// useful on the public internet!

struct sockaddr_in addr;

652 Section 6 Networking and Multiplayer

socklen_t len;

len = sizeof (addr) ;

::getsockname(sock, (struct sockaddr *)é&addr,

&len);

// This bad code puts a local address into

// a packet sent to a remote location — do

// NOT do this yourself!

Hello h;

h.cmd = CMD HELLO;
h.len = sizeof (h);

h.port = addr.sin_port; // don’t do this!

h.addr = addr.sin_addr; // don’t do this!

::sendto(sock, &h, h.len, 0,

serverAddr, sizeof(*serverAddr));

The Hack

Because FTP is a very common protocol with lots of clients in use, a fix had to be

found. Ideally, that fix would not require changing all FTP clients in existence.

The fix that emerged involves adding smarts to the NAT router and having it

inspect the data of packets of traffic to certain ports. Most NAT routers today know
enough of the FTP control protocol to be able to intercept a control message contain-

ing an address and port and rewrite the data of the protocol to contain a public
address and port; the router will also add the appropriate tuple in the active NAT ses-

sion table to allow packets from the serving node to get back in.

While the FTP protocol is so widespread that it enjoys special status in the major-
ity of NAT gateways (but not all), newly designed protocols cannot hope to achieve

the same special-case status.

The Fix

The real fix to make a network protocol NAT safe is to structure the protocol so that
IP addresses or port numbers do not need to travel within the data stream. The easi-
est way to make sure that this is sufficient for the protocol needs is to always create a
connection from the client to the server, using UDP or TCP, and always have the
server reply back to the client using the address visible on the server when the client
connects. No forwarding of connection information should occur over back channels
between servers. Correct management of peer addresses is illustrated in Listing 6.5.2.

Some very advanced data center equipment exists that is NAT aware. One kind
uses reverse NAT to load-balance connections, secure clusters against external attack-
ers, or allow freedom in assignment and management of IP address space. Design of a
communication system involving reverse NAT in the face of shared authentication
has to be done with utmost care and is beyond the scope of this gem.

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 653
rcnmmosenucnennnsesnnoncnnaaanciencestessntesstan snatoenontdstestesrmnonsstaeaton encore ano teteetettoHetasnanstionnmnnnenteitoe

Listing 6.5.2 Correct Address Management

// A proposed packet for acknowledging a

// (corrected) CmdHello packet.
struct CmdHelloAck {

char cmd;

char len;

}5

// The server uses ::recvfrom() to correctly get the

// address of the peer that connects.

struct sockaddr_in addr;

socklen_t len = sizeof (addr) ;

union {

CmdHello hello;

} command;

:trecvfrom(sock, &command, sizeof(command), 0,

(struct sockaddr *)&addr, &len);

// Server registers connected client on a received

// hello packet, and then acknowledges using

// ::sendto() to the received address.

if(command.hello.cmd == CMD_HELLO) {

// client_hello() is the function that adds

// a newly connected client to some internal list

client_hello(command.hello, addr);

CmdHelloAck ack;

ack.cmd = CMD_HELLO ACK;

ack.len = sizeof (ack);

::sendto(sock, &ack, sizeof(ack), 0,

(struct sockaddr *)addr, sizeof(addr));

Other Problems

A variant of this problem is where a game server cluster uses one server for validating

logins, and then passes the information about the player to another server, which

attempts to return traffic to the client. Even if the public NAT address of the client is

used, the NAT router does not expect to see traffic from the new server, so the return

traffic is dropped.

Again, the rule to make a protocol fully NAT safe is to always initiate the connec-

tion with each individual server from the client, and to never send IP addresses

or port numbers as data, but instead rely on ::accept(), ::getpeername(), and

-:recvfrom() (but not ::getsockname ()!) to get the address of the node on the other

end.

To support the idea of a central login server that validates username and password

for a server cluster, you could use a cryptographic cookie. Share a common secret

(frequently, a 128-bit strong random number) between the servers. When the player

logs in, the login server creates a hash of user ID, login time, and the shared secret,

and returns user ID, time, and hash to the client. The client then submits this same

654 Section 6 Networking and Multiplayer

information to each other server; that server need only verify that the hash of-user ID,

time, and secret (not known to the client) matches the hash supplied by the client, to

know that the login server properly validated the name/password that goes with the

user ID in question, at the time indicated. The strength of this system is mostly

dependent on the strength of the shared secret (which should change every so often)

and the strength of the hashing algorithm; on Linux, using 16 bytes from /dev/

random works well for shared secret, and MD5 is a commonly used strong hashing

function.
If you follow this advice, your client/server service will be NAT safe. However,

how does this work when using peer-to-peer networking?

How Does NAT Break Peer-to-Peer Protocols?
Setting up and operating large server clusters is expensive. For a smaller game devel-
oper, or a game developer who does not want to charge players $14.95 a month for
access after the initial purchase, allowing players to host their own game servers is an
attractive option. There are security implications in that you can’t really trust an arbi-
trary server hosted in some hacker’s bedroom, but the popularity of peer-to-peer net-
worked games all the way from id Software®’s Doom™ through Dice's Battlefield
1942™ and on validate the peer-to-peer gaming model.

However, the client/server model we have discussed previously only works when
the server has a port and address that is publicly visible on the Internet for clients to
connect to. Too often, this means that users behind NAT routers cannot host games,

only join them, and if the game is not designed to be NAT safe, a user behind NAT

cannot even join a game! With the widespread popularity of NAT in modern net-
works, this is not really a tenable situation. The diagram in Figure 6.5.3 shows a prob-
lem where neither node can actually talk to the other (on port 8960, presumably used
by some game), because the NAT routers have no appropriate entry for the second
node in their respective session state table. Here is where using the technique in this
gem will save your game!

The Hack

Read the README.txt of many games today, and you will probably see mention of
port forwarding. Port forwarding means going to the NAT router and telling it to
make a special case for packets arriving at a specific port. In effect, port forwarding
adds a permanent tuple of (internal IP, port, gateway IP, port, any-remote-IP any-
remote-port) to the session state table of the NAT router.

The effect is that any packet arriving at the designated port is only rewritten in
the part of the destination IP address and forwarded to the specific machine set up as
the port-forwarding target. Games with half a clue will require you to only forward a
single port, and may even let you configure which port to use within the game.
Games with less flexibility will require a specific port (such that you cannot ever host

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 655
seanesnsctenosssieeesreeetansasserereteecnncstoetennebadsteetnetnnatot sot utassnet tr aramassenenintttnihihdtteeNetL/AHe AHL

81.226)255).187

Public

Internet
69.17.45.36

aldenoatwse) Was
‘\

\. NetworkA /’

Internal Address

10.0.0.2:8960

Public Address

81.226.155.187:1101

10.0.0.2:8960 81.226.155.187:8960

FIGURE 6.5.3 Neither peer can send packets to the other.

two games between the same NAT router) or require a whole range of ports to be for-

warded, In the latter case, a user may go to’the extreme of setting up a De-Militarized

Zone (DMZ) host in their NAT router, which negates almost all the security benefits

of being behind a NAT gateway, in effect, removing the NAT.

The Fix

Port forwarding is clunky, many consumers have trouble setting it up correctly, and

it’s often a support hassle for developers and publishers. Luckily, another solution

exists, and was first described in [Kegel99] by Dan Kegel, as used in the game Battle-

Zone™ published by Activision®.

The core of the problem is that each NAT router is lacking an entry in its session

state table for the other peer with whom the internal node wishes to communicate. If

we could somehow fool the NAT routers to add such an entry, traffic would flow cor-

rectly, and the game could go on!

Remember that when a peer sends a packet out through the NAT router, a tuple

‘s added to the session state table, containing the internal and the external addresses as

well as the remote address. As a first approximation, if we assume that a NAT router

will preserve the source port of the internal node, assuming that port is not already in

use by some other session, we could send packets to the remote node using its public

NAT address and the known port. If each node starts sending to the peer in the same

656

The End-to-End Solution for Games
NLDA EE ELISE

Section 6 Networking and Multiplayer

way at the same time, and both of them actually get the ports they expect on-the NAT

router, then the right thing will happen.

The Problem with TCP

This sketch for a solution might work for UDP (assuming we solve the port re-use

requirement), but it will not work for TCP. The reason is how TCP connections are

allocated: each connection allocates a new port number to uniquely identify the con-

nection. There is no way, in general, to guess which port number will be allocated

next, nor how the NAT router will map that port number, so unless you're willing to

try 65,536 different port numbers at the same time, you can’t really make the three-

way handshake work in through a NAT for a TCP connection.

Dan Kaminsky has created an experimental library [Kaminsky03] for punching

through NAT routers with TCP connections, but the foundations for this library do

not seem solid enough to base production code on. We encourage you to look at the

library, because it is educational, but the success rate is low enough that you cannot

base a reliable product on it. Unfortunately, that is about as good as it gets regarding

TCP and peer-to-peer networking through NAT, so we will return to UDP where the
prospects for success are very good.

ERLE ION RS RENT DE SS RAPIER AED UN SOE NEE I SO PS AREAS

There are a few too many “ifs” in the previously sketched-out solution. First, how
would the peers know to start communicating to each other at the same time? Sec-
ond, what if the desired port is already in use on the NAT router, and the router

chooses to map the internal port to another external port? Maybe the NAT router
implementation always remaps the ports, even, for implementation expediency or
extra security.

Bonus Problem

Let us start with the first problem: how do the peers know to start sending at the same
time? How do the peers even know what the visible (NAT) address of the other peer

is? Ideally, the interface we'd like to present to the players is a roster of available,
hosted games, where the player can choose to host a new game or join one of the
games already being hosted. Good implementations of this game roster system
include Blizzard®’s Battle.net® and the Xbox Live™ service by Microsoft®. Warcraft
IH® on Battle.net uses TCP, and peer-to-peer NAT introduction will not work
through TCP, because each connection allocates its own local port. Xbox Live uses
UDP, however, and experience is that its game hosting will work through most NAT
boxes. So how do you find another player to play against?

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 657

Matchmaking

Browsing hosted games is not something you can actually do peer-to-peer, unless you

do it using broadcast on a local LAN. You'll have to break down and get at least one

server onto the public Internet, where games being hosted can register, and players

can go to look up hosted games to join. The upside of this approach is that the traffic

and performance requirements for this server are very low; a few hundred bytes per

game being hosted, and a kilobyte or two per player connecting and getting the list of

all games should do it, even for a game with a lot of active players. Ten-thousand play-

ers during a single night, consisting of a peak three hour period, break down to less

than a single player per second; with the suggested bandwidth usage, you could host

this on a single dial-up modem! Actually, we would recommend getting into at least a

minimal hosting facility, because uptime, availability, and dealing with load spikes is

important, and well worth the $100/month or so in hosting fees. As a bonus, you can

probably run your corporate Web server on the same machine, given that the load is

so low. If your game is wildly successful, scaling this solution up can be an almost triv-

ial operation.

In the code file sample.cpp, the available games to join are held in the global set

gHosting in the introducer server, where they are added in response to a HOST protocol

command, as shown in Listing 6.5.3, and are returned to presumptive clients in

response to the LIST protocol command, as shown in Listing 6.5.4 (error checking

removed).

Listing 6.5.3 Adding a Hosted Game

enum {

MAX_NAME_LEN = 32,

}5

// For Request: :What: :HOST

struct HostRequest {

unsigned char what;

char name[MAX_NAME_LEN];

}5

struct Peer {

std::string name;

sockaddr_in addr;

bool operator==(Peer const SO) CONS tart,

return name == o.name;

a operator<(Peer const & 0) const {

return name < o.name;

}
}3

std::set< Peer > gHosting;

658
Section 6 Networking and Multiplayer

MOMMA
 NN TT

ssanenmanutaonncsnonnssnesnautneennsenenierenetsnc ene DAM SHAOINHEIEREHOR EADIE README

// When the introducer gets a HOST packet, handle it.

void introducer_host(char * data, int len, sockaddr_in & sin) {

// extract the packet and make sure it’s terminated

HostRequest & hr = *(HostRequest *)data;

hr.name[MAX_NAME_LEN-1] = 0;

// Record the fact that there’s a new guy hosting

// (in the real world, we’d also add a timeout-at

// time, and do some login name/password checking) .

Peeps

p.name = hr.name,

p.addr = sin;

gHosting.insert(Pp);

Listing 6.5.4 Returning Hosted Games

struct ListResponse {

unsigned char what;

char name[MAX_NAME_LEN];

sockaddr_in addr;

}5

// When the introducer gets a LIST packet, handle it.

void introducer_list(char * data, int len, sockaddr_in & sin) {

// I just dump all available hosts back — no

// limiting, no matching, and above all, no re-

// sending of lost packets.

ListResponse lr;

Ir.what = Request: :LIST_RESPONSE;

for(std::set< Peer >::iterator ptr =

gHosting.begin() ;

ptr != gHosting.end(); ++ptr) {

// Construct a ListResponse packet

strcpy(Ir.name, (*ptr).name.c_str());

// I put an address as data, but that’s OK, as the

// address is publicly visible (::recvfrom()).

lr.addr = (*ptr).addr;

// Send the packet, ignoring errors (packet may be

// dropped anywhere, including in the network

// layer — too bad).

::sendto(gSocket, (char const *)&lr, sizeof(1r),

0, (sockaddr *)&sin, sizeof(sin));

// Send a final, empty host name to terminate the

Hijet Stirs
Ir.name[0O] = 0;

::sendto(gSocket, (char const *)&lr, sizeof(l1r), 0,

(sockaddr *)&sin, sizeof(sin));

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 659

Introduction

Once you have a game browsing server on the public Internet, a client should connect

to this server using UDP on a single socket bound to a known port. The publicly vis-
ible, NAT-translated address of this socket will be visible to the game browser server
when it calls ::recvfrom() to receive network packets. The browsing server should

send this IP address and port to all prospective clients wishing to join the hosted
game.

In addition, the browsing server should send the publicly visible IP address and

port of clients wishing to joint to the game host. That way, the game host can attempt
to proactively send packets to the joining clients. This will have the effect of adding
the appropriate tuple to the session state table in the NAT router to allow the packets
being sent from the prospective clients to be allowed through to the hosting server.

A server that acts as a repository of publicly visible IP addresses and ports, and
furnishes these to other interested peers for purposes of NAT punch-through, is com-
monly referred to as an “introducer.”

Referring to Figure 6.5.4, the difference from the case where we “correctly guessed”

the public port numbers, is that the port used by the NAT router to represent the in-
ternal node can be arbitrary, because they are made visible to the other peer using the
introducer. The wishful thinking that the port would always be untouched is no longer

necessary.

Implementation Details

There is one fundamental assumption that makes this introducer-based solution work:

when a specific (source IP, source port) address is used for source addressing, the NAT

router will translate this to a specific (NAT IB NAT port), no matter what the destina-

tion IP and port is. While we still need to send packets both to the introducer, and to

the peer we're being introduced to, to create the full session state tuple in the NAT

router session state table, if the NAT chose a different port for different destination

addresses, even with the same source port and IP, then the return traffic from the

remote peer would not arrive at the expected port, and the technique wouldnt work.

Luckily, there are three good reasons for a NAT router to re-use the same NAT

port for the same (source IP, source port) pair.

First, on the public Internet, a client process sending a network packet on a

socket bound to a specific address and port expects the sender of that packet to

remain fixed, no matter what the destination is. After all, the application bound the

socket to a specific port and used that same socket to send packets to different remote

nodes. Note that this is only possible with UDP, not TCP, which by design allocates

new ports on the client side for each connection.

Second, if the NAT router has several nodes on its inner network, it may be called

upon to allocate many ports for a lot of simultaneously active sessions. The number of

ports available is not unlimited, so the NAT will conserve port space and be able to

Section 6 Networking and Multiplayer
sammie OANA NLL OA SAAR

Internal Address Public Address

10.0.0.2:8960 81.226.155.187:11002 64.125.216.191:8960

i Internal Address Public Address

10.0.0.2:8960 69.17.45.36:32769 64.125.216.191:8960

Internal Address Public Address

10.0.0.2:8960 81.226.155.187:11002 64.125.216.191:8960

10.0.0.2.8960 81.226.155.187:11002 69.17.45.36:32769

Internal Address Public Address

10.0.0.2:8960 69.17.45.36:32769 64.125.216.191:8960

Internal Address Public Address

10.0.0.2:8960 81.226.155.187:11002 64.125.216.191:8960

10.0.0.2.8960 81.226.155.187:11002 69.17.45.36:32769

Internal Address Public Address

10.0.0.2:8960 69.17.45.36:32769 64.125.216.191:8960

10.0.0.2:2960 69.17.45.36:32769 81.226.155.187:11002

In step 1, each of the peers have a session open to the introducer, which has a public IP and port

address. The introducer records the publicly visible IP and port of each participating peer, and

makes them available to the others.

In step 2, the first peer has received the public address of the second, and has sent a packet to

the second, which causes a session entry to be created in the NAT gateway. At this point, traffic

from the second peer to the first peer will make it back through the NAT, but packets sent by the

first peer will be dropped at the second gateway.

In step 3, the second peer has otherwise received the public address of the first peer, and such a

packet to establish a session. Because the first peer had already sent a packet that established

the session, and because the same local port is used to communicate with the introducer as well

as the peers, packets can now flow in both directions.

FIGURE 6.5.4 Peer-to-peer communication setup using an introducer.

serve more simultaneous clients if it re-uses the same external port for the same inter-

nal address, port values.

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications
soeeseoteantaunnenoionnttetneneictei

661
ieetcnnnietntteancsonuantieuan emnoosatentennnnasio honoree tieuuiaonetrennunnaannonninnoieianauinnnt

Third, NAT introduction is quickly becoming a standard technique. A NAT
gateway that does not support this technique will be considered faulty by users, and
will have higher return rates and support costs than devices that work properly. This
behavior is also actively encouraged for all NAT builders since 2001, through the

Internet Society document RFC3022 [RFC3022].
In reality, most gateways work well with this technique, because they do proper

port matching. There are reportedly a few that do not; the only one we know of for

sure that does not conform to RFC3022 is based on the BSD operating system and
not very common in home environments. In 1999, some NAT routers would not deal
correctly with a packet being sent from the internal network to an external address
that refers to another internal address on the same internal network, as would be the

case when two peers behind the same NAT router join through an introducer. This
bug has since been worked out of most routers, and most devices on the market today
should deal properly with this situation. While there is no workaround for the bug
where a NAT gateway does not re-use ports, you can work around a gateway that does
not allow internal hosts to communicate through the publicly visible NAT address by
initially communicating both using the internal and external address of the peer in
question, responding to the address from which you actually get a reply, and picking
the public address if you get a reply from both addresses, as the public address is guar-

anteed to be unique.
If you find that your client is behind a NAT gateway that is still broken, you can

either throw up your hands and tell the user to fix the gateway, or configure port for-
warding, or you can decide to eat the bandwidth cost of serving these users (as they

are relatively few), and reflect their packets from your well-connected introducer ser-
vice. Which option you decide on should depend almost entirely on what trade-off
between low support cost and low hosting cost you are willing to make.

Last, there is an implementation flaw in WinSock, the sockets library used on

most personal computers connected to the Internet (it is what Microsoft ships with

Windows). If you send a UDP datagram to a port that is not listening and receive an

ICMP message back saying “port not reachable,” WinSock will wedge the socket that

sent the initial datagram and return WSAECONNRESET when attempting to use the

socket. At this point, you have to close and re-open the socket for it to work again.

This is highly inconvenient, because you are very likely to receive at least one port not

reachable message when setting up the peer-to-peer NAT punch-through, before both

gateways have created the appropriate session state records. Luckily, because UDP is

connectionless (as opposed to TCP), the NAT gateway will not know that the socket

has been closed and re-opened and bound to the same port on the local machine, and

everything will proceed as normal. Typical WinSock code will thus look like Listing

6.5.5 to work around this problem (again, some error checking removed).

662
Section 6 Networking and Multiplayer

AANA ONAN ALANA

Listing 6.5.5 Working around WinSock
;

enum {

GAME_PORT = 8960,

}5
#define SOCKET ERRNO wSAGetLastError()

inline bool SOCKET_WOULDBLOCK_ERROR (inte) {

return e == WSAEWOULDBLOCK;

}
inline bool SOCKET _NEED_REOPEN(int e) {

return e == WSAECONNRESET ;

}
#define INIT_SOCKET_LIBRARY () \

do { WSADATA wsaData; WSAStartup(\

MAKEWORD(2,2), &wsaData); } \

while(0)

SOCKET gSocket;

// Allocate the single, global socket we’1l use in all

i} aROMeSr

void allocate_socket() {

if(gSocket != BAD_SOCKET_FD) {

::closesocket(gSocket);

}
else {

INIT _SOCKET_LIBRARY () ;

gSocket = ::socket(PF_INET, SOCK_DGRAM,

IPPROTO UDP);
// Bind to my port on all local interfaces.

// Because I want to run multiple instances on the

// same machine, I try a sequence of ports.

// Once I’ve bound to a port, I want to re-use that

// port if I re-allocate the socket, so remember

// which port was being used using a static variable

// (this means I can only open a single socket per

// process using this code).

static int portUsed = 0;

for(int port = GAME_PORT; port < GAME_PORT+10;

ttport) {
sockaddr_in addr;

memset(&addr, 0, sizeof(addr));

addr.sin_ family = AF_INET;

if(portUsed) {

// use the old port af set

port = portUsed;

}
addr.sin_port = htons(port);

// bind the socket to a specific port

int r = ::bind(gSocket, (sockaddr *)&addr,

sizeof(addr));

Hoe ie SW) a

uf (portuseam)) 4

6.5 Overcoming Network Address Translation in Peer-to-Peer Communications 663

// if I can’t re-use the old port, bail out
break;

}
}
else {

portUsed = port;

break;

}

// There’s a flaw in WinSock where I’11 need to re-

// open the socket if I get CONNRESET on a socket.
// This is because it wedges the socket when it

// receives an ICMP for port-not-reachable, which can

// happen during NAT introduction negotiation.
bool maybe reallocate_socket(int r) {

es 0) \mY

if (SOCKET_NEED REOPEN(SOCKET_ERRNO)) {

fprintf(stderr,

“Re-allocating socket because of WinSock.\n”);

allocate_socket();

}
return true;

return false;

}

sockaddr_in sin;

socklen_t slen = sizeof(sin);

char data[512];

// Wait for an incoming packet

int r = ::recvfrom(gSocket, data, 512, 0,

(sockaddr *)&sin, &slen);

if(maybe reallocate_socket(r)) {

continue;

}

Ropcusionee
Using the technique presented here in this gem, your games should be one step closer

to offering robust multiplayer gaming that works across a variety of networking con-

figurations. As a result, wizards and warriors should be able to go about the business

of saving the world, even from the comfort of their local Starbucks.

References

[Man3rresvport] Unix section 3 manual page for the rresvport() library call; for

example found at Artp://www.gsp.com/cgi-bin/man. egi?section=3@ topic=rresvport.

Section 6 Networking and Multiplayer

[RFC793] USC ISI. Request For Comments document 793. TCP Protocol Specifica-

tion. Available online at Atep:/www.fags.org/rfes/1fc7 93. html (September 1981).

[Stevens94] Stevens, W. Richard. TCP Illustrated. Addison-Wesley Professional, 1994.

[RFC959] Postel, J. and J Reynolds. Request For Comments document 959. Avail-

able online at http://www fags.org/rfes/rfc959. html (October 1985).

[RFC1123] Braden, R., editor. Internet Engineering Task Force. Request For Com-

ments document 1123. Available online at http:/www.fags.org/rfes/rfcl 123.html

(October 1989).

[Kegel99] Kegel, Dan. “NAT and Peer-to-peer Networking.” Available online at

http://www.alumni.caltech. edu/~dank/peer-nat.html (July 1999).

[RFC1918] Rekhter, Y., et al. Request For Comments document 1918. “Address

Allocation for Private Internets.” Available online at Attp://www. fags.org/rfcs/

rfc1918.html (February 1996).

[Kaminsky03] Kaminsky, Dan. Paketto Keiretsu 1.10: Advanced TCP/IP Toolkit.

Available online at Attp://www.doxpara. com/read. phplcodelpaketto.html (December

2002).

[RFC3022] Srisuresh, P. and K. Egevang. Internet Society. Request For Comments

document 3022. Available online at Aitp://www.fags.org/rfes/fc3022.himl (Janu-

ary 2001).

6.6

Betiniton of Jems =.

A Reliable Messaging

Protocol

Martin Brownlow

martinbrownlow@msn.com

his gem describes a simple protocol for implementing reliable, in-order messag-
ing for network communications. The protocol is independent of the trans-

mission medium or network model (client/server or peer-to-peer), so it can be

implemented in any situation where reliable networking is needed.

fe mE sooo OLE SSS EMSS ELON LLL AEN LTS ete

Before we begin looking at the details of this gem, we should first take a moment to

define the terms used in the rest of this article:

Host/client: For the purposes of this article, we will use the term /ost to signify the
sender of a message and client as the recipient.

Packet: A packet is the information physically transmitted over the network. It

consists of one or more messages. If any of the messages within a packet are set
to be reliable, then the packet is said to be reliable.

Message: A message is the smallest form of data that can be sent by the application.

Each message can be set to be reliable or unreliable. In each frame, the

application creates a series of messages, which are bundled together by the

networking library to form a single packet.

System Message: A message sent by the networking library. This is application

independent, and the application never needs to know about them. System

messages are bundled into packets in exactly the same way as application-specific

messages. A good example of a system message is an acknowledgment of packet

receipt.

Heartbeat: A heartbeat is a system message that is sent every so often when there

are no other messages pending. The purpose of the heartbeat is to signify to the

receiver that the sender’s application is still running correctly.

Acknowledgment: An acknowledgment is a system message that states that the

client has received a given packet from the host.

665

666

ny

Traditio
RRR OIL

Reliable Messaging?

Section 6 Networking and Multiplayer
pastors tlt ama ANNAN TNA ANN TE

Message Handler: A function of the application that is called by the network _

library to process incoming messages.

Reliable messaging is an important part of any networking library. The Internet,

although a technological marvel, is not a very safe place for a given packet of data. The

nodes that make up the Internet receive unpredictable amounts of traffic at any given

time and are under no obligation to let all the traffic pass; if a node becomes over-

whelmed, it will start discarding the incoming packets in order to remain operational.

Additionally, consecutive packets between two machines are not guaranteed to take

the same route across the intervening network. As traffic fluctuates among the Inter-

net’s nodes, packets are routed in different ways to try to provide the best pathway.

These characteristics of the Internet provide us with two distinct problems: any

given packet of data that we send may fail to arrive at its destination, and any two data

packets may arrive at the destination in the opposite order to their original transmis-

sion. However, there are some pieces of data that an application must send that

absolutely have to arrive at the destination; if this data were to disappear, the applica-

tion would behave unpredictably and possibly even crash. For this reason, we need to

define a way to ensure that a given packet will arrive at the destination in a reasonable

amount of time.

al nal Reliable Messaging
ELL DLE LL DOLL LAGER REL ORRNENENNEAENOEEAT TT E EN ERLE LE NLR EES

Now that we have defined the terms that we will be using, and have seen why reliable

messaging is important, we can look at how a reliable messaging model is traditionally

implemented. This will familiarize us with its strengths and weaknesses, allowing us

to construct a better model.

In a traditional implementation, when a host sends a reliable packet to a client, it

records the time that it was sent, and puts the reliable packet into a list. The reliable

packet is removed from this list only when an acknowledgment system message for it
is received from the client. If, after a certain amount of time has elapsed, an acknowl-

edgment for the reliable packet has not arrived, the packet is resent and its timer reset.

When a client receives a packet that is marked as reliable, it must construct an
acknowledgment system message for transmission back to the host. This message con-
tains an identifier for the packet being acknowledged. If this message is not sent in a

timely manner, the host will think that the packet has not been received and will
retransmit it.

From this description, we can see that if the acknowledgment for a given packet
does not reach the host before that packet’s timer runs out, the host will resend the
packet, eating up precious bandwidth. This has two important ramifications. The first
is that acknowledgments must be sent immediately, even to the point of creating a
packet just for them if there are no other messages to be sent. The second is that

6.6 A Reliable Messaging Protocol 667

acknowledgments must arrive once they have been sent to avoid the host resending
the packet in question unnecessarily. This implies that acknowledgment messages
should be set to be reliable, but doing so necessitates having acknowledgments for the

acknowledgments, and before you know it, every packet is set to be reliable.

A Simpler Method
(WILLE SYNE EINE LEI R GIT AEA TO LES

From the preceding description of a traditional reliable messaging implementation,

we can see some areas that need improvement. The two most important of these are

reducing the number of acknowledgments sent, and removing the need for them to

be sent reliably.

Reducing the number of acknowledgments sent can be partially accomplished by

adding an additional restriction to our reliable messages. If we can guarantee that reli-

able messages must be processed in the order that they were sent, then receiving an

acknowledgment of a given packet automatically implies receipt of every prior packet.

This is because, to maintain the in-order restriction, we know that all the previous

packets must also have been processed. However, the need to send acknowledgment

packets quickly to avoid the host resending packets it thinks have been missed reduces

the usefulness of this somewhat.

If we can remove the need to send an acknowledgment quickly, we can reap sev-

eral rewards. We will not have to send acknowledgments as often, and when we do

send one, we can just acknowledge the most recent reliable packet processed. Addi-

tionally, there would no longer be a need to send acknowledgments reliably. Unfortu-

nately, while the host is responsible for detecting a missed reliable packet, our hands

are tied. This, then, will be our main point of attack.

The simplest way to remove the responsibility for detecting a missed reliable

packet from the host is to move it to the client. For this to happen, a client must

quickly detect that a reliable packet has been missed. We know that only reliable

packets will ever need to be resent, and that ideally two reliable packets will be broken

up with one or more unreliable packets. We also know that packets should arrive with

a consistent frequency, due to the heartbeat system message.

Using this knowledge, we can formulate a method by which we can quickly

detect a missing reliable packet. The easiest way to do this is to allow every incoming

packet to contain enough data to infer a missing reliable packet. Since we know that

packets are arriving at a consistent frequency (due to the heartbeat system message),

we know that we can make such an inference quickly. For example, if 10 packets

arrive in a second, we know that we can infer the existence of a missing reliable packet

as soon as the next packet arrives, one tenth of a second later.

Packet Identifiers

However, how do we allow an incoming packet to infer the existence of a missing

reliable packet? Every reliable packet needs two pieces of data: a flag to say that it is

reliable and an identifier, by means of which it can be acknowledged. An unreliable

668 Section 6 Networking and Multiplayer
sutonaensseostotatenennemmtentotaisnrnn tsi usesazeaasonene ieee seeenentiericrnn tN EECOR EARLE OLENA NEDSS FSSSHSHSH ASRS z

packet, on the other hand, only requires a flag to say that it is not reliable; it does not

need an identifier. This means that, should we assign an identifier to an unreliable

packet, any number of unreliable packets can have the same identifier without any

side effects. By combining the reliable/ unreliable flag with the packet identifier, we

can create a simple packet numbering system that allows us to infer the existence of a

missing reliable packet.

If we use the least-significant bit of the packet identifier to store the reliable/unre-

liable flag, we can see that, if we choose a bit value of 0 to represent a reliable packet,

all reliable packets will have an even-numbered packet identifier and all unreliable

packets an odd-numbered one. Then, taking advantage of the fact that any number of

unreliable packets can share an identifier, we come up with the following two rules:

¢ When creating an unreliable packet, the packet identifier should have the reliable/

unreliable flag set to 1.

¢ When creating a reliable packet, the packet identifier should be incremented by

2, and then have the reliable/unreliable flag set to 0.

These simple rules allow a client to detect that a reliable packet has been missed, sim-

ply by receiving any type of packet that was sent afterwards. To accomplish this, the
client must maintain a record of the identifier of the next expected reliable packet,

which we will call nextReliableID.

The Incoming Packet Queue

As incoming packets are received, they are placed into a queue, sorted by packet iden-
tifier. Each time the network library is updated, it processes this queue, starting with

the packet with the lowest identifier. Packets from the queue are processed in order,

until the queue is empty or one is found that cannot be processed, according to the

following rules:

¢ If the packet identifier is even (reliable) and equal to nextReliableID, we

have received the next reliable packet. Process this packet, and then increment

nextReliableID by 2.

¢ Ifthe packet identifier is odd (unreliable) and equals nextReliableID minus 1, we

have received an unreliable packet that should be processed.

¢ Ifthe packet identifier is less than nextReliableID, discard the packet.

¢ If the packet identifier is greater than nextReliableID, we know that we have
missed a packet and cannot yet process this new packet or any subsequent packet
in the queue.

After processing the incoming packet queue, we know whether a packet has been
missed, and the identifier for the missed packet (nextReliableID).

One notable exception to these rules is that any system messages in the incoming
packets are processed immediately. This happens regardless of whether the packet is
queued (care should be taken to only process each system message once). This allows

6.6 A Reliable Messaging Protocol 669
emasuonstcteocteannsasonetisinnsstetettetenssetettntmennnnetcetetettaaiote etree eam Enea AAMAS cnanneseiuantounUrinenmnnniukicnnniliHicereiaiisneeetn

us to quickly fulfill remote system requests such as resends and acknowledgments. If
we do not process these system level messages, there is a danger of encountering a
deadlock situation. This can happen when two machines both detect missing packets
from the other, and their resend requests both get queued behind the missing packet.
The resend requests never get processed, thus the machines are deadlocked.

The Resend Timer

Ifa packet has indeed been missed, a countdown timer, called the resend timer, if not

already active, is assigned a small value and started. This small value is called the out

of order delay. The purpose of this short pause is to allow a short period for the miss-

ing packet to arrive in case it is still in transit but out of order. If at any point, the

missing packet arrives, the resend timer is stopped.
When the resend timer expires, the client sends a system message to the host

requesting a resend of the missing packet (nextReliableID). At this point, the resend

timer is reset to a larger value, called the re-request delay and again started. We con-

tinue requesting the missing packet every time the resend timer expires, until the

missing packet arrives.

The use of automatically repeated resend requests means that the requests them-

selves do not have to be sent as reliable messages. Furthermore, the initial delay before

requesting a missed packet allows any out of order packets to arrive, and so reduces

the chance of a resend request being sent spuriously. A typical value for the out of

order delay is around one-tenth of a second, and a typical value for the re-request

delay is about one-half of a second.

Acknowledgments

Since the client is now responsible for detecting missed packets and requesting packet

resends, there is no longer a requirement that acknowledgments be sent quickly.

Additionally, the in-order processing of packets allows us to acknowledge the most

recently processed reliable packet. From such an acknowledgment, the host can infer

the acknowledgment of every reliable packet sent prior to the acknowledged packet.

The net result of this is that we can send far fewer acknowledgment packets, at a

far slower rate. Additionally, acknowledgment packets no longer need to be reliable,

since if one is missed, the next one to arrive will imply acknowledgment of all the pack-

ets acknowledged by the missed one. Acknowledgments can thus be sent out at a con-

stant rate, regardless of how many reliable messages have arrived in between. A typical

value for acknowledgment frequency in such a system is one every two seconds.

The Reliable Packet Queue

The host must keep a record of each reliable packet sent until such a time as it is

acknowledged by the client. It does this by means of a reliable packet queue. As each

reliable packet is sent, it is placed in the queue. When an acknowledgment arrives

670 Section 6 Networking and Multiplayer

from the client, any packet in the queue with an identifier that is less than or-equal to

that of the acknowledged packet can be deleted.

If a resend request is received from the client, the correct reliable packet is first

located in the queue and then resent to the client. A resend request is also an implicit

acknowledgment of all prior packets; to detect the missing packet, the client must

have processed all packets up to the missing one. Therefore, when a resend request is

received, the implicitly acknowledged packets can be deleted from the queue.

Multiple Connections

So far, we have only looked at a single connection, but in reality, we will probably

need to allow multiple connections to a single machine. For example, a server applica-

tion in a client/server system will need one connection per client, and each node in a

peer-to-peer system will need a connection to every other node in the network. How-
ever, a client application in a client/server system will probably only need a single con-

nection to the server.

When multiple connections are required, each connection will require its own

incoming packet queue and reliable packet queue. Additionally, each connection will
need to allocate its own packet identifiers, and keep track of the next expected incom-

ing reliable packet, independent of the other connections.

Memory Requirements

In many games, especially those designed to run on consoles, memory can be very
tight, even during the single player game. Often, there is only a very small amount of
memory available for use by the network library. This has important consequences for
reliable messaging, which relies on keeping track of unacknowledged reliable packets
so they can be retransmitted. Luckily, memory requirements for this reliable messag-
ing protocol are modest, and with a bit of massaging, we can make some great savings
if memory is very tight.

The majority of the memory used by this system resides in the memory used to
store elements of the reliable packet and the incoming packet queues. There needs to
be enough memory for the reliable packet queue to store all the outgoing reliable pack-
ets for a few seconds, long enough for them to be acknowledged. The exact amount of
time that we will need to record reliable packets for is unpredictable, and effectively
unbounded, however, we can safely assume a value of around two to three times the
value of the acknowledgment frequency. This allows us to safely lose an acknowledg-
ment message, without danger of the queue overflowing. If we do ever run out of room
in the outgoing reliable packet queue, the game can no longer transmit reliable pack-
ets, as there is nowhere to store them so that we can retransmit them if necessary.

Similarly, the incoming packet queue needs enough elements to store all the incom-
ing packets that may arrive while we are waiting for a packet to be resent. However, once
the incoming packet queue becomes full, it is safe to start discarding incoming packets
that cannot be processed immediately; they can always be re-requested later.

6.6 A Reliable Messaging Protocol 671
scontonssitsutoteeietonesninemansanssivr mere inane tennant sani tet aneAa A SEbronaneeeeeeiinntitt: aaNet eS DONS HN LOEEEEANSSE EERE HROK AROSE UES AIRS HIEDEDMASM HACER

When multiple connections are in use, the amount of memory required rises lin-

early with the number of connections. However, we can share the memory used by

the queues among all the connections; except in extreme network conditions, it is
unlikely that all connections will need large amounts of queue space at the same time.

In some cases, though, this will still prove to be too much memory usage. If we
need to reduce the memory footprint further, we can choose to reduce the number

and size of the packets stored in the queues, although the measures we need to take

may seem a little draconian. We know that the arrival of packets and messages not
marked as reliable are not critical to the correct execution of our application. There-

fore, we can choose not to store these packets and messages in the queues.

The way this works is simple; when we store a reliable packet in the outgoing

packet queue, we remove from it all the messages that are not themselves reliable. This

ensures that only the most important parts of these packets are queued for possible

resend, reducing the memory used. In the incoming packet queue, we can choose not

to store unreliable packets that cannot be immediately processed, and we can strip the

unreliable elements from reliable packets that do need to be queued.

The effects of such packet and message stripping can be undesirable, causing the

times that packets are lost to be more apparent to the user. This can happen because

several unreliable packets containing such things as positional updates for visible ene-

mies will be lost each time the client has to wait for a missed packet to be resent. We

can ameliorate this effect somewhat by selectively implementing it as the queues

become full. When the queues are empty, all messages will be stored, but if a queue

surpasses a certain length, the network library should go through and cull unreliable

packets and messages from the queue. This reduces the appearance of packet loss,

except in the times that it is severe.

Conclusion
~ SLT NEEL C OLE ES TELL ETI IE RIL RAE LETTE IESE SOLAS SEE SEE EOTOL LEN BENE SLIT E TELL LEE LEE LID SENSE EEL DEE,

We have seen that reliable messaging is an important part of a networking library, and

how the traditional method of implementing reliable messaging has several problems.

We saw that by moving the responsibility for detecting a missed reliable packet to the

client, we could overcome these problems and produce a robust, reliable messaging

system. Finally, we examined the memory requirements for this system and looked at

ways to reduce memory usage, especially during times of extreme packet loss.

Further Reading
SR RRNA EEE LL ALMAMLL ALAM ALAM MLN OANA CCAR AERO

Those interested in learning more about network programming using the TCP and

UDP protocols can find information in the following books:

[Donahoo01] Donahoo, Michael J. and Kenneth L. Calvert. TCP/IP Sockets in C:

Practical Guide for Programmers. Morgan Kaufmann Publishers, 2001.

[Napper97] Napper, Lewis. Winsock 2.0. John Wiley & Sons, Inc, 1997.

Tyres

seit : asia chalky *
ql bas ¥ percha ni ves my ia av

wh papers i in s45"8 = ries NEE
savenin peanecs Hy Ae adn Mae WS fp

WU sageaak Pama AIL Ochs BH Sea ane 4fibiaet
varheresn oc PSR Se. Hu Soe SS ir aE Re
salsa on brasil eas tri tH TRlti onthe ote ala Wa oe
ror id goa bee xistaeg to levies wh cede woerd IH Dye y slat fi
ont) nc PO ASSO: spriee ai ol lenntiss Tora id ‘

AMKpad tre mgr vou inser att meeortaep ela
hud Qh -abedes iis soni SV) annster ee taiom 1

re caldeiiexeodocsus singin yur ines: rs acniatn athe linens ¢ a
phiicasy itihastp cas ormberped don cued ‘oeawenieranen
tot aiexds pay ow Puma tangs ints tle hele
Site qirt thietortinacteiescane wlereilaenoni ad sores sed) pare

Beusugiad pe boapeole tes medig sonnaenrin ene ees she .
oily writeatio dina: acd tee guiqnn a igkeom bax iwaleag Ug pop
sepered aadiped ea bd Tio oceans os sive tom wb eal poem nes or
ee a emi aday lncticp io iene at og cinete hides qoutes? kewanddey iditin —

SW arenas 30,01 stow] bomion a 10d sisw oF aed riraity oh giniy dass aol dl

Paral ee «hire: vd rotestone jovlls eh onmroil aan: ne _

J Seep = 0 Gad bonnie 54) Ming oye He 27 TM Sm he wf) WpRhel

Shdeslerrsy i ith Fan h a a hdd VIN: af hg? 72R; »y Aya! oy

eral moabwty i. “3 ioe ah 2 ra thes mel Sip) nh ae §

wtigliy: Chonayin j rales on 4 aah wih oat ah UNA ka gal a
“rh < Pap yas) anaholhg ¢ ae Pte eremect kae cul ic eae

te Ty ‘ P 9g Sees ee) SS ated af 2 ea s nis) P Feige tel t

bie areedeqeiatennnen au’ recy Wiss qr ita4) qn eat ulduilir reds cove sweet we

monvltiong lersv eel quires SNvictlet gatiaer Aqovr Te Dortrstia Larter.
nett 03 rey opens tgs li thls vite nines nls alert

gone “err Wathen yee #4 ihe Petia heal chine spate smatrieg bits vet

16 began) biz iar Ali we ein ‘ape hip Myhvesats opi ba ins

AGRA SPIT Ver ey NT gpa uti Nisin 9 shah J tine
Alraurie|, Auer 06a aly ues iT ae inh adi aw gD ’ big ‘

' @ Ven hee is ty chow Vii alle , yl vente hy

ciriiiieers yy eee eimai

lave) IT at wh Te a 4) dager wn a . we hoagie a

ve aebicesnar indie muy HT
Drs ashe TY ana? hc Rd ch Pa erp ery ra aa

JO anode iy’ fees sol, COME iy 1 Saag betes bys
“PCL coal inet, a vale i ; ah , at uid edly son at wy

Vcore, rhey cane

6.7

Safe Random Number

Systems

Shekhar Dhupelia

sdhupelia@gmail.com

here are typically two methods of implementing a networked action game, from

a high-level perspective. The first is the synchronous method, or the “lockstep”

method, where inputs are passed back and forth and the game is synchronized as

much as possible. The second methodology is the asynchronous method. This is

where the simulations try to stay in-sync as much as they can, but in between syncs

the players are temporarily free to do as they wish, and the program attempts predic-

tion and latency masking to hide the differences between the various machines.

The synchronous model, in particular, is extremely sensitive to any difference

between the two machines. While some ancillary items might be different from one

machine to the next, anything and everything affecting gameplay must remain exactly

the same on all machines. A big stumbling block for this methodology is random

numbers. Random numbers might be used for a variety of tasks in a game, from arti-

ficial intelligence behaviors to selecting sound effects. One of the very first steps when

developing a synchronous game should be to implement a random number system

that is under application control and is safe for use in networked gameplay.

This gem describes the architecture of a safe random number system, along with

steps you can take to save time during later debugging, and even how this type of sys-

tem could replace an existing instant-replay system.

Random Numbers Affect Online Play ae
SSA NARI

MELON ETE LEST MERE LE LN ELLE DELLS NIE LLELE AE

When game code calls the standard C rand() and srand() functions, the values

returned are not truly random. Rather, they are invoking a pseudorandom generation

algorithm, a well-defined, standard process.

If two machines are connected for online play, and the networked gameplay is the

first thing that both applications are doing since startup, the pseudorandom numbers

returned will likely be the same. However, if one application has already been playing

a previous, offline session, using the same randomness (in AI, audio commentary,

etc.), the connected machines will start getting different results.

673

674

A Network Model *
LO EEA a Av 28

Random Number Pools

Section 6 Networking and Multiplayer
nent OLSLAY TASMAN ON NEES ONE CANOE

Once the machines start getting different random number results than.each

other, what then happens is called “out-of-sync” or de-synchronization. Essentially,

making a random choice on whether a character should move left or right might

come back with different decisions, and the games are no longer in the same state.

Results can rapidly diverge, and this quickly results in an unplayable game, particu-

larly in a deterministic (lockstep) game, where the game is primarily controlled by

player inputs.
What makes this problem easier is the algorithmic nature of random number

generation. Since most variations of these algorithms rely on making some sort of cal-

culation based on the previously generated number (the “seed”), this number can
then be transferred from one machine to the others. Then, once all the connected

machines start gameplay with the same seed value, their random number generators

will consistently return the same results to each application, allowing them to keep

identical states while remaining independent of one another.

The key to tracking this random number generation, and having direct control

over this seed value, is to move the random numbers out of the standard C/C++

libraries and into application-controlled code. Later, a class is discussed that does just

that.

When applying this random pools class to a networked game, there is no limit to the

number of connected machines that can use this system. In a 32-player game, there

still needs to be a decision on what the starting point is for all decision making, and

what the seed will be within each pool (which is further described later).

For simplicity’s sake, this article only assumes two machines in the networked
game. However, whether the application is on 2 or 20 machines, only 1 machine can
be designated the session master. This session master is the one whose random seed
values will be polled and synchronized across the game at session start. A decision
must be made to select a session master within the game/matchmaking logic.

28 TNS aR RENN

While synchronizing random numbers across connected machines may solve many
problems with desynchronization, it can actually cause other problems as well. In fact,
some of the game subsystems may actually be adverse to this system.

An example of this might be an audio commentary system. In a sports title, an
event such as a goal might occur that’s worthy of playing an audio cue. Further, for
greater authenticity, the game might have a selection of audio cues to choose from, all
for the same event. Selecting this cue may well be a random event. Now, if the audio
clips are all resident in memory, playing the same commentary should be fine, both
will start and end at the same time and the synchronized play continues. However,
what if the audio cues must be streamed in real time from a physical drive? In this

6.7 Safe Random Number Systems 675
sponte tabnauseesnee Sheet eteNEeDmNR EEE HHUA tnEtnHEeNceoetecmA teen HEXHAM SEEM HbMMAn RANE ERASE

case, one system will likely finish loading the audio clip before the other system, and
playback will be different. While this might still be okay, there’s also potential for

audio clips to start “backing up” over time on the slower hard disk or DVD and even-

tually cause the games to be out of sync or unplayable with each other.

But looking at this further, the programmers may realize that there is no reason

for the audio commentary to stay in sync. As long as the audio is streaming while

gameplay continues, never waiting for it to finish, the two connected machines could

plausibly play completely different commentary while keeping all essential game sys-

tems in a synchronized state.
In this case, the randomness of the AI might need to be synchronized, but the

randomness of the audio is either irrelevant or purposefully not synced. To do this,

instead of developing a single random number seed and generator, the application can

draw from multiple “pools” of random numbers.

Drawing from random number pools is conceptually very similar to drawing

from different memory banks in a memory management system. In a partitioned

memory bank system, code might be added to debug or log the use of one bank while

steering clear of the rest. There might be code to create and destroy some banks dur-

ing runtime, while other segments are left alone. While each game might have its own

requirements, this is an example of a list of pools:

enum POOL_TYPE

{
POOL_DEFAULT =
POOL_ENVIRONMENT =
POOL_AI =
POOL_COMMENTARY =
POOL_MUSIC =

POOL _MAX_TYPES

&b ON — oO

};

Now, put simply, a seed is merely the last generated random number. But there has to

be a start point, and in standard C/C++, this is performed by calling srand(). Typi-

cally, this seed value is stored internally as a single 4-byte int or uint variable. But

since we have multiple pools of random numbers for the various game subsystems,

our data storage must match:

static unsigned int randPools[POOL_MAX_TYPES] ;

Now, if the application ever needs to retrieve the seed for a given pool, it can simply

request it based on the pool enumeration:

unsigned int getPoolSeed(POOL_TYPE whichPool)

{
return randPools[whichPool] ;

}

676 Section 6 _ Networking and Multiplayer

Further, when the session master broadcasts the random seeds to the other connected

machines, they in turn can reset their local seed values in a similar fashion:

void setPoolSeed(POOL_ TYPE whichPool, unsigned int newSeed)

{
// Make sure the seed is not 0

if (newSeed != 0)

{
randPools[whichPool] = newSeed;

}
}

At this point, the random number generation will act based on this new seed value,

throwing away any previous seed.

Random Number Generation
iS RESUS EEREN ween SUSE aR

Now, 7 actually using the aA hana generators es the first time, this sys-

tem should require that the application provide an initial seed value for the pools.

Further, the system should vot allow any application code to re-seed the initial values.
Rather, the application should be forced to see the setPoolSeed() function described

earlier after the initial seeding is complete. Here’s an example of seeding the pools for
the first time and preventing subsequent seeding:

static bool seeded = false;

void seedPools(unsigned int seedValue)

{
// Make sure the seed is not 0

if (seedValue == 0)

{
assert(0));

return;

}

// Make sure we’ve only seeded the pools once
if (seeded == true)

{
assert(0);

He Guinn

}

// Loop through the random number pools
for (unsigned short pool = 0;

pool < POOL_MAX_TYPES;
pool++)

{
// Initialize this random pool

randPools[pool] = seedValue;

}

// Set our seeded flag
seeded = true;

6.7 Safe Random Number Systems 677
stahcennsne terest onemmatennisiietehmnantntiAmcananastin duniiALnnaetioiiticeseneaananrtaun inmates iereeicttrassicneie nena feseenh Aare uaunaninneintnimornnnnanihinaneseciti

Lastly, this system is nothing without an actual random number generator. Many

sources on the Internet can be found that provide source code to different algorithms.

Some of these are focused on speed, while some are focused more on randomness.

Further, some just provide C code implementations of the ANSI C rand() function

itself. The choice is up to each application, but for this example, a Randomal64 gen-

erator is used [Thomas01]. Remember, this will probably be fine for most applica-

tions, and if not, the guts of this can easily be replaced.

static const unsigned long RDX_RANGE = Ox7FFFFFFF;

static const unsigned long RDX_CONST = 0x00000000000041A7;

static const unsigned long RDX_Q = RDX_RANGE / RDX_CONST;

static const unsigned long RDX_R = RDX_RANGE % RDX_CONST;

unsigned int getRandomNumber(POOL_TYPE whichPool)

{
// Return random integer32 between 0 & range value

unsigned long hi =

randPools[whichPool] /

RDX_Q;
unsigned long lo =

randPools[whichPool] -

(hi * RDX_Q);

randPools[whichPool] = (

(RDX_CONST * lo) -

(RDX_R * hi)

5 '
if (randPools[whichPool] == 0)

randPools[whichPool] = RDX_RANGE;

int rslt = int(randPools[whichPool}) ;

fi(psttec 0) Pelt -a-rslt;

return rslt;

return 0;

}

Notice that this generator is saving the result of each run back into the pools array,

and this value is what’s used the next time around.

Overloading Standard rand() and srand()
——onr i eneeeaenmmmaiauuuaaiiaels ANSARI EO

IN TEEN A MENTE IT

Putting together the code up until now gives us a complete random number pool sys-

tem, ready for use in an application. However, an online programmer will likely find

a new problem after this is dropped into an application; many programmers wont

know about the new random pool system or simply will forget or not bother to use it.

Unfortunately, random numbers might be used anywhere in the game code, in areas

the network programmer typically doesnt modify. All it takes is one errant call to

rand() somewhere in the game to potentially break the online play.

There is an easy solution to this problem. C/C++ allows macros to be defined that

overload standard function calls; when resolving the symbols and #def ines at compile

678 Section 6 Networking and Multiplayer
votesrsresnamnamenmannctsecsecetie _emlaeeeonecaananesnonunnenen suntan eniasn ecu ieisnetsalaeoteanieeeoeenbnualeinesnnauAeeetenanniteneii cesotsnsunitainossnnannsessn :

and link time, the compiler will choose the overloaded function calls over the-stan-

dard library calls.
Overloading standard C calls to rand() is as simple as:

#define rand() Pools: :getRandomNumber (POOL_DEFAULT)

Also, a good way of tracking down the engineer responsible for misused rand() and

srand() calls is to trap any calls to standard srand() as well:

#define srand(x) Pools: :seedPools(x)

Making sure that the random pools header is available via #include high up in the

compilation/link hierarchy, or is listed in a precompiled header, is usually all-it takes

to propagate these macros.

Next Steps: Logging and Debugging
LLL TO LLL RLS LIES LLEL LOE DELLS PLEADED DOE ELLER MISE LOLS LE SEN I IETS IESE

Once the random pool system is in place, it can itself become a powerful debugging
tool for online game issues. This is particularly true in deterministic games, where
game state must remain completely in lockstep for the duration of the session.

A good method in finding problems between desynchronized machines is by
comparing the usage of the random pools on each system. Implementing logging of
function calls to getRandomNumber() should be fairly trivial (depending on the plat-
form), and comparing the output from each machine should help isolate some of the
application code problems leading to “out-of-syncs.”

Next Steps: Instant Replay —
On top of just providing extra logging and debugging, for some games, the random
pools class can actually form the basis for an Instant Replay feature! Instead of record-
ing game state frame-by-frame, simply record the results of calls to getRandomNumber ()
along with controller/keyboard/mouse input. This data should be stored in precise
sequential order. These values can then be used to essentially “replay” a frame at any
given point, feeding the same inputs back into all the various subsystems at work.
While these other systems are oblivious to what's going on, and are essentially re-doing
the same work, this data set is very small and economical. This is a benefit even for
many offline games.

Conclusion
ES ESO ESMEES TOR STS LEE SEN EO OTE S a SS TEAR ORME

This gem discussed multiple uses for a random number pool system. Chief among
these is the ease in which networked games can be synchronized; this makes sure that
a request for a random number comes up with the same result on every machine. In
addition, random numbers controlled by the application allows a programmer to
replay various subsystems over and over again, either as a debugging tool or as an
actual feature of the game.

679
scenvntnanenooiononnnnatntsennnaniesbteepmaanenncnunnutntey ential ninntntnrtrtchbhscnoteneMemianteTRA HAMMAM

6.7 Safe Random Number Systems

References

[Isensee01] Isensee, Pete. “Genuine Random Number Generation.” Game Program-

ming Gems 2. Charles River Media, 2001.

[Thomas01] Thomas, Andy. “Randomal64 Pseudo Random Number Generator.”

Available online at A7tp://www.generation5.org/content/2001/ga01.asp.

