

Game Engine
Gems 2

Edited by Eric Lengyel

A K Peters, Ltd.
Natick, Massachusetts

Contents
Preface .. xiii

Part I Graphics and Rendering ... 1

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes ... 3

1.1 Introduction .. 3

1.2 Algorithm .. 4

1.3 Evaluation ... 9

1.4 Optimization Using SIMD Instructions .. 16

1.5 Discussion and Future Work ... 17

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 21

2.1 Modeling Cloud Formation ... 22

2.2 Cloud Lighting Techniques .. 27

2.3 Cloud Rendering Techniques .. 30

Chapter 3 Simulation of Night-Vision and Infrared Sensors ... 43

3.1 The Physics of the Infrared ... 43

3.2 Simulating Infrared Sensor Effects .. 47

3.3 Night-Vision Goggle Simulation .. 48

Chapter 4 Screen-Space Classification for Efficient Deferred Shading .. 53

4.1 Introduction .. 53

4.2 Overview of Method ... 54

4.3 Depth-Related Classification ... 56

4.4 Pixel Classification ... 58

4.5 Combining Classification Results .. 59

4.6 Index Buffer Generation ... 60

iv Contents

4.7 Tile Rendering ... 61

4.8 Shader Management .. 62

4.9 Platform Specifics ... 63

4.10 Optimizations ... 67

4.11 Performance Comparison ... 69

Chapter 5 Delaying OpenGL Calls ... 71

5.1 Introduction .. 71

5.2 Motivation .. 71

5.3 Possible Implementations .. 73

5.4 Delayed Calls Implementation .. 74

5.5 Implementation Notes ... 79

5.6 Improved Flexibility .. 80

5.7 Concluding Remarks ... 80

Chapter 6 A Framework for GLSL Engine Uniforms .. 83

6.1 Introduction .. 83

6.2 Motivation .. 83

6.3 Implementation .. 85

6.4 Beyond GLSL Built-in Uniforms ... 90

6.5 Implementation Tips .. 91

6.6 Concluding Remarks ... 92

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 93

7.1 Introduction .. 94

7.2 The Spatiotemporal Framework ... 96

7.3 Applications .. 105

7.4 Future Work ... 112

Chapter 8 Implementing a Fast DDOF Solver ... 115

8.1 Introduction .. 115

8.2 Modifying the Basic CR Solver .. 119

v Contents

8.3 Results ... 129

Chapter 9 Automatic Dynamic Stereoscopic 3D ... 133

9.1 General Problems in S3D .. 133

9.2 Problems in S3D Unique to Games ... 136

9.3 Dynamic Controls .. 138

9.4 A Simple Dynamic S3D Camera ... 139

9.5 Content-Adaptive Feedback ... 140

Chapter 10 Practical Stereo Rendering .. 147

10.1 Introduction to Stereo 3D ... 147

10.2 Overview of Stereo Displays ... 148

10.3 Introduction to Rendering Stereo ... 149

10.4 The Mathematics of Stereo Views and Projection ... 151

10.5 Using Geometry Shader to Render Stereo Pairs ... 156

Chapter 11 Making 3D Stereoscopic Games .. 159

11.1 Introduction .. 159

11.2 How Stereoscopic 3D Works ... 159

11.3 How to Set Up the Virtual 3D Cameras ... 160

11.4 Safe Area ... 162

11.5 Technical Considerations .. 165

11.6 Same Scene, Both Eyes, and How to Optimize ... 166

11.7 Scene Traversal ... 168

11.8 Supporting Both Monoscopic and Stereoscopic Versions .. 169

11.9 Visual Quality .. 170

11.10 Going One Step Further .. 173

11.11 Conclusion... 174

Chapter 12 A Generic Multiview Rendering Engine Architecture ... 175

12.1 Introduction .. 175

12.2 Analyzing Multiview Displays .. 176

vi Contents

12.3 The Architecture ... 179

12.4 The Multiview Camera ... 182

12.5 The Multiview Buffer .. 186

12.6 The Multiview Compositor ... 188

12.7 Rendering Management ... 190

12.8 Rendering Optimizations .. 191

12.9 Discussion ... 193

Chapter 13 3D in a Web Browser ... 197

13.1 A Brief History ... 197

13.2 Fast Forward ... 202

13.3 3D with Flash .. 205

13.4 3D with Java .. 211

13.5 3D with a Game Engine Plug-In .. 213

13.6 Google Native Client ... 217

13.7 3D with HTMLS ... 219

13.8 Conclusion .. 223

Chapter 14 2D Magic .. 227

14.1 Tools of the Trade ... 227

14.2 Position ... 228

14.3 Color and Opacity ... 230

14.4 Texture (UV) Coordinates ... 233

14.5 What a Mesh! ... 235

14.6 Mesh Architecture .. 236

14.7 Mesh Examples ... 238

14.8 Conclusion .. 246

Part II Game Engine Design .. 249

Chapter 15 High-Performance Programming with Data-Oriented Design 251

vii Contents

15.1 Modern Hardware .. 251

15.2 Principles of Data-Oriented Design... 253

15.3 Data-Oriented Design Benefits ... 254

15.4 How to Apply Data-Oriented Design .. 255

15.5 Real-World Situations ... 256

15.6 Parallelization ... 260

15.7 Conclusion ... 261

Chapter 16 Game Tuning Infrastructure ... 263

16.1 Introduction .. 263

16.2 The Need for Tweak .. 263

16.3 Design Considerations .. 264

16.4 The Tuning Tool .. 265

16.5 Data Exchange .. 269

16.6 Schema and Exposure ... 270

16.7 Data Storage ... 272

16.8 Case Studies .. 274

16.9 Final Words ... 277

Chapter 17 Placeholders beyond Static Art Replacement ... 279

17.1 Placeholder Assets in a Game ... 279

17.2 Preaching by Example: The Articulated Placeholder Model ... 285

17.3 Integration in a Production Environment ... 302

17.4 In the End, Is It Really Needed? .. 304

17.5 Implementation .. 305

Chapter 18 Believable Dead Reckoning for Networked Games .. 307

18.1 Introduction .. 307

18.2 Fundamentals ... 307

18.3 Pick an Algorithm, Any Algorithm ... 309

18.4 Time for T .. 313

viii Contents

18.5 Publish or Perish ... 315

18.6 Ground Clamping .. 321

18.7 Orientation ... 323

18.8 Advanced Topics ... 325

18.9 Conclusion .. 327

Chapter 19 An Egocentric Motion Management System .. 329

19.1 Fundamental Components of the ECMMS ... 331

19.2 Collision Sensors ... 331

19.3 Query Space .. 332

19.4 Modeling the Environment .. 334

19.5 The ECMMS Architecture ... 335

19.6 Modeling an ECMMS-Enabled Agent ... 335

19.7 Generating a Behavior Model with the ECMMS .. 336

19.8 Animation Validation .. 339

19.9 A Single Agent Behavioral Response Algorithm and Example .. 340

Chapter 20 Pointer Patching Assets ... 345

20.1 Introduction .. 345

20.2 Overview of the Technique .. 348

20.3 A Brief Example .. 351

Chapter 21 Data-Driven Sound Pack Loading and Organization .. 359

21.1 Introduction .. 359

21.2 Constructing a Sound Map ... 360

21.3 Constructing Sound Packs by Analyzing the Event Table ... 362

21.4 Constructing and Using Sound Loading Triggers .. 365

21.5 Conclusion .. 367

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 369

22.1 Introduction .. 369

22.2 Numerical Algorithm .. 370

ix Contents

22.3 Collision Handling ... 372

22.4 CPU Implementation .. 373

22.5 GPU Implementations ... 375

22.6 GLSL Implementation .. 376

22.7 CUDA Implementation .. 378

22.8 OpenCL Implementation ... 379

22.9 Results ... 380

22.10 Future Work .. 382

22.11 Demo .. 383

Chapter 23 A Jitter-Tolerant Rigid Body Sleep Condition ... 385

23.1 Introduction .. 385

23.2 The Sleep Condition .. 386

Part III Systems Programming ... 389

Chapter 24 Bit Hacks for Games ... 391

24.1 Integer Sign Manipulation .. 391

24.2 Predicates ... 394

24.3 Miscellaneous Tricks ... 398

24.4 Logic Formulas .. 401

Chapter 25 Introspection for C++ Game Engines ... 403

25.1 Introduction .. 403

25.2 The Demo .. 407

25.3 The Gem .. 407

25.4 Lifting the Veil ... 410

25.5 To and From a Network .. 412

25.6 In Closing ... 413

Chapter 26 A Highly Optimized Portable Memory Manager ... 415

26.1 Introduction .. 415

x Contents

26.2 Overview ... 417

26.3 Small Block Allocator .. 421

26.4 Medium Block Allocator ... 424

26.5 Large Block Allocator .. 428

26.6 Page Management in the Memory Manager ... 429

26.7 OSAPI Ideas ... 431

Chapter 27 Simple Remote Heaps .. 433

27.1 Introduction .. 433

27.2 Bitwise Remote Heap ... 434

27.3 Blockwise Remote Heap ... 437

27.4 Testing Results .. 441

Chapter 28 A Cache-Aware Hybrid Sorter .. 445

28.1 Stream Splitting .. 446

28.2 Substream Sorting .. 448

28.3 Stream Merging and Loser Tree ... 450

28.4 Multicore Implementation ... 453

28.5 Conclusion .. 455

Chapter 29 Thread Communication Techniques .. 459

29.1 Latency and Threading ... 459

29.2 Single Writer, Single Reader ... 460

29.3 The Aggregator ... 463

29.4 The Dispatcher .. 466

29.5 The Gateway ... 466

29.6 Debugging ... 466

Chapter 30 A Cross-Platform Multithreading Framework .. 469

30.1 Threading .. 469

30.2 Synchronization Objects ... 471

30.3 Limitations .. 484

xi Contents

30.4 Future Extensions ... 485

Chapter 31 Producer-Consumer Queues ... 487

31.1 Introduction .. 487

31.2 Multithreading Overview .. 489

31.3 A First Approach: Using Win32 Semaphores and Critical Sections 489

31.4 A Second Approach: Lock-Free Algorithms ... 494

31.5 Processor Architecture Overview and Memory Models .. 496

31.6 Lock-Free Algorithm Design .. 499

31.7 Lock-Free Implementation of a Free List .. 501

31.8 Lock-Free Implementation of a Queue ... 505

31.9 Interprocess Communication ... 509

Preface

The word gem has been coined in the fields of computer graphics and game development
as a term for describing a short article that focuses on a particular technique, a clever trick, or
practical advice that a person working in these fields would find interesting and useful. Several
book series containing the word "Gems" in their titles have appeared since the early 1990s, and
we continued the tradition by establishing the Game Engine Gems series in 2010.

This book is the second volume of the Game Engine Gems series, and it comprises a
collection of new game engine development techniques. A group of 29 experienced
professionals, several of whom also contributed to the first volume, have written down portions
of their knowledge and wisdom in the form of the 31 chapters that follow.

The topics covered in these pages vary widely within the subject of game engine
development and have been divided into the three broad categories of graphics and rendering,
game engine design, and systems programming. The first part of the book presents a variety of
rendering techniques and dedicates four entire chapters to the increasingly popular topic of
stereoscopic rendering. The second part contains several chapters that discuss topics relating to
the design of large components of a game engine. The final part of the book presents several
gems concerning topics of a "low-level" nature for those who like to work with the nitty-gritty
of engine internals.

Audience

The intended audience for this book includes professional game developers, students of
computer science programs, and practically anyone possessing an interest in how the pros
tackle specific problems that arise during game engine development. Many of the chapters
assume a basic knowledge of computer architecture as well as some knowledge of the high-level
design of currentgeneration game consoles, such as the PlayStation 3 and Xbox 360. The level
of mathematics used in the book rarely exceeds that of basic trigonometry and calculus.

xiv Preface

The Website

The official website for the Game Engine Gems series can be found at the following address:

http://www.gameenginegems.net/

Supplementary materials for many of the gems in this book are posted on this website, and
they include demos, source code, examples, specifications, and larger versions of some figures.
For chapters that include project files, the source code can be compiled using Microsoft Visual
Studio.

Any corrections to the text that may arise will be posted on the website. This is also the
location at which proposals will be accepted for the next volume in the Game Engine Gems series.

Acknowledgements

Many thanks are due to A K Peters for quickly assuming ownership of the Game Engine
Gems series after it had lost its home well into the period during which contributing authors
had been writing their chapters. Of course, thanks also go to these contributors, who took the
transition in stride and produced a great set of gems for this volume. They all worked hard
during the editing process so that we would be able to stay on the original schedule.

Part I

Part I Graphics and Rendering

1

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding
Boxes

Thomas Larsson
Linus Kallberg
Malardalen University, Sweden

1.1 Introduction

Bounding shapes, or containers, are frequently used to speed up algorithms in games, computer
graphics, and visualization [Ericson 2005]. In particular, the oriented bounding box (OBB) is
an excellent convex enclosing shape since it provides good approximations of a wide range of
geometric objects [Gottschalk 2000]. Furthermore, the OBB has reasonable transformation and
storage costs, and several efficient operations have been presented such as OBB-OBB
[Gottschalk et al. 1996], sphere-OBB [Larsson et al. 2007], ellipsoid-OBB [Larsson 2008], and
ray-OBB [Ericson 2005] intersection tests. Therefore, OBBs can potentially speed up operations
such as collision detection, path planning, frustum culling, occlusion culling, ray tracing,
radiosity, photon mapping, and other spatial queries.

To leverage the full power of OBBs, however, fast construction methods are needed.
Unfortunately, the exact minimum volume OBB computation algorithm given by O'Rourke
[1985] has O(n3) running time. Therefore, more practical methods have been presented, for
example techniques for computing a (1- 8) approximation of the minimum volume box
[Barequet and Har-Peled 1999]. Another widely adopted technique is to compute OBBs by
using principal component analysis (PCA) [Gottschalk 2000]. The PCA algorithm runs in linear
time, but unfortunately may produce quite loose-fitting boxes [Dimitrov et al. 2009]. By initially
computing the convex hull, better results are expected since this keeps internal features of the

4 Game Engine Gems

model from affecting the resulting OBB orientation. However, this makes the method
superlinear.

The goal of this chapter is to present an alternative algorithm with a simple
implementation that runs in linear time and produces OBBs of high quality. It is immediately
applicable to point clouds, polygon meshes, or polygon soups, without any need for an initial
convex hull generation. This makes the algorithm fast and generally applicable for many types
of models used in computer graphics applications.

1.2 Algorithm

The algorithm is based on processing a small constant number of extremal vertices selected
from the input models. The selected points are then used to construct a representative simple
shape, which we refer to as the ditetrahedron, from which a suitable orientation of the box can
be derived efficiently. Hence, our heuristic is called the ditetrahedron OBB algorithm, or DiTO
for short. Since the chosen number of selected extremal vertices affects the running time of the
algorithm as well as the resulting OBB quality, different instances of the algorithm are called
DiTO-k, where k is the number of selected vertices.

The ditetrahedron consists of two irregular tetrahedra connected along a shared interior
side called the base triangle. Thus, it is a polyhedron having six faces, five vertices, and nine
edges. In total, counting also the interior base triangle, there are seven triangles. Note that this
shape is not to be confused with the triangular dipyramid (or bipyramid), which can be
regarded as two pyramids with equal heights and a shared base.

For most input meshes, it is expected that at least one of the seven triangles of the
ditetrahedron will be characteristic of the orientation of a tight-fitting OBB. Let us consider two
simple example meshes-a randomly rotated cube with 8 vertices and 12 triangles and a
randomly rotated star shape with 10 vertices and 16 triangles. For these two shapes, the DiTO
algorithm finds the minimum volume OBBs. Ironically, the PCA algorithm computes an
excessively large OBB for the canonical cube example, with a volume approximately two to four
times larger than the minimum volume, depending on the orientation of the cube mesh.
Similarly, it also computes a loose-fitting OBB for the star shape, with a volume approximately
1.1 to 2.2 times larger than the optimum, depending on the given orientation of the mesh. In
Figure 1.1, these two models are shown together with their axis-aligned bounding box (AABB),

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 5

OBB computed using PCA, and OBB computed using DiTO for a random orientation of the
models.

Figure 1.1. Computed boxes for a simple cube mesh (12 triangles) and star mesh (16 triangles). The
first column shows the AABB, the second column shows the OBB computed by PCA, and the last
column shows the OBB computed by DiTO. The meshes were randomly rotated before the
computation.

The OBB is represented here by three orthonormal vectors u, v, and w defining the
orientation of the box's axes, the half-extents hu, kv, and hw defining the size of the box, and a
midpoint m defining the center of the box. In the following, we explain how the algorithm
works, and we present our experimental evaluation.

Selecting the Extremal Points

Call the set containing the n vertices of the input model P. The algorithm starts off by
selecting a subset S with k representative extremal points from the vertices P, where k is an even
number. This is done by finding the vertices with minimum and maximum projection values
along s = k/2 predefined directions or normal vectors. The points in S are stored systematically
so that any extremal point pair (a j, b j) along a direction n j; can be retrieved, where a j and b j
are the points with minimum and maximum projection values, respectively. Note that all the
points in S are guaranteed to be located on the convex hull of the input mesh. Hopefully, this
makes them important for the later determination of the OBB axes. Ideally, the used normal
vectors should be uniformly distributed in direction space. However, to be able to optimize the
projection calculations that are calculated by sim ple dot products, normals with many 0s and
1 s may be preferable, given that they sample the direction space in a reasonable manner.

6 Game Engine Gems

Clearly, the DiTO-k algorithm relies on the choice of an appropriate normal set Ns, and
simply by choosing a different normal set a new instance of DiTO-k is created. In the
experiments described later, five normal sets are used, yielding five algorithm instances. The
normal sets are listed in Table 1.1. The normals in N6, used in DiTO-12, are obtained from the
vertices of a regular icosahedron with the mirror vertices removed. Similarly, the normals in
N10, used in DiTO-20, are taken from the vertices of a regular dodecahedron. The normal set
N16 = N6∪N10 is used in DiTO-32. The normals in N7 and N13, used in DiTO-14 and DiTO-26,
are not uniformly distributed, but they are still usually regarded as good choices for computing
k-DOPs [Ericson 2005]. Therefore, they are also expected to work well in this case.

Table 1.1. Efficient normal sets N6, N10, N7, and N13 used for DiTO-12, DiTO-20, DiTO-14, and DiTO-
26, respectively, with the valuea = �√5 − 1�/2 ≈ 0.61803399 . The normals in N6 and N10 are
uniformly distributed.

N6 N10 N7 N13
(0, 1, a)
(0, 1, -a)
(1, a, 0)
(1, -a, 0)
(a, 0, 1)
(a, 0, -1)

(0, a, 1+ a)
(0, a, -1- a)
(a, 1+ a, 0)
(a, -1- a, 0)
(1+a, 0, a)
(1+a, 0, -a)
(1, 1, 1)
(1, 1, -1)
(1, -1, 1)
(1, -1, -1)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(1, 1, 1)
(1, 1, -1)
(1, -1, 1)
(1, -1, -1)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(1, 1, 1)
(1, 1, -1)
(1, -1, 1)
(1, -1, -1)
(1, 1, 0)
(1, -1, 0)
(1, 0, 1)
(1, 0, -1)
(0, 1, 1)
(0, 1,-1)

Finding the Axes of the OBB

To determine the orientation of the OBB, candidate axes are generated, and the best axes found
are kept. To measure the quality of an orientation, an OBB covering the subset S is computed.
In this way, the quality of an orientation is determined in O(k) time, where k << n for complex
models. For very simple models, however, when n ≤ k, the candidate OBBs are of course
computed using the entire point set P. To measure the quality, the surface areas of the boxes are

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 7

used, rather than their volumes. This effectively avoids the case of comparing boxes with zero
volumes covering completely flat geometry. Furthermore, it makes sense to reduce the surface
area as much as possible for applications such as ray casting. Of course, if preferred, a quality
criterion based on the volume can be used in the algorithm instead.

The best axes found are initialized to the standard axis-aligned base, and the best surface
area is initialized to the surface area of the AABB covering P. Then the algorithm proceeds by
calculating what we call the large base triangle. The first edge of this triangle is given by the
point pair with the furthest distance among the s point pairs in S, that is, the point pair that
satisfies

max ∥𝒂𝒂𝑗𝑗 - 𝒃𝒃𝑗𝑗∥.

Call these points p0 and p1. Then a third point p2 is selected from S that lies furthest away from
the infinite line through p0 and p1. An example of a constructed large base triangle is shown on
the left in Figure 1.2.

The base triangle is then used to generate three different candidate orientations, one for
each edge of the triangle. Let n be the normal of the triangle, and e0 = p1 – p0 be the first edge.
The axes are then chosen as

𝐮𝐮0 = 𝐞𝐞0 ∕ ∥𝐞𝐞0∥ ,
𝐮𝐮1 = 𝐧𝐧 ∕ ∥𝐧𝐧∥ ,
𝐮𝐮2 = 𝐮𝐮0 ∕ 𝐮𝐮1.

The axes are chosen similarly for the other two edges of the triangle. For each computed set of
axes, an approximation of the size of the resulting OBB is computed by projecting the points in
S on the axes, and the best axes found are kept. In Figure 1.3, an example of the three considered
OBBs for the base triangle is shown.

Next, the algorithm proceeds by constructing the ditetrahedron, which consists of two
connected tetrahedra sharing the large base triangle. For this, two additional points q0 and q1,
are computed by searching S for the points furthest above and below the plane of the base
triangle. An example of a ditetrahedron constructed in this way is shown on the right in Figure
1.2. This effectively generates six new triangles, three top triangles located above the plane of
the base triangle and three bottom triangles located below the base triangle. For each one of
these triangles, candidate OBBs are generated in the same way as already described above for
the large base triangle, and the best axes found are kept.

8 Game Engine Gems

Figure 1.2. Illustration of how the large base triangle spanning extremal points (left) is extended to
tetrahedra in two directions by finding the most distant extremal points below and above the triangle
surface (right).

Figure 1.3. The three different candidate orientations generated from the normal and edges of the
large base triangle. In each case, the box is generated from the edge drawn with a solid line.

After this, all that remains is to define the final OBB appropriately. A final pass through all
n vertices in P determines the true size of the OBB, that is, the smallest projection values su, sv ,
and sw, as well as the largest projection values lu, lv, and lw, of P along the determined axes u, v,
and w. The final OBB parameters besides the best axes found are then given by

ℎ𝑢𝑢 =
𝑙𝑙𝑢𝑢 − 𝑠𝑠𝑢𝑢

2
 ,

ℎ𝑣𝑣 =
𝑙𝑙𝑣𝑣 − 𝑠𝑠𝑣𝑣

2
 ,

ℎ𝑤𝑤 =
𝑙𝑙𝑤𝑤 − 𝑠𝑠𝑤𝑤

2
 ,

𝐦𝐦 =
𝑙𝑙𝑢𝑢 − 𝑠𝑠𝑢𝑢

2
u +

𝑙𝑙𝑣𝑣 − 𝑠𝑠𝑣𝑣

2
v +

𝑙𝑙𝑤𝑤 − 𝑠𝑠𝑤𝑤

2
w.

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 9

The parameters hu, hv, and hw are the half-extents, and m is the midpoint of the box. Note
that m needs to be computed in the standard base, rather than as the midpoint in its own base.

A final check is also made to make sure that the OBB is still smaller than the initially
computed AABB; otherwise, the OBB is aligned with the AABB instead. This may happen in
some cases, since the final iteration over all n points in P usually grows the OBB slightly
compared to the best-found candidate OBB, whose size only depends on the subset S.

This completes our basic presentation of the DiTO algorithm. Example source code in
C/C++ for the DiTO-14 algorithm is available, which shows how to efficiently implement the
algorithm and how the low-level functions work.

Handling Detrimental Cases

There are at least three cases of detrimental input that the algorithm needs to detect and
handle appropriately. The first case is when the computation of the first long edge in the base
triangle results in a degenerate edge; that is, the two points are located at the same spot. In this
case, the OBB is aligned with the already computed AABB, and the algorithm is aborted.

The second case arises when the computation of the third point in the base triangle results
in a degenerate triangle; that is, the point is collinear with the endpoints of the first long edge.
In this case, one of the OBB axes is aligned with the already-found first long edge in the base
triangle, and the other two axes are chosen arbitrarily to form an orthogonal base. The
dimensions of the OBB are then computed, and the algorithm is terminated.

The third detrimental case is when the construction of a tetrahedron (either the upper or
the lower) fails because the computed fourth point lies in the plane of the already-found base
triangle. When this happens, the arising triangles of the degenerate tetrahedron are simply
ignored by the algorithm; that is, they are not used in the search for better OBB axes.

1.3 Evaluation

To evaluate the DiTO algorithm, we compared it to three other methods referred to here
as AABB, PCA, and brute force (BF). The AABB method simply computes an axis-aligned
bounding box, which is then used as an OBB. While this method is expected to be extremely
fast, it also produces OBBs of poor quality in general.

The PCA method was first used to compute OBBs by Gottschalk et al. [1996]. It works by

10 Game Engine Gems

first creating a representation of the input model's shape in the form of a covariance matrix.
High-quality OBB axes are then assumed to be given by the eigenvectors of this matrix. As an
implementation of the PCA method, we used code from Gottschalk et al.'s RAPID source
package. This code works on the triangles of the model and so has linear complexity in the input
size.

The naive BF method systematically tests 90 × 90 × 90 different orientations by
incrementing Euler angles one degree at a time using a triple-nested loop. This method is of
course extremely slow, but in general it is expected to create OBBs of high quality which is useful
for comparison to the other algorithms. To avoid having the performance of BF break down
completely, only 26 extremal points are used in the iterations. This subset is selected initially in
the same way as in the DiTO algorithm.

All the algorithms were implemented in C/C++. The source code was compiled using
Microsoft Visual Studio 2008 Professional Edition and run singlethreaded using a laptop with
an Intel Core2 Duo T9600 2.80 GHz processor and 4 GB RAM. The input data sets were triangle
meshes with varying shapes and varying geometric complexity. The vertex and triangle counts
of these meshes are summarized in Table 1.2. Screenshots of the triangle meshes are shown in
Figure 1.4.

Figure 1.4. Visualizations of the triangle meshes used for evaluation of the algorithms.

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 11

Table 1.2. The number of vertices and triangles for the polygon meshes used for evaluation of the
algorithms.

Model Vertices Triangles
Pencil 1234 2448
Teddy 1598 3192
Frog 4010 7964
Chair 7260 14,372
Bunny 32,875 65,536
Hand 327,323 654,666

To gather statistics about the quality of the computed boxes, each algorithm computes an
OBB for 100 randomly generated rotations of the input meshes. We then report the average
surface area Aavg, the minimum and maximum surface areas Amin and Amax, as well as the average
execution time tavg in milliseconds. The results are given in Table 1.3.

Table 1.3. The average, minimum, and maximum area as well as the average execution time in ms
over 100 random orientations of the input meshes.

Pencil
Method Aavg Amin Amax tavg
AABB 1.4155 0.2725 2.1331 0.02
PCA 0.2359 0.2286 0.2414 0.51
BF 0.2302 0.2031 0.2696 1009
DiTO-12 0.2316 0.1995 0.2692 0.11
DiTO-14 0.2344 0.1995 0.2707 0.09
DiTO-20 0.2306 0.1995 0.2708 0.14
DiTO-26 0.2331 0.1995 0.2707 0.15
DiTO-32 0.2229 0.1995 0.2744 0.20

Chair
Method Aavg Amin Amax tavg
AABB 7.1318 4.6044 8.6380 0.07
PCA 4.7149 4.7139 4.7179 1.87
BF 3.6931 3.6106 4.6579 1047
DiTO-12 3.8261 3.6119 4.1786 0.35
DiTO-14 3.8094 3.6129 4.2141 0.25
DiTO-20 3.8213 3.6164 3.9648 0.37
DiTO-26 3.8782 3.6232 4.0355 0.35
DiTO-32 3.8741 3.6227 3.9294 0.49

12 Game Engine Gems

Teddy

Method Aavg Amin Amax tavg
AABB 3.9655 3.5438 4.3102 0.02
PCA 4.0546 4.0546 4.0546 0.60
BF 3.3893 3.3250 3.5945 1043
DiTO-12 3.7711 3.5438 4.0198 0.14
DiTO-14 3.7203 3.5438 3.9577 0.12
DiTO-20 3.7040 3.5438 3.8554 0.19
DiTO-26 3.7193 3.5438 3.8807 0.16
DiTO-32 3.7099 3.5438 3.8330 0.22

Bunny

Method Aavg Amin Amax tavg
AABB 5.7259 4.7230 64833 0.19
PCA 5.2541 5.2540 5.2541 8.76
BF 4.6934 4.5324 4.9091 1041
DiTO-12 4.9403 4.5635 57922 1.13
DiTO-14 4.9172 4.5810 5.6695 0.98
DiTO-20 4.8510 4.5837 5.5334 1.55
DiTO-26 4.7590 4.5810 5.3967 1.42
DiTO-32 4.7277 4.6552 5.1037 2.04

Frog
Method Aavg Amin Amax tavg
AABB 4.6888 3.0713 5.7148 0.07
PCA 2.6782 2.6782 2.6782 1.14
BF 2.7642 2.6582 3.5491 1037
DiTO-12 2.7882 2.6652 3.0052 0.28
DiTO-14 2.7754 2.6563 2.9933 0.24
DiTO-20 2.7542 2.6602 2.9635 0.40
DiTO-26 2.7929 2.6579 3.0009 0.36
DiTO-32 2.7685 2.6538 2.9823 0.44

Hand
Method Aavg Amin Amax tavg
AABB 2.8848 2.4002 3.2693 1.98
PCA 2.5066 2.5062 2.5069 86.6
BF 2.3071 2.2684 2.4531 1067
DiTO-12 2.3722 2.2946 2.5499 11.8
DiTO-14 2.3741 2.2914 2.5476 10.0
DiTO-20 2.3494 2.2805 2.4978 15.5
DiTO-26 2.3499 2.2825 2.5483 14.5
DiTO-32 2.3372 2.2963 2.4281 20.6

The BF algorithm is very slow, but it computes high-quality OBBs on average. The running
times lie around one second for each mesh since the triplenested loop acts like a huge hidden
constant factor. The quality of the boxes var ies slightly due to the testing of somewhat unevenly
distributed orientations arising from the incremental stepping of the Euler angles. The quality
of boxes computed by the other algorithms, however, can be measured quite well by comparing
them to the sizes of the boxes computed by the BF method.

The DiTO algorithm is very competitive. For example, it runs significantly faster than the
PCA algorithm, although both methods are fast linear algorithms. The big performance
difference is mainly due to the fact that the PCA method needs to iterate over the polygon data
instead of iterating over the list of unique vertices. For connected triangle meshes, the number
of triangles is roughly twice the number of vertices, and each triangle has three vertices.
Therefore, the total size of the vertex data that the PCA method processes is roughly six times

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 13

as large as the corresponding data for the DiTO algorithm.

The DiTO algorithm also produces oriented boxes of relatively high quality. For all meshes
except Frog, the DiTO algorithm computes OBBs with smaller surface areas than the PCA
method does. For some of the models, the difference is significant, and for the Teddy model,
the PCA method computes boxes that are actually looser fitting than the naive AABB method
does. The DiTO algorithm, however, is in general more sensitive than the PCA method to the
orientation of the input meshes as can be seen in the minimum and maximum area columns.

Among the included DiTO instances, there seems to be a small quality improvement for
increasing k values for some of the models. DiTO-32 seems to compute the best boxes in general.
The quality difference of the computed boxes, however, is quite small in most cases. Therefore,
since DiTO-14 is approximately twice as fast as DiTO-32, it is probably the preferable choice
when speed is a prioritized factor.

Bounding Volume Hierarchy Quality

We also tried the different OBB fitting algorithms for OBB hierarchy construction to
evaluate them on different levels of geometric subdivision. On models with smooth curvature,
the geometry enclosed on the lower levels of the hierarchy tend to get an increasing flatness
with each level, and we wanted to compare the algorithms on this type of input. It turns out that
our algorithm handles this better than the other algorithms we tested. This is visualized using
the Bunny model in Figure 1.5.

For each one of the six test models, we applied the OBB fitting algorithms during the
hierarchy construction. These test runs have been done only once for each model and OBB
algorithm, with the model kept in its original local coordinate system, due to the longer
construction times for whole hierarchies. Table 1.4 shows the total surface areas of the resulting
hierarchies.

Although the RAPID source package also includes a hierarchy builder, we extracted the
functions involved in fitting the OBBs and plugged them into our own hierarchy builder since
it uses a more elaborate strategy for partitioning primitives that generally creates better
hierarchy structures, albeit at a higher computational cost. The table does not show execution
times because the time for hierarchy construction is influenced too much by factors other than
the time to fit the bounding volumes, such as the strategy used to find clusters in the geometry
to build a good tree structure. However, the construction times were about the same with all
the algorithms. Note also that the BF algorithm is not included since it gives unreasonably long

14 Game Engine Gems

construction times.

Figure 1.5. Levels 0, 6, 9, and 12 of OBB hierarchies built using AABBs (leftmost column), PCA
(middle column), and DiTO-20 (rightmost column). As can be seen in the magnified pictures in the
bottom row, PCA and DiTO both produce OBBs properly aligned with the curvature of the model,
but the boxes produced by PCA have poor mutual orientations with much overlap between
neighboring boxes.

The algorithm used for building the tree structure is a top-down algorithm, where the set
of primitives is recursively partitioned into two subsets until there is only one primitive left,
which is then stored in a leaf node. Before partitioning the primitives in each step, the selected
OBB fitting procedure is called to create an OBB to store in the node. This means that the
procedure is called once for every node of the tree. To partition the primitives under a node, we
use a strategy that tries to minimize the tree's total surface area, similar to that used by Wald et
al. [2007] for building AABB hierarchies.

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 15

As Table 1.4 shows, the DiTO algorithms create better trees than the other two algorithms
do. An implication of the increasing flatness on the lower hierarchy levels is that the first base
triangle more accurately captures the spatial extents of the geometry, and that the two additional
tetrahedra get small heights. It is therefore likely that the chosen OBB most often is found from
the base triangle and not from the triangles in the tetrahedra. The PCA fitter frequently
produces poor OBBs, and in three cases (Chair, Bunny, and Hand), produces even worse OBBs
than the AABB method does. It is also never better than any of the DiTO versions.

Table 1.4. Total surface areas of OBB hierarchies built using the different OBB fitting algorithms.

Model AABB PCA DiTO-12 DiTO-14 DiTO-20 DiTO-26 DiTO-32
Pencil 9.64676 4.05974 3.03241 3.03952 3.03098 3.0111 3.00679
Teddy 90.6025 86.2482 71.9596 74.071 74.3019 73.1202 74.7392
Frog 56.1077 52.2178 42.7492 41. 9447 41.6065 41.2272 42.0487
Chair 81.3232 92.9097 64.5399 66.9878 64.2992 65.5366 64.8454
Bunny 170.01 171.901 125.176 122.108 119.035 119.791 119.172
Hand 112.625 117.241 50.8327 49.8038 50.0446 48.8985 49.7918

Interesting to note is that there is a weak correspondence between the number of extremal
directions used in DiTO and the tree quality. This can be partly explained by the fact that the
directions included in a smaller set are not always included in a larger set, which, for example,
is the case in DiTO-14 versus DiTO-12. This means that for some models, fewer directions
happen to give better results than a larger number of directions. Another part of the explanation
is that the tested OBBs are only fitted to the set of extracted extremal points S, which means that
good-quality OBBs might be missed because worse OBBs get better surface areas on the selected
extremal points. All this suggests that execution time can be improved by using fewer extremal
directions (see Table 1.3), while not much OBB quality can be gained by using more.

Note that the AABB hierarchies sometimes have somewhat undeservedly good figures
because the models were kept in their local coordinate systems during the construction. This
gives the AABB an advantage in, for example, Pencil and Chair, where much of the geometry is
axis-aligned.

16 Game Engine Gems

1.4 Optimization Using SIMD Instructions

By using data-parallelism at the instruction level, the execution speed of the DiTO
algorithm can be improved substantially. As an initial case study, a new version of DiTO-14 has
been written that utilizes Intel's Streaming SIMD Extensions (SSE). For this version of the
algorithm, the vertices are pre-stored as groups of four vertices, which can be packed
componentwise into three full SSE registers, one for each coordinate component. For example,
the first four vertices

𝐩𝐩0 = (x0, y0, z0) ,
𝐩𝐩1 = (x1, y1, z1) ,
𝐩𝐩2 = (x2, y2, z2) ,
𝐩𝐩3 = (x3, y3, z3) .

are stored in the first vertex group as three arrays

𝒙𝒙0 = (𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) ,
𝒚𝒚0 = (𝑦𝑦0, 𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3) ,
𝒛𝒛0 = (𝑧𝑧0, 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3) .

Usually, this kind of data structure is referred to as structure of arrays (SoA).

There are two main passes in the algorithm, and they are the two loops over all input
vertices. These two passes can be implemented easily using SSE. First, consider the last loop
over all input vertices that determines the final dimensions of the OBB by computing minimum
and maximum projection values on the given axes. This operation is ideal for an SSE
implementation. By using the mentioned SoA representation, four dot products are computed
simultaneously. Furthermore, the branches used in the scalar version to keep track of the most
extremal projection values are eliminated by using the far more efficient minps and maxps SSE
instructions.

Similarly, the first loop over all points of the model can also benefit a lot from using SSE
since extremal projections along different axes are also computed. However, in this case the
actual extremal points along the given directions are wanted as outputs in addition to the
maximum and minimum projection values. Therefore, the solution is slightly more involved,
but the loop can still be converted to quite efficient SSE code using standard techniques for
branch elimination.

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 17

As shown in Table 1.5, our initial SIMD implementation of DiTO-14 is significantly faster
than the corresponding scalar version. Speed-ups greater than four times are achieved for the
most complex models, Bunny and Hand. To be as efficient as possible for models with fewer
input points, the remaining parts of the algorithm have to be converted to SSE as well. This is
particularly true when building a bounding volume hierarchy, since most of the boxes in the
hierarchy only enclose small subsets of vertices.

Table 1.5. The execution time t for the scalar version of DiTO-14 versus tv for the vectorized SSE
version. All timings are in ms, and the speed-up factors s are listed in the last column.

Model t tv s
Pencil 0.09 0.035 2.6
Teddy 0.12 0.04 3.0
Frog 0.24 0.08 3.0
Chair 0.25 0.08 3.1
Bunny 0.98 0.21 4.7
Hand 10.0 1.99 5.0

1.5 Discussion and Future Work

The assumption that the constructed ditetrahedron is a characterizing shape for a tight-
fitting OBB seems valid. According to our experiments, the proposed algorithm is faster and
gives better OBBs than do algorithms based on the PCA method. Also, when building
hierarchies of OBBs, our method gives more accurate approximations of the geometry on the
lower hierarchy levels, where the geometry tends to become flatter with each level. In addition,
our method is more general since it requires no knowledge of the polygon data.

We have not found any reliable data indicating which instance of the DiTO algorithm is
best. The tested variations produce quite similar results in terms of surface area, although in
some cases, there seems to be a small quality advantage with increasing sampling directions.
For construction of OBB trees, however, it may be unnecessarily slow to use many sampling
directions since n is less than k for a large number of nodes at the lower hierarchy levels.

Although the presented heuristics work fine for fast OBB computation, it would still be
interesting to try to improve the algorithm further. Perhaps the constructed ditetrahedron can

18 Game Engine Gems

be utilized more intelligently when searching for good OBB axes. As it is now, we have only
considered the triangles of this shape one at a time. Furthermore, the construction of some
simple shape other than the ditetrahedron may be found to be more advantageous for
determining the OBB axes.

Finally, note that DiTO can be adapted to compute oriented bounding rectangles in two
dimensions. The conversion is straightforward. In this case, the large base triangle simplifies to
a base line segment, and the ditetrahedron simplifies to a ditriangle (i.e., two triangles connected
by the base line segment). There are better algorithms available in two dimensions such as the
rotating calipers method, which runs in O(n) time, but these methods require the convex hull
of the vertices to be present [Toussaint 1983].

References

[Barequet and Har-Peled 1999] Gill Barequet and Sariel Har-Peled. "Efficiently Approximating the
Minimum-Volume Bounding Box of a Point Set in Three Dimensions." SODA '99: Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1999, pp. 98-91.

[Dimitrov et al. 2009] Darko Dimitrov, Christian Knauer, Klaus Kriegel, and Gunter Rote. "Bounds
on the Quality of the PCA Bounding Boxes." Computational Geometry: Theory and Applications 42
(2009), pp. 772-789.

[Ericson 2005] Christer Ericson. Real-Time Collision Detection. San Francisco: Morgan Kaufmann,
2005.

[Gottschalk et al. 1996] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. "OBBTree: A
Hierarchical Structure for Rapid Interference Detection." Proceedings of SIGGRAPH 1996, ACM
Press / ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM, pp.
171-180.

[Gottschalk 2000] Stefan Gottschalk. "Collision Queries using Oriented Bounding Boxes." PhD
dissertation, University of North Carolina at Chapel Hill, 2000.

[Larsson et al. 2007] Thomas Larsson, Tomas Akenine-Mӧller, and Eric Lengyel. "On Faster Sphere-
Box Overlap Testing." Journal of Graphics Tools 12:1 (2007), pp. 3-8.

[Larsson 2008] Thomas Larsson. "An Efficient Ellipsoid-OBB Intersection Test." Journal of Graphics
Tools 13:1 (2008), pp. 31-43.

Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes 19

[O'Rourke 1985] Joseph O'Rourke. "Finding Minimal Enclosing Boxes." International Journal of
Computer and Information Sciences 14:3 (June 1985), pp. 183-199.

[Toussaint 1983] Godfried Toussaint. "Solving Geometric Problems with the Rotating Calipers."
Proceedings of IEEE Mediterranean Electrotechnical Conference 1983, pp. 1-4.

[Wald et al. 2007] Ingo Wald, Solomon Boulos, and Peter Shirley. "Ray Tracing Reformable Scenes
Using Dynamic Bounding Volume Hierarchies." ACM Transactions on Graphics 26:1 (2007).

2

Chapter 2 Modeling, Lighting, and Rendering Techniques for
Volumetric Clouds

Frank Kane

Sundog Software, LLC

Pregenerated sky box textures aren't sufficient for games with varying times of day, or
games where the camera may approach the clouds. Rendering clouds as real 3D objects, as
shown in Figure 2.1, is a challenging task that many engines shy away from, but techniques exist
to produce realistic results with good performance. This gem presents an overview of the
procedural generation of cloud layers, the simulation of light transport within a cloud, and
several volumetric rendering techniques that may be used to produce realistically lit, volumetric
clouds that respond to changes in lighting conditions and grow over time.

Figure 2.1. Volumetric clouds at dusk rendered using splatting. (Image from the SilverLining SDK,
courtesy of Sundog Software, LLC.)

22 Game Engine Gems

2.1 Modeling Cloud Formation

Before we render a cloud, we need to know its size, shape, and position. A scene may
contain hundreds of clouds. While requiring a level designer to manually place and shape each
one maximizes artistic control, achieving realistic results in this manner is time-consuming and
challenging. Fortunately, procedural techniques exist to model the size, shape, and position of
clouds within a cloud layer. A designer may simply define a bounding region for clouds of a
specific type and let the simulation handle the rest.

Growing Clouds with Cellular Automata

While you could attempt to simulate the growth of clouds using fluid dynamics, doing this
at the scale of an entire cloud layer would be slow and overly complex (although it has been
done [Kajiya and Herzen 1984].) Clouds are complex natural phenomena, and attempting a
rigorous physical simulation of their growth and the transport of light within them is
computationally prohibitive. Rather, we seek techniques that produce results consistent with a
viewer's expectations of what a cloud should look like, without overthinking the underlying
physical properties.

One such shortcut is the use of cellular automata to grow clouds. You might remember
cellular automata from the game Life, where very simple rules about a virtual cell's neighbors
can produce complex colonies of cells that grow and shrink over time. Work from Nagel and
Raschke [1992] and Dobashi et al. [2000] applying this same idea to the formation and growth
of clouds is summarized here.

There is some physical basis to this technique; in general, we know that clouds form when
a humid pocket of air rises and cools, causing a phase transition that turns its water vapor into
water droplets. We also know that clouds tend to form vertically and horizontally, but generally
don't grow downward.

We start by defining our cloud layer as an axis-aligned bounding box divided into cubic
regions that represent cells of air. Later, this three-dimensional array of cells will become the
voxels that are volumetrically rendered. Each cell consists of three states, each represented by a
single bit:

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 23

 VAPOR_BIT, indicates whether the cell contains enough water vapor to form a cloud.

 PHASE_TRANSITION_BIT, indicates that the phase transition from vapor to droplets is

ready to occur in this cell.

 HAS_CLOUD_BIT, indicates that the cell contains water droplets, and should be rendered

as a part of a cloud.

The rules may be summarized simply:

1. A cell acquires the VAPOR_BIT if it currently has the VAPOR_BIT (which is initially

set randomly throughout the cloud volume) and doesn't have the

PHASE_TRANSITION_BIT.

2. A cell acquires the PHASE_TRANSITION_BIT if it does not have the

PHASE_TRANSITION_BIT and it has the VAPOR_BIT, and one of its neighbors beside or

below it also has the PHASE_TRANSITION_BIT.

3. A cell acquires the HAS_CLOUD_BIT if it has the HAS_CLOUD_BIT or the

PHASE_TRANSITION_BIT

Additionally, there is some random probability that a cell may spontaneously acquire
humidity or phase transition or that it may lose the HAS_CLOUD_BIT as the cloud evaporates. As
the cellular automaton continues to be iterated, this results in clouds randomly changing shape
over time rather than reaching a steady state. We find that a ten percent probability of acquiring
vapor or losing cloud status, and a 0.1 percent probability of spontaneously hitting a phase
transition, produces satisfying results. This logic for a single iteration of the automaton is
implemented in Listing 2.1, which assumes the existence of a 3D cells array for which each
cell includes a character for its states and floating-point values for its phase transition, vapor,
and extinction probabilities.

Listing 2.1. Cellular automata for cloud formation.

#define HAS_CLOUD_BIT 0x01
#define PHASE_TRANSITION_BIT 0x02
#define VAPOR_BIT 0x03

for (int i = 0; i < cellsAcross; i++)
{

24 Game Engine Gems

 for (int j = 0; j < cellsDeep; j++)
 {
 for (int k = 0; k < cellsHigh; k++)
 {
 char phaseStates = 0;
 if (i + 1 < cellsAcross)
 phaseStates |= cells[i + 1][j][k]->states;
 if (j + 1 < cellsDeep)
 phaseStates |= cells[i][j + 1][k]->states;
 if (k + 1 < cellsHigh)
 phaseStates |= cells[i][j][k + 1]->states;

 if (i - 1 >= 0)
 phaseStates |= cells[i - 1][j][k]->states;
 if (j - 1 >= 0)
 phaseStates |= cells[i][j - 1][k]->states;
 if (k - 1 >= 0)
 phaseStates |= cells[i][j][k - 1]->states;

 if (i - 2 >= 0)
 phaseStates |= cells[i - 2][j][k]->states;
 if (i + 2 < cellsAcross)
 phaseStates |= cells[i + 2][j][k]->states;

 if (j - 2 >= 0)
 phaseStates |= cells[i][j - 2][k]->states;
 if (j + 2 < cellsAcross)
 phaseStates |= cells[i][j + 2][k]->states;

 if (k - 2 >= 0)
 phaseStates |= cells[i][j][k - 2]->states;
 if (k + 2 < cellsAcross)
 phaseStates |= cells[i][j][k + 2]->states;

 bool phaseActivation = (phaseStates & PHASE_TRANSITION_BIT) != 0;
 bool thisPhaseActivation = (cells[i][j][k]->states &
 PHASE_TRANSITION_BIT) != 0;

 //Set whether this cell is in a phase transition state.
 double rnd = random(); //Uniform within 0.0 - 1.0;

 bool phaseTransition = ((!thisPhaseActivation) &&
 (cells[i][j][k]->states & VAPOR_BIT) && phaseActivation) ||
 (rnd < cells[i][j][k]->phaseTransitionProbability);

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 25

 if (phaseTransition)
 cells[i][j][k]->states |= PHASE_TRANSITION_BIT;
 else
 cells[i][j][k]->states &= ~PHASE_TRANSITION_BIT;

 //Set whether this cell has acquired humidity.
 rnd = random();

 bool vapor = ((cells[i][j][k]->states & VAPOR_BIT) && !thiAct) ||
 (rnd < cells[i][j][k]->vaporProbalility);

 if (hasCloud)
 cells[i][j][k]->states |= HAS_CLOUD_BIT;
 else
 cells[i][j][k]->states &= ~HAS_CLOUD_BIT;
 }
 }
}

You may have noticed that the probabilities for spontaneous acquisition of the vapor or
phase transition states, as well as the probability for cloud extinction, are actually stored per cell
rather than being applied globally. This is how we enforce the formation of distinct clouds
within the automaton; each cloud within the layer is defined by an ellipsoid within the layer's
bounding volume. Within each cloud's bounding ellipsoid, the phase and vapor probabilities
approach zero toward the edges and the extinction probability approaches zero toward the
center. Simply multiply the extinction probability by

𝑥𝑥2

𝑎𝑎2 +
𝑦𝑦2

𝑏𝑏2 +
𝑧𝑧2

𝑐𝑐2 ,

where (x, y, z) is the position of the cell relative to the ellipsoid center, and (a,b,c) are the
semiaxis lengths of the ellipsoid. Subtract this expression from one to modulate the phase and
vapor probabilities with distance from the ellipsoid center. As an optimization, the cellular
automaton may be limited to cells contained by these ellipsoids, or each ellipsoid may be treated
as independent cellular automata to eliminate the storage and rendering overhead of cells that
are always empty. If you're after cumulus clouds with flattened bottoms, using hemiellipsoids
as bounding volumes for the clouds instead of ellipsoids is also more efficient.

You may grow your simulated clouds by placing a few random phase transition seeds at

26 Game Engine Gems

the center of each ellipsoid and iterating over the cellular automaton a few times. The resulting
3D array of cloud states may then be stored for rendering, or you may continue to iterate at
runtime, smoothing the cloud states in the time domain to produce real-time animations of
cloud growth. In reality, however, clouds change their shape very slowly-their growth and
extinction is generally only noticeable in time-lapse photography.

Simulating the Distribution of Clouds

We discussed using bounding ellipsoids to contain individual clouds within our
simulation, but how do we position and size these ellipsoids? Some approaches leave the
modeling of clouds entirely to artists or level designers [Wang 2004], but procedural approaches
exist to make the generation of realistic cloud volumes easier. The Plank exponential model
[Plank 1969] is one such technique, based on the analysis of experimental data of cloud size
distributions over Florida.

Plank found an exponential relationship between cloud sizes and their density in a region
of cumulus clouds; further, he found there is an upper bound of cumulus cloud size at any given
time of day, and there are fewer of these large clouds than smaller clouds.

His algorithm may be implemented by iteratively calling the GetNextCloud() method
shown in Listing 2.2 until it returns false. GetNextCloud() is assumed to be a method of a class
that is initialized with the desired cloud coverage, area, and minimum and maximum cloud
sizes. For the constants referenced in the code, we use an alpha value of 0.001, chi of 0.984, nu
of 0.5, and beta of -0.10. We use a minimum cloud size of 500 meters, a maximum of 5000
meters, and an epsilon of 100 meters.

Listing 2.2. The Plank exponential cloud size distribution model.

bool GetNextCloud(double& width, double& depth, double& height)
{
 while (currentN >= targetN)
 {
 currentD -= epsion;
 if (currentD <= GetMinimumSize()) return false;

 currentN = 0;
 targetN = (int)(((2.0 * GetDesiredArea() * epsion
 * alpha * alpha * alpha * GetDesiredCoverage()) /
 (PI * chi)) * exp(-alpha * currentD));
 }

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 27

 if (currentD <= GetMinimumSize()) return false;

 //select random diameter within currentD += bandWidth
 double variationW = random() * epsion;
 double variationH = random() * epsion;

 width = currentD - epsion * 0.5 + variationW;
 depth = currentD - epsion * 0.5 + variationH;

 double D = (width + depth) * 0.5;
 double hOverD = nu * pow(D /GetMinimumSize(), beta);
 height = D * hOverD;

 ++currentN;
 return true;
}

2.2 Cloud Lighting Techniques

Clouds are not the simple translucent objects you might think them aresomehow, these
collections of water droplets and air turn opaque and white and end up brighter than the sky
behind them. As light enters a cloud, it is deflected many times by water vapor particles (which
are highly reflective) in directions that are not entirely random. This is known as multiple
scattering, and our task is to find a way to approximate it without tracing every ray of light as it
bounces around inside the cloud.

As it turns out, for thin slabs of clouds (< 100 m), single scattering accounts for most of the
radiative transfer [Bouthors 2008]. That is, most of the light only bounces off a single cloud
droplet at this distance. This means we may approximate light transport through a cloud by
dividing it up into chunks of 100 meters or less, computing how much light is scattered and
absorbed by single scattering within each chunk, and passing the resulting light as the incident
light into the next chunk. This technique is known as multiple forward scattering [Harris 2002].
It benefits from the fact that computing the effects of single scattering is a well-understood and
simple problem, while the higher orders of scattering may only be solved using computationally
expensive Monte Carlo ray tracing techniques. These higher orders of scattering are
increasingly diffuse, meaning we can reasonably approximate the missing scattered light with a
simple ambient term.

28 Game Engine Gems

As you might guess, the chunks of cloud we just described map well to the voxels we
generated from the cellular automaton above. Multiple forward scattering computes the color
and transparency of a given voxel by shooting a ray from the light source toward the voxel and
iteratively compositing the scattering and extinction from each voxel we pass through.
Essentially, we accumulate the scattering and absorption of light on a voxel-by-voxel basis,
producing darker and more opaque voxels the deeper we go into the cloud.

To compute the transparency of a given voxel in isolation, we need to compute its optical
depth 𝜏𝜏[Blinn 1982], given by

𝜏𝜏 = 𝑛𝑛𝑛𝑛𝑝𝑝2𝑇𝑇 .

Here, n is the number of water droplets per unit volume, p is the effective radius of each
droplet, and T is the thickness of the voxel. Physically realistic values of p in cumulus clouds are
around 0.75 µm, and n is around 400 droplets per cubic centimeter [Bouthors 2008]. The
extinction of light a within this voxel is then

𝑎𝑎 = 1 − 𝑒𝑒−𝜏𝜏 .

This informs us as to the transparency of the voxel, but we still need to compute its color
due to forward scattering. The voxel's color C is given by

𝐂𝐂 = 𝒂𝒂𝒂𝒂𝐋𝐋𝑷𝑷(𝐜𝐜𝐜𝐜𝐜𝐜 𝚯𝚯)
4𝜋𝜋

 .

Here, a is the albedo of the water droplets, which is very high-between 0.9 and 1.0. L is the
light color incident on the voxel (which itself may be physically simulated [Kane 2010]), and P
(cos Θ) is the phase function of the cloud, which is a function of the dot product between the
view direction and the light direction.

The phase function is where things get interesting. Light has a tendency to scatter in the
forward direction within a cloud; this is what leads to the bright "silver lining" you see on clouds
that are lit from behind. The more accurate a phase function you use, the more realistic your
lighting effects are.

A simple phase function is the Rayleigh function [Rayleigh 1883]. Although it is generally
used to describe the scattering of atmospheric molecules and is best known as the reason the
sky is blue, it turns out to be a reasonable approximation of scattering from cloud droplets under
certain cloud densities and wavelengths [Petty 2006] and has been used successfully in both

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 29

prior research [Harris 2002] and commercial products1. The Rayleigh function is given by

𝑃𝑃(cos Θ) = 3
4

(1 − cos2 Θ) .

The Rayleigh function is simple enough to execute in a fragment program, but one
problem is that it scatters light equally in the backward direction and the forward direction. For
the larger particles that make up a typical cloud, the Henyey-Greenstein function [Henyey and
Greenstein 1941] provides a better approximation:

𝑃𝑃(cos Θ) = 1 − g2

(1 + g2 − 2g cos Θ)3/2 .

The parameter g describes the asymmetry of the function, and is typically high Positive
values of g produce forward scattering, and negative values produce backward scattering. Since
a bit of both actually occurs, more sophisticated implementations actually use a double-lobed
Henyey-Greenstein function. In this case, two functions are evaluated-one with a positive value
of g and one with a negative value, and they are blended together, heavily favoring the positive
(forward) scattering component.

The ultimate phase function is given by Mie theory, which simulates actual light waves
using Maxwell's equations in three-dimensional space [Bohren and Huffman 1983]. It is
dependent on the droplet size distribution within the cloud, and as you can imagine, it is very
expensive to calculate. However, a free tool called MiePlot2 is available to perform offline
solutions to Mie scattering, which may be stored in a texture to be looked up for a specific set
of conditions. Mie scattering not only gives you silver linings but also wavelength-dependent
effects such as fogbows and glories. It has been applied in real-time successfully by either
chopping the function's massive forward peak [Bouthers et al. 2006] or restricting it to phase
angles where wavelength-dependent effects occur, and using simpler phase functions for other
angles [Petty 2006].

If you rely exclusively on multiple forward scattering of the incident sunlight on a cloud,
your cloud will appear unnaturally dark. There are other light sources to consider-skylight,
reflected light from the ground, and the light from higherorder scattering should not be
neglected. We approximate these contributions with an ambient term; more sophisticated
implementations may use hemisphere lighting techniques [Rost and Licea-Kane 2009] to treat
skylight from above and light reflected from the ground below independently.

30 Game Engine Gems

Tone mapping and gamma correcting the final result are also vitally important for good
image quality. We use a gamma value of 2.2 together with the simplest form of the Reinhard
tone-mapping operator [Reinhard et al. 2002] with good results:

𝐋𝐋𝒅𝒅 =
𝐋𝐋

1 + 𝐋𝐋
 .

For added realism, you'll also want to simulate atmospheric perspective effects on distant
clouds. Exponentially blending the clouds into the sky with distance is a simple approach that's
generally "good enough," although more rigorous approaches are available [Preetham et al.
1999].

2.3 Cloud Rendering Techniques

At this point, we have a means of generating a 3D volume of voxels representing a
collection of clouds and an algorithm for lighting these voxels. Visualizing the volumetric data
described by these voxels may be achieved through a variety of techniques.

Volumetric Splatting

The simplest technique is called splatting and is illustrated in Figure 2.2. Each voxel is
represented by a billboard that represents an individual cloud puff. Mathematically, this texture
should represent a Gaussian distribution, but adding some wispy detail and randomly rotating
it produces visually appealing results. Figure 2.3 illustrates how a single texture representing a
cloud puff is used to generate a realistic scene of cumulus clouds.

Lighting and rendering are achieved in separate passes. In each pass, we set the blending
function to (ONE,ONE_MINUS_SRC_ALPHA) to composite the voxels together. In the lighting pass,
we set the background to white and render the voxels front to back from the viewpoint of the
light source. As each voxel is rendered, the incident light is calculated by multiplying the light
color and the frame buffer color at the voxel's location prior to rendering it; the color and
transparency of the voxel are then calculated as above, stored, and applied to the billboard. This
technique is described in more detail by Harris [2002].

When rendering, we use the color and transparency values computed in the lighting pass
and render the voxels in back-to-front order from the camera.

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 31

Figure 2.2. Volumetric cloud data rendered using splatting. (Image courtesy of Sundog Software,
LLC.)

Figure 2.3. Wireframe overlay of splatted clouds with the single cloud puff texture used (inset).
(Image courtesy Sundog Software, LLC.)

To prevent breaking the illusion of a single, cohesive cloud, we need to ensure the
individual billboards that compose it aren't perceptible. Adding some random jitter to the
billboard locations and orientations helps, but the biggest issue is making sure all the billboards
rotate together in unison as the view angle changes. The usual trick of axis-aligned billboards
falls apart once the view angle approaches the axis chosen for alignment. Our approach is to use
two orthogonal axes against which our billboards are aligned. As the view angle approaches the

32 Game Engine Gems

primary axis (pointing up and down), we blend toward using our alternate (orthogonal) axis
instead.

To ensure good performance, the billboards composing a cloud must be rendered as a
vertex array and not as individual objects. Instancing techniques and/or geometry shaders may
be used to render clouds of billboards from a single stream of vertices.

While splatting is fast for sparser cloud volumes and works on pretty much any graphics
hardware, it suffers from fill rate limitations due to high depth complexity. Our lighting pass
also relies on pixel read-back, which generally blocks the pipeline and requires rendering to an
offscreen surface in most modern graphics APIs. Fortunately, we only need to run the lighting
pass when the lighting conditions change. Simpler lighting calculations just based on each
voxel's depth within the cloud from the light direction may suffice for many applications, and
they don't require pixel read-back at all.

Volumetric Slicing

Instead of representing our volumetric clouds with a collection of 2D billboards, we can
instead use a real 3D texture of the cloud volume itself. Volume rendering of 3D textures is the
subject of entire books [Engel et al. 2006], but we'll give a brief overview here.

The general idea is that some form of simple proxy geometry for our volume is rendered
using 3D texture coordinates relative to the volume data. We then get the benefit of hardware
bilinear filtering in three dimensions to produce a smooth image of the 3D texture that the
proxy geometry slices through.

In volumetric slicing, we render a series of camera-facing polygons that divide up the
volume at regular sampling intervals from the volume's farthest point from the camera to its
nearest point, as shown in Figure 2.4. For each polygon, we compute the 3D texture coordinates
of each vertex and let the GPU do the rest.

It's generally easiest to do this in view coordinates. The only hard part is computing the
geometry of these slicing polygons; if your volume is represented by a bounding box, the
polygons that slice through it may have anywhere from three to six sides. For each slice, we
must compute the plane-box intersection and turn it into a triangle strip that we can actually
render. We start by transforming the bounding box into view coordinates, finding the
minimum and maximum z coordinates of the transformed box, and dividing this up into
equidistant slices along the view-space z-axis. The Nyquist-Shannon sampling algorithm

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 33

[Nyquist 1928] dictates that we must sample the volume at least twice per voxel diameter to
avoid sampling artifacts.

For each sample, we test for intersections between the x-y slicing plane in view space and
each edge of the bounding box, collecting up to six intersection points. These points are then
sorted in counterclockwise order around their center and tessellated into a triangle strip.

The slices are then rendered back to front and composited using the blending function
(ONE, ONE_MINUS_SRC_ALPHA). As with splatting, the lighting of each voxel needs to be done
in a separate pass. One technique is to orient the slicing planes halfway between the camera and
the light source, and accumulate the voxel colors to a pixel buffer during the lighting pass. We
then read from this pixel buffer to obtain the light values during the rendering pass [Ikits et al.
2007]. Unfortunately, half-angle slicing requires sampling the volume even more frequently,
and we're still left with massive demands on fill rate as a result. In the end, we really haven't
gained much over splatting.

Figure 2.4. Slicing proxy polygons through a volume's bounding box.

GPU Ray Casting

Real-time ray casting may sound intimidating, but in many ways it's the simplest and most
elegant technique for rendering clouds. It does involve placing most of the computing in a
fragment program, but if optimized carefully, high frame rates are achievable with precise per-
fragment lighting. Figure 2.5 shows a dense, 60 square kilometer stratocumulus cloud layer
rendering at over 70 frames per second on consumer-grade hardware using GPU ray casting.

The general idea is to just render the bounding box geometry of your clouds (with back-
face culling enabled) and let the fragment processor do the rest. For each fragment of the
bounding box, our fragment program shoots a ray through it from the camera and computes
the ray's intersection with the bounding volume. We then sample our 3D cloud texture along

34 Game Engine Gems

the ray within the volume from front to back, compositing the results as we go.

Figure 2.5. Volumetric cloud data rendered from a single bounding box using GPU ray casting.
(Image courtesy Sundog Software, LLC.)

The color of each sample is determined by shooting another ray to it from the light source
and compositing the lighting result using multiple forward scattering-see Figure 2.6 for an
illustration of this technique.

Figure 2.6. GPU ray casting. We shoot a ray into the volume from the eye point, terminating once
an opacity threshold is reached. For each sample along the ray, we shoot another ray from the light
source to determine the sample's color and opacity.

It's easy to discard this approach, thinking that for every fragment, you need to sample
your 3D texture hundreds of times within the cloud, and then sample each sample hundreds of

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 35

more times to compute its lighting. Surely that can't scale! But, there's a dirty little secret about
cloud rendering that we can exploit to keep the actual load on the fragment processor down:
clouds aren't really all that transparent at all, and by rendering from front to back, we can
terminate the processing of any given ray shortly after it intersects a cloud.

Recall that we chose a voxel size on the order of 100 meters for multiple forward scattering-
based lighting because in larger voxels, higher orders of scattering dominate. Light starts
bouncing around shortly after it enters a cloud, making the cloud opaque as soon as light travels
a short distance into it. The mean free path of a cumulus cloud is typically only 10 to 30 meters
[Bouthors et al. 2008]-beyond that distance into the cloud, we can safely stop marching our ray
into it. Typically, only one or two samples per fragment really need to be lit, which is a
wonderful thing in terms of depth complexity and fill rate.

The first thing we need to do is compute the intersection of the viewing ray for the
fragment with the cloud's axis-aligned bounding box. To simplify our calculations in our
fragment program, we work exclusively in 3D texture coordinates relative to the bounding box,
where the texture coordinates of the box range from 0.0 to 1.0. An optimized function for
computing the intersection of a ray with this unit cube is shown in Listing 2.3.

Listing 2.3. Intersection with a ray and unit cube.

void getVolumeIntersection(in vec3 pos, in vec3 dir, out float tNear,
 out float tFar)
{
 //Intersect the ray with each plane of the box.
 vec3 invDir = 1.0 / dir;
 vec3 tBottom = -pos * invDir;
 vec3 tTop = (1.0 - pos) * invDir;

 //Find min and max intersections along each axis.
 vec3 tMin = min(tTop, tBottom);
 vec3 tMax = max(tTop, tBottom);

 //Find largest min and smallest max.
 vec2 t0 = max(tMin.xx, tMin.yz);
 tNear = max(t0.x, t0.y);
 t0 = min(tMax.xx, tMax.yz);
 tFar = min(t0.x, t0.y);

 //Clamp negative intersections to 0.
 tNear = max(0.0, tNear);

36 Game Engine Gems

 tFar = max(0.0, tFar);
}

With the parameters of our viewing ray in hand, the rest of our fragment program becomes
straightforward. We sample this ray in front-to-back order from the camera; if a sample
contains a cloud voxel, we then shoot another ray from the light source to determine the
sample's color. We composite these samples together until an opacity threshold is reached, at
which point we terminate the ray early. Listing 2.4 illustrates this technique.

Listing 2.4. GPU ray casting of a cloud.

uniform sampler3D volumeData;
uniform sampler3D noiseData;
uniform vec3 cameraTexCoords; //The Camera in texture coords.
uniform vec3 lightTexCoords; //The light dir in tex coords.
uniform float extinction; //(albedo * optical depth)/4*pi
uniform vec3 viewSampleDimensions; //Size of view sample in texcoords
uniform vec3 lightSampleDimensions; //Size of light sample, texcoords.
uniform vec3 skyLightColor; //RGB sky light component
uniform vec3 multipleScatteringTerm; //RGB higher-order scattering term
uniform vec4 lightColor; //RGB direct sun light color

void main()
{
 vec3 texCoord = gl_TexCoord[0].xyz;
 vec3 view texCoord - cameraTexCoords;
 vec3 viewDir = normalize(view);

 // Find the intersections of the volume with the viewing ray.
 float tminView, tmaxView;
 getVolumeIntersection(cameraTexCoords, viewDir, tminView, tmaxView);

 vec4 fragColor = vec4(0,0,0,0);

 // Compute the sample increments for the main ray and the light ray.
 vec3 viewSampleInc = viewSampleDimensions * viewDir;
 float viewInc = length(viewSampleInc);
 vec3 lightSampleInc = lightSampleDimensions * lightTexCoords;

 // Ambient term to account for skylight and higher orders of scattering.
 vec3 ambientTerm = skyLightColor + multipleScatteringTerm;

 // Sample the ray front to back from the camera.

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 37

 for(float t = tminView; t <= tmaxView; t += viewInc)
 {
 vec3 sampleTexCoords = cameraTexCoords + viewDir * t;

// Look up the texture at this sample, with fractal noise applied
// for detail.

 float texel = getCloudDensity(sampleTexCoords);
 if (texel == 0) continue;

 //If we encountered a cloud voxel, compute its lighting.
 //It's faster to just do 5 samples, even if it overshoots,
 //than to do dynamic branching and intersection testing.

 vec4 accumulatedColor = lightColor;
 vec3 samplePos = sampleTexCoords + lightSampleInc * 5;
 vec3 scattering = lightColor * constTerm;

 for (int i = 0; i < 5; i++)
 {
 float lightSample = texture3D(volumeData, samplePos).x;

 if (lightSample != 0)
 {
 // Multiple forward scattering:
 vec4 srcColor;
 srcColor.xyz = accumulatedColor.xyz * scattering *
 phaseFunction(1.0);
 srcColor.w = extinction;
 srcColor *= lightSample;

 // Composite the result:
 accumulatedColor = srcColor + (1.0 - srcColor.w) *
 accumulatedColor;
 }
 samplePos = -= lightSampleInc;
 }

 vec4 fragSample;

 // Apply our phase function and ambient term.
 float cosa = dot(viewDir, lightTexCoords);

fragSample.xyz = accumulatedColor.xyz * phaseFunction(cosa) +
 ambientTerm;

 fragSample.w = extinction;

38 Game Engine Gems

 // Apply texture and noise
 fragSample *= texel;

 // "Under operator" for compositing:
 fragColor = fragColor + (1.0 - fragColor.w) * fragSample;

 // Early ray termination!
 if (fragColor.w > 0.95) break;
 }

 // Apply tone-mapping and gamma correction to final result.
 toneMap(fragColor);

 gl_FragColor = fragColor * gl_Color;

}

Note that the texture lookup for each sample isn't just a simple texture3D call-it calls out
to a getCloudDensity() function instead. If you rely on the 3D volume data alone, your clouds
will look like nicely shaded blobs. The getCloudDensity() function needs to add in procedural
noise for realistic resultswe upload a 323-texel RGB texture of smoothed random noise, and
apply it as a displacement to the texture coordinates at a couple of octaves to produce fractal
effects. Perlin noise [Perlin 1985] would also work well for this purpose. An example
implementation is shown in Listing 2.5; the noiseOffset uniform vector is used to animate the
noise over time, creating turbulent cloud animation effects.

Listing 2.5. Adding fractal noise to your clouds.

float getCloudDensity(in vec3 texCoord)
{
 vec3 r = viewSampleDimensions.xyz * 32.0;

 vec3 perturb = vec3(0, 0, 0);
 vec3 uvw = ((texCoord + noiseOffset) / viewSampleDimensions) /256.0;
 perturb += 1.0 * texture3D(noiseData, 2.0 * uvw).xyz - 0.5;
 perturb += 0.5 * texture3D(noiseData, 4.0 * uvw).xyz - 0.25;

 return (texture3D(volumeData, texCoord + perturb * r).x);
}

Unfortunately, adding high-frequency noise to the cloud impacts performance. We restrict

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 39

ourselves to two octaves of noise because filtered 3D texture lookups are expensive, and high
frequency noise requires us to increase our sampling rate to at least double the noise frequency
to avoid artifacts. This may be mitigated by fading out the higher octaves of noise with distance
from the camera and adaptively sampling the volume such that only the closer samples are
performed more frequently. The expense of adding procedural details to raycasted clouds is the
primary drawback of this technique compared to splatting, where the noise is just part of the
2D billboards used to represent each voxel.

Intersections between the scene's geometry and the cloud volume need to be handled
explicitly with GPU ray-casting; you cannot rely on the depth buffer, because the only geometry
you are rendering for the clouds is its bounding box. While this problem is best just avoided
whenever possible, it may be handled by rendering the depth buffer to a texture, and reading
from this texture as each sample along the viewing ray is computed. If the projected sample is
behind the depth buffer's value, it is discarded.

Viewpoints inside the volume also need special attention. The intersection code in Listing
2.3 handles this case properly, but you will need to detect when the camera is inside the volume,
and flip the faces of the bounding box being rendered to represent it.

Three-dimensional textures consume a lot of memory on the graphics card. A 256 × 256
× 32 array of voxels each represented by a single byte consumes two megabytes of memory.
While VRAM consumption was a show-stopper on early 3D cards, it's easily handled on
modern hardware. However, addressing that much memory at once can still be slow. Swizzling
the volume texture by breaking it up into adjacent, smaller bricks can help with cache locality
as the volume is sampled, making texture lookups faster.

Fog and blending of the cloud volume is omitted in Listing 2.4 but should be handled for
more realistic results.

Hybrid Approaches

Although GPU ray casting of clouds can be performant on modern graphics hardware, the
per-fragment lighting calculations are still expensive. A large number of computations and
texture lookups may be avoided by actually performing the lighting on the CPU and storing the
results in the colors of the voxels themselves to be used at rendering time. Recomputing the
lighting in this manner results in a pause in framerate whenever lighting conditions change but
makes rendering the cloud extremely fast under static lighting conditions. By eliminating the
lighting calculations from the fragment processor, we're just left with finding the first

40 Game Engine Gems

intersection of the view ray with a cloud and terminating the ray early-we've now rendered our
cloud volume with an effective depth complexity close to one!

Volumetric slicing may also benefit from a hybrid approach. For example, a fragment
program may be employed to perform lighting of each fragment using GPU ray casting, while
still relying on the slice geometry to handle compositing along the view direction.

Other approaches render a cloud as a mesh [Bouthors et al. 2008], again taking advantage
of the low mean free path of cumulus clouds. This allows more precise lighting and avoids the
intersection problems introduced by proxy geometry in volume rendering.

Ultimately, choosing a cloud rendering technique depends on the trade-offs you're willing
to make between hardware compatibility, physical realism, and performance-fortunately, there
are a variety of techniques to choose from.

References

[Blinn 1982] James F. Blinn. "Light Reflection Functions for Simulation of Clouds and Dusty
Surfaces." Computer Graphics (Proceedings of SIGGRAPH 82) 16:3, ACM, pp. 21-29.

[Bohren and Huffman 1983] Craig F. Bohren and Donald R. Huffman. Absorption and Scattering of
Light by Small Particles. New York: Wiley-Interscience, 1983.

[Bouthers et al. 2006] Antoine Bouthors, Fabrice Neyret, and Sylvain Lefebvre. "RealTime Realistic
Illumination and Shading of Stratiform Clouds." Eurographics Workshop on Natural Phenomena,
2006, pp. 41-50.

[Bouthors 2008] Antoine Bouthors. "Real-Time Realistic Rendering of Clouds." PhD dissertation,
Grenoble Universites, 2008.

[Bouthors et al. 2008] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril
Crassin. "Interactive Multiple Anisotropic Scattering in Clouds." ACM Symposium on Interactive 3D
Graphics and Games (13D), 2008.

[Dobashi et al. 2000] Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita, and
Tomoyuki Nishita. "A Simple, Efficient Method for Realistic Animation of Clouds." Proceedings of
SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, Computer Graphics Proceedings, Annual
Conference Series, ACM, pp. 19-28.

Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds 41

[Engel et al. 2006] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and Daniel
Weiskopf. Real-Time Volume Graphics. Wellesley, MA: A K Peters, 2006.

[Harris 2002] Mark Harris. "Real-Time Cloud Rendering for Games." Game Developers Conference,
2002.

[Henyey and Greenstein 1941] L. Henyey and J. Greenstein. "Diffuse Reflection in the Galaxy."
Astrophysics Journal 93 (1941), p. 70.

[Ikits et al. 2007] Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen. "Volume Rendering
Techniques." GPU Gems, edited by Randima Fernando. Reading, MA: Addison-Wesley, 2007.

[Kajiya and Herzen 1984] James T. Kajiya and Brian P. Von Herzen. "Ray Tracing Volume
Densities." Computer Graphics 18:3 (July 1984), ACM, pp. 165-174.

[Kane 2010] Frank Kane. "Physically-Based Outdoor Scene Lighting." Game Engine Gems 1, edited
by Eric Lengyel. Sudbury, MA: Jones and Bartlett, 2010.

[Nagel and Raschke 1992] K. Nagel and E. Raschke. "Self-Organizing Criticality in Cloud
Formation?" Physica A 182:4 (April 1992), pp. 519-531.

[Nyquist 1928] Harry Nyquist. "Certain Topics in Telegraph Transmission Theory." AIEE
Transactions 47 (April 1928), pp. 617-644.

[Perlin 1985] Ken Perlin. "An Image Synthesizer." Computer Graphics (Proceedings of Siggraph 85)
19:3, ACM, pp. 287-296.

[Petty 2006] Grant W. Petty. A First Course in Atmospheric Radiation. Madison, WI: Sundog
Publishing, 2006.

[Plank 1969] Vernon G. Plank. "The Size Distribution of Cumulus Clouds in Representative Florida
Populations." Journal of Applied Meteorology 8 (1969), pp. 46-67.

[Preetham et al. 1999] Arcot J. Preetham, Peter Shirley, and Brian Smits. "A Practical Analytic Model
for Daylight." Proceedings of SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, Computer Graphics
Proceedings, Annual Conference Series, ACM, pp. 91-100.

[Rayleigh 1883] Lord Rayleigh. "Investigation of the Character and Equilibrium of an
Incompressible Heavy Fluid of Variable Density." Proceedings of the London Mathematical Society
14 (1883), pp. 170-177.

42 Game Engine Gems

[Reinhard et al. 2002] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda.
"Photographic Tone Reproduction for Digital Images." Proceedings of SIGGRAPH 2002, ACM Press
/ ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM, pp. 267-
276.

[Rost and Licea-Kane 2009] Radni J. Rost and Bill Licea-Kane. OpenGL Shading Language, Third
Edition. Reading, MA: Addison-Wesley Professional, 2009.

[Wang 2004] Niniane Wang. "Realistic and Fast Cloud Rendering." Journal of Graphics Tools 9:3
(2004), pp. 21-40.

3

Chapter 3 Simulation of Night-Vision and Infrared Sensors

Frank Kane
Sundog Software, LLC

Many action games simulate infrared (IR) and night-vision goggles (NVG) by simply
making the scene monochromatic, swapping out a few textures, and turning up the light sources.
We can do better. Rigorous simulations of IR and NVG sensors have been developed for
military training and simulation applications, and we can apply their lessons to game engines.
The main differences between visible, IR, and near-IR wavelengths are easily modeled. Sensors
may also include effects such as light blooms, reduced contrast, blurring, atmospheric
transmittance, and reduced resolution that we can also simulate, adding to the realism.

3.1 The Physics of the Infrared

The world of the infrared is a very different place from the world of visible light-you're not
just seeing reflected sunlight, you're seeing how objects radiate heat. Accurately representing an
IR scene requires understanding some basic thermodynamics.

Fortunately, the bit we need isn't very complicated-we can get by with just an
understanding of the Stefan-Boltzmann law. It tells us that the black body radiation j* of an
object is given by

𝑗𝑗∗ = 𝜀𝜀𝜀𝜀𝑇𝑇4 .

Here, T is the absolute temperature of the object (in Kelvins), ɛ is the thermal emissivity of
the material, and σ is the Stefan-Boltzmann constant, 5.6704 ×108 J·s-1 ·m-2·K4. If the ambient
temperature and temperature of the objects in your scene remain constant, the radiation
emitted may be precomputed and baked into special IR versions of your texture maps. Figure
3.1 illustrates texture-based IR simulation of a tank (note the treads and engine area are hot). If

44 Game Engine Gems

you want to simulate objects cooling off over time, just store the emissivity in your materials
and/or textures and compute the equation above in a vertex program as the temperature varies.

Figure 3.1. Simulated image of physically based IR fused with visible lights. (Image courtesy
ofSDSInternational.)

Table 3.1 lists emissivity values for some common materials at 8 gm. Note that most
organic materials have high emissivity and behave almost like ideal black bodies, while metals
are more reflective and have lower IR emissions.

It is the subtle differences in emissivity that distinguish different materials in your scene
that are at the same ambient temperature; although the differences may be small, they are
important for adding detail. For objects that emit heat of their own (i.e., the interior of a heated
house or living organisms), the changes in temperature are the main source of contrast in your
IR scene. Stop thinking about modeling your materials and textures in terms of RGB colors, but
rather in terms of emissivity and absolute temperature. An alternate set of materials and/or
textures is required.

To add additional detail to the IR scene, there is a physical basis to blending in the visible
light texture as well-in a pinch, this lets you repurpose the visible- light textures of your objects
as detail for the thermal information. There is a range of about 0.15 in the emissivity between
white and black objects; light colors reflect more heat, and dark colors absorb it. Your fragment
shader may convert the RGB values of the visible-light textures to monochromatic luminance
values and perturb the final emissivity of the fragment accordingly. Listing 3.1 illustrates a
snippet of a fragment shader that might approximate the thermal radiation of a fragment given
its visible color and knowledge of its underlying material's emissivity and temperature. This is
a valid approach only for objects that do not emit their own heat; for these objects, emissivities

Chapter 3 Simulation of Night-Vision and Infrared Sensors 45

and temperatures should be encoded directly in specialized IR textures, rather than blending
the visible-light texture with vertex-based thermal properties.

Table 3.1. Emissivity of common materials.

Material Emissivity Material Emissivity
Aluminum 0.20 Paint 0.84 (white) -0.99 (black)
Asphalt 0.95 Paper 0.95
Cast iron 0.70-0.90 Plastic 0.95
Clay 0.95 Rusted iron 0.60-0.90
Cloth 0.95 Sand 0.90
Glass 0.85 Snow 0.90
Granite 0.90 Soil 0.90-0.98
Grass 0.98 Steel 0.80-0.90(cold-rolled), 0.25(polished)
Gravel 0.95 Tin 0.10-0.30
Human skin 0.95 Water 0.93
Ice 0.98 Wood 0.90-0.95

Listing 3.1. A simplified fragment shader for IR sensor simulation using a hybrid of visible-light
textures with material-based thermal properties.

uniform sampler2D visibleTexture;
uniform sampler2D thermalTexture;
uniform float level;
uniform float gain;
uniform float stefanBoltzmannConstant;
uniform float emissivityBlendFactor;
varying float materialEmissivity;
varying float materialTemperature;

void main()
{
 vec3 texCoords = gl_TexCoord[0].xy;
 vec3 visibleColor = texture2D(visibleTexture, texCoords).xyz;

 //Convert color to luminance.
 float visibleLuminance = dot(vec3(0.2126, 0.7152, 0.0722),
 visibleColor);

 //Convert luminance to thermal emissivity.

46 Game Engine Gems

 float emissivityFromColor = (1.0 - visibleLuminance) * 0.15 + 0.84;

 //Blend the material-based emissivity with the color-based.
 float finalEmissivity = mix(materialEmissivity,
 emissivityFromColor,emissivityBlendFactor);

 //Stefan-Boltzmann equation:
 float radiation = finalEmissivity * stefanBoltzmannConstant *
 materialTemperature * materialTemperature *
 materialTemperature * materialTemperature;

 //Apply auto-gain control.
 float mappedRadiation = (radiation * gain) + level;

 //In a "white-hot system," we're done:
 gl_FragColor = vec4(mappedRadiation, mappedRadiation,
 mappedRadiation, 1.0);

}

Atmospheric transmittance should also be applied to IR scenes, just as we apply fog to
simulate visibility effects in visible light. In the IR band, however, visibility is largely ruled by
the humidity in the air and not by the particles in it. Water in the air absorbs heat quite
effectively, although IR still provides superior visibility in foggy conditions. Military-grade
simulations apply rigorous atmos pheric transmittance models for this purpose such as
LOWTRAN1 and MODTRAN2, but we can get by with a simpler approximation. Atmospheric
transmittance from water vapor for a wavelength λ in micrometers is approximated [Bonjean
et al. 2006] by

τ𝜆𝜆 = (𝜏𝜏𝜔𝜔𝜆𝜆)𝑚𝑚𝜔𝜔/20 .

Here, ω is the depth of precipitable water in millimeters; this is a measure of the air's humidity.
Typical values range from 10 to 60 mm. The value τωλ is given by:

τ𝜔𝜔𝜆𝜆 = 10−0.075/𝜆𝜆2 .

The value of m represents the air mass, which is a measure of how much atmosphere the
heat source has passed through before reaching the sensor. This is a unitless value, normalized
to one for a vertical path through the atmosphere at sea level. More sophisticated
implementations for "serious games" may also take atmospheric scattering and scattering from

Chapter 3 Simulation of Night-Vision and Infrared Sensors 47

dust into account.

3.2 Simulating Infrared Sensor Effects

The Stefan-Boltzmann law gives you the simulated radiation being emitted from an object
in your scene, but that's not directly useful for rendering. You need to map these radiation
values into monochromatic luminance values that are displayable-real sensors have a feature
called auto gain control that does this. Typically, they compute the range of radiation values in
the visible scene and map these values linearly from 0.0 to 1.0. The range being mapped can be
quite high-the night sky's temperature is near absolute zero, while a missile's exhaust could be
several thousand Kelvins [Thomas 2003].

The actual colors used to represent this radiation vary by the type of sensor. Most forward-
looking infrared (FLIR) sensors used by the military represent IR in black and white, and are
configurable between "black-hot" and "white-hot" polarities (shown in Figure 3.2). Thermal
imaging sensors may blend between red for hot spots in the image and blue for cold spots. These
are all easy effects to achieve in a fragment program.

In addition to modeling gain and polarity, there are many imperfections in IR sensors that
we can also emulate. Older CRT-based devices were prone to effects from capacitive coupling,
which produced dark streaks surrounding hot spots in the final image. This can be emulated by
using a convolution filter [Bhatia and Lacy 1999] or, more simply, by applying a textured quad
representing the streaks over the hotter objects.

Figure 3.2. Black-hot (left) and white-hot (right) simulated IR images of a tank. (Images courtesy of
SDS International.)

More important is simulating the resolution of the device you are emulating; your monitor
resolution is likely much higher than the resolution of the IR sensor. Furthermore, IR images

48 Game Engine Gems

tend to lose high-frequency details-your simulated image should be blurred to simulate this
effect as well. Both effects may be achieved by rendering the simulated image to an offscreen
surface. To simulate blurring, render the image to a texture smaller than the sensor resolution,
and let hardware bilinear filtering blur it when you scale it up on a quad rendered at the sensor
resolution. That quad could in turn be rendered to another texture, which is scaled up to the
monitor resolution using GL NEAREST filtering to pixelate it and simulate the lower resolution
of the sensor.

Persistence is another effect we may simulate easily by using an accumulation buffer
[Shreiner 2006] or velocity-depth-gradient buffers [Lengyel 2010]. This is similar to motion
blur, where hot spots tend to smear a bit across the display as they move.

Images from sensors also include noise, often significantly; in older IR sensors, this would
manifest itself as visible streaks in the scan lines of the final image. A Gaussian distribution of
random noise used to stretch out pixels by a given distance over the image accomplishes this
effect. For more modern sensors, random noise could be added to the image on a per-fragment
basis, at the point where the simulated image is being rendered at the sensor's resolution.
Random noise increases with the gain of the image.

Fixed-pattern noise reflects variances in the individual elements of the sensor that remain
static over time; this may be implemented through an overlay added to the image at the sensor's
resolution. You may also wish to simulate dead elements of the sensor, where a few random
pixels remain statically cold.

3.3 Night-Vision Goggle Simulation

NVGs are often described as image intensification devices, but modern NVGs do not
simply amplify visible light-they actually operate in the near-IR part of the spectrum with very
little overlap with the visible spectrum at all. This is because most of the natural radiation at
night occurs within the near-IR band. This doesn't mean that all the thermal effects discussed
above also apply to NVG; near-IR behaves more like visible light and has little to do with heat
emission. As such, simulating night vision is simpler from a physical standpoint. Figure 3.3
shows one example of a simulated NVG scene.

Chapter 3 Simulation of Night-Vision and Infrared Sensors 49

Figure 3.3. Simulated NVG viewpoint with depth-of-field effects. (Image courtesy of SDS
International.)

We could get by with converting the visible-light textures to luminance values as we did in
Listing 3.1 and mapping this to the monochromatic green colors typical in NVGs. There is one
material-based effect worth simulating, however, and that is the chlorophyll effect [Hogervorst
2009]. The leaves of plants and trees containing chlorophyll are highly reflective in the near-IR
band. As a result, they appear much brighter than you would expect in modern NVGs. Simply
apply a healthy boost to ambient light when rendering the plants and trees in your night-vision
scene to accomplish this.

The same techniques for simulating auto gain, sensor resolution, and random "shot noise"
discussed for IR sensors apply to NVGs as well. It's especially important to increase the noise as
a function of gain; a moonless night has significant noise compared to a scene illuminated by a
full moon. Many NVGs also have noticeable fixed-pattern noise in the form of honeycomb-
shaped sensor elements that may be added to the final output. Figure 3.4 compares the same
scene under low-light and high-light conditions, with noise varying accordingly. Note also the
loss of contrast under low-light conditions.

There are anomalies specific to NVGs worth simulating as well. One is depth of field;
NVGs are focused just like a pair of binoculars-as a result, much of the resulting scene is blurry.
Figure 3.3 illustrates depth of field in a simulated NVG scene; note that the distant buildings
are blurred. Depth of field may be implemented by jittering the view frustum about the focal
point a few times and accumulating the results [Shreiner 2006].

The prominence of stars on a clear night should also be simulated, and this can also be
seen in Figure 3.4. While there are only about 8000 stars visible on a clear night to the naked

50 Game Engine Gems

eye, many more are visible with NVGs. Individual stars may saturate entire pixel elements in
the sensor.

Figure 3.4. Identical scene rendered under high ambient light (left) and low ambient light (right).
(Images courtesy of SDS International.)

Light blooms are an important effect specific to NVGs. Bright light sources in a scene
saturate the sensor; for point light sources, this manifests itself as bright halos surrounding the
light. These halos may be simulated by rendering billboards over the position of point lights in
the scene. These halos typically cover a viewing angle of 1.8 degrees, irrespective of the distance
of the light from the viewer [Craig et al. 2005]. For non-point-light sources, such as windows
into illuminated buildings, the halo effect manifests itself as a glow radiating 1.8 degrees from
the shape of the light. These effects are illustrated in Figure 3.5.

Figure 3.5. Light blooms and glow from light sources in simulated NVG scenes. (Images courtesy of
SDS International.)

Finally, you may want to use a stencil or overlay to restrict the field of view to a circular
area, to match the circular collectors at the end of the NVG tubes.

References

[Bhatia and Lacy 1999] Sanjiv Bhatia and George Lacy. "Infra-Red Sensor Simulation." I/ITSEC, 1999.

Chapter 3 Simulation of Night-Vision and Infrared Sensors 51

[Bonjean et al. 2006] Maxime E. Bonjean, Fabian D. Lapierre, Jens Schiefele, and Jacques G. Verly.
"Flight Simulator with IR and MMW Radar Image Generation Capabilities." Enhanced and Synthetic
Vision 2006 (Proceedings of SPIE) 6226.

[Craig et al. 2005] Greg Craig, Todd Macuda, Paul Thomas, Rob Allison, and Sion Jennings. "Light
Source Halos in Night Vision Goggles: Psychophysical Assessments." Proceedings of SPIE 5800
(2005), pp. 40-44.

[Hogervorst 2009] Maarten Hogervorst. "Toward Realistic Night Vision Simulation." SPIE
Newsroom, March 27, 2009. Available at http://spie.org/x34250.xml? ArticlelD=x34250.

[Lengyel 20 10] Eric Lengyel. "Motion Blur and the Velocity-Depth-Gradient Buffer." Game Engine
Gems 1, edited by Eric Lengyel. Sudbury, MA: Jones and Bartlett, 2010.

[Shreiner 2006] Dave Shreiner. OpenGL Programming Guide, Seventh Edition. Reading, MA:
Addison-Wesley, 2006.

[Thomas 2003] Lynn Thomas. "Improved PC FLIR Simulation Through Pixel Shaders." IMAGE
2003 Conference.

4

Chapter 4 Screen-Space Classification for Efficient Deferred
Shading

Balor Knight
Matthew Ritchie
George Parrish
Black Rock Studio

4.1 Introduction

Deferred shading is an increasingly popular technique used in video game rendering.
Geometry components such as depth, normal, material color, etc., are rendered into a geometry
buffer (commonly referred to as a G-buffer), and then deferred passes are applied in screen
space using the G-buffer components as inputs.

A particularly common and beneficial use of deferred shading is for faster lighting. By
detaching lighting from scene rendering, lights no longer affect scene complexity, shader
complexity, batch count, etc. Another significant benefit of deferred lighting is that only
relevant and visible pixels are lit by each light, leading to less pixel overdraw and better
performance.

The traditional deferred lighting model usually includes a fullscreen lighting pass where
global light properties, such as sun light and sun shadows, are applied. However, this lighting
pass can be very expensive due to the number of onscreen pixels and the complexity of the
lighting shader required.

A more efficient approach would be to take different shader paths for different parts of the
scene according to which lighting calculations are actually required. A good example is the
expensive filtering techniques needed for soft shadow edges. It would improve performance

54 Game Engine Gems

significantly if we only performed this filter on the areas of the screen that we know are at the
edges of shadows. This can be done using dynamic shader branches, but that can lead to poor
performance on current game console hardware.

Swoboda [2009] describes a technique that uses the PlayStation 3 SPUs to analyze the
depth buffer and classify screen areas for improved performance in post-processing effects, such
as depth of field. Moore and Jefferies [2009] describe a technique that uses low-resolution
screen-space shadow masks to classify screen areas as in shadow, not in shadow, or on the
shadow edge for improved soft shadow rendering performance. They also describe a fast
multisample antialiasing (MSAA) edge detection technique that improves deferred lighting
performance.

These works provided the background and inspiration for this chapter, which extends
things further by classifying screen areas according to the global light properties they require,
thus minimizing shader complexity for each area. This work has been successfully implemented
with good results in Split/Second, a racing game developed by Disney's Black Rock Studio. It is
this implementation that we cover in this chapter because it gives a practical real-world example
of how this technique can be applied.

4.2 Overview of Method

The screen is divided into 4 × 4 pixel tiles. For every frame, each tile is classified according
to the minimum global light properties it requires. The seven global light properties used on
Split/Second are the following:

1. Sky. These are the fastest pixels because they don't require any lighting calculations at all.

The sky color is simply copied directly from the G-buffer.

4. Sun light. Pixels facing the sun require sun and specular lighting calculations (unless

they're fully in shadow).

5. Solid shadow. Pixels fully in shadow don't require any shadow or sun light calculations.

6. Soft shadow. Pixels at the edge of shadows require expensive eight-tap percentage

closer filtering (PCF) unless they face away from the sun.

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 55

7. Shadow fade. Pixels near the end of the dynamic shadow draw distance fade from full

shadow to no shadow to avoid pops as geometry moves out of the shadow range.

8. Light scattering. All but the nearest pixels have a light scattering calculation applied.

9. Antialiasing. Pixels at the edges of polygons require lighting calculations for both 2X

MSAA fragments.

We calculate which light properties are required for each 4 × 4 pixel tile and store the result
in a 7-bit classification ID. Some of these properties are mutually exclusive for a single pixel,
such as sky and sunlight, but they can exist together when properties are combined into 4 × 4
pixel tiles.

Once we've generated a classification ID for every tile, we then create an index buffer for
each ID that points to the tiles with that ID and render it using a shader with the minimum
lighting code required for those light properties.

We found that a 4 × 4 tile size gave the best balance between classification computation
time and shader complexity, leading to best overall performance. Smaller tiles meant spending
too much time classifying the tiles, and larger tiles meant more lighting properties affecting
each tile, leading to more complex shaders. A size of 4 × 4 pixels also conveniently matches the
resolution of our existing screen-space shadow mask [Moore and Jefferies 2009], which
simplifies the classification code, as explained later. For Split/Second, the use of 4 × 4 tiles adds
up to 57,600 tiles at a resolution of 1280 × 720. Figures 4.1 and 4.2 show screenshots from the
Split/Second tutorial mode with different global light properties highlighted.

Figure 4.1. A screenshot from Split/Second with soft shadow edge pixels highlighted in green.

56 Game Engine Gems

Figure 4.2. A screenshot from Split/Second with MSAA edge pixels highlighted in green.

4.3 Depth-Related Classification

Tile classification in Split/Second is broken into two parts. We classify four of the seven
light properties during our screen-space shadow mask generation, and we classify the other
three in a per-pixel pass. The reason for this is that the screen-space shadow code is already
generating a one-quarter resolution (320 × 180) texture, which perfectly matches our tile
resolution of pixels, and it is also reading depths, meaning that we can minimize texture reads
and shader complexity in the per-pixel pass by extending the screen-space shadow mask code
to perform all depth-related classification.

Moore and Jefferies [2009] explain how we generate a one-quarter resolution screen-space
shadow mask texture that contains three shadow types per pixel: pixels in shadow, pixels not in
shadow, and pixels near the shadow edge. This work results in a texture containing zeros for
pixels in shadow, ones for pixels not in shadow, and all other values for pixels near a shadow
edge. By looking at this texture for each screen-space position, we can avoid expensive PCF for
all areas except those near the edges of shadows that we want to be soft.

For tile classification, we extend this code to also classify light scattering and shadow fade
since they're both calculated from depth alone, and we're already reading depth in these shaders
to reconstruct world position for the shadow projections.

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 57

Listing 4.1. Classifying light scattering and shadow fade in the first-pass shadow mask shader.

float shadowTpe = CalcShadowType(worldPos, depth);
float lightScattering = (depth > scatteringStartDist) ? 1.0 : 0.0;
float shadowFade = (depth > shadowFadeStartDist) ? 1.0 : 0.0;
output.color = float4(shadowTpe, lightScattering, shadowFade, 0.0);

Recall that the shadow mask is generated in two passes. The first pass calculates the shadow
type per pixel at one-half resolution (640 × 360) and the second pass conservatively expands the
pixels marked as near shadow edge by downsampling to one-quarter resolution. Listing 4.1
shows how we add a simple light scattering and shadow fade classification test to the first-pass
shader.

Listing 4.2 shows how we extend the second expand pass to pack the classification results
together into four bits so they can easily be combined with the per-pixel classification results
later on.

Listing 4.2. Packing classification results together in the second-pass shadow mask shader. Note
that this code could be simplified under shader model 4 or higher because they natively support
integers and bitwise operators.

// Read 4 texels from 1st pass with sample offsets of 1 texel.
#define OFFSET_X(1.0 / 640.0)
#define OFFSET_Y(1.0 / 360.0)

float3 rgb = tex2D(tex, uv + float2(-OFFSET_X, -OFFSET_Y)).rgb;
rgb += tex2D(tex, uv + float2(OFFSET_X, -OFFSET_Y)).rgb;
rgb += tex2D(tex, uv + float2(-OFFSET_X, OFFSET_Y)).rgb;
rgb += tex2D(tex, uv + float2(OFFSET_X, OFFSET_Y)).rgb;

// Pack classification bits together.
#define RAW_SHADOW_SOLID (1 << 0)
#define RAW_SHADOW_SOFT (1 << 1)
#define RAW_SHADOW_FADE (1 << 2)
#define RAW_LIGHT_SCATTERING (1 << 3)

float bits = 0.0;

if (rgb.r ==0.0)
 bits += RAW_SHADOW_SOLID / 255.0;
else if (rgb.r < 4.0)
 bits += RAW_SHADOW_SOFT / 255.0;

58 Game Engine Gems

if (rgb.b ! = 0.0)
 bits += RAW_SHADOW_FADE / 255.0;

if (rgb.g ! = 0.0)
 bits += RAW_LIGHT_SCATTERING / 255.0;

// Write results to red channel.
output.color = float4(bits, 0.0, 0.0 ,0.0);

4.4 Pixel Classification

It helps to explain how this pass works by describing the Split/Second G-buffer format (see
Table 4.1). Moore and Jefferies [2009] explain how we calculate a per-pixel MSAA edge bit by
comparing the results of centroid sampling against linear sampling. We pack this into the high
bit of our motion ID byte in the G-buffer. For classifying MSAA edges, we extract this MSAA
edge bit from both MSAA fragments and also compare the normals of each of the fragments to
catch situations in which there are no polygon edges (e.g., polygon intersections).

Table 4.1. The Split/Second G-buffer format. Note that each component has an entry for both 2X
MSAA fragments.

Buffer Red Green Blue Alpha
Buffer 0 Albedo red Albedo green Albedo blue Specular amount
Buffer 1 Normal x Normal y Normal z Motion ID + MSAA edge
Buffer 2 Prelit red Prelit green Prelit blue Specluar power

The motion ID is used for per-pixel motion blur in a later pass, and each object type has
its own ID. For the sky, this ID is always zero, and we use this value to classify sky pixels.

For sun light classification, we test normals against the sun direction (unless it's a sky pixel).
Listing 4.3 shows how we classify MSAA edge, sky, and sunlight from both G-buffer 1 fragments.

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 59

Listing 4.3. Classifying MSAA edge, sky, and sun light. This code could also be simplified in shader
model 4 or higher.

// Separate motion IDs and MSAA edge fragments from normals.
float2 edgeAndID_frags = float2(gbuffer1_frag0.w, gbuffer1_frag1.w);

// Classify MSAA edge (marked in high bit).
float2 msaaEdge_frags = (edgeAndID_frags > (128.0 / 255.0));
float mssaEdge = any(msaaEdge_frags);

float3 normalDiff = gbuffer1_frag0.xyz -gbuffer1_frag1.xyz;
mssaEdge += any(normalDiff);

// Classify sky (marked with motion ID of 0 - MSAA edge bit
// will also be 0).
float2 sky_frags = (edgeAndID_frags == 0.0);
float sky = any(sky_frags);

// Classify sunlight (except in sky).
float2 sunlight_frags;
sunlight_frags.x = sky_frags.x ? 0.0 : -dot(normal_frag0, sunDir);
sunlight_frags.y = sky_frags.y ? 0.0 : -dot(normal_frag1, sunDir);
float sunlight = any(sunlight_frags);

// Pack classification bits together.
#define RAW_MSAA_EDGE (1 << 4)
#define RAW_SKY (1 << 5)
#define RAW_SUN_LIGHT (1 << 6)

float bits = msaaEdge ? (RAW_MSAA_EDGE / 255/0) : 0.0;
bits += sky ? (RAW_SKY / 255/0) : 0.0;
bits += sunlight ? (RAW_SUN_LIGHT / 255/0) : 0.0;

4.5 Combining Classification Results

We now have per-pixel classification results for MSAA edge, sky, and sunlight, but we need
to downsample each 4 × 4 pixel area to get a per-tile classification ID. This is as simple as ORing
each 4 × 4 pixel area of the pixel classification results together. We also need to combine these
results with the depth-related classification results to get a final classification ID per tile. Both
these jobs are done in a very different way on each platform in order to make the most of their
particular strengths and weaknesses, as explained in Section 4.9.

60 Game Engine Gems

4.6 Index Buffer Generation

Once both sets of classification results are ready, a GPU callback triggers index buffer
generation for each classification ID. There is one preallocated index buffer containing exactly
enough indices for all tiles. On the Xbox 360, we use the RECT primitive type, which requires
three indices per tile, and on the PlayStation 3, we use the the QUAD primitive type, which
requires four indices per tile. The index buffer references a prebuilt vertex buffer containing a
vertex for each tile corner. At a tile resolution of 4 × 4 pixels, this equates to 321 × 181 vertices
at a screen resolution of 1280 × 720.

Index buffer generation is performed in three passes. The first pass iterates over every tile
and builds a table containing the number of tiles using each classification ID, as shown in Listing
4.4. The second pass iterates over this table and builds a table of offsets into the index buffer for
each classification ID, as shown in Listing 4.5. The third pass fills in the index buffer by iterating
over every tile, getting the current index buffer offset for the tile's classification ID, writing new
indices for that tile to the index buffer, and advancing the index buffer pointer. An example
using the QUAD primitive is shown in Listing 4.6. We now have a final index buffer containing
indices for all tiles and a table of starting indices for each classification ID. We're ready to render!

Listing 4.4. This code counts the number of tiles using each classification ID.

#define SHADER_COUNT 128
#define TILE_COUNT (320 * 180)

unsigned int shaderTileCounts[SHADER_COUNT];
for (int shader = 0; shader < SHADER_COUNT; shader++)
{
 shaderTileCounts[shader] = 0;
}

for (int tile = 0; tile < TILE_COUNT; tile++)
{
 unsigned char id = classificationData[tile];
 shaderTileCounts[id] ++;
}

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 61

Listing 4.5. This code builds the index buffer offsets. We store a pointer per shader for index buffer
generation and an index per shader for tile rendering.

unsigned int *indexBufferPtrs[SHADER_COUNT];
int indexBufferOffsets{SHADER_COUNT};
int currentIndexBufferOffset = 0;

for (int shader = 0; shader < SHADER_COUNT; shader++)
{
 // Store shader index buffer ptr.
 indexBufferPtrs[shader] = indexBufferStart + currentIndexBufferOffset;

 // Store shader index buffer offset.
 indexBufferOffsets[shader] = currentIndexBufferOffset;

 // Update current offset.
 currentIndexBufferOffset += shaderTileCounts[shader] * INDICES_PER_PRIM;
}

Listing 4.6. This code builds the index buffer using the QUAD primitive.

#define TILE_WIDTH 320
#define TILE_HEIGHT 180

for (int y = 0; y < TILE_HEIGHT; y++)
{
 for (int x = 0; x < TILE_WIDTH; x++)
 {
 int tileIndex = y * TILE_WIDTH + x;
 unsigned char id = classificationData[tileIndex];
 unsigned int index0 = y * (TILE_WIDTH + 1) + x;

 *indexBufferPtrs[id]++ = index0;
 *indexBufferPtrs[id]++ = index0 + 1;
 *indexBufferPtrs[id]++ = index0 + TILE_WIDTH + 2;
 *indexBufferPtrs[id]++ = index0 + TILE_WIDTH + 1;
 }
}

4.7 Tile Rendering

To render the tiles, we'd like to simply loop over each classification ID, activate the shaders,

62 Game Engine Gems

then issue a draw call to render the part of the index buffer we calculated earlier. However, it's
not that simple because we want to submit the index buffer draw calls before we've received the
classification results and built the index buffers. This is because draw calls are submitted on the
CPU during the render submit phase, but the classification is done later on the GPU. We solve
this by submitting each shader activate, then inserting the draw calls between each shader
activate later on when we've built the index buffers and know their starting indices and counts.
This is done in a very platform-specific way and is explained in Section 4.9.

4.8 Shader Management

Rather than trying to manage 128 separate shaders, we opted for a single ubershader with
all lighting properties included, and we used conditional compilation to remove the code we
didn't need in each case. This is achieved by prefixing the uber-shader with a fragment defining
just the properties needed for each shader. Listing 4.7 shows an example for a shader only
requiring sunlight and soft shadow. The code itself is not important and just illustrates how we
conditionally compile out the code we don't need.

Listing 4.7. This example shader code illustrates how we generate a shader for sunlight and soft
shadow only.

// Fragment definging light properties.
#define SUN_LIGHT
#define SOFT_SHADOW

//Uber-shader starts here.
//...

// Output color stats wiht prelit.
float3 oColor = preLit;

// Get sun shadow contribution.
#if defined(SOFT_SHADOW) && defined(SUN_LIGHT)

float sunShadow = CascadeShadowMap_8Taps(worldPos, depth);

#elif defined(SUN_LIGHT) && !defined(SOFT_SHADOW)

float sunShadow = 1.0;

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 63

#else

float sunShadow = 0.0;

#endif

// Fade sun shadow.
#if (defined(SOFT_SHADOW) || defined(SOFT_SHADOW)) && \
 defined(SHADOW_FADE) && defined(SUN_LIGHT)

sunShadow = lerp(sunShadow, 1.0, satureate(depth * shadowFadeScale +
shadowFadeOffset));

#endif

// Apply sunlight.
#if defined(SUN_LIGHT) && !defined(SOLID_SHADOW)

float3 sunDiff, sunSpec;

Global_CalcDirectLighting(normal, view, sunShadow, specIntAndPow,

sunDiff, sunSpec);

oColor += (albedo * sunDiff) + sunSpec;

#endif

// Apply ligth scattering.
#ifdef LIGHT_SCATTERING

float3 colExtinction, colInscattering;
lightScattering(view, depth, lightDir, colExtinction, colInscattering);
oColor = oColor * colExtinction + colInscattering;

#endif

4.9 Platform Specifics

Xbox 360

On the Xbox 360, downsampling pixel classification results and combining with the depth-

64 Game Engine Gems

related classification results is performed inside the pixel classification shader, and the final 7-
bit classification IDs are written to a one-quarter resolution buffer in main memory using the
memexport API. We use memexport rather than rendering to texture so we can output the IDs
as nonlinear blocks, as shown in Figure 4.3. This block layout allows us to speed up index buffer
generation by coalescing neighboring tiles with the same ID, as explained in Section 4.10.
Another benefit of using memexport is that it avoids a resolve to texture. Once we've written out
all final IDs to CPU memory, a GPU callback wakes up a CPU thread to perform the index
buffer generation.

0 1 2 3 16 17 18 19

4 5 6 7 20 21 22 23

8 9 10 11 24 25 26 27

12 13 14 15 28 29 30 31

Figure 4.3. Xbox 360 tile classification IDs are arranged in blocks of 4 × 4 tiles, giving us 80 × 45
blocks in total. The numbers show the memory offsets, not the classification IDs.

Before we can allow tile rendering to begin, we must make sure that the CPU index buffer
generation has finished. This is done by inserting a GPU block that waits for a signal from the
CPU thread (using asynchronous resource locks). We insert other GPU jobs before the block
to avoid any stalls.

We use Xbox Procedural Synthesis (XPS) callbacks for tile rendering as they allow us to
dynamically generate draw calls inside the callback. We insert an XPS callback after each shader
activate during the CPU render submit, then submit each draw call in the XPS callback using
the index buffer offsets and counts we calculated during index buffer generation.

Figure 4.4 shows how it all fits together, particularly the classification flow between GPU
and CPU. The dotted arrow represents other work that we do to keep the GPU busy while the
CPU generates the index buffer.

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 65

Figure 4.4. Xbox 360 classification flow.

PlayStation 3

On the PlayStation 3, the pixel classification pass is piggybacked on top of an existing depth
and normal restore pass as an optimization to avoid needing a specific pass. This pass creates
non-antialiased, full-width depth and normal buffers for later non-antialiased passes, such as
local lights, particles, post-processing, etc., and we write the classification results to the unused
w component of the normal buffer.

Once we've rendered the normals and pixel classification to a full-resolution texture, we
then trigger a series of SPU downsample jobs to convert this texture into a one-quarter
resolution buffer containing only the pixel classification results. Combination with the depth-
related classification results is performed later on during the index buffer generation because
those results aren't ready yet. This is due to the fact that we start the depth-related classification
work on the GPU at the same time as these SPU downsample jobs to maximize parallelization
between the two.

We spread the work across four SPUs. Each SPU job takes 64 × 64 pixels of classification

66 Game Engine Gems

data (one main memory frame buffer tile), ORs each 4 × 4 pixel area together to create a block
of classification IDs, and streams them back to main memory. Figure 4.5 shows how output IDs
are arranged in main memory. We take advantage of this block layout to speed up index buffer
generation by coalescing neighboring tiles with the same ID, as explained in Section 4.10. Using
16 × 16 tile blocks also allows us to send the results back to main memory in a single DMA call.
Once this SPU work and the depth related classification work have both finished, a GPU
callback triggers SPU jobs to combine both sets of classification results together and perform
the index buffer generation and draw call patching.

0 1 ... 15 256 257 ... 271

16
Block 1

272
Block 2 . . .

. . .

240 255 496 511

Figure 4.5. PlayStation 3 tile classification IDs are arranged in blocks of 16 × 16 tiles, giving us 20
× 12 blocks in total. The numbers show the memory offsets, not the classification IDs.

The first part of tile rendering is to fill the command buffer with a series of shader activates
interleaved with enough padding for the draw calls to be inserted later on, once we know their
starting indices and counts. This is done on the CPU during the render submit phase.

Index buffer generation and tile rendering is spread across four SPUs, where each SPU
runs a single job on a quarter of the screen. The first thing we do is combine the depth-related
classification with the pixel classification. Remember that we couldn't do it earlier because the
depth-related classification is rendered on the GPU at the same time as the pixel classification
downsample jobs are running on the SPUs. Once we have final 7-bit IDs, we can create the final
draw calls. Listings 4.5 and 4.6 show how we calculate starting indices and counts for each
shader, and we use these results to patch the command buffer with each draw call.

Figure 4.6 shows how it all fits together, particularly the classification flow between GPU
and SPU jobs. The dotted arrow represents other work that we do to keep the GPU busy while
the SPU generates the index buffer.

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 67

Figure 4.6. PlayStation 3 classification flow.

4.10 Optimizations

Reducing Shader Count

We realized that some of the 7-bit classification combinations are impossible, such as sun
light and solid shadow together, no sunlight and soft shadow together, etc., and we were able to
optimize these seven bits down to five by collapsing the four sun and shadow bits into two. This
reduced the number of shaders from 128 to 32 and turned out to be a very worthwhile
optimization.

We do this by prebuilding a lookup table that converts a 7-bit raw classification ID into a
5-bit optimized classification ID, as shown in Listing 4.8. Each ID is passed through this lookup
table before being used for index buffer generation.

These two bits give us four possible combined properties, which is enough to represent all
possible combinations in the scene as follows:

68 Game Engine Gems

 00 = solid shadow.

 01 = solid shadow + shadow fade + sunlight.

 10 = sun light (with no shadows).

 11 = soft shadow + shadow fade + sunlight.

The only caveat to collapsing these bits is that we're now always calculating shadow fade
when soft shadows are enabled. However, this extra cost is negligible and is far outweighed by
the benefits of reducing the shader count to 32.

Listing 4.8. This builds a lookup table to convert from raw to optimized material IDs.

#define LIGHT_SCATTERING (1 << 0)
#define MSAA_EDGE (1 << 1)
#define SKY (1 << 2)
#define SUN_0 (1 << 3)
#define SUN_1 (1 << 4)

unsigned char output[32];

for (int iCombo = 0; iCombo < 128; iCombo++)
{
 //Clear output bits.
 unsigned char bits = 0;

 // Most combos are directly copied.
 if (iCombo & RAW_LIGHT_SCATTERING) bits |= LIGHT_SCATTERING;
 if (iCombo & RAW_MSAA_EDGE) bits |= MSAA_EDGE;
 if (iCombo & RAW_SKY) bits |= SKY;

 // If in solid shadow.
 if (iCombo & RAW_SHADOW_SOLID)
 {
 // Set bit 0 if fading to sun.
 if ((iCombo & RAW_SHADOW_FADE) &&
 (iCombo & RAW_SUN_LIGHT))
 bits |= SUN_0;
 }
 else if (iCombo & RAW_SUN_LIGHT) //else if in sun
 {
 // Set bit 1.
 bits |= SUN_1;

Chapter 4 Screen-Space Classification for Efficient Deferred Shading 69

 // Set bit 0 if in soft shadow.
 if (iCombo & RAW_SHADOW_SOFT)
 bits |= SUN_0;
 }

 // Write output.
 output[iCombo] = bits;
}

Tile Coalescing

We mentioned earlier that we take advantage of the tile block layout to speed up index
buffer generation by coalescing adjacent tiles. This is done by comparing each entry in a block
row, which is very fast because they're contiguous in memory. If all entries in a row are the same,
we join the tiles together to make a single quad. Figure 4.7 shows an example for the Xbox 360
platform. By coalescing a row of tiles, we only have to generate one primitive instead of four.
On the PlayStation 3, the savings are even greater because a block size is 16 × 16 tiles. We extend
this optimization even further on the Xbox 360 and coalesce an entire block into one primitive
if all 16 IDs in the block are the same.

10 10 18 10

34 34 34 34

34 18 10 10

10 10 10 10

Figure 4.7. Coalescing two rows of tiles within a single block on the Xbox 360.

4.11 Performance Comparison

Using the scene shown in Figure 4.8, we compare performance between a naive
implementation that calculates all light properties for all pixels and our tile classification
method. The results are shown in Table 4.2. The pixel classification cost on the PlayStation 3 is
very small because we're piggybacking onto an existing pass, and the extra shader cost is
minimal.

70 Game Engine Gems

Figure 4.8. The Split/Second scene used for our performance comparisons.

Table 4.2. Performance comparisons for a naive implementation versus our tile
classification method. All numbers are times measured in milliseconds.

Task
PlayStation 3

Naive
PlayStation 3
Classification

Xbox 360
Naive

Xbox 360
Classification

Depth-related
classification

0.00 1.29 0.00 0.70

Pixel classification 0.00 ~ 0.00 0.00 0.69
Global light pass 13.93 4.82 8.30 2.69
Total 13.93 6.11 8.30 4.08

References

[Swoboda 2009] Matt Swoboda. "Deferred Lighting and Post Processing on PlayStation 3." Game
Developers Conference, 2009.

[Moore and Jefferies 2009] Jeremy Moore and David Jefferies. "Rendering Techniques in
Split/Second." Advanced Real-Time Rendering in 3D Graphics and Games, ACM SIGGRAPH 2009
course notes.

5

Chapter 5 Delaying OpenGL Calls

Patrick Cozzi
Analytical Graphics, Inc.

5.1 Introduction

It is a well known best practice to write an abstraction layer over a rendering API such as
OpenGL. Doing so has numerous benefits, including improved portability, flexibility,
performance, and above all, ease of development. Given OpenGL's use of global state and
selectors, it can be difficult to implement clean abstractions for things like shader uniforms and
frame buffer objects. This chapter presents a flexible and efficient technique for implementing
OpenGL abstractions using a mechanism that delays OpenGL calls until they are finally needed
at draw time.

5.2 Motivation

Since its inception, OpenGL has relied on context-level global state. For example, in the
fixed-function days, users would call glLoadIatrixf() to set the entries of one of the
transformation matrices in the OpenGL state. The particular matrix modified would have been
selected by a preceding call to glMatrixMode(). This pattern is still in use today. For example,
setting a uniform's value with glUniform1f() depends on the currently bound shader program
defined at some earlier point using g1UseProgram().

The obvious downside to these selectors (e.g., the current matrix mode or the currently
bound shader program) is that global state is hard to manage. For example, if a virtual call is
made during rendering, can you be certain the currently bound shader program did not change?

72 Game Engine Gems

Developing an abstraction layer over OpenGL can help cope with this.

Our goal is to implement an efficient abstraction layer that does not expose selectors. We
limit our discussion to setting shader uniforms, but this technique is useful in many other areas,
including texture units, frame buffer objects, and vertex arrays. To further simplify things, we
only consider scalar floating-point uniforms. See Listing 5.1 for an example of what code using
such an abstraction layer would look like.

Listing 5.1. Using an OpenGL abstraction layer.

Contextcontext;

std::stringvertexSource = "";//...

std::stringfragmentSource = "";//...

ShaderProgramprogram(vertexSource,fragmentSource);

Uniform*diffuse = program.GetUniformByName("diffuse");

Uniform*specular = program.GetUniformByName("specular");

diffuseIntensity->SetValue(0.5f);

specularIntensity->SetValue(0.2f);

context.Draw(program, /* …*/);

In Listing 5.1, the user creates a shader program, sets two floating-point uniforms, and
eventually uses the program for drawing. The user is never concerned with any globals like the
currently bound shader program.

In addition to being easy to use, the abstraction layer should be efficient. In particular, it
should avoid needless driver CPU validation overhead by eliminating redundant OpenGL calls.
When using OpenGL with a language like Java or C#, eliminating redundant calls also avoids
managed to native code round-trip overhead. With redundant calls eliminated, the code in
Listing 5.2 only results in two calls to glUniform1f() regardless of the number of times the user
sets uniform values or issues draw calls.

Listing 5.2. An abstraction layer should filter out these redundant calls.

diffuseIntensity->SetValue(0.5f);
specularIntensity->SetValue(0.2f);
context.Draw(program, /* …*/);

Chapter 5 Delaying OpenGL Calls 73

diffuseIntensity->SetValue(0.5f);
specularIntensity->SetValue(0.2f);
context.Draw(program, /* …*/);
context.Draw(program, /* …*/);

5.3 Possible Implementations

Now that we know what we are trying to achieve, let's briefly consider a few naive
implementations. The simplest implementation for assigning a value to a uniform is to call
glUniform1f() every time a user provides a value. Since the user isn't required to explicitly
bind a program, the implementation also needs to call glUseProgram() to ensure the correct
uniform is set. This is shown in Listing 5.3.

Listing 5.3. Naive implementation for setting a uniform.

void SetValue(float value)
{
 glUseProgram(m_handle);
 glUniform1f(m_location,value);
}

This implementation results in a lot of unnecessary calls to gluseProgram() and
glUniform1f(). This overhead can be minimized by keeping track of the uniform's current
value and only calling into OpenGL if it needs to be changed, as in Listing 5.4.

Listing 5.4. A first attempt at avoiding redundant OpenGL calls.

void SetValue(float value)
{
 if (m_currentValue != value)
 {
 m_currentValue = value;
 glUseProgram(_handle);
 glUniform1f(m_location,value);
 }

 m_currentValue = value;
}

74 Game Engine Gems

Although epsilons are usually used to compare floating-point values, an exact comparison
is used here. In some cases, the implementation in Listing 5.4 is sufficient, but it can still produce
redundant OpenGL calls. For example, "thrashing" occurs if a user sets a uniform to 1.0F, then
to 2.0F, and then back to 1.0F be fore finally issuing a draw call. In this case, g1UseProgram()
and glUniform1f() would be called three times each. The other downside is that
glUseProgram() is called each time a uniform changes. Ideally, it would be called only once
before all of a program's uniforms change.

Of course, it is possible to keep track of the currently bound program in addition to the
current value of each uniform. The problem is that this becomes difficult with multiple contexts
and multiple threads. The currently bound program is context-level global state, so each
uniform instance in our abstraction needs to be aware of the current thread's current context.
Also, tracking the currently bound program in this fashion is error prone and susceptible to
thrashing when different uniforms are set for different programs in an interleaved manner.

5.4 Delayed Calls Implementation

In order to come up with a clean and efficient implementation for our uniform abstraction,
observe that it doesn't matter what value OpenGL thinks a uniform has until a draw call is issued.
Therefore, it is not necessary to call into OpenGL when a user provides a value for a uniform.
Instead, we keep a list of uniforms that were changed on a per-program basis and make the
necessary g1Uniformlf() calls as part of a draw command. We call the list of changed uniforms
the program's dirty list. We clean the list by calling glUniform1f() for each uniform and then
clear the list itself. This is similar to a cache where dirty cache lines are flushed to main memory
and marked as clean.

An elegant way to implement this delayed technique is similar to the observer pattern
[Gamma et al. 1995]. A shader program "observes" its uniforms. When a uniform's value
changes, it notifies its observer (the program), which adds the uniform to the dirty list. The
dirty list is then cleaned as part of a draw command.

The observer pattern defines a one-to-many dependency between objects. When an object
changes, its dependents are notified. The object that changes is called the subject and its
dependents are called observers. For us, the situation is simplified: each uniform is a subject with
only one observer-the program. Since we are interested in using this technique for abstracting

Chapter 5 Delaying OpenGL Calls 75

other areas of OpenGL, we introduce the two generic interfaces shown in Listing 5.5.

The shader program class will implement ICleanableObserver, so it can add a uniform
to the dirty list when it is notified that the uniform changed. The uniform class will implement
ICleanable so it can call glUniform1f() when the dirty list is cleaned. These relationships are
shown in Figure 5.1.

Listing 5.5. Interfaces used for implementing the observer pattern.

class ICleanable
{
public:
 virtual ~ICleanable() {}
 virtual void Clean() = 0;
};

class ICleanableObserver
{
public:

 virtual ~ICleanableObserver() {}
 virtual void NotifyDirty(ICleanable *value) = 0;
};

Figure 5.1. Relationship between shader programs and uniforms.

Let's first consider how to implement the class ShaderProgram. As we saw in Listing 5.1, this

76 Game Engine Gems

class represents a shader program and provides access to its uniforms. In addition, it cleans the
dirty list before draw commands are issued. The relevant parts of its implementation are shown
in Listing 5.6. The shader program keeps two sets of uniforms: one set for all the active uniforms,
which is accessed by uniform name (m_uniforms) and another set for just the dirty uniforms
(m_dirtyUniforms). The dirty uniforms set is a std::vector of ICleanable pointers, since the only
operation that will be applied to them is calling their Clean() method. The constructor is
responsible for creating, compiling, and linking shader objects, as well as iterating over the
program's active uniforms, to populate m_uniforms.

A user accesses a particular uniform by calling GetUniformByName() , which has a
straightforward implementation that uses the find() method of std::map to look up the uniform.
This method should not be called every time the uniform is updated because of the string-based
map search. Instead, the method should be called once, and the returned uniform object should
be reused every frame to modify the uniform, similar to what is done in Listings 5.1 and 5.2.

The most important methods in the ShaderProgram class are NotifyDirty() and Clean(). As we
will see when we look at the implementation for the Uniform class, NotifyDirty() is called when a
uniform wants to notify the program that it is dirty. In response, the program adds the uniform
to the dirty list. It is the uniform's responsibility to make sure it doesn't redundantly notify the
program and be put on the dirty list multiple times. Finally, before a draw call, the shader's clean()
method needs to be called. The method iterates over each dirty uniform, which in turn makes
the actual OpenGL call to modify the uniform's value. The dirty list is then cleared since no
uniforms are dirty.

Listing 5.6. Partial implementation for a shader program abstraction.

class ShaderProgram : public ICleanableObserver
{
public:
 ShaderProgram(const std::string& vertexSource,
 const std::string& fragmentSource)
 {
 m_handle = glCreateProgram();
 // ... Create, compile, and link shader objects

 // Populate m_uniforms with program's active uniforms by
 //calling glGetActiveUniform to get the name and location
 //for each uniform.
 }

Chapter 5 Delaying OpenGL Calls 77

 virtual ~ShaderProgram()
 {
 // Delete shader objects, shader program, and uniforms.
 }

 Uniform *GetUniformByName(const std::string name)
 {
 std::map<std::string, Uniform *>::iterator i = namem_uniforms.find(name);

 return (i != m_uniforms.end()) ? i->second : 0;
 }

 void Clean()
 {
 std::for_each(m_dirtyUniforms.begin(), m_dirtyUniforms.end(),
 std::mem_fun(&ICleanable::Clean));

 m_dirtyUniforms.clear();
 }

 // ICleanableObserver Implementation
 virtual void NotifyDirty(ICleanable *value)
 {
 m_dirtyUniforms.push_back(value);
 }

private:

 GLuint m_handle;
 std::vector<ICleanable *> m_dirtyUniforms;
 std::map<std::string, Uniform *> m_uniforms;
};

The other half of the implementation is the code for Uniform, which is shown in Listing
5.7. A uniform needs to know its OpenGL location (m_uniforms), its current value (m_value),
if it is dirty (m_dirty) and the program that is observing it (m_observer). When a program
creates a uniform, the program passes the uniform's location and a pointer to itself to the
uniform's constructor. The constructor initializes the uniform's value to zero and then notifies
the shader program that it is dirty. This has the effect of initializing all uniforms to zero.
Alternatively, the uniform's value can be queried with glGetUniform() , but this has been
found to be problematic on various drivers.

78 Game Engine Gems

The bulk of the work for this class is done in Setvalue() and Clean(). When the user
provides a clean uniform with a new value, the uniform marks itself as dirty and notifies the
program that it is now dirty. If the uniform is already dirty or the user-provided value is no
different than the current value, the program is not notified, avoiding adding duplicate
uniforms to the dirty list. The Clean() function synchronizes the uniform's value with OpenGL
by calling glUniform1f() and then marking itself clean.

Listing 5.7. Implementation for a scalar floating-point uniform abstraction.

#pragma once

#include "GLStubs.h"
#include "ICleanable.h"
#include "ICleanableObserver.h"

class Uniform : public ICleanable
{
public:
 Uniform(GLint location, ICleanableObserver *observer)
 : m_location(location),
 m_currentValue(0.0f),
 m_dirty(true),
 m_observer(observer)
 {
 m_observer->NotifyDirty(this);
 }

 float GetValue() const
 {
 return m_currentValue;
 }

 void SetValue(float value)
 {
 if (!m_dirty && (m_currentValue != value))
 {
 m_dirty = true;
 m_observer->NotifyDirty(this);
 }

 m_currentValue = value;
 }

Chapter 5 Delaying OpenGL Calls 79

private:
 // ICleanable Implementation
 virtual void Clean()
 {
 glUniform1f(m_location, m_currentValue);
 m_dirty = false;
 }

private:
 GLint m_location;
 GLfloat m_currentValue;
 bool m_dirty;
 ICleanableObserver *m_observer;
};

The final piece of the puzzle is implementing a draw call that cleans a shader program.
This is as simple as requiring the user to pass a ShaderProgram instance to every draw call in
your OpenGL abstraction (you're not exposing a separate method to bind a program, right?),
then calling glUseProgram() , followed by the program's Clean() method, and finally calling
the OpenGL draw function. If the draw calls are part of a class that represents an OpenGL
context, it is also straightforward to factor out redundant gluseProgram() calls.

5.5 Implementation Notes

Our implementation is efficient in that it avoids redundant OpenGL calls and uses very
little CPU. Once the std::vector has been "primed," adding a uniform to the dirty list is a
constant time operation. Likewise, iterating over it is efficient because only dirty uniforms are
touched. If no uniforms changed between one draw call and the next, then no uniforms are
touched. If the common case in your engine is that most or all uniforms change from draw call
to draw call, consider removing the dirty list and just iterating over all uniforms before each
draw.

If you are using reference counting when implementing this technique, keep in mind that
a uniform should keep a weak reference to its program. This is not a problem in garbage-
collected languages.

Also, some methods, including ShaderProgram::Clean(), ShaderProgram::

NotifyDirty(), and Uniform::Clean(), should not be publicly accessible. In C++, this can

80 Game Engine Gems

be done by making them private or protected and using the somewhat obscure friend keyword.
A more low-tech option is to use a naming convention so clients know not to call them directly.

5.6 Improved Flexibility

By delaying OpenGL calls until draw time, we gain a great deal of flexibility. For starters,
calling Uniform::GetValue() or Uniform::SetValue() does not re quire a current OpenGL
context. For games with multiple contexts, this can minimize bugs caused by incorrect
management of the current context. Likewise, if you are developing an engine that needs to play
nice with other libraries using their own OpenGL context, Uniform::Setvalue() has no
context side effects and can be called anytime, not just when your context is current.

Our technique can also be extended to minimize managed to native code round-trip
overhead when using OpenGL with languages like Java or C#. Instead of making fine-grained
glUniform1f() calls for each dirty uniform, the list of dirty uniforms can be passed to native
C++ code in a single coarse-grained call. On the C++ side, glUniform1f() is called for each
uniform, thus eliminating the per-uniform round trip. This can be taken a step further by
making all the required OpenGL calls for a draw in a single round trip.

5.7 Concluding Remarks

An alternative to our technique is to use direct state access (DSA) [Kilgard 2009], an
OpenGL extension that allows updating OpenGL state without previously setting global state.
For example, the following two lines,

glUseProgram(m_handle);
glUniform1f(m_location, value);

can be combined into one:

glProgramUniform1fEXT(m_handle, m_location, m_currentValue);

As of this writing, DSA is not a core feature of OpenGL 3.3, and as such, is not available
on all platforms, although glProgramUniform*() calls are mirrored in the separate shader
objects extension [Kilgard et al. 2010] which has become core functionality in OpenGL 4.1.

Delaying selector-based OpenGL calls until draw time has a lot of benefits, although there
are some OpenGL calls that you do not want to delay. It is important to allow the CPU and

Chapter 5 Delaying OpenGL Calls 81

GPU to work together in parallel. As such, you would not want to delay updating a large vertex
buffer or texture until draw time because this could cause the GPU to wait, assuming it is not
rendering one or more frames behind the CPU.

Finally, I've had great success using this technique in both commercial and open source
software. I've found it quick to implement and easy to debug. An excellent next step for you is
to generalize the code in this chapter to support all uniform types (vec2, vec3, etc.), uniform
buffers, and other areas of OpenGL with selectors. Also consider applying this technique to
higher-level engine components, such as when the bounding volume of a model in a spatial data
structure changes.

Acknowledgements

Thanks to Kevin Ring and Sylvain Dupont from Analytical Graphics, Inc., and Christophe
Riccio from Imagination Technologies for reviewing this chapter.

References

[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns. Reading, MA: Addison-Wesley, 1995.

[Kilgard 2009] Mark Kilgard. EXT_direct_state_access OpenGL extension, 2009. Available at
http://www.opengl.org/registry/specs/EXT/direct_state_access.txt.

[Kilgard et al. 2010] Mark Kilgard, Greg Roth, and Pat Brown. ARB_separate_shader_objects
OpenGL extension, 2010. Available at http://www.opengl.org/registry/specs/ARB/separate_shader_
objects.txt.

6

Chapter 6 A Framework for GLSL Engine Uniforms

Patrick Cozzi
Analytical Graphics, Inc.

6.1 Introduction

The OpenGL 3.x and 4.x core profiles present a clean, shader-centric API. Many veteran
developers are pleased to say goodbye to the fixed-function pipeline and the related API entry
points. The core profile also says goodbye to the vast majority of GLSL built-in uniforms, such
as gl_ModelviewMatrix and gl_ProjectionMatrix. This chapter addresses the obvious
question: what do we use in place of GLSL built-in uniforms?

6.2 Motivation

Our goal is to design a framework for commonly used uniforms that is as easy to use as
GLSL built-in uniforms but does not have their drawback: global state. GLSL built-in uniforms
were easy to use because a shader could just include a built-in uniform, such as
gl_ModelviewMatrix, and it would automatically pick up the current model-view matrix,
which may have been previously set with calls like the following:

glMatrixMode(GL_MODELVIEW);

glLoadMatrixf(modelViewMatrix);

A shader could even use built-in uniforms derived from multiple GL states, such as
gl_ModelviewProjectionMatrix, which is computed from the current model-view and
projection matrices (see Listing 6.1(a)). Using built-in uniforms makes it easy to use both fixed-
function and shader-based rendering code in the same application. The drawback is that the

84 Game Engine Gems

global state is error prone and hard to manage.

Listing 6.1(a). Pass-through vertex shader using GLSL built-in uniforms.

#version 120

void main()
{
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

Our replacement framework should be just as easy to use as built-in uniforms, but without
relying on global state. Shader authors should be able to define and use engine uniforms as
shown in Listing 6.1(b), and C++ code should automatically identify and set them.

Listing 6.1(b). Pass-through vertex shader using our engine uniforms framework.

#version 330

in vec4 position;
uniform mat4 u_ModelViewProjectionMatrix;

void main()
{
 gl_Position = u_ModelViewProjectionMatrix * position;
}

In Listing 6.1(b), u_ModelviewProjectionMatrix is an engine uniform that serves as a
replacement for gl_ModelviewProjectionMatrix. You can use any naming convention you'd
like; in this case, the prefix u_ stands for "uniform." Our framework should support any number
of these engine uniforms, and it should be easy to add new ones.

In addition to ease of use, the goal of our framework is to avoid global state. The solution
to this is to introduce a state object that is passed to draw methods. This object should contain
all the necessary state to set our engine uniforms before issuing an OpenGL draw call. Listing
6.2 shows a very minimal interface for this class. The user can set the model, view, and
projection matrices; the modelview and model-view-projection are derived state (similar to
gl_ModelViewProjectionMatrix). This class uses a matrix type called Matrix44, which is
assumed to have the standard matrix goodies: static methods for affine trans formations,
operator overloads, and a method called Pointer() that gives us direct access to the matrix's
elements for making OpenGL calls.

Chapter 6 A Framework for GLSL Engine Uniforms 85

Listing 6.2. Minimal interface for state used to automatically set engine uniforms.

class State
{
public:
 const Matrix44& GetModel() const;
 void SetModel(const Matrix44& value);

 const Matrix44& GetView() const;
 void SetView(const Matrix44& value);

 const Matrix44& GetProjection() const;
 void SetProjection(const Matrix44& value);

 const Matrix44& GetModelView() const;
 const Matrix44& GetModelViewProjection() const;
};

By encapsulating the state required for engine uniforms in a class, different instances of
the class can be passed to different draw methods. This is less error prone than setting some
subset of global states between draw calls, which was required with GLSL built-in uniforms. An
engine can even take this one step further and define separate scene state and object state classes.
For example, the view and projection matrices from our State class may be part of the scene
state, and the model matrix would be part of the object state. With this separation, an engine
can then pass the scene state to all objects, which then issue draw commands using the scene
state and their own state. For conciseness, we only use one state class in this chapter.

6.3 Implementation

To implement this framework, we build on the shader program and uniform abstractions
discussed in the previous chapter. In particular, we require a Uniform class that encapsulates a
4 × 4 matrix uniform (mat4). We also need a ShaderProgram class that represents an OpenGL
shader program and contains the program's uniforms in a std::map, like the following:

std::map<std::string, Uniform *> m_uniformMap;

Our framework uses a list of engine uniforms' names to determine what engine uniforms
a program uses. A program then keeps a separate list of engine uniforms, which are set using a
State object before every draw call. We start our implementation by defining two new

86 Game Engine Gems

interfaces: IEngineuniform and IEngineUniformFactory, shown in Listing 6.3.

Listing 6.3. Interfaces used for setting and creating engine uniforms.

class IEngineUniform
{
public:
 virtual ~IEngineUniform() {}
 virtual void Set(const State& state) = 0;
};

class IEngineUniformFactory
{
public:
 virtual ~IEngineUniformFactory() {}
 virtual IEngineUniform *Create(Uniform *uniform) = 0;
};

Each engine uniform is required to implement both classes: IEngineUniform is used to set
the uniform before a draw call, and IEngineuniformFactory is used to create a new instance
of the engine uniform when the shader program identifies an engine uniform.

Implementing these two interfaces is usually very easy. Let's consider implementing them
for an engine uniform named u_ModelviewMatrix, which is the model-view matrix similar to
the built-in uniform gl_ModelViewMatrix. The implementation for IEngineUniform simply
keeps the actual uniform as a member and sets its value using State::GetModelview() , as
shown in Listing 6.4. The implementation for IEngineUniformFactory simply creates a new
ModelviewMatrixUniform object, as shown in Listing 6.5.

The relationship among these interfaces and classes is shown in Figure 6.1. Implementing
additional engine uniforms, such as a model-view-projection matrix, is usually just as
straightforward as this case. In isolation, classes for engine uniforms are not all that exciting.
They need to be integrated into our ShaderProgram class to become useful. In order to identify
engine uniforms, a program needs access to a map from uniform name to engine uniform
factory. The program can use this map to see which of its uniforms are engine uniforms.

Listing 6.4. Implementing an engine uniform for the model-view matrix.

class ModelViewMatrixUniform : public IEngineUniform
{
public:

Chapter 6 A Framework for GLSL Engine Uniforms 87

 ModelViewMatrixUniform(Uniform *uniform)
 : m_uniform(uniform)
 {
 }

 virtual void Set(const State& state)
 {
 m_uniform->SetValue(state.GetModelView());
 }

private:
 Uniform *m_uniform;
};

Listing 6.5. A factory for the model-view matrix engine uniform.

class ModelViewMatrixFactory: public IEngineUniformFactory
{
public:

 virtual IEngineUniform *Create(Uniform *uniform)
 {
 return (new ModelViewMatrixUniform(uniform));
 }
};

Each program could have a (potentially different) copy of this map, which would allow
different programs access to different engine uniforms. In practice, I have not found this
flexibility useful. Instead, storing the map as a private static member and providing a public
static InitializeEngineuniforms() method, as in Listing 6.6, is generally sufficient. The
initialization method should be called once during application startup so each program has
thread-safe, read-only access to the map afterward. It is also a best practice to free the memory
for the factories on application shutdown, which can be done by calling
DestroyEngineUniforms(), also shown in Listing 6.6.

88 Game Engine Gems

Figure 6.1. The relationship among engine uniform interfaces and the model-view matrix
implementation.

Listing 6.6. Initialization and destruction for engine uniform factories.

class ShaderProgram : public ICleanableObserver
{
public:
 static void InitializeEngineUniforms()
 {
 m_engineUniformFactories["u_modelViewMatrix"] = new

EngineUniformFactory<ModelViewMatrixUniform>;
// … Add factories for all engine uniforms.