;

vw

an

:

rae Oe a ions : ie hee

Ce ae pret that
destin: cnt) > ae “em

eaves) iedieitA mobesd ohurse'l Nahata i ne pmod rr [th et ex / as. UNRATE Neo avd |
he , vals be ro Treg? ee

re - aes : arta oe on

eet yi svand! oy Peake ootarina tetet _

fe teh Mi dal

fr Abchi ae matte cha (' | Sai ee gress Huselur avaiable ar

if inne h <wealhah hice HF is higseed is a omchpalegl vwecban,

? » fri Peay ae ie? Bd a : : ,

7 ; ’ ; - a Asmar ie Bao OPES annem Ws
THe the eoadoen euok rear is ie pinyey e-cae viaell Mei a
mp 1) late (ea (has woes. Thos is party ne rly trot in deve ae

Pw tes alert taint ey ven ilerehy bn des sarees he ai nha

m y gael ream) in Gi ang proile \Siwech oe

j oi ke ee ' undin te [Ske GN Gi i, oy Wrea. len

Tphtiecn gals 60 pig owe =i) Gneld je Suh Veil narra 1

| Pn) el nommpe riage shu eines Pus cade ipmtiitan ahaa lly tage some OF
Fs applcaces; ale vial ete lreciy AAA ayt kh :

a

Ca i .

ext Steps. freatani Gop io
ee i Pevesaene ep tay . a 25 rpaney een

y CIR. 1p «pl pe itiing epee ingen | Sey YUP tor var

‘ poamecly det tik « > Ke ny hex +e wan inane Heghon iver Ioatoal

afi!

* a F ae

Y A yi aly rte crt, P-, 8 p1§S oe Verity oe oul tite eae: » at oe 3 { een wal, yriavins i he) Pere ipa | aby ‘ena whoa
; t pte 04 a! as ls in oS ie! sit a4 7: Ure ay rey

ow Oe, being Cline obs fick ints al ite vastots

jie? ibene och mi 6 dec Wiivsaip fr wh SG Os, Ree aay

eanehial
“in Pe Wecfe, iaiS Sots sy 1f PY BAA io

Conclysian ; tn
i Pensa canes malt mw _——- a

fat ete Tavecete alba tee tor 6 noe! ancy, '
bY i TAP cane eb lig ree kil arity

i “ fApUuret tal & eget) Gea gg es

—_ i 4, eis 9 Peers Clim

‘ ee yey ri . 4A .

: + he a Wy ~itiane al Gaal “soa

6.8

Secure by Design

Adam Martin, Grex Games

gpg@grexengine.com

TN eae is only as secure as its weakest link, so spending time and money on secur-

ing only some aspects of a system is usually a pointless waste. You must check

every single link to have any confidence in your security, and yet most project leaders

do not even know what links they have, let alone how to evaluate them.

The ability to evaluate security is critical for any multiplayer or online game, yet

the modern software engineer seems to fix problems in the completion and a post-

release evaluation phases rather than during design phase. We need to design security

into our games from the very start.

This gem describes a multistage process that can easily be integrated with your

existing development processes. Ideally, you would follow this process from the start

of your project, but it is still extremely effective when applied retroactively. The text

and examples concentrate on securing servers in particular, but the process itself is

equally applicable to client activities.

We work from the basis that an insecure system is formally defined as one where

one or more attacks from the actual Threat Model (TM) are not dealt with by the

actual Security Policy (SP). If we produce a complete I'M and fully adhere to our own

SP. we can calculate how secure our system is simply by looking at these two docu-

ments. This is the major aim of this gem. This is a simplified view of a concept known

formally as a Security Target.

The TM and the SP together fully document the system’s weaknesses, its solu-

tions, and enough information to quickly reproduce and re-evaluate the original

assumptions and conclusions.

How Important Is Security, Really?
Sica NT TOT TLL EL ALLELE AI eim

ai

Security flaws tend to be like software bugs in that the cost of fixing them rises expo-

nentially the longer it takes to discover them. However, security flaws tend to rise in

cost even faster than normal bugs. For instance, the cost of a flaw that exposes the

credit card details of all your subscribers is astronomical compared to the cost of fix-

ing it before going live.

681

682 Section 6 Networking and Multiplayer

Most people associate security primarily with encryption, passwords, and authen-

tication schemes, but these are merely tools, and do not constitute security them-
selves. There are currently three main approaches to game security in a wider sense:

¢ Wait until release, see what breaks, then desperately issue patches as quickly as
possible.

* Delegate to someone else (person or company) and hope they are sufficiently
afraid of being blamed that they somehow work out how to secure the system.

* Deploy a suite of known tactics in haphazard fashion, hoping you might just
manage to make it “a bit more difficult to hack.”

In almost all cases, it is extremely expensive—and difficult—to fix security late in the
development process. The received wisdom is that security cannot be added fetroac-
tively, because it is simply too expensive; it needs to be “designed in from the start.” If
your development process failed to take proper account of security concerns, you risk
being condemned to producing a never-ending stream of security patches, none of
which ever completely fix the problems, while “grief players” run amok in your mul-
tiplayer game, ruining it for your other players, leading to poor reviews and reducing
sales.

On the other hand, perhaps your game is a Massively Multiplayer Online Game
(MMOG), and as your game world falls to pieces under the grief-players, subscribers
start canceling in large numbers. Worse, one of those holes might expose your per-
customer credit-card details, taking the financial and reputation damage to com-
pletely new levels. Anything you own or control—data, hardware, bandwidth, even
your company’s identity—could easily be abused or stolen if your game-server secu-
rity is inadequate.

Fortunately, the process in this gem.is both simple and cheap, and produces
benefits right from the start. Every game developer—from professional studios to
individual hobbyists—should be able to use this process easily and effectively.

Aims
SLORY LATTA STL OCR TENE OS SE GER EE EGS PL ERAN RA SID TEE SU EH ONE

As [Schneier03] points out, “security” is basically meaningless unless you know from
whom and for how long it is secure. Therefore, our first aim is to formalize exactly
what we mean; this is a process that needs to be performed separately for each project;
there is no single answer for every game.

Assuming we know what we are trying to protect, we also need a way of measur-
ing our success. Developers today are accustomed to using metrics to assess code
improvements in the development phases of a project: bug lists, unit tests, playable
demos, etc. We need an equivalent for security, that is, we need a precise measure of
secureness.

Then there is the problem of cost: if every game project had infinite time and an
infinite budget, it could simply be written very carefully and be penetration-tested

6.8 Secure by Design 683
sasiosenstopsonesascensennstesstensonnnnnenntstedntcnesnentenoeninaiteeee neonate nso HMA eoniunninsi:tneanen ennai nnonetnoHmuntnneitorronmanioneerohiaseoseeht

extensively. Nevertheless, assuming we have limits on our resources, we need to be

able to prioritize where to spend them. We also need to be able to make predictive

measures of “secureness” and compare them to each other (e.g., so that we can decide

which of two designs to implement). Therefore, another aim is comparability.

Both of the aims also require that results are easily repeatable, not just by the orig-

inal measurers, but by other people, too. We cannot make the process entirely repeat-

able, since one aspect of security—the discovery of attacks on a system—is inherently

creative rather than methodical, and so there will always be an element of non-deter-

minism. It would be helpful if this non-determinism could be strictly limited in some

way.
It is generally too expensive to reassess the entire system for each alternative, and

so we need some way of restricting our comparisons. The ideal solution would

be some form of encapsulated measurements, so that we only need to remeasure the

parts of the system that are changed.

Jerminolodgy. RES REI LEN TN SRE EEELELELONEREELEE LNT EL EEE LLL ILLES TLL LALO NE DELLE

Unfortunately, the security industry lags behind software engineering in terms of both

formalization and standardization. Until greater formalization is achieved, there con-

tinue to be many self-proclaimed experts whose teachings are variable at best and

often promote positively dangerous approaches to security; in this environment, it is

particularly difficult to know whom to trust as an authority. Until the industry stan-

dardizes more widely, most terminology has no single strict definition. This gem

attempts to adhere to the most mainstream terminology, but in many cases there is no

clear leader.

In particular, many sources define “Security Policy” in wildly differing ways. The

version used by this gem is an augmented version of one of the most common defini-

tions. Some sources are passionately contemptuous of that base definition, declaim-

ing, “Policies are not technical manuals.” For CIOs running large corporations, there

is a document that they describe that has its own value; it is mainly for giving to non-

technical staff as a series of daily rules to post next to their workstations, usually just

one sheet of A4 that every staff member can memorize. Unfortunately, this document

is usually also known as a Security Policy, and has led to some confusion, with a sig-

nificant number of people coming to believe that this is sufficient to provide security.

While it is another one of those useful tools in the over-arching process, it does not

provide the core features of repeatability and completeness that our Security Policy

does provide.

Threat Model:
[Berg02] states that the first step is to create a method to quantify and evaluate risk.

We start with the Threat Model (TM), which models the inherent risks. We then use

this to produce a Security Policy (SP), which explains how we deal with them.

Measuring Insecurity ~
LLM MLLLMAMMLMMALA NL LETT TL TN

684 Section 6 Networking and Multiplayer
eaten esnesastxsetoaacieetemacteteencommtentoetetetien nna RH AtSteRUAn SIH EMIALANS RONNIE

The most basic Threat Model is simply a list of things that crackers may attempt
to do to subvert the rules of the system. Most of these will share some common ele-
ments, but all are written down separately, so that every threat is independent. This
ensures that future maintenance is very quick: items can be added or removed with-

out having to rewrite any of the rest of the Threat Model.

Making a system secure is by nature an imprecise task: we really just want to say,
“make sure nothing bad can possibly happen, including all the possibly bad things we
never thought of,” and then do it. If we were to naively apply the concepts of Require-
ments and Specifications documents to security, our Requirements would be one line

long, while the Specifications would be about the same length. Yet we cannot achieve

repeatable, credible security without formalizing what we mean, what we intend to

do, and how we are doing it.

The Threat Model (TM) is an approximate equivalent to a Requirements docu-

ment. Instead of saying what the game has to do, it instead says what crackers will
attempt to do to the game. This stage is an entirely creative exercise, and it is well

worth involving all the members of your team, simply brainstorming any attacks they
can think of. No attack should be rejected if it makes sense from the cracker’s point of
view; whether or not any of these attacks (threats) are dangerous to the system will be
dealt with later, but they must be recorded at this stage, thereby demonstrating that
later stages have taken them into consideration.

Rejecting attacks at this stage creates two major problems. First, the assumptions
that invalidate the attack today may change tomorrow; if the attack is not listed at all
in the TM, then simple future reevaluation of the game's security will not notice the
activation of this previously inactive threat. If it had been included and discounted in
a later stage, it would be easy to discover its activation and to respond appropriately.

Secondly, rejecting attacks loses the fact that they were evaluated at all. If some-
one else brings up the attack in the future as a possibility, it must be reevaluated, even
if some people present remember that it was evaluated and rejected, because they may
have mis-remembered.

Threats

Each element in the Threat Model is a description of an attack that a cracker might
attempt. Each attack should be concrete rather than abstract; i.e., it should include
details of exactly what the attack is and what tools the attacker is using. It is also
extremely helpful to record the reasoning—from the cracker’s point of view—that
motivates the attack, so that future readers can understand why each threat has been
included, and in that way, it performs a similar role to source-code documentation.
With larger Threat Models, this information is usually best placed in an appendix, to
ensure the main document is easily readable and not too verbose.

For instance, good attacks on a subscription-based MMOG might include:

* Attempting to steal another player’s character; discoving another user’s password
and then logging in as that user; changing the password, credit card (CC) details,

6.8 Secure by Design 685
i erosive shuunnamannnsinneicouuananissnneceneysisitoiansieontti omnettcannnintcctetnanaittasenenananonsie sosennanct satsesnssestennninneteninnnannntatter eosin IRE LAAN UAHA AAA RLU ODIO

home address, e-mail address, etc.; permanently taking over the account and

making it look as though the cracker is the legitimate user of the account.

¢ Attacking monsters that are too hard, seeing if you get lucky. If not, removing all

the downside by avoiding death: attempt to escape just before actually dying.

¢ Assuming you cannot escape by in-game means, attempt to disrupt the game so

that you are no longer in combat. Attempting to log out of the game. If you are

prevented from logging out (or if this will automatically lose the combat), break-

ing the network connection or reboot your computer. Or, in extremis, attempting

to crash the MMOG server so that when it reboots, it will reset your character's

location and you will no longer be in danger.

These are necessarily abbreviated and condensed; for a real MMOG, you would

expect to go into a lot more detail on some of these issues!

In each of the issues, the motivation of the cracker is included. This is important

for three reasons. First, at some point we will want to prioritize which attacks we will

defend against, and this information helps us evaluate which attacks are more likely to

take place.
Second, understanding the motivation of the cracker leads to the discovery of

many more attacks that you would not otherwise think of. This is especially true

when you have all your team collectively brainstorming attacks; in practice, the

description of the motivation by one person often triggers additional ideas for attacks

from other people. The account-stealing attack was originally brainstormed by some-

one thinking about “things you might do in the game if you could,” like stealing

someone else’s avatar. This led to inventing a variety of different attacks that would all

achieve that end.
Third, without understanding this end, the attack described might make no sense

at all: why steal someone else’s account and change it so that you are being billed for

it when you could more easily open a new account? The attack where you steal an

account and do not change the CC details is entirely different, motivated by the

desire to get a free game, and must not be confused with this other attack. Failing to

understand and record this difference may lead to your implementing a “solution”

that depends upon the assumption that the original CC details remain correct. In this

particular attack, and in many other cases, too, that assumption is completely invalid.

Even worse, future readers of the Threat Model may think it a mistake and delete this

threat!

Cost

It may sound as though TMs require a large amount of time and effort to put

together. In reality, they tend to be extremely quick to produce, mainly because each

item is independent of the others, and they can simply be recorded as a plain list. Usu-

ally most of the TM can be brainstormed within just a few hours. There is no need to

get the whole team in one massive meeting just to generate the TM; each can have

separate smaller meetings at convenient times, and then the leaders simply need to

Section 6 Networking and Multiplayer

meet and merge the results. Since each element is fully independent, merging is usu-

ally very straightforward and does not create any conflict.

Structuring Your Threat Model

Even when working on simple games, you can quickly generate a TM with many

individual attacks, and it is often necessary to impose some form of structure. Simple

categorization rarely helps, mainly because most attacks cross multiple categories and

will not easily fit into one rather than the others. Where multiple teams are attempt-

ing to merge their individually created TMs, non-deterministic opinionated structure

like this can make the merging process extremely difficult and confrontational, with-

out bringing much tangible benefit.

Many people instead like to use Attack Trees [Schneier99] to provide structure to

their Threat Model. An Attack Tree is rooted by a specific goal or motivation of the

cracker, with each node representing some action they can take to try to achieve that.

You quickly end up with a tree, because most actions can be achieved in a variety of
different ways, and so you want to show different subactions as children of the main
action.

The main advantages of Attack Trees are:

¢ They are an efficient way of recording the information, cutting down duplication

of common elements of multiple attacks.
¢ They usually preserve most of the independence of each item while still providing

structure.
¢ Decisions on how to organize them are usually noncontentious.

The tree-structure itself also records extra information in the form of the relationships
between different attacks. It also makes them easier to read, since you can quickly find

a particular group or class of attacks. They also perform a limited form of abstraction
of detail; it is possible to read only the highest few levels and get an overview of all the

attacks without having to read the full detail of each one.
The main disadvantage is that they encourage constrained thinking, which

increases the tendency to leave out some attacks. One common way of alleviating this
is to do one or more initial iterations with plain lists, which quickly become unwieldy,
and then to convert these to ATs (e.g., at the same time that you merge the TMs gen-
erated by different teams). By enduring a brief period of coping with unwieldy lists,
you hope to discover very nearly all the threats you possibly could, before quickly
bringing things under control.

There is also the significant problem of how to edit a large tree as an electronic
document; few teams have good tools for editing trees that even come close to the
power of plain document editors such as Microsoft Word. For complex systems, the
concrete benefits of structuring a large Threat Model so that humans can easily read it
and reason about it typically far outweigh the disadvantages. If the document is diffi-
cult or irritating, either to read or to modify, people will be put off doing so, and both

6.8 Secure by Design 687
nnotoeorotnnenensntttatanassesuetvA sy tiLaergNONNSMA ERAN ENN a aiicaaa we So sseeyanensteioeninnsie ” ssscneeesesn setae cbenscnn unig gtonaneetenenaeestengioteioismtentliilsnesenbieseeietonatnteemncensie

usage and update frequency will decline. Ultimately, this leads to a fatal undermining
of the whole process, and so it is extremely important to maintain ease-of-use for all
the team.

Improve Score

Increase score Increase score

from client saved on website

Force incorrect value Make actions Increase points Alter HTML

reported to server easier values for actions leaderboard

Overwrite code P
Slow down game- Make player Overwrite

* i that generates
logic invulnerable HTML files

HTML

FIGURE 6.8.1 Av example attack tree with 1 root, 3 child nodes, and 1-5 grandchildren.

Most nontrivial systems usually have multiple independent attack-trees making

up the complete Threat Model; there is no need to rigidly constrain yourself to a sin-

gle tree that contains every attack (this would often require painful coercion of the

attack descriptions).

Security Policy: Nullifying Threats
a MM AMMLLL AMMAN MMM REL EE ET NTE TE ASOT IGLOS

The Security Policy is derived from the Threat Model. It explains how to counteract

every potential threat, thereby rendering the system secure. Without a specific Threat

Model, a Security Policy is largely useless, since it has become a solution without a

precisely defined problem, no longer knowing the answer to: Secure from whom

[Schneier03]?

Unlike the TM, the SP’s purpose is to specify what the system and its administra-

tors must do. It describes what they do, how they do it, and—where applicable—even

why they do it. It must be precise; a vague SP creates ambiguity, which in turn is an

opportunity for your team to accidentally create loopholes, or gaps between the secure

elements, which will later be discovered and used by attackers.

688 Fete Section 6 Networking and Multiplayer

Without an SP, no one can really take any actions to secure the system since-there

is no strategy defining what they are doing; all that will happen is that individuals will

infer, deduce, or simply invent their own private SPs according to whim. The SP

should be seen both as a guiding strategy and the detailed laws laying out how that
strategy is to be enacted; the assumption is that all possible side effects were evaluated

when the SP was written, and that if the SP says to do something, it’s because there is

a firm concrete reason for doing so.

Critically, the SP can always be re-created from scratch and should always be the
same (or mostly the same) when this happens. This is one of the core advantages we

sought: repeatability, and the use of methodical and scientific approaches as opposed

to random, haphazard attempts. Security can and should be an engineering discipline,

not a hand-waving exercise.

We know that it is repeatable, because the SP was generated methodically from
the original TM. The SP should only change when the TM changes. (And it must

always change when the TM changes—or at least be reevaluated in light of the TM

changes. An SP that is not updated version by version in lock-step with the TM is val-

ueless, since it is no longer a logical step from the TM—it will simply become an

interesting historical document.)

The process of creating the SP from the TM is quite simple: you work through

each threat and check that your current SP nullifies it. If not, you add to the SP until it

does. As you get towards the last of the threats, you will often discover that a threat is
already countered by some existing element of the SP and needs no extra procedures.

Ifa threat is judged too expensive to deal with, or too unlikely to justify worrying
about, the SP should explicitly say so and provide reasoning. This is all part of ensur-
ing that the SP is a methodical and logical extension of the TM, and that we retain
repeatability and accountability. By explicitly dealing with every element in the TM,
we render the SP a standalone instruction manual that fully captures all the informa-
tion from the TM without needing to reference it; this enables staff to work directly
with the SP on its own. Having just one simple proscriptive document to work with
increases the chances that the decided upon security policy will faithfully be enacted
by all staff.

Ongoing Revision of Both Documents

Most of the value of this process is realized as soon as you complete your first iteration
through the steps of generating a Threat Model and a Security Policy. If you then fail
to revise them regularly, you will certainly miss some of the advantages, but you will
still have gained a lot over more ad hoc approaches. In cases where ongoing revision
realistically will not happen, it is still worth starting out in the right way.

In preference, both documents should be rewritten regularly. It is also sensible to
revise them in light of any successful attacks. In both cases, the same development
process should be repeated, except that you do not have to start from scratch. First,
every threat should be reviewed, and any additional threats added (especially true

6.8 Secure by Design 689
veousucsnesseisscovrmmn nantes: sntesicama SSSERGZea ana gtsnantenacnctahnaees ee eeaecHeSSteeAN SEH ow. syniaennsesncsraniiunnnsnnseraaaasiin aninsnesnenanunaiereneumnunnreinounnnieieninst

when a new attack has just succeeded!). Then the Security Policy should be examined,
at least in light of the new attacks, although preferably in light of all of them. Some-

times the successful attack will prove to be a threat that no one thought of, other
times it will demonstrate a flaw in the Security Policy’s strategy for a known attack. In
either case, both documents should be updated together, and it helps a great deal to
have them versioned as a single atomic unit, so that they never get out of sync (assum-
ing you have a document-versioning system).

Additional Benefits to This Technique
‘amecrarnere

Further Reading

NRPS ERE OCDE SLE AE EBLE SEIN ERNE ELINOR SE SEELIER EB ESLEEEDE ENNIS LEILA LDL GEIL LE

The following sections outline some additional benefits.

Introduction to Code-Base

It’s a very fast way to introduce new developers to how the game is written or how the

code base fits together. By necessity, it is an aspect-oriented view of your code base,

and works at the use-case level, since the threat model is a specialized form of “a set of

use-cases.” For external people or new arrivals to the team, this makes it much easier

to comprehend than most documentation.

A Fresh Perspective on Existing Design

A security audit tends to make people look at the system (and their own code) from a

new perspective, which can preemptively uncover many non-security-related bugs, in

addition to the security holes. It is also a “breath of fresh air,” being sufficiently differ-

ent from the standard process of looking for bugs that it’s more mentally stimulating

and a nice change from bug hunting.

Benefit from Experience

The threat model and security policy developed for a project may serve as the starting

point for other titles. There will certainly be elements that are unique to any given

title and design, but giving the team a starting point to serve as a launch pad for their

brainstorming can help capitalize on previous work. The opportunity exists to build

up a library of threat modes over time, with detailed descriptions of each threat, so

that future team members could pick them up and understand them. Such a library

would be valuable in much the same way other software libraries are, improvements

could be back-propagated to earlier titles, metrics could be defined to measure suc-

cess, etc.

RETREAT
SECESSION ELE TNT EMILIO LLIN TTL

The industry-standard equivalent of this gem is an evaluative system known as the

Common Criteria (CC)-[Cox00, CCEVS04]. The CC was derived from the com-

mon elements of the TCSEC and ITSEC programs, from the U.S. and Europe, hence

690
doaassieenerestebeaniaee eerste eesti esnansreseeanaasasentisecibneteoiconutannssnAinnsiet

Section 6 Networking and Multiplayer

the rather ambiguous name, although it also represents a step forward. The CE is a

much larger framework than this gem, designed to provide greater levels of assurance

and much more detailed and precise evaluation. As a practical example, you can view

a CC evaluation of the Windows 2000 Operating System [Microsoft02]. The CC has

three core elements: Protection Profiles, a Target of Evaluation, and a Security Target.

This gem uses a Threat Model as a simplified equivalent of the CC Protection Pro-

files, and an augmented Security Policy instead of a full CC Security Target.

More generally, Bruce Schneier [Schneier00, Schneier03] is considered by many
the foremost expert in the security industry, and his books are both approachable and
contain practical insights. Ross Anderson [Anderson01] is another highly respected

specialist, and maintains a frequently updated Web site [Anderson04] dealing with all
matters to do with security, from privacy and data-protection through to cryptogra-
phy, steganography, and the most esoteric (and interesting) of cryptographic systems.

Conclusion
as None LESSEE EEE ELLE LEE SLE LLL LLIB EEL DELEL EDEL ELDON NE TOOL EL EON EEE LEE LILO LESLIE.

You now have a methodology for adding security to your games right from the very
start of the development process, without increasing your total development time. No
specialist knowledge is required, and all members of the team can contribute a great
deal to the overall security and can understand how and why it is secured.

This gem has not covered any implementation issues to do with security, which is
where the specific understanding of cryptography, etc. comes in to play. Clearly, these
issues are still critically important to the “secureness” of your system, but when using
this gem, they are encapsulated as late-stage design and implementation details, and
can be safely ignored during the main design process.

For instance, where a Security Policy mandates the use of an encrypted stream at a
particular point, you will eventually need to decide which cryptographic protocol to
use, which is a nontrivial decision, However, the relevant information you need to make
this decision will already have been captured by the Threat Model and Security Policy,
making such implementation decisions relatively straightforward. For beginners, they
start by picking a crypto library, but experts do it almost at the end [Clayton04].

The methodology used in this gem enables you to attack the security problem in
a very focused and methodical manner. You gain all the benefits of a disciplined, sci-
entific approach—the approach that Anderson and others term “Security Engineer-
ing” (an overt reference to “Software Engineering” and all the good that that
discipline has done for software development). It is only a single process, but when
applied diligently empowers you to make your entire system secure, and not only that
but also to know, empirically, just how secure your system is. No more hand waving;
no more finger crossing guesses that it “is probably safe [subtext: I hope!].” You also
have a formal specification of your “security design” that you can check against your
implementation.

6.8 Secure by Design 691
csnsnetinitennttneter moreno iain ettetennttetentnaustesernieonanenesttnetnsseoereitins

References

[Anderson01] Anderson, Ross. Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley, 2001.

[Anderson04] Anderson, Ross. Home page. Available online at ttp://www.cl.
cam.ac.uk/users/rja14/, 2004.

[Berg02] Berg, Al. “6 Myths About Security Policies,” Available online at http-//infos-

ecuritymag. techtarget.com/2002/oct/securitypolicies.shtml, October 2002.
[CCEVS04] “Common Criteria Evaluation and Validation Scheme.” Available online

at Attp://niap.nist.gov/ce-scheme/aboutus.html, 2004.
[Clayton04] Clayton, Richard. Home page. Available online at Attp://www.cl.cam.

ac.uk/users/rncl1/, 2004.

[Cox00] Cox, Peter. “Security Evaluation: The Common Criteria Certifications.”

Available online at http://www. itsecurity.com/papers/border.htm, 2000.

[Microsoft02] Microsoft. “Windows 2000 Security Target.” Available online at

http://download. microsoft.com/download/win2000srv/CCSec Tar/2.0/N T5/

EN-US/W2KCCST pdf, 2002.

[SANS89] SANS Institute. Available online at hitp://www.sans.org, since 1989.

[Schneier99] Schneier, Bruce. “Attack Trees; Modeling Security Threats.” Available

online at Attp://www.schneier.com/paper-attacktrees-ddj-fi.html, December 1999.

[Schneier00] Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World.

John Wiley and Sons, 2000. :

[Schneier03] Schneier, Bruce. “A reality checklist for an effective security policy.” Avail-

able online at /trp./searchsecurity. techtarget.com/tip/0,289483,sid14_gci931792,00.

html, 2003.

_ oy

ve
aca

a Ga: dither: aratiyperts asm, abe

a , = - Vinal Burgas ives alatas
hid yi pe ie ie a

sia a

= Sf eg vt rer pty Mell Acai _

aa canto ui pas Wideare Ie aging we
bd hn _ oo . ro %

 sarantet : thetenwand PAIR apn "EI eG he: te Bers he
She-grre ces 9 Chae fhe eo er ong can ee

alii ech tien veo wea AN geobteuagivinys:
SOUS alone Neitveleats lh viiiehanae'<ord Dy

<a tht tan case nea ee a
eee poe” eqigg prevent eH 3 oe eatn gale bard

Sea iranlino satan ‘aig acrid ile GER we Ewen
(iMate we Os we ev aeity, Woe pees aril POOP NV; one =

“avon it 49 Wier R MESA aD Git Perit ‘(ABP EER y a fee) aye
: DOL worl whe ini se ples: sdtalseeethabie aw pe saulee olelediowA, rail

LAinvA ” sagel wirnisse, GOS rwobal" Fe ‘tema 7

SMOG Valea) Te0OTS to bheierae ius pes Atel

are ha div} panne: proc WS dP Xe
eenenerey seen iy 4, To rapt awaiewe! &

enone HEC. giviahaly, asi) paeaah Set Re Wa =r
“vel nee besa tt i DA pray: PAPE UM DAEATE a

- Abe Wade ae Ky rity ai, ue yt, sogers? wl 29% ered (OM prank

aie eal ta we ia wefan ai

tis), scilag pupa: nia = ne xh Setaed> wines A esta a
< ROSALES Hi hikeeehs aegis aes Lara ae sli tb

_ EYE ree, ste Monkey eral mire the Ue 4D Ss gy

_ |
—

jane ote M man P wal apes mPich ‘typ o"

by ete, Star a Aa a Flows ! Mor Vests (RGR Rip

aa ‘Pa i ae oy Lal ends ' > arid i eo cee 1s “ hdadies anil

_ Mosh) BAT 0 sorean + Ae » eel ; : = as r

P " ' ' (raw weet, Peg

i led Re Ce ee et {Clay
. Sie eet id that al of) en i ¢ ly we eeu

ey We gmt] Sé3 hy ‘old AM vig Gala al) Wty paces of eal “
c-apeedenil he aw lie A oon Wd hers cen “Sgr

ina ee ee) : > piitwaury | aloe” sitet char g
W il? ry 9 More belt Ane ae Leayrrrereg © » wD tw hy spot

agrypdlew! Samant Ane ver te be i.e eee CRD greeks ne
of (> Pia “Rpg ell Meow) eer Apap avecont & Nowe

me io Aine ceoabling gy o fi 4 ae ots Unt] by eit

wr é al Sd ‘ex ine win viv : ig “a rn sie

— 1” a,
a

_ ‘

— [

ey ic ye tees

ae

3

ae
SECTION

AUDIO

Introduction

Mark DeLoura

madsax@satori.org

udio has come a long way. My first commercial game programming experience
was working on a PC-based arcade game, where we used a Gravis Ultrasound

card for audio playback. We were pretty excited about it, because the GUS enabled us
to download samples into the card and play them back with whatever pan, volume, or

pitch we wanted. It was also MIDI compatible. It was so cool! We set up a C++ sound

manager layer that ran over the top of the low-level gfl libraries to automatically han-

dle assigning physical voices, and then we created a pseudo-3D effect by tying sound

sources to dynamic objects in the scene and using pan and volume accordingly. We

mucked about with sample rates and bit depth, stereo, and mono samples, and did

our best to optimize our memory map on the card so that we could fit both the wave-

forms for the MIDI instruments and the engine sound and environment samples.

I know that for some of you, this reminds you of the days you spent twiddling the

speaker on your TRS-80 or Apple II, and how exciting it was when you first coerced

your machine to make sounds resembling music. Fortunately for all of us, the state-

of-the-art in audio has moved on to the point where we can have composers creating

music instead of programmers, and we can simply stream their creations from disc or

memory. We can create lush real-time audio environments with the assistance of

audio-scripting tools, and they can be played back in high fidelity through 5.1 audio

systems with real-time hardware effects processing from built-in DSPs. Our focus

now can be more on creating audio environments that enhance the game experience,

as opposed to simply getting the machine to make beeps and boops at the appropriate

times.

It’s with our past firmly in mind that we present these five excellent audio gems.

Many thanks to Sean Gugler for his initial work organizing this section. First in this

section, you will find a discussion of multithreading and its applicability to audio pro-

gramming, by James Boer. Matthew Harmon will discuss writing sound APIs that

manage groups of sounds easily. Then Sami Hamlaoui will briefly describe a simple

technique for making audio appear to emanate from a 3D surface, as opposed to just

a simple point source. Christian Schiiler digs deeply into the math behind Feedback

Delay Networks for environmental reverb. And lastly, with speech recognition gain-

ing increasing prominence in games, Julien Hamaide tackles a way to match incom-

ing speech with a trained dictionary of words.

We hope you find these gems useful, and that you'll be able to apply some of

these techniques to your next game!

695

7
})

oe

ne

a Oe

ew a

LP ne en eral Ba?

eo 7

; j

ao apatnnlier ting veemnetlie chew doed enor yale bes brs ok cont elgata

Abner gobo +d nets Ut-cbuseq & borer ow nol) bow wesley heieydy galing

ath yeilbbive tse voy zesb ost to voy chris ets .uoy Fo non get eso J

Boies riseaqnoa wad ato 2 vow teieg oct or wo bavom eed aibus sinoaiie ay

chisnsqe grinunstygory omngy beinomunos ely ae ante +
beigwcesstti cisat) a bog ye wedw ysering obtows leeds on

tt baldans CUS) 2th apne) ai ods teins ory now ai 2
mod 2

rs

brace 659 5 qu tae 8 tloce os eee tl oldies IO cle eew a bane “ pas ay:

acid Wirsaesnene o7 earardil fy tyot-wol save gar edi rae nat acts wel Teh

IW penibry ne smuiloy bas neq geiah Yas seu ofl Mi eet manner a asa
bib hoe estes anom bne ono danob rid ves esti slyetine chtity swore be
Naw of) dow) ti dies vee tia of bisa ads nd an YF ethiom wo scimnge o

dlqmes inegicoieins hae bayor adigtts adi bon ememereea 1M nds vabvan

bree sail were mac ees 11 gril word baw If sigh 10 08-25) woe tose a
ote ti zu to lle a4 vision’ aun pntidneses shiner coleman nrtidouns

16 cally then) ecuttgets ted: maw ylqing om sw bee ‘emmnneqjoed ie. Moiese 7,

to oreniza oc: riyy “nemninives oibub oaiu-hoy deal omens des, I Ose _ ;
eibus 4.¢ daiiiris nilsbil Guid at Avid boyaiq od Aca yor bas yeloot _

aad wu sO iniadivd merit gnizmomy enots ibwhid cott-len diiw : =
Seaibitoqes sense oil) soneelrs eth 290 satya Gibuse gfe ao mom sd. pre

gaeisqqong 4s srt7 is equed bre eqbad aasin af Siuielow iy cl yoinrsg viqenie or hazagqo ae
_

anna cibue tellcaxs svi seach rnoeerq ow ih bowen ni 22

ae nt nell ote ads yoisiangpecdiow lating ett sal wehgue) mese Moetnt
the othe or qilidellqge en bar gaibvorlsive tom it ant aan

we OW, brver gatnw eoath Uiw aneueld wediadA asodl wer ehh

weyitue 2 dreesh ylsnd liiw issoulen ei | inne ott lias abrrssgs Yor 20

ul oy bnogge a» sactue CE £ mail ssusiters ot Lass are
doedbosl brined diencads gai <lqosb egih wld? nell sors ae
hing Aaluigoos: dese aie lies! ba desyo) Leanoennontente tal 2
tneoit nem 07 arw ¢ emeges shiagesht anilul eentg Ai 99 aim 4 3 inn y

wbieree hi wistousth be whe Pad

arts I bay : Ee

w anne yiqggn ot obte sh Wy cect baw dvigen Rare. mat iad .

ree sa Oe

Sots)

7.1

Multithreaded

Audio Programming

Techniques

James Boer

author@boarslair.com

shvd pos gaming hardware is moving away from a single-threaded execution

model, as parallel process execution and even multiprocessor machines are

becoming more and more common on users’ desktops. Modern CPUs such as Intel®’s

Pentium® 4 Xeon™ processors have introduced HyperThreading™ technology to the

world, which is essentially a method of simultaneously executing two processes on

one chip to take advantage of its built-in parallelism. Additionally, multiprocessor

machines are becoming more common on the desktop, and users will expect their

games to take full advantage of hardware that they paid good money for. While the

sample code in this gem is specifically written for Intel and AMD processors on Win-

dows-based PCs, the concepts of multitasking specific portions of your audio process-

ing code can be applied to different platforms and operating systems, including Macs,

Linux, and game consoles.

We'll look at one specific area where we can use multithreaded code for Windows

operating systems to take advantage of multiprocessors or HyperThreaded processors:

the primary audio decoding and playback loop. Common pitfalls and multithreading

mistakes will be examined, and ideas for optimizing various common audio-related

algorithms will be discussed. However, the general tips and techniques presented in

this gem can be applied to other areas of game development as well.

A (Very) Brief Introduction to Threaded

Programming
SRNR TO TEETER ISL NNSA ITE TEAM TT TT NT SRN NEEL

In a nutshell, threaded programming involves creating two or more code paths that

execute simultaneously. These threads are both part of a single process (a single exe-

cuting program) and share the same address space. In layman’s terms, this simply

means that any threads spawned from a single process can access the same data. In

697

Section 7 Audio

essence, every single C or C++ program can be considered to have at least one thread

(the main thread), which is launched when the program is started. This thread is then

responsible for launching other child threads, often for limited or very specific jobs.

Figure 7.1.1 shows how this works on a multiprocessor system.

Primary Thread Spawns Two Child Threads

| Thread 1 |

Processor 2 Thread 2 Thread 3 |

Execution Time

FIGURE 7.1.1 Main thread spawning other threads on second processor.

Obviously, a machine with a single processor can’t actually execute more than one
section of code at a time. The same timeslicing mechanism that allows more than one
program or process to execute simultaneously on a multitasking operating system also
allows more than one thread to execute simultaneously within a single process. Figure
7.1.2 demonstrates how multitasking is simulated on a single processor machine.

Simulating Simultaneous Execution of
Multiple Threads on a Single Processor

te dl | ere |

j

apenas E 7 ee ee | peace
> =e @O ie) pox Processor ‘| |

eS | — sf —

a= i |

3

oe [on D-
Ea] aay

=f =a oO
“gy pa © Be]

oo
=a pe | aaa

Execution Time

FIGURE 7.1.2 Multiple threads sharing execution on a single processor.

7.1 Multithreaded Audio Programming Techniques 699

Fortunately, it is much more efficient for an operating system to timeslice between

multiple threads than multiple processes. Because of this, it is feasible to add some

degree of multithreading code to your game to take advantage of those machines with

multiple processors (or single processors that can execute multiple threads more effi-

ciently) while imposing very little overhead on machines that must emulate this mech-

anism with a single processor. However, it would be foolish to create threads for

anything but the most obviously suited tasks because of both the overhead for single-

processor execution of these threads and the inherent complexity in managing and

debugging multithreaded code.

Threading Terminology and Mechanisms
<ALL SEES ENON ITER LINE SEE LLIN ONT SLL ON ALN NLT

Multithreaded programming not only involves thinking beyond traditional linear

programming, it also invokes a complete set of specialized terminology. Many of

those terms are described for you here.

Each instance of a program that executes on a machine is considered to be a single

process. The defining characteristic of a process is that it has its own address space and

protected access to disk and other hardware resources. Some operating systems, such as

Windows, Mac OS X, or Linux, allow multiple processes to be run at once. Other

operating systems, such as those found on game consoles, are optimized to run only a

single process. Each process (or program) dispatches one or more concurrently running

threads. Threads may simply be thought of as paths of execution within a process, all of

which have access to the same address space (such as global and static data).

To safely use functions (either your own or library functions) simultaneously from

multiple threads, the functions must both be reentrant and thread-safe. A reentrant

fanction does not hold static data over successive calls or return a pointer to static data.

A thread-safe function protects shared resources by use of a lock (such as using a

mutex, which we'll describe next). This prevents two threads that may be simultane-

ously executing the function from corrupting each other's data. The use of global data

without locks will make a function non thread-safe.

To lock means to prevent access to shared data or resources by more than one

thread simultaneously, which prevents data corruption. A common lock is called a

mutex, a shortening of the term “mutually exclusive.” While one thread holds the lock

and performs work on the protected code, other threads may be forced to wait or per-

form other tasks. In order to wait without consuming CPU cycles, a thread may be

asked to sleep for a specific time or until a specific message or event wakes it.

There are a number of unique error conditions associated exclusively with threads

that you must guard against. A deadlock occurs when a lock is activated, and, due to

specific interactivity with other threads, can never be unlocked. For instance, two

threads may end up waiting for each other to become unlocked before proceeding. If

there is no external signal that can unlock at least one of the threads, this is a deadlock

situation. A race condition may occur when two or more threads must operate on the

same data location, but the result depends on which order the threads execute it. Typ-

ically, locks such as mutexes are used to prevent race conditions.

700 Section 7 Audio
nssencssecesceeoneecetennmnesetliiad enna anette tenne sateen setauaiatestnni citi tertenthteoteanairononenls

Additionally, all threads are assigned execution priorities, in much the same way

processes are given priorities. This, somewhat obviously, allows the threading dis-

patcher to better prioritize thread execution. A priority failure occurs if a thread fails to
complete its assigned task before another thread requires its results. Often, this is a

result of assigning incorrect priorities to tasks. A starvation failure is similar to a prior-

ity failure in that a thread was unable to complete its required tasks in its allotted

time.

Identifying Audio Tasks Suitable for

Threaded Programming SNA NRRL ERRATA LTS LE ELD TOLER OOO EEE

In general, it is important to clearly identify which programming components are

suited to multithreaded programming. Quite frankly, the traditional rule of thumb in

game programming has tended to avoid threaded programming altogether, for several

reasons. First, most consumer machines did not have more than one processor, as this

was not supported on consumer operating systems. Second, since multithreaded pro-
gramming implied a bit of extra overhead on single-processor machines, it was not

deemed worth the price in CPU cycles to provide this simulated functionality.

However, in the past few years, several things have occurred. Today’s operating
systems such as Windows XP now support multiple processors, and we can expect

some gamers to have these systems. Additionally, and perhaps even more importantly,
the relative cost of implementing threaded behavior has decreased for single-processor

machines for two reasons. First, because the average speed of processors is still rapidly

increasing, the relative overhead of threads is lower than ever, since the absolute cost
of thread switching has stayed more or less constant. And even beyond this fact, mod-
ern processors are being designed to run multiple threads more efficiently than ever.
We'll discuss Intel’s latest hardware innovations and the ramification of these new
chips in the next section.

Audio programming has some obvious ties to threaded programming. The very
nature of any audio system is asynchronous behavior—namely, the continuous pro-
cessing, mixing, and buffering of audio data from its original location on disk or in
memory to its final destination in hardware buffers—all of which must happen in real
time. Often, we wish to have continuously streaming audio even while other tasks
may interrupt the primary thread, such as loading up data resources for a new level.
Unlike visual rendering, in which frames can simply be dropped, there is no way to
effectively mask starvation of an audio data stream—it will result in audible gaps or
popping.

One obvious candidate of threaded programming is that of streaming and decod-
ing high-compression audio data, such as MP3 or Vorbis files. No matter what else is
happening, this job requires periodic access to disk resources as well as a percentage of
CPU time in order to acquire and decode the audio data from the disk and stuff it
into audio buffers, all in real time.

7.1 Multithreaded Audio Programming Techniques 701
svavoobmanannntesceonenasneninmatoteeneetetneteeecinatatornetenniteneeenetniimeseseertntennintennioniinetet

There are also some less obvious uses for threads that execute in the background.

3D audio data, including sound sources and listeners, must stay synchronized with

objects in your game world in order to calculate the resultant 3D audio output cor-

rectly. However, it may be a waste of processor time to calculate the audio every time

the listener or 3D objects move (which may be as often as 60 to 90 times per second).

Instead, you may wish to selectively degrade how often the 3D audio data is recalcu-

lated. By putting these calculations on a separate thread and by periodically waking

the thread at a rate slower than the main update rate, you not only save calculation

cycles, but you allow a HyperThreaded or multiprocessor system to operate more effi-

ciently by offloading these calculations to a separate processor. You could also perform

data-transfer tasks such as moving audio data into a playing sound buffer on individ-

ual threads.
Additionally, you may even wish to access world geometry and perform raycast-

ing and pathfinding for the benefit of your audio system. If these don’t sound like

audio-related tasks, you might not be aware that most modern audio implementa-

tions (like I3DL2 and EAX™) require various tasks such as line-of-sight information

and other spatial awareness in order to calculate sound properties such as occlusion

and obstruction, in addition to basic reverberation and echo properties. These are

wonderful tasks to shunt off to a different thread, because this type of information

does not have to update nearly as quickly as visual information. Thus, the thread can

be tuned to consume far fewer CPU cycles than might be necessary if it were calcu-

lated synchronously with the visual information in the world.

Before we get into the specifics of how we would set up such a multithreaded sys-

tem, let’s examine another recent technology that is making threading more impor-

tant even on single-processor machines.

Intel’s HyperThreading Technology—What Is It?
DTT EOOIS a NENT IRIE

One of Intel’s more recent technological achievements has been dubbed Hyper-

Threading, and it is designed to allow a single processor to appear as two virtual

processors to an operating system (and a program). By making more efficient use of

the multiple execution units found on the chip (previously used only for out-of-order

execution), multiple threads can actually be executed simultaneously, offering much

greater efficiency than when executing only a single thread.

As one might expect, it is not quite as efficient as if two true physical processors

were executing simultaneously. This is because the separately executing threads will

often collide, both requiring the same resources on the processor at once. However, in

optimal threading conditions, it is expected to see a nominal performance boost of

~3()% on both threads if their workloads are properly balanced. In the best case, users

may even utilize two physical processors, each with HyperThreading enabled, giving

the system four virtual processors to work on.

702 Section 7 Audio
ssuscesierrecansaecnscnonntine eseconanctcettin

However, HyperThreading is not a magic bullet. In fact, it can actually-decrease

overall performance, if applications are built using only a single thread or the main

thread is too heavily loaded compared to secondary threads. The reason for this per-

formance degradation is somewhat logical—if the processor's resources are split

between two executing threads, and the game only makes use of one of these threads,
the performance will be worse than if the entire chip was dedicated to execution of

only the main game thread.
In some sense, this puts game programmers in a bit of an awkward position—

should you continue to avoid threads and allow a slight degradation of Hyper-
Threaded systems, or do you take advantage of HyperThreading with extensive use of
threads and simply accept the minor performance penalty on single-processor, single-
execution chips? There is no one definitive answer, but games (and gamers) have

typically pushed forward the technological envelope more than any other type of
application, and gamers will be quick to adopt a technology if they see tangible
results. Many in both hardware and software development feel that parallel and
threaded programming is the wave of the future.

Threaded Programming Techniques

and O
-eeen eeepc

A Threaded Sample Program

perations

In certain situations, when creating a background thread in a game, it is not necessary

for the thread to be active 100% of the time, because the worker thread is able to per-

form its task much faster than the primary thread requires. This is the case with

decoding MP3 or Vorbis audio data, or with performing most other audio-related

tasks.

To decode data at a decelerated rate, we can employ a higher-priority thread that
is executed in periodic bursts and sleeps until the timer wakes it up to perform again.
This mechanism helps to ensure against thread starvation while also keeping the over-
all CPU time of the worker threads reasonable.

Perhaps the most important step in designing a threaded system is deciding how
and when your worker threads will share their processed information with the primary
thread. In essence, this is the only link the two threads will share, and it is critical that
the data transfer is done both safely and efficiently. It is important that the multiple
threads do not overlap too often, or you will lose efficiency as one thread stalls while
another finishes operating within a critical section.

{eS UI SE ERR RIN HEME

We'll now examine a small program designed to evaluate how much computational
performance can be gained by splitting decoding tasks into threads. Additionally, it
demonstrates how a single program can allow two code paths: multithreaded or sin-
gle-threaded. This simple threading performance timing application can demonstrate

7.1 Multithreaded Audio Programming Techniques 703
sxeetetonnnnsnmeon nanpeiencioinencereneanunancnneneneneeitrenesnatnnoninanannnnnnnn

both code techniques as well as performing some useful benchmarks on various sys-

tems. We will present the results of the benchmark tests later.

Es Listing 7.1.1 shows our multithreaded benchmarking application in its entirety.

ontHecD ~~ Please note that it is also included on the CD-ROM.

Listing 7.1.1 Multithreaded Benchmarking Application

#include <iostream>

#include <process.h>

#include <windows.h>

#include <conio.h>

using namespace std;

#pragma pack(push,4)

__int64 g_total_val = 0;
int g_num_calculations = 0;

bool g_do_floating_point = false;

CRITICAL_SECTION g_val_update;

// Perform some nonsense calculations to burn up CPU cycles

void DoCalculations()

{
int val = 0;

if (g_do_floating_point)

{
FOR(INEML =) OF -24< g_num_calculations; i++)

{
for(int j = 0; j < 1000000; j++)

{
yabet=Lint((float)i * (float) *

((float)j - (float)i - 0.25f) /

(vader a epee

}
}
EnterCriticalSection(&g_val_update) ;

g_total_val += val;

LeaveCriticalSection(&g_val_update) ;

}
else

{
FOn (inte 05 2 g_num_calculations; itt)

{
for(int j = 0; j < 1000000; j++)

{
Val te Fj * 4) 2a)

(MaMa eSs Hoty;

704 Section 7 Audio

}
EnterCriticalSection(&g val_ update) ;

g_ total _val += val;

LeaveCriticalSection(&g_val_ update) ;

}

// This function is passed to createthread()

void ThreadFunction(LPVOID lpv)

HANDLE hEvent = (HANDLE) 1pv;

DoCalculations() ;

SetEvent(hEvent) ;

}

// Start the threaded timing tests
int main()

1
char Cc;

cout << “Do floating-point calculations (y/n)? “;
Cilee oa cr

in(c ==aiy)
g_do_ floating point = true;

int threads = 0;

cout << “How many total threads do you wish” <<

“to create (including the main thread)? “;

cin >> threads;

// Allocate an array of handles if we have

// more than one thread

HANDLE* pHandles = 0;

if(threads > 1)

{
pHandles = new HANDLE[threads - 1];

}

cout << “How many millions of calculation loops” <<
“should each thread perform? “;

cin >> g_num_calculations;
cout << “Now performing timing calculations.

InitializeCriticalSection(&g_val_update) ;

// Get the start time
unsigned int start_time = timeGetTime();

// Perform all actual calculations -
// one per thread.

alighe aks

if(threads > 1)

{

7.1 Multithreaded Audio Programming Techniques 705

}

for(i = (0% De< threads 1571+)

pHandles[i] = CreateEvent(
NULL, FALSE, FALSE, NULL) ;

if (_beginthread(&ThreadFunction, 4096,

pHandles[i]) == -1)

return -15

DoCalculations();
// Wait for all other threads to finish

// before continuing

WaitForMultipleObjects(threads - 1,

pHandles, TRUE, INFINITE);

Ie
else

{
// Do a simple set of calculations for the

// single-threaded path
DoCalculations() ;

}

// Get the end time

unsigned int end_time = timeGetTime() ;

// We no longer need this critical section

DeleteCriticalSection(&g_val_update) ;

// Close and delete handles used for synchronization

if(threads > 1)

2
for(i-= 0; i °<' threads ="; itt)

CloseHandle(pHandles[i]);

}
delete[] pHandles;

}

cout << * Finished!” << endl;

cout << “Performed all calculations in

<< end_time - start_time <<

“ milliseconds” << endl;

getch();
return 0;

“

#pragma pack(pop,4)

Essentially, this is a small thread-based benchmarking program that times mathemat-

ical calculations spread over any number of threads. The user is asked what type of

algorithm to run (floating point or integer), how many threads to run, and how many

million calculation cycles to run per thread.

Section 7 Audio

To simulate data flow from the threads into a common pool, the calculated values

are periodically added to a global variable named g_total_val. This is the all-impor-

tant data transfer point we talked about earlier. Because this is a shared access point, it

is imperative that access to this variable is protected. However, don't be fooled since
we don’t do anything with the variable. It’s only there to show you how to access com-
mon/global data from threads. Let’s briefly walk through this code to see how we

manage our threads, and discuss how we might approach applying these techniques to

an audio system.
The first function you will notice is DoCalculations(). This performs a series of

calculations in loops incrementing by a million, to perform meaningful timing tests.

The results of these calculations are stored in the global variable g_total_val. Because

this is a global variable and potentially accessible by multiple threads simultaneously,

we must first use a mutex to lock access to the global, then unlock it after we've finished

accessing it. When writing multithreaded code, it is important to endeavor to mini-

mize the number of locks you must perform. If we, for example, locked and unlocked

the global variable on each iteration instead of once every million iterations, the

threading performance would be degraded because of an increase in collisions of

threads when trying to access the variable, leading to stalled threads.
The DoCalculations() function is wrapped in a function called ThreadFunc-

tion(), which takes a pointer to a void pointer as an argument. This is the entry point

to a new thread. When this function exits, the thread terminates itself.

The rest of the program is rather straightforward upon inspection. The program

asks the user a few questions, such as what type of calculations to perform and how
many calculation threads to create. After getting the information it needs, the pro-

gram sets a timer, then proceeds to launch either one or multiple threads, each per-

forming a series of calculations inside the DoCalculations() function. The “results” of
the calculations are all stored in a global variable g_total_val.

This sample project demonstrates how to split up a task into a variable number of
multiple, concurrently executing tasks. We'll use this program to do some simple tim-
ing tests on several different test machines to demonstrate how threading can improve
efficiency in an ideal case.

For these tests, the sample program was run on two test machines. Machine One
is a dual Xeon Pentium 4 2.4 GHz machine running Windows XP Professional. Tests
were conducted both with HyperThreading turned on and off to demonstrate dif-
ferent results. Machine Two is a Pentium 4 1.5 GHz Windows 2000 Professional
machine with no HyperThreading capability and only a single processor. For each
configuration, we ran tests that demonstrated both integer and mixed integer and
floating-point calculations. The number of test cycles (1.2 billion) was chosen so as to
obtain a reasonable length of time for execution. Remember, the total times are much
less relevant than the relevant execution time of each test within a particular configu-
ration row. We've used a somewhat primitive timing mechanism, so figure that our
execution timing error is approximately plus or minus 20 milliseconds overall. Table
7.1.1 provides the results.

7.1 Multithreaded Audio Programming Techniques 707
scasaeencncetetiteecnrnetniatntioennnsnss te eiat tee temtntnnetestcstititneennet te remeneieerore i teaetenntensinhtni

svt cs eon oman was 2 st :snvisneinnenanatannanasietconasnnstesnennoasucboesentasneneiniia inet ieststannseoinntennssanntt:

Table 7.1.1 Test Results of Sample Program

Configuration 1 thread 2threads 3threads 4threads 5 threads 6 threads

M1, HT, integer 28078ms_ 16625ms 12172ms 10125ms 10438ms _10516ms

M1, HT, float 68719ms 34843ms 23500ms 19813ms 20672ms 20578ms

M1, no HT, integer 28063ms_ _14047ms 14062ms 14046ms 14141ms 14078ms

M1, no HT, float 68859ms 34422ms 29797ms 27484ms 26032ms 25125ms

M2, integer 43312ms 43332ms 43492ms 43593ms 44163ms 43442ms

M2, float 147232ms 108246ms 95247ms 90059ms 85943ms 82418ms

Key: M1 = Machine 1, M2 = Machine 2, HT = HyperThreading enabled, no HT = HyperThreading disabled,

integer = integer-based calculations performed, float = floating point and integer calculations performed.

You can see how the most significant improvement is achieved switching from one to

two executing threads on a dual-processor machine. This is not unexpected, as the

two threads can both execute simultaneously on two physical processors. The only

loss of efficiency comes in synchronizing the execution and data collection from the

two threads. This is why you should theoretically never see a 100% improvement in

performance in this situation.

When examining the performance gains from HyperThreading (meaning three

or four threads are running on the dual processor machine with HyperThreading

enabled), you can see a more modest but still substantial gain of approximately 30%.

This corresponds to research done by Intel indicating how much you can expect to

gain in optimal cases. One of the more interesting results to take note of is the odd

fact that floating-point tests run on both machines continued to show improved per-

formance beyond two threads, even when one might logically expect the opposite

results. While the exact cause of these results are not clear, it could be surmised that

both the operating system and processor are designed and optimized for execution of

multiple threads, and so perform more optimally in this configuration, even on a

multiprocessor machine. The fact that these results are primarily achieved with mixed

floating-point and integer calculations may also play a part.

Last, it is interesting to note how much overhead (or rather, how little) each

thread actually incurs—in our tests, the results are almost negligible. You would have

to either greatly increase the number of threads or increase the time the tests are

allowed to run to get more accurate measurements. On Machine Two, since it is sin-

gle processor by nature with no HyperThreaded technology, any thread count above

one must be emulated by the operating system.

What can we deduce from these numbers? On modern PCs running Windows

operating systems, running multiple tasks on a single processor is very efficient, so

long as the number of threads doesn’t become too large. However, on systems

designed for parallel execution, we can see a substantial performance boost when the

number of currently executing and balanced threads equals the number of processors,

whether virtual (in the case of HyperThreading) or physical. If any game systems can

708 Section 7 Audio
iuousesnecntsintstscnanmt termes eee NABH tice en RESELLER TRANSLA

be robustly designed to take advantage of this parallel execution model, it would seem

highly beneficial to do so.

Real-Time Streaming Data Mechanisms
SURES NERS NUNN ENA ERNE ENE IER EU EERIE EOE EOE ETO OL ILL DNL RODD DMM LL ADE REL RROD

Let’s envision we want to set up a threaded system to assist in decoding MP3 or some

other type of audio data which requires preprocessing. There are a couple of models
for transferring streaming data from one system to another (such as between different

threads).

One method of transfer is called a “push” transfer, so called because the system
representing the data’s source is responsible for notifying the destination system when
it is ready to transfer a chunk of data. In this way, the data is “pushed” from the source
to the destination. Streaming audio data over a network might operate in this manner.

Since music cannot stream faster than the network allows, it makes sense for whoever

is sending the music to take control of the transfer rate. If the music is streaming faster

than real time, it can simply be buffered until it is needed. Or, the system may use a
throttling mechanism to ensure that only a limited amount of data is buffered.

Another method of transfer is called a “pull” transfer, because the destination sys-
tem is responsible for notifying the source system when it is ready to receive more
data. In this way, you can think of the destination system as “pulling” the data out of
the source. Typically speaking, this would be the most common model for imple-
menting a threaded MP3 decoder. If you wish to read more about these models and
how an interface to a streaming object might look, the COM [Stream interface is
available on Microsoft's sites, along with descriptions of these two models.

Streams and Threads

Assuming you will create a streaming interface similar to IStream, there is only one
more decision to make regarding how the threads in your audio system are imple-
mented. We'll present two options—neither is necessarily right or wrong, but both
have advantages and disadvantages to consider.

The essential question now is: How do you create the threading interface? We'll
assume for now that you'll be using a pull model. The audio system will periodically
need small chunks of audio data. As it is required, this system will request decoded
data from the MP3 decoder object.

One option is to create an IStream-based decoding object and to treat is as a
threaded black box, allowing it to create an internal thread that is responsible for
grabbing data, decoding it, and presenting it through the interface functions when-
ever asked. The client operates from the main thread and requests data as needed. The
IStream decoder object always anticipates the next request and decodes data on the
thread. When the amount of decoded data in the decoder object falls below a specific
threshold, the thread is kicked-into action, and more data is decoded until a specified
maximum buffering threshold is reached. In this way, decoded data is always available
for the main thread, and the threading problems are entirely contained behind the

7.1 Multithreaded Audio Programming Techniques 709
rnensicieiennto goaesicmassaunuanceecaeieeat

eT eee
decoder object's interface. Figure 7.1.3 demonstrates how these objects interact with

each other.

Disk or Data
Access

Worker RE sacks on

Thread Data Requests Data Flow

Audio Decoding
Module Streaming / Decoder

SE Module

Data Requests Data Flow

Streaming Decoder '
Interface

Primary ce
Thread Data Requests Data Flow

Streaming Audio
Buffer

ee ERE EEL

FIGURE 7.1.3 Threading behind the decoder interface.

This method is highly attractive for one main reason—because the threading is

entirely contained within the decoder object. This keeps the interface between the

two threads highly constrained—always a good thing. For those looking for a simple

and robust solution, it’s hard to beat this one.

As with any simple solution, there are bound to be a few drawbacks as well. For

starters, this implies that any new stream will be using its own thread. If you are plan-

ning on creating multiple decoding objects, this may or may not be what you had in

mind. Based on the rather surprising results of our timing tests, running multiple

decoders, each in its own thread, may actually be more efficient than attempting to

schedule them all yourself on a single thread, even on a single-processor machine.

Unfortunately, there are also some special situations that might not work as well with

this mechanism. For instance, when a sound buffer first starts, the buffer is typically

Filled with initial data to start with. You would need to either keep some prebuffered

and decoded data ready to use, or the system would have to be intelligent enough to

wait for the initial set of data to be decoded before attempting to play the sound

buffer. Either way, it adds unfortunate complexity to an otherwise simple and elegant

solution.

710 Section 7 Audio

An alternative method is to create a thread that encompasses a much larger sub-

system. The thread can maintain a list of streaming sound buffers and their respective

decoder objects. This thread is then periodically activated, at which point each

streaming buffer is filled with as much data as is needed. The thread then sleeps until

it is again awakened by a timer, at which point the cycle begins again.
This system has some definite advantages and disadvantages. One advantage 1s

that the problem of prefilling the buffer goes away to a large extent, because this all

occurs using the same thread that adds new data to the buffer periodically. The result
is that this initial decoding is invisible to the rest of the system. The downside to this
system—and it is a considerable one—is that with so much data being managed by a
single thread, the interface between this thread and the primary thread will tend to

grow much more complex. This is because instead of simply filling a buffer in real
time, this thread must block complete access to the sound buffer during the time in
which the thread is directly accessing it. In essence, this means that any other member
that accesses the sound buffer can potentially be thread-unsafe. It will take a large
amount of engineering effort to ensure that this interface is completely bug-free. Fig-

ure 7.1.4 shows how these systems would interact with each other.

Disk or Data

Access Eine

Data Requests | Data Flow

Audio Decoding |

Module i Streaming / Decoder
Baa seas mara ss Module

| Data Flow

ENS Worker i “:
Thread Data Requests

Streaming Decoder |
Interface :

SSsasaasaae a

Data Flow

Streaming Audio :
Buffer :
Soe ARS SST UCS ETE tes

Data Flow

a ee

Data Requests

Data Requests

Primary Audio ’
Thread System |

SSS ESS OAS SUG | CSS Hana

FIGURE 7.1.4 Threading at the audio system level.

7.1. Multithreaded Audio Programming Techniques stitch
711

SCUELGELD 3
The decision to enter into the world of threaded programming is not one to be made

lightly. While threading can help programs run more efficiently when designed cor-

rectly and supported by hardware, it can also make programs more difficult to debug,

and introduces an entirely new lexicon into your programming vocabulary—one

which, as with anything new, takes time and effort to master.

It seems highly likely that games will, in the future, wish to take advantage of the

new multiprocessor or HyperThreaded technologies available in current and next

generation PCs and game consoles. After all, a game can never have too many CPU

cycles to burn, and game programmers have traditionally been the true push behind

the blazing advance of new hardware technology and innovations.

References
MLL MMMM MMT LLL LENT

ETS

[Boer02] Boer. Game Audio Programming. Charles River Media, Inc, 2002.

[Intel] Multithreaded and Hyperthreaded documentation. Available online at

www. intel.com.

[MSDN] Multithreaded documentation. Available online at msdn. microsoft.com.

: aio apf’ gi

od an |

wen bins inet
ses “aca

Oto ah ae By © A Sl
Aiton get , Poors Khutes

itt | k
A meen Gore cart de ane. & Saulhe bil

rene, dn Oyead frase hj ab compen nw doe mci

whieh ie there adda cbetnecrh nea - ; a

eliay aiienies the Eoused bull can _ porrgtlaly be ts

JO, an) sib ava neha
te tuilato meets) Ola Ue saa atnal

ane

tek or Date

f A Pee ay =

| Soe eee 7 ; : as

|

va #

at (ipsa | | Saree

Aveta: (res ating ,
Motsie~—

Warren atelier ,
(heed ! Pate te and . ae bee

: Virv ening Jecati '

iter tac =) ’

oe emeees a] “al
~ (oe we X | ows Fire

f — @ “dy) “ha, an ye
witey i

ye ooe — | ’ 7 Wire i)

a.

'
4.

Fer, Feo qm whe oe

’ coma

¢ -@ ae |

7.2

Sound Management

by Group

Matthew Harmon, eV Interactive

Corporation

matt@ev-interactive.com

(Ges, sound programming interfaces provide a good amount of control over the

playback of individual sounds. Volume, playback rate, pan position, and pause/

resume state are some common features provided by today’s APIs. Most also provide a

master volume control that alters the level of all sounds being played by the system.

There are many cases, however, where programmers need to manage the playback

of related sounds as groups. Being able to quickly and easily alter the properties of an

entire group of sounds can be very convenient, and integrating this capability into the

game's sound API up front can save considerable time and frustration later in a pro-

ject. These benefits are highlighted by a few simple cases.

* A team is developing an adventure game with both indoor and outdoor areas. As

the player walks indoors, all the environment sounds from the outdoor areas—

birds chirping, wind blowing, crickets chirping, etc.—should be reduced in vol-

ume. Occlusion technologies could be used here, but this is often overkill and not

supported on all platforms. Instead, the team just needs the simple ability to

dynamically balance the volume between “indoor” and “outdoor” sounds as the

player transitions from one area to another.

¢ Programmers working on an air combat game finally get around to implementing

the user preferences menus. The audio screen must provide an interface that

allows the player to independently adjust the volume of several categories of

sound effects: engine and environment noises, cockpit warnings, radio messages,

and background music. The programmers add volume scale factors for each

group of sounds but must then track down every place a sound is triggered and

apply the correct scaling factor. Worse still, this is only a quick fix, as already

active sounds won't be affected as the user slides the volume control back and

forth.

713

714 Section 7 Audio

¢ An innovative cartoon-style game gives the player the ability to dynamically
accelerate time. To support the whimsical nature of the product, the team wants

to scale the playback rates of sound effects but leave music and interface sounds at

normal speed.

Dealing with each case becomes trivial if group-based sound management is built

directly into the API wrapper at the beginning of a project.

API Wrapper Overview
LAS MERLE ETL ELLE ELLEN ELLER LEER LIEBE ELE AEE LESSEE LAER ALLELEIELIEEEAYRE AEN LUTE ENOTES ITE:

Capabilities
"Et RRR viensnenuete

Most sound playback APIs are quite similar at their core, and this gem assumes that
the low-level sound API will be wrapped in a custom interface layer. For the sake of
example, let’s propose a simple 2D API wrapper in which sounds are managed by a
generic handle.

handle = SndPlay(sampleBuffer) ;

SndSetRate(handle, newPlaybackRate) ;

SndSetVolume(handle, newVolume) ;

SndPause (handle) ;

SndResume (hand1e) ;

SndStop(hand1e) ;

To enable group management, we'll add a few simple new functions. First, we need a
way to associate a sound with a group.

SndSetGroup(handle, group);

Alternatively, we can enforce the use of sound groups by requiring a group assignment
at the time a sound is triggered.

handle = SndPlay(sampleBuffer, group);

Next, we add some very simple routines to manipulate playback parameters of entire
groups of sounds.

SndSetGroupRate(group, newPlaybackRate) ;
SndSetGroupVolume(group, newVolume) ;
SndPauseGroup (group) ;

SndResumeGroup(group) ;

SndStopGroup (group) ;

This basic pseudocode can be extended to an object-based API as well as a 3D-
enabled interface. Control over additional sound parameters can be similarly added.

Theoretically, just about every parameter that controls a playing sound can be man-
A « > . aged at the higher “group” level. In practice, however, only a small handful of parame-

ters are typically useful, as shown in the API outline earlier. It is worth examining
these properties to see how the group controls are factored in.

7.2 Sound Management By (Group 715

Volume

It is not difficult to see that changing the volume of entire groups of sounds at once

can be very useful. Adding group-level control to the volume parameters results in

each playing sound having the following volume control factors:

= * * *
V sctaal Vem aniser V aistanceAttenuation Ve

Vample controls the volume of the individual sound being played, Vinaster 18 the sys-

tem’s overall master volume and, in the case of 3D sounds, Vgistanceattenuation would also

be applied, possibly by the sound hardware itself. To this we add V,,oup» which scales

the playback volume based on the group to which it is assigned.

Pitch

Pitch, or playback rate, is another useful property to place under group control. The

factors controlling the pitch of a sample become:

= * * *

ia final im normal 2 sample P. dopplerEffect Be group

Here, Promai is the sound data’s original sampling rate and, as with volume, each

sound that is played has its own rate modifier, Psampte- PaopplerEffect 48 the result of 3D

processing, applied either in software or by the hardware. Finally, we apply Paroup»

which modifies the rate of all sounds in the group.

Pause and Resume

Pausing and resuming groups of sounds involves a few logic decisions. In most imple-

mentations, it is probably wisest to have the group-level control operate at a level

above the individual sound states. That is, a sound will play only if both its local and

group controls are in a “playing” state. Similarly, the group control calls will never

directly affect a sound’s local control state; a sound that is in paused mode will not

start playing even if its group is commanded to play. The sound’s lower-level local

control must also be set to play in order to activate the sound.

Stop

Stopping a group of sounds is straightforward enough. In practice, however, many

sound systems issue callbacks or otherwise post notifications when sounds are finished

playing. When stopping a group of sounds, you must be sure to trigger the notifica-

tion system so the game correctly understands the state of the grouped sounds.

ies
Defining Groups

NURSE

AMET
BRR IRURR UNNI TCHR

LAAN AML
 NNN LMM LLL ED

In the basic API outlined earlier, sound groups are identified by an undefined type

that we simply referred to as group. As it turns out, there are several methods of defin-

ing groups, each with its own benefits and difficulty of implementation.

Section 7 Audio

Simple Group IDs

The most basic way to categorize sounds is to use a simple integer to identify a group.
With just a byte, we can manage 256 different groups and, of course, with a full dou-
ble-word we can manage many millions of groups. While millions of unique groups
may seem like overkill, the example of the adventure game arises again. Each enclosed

area in the game could be assigned a different group Id, and the category management

system suddenly becomes a gross culling system as well.
Conceptually, management by simple group is straightforward. However, since

each group will need to maintain some data, mapping categories to Ids requires an
indirection and some additional management. You certainly won't want to pre-
allocate 232 group data structures and index them directly.

Group Bitfield

Another option is to use an integer as a category bitfield. With a double-word integer,
we have 32 different sound categories. Using bitfields adds the flexibility of being able
to control several categories at once by simply OR-ing category flags together. This
proves to be quite flexible. In fact, it even provides generic “master” control over all
sounds by simply using a fully set bitfield. Bitfield management is also the easiest-to-
implement option, as a fixed array of 32 group data structures can be allocated ahead
of time and indexed directly.

When using bitfield-based categories, playing sounds takes this form:

typedef enum

{
SNDGRP_MENU = 0x00000001,

SNDGRP_VOICE 0x00000002,

SNDGRP_EFFECT = 0x00000004,

SNDGRP_MASTER = OXFFFFFFFF

} SNDGROUP ;

// fire off a few sounds
hSndBeep = SndStart(sampleBeep) ;
hSndHello = SndStart(sampleHello) ;
hSndGoodbye = SndStart (sampleGoodbye) ;

// assign them to groups
SndSetGroup(hSndBeep, SNDGRP_MENU) ;
SndSetGroup(hSndHello, SNDGRP_VOICE) ;
SndSetGroup(hSndGoodbye, SNDGRP_VOICE) ;

// change the pitch of all voices
SndSetGroupRate(SNDGRP_VOICE, Wasi yas

// change the volume of all in-game sounds
// (effects and voices)
SndSetGroupVolume(SNDGRP_VOICE | SNDGRP_EFFECT,

0.75f); wi

7.2 Sound Management By Group 717
-saiateeneneionoonanasnrnnscencrenmatencneieninnnnnnenn ninety nsssrreihseeter ttt tte HHO OUMHEOAAMAHUMAAMHOHANROHEHO OHSS

The category bitfield option inherently limits the number of sound categories avail-

able. In many applications, this will not be an issue, and the simple bitfield method

becomes the design of choice. However, as in the previous example, there are situa-

tions when more categories are needed. Even in this case, a wide-bitfield object such

as std: :bitset or boost: :dynamic_bitset could be used.

Group Objects

A third option is to manage sound groups via objects. By creating a class that manages

sound group data, we allocate only as many group objects as we need.

Managing sound groups with objects may look something like this:

// define some groups

SNDGRP sndGrpMenu;

SNDGRP sndGrpVoice;

SNDGRP sndGrpEffects;

// fire off a few sounds - here we assign the group

// when the sound is triggered

SndStart(sampleBeep, &sndGrpMenu) ;

SndStart(sampleHello, &sndGrpVoice) ;

SndStart(sampleGoodbye, &sndGrpVoice) ;

// change the pitch of all voices

sndGrpVoice.SetRate(1.3f) ;

// change the volume of all in-game sounds (effects

// and voices)

sndGrpVoice.SetVolume(0.75f) ;

sndGrpEffects.SetVolume(0.75f) ;

Group management via objects requires some special handling. For example, what

should happen if a group object is deleted before all associated sounds have stopped

playing? Will all associated sounds now belong to no category? While situations like

this are unlikely to arise, they should at least be accounted for.

It is also possible to structure the system such that the group object acts as a proxy

for the sound playback controls, and all sound parameters are manipulated via the

group object itself. This design, however, may prove to be overly complex and upset

the natural simplicity of most sound APIs.

Implementation Issues|
sR NN TE RTE LLM MMGLI

ST SRO OEE RENEE ET BEES

The following sections address some implementation issues.

Tracking Playing Sounds

To dynamically change the properties of a group of sounds, the interface will need to

keep track of all sounds that are currently playing (or paused). In many instances, an

existing sound interface may only track sounds individually (by handle or object) and

not maintain a global list of all active sounds.

718 Section 7 Audio
asec rot ects HENAN AAALAC ERMAN OIN esorenoesezaa sete taasecsoanatciyenaeesesusitansiataesensatoesiaianhtse anno ranntsnsti ‘

To be able to dynamically control the properties of a group, the system will-need
to update each affected sound’s properties when the group’s properties are changed.
That is, when a call like SndSetGroupVolume() is made, the system will need to access

and update each currently active sound that is part of the group.
In APIs that manage playing sounds as objects (not necessarily C++ objects but

architectural objects), like OpenAL and DirectSound, this commonly involves keep-
ing a list of all active sounds. When group commands are issued, the list is walked and
all appropriate sounds are updated.

In “track”-based APIs, like FMod and the Miles Sound System, it is likely that
your wrapper API already tracks which sounds are playing on which channels, so
group management may be a bit easier to implement.

Simplified, One-Shot Sounds

One-shot sounds are short effects that a game plays and never needs to control. Gun-
shots and footsteps are good examples. In many cases, wrapper APIs include simpli-
fied calls to play back one-shot sounds without exposing dynamic management of the
sound. A gunshot, for example, is so short in duration that there is no reasonable need
to change its volume or pitch while it is playing. Instead, the system calculates all
significant parameters when the sound is triggered, and these stay constant for the
duration of the sound. A one-shot sound may be triggered by a call like:

SndPlayOneShot(sample, volume, rate, pan, loopCount) ;

When implementing sound group management, you will need to decide if it is impor-
tant to support dynamic group-based control of one-shot sounds. Likely, the answer
will be no, but if the system allows for uncontrolled playback of longer samples, group
control may be needed.

Even if dynamic control is not needed after a sound is triggered, one-shot sounds
should still be assigned to groups. Thus when the sound’s initial parameters are calcu-
lated, the group factors will be taken into account. This merely involves adding a
group assignment to the sound triggering call:

SndPlayOneShot (sample, group, volume, rate, pan,
loopCount) ;

Portability

As with any interface wrapper you create, it is best to become familiar with all the var-
ious sound APIs that you may encounter. This will help structure your group manage-
ment system to make it flexible enough to be used on a variety of platforms and with
a variety of underlying sound systems. As mentioned earlier, different sound systems
may take very different approaches to the management of individual playing sounds,
and understanding these differences is the key to constructing a truly portable API
wrapper.

7.2 Sound Management By Group 719

This simple gem shows how the concept of managing sounds in groups, in addition

to at the individual level, can be useful and easy to implement. Adding this feature to

a sound API wrapper may take only a few hours, yet the benefits can be far reaching.

This is particularly true when the need for group-based management isn't identified

early in development. Including these features in the sound API also keeps the game

code base clean and allows for easier inclusion of additional features down the road.

geitheot
bealtizicns, traly mn

=!

mia ¢ a Ag Po, a te 4

are ae a gt a Le con
‘srnng ssl) Mes eft a aritks sae

ohare a parent ‘engin bl aera aes BD a

in Sark hand Als, dhe TMind snd.the Miles < ny Ra gi Soles

yun weep ADL siresde sneha wtbithe cnn am a ohh chan
yp Peamapemeny aey be o but caer to denlement,

Piexettied. Quedho4 Bounds pa

licé-iteat Wieitedd dre sar, 4ber thaws secre piAyS an? Heyes recsee te

cS as age Pe vate Nae atc eo " eagripels bie m4 Mie OE, orsppen Aldi

pst cal i play} mak ore ort arrrage meted Rahat renee ds

ered. cnietun, ko comarple, 6 ob Coes in: anes tha sheoe W

a ‘Lie t yeu: ‘jf ze , iy , ft pl Arne. L tel, the eats

argiifges oo-mevad when tie roc ls wiggered. aanl dle dena
a tet ‘ ‘Ny Lal ee’ oy leas ‘ot erGi. - raj aes Grup fi Ded ng gered by ee Wf ae

i iP ipOenetio= |: oogia, roland, tata, Pan, Joopegnty: —_

A NS GPT! Perey ty rete Wall Cel ee deve if facie le
ip Waeeore Aw tsar phased ithe of anealiyi sviiials, Ubaly, 2

’ — me ty a0, Se GU Pret cieemera Vehy ry ee pitay bank ow ales

LALA . o

. fea ‘ troup
>.

wats if Gyusic contin 4 nteweded wher bdand fe riecgunkooadil 7 fhenslid grill be aetigncd wi suamega Shue welder the slatiind Ms cried Padiatr i y , 3 ¥ » >
‘ pan ina 1 ales
le a : ‘j P i ; ¢ i 77> Bry VY. This m insudees @ at 4

lao SPuvyerh) if See Lig ig Cal whe eae é ok
an Penta tit s « }

a
SHG" LeyOuastni(satsie « 4 Loa, ste, peas i é

os ' . ah

» pe not _

Po vve hil ty ‘ol > Ak

.
iy (ieciacy . dey AA e's ¢4 ‘ See eas ry 774 tle, best to leven, mr

: ue chaste ATED aS rend Mae mnie inca sub prog bt
rt « Se P at , 1 few Whe TPs é i) be vineel Ona wie ’ Sha oo] ’

fof gredestviog aivcated Meni meniareas
we tibbege

See VwRY UPERET IE Ape’ “cae i
- an/t 3 oe . him : vns 7 ’

4 i + > oq . ei ty 4 “= ey Hp,

arene’ bias Aa

i.

~= 7
pa

7.3

Using 3D Surfaces as

Audio Emitters

Sami Hamlaoui

disk_disaster@hotmail.com

ie games today, sound sources are represented by a single point, regardless of the

type of sound being represented. Gunshots? Points. Laser beams? Two Points. Rain?

Lots of points. Although this has sufficed up until now, the level of detail in games is

increasing with each generation of hardware, and while technologies like EAX go

some way to improving the realism of game audio, all sound still comes from an infi-

nitely small point in 3D space. We don’t want sound that comes from a point any-

more——we want sound that comes from an entire surface.

This gem will show you how to create sound that appears to do just that, with

almost no extra processing time required and with full hardware acceleration.

Intrigued? Then read on.

Method

Instead of using a single point as the location of the sound source, you use a standard

geometric primitive such as a line, box, or sphere. Then for each frame, you calculate

the closest point to the listener on the primitive and send it to the audio API as the

sound’s position.

This all seems rather underwhelming until you realize that as the listener moves

around these emitters, the sound will travel with it. Move parallel to a line and the

sound will move along with you, keeping the same distance until you move past the

end of the line, at which point the sound will move behind the listener. As you walk

around a sphere, the sound will appear to be a point emitter until you walk inside it

and the sound comes from all directions at full volume, as if the sound is really being

generated from inside the sphere itself. Use a box to represent rain outside a building,

only to walk out into the open and find yourself deafened by the sound of th
e rain.

The best part of it all is that the sound API and the sound card still think they're

working with points, meaning that the audio is accelerated on the hardware. The only

thing performed in software is a closest-point algorithm, which is so simple for all the

emitters that there won't be any kind of performance hit from using it!

721

722
evesnenenonpeaitretsanlenitnsnecenitonerbhrn tlt tb eemna enn eeneatcotibrtfetsoaneaneetemtiinrnnconenotennntPOAB

Section 7 Audio

In the following sections, four different emitters are covered: the point,-line,

sphere, and box. Presented alongside each description is a list of components that
make up the emitter (the origin, direction, radius, etc.), the closest-point equation
with a line-by-line walkthrough, and a couple of suggestions for what the emitter
could be used for in a game.

A Word on Volumes

As mentioned earlier, once the listener is inside a volume emitter (an emitter that has

a definable “inside,” like a sphere or box as opposed to a line or point), the sound will

come from all directions at full volume. This is a deliberate part of the technique and
can be used for quite a large number of special effects. They aren't listed here, as they
can be found with the appropriate emitter. Suffice to say that the few examples given
earlier are only the tip of the iceberg.

A Word on the Math

In the list of components for each emitter will be the mathematical representation of

the variable in the closest-point equation. However, there are a few values that will be

used in each equation, and it seems daft to include them every time, so they are listed
in Table 7.3.1.

Table 7.3.1 Standard Variables

Name Math Notation Type

Audio Position A Vector

Listener xX Vector

They are defined as follows:

Audio position: This is the vector that is passed to the audio API. It is calculated
by the closest-point algorithm. It is represented by A (for audio).

Listener: This is usually the camera's position. It is where the sound is currently being
heard from. It is represented by X (because L is used for the line components).

Two temporary variables are used throughout the equations, too, and they also always
have the same meaning. They are listed in Table 7.3.2.

Table 7.3.2 Temporary Variables

Name Math Notation Type

Direction Vv Vector

Distance d Scalar
ee

7.3. Using 3D Surfaces as Audio Emitters 723

They are defined as follows:

Direction: This is the direction from something to something else. Unless stated,

this value is not normalized and therefore contains distance as well as direction

information.

Distance: The distance between something and something else. This is a scalar

value and is usually used when projecting points towards the listener.

Points
Table 7.3.3 shows the point components.

Table 7.3.3. Point Components

Name Math Notation Type
vuanmenteoonenesnaenenteeecomianasatteytetohiceanstsotetenncrsien RS NRMMAAIN

Origin ee Vector

The first type of emitter we are going to cover is the point emitter, because although

this gem focuses on alternatives, for the vast majority of the cases you need to play a

sound, the point emitter will work fine. It is best if you use the other emitters when it

suits the effect being created—and only then. Otherwise, stick to the point.

Using a point emitter is exactly like using points for sound sources. Just set the

audio position to the value of the point. As points have no properties other than their

location, the closest point to the point is itself: For completeness sake, Table 7.3.3 lists

components, and Equation 7.3.1 shows the nearest point on the point.

AF Pasigin
(75:1)

Set the audio at the same location as the point.

Uses

As mentioned earlier, this is useful for any small sound effect that isn’t better suited to

the other emitters. So, that'll be the voices, footsteps, gunshots, small explosions, rag

dolls hitting things, rocket trails, fire, water dripping, etc.

Lines oe

Line emitters come in two flavors: infinité lines and line segments. You will probably

use the line segments most of the time, but for cases when the line is either very big or

infinite, the infinite line emitter will suit you perfectly.

724
ots taeto one etsnonrnbsons alan ieiana tneninasrene ite eneahlldnenessaholnteritenaloesovctouseoalletsenet

Section 7 Audio

Infinite Lines

Table 7.3.4 shows the infinite line components.

Table 7.3.4 Infinite Line Components

Name Math Notation Type

Point on Line Looint Vector

Direction Lair Vector

Infinite lines are just that—lines that go on forever. To store them, you only-need to
keep track of a single point on the line and the direction the line is going in (Table

7.3.4). To calculate the audio position, you need to orthogonally project the listener's
location onto the line. Don’t worry if that scares you as it’s very simple to do. Just

remember that you must use the same point on the line throughout the equation
otherwise the audio position will be created in the wrong place!

The closest-point equation for an infinite line is presented in Equation 7.3.2.

V=X-L.
point

d=V-L,,

A 7 | Pee ie L,,.4 (7.3.2)

It is created by the following steps:

1. Create a vector between the listener and any point on the line.
2. Take the dot product between this vector and the direction of the line. This

will tell us how far along the line to create the new point from the test
point.

3. Set the new audio location by scaling the direction by the distance and
adding it to the point on the line used in step 1.

Line Segments

Table 7.3.5 shows the line segment components.

Table 7.3.5 Line Segment Components

Name : Math Notation Type

Origin Drigin Vector
Direction Lair Vector
Length Liength Scalar ee, ee

7.3 Using 3D Surfaces as Audio Emitters 725
snonstonressennssnennannetconmenneonnsonctcenisnnaennttcteenesasetottetihdstntee anata neteneneteoncntnneintHH Mbt NA REmnDHeer ori OneMsiisnentie

Line segments represent a portion of an infinite line. Like the infinite line, they

require a point on the line and the direction, but also the length of the segment (Table

7.3.5). The point on the line should be the start of the line segment, and the length is

how far away from this point the line ends.

The audio position is calculated exactly the same as in Equation 7.3.2, except you

must clamp the distance between the range of zero and the line’s length. If you dont,

the result will be exactly the same as the infinite line.

The closest-point equation for a line segment is:

y = NG Li oicin

d jie clamp(V ; Li, 0, Lost

A 5 Li vigin ts L,,4
(7.3.3)

It is created with the following steps:

1. Create a vector between the listener and the start of the line.

2. Take the dot product between this vector and the direction of the line and

clamp it between the range of 0 (zero) and the length of the line. This will

tell us the distance to the new point from the line's origin.

3. Set the new audio location by scaling the direction by the distance and

adding it to the line's origin.

Uses

Some possible uses include the following:

Fluorescent Tubes: As the tube flickers on and off, you could have a sound effect

that plays along with it. Combine it with a dynamic lighting and shadowing

system for a very atmospheric set piece.

Laser Beams: Laser beams shot from futuristic rifles are an obvious choice for the

line emitter, Instead of the sound being generated at the gun's location and the

impact point, the entire beam will hum with energy.

eaneiee
Table 7.3.6 shows sphere components.

Table 7.3.6 Sphere Components

Name Math Notation Type

Origin Sorigin Vector

Radius Svadins Scalar
PNAS

726 | Section 7 Audio
stenoses etnceHE RH EeaeNNMNREt

The sphere is the first of the volume emitters we will cover. Unlike lines orboxes,

there is pretty much only one way to represent a sphere, and that’s with an origin and
a radius (Table 7.3.6). As explained in the “Method” section, the volume emitters

have a special function that occurs when the listener is inside them—the sound is

played at full volume in all directions. There is no special case math required for this,
as both the sphere’s and the box’s closest-point equations take this into account auto-
matically.

Using a sphere for a sound effect like a small explosion will not give you much

benefit. In fact, most sphere emitters can be replaced by a point emitter without the
player noticing the difference. The spheres become useful only when there is a visual
representation of the sound to go with the sphere, and it’s one that the player can walk

into and out of. Note that the boxes do not suffer from this, as they change the way

the sound moves (along a single axis as opposed to spherically, like the points and

spheres), and therefore can’t be replaced by any other emitter.

The closest-point equation for a sphere is provided in Equation 7.3.4.

Ve S origin

d= min({V S|

A=S. 4, +Vd (7.3.4)

It is created with the following steps:

1. Create a vector between the listener and the center of the sphere.
2. Take the smallest value between the magnitude of this vector and the radius

of the sphere. This will be how far away from the sphere’s origin to place the
sound source. If the listener is inside the sphere, the magnitude will be the
smallest, otherwise, it’ll be the radius.

3. Calculate the source position by scaling the normalized vector by the dis-
tance and adding it to the sphere’s position. This point will be on the sur-
face of the sphere if the listener is outside, otherwise, it will be at the same
place as the listener.

Uses

Some possible uses include the following:

Explosions: Although most small explosions are best represented with a point
primitive, if the explosion has an expanding radius, the sphere emitter would be
the best option. It would be even better if you could tie in the radius of the
emitter with the radius of the shockwave on screen.

Shields: When surrounded by a shield, the noise will appear to surround you. To
those outside, it will be generated on the surface. The bigger the shield, the
more obvious the effect. If the players can walk into and out of the shield, it is
another way of letting them know that they’re inside it.

7.3 Using 3D Surfaces as Audio Emitters 727

Boxes

Table 7.3.7 shows box components.

Table 7.3.7. Box Components

Name Math Notation Type

Origin Bargin Vector

Min Bounds Brin Vector

Max Bounds Bas Vector

Axis-aligned box emitters are probably the most useful to designers after points. As

most game entities already have a bounding box defined, having a sound emit from it

doesn’t require any extra calculations, other than the closest point! Sound on the box

travels on two axes at a time (xy, yz, and xz). This means that as you walk parallel to

the box, the sound will always appear to be the same distance away from you until you

completely walk past it, at which point it will stick in the corner until you walk down

another side. Of course, being a volume, as soon as the listener is inside, sound will

come from all directions at full volume, but you should know that by now.

There are two ways of storing bounding boxes: offset and absolute. Offset boxes’

bounds are relative to the box’s origin, while absolute boxes contain real values in 3D

space. Remember that unlike the segmented and infinite lines, both offset and

absolute boxes will produce exactly the same results—they are just two different ways

of storing the same information. Table 7.3.7 provides the list of components for both

boxes, although the origin is only used for the offset type.

The two closest-point algorithms for a box are presented in Equations 7.3.5 and

7.3.6.

A =clamp(X,B,,,.B,,.) (7.3.5)

A= clamp(X,B yo, + Bain Byrsin + Bow) (7.3.6)

This does the following:

1. Clamp the components of the listener to the minimum and maximum

bounds of the box (Equation 7.3.5).

2. If the box’s bounds are centered around [0,0,0] instead, you must add the

box’s origin before the clamp takes place (Equation 7.3.6).

Uses IOHN Wit

Some possible uses include the following:

728 Section 7 Audio

Environment Effects: For example, you're standing at the end of a long corridor. At
the end is an open door that leads to the outside. You can hear the rain from a

distance. As you move closer to the door the rain gets louder and louder until

you are outside and the rain is coming from everywhere, deafening you, making

you unaware of the masked figure approaching stealthily.
The Block Puzzle: Every time a block is moved into the wrong position, it could

flash blue and red and produce a deafening screech at the player.

Summary

This gem, has shown you how to create the illusion of sound coming from an entire

surface. However, just because only a few different objects are covered doesn’t mean

that this is all you can use—polygons, planes, cones, and if you really want a chal-

lenge, convex hulls for brush-based levels, will all find their place in a game engine.

For games using a full physics SDK, you should ideally provide an emitter for every

primitive available (and then some).

If you do decide to implement this technique, don’t bury the emitters under a
mountain of options and menus that the designers will never find, as it defeats the

whole purpose of providing them in the first place (unless of course they implement

the block puzzle idea mentioned earlier, in which case, bury them as deep as possi-
ble!). Make emitter creation and placement as intuitive as possible, and try to provide
a way of binding them to the movement of game entities or exposing them to the
scripting language so they can be further tweaked and enhanced.

Finally, if you have any comments/ questions/praise/flames about this gem, by all
means, please e-mail the author.

On The CD-RO
IOI ERE ERE ELSA EROS TRUOTS RTA Se sc sieiilihiiiiiacien Docent ciel:

C<» In the audio folder on the accompanying CD-ROM, you will find a small demo that
ONTHECD shows off the five (the two boxes count as one) emitters covered in this gem. It uses

GLUT for the framework and FMOD for the audio processing [FMOD05]. FMOD
is one of the easiest to use and most fully featured audio APIs out there and is free for
noncommercial use. Check out the reference at the end of the gem for more details.

The closest-point algorithms are in Primitives.cpp, and the emitter-management
code is in Emitters.cpp. Feel free to play around with the source code and add a few
more emitter types to it to test out your ideas. There are absolutely no licenses attached
to the source code, so any new code you come up with (and the original code) can be
used in a commercial engine without fear of lawsuits, bad press, or hissy-fits.

References
Te 8 HUAN DUNS SER RES SENRHSOOEN ORIN

[FMOD05] Firelight Technology. “The FMOD Sound System.” Available online at
http://www.fmod.ore/.

1.4

Fast Environmental

Reverb Based on

Feedback Delay

Networks

Christian Schiller, Phenomic Game

Development

cschueler@gmx.de

of apie that appears once ina while on DSP-oriented mailing lists is, “How can

calculate a reverb effect?” The questioner usually wants to know what computa-

tion is necessary on a sound signal to make it appear reverberated, like what happens

in a real room. Many commercial programs and hardware devices demonstrate that

this can be done.

Usually, the common answer to this question is “this is black art,” because the

theory is age-old, and tinkering with the implementation 1s everything. Often a hint

to some permutation of Schroeder's comb filters ({Schroeder62], [Moorer79]) is

given. People who then try to implement their own reverb effect based on published

material are soon disappointed.

This gem aims to introduce Feedback Delay Networks (FDN5s), which date back to

Gerzon [Gerzon76] and Stautner and Puckette [Stautner82]. An excellent review

about EDN reverberation can be found online [SmithOnline], although you will not

find a single line of code there. FDNs are kind of the granddaddy of delay networks,

because it has been demonstrated that other algorithms, including Schroeder's, can be

formulated as special cases of an EDN ({Jot91], [Smith96]). An FDN with a specific

tone-correction filter has been patented [Jot93].

How to Apply This Material
LNRM

 ETL LLL TT TNT TT NSIS ELSI

This gem is focused on a reverb algorithm, not on using a specific sound API. As such,

the audience that benefits the most from this gem includes people that currently have

no ready-made reverb solution at their disposal. All other people are invited to enjoy

reinventing the wheel for possible insight and better understanding of existing solutio
ns.

729

730 Section 7 Audio

By the end of this gem, you will have a function that can process audio buffers.
Such a function may be plugged into anywhere your sound system allows, for manip-

ulation of audio streams. For example, the FMOD sound system [FMOD], which is

available for various platforms, has the concept of custom DSP filters that can be

plugged into the audio stream exactly for this purpose. The same holds for Direct-
Sound, where you could attach a custom effect implemented as a DirectMediaObject
to any IDirectSoundBuffers via the SetFX() function [MSDN].

What would be really nice to have is a form of audio shading language, which
would allow for a standard way to express user algorithms executed on sound hard-
ware. Without such a mechanism, we are bound to consume CPU power whenever

we want our own effects. Luckily, audio data does not demand much in terms of

bandwidth, and platforms without dedicated sound hardware would use the CPU

anyway, so no loss there.

What is Reverb?
BESS EES LEE CELE LEE TLE ESN LEELA EE ELIE RELI EEE DLE ELON ELLIE ES EN LIES IEEE EEE EILEEN EOIN EOIN EEN

A smooth reverb is perceived when echoes arrive so densely packed that they become

inseparable to the ear. But they must do so randomly, not in a regular pattern. Think
of what happens when you snap your fingers in St. Peter's Cathedral. Imagine the
sound wave originating from your hand and expanding in all directions. Soon it will
hit the first obstacles, and the first reflections will arrive at your ear. Then come the
reflections of the reflections. Then come the second and third indirect reflections, and

so on. The average number of echos per second increases with ¢?, while the average
number of resonant modes per Hz increases with f?. Figure 7.4.1 shows the first sec-
ond of the impulse response of an ideal rectangular room.

= if Mle
 ,

FIGURE 7.4.1 Zime and frequency plot of the impulse response of an
ideal rectangular room.

A real-time reverberator that aims to mimic this process is plagued with multiple
problems. First, for a real-time application, you stand no chance but to model the
process statistically, since the brute force approach—integration over the simulated
volume, a 3D simulation—is prohibitively expensive even for the simplest of rooms.

7.4 Fast Environmental Reverb Based on Feedback Delay Networks 731

The FDN is sort of a vectorized 1D-simulation that can develop an increasing echo

density over time but not an increasing mode density over frequency, which results in

artifacts like ringing tones.

The Fepdise cay motwork
See Figure 7.4.2 for a circuit diagram of an FDN with four channels.

FIGURE 7.4.2 Circuit diagram of a Feedback Delay Network.

The heart of an EDN is a feedback loop with the 7 delay lines z and a square n X n

feedback matrix A. In case you are unfamiliar with the z-transform: multiplication

with z raised to the power —m stands equivalent to a delay of m samples, a notation

common in digital audio. The elements a; of the feedback matrix control how much

signal from line 7 is taken back to line j. The input signal, x, is multiplexed prior to

entering the feedback loop by the input matrix c. Likewise, the output signal, yj. is

formed as a weighted sum over all channels by the output matrix d. Alternatively, you

could directly access the four output channels to have four uncorrelated signals to

place into the listener's 3D space.

The key feature of an FDN is the signal traffic between the delay lines. An echo

from the output of one delay line enters all other delay lines, being echoed by all of

them, then each echo again enters all other delay lines, etc. Figure 7.4.3 shows the

first second of the impulse response of a four-channel FDN. As you can see, the

build-up of echo density is quite similar to that found in the rectangular room. The

spectrum plot however reveals that the resonant modes are distributed uniformly over

the frequency range and not packed as densely. This is the tribute to pay for the com-

putational effectiveness.

732 a Section 7 Audio
exsist tease LASSE ontr nan onthe aunt

FIGURE 7.4.3 Time and frequency plot of the impulse response of an FDN.

Let’s talk some code. We choose to build an FDN with four delay lines, which are

implemented as simple, ring-buffered FIFOs. We also assume that all samples are

floats. The state needed so far:

class FDN4{

float *line[4]; // memory for 4 delay lines

unsigned size[4]; // the size of the delay lines (always

// power-of -2)
unsigned mask[4]; // size — 1, replaces modulo operation

unsigned read[4]; // read cursors for FIFO

unsigned write[4]; // write cursors for FIFO
float A[4][4]; // feedback matrix

float c[4]; // input matrix

float d[4]; // output matrix

ey

}5

The workhorse of the FDN is a process() function, which implements the machin-
ery as depicted in the circuit diagram. In this function, almost all statements are
4-tuples of the same operation, which is why they are abbreviated here with // etc
cn tO SAVE SPACE,

void FDN4::process(float *output, const float *input, unsigned n)
{

for(unsigned k = 0; k <n; k++)

{
// step 1: read signal from the delay lines
float r[4];

Ppoye=Line[O][read[o] 1;

Hf Ee
// step 2: apply output matrix and output
OUTPUELK) =or[O) ed[0) tortie d it jot r[2] * d[2]) +

r{3] _* [3];

// step 3: apply feedback matrix
float w[4];

WLO] = r[O] * A[O][0J + r[1]-* ALVI[G) * ele * Arey oy oe
mis] * Als) [005

LE REO,

7.4 Fast Environmental Reverb Based on Feedback Delay Networks 733
soteaosuaesenennienssseianstnenensionnstonatteeeceuttannetennuiisonetntnsitete en nttshitentcnmnynntetnntvatnntcteenectrtSererehMAMMsiioHnMniiinretiHHEecinN aH AMCaeroOete

// step 4: apply input matrix and add

w[0O] += input[k] * c[0];

[A GO arc
// step 5: inserted later

// step 6: write signal into delay lines

line[O][write[O]] = w[0];

SCLC x

// step 7: bump cursors
read[O] = (read[O] + 1) & mask[0];

write[O] = (write[O] +1) & mask[0];

PY RO F

Choosing the Right Feedback Matrices
SORT TI RSIS RS EEN EIEN LN RENNES

This section gets a little bit mathematical. In Smith’s insightful online book

[SmithOnline], he discusses special classes of feedback matrices, which are unitary

(AT = A), or more generally, lossless. A lossless feedback matrix does not change sig-

nal energy as it circulates through the feedback loop. An EDN with such a matrix is

either called a lossless prototype [Smith96] or a reference filter [Jot91]. One advantage of

lossless matrices is that with some of them, a matrix-vector multiply can be optimized

to O(n) time, instead of the usual O(n’).

An nX n feedback matrix Ay is lossless, if and only if it has N linearly indepen-

dent eigenvectors and its eigenvalues are of unit magnitude. All orthogonal rotation

matrices, with and without reflection, can be used as lossless feedback matrices. The

“density” of the matrix, which is how many nonzero elements it contains, determines

the richness of the cross-coupling and therefore the speed of echo build-up.

A particularly attractive class of matrices is the Householder reflection, which is

orthogonal and contains no zero elements. Assume U,, is an n X n matrix with each

element set to one, and I, isann xn identity matrix, then

A, =1,—U,:

A Householder reflection is especially nice in the 4 x 4 case, because all elements are

of the same magnitude. A matrix-vector multiply can be implemented as one swizzled

vector addition and three swizzled vector subtractions:

1 -1 -1 -1

j}-1 1..-1 -1
tees

as tl le

734 Section 7 Audio
9 cs otecnsinaretenvneonannsssesnsnanene asthma Hte \vcesnenmacsctusennseusesoneonuruanesanneovsesoii/oneaneetionseneteiennasstese nantes socemenren lca suuseinneoninmanteteteimenant eats

€<> A variety of other matrices can be tried. See the source code included on-the CD-
ONTHECD ~=ROM that implements a wealth of other possible feedback matrices, all of which are

unitary. The choice of the feedback matrix can make a difference! While ultimately
the sum of all delay lengths determines the number of resonant modes (the order of
the system), the feedback matrix controls the locus of them.

Choosing the Right Delay Lengths
HE RDNA ENTE IEEE ESSENSE ONES EY RE TI EOE LIAO EER

The time of arrival of the first echoes is the most important clue to the human ear of the
size of the environment. This means that the lengths of our delay lines directly reflect
the dimensions of the simulated room. For example, at 44.1 kHz sampling frequency,
sound travels about 3/4 of a centimeter per sample. A 6 by 10 meter room would thus

be modeled by setting the lengths of the shortest delay lines between 800 and 1,200
samples. The other delay lines should be chosen with an eye to increasing the order of
the system, because we are in dire need of every resonant mode we can get.

Next, a classic suggestion demands that delay lengths be incommensurate
[Schroeder62]. A minimum requirement states that the delay lengths are mutually

prime, but a good “incommensuracy” is most easily done with some graphic help.

PLLC TILE NEL

© 887
oO+0X 0 + oOX oF OO >< phe

+1543
C So at T = we < i X 2017

0 1000 2000 3000 4000 5000 6000 7000

FIGURE 7.4.4 Echo taps of four delay lines.

Figure 7.4.4 shows the echo taps of four different delays on a common time line.
As you can see, care has been taken that no integer multiple of one delay length over-
laps an integer multiple of another. When faced to trade early coincidence for late
coincidence, the priority should be to eliminate early coincidence.

If you want the room size to be adjustable in real time, you need an algorithm to
set delay lengths upon request. An acceptable solution is to scale a series that is known
to be incommensurate to the requested room size, possibly rounding the result to the
nearest prime number. Two of such series for a four-channel FDN are presented here,
their main difference being the third delay line placed before or after the second tap of
the first delay line.

Series A: 1.0000, 1.5811, 2.2177, 2.7207.
Series B: 1.0000, 1.4194, 1.6223, 2.2401.

7.4 Fast Environmental Reverb Based on Feedback Delay Networks 735

The CD-ROM includes a spreadsheet that generates diagrams similar to that shown

ONTHED +: jai auret7/:4i2e

Controlling Reverberation Time ENTREE SRR aude

So far, our system is a unitary FDN, where the accumulated signal is circulating for-

ever inside the feedback loop, so we need to add energy loss. Since most rooms have

more or less high-frequency damping, we want to allow low frequencies to live longer

than high frequencies, so we need the energy loss to be frequency dependent. We are

going to insert a scalar gain, g;, with |gi| < 1 in front of each delay line i. Additionally,

we insert a first order filter with a single coefficient 0; which affects only the higher fre-

quencies ([Moorer79], [Jot91]). The product of both the scalar gain and the filter

gives an overall frequency dependent gain g,(f)-

Insert the following code as step 5 of the FDN: :process() function:

// step 5: run the signal through a scalar gain and filter

// before entering the delay line

WiOle= GlOles (filter[.o)} 45 alpha[O}] * (cw[0] — filter[0]));

Ll CRY oe

Also, augment the FDN class with this new state:

float filter[4]; // state variables of the attenuation filter

float alpha[4]; // filter alphas

float g[4]; // scalar feedback gains

What follows is presumably the most mathematical part of the whole gem,

because we are going to derive g; and 0, for arbitrary reverb lengths. Let’s express our

control parameters as halflife (no pun intended), A(f’), which we define as the time it

takes for a sinusoid of frequency f to decay to half of its amplitude. We define A, =

(0), the desired half life at the low end of the spectrum at f= 0 (DC), and Ay = Mf)

the desired half life at the high end of the spectrum at half the sampling frequency f,

(Nyquist limit). Since the signal is not attenuated continuously but rather in intervals

of the delay length m,, the logarithm of g,(f) must be proportional to that interval.

Specifically,

g(f) =2,

where m; is the length of delay line 7, expressed in the same units as Mf).

So far, so good. The filter as shown in the previous code may be familiar to you as

decaying average, Or as something with another name. It’s really the common construct

that blends the last output with the current input, and it satisfies the recurrence relation:

Ve= Xt (1 — OH) Yer,

736 Section 7 Audio
etna tne ein ERMA HASEENO OAKHAM OAH HNERAH INI MHENEON

where y; is the filter output, x, is the filter input, and o is the filter alpha. Using the

z-transform [Mathworld] we can obtain the system transfer function H(z) of this fil-

ter. The z-transform replaces time shift with a multiplication by z, so we can factor
out x, and y,:

y, =ax,+(1- Ov Z.

=a = H(z)
x, 1-(-a)z"

By plugging in z = exp(j27. f/f.) to represent sinusoidal signals of frequency f, we can

calculate the frequency response |H(f)| for any filter parameter a. In the previous

expression, j is the unit imaginary, so complex math is going on here. We are inter-

ested in the special cases f = 0 and f = ; f,, which correspond to A, and Ay, respec-

tively. These can be shown to reduce to:

f=90->z=1 —4H()=1, and

pel psy pee ue
De 2-a

The result H(1) = 1 shows that the filter indeed leaves the low frequencies unaffected,
so the scalar gain g; can be directly calculated from A,. For the high end of the spec-
trum, the filter alpha ©; is set such that H(—1) corresponds to the attenuation not
accounted for by g;:

gZ= QamilAL

q-milay 2p
a= ahs with B. =

pide earl votes
In case you are lost in all these formulae, just recap that we calculated g; and 0, to get
a controlled energy loss according to Ay, and Ay.

Sweeping and the Problem of Fractional Delay
RETIRE IAAT TET ST Pe EN

We want to make the delay lengths of our FDN time variant, which is also known as
sweeping. The benefit of sweeping is a reduction of annoying stationary waves that
would otherwise build up in a static FDN. Sweeping has been shown to increase the
quality of the output, or reduce the number of necessary delay lines [Frenette00]. A
sufficient effect is archived by varying the delay lengths a few percent at a slow rate
(0.5—2 Hz). If you overdo the effect, you get pitch shift.

7.4 Fast Environmental Reverb Based on Feedback Delay Networks 737

As we smoothly vary the delay lengths over time, the read cursors of our delay

lines need to point “in between” samples. This is known as fractional delay, a problem

similar to texture filtering. Rest assured however that audio is an order of magnitude

more sensitive to aliasing noise than graphics, so nearest-point sampling is not an

option. Next, the problem with linear interpolation is blurring, and you can see in

Figure 7.4.5 (middle) how this kills us. Here, one second of repeatedly going through

linear interpolation sufficed to have eaten all frequency content above 8 kHz.

FIGURE 7.4.5 Cross-section frequency plot of an FDN impulse response at t = Is. No

sweeping (lefi), sweeping with linear interpolation (middle), and sweeping with lin-

ear interpolation and compensation (1 right).

There exist a number of sophisticated fractional delay algorithms [Valimaki00],

and as an example, Frenette uses all-pass filters for his FDN. Here you'll see how it is

possible to stay with linear interpolation, and instead adjust our filters for an extra

high-frequency boost that compensates for the average loss due to blurring. See in Fig-

ure 7.4.5 (right) how this actually works out.

First, we introduce new state to our EDN class to accommodate fractional read

cursors.

float p[4]; // partial read cursors position

// (always stays inside Op)

float dp[4]; // sweeping velocities

Replace step 1 as follows. Step 1a will just integrate the sweeping velocities over time

and bump the integer cursor on occasion:

// step 1a: add sweeping velocities to the read cursors

p[0] += dp[0];
| POCO a =

read[O] = (read[0O] + int(floor(p[0O]))) & mask[0];

Lim CiCm ac «

p[0] = p[0] — floor(p[0]);

I MELCs chats

Section 7 Audio

Then in step 1b, we linearly interpolate between the two samples neighboring the
read cursor. We also change the code to do the regular advance of the read cursor in
the midst of the linear interpolation (so step 7 is left as the advance of the write cur-
sor only):

// step 1b: linearly interpolate between the

// samples next to the read cursor, and advance integer cursor here

float r[4];

r[O] = line[O][read[0O]];

(if RCC. otic
read[O] = (read[O] + 1) & mask[0];

fin fps OTE C ipere cage

rLOvet= plot FC tine[0l[read{o] | — [Ol);
/ {meeC™ 1.

What is not shown here is the code that slowly modulates the sweeping velocities,
which is a simple sine table lookup or other modulation waveform, and can be done
sparsely, like every 16-64 samples.

Let's fight the blurring. Linear interpolation is in effect a first-order finite impulse
response filter, which may be cancelled with a first-order infinite impulse response
filter, just like the one that is already in place in our feedback loops. We want to
calculate which adjustment must be made to the filter alphas ; to compensate the
blurring.

The transfer function of linear interpolation would be written as follows:

WAR © let 2)» rts oo

H(z)="=1- p+ pz,
k

Here, p is the current partial position of a read cursor. If p = 0, we are sampling inte-
ger positions and no blurring is introduced, while with p = 1/2, the blurring is at max-
imum. Let's assume that p is moving so fast that we get the net effect of a random p.
For this case, we can calculate the integral of the absolute value |H(z)| and come up
with

1 1

Jli-p+ pz |p =| Jp? - yp + lap, with y =2-2cos(2r f/f).
0 0

The interesting result is at the upper end of the spectrum, at f= f,, where the integral
simply evaluates to 1/2. Therefore, we could try and adjust all our filter alphas as to
increase by a factor of 2, and have a compensation for average blurring.

But not so fast here; this works as long as p is in effect random, but when it is not,
the system may eventually blow up. Imagine a partial read cursor being stationary at

7.4 Fast Environmental Reverb Based on Feedback Delay Networks 739
crastscseeteausatesunennaniinnyneanntintasacnansaneoetannansinintnin

or close to zero for long enough; the high frequencies would be amplified into infin-

ity. In practice, the compensation factor must be less than 2 and needs to take into

account the sweeping velocity dp, where the full compensation only kicks in if dp is

es sufficiently high. To achieve this, the example program on the CD-ROM uses a

ONTHECD smooth saturation curve, which saturates at 1.7 and falls with dp? if dp is below 10°.

Specifically, the program calculates:

0.7dp*
2281 [t+ —

P, a oa.

and recalculates the filter alphas Bi from Bi' every time dp changes.

Conclusion and Possible Improvements

So far, the general concept of FDN reverberation has been introduced, and the most

important parameters—feedback matrices, delay lengths and reverberation times—

have been discussed. More infrastructure would be needed to get the sound to the

EDN and from the EDN to the listener. An example of how this can be done is shown

€<» in the example program, which is included on the CD-ROM. This program lets you

ONTHECD play stereo wave files through the discussed four-channel FDN and experiment with

different reverberation settings. To give you a quick start, the CD-ROM also includes

two sample wave files, which are dry (unreverberated) excerpts of a game music remix.

In a 3D setting, it would be possible to associate the channels of a four-channel

FDN with the front, left, right, and back directions of the listener's space. Then,

incoming sounds would be distributed to the delay lines according to their relative

directions. The aim of this setting is to produce gradual decorrelation, where the late

reverb comes equally from all directions while the early reflections are coupled to the

sound source position.

Multiple rooms with different parameters would need to be simulated with mul-

tiple FDNs, and the results weighted. A transition of parameters of a single FDN gen-

erally does not produce meaningful results but can nevertheless be used for interesting

special effects.

Acknowledgments _
“se Special thanks go to Pex “Mahoney” Tufvesson for providing the wave files included

ouruecp on the CD-ROM. Thanks to Peter Ohlmann for tips about the gritty details of MFC.

References
LLM é_LL MMA

NNT SU EEE

[FMOD] “fmod” music and effects sound system. Available online at /etp://

www.fmod.org/.