 }

 static void DestroyEngineUniforms()
 {
 std::map<std::string, IEngineUniformFactory *>::iterator i;
 for (i = m_engineUniformFactories.begin(); i !=
m_engineUniformFactories.end(); ++i)
 {
 delete i->second;
 }
 m_engineUniformFactories.clear();
 }
// … Other public methods.
private:

static std::map<std::string, IEngineUniformFactory *>
m_engineUniformFactories;

};

There are only two steps left to our implementation: identify and store a program's engine

Chapter 6 A Framework for GLSL Engine Uniforms 89

uniforms and set the engine uniforms before a draw call. As stated earlier, each program keeps
a map from a uniform's name to its uniform implementation, m_uniformMap. This map is
populated after the program is linked. To implement engine attributes, a program also needs to
keep a list of engine uniforms:

std::vector<IEngineUniform *> m_engineUniformList;

The relationship among a program, its various pointers to uniforms, and the uniform
factories is shown in Figure 6.2. Using the uniform map and factory map, the list of engine
uniforms can be populated by creating an engine uniform for each uniform that has a factory
for the uniform's name, as shown in Listing 6.7. In our implementation, engine uniforms are
not reference counted, so the program's destructor should delete each engine uniform.

Figure 6.2. The relationship among a program, its uniforms, and the engine uniform factories.

Listing 6.7. Identifying and creating engine uniforms for a program.

std::map<std::string, Uniform *>::iterator i;
for (i =m_uniformMap.begin(); i != m_uniformMap.end(); ++i)
{
 std::map<std::string, IEngineUniformFactory *>::iterator j =
 m_engineUniformFactories.find(i->first);

90 Game Engine Gems

 if (j != m_engineUniformFactories.end())
 {
 m_engineUniformList.push_back(j->second->Create(i->second));
 }
}

Now that a program has a list of its engine uniforms, it is easy to set them before a draw
call. Assuming we are using the delayed technique for setting uniforms introduced in the
previous chapter, a shader program has a Clean() method that is called before each OpenGL
draw call to set each dirty uniform. To set engine uniforms, this method is modified to take a
state object (which presumably is also passed to the draw method that calls this) and then call
Set() method for each automatic uniform, as shown in Listing 6.8.

Listing 6.8. A modified ShaderProgram::Clean() method that automatically sets engine
uniforms.

void Clean(const State& state)
{
 std::vector<IEngineUniform *>::iterator i;
 for (i = m_engineUniformList.begin(); i != m_engineUniformList.end(); ++i)
 {
 (*i)->Set(state);
 }

 std::for_each(m_dirtyUniforms.begin(), m_dirtyUniforms.end(),
 std::mem_fun(&ICleanable::Clean));

 m_dirtyUniforms.clear();

}

6.4 Beyond GLSL Built-in Uniforms

Thus far, we've focused on using our engine uniform framework to replace the
functionality of the old GLSL built-in uniforms. Our framework extends far beyond this,
however. Its true usefulness is shown when engine uniforms based on higher-level engine or
application-specific data are added. For example, a planetbased game may have engine
uniforms for the sun position or the player's altitude. Since engine uniforms are defined using

Chapter 6 A Framework for GLSL Engine Uniforms 91

interfaces, new engine uniforms can be added with very little impact.

These high-level engine uniforms can include things like the current time or frame number,
which are useful in animation. For example, texture animation may be implemented by
translating texture coordinates in a fragment shader based on a uniform containing the current
time. To use the uniform, the shader author doesn't have to do any additional work other than
define the uniform.

If the ShaderProgram::InitializeEngineUniforms() method is coded carefully,
applications that have access to headers for IEngineUniform and IEngineUniformFactory,
but not necessarily access to all of the engine's source code, can also add engine attributes.

Engine uniforms can even go beyond setting uniform values. In Insight3D1, we use engine
uniforms to provide shaders access to the scene's depth and silhouette textures. In these cases,
the implementation of the IEngineUniform::Set() method binds a texture to a texture unit
instead of actually setting a uniform's value (the value for the sampler2D uniform is set just
once to the texture unit index in the engine uniform's constructor). It is also common for
engines to provide engine uniforms for noise textures.

6.5 Implementation Tips

To reduce the amount of code required for new engine uniforms, it is possible to use C++
templates to let the compiler write a factory for each engine uniform for

Listing 6.9. C++ templates can reduce the amount of handwritten factories.

template<typename T>
class EngineUniformFactory : public IEngineUniformFactory
{
public:
 virtual IEngineUniform *Create(Uniform *uniform)
 {
 return new T(uniform);
 }
};

If you are up for parsing GLSL code, you could also eliminate the need for shader authors
to declare engine uniforms by carefully searching the shader's source for them. This task is
nontrivial considering preprocessor transformations, multiline comments, strings, and

92 Game Engine Gems

compiler optimizations that could eliminate uniforms altogether.

Finally, a careful implementation of the State class can improve performance. Specifically,
derived state, like the model-view-projection matrix, can be cached and only recomputed if one
of its dependents change.

6.6 Concluding Remarks

Similar concepts to engine uniforms are in widespread use. For example,
OpenSceneGraph2 has preset uniforms, such as osg_FrameTime and osg_DeltaFrameTime,
which are automatically updated once per frame. Likewise, RenderMonkey3 contains
predefined variables for values such as transformation matrices and mouse parameters.
RenderMonkey allows the names for these variables to be customized to work with different
engines.

Acknowledgements

Thanks to Kevin Ring and Sylvain Dupont from Analytical Graphics, Inc., and Christophe
Riccio from Imagination Technologies for reviewing this chapter.

You. For example, using the factory in Listing 6.8, the Mode lviewMatrixFactory class
would be replaced with the EngineUniformFactory<ModelviewMatrixUniform> class using
the template shown in Listing 6.9.

7

Chapter 7 A Spatial and Temporal Coherence Framework for Real-
Time Graphics

Michal Drobot
Reality Pump Game Development Studios

With recent advancements in real-time graphics, we have seen a vast improvement in pixel
rendering quality and frame buffer resolution. However, those complex shading operations are
becoming a bottleneck for current-generation consoles in terms of processing power and
bandwidth. We would like to build upon the observation that under certain circumstances,
shading results are temporally or spatially coherent. By utilizing that information, we can reuse
pixels in time and space, which effectively leads to performance gains.

This chapter presents a simple, yet powerful, framework for spatiotemporal acceleration
of visual data computation. We exploit spatial coherence for geometry-aware upsampling and
filtering. Moreover, our framework combines motionaware filtering over time for higher
accuracy and smoothing, where required. Both steps are adjusted dynamically, leading to a
robust solution that deals sufficiently with high-frequency changes. Higher performance is
achieved due to smaller sample counts per frame, and usage of temporal filtering allows
convergence to maximum quality for near-static pixels.

Our method has been fully production proven and implemented in a multiplatform engine,
allowing us to achieve production quality in many rendering effects that were thought to be
impractical for consoles. An example comparison of screen-space ambient occlusion (SSAO)
implementations is shown in Figure 7.1. Moreover, a case study is presented, giving insight to
the framework usage and performance with some complex rendering stages like screen-space
ambient occlusion, shadowing, etc. Furthermore, problems of functionality, performance, and
aesthetics are discussed, considering the limited memory and computational power of current-
generation consoles.

94 Game Engine Gems

Figure 7.1. (a) A conventional four-tap SSAO pass. (b) A four-tap SSAO pass using the
spatiotemporal framework.

7.1 Introduction

The most recent generation of game consoles has brought some dramatic improvements
in graphics rendering quality. Several new techniques were introduced, like deferred lighting,
penumbral soft shadows, screen-space ambient occlusion, and even global illumination
approximations. Renderers have touched the limit of current-generation home console
processing power and bandwidth. However, expectations are still rising. Therefore, we should
focus more on the overlooked subject of computation and bandwidth compression.

Most pixel-intensive computations, such as shadows, motion blur, depth of field, and
global illumination, exhibit high spatial and temporal coherency. With ever-increasing
resolution requirements, it becomes attractive to utilize those similarities between pixels

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 95

[Nehab et al. 2007]. This concept is not new, as it is the basis for motion picture compression.

If we take a direct stream from our rendering engine and compress it to a level perceptually
comparable with the original, we can achieve a compression ratio of at least 10:1. What that
means is that our rendering engine is calculating huge amounts of perceptually redundant data.
We would like to build upon that.

Video compressors work in two stages. First, the previous frames are analyzed, resulting
in a motion vector field that is spatially compressed. The previous frame is morphed into the
next one using the motion vectors. Differences between the generated frame and the actual one
are computed and encoded again with compression. Because differences are generally small and
movement is highly stable in time, compression ratios tend to be high. Only keyframes (i.e., the
first frame after a camera cut) require full information.

We can use the same concept in computer-generated graphics. It seems attractive since we
don't need the analysis stage, and the motion vector field is easily available. However,
computation dependent on the final shaded pixels is not feasible for current rasterization
hardware. Current pixel-processing pipelines work on a per-triangle basis, which makes it
difficult to compute per-pixel differences or even decide whether the pixel values have changed
during the last frame (as opposed to ray tracing, where this approach is extensively used because
of the per-pixel nature of the rendering). We would like to state the problem in a different way.

Most rendering stages' performance to quality ratio are controlled by the number of
samples used per shaded pixel. Ideally, we would like to reuse as much data as possible from
neighboring pixels in time and space to reduce the sampling rate required for an optimal
solution. Knowing the general behavior of a stage, we can easily adopt the compression concept.
Using a motion vector field, we can fetch samples over time, and due to the low-frequency
behavior, we can utilize spatial coherency for geometry-aware upsampling. However, there are
several pitfalls to this approach due to the interactive nature of most applications, particularly
video games.

This chapter presents a robust framework that takes advantage of spatiotemporal
coherency in visual data, and it describes ways to overcome the associated problems. During
our research, we sought the best possible solution that met our demands of being robust,
functional, and fast since we were aiming for Xbox 360- and PlayStation 3-class hardware. Our
scenario involved rendering large outdoor scenes with cascaded shadow maps and screen-space
ambient occlusion for additional lighting detail. Moreover, we extensively used advanced

96 Game Engine Gems

material shaders combined with multisampling as well as a complex postprocessing system.
Several applications of the framework were developed for various rendering stages. The
discussion of our final implementation covers several variations, performance gains, and future
ideas.

7.2 The Spatiotemporal Framework

Our spatiotemporal framework is built from two basic algorithms, bilateral upsampling
and real-time reprojection caching. (Bilateral filtering is another useful processing stage that we
discuss.) Together, depending on parameters and application specifics, they provide high-
quality optimizations for many complex rendering stages, with a particular focus on low-
frequency data computation.

Bilateral Upsampling

We can assume that many complex shader operations are low-frequency in nature. Visual
data like ambient occlusion, global illumination, and soft shadows tend to be slowly varying
and, therefore, well behaved under upsampling operations. Normally, we use bilinear
upsampling, which averages the four nearest samples to a point being shaded. Samples are
weighted by a spatial distance function. This type of filtering is implemented in hardware, is
extremely efficient, and yields good quality. However, a bilinear filter does not respect depth
discontinuities, and this creates leaks near geometry edges. Those artifacts tend to be disturbing
due to the high-frequency changes near object silhouettes. The solution is to steer the weights
by a function of geometric similarity obtained from a highresolution geometry buffer and
coarse samples [Kopf et al. 2007]. During interpolation, we would like to choose certain samples
that have a similar surface orientation and/or a small difference in depth, effectively preserving
geometry edges. To summarize, we weight each coarse sample by bilinear, normalsimilarity,
and depth-similarity weights.

Sometimes, we can simplify bilateral upsampling to account for only depth discontinuities
when normal data for coarse samples is not available. This solu tion is less accurate, but it gives
plausible results in most situations when dealing with low-frequency data.

Listing 7.1 shows pseudocode for bilateral upsampling. Bilateral weights are precomputed
for a 2 × 2 coarse-resolution tile, as shown in Figure 7.2. Depending on the position of the pixel
being shaded (shown in red in Figure 7.2), the correct weights for coarse-resolution samples are

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 97

chosen from the table.

Listing 7.1. Pseudocode for bilateral upsampling.

for (int i=0; i < 4; i++)

{

 normalWeights[i] = dot(normalsLow[i] +normalHi);

 normalWeights[i] = pow(VNormalWeights[i], contrastCoef);

}

for (int i=0; i < 4; i++)

{

 float depthDiff = depthHi - depthLow[i];

 depthWeights[i] = 1.0 / (0.0001f + abs(depthDiff));

}

for (int i=0; i < 4; i++)

{

 float sampleWeight = normalWeights[i] * depthWeights[i] *

 bilinearWeights[texelNo][i];

 totalWeight += sampleWeight;

 upsampledResult += sampleLow[i] * fWeight;

}

upsampledResult /= totalWeight;

Reprojection Caching

Another optimization concept is to reuse data over time [Nehab et al. 2007]. During each
frame, we would like to sample previous frames for additional data, and thus, we need a history
buffer, or cache, that stores the data from previous frames. With each new pixel being shaded
in the current frame, we check whether additional data is available in the history buffer and how
relevant it is. Then, we decide if we want to use that data, reject it, or perform some additional
computation. Figure 7.3 presents a schematic overview of the method.

98 Game Engine Gems

 0 1 2 3

0 9/16 3/16 3/16 1/16

1 3/16 9/16 1/16 3/16

2 3/16 1/16 9/16 3/16

3 1/16 3/16 3/16 9/16

Figure 7.2. Bilinear filtering with a weight table.

Figure 7.3. Schematic diagram of a simple reprojection cache.

For each pixel being shaded in the current frame, we need to find a corresponding pixel in
the history buffer. In order to find correct cache coordinates, we need to obtain the pixel
displacement between frames. We know that pixel movement is a result of object and camera
transformations, so the solution is to reproject the current pixel coordinates using a motion
vector. Coordinates must be treated with special care. Results must be accurate, or we will have
flawed history values due to repeated invalid cache resampling. Therefore, we perform
computation in full precision, and we consider any possible offsets involved when working with
render targets, such as the half-pixel offset in DirectX 9.

Coordinates of static objects can change only due to camera movement, and the
calculation of pixel motion vectors is therefore straightforward. We find the pixel position in
camera space and project it back to screen space using the previous frame's projection matrix.
This calculation is fast and can be done in one fullscreen pass, but it does not handle moving
geometry.

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 99

Dynamic objects require calculation of per-pixel velocities by comparing the current
camera-space position to the last one on a per-object basis, taking skinning and transformations
into consideration. In engines calculating a frame-toframe motion field (i.e., for per-object
motion blur [Lengyel 2010]), we can reuse the data if it is pixel-correct. However, when that
information is not available, or the performance cost of an additional geometry pass for velocity
calculation is too high, we can resort to camera reprojection. This, of course, leads to false cache
coordinates for an object in motion, but depending on the application, that might be acceptable.
Moreover, there are several situations where pixels may not have a history. Therefore, we need
a mechanism to check for those situations.

Cache misses occur when there is no history for the pixel under consideration. First, the
obvious reason for this is the case when we are sampling outside the history buffer. That often
occurs near screen edges due to camera movement or objects moving into the view frustum.
We simply check whether the cache coordinates are out of bounds and count it as a miss.

The second reason for a cache miss is the case when a point p visible at time t was occluded
at time t - l by another point q. We can assume that it is impossible for the depths of q and p to
match at time t – l. We know the expected depth of p at time t – l through reprojection, and we
compare that with the cached depth at q. If the difference is bigger than an epsilon, then we
consider it a cache miss. The depth at q is reconstructed using bilinear filtering, when possible,
to account for possible false hits at depth discontinuities, as illustrated in Figure 7.4.

Figure 7.4. Possible cache-miss situation. The red area lacks history data due to occlusion in the
previous frame. Simple depth comparison between projected p and q from t – l is sufficient to
confirm a miss.

If there is no cache miss, then we sample the history buffer. In general, pixels do not map

100 Game Engine Gems

to individual cache samples, so some form of resampling is needed. Since the history buffer is
coherent, we can generally treat it as a normal texture buffer and leverage hardware support for
linear and point filtering, where the proper method should be chosen for the type of data being
cached. Lowfrequency data can be sampled using the nearest-neighbor method without
significant loss of detail. On the other hand, using point filtering may lead to discontinuities in
the cache samples, as shown in Figure 7.5. Linear filtering correctly handles these artifacts, but
repeated bilinear resampling over time leads to data smoothing. With each iteration, the pixel
neighborhood influencing the result grows, and high-frequency details may be lost. Last but not
least, a solution that guarantees high quality is based on a higher-resolution history buffer and
nearestneighbor sampling at a subpixel level. Nevertheless, we cannot use it on consoles because
of the additional memory requirements.

Figure 7.5. Resampling artifacts arising in point filtering. A discontinuity occurs when the correct
motion flow (yellow star) does not match the approximating nearest-neighbor pixel (red star).

Motion, change in surface parameters, and repeated resampling inevitably degrade the
quality of the cached data, so we need a way to refresh it. We would like to efficiently minimize
the shading error by setting the refresh rate proportional to the time difference between frames,
and the update scheme should be dependent on cached data.

If our data requires explicit refreshes, then we have to find a way to guarantee a full cache
update every n frames. That can easily be done by updating one of n parts of the buffer every
frame in sequence. A simple tile-based approach or, littering could be used, but without
additional processing like bilateral upsampling or filtering, pattern artifacts may occur.

The reprojection cache seems to be more effective with accumulation functions. In
computer graphics, many results are based on stochastic processes that combine randomly
distributed function samples, and the quality is often based on the number of computed samples.
With reprojection caching, we can easily amortize that complex process over time, gaining in
performance and accuracy. This method is best suited for rendering stages based on
multisampling and lowfrequency or slowly varying data.

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 101

When processing frames, we accumulate valid samples over time. This leads to an
exponential history buffer that contains data that has been integrated over several frames back
in time. With each new set of accumulated values, the buffer is automatically updated, and we
control the convergence through a dynamic factor and exponential function. Variance is related
to the number of frames contributing to the current result. Controlling that number lets us
decide whether response time or quality is preferred.

We update the exponential history buffer using the equation

ℎ(𝑡𝑡) = ℎ(𝑡𝑡 − 1)𝑤𝑤 + 𝑟𝑟(1 − 𝑤𝑤) ,

where h(t) represents a value in the history buffer at time t, w is the convergence weight, and r
is a newly computed value. We would like to steer the convergence weight according to changes
in the scene, and this could be done based on the per-pixel velocity. This would provide a valid
solution for temporal ghosting artifacts and high-quality convergence for near-static elements.

Figure 7.6. We prepare the expected sample distribution set. The sample set is divided into N subsets
(four in this case), one for each consecutive frame. With each new frame, missing subsets are

102 Game Engine Gems

sampled from previous frames, by exponential history buffer look-up. Older samples lose weight
with each iteration, so the sampling pattern must repeat after N frames to guarantee continuity.

Special care must be taken when new samples are calculated. We do not want to have stale
data in the cache, so each new frame must bring additional information to the buffer. When
rendering with multisampling, we want to use a different set of samples with each new frame.
However, sample sets should repeat after N frames, where N is the number of frames being
cached (see Figure 7.6). This improves temporal stability. With all these improvements, we
obtain a highly efficient reprojection caching scheme. Listing 7.2 presents a simplified solution
used during our SSAO step.

Listing 7.2. Simplified reprojection cache.

float4 ReproCache(vertexOutput IN)

{

 float4 ActiveFrame = tex2D(gSamplerOPT, IN.Uv.xy);

 float freshData = ActiveFrame.x;

 float3 WSpacePos = WorldSpaceFast(IN.WorldEye, ActiveFrame.w);

 float4 LastClipSpacePos = mul(float4(WorldSpacePos.xyz, 1.0),

 IN_CameraMatrixPrev);

 float lastDepth = LastClipSpacePos.z;

 LastClipSpacePos = mul(float4(LastClipSpacePos.xyz, 1.0),

 IN_ProjectionMatrixPrev);

 LastClipSpacePos /= LastClipSpacePos.w;

 LastClipSpacePos.xy *= float2(0.5, -0.5);

 LastClipSpacePos.xy *= float2(0.5, 0.5);

 float4 reproCache = tex2D(gSamplerPT, LastClipSpacePos.xy);

 float reproData = reproCache.x;

 float missRate = abs(lastDepth - reproCache.w) - IN_MissThreshold;

 if (LastClipSpacePos.x <0.0 || LastClipSpacePos.x >1.0 ||

 LastClipSpacePos.y < 0.0 || LastClipSpacePos.y > 1.0)

 missRate = 0.0;

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 103

 missRate = saturate(missRate * IN_ConvergenceTime);

 freshData += (reproData - freshData.xy) * missRate;

 float4 out = freshData;

 out.a = ActiveFrame.w;

 return out;

}

Bilateral Filtering

Bilateral filtering is conceptually similar to bilateral upsampling. We perform Gaussian
filtering with weights influenced by a geometric similarity function [Tomasi and Manduchi
1998]. We can treat it as an edge-aware smoothing filter or a high-order reconstruction filter
utilizing spatial coherence. Bilateral filtering proves to be extremely efficient for content-aware
data smoothing. Moreover, with only insignificant artifacts, a bilateral filter can be separated
into two directions, leading to O(n) running time. We use it for any kind of slowly-varying data,
such as ambient occlusion or shadows, which needs to be aware of scene geometry. Moreover,
we use it to compensate for undersampled pixels. When a pixel lacks samples, lacks history data,
or has missed the cache, it is reconstructed from spatial coherency data. That solution leads to
more plausible results compared to relying on temporal data only. Listing 7.3 shows a separable,
depthaware bilateral filter that uses hardware linear filtering.

Listing 7.3. Directional bilateral filter working with depth data.

float Bilateral3D5x5(sampler2D inSampler, float2 texelSize,

 float2 UV, float2 Dir)

{

 const float centerWeight = 0.402619947;

 const float4 tapOffsets = float4(-3.5, -1.5, 1.5, 3.5);

 const float4 tapWeights = float4(0.054488685, 0.244201342,

 0.244201342, 0.054488685);

 const float E = 1.0;

 const float diffAmp = IN_BilateralFilterAmp;

104 Game Engine Gems

 float2 color;

 float4 pSamples, nSamples;

 float4 diffIp, diffIn;

 float4 pTaps[2];

 float2 offSize = Dir * texelSize;

 pTaps[0] = UV.xyxy + tapOffsets.xxyy * offSize.xyxy;

 pTaps[1] = UV.xyxy + tapOffsets.zzww * offSize.xyxy;

 color = tex2D(inSampler, UV.xy).ra;

 //r - contains data to be filtered

 //a - geometry depth

 pTaps[0].xy = tex2D(inSampler, pTaps[0].xy).ra;

 pTaps[0].zw = tex2D(inSampler, pTaps[0].zw).ra;

 pTaps[1].xy = tex2D(inSampler, pTaps[1].xy).ra;

 pTaps[1].zw = tex2D(inSampler, pTaps[1].zw).ra;

 float4 centerlD = color.y;

 diffIp = (1.0 /(E + diffAmp * abs(centralD - float4(pTaps[0].y,

 pTaps[0].w, pTaps[1].y, pTaps[1].w)))) * tapWeights;

 float Wp = 1.0 / (dot(diffIp, 1) + centerWeight);

 color.r *= centerWeight;

 color.r = Wp * (dot(diffIp, float4(pTaps[0].x, pTaps[0].z,

 pTaps[1].x,pTaps[1].z)) + color.r);

 return color.r;

}

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 105

Spatiotemporal Coherency

We would like to combine the described techniques to take advantage of the
spatiotemporal coherency in the data. Our default framework works in several steps:

1. Depending on the data, caching is performed at lower resolution.

2. We operate with the history buffer (HB) and the current buffer (CB).

3. The CB is computed with a small set of current samples.

4. Samples from the HB are accumulated in the CB by means of reprojection caching.

5. A per-pixel convergence factor is saved for further processing.

6. The CB is bilaterally filtered with a higher smoothing rate for pixels with a lower

convergence rate to compensate for smaller numbers of samples or cache misses.

7. The CB is bilaterally upsampled to the original resolution for further use.

8. The CB is swapped with the HB.

The buffer format and processing steps differ among specific applications.

7.3 Applications

Our engine is composed of several complex pixel-processing stages that include screen-
space ambient occlusion, screen-space soft shadows, subsurface scattering for skin shading,
volumetric effects, and a post-processing pipeline with depth of field and motion blur. We use
the spatiotemporal framework to accelerate most of those stages in order to get the engine
running at production-quality speeds on current-generation consoles.

Screen-Space Ambient Occlusion

Ambient occlusion AO is computed by integrating the visibility function over a
hemisphere H with respect to a projected solid angle, as follows:

𝛢𝛢𝛢𝛢 =
1
𝑛𝑛

� 𝑉𝑉p,𝜔𝜔(𝐍𝐍. 𝜔𝜔)
𝐻𝐻

𝑑𝑑𝜔𝜔 ,

106 Game Engine Gems

where N is the surface normal and Vp,ω, is the visibility function at p (such that Vp,ω = 0 when
occluded in the direction ω, and Vp,ω=1 otherwise). It can be efficiently computed in screen
space by multiple occlusion checks that sample the depth buffer around the point being shaded.
However, it is extremely taxing on the GPU due to the high sample count and large kernels that
trash the texture cache. On current-generation consoles, it seems impractical to use more than
eight samples. In our case, we could not even afford that many because, at the time, we had only
two milliseconds left in our frame time budget.

After applying the spatiotemporal framework, we could get away with only four samples
per frame, and we achieved even higher quality than before due to amortization over time. We
computed the SSAO at half resolution and used bilateral upsampling during the final frame
combination pass. For each frame, we changed the SSAO kernel sampling pattern, and we took
care to generate a uniformly distributed pattern in order to minimize frame-to-frame
inconsistencies. Due to memory constraints on consoles, we decided to rely only on depth
information, leaving the surface normal vectors available only for SSAO computation.
Furthermore, since we used only camera-based motion blur, we lacked per-pixel motion vectors,
so an additional pass for motion field computation was out of the question. During caching, we
resorted to camera reprojection only. Our cachemiss detection algorithm compensated for that
by calculating a running convergence based on the distance between a history sample and the
predicted valid position. That policy tended to give good results, especially considering the
additional processing steps involved. After reprojection, ambient occlusion data was bilaterally
filtered, taking convergence into consideration when available (PC only). Pixels with high
temporal confidence retained high-frequency details, while others were reconstructed spatially
depending on the convergence factor. It is worth noticing that we were switching history buffers
after bilateral filtering. Therefore, we were filtering over time, which enables us to use small
kernels without significant quality loss. The complete solution required only one millisecond of
GPU time and enabled us to use SSAO in real time on the Xbox 360. Figure 7.7 shows final
results compared to the default algorithm.

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 107

Figure 7.7. The left column shows SSAO without using spatial coherency. The right column shows
our final Xbox 360 implementation.

Soft Shadows

Our shadowing solution works in a deferred manner. We use the spatiotemporal
framework for sun shadows only since those are computationally expensive and visible all the
time. First, we draw sun shadows to an offscreen low-resolution buffer. While shadow testing
against a cascaded shadow map, we use a custom percentage closer filter. For each frame, we
use a different sample from a welldistributed sample set in order to leverage temporal coherence
[Scherzer et al. 2007]. Reprojection caching accumulates the samples over time in a manner
similar to our SSAO solution. Then the shadow buffer is bilaterally filtered in screen space and
bilaterally upsampled for the final composition pass. Figures 7.8 and 7.9 show our final results
for the Xbox 360 implementation.

108 Game Engine Gems

Figure 7.8. Leveraging the spatiotemporal coherency of shadows (bottom) enables a soft, filtered,
look free of undersampling artifacts, without raising the shadow map resolution of the original scene
(top).

Figure 7.9. The spatiotemporal framework efficiently handles shadow acne and other flickering
artifacts (right) that appear in the original scene (left).

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 109

Shadows and Ambient Occlusion Combined

Since our shadowing pipeline is similar to the one used during screen-space ambient
occlusion, we integrate both into one pass in our most efficient implementation running on
consoles. Our history buffer is half the resolution of the back buffer, and it is stored in RG16F
format. The green channel stores the minimum depth of the four underlying pixels in the Z-
buffer. The red channel contains shadowing and ambient occlusion information. The fractional
part of the 16-bit floating-point value is used for occlusion because it requires more variety, and
the integer part holds the shadowing factor. Functions for packing and unpacking these values
are shown in Listing 7.4.

Figure 7.10. Schematic diagram of our spatiotemporal framework used with SSAO and shadows.

Every step of the spatiotemporal framework runs in parallel on both the shadowing and
ambient occlusion values using the packing and unpacking functions. The last step of the
framework is bilateral upsampling combined with the main deferred shading pass. Figure 7.10
shows an overview of the pipeline. The performance gained by using our technique on the Xbox

110 Game Engine Gems

360 is shown in Table 7.1.

Listing 7.4. Code for shadow and occlusion data packing and unpacking.

#define PACK_RANGE 31.0

#define MIN_FLT 0.01

float PackOccShadow(float Occ, float Shadow)

{

 return (floor(saturate(Occ) * PACK_RANGE) +

 clamp(Shadow, MIN_FLT, 1.0 - MIN_FLT));

}

float2 UnpackOccShadow(float OccShadow)

{

 return (float2((floor(OccShadow)) / PACK_RANGE, frac(OccShadow)));

}

Table 7.1. Performance comparison of various stages and a reference solution in which shadowing
is performed in full resolution with 2 × 2 jittered PCF, and SSAO uses 12 taps and upsampling. The
spatiotemporal (ST) framework is 2.5 times faster than the reference solution and still yields better
image quality.

Stage ST Framework Reference
Shadows 0.7 ms 3.9 ms
SSAO generation 1.1 ms 3.8 ms
Reprojection caching 0.35 ms -
Bilateral filtering 0.42 ms (0.2 ms per pass) -
Bilateral upsampling 0.7 ms 0.7 ms
Total 3.27 ms 8.4 ms

Postprocessing

Several postprocessing effects, such as depth of field and motion blur, tend to have high
spatial and temporal coherency. Both can be expressed as a multisampling problem in time and
space and are, therefore, perfectly suited for our framework. Moreover, the mixed frequency
nature of both effects tends to hide any possible artifacts. During our tests, we were able to

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 111

perform productionready postprocessing twice as fast as with a normal non-cached approach.

Additionally, blurring is an excellent candidate for use with the spatiotemporal framework.
Normally, when dealing with extremely large blur kernels, hierarchical downsampling with
filtering must be used in order to reach reasonable performance with enough stability in high-
frequency detail. Using importance sampling for downsampling and blurring with the
spatiotemporal framework, we are able to perform high-quality Gaussian blur, using radii
reaching 128 pixels in a 720p frame, with no significant performance penalty (less than 0.2 ms
on the Xbox 360). The final quality is shown in Figure 7.11.

First, we sample nine points with linear filtering and importance sampling in a single
downscaling pass to 1/64 of the screen size. Stability is sustained by the reprojection caching,
with different subsets of samples used during each frame. The resulting image is blurred, cached,
and upsampled. Bilateral filtering is used when needed by the application (e.g., for depth-of-
field simulation where geometry awareness is required).

Figure 7.11. The bottom image shows the result of applying a large-kernel (128-pixel) Gaussian
blur used for volumetric water effects to the scene shown in the top image. This process is efficient
and stable on the Xbox 360 using the spatiotemporal coherency framework.

112 Game Engine Gems

7.4 Future Work

There are several interesting concepts that use the spatiotemporal coherency, and we
performed experiments that produced surprisingly good results. However, due to project
deadlines, additional memory requirements, and lack of testing, those concepts were not
implemented in the final iteration of the engine. We would like to present our findings here and
improve upon them in the future.

Antialiasing

The spatiotemporal framework is also easily extended to full-scene antialiasing (FSAA) at
a reasonable performance and memory cost [Yang et. Al 2009]. With deferred renderers, we
normally have to render the G-buffer and perform lighting computation at a higher resolution.
In general, FSAA buffers tend to be twice as big as the original frame buffer in both the
horizontal and vertical directions. When enough processing power and memory are available,
higher-resolution antialiasing schemes are preferred.

The last stage of antialiasing is the downsampling process, which generates stable, artifact-
free, edge-smoothed images. Each pixel of the final frame buffer is an average of its subsamples
in the FSAA buffer. Therefore, we can easily reconstruct the valid value by looking back in time
for subsamples. In our experiment, we wanted to achieve 4X FSAA. We rendered each frame
with a subpixel offset, which can be achieved by manipulating the projection matrix. We
assumed that four consecutive frames hold the different subsamples that would normally be
available in 4X FSAA, and we used reprojection to integrate those subsamples over time. When
a sample was not valid, due to unocclusion, we rejected it. When misses occurred, we could also
perform bilateral filtering with valid samples to leverage spatial coherency.

Our solution proved to be efficient and effective, giving results comparable to 4X FSAA
for near-static scenes and giving results of varying quality during high-frequency motion.
However, pixels in motion were subject to motion blur, which effectively masked any artifacts
produced by our antialiasing solution. In general, the method definitely proved to be better than
2X FSAA and slightly worse than 4X FSAA since some high-frequency detail was lost due to
repeated resampling. Furthermore, the computational cost was insignificant compared to
standard FSAA, not to mention that it has lower memory requirements (only one additional
full-resolution buffer for caching). We would like to improve upon resampling schemes to
avoid additional blurring.

Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics 113

High-Quality Spatiotemporal Reconstruction

We would like to present another concept to which the spatiotemporal framework can be
applied. It is similar to the one used in antialiasing. Suppose we want to draw a full-resolution
frame. During each frame, we draw a l/n-resolution buffer, called the refresh buffer, with a
different pixel offset. We change the pattern for each frame in order to cover the full frame of
information in n frames. The final image is computed from the refresh buffer and a high-
resolution history buffer. When the pixel being processed is not available in the history or
refresh buffer, we resort to bilateral upsampling from coarse samples. See Figure 7.12 for an
overview of the algorithm. This solution speeds up frame computation by a factor of n,
producing a properly resampled high-resolution image, with the worst-case per-pixel
resolution being l/n of the original. Resolution loss would be mostly visible near screen
boundaries and near fast-moving objects. However, those artifacts may be easily masked by
additional processing, like motion blur. We found that setting n = 4 generally leads to an
acceptable solution in terms of quality and performance. However, a strict rejection and
bilateral upsampling policy must be used to avoid instability artifacts, which tend to be
disturbing when dealing with high-frequency details. We found it useful with the whole light
accumulation buffer, allowing us to perform lighting four times faster with similar quality. Still,
several instability issues occurred that we would like to solve.

Figure 7.12. Schematic diagram of spatiotemporal reconstruction.

114 Game Engine Gems

References

[Kopf et al. 2007] Johannes Kopf, Michael F. Cohen, Dani Liscinski, and Matt Uyttendaele. "Joint
Bilateral Upsampling." ACM Transactions on Graphics 26:3 (July 2007).

[Lengye12010] Eric Lengyel. "Motion Blur and the Velocity-Depth-Gradient Buffer." Game Engine
Gems 1, edited by Eric Lengyel. Sudbury, MA: Jones and Bartlett, 2010.

[Nehab et al. 2007] Diego Nehab, Padro V. Sander, Jason Lawrence, Natalya Tararchuk, and John R.
Isidoro. "Accelerating Real-Time Shading with Reverse Reprojection Caching." Graphics Hardware,
2007.

[Scherzer et al. 2007] Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. "PixelCorrect Shadow
Maps with Temporal Reprojection and Shadow Test Confidence." Rendering Techniques, 2007, pp.
45-50.

[Tomasi and Manduchi 1998] Carlo Tomasi, and Roberto Manduchi. "Bilateral Filtering for Gray
and Color Images." Proceedings of International Conference on Computer Vision, 1998, pp. 839-846.

[Yang et al. 2009] Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-Amorn, Jason Lawrence,
and Hugues Hoppe. "Amortized Supersampling." Proceedings of SIGGRAPH Asia 2009, ACM.

8

Chapter 8 Implementing a Fast DDOF Solver

Holger Grin
Advanced Micro Devices, Inc.

This gem presents a fast and memory-efficient solver for the diffusion depth-offield
(DDOF) technique introduced by Michael Kass et al. [2006] from Pixar. DDOF is a very high-
quality depth-of-field effect that is used in motion pictures. It essentially works by simulating a
heat diffusion equation to compute depth-offield blurs. This leads to a situation that requires
solving systems of linear equations.

Kass et al. present an algorithm for solving these systems of equations, but the memory
footprint of their solver can be prohibitively large at high display resolutions. The solver
described in this gem greatly reduces the memory footprint and running time of the original
DDOF solver by skipping the construction of intermediate matrices and the execution of
associated rendering passes. In contrast to the solver presented by Shishkovtsov and Rege
[2010], which uses DirectX 11, compute shaders, and a technique called parallel cyclic reduction
[Zhang et al. 2010], this gem utilizes a solver that runs only in pixel shaders and can be
implemented on DirectX 9 and DirectX 10 class hardware as well.

8.1 Introduction

DDOF essentially relies on solving systems of linear equations described by tridiagonal
systems like the following:

116 Game Engine Gems

⎝

⎜⎜
⎛

𝑏𝑏1 𝑐𝑐1 0
𝑎𝑎2 𝑏𝑏2 𝑐𝑐2

𝑎𝑎3 𝑏𝑏3 𝑐𝑐3
⋱ ⋱ ⋱

0 𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛⎠

⎟⎟
⎞

⎝

⎜
⎛

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
⋮

𝑦𝑦𝑛𝑛⎠

⎟
⎞

=

⎝

⎜
⎛

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
⋮

𝑥𝑥𝑛𝑛⎠

⎟
⎞

 (8.1)

It needs to solve such a system of equations for each row and each column of the input
image. Because there are always only three coefficients per row of the matrix, the system for all
rows and columns of an input image can be packed into a four-channel texture that has the
same resolution as the input image.

The xi represent the pixels of one row or column of the input image, and the yi represent
the pixels of one row or column of the yet unknown image that is diffused by the heat equation.
The values ai, bi, and ci, are derived from the circle of confusion (CoC) in a neighborhood of
pixels in the input image [Riguer et al. 2004]. Kass et al. take a single time step from the initial
condition yi = xi and arrive at the equation

(𝑦𝑦𝑖𝑖 + 𝑥𝑥𝑖𝑖) = 𝛽𝛽𝑖𝑖(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖) − 𝛽𝛽𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1) (8.2)

Here, each βi represents the heat conductivity of the medium at the position i. Further on,
β0 and βn are set to zero for an image row of resolution n so that the row is surrounded by
insulators. If one now solves for xi then the resulting equation reveals a tridiagonal structure:

𝑥𝑥𝑖𝑖 = −𝛽𝛽𝑖𝑖−1𝑦𝑦𝑖𝑖−1 + (𝛽𝛽𝑖𝑖−1 + 𝛽𝛽𝑖𝑖 + 1)𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑦𝑦𝑖𝑖+1 (8.3)

It is further shown that βi is the square of the diameter of the CoC at a certain pixel position
i. Setting up ai ,bi and ci, now is a trivial task.

As in Kass et al., the algorithm presented in this gem first calculates the diffusion for all
rows of the input image and then uses the resulting horizontallydiffused image as an input for
a vertical diffusion pass.

Kass et al. use a technique called cyclic reduction (CR) to solve for the yi Consider the set
of equations

𝑎𝑎𝑖𝑖−1𝑦𝑦𝑖𝑖−2 + 𝑏𝑏𝑖𝑖−1𝑦𝑦𝑖𝑖−1 + 𝑐𝑐𝑖𝑖−1𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖−1
𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖−1 + 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖+1 = 𝑥𝑥𝑖𝑖

𝑎𝑎𝑖𝑖+1𝑦𝑦𝑖𝑖 + 𝑏𝑏𝑖𝑖+1𝑦𝑦𝑖𝑖+1 + 𝑐𝑐𝑖𝑖+1𝑦𝑦𝑖𝑖+2 = 𝑥𝑥𝑖𝑖+1

 (8.4)

Chapter 8 Implementing a Fast DDOF Solver 117

CR relies on the simple fact that a set of three equations containing five unknowns yi-2, yi-1, yi,
yi+1 and yi+2, like those shown in Equation (8.4), can be reduced to one equation by getting rid
of yi-1 and yi+1. This is done by multiplying the first equation by - ai /bi-1 and multiplying the third
equation by - ci /bi+1 to produce the equations

−𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖−1

𝑏𝑏𝑖𝑖−1
𝑦𝑦𝑖𝑖−2 − 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖−1 − 𝑎𝑎𝑖𝑖

𝑐𝑐𝑖𝑖−1

𝑏𝑏𝑖𝑖−1
𝑦𝑦𝑖𝑖 = −

𝑎𝑎𝑖𝑖

𝑏𝑏𝑖𝑖−1
𝑥𝑥𝑖𝑖−1

−𝑐𝑐𝑖𝑖
𝑎𝑎𝑖𝑖+1

𝑏𝑏𝑖𝑖+1
𝑦𝑦𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖+1 − 𝑐𝑐𝑖𝑖

𝑐𝑐𝑖𝑖+1

𝑏𝑏𝑖𝑖+1
𝑦𝑦𝑖𝑖+2 = −

𝑐𝑐𝑖𝑖

𝑏𝑏𝑖𝑖+1
𝑥𝑥𝑖𝑖+1

(8.5)

When these are added to the second line of Equation (8.4), we arrive at the equation

−𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖−2 + 𝑏𝑏𝑖𝑖
′𝑦𝑦𝑖𝑖 + 𝑐𝑐𝑖𝑖

′𝑦𝑦𝑖𝑖+2 = 𝑥𝑥𝑖𝑖
′ , (8.6)

Which no longer references yi-1, or yi+1, This means that we can halve the number of unknowns
for each row or column by running a shader that writes its output to a new texture that is half
as wide or half as high as the input texture. Repeating this process reduces the number of
unknowns to a number that is low enough to be directly solved by the shader. The values of a′
i, b′i, and c′i, are functions of the original coefficients in Equation (8.4) and need to be stored
in a texture. We also need a texture containing the value of each x′i, (which are also functions
of the original coefficients and the xi), and since it is a color image, all operations are, in fact,
vector operations.

Figure 8.1. Reduction of a set of seven unknowns.

Figure 8.1 illustrates the process of reducing the set of unknowns for an input row that is
seven pixels wide. Each circle, or ei, stands for an equation with a set of ai, bi, ci, xi values and
their respective input/output textures. Now, at e″0 we have reached the case where the

e0 e1 e2 e3 e4 e5 e6

e′2

e′1

e′0

e′′0

118 Game Engine Gems

tridiagonal system for one row has been reduced to a row with just one element. We can assume
that this row of size one is still surrounded by insulators, and thus, the equation

𝑎𝑎𝑖𝑖
′′𝑦𝑦𝑖𝑖−2 + 𝑏𝑏𝑖𝑖

′′𝑦𝑦𝑖𝑖 + 𝑐𝑐𝑖𝑖
′′𝑦𝑦𝑖𝑖+2 = 𝑥𝑥𝑖𝑖

′′ , (8.7)

Simplifies to the equation

𝑏𝑏𝑖𝑖
′′𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖

′′ , (8.8)

since the a″i and the c″i need to be set to zero to implement the necessary insulation. This
now allows us to trivially solve for yi.

For modern GPUs, reducing the system of all image rows to size one does not make use of
all the available hardware threads, even for high display resolutions. In order to generate better
hardware utilization, the shaders presented in this chapter actually stop at two or three systems
of equations and directly solve for the remaining unknown yi. Each of the two or three results
gets computed, and the proper one is chosen based on the output position (SV_POSITION) of
the pixel in order to avoid dynamic flow control. The shaders need to support solving for the
three remaining unknown values as well because input resolutions that are not a power of two
are never reduced to a point where two unknown values are left.

If we reduce the rows of an input image and a texture containing the ai, bi, and ci, then the
resulting yi now represent one column of the resulting horizontally diffused image. The yi values
are written to a texture that is used to create a full-resolution result. In order to achieve this, the
yi values need to be substituted back up the resolution chain to solve for all the other unknown
yi. This means running a number of solving passes that blow the results texture up until a
fullresolution image with all yi values is reached. Each such pass doubles the number of known
yi.

If we assume that a particular value yi kept during reduction is on an odd index i, then we
just have to use the value of yi that is available one level higher. What needs to be computed are
the values of yi for even indices. Figure 8.2 illustrates this back-substitution process and shows
which values get computed and which just get copied.

In fact, the first line from Equation (8.4) can be used again because yi and yi-2 are already
available from the last solving pass. We can now just compute yi-1 as follows:

𝑦𝑦𝑖𝑖−1 = 𝑥𝑥𝑖𝑖−1−𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖−2−𝑐𝑐𝑖𝑖−1𝑦𝑦𝑖𝑖
𝑏𝑏𝑖𝑖−1

 , (8.9)

Chapter 8 Implementing a Fast DDOF Solver 119

Running all solving passes results in the diffused image y.

For an in-depth discussion of DDOF, please consult Kass et al. [2006], as such a discussion
is beyond the scope of this gem.

Figure 8.2. Back-substituting the known y.

8.2 Modifying the Basic CR Solver

As mentioned at the beginning of this chapter, one of the big problems with the solvers
proposed so far is memory consumption. So the main goal of this gem is to reduce the memory
footprint of the solver by as much as possible. Experiments have shown that these changes also
increase the speed of the solver significantly as a side effect. The following changes to the
original CR solver algorithm achieve this goal:

1. Never construct the highest-resolution or second highest-resolution (see the second

change below) textures containing the ai, bi, and ci. Instead, compute the ai, bi, and ci, on

the fly when doing the first reduction and the last solving pass. This saves the memory of

one fullscreen buffer and two half-sized buffers that need to have a 32-bit floating-point

format. It also makes a construction pass for the highest-resolution ai, bi, and ci redundant.

2. Perform an initial four-to-one reduction instead of a two-to-one reduction to reduce the

memory footprint even more. Instead of getting rid of the two unknown variables yi-1 and

yi+1, the solver gets rid of yi-2, yi-1, yi+1, and yi+2, leaving only yi-3, yi and yi+3. It is possible to

derive formulas that describe the four-to-one reduction and to write a shader computing

these. Instead, a more hands-on approach is used. Listing 8.1 shows a shader model 4 code

120 Game Engine Gems

fragment implementing a four-to-one horizontal reduction. This shader performs the

four-to-one reduction in three phases (see comments in the shader). Phase 1 gathers and

computes all the data that is necessary to compute the four-to-one reduction. Phase 2

performs a series of two-to-one reductions on the data from Phase 1. Phase 3 performs a

final two-to-one reduction, completing the four-to-one reduction. A shader performing

vertical reduction can be easily derived from this code fragment.

Listing 8.1. Horizontal four-to-one reduction.

struct ReduceO

{

 float4 abc : SV_TARGET0;

 float4 x : SV_TARGET1;

};

ReduceO InitialReduceHorz4(PS_INPUT input)

{

 ReduceO output;

 float fPosX = floor(input.Pos.x) * 4.0 + 3.0;

 int3 i3LP = int3(fPosX, input.Pos.y, 0);

 //Phase 1: Gather and compute all data necessary

 //for the four-to-one reduction.

 //Compute the CoC values in the support needed for

 //the four-to-one reduction.

 float fCoc_4 = computeCoC(i3LP, int2(-4, 0));

 float fCoc_3 = computeCoC(i3LP, int2(-3, 0));

 float fCoc_2 = computeCoC(i3LP, int2(-2, 0));

 float fCoc_1 = computeCoC(i3LP, int2(-1, 0));

 float fCoc0 = computeCoC(i3LP, int2(0, 0));

 float fCoc1 = computeCoC(i3LP, int2(1, 0));

 float fCoc2 = computeCoC(i3LP, int2(2, 0));

Chapter 8 Implementing a Fast DDOF Solver 121

 float fCoc3 = computeCoC(i3LP, int2(3, 0));

 float fCoc4 = computeCoC(i3LP, int2(4, 0));

 //Ensure insulation at the image borders by setting

 //the CoC to 0 outside the image.

 float fCoc_4 = (fPosX - 4.0 >= 0.0) ? fCoc_4 : 0.0;

 float fCoc_3 = (fPosX - 3.0 >= 0.0) ? fCoc_3 : 0.0;

 float fCoc4 = (fPosX + 4.0) < g_vImageSize.x ? fCoc4 : 0.0;

 float fCoc3 = (fPosX + 3.0) < g_vImageSize.x ? fCoc3 : 0.0;

 float fCoc2 = (fPosX + 2.0) < g_vImageSize.x ? fCoc2 : 0.0;

 float fCoc1 = (fPosX + 1.0) < g_vImageSize.x ? fCoc1 : 0.0;

 //Use the minimum CoC as the real CoC as described in Kass et al.

 float fRealCoC_4 = min(fCoc_4, fCoc_3);

 float fRealCoC_3 = min(fCoc_3, fCoc_2);

 float fRealCoC_2 = min(fCoc_2, fCoc_1);

 float fRealCoC_1 = min(fCoc_1, fCoc_0);

 float fRealCoC0 = min(fCoc0, fCoc1);

 float fRealCoC1 = min(fCoc1, fCoc2);

 float fRealCoC2 = min(fCoc2, fCoc3);

 float fRealCoC3 = min(fCoc3, fCoc4);

 //Compute beta values interpreting the CoCs as the diameter.

 float bt_4 = fRealCoC_4 * fRealCoC_4;

 float bt_3 = fRealCoC_3 * fRealCoC_3;

 float bt_2 = fRealCoC_2 * fRealCoC_2;

 float bt_1 = fRealCoC_1 * fRealCoC_1;

 float bt0 = fRealCoC0 * fRealCoC0;

 float bt1 = fRealCoC1 * fRealCoC1;

 float bt2 = fRealCoC2 * fRealCoC2;

 float bt3 = fRealCoC3 * fRealCoC3;

 //Now compute the a, b, c and load the x in the support

 //region of the four-to-one reduction.

122 Game Engine Gems

 float3 abc_3 = float3(-bt_4, 1.0 + bt_3 + bt_4, -bt_3);

 float3 x_3 = txX.Load(i3LP, int2(-3, 0)).xyz;

 float3 abc_2 = float3(-bt_3, 1.0 + bt_2 + bt_3, -bt_2);

 float3 x_2 = txX.Load(i3LP, int2(-2, 0)).xyz;

 float3 abc_1 = float3(-bt_2, 1.0 + bt_1 + bt_2, -bt_1);

 float3 x_1 = txX.Load(i3LP, int2(-1, 0)).xyz;

 float3 abc_0 = float3(-bt_1, 1.0 + bt_0 + bt_1, -bt_0);

 float3 x_0 = txX.Load(i3LP, int2(0, 0)).xyz;

 float3 abc1 = float3(-bt0, 1.0 + bt1 + bt0, -bt1);

 float3 x_1 = txX.Load(i3LP, int2(1, 0)).xyz;

 float3 abc2 = float3(-bt1, 1.0 + bt2 + bt1, -bt2);

 float3 x_2 = txX.Load(i3LP, int2(2, 0)).xyz;

 float3 abc3 = float3(-bt2, 1.0 + bt3 + bt2, -bt3);

 float3 x_3 = txX.Load(i3LP, int2(3, 0)).xyz;

 //Phase 2: Reduce all the data by doing all two-to-one

 //reductions to get to the next reduction level.

 float a_1 = -abc_2.x / abc_3.y;

 float g_1 = -abc_2.z / abc_1.y;

 float a0 = -abc0.x / abc_1.y;

 float g0 = -abc0.z / abc1.y;

 float a1 = -abc2.x / abc1.y;

 float g1 = -abc2.z / abc3.y;

 float3 abc_p = float3(a_1 * abc_3.x, abc_2.y + a_1 * abc_3.z

 + g_1 * abc_1.x, g_1 * abc_1.z);

 float3 x_p = float3(x_2 + a_1 * x_3 + g_1 * x_1);

Chapter 8 Implementing a Fast DDOF Solver 123

 float3 abc_c = float3(a0 * abc_1.x, abc0.y + a0 * abc_1.z

 + g0 * abc1.x, g0 * abc_1.z);

 float3 x_c = float3(x0 + a0 * x_1 + g0 * x1);

 float3 abc_n = float3(a1 * abc1.x, abc2.y + a1 * abc1.z

 + g1 * abc3.x, g1 * abc3.z);

 float3 x_n = float3(x2 + a1 * x1 + g1 * x3);

 //Phase 3: Do the final two-to-one reduction to complete

 //the four-to-one reduction.

 float a = -abc_c.x / abc_p.y;

 float g = -abc_c.z / abc_n.y;

 float3 res0 = float3(a * abc_p.x, g * abc_c.y, a * abc_p.z +

 g * abc_n.x, g * abc_n.z);

 float3 res1 = float3(x_c + a * x_p + g * x_n);

 output.abc = float4(res0, 0.0);

 output.x = float4(res1, 0.0);

 return output;

}

3. Perform a final one-to-four solving pass to deal with the initial four-to-one reduction

pass. Again, a very hands-on approach for solving the problem at hand is used, and it also

has three phases. Since an initial four-to-one reduction shader was used, we don't have all

the data available to perform the needed one-to-four solving pass. Phase 1 of the shader

therefore starts to reconstruct the missing data from the unchanged and full-resolution

input data in the same fashion that was used in Listing 8.1. Phase 2 uses this data to perform

several one-to-two solving steps to produce the missing y, values of the intermediate pass

that we skip. Phase 3 finally uses all that data to produce the final result. Listing 8.2 shows

a shader model 4 code fragment implementing the corresponding algorithm for that final

solver stage. Again, only the code for the horizontal version of the algorithm is shown.

124 Game Engine Gems

Listing 8.2. Final stage of the solver.

float4 FinalSolveHorz4(PS_INPUT input): SV_TARGET

{

 // First reconstruct the level 1 x, abc.

 float fPosX = floor(input.Pos.x * 0.25) * 4.0 + 3.0;

 int3 i3LoadPos = int3(fPosX, input.Pos.y, 0);

 // Phase 1: Gather data to reconstruct intermediate data

 // lost when skipping the first two-to-one reduction step

 // of the original solver.

 float fCoC_5 = computeCoC(i3LoadPos, int2(-5, 0));

 float fCoC_4 = computeCoC(i3LoadPos, int2(-4, 0));

 float fCoC_3 = computeCoC(i3LoadPos, int2(-3, 0));

 float fCoC_2 = computeCoC(i3LoadPos, int2(-2, 0));

 float fCoC_1 = computeCoC(i3LoadPos, int2(-1, 0));

 float fCoC0 = computeCoC(i3LoadPos, int2(0, 0));

 float fCoC1 = computeCoC(i3LoadPos, int2(1, 0));

 float fCoC2 = computeCoC(i3LoadPos, int2(2, 0));

 float fCoC3 = computeCoC(i3LoadPos, int2(3, 0));

 float fCoC4 = computeCoC(i3LoadPos, int2(4, 0));

 fCoC_5 = (fPosX - 5.0 >= 0.0) ? fCoC_5 : 0.0;

 fCoC_4 = (fPosX - 4.0 >= 0.0) ? fCoC_4 : 0.0;

 fCoC_3 = (fPosX - 3.0 >= 0.0) ? fCoC_3 : 0.0;

 fCoC4 = (fPosX + 4.0 < g_vIMageSize.x) ? fCoC4 : 0.0;

 fCoC3 = (fPosX + 3.0 < g_vIMageSize.x) ? fCoC3 : 0.0;

 fCoC2 = (fPosX + 2.0 < g_vIMageSize.x) ? fCoC2 : 0.0;

 fCoC1 = (fPosX + 1.0 < g_vIMageSize.x) ? fCoC1 : 0.0;

 float fRealCoC_5 = min(fCoC_5, fCoC_4);

 float fRealCoC_4 = min(fCoC_4, fCoC_3);

 float fRealCoC_3 = min(fCoC_3, fCoC_2);

 float fRealCoC_2 = min(fCoC_2, fCoC_1);

Chapter 8 Implementing a Fast DDOF Solver 125

 float fRealCoC_1 = min(fCoC_1, fCoC0);

 float fRealCoC0 = min(fCoC0, fCoC1);

 float fRealCoC1 = min(fCoC1, fCoC2);

 float fRealCoC2 = min(fCoC2, fCoC3);

 float fRealCoC3 = min(fCoC3, fCoC4);

 float b_5 = fRealCoC_5 * fRealCoC_5;

 float b_4 = fRealCoC_4 * fRealCoC_4;

 float b_3 = fRealCoC_3 * fRealCoC_3;

 float b_2 = fRealCoC_2 * fRealCoC_2;

 float b_1 = fRealCoC_1 * fRealCoC_1;

 float b0 = fRealCoC0 * fRealCoC0;

 float b1 = fRealCoC1 * fRealCoC1;

 float b2 = fRealCoC2 * fRealCoC2;

 float b3 = fRealCoC3 * fRealCoC3;

 float3 abc_4 = float3(-b_5, 1.0 + b_4 + b_5, -b_4);

 float3 x_4 = txX.Load(i3LoadPos, int2(-4, 0)).xyz;

 float3 abc_3 = float3(-b_4, 1.0 + b_3 + b_4, -b_3);

 float3 x_3 = txX.Load(i3LoadPos, int2(-3, 0)).xyz;

 float3 abc_2 = float3(-b_3, 1.0 + b_2 + b_3, -b_2);

 float3 x_2 = txX.Load(i3LoadPos, int2(-2, 0)).xyz;

 float3 abc_1 = float3(-b_2, 1.0 + b_1 + b_2, -b_1);

 float3 x_1 = txX.Load(i3LoadPos, int2(-1, 0)).xyz;

 float3 abc0 = float3(-b_1, 1.0 + b0 + b_1, -b0);

 float3 x0 = txX.Load(i3LoadPos, int2(0, 0)).xyz;

 float3 abc1 = float3(-b0, 1.0 + b1 + b0, -b1);

126 Game Engine Gems

 float3 x1 = txX.Load(i3LoadPos, int2(1, 0)).xyz;

 float3 abc2 = float3(-b1, 1.0 + b2 + b1, -b2);

 float3 x2 = txX.Load(i3LoadPos, int2(2, 0)).xyz;

 float3 abc3 = float3(-b2, 1.0 + b3 + b2, -b3);

 float3 x3 = txX.Load(i3LoadPos, int2(3, 0)).xyz;

 float a_2 = -abc_3.x / abc_4.y;

 float g_2 = -abc_3.z / abc_2.y;

 float a_1 = -abc_2.x / abc_3.y;

 float g_1 = -abc_2.z / abc_1.y;

 float a0 = -abc0.x / abc_1.y;

 float g0 = -abc0.z / abc1.y;

 float a1 = -abc2.x / abc1.y;

 float g1 = -abc2.z / abc3.y;

 float3 l1_abc_pp = float3(a_2 * abc_4.x,

 abc_3. + a_2 * abc_4.z + g_2 * abc_2.x, g_2 * abc_2.z);

 float3 l1_x_pp = float3(x_3 + a_2 * x_4 + g_2 * x_2);

 float3 l1_abc_p = float3(a_1 * abc_3.x,

 abc_2.y + a_1 * abc_3.z + g_1 * abc_1.x, g_1 * abc_1.z);

 float3 l1_x_p = float3(x_2 + a_1 * x_3 + g_1 * x_1);

 float3 l1_abc_c = float3(a0 * abc_1.x,

 abc0.y + a0 * abc_1.z + g0 * abc1.x, g0 * abc1.z);

 float3 l1_x_c = float3(x0 + a0 * x_1 + g0 * x1);

 float3 l1_abc_n = float3(a1 * abc1.x,

 abc2.y + a1 * abc1.z + g1 * abc3.x g1 * abc3.z);

Chapter 8 Implementing a Fast DDOF Solver 127

 float3 l1_x_n = float3(x2 + a1 * x1 + g1 * x3);

 // Phase 2: Now solve for the intermediate-level

 // data we need to compute to go up to full resolution.

 int3 i3LoadPosC = int3(input.Pos.x * 0.25, input.Pos.y, 0);

 float3 l2_y0 = txYn.Load(i3l2_LoadPosC).xyz;

 float3 l2_y1 = txYn.Load(i3l2_LoadPosC, int2(1, 0)).xyz;

 float3 l2_y_1 = txYn.Load(i3l2_LoadPosC, int2(-1, 0)).xyz;

 float3 l2_y_2 = txYn.Load(i3l2_LoadPosC, int2(-2, 0)).xyz;

 float3 l1_y_c = l2_y0;

 float3 l1_y_p = (l1_x_p - l1_abc_p.x * l2_y_1

 - l1_abc_p.z * l2_y0) / l1_abc_p.y;

 float3 l1_y_pp = l2_y_1;

 float3 l1_y_n = (l1_x_n - l1_abc_n.x * l2_y0

 - l1_abc_n.z * l2_y1) / l1_abc_n.y;

 // Phase 3: Now use the intermediate solutions to solve

 // for the full result.

 float3 fRes3 = l2_y0;

 float3 fRes2 = (x_1 - abc_1.x * l1_y_p

 - abc_1.z * l1_y_c) / abc_1.y; //y_1

 float3 fRes1 = l1_y_p; //y_2

 float3 fRes0 = (x_3 - abc_3.x * l1_y_pp

 - abc_3.z * l1_y_p) / abc_3.y; //y_3

 float3 f3Res[4] = {fRes0, fRes1, fRes2, fRes3};

 return (float4(f3Res[uint(input.Pos.x) & 3], 0.0));

}

4. Stop at two or three unknowns instead of reducing it all down to just one unknown.

Given that the number of hardware threads in a modern GPU is in the thousands, this

actually makes sense because it keeps a lot more threads of a modern GPU busy compared

to going down to just one unknown. Cramer's rule is used to solve the resulting 2 × 2 or 3

× 3 equation systems.

128 Game Engine Gems

5. Optionally pack the evolving yi, and the ai, bi and ci; into just one fourchannel uint32

texture to further save memory and to gain speed since the number of texture operations

is cut down by a factor of two. This packing uses Shader Model 5 instructions (see Listing

8.3) and relies on the assumption that the xi values can be represented as 16-bit floating-

point values. It further assumes that one doesn't need the full mantissa of the 32-bit

floating-point values for storing ai, bi and ci, and it steals the six lowest mantissa bits of each

one to store a 16-bit xi, channel.

Listing 8.3. Packing/unpacking all solver variables into/from one rgab32 uint value.

/ Pack six floats into a uint4 variable. This steals six mantissa bits

// from the three. 32-bit FP values that hold abc to store x.

uint4 pack (float3 abc, float3 x)

{

 uint z = f3tof16(x.z);

 return (uint4(((asuint(abc.x) & 0xFFFFFFC0) | (z & 0x3F)),

 ((asuint(abc.y) & 0xFFFFFFC0) | ((z >> 6) & 0x3F)),

 ((asuint(abc.z) & 0xFFFFFFC0) | ((z >> 12) & 0x3F)),

 (f32tof16(x.x) + (f32tof16(x.y) << 16))));

}

struct ABC_X

{

 float3 abc;

 float3 x;

};

ABC_X unpack(uint4 d)

{

 ABC_X res;

 res.abc = asfloat(d.xyz & 0xFFFFFFC0);

 res.x.xy = float2(f16tof32(d.w), f16tof32(d.w >> 16));

 res.x.z = f16tof32(((d.x & 0x3F) + ((d.y & 0x3F) << 6) +

 ((d.z & 0x3F) << 12)));

Chapter 8 Implementing a Fast DDOF Solver 129

 return (res);

}

8.3 Results

Table 8.1 shows how various implementations of the DDOF solver perform at various
resolutions and how much memory each solver consumes. These performance numbers (run
on a system with an AMD HD 5870 GPU with 1 GB of video memory) show that the improved
solver presented in this gem outperforms the traditional solvers in terms of running time and
also in terms of memory requirements.

In the settings used in these tests, the packing shown in Listing 8.3 does not show any
obvious differences (see Figure 8.3). Small differences are revealed in Figure 8.4, which shows
the amplified absolute difference between the images in Figure 8.3. If these differences stay small
enough, then packing should be used in DirectX 11 rendering paths in games that implement
this gem.

Table 8.1. Comparison of solver efficiency.

Resolution Solver Running Time (ms) Memory (~MB)
1280×1024 Standard solver 2.46 90
1280×1024 Standard solver + Packing 1.97 70
1280×1024 Four-to-one reduction 1.92 50
1280×1024 Four-to-one reduction + Packing 1.87 40
1600×1200 Standard solver 3.66 132
1600×1200 Standard solver + Packing 2.93 102
1600×1200 Four-to-one reduction 2.87 73
1600×1200 Four-to-one reduction + Packing 2.75 58
1920×1200 Standard solver 4.31 158
1920×1200 Standard solver + Packing 3.43 122
1920×1200 Four-to-one reduction 3.36 88
1920×1200 Four-to-one reduction + Packing 3.23 70
2560×1600 Standard solver 7.48 281
2560×1600 Standard solver + Packing 5.97 219

130 Game Engine Gems

2560×1600 Four-to-one reduction 5.8 156
2560×1600 Four-to-one reduction + Packing 5.59 125

Figure 8.3. A comparison between images for which (a) packing was not used and (b) the packing
shown in Listing 8.3 was used.

Figure 8.4. Absolute difference between the images in Figure 8.3, multiplied by 255 and inverted.

References

[Kass et al. 2006] Michael Kass, Aaron Lefohn, and John Owens. "Interactive Depth of Field Using
Simulated Diffusion on a GPU." Technical report. Pixar Animation Studios, 2006. Available at
http://www.idav.ucdavis.edu/publications/print_pub? pub_id=898.

[Shishkovtsov and Rege 2010] Oles Shishkovtsov and Ashu Rege. "DX11 Effects in Metro 2033: The
Last Refuge." Game Developers Conference 2010. Available at

[Riguer et al. 2004] Guennadi Riguer, Natalya Tatarchuk, and John Isidoro. "Real-Time Depth of
Field Simulation." ShaderX2, edited by Wolfgang Engel. Plano, TX: Wordware, 2004. Available at
http://ati.amd.com/developer/shaderx/shaderx2_ real-timedepthoffieldsimulation.pdf.

Chapter 8 Implementing a Fast DDOF Solver 131

[Zhang et al. 2010] Yao Zhang, Jonathan Cohen, and John D. Owens, "Fast Tridiagonal Solvers on
the GPU." Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 2010. Available at http://www. idav.ucdavis.edu/func/retum_pdf?pub_id=978.

9

Chapter 9 Automatic Dynamic Stereoscopic 3D

Jason Hughes
Steel Penny Games

Stereoscopic rendering is not new. In film, it has been used for years to make experiences
more immersive and exciting, and indeed, the first theatrical showing of a 3D film was in 1922
[Zone 2007]. A cinematographer can design scenes for film that take advantage of the 3D
projection without unduly taxing the audience, intentionally avoiding the various inherent
issues that exist with a limited field projection of stereoscopic content. Further, an editor can
trim unwanted frames or even modify the content to mask objectionable content within a frame.

Interactive stereoscopic 3D (S3D), however, is fairly new territory. Those same problems
that filmmakers consciously avoid must be handled by clever programmers or designers.
Sometimes, this means changing some camera angles, or adjusting a few parameters in certain
areas of an environment. Sometimes this is not an option, or it may be infeasible to change the
content of a title for S3D purposes. It's likely that some visual issues that arise from player
control are better dealt with rather than avoided, such as window violations. While some
research is available to guide an implementation, practical examples that handle dynamic
environments well are hard to come by. This is an exciting time for game programmers: some
experimentation and creativity is actually required on our parts until best practices become
standard. Here follows the results of our work with Bluepoint Games in porting the excellent
Shadow of the Colossus and ICO to PlayStation 3 in full HD and S3D.

9.1 General Problems in S3D

All stereoscopic content, whether film or games, must be especially mindful of the
audience's experience. Some problems that must be avoided in any S3D experience are

134 Game Engine Gems

described in this section.

Window Violations

A window violation occurs when an object clips against the left or right edges of the screen
while not exactly at the focal plane distance. While this happens in front of and behind the focal
plane, it is more disturbing when in negative parallax (closer to the viewer). This very irritating,
unnatural feeling is the result of the brain failing to merge two images of an object that it
perceives partially but has no visual occlusion to account for the missing information. Figure
9.1 demonstrates a window violation.

Figure 9.1. A window violation occurs when one eye sees part of an object but the other does not.

Convergence Fatigue

Unlike when viewing 2D images, with S3D, the audience must use eye muscles to refocus
on objects as they change in depth. It is uncommon in natural settings for people to experience
radical changes in focal depth, certainly not for extended periods of time. This muscular fatigue
may not be noticed immediately, but once the viewer's eyes are stressed, they will be hard-
pressed to enjoy content further.

It is worth noting that the eye's angular adjustment effort decreases as objects grow more
distant and increases as they approach the viewer. With this in mind, it is generally preferable
to keep objects of interest at a distance rather than constantly poking out of the screen. This
reduces eye strain, but still yields a nice 3D effect.

The film industry has already learned that the audience becomes fatigued if rapid shot

Chapter 9 Automatic Dynamic Stereoscopic 3D 135

changes force a refocusing effort to view the scene. It is unclear whether this fatigue is due to
the eye muscles being unable to cope with continued rapid convergence changes or whether the
brain is more efficient at tracking objects spatially over time but perhaps must work harder to
identify objects initially and then tires quickly when constantly reparsing the scene from
different viewpoints. In any case, giving those shot changes relatively similar convergence
points from shot to shot helps reduce the stress placed on the audience.

Accommodation/Convergence Deviation

Another problem with S3D is when the brain interprets the focal distance to be
significantly closer or farther than the location of the TV screen. This happens when tension
placed on the muscles inside the eye that controls the focal point of the eyes differs significantly
from the expected tension placed on muscles outside the eye that controls angular adjustment
of the eyes. Figure 9.2 demonstrates a situation where accommodation and convergence are
different. When the brain notices these values being in conflict with daily experience, the
illusion of depth begins to break down. Related factors seem to involve the content being
displayed, the size of the screen, the distance that the viewer sits from the screen, and the spacing
between the viewer's eyes. It's complicated, but in short, don't push the effect too much, or it
becomes less convincing. For a deeper examination of visual fatigue and how people perceive
different content, see the report by Miksicek [2006].

Figure 9.2. Accommodation is the physical distance between the viewer and the display surface.
Convergence is the apparent distance between the observed object and the viewer.

136 Game Engine Gems

9.2 Problems in S3D Unique to Games

In addition to the issues above, S3D rendering engines need to take various other issues
into account in order to present a convincing image to each eye at interactive rates. The film
industry has an easier time with these problems than games do because the artist designing the
scene can ensure optimal viewing conditions for each frame of the movie. They can also afford
to devote many minutes worth of CPU cycles to each frame, whereas games get only a fraction
of a second to achieve acceptable results. Worse, games typically give the control to the player
and often do not have the luxury of predictably good viewing conditions in S3D for every frame.
A dynamic solution that is reactive to the current rendered scene would be ideal.

Keystone Distortions

It should be noted that simply rendering with two monoscopic projection matrices that tilt
inward around a forward axis creates keystone distortions. Figure 9.3 shows an exaggerated
example of how incorrectly set up viewing matrices appear. This kind of distortion is similar to
holding two sheets of paper slightly rotated inward, then overlapped in 3D-the intersection is a
line rather than a plane, and it warps the image incorrectly for stereoscopic viewing. For the
brain to merge or fuse two images correctly requires that the focal plane be aligned in a coplanar
fashion between the two images. Instead, the correct projection matrices are asymmetrical, off-
axis projection matrices. These contain shearing so that the corners of the focal plane exactly
match between the left and right stereo images but have a different point of origin. We don't
reproduce the math here because it can be found elsewhere with better descriptions of the
derivation [Bourke 1999, Schertenleib 2010, Jones et al. 2001].

Figure 9.3. Keystone distortion, also known as the tombstone effect, occurs when a rectangle is
warped into a trapezoidal shape, stretching the image. This can be seen when pointing a projector
at a wall at any nonperpendicular angle. This image shows how two monoscopic projections tilted
inward produce a final image that the brain cannot merge as a single checkerboard square.

Chapter 9 Automatic Dynamic Stereoscopic 3D 137

2D Image-Based Effects

A staple of modern monoscopic games are the image-based effects, commonly called "post
effects." These cheap adjustments to rendered images make up for the lack of supersampling
hardware, low-resolution rendering buffers, inability for game hardware to render high-quality
motion blurs, poor-quality lighting and shadowing with image-space occlusion mapping,
blooms and glows, tone mapping, color gamut alterations, etc. It is a major component of a
good-quality rendering engine but, unfortunately, is no longer as valuable in S3D. Many of
these tricks do not really work well when the left/right images deviate significantly because the
alterations are from each projection's fixed perspective. Blurring around the edges of objects,
for example, in an antialiasing pass causes those edges to register more poorly with the viewer.
Depending on the effect, it can be quite jarring or strange to see pixels that appear to be floating
or smeared in space because they do not seem to fit. The result can be somewhat akin to window
violations in the middle of the screen and, in large enough numbers, can be very distracting.
When considering that post effects take twice the processing power to modify both images, a
suggestion is to dial back these effects during S3D rendering or remove them entirely since the
hardware is already being pushed twice as hard just to render the scene for both eyes separately.

HUD and Subtitles

The most difficult problem to solve for S3D and games is the heads-up display (HUD).
User interfaces (Uls) generally have some issues with current-generation LCD monitors that do
not change colors rapidly enough to prevent ghosting between eyes (but this technological
problem will probably improve in the next few years to become less of an issue), which makes
interesting 3D Uls difficult to enjoy with high-contrast colors.

A systemic problem, though, is where to draw subtitles and UI elements in the game. If
they are drawn at the focal plane, then there is no ghosting on LCD monitors since both left and
right images display the UI pixels in the same place. However, any object in 3D that draws in
front of the focal plane at that location acts like a window violation because the UI is (typically)
rendered last and drawn over that object. The sort order feels very wrong, as if a chunk of the
object was carved out and a billboard was placed in space right at the focal plane. And since the
parts of the near object that are occluded differ, the occluded edges appear like window
violations over the UI_ All in all, the experience is very disruptive.

The two other alternatives are to always render the UI in the world, or to move the UI
distance based on the nearest pixel. In short, neither works well. Rendering a UI in world space

138 Game Engine Gems

can look good if the UI is composed of 3D objects, but it can be occluded by things in the world
coming between the eye and the UI. This can be a problem for gameplay and may irritate users.
The second alternative, moving the UI dynamically, creates tremendous eye strain for the player
because the UI is constantly flying forward to stay in front of other objects. This is very
distracting, and it causes tremendous ghosting artifacts on current LCD monitors.

The best way to handle subtitles and Uls is to remove them as much as possible from
gameplay or ensure that the action where they are present exists entirely in positive parallax
(farther away than the monitor).

9.3 Dynamic Controls

For purposes of this discussion, the two parameters that can be varied are parallax
separation and focal distance. The parallax separation, sometimes referred to as distortion, is
the degree of separation between the left and right stereo cameras, where a value of zero presents
the viewer with a 2D image, and a value of one is a maximally stereo-separated image (i.e., the
outside frustum planes are parallel with the view vector). Obviously, the higher this parameter
is set, the more separated the renderings are, and the more powerful the 3D effect.

The focal distance is the distance between the rendered eye point and the monitor surface
where left and right images converge perfectly. Anything rendered at this depth appears to the
viewer to be exactly on the plane of the monitor. A convenient method for checking the focal
plane in an S3D LCD using shutter glasses is to remove the glasses-an object at focal distance
appears completely solid on screen, while objects in front or behind the focal plane have
increasingly wide double-images as their depth deviates from the focal plane.

These are not truly independent variables, however. To the viewer, the strength of the
effect depends on several factors, most importantly, where the nearest objects are in the scene.
Understanding the focal distance intuitively is important. Visualize a large box that surrounds
the entire rendered scene. Mental ly place this box around your monitor. By decreasing the focal
distance, we slide the box farther away from the viewer, which causes more objects in the scene
to appear behind the focal plane (the monitor) and fewer to appear in front. By increasing the
focal distance, we slide the box toward the viewer and bring more objects in front of the focal
plane (the monitor).

Chapter 9 Automatic Dynamic Stereoscopic 3D 139

9.4 A Simple Dynamic S3D Camera

The first method with which we experimented was a rudimentary system that recognized
the importance of the player's character. It has flaws, but it helped us discover how important
it is to understand the concept of the "comfortable viewing zone" surrounding the focal plane,
and it's easy to look at without inducing fatigue.

Camera Target Tracking

The most obvious method to try was to set the focal distance to the view-space distance to
the actor that the camera is tracking. This makes sense because most of the time, the player is
watching the character that the camera is watching. Keeping that actor at a comfortable viewing
distance (at the plane of the TV) reduces convergence fatigue-even when making "jump cuts"
to different cameras, the player does not need to refocus. It was readily apparent that this is not
sufficient by itself. In ICO, the actor can sometimes be far from the camera, and other times be
very close. If the parallax separation is held constant, the degree of stereo deviation that objects
in the foreground and background undergo can be extreme and tiring to watch, particularly if
something else comes into frame near the camera.

Dynamic Parallax Separation

The next step was to control the parallax separation parameter based on the focal distance.
Based on our experimentation, we found that the usable range of parallax separation values fell
between 0.010 and 0.350, depending on the content of the scene and the focal distance.
Although this was an improvement, it was also quickly recognized that more effort would be
necessary to make a truly excellent S3D experience. However, it was clear that a dynamic
parallax separation was necessary, and it was implemented this way first to better understand
the problem. The following formula was implemented in both ICO and Shadow of the Colossus
initially, with some adjustments to match in-game units:

ParallaxSeparation = min(max((FocalDistince - 300.0f) /

 4800.0f, 0.0f) + 0.05f 0.35f);

In plain English, the parallax separation varies linearly between 0.050 and 0.350 as the focal
distance goes from 300 cm to 4800 cm. This was based on the observation that the character,
when close to the camera, did not need much parallax separation to make the backgrounds feel

140 Game Engine Gems

3D. However, in a vast and open room, when the character was far from the camera and no
walls were near the camera, the parallax separation value needed to be cranked up to show much
3D detail at large focal distances. The problem with this setup is that anytime a torch or rock or
wall comes into the frame from the side, the parallax separation is so great that the object seems
to protrude incredibly far out of the TV, and the viewer almost certainly sees window violations.
Without taking into account objects pushed heavily toward the viewer, there would inevitably
be uncomfortable areas in each game. See Figure 9.4 for an example of this kind of artifact.

Figure 9.4. The simple algorithm always keeps the character in focus. Generally, this is pleasing,
except that objects nearer to the camera appear disturbingly close to the viewer. Worse yet, extreme
window violations are possible, such as with the tree on the right. (Image courtesy of Sony Computer
Entertainment, Inc.)

In the end, we realized that the relationship between focal distance and parallax separation
is not simple because for any given bothersome scene, there were two ideal settings for these
parameters. Nearly any scene could look good by either significantly reducing the strength of
the effect by lowering the parallax separation value or by moving the focal plane to the nearest
object and reducing the parallax separation value less.

9.5 Content-Adaptive Feedback

Shadow of the Colossus had more issues with S3D because the camera was free to roam
with the player, whereas in ICO, the camera was provided specific paths based on the player's
position in the world. This demanded a better solution that was aware of exactly what the player

Chapter 9 Automatic Dynamic Stereoscopic 3D 141

was seeing and how he would perceive the depth information presented to him. Figure 9.5
summarizes our observations.

Figure 9.5. The focal plane, where the TV is, has a range indicated in blue where comfortable
viewing occurs with minimal stress. The red areas show where discomfort occurs. Notice the
tolerance for extremely near objects is very low, whereas distant objects are acceptable.

This new algorithm is based on several observations about how people react to S3D in
interactive environments, especially taking into account the areas where the effect was too
strong or too weak to give the correct feeling of grandeur or subtlety without causing the player
stress. What we noticed was that objects in the distance were generally acceptable with any
parallax separation value, as long as their stereoscopic deviation "felt reasonable" given the
distance the player would actually cover to reach them in the game. For example,
overemphasizing the parallax separation could be dizzying at times, especially when standing
on the edge of a short cliff that the player could easily jump down-a heavy handed use of S3D
incorrectly indicated to players that certain areas were perilously high.

The other observation was that objects that come between the focal plane and the camera
with high stereoscopic deviation tend to upset players, especially when they reach the left or
right edges of the screen (window violations). Other researchers have suggested variable-width
black bars on the sides of the screen to solve the window violation problem [Gunnewiek and
Vandewalle 2010], but this is not an ideal solution. While this works for film, it is not ideal for
games. Doing this causes a loss of effective resolution for the player, still does not address the
issue that objects can feel uncomfortably close at times, and requires tracking all objects that
might be drawn to determine which is closest to the camera and visible. This is not an operation
most games typically do, and it is not a reasonable operation for world geometry that may be
extremely large and sprawling within a single mesh. The only good way to determine the closest

142 Game Engine Gems

object is to do so by examining the depth buffer, at which point we recommend a better solution
anyway.

Our approach is to categorize all pixels into three zones: comfortable, far, and close. Then,
we use this information to adjust the focal plane nearer to the viewer as needed to force more
of the pixels that are currently close into a category corresponding to farther away. This is
accomplished by capturing the depth buffer from the renderer just before applying post effects
or UI displays, then measuring the distance for each pixel and adding to a zone counter based
on its categorization. Figure 9.6 shows an example of a typical scene with this algorithm
selecting the parameters. On the PlayStation 3, this can be done quickly on SPUs, and it can be
done on GPUs for other platforms.

Figure 9.6. The adaptive dynamic algorithm remains focused on the character in most cases,
adjusting the parallax separation based on the ratio of pixels in each category. This screenshot has
mostly pixels in the far category. Consequently, the algorithm increases the parallax separation to
increase the sense of depth. Notice that the UI elements are at the focal distance as well, but look
good to the player because everything else is at or behind them in depth. (Image courtesy of Sony
Computer Entertainment, Inc.)

To simplify the construction of this comfortable zone, we define the halfwidth of the
comfortable zone to extend halfway between the focal distance and the closest pixel drawn (last
frame). This is clamped to the focal distance in case the closest pixel is farther away. Since the
comfortable zone is symmetrical around the focal plane, the transition between the comfortable
zone and far zone is trivial to compute.

Once categorized, we know the ratios of close pixels to comfortable pixels to far pixels. We
assume all the pixels in the near zone are going to cause some discomfort if they are given any
significant stereoscopic deviation. Given the pixel distribution, we have to react to it by

Chapter 9 Automatic Dynamic Stereoscopic 3D 143

changing S3D parameters to render it better next frame. (The one-frame delay in setting S3D
parameters is unfortunate, but game logic can be instrumented to identify hard cuts of the
camera a priori and force the S3D parameters back to a nearly 2D state, which are otherwise
distressing glitches.)

Similar to the first algorithm presented, the parallax separation value is adjusted based on
the focal distance. However, two important changes allow for content-adaptive behavior: the
focal distance is reduced quickly when the near zone has a lot of pixels in it, and the parallax
separation is computed based on a normalized weighting of the pixel depth distribution. This
additional control dimension is crucial because it allows us to tune the strength of the
stereoscopic effect based on the ratio of near and far pixels. Figure 9.7 shows how the adaptive
algorithm handles near pixels to avoid window violations.

Figure 9.7. Note by the slight blurry appearance in this superimposed S3D image, the character is
not at the focal distance. Indeed, it is set to the rear hooves of the horse because the pixels in the
ground plane are in the near category. Since near pixels are heavily weighted, they cause the focal
plane to move closer to the camera. The character being slightly beyond the focal plane is not
typically noticed by the player. Notice how much parallax separation affects objects in the distance;
even the front hooves are noticeably separated. (Image courtesy of Sony Computer Entertainment,
Inc.)

There are two situations worth tuning for: focal plane is near the camera, and focal plane
is relatively far from the camera. In each case, we want to specify how near and far pixels affect
the parallax separation, so we use the focal distance to smoothly interpolate between two
different weightings. (Weighting the distribution is necessary because a few pixels in the near
zone are very, very important to react strongly to when the focal plane is far away, whereas this

144 Game Engine Gems

is not so important when the focal plane is very close to the viewer. This nonuniform response
to pixels at certain depths is crucial for good results. See Figure 9.8 for details.) The resultant
weighting is a three-vector (near, comfortable, far) that is multiplied componentwise against
the pixel distribution three-vector and then renormalized. Finally, take the dot product between
the weighted vector and a three-vector of parallax separation values, each element of which
corresponds to the strength of the S3D effect at the current focal distance if all pixels were to
fall exclusively inside that zone. This gives context to the overall stereoscopic rendering based
on how a scene would look if the focal plane is near or far and based on how many pixels are
too close for comfort, how many are very far from the player, or any combination thereof.
Figure 9.9 shows a situation where window violations are avoided with the adaptive dynamic
algorithm.

Figure 9.8. This shows actual values in use for two shipped games. As the focal plane floats between
these endpoints, the values shown interpolate smoothly to prevent jarring S3D pops.

Chapter 9 Automatic Dynamic Stereoscopic 3D 145

Figure 9.9. In this case, a large rock is very close to the camera. Setting the focal distance farther
away than the rock would increase the pixels that would fall in the near category, causing the focal
distance to shorten significantly. This self-correcting feedback is what allows for extremely
dynamic environments to be handled comfortably. It effectively stops window violations in most
cases, and it prevents uncomfortable protrusions toward the viewer. (Image courtesy of Sony
Computer Entertainment, Inc.)

Another small but critical detail is that a single frame of objectionable content is not
especially noticeable, but some circumstances could exist where the focal distance and parallax
separation could bounce around almost randomly if objects came into and out of frame rapidly,
such as birds passing by the camera or a horse that comes into frame at certain parts of an
animation. The best way to handle these situations is to allow "deadening" of the 3D effect
quickly, which tends not to bother the player but makes increases to the effect more gradual. In
this way, the chance of objectionable content is minimized immediately, and the increase of the
stereoscopic effect is subtle rather than harsh. Our specific implementation allows for the focal
distance and parallax separation to decrease instantaneously, whereas they may only increase
in proportion to their current value, and we have seen good results from this.

One problem that we ran into while implementing this algorithm was lowvalued
oscillation. Assuming the units for the near and far focal distances match your game, the
oscillation should be observed at less than one percent for focal distance and parallax separation.
At this low level, no visual artifacts are apparent. However, if the near and far focal distances do
not coincide with reasonable camera-to-focal-object distances, or if the weights on each
category are made more extreme, stability cannot be certain. This is because the depth of each

146 Game Engine Gems

rendered frame influences the depth of the next rendered frame. Heavy weights and poorly
tuned distances can cause extreme jumps in the focal distance, causing an oscillation. If there is
a visible artifact that appears to be an oscillation, it is an indication that some of the control
parameters are incorrect.

References

[Zone 2007] Ray Zone. Stereoscopic Cinema & the Origins of 3-D Film. University Press of Kentucky,
2007.

[Miksicek 2006] Frantisek Miksicek. "Causes of Visual Fatigue and its Improvements in
Stereoscopy." Technical Report No. DCSE/TR-2006-04, University of West Bohemia in Pilsen, 2006.

[Bourke 1999] Paul Bourke. "Calculating Stereo Pairs." 1999. Available at http://local. wasp.uwa.
edu.au/-pbourke/miscellaneous/stereographics/stereorender/.

[Schertenleib 2010] Sebastien Schertenleib. "PlayStation 3 Making Stereoscopic 3D Games." Sony
Computer Entertainment Europe, 2010. Available at http://www. technology.scee.net/files/
presentations/Stereoscopic_3D/PS3_Making_Stereoscopic_3 D_Games.pdf.

[Jones et al. 2001] Graham Jones, Delman Lee, Nicolas Holliman, and David Ezra. "Controlling
Perceived Depth in Stereoscopic Images." Technical Report, Sharp Laboratories of Europe Ltd., 2001.

[Gunnewiek and Vandewalle 2010] Rene Klein Gunnewiek and Patrick Vandewalle. "How to
Display 3D Content Realistically." Technical Report, Philips Research Laboratories, VPQM, 2010.

10

Chapter 10 Practical Stereo Rendering

Matthew Johnson
Advanced Micro Devices, Inc.

This chapter discusses practical stereo rendering techniques for modern game engines.
New graphics cards by AMD and Nvidia enable application developers to utilize stereoscopic
technology in their game engines. Stereo features are enabled by middleware, driver extensions,
or the 3D API itself. In addition, new consumer-grade stereoscopic displays are coming to the
market, fueled by the excitement over 3D movies such as Avatar and How to Train Your Dragon.

10.1 Introduction to Stereo 3D

In the real world, people use a variety of methods to perceive depth, including object size,
shadows, object occlusion, and other cues. Additionally, having two eyes allows a person to
perceive depth by generating a pair of images that are subsequently merged into one image by
the human brain. This is called binocular vision.

The eyes have several mechanisms to focus and merge a stereoscopic pair into one image:

 Binocular disparity. The horizontal displacement between the eyes (called the interaxial or

interpupillary distance) introduces a shift between the images viewed by the eyes. This can

be observed, for example, by focusing on an object and alternately closing the left and right

eye-the focused object is shifted left and right.

 Convergence. Convergence arises through the ability to rotate the eyes inward to help focus

on an object in an effort to merge the stereo pair. This often causes discomfort for the

148 Game Engine Gems

person, especially if the object is very close. The opposite of this is divergence, but human

eyes are only capable of slightly diverging.

 Accommodation. Accommodation is the ability of the eye to focus on an object by changing

the curvature of the lens. Accommodation is often simulated today even without stereo.

For example, game engines that utilize depth-offield algorithms often apply a postprocess

blur to objects that are deemed out of focus.

The stereo algorithm described in this article takes advantage of binocular disparity to
achieve the desired stereo effect.

10.2 Overview of Stereo Displays

There are several types of new stereo displays coming to the market. In the past, these
monitors and projectors typically used proprietary display formats to encode stereoscopic data,
requiring special software and hardware to drive them. Newer standards, such as Display Port
1.2 and HDMI 1.4, define several required stereo formats that must be supported by qualifying
hardware. The availability of common specifications simplifies the implementation of stereo for
middleware and application vendors.

The principle challenge in stereo displays is ensuring that the correct image is transmitted
to the correct eye. Anaglyph glasses are a relatively low-cost solution to this problem. These
glasses are designed to filter certain colors so that each eye can receive only one set of colors. If
any of those colors "bleed" into the other eye, a ghosting artifact can occur. In addition, it is
difficult to get a full range of colors across the spectrum. Despite this fact, anaglyph glasses are
constantly improving with certain technologies or color combinations that diminish these
shortcomings.

Because of the disadvantages of anaglyph glasses, newer stereo displays are often bundled
with liquid crystal shutter glasses. These glasses work by alternating between one eye and the
other (by applying a voltage to one of the lenses to darken it) at a fast refresh rate. Shutter glasses
have the advantage of supporting the full color range.

The main disadvantage with shuttering is the flickering that is often observed at lower
refresh rates. This is becoming less of an issue as higher refresh rate displays become available.
For an HDMI 1.4-compliant stereo display, the highdefinition mode (720p) is supported up to

Chapter 10 Practical Stereo Rendering 149

120 Hz (or 60 Hz per eye), while the mode (1080p) is supported at 48 Hz (24 Hz per eye). A 24-
Hz refresh rate is considered the baseline in television and interactive media.

Several standards exist for storing the stereo pair content to be delivered to the target
display. Frame packing is the most promising format, enabling applications to use full-
resolution back buffers for both the left eye and right eye.

A few of the common stereo display formats are shown in Figure 10.1. Some formats, such
as side-by-side (half) and top-bottom (half), can be generated with the same display bandwidth
and resolution by using half the horizontal or vertical resolution per eye.

Figure 10.1. Common stereo display formats. Frame packing, side-by-side, and topbottom are all
supported by HDMI 1.4.

10.3 Introduction to Rendering Stereo

The goal of the game engine is to generate the left-eye and right-eye images and render
them to a stereo-capable display surface. The displacement between each projected point caused
by rendering to the left eye and right eye is called parallax. The displacement in the horizontal
direction is called horizontal parallax. If the left and right eyes are rotated towards the focus
(look-at) point, vertical parallax can occur. Since convergence causes discomfort in the eye, this
method (known as "toe-in") is avoided.

150 Game Engine Gems

The difference between the three horizontal parallax modes is shown in Figure 10.2.
Objects with positive parallax appear behind the screen, while objects with negative parallax
appear in front of the screen. When a point is projected to the same position on a plane for the
left eye and right eye, it is known as zero parallax. The goal for positioning the camera is to have
the scene or object of focus centered at zero parallax, with the front of the object at negative
parallax and the back of the object at positive parallax, while ensuring that, at most, the negative
parallax does not exceed the interaxial distance. Another alternative is to avoid negative parallax
completely and set the near plane distance equal to the zero-parallax distance.

Figure 10.2. A stereo camera configuration utilizing two parallel asymmetric frustums. At zero
horizontal parallax, the left eye and right eye overlap completely.

In real life, eye convergence introduces vertical parallax, but this can also cause eye
discomfort. To avoid vertical parallax, the frustums should not be rotated to the same look-at
point. Using parallel symmetric frustums avoids vertical parallax, but at the cost of introducing
excessive negative parallax. Therefore, the preferred way of rendering stereoscopic scenes is
utilizing two parallel asymmetric frustums.

Chapter 10 Practical Stereo Rendering 151

10.4 The Mathematics of Stereo Views and Projection

The first step in rendering a scene for stereo is to calculate the desired horizontal parallax.
In this chapter, we assume a left-handed coordinate system (positive z is "behind" the screen)
in camera space.

The general rule of thumb is for the interaxial width Wa between the eyes to be equal to
1/30th of the distance to the horizontal zero-parallax plane, where θ ≈ 1.9° (the angle between
the focus point and each eye). This relationship can be visualized in Figure 10.3. The
manufacturers of shutter glasses generally prefer a maximum parallax of θ = 1.5°, which comes
out to roughly 1/38th the distance to zero parallax.

Figure 10.3. The relationship between camera distances and horizontal parallax, based on the
projected view-space point P.

As an example, suppose that the bounding sphere of a scene in view space has center C
and radius 45.0 and that we need to calculate the interaxial distance necessary to achieve zero
parallax at the center of the scene. In view space, the camera location is (0, 0, 0). Therefore, the
distance from the camera to the center of the sphere is Cz, and thus z = Cz. For a maximum
parallax of θ =1.5°, we have the relationship

tan
1.5°

2
=

𝑊𝑊𝑎𝑎

2𝑧𝑧
 .

152 Game Engine Gems

So Wa ≈ 0.0262z. Thus, one can find the desired interaxial distance given a horizontal parallax
distance of zero.

Setting the near plane n of the viewing frustum can be done based on the desired acceptable
negative parallax. The maximum negative parallax should not exceed the interaxial distance. A
relationship between these distances can be established by using similar triangles and limits.

As another example, we calculate the parallax at z = z0, z = z0/2, z = ∞ and z = 0. By
definition, the parallax at z0 is zero. The parallax can be solved for the other values by similar
triangles:

𝑊𝑊0

𝑊𝑊𝑎𝑎
=

𝑧𝑧 − 𝑧𝑧0

𝑧𝑧
 ,

𝑊𝑊0 = 𝑊𝑊𝑎𝑎 �1 −
𝑧𝑧0

𝑧𝑧
� .

For z = z0/2,

𝑊𝑊0 = 𝑊𝑊𝑎𝑎 �1 −
𝑧𝑧0

𝑧𝑧
� = − 𝑊𝑊𝑎𝑎.

For z = ∞,

𝑊𝑊0 = lim
𝑧𝑧→∞

𝑊𝑊𝑎𝑎 �1 −
𝑧𝑧0

𝑧𝑧
� = 𝑊𝑊𝑎𝑎.

For z = 0,

𝑊𝑊0 = lim
𝑧𝑧→0

𝑊𝑊𝑎𝑎 �1 −
𝑧𝑧0

𝑧𝑧
� = −∞.

As z approaches ∞, the horizontal parallax approaches the interaxial distance, which is
perceived by the eyes as a far-away object. As z approaches zero, the horizontal parallax
approaches -∞. For this reason, introducing excessive negative parallax in the scene adds the
risk that the eyes will not be able to converge the two images. To prevent this, set the near plane
to zo/2, which results in a negative horizontal parallax equal to the interaxial distance.

In most applications, the camera is designed for monoscopic viewing and is modified for
left and right eyes only when stereo rendering is enabled. Given a camera at the monoscopic
(center) position, it is straightforward to calculate the left and right plane offsets at the near

Chapter 10 Practical Stereo Rendering 153

plane based on the camera offset. Figure 10.4 shows the offset for the left camera. Note that
shifting the camera horizontally results in an equal shift at the zero-parallax line.

Figure 111.4. Offsetting the left and right frustum planes to form an asymmetric matrix with zero
parallax. (For clarity, the right eye is not shown.)

To set up the left and right cameras, offset the left and right cameras horizontally by half
the interaxial distance. For projection, offset the left and right frustum planes for each eye in
order to setup the asymmetric frustum.

Given a horizontal camera offset of ΔWa, we can calculate the ΔWn offset for the left and
right projection planes by using similar triangles, as follows:

∆𝑊𝑊𝑛𝑛

∆𝑊𝑊𝑎𝑎
=

𝑛𝑛
𝑧𝑧0

 .

Therefore,

∆𝑊𝑊𝑛𝑛 =
𝑛𝑛
𝑧𝑧0

 ∆𝑊𝑊𝑎𝑎.

154 Game Engine Gems

Listing 10.1 outlines the pseudocode for modifying the view frustum and camera
transformation for stereoscopic viewing.

Listing 10.1. Pseudocode for camera structure (left-handed space).

// Camera structure (left-handle space).

struct Camera

{

 float3 up; // camera up direction (normalized)

 float3 dir; // camera look-at direction (normalized)

 float3 pos; // camera position

 float aspect; //aspect ratio (w/h)

 float fov; //horizontal field of view (radians)

 float Wa; // camera interaxial distance (stereo)

 float z0; // camera distance to zero parallax

 float zn; // camera frustum near plane (screen projection)

 float zf; // camera frustum far plane

 float l; // camera frustum left plane

 float r; // camera frustum right plane

 float t; // camera frustum top plane

 float b; // camera frustum bottom plane

};

// Create a view-projection matrix from camera.

Matrix getViewProjMatrix(const Camera& camera)

{

 matrix viewMatrix;

 matrix projMatrix;

 matrix viewProjMatrix;

 // Build look-at view transformation matrix.

 getCameraMatrix(&viewMatrix, &camera.pos, &camera.dir, &camera.up);

Chapter 10 Practical Stereo Rendering 155

 // Build off-center projection transformation matrix.

 getPerspectiveMatrix(&projMatrix, camera.l, camera.r, camera.b,

 camera.t, camera.zn, camera.zf);

 // Multiply view matrix by projection matrix.

 matrixMultiply(&viewProjMatrix, &viewMatrix, &viewProjMatrix);

 return (viewProjMatrix);

}

// Creating center/left/right view-projection matrices.

void buildViewProjectionMatrices()

{

 // Get current monoscopic camera in scene.

 Camera camera = getCurrentCamera();

 // Create right vector from normalized up and direction vector.

 float3 right = Cross(&camera.up, &camera.dir);

 // Calculate horizontal camera offsets and frustum plane offsets.

 float3 cameraOffset = 0.5f * camera.Wa * right;

 float planeOffset = 0.5f * camera.Wa * camera.zn / camera.z0;

 // Create left eye camera form center camera.

 Camera cameraLeft = camera;

 cameraLeft.pos -= cameraOffset;

 cameraLeft.l += planeOffset;

 cameraLeft.r += planeOffset;

 // Create right eye camera form center camera.

 Camera cameraRight = camera;

 cameraRight.pos += 0.5f * camera.Wa * right;

 cameraLeft.l -= planeOffset;

 cameraLeft.r -= planeOffset;

156 Game Engine Gems

 // Store camera view-projection matrices.

 g_viewProjMatrix = getViewProjMatrix(camera);

 g_viewProjMatrixLeft = getViewProjMatrix(cameraLeft);

 g_viewProjMatrxRight = getViewProjMatrix(cameraRight);

}

10.5 Using Geometry Shader to Render Stereo Pairs

On some stereo display formats, the left eye and right eye may be packed in the same back
buffer, and we can use viewports to control which eye to render to. In Direct3D 10 and OpenGL
4.1, the geometry shader can be used to generate geometry as well as redirect output to a specific
viewport. Instead of rendering stereo in multiple passes, one can use the geometry shader to
generate geometry for each eye. This rendering technique may improve performance, especially
if the geometry shader is being used anyway.

One method could be to use geometry amplification to do this. This requires that we
perform the view-projection transformations in the geometry shader, which may not be as
efficient as instancing if the geometry shader is the bottleneck. Another way is to use geometry
instancing and write a pass-through geometry shader. Sample HLSL code for Direct3D 10 is
shown in Listing 10.2. To render with instancing, set the geometry instanced count to two, as
follows:

Listing 10.2. This HLSL code renders a stereo pair using the geometry shader with instancing.

pD3DDevice->DrawIndexedInstanced(numIndices, 2, 0, 0, 0);

matrix WorldViewProjLeft;

matrix WorldViewProjRight;

struct PS_INPUT

{

 float4 Pos: SV_POSITION;

 float4 Color: COLOR;

Chapter 10 Practical Stereo Rendering 157

 uint InstanceId: INSTANCE;

};

struct GS_OUTPUT

{

 float4 Pos: SV_POSITION;

 float4 Color: COLOR;

 uint InstanceId: INSTANCE;

 uint Viewport: SV_ViewportArrayIndex;

};

PS_INPUT VS(float4 Pos:POSITION, float4 Color:COLOR,

 uint InstanceId:SV_InstanceID)

{

 PS_INPUT input;

 if (InstanceId == 0)

 {

 input.Pos = mul(input.Pos, WorldViewProjLeft);

 }

 else

 {

 input.Pos = mul(input.Pos, WorldViewProjRight);

 }

 input.Color = Color;

 input.InstanceId = InstanceId;

 return (input);

}

[maxvertexcount(3)]

void GSStereo(triangle PS_INPUT In[3],

 INOUT TriangleStream<GS_OUTPUT> TriStream)

158 Game Engine Gems

{

 GS_OUTPUT output;

 for (int v = 0; v < 3; v++)

 {

 output.Viewport = In[v].InstanceId;

 output.InstanceId = In[v].InstanceId;

 output.Color = In[v].Color;

 output.Pos = In[v].Pos;

 TriStream.Append(output);

 }

}

References

[AMD 2009] AMD. "AMD Advances 3D Entertainment: Demonstrates Blu-Ray Stereoscopic 3D
Playback at 2010 International CES". December 7, 2009. Available at http://www.amd.com/
us/press-releases/Pages/amd-3d-2009dec7.aspx.

[Lengyel2004] Eric Lengyel. Mathematics for 3D Game Programming & Computer Graphics.
Hingham, MA: Charles River Media, 2004.

[McAllister 2006] David F. McAllister. "Display Technology: Stereo & 3D Display Technologies."
Encyclopedia of Imaging Science and Technology, Edited by Joseph P. Hornak, Wiley, 2006.

[HDMI2010] HDMI Licensing, LLC. "HDMI Licensing, LLC Makes 3D Portion of HDMI
Specification Version 1.4 Available for Public Download." February 3, 2010. Available at
http://www.hdmi.org/press/pressrelease.aspx?prid=119.

[National Instruments 2010] National Instruments. "3D Video: One of Seven New Features to Test
in HDMI 1.4." 2010. Available at http://zone.ni.com/devzone/cda/ tut/p/id/ 11077.

[Ramm 1997] Andy Ramm. "Stereoscopic Imaging." Dr. Dobbs Journal. September 1, 1997. Available
at http://www.drdobbs.com/184410279.

[Bourke 1999] Paul Bourke. "Calculating Stereo Pairs." July 1999. Available at http:// local.wasp.uwa.
edu.au/pbourke/miscellaneous/stereographics/stereorender/.

11

Chapter 11 Making 3D Stereoscopic Games

Sebastien Schertenleib
Sony Computer Entertainment Europe

11.1 Introduction

With the large variety of 3D content being made available (sports events, movies, TV,
photos, games, etc.), stereoscopic 3D is gaining momentum. With the support for 3D content
on the PC and game consoles such as the PlayStation 3 and Nintendo 3DS, it is likely that it will
become even more widespread. In this chapter, we present some topics that need to be
considered when creating or converting a game to stereoscopic 3D. We also present some
optimization techniques that are targeted to improving both the run-time performance and
visual fidelity.

11.2 How Stereoscopic 3D Works

Stereoscopic 3D is produced by creating two separate images (one for each eye) that are
then displayed on a 3D screen, as shown in Figure 11.1. Depending on the technology in place,
those two images are then separated for the correct eyes through some means. The three major
approaches are the following:

 Active shutter glasses. The screen alternately displays the left and right images and sends a

signal to the LCD screen in the lens for each eye, blocking or transmitting the view as

necessary.

160 Game Engine Gems

 Passive polarized glasses. The screen is paired with adjacent right and left images using

orthogonal polarizations. The filter on each eye blocks the orthogonally polarized light,

allowing each eye to see only the intended image.

 Parallax barrier. The screen features a layer of material with some slits placed in front of

it, allowing each eye to see a different set of pixels without glasses, but with restricted view

angles.

Figure 11.1. Creating a stereoscopic 3D scene.

11.3 How to Set Up the Virtual 3D Cameras

Contrary to other media, video games have the luxury of being able to control the camera
properties directly. As we mentioned earlier, stereoscopic 3D requires that we set up two
distinct cameras. One possible solution is illustrated in Figure 11.2(a), where we use a simple
offset to move the left and right cameras. This approach results in a large portion of each image
being visible to only one eye, as shown by the arrows. This tends to generate strong eye strain.
Therefore, an alternative approach that is sometimes used with a stereoscopic camcorder is to
toe in both cameras by rotating them inward, as shown in Figure 11.2(b). However, the

Chapter 11 Making 3D Stereoscopic Games 161

convergence is no longer parallel to the screen, producing a vertical parallax deviation when the
camera rotates upward or downward. This is unnatural and uncomfortable for the user. To
circumvent these shortcomings, the scheme depicted in Figure 11.2(c) consists of using parallel
cameras with an asymmetric projection that minimizes the zone covered by a single image while
avoiding vertical parallax. This provides a much more comfortable experience.

Figure 11.2. (a) A simple offset is applied to the left and right cameras. (b) Both cameras are rotated
inward. (c) The cameras have parallel view directions by use asymmetric projections.
Configurations (a) and (b) lead to issues that deteriorate the stereoscopic 3D experience.
Configuration (c) avoids those shortcomings by using asymmetric projection matrices.

With this model, the usual projection matrix Mproj given by

𝑀𝑀proj =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

2𝑛𝑛
𝑟𝑟 − 𝑙𝑙

0
𝑟𝑟 + 𝑙𝑙
𝑟𝑟 − 𝑙𝑙

0

0
2𝑛𝑛

𝑡𝑡 − 𝑏𝑏
𝑡𝑡 + 𝑏𝑏
𝑡𝑡 − 𝑏𝑏

0

0 0
𝑛𝑛 + 𝑓𝑓
𝑛𝑛 − 𝑓𝑓

2𝑛𝑛𝑓𝑓
𝑛𝑛 − 𝑓𝑓

0 0 −1 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

changes because it is no longer the case that r + l = 0 and t + b = 0. The off-center view frustum
that we must use is shown in Figure 11.3.

162 Game Engine Gems

Figure 11.3. The view volume for an asymmetric frustum. The left and right values represent the
minimum and maximum x values of the view volume, and the bottom and top values represent the
minimum and maximum y values of the view volume, respectively.

Having the ability to alter the camera properties every frame provides a much larger degree
of freedom for controlling the 3D scene. For instance, we can adjust the convergence of the
cameras to control the depth and size of the objects within the environment. The convergence
corresponds to areas of the left and right projected images that superimpose perfectly and
therefore have zero parallax, appearing in the plane of the screen. We can also adjust the
interaxial distance, which is the separation between both cameras, in order to push back
foreground objects. This is very important because it allows us to offer a much more
comfortable experience.

11.4 Safe Area

When creating a stereoscopic scene, we need to take into account where objects are located
within the 3D space. To make it more comfortable to watch, it is important that we take into
account the zone of comfort, shown in Figure 11.4.

The screen acts as a window, and most of the content usually resides inside the screen
space, which is the volume of space behind the screen. Content that comes out of the screen is
usually small and fast. This also affects the heads-up display (HUD), which can be moved
slightly inside the screen space since, otherwise, it might be difficult to focus on the main scene.
To reduce eye strain, it is also important to avoid any window violation that occurs when an
object touches the edges of the stereo window, resulting in an object being cut off more in one
eye than the other. A trivial solution is to alter the frustum culling so that the objects visible to

Chapter 11 Making 3D Stereoscopic Games 163

a single eye are properly culled, as illustrated in Figure 11.5. Here, the frustum origin is moved
closer to the screen by the distance Δz given by

∆𝑧𝑧 =
𝑠𝑠𝑑𝑑

𝑠𝑠 + 2𝑑𝑑 𝑡𝑡𝑎𝑎𝑛𝑛(𝑓𝑓𝑓𝑓𝑓𝑓/2)

where d is the distance to the viewing plane, s is the separation distance between the left and
right cameras, and fov is the horizontal field-of-view angle.

Figure 11.4. Objects very close to and far from the image plane are difficult to focus on and are
uncomfortable. Ideally, most of the scene should reside in the safe and comfortable area.

164 Game Engine Gems

Figure 11.5. Frustum culling for stereoscopic 3D. Instead of combining the view frustum of both
cameras, we want to cull any object that would be visible only to one camera, reducing window
violations.

It is also possible to go one step further and use a dynamic floating window that has a more
negative parallax than the closest object, where we avoid that part of an object that becomes
more visible to one eye, as shown in Figure 11.6. This creates the illusion of moving the screen
surface forward. It is also possible to minimize the difference between the frame and its surface
using a graduation or motion blur at the corners of the screen.

Figure 11.6. Without a floating window, some objects might be more visible to one eye, but by
using a floating window we can prevent such situations.

Chapter 11 Making 3D Stereoscopic Games 165

We might also have to consider limiting the maximum parallax to prevent any divergence
that occurs when the separation of an object for both eyes on the screen is larger than the gap
between our eyes Thankfully, the HDMI 1.4 specifications allow retrieving the size of the TV,
which can be used to calibrate the camera separation. Depending on the screen size, the number
of pixels N that are contained within this distance varies as

N =
𝑑𝑑interocular × 𝑤𝑤pixels

𝑤𝑤screen
 ,

where dinterocular is the distance between the eyes measured in centimeters, wpixeis is the width of
the screen in pixels, and wscreen is the width of the screen measured in centimeters. For example,
for a 46-inch TV and a resolution of 1920 × 1080 pixels, the number of pixels N for a typical
human interocular distance is about 122 pixels.

11.5 Technical Considerations

Creating a stereoscopic 3D scene impacts the run-time performance because there is an
additional workload involved. At full resolution, this implies rendering the scene twice. For
game engines that are heavily pixel-bound, such as many deferred renderers, this might be
critical. Also, the frame buffer and depth buffer need to be larger, especially when using the
frame-packing mode exposed by the HDMI 1.4 specification, as shown in Figure 11.7.

Figure 11.7. Frame packing at 720p.

166 Game Engine Gems

To overcome this additional workload some hardware provides an internal scaler that lets
us keep the same memory footprint and pixel count as a native monoscopic application with a
display mode such as 640x1470. An additional problem is related to swapping the front and
back buffers. Monoscopic games can choose to either wait for the next vertical blank or perform
an immediate flip to keep a higher frame rate at a cost of possible screen tearing. With
stereoscopic games that rely on the frame-packing mode, doing so would generate tearing in
one eye only, which is very uncomfortable to watch. As a consequence, it might be a better
choice to run at a slower fixed frequency.

11.6 Same Scene, Both Eyes, and How to Optimize

When rendering the scenes, the data needs to be synchronized for both eyes to prevent
artifacts. Thankfully, some elements of the scene are not view-dependent and can therefore be
shared and computed once. Consider the following typical game loop:

while (notdead)

{

 updateSimulation(time);

 renderShadowMaps();

 renderScene(LeftEye, RightEye);

 renderHUD(LeftEye, RightEye);

 vsyncThenFlip();

}

Figure 11.8 presents ways to minimize the impact for both the GPU and the CPU by ensuring that
view-independent render targets are shared. Some effects that are view-dependent, such as
reflections, can sometimes be shared for both views if the surface covered is relatively small, as it
often is for mirrors. This leads to artifacts, but they might be acceptable. On some platforms like
the PlayStation 3, it is also possible to perform some effects asynchronously on the SPU, such as
cascaded shadow maps. In particular, the CPU overhead can also be reduced by caching the relevant
rendering states.

Chapter 11 Making 3D Stereoscopic Games 167

Figure 11.8. Scene management where view-independent render targets are computed once.

It is also possible to use multiple render targets (MRTs) to write to both left and right frame
buffers in a single pass. This technique can be used to write to both render targets in a single
pass when rendering objects at the screen level or when applying full-screen postprocessing
effects, such as color enhancement or crosstalk reduction. This is depicted in Figure 11.9.

Figure 11.9. Multiple render targets allow us to write to both the left and right frame buffers in a
single pass.

Some GPUs flush the rendering pipeline when a new surface is bound as a render target.
This might lead to a performance hit if the renderer frequently swaps surfaces for the left and
right eyes. A simple solution for avoiding this penalty consists of binding a single surface for

168 Game Engine Gems

both eyes and then moving the viewport between left and right rendering positions, as
illustrated in Listing 11.1.

Listing 11.1. This code demonstrates how the images for the left and right eyes can be combined in
a single render target by moving the viewport.

setRenderStates();

setLeftEyeProjection();

setLeftEyeViewport(); //surface.x = 0, surface.y = 0

Drawcall();

setRightEyeProjection();

setLeftEyeViewport(); //surface.x = 0, surface.y = 0

Drawcall();

// You can carry on with the same eye for the next object to

// minimize the change fo projection matrix and viewport.

setRenderStates();

Drawcall();

setLeftEyeProjection();

setLeftEyeViewport();

Drawcall();

11.7 Scene Traversal

To improve the scene traversal for both cameras, it is possible to take into account the
similarities between both views. This can be used to improve the scene management at a lower
granularity. In fact, if we assume that a point in the relative right-eye viewing position is Plight =
(x, y, z), then the observation that the corresponding point for the relative left-eye viewing
position is Pleft = (x - e, y, z), where e is the camera separation, allows us to improve the scene
traversal, where a normal vector N to a polygon in one eye is also valid for the other eye. This
could lead to improved hidden surface removal and could also help us discard objects for both
eyes using conservative occluders for occlusion queries. This helps minimize the CPU and GPU

Chapter 11 Making 3D Stereoscopic Games 169

workload. On the PlayStation 3 platform, a common approach is to perform backface culling
using SPU programs. Therefore, it is possible to perform backface culling for both views in a
single pass. This function consists of performing a dot product and testing the result. If we
compute the view separately, this involves the following operations:

2 × {3 × multiplication + 3 × addition + 1 × comparison}

= 6 ×multiplication + 6 ×addition + 2 ×comparison.

This can be improved, and we need to consider the following cases:

 Polygon is front-facing for both views.

 Polygon is back-facing for both views.

 Polygon is front-facing for one view and back-facing for the other view.

Let N be the normal of a triangle, let VL = (xL, y, z) be the direction from one of the triangle's
vertices to the left camera position, and let VR = (xR, y, z) be the direction from the same vertex
to the right camera position. The triangle is frontfacing for the left camera if N · VL > 0, and it
is front-facing for the right camera if N · VR > 0. Using xL = xR - e, we need

max{𝑁𝑁𝑥𝑥𝑥𝑥𝑅𝑅𝑁𝑁𝑥𝑥(𝑥𝑥𝑅𝑅 − 𝑒𝑒)} > −𝑁𝑁𝑦𝑦𝑦𝑦 − 𝑁𝑁𝑧𝑧𝑧𝑧 .

This means that in the worst case, it takes

4 × multiplication + 4 × addition + 1 × maximum + 1 × comparison

Operations. For checking the back-facing triangle for both views, the efficiency of this test is
improved by around 33 percent.

11.8 Supporting Both Monoscopic and Stereoscopic Versions

If a game supports both stereoscopic and monoscopic rendering, the stereoscopic version
may have to reduce the scene complexity by having more aggressive level of detail (geometry,
assets, shaders) and possibly some small objects or postprocessing effects disabled. Thankfully,
the human visual system does not only use the differences between what it sees in each eye to
judge depth, it also uses the similarities to improve the resolution. In other words, reducing the
game video resolution in stereoscopic games has less of an impact than with monoscopic games,

170 Game Engine Gems

as long as the texture and antialiasing filters are kept optimal.

In this chapter, we focus on creating 3D scenes by using distinct cameras. It is also possible
to reconstruct the 3D scene using a single camera and generate the parallax from the depth map
and color separation, which can be performed very efficiently on modern GPUs1 [Carucci and
Schobel 2010]. The stereoscopic image can be created by rendering an image from one view-
projection matrix, which can then be projected pixel by pixel to a second view-projection matrix
using both the depth map and color information generated by the single view. One of the
motivations behind this approach is to keep the impact of stereoscopic rendering as low as
possible to avoid compromises in terms of resolution, details, or frame rate.

11.9 Visual Quality

Some of the techniques used in monoscopic games to improve run-time performance,
such as view-dependent billboards, might not work very well for close objects, as the left and
right quads would face their own cameras at different angles. It is also important to avoid
scintillating pixels as much as possible. There fore, keeping good texture filtering and
antialiasing ensures a good correlation between both images by reducing the difference of the
pixel intensities. The human visual system extracts depth information by interpreting 3D clues
from a 2D picture, such as a difference in contrast. This means that large untextured areas lack
such information, and a sky filled with many clouds produces a better result than a uniform
blue sky, for instance. Moreover, and this is more of an issue with active shutter glasses, a large
localized contrast is likely to produce ghosting in the image (crosstalk).

Stereo Coherence

Both images need to be coherent in order to avoid side effects. For instance, if both images
have a different contrast, which can happen with postprocessing effects such as tone mapping,
then there is a risk of producing the Pulfrich effect. This phenomenon is due to the signal for
the darker image being received later by the brain than for the brighter image, and the difference
in timing creates a parallax that introduces a depth component. Figure 11.10 illustrates this
behavior with a circle rotating at the screen distance and one eye looking through filter (such
as sun-glasses). Here, the eye that looks through the filter receives the image with a slight delay,
leading to the impression that the circle rotates around the up axis.

Chapter 11 Making 3D Stereoscopic Games 171

Figure 11.10. The Pulfrich effect.

Other effects, such as view-dependent reflections, can also alter the stereo coherence.

Fast Action

The brain needs some time to accommodate the stereoscopic viewing in order to register
the effect. As a result, very fast-moving objects might be difficult to interpret and can cause
discomfort to the user.

3D Slider

Using a 3D slider allows the user to reduce the stereoscopic effect to a comfortable level.
The slider controls the camera properties for interaxial distance and convergence. For instance,
reducing the interaxial distance makes foreground objects move further away, toward the
comfortable area (see Figure 11.4), while reducing the convergence moves the objects closer.
The user might adjust it to accommodate the screen size, the distance he is sitting from the
screen, or just for personal tastes.

Color Enhancement

With active shutter glasses, the complete image is generally darkened due to the LCD
brightness level available on current 3D glasses. It is possible to minimize this problem by
implementing a fullscreen postprocessing pass that increases the quality, but it has to be
handled with care because the increased contrast can increase the crosstalk between both
images.

172 Game Engine Gems

Crosstalk Reduction

Crosstalk is a side effect where the left and right image channels leak into each other, as
shown in Figure 11.11. Some techniques can be applied to reduce this problem by analyzing the
color intensity for each image and subtracting them from the frame buffer before sending the
picture to the screen. This is done by creating calibration matrices that can be used to correct
the picture. The concept consists of fetching the left and right scenes in order to extract the
desired and unintended color intensities so that we can counterbalance the expected intensity
leakage, as shown in Figure 11.12. This can be implemented using multiple render targets
during a fullscreen postprocessing pass. This usually produces good results, but unfortunately,
there is a need to have specific matrices tuned to each display, making it difficult to implement
on a wide range of devices.

Figure 11.11. Intensity leakage, where a remnant from the left image is visible in the right view.

Chapter 11 Making 3D Stereoscopic Games 173

Figure 11.12. Crosstalk reduction using a set of calibration matrices.

11.10 Going One Step Further

Many game devices now offer support for a front-facing camera. These open new
possibilities through face tracking, where "ortho-stereo" viewing with headtracked virtual
reality (VR) can be produced, as shown in Figure 11.13. This provides the ability to follow the
user so that we can adapt the 3D scene based on his current location. We can also consider
retargeting stereoscopic 3D by adopting a nonlinear disparity mapping based on visual
importance of scene elements [Lang et al. 2010]. In games, elements such as the main character
could be provided to the system to improve the overall experience. The idea is to improve the
3D experience by ensuring that areas where the user is likely to focus are in the comfortable
area and also to avoid divergence on far away objects. For instance, it is possible to fix the depth
for some objects or to apply depth of field for objects outside the convergence zone.

174 Game Engine Gems

Figure 11.13. Ortho-stereo viewing with head-tracked VR.

11.11 Conclusion

Converting from a monoscopic game to stereoscopic 3D requires less than twice the
amount of processing but requires some optimization for the additional rendering overhead.
However, the runtime performance is only one component within a stereoscopic 3D game, and
more effort is needed to ensure the experience is comfortable to watch. A direct port of a
monoscopic game might not create the best experience, and ideally, a stereoscopic version
would be conceived in the early stages of development.

References

[Carucci and Schobel 2010] Francesco Carucci and Jens Schobel. "AAA Stereo-3D in CryEngine."
Game Developers Conference Europe, 2010.

[Lang et al. 2010] Manuel Lang, Alexander Hornung, Oliver Wang, Steven Poulakos, Aljoscha
Smolic, and Markus Gross. "Nonlinear Disparity Mapping for Stereoscopic 3D." ACM Transactions
on Graphics 29:4 (July 2010).

12
Chapter 12 A Generic Multiview Rendering Engine Architecture

M. Adil Yalcin
Tolga Capin
Department of Computer Engineering, Bilkent University

12.1 Introduction

Conventional monitors render a single image, which is generally observed by the two eyes
simultaneously. Yet, the eyes observe the world from slightly different positions and form
different images. This separation between the eyes provides an important depth cue in the real
world. Multiview rendering aims to exploit this fundamental feature of our vision system for
enhanced 3D rendering.

Technologies that allow us to send different images to the two eyes have been around for
years, but it is only now that they can reach the consumer level with higher usability [Bowman
et al. 2004]. The existing technologies vary among the different types of 3D displays, and they
include shutter glasses, binocular head-mounted displays, and the more recent and popular
autostereoscopic displays that require no special glasses.

Recent techniques for multiview rendering differ in terms of visual characteristics, fidelity,
and hardware requirements. Notably, multiview rendering engines should be able to support
more than two simultaneous views, following recent 3D display technologies that can mix a
higher number of simultaneous views than traditional stereo view [Dodgson 2005].

Currently, many available multiview applications are configured for the stereo-view case,
and the routines that manage stereo rendering are generally implemented as low-level features
targeted toward specific APIs and displays. We present a higher-level multiview rendering
engine architecture that is generic, robust, and easily configurable for various 3D display

176 Game Engine Gems

platforms, as illustrated in Figure 12.1. The architecture simplifies the use of multiview
components of a rendering engine and it solves the problems of rendering separate views and
merging them for the target display. It also includes support for multiview rendering
optimization techniques, such as view-specific level-of-detail systems and pipeline
modifications. Additional discussions include insights on further extensions, design guidelines,
and other possible uses of the presented architecture.

Figure 12.1. A torus rendered for different basic 3Ddisplay platforms.

Most of the discussions, terminologies, and guidelines in this chapter follow OpenGL
conventions. The implementation of the architecture is included in the OpenREng library1, an
open-source rendering engine based on modern desktop and mobile OpenGL specifications
with multiview rendering support, and the sample applications are built using this library.

12.2 Analyzing Multiview Displays

At its core, rendering for 3D displays aims to generate separate images (views) for separate
eyes. All types of 3D displays, summarized below, create the illusion of 3D space based on
multiplexing the different images for each eye, whether it be temporally, spatially, or in color.
It is a challenge to support all types of displays transparently to application implementations in
a way that hides the details of the low-level resource management required for multiview
rendering.

Displays that require wearing special eyeglasses can be subdivided into the following

Chapter 12 A Generic Multiview Rendering Engine Architecture 177

categories (as also shown in Figure 12.2):

Figure 12.2. Stereo rendering techniques that require wearing glasses. From left to right, anaglyph
glasses, polarized glasses, shutter glasses, and head-mounted displays.

 Anaglyph glasses. These are based on multiplexing color channels. The two views are

filtered with different colors and then superimposed to achieve the final image.

 Head-mounted displays (HMDs). These are based on displaying both views synchronously

to separate display surfaces, typically as miniaturized LCD, organic light-emitting diode

(OLED), or CRT displays.

178 Game Engine Gems

 Shutter glasses. These are based on temporal multiplexing of the two views. These glasses

work by alternatively closing the left or right eye in sync with the refresh rate of the display,

and the display alternately displays a different view for each eye.

 Polarized glasses. With passive and active variants, these glasses are based on presenting

and superimposing the two views onto the same screen. The viewer wears a special type of

eyeglasses that contain filters in different orientations.

While these displays require special hardware, another type of 3D display, called an
autostereoscopic display, creates the 3D effect without any special eyeglasses. Autostereoscopic
displays operate by emitting a different image toward each eye of the viewer to create the
binocular effect. This is achieved by aligning an optical element on the surface of the screen
(normally an LCD or OLED) to redirect light rays for each eye. A composite image that
superimposes the two views is rendered by the display subpixels, but only the correct view is
directed to the corresponding eye.

There are two common types of optical filter, a lenticular sheet and a parallax barrier. A
lenticular sheet consists of small lenses having a special shape that refract the light in different
directions. A parallax barrier is essentially a mask with openings that allow light to pass through
only in certain directions. These two technologies are illustrated in Figure 12.3. In both cases,
the intensity of the light rays passing through the filter changes as a function of the viewing
angle, as if the light is directionally projected. The pixels for both eyes are combined in a single
rendered image, but each eye sees the array of display pixels from a different angle and thus sees
only a fraction of the pixels, those precisely conveying the correct left or right view.

Chapter 12 A Generic Multiview Rendering Engine Architecture 179

Figure 12.3. Autostereoscopic displays: a lenticular sheet (left) and a parallax barrier (right).

The number of views supported by autostereoscopic displays varies. The common case is
two-view, which is generally called stereo-view or stereorendering. Yet, some autostereoscopic
3D displays can render 4, 8, or 16 or more views simultaneously. This allows the user to move
his head side to side and observe the 3D content from a greater number of viewpoints. Another
basic variable is the size of the display. Three-dimensional TVs, desktop LCD displays, and even
mobile devices with multiview support are becoming popular and accessible to the mass market.

As a result, it is a challenge to build applications that run on these different types of devices
and 3D displays in a transparent way. There is a need for a multiview rendering architecture
that hides the details of multiplexing and displaying processes for each type of display.

12.3 The Architecture

The architecture we present consists of the following:

 An extensible multiview camera abstraction.

 An extensible multiview compositor abstraction.

 A configurable multiview buffer that holds intermediate view-dependent rendering results.

 Rendering pipeline modifications to support multiview rendering.

180 Game Engine Gems

 Level-of-detail implementations for multiview rendering.

To be able to support both single-view and multiview rendering seamlessly, the multiview
system architecture is integrated into a viewport abstraction over display surfaces. This further
allows multiview rendering in multiple viewports on the screen, even with different multiview
configurations for each multiview viewport, as shown in Figure 12.4. With this approach, you
can add picture-inpicture multiview regions to your screen, or you can show your single-view
2D graphical user interface (GUI) elements over multiview 3D content by rendering it only a
single time after the multiview content is merged into the frame buffer. Briefly, with this
approach, you have control over where and how you want your multiview content to be
rendered. An overview of our architecture is shown in Figure 12.5.

Figure 12.4. The same scene rendered to different viewports with different multiview configurations:
anaglyph using color-mode (bottom-left), parallax using both off-target and on-target (stenciling),
on-target-wiggle, and on-target-separated.

Chapter 12 A Generic Multiview Rendering Engine Architecture 181

Multiview rendering is enabled by attaching a multiview camera, a multiview buffer, and
a multiview compositor to a viewport in a render window. Since most of these components are
configurable on their own and provide abstraction over a distinct set of features, the system can
be adjusted to fit into many target scenarios. At render time, the multiview rendering pipeline
is activated if the attached multiview components support the same number of views. As shown
in Figure 12.5, the scene is first rendered multiple times after activating a specific camera view
and a specific view buffer target. This generates the rendering content to be used by the attached
multiview compositor, which outputs its result to the region of the rendered viewport. The last
step is performed by the operating system, which swaps the final frame buffer holding the
multiview content to be shown on the target displays.

Figure 12.5. Overview of the multiview rendering architecture.

The sample code provided in Listing 12.1 can add full support for anaglyphbased stereo-
view rendering using our architecture without any other modifications to the application code.

Listing 12.1. Setting up a basic multiview rendering pipeline in an application.

CameraStereoView& camera(CameraStereoView::create(*camNode));
// Set standard pareamters.
// (aspect ratio, far_near dist., field-of-view etc.

camera.setEyeSeparation(0.3); //stereo-specific
camera.setFocalDistance(25.0); //stereo-specific
MVBuffer_Cfg mvbParams;

mvbParams.viewCount = 2;
mvbParams.type = MVBufferType_Ontarget;

182 Game Engine Gems

mvbParams.offtarget.colorFormat = ImageFormat_RGBA;
mvbParams.offtarget.sharedDepthStencilTargets = true;
mvbParams.offtarget.sharedFrameBuffer = true;

// Attach the components to viewport.
RSys.getViewport(0)->mCamera = &camera;
RSys.getViewport(0)->attachMVCompositor(new MVC_Anaglyph_OnTarget);
RSys.getViewport(0)->attachMVBuffer(new MultiViewBuffer, mvbParams);

12.4 The Multiview Camera

Multiview rendering requires each of the views to be rendered with view offset parameters,
so that the eyes can receive the correct 3D images. To ease the control of cameras in multiview
configurations, our architecture provides a multiview camera concept that is integrated into our
basic multiview rendering pipeline.

To be able to easily manipulate cameras within a generic multiview architecture, we define
a single interface, the multiview camera. This interface allows for specialization of different
configurations through class inheritance. Implementations can integrate most of the multiview-
specific functionality (e.g., activating a specific view) in a generic camera class, and single-view
cameras can therefore be treated as simple multiview cameras.

As usual, the camera object is used to identify view and projection transformation matrices
that are applied to 3D mesh vertices. The view matrix depends on both the camera position and
the multiview camera parameters that offset the view position from a reference camera
transformation. The same approach applies to the projection matrix-both basic intrinsic
parameters (such as field of view, near and far clip plane distances, and aspect ratio) and
multiview configuration parameters (such as focal length) can affect the final result.

In our design, a single multiview camera object aims to reflect a group of perspective-
projection cameras. Each view is rendered using perspective projection, which implies that the
multiview camera has the properties of a perspective camera and can thus inherit from a
perspective camera component, as shown in Listing 12.2. Intuitively, in multiview
configurations, one wants to be able to control a single camera object that would internally
calculate all view-specific parameters with respect to the base camera position and orientation.
The viewspecific perspective projection and view transformation are generated using an active
view number, and this active view number needs to be automatically managed by the main

Chapter 12 A Generic Multiview Rendering Engine Architecture 183

renderer. Internal camera parameters are specified by extending the multiview camera interface
and defining the required parameters that affect the view and projection matrix setup.

Also, each specific multiview camera implementation can define a single bounding volume
to be used for one-time object culling over all views. The actual geometry covered inside a
multiview volume is likely to be nonconvex, which can make precise intersection tests with the
scene bounding volumes computationally less efficient. To set a single, shared culling frustum
for a multiview camera, a larger frustum that covers the multiview volume needs to be set up.
The corners of a suitable approximation for an extended multiview culling frustum can be
composed from the outermost corners of each view-specific frustum.

Listing 12.2. Projection and view matrix management for stereo rendering.

// Base Camera interface provides basic multiview operations.
class Camera
{
public:

 // Get/set aspect ratio, near-far distance, field of view etc.
 virtual uchar getViewCount() const; //returns 1 as default
 virtual void setActiveView(uchar viewIndex); //default no-op
 virtual const Matrix4& getViewMatrix() const;
 const Matrix4& getProjectionMatrix() const;
 const BoundingVolume& getFrustum() const;

protected:
 mutable Matrix4 mProjMatrix_Cache;
 mutable BoundingVolume mFrustum_Cache;
 mutable bool mProjMatrix_Dirty, mFrustum_Dirty;

 virtual void updateProjMatrix() const = 0;
 virtual void updateFrustum() const = 0;
};

class CameraPerspective: public Camera
{
 //...
};

class CameraMultiView: public CameraPerspective
{

184 Game Engine Gems

public:
 void setActiveView(Size viewIndex);

protected:
 uchar mActiveView;
};

class CameraStereoView: public CameraMultiView
{
public:

 // Set/get focal distance and eye separation.
 const Matrix4& getViewMatrix() const;

protected:
 float mFocalDistance, mEyeSeparation;

 void updateProjectMatrix() const;
};

The remainder of this section focuses on the special case of stereo cameras and describes
the basic parameters that can allow easy and intuitive manipulation of the camera matrices. The
concepts described in this section can be extended to multiview configurations that require
more views.

As shown in Figure 12.6, different approaches can be applied when creating stereo image
pairs. In the figure, d denotes the separation between the eyes. Parallel and oriented frustums
use the basic symmetrical perspective projection setup for each view and offset the individual
camera positions (and the camera orientations, in the oriented frustum case). The skewed
frustum approach modifies the perspective projection matrix instead of updating the camera
orientation, so the two image planes are parallel to the zero-parallax plane.

The camera view position offset depends on the right direction vector of the base
multiview camera and the d parameter. If the base camera is assumed to be in the middle of the
individual view points, the offset distance is simply d/2 for each view. To generate skewed
frustum projection pairs, assuming that the frustum can be specified with left-right, bottom-
top, and near-far values, as is done for the OpenGL function glFrustum(), only the left and
right values need to be modified. The offset Δx for these values can be calculated using the
formula

Chapter 12 A Generic Multiview Rendering Engine Architecture 185

Figure 12.6. Basic approaches for setting up stereo camera projection frustum pairs.

∆𝑥𝑥 =
𝑑𝑑𝑛𝑛
2𝑓𝑓

 ,

where n is the distance to the near plane, and f is the focal distance. Note that the projection
skew offset Ax is added for the right camera and subtracted for the left camera.

186 Game Engine Gems

Figure 12.7 shows a simple diagram that can be used to derive the relationship among the
angle shift s, the eye separation d, half field-of-view angle θ, and the focal distance f. By using
trigonometric relationships and the fact that lines intersect at the point p in the figure, the
following equation can be derived:

Figure 12.7. Derivation of the relationship between the angle shift s, the eye separation d, and the
focal distance f.

𝑓𝑓 =
𝑑𝑑(1 − tan2 𝜃𝜃 tan2 𝑠𝑠)
2 tan 𝑠𝑠 (1 + tan2 𝜃𝜃)

As expected, a smaller angle shift s results in a larger focal distance, and the eye separation
parameter d affects the focal distance linearly.

12.5 The Multiview Buffer

Multiview rendering requires rendering separate views to distinct targets so that they can
be mixed as required. The multiview buffer concept in this architecture aims to encapsulate
important properties of the render targets that can be used in multiview pipelines.

The instances of multiview buffers are created by the application and attached to the
viewports using multiview buffer configuration parameters. These parameters are designed to
allow easy high-level configuration of internal resources (such as textures, render buffers, and
frame buffers) that will be created. Although the multiview buffer concept is not designed for

Chapter 12 A Generic Multiview Rendering Engine Architecture 187

extensibility through class inheritance, the parameters can provide the required robustness to
the application developer and can be extended by updating this single interface when required.

After analyzing possible multiview configurations, we have observed that there are two
basic types of multiview buffers:

 On-target buffers for which we render to the viewport's render target directly.

 Off-target buffers that create and manage their own resources as render targets.

An on-target multiview buffer uses the attached viewport's render surface instead of
creating any new (offscreen) surfaces. A final compositing phase may not be needed when an
on-target multiview buffer is used because the multiview rendering output is stored in a single
surface. The rendering pipeline can still be specialized for per-view operations using the
multiview compositor attachments. For example, to achieve on-target anaglyph-based
rendering, an attached compositor can select per-view color write modes, in turn separating the
color channels of each view, or a compositor can select different rendering regions on the same
surface. Also, OpenGL quad-buffer stereo mode can be automatically managed as an on-target
multiview buffer since no additional surfaces need to be set up other than the operating system
window surface, and its usage depends on target surface's native support for left and right view
buffering.

An off-target multiview buffer renders to internally manage offscreen surfaces instead of
the attached viewport's render surface, and it can thus be configured more flexibly and
independently from the target viewport. Offscreen rendering, inherent in off-target multiview
buffers, allows rendering the content of each view to different surfaces (such as textures). The
application viewport surface is later updated with the composite image generated by the
attached multiview compositor. If the composition (merge) step of the multiview display device
requires that complex patterns be sampled from each view, as is common in lenticular-based
displays, or if the per-view outputs need to be stored in separate resources with different
configurations (sizes, component types, etc.) as a multiview optimization step, using an off-
target multiview buffers is required.

188 Game Engine Gems

Some additional aspects of off-target buffer configurations are the following:

 The color channel targets need to be separated for each view.

 The depth and stencil targets can be shared between different views if the view-specific

images are rendered sequentially. Clearing depth/stencil buffers after rendering has been

completed for each view ensures that each view has its own consistent depth/stencil buffer.

 Specific to OpenGL, a multiview buffer can be assigned a single frame buffer, as opposed

to switching frame buffer objects in each view, and the texture attachments may be

dynamic. Rendering performance may differ depending on the hardware and the

rendering order used.

 For off-target buffers, the sizes of internal render surfaces are based on the attached

viewport render surface size since the internal view-specific surfaces are later merged into

the viewport render surface.

 The multiview buffers can apply additional level-of-detail settings. Possible approaches are

discussed in Section 12.8.

12.6 The Multiview Compositor

The multiview compositor component is responsible for merging a given offtarget
multiview buffer (the render data for specific views) into the target viewport, and it can also be
used to define view-specific rendering states. Since the compositing logic is heavily dependent
on the target hardware configuration, our architecture supports an extensible multiview
compositor design, allowing the programmer to define hardware-specific view-merge routines
by inheriting from a base class interface.

The composition phase requires that a multiview buffer provide the rendering results of
the different views in separate render targets. Thus, when an on-target multiview buffer is used,
there is no need to define a compositing method. Yet, using an off-target multiview buffer and
multiview compositor provides a more flexible mechanism, while introducing only slight data,
computation, and management overheads.

Since the multiview buffers use GPU textures to store render results, the multiview

Chapter 12 A Generic Multiview Rendering Engine Architecture 189

compositors can process the texture data on the GPU with shaders, as shown in Listings 12.3
and 12.4. Using a shader-driven approach, the view buffers can be upsampled or downsampled
in the shaders, using available texture filtering options provided by the GPUs (such as nearest
or linear filtering).

Listing 12.3. A sample vertex shader for a parallax-based multiview rendering composition phase.

in vec2 vertexIn;

out vec2 textureCoord;

void main()

{

 textureCoord = vertexIn.xy * 0.5 + 0.5;

 glPosition = vec4(vertexIn.xy, 0.0, 1.0);

}

Listing 12.4. A sample fragment shader for a parallax-based multiview rendering composition
phase.

uniform sampler2D viewL;
uniform sampler2D viewR;
varying vec2 textureCoord;

void main()
{
 vec4 colorL = texture2D(viewL, textureCoord);
 vec4 colorR = texture2D(viewR, textureCoord);

 // Creating the stripe pattern for left-right view.
 gl_FragColor = colorR;
 if (mod(gl_FragColor.x, 2.0) > 0.5) gl_FragColor = colorL;
}

190 Game Engine Gems

12.7 Rendering Management

Given the basic multiview components, rendering an object for a specific view is achieved
through the following steps:

 Activate a specific view on a multiview camera and update the projection and view

matrices.

 Activate a specific view on a multiview buffer.