Section 7 Audio
acnicnanteseeyieneonmmmementssste ine neonercnapcammmemucnctoteesteeemntecret enti

[Frenette00] Frenette, Jasmin. “Reducing Artificial Reverberation Algorithm Require-

ments using Time-Variant Feedback Delay Networks.” Masters Thesis. Univer-
sity of Miami, December 2000.

[Gerzon76] Gerzon M. A. “Unitary (energy preserving) multichannel networks with

feedback.” In Electronic Letters, vol. 12, no. 11, pp. 278-279, 1976.
[Jot91] Jot, Jean Marc and Antoine Chaigne. “Digital delay networks for designing

artificial reverberators.” In Proc. 90th Conv. Audio Eng. Soc., Feb. 1991, preprint

3030.

[Jot93] Jot, Jean Marc and Antoine Chaigne. “Method and system for artificial spa-

tialisation of digital audio signals.” United States Patent 5,491,754., Feb 1993.

[Mathworld] Erich Weisstein’s world of mathematics. Available online at Attp://www.

mathworld.com.

[MSDN] Microsoft Developer Network. Available online at Attp://msdn. microsoft.

com/default.aspx.

(Moorer79] Moorer, J. A. “About this reverberation business.” In Computer Music

journal, vol. 3, no..2, 1979.
[Schroeder62] Schroeder, J. M. “Natural sounding artificial reverberation.” J Audio

Eng Soc; vols LO nos 3, 1962.

[Smith96] Smith, Julius O. and Davide Rochesso. “Circulant and Elliptic Feedback
Delay Networks for Artificial Reverberation.” In JEEE Transactions on Spech and
Audio, vol. 5, no. 1, pp. 51-60, Jan. 1996.

[SmithOnline] Smith, Julius O. “Physical Audio Signal Processing: Digital Wave-
guide Modeling of Musical Instruments and Audio Effects.” Available online at
http://www-ccrma.stanford.edul~jos/ waveguide/pasp. html.

[Stautner82] Stautner, John and Miller Puckette. “Designing Multi-Channel Rever-
berators.” In Computer Music Journal, vol. 6, no. 1, pp. 52-65, Spring 1982.

[Valimaki00] Valimaki, V. and T. I. Laakso. “Principles of Fractional Delay Filters.”
IEEE Int. Conf. on Acoustics, Speech and Signal Processing, June 2000.

1.9

Introduction to Single-

Speaker Speech |
Recognition

Julien Hamaide

julien_hamaide@hotmail.com

n the past years, much effort has been made in the fields of 3D and artificial intel-

ligence but not in the area of human-computer interfaces. In a majority of games,

our interactions are still limited to traditional peripherals: keyboard, mouse, joystick,

or joypad. This gem presents a technique that will introduce a new dimension to these

interfaces: the voice. With the recent apparition of recording systems on consoles, this

new type of interaction makes sense. Moreover, it can be the basis for a new type of

gameplay.

This gem introduces a single-locutor recognition technique based on examples.

This technique is easy to implement, does not ask for much processing power, and is

easily integrated in existing software. It does not try to understand the meaning of

entire sentences, but rather tries to recognize isolated words. Demo software is pro-
pers

ontuecp ~~ Vided on the CD-ROM, so you may evaluate the system.

Introduction
ei ES ERTS NTE LOTTE HELE er

Speech is a pretty complex signal. Its human origin, made of imprecision, makes it

difficult to analyze. In this section, the structure of a speech signal will be briefly

‘ntroduced. In addition, the acoustic properties that make its recognition more diffi-

cult will be pointed out.

Voice is a signal produced by our body and our brain. The latter corrects it and

adapts it continuously, thanks to the feedback received through the ears. The produc-

tion of voice results from the circulation of the air through the vocal cords of the lar-

ynx. As the air passes through the vocal cords, it makes them vibrate, which results in

the production of sounds.

A speech production model can be seen in Figure 7.5.1.

741

742
_reecocc annie enaatenesetneeten beet etnpanite eee ee tntseseenoeanenetenianssesnsionanitetes

Section 7 Audio
seovasjiaanesonne cuits ete eminem ttt nteanmnsneReSRtEAScno/esttndceStnaetetetne mete HE heen RSEOEE

Brain Control

Vocal Cords Vocal Tract

FIGURE 7.5.1 Speech production model.

Our languages use two different types of sound: the voiced sound, produced by the
vibration of the vocal cords (for example, vowels); and the unvoiced sound, which

does not use the vocal cords (such as consonants #, v, and s). Figure 7.5.2 shows a
comparison between voiced and unvoiced sounds. The phoneme z is a voiced sound,
whereas ¢ is an unvoiced sound.

YP by Lay ial iy iN i MA lM

(a)

FIGURE 7.5.2 Comparison between (a) voiced sound and (b) unvoiced sound.

The major problem when dealing with speech is the great instability of the pro-
duced signal. Actually, the production of speech is dependent on the brain’s control of
different organs: the lungs, the vocal cords, the tongue, and others. As our ear is
insensitive to these weak variations, these are not controlled consciously. For a com-
puter system, it is necessary to extract features as independently as possible from these
variations.

An important parameter of a speech signal is its fundamental frequency, also
called pitch. The fundamental frequency of a speech signal is the frequency at which
the vocal cords vibrate. For a man, it varies from 70 to 250 Hz, while for a woman or
a child, it varies from 200 to 600 Hz. Due to the high variability of the pitch, features
independent from it need to be extracted.

7.5 Introduction to Single-Speaker Speech Recognition 743
aeennnnsotevinsnaceereneinioneantin

The other important parameter to take into account is the useful bandwidth. It is

common to fix the limit of this bandwidth at 3400 Hz in speech processing. Accord-

ing to Shannon's theorem, the sampling frequency has to be around 8 kHz. Most of

the time, we only have access to a 44.1 kHz sampled sound. For speed and simplicity

reasons, an 8820 Hz sampling rate is used, i.e., 1/5 of initial frequency. The conver-

onTHECD sion procedure is available on the CD-ROM.

Becagnwonisystem S
The recognition chain is composed of two distinct blocks, as shown in Figure 7.5.3.

The first one discretizes the whole signal into a discrete set of numeric values. This set

is then presented to the input of the second block. A distance measure between the

references contained in the database and the signal is performed. The nearest refer-

ence is then chosen as the matching one, and its identifier is returned. In the follow-

ing, the implementation of the system and its limitations will be discussed, and a

solution for each limit will be proposed.

Word
Output

Sound

Input

Instance

Matching
Feature

Extraction

Example
Database

FIGURE 7.5.3 Speech recognition chain.

The technique described here has to be able to detect the presence or absence of

a speech signal. In order to not waste computing power, a “push the button when I

speak” system can be used. The player pushes the button during the pronunciation of

the command. This allows some simplification of the recognition system.

Feature Extraction _ ——— a aeeeueeaeimmeaameuaal EO ELT LE LEIS

Feature extraction is an important step in the speech recognition process. The tech-

niques that give the most accurate results are presented here, but a more general

overview can be found in [Schalkwyk]. Actually, feature extraction allows the dis-

cretization of a signal slice into a fixed set of numeric values. The length of this slice

744
seston nese

Section 7 Audio

has to be fixed. The signal within the slice is supposed to be pseudostationary. Experts
have decided to take a 20-30 ms slice every 10 ms. A feature vector is produced every
10 ms. The words are then represented as sequences of vectors. Before performing any
processing on a slice, a pre-emphasis filter is applied in order to spectrally flatten the
signal (Equation 7.5.1). A Hamming’s window is then applied to get rid of the border

effect.

y(n) = x(n) — 0.9*x(n — 1) (5:1)

Figure 7.5.4 shows the original slice (a), the Hamming’s window (b), and the result-
ing slice. We will now introduce the different feature extractions from this 30 ms of
signal.

(a) (b) (c)

FIGURE 7.5.4 = (a) Slice of signal, (6) Hamming’ window, (c) result of Hamming’ win-
dow on the slice.

LPC

The LPC (Linear Prediction Coding) analysis, used in [Edwards02], attempts to
model the speech production using a linear system. The method tries to find the lin-
ear combination that estimates the best sample x(n) from the ¢ last samples, t being
chosen to get the desired precision degree. Equation 7.5.2 shows the estimation func-
tion. The interesting coefficients are a;, which represent weights obtained from the
linear prediction.

x(n) = e(n)+ ke a,x(n—1), with e(n) being the residual error. (7.5.2)
i=l

One can show that the frequency response of the linear filter from Equation 7.5.3 is
the envelope of the spectrum of the studied signal.

x(n) = Y-4x(n =) (7.5.3)

7.5 Introduction to Single-Speaker Speech Recognition 745

Magnitude (dB)

Ey

ON THE CD

Figure 7.5.5 depicts this phenomenon. This representation has the advantage of being

independent from the fundamental frequency of the signal. The order of the method

represents the number of samples used for prediction. The number of coefficients a; is

equal to the order of the method. For the recognition process, an analysis with an

order equal to the sampling frequency in kHz plus 4 is performed. In this case, an

order of 13 will be used. Higher order coefficients are not interesting, because they do

not carry enough information.

The computation details have been treated in [Edwards02], so we will not linger

on this problem, as the code is also available on the CD-ROM.

Magnitude (dB) 1 1 ~--4-----1-,-----Hf + -

| L | i | | hice L “09 i

0.2 03 04 0.5 0.6 0.7 08 0.9 i 0 01 0.2 03 0.4 0.5 0.6 07 08 0.9 1

Normalized Frequency (>7trad/sample)
Normalized Frequency (><7trad/sample)

(a) (b)

FIGURE 7.5.5 (a) Signal spectrum, (b) frequency response of the LPC filter.

Unfortunately, these coefficients are unstable, and they change significantly for

small signal changes. Therefore, they will be transformed into cepstral coefficients c(i)

with Equation 7.5.4. p is the order of the LPC analysis. This recurrence allows us to

find more stable coefficients suitable for the recognition process.

i-l k

c(i)=a,+>, Lim i Re ‘1 1.2 (7.5.4)

k=

These coefficients, although giving good results, do not take into account the nature

of human hearing. Another technique, a little more computationally expensive, can

be used. This technique is called Perceptual Linear Prediction (PLP).

PLP

This technique is another type of LPC analysis adapted to human hearing. The con-

cept lies on two properties of the human ear:

* The spectral resolution of hearing decreases when the frequency increases.

° The ear is more sensitive to medium frequencies.

746 Section 7 Audio

This technique will not be explained in detail, given its mathematical complexity. The
Ex interested reader can refer to [Boite00] and [Costache02] for more information.

ON THE CD The code related to this technique is also available on the CD-ROM.

Signal Energy

The last introduced parameter is the variance of the signal 62, an image of the energy

of the slice. This parameter allows us to distinguish marked parts of the word (tonic

accent, more energetic phonemes, etc.) from others. Equation 7.5.5 shows the evalu-

ation formula for variance.

ae qa ew- Ry

Ke LOO) (7.5.5)

Even if the energy is an important parameter, it is not usable in its current form. Actu-
ally, if the player speaks louder, the energy increases and moves away from the refer-
ence value. Therefore, we will use the relative variation of energy (Equation 7.5.6)
instead of its absolute value.

AC (n)= (7.5.6)

Conclusions

To perform speech recognition in video games, two methods can be used: the LPC
analysis, which is computationally inexpensive, and the PLP analysis, which demands
more processing power but also gives better results. They both produce 13 coeffi-
cients. The choice must be made considering the available computing power and the
desired precision.

Whatever method is chosen, the vector contains 14 coefficients (13 coming from
the LPC or the PLP, 1 from the variance) that will compose the identity of the slice. It
will be denoted as the acoustic vector in the following sections.

Instance Matching
ens a ou a!

The set of feature vectors is now available. We will use them to retrieve, among the
references, the closest one from the presented word. To measure the distance between
two words, called distortion, we have to define a distance between two acoustic vec-
tors. We choose the Euclidian distance (Equation 7.5.7) for simplicity reasons. Other
distances, such as city block distance, can be used.

7.5 Introduction to Single-Speaker Speech Recognition 747
sevrctcttsstsaasssntntenomdseenenanuansansnennsnnnsnnnosiiitatiiebeie

hlnn tte Mn enn HsMHNErtreRnnM tenn

d(x,y) =|x-ylP= LG, 77.) (7.5.7)

The first approach is to compare vector to vector for each 10 ms slice and to sum the

distances between each vector’s couples. Unfortunately, a word is rarely pronounced at

exactly the same speed as we expect. The signal is subject to temporal compression

and dilation. Therefore, a technique that automatically adapts the rhythm of the

route of the acoustic vector will be used. This technique is called Dynamic Time

Warping (DTW).

The goal of DTW is to find the best path in the sequence of acoustic vectors of

both words, i.e., the path with the lowest accumulated distance.

The word to recognize will be referenced as X, the words from the database will be

referenced as Y;. Figure 7.5.6 represents the type of awaited path. Each axis represents

one of both words to compare. Each point represents a couple of acoustic vectors.

FIGURE 7.5.6 Example of the DTW algorithm path.

To respect the constraints of speech production, the progression of the system has

to be limited. Constraints have been chosen to respect the nature of speech. The three

main constraints are:

748 Section 7 Audio

liad Jat

O Our
FIGURE 7.5.7 Progression constraints. Black dot = starting point.

The monotonic evolution: Seen acoustic vectors represent a temporal notion, no
return is allowed.

The border conditions: The path begins at (0,0) and finishes at (V,M), Nand M
are respectively the size of the sequence of the reference and the size of the word
to recognize.

The progression constraints: One can find in Figure 7.5.7 some examples of
constraints. Only displayed arrows are authorized displacements. The first
constraint lets the system be totally free. The second one requires a diagonal
progression just before a vertical or a horizontal progression.

Route Algorithm

To compute the minimal distance, we use the property exposed by Equation 7.5.8.
The couple (i,/) represents a feature vector couple, i represents the temporal index of
the vector to test, and j represents the temporal index of the reference vector, D(i,/)
being the minimal distance to access the point (i, /). p@,j) represents the possible pre-
decessors of (i,j) (depending on the progression constraints shown in bigare 7.5.7)

D(i, j) = 4G, + mint D(pG,J))}

(i, =| X,-¥" | the
We have to successively compute the accumulated distance for each (i,j) couple grad-
ually. We do not have to exactly know the traversed path, only the final score is of
interest.

7.5 Introduction to Single-Speaker Speech Recognition 749
sncnetcotscceseenacsnonnaneinnnannnntoisnneanunnrerercnannsnonene

Once each reference from the database has been compared to the words to evalu-

ate, the one having the smallest distortion is chosen as the solution. A maximum dis-

tortion threshold has to be fixed, to avoid the execution of a command when the user

pronounces a word that is not in the reference database.

Pe More information about the DTW algorithm and implementation can be found

ontH#ecp = in [Keogh03]. The DTW code can also be found on the CD-ROM.

Training ake Nenana

Before being able to recognize words, a database must be constituted. Therefore, the

user is asked to pronounce the words to recognize a fixed number of times. The

sequences of acoustic vectors are then extracted from the recordings. These vectors

will be saved for two reasons. First, we do not have to perform feature extraction again

on references, and second, the space needed to save these vectors is smaller than stor-

ing samples of the signal. If the recording conditions are good, or if the vocabulary is

limited, two or three recordings will be enough. In a noisy environment, or with a

bigger dictionary, it could be necessary to record about 10 examples of each word.

Limitations _
This very simple system, in adapted conditions of use (using a microphone of suffi-

cient quality, in a quiet environment) gives results near 100%. Unfortunately, it has

many limitations.

First, the system is sensitive to environmental noise. Therefore, its use should be

limited to a quiet room. Some signal-processing techniques can be applied to remove

this environmental noise. If the background noise comes from the game, it is straight-

forward to subtract it from the signal.

Second, the recognition process is locator dependent. Other techniques indepen-

dent from the locutor also exist but need more computation and are greedy for

resources.

Third, the complexity of the system depends on the number of words in the data-

base. As the size of the database increases, the number of references the input word

will have to be compared to will also increase. The only way to solve this problem is to

try to extract phonemes from the signal, rather than comparing the word to examples.

The bigger constraint is the constitution of the example database. The user is

asked to record examples of command words. In most cases, three recordings should

normally be sufficient.

The solution to the limitations described is the use of more complex systems,

based on probabilistic models, neural networks, or Hidden Markov models. These

systems are out of the scope of this gem. More information on these systems can be

found in [Boite00].

750 Section 7 Audio

STE
This gem introduces the basics of speech recognition theory and systems. Even if the
described system is rudimentary, feature extraction is common to all these systems.
The presented technique is simple, quick, and easy to implement. It gives good

enough results to be used in videogames. In ideal conditions, the method approaches
100% efficiency. The technique has its limitations, but it provides a simple way to

introduce speech recognition in an application. For integration in more complex sys-
tems, it will surely be necessary to use third-party software, as the problem is far from
being trivial. With the apparition of sound-recording systems on most recent con-
soles, speech recognition might play an important role in the near future.

References

[Boite00] Boite R., H. Bourlard, T. Dutoit, J. Hancgq, and H. Leich. “Traitement de
la Parole.” Presses Polytechniques et Universitaires Romandes, 2000.

[Costache02] Costache, Gavat, Raileanu. “Voice Command System.” In /nternational
Workshop Trends and Recent Achievements in Information Technology. Cluj Napoca,
Romania, May 2002.

[Edwards02] Edwards E. “Linear Predictive Coding for Voice Compression and
Effects.” In Game Programming Gems 3, 613-621. Charles River Media, Inc.,
2002.

[Keogh03] Keogh, E., and J. Pazzani. “Derivative Dynamic Time Warping.” In
Learned Representations in Al. Division of Computer and Information Sciences,
Rutgers University of New Jersey, 2003.

[Schalkwyk] Schalkwyk, J. “Feature Extraction.” Available online at http://www.cslu.
ogi. edu/toolkit/old/old/version2. 0a/documentation/csluc/node5. html. November 27s
1996.

About the CD-ROM

About the Game Programming Gems 5 CD-ROM
This CD contains source code and demos that demonstrate the techniques described

in the book. Every attempt has been made to ensure that the source code is bug-free

and will compile. Please refer to the Web site Attp://www.gameprogramminggems.com/

for errata and updates.

ectens
Code: The source code and demos contained on this CD are contained in a

hierarchy of subdirectories based on section name and Gem title and author.

Source code and listings from the book are included. At each author's discretion

a complete demo is sometimes included. Windows demos were compiled using

either Microsoft Visual C++ 6.0 (projects with a .dsw file) or Microsoft Visual

C++ 7.0 (projects with a .sln file).

GLUT: In this directory you will find the GLUT v3.7.6 distribution for Windows.

For Windows-specific information, please visit Nate Robins’ website at Attp.//

www.xmission.com/~natelglut.html.

J2SE: Sun’s Java 2 Platform, Standard Edition (J2SE), version 1.4.2, for those code

samples written in Java. Both the Windows and Linux versions are included as

self-extracting archives.

DirectX: If you're running on Windows, you're very likely using the DirectX API.

For your convenience this directory holds version 9.0 of the DirectX SDK.

System Requirements

Windows

Intel® Pentium®-series, AMD Athlon or newer processor recommended. Windows

XP (64MB RAM) or Windows 2000 (128MB RAM) or later required. 3D graphics

card required for some of the sample applications. DirectX 9 and GLUT 3.7 or newer

are also required.

Linux

Intel® Pentium®-series, AMD Athlon or newer processor recommended. Linux ker-

nel 2.4.x or later required. 64MB RAM recommended. 3D graphics card required for

some of the sample applications. XFree86 4.0, GLUT 3.7, OpenGL driver, glibc 2.1

or newer are also required. Mesa can be used in place of 3D hardware support.

751

al

eb W babmamie von wees ween vo noldiA OMA pirat

Conidusion
Pty cae I ee ee

oh oe howe » ee

badiinial aici 2 BAST tal |
aid yerd vi sli ain't ‘ eer foot coat Qetdagh sce

en prea rs oa pA oi ne hae hes posites Sula it oe pies:

ot antes

on is ame ——m—s « -

rit er sagthig co

Wve io Bras ech m Se oo an apy tlientinen. Cr neetee

vont, sql] ma" at neces yee ZAM anita ey
: voaree ofall, Wilbelenen: = AP

CM iobliwelgiaich sna Aas? wie a " va: puehasee aii
aordtoe ling ohtit atet) brs sack notes oo heed whopaeithdesto what me

ReGarmhiciscatine day 3A bolvisni 9 dood si) mont again bar gbooek oe
Apa WATGIBOS FSW AES STAT H a Sea woe

bani Phere om kak wel. raise terah OH, 4? dnc ot
be Aiouden” Boren /nlyraPacnauery nesta de LT

coche eackelinttie.: tee Ehdbds? sehen Lengo din Annk rng
tye ae eth stern nolan Sita AOR wera

vee, May 2002. Anouk seby\vtion -\oeta rind anes ath
shes stiabacoaler edit (ZED) Nani bling, .
ws iebulsas tet. cipal boy oenmas yh wbiahod ara tg

Yun govirias
1A Kista bits pete deat yo9: ot ‘Uo'ypweuhy me sane NE
WP GEG A e ARap ie sips Vogel esta pitta vey

| 5

cath me

yy! tr tM vartet yy lw wy, Die vy
~ » iS eae

; ‘eheatie yt chy pats at Vegruse F ork
) Pe Maney egiy

«fy gbetee teins uy ae! Poa, | Fi haled oy

(va

~ ee Rie oer cnt o~

4 oy, Qe, eH somares | ence Pi Moe ett _

— ‘ (

~~

eutquy Ue semiaper ton 10 (M AR EMBL) 0S ewubaiW te (MAR: AD

remeney (ay < F mak bar? Kim it~ ~enniteriigge aiymes srls to omnioe Yat

_

svi sag! drdannmass) eters i) ews 10 noliA OMA oie ms
read Lorvinnpeds brine cplheyiaag De, ilaauinde oan MASLIN. presale 9s 1_£ adits aves Saag. “PUI 0.) Ment noicilyqs algae ¢ ay

MT yn) naseetvvaat Yo sanly ab bean od ag wai. ain

0 yl
= 4 ae

feds

INDEX

Numbers with “GPG” proceeding refer to previous editions of the Game Programming Gems Series.

Numbers without this notation refer to the current volume.

A
A* algorithm, GPG2: 250

aesthetic optimizations, GPG1: 264-271
costs, GPG3: 295-296, GPG3: 298-300,

GPG3: 304-305

D* (dynamic A*), 383-389
derivative algorithm with improved

functionality, 367-382
heuristic estimate function of, 367-368
Master Node List and Priority Queue

Open List implementation, GPG1:
285-286

multiple solutions returned by, 381
navigation meshes and, GPG1: 294-295
nodes, multiple start and stop nodes,

371-372, 373-379, 380-381
pathfinding and, 367-382, GPG1: 294,

GPG?: 315, GPG2: 325
path planning with, GPG1: 254-262
performance, 367-382, GPG3: 301-302
priority queues for speed, GPG1:

281-286
pseudocode listing for reference, 368-370
speed optimizations for, 367-382,

GPGI1: 272-287
A Star Explorer program, A* tool, GPG3:

305
stochastic maps and, GPG4: 325-326
tactical pathfinding, GPG3: 294-305
waypoints and, GPG2: 315
weaknesses of, GPG1: 261-262

Abstract interfaces
described and defined, GPG2: 20-22
disadvantages of, GPG2: 26-27
factories, GPG2: 22-23
as traits, GPG2: 23-26
virtual destructors, GPG2: 23

Abstract syntax trees (AST), for programma-

ble vertex shader compiler, GPG3: 410

ABT Trees
vs. binary trees, 162
cache-oblivious implementation of,

159-167
complexity of, 163
creation of, 161-162
performance testing of, 166-167

redundancy and reduction of memory

footprint, 163-166

van Emde Boas tree layout, 160

Acceleration, GPG4: 221-225

lookup tables and, GPG4: 229

minimal acceleration Hermit curves,

225-231
and velocity on splines, GPG4: 180

Accidental complexity, GPG2: 258-259
Accuracy

far position (hybrid between fixed-point
and floating-point numbers), GPG4:
162-166

large world coordinates and, GPG4:
162-166

ActionState class
GoCap, 233-234, GPG3: 231-232
for MMPs, GPG3: 509

Actor class
GoCap, GPG3: 232
for MMPs, GPG3: 512-513

ActorProxy class for massively multiplayer
games, GPG3: 513

Adabala, Neeharika
article by, 539-549
contact and bio info, xxi

Address-space management of dynamic arrays,
GPG4: 85-93

ADPCM audio compression format, GPG3:
589, GPG3: 620-621

Aerodynamics, 395-409
aerodynamic primitives, 398-406
of bluff bodies, 399-403
curve balls, 407
drag, 404
fluid properties and standard atmosphere,

398
Kutta-Joukowski theorem, 401
load quantities, 396-398
Navier-Stokes equation, 398-399, 401
rigid body dynamics, 396-397
of slender bodies, 406
of streamlines bodies, 403-406
thin wing theory, 403
for wind-driven particle system storms,

407, 408

Ahmad, Anis
article by, GPG1: 581-583
contact information, GPG1: xxv

AI. See Artificial Intelligence (Al)

AlControlStates, for massively multiplayer
games (MMPs), GPG3: 509-510

Aiming, tactical pathfinding and, GPG3: 298

Air, cellular automata to model currents and

pressure, GPG3: 200, GPG3: 206
Aircraft, aerodynamics for, 407-408
Alexander, Thor

articles by, GPG3: 231-239, GPG3:
506-519 :

contact and bio info, GPG3: xxiii

Algorithms
for authentication, GPG3: 555

bit packing algorithm, GPG4: 573-574
Bloom Filter algorithm, GPG2: 133

bones-based collision detection algorithm,

GPG4: 506-513
brute-force comparison algorithm,

GPG?: 228

collision detection, GPG2: 228-238
combinatorial search algorithms, GPG2:

354
contact reduction algorithms, GPG4:

253-263
cPLP algorithm, GPG3: 355-358
curvature simulation, GPG3: 425-426
Cylinder-frustum intersection test,

GPG1: 382-384

data key evaluation algorithm, GPG4:
498-500

D* (dynamic A*), 383-389

for decals, GPG2: 411-413
decision tree query algorithm for multi-

threaded architectures, 345-352
Diamond-square algorithm, GPG1:

505-507
Dijkstra’s algorithm, GPG1: 294
for dimensional impostors, 531-538
DP (dynamic programming) algorithm,

GPG4: 325-335
dynamic gamma algorithm, GPG4:

470-474
for encryption, GPG3: 555
Fast Fourier Transforms (FFT) and,

GPGé4: 265
Goertzel’s algorithm, GPG3: 172-174
Graham’s algorithm, GPG3: 276
group finding with, GPG2: 229
for heat shimmer or haze distortion,

GPG4: 477-478
Heuristic costs algorithm, GPG1:

276-278

for infinite universes, GPG1: 136-139
iWave algorithm, 411-414
killing algorithms and real physics,

GPG4: 209-219

for landscaping, GPG1: 485-490
LCA (linear congruential algorithm),

GPG3: 623-624
learning algorithms, GPG1: 345-350
levels of detail (LOD) selection, GPG1:

435-437

Linear congruential algorithm (LCA),

GPG3: 623-624
line / line intersection, GPG2: 191

Marching Cubes algorithm, GPG2: 229
mazes, GPG1: 492-493

753

754
sasnenntaomc nce NAHE

Metaball clusters and, GPG2: 229

name generation, GPG1; 493-498
natural element motion, simulation of,

411-419

negamax algorithm and game trees,
GPGI1: 250-251

occlusion, GPG3: 354-358

Perlin noise algorithms, GPG3: 453
PLP algorithm, GPG3: 354-358
pseudo-random number generation,

GPG3: 623-624
randomness, GPG1: 135-136, GPG3:

453, GPG3: 623-624
random number generator algorithm,

GPG?: 130
RDC algorithm, GPG2: 229

Recursive Dimensional Clustering

(RDC), GPG2: 228-238, GPG2:

copying of, GPG3: 51
custom allocators, creating, GPG3:

55-57
deallocation, GPG3: 52
default allocator object described, GPG3:

54-55
destruction, GPG3: 52-53
freelists and allocation, 133-134

per-object data and, GPG3: 57

PlacementNewEmbeddedLink allocation
policy, 139

rebind, GPG3: 53-54
SharedChunkPolicy allocation policy,

139

temporary register allocation, GPG3:
406, GPG3: 411

typedefs and, GPG3: 50-51

utility functions, GPG3: 51

Index

texture coordinate animation, GPG1:

549-550
third-person control schemes for, GPG2:

425-432
3ds max skin exporter and animation

toolkit, GPG2: 141-152

time control, spline based, 233-246

translational / rotational offsets, modifica-

tion of, GPG3: 395-396
water motion simulation, 411-414

see also Bones

Ansari, Marwan Y.

article by, GPG4: 461463
contact and bio info, GPG4: xxi

Anti-aliasing

jittered sampling distribution and,
GPG4: 386-387

pixel quality and, GPG4: 385-388
235-236

Remez algorithm, 274-276
Remez Exchange algorithm, GPG3:

180-181

Retriangulation algorithm, GPG3:
340-343

Schur’s algorithm, GPG3: 617
search algorithms, GPG1:254-262,

GPG4: 217-219
server scheduling algorithms, GPG4:

Alpha-beta pruning, GPG1: 251-253 pixel with adjustments for, GPG4:
Alpha blending, GPG1: 193, GPG1: 388-389

522-523 Poisson disc sampling distribution and,
“Alt-Tab” problem, GPG2: 82-83 GPG4: 387-388
Ambient tag, XML audio tag, GPG4: random sampling distribution and,

626-627 GPGé4: 386
Anchored modifiers, GPG3: 402 API functions
Animals, kill algorithms and hunter / prey explicit DLL loading and, GPG2: 36

population dynamics, GPG4: 217-219 wrappers, 714
Animation Approximations

549-550
sine and cosine calculation, GPG3:

172-174

sphere collision detection and bounding

volumes, GPG1: 390-393
Standard Template Library, C++ (STL),

GPGI1: 42

triangle-to-triangle collision detection
algorithm, GPG1: 390

tri-strip algorithm, pseudo-code for,
GPG3: 364

vertex-blending algorithm, GPG4:
489-490

visibility and, GPG3: 354-358

voice compression and effects with LPC
algorithm, GPG3: 613-621

wall building algorithm, GPG4: 365-372
warm starting for, GPG4: 255
wave propagation, GPG4: 269-270
Weiler-Atherton algorithm, GPG3: 367,

GPG4: 427
see also A* algorithm

Aliasing
bilinear filtering and, GPG2: 485
“pre-jitter” technique, GPG2: 485-486
shadows and aliasing problems, GPG2:

484-486
Alien voices, GPG3: 613-621
Alignment, GPG1: 305-306

flocking rule, GPG2; 330
AllocateMemory() routine on CD, GPG2: 67
Allocators

allocation function, GPG3: 51-52
allocation strategies, GPG3: 56
on CD-ROM, GPG3: 58

CompactableChunkPolicy allocation

attractor / repulsor forces and animation
system interactions, GPG4: 362-363

bone animation keys, GPG2: 148
clouds, procedural texture generation,

GPG2: 463-473
cloud shadows, GPG3: 436-438, GPG3:

440-442, GPG3: 447-448
foliage motion simulation, 414-419
foot-sliding, GPG3: 396-399
inverse kinematics and, GPG3: 192-198
jittering or stuttering animations, GPG4:

32, GPG4: 159, GPG4: 500-501
keyframing for, GPG1: 465-470
light motif, GPG1: 528-534
lip-synching, GPG3: 589, GPG4:

607-611
mass-spring model for realistic cloth,

421433
mesh deformation and skin calculation,

GPG2: 149
movement to arbitrary targets, GPG3:

394-396, GPG3: 399-400
noise to add randomness, GPG3: 456
pressurized soft-body model, 435-448
projective self-shadowing techniques for

characters, GPG2: 421-424
ragdoll physics with feedback control

system, 449-455
realistic locomotion, GPG3: 394-413
simple animation scheme, GPG2:

429-431

smooth transitions between motion
captures, GPG3: 396, GPG3: 402

spline-based time control, 233-246
spring mass models and deformable

Goertzel’s Algorithm for, GPG3:
172-174

minimax numerical approximations,
269-280

quaternion approximation methods,
252-264

range reduction for, GPG3: 176-179
resonant filter for, GPG3: 171-172
table-based trigonometric functions,

GPG3: 175-177

Taylor series approximating functions,
GPG3: 179-180

Trigonometric functions, GPG1:
161-176, GPG3: 171-185

see also Taylor series
Architectures

DirectPlay 8.1 architectures described,
GPG3:; 561-562

distributed-reasoning voting architecture,
GPG4; 345-354

GoCap, GPG3: 231-233
multiserver architectures, GPG4:

581-583
object-oriented utility-based decision

architecture, GPG4: 337-344
online lobby, state-event system for,

GPG4; 533-534
Profiling modules, GPG2: 76-77

see also Micro-threads, AI architecture
Area navigation, AI path finding, GPG3:

240-255

algorithm summarized, GPG3: 245-246
path transversal, GPG3: 249-253
regularizing the world for, GPG3:

247-249

policy, 139
comparing, GPG3: 54
construction, GPG3: 51-53
ConstructOnceStack allocation policy,

139

bodies, 436-437 Armies, GPG3: 272
subdivision surfaces for, GPG3: ArrayProxy class, GPG1: 103

372-383 Arrays
Super Mario 64 controls, GPG2: 431
system time and smooth animation,

GPG?: 148

address-space management of dynamic
arrays, GPG4; 85-93

bit arrays, GPG1: 101-103

Index

Compiled Vertex Arrays (CVA), GPG1:
356-360

dynamic array management, GPG4:
85-93

growth of, GPG4: 88-89
macro to determine number of elements

in, GPG3: 30
maximum array size, GPG4; 92
serialization and, GPG3: 542
see also Vectors

Artifacts
clock systems and avoidance of, GPG4:

30-34
flanging (audio artifact), GPG4: 622-623

null objects and, GPG4: 66
patching and shading artifacts, GPG3:

351
Rasterization artifacts, T-Junctions and,

GPG3: 338-343
Artificial Intelligence (AI)

A* Algorithm modifications, 367-382
- accidental complexity, GPG2: 258-259

AlControlStates, for MMPs, GPG3:

509-510
architecture, GPG2: 251-272
area navigation, GPG3: 240-255

autotargeting systems, 307-315
avoidance behaviors, attractors and

repulsors, GPG4: 355-365
Bayesian networks, GPG4: 301
behavioral module, GPG2: 266
choke points and, GPG3: 279-283
cluster maps for floating-point valued

rules, GPG3: 237-238

concurrent AI systems, 353-366
ControlState, GPG3: 233
convex hulls and, GPG3: 273-277
D* (dynamic A*) and pathfinding,

383-389
debugging and, GPG4: 15
decision making, 345-352, GPG2: 287,

GPG4: 337-344

decision trees and multithreaded architec-

ture, 345-352
Dempster-Shafer Theory, GPG4: 301
distributed processing, GPG2: 253
distributed-reasoning voting architecture,

GPG4: 345-354

dynamic programming (DP) algorithm

and, GPG4: 325-335

emergent behavior to avoid scripting,

GPG?: 255
engine design, GPG1: 221-236

event-driven behaviors, GPG2: 251-252

Finite State Machines (FSMs), GPG1:

237-248, GPG4: 338

flocking, GPG2: 330-336, GPG4:

358-359

functional decomposition and decision

making, 355-357

function-based pointer FSMs, GPG3:

256-266

fuzzy logic, GPG1: 319-329, GPG2:

343-350

fuzzy state machines (FuSM), GPG2:

337-341

game Al, GPG3: 229-230, GPG4:

301-302

game programming vs. academic research,

GPG?: 249-250

GoCap for machine learning, GPG3:

231-239
hardware and, GPG4: 301-302
inductive learning, 347
influence mapping, GPG2: 287-297
innovations in, GPG2: 256
Lanchester Attrition models to predict

combat results, 307-315
Level-of-Detail Al, GPG2: 254
manager entities and centralized coopera-

tion, GPG2: 252-253
movement-based AI, GPG3: 321-331
navigation meshes, GPG3: 307-320
neural networks, GPG1: 330-350,

GPG2: 351-357, GPG4: 373-377
pathfinding, 367-382, GPG2: 152,

GPG2: 252, GPG2: 274-275,
GPG3: 240-255, GPG3: 307-320

personalities and, GPG2: 306, GPG2:
332-333

planning algorithms and practical
planning, 329-342

polling, GPG2: 251-252
precomputing and preprocessing, GPG2:

255,
problem solving shortcuts, GPG2: 254
processing issues, GPG2: 253-254
racing game steering, GPG4: 362-363
real-time strategy issues, GPG2: 272-306
redundant calculations, reducing, GPG2:

252
rules-based systems, GPG4: 323
rules definition, GPG3: 234-236
scripting behavior outside code, GPG1:

234
in scripts, GPG1: 6

simulation and schedulers, GPG3: 13
soft computing and, GPG4: 301
swapping control to Al, GPG3: 238-239
tactical decisions, GPG2: 287-316
tactical pathfinding, GPG3: 294-305
terrain reasoning, GPG2: 307-316
third-person camera navigation and,

GPG4: 303-314
training with GoCap, GPG3: 233-237
trends, 297-298, GPG4: 301-302
trigger systems, GPG3: 285-293
updating data, GPG2: 255-256
wall building algorithms, GPG4:

365-372
see also Micro-threads, AI architecture

Artificial Life by Steven Levy, GPG2: 335

ASE program, GPG3: 305
Assert macros, GPG1: 109-114

bug prevention and, GPG4: 16-17
compile-time assert macro, GPG3: 30

copy-and-paste, GPG1: 113-114
cross-platform libraries and, GPG4: 39
customizing, GPG1: 111-114
descriptive comments, macro to add,

GPG3: 29
embedding and, GPG1: 110-111
“Ignore Always” option, GPG1: 112-113

superassert implementation, GPGI: 113

Association

auto-and heteroassociation, GPG1: 336

Hopfield nets for, GPG1: 346-350

neural nets and, GPG1: 332, GPG1: 336

AST (abstract syntax trees) for programmable

vertex shader compiler, GPG3: 410

755

A Star Explorer program, GPG3: 305
Asynchronous I / O (AIO), GPG3: 523-524,

GPG4: 548-549
Asz6di, Barnabas

article by, 483-494
contact and bio info, xxi

Atmospherics, haze and heat post-processing
effects, GPG4: 477-485

Attack trees used in threat models, 686-687
Attenuation

attenuation maps, GPG1: 543-548
of audio, GPG4: 600-601
per-pixel light sources, GPG3: 473-476

Attraction and repulsion
attraction curves, GPG4: 356-361
attractors and repulsors, GPG4: 355-364
planar and linear force emitters, GPG4:

361
Audio

acoustic properties of materials, GPG4:
654

ADPCM compression format, GPG3:
589, GPG3: 620-621

ambient sound, 721-728, GPG4: 603,

GPG4: 624, GPG4: 626-627
audio engines, requirements for, GPG4:

635-636
axis-aligning bounding boxes for obstruc-

tion, GPG3: 600-605
band-pass filters, GPG3: 610
biquad resonant filter, GPG3: 606-612
caching decoded sound, GPG3: 590
collisions and sound character, GPG4:

654-655
compression methods, GPG3: 585,

GPG3: 588-589, GPG3: 620-621
decoding speed, GPG3: 589-590
demo on CD-ROM, GPG3: 598-599
dialog, GPG4: 624-625
digital filters described, GPG3: 606-607
DirectSound, GPG3: 571, GPG3:

595-599, GPG4: 625
Doppler effects, GPG4: 604
downmixing, GPG3: 588-589
dynamic sound control and object

properties, GPG4: 652-653
dynamic variable and audio program-

ming, GPG4: 613-619
EAGLE (Environmental Audio Graphical

Librarian Editor), GPG4: 635,
GPG4: 637-638

EAX audio extensions, GPG4: 638-644

EAX environmental data, GPG4: 636
echo and reverberation, GPG4:

633-634
effect audio, GPG4: 622-623
envelope control of, GPG4: 613-619
environmental audio, GPG4: 633-647

environmental reverb based on feedback

delay networks, 729-740
filters, GPG3: 585
FIR vs. IIR filters, GPG3: 607
flanging (audio artifact), GPG4: 622-623
frequency filtering, GPG4: 634-635
helicopter sounds, GPG3: 627-628,

GPG3: 635-636
high-pass filters, GPG3: 610
hybrid sound synthesis, GPG4: 651-652
interactive sound, GPG3: 586, GPG3:

630-638

756
HAUSER NEN ESE ENNN

lip-synching for real-time animations,
GPG4: 607-611

low-pass filters, GPG3: 610
modular audio processing, real-time,

GPG3: 630-638
multichannel audio, GPG4: 602-603
multithreading programming techniques,

697-711
noise generators, GPG3: 622-629
obstruction of sound, GPG3: 600-605
occlusion and obstructions, GPG4:

634-635, GPG4: 637, GPG4: 644
one-shot sounds, 718
OpenAL, GPG3: 595-599
OpenAL positional audio library, GPG4:

595-606
patches, GPG4: 651
patch files, GPG3: 633-637
pausing and resuming, 715
physic engine integrated with, GPG4:

649-656
pitch, 715
pitch filters, GPG4: 604

positional audio rendering, GPG3:
595-596

potentially audible sets (PASs), GPG4:
636-638

procedural sound generation, GPG3: 631
purpose of, GPG4: 621

resampling, GPG3: 588-589
resonators described, GPG3: 615
reverberation models, GPG4: 635

rocket engine sounds, GPG3: 627
rolling sounds, GPG4: 655
sampling tips, GPG3: 596-598
scripting systems for, GPG4: 621-631
shape and sound frequency, GPG4:

653-654
single-speaker speech recognition,

741-750
slipping sounds, GPG4: 655-656
sonar pings, GPG3: 624-625, GPG3:

637
sound management by group, 713-719
spatialization (attenuation and distance),

GPG4: 600-601
Sphinx MMOS systems, GPG3: 631-638
stochastic synthesis of complex sounds,

GPG3: 622-629

synchronization with animation, GPG4:
649-656

synthesizers, GPG3: 630-631
3D audio environments, GPG3: 595-599
3D audio volumes, GPG4: 644-647

3D surfaces as audio emitters, 721-728
tracking playing sounds, 717-718
trends in, GPG4: 593
vocoders, GPG3: 613-621
yoice communications with DirectPlay,

GPG3: 569-571
voice compression and effects, GPG3:

613-621
volume, 715
wind sounds, GPG3: 624
XML audio tag database, GPG4:

625-628

ZoomFX, GPG4: 644-647
see also Music

Audio class, GPG4: 629
Audio design patterns

Big Ball of Mud (spaghetti code) audio
design pattern, GPG2: 518-519

bridge audio design pattern, GPG2:
514-515

command audio design pattern, GPG2:
517

composite audio design pattern, GPG2:
515-516

decorator audio design pattern, GPG2:
epg

facade audio design pattern, GPG2: 515
momento audio design pattern, GPG2:

518
observer audio design pattern, GPG2:

518
proxy audio design pattern, GPG2: 516

AudioManager class, GPG4: 628-629

Audio processing pipelines, interactive,
GPG2: 529-538

backfill buffers in, GPG2: 534-537
Audio programming

audio design patterns, GPG2: 514-520
Digital Signal Processing (DSP) tech-

niques, GPG2: 525-528
interactive processing pipeline for digital

audio, GPG2: 529-538
low-level sound API, GPG2: 559-560
music sequencers, GPG2: 539-558
sample-based synthesizer for voices,

GPG2:; 521-524
Audio systems

described, GPG2: 529-531
schematic illustration of, GPG2: 530

AudioTag class, GPG4: 629-630
Authentication

algorithms for, GPG3: 555
described, GPG3: 546
hash-based message authentication code

(HMAC), GPG3: 550-551
for online games, GPG4: 535

performance and, GPG3: 555,
Autolists, GPG3: 64-68

cost of, GPG3: 66
defined, GPG3: 68
inheritance issues, GPG3: 66, GPG3:

67-68

nested iterations, GPG3: 66
storage of classes, GPG3: 67
without constructors and destructors,

GPG3: 66
Autonomous agents, GPG1: 305
Avoidance, GPG1: 306

flocking rule, GPG2: 330
see also Attraction and repulsion

Axis-aligned bounding boxes (AABB), GPG2:
389, GPG4: 504

for audio obstruction, GPG3: 600-605
building AABB trees, GPG2: 390
compressing AABB trees, GPG2: 390-391
extent value approximation, GPG2: 391
frustum culling and, 71-74, 76-77
redundancy in, GPG2: 392
resources required, runtime costs, GPG2:393
trees described, GPG2: 388

B

Backfill buffers for underflow data, GPG2:

534-537
Backus-Naur Form (BNF; Backus-Naur

Notation), 21

Index

Ball and socket constraints, GPG4:246
Band-limited noise, GPG2: 466

Bandwidth
NetTool bandwidth simulator, GPG3:

560
packet compression and latency, GPG3:

578
secure sockets requirements for, GPG3:

554
wireless devices and, GPG3: 574, GPG3:

578-579
Barrera, Tony

article by, 225-231
contact and bio info, si

Barriers. See Obstructions or barriers; Occlu-

sion; Walls

Barycentric coordinates, GPG3: 427
Base-2 logarithms of integers, GPG3:

157-159
BaseResource class, GPG1: 80-83

Basic object memory manager, GPG1: 68
Bayesian networks, GPG4: 301
Beams

carving shadows with, GPG4: 427-435
special effects, GPG3: 413-416

Beardsley, Jason

article by, GPG3: 534-545
contact and bio info, GPG3: xxiii

Behavioral classes, GPG2: 53
hierarchy for, GPG2: 54-55

Behaviors

active behaviors and brain classes, GPG2:
267

AI design and, GPG2: 265-268

attraction and repulsion curves to model,
GPGé4: 355-365

behavioral module example, GPG2: 266
Combs method and fuzzy logic for,

GPG2: 342-350
emergent behaviors, GPG2: 255, GPG2:

332-333
event-driven behaviors for AI optimiza-

tion, GPG?: 251-252

flocking, GPG2: 330-336
Template Method pattern for assigning,

GPG2: 55
utility theory and evaluation of, GPG4:

339-340, GPG4: 343
Bell, Ian, GPG1: 133
Bengtsson, Ewert

article by, 225-231
contact and bio info, «xix«xiz

Bernoulli's equations, GPG4: 266-267
Bézier curves, GPG4: 171
Bézier patches, GPG3: 349-351
Big integers, GPG3: 168
Bilas, Scott

articles by, 56-57, 68-79, GPG1: 36-40,
GPGI1: 56-57, GPG1: 68-79,
GPG2: 3-4

contact information, GPG1: xxv, GPG2:
xix

Billboards

illusion of depth and, GPG3: 417-423
matrix for beam effects, GPG3: 413-416

Binary representations, macro, GPG3:
28-29

Binary space partitioning (BSP) trees, GPG2:
388

construction of, 56-57

Index

Constructive Solid Geometry construc-
tion with, 103-113

defined and described, 55-56
optimization of, 56-57, 59-63
sphere trees for, 55-63
splitter polygons, 55-56, 59-62,

109-111

Binary trees
vs, ABT Trees, 162

freelists and, GPG4: 48
wavelets principle and, GPG1: 182-184

Biquad resonant filters
coefficient calculation for, GPG3:

609-610

control parameters, GPG3: 609
denormalization and, GPG3: 609
implementation of, GPG3: 607-608
optimizations of, GPG3: 608-609

Bison parser, GPG3: 91, GPG3: 406
programmable vertex shader compilers,

GPG3: 409-410
BitArray class, GPG1: 101-102
BitArray2D class, GPG1: 102-103
Bit maps and bit mapping, fast bit blitter for,

GPG?: 92-99
Bitmask() function, GPG3: 158-159

Bitpacking, data compression technique for
network games, GPG4: 571-578

BitProxy class, GPG1: 102
Bit rot, 7
Bitwise operations, GPG1: 101-103
Blasco, Oscar

article by, GPG3: 424-432
contact and bio info, GPG3: xxiiiexiv

BLAS libraries, GPG4: 373-377
Blinn-Phong shading, normal distribution

function (NDF) variation, GPG3: 477,

GPG3: 479-482
Blitters, GPG2: 92-99
Blitting functions, GPG1: 523
Bloom, Burton H., GPG2: 133
Bloom Filters, GPG2: 133-140

definitions related to, GPG2: 134-135
described, GPG2: 134

exceptions lists and, GPG2: 139-140

flow chart illustrated, GPG2: 136
tuning, GPG2: 135-138

use fundamentals, GPG2: 137

Blow, Johnathan
article by, GPG4: 139-140
contact and bio info, GPG4: xxi

Blurs and blurring

influence propagation (smoothing or

blurring), GPG2?: 292-293

per-pixel blurring for distortion simula-

tion, GPG4: 482-484

Poisson Disc sampling for, GPG4:

482-483

Board, Ben

articles by, GPG3: 64-68, GPG3:

240-255
contact and bio info, GPG3: xxiv

Boer, James
articles by, 93-101, 697-711, GPG1:

8-19, GPG1: 41-55, GPG1: 80-87,
GPG2: 112-117, GPG2: 513,

GPG4: 19-26, GPG4: 613-619

contact and bio info, xxii, GPG1: xxv,

GPG2: xix, GPG4: xxi

Boids, GPG1: 305
CBoid class, 314-317, GPG1: 311-312

constraints on, GPG1: 308-309
perception range of, GPG1: 308

Boissé, Sylvain
article by, 571-577
contact info, 571

Bolton, John
article by, 317-328
contact and bio info, xxii

Bones
applying motion constraints to, GPG3:

195-198
bone animation keys, GPG2: 148
bone assignments, GPG2: 150-151
collision detection 3D bones-based

articulated characters, GPG4:

503-514

constrained inverse kinematics and,
GPG3: 192-198

cyclic coordinate descent (CCD), GPG3:

193-194
defined and described, GPG4: 504
deformation of, GPG3: 384-393
fast skinning method, GPG1: 471-472
hierarchy of, GPG3: 192-193, GPG3:

378
joint flexion and shrinkage, GPG3:

384-393
joint weighting, GPG3: 388-392
position and rotation of, GPG2: 148-149
quaternions to store matrices in, GPG1:

195-196
reference pose of, GPG3: 384-385
segmenting character geometry and,

GPG2: 421-422
skinning and, GPG3: 385-386

stitching, GPG1: 477-480°
vertex-accumulation buffer, GPG3: 378
web address for archives, links, and

resources, GPG3: 393
weighting, GPG2: 146-148, GPG3:

388-392

Boolean operators

Constructive Solid Geometry (CGS) and,

103-108

linking conditions with, GPG3:

287-288

Boolean values, text parsers, GPG2: 115
Bot creation, GPG1: 6

Bottlenecks
custom allocators and, GPG3: 56
profiling and, GPG3: 146
profiling module for identifying, GPG2:

74-79
schedulers and, GPG3: 12

Boundaries
grid boundaries, GPGé4: 273
periodic boundaries, GPG4: 273
reflecting boundaries, GPG4: 273
see also Obstructions or barriers

Boundary conditions, GPG4: 10
Bounding boxes

covariance matrix to improve, GPG4:

183-192 '
oriented bounding boxes (OBB), GPG4:

504
view-frustum culling and, GPG3:

379-380

757

see also Axis-aligned bounding boxes
(AABB); Bounding volumes

Bounding volumes, GPG1: 380
bounding volume trees, GPG2: 389
building, GPG4: 189-191
octrees and, GPG1: 440, GPGI1:

445-446
oriented bounding boxes, GPG4: 506
principal axes of, GPG4: 185-186
sphere collision detection algorithm,

GPGI1: 390-393
see also Bounding boxes

Bounds violations, defined and described,

GPG?: 69

Braben, David, GPG1: 133
Bragiel, Paul

article by, GPG4: 221-230
contact and bio info, GPG4: xxii

Brains
brain classes, GPG2: 267-269
brain queues and cyclic commands,

GPG2: 274-278

Brakes, constraints and rigid body dynamics,

GPG4: 249
Branching instruction in script languages,

GPG1: 5
Breakpoints, conditional breakpoints and

debugging, GPG4: 10
Breyer, Markus

article by, 307-315
contact and bio info, xxti

Bridge audio design pattern, GPG2:
514-515

Brownlow, Martin
articles by, 665-671, GPG3: 59-63,

GPG3: 349-352
contact and bio info, 665, GPG3: xxiv,

XXLI-NXTIL
BSP (binary space partitioning) trees, GPG2:

388
memory-efficient BSP trees, 521-525

B-splines
camera control curves, GPG1: 374-376
vs. hermite splines, GPG1: 470

Buchanan, Warrick
articles by, 177-187, GPG4: 393-398

contact and bio info, xxiii, GPG4: xxii

Budge, Bill
article by, GPG4: 51-59
contact and bio info, GPG4: xxiz

Buffers
allocation in multi-language games,

GPG3: 106
backfill buffers for underflow data,

GPG?: 534-537
buffer policy for logging, GPG3:

132-133
depth buffers for shadow mapping,

GPG4: 411-414

index buffers, GPG2: 372-375, GPG2:

378-379
in OpenAL, GPG4: 596
priority buffers, GPG2: 481487
shadow buffers, GPG4: 411-425

Bugs
bug prevention methods, GPG4: 16

see also Debugging
Buildings, GPG1: 490-498

algorithms for, GPG1: 492-493

758
sstecnomeeonnenee

Bump maps, GPG3: 424-432, GPG3:
481-482

applying to objects, GPG1: 555-556
curvature simulation using, GPG3:

424-432
Dot3 Bump mapping, GPG2: 456-459
hand-made, GPG3: 430
NDF shading and, GPG3: 481-482
normals, choosing space for, GPG1:

556-557
tangent space bump mapping, GPG1:

557-559
texture space bump mapping, GPG1:

559-561
Buoyancy, simulating, GPG1: 191-193
Burk, Phil

articles by, GPG3: 606-612, GPG3:
622-629

contact and bio info, GPG3: xxiv
Burning materials, modeling with cellular

automata, GPG3: 210-211
Byrd, John

article by, GPG3:155
contact and bio info, GPG3: xxv—x«xvi

C
C++, GPG4: 3

deprecation facilities for, GPG2: 62-65
exporting classes from DLLs, GPG2:

28-32

generic tree containers in, GPG4: 51-59
implicit linking support in, GPG2:

33-34
Lua programming language and, 116,

117-120, 121-122

name-mangling facility of, GPG1: 65
optimization techniques, GPG2: 5-15
policies in, 131-133
property class for generic member access,

GPG2: 46-50

public member variables, GPG4: 36
recursive searching, GPG2: 89-90
stack winding and, GPG2: 88-90
states and, 96

templates for reflection in, 39-54
see also Standard Template Library, C++

(STL)
Cache misses, 159-160, GPG2: 18
Caches

application-level caching for network
games, GPG4; 550

cache flushing for debugging, GPG4:
12-13

cache-oblivious implementation of ABT
Trees, 159-167

smart texture caches, GPG3: 460
task processing and processor affinity,

360
Cafrelli, Charles

article by, GPG2: 46-50
contact and bio info, GPG2: xix

Calderas, inverting, GPG1: 509-510
Callbacks, GPG2: 545, GPG2: 547-549

DirectPlay 8.1, GPG3: 566-569
Calling conventions, GPG1: 61-62
Calls

function, function-binding code genera-
tor, GPG3: 38-42

profiler, GPG1: 123

Index
osnesnennnisnren anton enon tent nfminnatsce teenies

remote procedure calls (RPCs), 627-641,

GPGI1; 56-58

Call-stack tracking in logging systems, GPG4:
20-25

Camera class and audio scripting, GPG4: 630
Camera cuts, GPG2: 220, GPG2: 225-226

Cameras
auto-zoom features, 490-491
B-spline curves for control, GPG1:

374-376
camera cuts, GPG2; 220, GPG2?:

225-226

camera movement in a 3D car simulator,

483-494

chase cameras, GPG4: 306-307
control techniques for, GPG1: 371-379
damped spring systems for camera

movement, GPG4: 305
damping, GPG1: 377-378
dynamic camera spheres, GPG4: 308

exposed functionality of, GPG1: 3
extracting camera information, GPG4:

151-156

eye space and depth value, GPG1:
363-364

field-of-view angle calculation, GPG4:
153

first-person cameras, GPG1: 371-373
flythrough paths for, GPG2: 220-227
free-floating cameras, GPG2: 425

human camera movement model,
487-493

impostoring and camera distance, GPG2:
494

“lazy” rotation vs, strafe mode, GPG4:
306

lens-flare effects, GPG1: 515-518,
GPG?: 474-480

level of detail and, GPG1: 433-434
line-of-sight and occlusion, GPG4: 312
movement of, GPG4: 303-307
near and far distance calculation, GPG4:

152-153

occlusion and, GPG4: 311-313
OpenGL and, 490
orientation interpolation, GPG2:

222-223

orientation of, GPG1: 366, GPG1: 373
pathfinding for third-person cameras,

GPG4: 312-313

physical camera collisions, GPG4:
310-311

position calculation, GPG4: 151-152,

GPG4: 303-307

position interpolation, GPG2: 220-222
precipitation textures and, 510-511

quaternions and control of, GPG1:; 379
scene boundaries for, GPG4: 307-311
scripted cameras, GPG1: 373-377
simplifying camera scenes, GPG4: 313
smoothing camera motion, GPG4;

95-101

spherical coordinates system for camera
location, GPG4; 304-305

spline-based controls, 233-246, GPG1:
374-376

third-person cameras, GPG1; 378,
GPG4: 303-314

updating, GPG4: 306-307

user control over, GPG4: 307
vector cameras, GPG1: 366-370
view direction calculation, GPG4: 151
virtual camera collisions, GPG4:

308-310
web cameras, GPG2: 153-162

zooming, GPG1: 377

Card, Drew
article by, GPG3: 367-371
contact and bio info, GPG3: xxv

Carter, Simon

article by, GPG2: 265-272
contact and bio info, GPG2: xix

Cartesian coordinates, spherical coordinate
conversions, GPG4: 304-305

Cartoon rendering
programmable vertex shaders and, GPG2:

444-45]
silhouette edge detection and, GPG2:

436-443
texture mapping and, GPG2: 444-451

Catmull-Rom splines, 462-464, GPG1: 266,
GPG1: 267, GPG1: 376-377, GPG4:
171

Caustics, simulating, GPG1: 598-599,

GPG?: 402-405
CBoid class, GPG1: 311-312, GPGI1:

314-317

CBox class, GPG1: 309-310

CCD (cyclic coordinate descent), GPG3:
193-194

CD-ROM contents, GPG3: 639-640,

GPG4: 657-658
CEaseInOutInterpolation class, GPG1: 149

CEaseOutDividelnterpolation class, GPG1:

147
CEaseOutShiftInterpolation class, GPG1:

147-148
Celes, Waldemar

article by, GPG4: 147-156
contact and bio info, GPG4: xxii

Cellular automata, GPG2: 506-508
active scenery, GPG3: 203-204
air, modeling air pressure, GPG3: 200,

GPG3: 206
converting polygons to cells, GPG3:

203
core processing model, GPG3: 204-205
defined.and described, GPG3: 201-203
dynamic update rates, GPG3: 212-213
effects to be created with, GPG3:

200-201

fire models, GPG3: 210-212
flow models, GPG3: 207-208
fluid simulation, code listings, GPG3:

205
heat models, GPG3: 209-212
neighbor cells, GPG3: 201
octrees for storage, GPG3: 204
Passive scenery, GPG3: 203
physical size of cells, GPG3: 202
physics routines for, GPG3: 204
procedural textures and hardware-based

creation of, GPG3: 456
totally destructible worlds and, GPG3:

203
walls, modeling thin walls, GPG3:

202-203

water models, GPG3: 206-207

Index 759
casera esate hse tsetse nH

Cellular phones as game platforms, GPG3:
573-581

CED (computational fluid dynamics). See

Cellular automata
CFlock class, GPG1: 310-314
Chaos, adding via messaging, GPG1: 223
CharacterStateMgr class, GPG4: 565-568
Chat rooms, vulgarity filters for, 621-626
Cheating

Internet Protocol Security (IPSec)

standard, GPG4: 546-555
online games and, GPG4: 538
preventing in multiplayer games, GPG3:

520-522

Chemical agents, kill algorithms for, GPG4:

216

Cheng, Jamie

article by, 329-342
contact and bio info, xxiii

Chess, Zobrist hash and, GPG4: 141-143
Child classes, data, GPG2: 43-44
Chincisan, Octavian Marius

article by, 103-113
contact and bio info, sxxiiz

Chinese. See Multiple-language games
Choke points, GPG3: 272, GPG3: 279-283
Christensen, Christopher

article by, GPG3: 307-320
contact and bio info, GPG3: xxv

Chunks, in Lua programming language, 117
Ciphers as mixing functions, GPG2: 129
Classes

declaration of, GPG3: 33-36
exporting from DLLs, GPG2: 28-30

saving and loading, 149-157
see also Classes, C++ classes; Specific classes

Classes, C++ classes
coupling, avoiding, GPG1: 15-16
designing in Object-Oriented Program-

ming (OOP), GPG1: 11-12
finite-state machine class, GPG1:

237-248
handle class, GPG1: 70

hierarchies, GPG2: 51-61
manager classes, GPG1: 15-16
proxy classes, GPG1: 102-103
see also Specific classes

ClassifyToken code listing, 20-21
Class member functions, exporting from

DLLs, GPG2: 30-31

Client / Server environments
for MMPs, GPG3: 506-507
NAT and protocols for, 651-654
for online gaming, GPG3: 496-497,

GPG3: 501-502

parallel-state machines in, GPG4:

563-570
security associations in, GPG3: 547

time and consistency management for

MMORPGs, GPG4: 579-589

voice servers and clients with DirectPlay,
GPG4: 569-571

CLinearInterpolation, GPG1: 148

Clocks, GPG3: 8, GPG4: 27-34
precision of, GPG4: 33-34

synchronization for online gaming,

GPG3: 493-495

Closed-form equations, used to calculate

nearest points on lines, GPG2: 194-198

Cloth
elongation functions and limits, 428
external forces effects on, 428-430
fast deformations with multilayer physics,

GPG4: 275-285
internal forces (elasticity of fabric),

425-428
Kawabata Evaluation System (KES), 421

mass-spring model for animation of,
421-433

Clouds
animated cloud shadows, GPG3:

436-438, GPG3: 440-442, GPG3:
447-449

characteristics of, GPG2: 463-464
controlling density of, 500-503
cube maps and cloud cover, GPG3:

447-449
FBM fractals used to create, GPG2: 245
mapping to skyplane, GPG2: 469-470
procedural clouds, 499-513, GPG2:

463-473
random number generation and, GPG2:

464-465
scalability of procedural generation

techniques, GPG2: 471-472
“vapor” creation, GPG2: 469

Cluster maps, GPG3: 237-238

Clutter. See Impostors
Code

in-game profiling, GPG1: 120-130
reusing, GPG1: 8

“self aware” code, 39
shared code and HUDs, 12-13
streaming classes to simplify, 628-630

Code bloat, GPG2: 11-12
accidental complexity in Al, GPG2:

258-259 .
inline functions and, GPG2: 18

Codecs
bitpacking codec, GPG4: 575-577
Ogg Vorbis, GPG3: 589-593

Code generators and code generation
programmable vertex shader compilers,

GPG3: 411
state machines and, 169-175

Cohesion, GPG1: 305-306
flocking rule, GPG2: 330

Collaborative work, UML game engine,
GPG3: 73-82

Collision detection, GPG1: 390-402
altitude relative to collision plane, GPG2:

182-183

barycentric coordinates, GPG3; 427
bounding sphere, GPG1: 390-393
bounding volumes (proxy geometry),

GPG4: 505-506
brute-force comparison algorithm for,

GPG2: 228
camera scene boundaries and collision

geometry, GPG4: 307-308
character movement and, GPG3: 321
collision errors, GPG4: 159
collision meshes, GPG4: 505
contact points and, GPG4: 253-263
costs of, 468

detection vs. resolution, GPG4: 503-504

distance to collision point, GPG2:
184-185

finding pairs with RDC, GPG2: 234-235
kickback collisions, GPG2: 187-188

line / line intersections, GPG2: 191-204
line-plane intersection, GPG1: 394-395
location of collision point, GPG2:

183-184
message-based entity management

systems and, GPG4: 81
octree construction for culling, GPG1:

439-443
oriented bounding boxes, GPG4: 506
path-finding and, GPG3: 321-332
point-in-triangle test, GPG1: 396-397
probes or sensory for, GPG3: 235
real-time game engines and, GPG4:

503-514
Recursive Dimensional Clustering

(RDC), GPG2: 228-238

reflected vectors (bounces), GPG2:

185-187
sphere trees for, GPG3: 532
triangle “flattening,” GPG1: 395-396
triangle-to-triangle, GPG1: 390, GPG1:

393-397
vector / plane intersections, GPG2:

182-190

Verlet-based physics engine and, GPG4:
236-237

see also Bounding boxes; Collisions

Collision model path-finding
described, GPG3: 321-322
fault-tolerant AI for, GPG3: 322-325
implementing movement along the path,

GPG3: 329-331

layered collisions, GPG3: 328-329
unobstructed space, GPG3: 325-328

Collisions
audio coordinated with, GPG4: 654-655
with damping, GPG2: 188-190
pathfinding and, GPG2: 317-323
sphere-to-plane collisions, GPG2:

189-190
of 3D bones-based articulated characters,

GPG4: 503-514
see also Collision detection

Collision shapes, selecting, GPG2: 318-321
Color

polygon tinting method to apply color,
GPG4; 452, GPG4: 457

sepia tone conversions, GPG4: 461-463
team colors applied to 3D models,

GPG4: 451-459
Combat games

AI to adjust difficulty and dramatic
tension in, GPG4: 315-324

artillery duel scenario, 322-325
automatic cover finding with navigation

meshes, 299-305

boss scenario for RPGs, 325-327
Lanchester Attrition models to predict

results, 317-328
melee (orcs vs. humans) scenario,

318-320
narrow staircase (orcs vs. humans)

scenario, 320

Combs, William, GPG2: 343

Combs Method for managing exponential

growth, GPG2: 343-349
proof for, GPG2: 348-349

COM interface search, alternatives to, GPG2:
46-50

Command audio design pattern, GPG2; 517
Command queues, audio design and, GPG2:

Bul
Command stream servers, GPG4: 547
Comments, macro to add to asserts, GPG3:

29
CompactableChunkPolicy allocation policy,

139
Compatibility issues

cross-platform compatibility, GPG3: 69
portable serialization for online games,

GPG3: 536-545
RTTI edit/save system and file compati-

bility, GPG4: 120-122
Compiled Vertex Arrays (CVA), GPG1:

356-358, GPG1: 359-360
Compilers and compiling

bug prevention and, GPG4: 16
calling conventions of, GPG1: 61-62

conditional compilation, GPG4: 40
floating-point exceptions and, GPG3: 70
IDL compiler, 635-636

internal compiler errors, GPG4: 13

limitations of, GPG1: 24, GPG1: 31

programmable vertex shader compiler,
GPG3: 406-411

templates as virtual, GPG1: 20-22

tokenizers for, GPG3: 40
Compile-time asserts, macro for, GPG3: 30
Compile-time constants, macro for, GPG3:

28-29
Component-based object management, 25-37
Component technologies, pie menus, GPG3:

119-124

Composable controllers, 450

Composite audio design pattern, GPG2:

515-516
Composition, GPG1:; 12
Composition tag, XML audio tag, GPG4: 627
Compression

audio compression, GPG3: 585, GPG3:

587-594, GPG3: 613-621
bitpacking for network games, GPG4:

571-578
image compression, GPG1: 185-186
latency and, GPG3: 578
motion capture data compression, GPG4:

497-502
of quaternions, GPG3: 187-191

voice compression with vocoder, GPG3:
613-621

wavelets, GPG1; 182-186
Computation, history and development of,

GPG2: 165-166
Computational fluid dynamics (CFD). See

Cellular automata
Concave solids and CGS, 108-109
Concept stage of game development, GPG3:

16
Conditional compilation, GPG4: 40
Conditions

Boolean operators as connectors, GPG3:

287-288

defined and described, GPG3: 286

Conduction, modeling with cellular automata,
GPG3: 209-210

Consistency management, GPG4: 579-589

Console game systems
data loading, GPG1: 90-91
debugging, GPG1: 115-119
depth-of-play technique, GPG1:

133-140
online services for, GPG4: 531
physics and fast deformations, GPG4:

283-284
screenshots and memory usage, GPG4:

390-391
Constants, in data-driven design, GPG1: 3-4

Constraints

ball and socket constraints, GPG4: 246
brakes and rigid body dynamics, GPG4:

249
friction, GPG4: 249

Jacobian constraints, GPG4: 243
motors and, GPG4: 249
positional error corrections, GPG4:

249-250
rigid bodies and, GPG4: 241-250

rope-and-pulley constraints, GPG4:
245-246

rotation and, GPG4: 243-245, GPG4:

246
screw constraints, GPG4: 246
stacks with hard contacts, GPG4; 248

velocity constraints, GPG4: 242-243

Constructive Solid Geometry, BSP trees and,
103-113

ConstructOnceStack allocation policy, 139

Constructors
explicit vs. implicit, GPG2: 8
optimization and, GPG2: 7-8

Contact points
clustering contacts, GPG4: 255, GPG4:

259-261

contact identifiers, GPG4: 262
cube map clustering, GPG4: 259-260
defined and described, GPG4: 253
hash values and, GPG4: 262
K-means clustering, GPG4: 260
persistence and, GPG4: 255-256, GPG4:

261-262

preprocessing and, 256-259, GPG4:
254-255

reduction of, GPG4: 260-261
Containers

associative containers, GPG1: 42
container adapters, GPG1: 42, GPG1:

53-54, GPG1: 281-282

maps, GPG1; 50-53
STL, GPG1: 41-42

Containment, GPG1: 12
Continents, GPG3: 269
Contraction (left) product, 207-208
Contributing to Game Gems, GPG4: xii—xiti
Control schemes

camera-oriented controls, GPG2: 425
character rotation and input, GPG2:

427-428
converting player’s input for third-person

control systems, GPG2: 425-427
dampening formula for smooth character

control, GPG2: 427-428
simple animation scheme, GPG2:

429-43]
third-person control of animated charac-

ters, GPG2: 425-432

Index

ControlState class, GPG3: 232 ~_
for MMPs, GPG3: 509, GPG3: 512

Convection, modeling with cellular automata,
GPG3: 209-210, GPG3: 211

Conversion stage of game development,
GPG3: 16-17

Convex hulls, GPG3: 273-277
defined and described, GPG3: 273
Graham’s algorithm, GPG3: 276

Convolution, GPG2: 526-527
Conway, John, GPG2: 506
Conway’s Game of Life, GPG3: 201
Copy-on-write data structures, GPG4:

556-561
Cordero, Juan M.

article by, 421-433
contact info, 421

Core editor modules, generic, GPG2: 46-50
Coroutines in Lua programming language,

124 ,

Corréa, Wagner
article by, GPG3: 353-358
contact and bio info, GPG3: xxv

Corry, Chris

article by, GPG4: 3-4
contact and bio info, GPG4: xxii

Cosine
approximation techniques (See Trigono-

metric functions)

lookup tables for cosign functions,
GPG2: 174-175

Costs
A* algorithm, GPG3: 295-296, GPG3:

298-300, GPG3: 304-305
arrival costs, GPG1: 295
of autolists, GPG3: 66
heuristic cost, GPG1: 276-278
pathfinding, GPG1: 259-260, GPG1:

264-265, GPG3: 295-296, GPG3:
298-300, GPG3: 304-305

VIPM memory costs, GPG2: 363-364
Coulomb friction, GPG3: 215-219
Counters, in trigger systems, GPG3: 290-292
Coupling of classes, avoiding, GPG1: 15-16
Covariance matrix

bounding boxes and, GPG4: 183-192
defined and described, GPG4: 183-187
eigenvectors and eigenvalues, GPG4:

187-192

Cover

navigation meshes and finding, 299-305
reserving cover points, 304

CPLP algorithm, GPG3: 355-358
CProfileIterator class, GPG3: 152
CProfileManager class, GPG3: 150-151
CProfileNode class, GPG3: 151-152
CProfileSample class, GPG3: 150
Cramer’s rule, 218, GPG2: 196-197
Crashes

causing deliberate, GPG3: 69-70
preventing crashes in online games,

607-608

Creational dependencies, GPG2: 302-304
Crisp sets, GPG1: 319-320
Critically damped ease-in / ease-out smooth-

ing, GPG4: 98-101
Cross-platform development, libraries,

designing and managing, GPG4: 35-41
Crosstalk, GPG1: 336-337

Index

Cruz, Ignacio Incera
article by, 79-92
contact and bio info, xxiv

Cryptographic hashes as mixing functions,
GPG?: 129

Cube environment mapping, GPG2: 419
Cube maps

cloud cover, encoding, GPG3: 447-449
clustering, GPG4: 259-260
data movement, GPG3: 445-446
day / night effects, GPG3: 450
defined and described, GPG3: 444
normalization, GPG2: 459-460

rendering, GPG3: 446
as sky spheres, GPG3: 448
vertex buffers and, GPG3: 446

Cubic-b splines, GPG4: 172
Cubic interpolation, DSP techniques, GPG2:

528
Culling

ABT Trees and memory culling algo-
rithms, 159-167

backface culling and lighting, GPG4:
437-441

distance-based culling, GPG3: 531-533
Field of View Culling Code, GPG1:

425-429
frustum culling, 65-77, GPG1: 422-423

hierarchical back-face culling, GPG3: 378

in multi-player games, GPG3: 530-533
occlusion culling, GPG1: 421-431,

GPG3: 353-358
occlusion horizon and horizon culling,

GPG4: 515-527
octree construction for, GPG1: 439-443
polygon culling, GPG4: 438-439
sphere trees for, GPG2: 384-387, GPG3:

531-533
subdivision surfaces, GPG3: 381-382
Verlet-based physics engine and, GPG4:

238-239
view-frustum culling, GPG3: 379-380

Cursors
cursor movement testing, GPG3: 107
mouse and cursor response, GPG3: 114

Curvature
algorithm to simulate, GPG3: 425-426

friction and, GPG3: 225
movement along curves, animation,

233-246
Curve balls, aerodynamics for, 407
Custom data files, parsers for, GPG3: 83-91

Cycle counters, GPG2: 180
Cyclic Coordinate Descent (CDC), GPG3:

193-194
Jacobian Transpose as alternative to,

GPG4: 193-204

Cygwin, GPG3: 38-39

Cylinder-frustum intersection test, GPG1:

380-389
algorithms, GPG1: 382-384
radii, calculation of effective, GPG1: 382,

GPG1: 383

Cylinders, generalized, GPG1: 258

Cylinder tests, GPG1: 380-389
Czuczor, Szabolcs

article by, 483-494
contact and bio info, xxiv

D
Dachsbacher, Carsten

article by, GPG4: 399-410
contact and bio info, GPG4: xxiii

Dalton, Peter
articles by, GPG2: 16-19, GPG2:

66-73
contact and bio info, GPG2: xx

Dalton, Peter, contact and bio info, 16-19,
66-73, GPG2: xx

Damage, cellular automata to model, GPG3:

200

Damon, William E., III

article by, 3
contact and bio info, xxiv

Dampening formula for smooth character

control, GPG2: 427-428

Damping, GPG1: 377-378
damped spring system for camera

movement, GPG4: 305
damping functions, GPG4: 291
damping ratio for systems, GPG4: 305
in modal analysis, GPG4: 291, GPG4:

293
smoothing, damped spring and critical

damping, GPG4: 97-98
Data

bit arrays for, GPG1: 101-103
compression techniques, GPG4:

497-502, GPG4: 571-578
duplicate data syndrome, GPG1: 6-7
EAX environmental data, GPG4: 636

inheritance, GPG1: 6-7
junk data and security, GPG1: 107
key-value pair storage mechanisms,

GPG4: 556-561
loading quickly, GPG1: 88-91
metadata, 39 :
motion capture data compression, GPG4:

497-502
preprocessing, GPGI1: 88, GPG2:

113-114

runtime decompression of motion
capture data, GPG4: 501

saving, GPG1: 89
tools for creating, GPG1: 7
user data, saving and loading, 150-157
wavelets as analysis tool, GPG1: 185-186
see also Data-driven design

Databases
game save databases and persistent type

information, GPG2: 44
handle-based resource manager for,

GPGI: 68-79
on-the-fly object management, GPG4:

103-110

tweakable instance database, GPG2:
123-124

Data-driven design, GPG1: 3-7
duplicate data, GPG1: 6-7
editing tools in, GPG1: 7
hard coding and, GPG1: 3-5

object management systems for, GPG4:

103-110

text files and, GPG1: 3 :

Data Stream Definition (DSD) of XDS,

GPG4: 127
Dawson, Bruce

761

articles by, GPG2: 105-111, GPG2:

258-264
contact and bio info, GPG2: xx

Day / night cycles, GPG3: 450
D3DxX fragment linker, 591
D* (dynamic A*) algorithm, 383-389

DeAllocateMemory() routine on CD, GPG2:

67
Deallocation function, GPG3: 52
“Death notifications,” GPG2: 269-270,

GPG4: 80
Debug flags, GPG3: 129-132

configurable flags, GPG3: 131
flag policy, GPG3: 131-132
initializing with configuration files,

GPG3: 131

Debugging
abstract interfaces and, GPG2: 26

Al systems, GPG4: 15
bug prevention, GPG4: 16-17

bug reports, GPG4: 6-7
cache flushing, GPG4: 12-13
code bloat and, GPG2: 11
configuration sets for, GPG4: 37-38
console game systems, GPG1: 115-119
debug flags, GPG3: 129-132
deprecated functions and, GPG2: 63
“disappearing” bugs, GPG4: 12
documentation and, GPG4: 16
drop-in debug memory manager, GPG2:

66-73
external bug sources (libraries etc.),

GPG4: 13-14
five-step debugging process, GPG4: 5—9
fixing bugs, GPG4: 8-9
floating-point exceptions, GPG3: 71

hypotheses and hypothesis testing,
GPG4: 7-8

internal compiler errors, GPG4: 13

journaling services for, GPG3: 136-145
logging systems and, GPG1: 233, GPG3:

129, GPG4: 15, GPG4: 19-26

macros, GPG3: 31-32
memory allocation and, GPG4: 16
of message-based entity management

systems, GPG4: 82
messages and, GPG1: 222
multiplayer games, GPG3: 503
OutputDebugString (), Windows NT,

GPG2: 263
parallel computation and, GPG4: 10
pattern identification, GPG4: 11-14
playback, GPG4: 15
random pool systems for, 679
real-time in-game profiling, GPGIl:

120-130

real-time remote debug message loader,

143-148

release-build bugs, GPG4: 12
reproducibility, 6, 15, GPG2: 105-106,

GPG4: 6, GPG4: 15
RPCs and, 640
runtime variable changes and, GPG4: 15
solution testing, GPG4: 9
source control and, GPG4: 11
Stats system for, GPG1: 115-119

structured exception handling and micro-

threads, GPG2: 263

762

sync problems and “bizarre” behavior,
GPG4: 12

time zone “lock up,” GPG3: 494
tips from experts, GPG4: 9-11
tools for, GPG4: 10, GPG4:; 14-16
see also Debug flags

Decals
algorithm for, GPG2: 411-413
on complex surfaces, GPG2; 411-415
defined, GPG2: 411
triangle clipping and, GPG2: 413-414

Decision making
criterion for decision making, 342-343,

GPG4; 340-341
hashes and, GPG4: 141
intelligent agents and, GPG2; 287
maximin and maximax criteria for,

GPG4; 342-343
maximum expected value and, GPG4;

340-341
NPC decision making, GPG4; 325-335
resource allocation trees and, GPG2:

301-302

risk and, GPG4: 343
strategic decision making, 305, GPG2:

301-302

tactical decisions, GPG2: 287-316
utility based decision architecture, GPG4:

337-344
utility theory and, GPG4: 339-340,

GPG4: 343
see also Decision trees

Decision trees

balance of, 347-348
defined and described, 345—346

implementation of 2-Way threaded
decision trees, 349-350

initial search source, code listing for, 349
object-oriented utility based decision

architecture, GPG4: 337-344
query algorithm for multithreaded

architecture, 345-352
Declaration of classes, GPG3: 33-36
Decorator audio design pattern, GPG2: 517
Decryption. See Encryption
Deformations

backbone layer for skeletal structures,
GPG4; 278

bones and, GPG3: 384-393
equation for deformable simulation,

GPG4: 289-292
hybrid simulations, GPG4: 295-296
mesh deformation and skin calculation,

GPG?: 149
modal analysis for, GPG4: 287-298
multilayer physics and fast deformations,

GPG4: 275
Verlet integrators for updates, GPG4:

260-261

volume deformations, GPG4: 279-280
Defuzzification methods, GPG1: 327-328
Delimiters for tokenizers, 18
DeLoura, Mark A.

articles by, 695, xi-xiii, GPG3: xi—xiii,
GPGA4: xi-xiv

contact and bio info, xi, xxiv-xxv, GPG1:

xxv, GPG2: xx, GPG3: xxv, GPG4:
XXTiL

Demachy, Thomas
article by, GPG3: 73-82
contact and bio info, GPG3: xxvi

Dempster-Shafer Theory, GPG4: 301
Denormal Exceptions, GPG3: 70-71
Dénouement, GPG4: 316
Dependency

creational dependencies, GPG2: 302-304
and resource allocation trees, GPG2:

302-304

vulnerable dependencies, GPG2:

304-305

DEPRECATE macro, GPG2: 64-65

Deprecation
adding facilities to C++, GPG2: 62-65
implementation of, GPG2: 64-65

Depth buffers for shadow mapping, GPG4:
411-414

Depth values of vertex, GPG1: 361-365
Deques, GPG1: 41-42

Standard Template Library (STL),

GPGI1: 48-50
Dereferencing operators, GPG3: 47
Design, game design, GPG1: 11-12

designer control of games, GPG4:
319-320

UML game engine and collaboration,
GPG3: 73-82

Design patterns
autolists, GPG3: 64-68

see also Audio design patterns
Desirability values, GPG2: 290-292

Destruct function, GPG3: 53
Destructors, virtual destructors in abstract

interfaces, GPG2: 23
DeSylva, Chuck

article by, 345-352
contact and bio info, xxv

Determinism
defined, GPG2: 105

random numbers and, GPG2: 109
see also Predictability

Development stages, game frameworks and,
GPG3: 15-16

Dhupelia, Shekar V.
articles by, 601-602, 621-626, 673-679,

GPG4: 553-559
contact and bio info, 673, GPG4: xxiii

Dhupelia, Shekhar, contact and bio info, xxv
Diagonalization, GPG1: 156, GPG4:

185-186

Diamond-square algorithm, GPG1: 505-507
Dickheiser, Mike

article by, 393-394
contact and bio info, «wv

Dictionaries, for massively multiplayer games
(MMPs), GPG3: 508

Dietrich, D. Sim, Jr.

articles by, GPG1: 543-548, GPG1:
555-561, GPG2: 435, GPG2:
481487

contact and bio info, GPG1: xxv, GPG2:
ox

Difficulty
AI to control dramatic tension and,

GPG4: 315-324
calculating difficulty, GPG4: 320-322

Di Giacomo, Thomas

Index
LaaRMEM AMMA MMM MMMM AMMAN ACARI pepaactameatane seceeteencsuasctnomaaeetestnnuinnramnmcrotatenaasini veszaeeveieeneuetuneenscesaersntanasieenntssceoonsenenciveanayeoeennunne eit

articles by, GPG4: 275-285 _
contact and bio info, GPG4: xxit#ixiv

Digital Signal Processing (DSP)

convolution, GPG2: 526-527
cubic interpolation, DSP techniques,

GPG?: 528
delays, GPG2: 527

filtering technique, GPG2: 525-526
interactive audio processing pipeline,

GPG2: 529-538
interpolation, GPG2: 528
linear interpolation, DSP techniques,

GPG?: 528
reverberation effects, GPG2: 527
sample averaging, DSP interpolation,

GPG2: 528
sample doubling, DSP interpolation,

GPG?: 528

techniques for, GPG2: 525-528

Dijkstra’s algorithm, GPG1: 294
Diplomacy in RTS gaming, 364
Direct3D, implementation of projection

matrix, 291-293

DirectPlay 8.1
architecture described, GPG3: 561-562

context values (user contexts), GPG3:

568-569
data transmission, GPG3: 562-566

DPNSVR host monitor, GPG3: 562
for First Person Shooters, GPG3:

563-564
message flow and messaging in, GPG3:

562-566
for MMPs, GPG3: 565
multithreading, GPG3: 566-569
troubleshooting resources, GPG3:

571-572
voice communications, GPG3: 569-571

DirectSound 3D, GPG3: 595-599, GPG4:

625
EAX audio extensions and, GPG4: 638

DirectX, GPG4: 493
DLLs and required components, GPG2:

34-36
team color DirectX implementation,

GPG4: 452-456
Dispatch systems for messages, GPG3:

525-527
Distance, computing, GPG1: 412-420
Distance-time functions, 234-244
Distortion, heat or haze post-processing

effects, GPG4: 477-485

Distributed reasoning, GPG4: 345-354

arbiter design, GPG4: 350-351
command fusion, GPG4: 346-348
voting space, choosing, GPG4: 351-352

Division by Zero Exceptions, GPG3: 70
DLLs. See Dynamic Link Libraries (DLLs)
D’Obrenan, Nathan

article, GPG2: 153-162

contact and bio info, GPG2: xxi
Document type definition (DTD), GPG3:

111-112

Doom, GPG1: 490-491

Doors, cellular automata and scenery, GPG3:
203

Dot3 Bump mapping, GPG2: 456-459
Dot (inner) product, 207

Index

Double-ended queues, GPG1: 41-42, GPG1:
48-50

Dougan, Carl
article by, GPG2: 215-219
contact and bio info, GPG2: xxi

Dougherty, Michael
article by, GPG4: 465-475
contact and bio info, GPG4: xxiv

Downloads, content downloads for online
games, GPG4: 536-537

Downmixing, audio compression, GPG3:

588-589
DP (dynamic programming) algorithm

code listing for, GPG4: 331-333
pathfinding, GPG4: 325-335
uses of, GPG4: 333-334

Drag, aerodynamics and, 396-398, 400-401,

404-405
Drettakis, George

article by, GPG4: 399-410
contact and bio info, GPG4: xxiv

Drop-in debug memory manager
logging, GPG2: 68-70
memory allocation and deallocation

routines, GPG2: 67-68
reports from, GPG2: 70-71

DTD (document type definition), GPG3:
111-112

Duals of multivectors, 213

Dubé, Jean-Francois
article by, 499-513.
contact and bio info, «xvi

Ducker, Mike
article by, GPG3: 240-255
contact and bio info, GPG3: xxv

Duplicate data syndrome, GPG1: 6-7
Duquette, Patrick “Gizz”

articles by, 143-148, 611-620

contact and bio info, xxvi
Dust, cellular automata to model, GPG3: 200

DX9 2.0-level shaders, combined shadow
buffers and, GPG4: 422-424

Dybsand, Eric
articles by, GPG1: 237-248, GPG2:

337-341
contact and bio info, GPG1: xxv, GPG2:

oxi
Dynamic areas, terrain analysis of, GPG3:

270-272
Dynamic_cast operator, GPG?: 42

Dynamic HTML, implementing pie menus

with, GPG3: 119-122

Dynamic Link Libraries (DLLs)
API functions, GPG2: 36
class member functions, exporting,

GPG?: 30-31

Direct X components and, GPG2: 34-36

explicit vs. implicit linking and, GPG2:

33-34
exporting C++ classes from, GPG2:

28-32
factories and, 181
FreeLibrary, GPG2: 34
generic function-binding, GPGI1: 56,

GPGI1: 66
GetProcAddress, GPG2: 34-36, GPG2:

on
LoadLibrary, GPG2: 34, GPG2: 37

763

memory-tracking programs and, GPG2:
29

OS specific features, GPG2: 36-37
virtual class member functions, exporting,

GPG2?: 31-32

Dynamic type information (DTT) class

described, GPG2: 38-39
exposing and querying, GPG2: 39-40
generic objects and, GPG2: 41-43
inheritance and IsA function, GPG2:

40-41

Dynamic variables, GPG4: 613-619

E
EAGLE (Environmental Audio Graphical

Librarian Editor), GPG4: 635, GPG4:

637-638
EAX audio extensions, GPG4: 638-647

control levels, GPG4: 642-643
DirectSound and, GPG4: 638

EAX environmental data, GPG4: 636
features available in, GPG4: 643
material presets, GPG4: 644
property sets for, GPG4: 639-642

Economic systems, resource allocation trees

and, GPG2: 302, GPG2: 304
Edge collapse, GPG1: 455, GPG1: 461-462,

GPG2: 365, GPG3: 370-371, GPG4:

431-433
binned vertices, GPG2: 365
edge IDs, GPG4: 432-433
for mesh optimization, GPG4: 431-432

Edge detection, GPG2: 502
silhouette edge detection and rendering,

GPG2: 436-443
Edge-of-the-world problems, vector fraction

for exact geometry, GPG3: 160-169
Edges :

difficult, GPG1: 458-459
edge choice functions, GPG1: 458
edge collapse, GPG1: 455, GPG1:

461-462, GPG2: 365, GPG3:
370-371, GPG4: 431-433

edge detection, GPG2: 436-443, GPG2:

502

edge-of-the-world problems, vector
fraction for exact geometry, GPG3:
160-169

edge split, defined, GPG2: 365

selection improvements, GPG1: 462
Editing tools

context-sensitive HUD’s for, 5-15
custom editing tools, 8

in data-driven design, GPG1: 7
game level, GPG1: 7
heads-up editing, 9-10
Stats system for data-editing, GPG1:

115-119

“tweaker” applications, 53
UMLPad flow chart editor, 170

Education for game developers, xi/—witt
Edwards, Eddie

articles by, GPG1: 161-176, GPG2:
165-166, GPG3: 613-621, GPG4:

593 -

contact and bio info, GPG1: xxv, GPG2:

xxi, GPG3: xxvi, GPG4: xxiv

Effectors, GPG3: 193-194

dividing influence of multiple effectors,

GPG3: 196
Effect tag, XML audio tag, GPG4: 626
Efficiency. See Optimizations
Eigendecomposition, GPG4: 291-292,

GPG4: 297

Eigenspace, GPG4: 187
Eigenvalues and Eigenvectors, GPG1: 156

covariance matrix and, GPG4: 187-192
Householder method to calculate, GPG4:

188-189

Elevation mapping, depth-enabled 2D images
and, GPG3: 418-420

Elite, GPG1: 133, GPG1: 493-495
Embedding, GPG1: 12

assert macro and information embedding,

GPGI1: 110-111

Lua embedded language, 115-128
Emergent behaviors, GPG2: 255, GPG2:

332-333
distributed reasoning voting architecture

and, GPG4: 345-354
Emotion, lip-synching and facial expression,

GPG4: 609-610
Encryption, GPG2: 104

CryptoAPI, GPG3: 554

initialization vector, GPG3: 549
integrity check value (ICV), GPG3: 550

key management, GPG3: 547, GPG3:
554

for multiplayer games, GPG3: 521-522,
GPG3: 549-552, GPG3: 554-555

online games and, GPG1: 104-108
padding, GPG3: 549-550, GPG3: 552
payload, GPG3: 549, GPG3: 551
performance and, GPG3: 554-555
recommended algorithms for, GPG3:

555
reverse engineering and, GPG1: 107
RPCs and, 639

Endianness, GPG4: 39

Enemies, tactical path-finding, GPG3:
297-298

Enemy Nations, GPG1: 307
Engel, Thomas

article by, GPG2: 521-524
contact and bio info, GPG2: xxii

Engines, Al
event-driven vs. polling objects, GPG1:

221-222

ideal characteristics of, GPG1: 221

message objects, GPG1: 222-223
state machines, GPG1: 223-225

Engines, audio, GPG4: 635-636

Engines, game. See Game engines
Engines, physics, GPG1: 390-402

audio subsystem integrated with, GPG4:
649-656

prescripted physics engine, 461465
Verlet-based physics engine, GPG4:

231-240

Engines, scripting, GPG1: 56-67

Entities
creating and destroying, GPG4: 75-79
“death notifications” for, GPG2:

269-270, GPG4: 80

defined and described, GPG4: 71
Entity class and subclass, GPG2: 54-55

764

entity managers and cooperation among
Al agents, GPG2; 252-253

management systems for, GPG4: 69-83
rendering of, GPG4: 78
runtime strategies for, GPG2: 58-60
“shutting down” vs, destroying, GPG4:

78
user input data and, GPG4: 79

Enums, macro to transform to strings, GPG3:
27-28

Environment mapping, GPG1: 193-194
Equations

Newton-Euler equations, GPG1:
150-160

for simulating rigid body motion, GPG1:
150-160

Erosion, terrain, GPG1: 501-502

Errors
maximal errors, GPG3: 175-176
measuring importance of, GPG3:

170-171

RPCs and error detection, 639

Etherton, David

article by, GPG4: 35-41
contact and bio info, GPG4: xxiv—exv

Euler angles, GPG1: 196, GPG1: 307-308,
GPGI1: 371-372, GPG3: 195

Euler method
accuracy of, GPG1: 180-181

Euler angles, GPG1: 196, GPG1:

307-308, GPG1: 371-372, GPG3:
195)

explicit, GPG1: 178-179

friction formulation, GPG3: 220-221

geometric algebra and, 216-217
gimbal lock and Euler angles, GPG1: 196
implicit, GPG1: 179-181
Jacobian Transpose method and, GPG4:

198-203

numerical stability and, GPG1: 177-181
rigid body motion, GPG1: 150-160

Even masks, GPG3: 372

Event-driven objects, GPG1: 221-222

Event-locking
vs. frame-locking, GPG3: 488-490
path-finding packet exchanges, GPG3:

490-492

TCP and, GPG3: 492

time synchronization and, GPG3:

493-495
Event managers, GPG3: 6, GPG3: 9

Event messages, trigger systems and, GPG3:
289

Events
event-locking in online gaming, GPG3:

489-495
frame events, GPG3: 8
input events and real-time, GPG3:

113-114

scheduling, GPG3: 5-13
time events, GPG3: 8

types of, GPG3: 8
see also Trigger systems

Evertt, Jeff
article by, GPG2: 74-79
contact and bio info, GPG2: xxii

Exception lists, GPG2: 139-140
Exceptions and exception handling

floating-point exceptions, GPG3: 69-72

types of floating-point exceptions, GPG3:
70

Exclusive-or (XOR) operators, GPG1: 107,

GPGI1: 108

Explosions
audio for, 726
billboard particles to create, 551-560
cellular automata to model, GPG3: 200

debris, 557
initial flash, 551-552
intense fireballs, 555
kill algorithms for, GPG4: 216

radial flares, 552-553
randomness and, 558
screen shake, 558

smoke expanding after, 556
white-hot inner core, 554

Exponential decay smoothing, GPG4: 96-97
Exponential growth, Combs Method to

manage, GPG2: 343-349
Exported classes, GPG2: 50, GPG2: 56-57
Exporting, parsing text data exported, GPG3:

87
Extensions, OpenGL, GPG1: 357-358
Eyes, simulating visual changes in response to

light, GPG4: 465-475
Eye space, GPG1: 363-364
Eye vectors, calculating, GPG3: 414

F
Facade audio design pattern, GPG2: 515
Fagade pattern, GPG1: 15-16
Face normals, GPG3: 344
Face vertex indices, precomputing, GPG3:

380
Factorial templates, GPG1: 22-23
Factories

abstract interfaces and, GPG2: 22-23
child factories, 180-181

component creation with Factory pattern,
178-181

defined and described, GPG2: 57-58
DLL factories, 181
Entity factories, GPG2: 57
game entity factory, GPG2: 51-61
menu factories, 194-196
object creation with, GPG4: 119
Singleton design pattern and, 180

Factory patterns, 180-181, GPG1: 18-19
Far positions (hybrid between fixed-point and

floating-point numbers), GPG4:

162-170

Farris, Charles
article by, GPG3:; 256-267
contact and bio info, GPG3: xxvii

Fastest Connection First (FCF), GPG4:
549-550

Fast Fourier Transforms (FFT), GPG4: 265

Faults, fractal terrain generation, GPG1:
499-502

FBM (fractal brownian motion) fractals, See

Fractal brownian motion (FBM) fractals

FEA (finite element analysis). See Cellular

automata
Feedback, in Hopfield nets, GPG1: 346-347
Feedback control systems, ragdoll simulations

and, 449-455
Feedback Delay Networks (FDNs)

defined and described, 731-733

Index
stuatansettrntesebeenanneoua

tnnnnensine nha Seib cee AOA Antone ORDER EOMNAANP HOMME RARASEHEEOUMAMNE AAR :

fast environmental reverb based on,
729-740 :

Feed-forward networks (multilayer percep-
trons), GPG4: 374-375

Feet
for game objects, GPG1: 404
sliding during animation, GPG3:

396-399
Feynman, Richard, GPG4: 207
Fibers, cooperatively multi-tasking threads,

GPG?2: 260

Fibonacci numbers, GPG1: 20-22

Fiedler, Glenn

article by, GPG4: 515-527
contact and bio info, GPG4: xxv

Field-of-view culling, GPG1: 422-423,

GPG1: 425-429
File lump structure, GPG2: 101

Files, management using resource files,
GPG?: 100-104

Filion, Dominic
articles by, 39-63, 571-577, 589-597
contact and bio info, xx«vi

Filters and filtering
to approximate trigonometric functions,

GPG3: 171-172

audio filters, GPG3: 585

band-pass audio filters, GPG3: 610-611
bilinear filtering and aliasing, GPG2: 485
biquad resonant audio filter, GPG3:

606-612
Bloom Filters, GPG2: 133-140
combining audio filters, GPG3: 611

Finite Impulse Response (FIR) filters,
GPG2?: 525-526, GPG3: 607

high-pass audio filters, GPG3: 610-611

low-pass audio filters, GPG3: 610
NetTool network simulator filters,

GPG3: 557-558
textures and, GPG2: 418, GPG2: 479,

GPG3: 462, GPG3: 464
vulgarity filters for online games,

621-626
Finite element analysis (FEA). See Cellular

automata
Finite Impulse Response (FIR) filters, GPG2:

525-526, GPG3: 607

Finite State Machines (FSMs), GPG1:
237-248

CFSM, GPG3: 260-266
creating states for, GPG1: 242-243
decision trees and, GPG4: 338
defined, GPG3: 256-258
derived classes and behavior changes,

GPG3: 265-266
function pointer-based FSEs, GPG3:

256-266
implementation of, GPG3: 258-260
inherited FSMs, GPG3: 258
rationales for use, GPG3: 257-258
switch implementation of, GPG3:

258-259
tokenizers as, 18-19

using FSMclass, GPG1: 243
weaknesses of, 329

Fire

cellular automata to model, GPG3: 200
chemical evolution model for, 542—546
dynamics model for, 540-542

Index

gridless and controllable, 539-549

intense fireballs, 555
light motif, GPG1: 528-534
procedural textures for, GPG3: 456

FIR (Finite impulse response) filters, GPG1:

501-502, GPG3: 607
First-person shooters (FPSs), killing algo-

rithms and, GPG4: 209-219
Fischer, Mark

article by, GPG2:133-140
contact and bio info, GPG2: xxii

Fish tanks, simulating refraction effects in,
GPG2: 402-405
clip planes and stencil buffer, GPG2:

404-405
precomputations, GPG2: 403
scale factor for tank, GPG2: 403-404
shear factor for tank, GPG2: 404

Fixed Up method vs. parallel transport frames,
GPG2: 218

Flags
debug flags, GPG3: 129-132
dirty flags and persistent properties,

GPG3: 511
in trigger systems, GPG3: 290-292

Flanging (audio artifact), GPG4: 622-623

Flex parser (lexical analyzer), GPG3: 91,

GPG3: 406, GPG3: 408-409
Flight. see Aerodynamics
Floating objects, water simulation and,

GPGI1: 191-193
Floating-point exceptions, GPG3: 69-72

code to enable, GPG3: 71
compilers and, GPG3: 70
types of, GPG3: 70

Floating-point numbers
absolute values, GPG2: 174
accuracy problems and large world

coordinates, GPG4: 157-170
arbitrary functions, GPG2: 177-179
clamping values to a specific range,

GPG2: 173-174
defined, GPG2: 167
float/int conversions, GPG2: 169-172
IEEE floating points, GPG2: 168-169,

GPG4: 157-158, GPG4: 574
increasing size of, GPG4: 161
initial state variations and, GPG2: 108
integer comparisons, GPG2: 173
Intel architecture and, GPG2: 261
linear quantization, GPG2: 178
logarithmic quantization, GPG2:

178-179
performance measurement after optimiza-

tion, GPG2: 180

propagated influence values and, GPG2:

293
sign test for, GPG2: 172
square root optimization and, GPG2:

176-177
text parsers, GPG2: 115

Floating-point optimizations, GPG3:

182-184

Floating-point representations, vs. vector

fractions, GPG3: 163-164

Floats. See Floating-point numbers

Flocking, GPG1: 305-318, GPG2: 330-336

alignment, GPG1: 305-306
attraction and repulsion curves, GPG4:

358-359

avoidance, GPG1: 306
boids, varieties of, GPG2: 332-333
cohesion, GPG1: 305-306
demo, Flocking with Teeth, GPG2:

334
memory and, GPG1: 306

rules of, GPG2: 330-331
separation, GPG1: 305-306
steering behaviors, GPG1: 305-306

Flow experience in game play, GPG4:
316-319

Fluid properties of atmosphere, 401-402
Fluid simulation, code listings, GPG3: 205
Flythrough paths

natural cubic splines and, GPG2:
221-222

quaternion-based flythrough paths,
GPG2?: 220-227

Flyweight classes, GPG2: 53

Flyweight objects
described, GPG2: 52
State And Media Manager (SAMMy),

GPG?: 52-54
Fog, range-based, GPG1: 548

Fog-of-War (FOW)

defined, GPG2: 280
visibility and, GPG2: 279

Foliage
physics for wind effects on leaves,

417-Al9
widgets to render fast and persistent

foliage, 515-526
Fonts

characters for multiple-language games,
GPG3: 93-94

double and multi-byte character sets,
GPG3: 97

single-byte character sets, GPG3: 96-97
Foot-sliding, GPG3: 396-399
Foreign languages

fonts and, GPG3: 93
spaces in, GPG3: 93-94
see also Multiple-language games

Forests, GPG3: 270
Formats

fast bit blitter for conversion of, GPG2:
92-99

MRC file format for exporting, GPG2:
142-143

Forsyth, Tom
articles by, GPG2: 363-376, GPG2:

488-496, GPG3: 459-466

contact and bio info, GPG2: xxii, GPG3:

XXVIL

Fox, David
article by, GPG3: 573-581
contact and bio info, GPG3: xxvit

Fractal brownian motion (FBM) fractals

clouds created with, GPG2: 245

described, GPG2: 241-242

landscapes created with, GPG2: 245

noise generator implementation, GPG2:

242-245

turbulent noise function, GPG2: 467

Fractals
defined, GPG2: 239
fault fractals, GPG2: 240-241
multifractals, GPG2: 244-245
plasma fractals, GPG2: 240
programming, GPG2: 239-246

765

see also Fractal brownian motion (FBM)

fractals; Fractal terrain generation

Fractal terrain generation, GPG2: 239,

GPG?: 246

fault formation, GPG1: 499-502
midpoint displacement, GPG1: 503-507

Fractional errors, vector fractions for exact

geometry, GPG3: 160-161
Fragmentation, GPG1: 92-100, GPG4:

43-49
Frame-based operation, vs. function-based

operation, GPG3: 18
Frame events, GPG3: 8, GPG3: 11
Frame-locking, GPG3: 488-489

Frames
as handles, GPG1: 95
memory allocation, frame-based, GPG1:

92-100

Frameworks
game-independent ws. -dependent,

GPG3: 17
implementation, GPG3: 20-23
object-composition game framework,

GPG3: 15-24
platform-independent vs. -dependent,

GPG3: 17
Free(), GPG2: 9, GPG4: 37

Free form deformation, 435
FreeLibrary, GPG2: 34
Free lists

defined and described, 129-130,
133-134

implementation of, 135-136

memory management and, GPG2: 9,
GPG4: 43-49

policy-based design and, 129-141
Freese, Peter

article by, GPG4: 157-170
contact and bio info, GPG4: «xv

Freezable class, 156
FreezeMgr class, 150-157
FreezePtr Template class, 156
Freitas, Jorge, contact information, GPGI1:

XXV
Frenet Frames vs. parallel transport frames,

GPG?: 217-218

Fresnel term
for reflections, GPG1: 581-585
refraction mapping, GPG1: 594

Freudenburg, Bert

article by, GPG4: 443-449
contact and bio info, GPG4: xxv

Friction
constraints and rigid body dynamics,

GPG4: 249
Coulomb friction, GPG3; 215-219

curvature and, GPG3: 225
deceleration and, GPG3: 216
dry friction forces, GPG3: 215-216
dynamic (kinetic) friction, GPG3:

215-218, GPG3: 219

Euler’s method to simulate, GPG3:

220-221

geometric issues and, GPG3: 225-226
gravity and, GPG3: 217
nonsmoothness and, GPG3: 222-223

numerical methods for simulation of,

GPG3: 219-224
reformulation method to simulate,

GPG3: 221

766
_evonetniteertntnnaatnne stsonebnnnteeie teh antdaeasetenennhiennn

regularizing friction, GPG3: 221
smoothness and geometric issues, GPG3:

225
static friction (stiction), GPG3: 215,

GPG3: 218-219

surfaces in contact, GPG3: 217

Taylor method (Taylor series), GPG3:

222-223

three-dimensional formulation, GPG3:
224-225

transitioning between static and dynamic,
GPG3: 223-224

viscous damping and, GPG3: 221

Front-end processing for multiplayer games,
GPG3: 528-530

Frustums

culling, 65-77, GPG1: 422-423
cylinder-frustum intersection test, GPG1:

380-389
extracting frustum and camera informa-

tion, GPG4: 147-156
oblique view frustums for mirrors and

portals, 281-294
plane transformation and view frustum,

GPG4;: 147-149
post-perspective space and, GPG4: 402
projection matrix and, 283-285

view frustums, GPG1: 381-382
FSMs. See Finite State Machines (FSMs)

Functional decomposition, 355-357
Functionality, exporting, GPG1: 56-67

Function-based operation, vs. frame-based
operation, GPG3: 18

Function binding, GPG3: 38-42
networking and, GPG3: 42
scripting and, GPG3: 42

Function Identifiers, 633

Function objects, GPG1: 52

Function overhead, GPG1: 353-354
Function pointers

within C++ classes, GPG2: 59-60

CStateTemplate class to avoid class-
specificity, GPG3: 261-262

defined and described, GPG3: 259-260
Finite State Machine implementation,

GPG3: 260
Functions

calling functions, GPG1:; 63-64
chaining and TempRet routine, GPG2:

86-87

deprecated functions, GPG2; 62-65
domains and ranges of, GPG1: 163-166
exporting, GPG1: 56-67
exporting from DLLs, GPG2: 28

Functors, GPG1: 52

FuSM. See Fuzzy State Machines (FuSM)

Fuzzy logic, GPG1: 319-329
combinatorial explosions and, GPG2:

342-350
Combs Method and, GPG2: 343, GPG2;

348-349
Combs Method rules for, GPG2:

344-348
defined, GPG2: 337
defuzzification methods, GPG1: 327-328
fuzzy control, GPG1; 322-328
fuzzy landscaping, GPG1: 484-485
fuzzy sets, GPG1: 320-321
linguistic variables of, GPG1: 323

operations, GPG1; 321-322
sets in, GPG2: 342
vs. traditional logic, GPG1: 319-320
traditional rules for, GPG2: 343-344
utility theory and, GPG4; 339-340,

GPG4: 344
variables in, GPG2: 342

Fuzzy state machines (FuSM), GPG2:

337-341
adapting generic FSMs, GPG2: 339-341
increasing gameplay with, GPG2:

338-339
uses in games, GPG2: 339

G
Game engines

data-driven development, GPG2: 51-61
DirectScene game engine, GPG4:

649-651
GPU / CPU parallelism, GPG2: 475
input recording and, GPG2: 105-111
trends in development, xii
Universal Modeling Language engines,

GPG3: 73-82
“Game of Life,” GPG2: 506-508
Game-path planning, GPG1: 254-262
Game trees, GPG1: 249-253

alpha-beta pruning, GPG1: 251-253
move-ordering methods, GPG1:

252-253
negamax algorithm, GPG1: 250-251

Garrabrant, Byon
article by, GPG3: 146-152

contact and bio info, GPG3: xxvii
Gaussian elimination, GPG2: 196-197
Gemstones, rendering, 561-570
Generic component library, type identifica-

tion system for, 177-178
Generic Pagers (GPs), 79-92

GPindex for, 80-84
multiuser GP, 91-93
search space for, 87-89
tiles for searching, 84-87

GenRand(), GPG2: 131-132

Geometric algebra (GA)

application examples, 214-221
complex numbers and, 209
contraction (left) product, 207-208

described, 201-209
geometric product, 205-206
inverses and, 209
multivectors, 203-209, 213
outer products and, 203-204
quaternions and, 210-212
reflection and rotation, 210-212, 217
translating common geometric relations

into, 212-214

Geometry management of 3D models
axis-aligned bounding box (AABB) trees

and, GPG2: 388-393

cube environment mapping, GPG2: 419
decals on complex surface, GPG2:

411-415
projective self-shadowing techniques,

GPG2; 421-424
quadtree lookup, direct access, GPG2:

394-401
segmenting character geometry, GPG2:

421-422

Index

skyboxes and distant scenery, GPG2:
416-420 .

sphere trees and, GPG2: 384-387

terrain creation with interlocking tiles,

GPG2: 377-383
VIPM methods, comparison of, GPG2:

363-376
GetProcAddress function, GPG2: 34

GetProfileIn History, GPG1: 129-130
Gimbal lock, GPG1: 196, GPG3: 155,

GPG3: 195

Ginsburg, Dan
articles by, GPG1: 439-443, GPG2:

452-462
contact and bio info, GPG1: xxv, GPG2:

xxi

Glass, rendering, GPG1: 586-593

colored glass, GPG1: 592-593
multipass, GPG1: 593

reflections on, GPG1: 592

single-pass, GPG1: 593
Glinker, Paul

article by, GPG4: 43-49
contact and bio info, GPG4: xvi

Global objects, vs. singletons, GPG1: 37
Goals

difficulty and, adjusting to player skill,
GPGé4: 315-324

practical planning and AI, 329-342
GoCap

ActionState class, 233-234, GPG3:
231-232

Actor class, GPG3: 232

AlControlState, GPG3: 233
architecture of, GPG3: 231-233
ControlState class, GPG3: 232
TrainingControlState, GPG3: 233
UserControlState class, GPG3: 232-233

Goertzel’s Algorithm, sine and cosine calcula-
tion, GPG3: 172-174

Gomez, Miguel
articles by, GPG1: 150-160, GPG1:

177-181, GPG1: 187-194, GPG2:

388-393
contact and bio info, GPG1: xxv, GPG2:

xxiii, GPG3: xxvii

Gosselin, Dave
articles by, 452-462, GPG2: 421-424
contact and bio info, GPG2: xxiii

Graham’s algorithm, GPG3: 276

Grammars, Yacc parsers, GPG3: 40-41
Granularity

assigning to tasks, 356-357
large world coordinate accuracy and,

GPG4: 159-160
Graphical User Interfaces (GUIs)

Feng GUI of, GPG3: 117-118
property page GUIs, 53
tweaker interface GUI, GPG2: 124-125

Graphics
combined shadow buffers for shadow

mapping, GPG4: 411-425
dimensional impostors for realistic trees

and forests, 526-538
fire, gridless and controllable, 539-549
foliage, rendering fast and persistent,