 Activate view-specific object materials and geometries, as part of an object level-of-detail

(LOD) system (see Section 12.8).

After all objects are rendered to all of the views, the multiview compositor for the viewport
can process the view outputs and generate the final multiview image.

Figure 12.8. Rendering order considerations for multiview pipelines.

Once the rendering requirements of an object-view pair are known, there are two options
for rendering the complete scene, as shown in Figure 12.8. In the first case, a specific view is
activated only once, and all of the visible objects are rendered for that view. This process is
continued until all of the views are completed, and such an approach keeps the frame target
"hot" to avoid frequent frame buffer swapping. In the second case, each object is activated only
once, and it is rendered to all viewports sequentially, this time keeping the object "hot." This
approach can reduce vertex buffer or render state switches if view-specific geometry/render
state data is not set up. Also, with this approach, the camera should cache projection and view

Chapter 12 A Generic Multiview Rendering Engine Architecture 191

matrix values for each view since the active view is changed very frequently. Depending on the
setup of the scene and the number of views, the fastest approach may differ. A mixed approach
is also possible, where certain meshes in the scene are processed once into multiple views and
the rest are rendered as a view-specific batch.

Shared Data between Different Views

It is possible to make use of the coherence between different views during rendering as follows:

 Most importantly, the same scene data is used to render the 3D scene (while this can be

extended by using a multiview object LOD system). As a result, animations modifying the

scene data need to be only applied once.

 Object or light culling can be applied once per frame using a single shared frustum for

multiview camera objects, containing the frustums of viewspecific internal cameras.

In summary, only the effective drawing time of a specific viewport is affected when
multiview rendering is activated. Other than an increase in the number of draw calls, the
multiview composition step also costs render time, especially in low-end configurations such as
mobile devices, and it should be optimally implemented. For example, on-target multiview
buffers can be preferred to avoid an additional compositing phase if per-view compositing logic
can be applied at render time by regular 3D pipelines. With such an approach, color write
modes in the graphics pipeline can be used to set up regular anaglyph rendering, or stencil
testing can be used to create per-view compositing patterns.

12.8 Rendering Optimizations

The aim of the multiview rendering optimizations discussed in this section is to provide
some basic building blocks that can help programmers reduce total rendering time without
sacrificing the perceived quality of the final result. Since, according to binocular suppression
theory, one of the two eyes can suppress the other eye, the non-dominant eye can receive a lower
quality rendering while not reducing the effective quality of the multiview rendering of a scene.
A recent study [Bulbul et al. 2010] introduced a hypothesis claiming that "if the intensity
contrast of the optimized rendering for a view is lower than its original rendering, then the
optimized rendering provides the same percept as if it were not optimized." This and similar
guidelines can be studied, implemented and tested to be able to optimize a multiview rendering

192 Game Engine Gems

pipeline and thus to render more complex scenes in real time.

Multiview Level-of-Detail for Objects

In addition to the object distance parameter, engines supporting multiview architectures
can introduce a new detail parameter, the active view number, and use this parameter to select
the vertex data and the rendering state of an object. Level-of-detail can then be implemented in
one or more of the following ways:

 Level-of-detail for object geometry. Simplified mesh geometries can be used for some of the

views, reducing vertex processing time for complex meshes.

 Level-of-detail for object materials. Different views can apply different rendering

techniques to a single object. The changes may involve reducing the number of rendering

passes or the shading instruction complexity, such as switching between per-pixel and per-

vertex shading or using different surface models for different views.

 Level-of-detail for shaders. Shaders can execute different code paths based on the active

view number, allowing more algorithmic approaches to reducing shader complexities for

higher numbers of views. This can also ease development of view-specific shaders and

allow the creation of simplified routines for optimized views. Shader level-of-detail is a

research area in itself, and various automated techniques have also been proposed

[Pellacini 2005]. This can equally be achieved by an application-specific solution, where

different shaders are supported for the different views.

Multiview Level-of-Detail for Multiview Buffers

Using the customizability of off-target multiview buffers, it is possible to create buffers of
different sizes for different views. One basic approach is to reduce the resolution of the target
by half, practically reducing the pixel shading cost. The low-resolution buffers can be
upsampled (magnified) during the composition phase, using nearest or linear sampling.

Since the low-resolution buffer on the same viewport will be blurry, it is expected that the
sharper view will dominate the depth perception and preserve the sharpness and quality of the
overall perceived image [Stelmach et al. 2000]. Thus, it is advisable to use buffer level-of-detail
options whenever the pixel shading is time consuming.

Chapter 12 A Generic Multiview Rendering Engine Architecture 193

We should also note that one of the two eyes of a person can be more dominant than the
other. Thus, if the dominant eye observes a higher-quality view, the user experiences a better
view. It is not possible to know this information in advance, so user-specific tests would need
to be performed and the system adjusted for each user. An approach that avoids dominant-eye
maladjustment is to switch the low- and high-resolution buffer pairs after each frame [Stelmach
et al. 2000].

Other Optimization Approaches

As surveyed by Bulbul et al. [2008], graphics-pipeline-based and image-based optimization
solutions have also been proposed. Graphics-pipeline-based optimizations make use of the
coherence between views, or they are based on approximate rendering where fragment colors
in all neighboring views can be approximated from a central view when possible. In image-
based optimizations, one view is reconstructed from the other view by exploiting the similarity
between the two. In these techniques, the rendering time of the second image depends on only
the image resolution, instead of the scene complexity, therefore saving rendering computations
for one view. Approaches have been proposed that are based on warping, depth buffers, and
view interpolation [Bulbul et al. 2008].

12.9 Discussion

Multiview Scene Setup

Our architecture supports customization and extensible parameterization, but does not
further provide guidelines on how to set the multiview camera parameters and scene in order
to achieve maximum viewing comfort. In the first volume of Game Engine Gems, Hast [2010]
describes the plano-stereoscopic view mechanisms, common stereo techniques such as
anaglyph, temporal multiplexing (shutter glasses), and polarized displays and discusses their
pros and cons. Some key points are that contradicting depth cues should be avoided and that
special care needs to be directed at skyboxes and skydomes, billboards and impostors, GUIs,
cursors, menus in virtual 3D space, frame rate, view synchronization, and scene-to-scene
camera setup consistency (such as focal distance). Viewers may have different eye separation
distances and display sizes, and the distance of the viewer to the display can differ among
different platforms. It should be kept in mind that creating the right 3D feeling is a process that
requires a scalable technical infrastructure (as presented in this chapter) and an analysis of the

194 Game Engine Gems

target platforms, the virtual scene, and animations.

Enabling/Disabling Multiview Rendering at Run Time

It is important to allow the user to select single-view rendering if the hardware supports it;
some users [Hast 2010] may not be able to accommodate the multiview content easily and may
prefer single-view rendering because it can produce a higher-quality image. The architecture
natively supports switching between single-view and multiview configurations through run-
time attachment and detachment of multiview components (camera, buffer, and compositors
as required) to a specific viewport on the render target. Viewport rendering logic that easily
adapts itself to follow a single-view or multiview rendering pipeline is possible, and the
implementation within OpenREng provides a sample solution.

Postprocessing Pipelines

Post-processing pipelines are commonly used, and their adaptation to multiview
rendering can present a challenge. Most of the post-processing filters use spatial information
about a fragment to calculate the output. The spatial information is partly lost when different
views are merged into a single image. Thus, applying the same post-processing logic to the
single composited image may not produce the expected output. If spatial data is not used, such
as in color filters, the postprocessing can natively interact with the results in separate views.
However, filters like high dynamic range and bloom may interact with spatial data and special
care may need to be taken [Hast 2010]. In our architecture, the post-processing logic can be
integrated into multiview compositor logic (shaders) to provide another rendering pass
optimization.

Integration with Other Stereo-Rendering APIs

As discussed in Section 12.5, our architecture can benefit from OpenGL quadbuffer stereo
mode support directly. Yet there are other proprietary APIs that manage the stereo rendering
at the driver level. As an example, Nvidia's 3DVision API only supports DirectX
implementations. Basically, the multiview rendering is handled by the graphics driver when the
application follows specific requirements. Since such APIs offer their own abstractions and
optimizations for stereo rendering, it may not be possible to wrap their APIs over our
architecture.

Chapter 12 A Generic Multiview Rendering Engine Architecture 195

3D Video Playback

To be able to playback 3D video over our architecture, it is possible to send the decoded
3D video data for separate views to their corresponding multiview buffer color render targets
and specify the composition by defining your own multiview compositors. It is also possible to
skip the multiview buffer interface and perform the composition work directly using the
decoded video data inside the multiview compositor merge routines.

Using Multiview Pipeline for Other Rendering Techniques

Our multiview rendering architecture can be extended to support soft shadow techniques
that use multi-lights to generate multiple depth results from different locations. Yang et al.
[2009] show an example of the multi-light approach for soft shadow rendering.

Acknowledgements

This project has been supported by 3DPHONE, a project funded by the European Union
EC 7th Framework Programme.

References

[Bowman et al. 2004] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 3D
User Interfaces: Theory and Practice. Reading, MA: AddisonWesley, 2004.

[Bulbul et al. 2010] Abdullah Bulbul, Zeynep Cipiloglu, and Tolga Capin. "A Perceptual Approach
for Stereoscopic Rendering Optimization." Computers & Graphics 34:2 (April 2010), pp. 145-157.

[Dodgson 2005] Neil A. Dodgson. "Autostereoscopic 3D Displays." Computer 38:8 (August 2005),
pp. 31-36.

[Hast 2010] Anders Hast. "3D Stereoscopic Rendering: An Overview of Implementation Issues."
Game Engine Gems 1, edited by Eric Lengyel. Sudbury, MA: Jones and Bartlett, 2010.

[Pellacini 2005] Fabio Pellacini. "User-Configurable Automatic Shader Simplification." ACM
Transactions on Graphics 24:3 (July 2005), pp. 445-452.

[Stelmach et al. 2000] L. Stelmach, Wa James Tam, D. Meegan, and A. Vincent. "Stereo Image
Quality: Effects of Mixed Spatio-Temporal Resolution." IEEE Transactions on Circuits and Systems
for Video Technology 10:2 (March 2000), pp. 188-193.

196 Game Engine Gems

[Yang et al. 20091 Baoguang Yang, Jieqing Feng, Gael Guennebaud, and Xinguo Liu. "Packet-Based
Hierarchal Soft Shadow Mapping." Computer Graphics Forum 28:4 (June-July 2009), pp. 1121-1130.

13
Chapter 13 3D in a Web Browser

Remi Arnaud
Screampoint Inc.

13.1 A Brief History

The idea 3D graphics in a web browser is not a new concept. Its prototype implementations
can be traced to almost two decades ago, almost as old as the concept of the World Wide Web
(WWW) itself, as it was first introduced in a paper presented at the first WWW Conference
organized by Robert Cailliau in 1994. The virtual reality markup language (VRML, pronounced
vermal, renamed to virtual reality modeling language in 1995) was presented by Dave Raggett
in a paper submitted to the first WWW conference and discussed at the VRML birds of a feather
(BOF) established by Tim Berners-Lee, where Mark Pesce [1] presented the Labyrinth demo he
developed with Tony Parisi and Peter Kennard [2]. This demonstration is one of the first, if not
the first, of 3D graphics for the web.

The first version of VRML was published in November 1994 by Gavin Bell, Tony Parisi,
and Mark Pesce. It very closely resembles the API and file format of the Open Inventor software,
originally developed by Paul Strauss and Rikk Carey at Silicon Graphics, Inc. (SGI) [3]. The
current and functionally complete version is VRML97 (ISO/IEC 14772-1:1997). SGI dedicated
engineering and public relations resources to promote the CosmoPlayer and ran a web site at
vrml.sgi.com on which was hosted a string of regular short performances of a character called
Floops who was a VRML character in a VRML world. VRML has since been superseded by X3D
(ISO/IEC 19775-1) [4], an XML encoding of VRML.

Despite its ISO standardization status, VRML/X3D has not had the same success as HTML.
HTML is definitely the standard for publishing content on the web, but VRML/X3D has failed

198 Game Engine Gems

to garner the same level of adoption for 3D content publishing. HTML has evolved from static
content to dynamic content (a.k.a. Web 2.0) and has fueled the economy with billions of dollars
in businesses that are still growing despite the internet bubble bursting circa 2000. Currently,
there are over two dozen web browsers available for virtually all platforms, including desktop
and laptop computers, mobile phones, tablets, and embedded systems. The browser war started
in 1995, and Microsoft (with Internet Explorer) won the first round against Netscape to
dominate the market by early 2000. The browser wars are not over as Google (Chrome), Mozilla
(Firefox), Opera (Opera) and Apple (Safari) are now eroding Microsoft's dominance.

During the same period of time, 3D has grown significantly as a mass-market medium and
has generated large revenues for the entertainment industry through games and movies. 3D
display systems have materialized in movie theaters and generate additional revenues. So the
question remains: Why has VRML/X3D not had the same pervasive path as HTML? The web
is filled with tons of opinions as to why this did not work out. (Note: X3D is still being proposed
to the W3C HTML Working Group for integration with HTML 5.) Mark Pesce himself offered
his opinion in an interview published in 2004, ten years after introducing VRML to the WWW
conference [2]:

John Carmack pronounced VRML dead on arrival. His words carried more weight with
the people who really mattered-the core 3D developers-so what should have been the core
constituency for VRML, games developers, never materialized. There was never a push to make
VRML games-ready or even games-capable because there were no marketdriven demands for
it. Instead, we saw an endless array of "science experiments."

This comment is of particular interest in the context of this book since its target audience
is game developers. According to Mark Pesce, game developers should have been all over VRML
and creating content for it. Indeed, content is what makes a medium successful, and games
represent a significant amount of 3D interactive content, although not all games require 3D
graphics.

Game developers are important because they are recognized for pushing the limits of the
technology in order to provide the best possible user experience. Game technology needs to
empower artists and designers with tools to express their creativity and enable nonlinear
interactive storytelling that can address a good-sized audience and build a business case for 3D
on the web. Game developers do not care if a technology is recognized by ISO as a standard.
They are more interested in the availability of tools they can take immediate advantage of, and
they require full control and adaptability of the technology they use, for the creation of a game

Chapter 13 3D in a Web Browser 199

is an iterative process where requirements are discovered as the game development progresses.

The main issue game developers seem to have with VMRL/X3D is its core foundation. The
Open Inventor scene graph structure (see Figure 13.1) is used to both store the 3D data as well
as define its behavior and interaction with the user, dictating a specific run-time design that
would constrict game engines.

The objectives of Open Inventor, which have been followed closely in the design of
VRML/X3D, are well described in the Siggraph 1992 paper that introduced it:

 Object representation. Graphical data should be stored as editable objects and not just as

collections of the drawing primitives used to represent them. That is, applications should

be able to specify what it is and not have to worry about how to draw it.

 Interactivity. An event model for direct interactive programming must be integrated with

the representation of graphical objects.

 Architecture. Applications should not have to adapt to object representation or interaction

policies imposed by the toolkit. Instead, the toolkit mechanisms should be used to

implement the desired policies. Such flexibility should also be reflected in the ability to

extend the toolkit when necessary.

The problem is that these design goals have not been proven to be universal or able to solve
the needs for all representations of and interaction with 3D content. In fact, another scene graph
technology was developed at SGI at the same time as Open Inventor in 1991: Iris Performer [5].
Its principal design goals were to allow application developers to more easily obtain maximum
performance from 3D graphics workstations featuring multiple CPUs and to support an
immediate-mode rendering library. In other words, both Open Inventor and Iris Performer
used a scene graph technology, but one was designed for performance and the other for object-
oriented user interactivity:

 Inventor defined a file format, which was then repurposed as VRML/X3D. Performer did

not have a documented native file format; instead, it offered a loader facility so third-party's

modeling tools could provide an importer. MultiGen's OpenFlight was a popular tool and

format for this.

200 Game Engine Gems

 Performer did not offer any default run-time library, but there was sample code and the

often-used and often-modified "perfly" sample application, which contributed to

Performer's reputation for being difficult to use.

Figure 13.1. An Open Inventor simple scene graph and resultant rendering. (Image© 1992 ACM.)

Chapter 13 3D in a Web Browser 201

 Inventor provided user interaction with the 3D data as well as an interface to it. Performer

did not have much in terms of built-in tools for user interaction, but instead focused on

generating images at fixed frame rates. Performer was often used in a simulation

environment where the interface to the user was an external system, such as an airplane

cockpit.

SGI tried several times to combine both the performance of Performer and usability of
Open Inventor. First, SGI introduced the Cosmo 3D library, which offered an Open Inventor-
style scene graph built on an Iris Performer-style lowlevel graphics API. After the first beta
release, SGI joined with Intel and IBM to push OpenGL++ on the OpenGL architecture review
board (ARB) [6] as a standard scene graph layer on top of OpenGL that could be used to port
Performer or Inventor (or Optimizer, yet another scene graph for the computer-assisted design
(CAD) market). The ARB was also interested in seeing OpenGL++ become a standard for the
web. This project died when SGI turned their attention to an almost identical project with
Microsoft named Fahrenheit. The idea was that SGI would focus on the high-level API (scene
graph) while Microsoft worked on the low-level Fahrenheit (FLL) API that would eventually
replace both OpenGL and Direct3D. Fahrenheit was killed when it became clear Microsoft was
playing SGI and was instead focused on releasing DirectX 7 in 1999 [7].

Sun Microsystems was also interested in creating a standard scene graph API that could
be universal and bridge desktop applications with web application: Java3D [8], based on the
cross-platform Java development language and run-time library. The first version was released
in December 1998, but the effort was discontinued in 2004. It was restarted as a community
source project but then "put on hold" in 2008 [9]. Project Wonderland, a Java virtual world
project based on Java3D, was ported to the Java Monkey Engine (jME) API, a Java game engine
used by NCSoft that produced better visuals and performance and reduced design constraints.

Today, game engines are closer in design to Iris Performer than to Open Inventor. For
instance, game engines provide offline tools that can preprocess the data into a format that is
closer to the internal data structures needed on the target platform, thus eliminating complex
and time-consuming data processing in the game application itself in order to save precious
resources, such as CPU time, memory, and user patience. Also, game engines often create
interactivity and user interfaces with native programming through scripting languages such as
Lua. This provides maximum flexibility for tuning the user experience without having to spend
too much time in designing the right object model and file format.

202 Game Engine Gems

A side effect of this divergence of goals is the creation of a gap in bridging assets between
content creation tools and game engines. X3D, as a publishing format, was not designed to carry
the information from the modeling tools and content pipeline tools to the game. Other formats
were proprietary to each modeling tool. Ten years after VRML was first introduced, Remi
Arnaud and Mark Barnes from Sony Computer Entertainment proposed COLLADA [10, 11],
also based on XML, with the goal of providing a standard language for helping game developers
to build their content pipeline [12]. Its design goal is to stay away from run-time definitions
and, more specifically, from scene graphs. COLLADA has gained significant momentum in
many areas (being used by Google Earth, Photoshop, game engine pipelines, modeling tool
interchange, CAD, and 3D for the web). More recently, the 3D modeling industry has gone
through consolidation, as Autodesk now owns 3DS Max, Maya, and XSI, representing a
significant market share in the games industry. Autodesk has made significant progress in
providing FBX, a proprietary library that is used for data interchange between Autodesk tools,
as well as interfacing with game engines.

What we can say from this short history is that a lot of energy has been expended by many
clever people to attempt creating the universal high-level representation of 3D data through
various implementations of scene graphs, but all have failed so far. Most efforts aimed to
provide 3D on the web (VRML, X3D, Java3D, OpenGL++, etc.) by standardizing a scene graph
representation as the universal 3D publishing format, with the thinking that what worked for
2D with HTML should work for 3D as well. What we should learn from these two decades of
effort is that it won't happen because there are too many incompatible goals. Even if restricted
to one market segment-games-it is not even clear that a universal game engine can be created
covering all genres.

13.2 Fast Forward

Fast forwarding to 2010, the landscape has changed significantly. There is now a huge
enticement to publish games over the internet, effectively targeting the web as a platform.
Revenues from online and mobile games currently generate about a third of all game software
revenues globally and are predicted to represent 50 percent of the market by 2015 [13]. Online
games generate billions of dollars of revenue in China and other Asian countries. The U.S.
market is expected to hit $2 billion by 2012. Social games, such as Zynga's Farm Ville, are on
their way to becoming a mass market phenomenon, with more than 60 million people playing

Chapter 13 3D in a Web Browser 203

online (compared to half a billion people reported on Facebook).

This new business has evolved very fast, so fast that major game publishers are having
trouble adapting from a culture of management of mostly multimillion dollar, multiyear-
development AAA titles for game consoles to a very different culture of low-budget games
distributed and marketed primarily through social networking. Some prominent game
developers predict this current trend will have a profound impact on the overall game industry
business model [14]. The video game industry has been through massive changes in the past,
including a crash in 1984. This time, the industry experts are not predicting a crash but a
massive shift that is poised to push more game publishing onto the web.

The need for superior interactive animated graphical content running in a web page has
been growing since the introduction of HTML. In 1997, Macromedia (part of Adobe since April
2005) released Flash 1.0, commonly used to create animations and advertisements, to integrate
video into web pages such as YouTube, and more recently, to develop rich internet applications
(RIAs). Flash is a growing set of technologies that includes an editing tool, a scripting language
closely related to JavaScript called ActionScript, a file format called .swf, and a browser plug-
in available for many platforms.

In order to visualize Flash content, a plug-in needs to be installed by the client in the web
browser. In order to maximize their market reach, Macromedia provided the plug-in for free
and worked out several deals to ensure the plug-in (a.k.a. Flash Player) came preinstalled on all
computers. In 2001, 98% of web browsers came preinstalled with the Flash player (mostly
because marketdominant Microsoft Internet Explorer included the Flash player), so that users
could directly visualize Flash content.

This created enough fertile ground for games to start spreading on the web, and the term
"Flash game" quickly became popular. Thousands of such games exist today and can be found
on aggregator sites such as addictinggames.com, owned by Nickelodeon. Some games created
with the first releases of Flash, such as Adventure Quest (launched in 2002, see Figure 13.2), are
still being updated and are played by thousands.

Most of the games created with Flash are 2D or fake 3D since Flash does not provide a 3D
API. Still, there are several 3D engines, open source and commercial, that have been developed
in ActionScript and are used to create 3D games. We look into this in more detail in Section
13.3.

Another technology created about at the same time as Flash, with the goal of enhancing

204 Game Engine Gems

web development, is Java, first released in 1996. Java is a programming language for which a
virtual machine (VM) executes the program in a safe environment regardless of the hardware
platform and includes a just-in-time (JIT) compiler that provides good performance.
Unfortunately, Sun Microsystems did not enjoy a good relationship with Microsoft, since they
saw Java as a competitor rather than an enhancement to Microsoft's products [15], and it was
usually the case that a plug-in had to be installed. Unlike Flash, Java does offer bindings to 3D
hardware acceleration and therefore offers much better performance than Flash. We explore
this technology in Section 13.4.

Figure 13.2. Adventure Quest (Flash). See http://aqworlds.com/. (Image© 2010 Artix
Entertainment, LLC.)

Still, if a plug-in has to be downloaded, why not package a real game engine as a browser
plug-in in order to provide the best possible performance and user experience? There is a
reduction in the addressable market because the game distribution websites have to agree to
support the technology, and the user to download and install the plug-in, as well as agree to the
license, but this may be the only viable technology available immediately to enable the 3D
experience. Several game engines are available as plug-ins, and these are discussed in Section
13.5.

One way to deal with the plug-in situation is to improve the mechanism by which a
browser is extended, and that is what Google Native Client is about. It also introduces a
hardware accelerated graphics API secure enough to be included in a web browser. This new

Chapter 13 3D in a Web Browser 205

technology is explored in Section 13.6.

Recently, HTML5 was pushed to the front of the scene, specifically when Apple CEO Steve
Jobs took a public stand about why he doesn't allow Flash on Apple's mobile platforms [16] and
instead pushed for either native applications or HTML5 technologies. The HTML5 suite of
standards is not yet published, but some portions are considered stable, such as the Canvas 3D
API, which provides graphics hardware acceleration to JavaScript. Canvas 3D is now
implemented as the WebGL API [17], a standard developed by the Khronos Group, and is a
close adaptation of OpenGL ES (another Khronos Group standard) available for mobile phones
(such as iPhone/iPad, Android, etc.). The Khronos Group is also the home of the COLLADA
standard, which, coupled with WebGL, provides a standard solution for both content and an
API for 3D on the web [18]. At the time of this writing, WebGL has not yet been released to the
general public, but we describe it in Section 13.7.

13.3 3D with Flash

The main benefits of using Flash are that it's preinstalled (so it does not require the user to
install anything), it is supported by the main outlets that reach customers (e.g., Facebook), it
comes with professional creation tools (a Flash editor and Adobe AIR for running and testing
locally), and there are tons of developers well-trained in ActionScript. The main issue is its
performance, since the 3D rendering is done in ActionScript running on the CPU. Flash does
not provide access to 3D hardware acceleration.

There are several available libraries that provide 3D with Flash:

 Papervision3D. Carlos Ulloa [19] started this project in December 2005. He had been

programming 3D in software for games in the old times of Atari and Amiga, and he

decided to reuse the same technology to provide 3D in Flash. By the end of 2006,

Papervision3D was open-sourced. The library evolved from Flash 7 through 10 and is now

in version 2.1, available at http://code.google.com/p/papervision3d/.

 Sandy3D. This project was started by Thomas Pfeiffer in October 2005 and is now open-

sourced. It can be downloaded in version 3.1.2 at http://www. Flashsandy.org/download.

206 Game Engine Gems

 Away3D. Away3D started as a reorganization of the Papervision3D code for better

performance. Now in version 3.5.0, available at http://away3d.com/ downloads, it is its

own codebase. There is also a "lite" version that is only 25 kilobytes in size for faster

download. One remarkable difference is the availability of a tool called PreFab3D (see

Figure 13.3), the "missing link" between designers, modelers, and Flash 3D developers.

This tool enables nonprogrammers to optimize the data for 3D in Flash. For example, the

tool can bake lights and shadows into textures using ray tracing, create low polygon models

with normal maps, refine UV mapping, and apply real-time shading techniques.

Figure 13.3. PreFab3D, an Adobe AIR tool for Away3D. See http://www.closier.nl/ prefab/. (Image
© Fabrice Closier.)

 Alternativa3D. This company develops and licenses a 3D engine for Flash with support for

multiuser real-time connection of clients and players. Their commercial product, now in

version 5.6.0, is aimed at game developers. They offer a multiplayer tank battle game (see

Figure 13.4) as a live demonstration of the capabilities of their engine.

All of these projects have a very active developer community1, and they provide tutorials,
samples, documentation, and books [20, 21]. They enable loading of 3D assets using COLLADA

Chapter 13 3D in a Web Browser 207

and 3DS Max formats. The engine's capabilities are related to the performance of the virtual
machine, which does not provide any native 3D hardware acceleration. Flash 10 introduced
some hardware-accelerated features that are used to accelerate composition and rendering on
a 2D surface. Flash Player 10 also introduced accelerated shaders (e.g., Pixel Bender) that are
exploited as material properties by those libraries. But still there is no 3D acceleration, so the
data needs to be organized in a BSP tree in order to accelerate the CPU polygon sorting, since a
hardware Z-buffer is not available.

Figure 13.4. TankiOnline, a Flash 3D game using Alternativa3D. See http://alternativa
platform.com/en/. (Image© 2010 Alternativa LLC.)

Listing 13.1 shows what the code that loads and displays a model in ActionScript with
Papervision3D looks like.

Listing 13.1. Papervision3D code snippet for loading and displaying a COLLADA model.

package

{

 import org.papervision3d.Papervision3D;

 import org.papervision3d.cameras.*;

 import org.papervision3d.materials.*;

 import org.papervision3d....

208 Game Engine Gems

 public class Main extends Sprite

 {

 // The PV3D scene to render

 public var scene: Scene3D;

 private var model: DisplayObject3D;

 // The PV3D camera

 public var camera: FrustumCamera3D;

 // The PV3D renderer

 public var renderer: BasicRenderEngine;

 // The PV3D viewport

 public var viewport: Viewport3D;

 public function Main(): void

 {

 init();

 }

 private function init(): void

 {

 // create a viewport

 viewport = new Viewport3D();

 // add

 addChild(viewport);

 // create a frustum camera with FOV, near, far

 camera = new FrustumCamera3D(viewport, 4.5, 500, 5000);

 // create a renderer

 renderer = new BasicRenderEngine();

Chapter 13 3D in a Web Browser 209

 // create the scene

 scene = new Scene3D();

 // initialize the scene

 initScene();

 // render each frame

 addEventListener(Event.ENTER_FRAME, handleRender);

 }

 private function initScene(): void

 {

 model = new DAE();

 mode.addEventListener(FileLoadEvent.LOAD_COMPLETE,

 OnModelLoaded);

 DAE(model).load("duck_triangulate.dae");

 }

 /**

 * show model once loaded

 */

 private function OnModelLoaded(e: FileLoadEvent): void

 {

 e.target.removeEventListener(FileLoadEvent.LOAD_COMPLETE,

 OnModelLoaded);

 scene.addChild(model);

 }

 /**

 * Render!

 */

 private function handleRender(event: Event = null): void

 {

210 Game Engine Gems

 // orbit the camera

 camera.orbit(_camTarget, _camPitch, _camYaw, _camDist);

 // render

 renderer.renderScene(scene, camera, viewport);

 }

 };

};

Even though the performance is limited to 10,000 to 20,000 triangles at 30 frames per
second, this technology provides excellent results for games that do not need to update the
entire 3D display every frame, such as games mixing 2D and 3D or games where the point of
view changes infrequently, as in golf games (see Figure 13.5). Note that by the time this book is
published, Adobe will most likely have introduced a hardware-accelerated 3D API for the next
version of Flash [22].

Figure 13.5. Golf game using Papervision3D Flash. See http://www.ogcopen.com/
OgcOpenPlay.php?lang=en. (Image © 2010 MoreDotsMedia GBR.)

Chapter 13 3D in a Web Browser 211

13.4 3D with Java

Java is a programming language expressly designed for use in the distributed environment
of the Internet. It was designed to have the "look and feel" of the C++ language, and it enforces
an object-oriented programming model. Java can be used to create complete applications that
may run on a single computer or be distributed among servers and clients in a network. It can
also be used to build a small application module or applet for use as part of a web page. A
lightweight version called Java ME (Micro Edition) was created specifically for mobile and
embedded devices.

Java is a compiled language, but it is not compiled into machine code. It is compiled into
Java bytecodes that are executed by the Java virtual machine (JVM). Because the JVM is
available for many hardware platforms, it should be possible to run the same application on any
device without change. Web browsers are such platforms where a Java program can be executed.
Java performance is excellent and approaches the performance of languages such as C that are
compiled to the machine language of the target processor directly. This performance is due to
the use of the JIT compiler technology, which replaces interpretation of Java bytecodes with on-
the-fly compilation to machine instruction code, which is then executed.

Java has included support for 3D hardware acceleration for a long time through bindings
to OpenGL (JSR-23 1, a.k.a. JOGL) and to OpenGL ES for Java ME (JSR-239). In addition to
binding to OpenGL and OpenGL ES, the Mobile 3D Graphics (M3G) API (a.k.a. JSR-184) was
created specifically for gaming on mobile devices, and it includes a higher-level scene
description specification and its file format .m3g. M3G is a kind of mini-Java 3D (JSR-912, JSR-
189, JSR-926 [8]). Version 2 of the M3G API (JSR-297) has been released to catch up quickly
with evolving graphics features on mobile devices, such as shaders. It is interesting that the first
technology we looked at, Flash, offers no 3D acceleration and that Java provides a confusing
choice of 3D hardware acceleration that may not be available on all platforms. Per our
discussion earlier, we know that we should probably ignore the high-level scene graph
technologies that limit the game engine to a predefined behavior, narrowing down our choice
to JOGL. This wrapper library provides full access to the APIs in the specifications for OpenGL
1.33.0, OpenGL 3.1 and later, OpenGL ES 1.x, and OpenGL ES 2.x, as well as nearly all vendor
extensions. It is currently an independent open source project under the BSD license [23]. Note
that other similar bindings have also been created for audio and GPU compute APIs-OpenAL
(JOAL) and OpenCL (JOCL) are available on the same web page as JOGL.

212 Game Engine Gems

Figure 13.6. Poisonville, a jME Grand Theft Auto-like game launched from the web, but running in
its own (small) window. See http://poisonville.bigpoint.com/. (Image © Bigpoint.)

This is the choice made by the few game engines that have been built with this technology,
such as the jME, now in version 3 (jME3), that can run inside the browser as an applet or
launched in an external JVM application that can run fullscreen. There are many applications
taking advantage of OpenGL 3D acceleration with Java on the web, but the jME is probably the
only mature technology available to make games with Java plus JOGL (see Figure 13.6).

Despite its long existence, its advanced technology providing 3D hardware acceleration,
and both its desktop and mobile availability, Java has had more success as a language and
framework to run on servers than it has on clients, and it has had no real success in the game
space. The confusion created by the SunMicrosoft dispute over the Java technology (which
created incompatibilities), the confusion as to which style of 3D graphics API to use, the
perceived lack of sup port for OpenGL on Windows, and the very poor support by integrated
chipsets [24] may have, until recently, caused a lot of damage to Java's popularity. Java is also
handicapped by its 80 percent installed base (compared to 97 percent for Flash [25]),

Chapter 13 3D in a Web Browser 213

vulnerabilities, large download size (- 15 MB), and long startup times.

Figure 13.7. JavaFX, a new language running inside a JVM language. (Image © 2010 Oracle
Corporation.)

The main issue seems to be the design of Java itself. It is very structured and object-
oriented but is not well suited for the creation of applications with intense graphical user
interfaces. Web programming requires more dynamic structures and dynamic typing. Enter
JavaFX [26], a completely new platform and language (see Figure 13.7) that includes a
declarative syntax for user interface development. However, there is no clear path stated about
when 3D will become part of this new JVM technology, so JavaFX is not suitable for writing 3D
games for the web for the time being.

13.5 3D with a Game Engine Plug-In

Extending a browser with a game engine plug-in is probably the best way to get the
optimum performance and features. But asking users to download a plug-in for each game is
not viable. So keeping the same philosophy that one plug-in can run many applications, the
game engine plug-in, once installed, can load and run a specific game as a package containing
the content and the game logic in the scripting language(s) provided by the engine.
Programming-wise, it is not much different than creating a Flash game, but it has far superior
performance because all the functionality necessary for writing a game is provided through

214 Game Engine Gems

highperformance libraries, including not only 3D hardware acceleration but also components
such as a terrain engine, a collision and physics engine, and an animation system. Also, a major
difference in the Flash and Java solutions is that game engines come with sophisticated editors
and content pipelines, which reduce the efforts required of game developers a lot. Good tools
are necessary for cost-effective development.

The web is not (yet?) the place for AAA titles with long development cycles. Therefore,
having rapid prototyping tools becomes essential for developing 3D games in a short period of
time with a small budget. Developing for the web platform also means developing games that
run on the low end of the performance scale, which is a problem for the type of experience
associated with AAA productions.

Because of the lack of interest in AAA titles in a browser, the small budget, and the need
to support low-end platforms, the traditional game engines (such as Unreal and CryEngine) did
not see a business for providing engines for the web and mobile platforms. Therefore, the
opportunity was available for new companies with a new business model to provide those
engines. Engines such as Unity and Shiva (see Figure 13.8) are already powering hundreds of
games on the web or natively on Windows, Mac OS, Linux, and mobile platforms such as
iPhone, iPad, Android, and Palm. The business model is adapted to the market, the plugin is
always free and small in size (Unity is 3.1 MB, and Shiva is 700 kB), there are no royalties, there
is a completely free entry-level or learning edition, and upgrades to the professional full-
featured versions cost less than $2,000. So even the most expensive version is well within the
budget of any game developer and is in the same range as a modeling tool that is necessary to
create the 3D content to be used in the game.

Responding to the game development team needs, these two engines also offer asset
management servers and collaboration tools. The motto for these engines dedicated to web and
mobile development is ease-of-use, cost effectiveness, and performance. They give a new meaning
to cross-platform development, which used to mean developing a game across all the game
consoles. The success of ShiVa and Unity is bringing additional competition from the engines
that used to serve exclusively the console game developers (Xbox 360, PlayStation 3, and Wii),
such as the recently announced Trinigy WebVision engine, but it is not clear whether they will
be able to adopt the same low price model or whether they bring enough differentiation to
justify a major difference in price. In fact, it could very well be the other way around, as ShiVa
and Unity (both already on Wii) could be made available for cross-console development in the
future.

Chapter 13 3D in a Web Browser 215

Figure 13.8. Shiva Editor with one-click play button. See http://www.stonetrip.com/. (Image© 2010
Stonetrip.)

Regarding developing and delivering 3D games for the web, those two technologies today
provide by far the best performance and quality compared to the other technologies studied in
this chapter. They also provide essential tools that provide ease-of-use, real-time feedback,
editing, and tuning that are mandatory for the productivity demanded by short schedules and
tight budgets in web development. But they also enable deployment of the game outside of the
web as mobile phone and tablet native applications, as well as PC/Mac standalone applications.
(However, PC/Mac versions of these engines do not offer the same level of quality as PC-specific
engines.) Except for the market-limiting fact that on the web the user has to install a plug-in,
the cross-platform aspect of those technologies is sometimes the only choice that makes sense
when publishing a game on both the web and mobile devices in order to grow potential revenues
without multiplying the development cost by the number of target platforms. As the vendors of
those engines are focusing on ease-of-use and are very responsive to game developer needs, the
results are quite astonishing in quality in terms of what non-highly-specialized developers can
do in a few weeks.

To maximize flexibility and performance, Unity is taking advantage of the JIT compiler
technology of NET (Mono for cross-platform support) and providing support for three
scripting languages: JavaScript, C#, and a dialect of Python. ShiVa is using a fast version of Lua.
Scripts are compiled to native code and, therefore, run quite fast. Unity scripts can use the

216 Game Engine Gems

underlying NET libraries, which support databases, regular expressions, XML, file access and
networking. ShiVa provides compatibility with JavaScript (bidirectional interaction), PHP, ASP,
Java, etc., using XML (send, receive, and simple object access protocol).

Integration with Facebook is also possible, opening the door to the halfbillion customers
in that social network. This is done though an integration with Flash2, taking advantage of the
fact that Flash is on 97 percent of the platforms and available as supported content by most
websites.

Figure 13.9. Unity graphics card statistics for Q2 2010. See http://unity3d.com/
webplayer/hardware-stats.html. (Image © 2010 Unity Technologies.)

Chapter 13 3D in a Web Browser 217

As a tip: don't miss the Unity statistics page (see Figure 13.9) that provides up-to-date
information about what hardware platforms are being used. This provides a good indication of
the range of performance and types of hardware used to play 3D games in a browser. (Note that
these statistics show that most web game players have very limited GPUs and would not be able
to run advanced engines from Epic or Crytek.)

13.6 Google Native Client

In order to enable loading and executing a game in a 3D environment, all of the plug-ins
have to provide a safe environment in which to execute code and call optimized routines, and
they have to provide access to graphics hardware acceleration on the GPU. All the technologies
we have looked at so far offer a facility to create machine-executable code from both byte code
(JIT and VM) and text parsers. What if there was a way to create a secure environment in which
to run applications that are already compiled into the CPU binary format?

This is the goal of Google Native Client, an open-source technology for running native
code in web applications, with the goal of maintaining the browser neutrality, operating system
portability, and safety that people expect from web applications. Currently focused mainly on
supporting a large subset of the x86 instruction set, this project also targets other CPUs, such as
those based on ARM technology, and it should be available to integrate with any browser, either
natively or as a plug-in.

This can be viewed as a meta plug-in that allows all the existing plug-ins that can obey the
security issues (limited access to local drive, no self-modifying code, etc.) to be executed directly.
Therefore, ShiVa and Unity will be perceived as a "no plug-in" version once Google Native
Client becomes pervasive. It will be ideal to have a single plug-in (Google Native Client) that
provides maximum performance and flexibility to all the applications, while providing "no
plug-in" usability to the user. Native Client could very well be the ultimate cross-platform
technology development, provided that vendors do not find a way to oppose its deployment
(Apple may block this the same way it is blocking Flash on their iOS devices).

Unity (and soon ShiVa) can accept C/C++ libraries that can be linked with the game to
provide additional optimized functionality that is too CPU-intensive to be done with the
scripting language. But this has not been mentioned thus far in this chapter because it is not
useful for the development of web games, as those libraries are not linked with the standard web

218 Game Engine Gems

plug-in and are therefore not available to the game running on the web. But with Google Native
Client, it will be possible for the game developer to provide his own libraries, compiled with the
Google Native Client GCC compiler, and link those dynamically with the game running on the
web.

Native Client also offers an audio and graphics API. The 3D hardwareaccelerated API is
OpenGL ES 2.0. It is really nice that Google did not go ahead and provide a standard API that
offers shader programs and a relatively slim layer over the GPU. Kudos to Google for choosing
to embrace a standard, OpenGL ES, rather than inventing a new graphics API. Choosing the ES
version of the API (as opposed to the desktop version of the API) enables the same graphics
code to run on any desktop, mobile, or tablet hardware.

The problem with this choice is that although OpenGL ES 2.0 can be implemented rather
easily given an OpenGL 2.0 driver, only 35 percent of Windows XP computers (XP currently
represents 60 percent of all computers [27]) have an OpenGL 2.0 driver, and the others have
drivers that are not very stable. On mobile platforms, there is a large dominance of OpenGL ES
2.0, so in order to unify the terrain, Google has created ANGLE, an implementation of OpenGL
ES 2.0 on top DirectX 9, which is well supported on all the desktops. This includes a shader
translator from GLSL ES to HLSL.

Figure 13.10. Secure access to the GPU as a separate process [28].

Chapter 13 3D in a Web Browser 219

Access to the GPU in the Chrome browser is provided through a protection mechanism
(see Figure 13.10) that is mandatory in order to provide the level of security that is required by
a web browser running plug-in code. The GPU is isolated in its own process. The web browser
is using separate render processes that do not talk directly to the GPU, but instead run an
OpenGL ES driver that converts each command into a tokens in a command list (or display list)
that is then used by the GPU process on the other end. A similar architecture is used in Native
Client.

Although Google Native Client technology is not ready for prime time at the time of this
writing, it is definitely one to keep an eye on for the development of 3D games for the web in
the near future.

13.7 3D with HTMLS

The last technology we look at can be categorized at the other end of the spectrum relative
to all the technologies we have seen so far. The idea is to provide 3D acceleration through an
embedded JavaScript API in web browsers. It is similar to the OpenGL for Java bindings
technology we saw earlier, but done by a group of developers representing many browser
vendors so that it is embedded within the web browser and provides OpenGL ES 2.0
functionality that can be called directly from JavaScript.

JavaScript is very popular for scripting on the client, although not so long ago, the
preference was to write as much as possible of a web app in the server to avoid malicious code
running in the browser or annoying pop-ups and other anomalies. The rule of thumb was to
turn off JavaScript in the browser by default and use it only for trusted websites. This has
changed as security has improved in the browser implementation of JavaScript and with
advanced user interfaces that AJAX has brought to the user by leveraging the power of
JavaScript to partially update HTML pages without a full reload from the server at each event.

Performance has been the main concern of JavaScript applications (see Figure 13.11).
Recently, the JIT technology that was developed and refined by Java was taken advantage of by
JavaScript as well as Flash ActionScript (AS3 2006) to improve performance. In fact, JavaScript
is now approaching the performance of Java in most cases. The remaining problem with
JavaScript is the large discrepancy in performance (by a factor of ten in some cases) among the
various implementations that a given hardware configuration may be running. It is already

220 Game Engine Gems

difficult to target the web since there are so many hardware platforms and performance profiles,
but when multiplied by the factor of ten in the JavaScript performance spread, this becomes an
impossible problem. On the other hand, even if not the fastest in all cases, Flash provides
consistent and good performance, regardless of which browser it is running inside. A given
plug-in can impose the browser to update the Flash plug-in to the AS3 version if needed, but
there is no such thing for native JavaScript because the entire browser would have to be
upgraded.

Figure 13.11. AS3 versus JavaScript (JS) performance test (Data from http://www.
JacksonDunstan.com/articles/618, March 2010).

So equipped with a fast scripting language and a strong desire to add hardware-accelerated
3D for web application developers, Google, Apple, Mozilla, and Opera announced during
Siggraph 2009 that they would create the WebGL working group under the intellectual property
(IP) protection umbrella of the Khronos Group [17] and joined the many working groups
already working on graphics standards, such as OpenGL, OpenCL, and COLLADA. When
Vladimir Vukićević (Mozilla) was thinking about where to create the new standard working
group he basically had two choices: the W3C, home of all web standards, and Khronos, home
of the graphics standards. Since his group was composed of web browser specialists, he thought
they should join the standard body, where they could meet with graphic specialists, because
expertise in both areas is required to create this new standard. This also enables complementary
standards to be used conjointly and solve a bigger piece of the puzzle, such as how COLLADA
and WebGL can be used together to bring content to the web [18].

Chapter 13 3D in a Web Browser 221

Technically speaking, WebGL is an extension to the HTML canvas element (as defined by
the W3C's WHATWG HTML5 specification), being specified and standardized by the Khronos
Group. The HTML canvas element represents an element on the page into which images can
be rendered using a programmatic interface. The only interface currently standardized by the
W3C is the CanvasRenderingContext2D. The Khronos WebGL specification describes another
interface, WebGLRenderingContext, which faithfully exposes OpenGL ES 2.0 functionalities.
WebGL brings OpenGL ES 2.0 to the web by providing a 3D drawing context to the familiar
HTML5 canvas element through JavaScript objects that offer the same level of functionality.

This effort proved very popular, and a public mailing list was established to keep up general
communication with the working group, working under strict IP protection, which was quite a
new way of functioning for the Khronos Group. Even though the specification has not yet been
released, several implementations are already available for the more adventurous web
programmers, and at Siggraph 2010, a dozen applications and frameworks were already
available for demonstration. This is quite an impressive community involvement effort,
indicating the large interest in having 3D acceleration without the need for a plug-in. After the
demonstration, "finally" was whispered in the audience, since some have been waiting for this
since the first HTML demo was made almost two decades ago.

The inclusion of native 3D rendering capabilities inside web browsers, as witnessed by the
interest and participation in the Khronos Group's WebGL working group, aims at simplifying
the development of 3D for the web. It does this by eliminating the need to create a 3D web plug-
in and requiring a nontrivial user download with manual installation before any 3D content
can be viewed by the user.

When creating a 3D game for the web, graphics is fundamental but is only a subset of the
full application. Other features are to be provided by various nongraphics technologies that
together form the HTML5 set of technologies that web browsers are implementing (see Figure
13.12). In order to bring data into the web browser, the game application will have to either
embed the content in the HTML page or use the XMLHttpRequest API to fetch content through
the web browser. Unfortunately, the programmer will also have to obey the built-in security
rules, which in this case restricts access to content only from the same server from which the
HTML page containing the JavaScript code was obtained. A possible workaround then needs
to be implemented on the server in order to request external content, possibly through a simple
script that relays the request.

222 Game Engine Gems

Figure 13.12. Vladimir Vukićević (Mozilla) presents how WebGL sits in the context of the HTML5
suite of standards at the Siggraph 2010 WebGL BOF.

One major issue with JavaScript is the fact that the entire source code of the application is
downloaded to the browsers. There are utilities to obfuscate the code, which make it impossible
to debug as well, but it is not too hard to reverse engineer. This may not be the ideal, however,
since game developers are not necessarily happy to expose their source code.

Another issue with HTML5 is that there are a lot of hacks involved for crossbrowser
compatibility. It is not clear if this issue will be resolved anytime soon, so there is a need for
libraries and other tools to isolate the developer from these issues so 3D game development
won't be as painful on native HTML5. Flash, Unity, and Shiva are doing a good job at isolating
the developer from those browser compatibility issues.

WebGL is a cutting-edge technology with many things to be discovered before it can safely
be used to develop 3D games for the web. The lack of tools for game developers is probably the
most problematic point because this makes it impractical and certainly not cost effective. Many
WebGL-supporting initiatives are under way (and more are coming along every month), such
as GLGE, SpiderGL, CopperLicht, the Seneca College Canvas 3D (C3DL) project, and the
Sirikata project. From these efforts and those as yet unforeseen, new and compelling content
will be developed.

Chapter 13 3D in a Web Browser 223

13.8 Conclusion

The conclusion to this chapter is not the one I had hoped for. But the research is clear:
there is no ideal solution to what technology to use today to write 3D games for the web.

Unity and Shiva are a primary choice based on their performance, success stories, and
professional tools. But they still require the installation of a plug-in, which may be a nonstarter
because the client paying for the development of the game may dictate that either Flash or no
plug-in at all is to be used.

This is why Flash, especially if Adobe decides to add game-related features, will always be
viable in the near future. But 3D acceleration is not enough because there are many more
features required by the game engine (including physics and artificial intelligence) that would
have to be provided and optimized for Flash, and Adobe may have no interest in developing
these.

HTML5 definitely has a bright future. 3D has lots of usages besides games that will be
covered by WebGL, and the no-plug-in story will be of interest moving forward. But this is still
in theory, and it will depend on how Internet Explorer maintains market share and whether
they provide WebGL (right now, there is no sign of this support). So that means WebGL will
require a plug-in installation on Internet Explorer, which defeats the purpose.

Google Native Client is perhaps the one technology I had not considered at first, but it
seems to be the most promising. It will provide optimum performance and will require a plug-
in in many cases, but that plug-in will be required by so many applications that it will be very
common. It also provides access to OpenGL ES 2.0 and a good level of security from the user's
perspective.

Of course, there is a chance that the mobile market is going to be divided (iOS versus
Android), and it is possible that Native Client won't be a choice on iOS. It is also possible that
HTML5 will not be a valid choice on iOS mobile devices, given that a native-built application
will most likely be much faster. Maybe this is Apple's plan, to support standard applications
through HTML5 but force advanced applications, such as games, to be provided only as native
applications, offering Apple better control of what applications are to be published on iOS
platforms.

224 Game Engine Gems

References

[1] XMediaLab. "Mark Pesce, Father of Virtual Reality Markup Language." Video interview.
November 25, 2005. Available at http://www.youtube.com/watch?v=DtMyTn8nAig.

[2] 3d-test. "VRML: The First Ten Years." Interview with Mark Pesce and Tony Parisi. March 21,
2004. Available at http://www.3d-test.com/interviews/media machines 2.htm.

[3] Paul S. Strauss and Rikk Carey. "An Object-Oriented 3D Graphics Toolkit." Computer Graphics
26:2 (July 1992), pp. 341-349.

[4] Web3D Consortium. "Open Standards for Real-Time 3D Communication." Available at
http://www.web3d.org/.

[5] John Rohlf and James Helman. "IRIS Performer: A High Performance Multiprocessing Toolkit
for Real-Time 3D Graphics." Proceedings of Siggraph 1994, ACM Press / ACM SIGGRAPH,
Computer Graphics Proceedings, Annual Conference Series, ACM, pp. 381-394.

[6] OpenGL ARB. "OpenGL++-relevant ARB meeting notes." 1996. Available at http://www.cg.
tuwien.ac.at/-wimmer/apis/opengl++ summary.html.

[7] Randall Hand. "What Led to the Fall of SGI? - Chapter 4." Available at http:// www.
vizworld.com/2009/04/what-led-to-the-fall-of-sgi-chapter-4/.

[8] Oracle. Maintenance of the Java 3D specification. Available at http://www.jcp.org/enjsr/
detail?id=926.

[9] Sun Microsystems. "ANNOUNCEMENT: Java 3D plans." 2008. Available at http://
forums.java.net/jive/thread.j spa?threadID=36022&start=0&tstart=0.

[10] The Khronos Group. "COLLADA - 3D Asset Exchange Schema." Available at http://
khronos.org/collada/.

[11] Remi Arnaud and Mark Barnes. COLLADA: Sailing the Gulf of 3D Digital Content Creation.
Wellesley, MA: A K Peters, 2006.

[12] Remi Arnaud. "The Game Asset Pipeline." Game Engine Gems 1, edited by Eric Lengyel.
Sudbury, MA: Jones and Bartlett, 2010.

Chapter 13 3D in a Web Browser 225

[13] Tim Merel. "Online and mobile games should generate more revenue than console games."
GamesBeat, August 10, 2010. Available at http://venturebeat.com/2010/08/10/online-and-mobile-
games-should-generate-more-revenue-than-consolegames/.

[14] Jason Rubin. "Naughty Dog founder: Triple-A games `not working'." CVG, August 3, 2010.
Available at http://www.computerandvideogames.com/article.php?id=258378.

[15] "Microsoft and Sun Microsystems Enter Broad Cooperation Agreement; Settle Outstanding
Litigation." Microsoft News Center, April 2, 2004. Available at http:// www. microsoft.com/
presspass/press/2004/apr04/04-02SunAgreementPR.mspx.

[16] Steve Jobs. "Here's Why We Don't Allow Flash on the iPhone and iPad." Business Insider, April
29, 2010. Available at http://www.businessinsider.com/ steve-jobs-here s-why-we-dont-allow-flash-
on-the-iphone-2010-4.

[17] The Khronos Group. "WebGL - OpenGL ES 2.0 for the Web." Available at http://
khronos.org/webgl/.

[18] Rita Turkowski. "Enabling the Immersive 3D Web with COLLADA & WebGL." The Khronos
Group, June 30, 2010. Available at http://www.khronos.org/collada/ presentations/W ebGL_Co l
lada_Whitepaper.pdf.

[19] Steve Jenkins. "Five Questions with Carlos Ulloa." Web Designer, September 22, 2009. Available
at http://www.webdesignermag.co.uk/5-questions/five-questionswith-carlos-ulloa/.

[20] Paul Tondeur and Jeff Winder. Papervision3D Essentials. Birmingham, UK: Packt Publishing,
2009.

[21] Richard Olsson and Rob Bateman. The Essential Guide to 3D in Flash. New York: friends of
ED, 2010.

[22] 3D Radar. "Adobe Flash 11 to Get 3D Functionality." Available at http://3dradar.techradar.com/
3d-tech/adobe-flash-11-get-3d-functionality-09-07-2010.

[23] JogAmp.org. The JOGL project hosts the development version of the Java Binding for the
OpenGL API (JSR-23 1). Available at http://jogamp.org/jogl/www/.

[24] Linden Research. "Intel chipsets less than a 945 are NOT compatible." Quote from "Second Life
hardware compatibility." Available at http://secondlife.com/support/system-requirements/.

226 Game Engine Gems

[25] Stat Owl. "Web Browser Plugin Market Share." Available at http://www.statowl.com/plugin_
overview.php.

[26] Oracle. "Better Experiences for End-Users and Developers with JavaFX 1.3.1." Available at
http://javafx.com/.

[27] Ars Technica. "Worldwide OS Share Trend." Available at http://arstechnica.com/microsoft/
news/2010/08/windows-7-overtakes-windows-vista.ars.

[28] Ken Russell and Vangelis Kokkevis. "WebGL in Chrome." Siggraph 2010 WebGL BOF, The
Khronos Group. Available at http://www.khronos.org/developers/library/2010_siggraph_bofwebgl
/WebGL-BOF-2-WebGLinChrome_SIGGRAPH-Ju129.pdf.

14
Chapter 14 2D Magic

Daniel Higgins
Lunchtime Studios, LLC

Magician street performers don't require a big stage, scantily clothed assistants, or saw
boxes to amaze an audience. They are extraordinary in their ability to entertain with a coin or
a deck of cards. Many modern-day game developers are like street performers and do amazing
things on a smaller stage. They often work on mobile platforms and in small groups instead of
giant teams. Small budgets and limited time are no excuses for developers producing subpar
products, however. Limited resources means that these teams must stretch what little they have
in order to produce magic on screen.

The magic described in this chapter is simple, powerful, and requires only a small amount
of graphics knowledge, such as how to construct and render a quad [Porter and Duff 1984].
This isn't an introduction to graphics programming, and it isn't about using shaders or the latest
API from DirectX or OpenGL. Instead, it's a collection of easy-to-implement graphical tricks
for skilled (non-graphics specialist) programmers. In this article, we first explore very basic
concepts that are central to graphics programming, such as vertices, colors, opacity, and texture
coordinates, as well as creative ways to use them in two dimensions. Next, we examine how to
combine these building blocks into a powerful and complex structure that allows for incredible
2D effects (with source code included on the website). Finally, we conclude by conjuring our
own magic and demonstrating some simple examples of this structure in action.

14.1 Tools of the Trade

When a magician develops a new trick featuring a prop, he must first examine the prop's
properties. Take a coin for example. It's small, round, light, and sturdy. It easily hides in the

228 Game Engine Gems

palm of our hand and is the right size to roll across our fingers. Once we have a good
understanding of the coin's properties, we can develop tricks that suit its potential. Likewise in
graphics, our props are vertices. Knowing what composes a vertex gives us clues about how to
develop tricks that harness its powers.

In its most basic form, a vertex is a point with properties that are used while rendering. It's
graphics information for a drawing location somewhere on (or off) the screen. In 2D, it's most
commonly used as one of four points that make up a quad (two triangles sharing an edge) and
is generally used in the rendering of text or an image. A vertex contains position, color, opacity,
and often texture coordinates. Let's examine each property in detail.

14.2 Position

A vertex's position determines where it is rendered on the screen. Location on its own may
not seem interesting, but when combined with the other vertices of a quad, we open up a
window for scale, motion, and perspective effects.

Scale Effects

Imagine a boat race game where we want to display a countdown prior to the start of a
race. Displaying the count involves starting each number small, then increasing its size over the
course of one second. We accomplish this by altering the position of each vertex in a quad
relative to the others in such a way that the screen space becomes larger. Consider dressing this
up with some acceleration modifications that affect how fast it scales. Does it overshoot its
destination scale and have to snap back, producing a wobbling jelly-like effect? Perhaps it starts
quickly and eases into its destination scale, like a car pulling into a parking spot.

Regardless of what acceleration modifier you choose, don't choose linear acceleration-how
boring! Adding unique scaling techniques, such as the smooth step shown in Figure 14.1, adds
character to a game. Smooth step is just a simplification of a Hermite spline [Pipenbrinck 1998]
but produces elegant results with little CPU usage. Other functions to consider when modifying
percentages are sine, cosine, power, square, and cube. Once you determine a scaling
acceleration theme, develop a cohesive style by using it throughout the user interface (UI).

Motion Effects

Motion effects, such as sliding or bouncing a quad across the screen, are achieved by

Chapter 14 2D Magic 229

applying a physics force to a quad (and eventually each vertex). We are not limited to
maintaining a flat border in 2D space. That is, the y coordinate for our top-left vertex and the y
coordinate for our top-right vertex do not have to be the same. We can just as easily alter the
orientation of our objects, spin them, or flip them upside down. We accomplish this by storing
an orientation value in the range [0, 2π) on the quad. When the orientation changes, the quad
updates the position of each of its four vertices to be relative to its new orientation. We could
also store the new orientation in a transform matrix that is applied before rendering.

Figure 14.1. The smooth-step function remaps the range

Perspective Effects

A big advantage 3D has over 2D is lighting. In the 2D world, we're often stuck with the
lighting rendered into the art during production. We shouldn't bemoan this problem, however-
while we cannot change the lighting in the art, we can enhance it at run time. A perfect example
of this is using shadows with our 2D objects. Consider what happens in Figure 14.2. Here we
take a rendering of one of our characters, darken it, blur it, and squash its vertices, projecting it
down to create a slightly angled shadow. The result is an almost magical, subtle effect that
provides depth to our game world visuals.

230 Game Engine Gems

Figure 14.2. (a) The original image. (b) A shadow generated by darkening and blurring its pixels.
(c) Squashing the vertices to build perspective. (d) The final images rendered together.

14.3 Color and Opacity

Tinting and opacity are the primary responsibilities of a vertex's color. Normally, vertices
are rendered with a white coloring (no tint), and the color's alpha value is used to indicate the
transparency of a quad's corner. That's just the tip of the iceberg, though, as color is one of the
most valuable tools for taking our 2D games to the next level, especially for UI design.

Colored UI Model

Optimization isn't just for frame rates; its principles should be applied to a company's
development processes. With that in mind, look to vertex coloring as a means for small, budget-
conscious teams to reduce art pipelines, promote reuse of textures, and develop consistency in
UI design.

Traditionally, UI art is built in third-party tools and rendered verbatim to the screen.
When it's time to render, each vertex is rendered white (no visible change) and may use its alpha
value as the vertex's transparency. This has the advantage that artists know what the outcome
will be, but it does not promote art reuse and requires third-party tools if color changes are
needed. What if we want to reuse much of our game's art, save memory, or want our UI to adapt
to the player's preferences? We need to look at our UI rendering differently than we have in the

Chapter 14 2D Magic 231

past and move to the colored UI model.

The colored UI model involves building reusable pieces of UI in grayscale, focusing on
making them as white as possible, with darkened areas to indicate shadow and depth, then
coloring these pieces when rendering. This allows for Uls to quickly change their color and
opacity based on run-time data or be initialized from data files during load. Consider looking
into luminance format textures for more performance improvements.

Black and white is all about predictability. Render a colorful texture to a green-colored
quad, and the result is predictably a modulation of source texel and destination color but is
likely not the programmer's intended result. If, however, our UI is black and white, we know
that the ending colors will all be shades of the original colors we applied through the vertex. The
catch with this is that we are changing only the purely white areas of the original texture to our
desired color, and all other final display colors are darker depending on the shade of gray in the
original texture.

The most common example of white art and vertex coloring is text rendering. When
rendering a string that uses a font where each character has been prerendered in white onto a
transparent background, we have the ability to color text dynamically. To accomplish this, we
look up a character's texture coordinates, choose the color for each character, and then render
it on a quad of that color. Our result? Characters from the same font file are shown on screen
but colored differently, with no extra texture memory required. We now extend this reuse to
our entire UI.

Imagine building a sports game where each team has a light and dark color. Our designer
wants to connect our garners with the identity of their team through the use of team colors. We
could build a uniquely colored UI for each team, but that takes a lot of effort and resources.
Instead, artists design a black and white UI, with the knowledge that some UI pieces will use
the light team colors and other areas will use the dark team colors. Now we have one art set
instead of many, resulting in a savings in memory, art development time, and likely load time
as well.

This isn't to say an image of a person somersaulting off a building should be in black and
white and tinted when rendered. Use white art and tint it when there is an asset that can be
reused if colored differently. Often, buttons, frames, borders, scroll bars, tab controls, and other
basic UI components are easily colored to fit into different scenes.

232 Game Engine Gems

Opacity Separate from Color

Gone are the days when it was acceptable to have UI objects jarringly pop on and off the
screen. Modern games fade objects or provide some other type of smooth transition. These
transitions (and indeed all transparency) are achieved by modifying the alpha component of a
vertex's color. A value of one means the vertex is fully opaque. A value of zero means the vertex
is completely invisible.

Opacity is closely related to color due to the effect of a color's alpha value on transparency.
It's arguable that opacity is unnecessary since alpha is transparency. Why store opacity then?
The problem is that temporary effects, like fades, pollute the true value of a color's alpha. It's
safer to apply opacity during rendering (finalAlpha = alpha * opacity) and preserve the
true state of a vertex's color. We can optimize this a bit by not storing opacity per vertex and
opt for storing it on a quad instead, since most opacity effects (like fade) don't need to affect
vertices individually.

Interpolation

We're not done with colored Uls yet. A white UI and colored vertices give us another
advantage, dynamic interpolation. Initialization time isn't the only time we alter color. Game-
state changes we want to communicate should also affect color. For example, if we have a button
we want the player to press, we can make it pulse back and forth between two colors (and
opacities). Interpolating between two color values using a parameter t in the range [0, 1] is easy
using a simple expression such as the following:

RGBAtarget = RGBAstart + (RGBAend - RGBAstart) * t;

Day and Night

A good use of vertex coloring in a 2D game is to simulate day and night. While dynamic
shadows are very effective in providing time indication, they are tricky to get right. Tinting, on
the other hand, is a simple and effective way to add day and night effects, and it provides players
with a feeling of time passage without much headache for the programmer. At most, it's a matter
of tinkering with color values until design and art come to an agreement on what looks good.

Chapter 14 2D Magic 233

14.4 Texture (UV) Coordinates

Texture coordinates [Dietrich 2000] are the location in a texture that a vertex uses when
rendering. Conceptually similar to using (x, y) coordinates on the screen, textures use the
coordinates (u, v) (often called UVs) and range over a normalized square (0, 0) to (1, 1) when
rendering a complete texture to a quad. We aren't limited to this narrow range, however. If we
use a texture address mode such as "wrap," we have the ability to repeat a texture as we extend
beyond the range [0, 1].

UI Frames

Using the wrap texture address mode is particularly useful when building reusable UI
components. Consider UI objects such as window frames where sizes may be unknown or
where dynamic scaling is desirable. If we want to build a frame that supports many sizes, we
would construct art for each corner and then create tileable sections for the top middle, bottom
middle, left middle, and right middle. In Figure 14.3, we demonstrate how we can render
complete corner images having (u, v) values from (0, 0) to (1,1), but then repeat thin slices from
our middle sections to create a dynamically sized box. We repeat the middle section by
increasing its u or v value depending on its direction. For example, if the middle section of a
frame should be 15 pixels in x, and the art is only 10 pixels wide, then a u value of 1.5 and a
texture-addressing mode of wrap would repeat half of the texture.

Figure 14.3. Frame where middle area of the top, bottom, left, and right are repeatable.

234 Game Engine Gems

Texture Scrolling

While most motion is done using the positions of vertices, UVs have their role, especially
with tileable textures. Given a repeatable (tileable) texture such as water or sky and slowly
adding to its texture coordinates, known as texture scrolling, we create the appearance of a
flowing river or clouds moving across a sky. This is particularly effective when done at different
speeds to indicate depth, such as water scrolling slowly in the distance while a river close to the
player's perceived location appears to scroll faster; this effect is known as parallax scrolling
[Balkan et al. 2003].

Texture Sheets

Why waste textures space? Some graphics APIs require textures to be a power of two, and
if not, then it's often better for performance reasons anyway, so what if we have textures that
don't fit nicely into a power-of-two size? By building in a simple addressing system, we put
multiple objects in one texture (known as a texture sheet) and store their coordinates in an atlas
(such as an XML file). In Figure 14.4, we show such a texture sheet from the mobile phone
application atPeace. The texture sheet is divided into many blocks, with each individual image's
starting block, width, and height stored in the texture atlas. When the final image is made, the
background blocks are hidden, and the background is transparent. Anytime an image in the
texture is needed, we use an ID and consult our texture atlas. There we find in which texture an
image is located and what its texture coordinates are.

Chapter 14 2D Magic 235

<TextureEntries>
 <Entry id = "mm_sheephead" tex="m1.png">
 <BlockStartXY x="13" y="10"/>
 <BlocksWH x="1" y="1" />
 </Entry>

 <Entry id="mm_sheepbody" text="m1.png">
 <BlockStartXY x="11" y="9" />
 <BlocksWH x="2" y="2" />
 </Entry>
 ...
</TextureEntries>

Figure 14.4. Texture sheet of 32 × 32 pixel blocks and an XML database used to locate objects.

Having blocks of 32 × 32 pixels does waste some texture space, but the size is simple to
understand and use. Luckily, there are numerous resources available online to help with
generating texture sheets and their corresponding atlases [Ivanov 2006].

Enough of these basic properties! It is time to put everything together and make some
magic.

14.5 What a Mesh!

Figure 14.5. Image with four vertices (left), and image with many vertices formed into a mesh
(right).

As in life, building blocks can be combined into systems that become both incredible and
complex. While vertices aren't exactly atoms or strands of DNA, they are powerful building
blocks for graphics programming. They link together and form wonderful tapestries of
interesting and powerful structures. One such structure is a mesh. Seen often in 3D games, a

236 Game Engine Gems

mesh allows programmers to manipulate many areas of a texture, resulting in breathtaking
effects that far surpass what can be done when simply rendering as a quad. These structures are
formed through the dissection of a simple image, composed of four vertices, and subsequent
partitioning into a mesh of many vertices, as shown in Figure 14.5.

The partitioning process creates a series of related quads known as a mesh. Each quad is
responsible for rendering a portion of the texture, but it's up to the mesh to manage the quads
intelligently. With the mesh holding these quads together, we can now apply a global
intelligence across the image to produce a synchronized system of effects, such as flickering
skies, flashlight effects, river ripples, trampoline physics, and water illusions.

So why not just build separate texture objects and let them act independently? Having a
mesh gives us the ability to add structure, intelligence, and finegrain control over our texture.
Creating the illusion of a treasure chest beneath the water would be difficult without a mesh. If
designed for easy vertex modification, a mesh makes seemingly impossible tasks like water easy
to implement.

14.6 Mesh Architecture

Accompanying this chapter is a folder on the website full of goodies, including source code.
We provide a fully implemented C++ mesh that is cross-platform and ready to be dropped into
a new code base and used with minimal effort. Optimization was not the primary goal of this
implementation, although recommendations for performance are included later in this chapter.
Ease of understanding and extensibility were our focus. With minimal effort, new effects can be
added to our mesh that go well beyond the several examples we provide here.

The mesh architecture consists of three important items: vertex, mesh, and modifiers. First,
we use a vertex class to hold each vertex's position, color, opacity, and texture coordinates. Next,
we store all our vertices inside a mesh class and use the mesh class as a way to coordinate all the
vertices, acting as a type of brain for the overall image. Last, our modifiers do the dirty work
and alter the mesh in such a way that we conjure magic on the screen.

Mesh

The mesh is a class that contains a 2D array of vertex objects. Every place where there is a
line intersection in Figure 14.5, there exists a vertex. Using Cartesian coordinates, a vertex can
be quickly retrieved and modified. Our mesh design has a base mesh class and a derived Meshuv

Chapter 14 2D Magic 237

class. In the base implementation, we do not support texture coordinates. It's useful for times
when we want to use colored lighting without a texture, as demonstrated in our double rainbow
example later in this chapter.

Space

There is a good argument to be made about whether a mesh should exist in screen (or local)
space or in world space. On the side of screen space, if a mesh changes size or position, then we
don't need to recompute any of our vertices. On the side of world space, everything with the
mesh requires just a bit more work, calculation, and CPU time on a frame-by-frame basis. That
is to say, if we're not moving or scaling our mesh, then we're wasting CPU time by going to and
from screen space. Our implementation assumes screen space; that is, the mesh considers its
top left corner to be (0, 0), and vertices see their (x, y) positions as percentage offsets into the
mesh. Therefore, only if we change the number of mesh points per row or column do we need
to rebuild our mesh from scratch.

State

Another contention point in mesh design is whether to build vertices that contain state.
Having state means that a vertex has two sets of properties, original and working. The original
properties could be considered the normal, "resting" properties that would make the texture
appear as if it had no mesh. The working properties are copies of the originals that have been
modified by an effect and, thus, have altered the state of the vertex. The vertex then fights its
way back towards its original properties by using mesh-defined physics and other parameters
to alter its working set.

One side of the argument contends that without state, vertices are simple objects, and the
entire system is easier to understand. The problem with this approach, however, is that
combination effects can often get dicey, and we have to recompute modifications on a vertex
many more times than we would if there was state.

The argument for having state is quite persuasive. If a vertex contains a destination set of
properties (position, color, etc.) and uses mesh parameters to morph from their current states
toward the destination states, then we end up with a very consistent and predictable set of
movements. It allows easy control of vertex physics and provides the ability to apply a mesh-
wide set of physical properties. It's a "fire-and-forget" mentality where a force gets applied to
the mesh, and the mesh is responsible for reacting. Our result can be quite interesting

238 Game Engine Gems

considering that we can alter a texture's physics on a mesh-wide basis. Take a texture that
appears as rubble and a texture that appears as cloth. Both can now react to the same force in
very different ways. A texture of rubble would be rigid and morph little given a physics force,
while a cloth texture would have drastic meshmorphing results. While both have their uses, for
simplicity, our version uses the stateless implementation, and we recompute our effects each
rendering cycle. In accordance with that, the burden of vertex modification is passed from
vertex physics onto modifier objects.

Modifiers

Modifiers are what the mesh is all about. After we split an image into a mesh, it still looks
exactly the same to the player. It's when we apply modifier objects to the mesh that we change
its appearance with effects that amaze.

Modifier objects are given the mesh each frame update and are allowed to modify the
vertex properties prior to rendering. Each mesh holds onto a collection of these modifiers,
which are sorted into priorities since some may need to happen prior to others. For example, if
deforming a vertex, one may want the deformation to happen before normal colored lighting
so that the darkening effect of simulated shadow happens last.

14.7 Mesh Examples

Below are several simple examples of mesh manipulation. These are just scratching the
surface of what can be done, and following the patterns of these samples, adding new modifier
objects should be quick and easy.

Modifiers derive from a modifier base class, which consists of the data members shown in
Listing 14.1.

Listing 14.1. Data in base modifier class.

float mPosition[2]; // 2D position (in world space)
float mWH[2]; //width, height

Mesh *mMesh; // points to our parent mesh

uint32 mID; // unique ID for this modifier
uint32 mDeathTime; // world time we're scheduled to perish

Chapter 14 2D Magic 239

uint16 mPriority; // used to sort our modifiers
bool mDirty; // if true, recheck our params

Point Light

We often color our vertices. A simple way to achieve this is to develop a light source similar
to a 3D point light. A point light contains a position, radius, color, and fall-off function, as
shown in Listing 14.2. The fall-off function determines how hard or soft the light's boundary is
at its radius.

Listing 14.2. Data from a point light.

class PointLight
{
protected:
 float mColor[4]; // RGBA color
 float mXY[2]; // our position;

 float mScreenRadius; // 0-1
 float mScreenRadiusDistance; // world space distance
 float mFalloffPercent; // 0-1, multiplies radius

 uint32 mID; // our unique ID
};

Modifiers that use lighting derive from a common MeshlodifierLightBase class that
handles generic point-light lighting, as shown in Listing 14.3.

Listing 14.3. Example of using a point light to light a vertex.

bool MeshModifierLightBase:: LightVertex(uint32 inFrameID,
 MeshVertex& ioV, const PointLight *inL)
{
 // Get our distance sq, another closer Check.
 float theDistSq = distanceSqTo(inL->GetX(), inL->GetY(),
 ioV.GetWorldX(), ioV.GetWorldY());
 float theRadiusDistSq = inL->GetRadiusDistSq();

 if (theDistSq > theRadiusDistSq)
 {
 // Too far away to modify this vertex.
 return false;

240 Game Engine Gems

 }

 // Now we need the real distance.
 float theDist = FastSqrt(theDistSq);

 // Compute our fall off.
 float fallDist = inL->GetRadiusDist() * inL->GetFallOffPercent();

 // Find our strength (of lighting edge).
 float perStr = 1.0F;
 if(theDist >= fallDist)
 {
 // Inverse left over falloff amount.
 float leftOver = (inL->RadiusAsDist() - fallDist);

 // Compute percent str, clamp it to a 0-1 range.
 perStr = clamp((1.0f - ((theDist - fallDist) / leftOver)), 0.0f, 1.0f);
 }

 // Blending.
 if (!ioV.TouchedThisColorFrame(inFrameID))
 {
 // First time through, use the base color of our object.
 LerpColors(mMesh->GetRGBA(), inL->GetRGBA(), perStr, ioV.GetRGBA());

 // Mark this vertex as having its color changed this frame.
 ioV.MarkColorFrameID(inFrameID);
 }
 else
 {
 // Already colored this frame, blend with it.
 LerpColors(ioV.GetRGBA(), inL->GetRGBA(), perStr, ioV.GetRGBA());
 }

 return true;
}

During the mesh's UpdateModifiers () phase prior to rendering, each modifier has its
ProcessMesh() method called. Our MeshModifierLightGroups::ProcessMesh () method,
as shown in Listing 14.4, performs the following steps:

Chapter 14 2D Magic 241

 Examines the dirty flags and updates itself as needed.

 Caches the base light color to be applied.

 Loops over each vertex and does the following:

 Applies the base color for this modifier or mesh. If the mesh and modifier have

different default colors, we mark this vertex as color changed.

 Determines whether the vertex is in our bounding rectangle (as an optimization).

 Loops over each point light and calls Lightvertex().

Listing 14.4. Example of how a modifier with many lights interacts with a mesh.

bool MeshModifierLightGroup::ProcessMesh(uint32 inFrame)
{
 bool res = false;

 // Update dirty
 UpdateDirtyIfNeeded();

 // Used as assert checking now, but could make thread safe.
 ListLocker theLock(mProtectLightList);

 size_t lightMax = mLights.size();

 // Virtual call, gets us the modifier (or mesh) color for each vertex.
 const float* theBaseColor = GetBaseColor();

 // If this is a unique base color, mark this as
 // having a different color
 bool theDiffBaseColor = !ColorMatches(theBaseColor, mMesh->GetRGBA());

 // Loop over each and process it.
 uint32 theRowSize = mMesh->GetRowSize();

 for(uint32 theX = 0; theX < theRowSize; ++theX)
 {
 for(uint32 theY = 0; theY < theRowSize; ++theY)
 {
 // Modify this vertex by the modifier object
 MeshVertex& vert = mMesh->GetVertex(theX,theY);

242 Game Engine Gems

 // Set the default color.
 vert.SetRGBA(theBaseColor);

 // Is the modifier's default color different than the mesh color?
 if(theDiffBaseColor)
 vert.MarkColorFrameID(inFrame);

 // Is it in the bounds?
 if(!Contains(vert.GetWorldX(), vert.GetWorldY()))
 continue;

 // Yes, this modifier altered the mesh.
 res = true;

 // For each light, light up the vertex.
 for(size_t lightC = 0; lightC < lightMax; ++lightC)
 {
 // Light the vertex!
 res |= LightVertex(inFrame, vert, mLights[lightC]);
 }
 }
 }

 return res;
}

Ultimately, our mesh makes many effects possible with minimal coding. It's designed
around building modifier objects, similar to functors in the standard template library. Certainly,
instead of a mesh, unique systems can be generated for many of the effects listed below. Particles
work for some, while independent ly colored quads would suffice for others. In the end, the
mesh is about power and convenience, both of which are difference makers, especially for small
teams.

Sunrise and Double Rainbows

Many of us wonder what seeing a double rainbow means. We can give our players the
chance to ponder that question with a simple lighting modifier effect. This effect requires no
texture and only renders colored quads. It consists of adding multiple point lights in an arc to
a lighting group modifier, then changing perlight properties over time, altering the color, radius,
fall-off, and position of each point light, as shown in Figure 14.6.

This type of effect is incredibly useful in adding a dynamic feel to background images. It

Chapter 14 2D Magic 243

can apply to a nighttime sky, a space scene, or the flicker of a sunrise. Incorporating lighting
with standard textures is particularly effective. For example, the aforementioned flickering
sunrise is implemented as a texture containing a sun in the foreground and a sunbeam-style
point light behind it. Both rise together, while the point light modifies the background screen's
mesh in seemingly perfect concert with the rising-sun texture. To the player, the sun and the
point light behind it are one and the same.

Figure 14.6. Lighting effects on a mesh, from the mobile phone application atPeace [6].

There is almost no limit to what visual pairings work, given a mesh and normal foreground
texture. Imagine a rocket whose exhaust trail is a series of point lights spat out from its engines.
These lights ejected from the back of the rocket would spin, gently fall, and fade away as the
rocket ship sped off into space.

Taking this one step further, you can light multiple objects in a world by having many
objects with meshes and adding lighting modifiers on each one. Creating and modifying the
point lights outside of the mesh means that they can be applied to multiple mesh objects, in a
sense providing a global light source. That light would correctly impact the meshes of objects
around it, regardless of whether they each have their own mesh. Sound confusing? Consider
that any 2D object can have a mesh and that each mesh has its own modifier. The key is that
any point light can be passed into each mesh's modifiers. In other words, we can control point
lights from the application and change the lighting modifiers on each mesh prior to rendering.
That provides global lighting for the scene, which is superb for world lighting consistency.

244 Game Engine Gems

Flashlight

The mesh has seemingly no limit to what it offers. Instead of moving lights across a mesh
and altering colors, it provides us the basis for negative effects, such as the flashlight. Instead of
coloring vertices as a light moves through a mesh, we have the ability to hide the texture and
use the point light as a way to uncover an image. Figure 14.7 shows several lights that, when
applied to an image, uncover it. One could imagine how lights could be used in different
strengths and colors such as a hard-beamed flashlight or a dim torch. Indeed, a casual game
could be based largely on this concept of uncovering an image by using different types of lights
that have varied shapes, colors, and sizes.

Figure 14.7. Using lights to uncover an image.

The implementation of this effect takes only a few lines of code since it derives from our
lighting-modifier group class. The only change is that every vertex is colored black and our
point light color value is pure white. Normal fall-off distances and screen-radius parameters
used in our point light class still apply without alteration.

Pinch

Colors are just the beginning. Where the rubber meets the road is in the modification of
vertex positions. It's here where we can make an image seem as if it's underwater by applying a
water morphing effect, or where we can make our mesh respond as if it's a trampoline. Our
pinch example is about as simple as it gets. Given a point, radius, and fall-off function (similar
to a point light), we can bend vertices in toward the center of our pinch point as demonstrated
in Figure 14.8. Note how the debugging lines rendered on the image show how each affected

Chapter 14 2D Magic 245

vertex is bent in toward the pinch point and how we color our vertices in the pinch to indicate
depth. The opposite effect would be equally as simple, and we could create bulges in our texture
instead.

Figure 14.8. The pinch effect pulls vertices towards the pinch point.

Optimization

As mentioned earlier, when implementing the mesh that accompanies this article,
optimization was a low priority. That's not to say it shouldn't be a high priority prior to shipping,
since it greatly affects the frame rate. This mesh is fast enough to support many mobile
platforms, especially when used selectively as a singletextured sky background. However, given
multiple meshes and many modifier objects, the number of vertices that require updating (and
rendering) grows substantially. If optimization is a priority, here are some tips to remember:

 As with every optimization, it pays to make sure you're fixing what is broken. Use a profiler

to gather real data on bottlenecks.

 A major issue is the number of vertices affected per update or frame. Consider the

following:

 Reduce the mesh points per row or column.

 Use bounding areas to eliminate large groups of vertices. The best situation is one

where we never need to even look at a vertex to know it's unaffected by our modifiers

246 Game Engine Gems

and we can skip updating (or rendering) the vertex. We achieve this by combining the

bounding box of all modifiers together. With these combined bounds, we then

determine which vertices are unaffected by our modifiers and can optimize

accordingly.

 Since each modifier has the ability to affect every vertex on the mesh, limit the number

of modifier objects or have ways to short circuit an update. This is extremely

important since every modifier added has the potential to update every vertex on the

mesh. Something has to give in order to reduce the world load.

 Consider building the mesh using state-based vertex objects where modifiers exist as "fire-

and-forget" objects that modify the vertices of the mesh once, and let each vertex find its

way back to their original state.

 Use texture sheets. Rendering objects on the same texture at the same time is an

optimization over texture swapping. Avoid loading in many texture sheets that are only

required for a small piece of texture. Instead, try to include as many assets on a texture

sheet for a given scene as possible.

 Graphics bottlenecks need to be considered. A detailed mesh has many quads. Consider

things such as grouping vertices into large quads for unaffected areas and rendering those

areas as chunks. Think of it this way: an unmodified mesh is easily rendered with only the

typical four corners.

14.8 Conclusion

Life has a way of taking small building blocks and generating colossal structures. We can
do the same in 2D if we closely examine our own building blocks in graphics. Just because its
2D doesn't mean we're limited to simple textures or "sprites." We need to exploit every power
they provide. Small development shops building 2D games need to be particularly aggressive in
the pursuit of quality and an edge as they often face competition that is bigger and better funded.
Using a colored UI or 2D mesh is a perfect place to put some wind in the sails and get a jump
on the competition. Big results with minimal effort, an almost magical situation.

Chapter 14 2D Magic 247

Acknowledgements

Special thanks to Rick Bushie for the art in the examples from the game atPeace.

References

[Balkan et al. 2003] Aral Balkan, Josh Dura, Anthony Eden, Brian Monnone, James Dean Palmer,
Jared Tarbell, and Todd Yard. "Flash 3D Cheats Most Wanted." New York: friends of ED, 2003.

[Dietrich 2000] Sim Dietrich. "Texture Addressing." Nvidia, 2000. Available at http://
developer.nvidia.conVobject/Texture-Addressing_paper.html.

[Ivanov 2006] Ivan-Assen Ivanov. "Practical Texture Atlases." Gamasutra, 2006. Available at
http://www.gamasutra.com/features/20060126/ivanov_01.shtml.

[Pipenbrinck 1998] Nils Pipenbrinck. "Hermite Curve Interpolation." 1998. Available at
http://www.cubic.org/docs/hennite.htm.

[Porter and Duff 1984] Thomas Porter and Tom Duff. "Compositing Digital Images." Computer
Graphics (Proceedings of SIGGRAPH 84) 18:3, ACM, pp. 253-259.

Part I

Part II Game Engine Design

15
Chapter 15 High-Performance Programming with Data-Oriented
Design

Noel Llopis
Snappy Touch

Common programming wisdom used to encourage delaying optimizations until later in
the project, and then optimizing only those parts that were obvious bottlenecks in the profiler.
That approach worked well with glaring inefficiencies, like particularly slow algorithms or code
that is called many times per frame. In a time when CPU clock cycles were a good indication of
performance that was a good approach to follow. Things have changed a lot in today's hardware,
and we have all experienced the situation where, after fixing the obvious culprits, no single
function stands out in the profiler but performance remains subpar. Dataoriented design helps
address this problem by architecting the game with memory accesses and parallelization from
the beginning.

15.1 Modern Hardware

Modern hardware can be characterized by having multiple execution cores and deep
memory hierarchies. The reason for the complex memory hierarchies is due to the gap between
CPU power and memory access times. Gone are the days when CPU instructions took about
the same time as a main memory access. Instead, this gap continues to increase and shows no
signs of stopping (see Figure 15.1).

Different parts of the memory hierarchy have different access times. The smaller ones
closer to the CPU are the fastest ones, whereas main memory can be really large, but also very
slow. Table 15.1 lists some common access times for different levels of the hierarchy on modern
platforms.

252 Game Engine Gems

Figure 15.1. Relative CPU and memory performance over time.

With these kinds of access times, it's very likely that the CPU is going to stall waiting to
read data from memory. All of a sudden, performance is not determined so much by how
efficient the program executing on the CPU is, but how efficiently it uses memory.

Barring a radical technology change, this is not a situation that's about to change anytime
soon. We'll continue getting more powerful, wider CPUs and larger memories that are going to
make memory access even more problematic in the future.

Looking at code from a memory access point of view, the worst-case situation would be a
program accessing heterogeneous trees of data scattered all over memory, executing different
code at each node. There we get not just the constant data cache misses but also bad instruction
cache utilization because it's calling different functions. Does that sound like a familiar situation?
That's how most modern games are architected: large trees of different kinds of objects with
polymorphic behavior.

What's even worse is that bad memory access patterns will bring a program down to its
metaphorical knees, but that's not a problem that's likely to appear anywhere in the profiler.
Instead, it will result in the common situation of everything being slower than we expected, but
us not being able to point to a particular spot. That's because there isn't a single place that we
can fix. Instead, we need to change the whole architecture, preferably from the beginning, and

Chapter 15 High-Performance Programming with Data-Oriented Design 253

use a dataoriented approach.

Table 15.1. Access times for different levels of the memory hierarchy for modem platforms.

Memory Level CPU Cycles per Access
Register 1
L1 cache 5-8
L2 cache 30-50
Main memory 500+

15.2 Principles of Data-Oriented Design

Before we can talk about data-oriented design, we need to step back and think about what
a computer program is. One of the most common definitions of a computer program is "a
sequence of instructions to perform a task." That's a reasonably good definition, but it
concentrates more on the hows rather than on the whys. What are those instructions for? Why
are we writing that program?

A more general definition of a computer program is "something that transforms input data
into output data." At first glance, some people might disagree with this definition. It might be
true for the calculations in a spreadsheet, but is it really a good description for a game?
Definitely. In a game, we have a set of input data: the clock value, the game controller state,
network packets, and the state of the game during the previous frame. The outputs we're
calculating are a new game state, a set of commands for the graphics processor, sound, network
packets, etc. It's not very different from a spreadsheet, except that it runs many times per second,
at interactive rates.

The emphasis in Computer Science and Engineering is to concentrate on algorithms and
code architecture. In particular, procedural programming focuses on procedure and function
calls as its main element, while object-oriented programming deals mostly with objects (which
are sets of data and the code that works on that data).

Data-oriented design turns that around and considers data first: how it is laid out and how
it is read and processed in the program. Then, the code is something written to transform the
input data into the output data, but it itself is not the focus.

As a consequence of looking at the input data carefully, we can apply another principle of

254 Game Engine Gems

data-oriented design: where there's one, there are more. How often have you had just one player
in the game? Or one enemy? One vehicle? One bullet? Never! Yet somehow, we insist on
treating each object separately, in isolation, as if it were the only one in the world. Data-oriented
design encourages optimizing for the common case of having multiple objects of the same type.

15.3 Data-Oriented Design Benefits

Data-oriented design has three major performance benefits:

1. Cache utilization. This is the big one that motivated us to look at data in the first place.

Because we can concentrate on data and memory access instead of the algorithms

themselves, we can make sure our programs have as close to an ideal memory access

pattern as possible. That means avoiding heterogeneous trees, organizing our data into

large sequential blocks of homogeneous memory, and processing it by running the same

code on all of its elements. This alone can bring a huge speed-up to our code.

2. Parallelization. When we work from the data point of view, it becomes a lot easier to

divide work up into parts that different cores can process simultaneously with minimal

synchronization. This is true for almost any kind of parallel architecture, whether each core

has access to main memory or not.

3. Less code. People are often surprised at this one. As a consequence of looking at the

data and only writing code to transform input data into output data, there is a lot of code

that disappears. Code that before was doing boring bookkeeping, or getter/setters on

objects, or even unnecessary abstractions, all go away. And simplifying code is very much

like simplifying an algebraic equation: once you make a simplification, you often see other

ways to simplify it further and end up with a much smaller equation than you started with.

When a technique promises higher performance, it often comes at a cost in some other
department, usually in terms of readability or ease of maintenance. Data-oriented design is
pretty unique in that it also has major benefits from a development perspective:

1. Easier to test. When your code is something that simply transforms input data into output

data, testing it becomes extremely simple. Feed in some test input data, run the code, and

verify the output data is what you expected. There are no pesky global variables to deal

Chapter 15 High-Performance Programming with Data-Oriented Design 255

with, calls to other systems, interaction with other objects, or mocks to write. It really

becomes that simple.

2. Easier to understand. Having less code means not just higher performance but also

less code to maintain, understand, and keep straight in our heads. Also, each function in

itself is much simpler to understand. We're never in the situation of having to chase

function call after function call to understand all the consequences of one function.

Everything you want to know about it is there, without any lower-level systems involved.

To be fair and present all the sides, there are two disadvantages to dataoriented design:

1. It's different. So far, data-oriented design isn't taught in Computer Science curricula, and

most developers aren't actively using it, so it is foreign to most team members. It also makes

it more difficult to integrate with third-party libraries and APIs that are not data-oriented.

2. Harder to see the big picture. Because of the emphasis on data and on small functions

that transform data, it might be harder to see and express the big picture of the program:

When is an operation happening? Why is this data being transformed? This is something

that might be addressed with tools, language extensions, or even a new programming

language in the future. For now, we'll have to rely on examining the code and the data

carefully.

15.4 How to Apply Data-Oriented Design

Let's get more specific and start applying data-oriented design. Eventually, we'd like the
entire game to be architected this way, but we need to start somewhere. So pick a subsystem
that needs to be optimized: animation, artificial intelligence, physics, etc.

Next, think about all the data involved in that system. Don't worry too much about how it
is laid out in memory, just about what's involved. Apart from the explicit inputs and outputs,
don't forget about data that the system accesses explicitly, such as a world navigation graph, or
global handle managers.

Once you have identified all the data the system needs, carefully think about how each type
of data is used and sort them into read-only, read-write, or writeonly. Those will become your
explicit inputs and outputs. It will also allow you to make better decisions about how to lay out

256 Game Engine Gems

the data.

Also, at this point, it's important to think about the amount of data. Does this system ever
process more than one of each type of data? If so, start thinking of it in terms of arrays of data,
preferably as contiguous blocks of the same data type that can be processed at once.

Finally, the most important step is to look at the data you've identified as input and figure
out how it can be transformed into the output data in an efficient way. How does the input data
need to be arranged? Normally, you'll want a large block of the same data type, but perhaps, if
there are two data types that need to be processed at the same time, interleaving them might
make more sense. Or maybe, the transformation needs two separate passes over the same data
type, but the second pass uses some fields that are unused in the first pass. In that case, it might
be a good candidate for splitting it up into two types and keeping each of them sequentially in
memory.

Once you have decided on the transformation, the only thing left is gathering the inputs
from the rest of the system and filling the outputs. When you're transitioning from a more
traditional architecture, you might have to perform an explicit gathering step-query some
functions or objects and collect the input data in the format you want. You'll have to perform a
similar operation with the output, feeding it into the rest of the system. Even though those extra
steps represent a performance hit, the benefits gained usually offset any performance costs. As
more systems start using the data-oriented approach, you'll be able to feed the output data from
one system directly into the input of another, and you'll really be able to reap the benefits.

15.5 Real-World Situations

Homogeneous, Sequential Data

You are probably already applying some of the principles of data-oriented design in your
games right now: the particle system. It's intended to handle thousands and thousands of
particles. The input data is very carefully designed to be small, aligned, and fit in cache lines,
and the output data is also very well defined because it probably feeds directly into the GPU.

Unfortunately for us, we don't have that many situations in game development where we
can apply the same principle. It may be possible for some sound or image processing, but most
other tasks seem to require much more varied data and lots of different code paths.

Chapter 15 High-Performance Programming with Data-Oriented Design 257

Heterogeneous Data

Game entities are the perfect example of why the straightforward particle approach doesn't
work in other game subsystems. You probably have dozens of different game entity types. Or
maybe you have one game entity, but have dozens, or even hundreds, of components that, when
grouped together, give entities their own behavior.

One simple step we can take when dealing with large groups of heterogeneous data like
that is to group similar data types together. For example, we would lay out all the health
components for all entities in the game one right after the other in the same memory block.
Same thing with armor components, and every other type of component.

If you just rearranged them and still updated them one game entity at a time, you wouldn't
see any performance improvements. To gain a significant performance boost, you need to
change the update from being entity-centric to being component-centric. You need to update
all health components first, then all armor components, and proceed with all component types.
At that point, your memory access patterns will have improved significantly, and you should be
able to see much better performance.

Break and Batch

It turns out that sometimes even updating a single game entity component seems to need
a lot of input data, and sometimes it's even unpredictable what it's going to need. That's a sign
that we need to break the update into multiple steps, each of them with smaller, more
predictable input data.

For example, the navigation component casts several rays into the world. Since the ray
casts happen as part of the update, all of the data they touch is considered input data. In this
case, it means that potentially the full world and other entities' collision data are part of the
input data! Instead of collecting that data ahead of time and feeding it as an input into each
component update, we can break the component update into two parts. The initial update
figures out what ray casts are required and generates ray-cast queries as part of its output. The
second update takes the results from the ray casts requested by the first update and finishes
updating the component state.

The crucial step, once again, is the order of the updates. What we want to do is perform
the first update on all navigation components and gather all the raycast queries. Then we take
all those queries, cast all those rays, and save the results. Finally, we do another pass over the

258 Game Engine Gems

navigation components, calling the second update for each of them and feeding them the results
of the ray queries.

Notice how once again, we managed to take some code with that tree-like memory access
structure and turn it into something that is more linear and works over similar sets of data. The
ray-casting step isn't the ideal linear traversal, but at least it's restricted to a single step, and
maybe the world collision data might fit in some cache so we won't be getting too many misses
to main memory.

Once you have this implemented, if the ray-casting part is still too slow, you could analyze
the data and try to speed things up. For example, if you often have lots of grouped ray casts, it
might be beneficial to first sort the ray casts spatially, and when they're being resolved, you're
more likely to hit data that is already cached.

Conditional Execution

Another common situation is that not all data of the same type needs to be updated the
same way. For example, the navigation component doesn't always need to cast the same number
of rays. Maybe it normally casts a few rays every half a second, or more rays if other entities are
closer by.

In that case, we can let the component decide whether it needs a second-pass update by
whether it creates a ray-cast query. Now we're not going to have a fixed number of ray queries
per entity, so we'll also need a way to make sure we associate the ray cast with the entity it came
from.

After all ray casts are performed, we iterate over the navigation components and only
update the ones that requested a ray query. That might save us a bit of CPU time, but chances
are that it won't improve performance very much because we're going to be randomly skipping
components and missing out on the benefits of accessing memory linearly.

If the amount of data needed by the second update is fairly small, we could copy that data
as an output for the first update. That way, whenever we're ready to perform the second update,
we only need to access the data generated this way, which is sequentially laid out in memory.

If copying the data isn't practical (there's either too much data or that data needs to be
written back to the component itself), we could exploit temporal coherence, if there is any. If
components either cast rays or don't, and do so for several frames at a time, we could reorder
the components in memory so all navigation components that cast rays are found at the

Chapter 15 High-Performance Programming with Data-Oriented Design 259

beginning of the memory block. Then, the second update can proceed linearly through the
block until the last component that requested a ray cast is updated. To be able to achieve this,
we need to make sure that our data is easily relocatable.

Polymorphism

Whenever we're applying data-oriented design, we explicitly traverse sets of data of a
known type. Unlike an object-oriented approach, we would never traverse a set of
heterogeneous data by calling polymorphic functions in each of them.

Even so, while we're transforming some well-known data, we might need to treat another
set of data polymorphically. For example, even though we're updating the bullet data (well-
known type), we might want to deliver damage to any entity it hits, independent of the type of
that entity. Since using classes and inheritance is not usually a very data-friendly approach, we
need to find a better alternative.

There are many different ways to go about this, depending on the kind of game
architecture you have. One possibility is to split the common functionality of a game entity into
a separate data type. This would probably be a very small set of data: a handle, a type, and
possibly some flags or indices to components. If every entity in the world has one corresponding
set of data of this type, we can always count on it while dealing with other entities. In this case,
the bullet data update could check whether the entity has a damage-handling component, and
if so, access it and deliver the damage.

If that last sentence left you a bit uncomfortable, congratulations, you're starting to really
get a feel for good data access patterns. If you analyze it, the access patterns are less than ideal:
we're updating all the current bullets in the world. That's fine because they're all laid out
sequentially in memory. Then, when one of them hits an entity, we need to access that entity's
data, and then potentially the damage-handling component. That's two potentially random
accesses into memory that are almost guaranteed to be cache misses.

We could improve on this a little bit by having the bullet update not access the entity
directly and, instead, create a message packet with the damage it wants to deliver to that entity.
After we're done updating all of the bullets, we can make another pass over those messages and
apply the damage. That might result in a marginal improvement (it's doubtful that accessing
the entity and its component is going to cause any cache misses on the following bullet data),
but most importantly, it prevents us from having any meaningful interaction with the entity. Is
the entity bullet proof? Maybe that kind of bullet doesn't even hit the entity, and the bullet

260 Game Engine Gems

should go through unnoticed? In that case, we really want to access the entity data during the
bullet update.

In the end, it's important to realize that not every data access is going to be ideal. Like with
all optimizations, the most important ones are the ones that happen more frequently. A bullet
might travel for hundreds of frames, and it will hit something at most in one frame. It's not
going to make much of a difference if, during the frame when it hits, we have a few extra
memory accesses.

15.6 Parallelization

Improving memory access patterns is only part of the performance benefits provided by
data-oriented design. The other half is being able to take advantage of multiple cores very easily.

Normally, to split up tasks on different cores, we need to create a description of the job to
perform and some of the inputs to the job. Unfortunately, where things fall down for procedural
or object-oriented approaches is that a lot of tasks have implicit inputs: world data, collision
data, etc. Developers try to work around it by providing exclusive access to data through locking
systems, but that's very error prone and can be a big hit on performance depending on how
frequently it happens.

The good news is that once you've architected your code such that you're thinking about
the data first and following the guidelines in earlier sections, you're ready to parallelize it with
very little effort. All of your inputs are clearly defined, and so are your outputs. You also know
which tasks need to be performed before other tasks based on which data they consume and
produce.

The only part missing is a scheduler. Once you have all of that information about your
data and the transformations that need to happen to it, the scheduler can hand off tasks to
individual cores based on what work is available. Each core gets the input data, the address
where the output data should go, and what kind of transformation to apply to it.

Because all inputs are clearly defined, and outputs are usually new memory buffers, there
is often no need to provide exclusive access to any data. Whenever the output data writes back
into an area of memory that was used as an input (for example, entity states), the scheduler can
make sure there are no jobs trying to read from that memory while the job that writes the output
is executing. And because each job is very "shallow" (in the sense that it doesn't perform

Chapter 15 High-Performance Programming with Data-Oriented Design 261

cascading function calls), the data each one touches is very limited, making the scheduling
relatively easy.

If the entire game has been architected this way, the scheduler can then create a complete
directed acyclic graph of data dependencies between jobs for each frame. It can use that
information and the timings from each previous frame (assuming some temporal coherency)
and estimate what the critical path of data transformation is going to be, giving priority to those
jobs whenever possible.

One of the consequences of running a large system of data transformations this way is that
there are often a lot of intermediate memory buffers. For platforms with little memory available,
the scheduler can trade some speed for extra memory by giving priority to jobs that consume
intermediate data instead of ones in the critical path.

This approach works well for any kind of parallel architecture, even if the individual cores
don't have access to main memory. Since all of the input data is explicitly listed, it can be easily
transferred to the core local memory before the transformation happens.

Also, unlike the lock-based parallelization approaches, this method scales very well to a
large number of cores, which is clearly the direction future hardware is going toward.

15.7 Conclusion

Data-oriented design is a departure from traditional code-first thinking. It addresses head-
on the two biggest performance problems in modern hardware: memory access and
parallelization. By thinking about programs as instructions to transform data and thinking first
about how that data should be laid out and worked on, we can get huge performance boosts
over more traditional software development approaches.

16
Chapter 16 Game Tuning Infrastructure

Wessam Bahnassi
Electronic Arts, Inc.

16.1 Introduction

Every game has to go through a continuous cycle of tuning and tweaking during its
development. To support that, many of today's game engines provide some means for editing
and tuning "objects" (or "entities") and other settings in the game world. This article provides
food for thought on implementing tuning capabilities in a game engine. We cover the
infrastructure options available and discuss their particularities and the scenarios that would
benefit from each one of them. Finally, we conclude with case studies from a published game
and a commercial engine.

16.2 The Need for Tweak

Implementing a tuning system is a challenge not to be underestimated, and making it really
convenient and productive is even more challenging. Games involve a lot of data besides
textures and 3D geometry: logical data such as the move speed of a tank, reload rate of a weapon,
sun position, unit view radius, etc. Such data is obviously better not kept in hard-coded values
in the game's executable. As executable build times continuously increase, tuning such values
would become a very time-consuming task. A method for accessing, modifying, storing, and
managing such data must be put in place. This is one aspect of why editors are needed in
modern game engines.

Editors have the advantage of being able to offer powerful and convenient user interfaces

264 Game Engine Gems

to view and modify values for the various entities and parameters in the game. This article
focuses only on the back-end facet of engine editors within the context of tuning, as user-
interface discussions are a very big topic on their own and are outside the scope of this book.

For a while, editors had to provide only the means to modify game data and build this data
to become ready for use by the game run-time code. However, a situation similar to executable
build times has risen. Level build times have also become increasingly lengthy, making the
turnaround time of visualizing data modifications too long and less productive. The need for a
faster method for visualizing changes has thus become necessary, and a new breed of the so-
called what-you-see-is-what-you-get (WYSIWYG) editors has also become available.

However, it is important to not get caught up in industry frenzy. Indeed, not all projects
need or have the opportunity to utilize an engine with a full-scale editor. Except in the case of
using a licensed engine, the game team might not have the time to build anything but the most
primitive tool to do data editing and tuning. For such cases, this article also considers
approaches that lack the presence of a separate editor application.

16.3 Design Considerations

Since the task of implementing a tuning system can be highly involved, it is important to
take a step back and think about the expected goals of such a system within the context of the
situation at hand. Considering the following points should help avoid underestimating or
overshooting features for the system:

 Acceptable turnaround time for each class of tunable parameters. This is the time wasted

between the user making the modification and seeing its effect.

 Convenience and ease of use with regard to the target system users and frequency of usage.

A system that is going to be used daily should receive more focus than a system used rarely.

 Amount of development work involved and how intrusive code changes are allowed to be.

The engine's code base is a primary factor in this area.

 Potential for system reuse in other projects, or in other words, generality. For example, is

it needed to serve one game only? Or games of similar genre? Or any game project in

general?

Chapter 16 Game Tuning Infrastructure 265

 Type of data to be tuned and its level of sophistication, complexity, and multiplicity (e.g.,

global settings, per-entity, per-level).

 Cross-platform tuning support-certain parameters are platform-specific and require

tuning on the target platform directly.

One additional point that was taken out from the list above is stability and data safety. This
should not be a "consideration," but rather a strict requirement. An editor that crashes in the
middle of work is not considered a valid piece of software.

Next, we go into detail about the available options for implementing a tuning
infrastructure in a game engine. The options are categorized into four main sections: The
Tuning Tool, Data Exchange, Schema and Exposure, and Data Storage. A choice from each
section can be made and then mixed and matched with choices from the other sections to finally
form the definition of the tuning system that would best serve the team's needs. The list of
considerations above should be kept in mind when reading through the following sections in
order to help make the right decisions.

16.4 The Tuning Tool

The choice of the tuning tool is not limited to building an editor application from scratch.
In fact, there is good potential for reuse in this area. The four options we discuss here range
from the lowest-tech approach of using the debugger, all the way to implementing a dedicated
editor application.

Using the Debugger

We start with the most basic case. A game has a number of values controlling a few aspects,
like player walk speed, total health, or camera settings. As programmers who hopefully follow
good coding habits, it is expected that such values are at least hard-coded in named
preprocessor defines or in constants that reflect the nature of the value, as opposed to inlining
the value directly where it's used.

The lowest-level method of tuning such values is to first convert them to global variables
with initial values, as shown in Listing 16.1, and then run the game. To tune a value, one can
add its global variable to the debugger's Watch window and change it directly in there (some

266 Game Engine Gems

debuggers allow doing this without even halting program execution).

The results are immediate, and the amount of code change is minimal. However, this is
limited to people with access to a debugger. For artists and game designers, this would be an
issue of convenience. Furthermore, the final values have to be noted and hard-coded again after
the tuning session ends, which can be annoying if there are many modified values or if their
values are lengthy.

Listing 16.1. Pseudo C++ code showing the proper setup for interactive global variable tuning.

#define MAX_PLAYER_HEALTH 100 // This is obviously not tunable.

const float kPlayerWalkSpeed = 2.5f; // Not tunable either.
float g_CameraDistance = 15.0f; // This can be tuned at run time.

void Player::Update(bool isShot)
{
 //...
 if (isShot)
 this->health -= 5; // This is bad! Move to a named value.
 //...
}

Using a Console Window

A system similar to that presented by Jensen [2001] can be used to allow team members to
tune values on the fly by typing name-value pairs in a console window attached to the game
(e.g., see Figure 16.1). Compared to the previous method, a certain additional amount of coding
is now necessary to implement the console window.

If the console window is implemented inside the game, then this approach (and the one
before) can be conducted on any platform the game targets. This can be quite valuable when
tuning values particular to a certain platform (e.g., tuning color correction or mipmap level
selection). Console windows are commonly used for debugging and cheating purposes
(toggling rendering modes, hiding characters, killing all enemies, etc.), but they could be
considered a tuning tool as well.

Integrating with an Existing DCC1 Tool

Bahnassi [2004] and Woo [2007] provide good examples of DCC tool integration. This
can be quite convenient for artists and level designers who spend the majority of their time on

Chapter 16 Game Tuning Infrastructure 267

the project modeling, texturing, and laying out levels for the game. Instead of forcing those team
members to generate assets and then wait for the pipeline to build them in order to view the
results in the game's renderer, this approach offers them instant visualization, which can boost
productivity.

Figure 16.1. Tuning exposed variables using the game's console window. (Image from the game
Quraish, courtesy of Dar Al-Fikr Publishing)

DCC tools come with a large palette of utilities that can be used to layout a level and art
exactly as one wants, thus providing an excellent tuning experience. However, the
programming effort required by this technique is not to be underestimated.

There are two methods of approaching this option. One method is to implement the game
renderer inside the DCC tool (possible in Autodesk Softimage), and the other is to have the tool
communicate with the game executable in order to send it updates about changes happening in
the DCC tool to directly display it to the user. In this venue, an engine can go as far as
implementing asset hot loading so changes to models and textures could be directly visualized
in the game, too. The storage of tuned data (models, levels, and custom properties) then
becomes the role of the DCC tool.

268 Game Engine Gems

Dedicated Editor Application

Another sophisticated method is to build a dedicated editor application that works with
the game. Such a method puts total control and flexibility in the hands of the team to make the
tool tune virtually any value deemed tunable. The widgets and controls for tuning can all be
customized to be as suitable to the data as possible (e.g., color pickers, range-limited value
sliders, or curve editors). A full-blown implementation can go as far as providing instantaneous
live tuning through the actual game's executable, such as in Unreal and CryEngine.

Depending on how sophisticated a team wants to get with this, implementing the user
interface and controls for a successful editor can be a difficult task that requires background
and experience in developing user interfaces, which is a specialization of its own. If not
considered well, the result most probably will be inconvenient (e.g., widgets not behaving in a
standard way, bad interface layout, missing shortcuts, or missing undo or redo).

It can now be understood why this method, while being most sophisticated, is most
difficult to get right. It can involve a huge amount of programmer work and the dedication of a
number of members of the team. Going with third-party solutions can be a wise decision here.

On the implementation side, the editor application, being separate from the game, is free
to use its own programming language. NET languages have been found to be excellent for
rapidly developing desktop control-rich applications. However, using a different language than
the game can complicate data exchange and communication, but solutions exist [Bahnassi 08].

Some implementations, such as the Unreal editor shown in Figure 16.2, involve the editor
directly within the actual game's executable. This simplifies the task of data exchange and
provides access to the game's most up-to-date rendering features and data structures. But on
the other hand, such approaches can complicate the game's code by involving the editor's code
in many of the game's internal aspects and forcing it to handle situations that are not faced when
launching the game in standalone mode.

Chapter 16 Game Tuning Infrastructure 269

Figure 16.2. UnrealEd is embedded in the same game's executable.

Another important issue is stability. By binding the editor to the game code itself, the
editor inherits the same level of instability as the game (which can be high during game
production), causing grief and lost work to the entire team. Thus, it is advisable to implement
the editor as a separate application running in its own address space and using its own codebase.
It can be made so that even if the game or visualization tool crashes, then it would still be
possible to save data so that no work is lost.

16.5 Data Exchange

As has been shown in the previous section, the tuning tool might have to communicate
with a separate visualization tool (be it the game, a DCC tool, or some other application). In
this case, a method for exchanging tuning data between the two ends must be established. We
discuss the possible approaches in this section.

270 Game Engine Gems

Direct Value Access

Direct value access is the most straightforward possibility. When the tuning tool shares the
same address space as the visualization tool, direct access to the tuned values becomes possible.
Sharing the address space means the tuning tool is either implemented in the game executable
(such as in Unreal) or is loaded as a dynamic-link library (DLL).

Interprocess Communication

When the tuning tool is implemented as a separate application, it can communicate with
the game process through interprocess communication methods. This first requires writing a
game-side module to handle the communication and execute the tuning commands. Second, a
protocol must be devised to identify tunable values and serialize them between the game and
the tuning tool. As is shown in Section 16.6, this can be a complicated task when the tuned data
structure is complex or the game does not offer proper identification of the objects living in its
world.

Cross-Platform Communication

If an interprocess communication system has been put in place, then it is relatively easy to
extend it to handle cross-platform communication. With this feature, the tuning tool can be
run on the development platform (e.g., PC) and tuning can occur live inside the game running
on the target platform (e.g., PlayStation 3). All major console SDKs provide some means to
communicate programmatically with the console from a PC. Implementing this method is the
only way for dedicated editors to support on-console tuning.

16.6 Schema and Exposure

Historically, a lot of games have relied on configuration files (usually of type .INI) to
expose tunable values to users. As discussed earlier, such a method is not convenient for games
that have a large launch overhead. This is even more problematic if the result of tuning can only
be seen after going to a certain location in the game or performing a lengthy series of steps to
get to it.

Exposing data for tuning involves identifying variables to expose, their types, their value
limits, and other possible tuning-related information and user interface options. In this section,
we discuss some possibilities available in this area.

Chapter 16 Game Tuning Infrastructure 271

Marking Tunable Variables

A very simple method is to give tunable variables a special declaration in the C++ code.
For example, variables can be wrapped in a preprocessor define that would expand to register
the variable with a tuning service, similar to the method given by Jensen [2001].

This works fine with global variables but needs more thought to be extended to handle
instance variables (e.g., the object registers its tunables explicitly upon instantiation). The
registration can include the additional tuning information mentioned previously.

Reflection

If C++ had code reflection capabilities, then the task of exposing tunables would have been
much simpler. This lack of reflection has strongly influenced some engines to extend their
systems with an accompanying reflected language in their engines [Sweeny 1998]. The presence
of reflection information simplifies matters a lot and makes for uniform tuning code.

The NET languages are a good role model in this area. The great news is that C++/CLI has
become a well-developed solution that can remedy such a situ ation elegantly. For example, any
class can become reflected if declared as a CLR type; and the rest of the class can be left
untouched in frequent cases. This reflection can be easily turned off for the final game
executable if the dependency on NET is to be avoided in the final product. The tuning tool can
then read the structure of the tuned object and deal directly with its members.

Explicit Definition

Another alternative is to define the properties of tunable game objects in a separate place
outside the game code and rely on a tool to generate data definition and access information for
both the editor and the game to use. For example, a data schema can be written once and then
passed to a code generation utility to generate a C++ class for in-game use, along with an
accompanying reflection information class usable by the tuning tool. The code generation
utility can go all the way to even implementing the necessary serialization code between the
native object and its tuning service proxy.

272 Game Engine Gems

16.7 Data Storage

Once the tunable values are exposed and under convenient control, the question becomes
how to store value changes in such a way that subsequent game sessions remember those
changes and how to properly share such changes with the rest of the team. This section gives
advice about several aspects of data storage.

Text or Binary

Text file storage is highly recommended. First, the tunable values are usually not
overwhelmingly dense, which drops the necessity of storing them in a binary format. Second,
such a human readable format allows for easy differencing to see a history of changes that went
through a file. This is a valuable feature for debugging.

If loading efficiency is to be maximized, a text-to-binary conversion process can optionally
be supported for the release version of the game. Interestingly, some games actually prefer to
ship those files in a human readable format for players to tweak and modify.

Divide and Conquer

Another production-related piece of advice is to avoid storing tuned data in single
monolithic configuration files. Such a setup prevents parallel work when multiple team
members are involved in tuning different areas of the game because they are forced to wait for
each other to release the file and continue working. Although it is usually possible to merge
changes from different versions of the file and thus restore the capability of parallel work, it is
not a good idea to involve yet an additional step in the workflow of game tuning. Thus, it is
advisable that tunable values be stored in different files in accordance with logical sectioning,
thus reducing the possibility of conflicts and the need to resolve such conflicts.

Supporting Structure Changes

When writing tuned data to a file, it is possible to fall into the trap of writing them in a
serial manner and assuming an implicit ordering that matches the internal structure holding
this data in memory. It is a trap because this could compromise all tuned data if any changes
occurred to the internal data structure, and the team then has to write version-aware code to
deal with files not written using the new data structure layout.

An alternative is to name tuned data as it is written to file as illustrated by Listing 16.2.

Chapter 16 Game Tuning Infrastructure 273

This way, regardless of where that field falls in the internal data structure layout, it can still be
loaded correctly, without having to consider any changes that might occur later in time.

File Format

There are well-known formats that can be used for storing tuned data. Those include the .
INI file format (sectioned name-value pairs) and the more expressive XML format. Adopting a
well-known format can save development time by using libraries that are already available for
reading and writing such file formats.

Listing 16.2. Sample tuned data stored with explicit naming. The order of data appearance is
irrelevant in this format.

[weapon]
name = "Tachyon Gun"
sustainTime = 10
chargeRate = 6

[upgrade]
name = "Heat Dispenser"
effect = sustainTime
value = +5

[upgrade]
name = "Fission Battery"
effect = chargeRate
value = +2

Writing Data

One final aspect of data storage is considering what it is that actually writes the data.
Depending on all the possibilities mentioned above, a game might have a dedicated PC-side
tool communicating with it. In this case, storage can be initiated by the PC tool, requesting
values for all tunable parameters and writing them down in the project's directory on the PC.
The developer can then submit this updated file to the source control system to be shared with
the rest of the team. This actually might be the sole possible option for some console systems.

Alternatively, for systems lacking interprocess communication but still running on
console platforms, the game itself can write the values to its local folder, and then the developer
can manually copy the generated files by hand from the console's file system to the project's
directory.

274 Game Engine Gems

16.8 Case Studies

Here, we present two case studies. The first is a simple one suitable as a guide for smaller
teams, and the second is more sophisticated and suitable for larger teams.

Quraish

Quraish is a 3D real-time strategy game, shown in Figure 16.3, developed in from 2003 to
2006 for the PC platform by a small team made up of one game designer, one level designer,
three core programmers, and about eight artists and animators. The game engine offers a
separate world editor application for building maps, as well as for editing all entity properties
and defining new races.

Both the game and the world editor share the core rendering and animation engine code
base. Thus, the editor provides an exact instantaneous view of the game world when building
maps. Since the core code is shared, data exchange is very easy because the same C++ structures
had to be written only once and then used in both the game and the editor verbatim. The editor
was written in C++ using the MFC framework.

The editor stores all of its data in a single custom database file that can be loaded in sections
by the game, and those sections are packed and prepared for game use ahead of time. A pointer
fix-up pass is the only post-load operation needed for the data to become usable (maps were
also stored similarly).

A major amount of tuning code was written in the editor in a game-specific way. That is,
there is no generality towards code structures. Editors had to be written explicitly for each entity
type (e.g., units, weapons, buildings, animals). This was feasible because the number of entity
types was quite limited and manageable. However, this could have become a problem if the
number of entity types grew to something above seven or eight.

In-game tuning was possible through the use of a console system built into the game (see
Figure 16.1) and it connected to C++ functions and variables defined to be tunable manually in
code through a registration process.

Tunable values could be written to a C-script file, like the example shown in Listing 16.3.
The game can execute both compiled and interpreted C-script files using a text-parsing system
like that described by Boer [2001]. This was to allow players to tweak and modify the game in a
flexible manner. The files that were not to be exposed to the players were compiled, and the rest

Chapter 16 Game Tuning Infrastructure 275

of them were left open in text format.

Figure 16.3. Image from the game Quraish. (Image courtesy of Dar Al-Fikr Publishing.)

Listing 16.3. Code listing of a C-script file containing tuned values.

#include "DataBase\\QurHighAIDif.c"

ApplyWaterTax(SecondsToAITime(25), 1);
DayTimeScale = 0.1;

// Call frequency of each need.
// Decreasing this makes the CPU more aware, not smarter!
BuildFrequency = SecondsToAITime(10000);
GenerateFrequency = SecondsToAITime(10000);
WorkFrequency = = SecondsToAITime(50);
KillFrequency = SecondsToAITime(100000);

PolicyWith(2, AI_POLICY_ENEMIES); // Friend to the player.
PolicyWith(0, AI_POLICY_ALLIES);

CompleteUpgrade(AI_UPGRADEID_MONEYPRING);
CompleteUpgrade(AI_UPGRADEID_ANAGLYPH);

276 Game Engine Gems

SetMilitaryDistribution(0, 0, 50, 30, 40);
SetResourcesImportance(20, 60, 0, 20);
SetCaravansCount(0);

Unreal 3/Unreal Development Kit

At the heart of the Unreal 3 engine is UnrealScript, an object-oriented C++-like language
that is used to express all engine classes in need of reflection and garbage collection services.
The engine's editor, UnrealEd, relies heavily on UnrealScript's reflection information and
annotations to provide convenient editing capabilities.

Interestingly, UnrealScript is a compiled language, and the compiler is the game executable
itself this can create situations with a circular dependency if not handled with care since the
game executable also relies on C++ header files generated during script compilation.

Both the game and the editor are compiled in one executable that can launch either of
them through command line options. This allows the editor to inherit all game features easily
and instantly (e.g., rendering features) and to exchange tuning data seamlessly. The
disadvantage is that the editor can become very vulner able to bugs and crashes due to
continuous development work occurring in the game's code.

The engine uses binary package files to store its information, which is necessary for
geometry and texture data, but it suffers from the binary data issues mentioned earlier in Section
16.7. Still, although the data is stored in binary format, the engine is capable of handling data
structure changes conveniently. For example, variable order changes do not corrupt the data,
and removing existing variables or adding new ones works just fine, without any additional
effort needed to patch existing package files.

The engine also allows in-game tuning outside of the editor through a console window
that can access virtually any UnrealScript property or function. Values tuned this way are not
meant to be persistent, though; they exist only for temporary experimentation. Additionally,
the engine uses .INI files to read settings across all areas of the game and the editor. The
intention seems to be that .INI files are used for global settings, and UnrealScript and UnrealEd
are used for per-object data.

Chapter 16 Game Tuning Infrastructure 277

16.9 Final Words

Provided with all of the possibilities and combinations in this chapter, a game engine
architect has to wisely choose the approach most suitable to the case at hand, away from external
influences that have no relevance to the project's benefit. At such a level, decisions must be
based on sound reasoning. It is easy nowadays to get carried away by industry trends, but such
trends will not work for all studios and game projects. Deciding what level of tuning is needed
for the game is one requirement for shaping up a game's engine architecture. Be wise!

Acknowledgements

I would like to thank Homam Bahnassi, Abdul Rahman Lahham, and Eric Lengyel for
proofreading this article and helping me out with its ideas.

References

[Bahnassi 2005] Homam Bahnassi and Wessam Bahnassi, "Shader Visualization Systems for the Art
Pipeline." ShaderX3, edited by Wolfgang Engel. Boston: Charles River Media, 2005.

[Bahnassi 2008] Wessam Bahnassi. "3D Engine Tools with C++/CLI." ShaderX6, edited by Wolfgang
Engel. Boston: Cengage Learning, 2008.

[Boer 2001] James Boer, "A Flexible Text Parsing System." Game Programming Gems 2, edited by
Mark DeLoura. Hingham, MA: Charles River Media, 2001.

[Jensen 2001] Lasse Staff Jensen. "A Generic Tweaker." Game Programming Gems 2, edited by Mark
DeLoura. Hingham, MA: Charles River Media, 2001.

[Sweeny 1998] Tim Sweeny. UnrealScript Language Reference. Available at http://
unreal.epicgames.com/UnrealScript.htm.

[Woo 2007] Kim Hyoun Woo. "Shader System Integration: Nebula2 and 3ds Max." ShaderX5, edited
by Wolfgang Engel. Boston: Charles River Media, 2007.

17
Chapter 17 Placeholders beyond Static Art Replacement

Olivier Vaillancourt Richard Egli
Centre MOIVRE, Universite de Sherbrooke

Placeholder assets are temporary resources used during the development of a game in place
of final resources that haven't been created yet. Even though they are an integral part of game
development, placeholders are often overlooked or perceived negatively rather than being seen
as useful development tools. The objective of this gem is to have a discussion on the use,
integration, and construction of efficient placeholder systems in a game engine and provide a
concrete example of such a system.

The first part of the chapter begins with a brief discussion underlining the technical
advantages a well-thought-out placeholder system can provide beyond simple art replacement.
This leads to the second part of the chapter, which consists of a detailed and technical
presentation of a procedural method that automatically generates articulated placeholder
meshes from animation skeletons. The last part of the chapter discusses how to transparently
integrate the technique in the various pipelines of a game engine.

17.1 Placeholder Assets in a Game

Programmer art, prototype assets, mock objects, or placeholders-name them as you wish-
all these resources have one thing in common: none of them should remain when the game goes
gold. These temporary game assets, which we will refer to as placeholders, are simplified game
resources that are uniquely used during development. They are created to fill a void when the
real asset hasn't yet been created. Since they appear in pretty much every production,
placeholders are a common sight for many developers. They usually require very little time to
produce, and little effort is made to make them look or behave like the final asset. It can also be

280 Game Engine Gems

said that the majority of placeholders seen during development involve 3D game objects in
some ways, since the construction of this particular type of asset requires a large amount of
work from multiple trades (modeling, texturing, animation, game logic programming, sound
editing, etc.). However, it's important to keep in mind that placeholders aren't limited to 3D
objects and also extend to other assets types such as sound, text, or even code.

The motivation behind placeholders arises from the fact that multiple developers of
different trades often work on the exact same part of the game at different moments in time, or
they iterate over a given task at different paces. In these cases, some of the developers involved
in a task usually have to wait until it attains a certain level of completion before being able to
start working on it. These small wait times can add up and cause important production
bottlenecks when considered as a whole. Fortunately, in the cases where these dependencies
involve the creation of game assets, the wait time can be greatly reduced by the creation of
placeholder assets. They provide a minimal working resource to the developers needing it,
without overly affecting the schedule of the rest of the team. In the end, the developers might
still have to revisit their work to ensure that it fits the final asset, but they nonetheless save more
time than if they had remained idle while waiting for the completed resource.

Unfortunately, despite having a generally positive effect on development time,
placeholders can become a source of confusion when they are incorrectly crafted. For example,
a common practice is to reuse an existing asset from the production or a previous production
instead of building a dedicated placeholder asset. While this has the advantage of inserting more
attractive and functional temporary objects, it greatly increases the risk of forgetting that the
asset is, in fact, a placeholder. In some extreme cases, licensed or branded content from a
previous game could even make its way through to another client's game. Comparatively, the
presence of temporary assets from previous productions in a game sometimes proves to be an
important source of distraction during testing. The fact that a resource doesn't match the game's
style or quality, but still appears final, can end up being more confusing than anything else for
an unaware tester. In these cases, the testers often waste time reporting art problems with the
placeholder, thinking they are part of the game's assets. This becomes especially true in the case
of focus group tests not involving professional testers. Obviously, the testers can be explicitly
told that some of the art isn't final, but this reduces their confidence in reporting legitimate art
problems. There are ways to "tweak" these reused assets to remove potential confusion, but at
this point, the time involve merit in creating and tweaking placeholders on a case-by-case basis
becomes too much to be efficient.

Chapter 17 Placeholders beyond Static Art Replacement 281

To fix these potential problems, many developers choose to go the easy way and use
oversimplified placeholders to eliminate sources of confusion. Therefore, large pink boxes and
checkerboard textures often come to mind when discussing placeholders. While they sure have
the merit of being obvious and quick to create, they do relatively few things to actually help
development. The hard truth is that we, as developers, rarely see placeholders as an opportunity
to increase productivity or prevent problems. Most of the time, they're seen as an annoying
reminder that someone is waiting for something. Ignoring them becomes somewhat natural as
they tend to be negatively (and falsely) associated with unfinished work. A better way to
approach placeholders is to consider them to be a part of the normal production process and to
see them as productivity and communication tools rather than as unfinished work.

Placeholders as Development Productivity Tools

As stated earlier, placeholders mostly serve as a way to diminish coupling among design,
art, and programming. However, creating a good, well-crafted, and wellthought-out
placeholder system can have other positive effects on a development team, elevating it to a
useful production and communication tool. To find out how to do this, the first thing to do is
to start looking back at the idea of placeholders: what should be their primary purpose, and how
well do they fill this purpose?

First and foremost, placeholders can be seen as a means of communication between a
developer who needs something to be done and a developer who needs to do something. Sure,
the placeholder is only there to fill a void, but it is the one thing inside the game that connects
these two developers. For instance, when a modeler starts the art pass on a game level, the
temporary geometry placed by the designer becomes a way to communicate to the artist where
to place walls, floors, or obstacles in the level. What if the designer could encode supplementary
information on the collision geometry to better communicate his intentions to the modeler?
This could reduce the iteration count between both parties, which would remove most of the
back and forth due to misunderstandings from the artist regarding the designer's intentions.
Even more interestingly, such a system would allow the placement of important information in
the level, information that could have been forgotten if the art pass was done several months
after the level design. In this mindset, well-crafted placeholders would not only increase
communication but also ensure that information is kept and remembered over long periods
throughout the development.

Some occurrences of such well-thought-out and battle-tested placeholder systems can be

282 Game Engine Gems

seen in the videogame industry. A classic example is the popular "orange map" [Speyrer and
Jacobson 2006] system used by Valve Software to facilitate communication between designers
and artists. Level designers usually create the basic level geometry before handing it to the artists.
Where the orange map comes into play is that some predefined textures are available to the
designer to place on the map's surfaces. The textures indicate some pretty useful information,
such as the basic desired material properties; window, stairway, railings or door dimensions; or
default player height. More interestingly, the dimensions aren't only encoded in the texture
motif but are also literally written on them. This helps the designer to remain homogeneous in
his level design dimensions and helps the communication with the artist.

Continuing with our previous reasoning, placeholders have another important purpose
and that is to emulate missing resources. However, to what extent does a given placeholder truly
represent that missing resource? More often than not, it is built following a view that is almost
exclusively game-oriented. For example, a large collision box might temporarily replace a game
object, giving a rough approximation of the object's dimensions, location, and geometry,
properties that are important for level design and gameplay. While this might give some clues
to an artist or other designers concerning the size and scale of the object, it does few things to
help the programmer estimate the memory and performance cost of the object in the scene. Nor
does it help to verify that the object's logic is respected or that the physics are working correctly.
As far as boxes go, it barely even gives any indication of the object's purpose in the level (unless
the object is really a box, in which case, you are in business). To eliminate this shortcoming of
classic placeholders, a solution would be to start building more complex representations that
can emulate visual appearance, geometric complexity, or even physical properties. While this
might seem like basically recreating the desired final asset, it's important to keep in mind that
the objective here is to concentrate on emulating properties that are relevant not only to
designers but also to artists and programmers. Computing or memory costs, general visual
appearance, general material properties, or physical simulation collisions are all aspects of a
resource that can be emulated easily with simple automatic generation processes. In the end,
having the exact desired polygon count or working with a perfectly animated placeholder might
not be within reach, but the importance here is to have something that gives a correct estimate
of the true asset.

To give a proper example, a placeholder system that concentrates on emulating assets over
a broader range of properties is presented in great detail in the second part of this gem.

Chapter 17 Placeholders beyond Static Art Replacement 283

Desired Features of a Placeholder System

What can be considered a "perfect" placeholder? Does such a thing even exist? The simple
answer is no, mainly because most features of a placeholder system are decided through
compromise. Do you select a very high-fidelity placeholder that almost perfectly estimates the
final asset but is easily mistaken for it, or do you build a rough estimate that eliminates
confusion but hardly helps programmers? Do you go for an automated and fast temporary asset
generator that produces lower-quality placeholders or a human-built placeholder that does
exactly what you asked for, but requires half a day to create? It all amounts to what is important
in your very own case. Usually, trying to exceed in one facet results in failing in another. Thus,
creating a system that aims for the lowest common denominator of all your needs is probably
the right idea. It will not be perfect everywhere, but it will do the trick in every situation.

Below are some of the desired aspects of what we consider to be the "perfect placeholder."
Be wary though-it's pretty much impossible to put everything together in a perfect manner. The
points below are mostly guidelines, which if followed, give satisfying results.

 Reduce coupling as much as possible. Most placeholders decouple the work among art,

design, and programming. Try to push the system further by decoupling even the smaller

tasks, such as modeling, animation, and texturing. This reduces intradepartmental

bottlenecks.

 Reduce confusion and distraction while remaining pleasing to the eye. As we discussed

earlier, placeholders that look like final assets have the tendency to confuse other

developers or testers, or they might end up in the final product. Naturally, ensuring that

they're obvious doesn't mean that you must go to extreme measures to have them noticed.

At that point, they only become annoying and negatively perceived by the team.

 Provide an accurate estimate of the technical cost of the final resource. Without being pin-

point accurate about the correct final resource cost, having a reliable estimate might

prevent some headaches at later stages of production. This won't prevent the final

megabyte grind in fitting everything on the DVD or the polygonal witch hunt in reaching

30 frames per seconds. It will, however, guarantee that you never find yourself losing half

of your frame rate or blasting through your memory budget twofold because these

284 Game Engine Gems

hundreds of innocent-looking pink boxes suddenly became fully animated and detailed

3D henchmen.

 Provide an accurate estimate of the look and behavior of the final asset. This one is a bit

tricky and can be considered a bit more loosely. The idea of "accurate estimate" in terms of

look and behavior differs a lot from one project to another. Using a cylinder with a sphere

sitting on top of it might be enough to picture a character in a real-time strategy game. To

express the behavior of the final resource, a simple arrow can be added to indicate in which

direction the unit is facing. However, in a platformer or an adventure game, the

placeholder character might need to be a bit more detailed. If the animations are already

available, that character could even be articulated and animated. The amount of work that

needs to be done to correctly represent the look and behavior of the final asset amounts to

the quantity of details required to understand the placeholder.

 Can be created or generated rapidly with no particular skill required. By definition,

placeholders are temporary and do not involve detailed work at all. If creating them

becomes a time burden or requires fine tuning, the whole point of building a placeholder

gets somewhat lost. Moreover, if special skills are required to create the placeholder, such

as artistic or programming skills, the idea of reducing coupling by creating them also gets

lost in the process, since someone depends on the expertise and schedule of someone else

to have the placeholder created. Ideally, everyone on a development team should be able

to create a placeholder within a matter of minutes.

 Facilitate communication between team members. While a placeholder will never replace a

design document or a good old explanation, it does not necessarily mean it cannot help on

the communication side of things. Placeholders have a shape or a surface through which

information can be conveyed. What information to convey and how to do it should be one

of the primary questions when building a placeholder system.

 Integrate easily in the already existing resource pipeline. One of the important aspects of a

placeholder system is for it to have a small footprint on production time. This applies to

Chapter 17 Placeholders beyond Static Art Replacement 285

the creation of the placeholder itself but also to the creation of the system. If integrating

placeholders into your 3D pipeline requires three months of refactoring, you might want

to rethink your original placeholder idea (or rethink the flexibility of your resource

pipeline, but that's another discussion).

 Scalable and flexible enough to work on multiple platforms. Placeholders are a bit like code.

If they're done correctly, they should be able to scale and adapt to any kind of platform.

This is especially true now, since game studios have become more and more likely to build

games on multiple platforms at the same time. Some studios have even started working on

game engines that run on PCs, consoles, handhelds, and cell phones alike. Avoid using

platform-specific features when creating placeholders, and ensure that the techniques used

to generate them can be scaled and adapted to multiple platforms.

As we conclude this part of the chapter, what remains important to remember is that
taking the time to create a good placeholder system for your game certainly helps development
time in the long run. The effects are a bit subtle and hard to gauge unless you go back to an
environment that doesn't use placeholders efficiently, but it remains there and smooths
development time, removing much of the stress and delays associated with schedule coupling.

17.2 Preaching by Example: The Articulated Placeholder Model

The previous discussion wouldn't be very valuable without an example to back it up. To
further develop the topic of placeholders, the remainder of this gem focuses on a placeholder
system that generates articulated (and therefore animated) placeholder meshes from animation
skeletons. The reasoning behind this particular choice of placeholder is that animation
skeletons are often reused throughout multiple models that have roughly the same shape or are
developed using prototype geometry, while the final model will be completed many months
later during development [Lally 2003]. Various approaches can be used to fill in the missing
animated meshes that have yet to be produced. The first approach is to reuse the animation rig
or prototype model geometry as a placeholder. This is a correct approach since the placeholder
nature of the rig geometry is easily recognizable and the rig remains an acceptable visual
representation of the final mesh. However, the rig geometry is often very simple and provides a
poor approximation of the required rendering, physics, and animation costs of the final

286 Game Engine Gems

resource. Therefore, the idea remains good for prototype development but has its limitations
for production purposes. Another approach is to reuse a previously modeled mesh that has the
same skeleton. Unfortunately, as we've discussed earlier, this can create confusion and should
be avoided.

Figure 17.1. Depiction of the articulated placeholder generation technique. (a) The animation
skeleton is used as the basis for the (b) mesh generation using implicit surface. (c) The mesh is
skinned to the skeleton, which can then be animated, animating the articulated placeholder mesh
itself.

To bypass the previously mentioned shortcomings, we present a method that generates a
placeholder mesh using implicit surfaces based exclusively on an animation skeleton, as shown
in Figure 17.1. Once the mesh is generated, the skeleton's bone weights are automatically
assigned to the mesh vertices, which can then be animated using standard skeletal animation
skinning methods. Every step employs popular computer graphics techniques that are very easy

Chapter 17 Placeholders beyond Static Art Replacement 287

to implement and well documented. Special care was also put into ensuring that the placeholder
construction uses popular rendering engine infrastructures when possible to further reduce the
time required to integrate the system into a production pipeline. The generation process is
sufficiently detailed to ensure that a user with no prior experience with skeletal animation and
implicit surface generation can still build the system. In this regard, advanced users can feel
comfortable skipping some of the entry-level explanations.

Skeleton Construction

The first step is to create the animation skeleton itself. The animation skeleton is the root
of a widely used animation technique called "skeletal animation" [Kavan and Zara 2003], which
is arguably the most popular animation technique currently used in the videogame industry.

Skeletal animation is based on a two-facet representation of an animated 3D mesh: the
skin and the skeleton. The skin is the visual representation of the object to be animated, which
consists of a surface representation of the object. This surface is often, but not always, made of
tightly knit polygons called a mesh. The other part of skeletal animation is the skeleton, which
is a representation of the underlying articulated structure of the model to animate. By animating
the skeleton and then binding the surface to it, it is possible to animate the surface itself. Before
delving into the intricacies of the latter part of the process, we first begin by looking at the
construction of the skeleton.

The skeleton consists of a hierarchical set of primitives called bones. A bone is made up of
a 3D transformation (position, scale, and orientation) and a reference to a parent bone. (The
parent bone is optional, and some bones, such as the topmost bone of the hierarchy, have no
parent.) The parent-child relationship between bones creates the skeletal hierarchy that
determines how a bone is transformed. For example, if an upper arm bone is rotated upward,
the forearm bone rotates upward accordingly since it is attached (through the hierarchy) to the
upper arm bone.

Even if the final bone animation only has one transformation, the bones, during the
animation creation, must have two separate transforms: The bone-space transform B-1 and the
pose transform P. Since these transforms apply to a particular bone of the skeleton, we identify
the bones as the j-th bone of the skeleton, and denote the transforms by 𝐵𝐵𝑗𝑗

−1 and Pj. These
transforms can be represented as a 4 × 4 homogeneous matrix having the general form

𝑇𝑇𝑗𝑗 = �𝑇𝑇𝑗𝑗
rot 𝑇𝑇𝑗𝑗

trans

0 1
� (17.1)

288 Game Engine Gems

where 𝑇𝑇𝑗𝑗
rot is a 3 × 3 rotation matrix, 0 is a 1 × 3 zero vector, and 𝐓𝐓𝑗𝑗

trans is a 3 × 1 position
vector. Another approach, which is more compact, is to represent Tj as a quaternion-translation
pair. This, however, prevents the inclusion of a nonuniform scale in the transformation, which
might be a problem if it is needed.

The bone-space transform 𝐵𝐵𝑗𝑗
−1 is the inverse of the bone's transformation in world

coordinate space when it is in its initial pose, also known as the bind pose (the pose in which the
skeleton was created before being animated). The pose transform Pj is the combination (product)
of a given bone's parents transforms and its own local transformation. The matrices Pj and 𝐵𝐵𝑗𝑗

−1,
and their effects on a given bone are represented in Figure 17.2. The final and unique
transformation Mj for a given bone is found by multiplying the bone-space and pose
transformations:

𝑀𝑀𝑗𝑗 = 𝑃𝑃𝑗𝑗𝐵𝐵𝑗𝑗
−1 (17.2)

The matrix Mj is used later to transform the mesh vertices according to the animation during
the skinning process.