515-526

geometric algebra (GA) and, 201-223

halftones, GPG4: 443-449

Index

non-photographic rendering styles,
GPG4: 443-449

screenshots, poster quality, GPG4:
383-393

sepia tone conversions, GPG4: 461-463
shadow volumes and GPUs, GPG4:

393-398
trends in, GPG4: 381-382
volumetric post-processing, 571-577
see also Graphics display; Graphics

Processing Units (GPUs); Resolution

Graphics display
hardware accelerated procedural texture

animation and, GPG2: 497-509
hardware limitations and, GPG2: 508
impostoring, GPG2: 488-496

industry history and trends, GPG3:
335-337

lens flare using texture masking, GPG2:

474-480
per-pixel lighting techniques, GPG2:

452-462
pipeline stalls, GPG2: 475-477
print-resolution of screenshots, GPG2:

406-410

silhouette edge detection and rendering,

GPG?: 436-443
texture mapping and programmable

vertex shaders, GPG2: 444-451
Graphics Processing Units (GPUs)

cloud rendering on, 499-513
neural networks and programmable

GPUs, GPG4: 373-377
recombinant shaders, 589-597

Graphic User Interfaces (GUIs), editors and

complexity of, 5—6

Graph planners, 338-339
Grass, physics for simulating movement of,

414-416
Green, Robin

article by, GPG3: 170-186
contact and bio info, GPG3: xxviii

Greer, Jim
article by, GPG3: 488-495
contact and bio info, GPG3: xxvizi

Grid boundaries, GPG4: 273

Grids
calculating neighboring states, GPGI:

259
rectangular grid space partitions, GPG1:

258
search space optimizations, GPGI: 273

used in mapping, GPG1: 403
Grimani, Mario

article by, GPG4: 365-372
contact and bio info, xxvi-xxvii, GPG4:

xxvi >

Grouping in DirectPlay 8.1, GPG3: 565-566

Groups
algorithms for group finding, GPG2: 229

cover seeking behavior for, 304
flocking behaviors, GPG1: 305-318
moving, GPG1: 271

sound management by group, 713-719

Group tag, XML audio tag, GPG4: 627-628

/GR switch, GPG2: 42

Guided missiles, shortest arc quaternion and,

GPG: 214-215
GUIDs, text parsers, GPG2: 116

GUIs. See Graphical User Interfaces (GUIs)

H
Haar wavelets, GPG1: 184-186
Hacking

online game protocols, GPG1: 104-108
online games, GPG4: 544

port forwarding and NAT routers,
654-656

preventing in multiplayer games, GPG3:
520-522, GPG3: 546-555

SYN-flood attacks, GPG4: 544
Hagland, Torgeir

article by, GPG1: 471-475
contact information, GPG1: xxv

Half-edge data structures, subdivision sur-
faces, GPG3: 375-378

Half-Life, GPG1: 307
Half-tones and half-toning, GPG4: 443-449

creating halftone screens, GPG4:
444-446

threshold functions for, GPG4: 446-447
Hamaide, Julien

article by, 741-750
contact and bio info, xxvzi

Hamlaoui, Sami
article by, 721-728
contact and bio info, xxvii

Hancock, John A.
articles by, GPG4: 337-344, GPG4:

345-354
contact and bio info, GPG4: xxvi

Handheld devices. See Wireless devices
HandleMegr class, GPG1: 71-72
Handles, GPG3: 45-46

frames and memory, GPG1: 95-96
handle class, GPG1: 70
HandleMegr class, GPG1: oe
pointers and resources, GPG4: 62
proxy audio design and, GPG2: 516
in ResManager, GPG1: 85-86
resource managers and, GPG1: 69-70
as weak references, GPG4: 63-66
see also Smart pointers, handle-based

Hannibal, Soren
article by, GPG3: 69-82, GPG4:

497-502

contact and bio info, GPG3: xxviii,
GPGA: xxvii

Hapgood, Bryon
articles by, 91-99, GPG2: 85-90, GPG2:

85-99
contact and bio info, GPG2: xxiii

Hard coding, avoiding, GPG1: 3-4
Hardware

bump mapping, GPG1: 555-561
cloud generation with, GPG2: 463-473
disadvantages when used for procedural

textures, GPG2: 471
procedural texture animation and, GPG2:

497-509
procedural textures and acceleration,

GPG3: 456
programmable graphics hardware neural

networks, GPG4: 373-377
rendering print-resolution screenshots

with, GPG2: 406-410

rendering refraction with, GPG1:

597-598

767

as source for random numbers, GPG2:

129)

world market and configuration of,

GPG3: 106-107

Harmon, Matthew
articles by, 115-128, 713-719, GPG4:

69-83
contact and bio info, xxvii, GPG4: xxvii

Hart, Evan
article by, GPG2: 406-410
contact and bio info, GPG2: xxiii

Harvey, Michael
article by, GPG3: 5-14
contact and bio info, GPG3: xxviii

Hashing functions, GPG2: 129, GPG2: 134
contact points and hashing, GPG4: 262

Hash keys, Zobrist hash to calculate, GPG4:

141-146
Hash maps, for AI training, GPG3: 237-239

Hash tables, GPG1: 280-281
for massively multiplayer games (MMPs),

GPG3: 508
template, GPG2: 48
used in copy-on-write data structures,

GPG4: 556-561
Hast, Anders

article by, 225-231
contact and bio info, xxviii

Hawkins, Brian
articles by, GPG3: 44-48, GPG3:

129-135, GPG3: 413-416

contact and bio info, GPG3: xxix

Haze, post-processing effects, GPG4:

477-485
Header files, GPG1: 104, GPG2: 101-102,

GPG?: 113-114

precompiled headers, GPG4: 40

Heads-up-displays (HUDs)
context-sensitive HUD’s for editors, 5—15
defined and described, 8—9
implementation of, 10-13

Heads-up-editing (HUE), 5-15
Heartbeat (system messages), defined, 665

Heat
heat waves (inferior mirages), 571-577,

GPG4: 477-485
modeling with cellular automata, GPG3:

200, GPG3: 209-212

Hebb, Donald, GPG1: 345
Hebbian nets, GPG1: 345-346

Hecker, Chris, xvii
Height advantage, as tactical assessment

factor, GPG2: 296

Heightfields
dynamic, fast calculation methods for,

GPG3: 344-348

fast heightfield normal calculation,

GPG3: 344-348
lighting heightfield terrains, GPG3:

433-444
Heim, Oliver

article by, GPG4: 503-513
contact and bio info, GPG4: xxvii

Hejl, Jim
article by, GPG4: 487-495
contact and bio info, GPG4: xxvii

Helicopters, sound effects, GPG3: 627-628,

GPG3: 635-636

Helper struct, GPG4: 341

768
sewatensssoteoteesentnncnnnns eon senate ee a creeomeuNtemnnneetcteiabieemmentneRAtoere Ament

Herding, GPG1: 305-318, GPG3: 272

see also Flocking
Hermite interpolant, GPG4: 281

Hermite splines
keyframing and, GPG1: 467-470
minimal acceleration curves and,

225-231

normalized, equation for, 237
spline-based time control for animation,

233-246
Heun integrator, 443-444
Heuristic costs algorithm, GPG1: 276-278
Hiebert, Garin

article by, GPG3: 595-599
contact and bio info, GPG3: xxix

Hierarchical pathfinding, GPG1: 275-276

Hierarchical scene organization, 74

Hierarchies

Behavior class hierarchy, GPG2: 54—55
of bones, GPG3: 192-193, GPG3: 378
of C++ classes, method for describing,

GPG?: 51-61

object hierarchy, GPG3: 78
real-time profiling systems, GPG3:

146-152
skeleton node heirarchy, GPG4: 488-489

Hierarchy design, GPG1: 12
Higgins, Daniel F.

article by, GPG3: 268-284
contact and bio info, xxviii, GPG3: xxix

High-level languages, GPG3: 3
High-Level Shading Language (HLSL),

GPG4: 462-463
Growable Poisson Disc blurring, pixel

shader code for, GPG4: 483-484

Hills, GPG3: 269
Hjelstom, Greg

article by, GPG3: 146-152
contact and bio info, GPG3: xxix

Hoffman, Naty

article by, GPG3: 433-443
contact and bio info, GPG3: xxx

Hook’s Law, 425-428

Hopfield, John, GPG1: 346

Hopfield nets, GPG1: 346-350
Hopkins, Don

article by, GPG3: 117-128
contact and bio info, GPG3: xxx

Horizon effect, GPG1: 253

Horizons
horizon angles and horizon mapping,

GPG3: 436-437
occlusion horizon and horizon culling,

GPG4; 515-527

Host classes or hosts, 131, 665
Hosting facilities for online games, 657-658
Hot swappable services, 607
Householder method to calculate eigenvec-

tors, GPG4: 188-189
HTML, logging and debugging systems,

HTML-based, GPG4: 19-26
HTTP, GPG3: 575-577
Hughes, Charles E., contact and bio info,

XXVIIL

Hulls, convex, GPG3: 273-277
Graham’s algorithm, GPG3: 276

Hungarian notation, GPG1; 9-11
Hunicke, Robin

article by, 297-298

contact and bio info, xxviti—exix
Hurley, Kenneth

article by, GPG3: 444-451
contact and bio info, GPG3: xx

Hybrid simulation
modal analysis and, GPG4: 295-296
multilayer physics and fast deformations,

GPG4: 276-277
HyperThread technology, 701-702
Hysteresis thresholding, GPG1: 435
Hyun-jik, Bae

article by, 627-641
contact and bio info, xxix

I
TAudioListener class, GPG4: 629
ICV (integrity check values), GPG3: 550

ID-based shadow buffers, GPG4: 413-414
in combined shadow buffers, GPG4:

414 422

Ideal gas law, 438-440

Identifiers, for pointers, GPG3: 46
Identity matrices, GPG1: 26-27
IEEE floating-point format, GPG2: 168-169,

GPG4: 157-158

If statements, GPG4: 17

“Ignore Always” option in assert, GPG1:
112-113

IIR (Infinite impulse response) filters, GPG3:

606-612
Images

recognition and neural nets, GPG1:
341-344

wavelets for compression, GPG1:

185-186
Immediate mode functions, GPG1: 353-354
Implicit serialization, 53
Impostors

billboard quad rendering, GPG2: 490
bounding object rendering, GPG2:

491-492
camera distance and updates, GPG2: 494
cuboid rendering, GPG2: 490-491

described, GPG2: 488
game-specific updates, GPG2: 494
image warping and, GPG2: 492
lighting and updates, GPG2: 494
prediction of impostor states, GPG2: 495
rendering, GPG2: 489-493
update heuristics, GPG2: 493-494
uses of, GPG2: 495-496
viewing angles and updates, GPG2: 494

Increment functions, optimization and,
GPG2: 7

Index buffers
in sliding window VIPM, GPG2:

372-375
as tile templates, GPG2: 380

Industry trends, xi—xiti, xv—xviti, GPG3: 487,
GPGA: xvii-xix
see also World markets, designing for
Inertial tensor matrix, GPG4: 192
Inexact Result Exceptions, GPG3: 70
Infinite impulse response (IIR) filters,

GPG3: 606-612

Infinite loops, macro to prevent, GPG3:
31-32

Infinite universes, algorithms for, GPG1:
136-139

Index
snunseesuvsstnsonsesttssseeen ttt aANMm NCSA ENOLASE EIEN ROEHL OR NETO CONEREAS EERO

Influence maps :
AI optimizations, GPG2: 256
cell data types, GPG2: 289-290
cell size, determining optimal, GPG2:

292
described, GPG2: 287-289
desirability values, GPG2: 290-292

falloff rules, GPG2: 292-293
influence propagation (smoothing or

blurring), GPG2: 292-293
refreshing influence maps, GPG2:

295-296
terrain and impacts on, GPG2: 293-297
in 3D environments, GPG2: 296

Inheritance, GPG1: 6, GPG1: 12
abstract interfaces as traits and, GPG2:

23-26
downward casting and autolists, GPG3:

66
IsA function and dynamic type informa-

tion (DTI) class, GPG2: 40-41

multiple inheritance, GPG2: 45, GPG3:
67

vs. object composition, GPG3: 18
ownership issues, GPG3: 19

Initialization vector, GPG3: 549
Initializer lists, GPG2: 6-7
Initial value problems, GPG1: 177-178
Inking for nonphotorealistic rendering

advanced texture features and inking,
GPG2: 442

edge-based inking, GPG2: 438-440
inking described, GPG2: 436-437
programmable vertex shader inking,

GPG2: 440-442
Inline functions, GPG2: 11-12

advantages of, GPG2: 16-18
code bloat and, GPG2: 18
vs. macros, GPG2: 16-19
parameter types and, GPG2: 18

Inline keywords, Microsoft specific keywords,
GPG?2: 19

Inlining. See Inline functions
Inner (dot) product, 207

Input recording
bug reproduction with, GPG2: 105-106
game movie creation, GPG2: 107
measuring optimization with, GPG2: 107
multiplayer uses of, GPG2: 107, GPG2:

110

predictability and, GPG2: 107-108
replaying interesting games, GPG2: 106
testing techniques for, GPG2: 110
uses of, GPG2: 105-107

Inputs

asynchronous I / O, GPG3: 523-524
buffered data mode, GPG3: 113-114
converting player’s input for third-person

control systems, GPG2: 425-427
input events for tokenizers, 18
Input Method Editors (IMEs), GPG3:

94-95
keyboard input, GPG3: 113
lag times, GPG3: 115, GPG3: 488-495
mouse and joystick input, GPG3: 114
mouse input, GPG3: 114
onscreen virtual keyboards, GPG3: 94-95
random number generators and, GPG2:

128-129

Index 769

real-time input, GPG3: 109-116
steering and, GPG4: 224-226
touchscreens, GPG3: 124
world market design considerations,

GPG3: 99-100
see also Input recording; User interfaces

(UD)
Instability, explicit vs. implicit methods,

GPG1: 177-178
Instant replay features, random pools and,

673-679
Instruction pointers, GPG2: 260-261
Integers

integer / float conversions, GPG2:
169-172

text parsers, GPG2: 115
Integrators, defined and described, GPG4:

232-234

Integrity check value (ICV), GPG3: 550

Interaction detection, multi-resolution maps
for, GPG1: 403-411

Interactivity
deformations with multilayer physics,

GPG4: 275-285
dramatic tension and, GPG4: 315-324
interactive audio processing pipeline,

GPG2: 529-538
interactive music sequencer, GPG2:

551-558
music and, GPG4: 623-624
web-cams for multiplayer games, GPG2:

153
Interface Definition Language (IDL),

633-634
IDL Compiler, 635-636

Interface functions, deprecation facilities and,
GPG2: 62-65

Interfaces
component interfaces, 28-29, 30-33
for components, 182-186
debug flags, GPG3: 129-130
dramatic model as design paradigm for,

GPGé4: 317
generic function-binding interface,

GPGI1: 56-67

libraries and, GPG4: 35
macro to simplify class interfaces, GPG3:

33-36
network interfaces, 644
for packable data types, GPG4: 574,

GPG4: 575
single-speaker speech recognition and,

741-750
for spline-based time control, 244-245
Stats system used during prototyping,

GPG1: 119
systems_t class and, GPG3: 20-21

TaskSys_t class, GPG3: 21

for trees, GPG4: 56-58
user interface testing, GPG3: 107-108
world market design considerations,

GPG3: 99-101, GPG3: 107-108

see also Graphical User Interfaces (GUIs);

User Interfaces (UIs)

Interface versioning, 183-184
International markets. See World markets,

developing games for

Internet Protocol Security (IPSec) standard,

GPG3: 546-555

Interpolations, GPG1: 141-149
CEaseInOutInterpolation, GPG1: 149
CEaseOutDividelnterpolation, GPG1:

147
CEaseOutShiftInterpolation, GPG1:

147-148

CLinearInterpolation, GPG1: 148
cubemap normalizer to correct problems,

GPG2: 459-460
defined, GPG2: 527
DSP and linear interpolation, GPG2: 528

floating-point math in, GPG1: 141-142
frame-rate-dependent ease-out, GPG1:

141-144
frame-rate-independent ease-in and -out,

GPG1: 144-146
frame-rate-independent linear interpola-

tion, GPGI1: 144

integer math in, GPG1: 142-144
limitations of, GPG1: 146
linear interpolation (lerp), GPG1: 206,

GPGI1: 209-211

spherical cubic interpolation (squad),

GPGI1: 207-208

spherical line interpolation (slerp),
GPGI1: 206-207, GPG4: 491-492

spline interpolations, GPG1: 208, GPGI:
211-213, GPG2: 224-225

vectors across line or plane, GPG2: 189

Intersection, CSG Boolean operator, 103-107
Intersections

techniques for calculating, GPG2:

191-204

vector fractions and, GPG3: 160-169

Invalid Exceptions, GPG3: 70

Inverse kinematics
applying to bones, GPG3: 195-198
constraint of, GPG3: 192-198
cyclic coordinate descent, GPG3:

193-194
rotational constraints, GPG3: 195

Inverse Kinematics (IK), Jacobian Transpose

method, GPG4: 193-204
I/O, asynchronous, GPG3: 523-524
IOCP asynchronous I / O, GPG3: 523
IP addresses, 644-645
IPSec (Internet Protocol Security) standard,

GPG3: 546-555
Iridescence, creating, GPG3: 472-473
Irradiance, terrain lighting and, GPG3: 434
IsA function, dynamic type information

(DTI) class and inheritance, GPG2:

40-41

Isensee, Pete

articles by, GPG1: 20-35, GPG2:
127-132, GPG3: 49-58, GPG3:

546-556, GPG4: 571-578
contact and bio info, GPG1: xxv, GPG2:

xxiii, GPG3: xxxi, GPG4: xxviti

Isidoro, John
article by, GPG2: 220-227, GPG3:

467-476

contact and bio info, GPG2: xxiv, GPG3:

XXXT :

Islands, as boundary conditions, GPG1: 190

Isometric engines, 3D tricks for, GPG3:

417-423
Iterated deepening, GPG1: 252-253
Iterators, reverse, GPG1: 49-50

IW ave, water surface wave propagation

calculator, 411-414, GPG4: 265-274

J
Jacobian constraints, GPG4: 243
Jacobian Transpose method, IK and, GPG4:

193-194
Jacobi matrix, GPG4: 194-199

stiffness matrix in modal analysis, GPG4:
290-291

Jacobs, Scott
article by, 169-175
contact and bio info, xxix

Jam, GPG4: 37

James, Greg
article by, GPG2: 497-509
contact and bio info, GPG2: xxiv

Japanese. See Multiple-language games
Java 2 Micro Edition (J2ME)

described, GPG3: 574-575
HTTP and, GPG3: 575-577
image retrieval, GPG3: 579-580
MIDlets, GPG3: 575, GPG3: 579
multiple connections, GPG3: 577
networking on, GPG3: 575-576
optimizing packets, GPG3: 577-579
proxies, GPG3: 577

Jay, Lee

articles by, GPG4: 563-570
contact and bio info, GPG4: xxix

Jensen, Lasse Staff
article by, GPG2: 118-126
contact and bio info, GPG2: xxiv

Jewels, rendering, 561-570
Joins, geometric algebra, 214
Joints

ball and socket constraints, GPG4:
246-247

distortions and deformations, GPG4:
487-488

flexion and shrinkage problems, GPG3:
384-393

hinge joint constraints, GPG4: 248
rigid body simulation and joint con-

straints, GPG4: 241-250
spherical joint blending, GPG4: 488,

GPG4: 490-491
weights and weighting, GPG3: 388-392
see also constraints

Jones, Toby
article by, GPG4: 141-146
contact and bio info, GPG4: xxviii _

Jones, Wendy
article by, 189-196
contact and bio info, xxix

Journaling services
architecture of, GPG3: 137-140
information reports, GPG3: 143
interactive reports, GPG3: 145
interface for, GPG3: 141-142
tracing information, GPG3: 143-144

Joysticks, GPG3: 114

K
Kaiser, Kevin

article by, GPG1: 390-402
contact information, GPG1: xxv

Kautz, Jan
article by, GPG3: 477-483

770
“ onsencsasrstesmiannicansaanareiennmnnnstenan sovesaomesneoncentiiesneuttonneot neonate nee eavanheoreeeiatotete cnet ecennnoeon te mtaeactentsonsie

contact and bio info, GPG3: xxi
Kawabata Evaluation System (KES), 421

K-d trees, GPG2: 388

Kelly, Paul
article by, GPG3: 83-91
contact and bio info, GPG3: xx«xi

Keyboards
input in multiple-language games, GPG3:

99-100
onscreen virtual, GPG3: 94-95
real-time input, GPG3: 113

Keyframing
hermite spline, GPG1: 467-469
interpolated 3D, GPG1: 465-470
linear interpolation, GPG1: 465-467
spline interpolating vertices, GPG1:

469-470
vertices and normals, interpolation of,

GPGI1: 467

Keys, 249
data keys, evaluating for data compres-

sion, GPG4: 498-500
Qualities copy-on-write structure and

key-value pairs, GPG4: 556-561

Keywords, text parsers, GPG2: 115
Killing algorithms

area magic, GPG4: 216
artillery and catapult rounds, GPG4:

213-214

“bull’s eye” (round) targets, GPG4:
210-211

chemical weapons, GPG4: 216
probability and the “kill thermometer,”

GPG4: 214-216

rectangular targets, GPG4: 211-212
“ribbon” targets, GPG4: 209-210

shotgun blasts, GPG4: 212-213

shrapnel, GPG4: 216-217
weapons of mass destruction, GPG4: 216

Kills, mobility and firepower kills, GPG4:

214-216

Kinematics, translation and rotation, GPG1:

150-154
King, Yossarian

articles by, GPG1: 432-438, GPGI1:
515-518, GPG1: 562-566, GPG2:
167-181

contact and bio info, GPG1: xxv, GPG2:
XXIV

Kirmse, Andrew
articles by, GPG1: 101-108, GPG2:

5-15, GPG3: 487, GPG3: 557-560
contact and bio info, «xvii, GPG1: xxv,

GPG2: xxiv-xxv, GPG3: xxxi
Kline, Christopher, GPG1: 317-318

Klowsowski, James
article by, GPG3: 353-358
contact and bio info, GPG3: xxxii

K-means clustering, GPG4: 260

Knuth, Donald, quoted, GPG3:; 4

Kochanek-Bartels splines, GPG4; 171
Krten, Robert, GPG1: 501
Kutta-Joukowski theorem, 401

L
Ladders for online games, GPG4: 537-538
Laeuchli, Jesse

article by, GPG2: 239-246
contact and bio info, GPG2: xxv

Lagrange series, 541, GPG1: 162-176
vs. Taylor series, GPG1: 174-175

Lag times. See Latency
Lake, Adam

articles by, GPG2: 444-451, GPG3:
404-412, GPG4: 503-513

contact and bio info, GPG2: xxv, GPG3:
xxxii, GPG4: xxviii

LaMothe, André
article by, GPG1: 330-350
contact information, GPG1: xxv

Lanchester Attrition models to predict results
of combat, 317—328

Lander, Jeff
article by, GPG3:; 335-337
contact and bio info, GPG3: xx«x1iz

Landscaping, GPG1: 484-490

Fault Line generation, GPG1: 488-490
fuzzy landscaping, GPG1: 484485

see also Terrains
Languages

Lua programing language, 115-128
macro for specialized languages, GPG3:

32-33
Larameé, Francois Dominic

article by, GPG2: 51-61

contact and bio info, GPG2: xxv

Laser beams, billboard beam effects, GPG3:

413-416

Latency
defined, GPG3: 573
front end processing and, GPG3: 529
input, GPG3: 115
NetTool, network latency simulator,

GPG3: 557-560

in online games, GPG3: 488-495,
GPG3: 500-501, GPG3: 502

packet compression and, GPG3: 578

simulating network lag time, GPG3:
557-560

wireless devices and, GPG3: 573-574,
GPG3: 578

Laurel, Brenda, GPG4: 317
Lava

flow simulation, GPG1: 508-511
heat shimmer, GPG4: 479-480

Layering, GPG1:; 12
Layers

FramePlayer_t to manage, GPG3: 21-23

heads-up-displays and acetates as, 10-11
Lazy evaluation, GPG2: 254
LCA (linear congruential algorithm), GPG3:

623-624
Leader boards for online games, GPG4:

537-538
Leaks

abstraction leaks, GPG4: 14
memory leaks, GPG4; 15, GPG4: 61

Learning algorithms, 345-352, GPG1:
345-350

Leaves, physics for wind effects on, 417-419
Le Chevalier, Loic

article by, GPG1: 182-186
contact information, GPG1; xxv

Lecky-Thompson, Guy W.
articles by, GPG1: 133-140, GPG1:

484-498

contact information, GPG1: xxv
Lee, Jay

Index

article by, GPG4: 563-570

contact and bio info, GPG4: xxix
Leeson, William

article by, GPG3: 372-383
contact and bio info, GPG3: xx«xiii

Left (contraction) product, 207—208

Lengyel, Eric
articles by, 199, 281-294, GPG1:

361-365, GPG1: 380-389, GPG2:

361-362, GPG2: 411-415, GPG3:
338-344

contact and bio info; xxix, GPG1:
xxv, GPG2: xxv, GPG3: xxxiti

Lens flares
asynchronous readback of buffer data,

GPG?: 480

geometry-based approaches, GPG2: 480
hardware issues, GPG2: 475-477
occlusion, GPG2: 474
simulations of, GPG1: 515-518
texture masking, GPG2: 474, GPG2:

477-478, GPG?: 479-480

Lerp (linear interpolation), GPG1: 206,

GPGI1: 209-211

optimizing calculations, GPG3: 175
substitutes for, GPG3: 179-185

Level-of-Detail (LOD), GPG1: 432-438

AI optimization, GPG2: 254
Algorithm and selection, GPG1:

435-437
algorithm for selection, GPG1: 435-437
cameras and, GPG1: 433-434
hysteresis thresholding, GPG1: 435
implementation, GPG1: 435-437
Level-of-Detail AI, GPG2: 254
magnification factors, GPG1: 434,

GPG1: 437
physics-based animation and, GPG4:

276-277

selection of, GPG1: 433-434
threshold selection, GPG1: 437
tile landscapes and determination of

detail, GPG2: 380
triangle strips and continuous LOD,

GPG3: 366

view-independent progressive meshes,
GPGI1: 454-464

visual quality, GPG1; 432-438
Levels

level design, 580-581
prefabricated geometry for, 581-582,

585-586
procedural level generation, 579-588

Levy, Steven, author of Artificial Life, GPG2:
335

Lewis, Ian

articles by, GPG2: 525-528, GPG2:

559-560
contact and bio info, GPG2: xxvi

Lexemes, 17

Lexers, GPG3: 84-85

Flex, GPG3: 91, GPG3: 406, GPG3:
408-409

Lex, GPG3: 83-91
Lexical analysis

Flex, GPG3: 91, GPG3: 406, GPG3:
408-409

Lex, GPG3: 83-91
tokenizers, 17-19

Index 771

Lex (lexer), GPG3: 83-91

code listing for custom data file, GPG3:
88-89

Yacc parser generator used with, GPG3:
85-86

Libraries
BLAS libraries, GPG4: 373-377
cross-platform libraries, design and

maintenance, GPG4; 35-41
designing libraries, GPG4: 35-37
EAGLE (Environmental Audio Graphical

Librarian Editor), GPG4: 635,

GPG4: 637-638

generic component library, 177-187
OpenAL positional audio library, GPG4:

595-606
reusable tree containers and C libraries,

GPG4: 51-52
XDS Lite library, GPG4: 131-133
See also Dynamic Link Libraries (DLLs);

Standard Template Library, C++
(STL); Standard Template Library

(STL)
Lifetimes, dynamic vs. static, GPG3: 19
Lift, aerodynamics and, 396-398, 401-402

Lights and lighting
ambient, GPG1: 419-420
attenuation of, GPG1: 543-548, GPG3:

473-476
beam effects, GPG3: 413-416
bump mapping for, GPG1: 555-561
changes, GPG1: 419-420
cloud lighting, 503-504
code for 3D lightmap with quadratic

falloff, GPG2: 453-455
of container interiors, GPG1: 596-597
conventional static lighting, GPG1:

524-527
cube maps, encoding lights in, GPG3:

449-450
curvature simulation and, GPG3:

424-432
day / night effects, GPG3: 450
diffuse lighting, GPG1: 526, GPG1:

555-556, GPG3: 449, GPG4:
440-441, GPG4: 465-475

disco ball effects, GPG3: 449
Dot3 Bump mapping, GPG2: 456-459
dynamic, realistic, GPG3: 433-443
dynamic gamma using sampled scene

luminance, GPG4: 465-475
fog, range based, GPG1: 548
gem-rendering techniques, 562-565
impostoring and, GPG2: 494
irradiance, GPG3: 434
light coordinate systems, GPG1:

571-574
light flares, 567-569
light maps, GPG2: 452-459
luminance of images, GPG4: 466

modulus lighting, dynamic gamma to
adjust, GPG4: 465-475

motif-based static lighting, GPG1:

528-534
omni-lights, GPG1: 526-527

optimized meshes and real-time lighting,

GPG4: 437-441
parallel light sources, GPG4: 403-404

per-pixel lighting, GPG2: 452-462,

GPG3: 467-476
in post-perspective space, GPG4:

402-404

radiance, GPG3: 433-434, GPG3:

436-438
real-time simulations, GPG1: 535-542
reflections, GPG1: 553-554, GPGI1:

581-585, GPGI1: 592
refraction through water, GPG1:

193-194

shadow volumes and visibility, GPG3:
367-371

static lights, GPG3: 449
sunlight, calculation of radiance, GPG3:

436-438

sunset / rise effects, GPG3: 450
of terrain, GPG3: 433-443
transparency, rendering, GPG1: 586-593
vertex color interpolation for, GPG1:

537-542

vertex normal calculation, GPG3:
344-348, GPG3: 349-352

video-based, GPG3: 442

see also Shadows
Linear congruential algorithm (LCA), GPG3:

623-624
Linear interpolation (lerp), GPG1: 206,

GPGI1: 209-211

optimizing calculations, GPG3: 175

substitutes for, GPG3: 179-185
Linearized potential flow model, 401
Linear predictive coding (LPC), voice com-

pression and effects, GPG3: 613-621
Linear programming

“Alt-Tab” problem in multitasking,
GPG2: 82-83

multithreading, GPG2: 81-84
surfaces, video memory and loss of

information, GPG2: 83-84
for Windows-based games, GPG2: 80-84

Linear quantization and floating-point
numbers, GPG2: 178

Line breaks, foreign languages and, GPG3:
93-94

Line-of-Sight (LOS)
defined, GPG2: 280
killing algorithms and, GPG4: 209
Line-of-sight / fire tests, GPG3: 302-304
LOS radius defined, GPG2: 280
LOS search systems, GPG2: 279-286
templates, GPG2: 281—283

Line-plane intersection in collision detection,
GPG1: 394-395

Lines and line segments
degenerate lines, GPG2: 198-199
finite line segments, GPG2: 200-203
intersection calculation, GPG2: 191-204
nearest points calculated with closed-form

solution equations, GPG4: 194-200
nearest points on finite segments, GPG?:

200-202

parallel lines, GPG2: 199, GPG?:
201-202 -

Line-swept-spheres, GPG4: 308
Linguistic variables, GPG1: 323

Linking, explicit vs. implicit, GPG2: 33-34
Lint tools, GPG4: 38

Lip-synching, GPG3: 589
real-time lip-synching system, GPG4:

607-611
Liquids, refraction maps for, GPG1: 594-600

caustic effects inside container, GPG1:

598-599
containers and, GPG1: 595-597
Fresnel term, GPG1: 594, GPG1: 597

particulate matter, modeling, GPG1:
599

Snell’s Law, GPG1: 594-595
see also Water

Lists
autolists, GPG3: 64-68
Open lists, GPG1: 282-286
polygon overlap, GPG1: 442
Standard Template Library (STL),

GPG1: 46-48
STL containers, GPG1: 41-42

List::splice, GPG3: 57
Llopis, Noel

articles by, GPG2: 20-25, GPG2: 62-65,
GPG4: 27-35, GPG4: 61-68

contact and bio info, GPG2: «xvi, GPG4:

XXIX
Loading, load manager on CD-ROM, GPG3:

63
LoadLibrary function, GPG2; 34
Loads, optimizing, GPG1: 88-91
Lobby design and development for online

games, GPG4: 533-539
Locality of reference, GPG4: 44, GPG4: 47
Localization

process for world-market games, GPG3:
101-103

testing, GPG3: 107
user interfaces and, GPG3: 112

Locations
path search states, GPG1: 257-259
tactical analysis of, GPG2: 309-310,

GPG2: 315
terrain reasoning for 3D games, GPG2:

307-316
Lockstep protocols, GPG3: 496-505

event-locking, GPG3: 489-495
frame-locking, GPG3: 488-489
game-turn rates, updates, GPG3:

498-500
interpolating between turns, GPG3:

498-500
pointer-to-unique-ID, GPG3: 502-503,

GPG3: 504
single-player gaming, GPG3: 502
updates, game turn rates, GPG3:

498-500
Locomotion

anchored modifiers, GPG3: 402
to arbitrary targets, GPG3: 394-396
pauses in, GPG3: 402
single-step animations, GPG3: 402
smooth transitions between animations,

GPG3: 396-398
translational / rotational offsets, modifica-

tion of, GPG3: 395-396
tween ratios, GPG3: 398-399

LOF (line-of-fire) tests, GPG3: 302-304

Logarithmic quantization and floating-point

numbers, GPG2: 178

772
sanseoeoeeoeasseroteeeetiaaeronetnsabintcksoctneananetenRDUMAA neo eecmmnnentnenenlonnsetoieHonnsn

Logarithms, base-2 logarithms of integers,

GPG3: 157-159
Logic

vs, data in data driven design, GPG1: 3
scripting, GPG1: 4—6

Logic functions
AND, GPGI1: 338-341
OR, GPGI1: 338-341
XOR, GPGI1: 338-341

LoginServers, 612, 614
Logs and logging

audio system activity and, GPG2: 519
call-stack tracking, GPG4: 20-25
debugging and, GPG1: 233, GPG3: 129,

GPG4: 15, GPG4: 19-26
event logging defined and described,

GPG4: 19-26
HTML-based logging systems, GPG4:

19-26
lightweight, policy-based logging system,

GPG3: 129-135
Logs of messages and state transitions,

GPG1: 232-233
memory manager logging, GPG2: 68-70
random pool systems for, 679
real-time remote debug message loader,

143-148
reflection and, 53

Lomont, Chris

article by, 201-223

contact and bio info, xxx
Look-at utilities, GPG1: 371
LookupManager for massively multiplayer

games, GPG3: 515

Lookup tables, for trig functions, GPG2:
174-176

Loops
infinite loops, macro to prevent, GPG3:

31-32
loop statements, GPG4: 17
loop subdivision scheme, GPG3:

373-374, GPG3: 380-381, GPG3:
382

main game loops, GPG4: 27-28
message-based game loop, GPG4: 76-77
object construction and, GPG2: 6

pathfinding and, GPG3: 310-311
LOS. See Line-of-Sight (LOS)
Lowe, Thomas

articles by, GPG4: 95-101, GPG4:
171-181

contact and bio info, GPG4: xxix
LPC vocoder, 744-745, GPG3: 613-621
Lua programming language, 115-128

C and, 116, 117-120, 121-122

chunks as used in, 117
coroutines in, 124
dynamic typing for variables, 116
embedding into games, 120-122
“glue” routines in, 117-119
memory management and, 117
meta tables in, 171
multiple scripts in, 124
overview of, 115-117
real-time processing and, 122-124
script management framework of,

124-127
states as used in, 117, 120

visual state machine design and, 171-174
yielding routines, 127

snenenucateccnuisineensommanasestaniserasnenetsesceteneaasioteeonenimststeneshiieencsnn

Luchs, Frank
articles by, GPG3: 630-638, GPG4:

649-656
contact and bio info, GPG3: xxxii1,

GPG4: xxix—«xx

M
Machine learning, GoCap, GPG3: 231-239
MacLaurin series, 271-272

Macros
class interface simplification, GPG3:

33-36
compile-time constants from binary

representations, GPG3: 28-29
C-style for state machines, GPG1:

225-227
debugging, GPG3: 31-32
DEPRECATE macro, GPG2: 64-65
descriptive comments, GPG3: 29
enum to string transformation, GPG3:

27-28

for infinite loop prevention, GPG3:
31-32

vs. inline functions, GPG2: 16-19
journaling service macros, GPG3:

143-145
LINE to string conversion, GPG3:

31-32
number of elements in array, GPG3: 30
profiling systems, GPG3: 147-149
save tables created with, GPG3: 61-62
state machine languages, GPG3: 32-33
state machines created with, GPG2: 19
utility of, GPG3: 26
see also Assert macros

Magic, dynamic programming algorithm and
spellcasting, GPG4: 334

Magic (hardcoded) numbers, GPG4: 17

Magnenat-Thalmann, Nadia
articles by, GPG4: 275-285
contact and bio info, GPG4: xx«x

Magnification factors, GPG1: 434, GPG1:
437

Make, GPGA: 37
Malloc(), GPG2: 9, GPG2: 67-68, GPG4:

37
Manager classes, GPG1: 15-16
Mandel, Michael

article by, 449-455
contact and bio info, xxx

Manslow, John

article by, GPG2: 351-357
contact and bio info, GPG2: xxvi

Maps and mapping
combined visibility maps, GPG2:

283-286

cube maps, GPG2: 459-460, GPG3:
444-45]

curvature simulation with, GPG3:
424-432

elevation mapping for depth, GPG3:
418-420

environment maps, GPG1: 193, GPG1:
581

grid-based maps, GPG1: 403
height maps, GPG2: 503-504
horizon mapping, GPG3: 436-437
interlocking landscape tiles and height

maps, GPG2: 379-380
layer mapping for textures, GPG3: 461

Index

light coordinate systems for, GPG1:
571-574

light maps, GPG1; 543-548, GPG2:
452-459

mipmaps, GPG3: 464, GPG3: 465,
GPG4: 385

multi-resolution maps, GPG1: 405-411
n.h. / h.h. maps, GPG3: 467-469
(n.h)k maps, GPG3: 469
normal maps, GPG3: 425, GPG3: 429,

GPG3: 430
perspective shadow maps, GPG4:

399-410
perturbation maps for distortion simula-

tion, GPG4: 482
player visibility maps, GPG2: 281-282
PTMs (polynomial texture maps), GPG3:

438
reflection, environment mapped, GPG1:

581-585
refraction mapping, GPG1: 594-600
shadow maps, GPG1: 567-580, GPG2:

422, GPG4: 399-410
size variation problems, GPG1: 403-404
specular maps, 469-472, GPG3: 450
spherical reflection maps, GPG1:

553-554
Standard Template Library, GPG1:

50-53
triangle strip mapping alternatives,

GPG3: 415-416
UV mapping of triangle strips, GPG3:

415-416
see also Bump maps

Marselas, Herbert

articles by, GPG1: 353-360, GPG1:
465-570, GPG2: 28-37

contact and bio info, GPG1: xxv, GPG2:
xxvi

Marshall, Carl S.

articles by, GPG2: 436-443, GPG3:
5-14, GPG3: 359-366, GPG4:
503-513

contact and bio info, GPG2: xxvii,
GPG3: xxviii, GPG4: xxx

Martin, Adam

articles by, 5-15, GPG4: 541-553
contact and bio info, »xx—xxxi, GPG4:

XXX
Masks and masking

subdivision surfaces and, GPG3: 372-376
texture masks for team color, GPG4:

453-456, GPG4: 458
Massively multiplayer games (MMPs),

603-610, GPG4: 555-561
action requests, GPG3: 516
action scheduling, GPG3: 516-517
ActionStates class, GPG3: 509
ActorProxy class, GPG3: 513
Actors and Actor class, GPG3: 512-513
AlControlStates class, GPG3: 509-510
architecture overview, GPG3: 506-508

BaseSimulation class, GPG3: 515

ControlStates class, GPG3: 509

core classes for, GPG3: 510-513
crashes, preventing, 607-608
dictionaries for, GPG3: 508

DirectPlay 8.1 for, GPG3: 565
event broadcasting and handling, GPG3:

517-518

Index

grouping players, GPG3: 565-566
hash tables for, GPG3: 508
killing algorithms and, GPG4: 209-219
LookupManager, GPG3: 515
managers and factories, GPG3: 513-515
MMORPGs (massively multiplayer

online role-playing games), GPG4:
579-589

Nonperformer class, GPG3: 513
Performer class, GPG3: 511-512
persistence of game data, 608-609
properties of SimulationObjects, GPG3:

511
proxies, simulation by, GPG3: 507-508
server requirements for, 605-607
simulation events for, GPG3: 508
SimulationObject (SOB) class, GPG3:

509-511
SimulationState class, GPG3: 508-509
SOBFactory, GPG3: 514
SOBManager, GPG3: 514
state storage for, GPG4: 555-561
support classes for, GPG3: 508-510
top-level interface for, GPG3: 515-518
UserControlSrates class, GPG3: 509-510

Massively multiplayer online role-playing
games (MMORPGs), GPG4: 579-589

Mass-spring physics, GPG4: 277-284
realistic cloth animation modeling with,

421-433

Master node list, GPG1: 282
Masuch, Maic, contact and bio info, GPG4:

XXXI
Matchbox containers, Major Matchbox,

GPG3: 277-283
data members for, GPG3: 278
methods in, GPG3: 278-279

Matchmaking for online games, GPG4: 535,
GPG4: 537

Mathematics
game programming and, 199, GPG4:

139-140
rationales for using, GPG3: 155-156
trigonometric functions, approximations

to, GPG3: 170-185

see also Specific topics i.e. Splines
Matrices

efficiency of templatized, GPG1: 29-30
identity matrices, GPG1: 26-27
initialization of, GPG1: 27
local-to-world matrix, GPG1: 368-370
matrix-based cameras, GPG1: 366-370
multiplication of, GPG1:; 28-29
projection matrix, GPG1: 361-362

quaternions as replacements for, GPG1:

195-196
state transition matrix, GPG1: 238
transposition of, GPG1: 27-28

Matrix-quaternion conversions, GPGI:

200-204

Matyka, Maciej
article by, 435-448
contact and bio info, «xxi

Maughan, Chris
article by, GPG2: 474-480

contact and bio info, GPG2: xxvii

MAX. See 3ds max skin exporter and anima-

tion toolkit
Mazes, GPG1: 490-493

algorithms, GPG1: 492-493

DP (dynamic programming) and, GPG4:
325-336

pathfinding and, GPG4: 325-335
MBE (molecular beam epitaxy), GPG1: 508

McCoy, Dave
article by, GPG4: 465-475
contact and bio info, GPG4: xxxi

McCullock-Pitts nets, GPG1: 338-341
McCuskey, Mason ‘i

article by, GPG1: 319-329, GPG1:
519-523

contact information, GPG1: xxvi

McNeill, James

article by, GPG3: 157-159
contact and bio info, GPG3: xx«xiv

Mechanical engine sounds, GPG3: 627,

GPG3: 634-635
Mechanical systems, friction and modeling of,

GPG3: 215
Meehan, Patrick

article by, 149-157
contact and bio info, xxi

Meets, geometric algebra, 214

Mefford, Nathan
article by, 129-141

contact and bio info, x«xxi

Melax, Stan
article by, GPG1: 214-218
contact information, GPG1: xxv

Memepy(), GPG2: 13

Memory
AABB tree optimizations, GPG2:

388-393
A* algorithm and, GPG1: 272, GPG1:

278-280

address space management as memory
management, GPG4: 87-88

bounds violations, GPG2:'69
BSP trees, memory efficiency of,

521-525
cache lines and architecture, 159-161
cache-oblivious implementation of ABT

Trees, 159-167
code bloat and, GPG2: 11-12

committed memory, GPG4: 87
composited screenshots and, GPG4:

390-391
corruption of, GPG1; 98-99
data compression techniques, GPG4:

497-502

debugging and, GPG4: 16
drop-in debug memory manager, GPG2:

66-73
flocking and, GPG1: 306
fragmentation of, GPG1: 92-100,

GPG2: 13-14

frame-based allocation of, GPG1; 92-100
free(), GPG2: 9, GPG2: 67-68, GPG4:

37
heaps, GPG1: 94-96
inline functions and, GPG2: 18
iterative autoassociative memory, GPG1:

347, GPG1: 350
leaks, GPG1: 86, GPG2: 70-71, GPG4:

15, GPG4: 61 F
management of, 16, GPG1: 80-87,

GPG2: 9

memepy(), GPG2: 13
memory tracking, GPG2: 29, GPG2:

66-73

773

MFC’s memory manager, GPG2; 72
neural nets as, GPG1: 332, GPG1: 336
OpenGL extensions and, GPG1:

357-358
procedural textures to spare, GPG2: 497
releasing, GPG1: 95-100
reliable messaging systems, memory

requirements for, 670-671
resource management and, GPG4: 61-62
shared memory, 359, 608-609
Standard Template Library and, GPG2:

12-14

state storage for MMP games, GPG4:

555-561
stomp, avoiding, GPG1: 90-91
templated freelists to avoiding fragmenta-

tion, GPG4: 43-49

tracking user allocated memory with
FreezeMgr, 151

vectors, GPG1: 43, GPG1: 45
VIPM memory costs, GPG2: 363-364
see also Memory allocation; Memory

managers
Memory allocation, GPG4: 58, GPG4:

87-88

allocating for stacks, GPG2: 262
alternatives to malloc(), calloc(), realloc(),

and free(), GPG4: 67-68

character sets and, GPG3: 97-98
custom STL allocators, GPG3: 49-58
debugging and, GPG4: 15
malloc(), GPG2: 9, GPG2: 67-68,

GPG4: 37
web camera allocation, GPG2: 155-156

Memory managers
basic object memory manager, GPG1: 68
debugging and, GPG4: 16

drop-in debug memory manager, GPG2:
66-73

fragmentation and, GPG4: 44
logs and logging, GPG2: 68-70
in Lua programming language, 117
MEC’s memory manager, GPG2: 72

Menus
menu factories, 194-196
menu managers, 190, 193-194
menu systems, 189-196

pie menus, GPG3: 117-128
user controls and, 190, 191-192

Mersenne Twister, pseudorandom number

generator, GPG4: 143-146

Meshes
arbitrary meshes, GPG3: 344-345
collision meshes, GPG4: 505
cracks in mesh seams, GPG4: 159
deformation and physics layers, GPG4:

281-284

deformation and skin calculations,

GPG2: 149
exporting to file, GPG2: 149-150
extruding for shadow volumes, GPG4:

438
heightfield meshes, GPG3: 344-348
lighting and shadow volumes for opti-

mized meshes, GPG4: 437-441

navigation meshes, GPG1: 288-304

open meshes and shadow volumes,
GPG4: 393-398

optimization for stencil shadow volumes,

GPG4: 430-432

774

progressive, GPG1: 438, GPG1:
454-464

Real-Time Optimally Adapting Meshes
(ROAM), GPG2: 377-378

resolution defined, GPG2: 365
subdivision surfaces and, GPG3:

372-383
vertex collapse and split, GPG1: 455-456
view-dependent and -independent,

GPGI1; 456-458
View-Dependent Progressive Meshes

(VDPM), GPG2: 377-378
View-Independent Progressive Meshing

(VIPM), GPG2: 363-376
watertight (2-manifold) meshes, GPG4:

308, GPG4: 433
see also Navigation meshes

Message-based entity management systems
advanced messages for, GPG4: 79-81
basic messages for, GPG4: 77-79
class list for, GPG4: 74-75
debugging for, GPG4: 82
entity code, GPG4: 72-74
entity manager, GPG4: 75-76
entity messages, GPG4: 71-72
gameplay and environment messages for,

GPG4: 79
message-based game loop, GPG4: 76-77
multiplayer networked games and,

GPG4: 81-82
overview of, GPG4: 69-71

Message compression, RPCs and, 639
Message objects, GPG1: 222-223
Message pumps, alternatives to, GPG2: 80-84
Message Router, GPG1: 235-236
Messages and messaging

delayed sending, GPG1: 229-230,
GPGI1: 236

logging activity and state transitions,
GPGI1: 232-233

message dispatch systems, GPG3:
D255 27,

routing, GPG1: 227-229, GPGI1:
235-236

scope definition, GPG1: 231-232
sending, GPG1: 229-230
serialization of messages, GPG3:

524-525
snooping, sniffing, or peeking, GPG1:

222

trigger systems and event messages,
GPG3: 289

unique IDs in, GPG1: 230
Messaging protocols, 665-671
Metaball clusters, RDC algorithm and

Marching Cubes algorithm, GPG2: 229
Metadata, 39

Metaprogramming, templates, GPG1: 20-35
Methods, begin () and end (), GPG1: 42-43
MEC, new and delete operators in, GPG2: 72
Microfacets, shading models and, GPG3:

478-479, GPG3: 482
Microsoft Developer Network Library,

GPGI1: 66
Micro-threads, AI architecture

“brains” to run, GPG2: 267-268
loading and saving, GPG2: 263
stack management, GPG2: 262
state machine coding and, GPG2:

265-266

structured exception handling, GPG2:
263

switching between threads, GPG2:
260-262

troubleshooting, complications, GPG2:
263

MIDI (Musical Instrument Digital Interface),

GPG2: 541-543
MIDlets, GPG3: 575, GPG3: 579
Midpoint displacement, terrain generation,

GPG1: 503-507
Milliger, Mike

article by, GPG3: 452-458
contact and bio info, GPG3: xxxiv

Minimal acceleration Hermit curves, 225-231
Minimal bending curves, 225-231
Minimax numerical approximations, 269-280

described, 272-274
Minimax polynomials, GPG3: 180-182
Minkowski sums, GPG2: 319-322

“lazy man’s Minkowski sum,” GPG2:
321-322

Mipmaps, resolution and, GPG4: 385
Mirages, GPG2: 286
Mirrors, oblique view frustums for mirrors

and portals, 281-294
Mitchell, Jason L.

articles by, 497-498, GPG1: 594-600,
GPG2: 421-424

contact and bio info, »xxii, GPG1: xxv7,
GPG2: xxvit

Mitchell, Kenny
article by, GPG3: 433-443
contact and bio info, GPG3: xxiv

Mixing functions and randomness, GPG2:
129

MLPs. See Multiplayer perceptrons (MLPs)
MMORPGs (massively multiplayer online

role-playing games), GPG4: 579-589
MMPs (Massively multiplayer games). See

Massively multiplayer games (MMPs)
Modal analysis

for deformations, GPG4: 287-298
equation for deformable simulation,

GPG4: 289-292

initial conditions and external forces,
GPG4: 295

modal decomposition, GPG4: 288,
GPG4; 289-292

modal simulation, GPG4: 288
modes described and defined, GPG4; 288
modes discussed, GPG4: 293-294
process reviewed, GPG4: 296-297
stiffness matrix of system, GPG4: 291
updating modes, GPG4: 294-295
uses for, GPG4: 288-289

Modal simulation. See modal analysis
Modules

file management using resources files,
GPG2: 102-104

game profiling, GPG2: 74-79
memory-tracking module, GPG2: 66-73

Moffitt, Jack

article by, GPG3: 587-594
contact and bio info, GPG3: xxiv

Molecular beam epitaxy (MBE), GPG1: 508
Momento audio design pattern, GPG2: 518
Momentum, linear and angular, GPG1: 154
Monitoring, online games, GPG3: 558-559
Monotonicity, 341

Index

Moraydnszky, Addm ~
article by, GPG4: 253-263
contact and bio info, GPG4: s««xi

Motion
cloud shadows, GPG3: 436-438, GPG3:

440-442, GPG3: 447-449
flocking implementation, GPG1:

307-308
forward motion and animation, GPG2:

428-429
parallel transport frames for orienting

moving objects, GPG2: 216-217
realistic, GPG3: 394-403
simulating rigid body motion, GPG1:

150-160

Motion capture data
compression techniques, GPG4: 497-502
runtime decompression of, GPG4: 501
smooth transitions between captures,

GPG3: 396-398
Motion detection, web cameras and, GPG2:

157-158
Motors, constraints and rigid body dynamics,

GPG4: 249
Motor vehicles, sound effects, GPG3: 627,

GPG3: 634-635
Mountains

calderas, inverting, GPG1: 509-511
fractal terrain generation, GPG1:

503-507
Mouse, input with, GPG3: 114
Movement

to arbitrary targets, GPG3: 394-396,
GPG3: 399-400

collision model path-finding and, GPG3:
329-331

movement-based AI, GPG3: 321-331
navigation meshes and 3D, GPGI1:

288-304

test or other items moved via smoothing,
GPG4: 95-101

Move-ordering methods, GPG1: 252-253
Movies, input recording to create game

movies, GPG2: 107
MRC file format, GPG2: 142-143
Multiplatform portability, serialization and,

GPG3: 536-545
Multiplayer games

data encryption methods, GPG3:
521-522, GPG3: 549-552, GPG3:
554-555

data security and cheating, GPG3:
520-522, GPG3: 546-555

DirectPlay 8.1 to create, GPG3: 561-572
input recording and, GPG2: 107, GPG2:

110
message-based entity management and,

GPG4: 81-82
MMPs, GPG3: 506-519
scaling multiplayer servers, GPG3:

520-533
trends, GPG4: 531
web-cam interaction for, GPG2: 153
wireless extensions for, GPG3: 573
see also Massively multiplayer games

(MMPs); Network games (online
games)

Multiplayer perceptrons (MLPs)

collecting data for, GPG2: 354-355
described, GPG2: 351-353

Index

input selection and training, GPG2:

353-354
perturbation searches and, GPG2:

355-356
resources required for, GPG2: 356-357
training, GPG2: 353-356

Multiple-language games
character sets, GPG3: 96-98
developing games for world markets,

GPG3: 92-108

Input Method Editors (IMEs), GPG3: 94

line breaks and sorting, GPG3: 93-94
localization and user interface for, GPG3:

112

memory allocation and character sets for,
GPG3: 97-98

Multiresolution LOD models, multilayer
physics and fast deformations, GPG4:
ON ih

Multi-resolution maps, GPG1: 405-411
Multitasking in games, GPG2: 82-83
Multithreading, xvi, GPG2: 81-84, GPG3:

13
audio programming techniques, 697-711
Benchmarking application, code listing,

703-708

decision tree optimization, 345-352
defined and described, 697-699
DirectPlay 8.1, GPG3: 566-569
generic pagers (GPs) and, 92

HyperThread technology, 701-702

Parallel Virtual Machines (PVMs) and,

353-366
query algorithm, 345-352
real-time streaming data mechanisms for,

708
Multitime management for multiserver

systems, GPG4: 581-588
Multivectors in geometric algebra, 203-209,

213
Music

associations with, GPG2: 551-552

basic music sequencer, GPG2: 539-550
callbacks, GPG2: 545, GPG2: 547-549
as clue for player, GPG4: 323
control granularity, GPG2: 554-555
DirectMusic, GPG4: 625
event blocks, GPG2: 540-541

event data structures, GPG2: 546-547

interactive music, GPG4: 623-624

meanings of, GPG2: 552-553

MIDI (Musical Instrument Digital

Interface), GPG2: 541-543
modifications, GPG2: 544

mood and, GPG4: 621, GPG4: 623-624

note control, GPG2: 544

sequencer data structures, GPG2:
545-546

sequencer implementation, GPG?2:

543-549
sequencing methods, GPG2: 539-540

streaming method, GPG2: 539-540

synthesizer / sequencer connection,

GPG2: 549-550

timing calculations, GPG2: 548-549

transitions in, GPG2: 553-554

volume control, GPG2: 554-555

see also Audio

Musical Instrument Digital Interface (MIDI),

GPG2: 541-543

Music design, factors for interactive music,
GPG2: 556-558

Music tag, XML audio tag, GPG4: 627
My, Frederic

articles by, GPG4: 111-124
contact and bio info, GPG4: xxx

N
Nagy, Gabor

articles by, GPG1: 567-580, GPG1:
586-593

contact information, GPG1: xxvi
Name-mangling facility of C++, GPG1: 65
Names and naming, GPG1: 10-11

algorithm for realistic names, GPG1:
493-498

Hungarian notation conventions, GPGI:

9-11
name-mangling facility of C++, GPG1:

65
for variables, GPG4: 17

Narrative
AI to enhance tension in action games,

GPGé4: 315-324
dialog and, GPG4: 624-625
dramatic structure of stories, GPG4:

316-319

N-ary trees, GPG3: 147
NAT. See Network Address Translation

(NAT)

Natural cubic splines, GPG4: 171
Navier-Stokes equation, 398-399, 401,

540-541
Navigation, for Generic Pager (GP), 89-91
NavigationCell, GPG1: 292

NavigationMesh, GPG1: 292-293
Navigation meshes, GPG1: 288-304

automatic cover finding and, 299-305
construction of, 299-300, GPG1: 290 *
controlling object movement, GPG1:

290-293
creatures, representing on, GPG3:

314-316
described, GPG3: 308-309
dynamic obstacles, GPG3: 316-319
portals and, GPG3: 309-311, GPG3:

313-314

precomputing tables for, GPG3:

311-313
static obstacles, GPG3: 318-319
static vs. dynamic obstacles and, GPG3:

307

Navimesh, GPG1: 289
Nearest-point calculation, closed-form

equations for, GPG2: 194-198
Negamax variation on minimax algorithm,

GPG1: 250-251

NetTool, online game monitor and network
simulator, GPG3: 557-560

Network Address Translation (NAT)

Client / Server protocols, 651-654
defined and described, 648-650
Peer-to-peer protocols, 654-656
port forwarding, 654-656

Network games (online games)

bitpacking compression technique,
GPG4: 571-578

crashes, preventing, 607-608

distributed service systems for, 603-604

hosting facilities for games, 657-658

775

incoming communication and, 616-617
IP addresses, 644-645
messaging systems, 665-67 1
network protocols for, GPG1: 104-108
safe random numbers for, 673-679
security design for, 681-691
time and consistency management,

GPG4: 579-589
vulgarity filtering for, 621-626
see also Massively multiplayer games

(MMPs); Online games (network

games); Servers

Network interfaces, 644
Network Time Protocol (NTP), online

gaming and, GPG3: 493
Neural networks, GPG1: 330-350

algorithm for, GPG1: 345-350
biological analogs for, GPG1: 330-331
classification and recognition, GPG1:

341-344
feed-forward networks (multilayer

perceptrons), GPG4: 374-375
game applications for, GPG1: 331-332
Hebbian neural nets, GPG1: 345-346
Hopfield neural nets, GPG1: 346-350
multiplayer perceptrons (MLPs), GPG2:

351-357
neurodes, GPG1: 332-338

plasticity of, GPG1: 336
programmable graphics hardware and,

GPG4: 373-377
stability, GPG1: 336
temporal topics, GPG1: 335-336

Neurodes, GPG1: 332-338
Newton-Euler equations, GPG1: 150-160

integrating, GPG1: 158-159
Newton’s law of motion, GPG4: 242
N.h. / h.h. maps as lookup tables, GPG3:

467-469
Nicholls, Aaron
articles by, GPG2: 205-214, GPG3:

92-108
contact and bio info, GPG2: xxvii,

GPG3: xxiv
NLS (normalized light space), GPG3:

473-474
Node Object, GPG1: 283
Nodes

allocation of, GPG3: 53-54
calculating start and end node velocities,

GPG4: 180
dummy nodes, GPG4: 56
effector nodes, GPG4: 194
export routines and, GPG2: 144-145
in matchbox containers, GPG3:

278-279

pathfinding, GPG1: 278-280

decoupling, GPG1: 278-279
master node list for storage, GPG1:

280-281

root nodes, GPG4: 194, GPG4: 488
.spline nodes, GPG4: 171
tree nodes, GPG4: 53-56

NodeServers, 612, 614-619

Noise
animating an octave of noise, 500,

GPG2: 466-468
band-limited noise, GPG2: 466

clouds as animated noise, 500

fractals and pink noise, GPG2: 241-242

776

Perlin noise, 500, GPG2: 466, GPG3:
453

stochastic synthesis of, GPG3: 622-629
turbulent noise creation, GPG2: 467-468
see also audio; sound

Nondeterminism, GPG4: 542-543, GPG4:
546, GPG4: 547-548

Nonperformer class for massively multiplayer
games, GPG3: 513

Nonphotorealistic rendering (NPR), GPG4:

443-449
inking for cartoon rendering, GPG2:

436-443
painting for cartoon rendering, GPG2:

444-451
Nonplayer characters, AI and decision

making, GPG4: 325-335
Normal distribution function (NDF) shading,

GPG3: 477, GPG3: 479-482
rendering, GPG3: 479-480
storing as texture maps, GPG3: 479

Normalized light space (NLS), GPG3:
473-474

Normal maps
saving, GPG3: 429

UV mapping and, GPG3: 430
Normals

on arbitrary meshes, GPG3: 344-345
face normals, GPG3: 344
heightfield normals, GPG3: 346-348
surface normals, fast patches, GPG3:

349-351
vertex normals, GPG3: 344-345

Norms of multivectors, 213
NPCs, pathfinding, GPG4: 325-335
NTP (Network Time Protocol), online

gaming and, GPG3: 493
NTSC video systems, updating and clocks,

GPG4: 27
Null objects, GPG4: 67
NULL pointers, GPG4: 62, GPG4: 67
NURBS

defined and described, GPG4: 172
physics envelopes to control NURBS

surfaces, GPG4; 281-283
Nvidia’s Developer Web site, GPG2: 509
NyLink (nVidia), 591

Nyquist Sampling Theorem, GPG4; 352

oO
Oat, Chris

articles by, GPG3: 467-476, GPGA4:
437-441, GPG4: 477-485

contact and bio info, GPG3: xxx»,
GPGA4: xxxii

Object-composition game framework, GPG3:
15-24

ObjectContainer class, GPG4; 107-108
Object management

component based, 25-37
on-the-fly object management, GPG4:

103-110

ObjectManager class, GPG4: 106-107
Object-Oriented Programming (OOP),

GPGI: 8-19, GPG3: 73, GPG4: 3
classes, designing, GPG1: 11-12
coding styles in, GPG1; 9-11
design techniques and, GPG1: 8-19
facade pattern in, GPG1: 15-16

sisseotrnonaensnensicrouuissneeteeanone tens nenansneesnonoceanansnean ate entender mmm cotinatnitseer este niemmmbse tee eenaoonci poe tamelsinennenenots

factory pattern in, GPG1: 18-19
Hungarian notation, GPG1; 9-11
singleton patterns, GPG1: 13-15
singletons, GPG1: 36-40
state patterns in, GPG1: 16-18
utility-based decision architecture, GPG4:

337-344
Objects

composition vs. inheritance, 27, 37,
GPG3: 18

construction and destruction of, GPG2:

5-8
creating from components, 27-30
creating with factories, GPG4; 119-120

destruction of, GPG4: 108-110

editing properties with RTTI edit/save
system, GPG4: 116-118

event-driven vs. polling, GPG1: 221-222
generic member access, GPG2: 46-50
generic objects, GPG2: 41-43

on-the-fly management, GPG4: 103-110
orientation of moving objects, GPG2:

215-219

preallocation and caching of, GPG2: 8
property objects, 46-48
proxy and master objects, 617
RDC algorithm to find groups, GPG2:

229

saving in XML format, GPG4: 118-119
serialization of, GPG3: 534-545
tagging for type safety, GPG3: 544

O’Brien, James F.

articles by, GPG4: 287-297
contact and bio info, GPG4: xxxii

Observer audio design pattern, GPG2: 518
Observer pattern, 617
Obstructions or barriers

defined, GPG2: 331
interactive water surfaces and, GPG4:

271-272

natural barriers, GPG4: 369-370
oceans, rivers, and lakes, GPG4: 366-368
pathfinding and, GPG3: 307, GPG3:

316-320

stacks of rigid bodies, GPG4: 248
Occlusion, GPG1; 423

audio occlusion and obstruction, GPG3:
600-605, GPG4: 634-635, GPG4:
637, GPG4: 644

camera occlusion, GPG4; 311-313
cPLP algorithm, GPG3: 355-358
culling, GPG1: 421-431, GPG3:

353-358, GPG4: 515-527
horizon and occlusion of terrain objects,

GPG4: 524
horizon mapping, GPG3: 436-437
occlusion horizon and horizon culling,

GPG4: 515-527
PLP algorithm, GPG3: 354-355, GPG3:

356-358
shadow ellipses, GPG3: 437

Occlusion Culling Code, GPG1: 429-431
Octrees, GPG2: 388

bounding volumes of, GPG1: 445-446
cellular automata and, GPG3: 204

construction of, GPG1: 439-443
data contained in, GPG1; 440
loose octrees, GPG1: 448-453, GPG3:

204

Index

neighbors, GPG1: 442 Bu
polygon overlap lists, GPG1: 442
for ray collision tests, GPG1: 443
regular vs. loose octrees, GPG1: 451-453
vs. sphere trees, GPG2: 385
used to partition objects, GPG1:

446-448
Odd masks, GPG3: 372
Offline calculation, progressive meshes and,

GPGI1: 462

Ogg Vorbis, audio compression
code example using, GPG3: 591-592
decoding, real-time, GPG3: 592-593
encoding, GPG3: 593
psychoacoustic compression described,

GPG3: 587-589
OggVorbisFile class, GPG4: 630
Oil, cellular automata to model, GPG3: 200
Olsen, John M.

articles by, GPG1: 88-91, GPG1:
115-119, GPG1: 141-149, GPG2:

182-190, GPG4: 355-364

contact and bio info, GPG1: »xvi, GPG2:
xxviit, GPGA4: xxii

Omni-lights, GPG1: 526-527
Online games

authentication, GPG4: 535
chat sessions and, GPG4: 536
cheating and, GPG4: 538
client / server systems for, GPG3:

496-497, GPG3: 501-502, GPG3:

506-507, GPG3: 522-533
content download, GPG4: 536-537
event-locking, GPG3: 489-495
frame-locking, GPG3: 488-490
freezing and frame-locking, GPG3:

488-489
function binding, GPG3: 42
game-turn rates, updates, GPG3:

498-500

high mode elimination for synchroniza-
tion, GPG3: 493-495

industry trends, GPG3: 487
large-scale servers, GPG4: 541-553
leaderbaords and tournaments, GPG4:

537-538

lobby design and development, GPG4:
533-539

lockstep protocols, GPG3: 488-495
matchmaking, GPG4: 535, GPG4: 537
monitoring network activity, GPG3:

557-560
network failures, GPG4: 543
network protocol for, GPG1: 104-108
out-of-synchs, debugging, GPG3:

503-504
packet loss, GPG3: 503
path-finding packet exchanges, GPG3:

490-492
peer-to-peer protocols, GPG3: 496-497
player access to, GPG4: 535
privacy and legal issues, GPG4: 535,

GPG4: 536
protocols for online games, GPG1:

104-108

scale issues, GPG4: 543
scheduling client access, GPG4: 544
serialization methods for, GPG3;

534-545

Index 777
cnuereenneeneusaunieaeaneiietacdsnituiiteNeNNii

nieNaeNiNNnNNnmnnueniiNmtmntNinmnamiamnitiiisNN

slow computers and, GPG3: 502
synchronization, GPG3: 493-495,

GPG3: 500-501, GPG3: 503-504
TCP-based systems, GPG3: 492
time synchronization, GPG3: 493-495
time zone “lock up” bugs, GPG3: 494
UDP-based systems, GPG3: 492, GPG3:

493
voice communications in, GPG3:

569-571
see also Latency; Network games (online

games)

Onscreen virtual keyboards, GPG3: 94-95

Opacity vs. transparency, GPG1: 587-598
OpenAL positional audio library, GPG3:

595-599, GPG4: 595-606
compatibility issues, GPG4: 604-605
described, GPG4: 596-602
devices in, GPG4: 596
enumerated values in, GPG4: 603
extensions, standardized, GPG4: 605
implementations of, GPG4: 602
listeners in, GPG4: 596
source attributes in, GPG4: 598-600
spatialization and, GPG4: 600-601
speaker placement, GPG4: 604-605
troubleshooting, GPG4: 602-604
web addresses for library, GPG4: 606

Open fields, hierarchical pathfinding, GPG1:
269-270

OpenGL
cameras and GLUT graphics in, 490
extensions for, GPG1: 357-358
implementation of projection matrix,

289-290

optimizing vertex submission for, GPG1:

353-360
sprite effects, GPG1: 519-523
texture wrapping settings for skyboxes,

GPG?: 418
Open lists, GPG1: 282-286
Operations, dynamic ws. static operation

order, GPG3: 19
Operators

optimization and return by value, GPG2:

iL
predicate logic and, 333
text parsers, GPG2: 115

Optimizations
Artificial Intelligence strategies, GPG2:

251-257

of binary space partitioning (BSP) trees,

56-57, 59-63
for C++ games, GPG2: 5-15
code size and, GPG2: 11-12

constructors and, GPG2: 7-8

crashes to analyze performance, GPG3:

69
for decision trees, 345-352

event-driven behaviors vs. polling, GPG2:

251-252

floating-point optimizations, GPG3:

182-184

high-speed trigonometric approximations,

GPG3: 170-185

impostoring and render targets, GPG2:

494-495

increment functions and, GPG2: 7

initializer lists, GPG2: 6-7

for iWave algorithm, 413-414
LOS templates for player visibility

systems, GPG2: 281-283
manager entities to centralize coopera-

tion, GPG2: 252-253
measuring with input recording, GPG2:

106
memory management techniques for,

GPG2: 9
memory usage, GPG2: 66-73
object construction and destruction,

GPG2: 5-8
object preallocation and caching, GPG2:

8

operators, GPG2: 7
for planning, 341-342
of points-of-visibility pathfinding, GPG2:

324-329
profiling strategies, GPG2: 5, GPG3:

146-156
quadtree access routines, GPG2:

394-401
redundant calculations, GPG2: 252

shaders and, 596
StackAlloc for memory allocation, GPG3:

50
Standard Template Library and, GPG2:

12-14
template-based object serialization,

GPG3: 542-544
templates and, GPG2: 14
triangle-strips, GPG3: 364-365
trigonometric functions and, GPG2:

213-214
vector fraction implementation, GPG3:

168-169
virtual functions and, GPG2:; 9-11

Orientation, GPG1: 307-308"
Orthogonality, GPG1: 337-338
OS threads, GPG2: 260
Oswald span efficiency factor, 404
Otaegui, Javier F.

article by, GPG2: 80-84
contact and bio info, GPG2: xxviii

Out-of-synchs, online gaming, GPG3:
503-504

Overflow Exceptions, GPG3: 70
Overload chain reactions in servers, GPG4:

543

P
Pacing of games, GPG4: 315-324
Packets, GPG1:; 104

defined, 665
identifiers for, 667-668
packet queues for messaging systems,

668-670
relay attacks, GPG1: 105-106
tampering, GPG1: 105
UDP packets, 647-648

Packing, data compression, GPG4: 571-578
Packweights, GPG3: 392 i

Padding, GPG3: 549-550, GPG3: 552

Page faults, GPG2: 18
Paging, generic pager, 79-92

Painting for nonphotorealistic rendering

computing Toon texture coordinates,
GPG2: 438-440, GPG2: 446-448

painting described, GPG2: 444-445

programmable vertex shaders, GPG2:
448-450

Pallister, Kim
articles by, xv—xvii, GPG2: 463-473,

GPG3: 3-4
contact and bio info, xxxii, GPG2: xxviii,

GPG3: xxxv
PAL video systems, updating and clocks,

GPG4: 27
Pancewicz, Marcin

article by, GPG4; 221-230
contact and bio info, GPG4: sxxii

Parallax, snow or rain rendering and, 510
Parallax values, GPG2: 492-493
Parallel computation, debugging and, GPG4:

10
Parallel processing, in water simulations,

GPGI: 190-191
Parallel-state machines, in client-server

environments, GPG4: 563-570

Parallel transport frames
calculation of, GPG2: 215-216
vs. Fixed Up method, GPG2: 218
vs. Frenet Frames, GPG2: 217-218
used to orient objects, GPG2: 215-219

Parallel Virtual Machines (PVMs), 353-366

implementation of, 361-363
task decomposition for, 354-355

Parameter types, inline functions and, GPG2:

18
Parberry, Ian, contact and bio info, xxi
Parser class of parsing system, GPG2:

114-116
Parsers and parsing

bison, GPG3: 91, GPG3: 406, GPG3:
409-410

of custom data files, GPG3: 83-91
for programmable vertex shader compiler,

409-410, GPG3: 406

recursive descent parsing, 23

syntax trees and, GPG3: 406
of text data in games, 17-24
vulgarity filters and, 622
XML, GPG3: 112
Yacc parser generator, GPG3: 40-41,

GPG3: 83-91
Particle bundles, precipitation rendering,

507-513
Particle deposition, fractal terrain generation,

GPG1: 508-511

Particle systems, aerodynamics for wind-
driven storms, 407, 408

Partitioning
loose octrees used for, GPG1: 446-448

neural nets as, GPG1: 336-337
space, GPG1: 257-259

Passability, as tactical assessment factor,

GPG?: 296
PASs (potentially audible sets), GPG4:

636-638

Patches, surface, fast patch normals, GPG3:

349-351

Pathfinding
A* algorithm, 367-368, GPG3: 294-305

Al pathfinding, GPG2: 152, GPG2:

274-275
area navigation method, GPG3: 243-246

attraction and repulsion, GPG3:
249-251

778
cetera nein ate nMGnSl//HHnneianee ICONS ANA HE:ahnimn oR -evesnenvasnetnemnaseienonneoe iene eenntenenenienennenaenesn nein steonetconeontunssornttoaahlorrceniteit

attractors and repulsors as influences,
GPGé4: 362

breadcrumb pathfinding, GPG4:

312-313
collisions and, GPG2: 317-323
cost function and heuristic for evaluating

shortest paths, code listing, GPG3:
295-296

costs, GPG3: 295-296, GPG3: 298-300,
GPG3: 304-305, GPG4: 327

cover finding and, 301-304
D* (dynamic A*) for, 383-389
3-D environments, GPG3:; 253-254
distributed processing for optimization,

GPG2: 253-254
dynamic landscapes and, GPG3:

251-253
dynamic programming (DP) and, GPG4:

325-335
hierarchical on-demand pathfinding,

GPG2:; 254-255
looping and forking paths, GPG3:

310-311
with navigation meshes, GPG1: 293
navigation meshes and, GPG1: 288-304,

GPG3: 307-320
obstacles and, 316-319, GPG3: 307
open goal pathfinding, 301, 305

path transversal, GPG3: 249-253

precomputing propagated influence
values, GPG2: 294-295

redundant computations and, GPG2:
252

shortest paths, GPG3: 295-296
tactical path cost evaluation, code listing,

GPG3: 296
for third-person cameras, GPG4:

312-313
tile-based pathfinding, GPG2: 325
traditional methods, inefficiency of,

GPG3: 241-243
valid (unobstructed) space, GPG3:

325-328
vector fractions for exact geometry,

GPG3: 160, GPG3: 162-163
waypoint queuing and, GPG2: 274-275
see also Collision model path-finding;

Path planning; Points-of-visibility
pathfinding

Path planning, GPG1; 254-263
A* for, GPG1: 254-262
cost functions for paths, GPG1:; 259-260
neighboring states, GPG1: 259
partitioning space for, GPG1; 257—259

Paths

aesthetic optimizations for, GPG1:
264-271

B-spline curves, GPG1: 374-376
Catmull-Rom spline, GPG1; 266-267,

GPGI1: 376-377
decoupling pathfinding data, GPG1:

278-279
hierarchical pathing, GPG1: 268-270,

GPGI1: 275-276
maximizing responsiveness, GPG1:

270-271

movement along curves, 233-246

navigation meshes, GPG1: 288-304
node data, GPG1: 278-280

pauses, GPG1: 270, GPG1: 276
quaternion-based flythrough paths,

GPG2: 220-227

Index

simple network persistence, 53.._
Persistent type information, GPG2: 43=44
Personality, creating in Al, GPG2: 306,

smoothing, GPG4: 95-101

smooth paths, GPG1: 265-266
straight paths, GPG1: 264-265
visibility testing, GPG1: 296
see also Pathfinding; Path planning;

Trajectories
Patrolling, GPG1: 233

command queuing in RTS, GPG2:;
275-278

Patterns
designing, GPG1: 12-19
factory patterns, 180-181, GPG1: 18-19
Observer pattern, 617

Patterson, Scott
articles by, GPG2: 514-520, GPG2:

539-550, GPG2: 551-558, GPG3:
15-25, GPG3: 585-586

contact and bio info, GPG2: xxviii,

GPG3: axxv
Paull, David

article by, GPG1: 366-370
contact information, GPG1: x««vi

Pauses, GPG1: 270, GPG1: 276
in audio design, GPG2: 518

Payloads, 551, GPG1: 104-105, GPG3: 549
PC-lint(tm), GPG4: 36

PD controller, 451-453
Peasley, Mark

article by, GPG1: xxiii
contact information, GPG1: xxvi

Peer-to-peer systems, GPG3: 522
DirectPlayVoice configuration, GPG3:

571
network address translation for, 643-664
peer-to-peer protocols, GPG3: 496-497
security associations in, GPG3: 547

Peizer, Kurt
articles by, GPG4: 411-425
contact and bio info, GPG4: »eviii

Pen-and-ink style rendering, GPG4: 443-449
Perception ranges, GPG1: 308
Performance

Bloom Filter to improve, GPG2:
133-140

commercially available tools for tuning,
GPG2: 75

cycle counters, GPG2: 180
floating-point numbers and, GPG2:

167-181

GPG2: 332-333
Perspective shadow maps (PSMs), GPG4:

399-410
limitations of, GPG4: 405-408
OpenGL extensions for, GPG4: 408-409

Perturbation searches, GPG2: 355-356

Pfeifer, Borut
articles by, 299-305, GPG4: 315-324,

GPG4: 621-631
contact and bio info, xxxii, GPG4: xx«xiii

Phones, mobile phones as game platforms,
GPG3: 573-581

Phong shading, GPG3: 477-478
(n.h)k maps and, GPG3: 469-472

Photoshop, unique textures created with,
462-463, GPG3: 460

Physics
acceleration / deceleration, GPG4:

221-225

aerodynamics, 395-409
contact point reduction, GPG4: 253-263
damping, GPG4: 97-98, GPG4: 291,

GPG4: 293, GPG4: 305
game programming and, GPG4:

207-208

for grass motion simulations, 414-416
ideal gas law, 438-440
Jacobian constraints, GPG4: 243
killing algorithms and, GPG4: 209-219
mass-spring model for realistic cloth

animation, 421-433
mass-spring physics, GPG4: 277-284
motion, equations of, GPG4: 242
multilayer physics and fast deformations,

GPG4: 275-285
Newton’s law of motion, GPG4: 242
prescripted physics, 457-481
ragdoll physics, 449-455
rigid body simulations and, GPG4:

231-240, GPG4: 241-250
spring mass models, 436-437, 440-442
steering in racing games, GPG4: 221,

GPG4: 225-226
terrains and, GPG4: 226-227
velocity constraints, GPG4: 242-243
Verlet-based physics engine, GPG4:

231-240

Verlet integrators, GPG4: 260-261
for water motion simulations, 411-414

logging and, GPG3: 133-134
measuring, GPG2:; 180
monitoring, GPG3; 12
optimizing, GPG3: 69
profiling module, GPG2: 74-79
profiling strategies, GPG3: 146-152
searching systems for tile-based games,

GPG2:; 279

tuning with commercially available tools,
GPG2: 75

see also Optimizations

Performance monitors, GPG3; 12
Performer class for massively multiplayer

games, GPG3: 511-512
Per-pixel spotlights, GPG2: 460-461
Persistence

for MMP game data, 608-609

Physics engines, GPG1: 390-402
Pie menus, GPG3: 117-128

effectiveness of, GPG3: 118-119

Feng GUI design considerations, GPG3:
117-118

implementing, GPG3: 119-124
JavaScript pie menus, GPG3: 119-122
learning curve for, GPG3: 118-119
in Sim games, GPG3: 124-127

touch screens and motion detectors used
with, GPG3: 124

PIMPL design pattern, debugging flags,
GPG3: 131

Pitch, audio, 715, GPG4: 604
Pitch and yaw, 396, 405, 406, GPG1:

307-308, GPG1: 371-372, GPG3: 188,
GPG3: 190

Index

Euler angles and, GPG3: 195
Pivazyan, Karén

article by, GPG4: 325-335
contact and bio info, GPG4: xxxiii

PlacementNewEmbeddedLink allocation
policy, 139

Placement new operator, GPG3: 52-53
Placeres, Frank Puig

article by, 65-77
contact and bio info, xxiii

Plane coherency, 75-76
Plane masking, 74-75
Planning

costs of, 337
forward vs. backward, 337-338
graph planners, 338-339
heuristic search planning, 338
integrating a practical planner with the

game engine, 340-341
limitations of, 339-340
multi-agent planner, 334-337
optimizations for, 341-342

planning algorithms and practical
planning for AI, 329-342

predicate logic and, 331-333
satisfiability planners, 338-339
STRIPS planner, 330-331
see also path planning

Planning domains, 330-331
Plasma fractal algorithm, GPG1: 505-507

Plasticity, neural nets and, GPG1: 336

Platform issues, Verlet-based physics engine,

platform-specific consideration, GPG4:

236
Platforms

cellular phones as game platforms, GPG3:

573-581
cross-platform compatibility, GPG3: 69

frameworks, platform-independent vs. -

dependent, GPG3: 17
serialization and multiplatform portabil-

ity, GPG3: 536-545
Playability stage of game development,

GPG3: 16
Players

defined, GPG2: 280
dummy profiles for online games, GPG4:

538
personalities for Al players, GPG2?: 306

skill level and pleasure, GPG4: 315-318

Player visibility systems, GPG2: 279-286

combined visibility maps, GPG2:

283-286

LOS templates, GPG2: 281-283
maps, GPG2: 281-286
mirages, GPG2: 286

player visibility maps, GPG2: 281-282

Pointers, GPG1: 69

dumb pointers, GPG3: 45

FreezePtr Template class, 151, 156

function pointers used within C++

classes, GPG2: 59-60

handle-based smart pointers, GPG3:

44-48
instruction pointers, GPG2: 260-261

linking pointer properties to memory

addresses, GPG4: 119-120

in multiplayer games, GPG3: 502-503,

GPG3: 542

NULL pointers, GPG4: 62
pointer properties and RTTI edit/save

system, GPG4: 118-119

in preprocessing data, GPG]: 88

resource management and, GPG1: 86
resource pointer holder class, GPG4: 65
saving and using function table pointers,

149-150, 153-154
saving and using user-defined pointers,

149
serialization and, GPG3: 542
smart pointers, GPG2: 269, GPG4: 63,

GPG4: 64-65
stack pointers, GPG2: 260-261
tracking pointers, 151, GPG2: 271
unique identifiers for, GPG3: 46
vs, unique IDs in messaging, GPG1: 230
user-declared pointers, 149, 151
uses of, GPG1: 89, GPG4: 61-62
virtual function table pointers, GPG4: 39

Point-in-triangle test, GPG1: 396-397
Points-of-visibility pathfinding

collision models for, GPG2: 318
collision shape selection, GPG2: 322-323
expanded geometry for, GPG2: 317-323
Minkowski sums of polygons, GPG2:

319-322
optimization of, GPG2: 324-329
silhouette points and, GPG2: 325-326

silhouette zones and, GPG2: 327-329

spatial partitioning, GPG2: 329
vs, tile-based pathfinding, GPG2: 325

Poisson Disc sampling, GPG4: 482-483

Policies and policy-based design
CompactableChunkPolicy allocation

policy, 139
ConstructOnceStack allocation policy,

139 7
defined and described, 131-133, GPG3:

129
evaluation of policy classes for specific

purposes, 136-139
freelists and, 129-141

PlacementNewEmbeddedLink allocation

policy, 139
SharedChunkPolicy allocation policy,

139
Poll(), GPG3: 523
Polling objects, GPG1: 221-222
Polygonal pathfinding. See Points-of-visibility

pathfinding
Polygon floors, GPG1: 273-274

Polygon overlaps algorithm, GPG1: 442

Polygons, adjacent polygons and common

edges, GPG3: 338-339
Polymorphism, GPG4: 105
Polynomial approximations, GPG3: 179-185

accuracy and degree of, GPG3: 184-185

Polynomials, GPG1: 162-163
approximations to trigonometric func-

tions, GPG1: 160-176

discontinuities and, GPG1: 175-176

domains and ranges of, GPG1: 163-166

even and odd, GPG1: 166-167
Lagrange series, GPG1: 172-175
Taylor series, GPG1: 167-171

Polynomial texture maps (PTMs), to calculate

sunlight, GPG3: 438
Popping

779

vs, morphing vertices, GPG1: 460
reducing, GPG1: 432-438

Porcino, Nick
article by, GPG4: 231-240
contact and bio info, GPG4: sxxxiti-xxxiv

Portals, navigation meshes and, GPG3:
309-311, GPG3: 313-314

PortAudio, GPG3: 611
Port forwarding, 654-656
Ports and port numbers, 644
POSIX2 asynchronous I/O system, GPG3:

523
Postincrement functions, GPG2: 7
Post-perspective space and shadow maps,

GPG4: 399-404
Post-processing

dynamic gamma lighting adjustment,
GPG4: 465-475

graphics, GPG4: 381
heat and haze effects, GPG4: 477-485

Potential fields, autotargeting systems and,

307-315
Potentially audible sets (PASs), GPG4:

636-638
Pouratian, Allen

article by, GPG3: 38-43
contact and bio info, GPG3: xxxv-.xxvt

PowerStroke patches, audio files, GPG3:

634-635
Precalculating. See Preprocessing
Precipitation, rendering of, 507-513

Precomputing. See Preprocessing

Predators and Prey flocking demo, GPG2:

330-336
Predicate logic, 331-333
Predictability, GPG2: 105

genuine randomness and, GPG2:

127-128
initial state predictability, GPG2: 108
inputs and, GPG2: 109-110
protecting game predictability, GPG2:

107-108
pseudo-random numbers and, GPG?:

127
random numbers, GPG2: 109

Prefiltering, glossy, GPG1: 581-585
Preincrement functions, GPG2: 7

Preprocessing
Al optimization and, GPG2: 255
of data files, GPG2: 113-114
influence maps, GPG2: 293-297

propagated influence values, GPG2:

294-295
segmenting character geometry, GPG2:

421-422

Prescripted physics
defined and describe, 457-461
engine for, 461-465
mapping to terrain or objects, 466-467

ramps for modification of speed,
465-466

reactions and, 468
rotations and, 467-468
tornado physics event, code listing,

469-471
Pressurized spring based model, implementa-

tion of, 440
Prey, kill algorithms and hunter / prey

dynamics, GPG4: 217-219

780
-ssausneeeozounocsenenasncesasc enone seuss eorn tenon sbouadeen gee gaentansnenotvnenaniiinie

Price, Mark T.
article by, GPG4; 125-135
contact and bio info, GPG4: xx«xiv

Primitives
aerodynamic primitives, 398-406
CSG construction using BSP trees,

103-113

culling, GPG3: 353
Print resolution of screen shots, GPG2:

406-410
algorithm for, GPG2: 406-409

Priority buffers
vs. depth buffers, GPG2: 483
described, GPG2: 483
shadows with, GPG2: 481-487

Priority Queue Object, GPG1: 283
Priority queues, GPG1: 54

A* speed optimizations, GPG1: 281-282,
GPGI1: 283-286

Pritchard, Matt
articles by, GPG2: 279-286, GPG2:

394-401, GPG4: 85-93
contact and bio info, GPG2: xxviti-xxix,

GPG4: xaxiv
Private address spaces, GPG4: 86-87
Probability, strategic inference using depen-

dency graphs, GPG2: 305
Procedural level generation, 579-588
Procedural modeling, GPG3: 456
Procedural textures

advantages of use, GPG3: 454

cloud generation, GPG2: 463-473
dependent texture addressing, GPG2:

505-506
hardware accelerated animations, GPG2:

497-509
heightfield water as, GPG2: 501-503
natural phenomena represented by,

GPG3: 454
neighbor sampling and, GPG2: 498-504
noise algorithms and, GPG3: 453
optimization and, GPG3: 454-456
parameters and, GPG3: 452-453
real-time vs. regenerated, GPG3:

455-456
sample code explicated, GPG3: 457-458
sampling methods, GPG2: 485-504
scalability of, GPG2: 471-472
solid texturing, GPG3: 455

Processor affinity, 360

Production, unit production or economic
activity in gameplay, 364

Production stage of game development,
GPG3: 16

ProfileBegin, GPG1: 124-125, GPG1: 126
ProfileDumpOutputToBuffer, GPG1:

128-129

ProfileEnd, GPG1: 124-125, GPG1:
127-128

Profilers
calls, adding, GPG1; 123
implementation, GPG1; 123-124
real-time in-game profiling, GPG1:

120-130
Profile trees, GPG3: 147
Profiling modules

architecture, GPG2: 76-77
basic mechanisms for, GPG2: 74-75
built-in game profiling module, GPG2:

74-79

data analysis, GPG2: 78
implementation, GPG2: 78-79
performance counter manager (IPerf-

CounterMan), GPG2: 76
Profiling systems

browsing profile data, GPG3: 149-150
implementation of, GPG3: 150-152
real-time hierarchical profiling, GPG3:

146-152

usage example, GPG3: 147-150
Profiling tools, RPCs and, 640
Projection matrices, GPG1: 361-362

and frustum clipping plane, 283-285
Projective shadowing techniques, GPG2:

421-424
Properties

alternatives to Borland’s proprietary,
GPG?2: 46-50

defined and described, GPG4: 114
“functions” properties, GPG4: 122-123
hiding property values, GPG4: 123
mapping multiple properties on a

variable, GPG4; 123
property registration, 50-52
property types, 49-50
RTTI edit/save system and, GPG4:

114-120, GPG4: 122-124

storage of, 48-49
Property objects, 46-48
Prototype stage of game development, GPG3:

16
Proxies

ActorProxy class, GPG3: 513
Java Micro Edition HTTP proxies,

GPG3: 577
MMPs and, GPG3: 507-508, GPG3:

513
RPC systems and, 633, 634-635,

636-637
Proximity tests, reducing number of, GPG1:

403-411
Proxy audio design pattern, GPG2: 516
Proxy classes, GPG1: 102-103
ProxyServers, 612, 613-619, 616
PseudoRandom class, GPG1: 136
Pseudo-random number generators, GPG2:

109, GPG2: 465
linear congruential algorithm (LCA),

GPG3: 623-624
Mersenne Twister, GPG4: 143-145
noise and, GPG3: 453
simple pseudo-random number generator

code, GPG2: 465
Pseudo-random numbers

cloud generation and, GPG2: 464-465
pseudorandomness described, GPG2:

127
see also Pseudo-random number genera-

tors
Psychoacoustic sound compression, GPG3:

587-589
PT'Ms (polynomial texture maps), to calculate

sunlight, GPG3:; 438
PVMs (Parallel Virtual Machines). See Parallel

Virtual Machines (PVMs)

Q
Quadtrees, GPG1: 444-445

access routine optimization, GPG2:
394-401

Index

direct access lookup. conditions.and
requirements, GPG2: 395-396 ~

level determination, GPG2: 396-398,
GPG2?: 401

location of target node, GPG2: 399
space partitioning, GPG1: 258
vs. sphere trees, GPG2: 385
traversing, GPG2: 399
tuning, GPG2: 399-400

Qualities (copy-on-write data structure),

GPG4: 556-561
Quaternions, 464, GPG1: 195-199

angle subdivision approximation method,
264

antipodal quaternions, GPG4: 494
calculus functions of, GPG1: 205-206
camera control and, GPG1: 379
compression of, GPG3: 187-191
described, GPG3: 187
direct approximation method, 252-259

as extension of complex numbers, GPG1:
197-198

fast interpolation with approximations,
247-267

flythrough paths and, GPG2: 220-227
geometric algebra and, 210-212
hardware skinning with, GPG4: 487-495
interpolating techniques, 247-267,

GPG1: 205-213
linear interpolation (lerp), GPG1: 206,

GPGI1: 209-211

matrix approximation method, 259-262
matrix-quaternion conversions, GPG1:

200-204, GPG4: 493-494
as matrix replacements, GPG1: 195-196
numerical stability and shortest arc,

GPG1: 214-217
as orientation data, GPG2: 222-223
physical significance of numbers in,

GPGI1: 196-197
polar compression methods, GPG3: 188,

GPG3: 189-190
renormalization approximation methods,

259-264
as rotations, 248-249, GPG1: 199
selective negation to preprocess, GPG2:

220, GPG2: 223-224

shortest arc quaternion, GPG1:
214-218

singularity in rational mapping, GPG2:

225
smallest three compression method,

GPG3: 187-188, GPG3: 189
spherical cubic interpolation (squad),

GPG1: 207-208

spherical joint blending and, GPG4:
491492

spherical linear interpolation (slerp),
GPGI1:; 206-207, GPG1: 209-211

spline interpolations, 211-213, GPG1:
208, GPG1: 211-213, GPG2:
224-225

Quaternion-to-matrix conversion, GPG1:
200-201, GPG4: 493-494

Queues, GPG1: 54

freelists and, GPG4; 48
of state machines, GPG1: 233

Quimby, Justin

article by, GPG4: 555-561
contact and bio info, GPG4: xxxiv

Index

Rabin, Steve
articles by, 551-560, GPG1: 3-7, GPG1:

109-114, GPG1: 120-130, GPGI1:

221-236, GPG1: 264-287, GPG1:

272-287, GPG2: 228-230, GPG?2:

249-257, GPG2: 273-278, GPG?2:

425-432, GPG3: 26-37, GPG3:
285-293, GPG4: 383-392

contact and bio info, «xxiii, GPG1: xxvi,

GPG2: xxix, GPG3: xxxvi, GPG4:

XXX
Racing games

acceleration / deceleration, GPG4:

221-225

AI and, GPG4: 362-363
CPU-limited systems and, GPG4:

221-230

physics and vehicle simulation, GPG4:
221-230

realistic camera movement in 3D car

simulators, 483-494
steering, GPG4: 221, GPG4: 225-226

Radar approach, frustum culling, 67-68
Radiance, terrain lighting and, GPG3:

433-434
Radiation, modeling with cellular automata,

GPG3: 209-210, GPG3: 211-212

Radiosity, skylight, GPG3: 438— 439
Rafei, Bob, about cover art, GPG4: xxi—xxii

Rain
rendering precipitation, 507-513

sounds, GPG3: 625-627

Raleigh damping, GPG4: 291
RAM code. See Self-modifying code
Ramraj, Rishi

article by, 411-419
contact and bio info, xxviii

Ramsey, Michael
article by, 353-366
contact and bio info, «xiv

Ranck, Steven

articles by, GPG1: 92-100, GPG1:
412-420, GPG1: 524-534

contact information, GPG1: xxvz

Randall, Justin
article by, GPG3: 520-533

contact and bio info, GPG3: xvi

Rand() function, 677-678, GPGI: 106

alternatives to, GPG2: 109

Random number generation, 673-679

bit masks and, GPG3: 158-159

cross-platform libraries and, GPG4: 37

implementation of, GPG2: 130-131

noise generation using, GPG2: 242-244

procedural cloud generation and, GPG2:

464-465
seeding pools for, 674-677
speed limitations of process, GPG2:

129-130

Random numbers and randomness, 673-679

debugging process and, GPG4: 10

explosions and, 558

fractals, random line generation, GPGI:

500-501

hardware as source, GPG2: 129

mixing functions and, GPG2: 129

NPC decision making and, GPG4:

325-335

Perlin noise algorithms, GPG3: 453

781

predictable, GPG1: 133-140
predictable, algorithm for generating,

GPG: 135-136
procedural textures and, GPG3: 456
random number generators, GPG2:

127-132

rand search, GPG1: 134-135
srand, GPG1: 134-135

Random tag, XML audio tag, GPG4:

627-628
Range reduction, GPG3: 176-179
Rasterization artifacts, T-Junctions and,

GPG3: 338-343

Ratcliff, John W.
article by, GPG2: 384-387
contact and bio info, GPG2: xxix

Ray collision tests, octrees for, GPG1: 443
Ray tracing

curvature simulation and, GPG3:
426-430

sphere trees for, GPG2: 384-387

Real time
input and user interfaces, GPG3:

109-116
journaling services for real-time debug-

ging, GPG3: 136-145
Lua programming language and,

122-124

schedulers, GPG3: 6-8
Real-Time Optimally Adapting Meshes

(ROAM), GPG2: 377-378
Real-time remote debug message loader,

143-148
Real-time strategy games (RTSs)

command queuing for, GPG2: 273-278
cyclic commands (patrolling example),

GPG2: 275-278
distributed reasoning voting architecture

and, GPG4: 352-353
game-turn rates, updates, GPG3:

498-500
industry trends, GPG3: 487

interpolating between turns, GPG3: 500

Line-of-Sight searching systems for,
GPG?: 279-286

minimizing latency in, GPG3: 488-495

network protocols for, GPG3: 496-505
slow computers and, GPG3: 502
wall building algorithm for, GPG4:

365-372
waypoint queuing and pathfinding,

GPG?: 274-275
Rebind, GPG3: 53-54
Receiver objects, shadow maps, GPG1:

578-579
Recombinant shaders, 589-597
Recursion, trees and, GPG4: 53

Recursive Dimensional Clustering (RDC),

GPG2: 228-238

pseudocode for RDC algorithm, GPG2:

235-236

recursion and time complexity, GPG2:

236-237

steps for, GPG2: 232, GPG2: 234

Red noise, GPG3: 623
Reflection

C++ templates for, 39-54
described and defined, 39
geometric algebra and, 210-212

Reflections, GPG2: 405

environment mapped, GPG1: 581-585
Fresnel term and, GPG1: 581-585,

GPG1: 597
in gemstones, 565-567
on glass, GPG1: 592
inter-reflection of sunlight on terrain,

GPG3: 438
mapping, GPGI: 553-554
oblique view frustums for mirrors and

portals, 281-294
Refraction

mapping, GPG1: 193
simulating refraction effects, GPG2:

402-405
Snell’s Law, GPG1: 594-595

Registers, for programmable vertex shader
compilers, GPG3: 411

Regularization, area navigation, GPG3:
247-249

Reis, Aurelio, contact and bio info, xxxiv
Release stage of game development, GPG3:

16-17
Relief textures, GPG3: 420-423
Remez algorithm, 274-276
Remez Exchange Algorithm, GPG3:

‘180-181
RemoteController for server startups,

612-613, 619
Remote procedure calls (RPCs), GPG1:

56-58
defined and described, 630-631,

630-634
implementation of system for, 634-637
proxies and, 633, 636-637
synchronous RPC, 640-641
systems for, 627-641
uses of, 637-639

Rendering
with hardware, GPG1: 597-598, GPG2:

406-410
heads-up-displays and renderers, 11
impostors, GPG2: 489-493
Nonphotorealistic rendering (NPR),

GPG4: 443-449
non-photorealistic rendering styles,

GPG4: 443-449
pen-and-ink style rendering, GPG4:

443-449
position vectors and, GPG4: 166-170
shadows, GPG1: 565-566, GPG2: 423
skyboxes for rendering distant scenery,

GPG2: 416-420
T-Junction elimination to avoid errors,

GPG3: 338-343
transparency, GPG1: 193

triangle strips (tri-strips), GPG3: 365

water, GPG1: 193-194

Rene, Bjarne
article by, 25-37
contact and bio info, xxiv

Replay attacks, GPG1: 105-106, GPG3:

546-555
Replays, input recording to replay interesting

games, GPG2: 106

Repulsors and attractors, GPG4: 355-364

Request-response servers, GPG4: 547

Resampling audio, GPG3: 588-589

ResManager class, GPG1: 83-86

Resolution
anti-aliasing to improve, GPG4: 385-389

782. serngsasueuesomssneenenesnesteiasnnsesei

compositing methods to improve, GPG4:
383-385

infinite universes, GPG1: 137

macro- and micro-infinite, GPG1:
133-134, GPG1: 137

pixel quality and increased resolution,
GPG4: 389-391

screenshots, poster quality graphics,
GPG4: 383-392

Resonant filter, sine and cosine calculation,
GPG3: 171-172

Resonators, GPG3: 615
Resource allocation, GPG2: 298-300, GPG4:

544-545
current resource allocation, determining,

GPG2: 300-301
dependency graphs, GPG2: 302-304
desired resource allocation, calculating,

GPG2; 300

measuring values in branches of, GPG2:
302

personality creation and, GPG2: 306
strategic decision making, GPG2:

301-302
Resource files

defined and described, GPG2: 100
implementation of modules, GPG2:

102-104

resource system design, GPG2: 101-102
used for file management, GPG2:

100-104

Resource managers, GPG4: 65-66
basic object memory manager, GPG1: 68
handle-based, GPG1: 68-79
handles, GPG1: 69-70
memory management and, GPG1: 80-87
pointers, GPG1: 69

Resources, locking and unlocking, GPG1: 86
Responses, defined and described, GPG3:

288-289

Responsiveness, controller, GPG1: 270-271

Retriangulation algorithm, GPG3: 340-343
Reverb audio effects, 729-740
Reynolds, Craig, GPG1: 305-306
Reynold’s Number, 399
Rhodes, Graham

articles by, GPG2:191—204, GPG4:
207-208

contact and bio info, xxxiv—xxxv, GPG2:
xxix—xxx, GPG4: xxxv

Rigid bodies
aerodynamic loads and rigid body

dynamics, 396-397
constraints and, GPG4; 241-250
degrees of freedom, 243-245, GPG4:

242

described and defined, GPG4: 232
integrators and, GPG4: 232-234
positional error corrections, GPG4:

249-250

simple body constraints listed and
described, GPG4: 243-245

special properties of, GPG1: 155-158
Verlet-based physics engine and, GPG4;:

234-240

- see also Rigid body motion
Rigid body motion

dynamics of, GPG1: 154
kinematics, GPG1: 150-154
quaternion rotation, GPG1: 214-218

rotation, GPG1: 150-154

simulating, GPG1; 150-160
Risk, decision making and, GPG4; 343
Robert, Eric

article by, GPG3: 136-145
contact and bio info, GPG3: xxi

Robot voices, GPG3: 613-621

Rocket engine sounds, GPG3: 627

Roden, Timothy E.
article by, 579-588
contact and bio info, xxxv

Rohweder, Gabriel

article by, GPG3:; 561-572
contact and bio info, GPG3: xxxui

Role playing games (RPGs)

boss combat scenario for, 325-327
massively multiplayer online role-playing

games (MMORPGs), GPG4:

579-589
Rolfes, Thomas

article by, GPG4: 373-377
contact and bio info, GPG4: xxv

Roll, 396, GPG1: 307-308, GPG1: 371-372

Rope-and-pulley constraints, GPG4: 245-246
Rotational offsets, modification of, GPG3:

395-396, GPG3: 400

RotationArc () routine, GPG1; 214-218
Rotations

aerodynamics of spinning bodies,
401-403

constraint and, GPG4: 243-245
quaternion rotations, 210-212, GPG1:

200

quaternions for representing, GPG1: 199
screw constraints, GPG4: 246

Round, Tim

article by, GPG1: 421-431
contact information, GPG1: xvi

Rounded Nonuniform Splines (RNS), GPG4:
171, GPG4: 174-176

Round-off errors, vector fractions for exact
geometry, GPG3: 160-161

Routers

peer-to-peer networked gaming and,
646-647

state machine message routing, GPG1:

227-229, GPGI1: 235-236

RTSs. See Real-time strategy games (RTSs)
RTTI. See Runtime Type Identification

(RTTI)

Rules, AI training, GPG3: 234-239
Runga-Kutta method, 430, GPG1: 177-178
Runtime Type Identification (RTTT)

code bloat and, GPG2: 12

Component Object Model (COM) as
alternative to, GPG2; 24

custom RTTI design, GPG4: 112-113
defined and described, GPG4: 105
edit/save system, GPG4: 111-124
extended RTTI, GPG4: 111-113
on-the-fly object management and,

GPG4: 105
optimization, GPG2: 14
reflection systems and, 42-46
RTTI typeid(), GPG2: 125-126

S
Satisfiability planners, 338-339
Saving

code for saving classes, GPG3: 62-63

Index

macros to create save tables, GPG3:
61-62

overriding defaults, GPG3: 62
save/load manager on CD-ROM, GPG3:

63
SAVEMGER class, GPG3: 60
SAVEOB]J class, GPG3: 60-61
saving game at arbitrary positions, GPG3:

59-63
Scalar type sizes, GPG4: 38
Scaling, GPG1: 523

textures and scalability, GPG3: 464
Scan codes, characters, GPG3: 99-100

Scanners (lexical analyzers), GPG3: 408-409

Scheduling and schedulers
clocks and, GPG3: 8
design for simple scheduler, GPG3: 9-11
event managers, GPG3: 6
multithreading, GPG3: 13
real-time schedulers, GPG3: 6-8
scalability of, GPG3: 11-13

simulation systems and, GPG3: 13
task managers, GPG3: 6, GPG3: 9

uses for, GPG3: 5
virtual time schedulers, GPG3: 6-8

Schertenlieb, Sébastien, article by, 159-167
Scheurmann, Thorsten

article by, 561-570
contact and bio info, »««v

Schiiler, Christian
article by, 729-740
contact info, 729

Schur’s algorithm, GPG3: 617
Screenshots

poster quality, GPG4: 383-392
print resolution, GPG2: 406-410

Screw constraints, GPG4: 246

Scripting languages, GPG1: 5
Scripts and scripting, GPG1: 4-6

Al engines and, GPG1: 234
alternatives to, GPG2: 51-60
audio scripting systems, GPG4: 621-631
branching instructions in, GPG1: 5
vs. code, GPG1: 6
emergent behaviors as alternative to,

GPG2: 255
as finite state machines, GPG1: 5
function binding and, GPG3: 42
micro-threads and scripting languages,

GPG?: 264
reflection in C++ and, 52-53
scripted cameras, GPG1: 373-377
scripting engines, GPG1: 56-67
trigger systems vs. scripting languages,

GPG3: 292
Universal Modeling Language (UML)

and, GPG3: 81
see also Lua programming language

S-curve smoothing, GPG4: 96
Seamless worlds

defined and described, 611
servers for, 611-620
WorldManager, 618

Seams, visible, elimination of, GPG3:
338-343

Search algorithms, GPG1; 254-262

kill algorithms and prey, GPG4: 217-219
Searches

COM interface searches, alternatives to,
GPG2: 46-50

Index

perturbation searches, GPG2: 355-356
quadtree search implementation code,

GPG2: 400
recursive searching and C++, GPG2:

89-90
sphere trees for range searching, GPG2:

384-387
tile-based game search systems, GPG2:

279-286
Secure sockets

authentication, GPG3: 546, GPG3: 551,
GPG3: 555

bandwidth requirements, GPG3: 554
classes on CD-ROM, GPG3: 552
CryptoAPI, GPG3: 554
IPSec, GPG3: 546-547
packet format for, GPG3: 548-550
peer-to-peer communications and,

645-646
performance issues, GPG3: 554-555
receiving data, GPG3: 551-554
security parameters index (SPI), GPG3:

548-549, GPG3: 550, GPG3: 551
sending and receiving secure packets,

code listings for, GPG3: 553-554
sequence numbers, GPG3: 549, GPG3:

550, GPG3: 551-552
WinSock, code listing for workaround,

661-663
Security

attack trees used in threat models,
686-687

confidentiality, GPG3: 546
hacking, prevention of, GPG3: 520-522,

GPG3: 546-555
integrity, GPG3: 546
Java applications and, GPG3: 574

message dispatching systems, GPG3:
525-527

Network Address Translation and,
648-663

network security design, 681-691

online gaming features, GPG1: 104-108

peer-to-peer systems and, 643
reverse engineering for, GPG1: 107

security associations and SecureAssocia-

tion class, GPG3: 547-548
security policies, 687—688
threat model to measure insecurity of

system, 683-687
type safety of servers, GPG3: 524-525

see also authentication; Encryption;

Secure sockets

Security associations and SecureAssociation

class
code listing for, GPG3: 553
described, GPG3: 547-548

establishing, GPG3: 550

Security parameters index (SPI), GPG3:

548-549, GPG3: 550, GPG3: 551

Security policies, 687-689

Seeding random generator, algorithm for,

GPGI1: 139
Seegert, Greg

articles by, GPG3: 109-116, GPG4:

451-459

contact and bio info, GPG3: xxxvit,

GPG4: xxxvi

Self-modifying code
defined and described, GPG2: 91-92

fast bit blitter example, GPG2: 92-99
Self-shadowing

aliasing problems and, GPG2: 484-486
hybrid approaches, GPG2: 486-487
with projective textures, GPG2: 421-424

Separating axis theorem, GPG4: 506

Separation, GPG1: 305-306
flocking rule, GPG2: 330

Sepia tone conversions, GPG4: 461463
Sequence containers, GPG1: 42
Sequence numbers, secure sockets, GPG3:

549, GPG3: 550, GPG3: 551-552
Sequencers, music

basic music sequencer, GPG2: 539-550
interactive sequencer, GPG2: 551-558

target controls, GPG2: 555-556
Sequencing, event managers and, GPG3: 9
Serialization

of callbacks in DirectPlay 8.1, GPG3:
569

keyed serialization, GPG3: 543
object tagging for type safety, GPG3:

544
partial serialization, GPG3: 543-544
pointers and arrays, GPG3: 542
portability, GPG3: 536-537
STL containers, GPG3: 539-541
struct / memcopy() for, GPG3: 534-535
template-based object serialization,

537-542, GPG3: 534-545
type-based storage and retrieval, GPG3:

535-536
of user-defined classes, GPG3: 541-542
variable-length types, GPG3: 539

Servers
application-level caching, GPG4: 550
asynchronous I / O, GPG4: 548-549
automated testing, GPG4: 547-548
command stream servers, GPG4: 547
distributed service systems, GPG3:

528-530
front-end processes, GPG3: 528-529
frontend service, 6104-6105
large-scale servers for online games,

GPG4: 541-553
load distribution, GPG3: 527-530
LoginServers, 612, 614
multiserver systems, synchronization in,

GPG4: 579-589
network server design, GPG4: 550-552
NodeServers, 612, 614-619
nondeterminism and online games,

GPG4: 542-543
overload, GPG4: 549
overload chain reactions, GPG4: 543

parallel-state machines in client-server
environments, GPG4: 563-570

ProxyServers, 612, 613-619, 616

RemoteController for server startups,

612-613, 619
request-response servers, GPG4: 547

resource allocation, GPG4: 544-545

scalable servers, GPG3: 522-533
scale issues, GPG4: 543
scheduling algorithms, GPG4: 549-550

scheduling network client access, GPG4:

544
seamless world servers, 611-620

server optimizations, GPG3: 530-533

subscription channel servers, GPG4: 547

783

synchronization of client and server,

GPG4: 566-568
time and consistency management for

multiserver systems, GPG4: 579-589
type safety, GPG3: 524-525
usage spikes and crashes, GPG4: 544

Service version control, 607—608
Session-based games, GPG4: 533-539
Shading and shaders

activation pixel shaders (fragment
shaders), GPG4: 373

additive and subtractive methods for
variants, 592-593

Blinn-Phong shading, GPG3: 477-478
colored highlights, GPG3: 480-481
D3DxX fragment linker, 591
High-Level Shading Language (HLSL),

GPG4: 462-463
hybrid shaders, 593-594
microfacet-based shading models, GPG3:

478-479, GPG3: 482

normal distribution function (NDF)

shading, GPG3: 477-483
NvLink (nVidia), 591
patching and shading artifacts, GPG3:

351
Phong shading, GPG3: 469-472, GPG3:

477-478
pipeline plug-ins for, 593
recombinant shaders, 589-597

variants for, 589-597
see also Vertex shaders

Shadow maps, GPG2: 421-424

Shadows
adaptive projections, GPG1: 575-577
aliasing problems, GPG2: 484-486
beams to carve, GPG4: 427-435
brute-force rendering, GPG2: 423
cast by procedural clouds, GPG2: 470

cloud shadows, animated, GPG3:
440-442, GPG3: 447-449

combined shadow buffers for shadow
mapping, GPG4: 411-425

on complex objects, GPG1: 567-580
composited shadow maps, GPG3: 463
decal shadow texture projections, GPG3:

442-443
GPU shadow volumes for nonclosed

meshes, GPG4: 393-398

ground-plane shadows, GPG]: 562-566

hybrid approaches for, GPG2: 486-487

inter-object shadows, GPG2: 486-487

light coordinate systems for maps, GPG1:

571-574
light source, blockers, and receivers,

GPGI1: 567-569, GPG1: 577-579

mapping techniques compared, GPG4:

414
mathematics of, GPG1: 562-565
multiple light sources, GPG1: 580

perspective projections, GPG1: 575
perspective shadow maps, GPG4:

399-410
priority buffer shadows, GPG2:

481-487

real-time lighting and, GPG4: 437-441

real-time techniques compared, GPG2:

481482

rendering implementation, GPG1:

565-566

784
wesceouerenneansuae anne stsnieencoscentenosscseunnssetonounsaottoeienscestet

self-shadowing, GPG2: 421-424, GPG2:
484-487, GPG4: 411-425, GPG4:
437-441

shadow buffers, GPG4: 411-425
shadow ellipses, GPG3: 437
shadow maps, GPG2: 421-424, GPG4:

411-412

stencil shadows for dynamic objects,
GPG4: 433-434

stencil shadow volumes, GPG4: 427-435
trends in shadow mapping, GPG4: 381
vertex shaders and shadow volumes,

GPG4: 394-398
volumes of, GPG1: 568-569

Shadow services, 607
Shadow volumes, optimizations for, GPG3:

367-371

Shankel, Jason
articles by, GPG1: 200-213, GPG1:

499-511, GPG2: 416-420, GPG3:

344-348
contact and bio info, GPG1: xxvi, GPG2:

xxx, GPG3: xxvii
SharedChunkPolicy allocation policy, 139
Shi, Larry, article by, GPG4: 579-589

Shields, sound effects for, 726
Shine-through, GPG1: 552
Shoemaker, Shawn

article by, 473-482
contact and bio info, xxxv—vexxvi

Shorelines, as boundary conditions, GPG1:
190

Shoreline walls, GPG4: 366-368
Shore rings, GPG3: 269-270

Shore tiles, GPG3: 269
Shortest Remaining Processing Time (SRPT),

GPG4: 549-550
Shrapnel, kill algorithms and, GPG4:

216-217

SICLump module, GPG2: 102-103
SICResourceFile module, GPG2: 103-104
Sideforce, aerodynamics and, 396-398
SIGGRAPH, GPG3: 335
Sign test (positive / negative) for floating-

point numbers, GPG2: 172

Silhouette edge detection (SED)

advanced texture features and inking,
GPG2: 442

boundary edges, GPG2: 437-438
crease edges, GPG2: 437-438
edge-based inking, GPG2: 438-440
inking described, GPG2: 436-437
programmable vertex shader inking,

GPG2: 440-442
Silhouette points and zones, pathfinding,

GPG2: 325-329

Silhouette regions, pathfinding and, GPG3:
162-163

Silva, Cléudio
article by, GPG3: 353-358
contact and bio info, GPG3: xxvii

Simonyi, Charles, GPG1; 9
Simple Network Time Protocol (SNTP),

online gaming and, GPG3: 493
Simpson, Jake

article by, GPG4: 607-611
contact and bio info, GPG4: xxxvi

Simpson, Zack Booth
article by, GPG3: 488-495
contact and bio info, GPG3: xxvii

Simulation, schedulers for, GPG3: 13
Simulation events, for massively multiplayer

games (MMPs), GPG3: 508

SimulationObject (SOB), for massively

multiplayer games, GPG3: 509-511
SimulationState, for massively multiplayer

games (MMPs), GPG3: 508-509

Simulation time, GPG3: 7
Sine approximation techniques. See Trigono-

metric functions
Sine functions, lookup tables for, GPG2:

174-175
Singletons, GPG1: 36-40

automatic singleton utility, GPG1: 36-40
singleton patterns, GPG1; 13-15

Size of game objects, GPG1: 403-404
magnification factors, GPG1: 434

Skeletal motion
inverse kinematics and, GPG3: 192-198
rotational constraints, GPG3: 195

Skeletons
backbone layer and fast deformations,

GPG4: 278
described, GPG4; 488-489
heirarchy in, GPG4: 488-489
see also Bones

Skies, color changes, GPG3: 450
Skill level of player

AI to adjust pacing and tension of games,
GPG4: 315-324

player skill measurements, GPG4:

320-322

Skinning, GPG1: 480-483
defined and described, GPG4: 504-505
fast and simple method for, GPG]:

471-475
fast deformations with multilayer physics,

GPG4; 275-285
hardware skinning with quaternions,

GPG4: 487-495
quaternions used for, 247

stitching and, GPG1: 476-483

Skip strips, VIPM method described, GPG2:
368-370
mixed-mode skip strips, GPG2: 372
multilevel skip strips, GPG2: 369-370

Skyboxes
alternatives to, GPG2: 419
described, GPG2: 416

rendering, GPG2: 418
rendering distant scenery with, GPG2;

416-420
resolution, GPG2: 416-417
size, calculating maximum, GPG2: 418
textures for, GPG2: 419

Skylight, radiosity approximations and
patches, GPG3: 438-439

Skyplanes, mapping procedural clouds to,
GPG2; 469-470

Slerp, 464, GPG1: 206-207, GPG4:
491-492

defined and described, 249-251
quaternion approximation methods,

252-264
Smart pointers, handle-based, GPG3; 44-49

construction and destruction of, GPG3:
46-47

dereferencing, GPG3: 47
equality and inequality testing, GPG3:; 47
validation of, GPG3: 47

Index

Smith, Roger
article by, GPG4: 209-219
contact and bio info, GPG4: xx«xvi

Smith, Russ
articles by, GPG4: 241-251
contact and bio info, GPG4: xxvii

Smoke
cellular automata to model, GPG3: 200
expanding smoke from explosions, 556

Smoothing
critically damped ease-in / ease-out

smoothing, GPG4: 95
damped spring and critical damping,

GPG4: 97-98
exponential decay smoothing, GPG4:

96-97
maximum smooth speed, GPG4: 100
S-curve smoothing, GPG4: 96
smooth time functions, GPG4: 98-100

Smoothness, friction and, GPG3: 225
Smooth Nonuniform Splines (SNS), GPG4:

76-178, GPG4: 171

Snell’s Law, GPG1: 594-595
Sniffing, preventing, GPG3: 546-555
Snook, Greg

articles by, GPG1: 288-304, GPG2:
377-383, GPG3: 417-423

contact and bio info, GPG1: xvi, GPG2:
xxx, GPG3: xxviii

Snow, rendering precipitation, 507-513
SNTP (Simple Network Time Protocol),

online gaming and, GPG3: 493
SOBFactory for massively multiplayer games,

GPG3: 514
SOBManager for massively multiplayer

games, GPG3: 514
Sockets, secure. See Secure sockets
Soft-body simulations, fast deformations with

multilayer physics, GPG4: 275-285
Sonar pings, GPG3: 624-625, GPG3: 637
Sorting methods, hierarchical, GPG2:

388-389
Sound

abstract interface to create sound system,
GPG2: 20-22

ambient sound, GPG2: 516
defined, GPG2: 522
echoes, GPG2: 527
low-level sound API, GPG2: 559-560
predictability and playback, GPG2:

108

reverberation effects, GPG2: 527
sample-based synthesizer to reuse voices,

GPG2: 521-524

speech systems and command queuing,
GPG2: 517

troubleshooting, GPG2: 519
volume controls, GPG2: 554-555
see also Audio; Audio design patterns;

Audio programming; Music
Sound effects

DirectSound for, GPG3: 571
helicopters, GPG3: 627-628, GPG3:

635-636
motor vehicles, GPG3: 627, GPG3:

634-635
rocket engine sounds, GPG3: 627

sonar pings, GPG3: 624-625, GPG3:
637

submarines, GPG3: 637

voices, robot or alien voice synthesis,
GPG3: 613-621

white noise, GPG3: 622-629
wind sounds, GPG3: 624

Sounds, culling, GPG1: 425
Sousa, Bruno

article by, GPG2: 100-104
contact and bio info, GPG2: xxx

Southey, Dr. Finnegan, contact and bio info,
dvi

South Korea, as game market, GPG3: 92-93
Space

flocking and local space, GPG1: 307
local space optimization, GPG1:

368-370
model space, GPG1: 368
neural nets as partitioning, GPG1:

336-337
partitioning, GPG1: 257-259
search space optimizations, GPG1:

272-276
simplified movement in 3D, GPG1:

288-304

tangent space, GPG1: 556-559
3D movement, GPGI1: 288-304
world space, GPG1: 368-369

Spatial partitioning, used with silhouette
zones, GPG2: 329 ;

Specular maps, cube mapping and, GPG3:

450
Speech

command queuing and speech systems,

GPG2: 517
linear predictive coding and speech

modeling, GPG3: 614-621
lip-synching systems, GPG4: 607-611
see also Speech recognition

Speech recognition, 741-750
feature extraction for, 743-744
signal energy, 746
training for, 749

Speed
locality of reference and, GPG4: 47
see also Speed, optimizing for

Speed, optimizing for
A* optimizations, GPG1: 272-287
data loading, GPG1: 88-91
fast math template metaprogramming,

GPGI1: 20

memory allocation, GPG1: 92-100

and visual quality, GPG1: 194

XML speed optimizations, GPG4:

125-135
see also Optimizations

Sphere mapping, GPGI1: 553-554

Spheres, as bounding object for frustum

culling, 71-72
Sphere trees, GPG2: 384-387

for Binary space partitioning (BSP) trees,

55-63
building, 57-59

bounding spheres, GPG2: 384-385

demo and algorithm, GPG2: 385-387

described, GPG3: 531
multiplayer game optimization, GPG3:

530-533
uses of, GPG2: 385

Spherical cubic interpolation (squad), GPGI:

207-208

Spherical linear interpolation (slerp), GPG1:

206-207, GPG4: 491-492
Sphinx MMOS system, audio processor,

GPG3: 631-638
patch files, GPG3: 633-638
source code, GPG3: 637-638

Spikes, avoiding artifacts, GPG4: 30-32
Spinning objects, shortest are quaternion,

GPG1: 211-218

Splashes, simulating, GPG1: 191
Splice function, GPG3: 57
Spline interpolations, GPG1: 208, GPG1:

211-213

Splines
basic cubic spline theory, GPG4:

172-173
calculating start and end node velocities,

GPG4: 180
defined and described, GPG4: 171
Hermite splines, 225-231, GPG1:

467-470
natural. cubic splines and flythrough

paths, GPG2: 221-222
nonuniform cubic splines, GPG4:

171-181
open vs. closed, GPG2: 221-222
precomputed splines, 463-464
spline-based time control for animation,

233-246
velocity and acceleration on, GPG4: 180

Splitter polygons, 55-56, 59-62, 109-111
Spoerl, Marco

articles by, GPG4: 193-204
contact and bio info, GPG4: xxxvii

Spoofing, preventing, GPG3: 546-555

Spotlights, per-pixel, GPG2: 460-461,
GPG3: 474-476

Spring mass models, 436-437, 440-442
Sprite effects, GPG1: 519-523

alpha blending, GPG1: 522-523
drawing 3D, GPG1: 520-522
rotating, GPG1: 523
scaling, GPG1: 523
textures for, GPG1: 520

Sprites. See Impostors
Squad, GPG1: 207-208

squad derivative calculation, 265-266

Square roots, logarithmic optimization of,

GPG2: 176-177
Srand(), 677-678, GPG1: 134-135, GPG2:

109
StackAlloc, GPG3: 50, GPG3: 55-56
Stacking states, large scale stack-based state

machines, 93-101
Stack pointers, GPG2: 260-261
Stacks, GPG1: 53-54

copying, GPG2: 262
freelists and, GPG4: 48
of rigid bodies, GPG4: 248
stack management and micro-threads,

GPG2: 262

see also Stack winding
Stack traces, GPG3: 143-144
Stack winding, GPG2: 85-90

recursion and, GPG2: 89-90
temporary return routine, GPG2: 85-86

thunking and, GPG2: 88-89

Staircases, narrow staircase (orcs vs. humans)

combat scenario, 320

785

Stamminger, Marc
article by, GPG4: 399-410
contact and bio info, GPG4: xxxvii

Standard Atmosphere, 398
Standard Template Library, C++ (STL),

GPG1: 41-55, GPGA4: 3
algorithms, GPG1: 42
container adapters, GPG1: 53-54
containers, GPG1: 41-42
deques, GPG1: 48-50
generic component library, 177-187
iterators, GPG1: 42
lists, GPG1: 46-48
maps, GPG1: 50-53
priority queues, GPG1: 54, GPG1:

281-282

queues, GPG1: 54
ranges, methods to determine, GPG1:

42-43
stacks, GPG1: 53-54
tree interfaces and, GPG4: 56-58
vectors, GPG1: 43-45

Standard Template Library (STL)
allocation and deallocation methods,

GPG3: 49-50
memory fragmentation, GPG2;: 13-14
optimization and, GPG2: 12-14
see also Standard Template Library, C++

(STL)
State And Media Manager (SAMMy), GPG2:

52-54
State changes, smoothing, GPG4: 95-101
State-event systems, for online lobbies, GPG4:

533-534
State interface class, 96-97
State machines, GPG1: 223-225

code generation and, 169-175
creating with macros, GPG2: 19
C-style macros for, GPG1: 225-227
deleting game objects within, GPG1: 230
event-driven using messages, GPG1:

223-225
Finite State Machines (FSM), GPG1:

237-248
large-scale stack-based state machines,

93-101
Lua scripting language and, 171-174
macro languages, GPG3: 32-33
message routing, GPG1: 227-229
multiple state machines, GPG1: 233
pseudocode for, GPG1: 224
queues of, GPG1: 233
simple state machine, code listing for,

94-96
swapping, GPG1: 233
visual design of, 169-175
see also Finite State Machines (FSMs);

Micro-threads, AI architecture

StateManager Class, code listing for, 99-100

State-object management systems, 98-100

State patterns, GPG1: 16-18
States, GPG1: 237

A* algorithm for path planning, GPG1:

254-255
CharacterStateMegr class, GPG4:

565-568
creating for FSM, GPG1: 242-243

defined and described, GPG4: 563-565

FSM state, GPG1: 239-240

786
aso SE ACA OE

in Lua programming language, 117, 120
neighboring states, GPG1: 259
planning and, 330
restoring game states for MMPs, 609
transition matrices, GPG1; 238
see also State machines

State stacks, 97-98

State storage for massively multiplayer games
(MMPs), GPG4: 555-561

State transitions, decision trees architectures
and, GPG4: 337-344

Static areas, terrain analysis of, GPG3:
268-270

Statistics, real-time and in-game debugging,
GPGI: 115-119

Status functions in audio design, GPG2: 519
Steering

attractor / repulsor forces and, GPG4:

362-363
behaviors, GPG1: 305-306
distributed reasoning voting architecture

for, GPG4: 348-351
input devices and, GPG4: 224-226

physics and racing game steering, GPG4:
221, GPG4: 225-226

Sticky plane problem, loose octrees for,
GPG1: 444-453

Stiction (static friction), GPG3: 215, GPG3:

218-219, GPG3: 223-224

Stitching, GPG1: 477-480
STL. See Standard Template Library, C++

(STL)
STL containers, template-based object

serialization and, GPG3: 539-541
Stochastic synthesis of sound, GPG3:

622-629
Stone, Jonathon

article by, GPG4: 303-314
contact and bio info, GPG4: xxvii

Stoner, Dan

article by, GPG4: 209-219
contact and bio info, GPG4: xxxviti

StoreProfileIn History, GPG1: 129-130
Stout, Bryan

article by, GPG1: 254-263
contact information, GPG1: xxvi

Strategic assessment techniques, GPG2:
298-306
resource allocation trees, GPG2:; 298-300

Strategic decision making
and resource allocation trees, GPG2:

301-302

strategic inference, GPG2: 305
Strategy games

Line-of-Sight searching systems for,
GPG2: 279-286

strategic assessment techniques, GPG2;
298-306

Streaming
multithreading and, 708-710
vs. sequencing method for music, GPG2;

539-540
Street, Shea

article by, 603-610
contact and bio info, xxxvi

Strings
concatenating and world markets, GPG3:

103
macro to transform enums to, GPG3:

27-28

text parsers, GPG2: 115
STRIPS planner, 330-331
Strothotte, Thomas

article by, GPG4: 443-449
contact and bio info, GPG4: xxxviit

Structured exception handling (Win 32),

GPG2?: 263
Subdivision, sphere trees, GPG3: 531-533
Subdivision surfaces, GPG3:; 372-383

arrays for data storage, GPG3: 381
bones and, GPG3: 378
butterfly subdivision schemes, GPG3:

374-375, GPG3: 380, GPG3: 382

data structures for, GPG3: 375-378
hierarchical half-edge meshes, GPG3:

375-378
interpolating schemes, GPG3: 374-375
loop subdivision scheme, GPG3:

373-374, GPG3: 380-381, GPG3:

382

masks and, GPG3: 372-376

optimizations for, GPG3: 378-381

physics envelopes to control, GPG4:
281-283

rendering, GPG3: 382

vertex-accumulation buffers and, GPG3:
378

Submarines, sound effects, GPG3: 624-625,

GPG3: 636-637
Subscription channel servers, GPG4: 547
Subsumption architecture, GPG4: 347
Subtraction, CSG Boolean operator, 103-107
Sunlight, calculation of radiance, GPG3:

436-438

Suns, static lights, GPG3: 449
Super Mario 64, third-person control scheme,

GPG2: 425-432
animation analyzed, GPG2: 431

Surfaces

loss of surface information, GPG2: 83-84
see also Subdivision surfaces

Surface tension and waves, GPG4: 274
Survival, flocking rule, GPG2: 331
Svarovsky, Jan

articles by, GPG1; 195-199, GPG1:
249-253, GPG1: 403-411, GPGI1:
454-464, GPG3: 496-505

contact and bio info, GPG1: x«vi, GPG3:
XXXVIIT

SwapThreads () routine, GPG2: 261

Swarming, GPG1: 305-318

see also Flocking
Sweeping, FDN and reverb audio effects,

736-739
Symbol tables, for programmable vertex

shader compilers, GPG3: 410-411
Synchronization, GPG3: 493-495, GPG3:

500-501

clock synchronization, GPG4: 580
out-of-synchs, debugging, GPG3:

503-504

time and consistency management in
multiserver systems, GPG4: 579-589

Syntax errors, memory tracking and, GPG2:
71

System messages, defined, 665
System requirements, GPG4: 658
Szijarté, Gabor

article by, 527-538
contact and bio info, xxxvirexxuii

Index
lianas sys ebhiel KAKA SROICUMAAAIICCRNNNNEES IONAMIN NIECES NAMA CARS SESE S,

T
Tactical analysis and assessment

height advantage, GPG2: 296

of locations, GPG2: 309-310
tactical analysis of locations, GPG2:

309-310
tactical values, converting to waypoint

properties, GPG2:310
visibility, GPG2: 296-297

Tactical path-finding, GPG3: 294-305
dynamic threats and, GPG3: 300-301
enemy modeling and exposure time,

GPG3: 297-298
line-of-sight / fire tests, GPG3: 302-304

Tags
audio tag database (XML), GPG4:

625-628

in XDS format, GPG4: 127
XML attributes listed, GPG4: 626

Tangent space, GPG1: 556-559
Targets

identification with Line-of Sight systems,

GPG2: 279-286
ranking with artificial potential fields,

307-315
Task managers, GPG3: 6, GPG3: 9
Tasks

decomposition of tasks for PVMs,
354-361

dependency of, 358
granularity of, 356-357
grouping of, 358-359
horizontal vs. vertical integration of,

GPG3: 19
interface with task system, GPG3: 21
interruption of, 360
linking of, 359-360
load balancing and, 360-361
managing, GPG3: 6, GPG3: 9
thread pools and task management, 361
time budgets and scheduling, GPG3: 12

Tatarchuk, Natalya
article by, GPG4: 103-110
contact and bio info, GPG4: xxviii

Taylor, Chris, GPG1: 7
Taylor series, 269-272, GPG1: 161-162,

GPGI1: 167-171, GPG1: GPG3:
179-180

friction simulation and, GPG3: 222-223
vs. Lagrange series, GPG1: 174-175
truncated, GPG1: 171

TGR
addresses, 644-645
Java 2 Micro Edition networking, GPG3: |

575
NAT routers and, 656
simulation with NetTool, GPG3: 559
TCP-based game systems, GPG3: 492

Team colors
algorithms for, GPG4: 451-457
applying to 3D models, GPG4: 451-459

Technology, trends in development, GPG4:
xviti-xix

Template metaprogramming, GPG4: 3
Template Method pattern, GPG2: 55
Templates

binding policy classes to hosts with, 132
C++, 39-54, GPG1: 20-35, GPG1:

41-55
C++ standards compliance, GPG1: 25

Index

factorial, GPG1: 22-23
Fibonacci numbers, GPG1: 20-22

matrix operations, GPG1: 25-30
for metaprogramming, GPG1: 20-35
optimization and, GPG2: 14
for reflection, 39-54
RTTI implementation with, 42-46

for trigonometry, GPG1: 23-25
as virtual compilers, GPG1: 20-22

Template specialization, type information
provided using, GPG2: 120-121

Temporal topics and neural nets, GPG1:

335-336
Tension, AI to adjust level in games, GPG4:

315-324
Terdiman, Pierre

articles by, GPG4: 253-263
- contact and bio info, GPG4: xxviii

Terrain analysis
armies, GPG3: 272

choke points, GPG3: 272, GPG3:
279-283

continents, GPG3: 269
convex hulls, GPG3: 273-277
dynamic areas, GPG3: 270-272
forests, GPG3: 270
generic areas, GPG3: 272-273

herds, GPG3: 272

hills, GPG3: 269
Major Matchbox (U2DMatchboxCon-

tainer class), GPG3: 277-283

shore rings, GPG3: 269-270

shore tiles, GPG3: 269
static areas, GPG3: 268-270

towns, GPG3: 270-272

Terrain reasoning
computing waypoint properties, GPG2:

310-313
resources required for algorithm, GPG2:

314-315
waypoints, GPG2: 308-309

Terrains
buildings, GPG1: 490-498
erosion simulation, GPG1: 501-502
fault line generation, GPG1: 488-490,

GPG: 499-502
fractal terrain generation, GPG1:

499-511, GPG2: 239, GPG2: 246

fuzzy landscaping, GPG1: 484485
generic areas, creating, GPG3: 272-273

influence maps and, GPG2: 293-297

interlocking tiles method, GPG@?:

377-383
landscaping, GPG1: 484-490

lighting of, dynamic and realistic, GPG3:

433-443
mazes, GPG1: 490-493
mountains, GPG1: 503-511

occlusion culling with horizons, GPG4:

515-527
particle deposition, GPG1: 508-511

racing games and physics, GPG4:

226-227

real-time, realistic, GPG1: 484-498

reasoning for 3D games, GPG2: 307-316

skyboxes for rendering distant scenery,

GPG2: 416-420

volcanos, GPG1: 508-511

see also Terrain analysis; Terrain reasoning

Tessendorf, Jerry
article by, GPG4: 265-274
contact and bio info; GPG4: xxxix

Testing
danger characters, GPG3: 105-106
libraries and use-case testing, GPG4: 41
multiple language games, GPG3:

104-106

NetTool network simulator for, GPG3:

560
stage of game development, GPG3: 16
verification of code coverage, GPG4: 17

Text files
advantages and disadvantages, GPG2:

112

in game development, GPG1: 3
Text parsers, GPG2: 112-117

Boolean values, GPG2: 115
floating-point numbers, GPG2: 115

GUIDs, GPG2: 116

integers, GPG2: 115

keywords, GPG2: 115
operators, GPG2: 115
Parser class, GPG2: 116

strings, GPG2: 115
Token class, GPG2: 114-115
TokenFile class, GPG2: 116
TokenList class, GPG2: 116

variables, GPG2: 115

Textures
blending with stacked layers, GPG3: 460
bump mapping for, GPG1: 555-561
caching textures, GPG3: 460
compositing and, GPG3: 462-463,

GPG3: 465
creating unique textures, GPG3:

459-466
cube maps and, GPG3: 445-446

dependent texture reads, GPG2: 497
dimensional impostors, 527-538
dynamic textures, GPG3: 463-464
filtering to reduce stretching, GPG2: 418
filters and, GPG2: 418, GPG2: 479,

GPG3: 462, GPG3: 464
four-sample texture sampling, GPG2:

497-498
green-blue texture addressing, GPG2:

497-498, GPG2: 505-506
iridescent color-shifting, GPG3: 472-473
layer mapping and transforms, GPG3:

461
layer sources, GPG3: 462

lookup tables for per-pixel lighting,
GPG3: 467-476

mipmaps, GPG3: 464, GPG3: 465,
GPG4: 385

normal distribution function (NDF)

shading, GPG3: 477-483
number controls for texturing systems,

GPG3: 463
optimization, GPG3: 454-456
procedural textures, GPG3: 452-460
projection of, GPG1: 550-552
reflection mapping, GPG1: 553-554
scalability, GPG3: 464
self-shadowing with projective textures,

GPG2: 421-424

shadow maps and, GPG1: 578

shine-thorough problem, GPG1: 552

787

for skyboxes, GPG2: 419
solid texturing, GPG3: 455
stretching, reducing, GPG2: 418
team colors applied to 3D models,

GPGé4: 451-457
texture coordinate generation, GPG1:

549-554
3D textures for light mapping, GPG2:

452-459
triadic blends, GPG3: 462-463
uploading web-cam data, GPG2:

160-161
vertically interlaced textures, GPG3:

422-423

warping (relief textures), GPG3: 420-421

see also Procedural textures
Texture space, GPG3: 425, GPG3: 428

Thin wing theory, 403
Thomason, Andy

article by, 247-267
contact and bio info, xxvii

Thread pools, 361
Threads and threading

deadlocks, 699
defined and described, 697-699
DirectPlay 8.1 and multithreading,

GPG3: 566-569
fibers (multi-tasking threads), GPG2: 260

HyperThread technology, 701-702
locked threads, 699
OS threads, GPG2: 160
priority failures, 700
race conditions, 699-700
starvation failures, 700
see also Micro-threads, AI architecture;

Multithreading
Threat model to measure insecurity of system,

683-687
3D models, horizon culling for 3D terrains,

GPG4: 521-524
3ds max skin exporter and animation toolkit

bone animation keys, GPG2: 148
bone structure and hierarchy, GPG2: 146
bone weighting (influence values), GPG2:

146-148
mesh data and, GPG2: 145-146
MRC file format for exporting,

GPG2:142-143

nodes and, GPG2: 144-145
steps to use, GPG2: 148-149

Thresholds
hysteresis thresholding, GPG1: 435
selection, GPG1: 437

Thunks and thunking, defined and described,

GPG?: 88

Tile-based games, Line-of-Sight searching
systems for, GPG2: 279-286

Tiles
defined, GPG2: 280
searching systems for tile-based games,

GPG2: 279
tile-based pathfinding, GPG2: 325
see also Tiles, interlocking landscape

Tiles, interlocking landscape
detail levels for, GPG2: 380-382
and height maps, GPG2: 379-380
linking pieces explained, GPG2:

381-382
rendering method for, GPG2: 382

788
secetiarntesnsieuunsntsoentene asec eeednsnn et usa teone atone akseercemmaiierepemoitaannentn

Time
event scheduling, GPG3: 5
game clocks, GPG4: 27-34
MMORPG time and consistency

management, GPG4: 579-589
position and velocity as function of,

GPG2?: 206-207
simulation time, GPG3: 6-8
smooth animation and, GPG2: 148
time complexity and RDC, GPG2:

236-237
virtual time, GPG3: 6-8

Time control for animation, spline-based,
233-246
distance-time functions, 234-244
Timed nonuniform splines (TNS),

GPG4: 171, GPG4: 178-180
Time events, GPG3: 8
Timers, for AI agents, GPG2: 253
Titelbaum, Matthew
article by, 367-382
contact and bio info, xxvii

T-Junctions

defined and described, GPG3: 338-339
elimination of, GPG3: 339-340

rasterization artifacts and, GPG3:
338-343

retriangulation, GPG3: 340-342
T-junctions, GPG4: 429-430
Token class of parsing system, GPG2:

114-116
TokenFiles class of parsing system, GPG2:

117
TokenList class of parsing system, GPG2: 116
Tokens, tokenizers, 17-19, GPG3: 40
Tombesi, Marco

articles by, 383-389, GPG2: 141-152
contact and bio info, xxvii, GPG2: xxx

Tools, GPG2: 3-4
object creation tools, GPG2: 51-61
performance tuning, commercially

available, GPG2: 75
profiling module, GPG2: 74-79
XDS toolkit, GPG4; 127-134

Tornadoes, prescripted physics event,
469-471

Torque, 396, GPG1: 154

PD controllers to calculate, 451-452
Total Annihilation, GPG1: 7
Totally destructible worlds, GPG3: 203
Towns, GPG3: 270-272
Tozour, Paul

articles by, GPG2: 287-306, GPGA4:
301-302

contact and bio info, GPG2: xxxi, GPG4:
XxIX

Trackballs, virtual, GPG1: 217
Tracks, audio, defined, GPG2: 543
Traffic, fuzzy logic for modeling, GPG1:

322-328

TrainingControlState, GPG3: 233
Trajectories

angles of elevation and, GPG2: 207-210
flight time calculations, GPG2: 212

gravity’s influence, GPG2: 205-206
initial velocity, GPG2: 210-211
inverse trajectory determination, GPG2:

205-214

maximum height calculations, GPG2:
211-212

multiple variables and, GPG2: 212-213
time, position and velocity as function of,

GPG2: 206-207

Translational offsets, modification of, GPG3:
395-396, GPG3: 400-401

Transparency
exported classes and, GPG2: 56-57
glass, GPG1: 586-593
rendering, GPG1: 193

Trees
binary, GPG1: 182-184
defined and described, GPG4: 52-53
game trees, GPG1: 249-253
generic tree containers, GPG4: 51-59
implementation of, GPG4: 53-56

interfaces for, GPG4: 56-58

quadtrees, GPG1: 258, GPG1: 444-445
traversing and navigation functions,

GPG4: 53-56
see also Decision trees; Octrees

Trees, vegetation
dimensional impostors for realistic trees

and forest, 526-538
widgets to render fast and persistent

foliage, 515-526
Treglia, Dante, II

articles by, GPG1: 371-379, GPG3:
XU-XUIL

contact and bio info, GPG1: xxvi, GPG3:
XXXVILI-XNXIX

Tremblay, Christopher

article by, 269-280
contact and bio info, xxxvit—xxxviti

Triangle strips (tri-strips)
beam effects and, GPG3: 414
cache-friendly triangle strips, GPG3:

365-366
connecting, GPG3: 364
creation of, GPG3: 361-364
defined and described, GPG3: 359-361
level-of-detail, GPG3: 366
mapping alternatives and, GPG3:

415-416
rendering, GPG3: 365

tri-strip algorithm, pseudo-code for,
GPG3: 364

Triangle-to-triangle collision detection
algorithm, GPG1: 390, GPG1: 393-397

Triggers. See Trigger systems
Trigger systems

conditions, defining, GPG3: 286
conditions and responses, GPG3:

286-289

defined and described, GPG3: 285-286
evaluating triggers, GPG3: 289-290
event messages and, GPG3: 289
extensible trigger system for Al agents,

objects and quests, GPG3: 285-293
flags and counters, GPG3: 290-292
object-owned trigger systems, GPG3: 286
vs, scripting languages, GPG3: 292
single shot and reload times, properties of

triggers, GPG3: 290
Trigonometric functions

cosine calculation, GPG3: 172-174
cosine functions, lookup tables for,

GPG2: 174-175
Goertzel’s Algorithm for approximations,

GPG3: 172-174

lookup tables for, GPG2: 174-176

Index

optimizations and, GPG2: 213-214
polynomial approximations for, GPG1:

161-176, GPG3: 179-185
range reduction for approximations,

GPG3: 176-179
Resonant filter, sine and cosine calcula-

tion, GPG3: 171-172

resonant filter for approximations,
GPG3: 171-172

table-based for approximations, GPG3:
175-177

templates for, GPG1: 23-25
Tri-strips. See Triangle strips (tri-strips)
Troubleshooting

adjacent object won’t align, GPG4: 159
audio design, GPG2: 519
collision errors, GPG4: 159
cracks in mesh seams, GPG4: 159
jittering or stuttering animations, GPG4:

32, GPG4: 159, GPG4: 500-501
joint distortions and deformations,

GPG4: 487-488

memory tracking programs, GPG2: 29
network failures, GPG4: 543
voices in synthesizers, GPG2: 521-524

TweakableBase_c class, GPG2: 121-122

Tweaker_c class, GPG2: 122-123

TweakerlnstanceDB_c class, GPG2: 123

Tweaker interface, GPG2: 118-126
classes, schematic illustrating, GPG2: 119
design, GPG2: 118
type information for, GPG2: 120-121

Tweakers, 53
TwoBitArray class, GPG1: 103
2D images, depth-enabled, GPG3: 417-423
Two-dimensional sprite effects, GPG1:

519-523
2-Way threaded decision tree implementa-

tion, code listing, 349-350
Typedefs, allocators and, GPG3: 50-51
Type information code of tweaker interface,

GPG2: 125
Types

defined and described, GPG2: 38
dynamic type information (DTI) class,

GPG2: 38-43
dynamic types in audio design, GPG2:

518

identification of, 177-178
persistent type information, GPG2:

43-44
Type safety, GPG3: 524-525

serialization and, GPG3: 544

U
UDP

addresses, 644-645
DirectPlay 8.1 and, GPG3: 563-564
Java 2 Micro Edition networking, GPG3:

57D
simulation with NetTool, GPG3: 559

Uls. See User interfaces (UIs)
Ulrich, Thatcher

article by, GPG1: 444-453
contact information, GPG1: xxv

UML. See Universal Modeling Language
(UML)

UMLPad flow chart editor, 170
Underflow Exceptions, GPG3: 70
Unicode, GPG3: 98

Index
emarotaenusssnaesvsneananbentan

ategenpssnseteteenesenenninnnen
nnensnetenosssetsisscenetetenne

ntnsnhh
Asesinas ROARS HF SINT OOMMHYFA EMER MORGANA AMAA TLE

Union, CSG Boolean operator, 103-107
Universal Modeling Language (UML),

GPG4: 3
class diagram for clock system, GPG4: 29
class diagrams for, GPG3: 76-78
game engines and, GPG3: 73-82
implementation issues, GPG3: 80-82
iterative modeling, GPG3: 78-80

sequence diagrams and interprocess
exploits, GPG3: 530

tools, GPG3: 82

Unreal, GPG1: 307
Updates

Artificial Intelligence (AI) data updates,
GPG?: 255-256

audio frame and intervals, GPG2: 547

cellular automata, update rates, GPG3:

212-213

entities and, GPG4: 78
in MMP games, 608
motion detection to avoid unnecessary,

GPG?: 157-158

polling updates as triggers, GPG3:

289-290

tweaking update rates, GPG2: 494
update heuristics for impostors, GPG2:

493-494
UpdateWorld function, GPG?: 80-81
Uplift, simulating, GPG1: 503-507
Use cases, GPG3: 75-76
UserControlState class, GPG3: 232-233

for MMPs, GPG3: 509-510

User interfaces (UIs)
Feng GUI of, GPG3: 117-118
heads-up-displays and, 13-15
localization considerations, GPG3: 112
pie menus, GPG3: 117-128

real-time input and, GPG3: 109-1 16
specifying elements in, GPG3: 110-112
XML and, GPG3: 110-112

Utility theory, GPG4: 343

Vv
Valenzuela, Joe

articles by, GPG4: 595-606
contact and bio info, GPG4: xxxix

Valid space, in path-finding, GPG3: 325-328

Values
absolute values, GPG2: 174

clamping to a specific range, GPG2:

173-174

floating-point number tricks, GPG2:

*173-174
property values, modifying, GPG4:

116-118

tactical values, converting to waypoint
properties, GPG2: 310

Van der Sterren, William

articles by, GPG2: 307-316, GPG3:

294-306
contact and bio info, GPG2: xxx, GPG3:

XXXULIT

Van Emde Boas tree layout, 160

Van Verth, James M.
articles by, 233-246, GPG4: 183-192

contact and bio info, GPG4: sxxix

Variables
abstract variables as MLP inputs, GPG2:

354

bug prevention and, GPG4: 17
debugging and runtime variable changes,

GPG4: 15
dynamic variables, GPG4: 613-619
fuzzy variables, GPG2: 342
influence maps to track, GPG2: 289-290
initializing, GPG4: 17
Lua and dynamic typing of, 116
names and naming conventions, GPG4:

17
practical planning and, 332-333
public member variables, GPG4: 36
“smart” variables, GPG4: 613-619
text parsers, GPG2: 115
tweaking, GPG2: 118-126

Vector fractions, GPG3: 160-169

big integers and, GPG3: 168
vs. floating-point representations, GPG3:

160-161, GPG3: 163-164
number ranges, GPG3: 167-168
operations using, GPG3: 165-166
optimizations, GPG3: 168-169
order of intersection, GPG3: 166
pathfinding and, GPG3: 162-163
rationale for use, GPG3: 161-163
3D line and plane intersections, GPG3:

165
transversals and, GPG3: 162-163,

GPG3: 166, GPG3: 168
2D line intersections, GPG3: 164-165

Vectors, GPG1: 41-45
assert macro for normalizing, GPG1:

109-111

bivectors, 203
damped reflection vectors, GPG2:

188-190
eigenvectors, GPGI1: 156

flocking implementation; GPGI1:

307-308
interpolating across line or plane, GPG2:

189
in MAX, GPG2: 145
memory of, GPG1: 45
multivectors, 203-209
orthogonality of, GPG1: 337-338
reflected off collision planes, GPG2:

185-188

representing finite rotation with, GPG1:

151-154
Standard Template Library vectors,

GPG?: 12-13

trivectors, 204
used by vector cameras, GPG1: 367-378
yaw and pitch, GPG3: 188, GPG3: 190,

GPG3: 195
Vegetation

dimensional impostors for realistic trees

and forest, 526-538
simulating natural motion in grass and

leaves, 414-419
sprite rendering of vegetation, 528-530

Velasquez, Scott
articles by, GPG4: 633-647
contact and bio info, GPG4: x/

Verlet-based physics engine, GPG4: 231-240

Verlet integration, deformations and, GPG4:

260-261

Vertex-blending algorithm, GPG4: 489-490

Vertex buffers, GPG3: 378

789

cube maps and, GPG3: 446
Vertex-cache coherency, GPG2: 364, GPG2:

37)
Vertex indices, precomputing, GPG3:

380-381

Vertex normals
described, GPG3: 344-345
fast heightfield normal calculation,

GPG3: 344-348
Vertex shader, programmable compiler

abstract syntax trees for, GPG3: 410
code generator for, GPG3: 411
key components described, GPG3: 406
language for, GPG3: 407-408
parsers for, GPG3: 406, GPG3: 409-410

scanner (flex lexical analyzer), 408-409,

GPG3: 406
symbol tables for, GPG3: 410-411
temporary registers, GPG3: 406, GPG3:

411

Vertex shaders, GPG3: 350
attenuation of per-pixel point lights,

GPG3: 473-476
cartoon vertex shader, code listing,

GPG3: 406
defined and described, GPG3: 404-405
GPU shadow volume construction and,

GPG4: 393-398
see also Vertex shader, programmable

compiler
Vertical derivative operator for waves, GPG4:

267-269
Vertices

binned vertices, GPG2: 365
compiled vertex arrays, GPG1: 356-357
data format for submission, GPG1:

358-359
interleaved data, GPG1: 354-355
optimizing submission for OpenGl,

GPGI1: 353-360
ordinary vs. extraordinary, GPG3: 372
popping vs. morphing, GPG1: 460
projected depth values, GPG1: 361-365
rendering performance, GPG1: 359
strided and streamed data, GPG1:

355-356
T-Junction elimination and retriangula-

tion, GPG3: 338-343
vertex-blending algorithm, GPG4:

489-490
vertex collapse and split, GPG1:

455-456
vertex removal and shadow volumes,

GPG3: 369-370

vertex removal for mesh optimization,

GPG4: 431

Video
artifacts, avoiding with clocks, GPGA4:

31-34
frame duration, GPG4: 32

lighting with video sequences, GPG3:

436-438

Video game consoles
data loading, GPG1: 90-91
debugging for, GPG1: 115-1 19

depth of play techniques, GPG1:

133-140

View-Dependent Progressive Meshes

(VDPM), GPG2: 377-378

View-Independent Progressive Meshing

(VIPM)
comparison of methods, GPG2: 376
mixed-mode method described, GPG2:

365-368
resources required for, GPG2: 363-364
skip strips method described, GPG2:

368-370
sliding window method described,

GPG2: 372-375
vanilla method described, GPG2:

365-368
Viewpoints, GPG1: 296

Virtual class member functions, exporting
from DLLs, GPG2: 31-32

Virtual functions, GPG2; 9-11
Virtual time schedulers, GPG3: 6-8
Visibility

collision detection and, 586-587
conservative vs. approximate, GPG3: 354
cPLP algorithm, GPG3: 355-358
from-point vs. from-region, GPG3: 354
front cap geometry, GPG3: 367-369
frustum culling, 65-77, GPG1: 422-423
object space vs. image space, GPG3: 354
occlusion culling, GPG1: 421-431,

GPG3: 353-358
PLP algorithm, GPG3: 354-355, GPG3:

356-358
points of, GPG1: 258, GPG1: 274-275
precomputed vs. online, GPG3: 354

procedural level generation and, 586-587
as tactical assessment factor, GPG2:

296-297

visibility testing, GPG1: 296
see also Player visibility systems

Visual quality
levels of detail, GPG1: 432-438

popping, GPG1: 432-438
Visual systems, dynamic switching of, GPG3:

21

Vlachos, Alex
articles by, 381-382, 402-405, 406-410,

421-424, 427-435, 437-441,
467-476, GPG2: 220-227, GPG2:
402-410, GPG2: 421-424, GPG3:
367-371, GPG3: 467-476, GPG4:
381-382, GPG4: 427-435, GPG4:
437-441

contact and bio info, GPG1: xxvi, GPG2:
xaxi, GPG3: xxxix, GPG4: x1

Vocoders, GPG3: 613-621
described, GPG3: 613-614
filters in, GPG3: 615-616
modeling speech production, GPG3:

614-621

Vogelsang, Carlo
article by, GPG3: 600-605
contact and bio info, GPG3: xxxix

Voice communications, DirectPlay 8.1 for,
GPG3: 569-571

Voice compression and effects, linear predic-
tive coding for, GPG3: 613-621

Voices
defined, GPG2: 543
sample-based synthesizers to reuse,

GPG2: 521-524
speech recognition, 741-750

Volcanos
lava, heat shimmer over, GPG4: 479-480

terrain generation, GPG1: 508-511
Volume calculation of simulated soft bodies,

442-443
Volumetric post-processing, 571-577
Voting architectures, GPG4: 345-354
Voxels, GPG1: 442
V-table pointers, GPG4: 39
Vulgarity

block-and-refuse method for managing,
623

filtering program for, 621-626
human intervention to control, 625

IDL grammars and detection of, 639
search-and replace methods for managing,

622-623
word stripping method for managing,

623

workarounds to evade filtering, 624-625

Vulnerability, as tactical assessment factor,
GPG2: 296

W
Wade, Bretton, contact and bio info, xxxviii

Wagner, T. J., GPG4: xix

Wakeling, Scott

article by, GPG2: 38-45
contact and bio info, GPG2: xx«xz

Wakes, GPG4: 272

Walk cycles, attractor / repulsor forces and,
GPG4: 362

Walking, failure to track properly, GPG4:
159

Wall building algorithms, GPG4: 365-372
Walls

cellular automata and modeling thin
walls, GPG3: 202

reusing, GPG4: 368-369

shoreline walls (water barriers), GPG4:

366-368

wall building algorithms, GPG4:
365-372

walled cities, GPG4: 370-372
Wang, Niniane

article by, 507-513
contact and bio info, xxviii

Warping textures, GPG3; 420-421
Watchdog services, 607

Watches, memory and register watches as
debugging tools, GPG4: 10

Water

alpha blending for transparency, GPG1:
193

boundary conditions, GPG1: 190
buoyant objects, GPG1:; 191-193
cellular automata to model, GPG3: 200,

GPG3;: 206-207

environmental audio, water sounds,

GPG4: 644-647

heightfield water as procedural texture,
GPG2: 501-503

instability of integration method, GPG1;
190

interactive simulations, GPG1: 187-194
interactive water surfaces, GPG4:

265-274

iWave propagation calculator, 411—414,
GPG4:; 265-274

light refraction, GPG1: 193-194
linearized Bernoulli’s equations and

surface waves, GPG4: 266-267

parallel processing, GPG1: 190-19 1

particulate matter in, GPG1: 599

procedural textures for, GPG3: 456
rendering, GPG1: 193-194

shoreline walls, GPG4: 366-368
simulating refraction in a fish tank,

GPG2: 402-405
speed and visual quality, GPG1: 194
splashes, GPG1: 191
surface tension, GPG4: 274
wave equations, GPG1: 187-189
see also Liquids, refraction maps for

Watte, Jon

article by, 643-664
contact and bio info, xx«xviii

Wave equations, GPG1: 187-189
WaveFile class, GPG4: 630

Wavelets, GPG1: 182-186

Haar wavelets, GPG1: 184-186
image compression, GPG1: 185-186

Waves
ambient waves, GPG4: 272-273
iWave wave propagation calculator,

411-414, GPG4: 265-274
linearized Bernoulli's equations, GPG4:

266-267
obstructions and, GPG4: 271-272
vertical derivative operator, GPG4:

267-269

wakes, GPG4: 272
wave propagation, GPG4: 269-270

Waypoints, GPG2: 308
A* pathfinding and, GPG2: 315
uses of waypoint-based reasoning, GPG2:

315
waypoint properties, GPG2: 310-313

Weapons
decision making and selection of, GPG4:

342-343
kill algorithms for, GPG4: 216

Weather
aerodynamics for wind-driven storms,

407, 408

precipitation, rain or snow, 513-517
tornadoes, prescripted physics event,

469-471
Web addresses

artificial intelligence sites, GPG2: 336
bones (archives, links, and resources),

GPG3: 393
contributors (See Specific individuals)
CSyn audio engine, GPG2: 558
flocking and steering behaviors, GPG2:

335
Game Programming Gems, GPG3: 640
graph and satisfiability planning informa-

tion, 339
heuristic search planning information,

338
Lua language, 128
Nvidia’s Developer site, GPG2: 509
PortAudio updates, GPG3: 611
practical planning demo, 342
Squid web-caching program, GPG2: 140

Web cameras
BGR pixels, GPG2: 158
capture window initialization, GPG2:

153-158
cartoon-like images, GPG2: 159-160
data manipulation, GPG2: 158-162

Index

data retrieval, GPG2: 156
destroying windows, GPG2: 161-162
grayscale conversion, GPG2: 159
memory allocation for, GPG2: 155-156
motion detection, GPG2: 157-158

in multi-player games, GPG2: 153
textures, uploading, GPG2: 160-161

Weber, Jason
articles by, GPG3: 192-199, GPG3:

384-393
contact and bio info, GPG3: xxix

Weights and weighting
bones, GPG2: 146-148, GPG3:

388-392
at joints, GPG3: 388-392

mesh deformation and, GPG2: 149
precomputing, GPG3: 380-381

Weiler-Atherton algorithm, GPG3: 367,
GPG4: 427

Weiner, Kieth
article by, GPG2: 529-538
contact and bio info, GPG2: xxx

Welding, GPG3: 339
White, Stephen

article by, GPG3: 307-320
contact and bio info, GPG3: sxxix—xl

White noise, stochastic synthesis, GPG3:

622-629
Widgets to render fast and persistent foliage,

515-526
Wind

simulating natural motion in grass and

leaves, 414-419
tornadoes, prescripted physics event,

469-471
wind sounds, GPG3: 624

Windows OS, address-space management of

dynamic arrays, GPG4: 85-93
Wind sounds, GPG3: 624
Wireless devices

CLDC, GPG3: 575
game development for, GPG3: 573-581
image retrieval, GPG3: 579-580

Woodcock, Steven

articles by, GPG1: 305-318, GPG2:

330-336, GPG3: 229

contact and bio info, GPG1: xxvi, GPG2:

xxxii, GPG3: x!

Woodland, Ryan
articles by, GPG1: 476-483, GPG]:

549-554
contact information, GPG1: xxv

WorldManager for seamless worlds, 618
World markets, developing games for,

xvi-xvit, GPG3: 92-108
audio / video and string concatenation,

GPG3: 103

buffer allocation, GPG3: 106
culture-neutrality, GPG3: 101
cursor-movement testing, GPG3: 107

design and planning considerations,
GPG3: 103-104

hardware configuration, GPG3: 106-107

input, GPG3: 107
interface and design considerations for,

GPG3: 98-101

keyboard input, GPG3: 99-100
localization, GPG3: 101-103, GPG3:

107

modifying existing games, GPG3: 104

political sensitivity and, GPG3: 101
system configuration, GPG3: 107
video output, GPG3: 99
see also Multiple-language games

WorldObject, GPG4: 630
Worlds

defined for tile-based games, GPG2: 280

seamless worlds, 611-620, 618
WorldManager, 618

Wrapping stage of game development, GPG3:

16
Wrinkles in cloth, GPG4: 277

xX
XBox, GPG3: 465, GPG3: 546-547

address-space management of dynamic
arrays, GPG4: 85-93

XDS (eXtensible Data Stream), GPG4:

125-135
data migration for, GPG4: 135
Data Stream Definition (DSD), GPG4:

127

791

described, GPG4: 126-137
toolkit for, GPG4: 127-134
XDS Lite library, GPG4: 131-133

XDS Lite library, GPG4: 131-133
XML, GPG4: 3

audio tag database, GPG4: 625-628
pie menus, GPG3: 119-122
rationale for use, GPG4: 125-126

tag attributes listed, GPG4: 626
user interfaces and, GPG3: 110-112

XDS format and, GPG4: 125-135
XOR (exclusive-or operator), GPG1: 107,

GPGI: 108

neural nets and, GPG1: 338-341

Y
Yacc (parser generator), GPG3: 40-41,

GPG3: 83-91
code listing for custom data file, GPG3:

89-90

Lex used with, GPG3: 85-86

Yaw and pitch, 396, GPG1: 307-308, GPG1:
371-372, GPG3: 188, GPG3: 190

Euler angles and, GPG3: 195

Young, Thomas
articles by, GPG2: 317-329, GPG3:

160-169, GPG3: 321-332, GPG3:

394-403
contact and bio info, GPG2: xxxii,

GPG3: xl

Z
Zarb-Adami, Mark

article by, GPG3: 187-191
contact and bio info, GPG3: x/

Zarozinski, Michael
article by, GPG2: 342-350
contact and bio info, GPG2: xxxii

Zero-sum games, GPG1: 249
Zhang, Tao

article by, GPG4: 579-589
contact and bio info, GPG4: x/

Zobrist hash, GPG4: 141-146

ZoomFX, GPG4: 644-647

Zooms, auto-zoom features for cameras,

490-491

fos

1-58450-049-2 $69.95 1-58450-054-9 $69.95 1-58450-233-9 $69.95 1-58450-295-9 $69.95

Buy Game Programming Gems 1, 2, and 3

for $129. 95! (U.S. orders only)

Visit www.charlesriver.com for details!

ALSO AVAILABLE AT 20% O

MATHEMATICS for ; gery OF ce :
3D GAME PROGRAMMING | |, | ad eee | | AT GAME ENGINE
&: COMPUTER GRAPHICS ae | = 1| PROGRAMMING

second Edition e 7%, ee . ve

Mw
—

1-58450-277-0 $49.95 1-58450-077-8 $69.95

AND MANY MORE!

WWW.CHARLESRIVER.COM

ot
ae ae oye A

?

ily sins
:

eee

ef
tne

_ 7

fe @ i are
ay ¢

ng de a Re ms

a ae 3

a m oe a

: bites, é < ae © ye ¥

A " *
a a "
aT ' ” ra yy areal

5 A ;
At

ad

:

% - “8

f on

wr :

-~

me TS
=—S." Say :

» ‘ \.

os 4 § -?
*

‘ss > »* 5

“* , ** sa.

. 938 4 gh R=

Ss pt a+
nd i

SO So |

PS

N. urviers wiv

ie "72 am far 4 Lalaiadal

aye: age oem aaa es — i

Fes Sane el re ee

)

~~ 7 - wn
7 a i ° an 2 - ; n

_
=

ak: Gout

ty MORE ol
Ky “a ee %

7 vi LOM

s ri

i$ NOI

;

WA RNIN

Lage

pe

nis

reir

F

~

at is broken

i 2e
> @

Mhie jf

=e atiaere eae
evegy ake, iv the

at”

®

—

\

o4 ; ‘
a

ee

AVRIL ROBARTS LAG
N STREET

LIVERPOOL L2 2A
TEL 0151 231 4022

a RS oT SS fa aa ita -

a ase — * are 2 }.

GAME PROGRAMMING
With every new volume, the Game Programming Gems series continues

to provide a road map through the vast array of development challenges

facing today’s game programmers. With the wisdom of many industry

experts, Gems 5 includes 62 newly unearthed gems that were polished

up for your reading pleasure. These gems are filled with practical insights

and techniques that will solve your current problems and help inspire future games.

You and your team need to develop for today’s platforms, while preparing for the new

technology looming on the horizon and with the tools provided here, you can! So dig

into this new collection and put it to work.

SECTION HIGHLIGHTS:
+ GENERAL PROGRAMMING:

4 MATHEMATICS:

¢ ARTIFICIAL INTELLIGENCE:

+ PHYSICS:

¢ GRAPHICS:

+ NETWORK & MULTIPLAYER: kee

ON THE CD-ROM + AUDIO:
The CD-ROM is packed with source eS a

code and listings from the book and
demos to compliment the articles.

Windows demos were compiled us-
ing Microsoft Visual C++" 6.0 (.dsw

files) or Microsoft Visual C++ 7.0 (.sln

Section Editors:

William E. Damon III, General Programming Eric Lengyel, Mathematics

Jason L. Mitchell, Graphics Mark DeLoura, A

Michael Dickheis MT
al

files). OpenGL’ utility Toolkit (GLUT Robin Hunicke, Artificial Intelligence v

v3.7.6), Sun’s J2SE", and Microsoft Shekhar Dhupelia, Network and Multiplayer Te) =
DirectX” 9 SDK are also included. Editors’ Biographies = SS

Kim Pallister is a Technical Marketing Manager and Processor Evangelist with Intel’s Software 2 ==

SYSTEM REQUIREMENTS He is currently focused on real-time 3D sone technologies es evdiemon te ee 3S =,

Windows’: Intel’ Pen- articles to the series and was the General Programming section editor for Volume 3. Mark DeLou od =,

tium’ series, AMD yn 0-10 editor of the series, is the manager of developer relations for Sony Computer Entertainment America, wi Oo = a |

Athlon or newer pro- walt PlayStation and future entertainment products. —

cessor, Windows’ XP
—

(64MB RAM) or Windows" 2000 Shelving: Game Programming / Game Development / Programming ISBN 1 = 1
Level: Intermediate to Advanced U.S. $69.95 ¢ 5 (128MB RAM) or later required. 3D

graphics card required for some sample
splice oak and DirectX" 9 and GLUT CHARLES RIVER MEDIA

3.7 or newer required. Linux systems 10 Downer Avenue
require the Linux kernel 2.4.x or later, Hingham, MA 02043
XFree86 4.0, and OpenGL driver, glibc (781) 740-0400
2.1 or newer. Mesa can be used in place (781) 740-8816 FAX
of 3D hardware support. Videos require ’

the DivX codec. = z 19587'03521

All trademarks and service marks are the property of their respective owners. Printed in the USA.

Cover image: © Sammy Studios, Inc. Cover design: The Printed Image

ISBN 1-58450-352-1

WN “781584°503521