At this point, you should have the required components and mathematics to build your
own animation skeleton. However, it remains a hierarchy of 3D trans formations, and this can
be rather hard to visualize. To help in viewing your skeleton and ensuring that your
transformations are applied correctly, it is suggested that you visually represent a skeleton as a
set of bones and joints, where the difference between the translations for two transformation
matrices (the bones) are modeled as line segments, and the connections between bones (the
joints) are visualized as spheres. If you already work in a development environment, this
representation is probably already built into your 3D modeling software or into your engine's
debugging view.

Chapter 17 Placeholders beyond Static Art Replacement 289

Figure 17.2. Bone j from the skeleton is brought to the origin by the transformation 𝐵𝐵𝑗𝑗
−1. The

transformation Pj then transforms the bone j to its animated pose.

Placeholder Mesh Generation with implicit Surfaces

With the skeleton constructed, the placeholder mesh can now be created. The objective
here is to find a technique that generates the mesh in such a way that it visually resembles the
desired final asset. Moreover, we'd like the technique to generate a surface that can be easily
animated to emulate the final asset's behavior. On top of this, the technique must provide
control over the amount of geome try (triangle count) that constructs the mesh, to emulate
animation and rendering costs. Finally, it must be able to generate the mesh rapidly and
automatically. The technique we suggest to satisfy all of these requirements is to use implicit
surfaces, also known as level sets, to generate the mesh geometry.

A level set, generally speaking, is a set of points (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for which a realvalued
function f of n variables satisfies the constraint 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐, where c is a constant. The
entire set is then

290 Game Engine Gems

{(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) | 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐} . (17.3)

When n = 3, the set of points defined by the constraint creates what is called a level surface, also
commonly known as an isosurface or an implicitly defined surface. A classic example of a 3D
implicit surface is the sphere, which can be defined as a set of points (x, y, z) through the general
equation

{(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) | 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑟𝑟2} . (17.4)

In this case, our constant c would be r2 and our implicit surface would be defined as all the 3D
points (x, y, z) located at a distance r from the origin, effectively creating a sphere.

Another way to picture an implicit surface is to imagine that the function 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
defines a density field in the space where it is located and that all the points having a certain
density value c within the field are part of the set (which is a surface in the 3D case). Finding the
density value at a certain point is done simply by evaluating f with the coordinates of that point.

In the case of our placeholder system, we define a mesh by generating an implicit surface
from the skeleton itself. The idea is to define a density field based on an inverse squared distance
function defined from the bones of the skeleton. As we saw earlier, a bone only consists of a
transformation matrix and a reference to its parent. However, to create a distance function for
a given bone, the bone must be mathematically represented as a line segment rather than a
single transformation. To obtain a line segment from the bone, we use the bone- space
transform. The translation of the bone 𝐁𝐁j

trans is used to create one end of the line segment,
while the parent's translation 𝐁𝐁parent(j)

trans is used as the other end of the segment, where parent
(j) maps the index j to the index of the parent bone. (Note that we're using B and not B-1 here.)
With this formulation, the squared distance function can be defined as

dist(p, 𝑗𝑗) = �
�𝐩𝐩 − 𝐁𝐁parent(𝑗𝑗)

trans �2, if�𝐩𝐩 − 𝐁𝐁parent(𝑗𝑗)
trans � ∙ �𝐁𝐁parent(𝑗𝑗)

trans − 𝐁𝐁parent(𝑗𝑗)
trans � > 0;

�𝐩𝐩 − 𝐁𝐁𝑗𝑗
trans�2, if�𝐩𝐩 − 𝐁𝐁𝑗𝑗

trans� ∙ �𝐁𝐁𝑗𝑗
trans − 𝐁𝐁parent(𝑗𝑗)

trans � > 0;
d2 , otherwise,

 (17.5)

where p = (x, y, z) and

𝑑𝑑 =
��𝐁𝐁parent(𝑗𝑗)

trans − 𝐁𝐁𝑗𝑗
trans� × �𝐁𝐁𝑗𝑗

trans − 𝐩𝐩��
�𝐁𝐁parent(𝑗𝑗)

trans − 𝐁𝐁𝑗𝑗
trans�

 (17.6)

Chapter 17 Placeholders beyond Static Art Replacement 291

Once the distance can be calculated for a single bone, evaluating the density field at a
certain point amounts to summing the distance function for all bones and determining whether
that point is on the surface by setting a certain distance threshold d. The implicit surface
generated from our skeleton can therefore be formulated using the distance function and the
set

�𝐩𝐩 | 𝑓𝑓(𝐩𝐩) = � dist(𝐩𝐩, 𝑗𝑗)
𝑗𝑗

= 𝑑𝑑� . (17.7)

One way to define the whole 3D surface from the field generated by the skeleton would be to
sample every point in our 3D space and build a polygonal surface from those that happen to fall
directly on the threshold d. This, however, would be extremely inefficient and would most likely
produce an irregular surface unless the sampling is very precise. A smarter way to generate an
implicit surface from a density field is to use the marching cubes algorithm1 [Lorensen and
Cline 1987] or its triangular equivalent, marching tetrahedrons [Doi and Koide 1991, Muller
and Wehle 1997], which we favor here for its simplicity and robustness.

The marching tetrahedrons algorithm, depicted in Figure 17.3, starts by sampling the
density field at regular intervals, creating a 3D grid. Every discrete point is then evaluated using
the density function and flagged as inside or outside depending on the computed value of the
density field in regard to the threshold (inside if the value is higher than the threshold and
outside if the value is lower). The whole 3D grid can be seen as an array of cells defined from
groups of eight points (2 × 2 × 2 points) forming a cube. Each of these cells can be further
divided in six tetrahedrons that are the base primitives defining our polygonal implicit surface.
Every tetrahedron is built with four different points, and each of these points can have two
different states (inside or outside). Therefore, there exist 16 possible different configurations of
inside and outside values for each tetrahedron. (These 16 configurations can be reduced to two
mirrored sets of eight configurations.) At this point, all of the tetrahedrons containing a
transition (a transition occurs when some points of the tetrahedron are higher than the
threshold and other points are lower) create one or two triangles based on their configuration.
When all of the tetrahedrons have been evaluated, have been classified, and have generated their
triangles, the resulting geometry is a fully defined implicit surface based on the density field. In
our case, with a density field generated from the squared distance to our skeleton, the implicit
surface should look like a party balloon having roughly the shape of our skeleton, as shown in
Figure 17.4.

292 Game Engine Gems

Figure 17.3. Representation of the marching tetrahedrons algorithm. Every cell of 2 × 2 × 2 points
is split into six tetrahedrons. Each of these tetrahedrons is matched to one of the eight cases depicted
on the right, and the geometry is generated accordingly.

Figure 17.4. From the skeleton's bone, the geometry is generated using the marching tetrahedrons
algorithm. For the above example, the bone's density was reduced depending on the skeletal distance
from the root bone, giving the limb extremities a smaller size.

One of the advantages of using this technique is that the amount of generated geometry
can be easily adjusted by increasing or decreasing the sampling precision. A larger sampling
grid generates shapes with less geometry, whereas a finer sampling grid increases the polygon
count. This comes in handy and generates a placeholder mesh that provides similar
performance to the final desired asset. It also becomes particularly useful when working under
polygon constraints for game objects, as the generated mesh provides a good performance
estimate.

Chapter 17 Placeholders beyond Static Art Replacement 293

Automatic Vertex Weight Assignment

At this point, we have an animated skeleton and a mesh generated from the skeleton's bind
pose. This is a good start, but nothing actually binds the mesh to the skeleton. This means that
even if the skeleton is animated, the mesh will not follow with the movements. The process of
binding the mesh to the skeleton is called vertex weight assignment or simply vertex assignment
and consists of defining which vertices are affected by a bone or multiple bones and what
influence, or weight, each of these bones has in affecting the vertices' positions. The weight is
usually normalized between zero and one, and it represents the percentage of that particular
bone's transformation that is used for the animation.

For example, imagine that you have a mesh that needs to be bound to a skeleton having
only one bone j. In this particular case, all the vertices of the mesh would be assigned to the
bone j with a weight equal to one. In a more complex case, say for an arm, all the vertices that
are directly in the middle of the elbow joint would be equally affected by the forearm bone and
the upper arm bone. The weight would therefore be 0.5 for the forearm and 0.5 for the upper
arm. When animated, these vertices would blend half of the forearm's and half of the upper
arm's transforms to obtain their final positions. (More to come on this topic in the next section.)

In 3D modeling and animation, this whole weight assignment process is usually done by
selecting a bone in the animation skeleton and painting the importance of that bone directly on
the vertices of the mesh. This practice is often referred to as weight painting, and it remains
relatively time consuming. In this regard, this approach is hardly practicable for our placeholder
system since we need something fast and completely automated. Luckily for us, many 3D CAD
applications already offer a feature to automatically assign weights. While artists usually don't
use the feature due to the poor weight maps it produces, it remains good enough for a
placeholder. If you decide to generate your placeholders directly in the 3D CAD software, your
best bet might be to directly use the software's automatic weight system (remember that the
faster your placeholder system is up, the better). Otherwise, we'll draw inspiration from these
systems and devise a small and simple algorithm that remains fast and produces acceptable
results.

Most of the existing automatic weight assignment algorithms use a distance calculation of
some sort to determine which bones affect a certain vertex. If the animation system supports n
bones per vertex, then the algorithm finds the closest n bones or fewer within a certain threshold
and assigns a weight to each bone based on the distance. The distance itself is what usually

294 Game Engine Gems

differentiates one algorithm from another. Some algorithms use geodesic distance on the
surface, and others use a heat diffusion simulation [Rosen 2009] to generate a volumetric
distance map by filling the volume defined by the mesh with 3D voxels. The most advanced
algorithms even use mesh segmentations or other mesh analysis methods to produce the weight
maps [Baran and Popovic 2007, Aguiar et al. 2008]. To keep things simple, we don't delve into
any of this and simply use a skeletonaware Euclidean distance computation to generate the map.

What we mean by "skeleton-aware" distance is that it considers the skeleton's structure
when calculating distances. A pure Euclidean distance that doesn't consider bone connectivity
would most likely lead to strange artifacts. For example, the two feet of a character are often
close to each other in space, but far apart in the skeleton's structure. By using only a Euclidean
distance, the left foot's vertices would be partly bound to the left foot bone and partly bound to
the right foot bone since they're close to each other. This would undoubtedly create strange
artifacts when the feet are animated.

To prevent this problem, our weight assignment algorithm functions in two parts and is
performed on every vertex of the mesh. The first part finds the closest bone to a particular vertex
and keeps the distance from that vertex to the bone in memory, reusing the vertex-to-segment
distance computation given by Equation (17.5). During the second step, the nearest bone's
parent and children are recursively explored. If their distances are lower than a certain threshold
t, then the distance and bone ID is saved in a distance-ordered list, and the parent and children
of that new bone that haven't been visited yet are recursively submitted to the same process. If
the distance is higher than the threshold, then the exploration of this branch of the skeleton
stops there. Once all of the bones within the threshold are found, the n closest bones are
assigned to the vertex, and their weights are given relative to their distance. (It is advisable to
use the cubed or squared distance because they give better visual results than the direct
Euclidean distance.) In some cases, the number of bones within the threshold might be lower
than n, which is normal if fewer bones are located near the vertex. This whole two-step process
ensures that spatially close bones that are far in the skeletal structure, and thus are
physiologically unrelated, do not share weights all over the mesh. To recapitulate, the automatic
weight assignment algorithm requires the following steps:

Chapter 17 Placeholders beyond Static Art Replacement 295

Figure 17.5. Weight distribution for a nontrivial case in an animation skeleton. The presented weight
distribution is for the right femoral bone of the skeleton (highlighted in the inset). Brighter colors
on the mesh surface indicate a greater influence of the middle bone, whereas completely dark parts
of the surface represent no influence.

1. Loop through all the vertices.

2. Find the closest bone for each vertex.

3. Recursively find all the bone's parents and children that are below the distance

threshold for that vertex. Only explore those that haven't been visited and add them to the

assignment list.

4. Trim the list to only keep the n closest bones to the vertex. Don't forget that the list

might have fewer than n entries.

5. Normalize the bone's distance between zero and one and use it as the bone's weight

for that vertex.

The automatic weight assignment algorithm is illustrated in Listing 17.1. After the
algorithm has been run on the mesh, the vertex weight assignment is complete. The obtained
result is a weight map for our articulated placeholder. The weight map is far from perfect but
entirely sufficient for a placeholder asset. As a reference, Figure 17.5 shows the weight
distribution for the vertices affected by a given bone.

Listing 17.1. Implementation of the weight assignment algorithm.

296 Game Engine Gems

map<flaot, BoneAssignement> VertexAssignement(vec3 vertex,

 const vector<Bone *>& bones, float threshold, int maxSupportedBones)

{

 map<int, float> assignationMap;

 float nearestDist = 0.0f;

 // We start by finding the nearest bone. The NearestDist argument

 // is returned by the FindNearestBone function and returns the

 // nearest squared distance.

 Bone * nearestBone = FindNearestBone(bones, vertex, nearestDist);

 assignationMap[nearestDist].bone = nearestBone;

 assignationMap[nearestDist].dist = nearestDist;

 nearestBone->Setvisited(true);

 // We recursively search through the nearest bone's parents

 // and children.

 AssignRecur(vertex, nearestBone, threshold, assignationMap);

 // We trim the obtained list to maxSupportedBones and normalize

 // the squared distance.

 assignationMap.trim(maxSupportedBones);

 float distSum = 0.0.f;

 for (map<int, float>::iterator it = assignationMap.begin();

 it != assignationMap.end(); ++it)

 {

 distSum += it->Dist;

 }

 for (map<int, float>::iterator it = assignationMap.begin();

 it != assignationMap.end(); ++it)

 {

 it->dist /= distSum;

Chapter 17 Placeholders beyond Static Art Replacement 297

 }

 return assignationMap;

}

AssignRecur(vec3 vertex, const Bone *bone, float threshold,

 map<float, BoneAssignement>& assignationMap)

{

 // Go through all the children of the bone and get those that

 // haven't been visited and are lower than the threshold.

 for (int i= 0; i < bone->ChildrenCount(); ++i)

 {

 float dist = distance(bone->Child[i], vertex);

 if (!bone->Child[i]->Visited() && dist < threshold)

 {

 assignationMap[dist].bone = bone->Child[i];

 assignationMap[dist].dist = dist;

 bone->Child[i]->SetVisited(true);

 AssignRecur(vertex, bone->Child[i], threshold, assignationMap);

 }

 }

 float dist = distance(bone->Parent(), vertex);

 if (!bone->Parent()->Visited() && dist < threshold)

 {

 assignationMap[dist].bone = bone->Parent();

 assignationMap[dist].dist = dist;

 bone->Parent()->SetVisited(true);

 AssignRecur(vertex, bone->Parent(), threshold, assignationMap);

 }

}

298 Game Engine Gems

Skinning

At this point in the process, we now know which bone affects a particular vertex and to
what extent it affects it. The only thing left to do is to actually grab the bones' matrices and apply
them to our mesh's vertices in order to transform the mesh and animate it. The act of deforming
a mesh to fit on a given skeleton's animation is called skinning. Multiple skinning techniques
exist in the industry, the most popular being linear-blend skinning [Kavan and Žára 2003] and
spherical-blend skinning [Kavan and Žára 2005]. Both of the techniques have been
implemented with a programmable vertex shader in the demo code on the website, but only the
linear-blend skinning technique is explained in this section. Spherical-blend skinning requires
some more advanced mathematics and could be the subject of a whole gem by itself. However,
keep in mind that if you can afford it, spherical-blend skinning often provides better visual
quality than does linearblend skinning. Again, also note that if you are already operating in a
3D development environment, skinning techniques are almost certainly already available and
reusing them is preferable, as stated in our list of desired placeholder features.

Linear-blend skinning is a very simple and widely popular technique that has been in use
since the Jurassic era of computer animation. While it has some visible rendering artifacts, it
has proven to be a very efficient and robust technique that adapts very well to a wide array of
graphics hardware. The details given here apply to programmable hardware but can be easily
adapted for nonprogrammable GPUs where the same work can be entirely performed on the
CPU.

The idea behind linear-blend skinning is to linearly blend the transformation matrices.
This amounts to multiplying every bone's matrix by its weight for a given vertex and then
summing the multiplied matrices together. The whole process can be expressed with the
equation

𝐯𝐯𝑖𝑖
′ = � 𝑤𝑤𝑖𝑖𝑗𝑗𝑀𝑀𝑗𝑗𝐯𝐯𝑗𝑗

𝑗𝑗

, (17.8)

where 𝐯𝐯𝑖𝑖
′ is the i-th untransformed vertex of the mesh in its bind pose, 𝐯𝐯𝑖𝑖

′ is the transformed
vertex after it has been skinned to the skeleton, Mj is the transformation matrix of the j-th bone,
and wij is the weight of bone j when applied to vertex i. (In the case where only the n closest
bones are kept, you can view all the wij as being set to zero except for the n closest ones.)

Chapter 17 Placeholders beyond Static Art Replacement 299

Implementing linear-blend skinning on programmable rendering hardware remains
equally straightforward and can be completely done in the vertex shader stage of the pipeline.
Before looking at the code, and to ensure that the imple mentation remains simple, the number
of bones that can affect a single vertex has to be limited to four. (The bone count affecting a
vertex rarely goes higher than four in practice, as shown in Figure 17.6.)

Figure 17.6. Bone count per vertex rarely goes above four. The bone count is depicted here with a
color map on a humanoid mesh. The brighter spots near the neck and shoulders have four bone
influences, the dark spots on the legs and the abdomen have only a single bone influence. Colors in
between have two or three bone influences.

The standard input values for the linear-blend skinning vertex shader are the vertex
position (attribute), the model-view-projection matrix (uniform), and the bone transformation
matrices (uniforms). (The normal vector and texture coordinates aren't required if you only
want to perform linear-blend skinning.) Three more inputs dedicated to skinning have to be
added to the shader. The first one is a uniform array of matrices that contains the
transformation matrix for each of the animation skeleton's bones (the Mj matrices) at the
animated pose to be rendered. The size of the array determines how many bones the animation
skeleton can have (40 is usually a good number). The second input is a fourdimensional integer
vector attribute that encodes the IDs of the four closest bones for each vertex. If the influencing
bone count is lower than four, the supplementary matrix identifiers and weights can be set to
zero, which ensures they have no influence on the final vertex position. The last input is a four-
dimensional floating-point vector attribute storing the weight values for the four closest bones.

300 Game Engine Gems

The weights stored in this vector must be in the same order as the corresponding bone IDs in
the previous vector. With this information, the linear-blend skinning given by Equation (17.8)
can be directly implemented, giving us the skinning shader shown in Listing 17.2 (with an added
calculation for the normal vector).

Listing 17.2. GLSL implementation of the linear blend skinning vertex shader.

// Input attributes

attribute vec4 vertex;

attribute vec3 normal;

attribute vec4 weight;

attribute vec4 boneId;

// Skeleton bones transformation matrix

uniform mat4 bonesMatrices[40];

void main(void)

{

 vec4 Position = vertex;

 vec4 DefV = vec4(0, 0, 0, 0);

 vec4 DefN = vec4(0, 0, 0, 0);

 Position.w = 1.0;

 for (int i = 0; i < 4; ++i)

 {

 mat4 BoneMat = bonesMatrices[int(boneId[i])];

 DefV += BoneMat * Position * weight[i];

 DefN += BoneMat * vec4(normal, 0) * weight[i];

 gl_Position = gl_ModelViewProjectionMatrix * DefV;

 }

}

Chapter 17 Placeholders beyond Static Art Replacement 301

Skinning now integrated, the mesh can be loaded in your game, the animations can be run,
and you should now be able to see what looks like an articulated balloon running in your scene.
The completed technique can be seen in Figure 17.7. From this point on, it should be pretty
obvious that the placeholder is not a final asset, other programmers are able to test their game
logic by using existing animations, and they will most likely be able to accomplish relatively
accurate performance tests by tweaking the amount of geometry and using different skinning
methods on the placeholder. Most importantly, the addition of this new placeholder in your
production environment should decouple the work of modelers, animators, and programmers
since only a very basic skeleton is now required to obtain convenient and useful placeholder
geometry.

Figure 17.7. Articulated placeholder skinned to an animation pose. The placeholder mesh is
articulated and follows the animation.

Limitations

The method presented above should give results of sufficient quality for a placeholder type
of asset. However, it has some shortcomings that should be underscored. The weakest part of
the process, the automatic weight assignment, provides good results for a placeholder asset but
in no way replaces the precise and detailed work a good animator or modeler would do. The
problem becomes mostly apparent in regions with multiple bone influences (three or four),
where subtle tearing can be seen in the mesh. The automatic weight assignment could be
improved to reduce this artifact by using heat diffusion methods or geodesic distance methods
on the mesh.

Another artifact that should be mentioned is the "ballooning" effect of the skeleton joints

302 Game Engine Gems

on the generated mesh. As can be noticed, round artifacts appear in the geometry around the
skeleton's articulation. This is because each skeleton bone is considered individually, and their
density fields add up near the articulations. This artifact can be attenuated by reducing the
intensity of the density field near the extremities of a bone. Keep in mind, though, that some
people tend to prefer this look since it clearly defines the presence of an articulation.

Finally, the generated mesh might appear a bit flat, with undefined features, if every bone
has the same effect on the density field. A possible improvement to this is to add a simple
"influence" property to every bone and manually increase the influence of some of them (such
as the head of a humanoid character to make it appear rounder). This is, however, a purely
aesthetic improvement and otherwise affects the system in no way.

17.3 Integration in a Production Environment

Placeholder systems are usually far down the priority list, or nonexistent, for a production
or technology team unless very heavy prototyping is required for a game. Therefore, the gain of
creating such a system often does not seem to be worth the risk of disrupting an already stable
pipeline. In this regard, it is important to reduce the footprint of this new system by eliminating
as many potential risks as possible, and this means reusing as much of the existing infrastructure
as possible. This begs multiple questions: In which part of the resource pipeline should the
placeholder be created? Who should be the person in charge of creating it? How can it be
integrated into existing pipelines? These questions, unfortunately, do not have a single clear
answer and mostly depend on your own production environment. We do, however, attempt to
give some answers by taking our articulated placeholder model as an example and discussing
how and where it should be integrated in an existing engine. Hopefully, this should give you an
idea of the things to look for and the things to consider when integrating a placeholder system
in a production environment.

Who Makes It, and Where Do You Make It?

One of the most natural questions to ask is, "Who makes the placeholder?" The answer is
straightforward: "As many people as possible." What truly results depends on where you decide
to integrate the placeholder into the assets pipeline and what the production rules are for your
team or studio.

Taking the articulated placeholder as an example, if it is added too far into the asset

Chapter 17 Placeholders beyond Static Art Replacement 303

pipeline (for example, if it is generated exclusively in code at run time based on an animation
skeleton), then you limit the placeholder creation to the programmers. This obviously doesn't
help in decoupling the work since the responsibility of creating placeholders falls on the
shoulders of a small part of your team. The opposite case, generating the placeholder at the
beginning (e.g., as a plug-in in the 3D modeling software), might be a good solution if everyone
on your team has basic knowledge of these tools and knows how to generate the placeholder
from them. However, some studios do not install these applications on game programmer or
designer stations to ensure that they don't start producing artistic assets or simply to reduce
operational costs. In this case, a plug-in for the 3D software might not be the best solution.

The common ground that seems to be the best compromise is to perform the generation
directly in the game asset auditing tools (the game editor) or through a custom tool that falls
between the game editor and the artistic production software. These tools are often available to
everyone and created in-house by tool programmers, so training remains easy, and this ensures
that you always have all the required support and control over the placeholder generation
system. On the downside, you might not be able to reuse features that were available in other
production applications. On the bright side though, this should give you access to the shared
features of your game engine that are available both in-game and in the game tools.

Ideally, you should try to maximize the number of different people and departments that
can generate the placeholder. If you have studio rules limiting access to some of your software,
try to target a spot in the pipeline that opens it to the most people. In practice, the beginning of
the asset pipeline or the game editor is usually the best place to ensure that. Finally, refrain from
creating a purely code-oriented system. Programmers should not be the only team members to
know how to use the system or benefit from it.

Game Pipeline Integration

We have seen the different options as to where a placeholder system can be integrated in
the asset pipeline. However, we haven't seen how it can be integrated. What we suggest here is
to treat the placeholder as a real asset as much as possible. This allows you to reuse all the
available features of your existing asset pipeline, and it preserves homogeneity throughout your
resource base. Creating special cases to manage placeholder assets differently only makes asset
management more complicated and creates confusion during development.

In the case of our articulated placeholder, the best idea is to generate an articulated mesh
out of the skeleton and output it with the animated mesh format you normally use for animated

304 Game Engine Gems

assets. Using this approach, the placeholder behaves and appears exactly as any other asset from
an asset pipeline point of view, which greatly reduces the amount of work required to integrate
it in the game.

Physics, rendering, and sound pipeline integration depends in great part on your asset
pipeline integration. If your placeholder is generated with the same file formats as your standard
assets, integrating it in game pipelines should require absolutely no cost. For the articulated
placeholder, the system could also be extended to add support for your physics and sound
pipelines. Collision primitive geometry could be generated from the skeleton and then exported
to be used in the physics engine. As for the sound pipeline, if your system uses the same
constructs and infrastructures as the usual mesh or collision geometry, sound events and
collision sounds should be easy to add with the tools your audio designer already uses.

All in all, the idea remains the same: integrate your placeholder in the most transparent
fashion in your game engine and reuse as much of it as possible to reduce the time required to
integrate the system in your production environment.

17.4 In the End, Is It Really Needed?

The question probably seems obvious, and you might wonder why it is asked so late in this
chapter. The reason is simply because it's hard to answer it without having in mind the
possibilities and advantages provided by a placeholder system. The true answer is that unless
you have a perfect team that never has a single delay and organizes things so well that no one
ever waits for anyone's work, building placeholder systems where they are needed is definitely
a plus and will positively impact your development speed for many productions to come. But
yet, is it really always needed? Yes, but the complexity varies greatly and is often so low that you
might not even consider it a placeholder "system."

The articulated placeholder system we present above is what we could consider complex,
which is correct since animated models are relatively complex resources. For the case of simpler
assets, such as text strings, you probably don't need to have something as complex. Generating
a temporary string that displays standard information, such as the current language and string
ID, is fine enough and truly does the trick. There is no need to start overthinking the whole
system and begin building a huge lorem ipsum generator for such simple assets. As long as the
placeholder you devise follows the guidelines mentioned earlier, you can consider it efficient. It

Chapter 17 Placeholders beyond Static Art Replacement 305

remains important to keep in mind that adding a new placeholder system takes some time and
that this overhead should be considered when deciding if it is really needed or not. Moreover,
keep in mind that a complex system isn't always the way to go, and simpler placeholders often
do the trick.

Placeholders will not revolutionize the way you build games, and many people on your
team might never realize someone had to actually build the placeholder systems they're using.
The positive effect of these systems is more subtle and only appears in the long run when you
look at the big picture. The challenges of today's game industry are all about efficiency, creating
more in less time, with fewer people, and at lower costs. Thinking about how development can
be rendered more efficient plays a big part in a team's success, and every developer has to do his
share of work on this front. Study your everyday routine, identify your production bottlenecks,
and verify whether a simple placeholder system could alleviate the pressure. They will not make
their way into the final build, but these placeholders will definitely show their true value before
that.

17.5 Implementation

The code provided on the website allows you to compile and use the articulated
placeholder system described in this chapter. A Visual Studio solution with the required library
and header files is located on the website, and it contains everything necessary to compile the
project.

References

[Aguiar et al. 2008] Edilson de Aguiar, Christian Theobalt, Sebastian Thrun, and HansPeter Seidel.
"Automatic Conversion of Mesh Animations into Skeleton-Based Animations." Computer Graphics
Forum 27:2 (April 2008), pp. 389-397.

[Baran and Popovic 2007] Ilya Baran and Jovan Popovic. "Automatic Rigging and Animation of 3D
Characters." ACM Transactions on Graphics 26:3 (July 2007).

[Doi and Koide 1991] Akio Doi and Akio Koide. "An Efficient Method of Triangulating Equi-Valued
Surface by Using Tetrahedral Cells." IEICE Transactions E74:1 (January 1991), pp. 214-224.

[Kavan and Zara 2003] Ladislav Kavan and Jiri Zara. "Real Time Skin Deformation with Bones
Blending." WSCG Short Papers Proceedings, 2003.

306 Game Engine Gems

[Kavan and Zara 2005] Ladislav Kavan and Jifi Zara. "Spherical Blend Skinning: A Real-time
Deformation of Articulated Models." Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games 1 (2005), pp. 9-17.

[Lally 2003] John Lally. "Giving Life to Ratchet & Clank." Gamasutra. February 11, 2003. Available
at http://www.gamasutra.com/view/feature/2899/giving_life_to_ ratchet-clank php.

[Lorensen and Cline 1987] William E. Lorensen and Harvey E. Cline. "Marching Cubes: A High
Resolution 3D Surface Construction Algorithm." Computer Graphics (Proceedings of SIGGRAPH 87)
21:4, ACM, pp. 163-169.

[Muller and Wehle 1997] Heinrich Muller and Michael Wehle. "Visualization of Implicit Surfaces
Using Adaptive Tetrahedrizations." Dagstuhl '97 Proceedings of the Conference on Scientific
Visualization, pp. 243-250.

[Rosen 2009] David Rosen. "Volumetric Heat Diffusion Skinning." Gamasutra Blogs, November 24,
2009. Available at http://www.gamasutra.com/blogs/DavidRosen/ 20091124/3 642/Volumetric_He
at_DiffusionSkinning.php.

[Speyrer and Jacobson 2006] David Speyrer and Brian Jacobson. "Valve's Design Process for
Creating Half-Life 2." Game Developers Conference, 2006.

[Williams 2010] David Williams. "Volumetric Representation of Virtual Environments." Game
Engine Gems 1, edited by Eric Lengyel. Sudbury, MA: Jones and Bartlett, 2010.

18
Chapter 18 Believable Dead Reckoning for Networked Games

Curtiss Murphy
Alion Science and Technology

18.1 Introduction

Your team's producer decides that it's time to release a networked game, saying "We can
publish across a network, right?" Bob kicks off a few internet searches and replies, "Doesn't look
that hard." He dives into the code, and before long, Bob is ready to begin testing. Then, he stares
in bewilderment as the characters jerk and warp across the screen and the vehicles hop, bounce,
and sink into the ground. Thus begins the nightmare that will be the next few months of Bob's
life, as he attempts to implement dead reckoning "just one more tweak" at a time.

This gem describes everything needed to add believable, stable, and efficient dead
reckoning to a networked game. It covers the fundamental theory, compares algorithms, and
makes a case for a new technique. It explains what's tricky about dead reckoning, addresses
common myths, and provides a clear implementation path. The topics are demonstrated with
a working networked game that includes source code. This gem will help you avoid countless
struggles and dead ends so that you don't end up like Bob.

18.2 Fundamentals

Bob isn't a bad developer; he just made some reasonable, but misguided, assumptions.
After all, the basic concept is pretty straight forward. Dead reckoning is the process of predicting
where an actor is right now by using its last known position, velocity, and acceleration. It applies
to almost any type of moving actor, including cars, missiles, monsters, helicopters, and

308 Game Engine Gems

characters on foot. For each remote actor being controlled somewhere else on the network, we
receive updates about its kinematic state that include its position, velocity, acceleration,
orientation, and angular velocity. In the simplest implementation, we take the last position we
received on the network and project it forward in time. Then, on the next update, we do some
sort of blending and start the process all over again. Bob is right that the fundamentals aren't
that complex, but making it believable is a different story.

Myth Busting-Ground Truth

Let's start with the following fact: there is no such thing as ground truth in a networked
environment. "Ground truth" implies that you have perfect knowledge of the state of all actors
at all times. Surely, you can't know the exact state of all remote actors without sending updates
every frame in a zero packet loss, zero latency environment. What you have instead is your own
perceived truth. Thus, the goal becomes believable estimation, as opposed to perfect re-creation.

Basic Math

To derive the math, we start with the simplest case: a new actor comes across the network.
In this case, one of our opponents is driving a tank, and we received our first kinematic state
update as it came into view. From here, dead reckoning is a straightforward linear physics
problem, as described by Aronson [1997]. Using the values from the message, we put the vehicle
at position 𝐏𝐏0

′ , and begin moving it at velocity 𝐕𝐕0
′ , with acceleration 𝐀𝐀0

′ ,, as shown in Figure
18.1. The deadreckoned position 𝐐𝐐𝑡𝑡, at a specific time Tis calculated with the equation

Figure 18.1. The first update is simple.

𝐐𝐐𝑡𝑡 = 𝐏𝐏0
′ + 𝐕𝐕0

′𝑇𝑇 +
1
2

𝐀𝐀0
′ 𝑇𝑇2

Continuing our scenario, the opponent saw us, slowed his tank, and took a hard right. Soon, we
receive a message updating his kinematic state. At this point, we have conflicting realities. The
first reality is the position 𝐐𝐐𝑡𝑡 where we guessed he would be using the previous formula. The
second reality is where he actually went, our new 𝐏𝐏0

′ , which we refer to as the last known state

 𝐏𝐏0
′

 𝐕𝐕0
′

Chapter 18 Believable Dead Reckoning for Networked Games 309

because it's the last thing we know to be correct. This dual state is the beginning of Bob's
nightmares. Since there are two versions of each value, we use the prime notation (e.g., 𝐏𝐏0

′) to
indicate the last known, as shown in Figure 18.2.

Figure 18.2. The next update creates two realities. The red line is the estimated path, and the green
curve is the actual path.

To resolve the two realities, we need to create a believable curve between where we thought
the tank would be, and where we estimate it will be in the future. Don't bother to path the remote
tank through its last known position, 𝐏𝐏0

′ Instead, just move it from where it is now, 𝐏𝐏0
′ , to

where we think it is supposed to be in the future, 𝐏𝐏1
′ .

Myth Busting-Discontinuities Are Not Minor

The human brain is amazing at recognizing patterns [Koster 2005] and, more importantly,
changes in patterns, such as when the tiniest piece of fuzz moves past our peripheral vision.
What this means is that players will notice subtle discontinuities in a vehicle path long before
they realize the vehicle is in the wrong location. Therefore, discontinuities such as hops, warps,
wobbles, and shimmies are the enemy.

18.3 Pick an Algorithm, Any Algorithm

If you crack open any good 3D math textbook, you'll find a variety of algorithms for
defining a curve. Fortunately, we can discard most of them right away because they are too CPU
intensive or are not appropriate (e.g., B-splines do not pass through the control points). For
dead reckoning, we have the additional requirement that the algorithm must work well for a
single segment of a curve passing through two points: our current location Po and the estimated

310 Game Engine Gems

future location P. Given all these requirements, we can narrow the selection down to a few types
of curves: cubic Bézier splines, Catmull-Rom splines, and Hermite curves [Lengyel 2004, Van
Verth and Bishop 2008].

These curves perform pretty well and follow smooth, continuous paths. However, they also
tend to create minor repetitive oscillations. The oscillations are relatively small, but noticeable,
especially when the actor is making a lot of changes (e.g., moving in a circle). In addition, the
oscillations tend to become worse when running at inconsistent frame rates or when network
updates don't come at regular intervals. In short, they are too wiggly.

Projective Velocity Blending

Let's try a different approach. Our basic problem is that we need to resolve two realities
(the current P0 and the last known 𝐏𝐏0

′). Instead of creating a spline segment, let's try a
straightforward blend. We create two projections, one with the current and one with the last
known kinematic state. Then, we simply blend the two together using a standard linear
interpolation (lerp). The first attempt looks like this:

𝐏𝐏𝑡𝑡 = 𝐏𝐏0 + 𝐕𝐕0𝑇𝑇𝑡𝑡 +
1
2

𝐀𝐀0
′ 𝑇𝑇𝑡𝑡

2 (projecting from where we were),

𝐏𝐏𝑡𝑡
′ = 𝐏𝐏0

′ + 𝐕𝐕0
′𝑇𝑇𝑡𝑡 +

1
2

𝐀𝐀0
′ 𝑇𝑇𝑡𝑡

2 (projecting from last known),

𝐐𝐐𝑡𝑡 = 𝐏𝐏𝑡𝑡 + (𝐏𝐏𝑡𝑡
′ − 𝐏𝐏𝑡𝑡)𝑇𝑇� +

1
2

𝐀𝐀0
′ 𝑇𝑇𝑡𝑡

2 (combined).

This gives Qt the dead-reckoned location at a specified time. (Time values such as Tt, and
𝑇𝑇� are explained in Section 18.4.) Note that both projection equations above use the last known
value of acceleration 𝐀𝐀0

′ . In theory, the current projection Pt should use the previous
acceleration A0 to maintain C2 continuity. However, in practice, 𝐀𝐀0

′ converges to the true path
much quicker and reduces oscillation.

This technique actually works pretty well. It is simple and gives a nice curve between our
points. Unfortunately, it has oscillations that are as bad as or worse than the spline techniques.
Upon inspection, it turns out that with all of these techniques, the oscillations are caused by the
changes in velocity (V0 and 𝐕𝐕0

′). Maybe if we do something with the velocity, we can reduce the
oscillations. So, let's try it again, with a tweak. This time, we compute a linear interpolation

Chapter 18 Believable Dead Reckoning for Networked Games 311

between the old velocity V0 and the last known velocity 𝐕𝐕0
′ to create a new blended velocity Vb.

Then, we use this to project forward from where we were.

The technique, projective velocity blending, works like this:

𝐕𝐕𝑏𝑏 = 𝐕𝐕0 + (𝐕𝐕0
′ − 𝐕𝐕0)𝑇𝑇� (velocity blending),

𝐏𝐏𝑡𝑡 = 𝐏𝐏0 + 𝐕𝐕𝑏𝑏𝑇𝑇𝑡𝑡 +
1
2

𝐀𝐀0
′ 𝑇𝑇𝑡𝑡

2 (projecting from where we were),

𝐏𝐏𝑡𝑡
′ = 𝐏𝐏0

′ + 𝐕𝐕0
′𝑇𝑇𝑡𝑡 +

1
2

𝐀𝐀0
′ 𝑇𝑇𝑡𝑡

2 (projecting from last known),

𝐐𝐐𝑡𝑡 = 𝐏𝐏𝑡𝑡 + (𝐏𝐏𝑡𝑡
′ − 𝐏𝐏𝑡𝑡)𝑇𝑇� (combined).

And the red lines in Figure 18.3 show what it looks like in action.

Figure 18.3. Dead reckoning with projective velocity blending shown in red.

In practice, this works out magnificently! The blended velocity and change of acceleration
significantly reduce the oscillations. In addition, this technique is the most forgiving of both
inconsistent network update rates and changes in frame rates.

Prove It!

So it sounds good in theory, but let's get some proof. We can perform a basic test by driving

312 Game Engine Gems

a vehicle in a repeatable pattern (e.g., a circle). By subtracting the real location from the dead-
reckoned location, we can determine the error. The images in Figure 18.4 and statistics in Table
18.1 show the clear result. The projective velocity blending is roughly five to seven percent more
accurate than cubic Bézier splines. That ratio improves a bit more when you can't publish
acceleration. If you want to test it yourself, the demo application on the website has
implementations of both projective velocity blending and cubic Bézier splines.

Figure 18.4. Cubic Bézier splines (left) versus projective velocity blending (right), with acceleration
(top) and without acceleration (bottom).

Table 18.1. Improvement using projective velocity blending. Deck-reckoning (DR) error is
measured in meters.

Update Rate Cubic Bézier Projective Velocity Improvement
1 update/sec 1.5723 m 1.4584 m 7,24% closer
3 update/sec 0.1041 m 0.1112 m 6.38% closer
5 update/sec 0,0574 m 0.0542 m 5.57% closer

As a final note, if you decide to implement a spline behavior instead of projective velocity

Chapter 18 Believable Dead Reckoning for Networked Games 313

blending, you might consider the cubic Bézier splines [Van Verth and Bishop 2008]. They are
slightly easier to implement because the control points can simply be derived from the velocities
V0 and V0

′ . The source code on the website includes a full implementation.

18.4 Time for T

So far, we've glossed over time. That's okay for an introduction, but, once you begin coding,
the concept of time gets twisted up in knots. So, let's talk about T.

What Time Is It?

The goal is to construct a smooth path that an actor can follow between two moments in
time T0 and T1. These two times mark the exact beginning and end of the curve and are defined
by locations P0. and 𝐏𝐏1

′ , respectively. The third time Tt is how much time has elapsed since T0.
The final time 𝑇𝑇� represents how far the actor has traveled along the path as a normalized value,
with 0.0 ≤ 𝑇𝑇�≤ 1.0.

T0 is easy. It's the time stamp when the last known values were updated. Basically, it's "now"
at the time of the update. If you've seen the movie Spaceballs, then T0 is "now, now." When we
process a new network update, we mark T0 as now and set T1, back to zero. The slate is wiped
clean, and we start a whole new curve, regardless of where we were.

If T0 is now, then T1, must be in the future. But how far into the future, TΔ, should the
projection go? Well, if we knew that the actor updates were coming at regular intervals, then we
could just use the inverse update rate. So, for three updates per second, TΔ = 0.333 s. Even
though network updates won't always be perfectly spaced out, it still gives a stable and consistent
behavior. Naturally, the update rate varies significantly depending on the type of game, the
network conditions, and the expected actor behavior. As a general rule of thumb, an update rate
of three per second looks decent and five or more per second looks great.

Time to Put It Together

From an implementation perspective, normalized time values from zero to one aren't
terribly useful. In many engines, you typically get a time Tf since the last frame. We can easily
add this up each frame to give the total time since the last update Tt. Once we know Tt, we can
compute our normalized time 𝑇𝑇� as follows:

314 Game Engine Gems

𝑇𝑇𝑡𝑡 ← 𝑇𝑇𝑡𝑡 + 𝑇𝑇𝑓𝑓

𝑇𝑇� = 𝑇𝑇𝑡𝑡
𝑇𝑇△

Now we have all the times we need to compute the projective velocity blending equations.
That leaves just one final wrinkle in time. It happens when we go past TΔ (i.e., Tt > TΔ). This is a
very common case that can happen if we miss an update, have any bit of latency, or even have
minor changes in frame rate. From earlier,

𝐐𝐐𝑡𝑡 = 𝐏𝐏𝑡𝑡 + (𝐏𝐏𝑡𝑡
′ − 𝐏𝐏𝑡𝑡)𝑇𝑇� .

Because 𝑇𝑇� is clamped at one, the Pt, drops out, leaving the original equation

𝐐𝐐𝑡𝑡 = 𝐏𝐏0
′ + 𝐕𝐕0

′𝑇𝑇𝑡𝑡 +
1
2

𝐕𝐕0
′𝑇𝑇𝑡𝑡

2

The math simplifies quite nicely and continues to work for any value of 𝑇𝑇� ≥ 1.0.

Just in Time Notes

Here are a few tips to consider:

 Due to the nature of networking, you can receive updates at any time, early or late. In order

to maintain C1 continuity, you need to calculate the instantaneous velocity between this

frame's and the last frame's dead-reckoned position, (𝐏𝐏𝑡𝑡 − 𝐏𝐏𝑡𝑡−1)/𝑇𝑇𝑓𝑓.When you get the

next update and start the new curve, use this instantaneous velocity for V0. Without this,

you will see noticeable changes in velocity at each update.

 Actors send updates at different times based on many factors, including creation time,

behavior, server throttling, latency, and whether they are moving. Therefore, track the

various times separately for each actor (local and remote).

 If deciding your publish rate in advance is problematic, you could calculate a run-time

average of how often you have been receiving network updates and use that for TΔ. This

works okay but is less stable than a predetermined rate.

Chapter 18 Believable Dead Reckoning for Networked Games 315

 In general, the location and orientation get updated at the same time. However, if they are

published separately, you'll need separate time variables for each.

 It is possible to receive multiple updates in a single frame. In practice, let the last update

win. For performance reasons, perform the dead reckoning calculations later in the game

loop, after the network messages are processed. Ideally, you will run all the dead reckoning

in a single component that can split the work across multiple worker threads.

 For most games, it is not necessary to use time stamps to sync the clocks between

clients/servers in order to achieve believable dead reckoning.

18.5 Publish or Perish

So far, the focus has been on handling network updates for remote actors. However, as
with most things, garbage in means garbage out. Therefore, we need to take a look at the
publishing side of things. In this section, forget about the actors coming in over the network
and instead focus on the locally controlled actors.

When to Publish?

Let's go back and consider the original tank scenario from the opponent's perspective. The
tank is now a local actor and is responsible for publishing updates on the network. Since
network bandwidth is a precious resource, we should reduce traffic if possible. So the first
optimization is to decide when we need to publish. Naturally, there are times when players are
making frequent changes in direction and speed and five or more updates per second are
necessary. However, there are many more times when the player's path is stable and easy to
predict. For instance, the tank might be lazily patrolling, might be heading back from a respawn,
or even sitting still (e.g., the player is chatting).

The first optimization is to only publish when necessary. Earlier, we learned that it is better
to have a constant publish rate (e.g., three per second) because it keeps the remote dead
reckoning smooth. However, before blindly publishing every time it's allowed (e.g., every 0.333
s), we first check to see if it's neces sary. To figure that out, we perform the dead reckoning as if
the vehicle was remote. Then, we compare the real and the dead-reckoned states. If they differ
by a set threshold, then we go ahead and publish. If the real position is still really close to the

316 Game Engine Gems

dead-reckoned position, then we hold off. Since the dead reckoning algorithm on the remote
side already handles Tt > TΔ, it'll be fine if we don't update right away. This simple check, shown
in Listing 18.1, can significantly reduce network traffic.

Listing 18.1. Publish-is an update necessary?

bool ShouldForceUpdate(const Vec3& pos, const Vec3& rot)

{

 bool forceUpdateResult = false;

 if (enoughTimeHasPassed)

 {

 Vec3 posMoved = pos - mCurDeadReckoned_Pos;

 Vec3 rotTurned = rot - mCurDeadReckoned_Rot;

 if ((posMoved.lenght2() > mPosThreshold2) ||

 (rotTurned.length2() > mRotThreshold2))

 {

 // Rot.length2 is a fast approx(i.e., not a quaternion).

 forceUpdateResult = true;

 }

 // ... Can use other checks such as velocity and accel.

 }

 return (forceUpdateResult);

}

What to Publish

Clearly, we need to publish each actor's kinematic state, which includes the position,
velocity, acceleration, orientation, and angular velocity. But there are a few things to consider.
The first, and least obvious, is the need to separate the actor's real location and orientation from
its last known location and orientation. Hopefully, your engine has an actor property system
[Campbell 2006] that enables you to control which properties get published. If so, you need to
be absolutely sure you never publish (or receive) the actual properties used to render location
and orientation. If you do, the remote actors will get an update and render the last known values

Chapter 18 Believable Dead Reckoning for Networked Games 317

instead of the results of dead reckoning. It's an easy thing to overlook and results in a massive
one-frame discontinuity (a.k.a. blip). Instead, create publishable properties for the last known
values (i.e., location, velocity, acceleration, orientation, and angular velocity) that are distinct
from the real values.

The second consideration is partial actor updates, messages that only contain a few actor
properties. To obtain believable dead reckoning, the values in the kinematic state need to be
published frequently. However, the rest of the actor's properties usually don't change that much,
so the publishing code needs a way to swap between a partial and full update. Most of the time,
we just send the kinematic properties. Then, as needed, we send other properties that have
changed and periodically (e.g., every ten seconds) send out a heartbeat that contains everything.
The heartbeat can help keep servers and clients in sync.

Myth Busting-Acceleration Is Not Always Your Friend

In the quest to create believable dead reckoning, acceleration can be a huge advantage, but
be warned that some physics engines give inconsistent (a.k.a. spiky) readings for linear
acceleration, especially when looked at in a single frame as an instantaneous value. Because
acceleration is difficult to predict and is based on the square of time, it can sometimes make
things worse by introducing noticeable under- and overcompensations. For example, this can
be a problem with highly jointed vehicles for which the forces are competing on a frame-by-
frame basis or with actors that intentionally bounce or vibrate.

With this in mind, the third consideration is determining what the last known values
should be. The last known location and orientation come directly from the actor's current
render values. However, if the velocity and acceleration values from the physics engine are
giving bad results, try calculating an instantaneous velocity and acceleration instead. In extreme
cases, try blending the velocity over two or three frames to average out some of the sharp
instantaneous changes.

Publishing Tips

Below are some final tips for publishing:

 Published values can be quantized or compressed to reduce bandwidth [Sayood 2006].

318 Game Engine Gems

 If an actor isn't stable at speeds near zero due to physics, consider publishing a zero velocity

and/or acceleration instead. The projective velocity blend will resolve the small translation

change anyway.

 If publishing regular heartbeats, be sure to sync them with the partial updates to keep the

updates regular. Also, try staggering the heartbeat time by a random amount to prevent

clumps of full updates caused by map loading.

 Some types of actors don't really move (e.g., a building or static light). Improve

performance by using a static mode that simply teleports actors.

 In some games, the orientation might matter more than the location, or vice versa.

Consider publishing them separately and at different rates.

 To reduce the bandwidth using ShouldForceUpdate(), you need to dead reckon the local

actors in order to check against the threshold values.

 Evaluate the order of operations in the game loop to ensure published values are computed

correctly. An example order might include: handle user input, tick local (process incoming

messages and actor behaviors), tick remote (perform dead reckoning), publish dead

reckoning, start physics (background for next frame), update cameras, render, finish

physics. A bad order will cause all sorts of hard-to-debug dead reckoning anomalies.

 There is an optional damping technique that can help reduce oscillations when the

acceleration is changing rapidly (e.g., zigzagging). Take the current and previous

acceleration vectors and normalize them. Then, compute the dot product between them

and treat it as a scalar to reduce the acceleration before publishing (shown in the

ComputeCurrentvelocity() function in Listing 18.2).

 Acceleration in the up/down direction can sometimes cause floating or sinking. Consider

publishing a zero instead.

The Whole Story

When all the pieces are put together, the code looks roughly like Listing 18.2.

Chapter 18 Believable Dead Reckoning for Networked Games 319

Listing 18.2. Publish-the whole story.

void OnTickRemote(const TickMessage& tickMessage)

{

 // This is for local actors, but happens during Tick Remote.

 double elapsedTime = tickMessage.GetDeltaSimTime();

 bool forceUpdate = false, fullUpdate = false;

 Vec3 rot = GetRotation();

 Vec3 pos = GetTranslation();

 mSecsSinceLastUpdateSent += elaspedTime;

 mTimeUntilHeartBeat -= elaspedTime;

 // Have to update instant velocity even if we don't publish.

 ComputeCurrentVelocity(elapsedTime, pos, rot);

 if ((mTimeUntilHeartBeat <= 0.0f) || (IsFullUpdateNeeded()))

 {

 fullUpdate = true;

 forceUpdate = true;

 }

 else

 {

 forceUpdate = ShouldForceUpdate(pos, rot);

 fullUpdate = (mTimeUntilHeartBeat < HEARTBEAT_TIME * 0.1f);

 }

 if (forceUpdate)

 {

 SetLastKnownValuesBeforePublish(pos, rot);

 if (fullUpdate)

 {

 mTimeUntilHeartBeat = HEARTBEAT_TIME; // +/- random offset

320 Game Engine Gems

 NotifyFullActorUpdate();

 }

 else

 {

 NotifyPartialActorUpdate();

 }

 mSecsSinceLastUpdateSent = 0.0f;

 }

}

void SetLastKnownValuesBeforePublish(const Vec3& pos, const Vec3& rot)

{

 SetLastKnownTranslation(pos);

 SetLastKnownRotation(rot);

 SetLastKnownVelocity(ClampTinyValues(GetCurrentVel()));

 SetLastKnownAngularVel(ClampTinyValues(GetCurrentAngularVel()));

 // (OPTIONAL!) ACCELERATION dampen to prevent wild swings.

 // Normalize current accel. Dot with accel from last update. Use

 // the product to scale our current Acceleration.

 Vec3 curAccel = GetCurrentAccel();

 curAccel.normalize();

 float accelScale = curAccel * mAccelOfLastPublish;

 mAccelOfLastPublish = curAccel; //(pre-normalized)

 SetLastKnownAccel(GetCurrentAccel() * Max(0.0f, accelScale));

}

void ComputeCurrentVelocity(float deltaTime, const Vec3& pos,

 const Vec3& rot)

{

 if ((mPrevFrameTime > 0.0f) && (mLastPos.length2() > 0.0f))

 {

 Vec3 prevComputedLinearVel = mComputedLinearVel;

Chapter 18 Believable Dead Reckoning for Networked Games 321

 Vec3 distanceMoved = pos -mLastPos;

 mComputedLinearVel = distanceMoved / mPrevFrameTime;

 ClampTinyValues(mComputedLinearVel);

 // accel = the instantaneous differential of the velocity.

 Vec3 deltaVel = mComputedLinearVel - prevComputedLinearVel;

 Vec3 computedAccel = deltaVel // mPrevDeltaFrameTime;

 computedAccel.z() = 0.0f; // up/down accel isn't always helpful.

 SetCurrentAcceleration(computedAccel);

 SetCurrentVelocity(mComputedLinearVel);

 }

 mLastPos = pos;

 mPrevFrameTime = deltaTime;

}

18.6 Ground Clamping

No matter how awesome your dead reckoning algorithm becomes, at some point, the
problem of ground clamping is going to come up. The easiest way to visualize the problem is to
drop a vehicle off of a ledge. When it impacts the ground, the velocity is going to project the
dead-reckoned position under the ground. Few things are as disconcerting as watching a tank
disappear halfway into the dirt. As an example, the demo on the website allows mines to fall
under ground.

Can We Fix It?

As with many dead reckoning problems, there isn't one perfect solution. However, some
simple ground clamping can make a big difference, especially for far away actors. Ground
clamping is adjusting an actor's vertical position and orientation to make it follow the ground.
The most important thing to remember about ground clamping is that it happens after the rest
of the dead reckoning. Do everything else first.

The following is one example of a ground clamping technique. Using the final dead
reckoned position and orientation, pick three points on the bounding surface of the actor.

322 Game Engine Gems

Perform a ray cast starting above those points and directed downward. Then, for each point,
check for hits and clamp the final point if appropriate. Compute the average height H of the
final points Q0, Q1, and Q2, and compute the normal N of the triangle through those points as
follows:

𝐻𝐻 = (Q0)𝑧𝑧 + (Q1)𝑧𝑧 + (Q2)𝑧𝑧
3

𝐍𝐍 = (Q1 − Q0) × (Q2 − Q0)

Use H as the final clamped ground height for the actor and use the normal to determine the
final orientation. While not appropriate for all cases, this technique is fast and easy to
implement, making it ideal for distant objects.

Other Considerations

 Another possible solution for this problem is to use the physics engine to prevent

interpenetration. This has the benefit of avoiding surface penetration in all directions, but

it can impact performance. It can also create new problems, such as warping the position,

the need for additional blends, and sharp discontinuities.

 Another way to minimize ground penetration is to have local actors project their velocities

and accelerations into the future before publishing. Then, damp the values as needed so

that penetration will not occur on remote actors (a method known as predictive

prevention). This simple trick can improve behavior in all directions and may eliminate

the need to check for interpenetration.

 When working with lots of actors, consider adjusting the ground clamping based on

distance to improve performance. You can replace the three-point ray multicast with a

single point and adjust the height directly using the intersection normal for orientation.

Further, you can clamp intermittently and use the offset from prior ground clamps.

 For character models, it is probably sufficient to use single-point ground clamping. Single-

point clamping is faster, and you don't need to adjust the orientation.

Chapter 18 Believable Dead Reckoning for Networked Games 323

 Consider supporting several ground clamp modes. For flying or underwater actors, there

should be a "no clamping" mode. For vehicles that can jump, consider an "only clamp up"

mode. The last mode, "always clamp to ground," would force the clamp both up and down.

18.7 Orientation

Orientation is a critical part of dead reckoning. Fortunately, the basics of orientation are
similar to what was discussed for position. We still have two realities to resolve: the current
drawn orientation and the last known orientation we just received. And, instead of velocity,
there is angular velocity. But that's where the similarities end.

Hypothetically, orientation should have the same problems that location had. In reality,
actors generally turn in simpler patterns than they move. Some actors turn slowly (e.g., cars)
and others turn extremely quickly (e.g., characters). Either way, the turns are fairly simplistic,
or oscillations are rarely a problem. This means C1 and C2 continuity is less important and
explains why many engines don't bother with angular acceleration.

Myth Busting-Quaternions

Your engine might use HPR (heading, pitch, and roll), XYZ vectors, or full rotation
matrices to define an orientation. However, when it comes to dead reckoning, you'll be rotating
and blending angles in three dimensions, and there is simply no getting around quaternions
[Hanson 2006]. Fortunately, quaternions are easier to implement than they are to understand
[Van Verth and Bishop 2008]. So, if your engine doesn't support them, do yourself a favor and
code up a quaternion class. Make sure it has the ability to create a quaternion from an axis/angle
pair and can perform spherical linear interpolations (slerp). A basic implementation of
quaternions is provided with the demo code on the website.

With this in mind, dead reckoning the orientation becomes pretty simple: project both
realities and then blend between them. To project the orientation, we need to calculate the
rotational change from the angular velocity. Angular velocity is just like linear velocity; it is the
amount of change per unit time and is usually represented as an axis of rotation whose
magnitude corresponds to the rate of rotation about that axis. It typically comes from the
physics engine, but it can be calculated by dividing the change in orientation by time. In either
case, once you have the angular velocity vector, the rotational change 𝑅𝑅∆𝑡𝑡

′ is computed as

324 Game Engine Gems

shown in Listing 18.3.

If you also have angular acceleration, just add it to rotationAngle. Next, compute the two
projections and blend using a spherical linear interpolation. Use the last known angular velocity
in both projections, just as the last known acceleration was used for both equations in the
projective velocity blending technique:

Listing 18.3. Computing rotational change.

Vec3 angVelAxis(mLastKnownAngularVelocityVector);

// normalize() returns length.

float angVelMagnitude = angVelAxis.normalize();

// Rotation around the axis is magnitude of ang vel * time.

float rotationAngle = angVelMagnitude * actualRotationTime;

Quat ratationFromAngVel(rotationAngle, angVelAxis);

𝑅𝑅∆𝑡𝑡
′ = quat�𝑅𝑅mag

′ 𝑇𝑇𝑡𝑡 , 𝑅𝑅dir
′ � (impact of angular velocity),

𝑅𝑅𝑡𝑡 = 𝑅𝑅∆𝑡𝑡
′ 𝑅𝑅0 (rotated from where we were),

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅∆𝑡𝑡

′ 𝑅𝑅0 (rotated from last known),

𝑆𝑆𝑡𝑡 = slerp�𝑇𝑇�, 𝑅𝑅𝑡𝑡, 𝑅𝑅𝑡𝑡
′� (combined).

This holds true for 𝑇𝑇� < 1.0. Once again, 𝑇𝑇� is clamped at one, so the math simplifies when
𝑇𝑇� ≥ 1.0:

𝑆𝑆𝑡𝑡 = 𝑅𝑅∆𝑡𝑡
′ 𝑅𝑅0 (rotated from last known).

Two Wrong Turns Don't Make a Right

This technique may not be sufficient for some types of actors. For example, the orientation
of a car and its direction of movement are directly linked. Unfortunately, the dead-reckoned
version is just an approximation with two sources of error. The first is that the orientation is
obviously a blended approximation that will be behind and slightly off. But, even if you had a
perfect orientation, the remote vehicle is following a dead-reckoned path that is already an

Chapter 18 Believable Dead Reckoning for Networked Games 325

approximation. Hopefully, you can publish fast enough that neither of these becomes a problem.
If not, you may need some custom actor logic that can reverse engineer the orientation from
the dead-reckoned values; that is, estimate an orientation that would make sense given the dead-
reckoned velocity. Another possible trick is to publish multiple points along your vehicle (e.g.,
one at front and one in back). Then, dead reckon the points and use them to orient the vehicle
(e.g., bind the points to a joint).

18.8 Advanced Topics

This last section introduces a variety of advanced topics that impact dead reckoning. The
details of these topics are generally outside the scope of this gem, but, in each case, there are
specific considerations that are relevant to dead reckoning.

Integrating Physics with Dead Reckoning

Some engines use physics for both the local and the remote objects. The idea is to improve
believability by re-creating the physics for remote actors, either as a replacement for or in
addition to the dead reckoning. There are even a few techniques that take this a step further by
allowing clients to take ownership of actors so that the remote actors become local actors, and
vice versa [Feidler 2009]. In either of these cases, combining physics with dead reckoning gets
pretty complex. However, the take away is that even with great physics, you'll end up with cases
where the two kinematic states don't perfectly match. At that point, use the techniques in this
gem to resolve the two realities.

Server Validation

Dead reckoning can be very useful for server validation of client behavior. The server
should always maintain a dead-reckoned state for each player or actor. With each update from
the clients, the server can use the previous last known state, the current last known state, and
the ongoing results of dead reckoning as input for its validation check. Compare those values
against the actor's expected behavior to help identify cheaters.

Who Hit Who?

Imagine player A (local) shoots a pistol at player B (remote, slow update). If implemented
poorly, player A has to "lead" the shot ahead or behind player B based on the ping time to the

326 Game Engine Gems

server. A good dead reckoning algorithm can really help here. As an example, client A can use
the current dead-reckoned location to determine that player B was hit and then send a hit
request over to the server. In turn, the server can use the dead-reckoned information for both
players, along with ping times, to validate that client A's hit request is valid from client A's
perspective. This technique can be combined with server validation to prevent abuse. For player
A, the game feels responsive, seems dependent on skill, and plays well regardless of server lag.

Articulations

Complex actors often have articulations, which are attached objects that have their own
independent range of motion and rotation. Articulations can generally be lumped into one of
two groups: real or fake. Real articulations are objects whose state has significant meaning, such
as the turret that's pointing directly at you! For real articulations, use the same techniques as if
it were a full actor. Fortunately, many articulations, such as turrets, can only rotate, which
removes the overhead of positional blending and ground clamping. Fake articulations are
things like tires and steering wheels, where the state is either less precise or changes to match
the dead-reckoned state. For those, you may need to implement custom behaviors, such as for
turning the front tires to approximate the velocity calculated by the dead reckoning.

Path-Based Dead Reckoning

Some actors just need to follow a specified path, such as a road, a predefined route, or the
results of an artificial intelligence plan. In essence, this is not much different from the
techniques described above. Except, instead of curving between two points, the actor is moving
between the beginning and end of a specified path. If the client knows how to recreate the path,
then the actor just needs to publish how far along the path it is, 𝑇𝑇� , as well as how fast time is
changing, Tv When applicable, this technique can significantly reduce bandwidth. Moyer and
Speicher [2005] have a detailed exploration of this topic.

Delayed Dead Reckoning

The first myth this gem addresses is that there is no ground truth. However, one technique,
delayed dead reckoning, can nearly re-create it, albeit by working in the past. With delayed dead
reckoning, the client buffers network updates until it has enough future data to re-create a path.
This eliminates the need to project into the future because the future has already arrived. It
simplifies to a basic curve problem. The upside is that actors can almost perfectly re-create the
original path. The obvious downside is that everything is late, making it a poor choice for most

Chapter 18 Believable Dead Reckoning for Networked Games 327

real-time actors. This technique can be useful when interactive response time is not the critical
factor, such as with distant objects (e.g., missiles), slow-moving system actors (e.g., merchant
NPCs), or when playing back a recording. Note that delayed dead reckoning can also be useful
for articulations.

Subscription Zones

Online games that support thousands of actors sometimes use a subscriptionzoning
technique to reduce rendering time, network traffic, and CPU load [Cado 2007]. Zoning is quite
complex but has several impacts on dead reckoning. One significant difference is the addition
of dead reckoning modes that swap between simpler or more complex dead reckoning
algorithms. Actors that are far away or unimportant can use a low-priority mode with
infrequent updates, minimized ground clamping, quantized data, or simpler math and may take
advantage of delayed dead reckoning. The high-priority actors are the only ones doing frequent
updates, articulations, and projective velocity blending. Clients are still responsible for
publishing normally, but the server needs to be aware of which clients are receiving what
information for which modes and publish data accordingly.

18.9 Conclusion

Dead reckoning becomes a major consideration the moment your game becomes
networked. Unfortunately, there is no one-size-fits-all technique. The games industry is
incredibly diverse and the needs of a first-person MMO, a top-down RPG, and a high-speed
racing game are all different. Even within a single game, different types of actors might require
different techniques.

The underlying concepts described in this gem should provide a solid foundation for
adding dead reckoning to your own game regardless of the genre. Even so, dead reckoning is
full of traps and can be difficult to debug. Errors can occur anywhere, including the basic math,
the publishing process, the data sent over the network, or plain old latency, lag, and packet
issues. Many times, there are multiple problems going on at once and they can come from
unexpected places, such as bad values coming from the physics engine or uninitialized variables.
When you get stuck, refer back to the tips in each section and avoid making assumptions about
what is and is not working. Believable dead reckoning is tricky to achieve, but the techniques in
this gem will help make the process as easy as it can be.

328 Game Engine Gems

Acknowledgements

Special thanks to David Guthrie for all of his contributions.

References

[Aronson 1997] Jesse Aronson. "Dead Reckoning: Latency Hiding for Networked Games."
Gamasutra, September 19, 1997. Available at http://www.gamasutra.com/view/feature/3230/de
ad_reckoning_latency_hiding_for_.php.

[Cado 2007] Olivier Cado. "Propagation of Visual Entity Properties Under Bandwidth Constraints."
Gamasutra, May 24, 2007. Available at http://www.gamasutra.com/

[Campbell 2006] Matt Campbell and Curtiss Murphy. "Exposing Actor Properties Using
Nonintrusive Proxies." Game Programming Gems 6, edited by Michael Dickheiser. Boston: Charles
River Media, 2006.

[Feidler 2009] Glenn Fiedler. "Drop in COOP for Open World Games." Game Developer's
Conference, 2009.

[Hanson 2006] Andrew Hanson. Visualizing Quaternions. San Francisco: Morgan Kaufmann, 2006.

[Koster 2005] Raph Koster. A Theory of Fun for Game Design. Paraglyph Press, 2005.

[Lengyel2004] Eric Lengyel. Mathematics for 3D Game Programming & Computer Graphics, Second
Edition. Hingham, MA: Charles River Media, 2004.

[Moyer and Speicher 2005] Dale Moyer and Dan Speicher. "A Road-Based Algorithm for Dead
Reckoning." Interservice/Industry Training, Simulation, and Education Conference, 2005.

[Sayood 2006] Khalid Sayood. Introduction to Data Compression, Third Edition. San Francisco:
Morgan Kaufmann, 2006.

[Van Verth and Bishop 2008] James Van Verth and Lars Bishop. Essential Mathematics in Games
and Interactive Applications: A Programmer's Guide, Second Edition. San Francisco: Morgan
Kaufmann, 2008.

19
Chapter 19 An Egocentric Motion Management System

Michael Ramsey
Ramsey Research, LLC
Between the motion And the act Falls the shadow.
-T. S. Eliot

The egocentric motion management system (ECMMS) is both a model for agent
movement and an application of a behavioral theory. Any game that features agents (e.g.,
animals, soldiers, or tanks) that move around in a 3D scene has a need for an agent movement
solution. A typical movement solution provides mechanisms that allow for an agent to move
through a scene, avoiding geometry, all the while executing some sort of behavior.

This article discusses not only how focusing on the agent drives the immediate interactions
with the environment but also, more importantly, that by gathering some information about
the environment during locomotion, we gain the ability to generate spatial semantics for use by
the agent's behavior system. Portions of the ECMMS were used in a cross-platform game
entitled World of Zoo (WOZ), shown in Figure 19.1. WOZ is an animal simulator that requires
various zoo animals to move through their environments in an incredibly compelling manner
while the players constantly alter the environment. So the proving ground for this system was
in an environment that could be changed around the agents at any particular moment.

330 Game Engine Gems

Figure 19.1. Screenshots from World of Zoo.

Convincing behavior is not a one-way street-what the agent does is just as important as
what is perceived by the user. The immediate question that comes to mind is how we control
the perception of an agent in a scene in such a way that facilitates perceived intent. Burmedez
[2007] delineates between simple mindreading and perceptual mindreading. Simple
mindreading is fundamentally behavioral coordination-this gets us nowhere, as we are
obviously not going to expect the user to mimic the agent's behavior in order to understand it.
However, perceptual mindreading is slightly different in that the focus is on the perceptual
states of others, and we accomplish this by providing mechanisms to inform the user of not
only the agent's intended state but its eventual state (i.e., goal-directed behavior, also known as
propositional attitudes). This is critical because humans have a criterion for understanding
behavior. If they witness the attribution of desire to belief, then it is likely that the behavior is
justifiable. It's simply not enough to represent the states of a behavior-humans need to
understand how they fit together.

One of the higher-order goals when designing a motion management system is that we
ideally would like to observe an agent in a scene responding to stimuli in an appropriate manner.
What is appropriate is open to interpretation, but what is not open for interpretation is the
desire that we perceive the agent acting in a purposeful manner. To help facilitate this, we need
to understand how physics, animation, and artificial intelligence are interwoven into a shadowy
substance to imbue our agents with these characteristics. As such, this chapter focuses on the
components that form the system and its resultant end product, but the takeaway should be
about the process through which these results were obtained.

Chapter 19 An Egocentric Motion Management System 331

19.1 Fundamental Components of the ECMMS

The ECMMS provides a mechanism for agents to plan and interact with the environment
in a manner that is focused not only on the typical utilitarian tasks of locomotion but also allows
for the intent of the agent's behavior to be more believable by providing specific environmental
cues to the behavioral system. What we ideally would like to have is a system that allows for
different types of agents to interact with the environment based upon how they interpret the
scene, and a major component of understanding the environment comes from the
acknowledgment and the use of relative spatial orientations. To help accomplish this, the
ECMMS is composed of several elements that allow an agent to receive spatial information
about its environment: they are collision sensors and the query space. Every model has, at its
core, a fundamental, atomic component that is essentially the enabler on which the higher-
order systems are built. The ECMMS is no different-the collision sensor is the element that
allows for information to be received from the environment.

19.2 Collision Sensors

As shown in Figure 19.2, the collision sensor is a simple primitive that acts as a callback
mechanism that is triggered when specific collisions are registered with it. As we mention below,
the individual pieces of collision geometry are assigned to a collision layer. The significance of
the collision layer is that it allows for an agent to detect surfaces that may be of interest to it-
behavioral interest. Gibson [1986] defines an affordance as "what it offers an animal, what it
provides," where "it" is an object. This important quote can be attributed to our system because
it means that just because our collision sensor receives a callback about an overlap with some
object, it doesn't mean we need to interact with it, just that it's available for possible interaction.
What helps us determine whether we want to interact with the object is the following: the
current behavior, the available space for an action, and the ability of the agent to interact with
the object. We discuss this later on, but note that this system is predicated on a very fundamental
dictum, and agents need to influence behavior in an egocentric manner. Behaviors need to be
understood from the perspective of the agent-what may be usable by an elephant may have an
entirely different use or purpose for a mouse.

332 Game Engine Gems

Figure 19.2. A top view of a bird with one collision sensor. When an object overlaps with the
collision sensor, a callback is invoked to register the object with the agent.

19.3 Query Space

The query space is a construct that is used to group collision sensors into sets that are not
only organizationally consistent for your game's behavioral system but are also used to generate
the semantics for the situation. The collision sensors allow for the generation of a syntax for the
query space, and then the query space allows for the attribution of semantics to a situation.

The collision sensors can be authored and grouped in a query space in almost any manner.
In an early version of WOZ, the collision sensors were procedurally constructed around the
animals, but we settled upon authoring the collision sensor cubes inside 3DS Max. Figure 19.3
shows a typical query space configuration around an agent (a bird) that moves on the ground
and occasionally jumps. When designing a query space for your entity, you should be aware of
not only the desired behavior of your agent but, more importantly, the behavioral constraints
that the agent potentially exhibits. These constraints are important because if collision sensors
are authored only near an agent, then that agent is unable to pick up information that is spatially
distal.

Figure 19.3. (a) A side view of a query space with three levels of collision sensors. (b) The same
query space viewed from directly above.

Chapter 19 An Egocentric Motion Management System 333

Figure 19.4 shows a general design for a query space that is usable for a variety of agents.
Typically, a query space is composed of an immediate ring of collision sensors surrounded by
an outer ring of collisions sensors. This allows for the agent to not only receive callbacks due to
spatially proximal bodies but also allows for the agent to receive more distal callbacks that could
influence its behavior. As mentioned above, the query space is used to generate the semantics
for the agent relative to the geometry in the environment (which we discuss in more detail in
Section 19.7), but what the query space fundamentally allows for is the ability to ask behavioral
questions such as, "Is there anything on my right?" or "Do I need to modify my gait to keep pace
with the pack?" These are questions that the agent should ask itself based upon its orientation
with objects in the environment.

Figure 19.4. A query space template.

Query Space Allows for an Understanding of Space

Modeling of an environment doesn't just stop with the modeling of the geometric entities
[Ramsey 2009a]. It must also be extended to the modeling of space within that environment (or
have it procedurally generated). What the query space enables is for the behavior engine to ask
at any moment certain fundamental questions such as, "Do I have enough space to execute this
particular action?" It's important to separate the term action (which in our case means
animation) from that of a behavior. When combined (as they routinely are in game
development), its eventual consequence is that of a muddied concept. So action means
animation, while behavior means something that occurs over time. That is a very important
distinction that ECMMS makes use of, since at any particular moment in time, an agent may
execute an action, but it may be executing that action as part of a more encompassing behavior.
What we mean by a more encompassing behavior is a series of events that may be externally

334 Game Engine Gems

visible to the player (or perhaps not), but nonetheless influences the agent's intention. Now it
makes obvious sense to make as much as possible visible to the player, so agents should provide
visual cues to what is transpiring in their minds (e.g., facial movements to more exaggerated
actions like head looks or body shifts).

19.4 Modeling the Environment

How we view an object in the world serves as an important basis for how the objects are
acted upon because our perception is only one of many possible perspectives. In the ECMMS,
we not only wanted to model an asset, but we also wanted to provide the data in a form such
that different agents have the ability to understand an object relative to themselves. When we
look at a chair, we typically understand what that chair could do for us, but if I'm a dog and I
look at that chair, then I have a whole set of other affordances available to me! It's just a matter
of perspective, and that perspective guides our eventual behavioral responses.

While authoring assets for the ECMMS, the only strict requirement is that collidable
objects have a collision layer associated with them. A collision layer is a device that controls
whether overlapping objects generate collision callbacks for the agent. This collision layer is
assigned to the object as a whole, or it can be done on a per-surface basis. Assigning multiple
collision layers to an object makes sense if an agent can interact with a specific surface on that
object differently than it can with the object as a whole. Referring to Figure 19.5, we see a rocky
outcropping that has the top surface tagged as jumpable, while the rest of the rock is tagged as
standard collidable. What the jumpable tag signifies is that when this surface is overlapping a
collision sensor, it affords the possible interaction of jumping to the agent.

Figure 19.5. A rock showing the various tags that can be applied to an asset.

By applying tags to specific surfaces, we are essentially assigning affordances for the
potential types of interaction that a surface allows for. To handle the different types of

Chapter 19 An Egocentric Motion Management System 335

interpretations that a surface may have to differing types of agents, we use an affordance mapper.
The affordance mapper determines the type of interaction that the object allows to the agent.
This allows the modelers to label the surfaces to an objectified agent, and then the animators
populate the various interactions for the different agent types. For example, a surface may be
jumpable for a small animal, but only serves as a stepping surface for a very large animal.

19.5 The ECMMS Architecture

Figure 19.6 shows the various components of the framework that forms the ECMMS. The
primary system that facilitates access to the core navigation components (e.g., spatial
representation and pathfinding) is the navigation manager. When an agent needs to move
through the environment, it calls through the animal planner into the navigation manager. The
navigation manager then generates a coarse route [Ramsey 2009a]. The pathfinder uses a
modified A* algorithm [Hart et al. 1968]. As noted by Ramsey [2009a], the layout of the
navigable spatial representation for the environment may be nonuniform, and the agent's
locomotion model may also need to factor in the agent's facing and velocity in order to generate
a realistic motion path. The agent utilizes a planner to handle coarse routing through the
environment while factoring in the behavioral constraints of nearby agents. The behavioral
controller handles the interaction of the agent with any predefined contexts, as well as
implements the behavioral response algorithm (see Section 19.9). The behavioral controller also
interfaces with the ECMMS manager. The ECMMS manager deals with the creation of the
query space, handling of collision callbacks, generation of spatial semantics (see Section 19.7),
and animation validation (see Section 19.8).

19.6 Modeling an ECMMS-Enabled Agent

Creating an agent for the ECMMS requires three different representations: a coarse
collision representation, a ragdoll representation, and the collision sensor layout. The coarse
collision representation for an agent can be anything from a simple primitive to a convex hull
that is a rough approximation of the agent's physique. The coarse representation is used during
the physics simulation step to generate the contact points for the agent's position. This is just
the agent's rough position in the world, as we can still perform inverse kinematics to fix up an
agent's foot positions. The ragdoll representation is a more accurate depiction of an agent's

336 Game Engine Gems

physical makeup. Typically, a ragdoll is created by associating rigid bodies with the bones of an
agent's skeleton. Then when the agent animates, the rigid bodies are keyframed to their
respective bone positions. This in itself allows for nice granular interactions with dynamic game
objects. The collision sensors placed around an agent do and should differ based upon aspects
such as the agent's size, turning radius, and speed. The layout of the query space needs to be
done in conjunction with the knowledge of corresponding animation information. If an agent
is intended to jump long distances, then the query space generally needs to be built such that
the collision sensors receive callbacks from overlapping geometry in time to not only determine
the validity of the actions but also the intended behavioral result.

Figure 19.6. The ECMMS layout.

19.7 Generating a Behavior Model with the ECMMS

A full behavioral model is beyond the scope of this chapter, but in this section, we cover
the underlying components and processes that the ECMMS provides so that you can build your
own behavioral system. An agent's observed behavior provides significant insight into its

Chapter 19 An Egocentric Motion Management System 337

emotional state, attitudes, and attention, and as a result, a considerable amount of perceived
behavior originates from how an agent moves through the world relative to not only the objects
but also to the available space within that environment. How an agent makes use of space has
been covered [Ramsey 2009a, Ramsey 2009b]-here we focus on how the ECMMS provides the
underpinnings for a behavioral model that embraces egocentric spatial awareness.

As we've mentioned before, the ECMMS is a system that allows for an agent to gather
information about its environment as it moves through it. What an agent needs is the ability to
classify this information and generate what we call spatial semantics; spatial semantics allow the
higher-order systems to make both shortterm as well as long-term decisions based upon the
spatial orientation of an agent relative to the geometry in the scene. Spatial semantics signifies
an important distinction from the typical approach of agent classification in games, where they
rely upon methods of perhaps too fine a granularity to drive the immediate action of an agent.
To that end, we want to build the basis for informing behavioral decisions from one aspect of
the situation at hand, that being the relative spatial orientation of an agent with the elements in
its environment.

Figure 19.7 shows an example of an agent that is next to a wall, as well as what its query
space looks like. In general, we came up with a series of fundamental categories that allowed us
to generate a meaning from the raw collision sensor information. The syntax we allowed
consisted of SOLeft,SORight,SOBehind,SOInFront,SOAbove, SOBelow,SONear,and SOFar.
If something was im peding movement in a particular direction, we said that direction was
blocked. We were also able to quantify the coverage of the collision sensors relative to how
much of a given object was within the query space of an agent. Quantification fell into three
categories: QSmall, QMedium, or QLarge. A couple of ancillary benefits are that the
quantification process would allow a more advanced artificial intelligence system to not only
generate quantities but also generate proportions relative to past results, as well as adjectives for
the quantifications such as QNarrow or QLong.

338 Game Engine Gems

Figure 19.7. (a) A bird next to a wall. (b) The bird's query space.

Since the ECMMS is focusing on the agent, the quantification process needs to be relative
to the agent's size. So to handle the quantification mapping, a simple function scales the
quantified object relative to the agent's size. This allows us to objectively quantify a result and
then allow the agent to requantify the object based upon its perception, which is mainly due to
its size.

Now that we have the ability to quantify objects that overlap with the collision sensors and
the ability to generate a syntax for the specific situation at hand, we need the ability to generate
a resultant semantic. Figure 19.8 shows an example of a bird between two walls. The
interpretation that would be made by the agent is that there is a blocking object behind it as well
as to the left and right of it. The resultant spatial semantic for the bird would be one of being
cornered, so the avenue for available actions would comprise either some forward animation or
flight. One of the uses of a spatial semantic is for processing what action, specifically what
animation, to play on the agent. For example, by looking at the spatial semantic generated from
a situation, we can favor animations that exhibit tight turns in places that are geometrically
restrictive for the agent.

Chapter 19 An Egocentric Motion Management System 339

(b) Forward = Unblocked Backward = Blocked Left = Blocked Right = Blocked

(c) Move forward

Figure 19.8. (a) A bird in a comer. (b) The bird's generated syntax. (c) The semantic of the spatial
situation that the bird is in.

19.8 Animation Validation

It's important to know whether a selected animation will succeed. By succeed, we mean
whether the desired animator end result is achieved. Take for example a jump animation with
three specific variations: a short, medium, or long jump (we ignore the motion in the up
direction for the time being). Depending on the current situation in the environment, it may be
important that the agent jumps immediately, as opposed to taking a few more strides and then
jumping. What we need to determine is, if the agent jumped immediately, will it be able to land
on the target surface? To accomplish this, we simulate the desired animation using the agent's
ragdoll rigid bodies to determine whether the animation results with the primary support bones
(e.g., feet) on the surface or whether the animation results in any large amount of geometric
penetration. If these bones penetrate any geometry that is tagged as collidable, then the
animation could be disallowed since the motion of the animation will have taken the agent into
the geometry. The ECMMS does allow for percentages of penetration to occur, but in general,
we disallow any animation to be executed if the result is substantial clipping.

One of the interesting properties of how animation validation is performed is that since
the motions of the rigid bodies are simulated through time, we not only know if a body
penetrated another body but, more importantly, we know by how much. This is ideal because

340 Game Engine Gems

we can use a simple threshold test to determine whether to fail an animation completely or to
suggest a subsequent animation for the agent, such as a stumble. A stumble suggestion is just
that, a suggestion to the behavior graph that a natural event might have occurred. What this
adds is an extremely dynamic look and feel to the agent in the scene. It conveys a real sense of
"I almost made it!" to the user, and that means we conveyed the intentionality of the agent to
the user. The intentionality of the agent is important because it imparts a sense of
purposefulness of the agent relative to its environment. Why does the stumble succeed, and why
isn't it labeled a failure? It's because we expected the agent to stumble if the jump barely failed-
the agent acted out of purposefulness, and the result did not violate our expectations of its intent.

19.9 A Single Agent Behavioral Response Algorithm and

Example

While a fully implemented behavior system is beyond the scope of this chapter, we can
provide an algorithm and an example of how the ECMMS can be used to inform a behavior
system. This allows for a single system to prioritize both the agent's internal attributes along
with any spatial semantics generated from the ECMMS. The single agent behavioral response
algorithm selects a response to a perceived situation in the scene; the responses are already
associated with specific macro situations that may occur in a scene. For our example, we have a
simple puppy game where the puppy has three attributes: hunger, water, and fun. Table 19.1
shows the puppy's response pool, and Table 19.2 lists the perceived situations that a puppy can
find itself in.

Table 19.1. Response pool for the puppy's actions.

Puppy Responses
Get food
Get water
Go outside
Play with user
Solicit for toy/interaction

Chapter 19 An Egocentric Motion Management System 341

Table 19.2. Situation pool that contains behavioral characteristics, as well as possible spatial
orientations that a puppy might find itself in.

Perceived Situation
Next to sofa
Next to wall
Cornered
Playing with user
Hungry
Thirsty
Play
Explore

The following is a straightforward algorithm for classifying responses generated from not
only typical behavioral considerations but also from the spatial orientations that the ECMMS
has provided.

1. An agent inserts its internal needs into a perceived situations list.

2. The ECMMS generates the spatial semantics, which get inserted into the perceived

situations list.

3. Using Table 19.3, the agent generates responses to all perceived situations.

4. The behavior system scores each situation and response.

5. The behavior system selects the possible assignment with the highest score.

6. If the response is appropriate, the behavior system executes the action; otherwise, it

selects the next possible assignment.

The single-agent response algorithm allows for the prioritization of the puppy's spatial
situations and its needs at the same time. This allows for the environment to have an immediate
influence on the puppy's behavior. The response algorithm's perceived situations list is initially
populated by information from the agent itself (this would include how hungry the puppy is,
how thirsty, etc.). The ECMMS then inserts the situational semantics into the list (this may
include information similar to: wall on the right, there is a wall behind me, I'm in a corner, etc.).
The puppy then scores each of the situation and response entries (in this case, there is some
game code that evaluates the entries and generates a priority), and the list is sorted. The behavior

342 Game Engine Gems

system decides whether the highest-priority entry is appropriate, and if so, executes the
response. It is expected that not every situation will have a response, and this is definitely okay
because there are (and should be) several default behaviors that the puppy goes into.

Table 19.3. Response to situation mapper. This mapping has the responses to the situation without
any contextual prioritization factored in.

Situation Generated Response
Next to sofa Explore
Next to wall Explore
Cornered Solicit for toy/interaction
Playing with user Play
Hungry Get food
Thirsty Get water
Want to play Solicit for toy/interaction

The responses in Table 19.3 contain both a priority and an objective. For the example in
our puppy game, food and water would receive a higher priority over activities such as play, but
then again, that choice is context dependent since the game may have a specific area just for
extensive play periods where we don't want our puppy to get hungry or thirsty. So it makes
sense to have response priorities contextually modifiable. The generated response also has an
objective that is used to fulfill that specific response; this is another area in which the ECMMS
can aid the behavioral model by providing a list of suitable objectives that satisfy the response,
in essence creating some variability as opposed to always executing the same response. If no
suitable objects are within the query space of the puppy, then the ECMMS can suggest to the
behavioral model to seek out the desired objective. What this behavioral example provides is an
agent that is exhibiting a nice ebb and flow between itself and its environment, as well as
providing the players with an interesting window into the agent's perceived and intended
behavior.

References

[Bermudez 2007] Jose Luis Bermudez. Thinking Without Words. Oxford University Press, 2007.

[Gibson 1986] James J. Gibson. The Ecological Approach to Visual Perception. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1986.

Chapter 19 An Egocentric Motion Management System 343

[Hart et al. 1968] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths." IEEE Transactions on Systems Science and
Cybernetics SSC4 4:2 (July 1968), pp. 100-107.

[Ramsey 2009a] Michael Ramsey. "A Unified Spatial Representation for Navigation Systems."
Proceedings of The Fifth AAAI Artificial Intelligence and Interactive Digital Entertainment
Conference, 2009, pp. 119-122.

[Ramsey 2009b] Michael Ramsey. "A Practical Spatial Architecture for Animal and Agent
Navigation." Game Programming Gems 8, edited by Adam Lake. Boston: Charles River Media, 2010.

20
Chapter 20 Pointer Patching Assets

Jason Hughes
Steel Penny Games, Inc.

20.1 Introduction

Console development has never been harder. The clock speeds of processors keep getting
higher, the number of processors is increasing, the number of megabytes of memory available
is staggering, even the storage size of optical media has ballooned to over 30 GB. Doesn't that
make development easier, you ask? Well, there's a catch. Transfer rates from optical media have
not improved one bit and are stuck in the dark ages at 8 to 9 MB/s. That means that in the best
possible case of a single contiguous read request, it still takes almost a full minute to fill 512 MB
of memory. Even with an optimistic 60% compression, that's around 20 seconds.

As long as 20 seconds sounds, it is hard to achieve without careful planning. Most engines,
particularly PC engines ported to consoles, tend to have the following issues that hurt loading
performance even further:

 Inter- or intra-file disk seeks can take as much as 1/20th of a second.

 Time is spent on the CPU processing assets synchronously after loading each chunk of

data.

Bad Solutions

There are many ways to address these problems. One popular old-school way to improve
the disk seeks between files is to log out all the file requests and rearrange the file layout on the

346 Game Engine Gems

final media so that seeks are always forward on the disk. CD-ROM and DVD drives typically
perform seeks forward more quickly than backward, so this is a solution that only partially
addresses the heart of the problem and does nothing to handle the time wasted processing the
data after each load occurs. In fact, loading individual files encourages a singlethreaded
mentality that not only hurts performance but does not scale well with modern multithreaded
development.

The next iteration is to combine all the files into a giant metafile for a level, retaining a
familiar file access interface, like the FILE type, fopen() function, and so on, but adding a large
read-ahead buffer. This helps cut down further on the bandwidth stalls, but again, suffers from
a single-threaded mentality when processing data, particularly when certain files contain other
filenames that need to be queued up for reading. This spider web of dependencies exacerbates
the optimization of file I/O.

The next iteration in a system like this is to make it multithreaded. This basically requires
some accounting mechanism using threads and callbacks. In this system, the order of
operations cannot be assured because threads may be executed in any order, and some data
processing occurs faster for some items than others. While this does indeed allow for
continuous streaming in parallel with the loaded data initialization, it also requires a far more
complicated scheme of accounting for objects that have been created but are not yet "live" in the
game because they depend on other objects that are not yet live. In the end, there is a single
object called a level that has explicit dependencies on all the subelements, and they on their
subelements, recursively, which is allowed to become live only after everything is loaded and
initialized. This undertaking requires clever management of reference counts, completion
callbacks, initialization threads, and a lot of implicit dependencies that have to be turned into
explicit dependencies.

Analysis

We've written all of the above solutions, and shipped multiple games with each, but cannot
in good faith recommend any of them. In our opinion, they are bandages on top of a deeper-
rooted architectural problem, one that is rooted in a failure to practice a clean separation
between what is run-time code and what is tools code.

How do we get into these situations? Usually, the first thing that happens on a project,
especially when an engine is developed on the PC with a fast hard disk drive holding files, is
that data needs to be loaded into memory. The fastest and easiest way to do that is to open a file

Chapter 20 Pointer Patching Assets 347

and read it. Before long, all levels of the engine are doing so, directly accessing files as they see
fit. Porting the engine to a console then requires writing wrappers for the file system and
redirecting the calls to the provided file I/O system. Performance is poor, but it's working. Later,
some sad optimization engineer is tasked with getting the load times down from six minutes to
the industry standard 20 seconds. He's faced with two choices:

1. Track down and rewrite all of the places in the entire engine and game where file access is

taking place, and implement something custom and appropriate for each asset type. This

involves making changes to the offline tools pipeline, outputting data in a completely

different way, and sometimes grafting existing run-time code out of the engine and into

tools. Then, deal with the inevitable ream of bugs introduced at apparently random places

in code that has been working for months or years.

2. Make the existing file access system run faster.

Oh, and one more thing-his manager says there are six weeks left before the game ships.
There's no question it's too late to pick choice #1, so the intrepid engineer begins the journey
down the road that leads to the Bad Solution. The game ships, but the engine's asset-loading
pipeline is forever in a state of maintenance as new data files make their way into the system.

An Alternative, High-Performance, Solution

The technique that top studios use to get the most out of their streaming performance is
to use pointer patching of assets. The core concept is simple. Many blocks of data that are read
from many separate files end up in adjacent memory at run time, frequently in exactly the same
order, and often with pointers to each other. Simply move this to an offline process where these
chunks of memory are loaded into memory and baked out as a single large file. This has multiple
benefits, particularly that the removal of all disk seeks that are normally paid for at run time are
now moved to a tools process, and that as much data as possible is preprocessed so that there is
extremely minimal operations required to use the data once it's in memory. This is as much a
philosophical adjustment for studios as it is a mechanical one.

Considerations

Unfortunately, pointer patching of assets is relatively hard to retrofit into existing engines.
The tools pipeline must be written to support outputting data in this format. The run time code
must be changed to expect data in this format, generally implying the removal of a lot of

348 Game Engine Gems

initialization code, but more often than not, it requires breaking explicit dependencies on
loading other files directly during construction and converting that to a tools-side procedure.
This sort of dynamic loading scheme tends to map cleanly onto run-time lookup of symbolic
pointers, for example. In essence, it requires detangling assets from their disk access entirely
and relegating that chore to a handful of higher-level systems.

If you're considering retrofitting an existing engine, follow the 80/20 rule. If 20 percent of
the assets take up 80 percent of the load time, concentrate on those first. Generally, these should
be textures, meshes, and certain other large assets that engines tend to manipulate directly.
However, some highly-processed data sets may prove fruitful to convert as well. State machines,
graphs, and trees tend to have a lot of pointers and a lot of small allocations, all of which can be
done offline to dramatically improve initialization performance when moved to a pointer
patching pipeline.

20.2 Overview of the Technique

The basic offline tools process is the following:

1. Load run-time data into memory as it is represented during run time.

2. Use a special serialization interface to dump each structure to the pointer patching

system, which carefully notes the locations of all pointers.

3. When a coherent set of data relating to an asset has been dumped, finalize the asset.

Coherent means there are no unresolved external dependencies. Finalization is the only

complicated part of the system, and it comprises the following steps:

(a) Concatenate all the structures into a single contiguous block of memory,
remembering the location to which each structure was relocated.

(b) Iterate through all the pointers in each relocated structure and convert the raw
addresses stored into offsets into the concatenated block. See Figure 20.1 for
an example of how relative offsets are used as relocatable pointers. Any
pointers that cannot be resolved within the block are indications that the
serialized data structure is not coherent.

Chapter 20 Pointer Patching Assets 349

(c) Append a table of pointer locations within the block that will need to be fixed
up after the load has completed.

(d) Append a table of name/value pairs that allows the run-time code to locate the
important starting points of structures.

4. Write out the block to disk for run-time consumption.

Figure 20.1. This shows all the flavors of pointers stored in a block of data on disk. Forward pointers
are relative to the pointer's address and have positive values. Backward pointers are relative to the
pointer's address and have negative values. Null pointers store a zero offset, which is a special case
when patched and is left zero.

Desirable Properties

There are many ways to get from the above description to actual working code. We've
implemented this three different ways over the years and each approach has had different
drawbacks and features. The implementation details of the following are left as an exercise to
the reader, but here are some high-level properties that should be considered as part of your
design when creating your own pointer patching asset system:

 Relocatable assets. If you can patch pointers, you can unpatch them as well. This affords

you the ability to defragment memory, among other things-the holy grail of memory

stability.

 General compression. This reduces load times dramatically and should be supported

generically.

 Custom compression for certain structures. A couple of obvious candidates are triangle list

compression and swizzled JPEG compression for textures. There are two key points to

consider here. First, perform custom compression before general compression for

maximum benefit and simplest implementation. This is also necessary because custom

350 Game Engine Gems

compression (like JPEG/DCT for images) is often lossy and general compression (such as

LZ77 with Huffrnan or arithmetic encoding) is not. Second, perform in-place

decompression, which requires the custom compressed region to take the same total

amount of space, only backfilled with zeros that compress very well in the general pass.

You won't want to be moving memory around during the decompression phase, especially

if you want to kick off the decompressor functions into separate jobs/threads.

 Offline block linking. It is very useful to be able to handle assets generically and even

combine them with other assets to form level-specific packages, without having to

reprocess the source data to produce the pointer patched asset. This can lead to a powerful,

optimized tools pipeline with minimal load times and great flexibility.

 Symbolic pointers with delayed bindings. Rather than all pointers having physical memory

addresses, some studios use named addresses that can be patched at run time after loading

is complete. This way you can have pointers that point to the player's object or some other

level-specific data without needing to write custom support for each case.

 Generic run-time asset caches. Once loading is handled largely through pointer-patched

blocks with named assets, it is fairly simple to build a generic asset caching system on top

of this, even allowing dynamic reloading of assets at run time with minimal effort.

 Simple tools interface that handles byte swapping and recursion. Writing out data should be

painless and natural, allowing for recursive traversals of live data structures and minimal

intrusion.

 Special pointer patching consideration for virtual tables. A method for virtual table patching

may be necessary to refresh class instances that have virtual functions. Or choose ways to

represent your data without using virtual functions.

 Offline introspection tools. Not only is it very useful for debugging the asset pipeline, but a

generic set of introspection tools can help perform vital analyses about the game's memory

consumption based on asset type, globally, and without even loading the game on the final

platform!

Chapter 20 Pointer Patching Assets 351

 Propagate memory alignment requirements. Careful attention to data alignment allows

hardware to receive data in the fastest possible way. Design your writing interface and

linking tools to preserve and propagate alignments so that all the thinking is done in tools,

even if it means inserting some wasted space to keep structures starting on the right address.

All the run-time code should need to know is the alignment of the block as a whole.

While all the above properties have their merits, a complete and full-featured system is an
investment for studios to undertake on their own. A very basic system is provided on the website.
It supports byte swapping of atomic types, pointer patching, and a clean and simple interface
for recursion.

20.3 A Brief Example

Here is a small example of a simple tree structure. Trees are traditionally very slow because
they require many memory allocations and are somewhat challenging to serialize due to the
amount of pointer work required to reconstruct them at run time. While this example only
contains a few nodes, it is nonetheless a nontrivial example given the comparative complexity
of any reasonable and flexible alternative.

Tools Side

The first order of business is to declare the data structure we want in the run-time code.
Note that there are no requirements placed on the declarations-minimal intrusion makes for
easier adoption. You should be able to use the actual runtime structure declaration in those
cases where there are limited external dependencies.

Listing 20.1 shows a simple example of how to dump out a live tree data structure into a
pointer-patched block in just a few lines of code. As you can see, the WriteTree() function just
iterates over the entire structure-any order is actually fine-and submits the contents of each
node to the writer object. Each call to ttw.Write*() is copying some data from the Node into
the writer's memory layout, which matches exactly what the run-time code will use. As written,
WriteTree() simply starts writing a tree recursively down both the left and right branches until
it exhausts the data. The writer interface is designed to handle data in random order and has an
explicit finalization stage where addresses of structures are hooked to pointers that were written
out. This dramatically improves the flexibility of the tools code.

352 Game Engine Gems

Listing 20.1. This is the structure declaration for the sample tree.

struct Node

{

 Node(float v) : mLeft(NULL), mRight(NULL), mValue(v) {}

 Node *mLeft;

 Node *mRight;

 float mValue;

};

static void WriteTree(Node *n, ToolsTimeWriter &ttw)

{

 ttw.StartStruct(n);

 ttw.WritePtr();

 if (n->mLeft)

 WriteTree(n->mLeft, ttw);

 ttw.WritePtr();

 if (n->mRight)

 WriteTree(n->mRight, ttw);

 ttw.Write4();

 ttw.EndStruct();

}

// First, we construct a handful of nodes into a tree.

Node *root = new Node(3.14f);

root->mLeft = new Node(5.0f);

root->mRight = new Node(777.0f);

root->mLeft->mRight = new Node(1.0f);

root->mLeft->mRight->mLeft = new Node(0.01f);

ToolsTimeWriter ttw(false);

Chapter 20 Pointer Patching Assets 353

ttw.StartAsset("TreeOfNodes", root);

WriteTree(root, ttw);

std::vector<unsigned char> packedData = ttw.Finalize();

Figure 20.2. This is the in-memory layout of our sample tree. Notice it requires five memory
allocations and various pointer traversals to configure.

Next, there is a block of code that creates a live tree structure using typical allocation
methods you would use in tools code, graphically depicted in Figure 20.2. Finally, we write out
the live tree structure and finalize it down to a single block of opaque data. This is done by
declaring a writer object, marking the start of the specific structure that the run-time code will
later find by name, calling our data writing function above, and then retrieving the baked-down
block of bytes that should be written to disk. Amazingly, Figure 20.3 shows the entire structure
in just a handful of bytes.

354 Game Engine Gems

Figure 20.3. This is the finalized data from the writer, minus the header and format details. Notice
that all offsets are relative to the pointer's address, rather than an absolute index. This vastly
simplifies bookkeeping when merging multiple blocks together.

The ToolsTimewriter class shown in Listing 20.2 is only a toy implementation. Some
basic limitations in this implementation are that it only supports 32-bit pointers, doesn't handle
alignment requirements per structure, etc. Still, it is educational to see the approach taken by
this one of many possible interfaces.

Listing 20.2. This basic interface is close to the minimum requirements for a pointer patching asset
interface.

class ToolsTimeWriter

{

public:

 ToolsTimeWriter(bool byteSwap);

 // Add an entry to the asset table in the header.

 void StartAsset(char const *name, void *s);

 // Starting a struct allows for a recursion context stack.

 void StartStruct(void *s);

 // once a struct has been started, you call these to pump out

// data. These are needed to handle byte swapping and to

 // measure struct sizes.

 void Write1(void);

 void Write2(void);

 void Write4(void);

 void Write8(void);

 void WritePtr(void);

 void WriteRaw(int numBytes);

 // This pops the recursion context off the stack.

 void EndStruct(void);

Chapter 20 Pointer Patching Assets 355

 std::vector<unsigned char> Finalize(void);

};

The Run-Time Pointer Patching Process

The primary feature of a pointer patching system is that almost all of the work is done once
offline, which means there isn't a great deal to discuss about the runtime code. The basic set of
operations is to load a coherent chunk of data into memory, then fix up all of the pointers once.

An exceedingly clever implementation might segregate all the ancillary data, such as the
pointer table, the asset table, and the format header, into a metadata block that can be thrown
away once the pointers are patched and the assets are registered with their respective caches.
However, with the metadata gone, this data can no longer be easily relocated in memory. The
metadata is generally quite small, so we recommend keeping it. An example file format can be
seen in Figure 20.4.

Figure 20.4. This is a very simple file format and is fully loaded into RAM in a single read before
the fix-up phase occurs.

356 Game Engine Gems

Listings 20.3 and 20.4 show how incredibly simple it is to set up pointerpatched blocks at
run time. By adding more metadata, you can set up the loader so that it dispatches types to asset
handlers in the engine rather than making your code search for each asset one by one. Then the
job of figuring out what content should be loaded can be completely handled in tools.

One important characteristic is that the fix-up process only modifies the pointers stored
within the data block and not in the metadata. This is partly because patching is generally done
only once, and therefore, no value is causing a lot of cache lines to be flushed out to RAM by
writing them out. It is also partly because the pointer patch table, among other relative pointers,
has to be handled outside the normal patching mechanism (otherwise the addresses of the
pointers in the table would need to be in the table, see?). If they already must be dealt with
explicitly, there would need to be a flag indicating whether the pointers are patched or not, and
there would need to be two code paths, depending on whether patching is necessary. So, we
leave them unpatched all the time and enjoy reduced code complexity and the strongest possible
run-time performance while patching pointers.

Listing 20.3. The following function simply walks the table of offsets to pointers, then adds each
pointer's address to the offset stored at that location, constructing a properly patched pointer.

void DoFixups(PointerPatchTableHeader *header)

{

 PointerPatchTable *ppt = (PointerPatchTable *)

 ((int) header->mPatchTable + header->mPatchTable);

 for (int i=0; i<header->mNumPointers; i++)

 {

 intSZ *pointerToFixup = (int*) ((int) & ppt[i] + ppt[i]);

 // Special case: if the offset is zero, it would be a pointer

 // to itself, which we assume really means NULL.

 // So we leave it alone.

 if (*pointerToFixup)

 *pointerToFixup = *pointerToFixup + (int)pointerToFixup;

 }

}

Chapter 20 Pointer Patching Assets 357

Listing 20.4. Assuming that the variable loadedFromDiskPtr points to the address of a coherent
block stored on disk, these two lines of code are all that is necessary to reconstruct a full tree data
structure.

void* dataBlock = loadedFromDiskPtr;

DoFixups((PointerPatchTableHeader *)dataBlock);

Node* root = (Node *)FindAssetByName((PointerPatchTableHeader *)dataBlock,

 "TreeOfNodes");

21
Chapter 21 Data-Driven Sound Pack Loading and Organization

Simon Franco
The Creative Assembly

21.1 Introduction

Typically, a game's audio data, much like all other game data, cannot be fully stored within
the available memory of a gaming device. Therefore, we need to develop strategies for managing
the loading of our audio data. This is so we only store in memory the audio data that is currently
needed by the game. Large audio files that are too big to fit into memory, such as a piece of
music or a long sound effect that only has one instance playing at a time, can potentially be
streamed in. Streaming a file in this way results in only the currently needed portion of the file
being loaded into memory. However, this does not solve the problem of how to handle audio
files that may require multiple instances of an audio file to be played at the same time, such as
gunfire or footsteps.

Sound effects such as these need to be fully loaded into memory. This is so the sound
engine can play multiple copies of the same sound effect, often at slightly different times,
without needing to stream the same file multiple times and using up the limited bandwidth of
the storage media.

To minimize the number of file operations performed, we typically organize our audio files
into sound packs. Each sound pack is a collection of audio files that either need to be played
together at the same time or within a short time period of each other.

Previously, we would package up our audio files into simplified sound packs. These would
typically have been organized into a global sound pack, character sound packs, and level sound
packs. The global sound pack would contain all audio files used by global sound events that

360 Game Engine Gems

occur across all levels of a game. This would typically have been player and user interface sound
events. Character sounds would typically be organized so that there would be one sound pack
per type of character. Each character sound pack would contain all the audio files used by that
character. Level sound packs would contain only the audio files only used by sound events
found on that particular level.

However, this method of organization is no longer applicable, as a single level's worth of
audio data can easily exceed the amount of sound RAM available. Therefore, we must break up
our level sound packs into several smaller packs so that we can fit the audio data needed by the
current section of the game into memory. Each of these smaller sound packs contain audio data
for a welldefined small portion of the game. We then load in these smaller sound packs and
release them from memory as the player progresses through the game. An example of a small
sound pack would be a sound pack containing woodland sounds comprising bird calls, trees
rustling in the wind, forest animals, etc.

The problem with these smaller sound packs is how we decide which audio files are to be
stored in each sound pack. Typically, sound packs, such as the example woodlands sound, pack
are hand-organized in a logical manner by the sound designer. However, this can lead to
wasting memory as sounds are grouped by their perceived relation to each other, rather than
an actual requirement that they be bound together into a sound pack.

The second problem is how to decide when to load in a sound pack. Previously, a designer
would place a load request for a sound pack into the game script. This would then be triggered
when either the player walks into an area or after a particular event happens. An example of this
would be loading a burning noises sound pack and having this ready to be used after the player
has finished a cut-scene where they set fire to a building.

This chapter discusses methods to automate both of these processes. It allows the sound
designer to place sounds into the world and have the system generate the sound packs and
loading triggers. It also alerts the sound designer if they have overpopulated an area and need
to reduce either the number of variations of a sound or reduce the sample quality.

21.2 Constructing a Sound Map

We examine the game world's sound emitters and their associated sound events in order
to generate a sound map. The sound map contains the information we require to build a sound

Chapter 21 Data-Driven Sound Pack Loading and Organization 361

event table. The sound event table provides us with the information needed to construct our
sound packs and their loading triggers.

Sound emitters are typically points within 3D space representing the positions from which
a sound will play. As well as having a position, an emitter also contains a reference to a sound
event. A sound event is a collection of data dictating which audio file or files to play, along with
information on how to control how these audio files are played. For example, a sound event
would typically store information on playback volume, pitch shifts, and any fade-in or fade-out
durations.

Sound designers typically populate the game world with sound emitters in order to build
up a game's soundscape. Sound emitters may be scripted directly by the sound designer or may
be automatically generated by other game objects. For example, an animating door may
automatically generate wooden_door_open and wooden_door_close sound emitters.

Once all the sound emitters have been placed within the game world, we can begin our
data collection. This process should be done offline as part of the process for building a game's
level or world data.

Each sound event has an audible range defined by its sound event data. This audible range
is used to calculate both the volume of the sound and whether the sound is within audible range
by comparing against the listener's position. The listener is the logical representation of the
player's ear in the world-it's typically the same as the game's camera position. We use the audible
range property of sound emitters to see which sound emitters are overlapping.

We construct a sound map to store an entry for each sound emitter found within the level
data. The sound map can be thought of as a three-dimensional space representing the game
world. The sound map contains only the sound emitters we've found when processing the level
data. Each sound emitter is stored in the sound map as a sphere, with the sphere's radius being
the audible distance of the sound emitter's event data.

Once the sound map is generated, we can construct an event table containing an entry for
each type of sound event found in the level. For each entry in the table, we must mark how
many instances of that sound event there are within the sound map, which other sound events
overlap with them (including other instances of the same sound event), and the number of
instances in which those events overlap. For example, if a single Bird_Chirp sound emitter
overlaps with two other sound emitters playing the Crickets sound event, then that would be
recorded as a single occurrence of an overlap between Bird_Chirp and Crickets for the

362 Game Engine Gems

Bird_Chirp entry. For the Crickets entry, it would be recorded as two instances of an overlap.
An example table generated for a sample sound map is shown in Table 21.1. From this data, we
can begin constructing our sound packs.

Table 21.1. Sound events discovered within a level and details of any other overlapped events.

Sound Event Instance Count Overlapped Events Occurrences of Overlap
Bird_Chirp 5 Crickets, Bird_Chirp 4, 2
Waterfall 1 None 0
Water_Mill 1 NPC_Speech1 1
NPC_Speech1 1 Water_Mill 1
Crickets 10 Bird_Chirp, Crickets,

Frogs
7, 6, 1

Frogs 5 Crickets, Frogs 5, 5

21.3 Constructing Sound Packs by Analyzing the Event Table

The information presented in our newly generated event table allows us to start planning
the construction of our sound packs. We use the information gathered from analyzing the
sound map to construct the sound packs that are to be loaded into memory and to identify those
that should be streamed instead.

There are several factors to take into consideration when choosing whether to integrate a
sound event's audio data into a sound pack or to stream the data for that sound event while it
is playing. For example, we must consider how our storage medium is used by other game
systems. This is vital because we need to determine what streaming resources are available. If
there are many other systems streaming data from the storage media, then this reduces the
number of streamed samples we can play and places greater emphasis on having sounds become
part of loaded sound packs, even if those sound packs only contain a single audio file that is
played once.

Determining Which Sound Events to Stream

Our first pass through the event table identifies sound events that should be streamed. If
we decide to stream a sound event, then it should be removed from the event table and added
to a streamed event table. Each entry in the streamed event table is formatted in a manner

Chapter 21 Data-Driven Sound Pack Loading and Organization 363

similar to the original event table. Each entry in the streamed sound event table contains the
name of a streamed sound event and a list of other streamed sound events whose sound emitters
overlap with a sound emitter having this type of sound event. To decide whether a sound event
should be streamed, we must take the following rules into account:

 Is there only one instance of the sound event in the table? If so, then streaming it would be

more efficient. The exception to this rule is if the size of the audio file used by the event is

too small. In this eventuality, we should load the audio file instead. This is so our streaming

resources are reserved for more suitable files. A file is considered too small if its file size is

smaller than the size of one of your streaming audio buffers.

 Does the sound event overlap with other copies of itself? If not, then it can be streamed

because the audio data only needs to be processed once at any given time.

 Does the audio file used by the sound event have a file size bigger than the available amount

of audio RAM? If so, then it must be streamed.

 Are sufficient streaming resources available, such as read bandwidth to the storage media,

to stream data for this sound event? This is done after the other tests have been passed

because we need to see which other streamed sound events may be playing at the same

time. If too many are playing, then we need to prioritize the sound events. Larger files

should be streamed, and smaller-sized audio files should be loaded into memory.

Using the data from Table 21.1, we can extract a streamed sound event table similar to that
shown in Table 21.2. In Table 21.2, we have three sound events that we believe to be suitable
candidates for streaming. Since Water_Mill and NPCSpeechl overlap, we should make sure that
the audio files for these events are placed close to each other on the storage media. This reduces
seek times when reading the audio data for these events.

Table 21.2. Sound events found suitable for streaming.

Sound Event Instance Count Overlapped Events Occurrences of Overlap
Waterfall 1 None 0
Water_Mill 1 NPC_Speech1 1
NPC_Speech1 1 Water_Mill 1

364 Game Engine Gems

Constructing Sound Packs

Now that we have removed the streamed sound events from our original event table, we
can begin analyzing which audio files should be combined into sound packs. Table 21.3 shows
the remaining entries that we are going to analyze from our original event table.

Table 21.3. Remaining sound events that need to be placed into sound packs.

Sound Event Instance Count Overlapped Events Occurrences of Overlap
Bird_Chirp 5 Crickets, Bird_Chirp 4, 2
Crickets 10 Bird_Chirp, Crickets, Frogs 7, 6, 1
Frogs 5 Crickets, Frogs 5, 5

We must consider the following simple rules when determining which audio files should
be placed into a sound pack:

 Sound events that overlap approximately two-thirds of the time are potential candidates

for having their audio files placed into the same sound pack. The overlap count should be

a high percentage both ways so that sound event A overlaps with sound event B a high

number of times, and vice versa. Otherwise, we may end up with redundant audio data

being loaded frequently for one of the sound events.

 All audio files used by a sound event should be placed into the same sound pack.

 The file size of a sound pack should not exceed the amount of available sound RAM.

 The ratio between the size of a sound event's audio data and the file size of the sound pack

should closely match the percentage of event overlaps. For instance, if we have a sound

event whose audio data occupies 80 percent of a sound pack's file size, but is only used 10

percent of the time, then it should be placed in its own sound pack.

Table 21.3 illustrates an interesting example. In this fictional sound map, we have a cluster
of frogs next to a single cricket. Therefore, we have all five frogs next to each other (five
occurrences of an overlap) and next to a single cricket (five occurrences of an overlap with
Crickets) in our table. For the Crickets entry, we have only a single cricket that was next to
the frogs, so there is only one instance of an overlap.

There were no instances of the Bird_Chirp event overlapping with the Frogs event, so we

Chapter 21 Data-Driven Sound Pack Loading and Organization 365

should put Bird_Chirp and Crickets into a single sound pack and put Frogs into a separate
sound pack.

21.4 Constructing and Using Sound Loading Triggers

Now that the sound packs are created, we can take a further look at the sound emitter data
set and generate our sound pack loading triggers from it. For each sound emitter, we create a
sound loading trigger. Each sound loader has a reference to the sound pack that it is responsible
for loading and a loading area. The loading area is initially set to be the same size as the sound
emitter's audible distance. When the listener is within the loading area, the sound pack that it
references is loaded into memory, if it has not already been loaded.

We have to increase the size of the loading area depending on the bandwidth of the storage
media, the file size of the sound pack, the number of other streamed resources taking place, and
the maximum distance the listener can move in a game tick. When generating these numbers
for your media, you should take into account the worst possible performance cases.

For example, if you have a minimum bandwidth of 1 MB/s (due to other systems accessing
the media at the same time), a sound pack that is 2.5 MB in size, and a listener having a
maximum travel speed of 3 m/s, then you need to add a minimum of 7.5 meters to the loading
area size because it takes 2.5 seconds for the data to load and the listener could travel 7.5 meters
in that time.

We unload a sound pack when we find the listener is not within the area of a sound loader
referencing that sound pack.

Optimizing Sound Loaders

Not all sound emitters require a separate sound loader to be constructed for them. Most
sound emitters do not move, and so there are optimizations that can be made by merging
similar sound loaders that overlap.

If two or more sound loaders reference the same sound pack, don't move, and are
overlapping, then they should be merged into a single sound loader. This new sound loader
must contain both of the original sound loading areas.

366 Game Engine Gems

Out of Memory Detection

Now that we have our sound loading triggers created, we can check for sound loaders that
overlap. For an overlapping set of sound loaders, we can tally up the memory used by the sound
packs. If the memory used by several sound packs exceeds the amount of available sound
memory, then a warning can be generated to direct the audio designer to investigate the section
of the world that has been flagged. He can then make changes to the sound events, such as
removing the number of audio files used by a sound event or reducing the quality of the audio
files in order to have that section of the game fit into memory.

Loading Sound Packs While Running the Game

When the game is running, it needs to check the listener position each frame and
determine whether the listener has entered a sound loading area. Listing 21.1 shows pseudocode
that handles the loading of sound packs.

Listing 21.1. Pseudocode for loading sound packs.

mark_all_sound_packs_for_removal(m_loaded_sound_pack_list);

get_list_of_packs_needed(required_pack_list, m_listener_position);

/*

 Iterate through all the loaded sound packs and retain

 those which are in the required list.

*/

for (each required_pack in required_pack_list)

{

 for (each loaded_pack in m_loaded_sound_pack_list)

 {

 if (loaded_pack == required_pack)

 {

 retain_sound_pack(loaded_pack);

 remove_pack_from_required_list(required_pack);

 break;

Chapter 21 Data-Driven Sound Pack Loading and Organization 367

 }

 }

}

unload_sound_packs_not_retained(m_loaded_sound_pack_list);

/*

 Now all the sound packs remaining in the required_sound_packs

 list are those which are not yet loaded.

*/

for (each required_pack in required_sound_pack_list)

{

 load_sound_pack_and_add_to_loaded_list(required_pack);

}

21.5 Conclusion

While not all sound events can have their data packaged up by the process described in
this chapter, it still helps simplify the task of constructing and managing sound packs used by a
game's environment. Sound events that typically can't take advantage of this process are global
sounds, such as the player being hit or a projectile being fired, because they can occur at any
time during a level.

22
Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and
CUDA

Marco Fratarcangeli
Taitus Software Italia

22.1 Introduction

This chapter provides a comparison study between three popular platforms for generic
programming on the GPU, namely, GLSL, CUDA, and OpenCL. These technologies are used
for implementing an interactive physically-based method that simulates a piece of cloth
colliding with simple primitives like spheres, cylinders, and planes (see Figure 22.1). We assess
the advantages and the drawbacks of each different technology in terms of usability and
performance.

370 Game Engine Gems

Figure 22.1. A piece of cloth falls under the influence of gravity while colliding with a sphere at
interactive rates. The cloth is composed of 780,000 springs connecting 65,000 particles.

22.2 Numerical Algorithm

This section provides a brief overview of the theory behind the algorithm used in computing the cloth
simulation. A straightforward way to implement elastic networks of particles is by using a mass-spring
system. Given a set of evenly spaced particles on a grid, each particle is connected to its neighbors
through simulated springs, as depicted in Figure 22.2. Each spring applies to the connected particles a
force Fspring:

Figure 22.2. A 4 × 4 grid of particle vertices and the springs for one of the particles.

𝐅𝐅spring = −𝑘𝑘(𝐥𝐥 − 𝐥𝐥0) − 𝑏𝑏�̇�𝐱 ,

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 371

Where 1 represents the current length of the spring (i.e., its magnitude is the distance between
the connected particles), l0 represents the rest length of the spring at the beginning of the
simulation, k is the stiffness constant, x is the velocity of the particle, and b is the damping
constant. This equation means that a spring always applies a force that brings the distance
between the connected particles back to its initial rest length. The more the current distance
diverges from the rest length, then the larger is the applied force. This force is damped
proportionally to the current velocity of the particles by the last term in the equation. The blue
springs in Figure 22.2 simulate the stretch stress of the cloth, while the longer red ones simulate
the shear and bend stresses.

For each particle, the numerical algorithm that computes its dynamics is schematically
illustrated in Figure 22.3. For each step of the dynamic simulation, the spring forces and other
external forces (e.g., gravity) are applied to the particles, and then their dynamics are computed
according to the Verlet method [Muller 2008] applied to each particle in the system through
the following steps:

Figure 22.3. Numerical algorithm for computing the cloth simulation.

372 Game Engine Gems

1. �̇�𝐱(𝑡𝑡) = [𝐱𝐱(𝑡𝑡) − 𝐱𝐱(𝑡𝑡 − ∆𝑡𝑡)] /∆𝑡𝑡 .

2. �̈�𝐱(𝑡𝑡) = 𝐅𝐅(𝐱𝐱(𝑡𝑡), �̇�𝐱(𝑡𝑡)) /𝑚𝑚 .

3. 𝐱𝐱(𝑡𝑡 + ∆𝑡𝑡) = 2𝐱𝐱(𝑡𝑡) − 𝐱𝐱(𝑡𝑡 − ∆𝑡𝑡) + �̈�𝐱(𝑡𝑡)∆𝑡𝑡2.

Here, F(t) is the current total force applied to the particle, m is the particle mass, �̈�𝐱(𝑡𝑡) is its
acceleration, �̇�𝐱(𝑡𝑡) is the velocity, x(t) is the current position, and Δt is the time step of the
simulation (i.e., how much time the simulation is advanced for each iteration of the algorithm).

The Verlet method is very popular in real-time applications because it is simple and
fourth-order accurate, meaning that the error for the position computation is O(Δt4) this makes
the Verlet method two orders of magnitude more precise than the explicit Euler method, and
at the same time, it avoids the compu tational cost involved in the Runge-Kutta fourth-order
method. In the Verlet scheme, however, velocity is only first-order accurate; in this case, this is
not really important because velocity is considered only for damping the springs.

22.3 Collision Handling

Generally, collision handling is composed of two phases, collision detection and collision
response. The outcome of collision detection is the set of particles that are currently colliding
with some other primitive. Collision response defines how these collisions are solved to bring
the colliding particles to a legal state (i.e., not inside a collision primitive). One of the key
advantages of the Verlet integration scheme is the easiness of handling collision response. The
position at the next time step depends only on the current position and the position at the
previous step. The velocity is then estimated by subtracting one from the other. Thus, to solve
a collision, it is sufficient to modify the current position of the colliding particle to bring it into
a legal state, for example, by moving it perpendicularly out toward the collision surface. The
change to the velocity is then handled automatically by considering this new position. This
approach is fast and stable, even though it remains valid only when the particles do not
penetrate too far.

In our cloth simulation, as the state of the particle is being updated, if the collision test is
positive, the particle is displaced into a valid state. For example, let's consider a stationary sphere
placed into the scene. In this simple case, a collision between the sphere and a particle happens
when the following condition is satisfied:

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 373

‖𝐱𝐱(𝑡𝑡 + ∆𝑡𝑡) − 𝐜𝐜‖ – r < 0 ,

Where c and r are the center and the radius of the sphere, respectively. If a collision occurs,
then it is handled by moving the particle into a valid state by moving its position just above the
surface of the sphere. In particular, the particle should be displaced along the normal of the
surface at the impact point. The position of the particle is updated according to the formula

d = x(t + ∆t) - c
‖x(t + ∆t) - c‖ ,

𝐱𝐱′(𝑡𝑡 + ∆𝑡𝑡) = 𝐜𝐜 + 𝐝𝐝𝑟𝑟 ,

where x´(t + Δt) is the updated position after the collision. If the particle does not penetrate
too far, d can be considered as an acceptable approximation of the normal to the surface at the
impact point.

22.4 CPU Implementation

We first describe the implementation of the algorithm for the CPU as a reference for the
implementations on the GPU described in the following sections.

During the design of an algorithm for the GPU, it is critical to minimize the amount of
data that travels on the main memory bus. The time spent on the bus is actually one of the
primary bottlenecks that strongly penalize performance [Nvidia 2010]. The transfer bandwidth
of a standard PCI-express bus is 2 to 8 GB per second. The internal bus bandwidth of a modern
GPU is approximately 100 to 150 GB per second. It is very important, therefore, to minimize
the amount of data that travels on the bus and keep the data on the GPU as much as possible.

In the case of cloth simulation, only the current and the previous positions of the particles
are needed on the GPU. The algorithm computes directly on GPU the rest distance of the
springs and which particles are connected by the springs. The state of each particle is
represented by the following attributes:

1. The current position (four floating-point values).

2. The previous position (four floating-point values).

3. The current normal vector (four floating-point values).

374 Game Engine Gems

Even though the normal vector is computed during the simulation, it is used only for
rendering purposes and does not affect the simulation dynamics. Here, the normal vector of a
particle is defined to be the average of the normal vectors of the triangulated faces to which the
particle belongs. A different array is created for storing the current positions, previous positions,
and normal vectors. As explained in later sections of this chapter, for the GPU implementation,
these attributes are loaded as textures or buffers into video memory. Each array stores the
attributes for all the particles. The size of each array is equal to the size of an attribute (four
floating-point values) multiplied by the number of particles. For example, the position of the i-
th particle pi is stored in the positions array and accessed as follows:

𝐩𝐩𝐜𝐜𝐜𝐜𝒊𝒊 ← vec3(in_pos[i ∗ 4], in_pos[i ∗ 4 + 1], in_pos[i ∗ 4 + 2], in_pos[i ∗ 4 + 3])

The cloth is built as a grid of n × n particles, where n is the number of particles composing
one side of the grid. Regardless of the value of n, the horizontal and the vertical spatial
dimensions of the grid are always normalized to the range [0, 1]. A particle is identified by its
array index i, which is related to the row and the column in the grid as follows:

𝑟𝑟𝑓𝑓𝑤𝑤𝑖𝑖 = ⌊𝑖𝑖/𝑛𝑛⌋ ,

𝑐𝑐𝑓𝑓𝑙𝑙𝑖𝑖 = 𝑖𝑖 𝐦𝐦𝐜𝐜𝐝𝐝 𝑛𝑛 .

From the row and the column of a particle, it is easy to access its neighbors by simply
adding an offset to the row and the column, as shown in the examples in Figure 22.2.

The pseudocode for calculating the dynamics of the particles in an n × n grid is shown in
Listing 22.1. In steps 1 and 2, the current and previous positions of the the i-th particle are
loaded in the local variables 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡 and 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡−1 , respectively, and then the current velocity

𝐯𝐯𝐞𝐞𝐥𝐥𝑖𝑖
𝑡𝑡 a is estimated in step 3. In step 4, the total force forcei is initialized with the gravity value.

Then, the for loop in step 5 iterates over all the neighbors of pi (steps 5.1 and 5.2), spring forces
are computed (steps 5.3 to 5.5), and they are accumulated into the total force (step 5.6). Each
neighbor is identified and accessed using a 2D offset (xoffset, yoffset,) from the position of pi within
the grid, as shown in Figure 22.2. Finally, the dynamics are computed in step 6, and the results
are written into the output buffers in steps 7 and 8.

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 375

Listing 22.1. Pseudocode to compute the dynamics of a single particle i belonging to the n × n grid.

for each particle 𝐩𝐩𝒊𝒊
1. 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡 ← 𝐱𝐱𝑖𝑖(𝑡𝑡)
2. 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡−1 ← 𝐱𝐱𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡)
3. 𝐯𝐯𝐞𝐞𝐥𝐥𝑖𝑖

𝑡𝑡 = (𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡 − 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡−1)/∆𝑡𝑡
4. 𝐟𝐟𝐜𝐜𝐟𝐟𝐜𝐜𝐞𝐞𝑖𝑖 = (0, −9.81, 0, 0)
5. for each neighbor (𝑟𝑟𝑓𝑓𝑤𝑤𝑖𝑖 + 𝑥𝑥offset, 𝑐𝑐𝑓𝑓𝑙𝑙𝑖𝑖 + 𝑦𝑦offset)

if (𝑟𝑟𝑓𝑓𝑤𝑤 𝑖𝑖 + 𝑥𝑥offset, 𝑐𝑐𝑓𝑓𝑙𝑙𝑖𝑖 + 𝑦𝑦offset) is inside the grid

5.1. 𝑦𝑦neigh = (𝑟𝑟𝑓𝑓𝑤𝑤𝑖𝑖 + 𝑥𝑥offset, 𝑐𝑐𝑓𝑓𝑙𝑙𝑖𝑖 + 𝑦𝑦offset) is inside the grid

5.2. 𝐩𝐩𝐜𝐜𝐜𝐜neigh
′ = (𝑟𝑟𝑓𝑓𝑤𝑤𝑖𝑖 + 𝑓𝑓offset)φ𝑛𝑛 + 𝑐𝑐𝑓𝑓𝑙𝑙𝑖𝑖 + 𝑥𝑥offset

5.3. 𝑑𝑑rest = ‖(𝑥𝑥offset, 𝑦𝑦offset)‖/𝑛𝑛

5.4. 𝑑𝑑cun = �𝐩𝐩𝐜𝐜𝐜𝐜neigh
′ − 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡�

5.5. 𝐟𝐟𝐜𝐜𝐟𝐟𝐜𝐜𝐞𝐞spring = −
𝐩𝐩𝐜𝐜𝐜𝐜neigh

′ −𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡

�𝐩𝐩𝐜𝐜𝐜𝐜neigh
′ −𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡�
(𝑑𝑑cun − 𝑑𝑑rest) ∙ 𝑘𝑘 − 𝐯𝐯𝐞𝐞𝐥𝐥𝑖𝑖

𝑡𝑡 ∙ 𝑏𝑏

5.6. 𝐟𝐟𝐜𝐜𝐟𝐟𝐜𝐜𝐞𝐞𝑖𝑖 += 𝐟𝐟𝐜𝐜𝐟𝐟𝐜𝐜𝐞𝐞spring

6. 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡−1 = 2 ∙ 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖

𝑡𝑡 − 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡−1 + (𝐟𝐟𝐜𝐜𝐟𝐟𝐜𝐜𝐞𝐞𝑖𝑖/𝑚𝑚) ∙ ∆𝑡𝑡2

7. 𝐱𝐱𝑖𝑖(𝑡𝑡) ← 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡+1

8. 𝐱𝐱𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡) ← 𝐩𝐩𝐜𝐜𝐜𝐜𝑖𝑖
𝑡𝑡

22.5 GPU Implementations

The different implementations for each GPGPU computing platform (GLSL, OpenCL,
and CUDA) are based on the same principles. We employ the so-called "ping-pong" technique
that is particularly useful when the input of a simulation step is the outcome of the previous
one, which is the case in most physicallybased animations. The basic idea is rather simple. In
the initialization phase, two buffers are loaded on the GPU, one buffer to store the input of the
computation and the other to store the output. When the computation ends and the output
buffer is filled with the results, the pointers to the two buffers are swapped such that in the
following step, the previous output is considered as the current input. The results data is also
stored in a vertex buffer object (VBO), which is then used to draw the current state of the cloth.

376 Game Engine Gems

In this way, the data never leaves the GPU, achieving maximal performance. This mechanism
is illustrated in Figure 22.4.

Figure 22.4. The ping-pong technique on the GPU. The output of a simulation step becomes the
input of the following step. The current output buffer is mapped to a VBO for fast visualization.

22.6 GLSL Implementation

This section describes the implementation of the algorithm in GLSL 1.2. The source code
for the vertex and fragment shaders is provided in the files verlet_cloth.vs and
verlet_cloth.fs, respectively, on the website. The position and velocity arrays are each stored
in a different texture having n × n dimensions. In such textures, each particle corresponds to a
single texel. The textures are uploaded to the GPU, and then the computation is carried out in
the fragment shader, where each particle is handled in a separate thread. The updated state (i.e.,
positions, previous positions, and normal vectors) is written to three distinct render targets.

Frame buffer objects (FBOs) are employed for efficiently storing and accessing the input
textures and the output render targets. The ping-pong technique is applied through the use of

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 377

two frame buffer objects, FBOI and FBO2. Each FBO contains three textures storing the state
of the particles. These three textures are attached to their corresponding FBOs as color buffers
using the following code, where fb is the index of the FBO and texid[0],texid[1] and
texid[2] are the indices of the textures storing the current positions, the previous positions,
and the normal vectors of the particles, respectively:

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,fbo->fb);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHEMENT0_EXT, GL_TEXTURE_2D, texid[0], 0);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHEMENT0_EXT, GL_TEXTURE_2D, texid[1], 0);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHEMENT0_EXT, GL_TEXTURE_2D, texid[2], 0);

In the initialization phase, both of the FBOs holding the initial state of the particles are
uploaded to video memory. When the algorithm is run, one of the FBOs is used as input and
the other one as output. The fragment shader reads the data from the input FBO and writes the
results in the render targets of the output FBO (stored in the color buffers). We declare the
output render targets by using the following code, where fb_out is the FBO that stores the
output:

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,fbo_out);

GLenum mrt[] = {GL_COLOR_ATTACHEMENT0_EXT,

 GL_COLOR_ATTACHEMENT1_EXT,

 GL_COLOR_ATTACHEMENT2_EXT};

glDrawBuffers(3, mrt);

In the next simulation step, the pointers to the input and output FBOs are swapped so that
the algorithm uses the output of the previous iteration as the current input.

The two FBOs are stored in the video memory, so there is no need to upload data from the
CPU to the GPU during the simulation. This drastically reduces the amount of data bandwidth
required on the PCI-express bus, improving the performance. At the end of each simulation
step, however, position and normal data is read out to a pixel buffer object that is then used as
a VBO for drawing purposes. The position data is stored into the VBO directly on the GPU

378 Game Engine Gems

using the following code:

glReadBuffer(GL_COLOR_ATTACHEMENT0_EXT);

glBindBuffer(GL_PIXEL_PACK_BUFFER, vbo[POSITION_OBJECT]);

glReadPixels(0, 0, texture_size, texture_size, GL_RGBA, GL_FLOAT, 0);

First, the color buffer of the FBO where the output positions are stored is selected. Then,
the positions' VBO is selected, specifying that it will be used as a pixel buffer object. Finally, the
VBO is filled with the updated data directly on the GPU. Similar steps are taken to read the
normals' data buffer.

22.7 CUDA Implementation

The CUDA implementation works similarly to the GLSL implementation, and the source
code is provided in the files verlet_cloth.cu and verlet_cloth_kernel.cu on the website.
Instead of using FBOs, this time we use memory buffers. Two pairs of buffers in video memory
are uploaded into video memory, one pair for current positions and one pair for previous
positions. Each pair comprises an input buffer and an output buffer. The kernel reads the input
buffers, performs the computation, and writes the results in the proper output buffers. The same
data is also stored in a pair of VBOs (one for the positions and one for the normals), which are
then visualized. In the beginning of the next iteration, the output buffers are copied in the input
buffers through the cudaMemcpyDeviceToDevice call. For example, in the case of positions, we
use the following code:

cudaMemcpy(pPosOut, pPosIn, mem_size, cudaMemcpyDeviceToDevice);

It is important to note that this instruction does not cause a buffer upload from the CPU
to the GPU because the buffer is already stored in video memory. The output data is shared
with the VBOs by using graphicsCudaResource objects, as follows:

// Initialization, done only once.

cudaGraphicsGLRegisterBuffer(&cuda_vbo_resource, gl_vbo,

 cudaGraphicsMapFlagsWriteDiscard);

// During the algorithm execution.

cudaGraphicsMapResources(1, cuda_vbo_resource, 0);

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 379

cudaGraphicsResourceGetMappedPointer((void **) &pos,

 &num_bytes, cuda_vbo_resource);

executeCudaKernel(pos, ...);

cudaGraphicsUnmapResources(1, cuda_vbo_resource, 0);

In the initialization phase, we declare that we are sharing data in video memory with
OpenGL VBOs through CUDA graphical resources. Then, during the execution of the
algorithm kernel, we map the graphical resources to buffer pointers. The kernel computes the
results and writes them in the buffer. At this point, the graphical resources are unmapped,
allowing the VBOs to be used for drawing.

22.8 OpenCL Implementation

The OpenCL implementation is very similar to the GLSL and CUDA implementations,
except that the data is uploaded at the beginning of each iteration of the algorithm. At the time
of this writing, OpenCL has a rather young implementation that sometimes leads to poor
debugging capabilities and sporadic instabilities. For example, suppose a kernel in OpenCL is
declared as follows:

__kernel void hello(__global int *g_idata);

Now suppose we pass input data of some different type (e.g., a float) in the following way:

float input = 3.0f;

cfloatSetKernelArg(ckKernel, 0, sizeof(float), (void *) &input);

clEnqueueNDRangeKernel(cqQueue, ckKernel, 1, NULL,

 &_szGlobalWorkSize, &_szLocalWorkSize, 0, 0, 0);

When executed, the program will fail silently without giving any error message because it
expects an int instead of a float. This made the OpenCL implementation rather complicated to
develop.

380 Game Engine Gems

22.9 Results

The described method has been implemented and tested on two different machines:

 A desktop PC with an Nvidia GeForce GTS250, 1GB VRAM and a processor Intel Core 15.

 A laptop PC with an Nvidia Quadro FX 360M, 128MB VRAM and a processor Intel Core2

Duo.

We collected performance times for each GPU computing platform, varying the numbers
of particles and springs, from a grid resolution of 32 × 32 (1024 particles and 11,412 springs) to
256 × 256 (65,536 particles and approximately 700,000 springs). Numerical results are collected
in the plots in Figures 22.5 and 22.6.

Figure 22.5. Computation times measured on different computation platforms using a GeForce GTS
250 device (16 computing units, 128 CUDA cores).

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 381

Figure 22.6. Computation times measured on different computation platforms using a Quadro FX
360M device (2 computing units, 16 CUDA cores).

From the data plotted in Figures 22.5 and 22.6, the computing superiority of the GPU
compared with the CPU is evident. This is mainly due to the fact that this cloth simulation
algorithm is strongly parallelizable, like most of the particlebased approaches. While the
computational cost on the CPU keeps growing linearly with the number of particles, the
computation time on the GPU remains relatively low because the particle dynamics are
computed in parallel. On the GTS250 device, this leads to a performance gain ranging from 10
to 40 times, depending on the number of particles.

It is interesting to note that in this case, GLSL has a much better performance than CUDA
does. This can be explained by considering how the memory is accessed by the GPU kernels. In
the GLSL fragment program, images are employed to store particle data in texture memory,
while in CUDA and OpenCL, these data is stored in the global memory of the device. Texture
memory has two main advantages [Nvidia 2010]. First, it is cached, and thus, video memory is
accessed only if there is a cache miss. Second, it is built in such a way as to optimize the access
to 2D local data, which is the case because each particle corresponds to a pixel, and it must have
access to the positions of its neighbors, which are stored in the immediately adjacent texture
pixels. Furthermore, the results in GLSL are stored in the color render targets that are then

382 Game Engine Gems

directly mapped to VBOs and drawn on the screen. The data resides in video memory and does
not need to be copied between different memory areas. This makes the entire process extremely
fast compared with the other approaches.

The plots also highlight the lower performance of OpenCL compared with CUDA. This
difference is caused by the fact that it has been rather difficult to tune the number of global and
local work items due to causes requiring further investigation. OpenCL is a very young standard,
and both the specification and the driver implementation are likely to change in the near future
in order to avoid such instabilities.

The GLSL program works on relatively old hardware, and different from CUDA, it does
not require Nvidia hardware. CUDA on the other hand, is a more flexible architecture that has
been specifically devised for performing computing tasks (not only graphics, like GLSL), which
is easier to debug and provides access to hardware resources, like the shared memory, allowing
for a further boost to the performance. OpenCL has the same features as CUDA, but its
implementation is rather naive at the moment, and it is harder to debug. However, different
from CUDA, it has been devised to run on the widest range of hardware platforms (including
consoles and mobile phones), not limited to Nvidia ones, and thus, it is the main candidate for
becoming the reference platform for GPGPU in the near future.

The main effort when dealing with GPGPU is in the design of the algorithm. The
challenging task that researchers and developers are currently facing is how to redesign
algorithms that have been originally conceived to run in a serial manner for the CPU, to make
them parallel and thus suitable for the GPU. The main disadvantage of particle-based methods
is that they require a very large number of particles to obtain realistic results. However, it is
relatively easy to parallelize algorithms handling particle systems, and the massive parallel
computation capabilities of modern GPUs now makes it possible to simulate large systems at
interactive rates.

22.10 Future Work

Our algorithm for cloth simulation can be improved in many ways. In the CUDA and
OpenCL implementations, it would be interesting to exploit the use of shared memory, which
should reduce the amount of global accesses and lead to improved performance.

For future research, we would like to investigate ways to generalize this algorithm by

Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA 383

introducing connectivity information [Tejada 2005] that stores the indexes of the neighbors of
each particle. This data can be stored in constant memory to hide as much as possible the
inevitable latency that using this information would introduce. By using connectivity, it would
be possible to simulate deformable, breakable objects with arbitrary shapes, not only
rectangular pieces of cloth.

22.11 Demo

An implementation of the GPU cloth simulation is provided on the website, and it includes
both the source code in C++ and the Windows binaries. The demo allows you to switch among
the computing platforms at run time, and it includes a hierarchical profiler. Even though the
source code has been developed for Windows using Visual Studio 2008, it has been written with
cross-platform compatibility in mind, without using any Windows-specific commands, so it
should compile and run on *nix platforms (Mac and Linux). The demo requires a machine
capable of running Nvidia CUDA, and the CUDA Computing SDK 3.0 needs to have been
compiled. A video is also included on the website.

Acknowledgements

The shader used for rendering the cloth is "fabric plaid" from RenderMonkey 1.82 by AMD
and 3DLabs. The author is grateful to Professor Ingemar Ragnemalm for having introduced
him to the fascinating world of GPGPU.

References

[Muller 2008] Matthias Muller, Jos Stam, Doug James, and Nils Thiirey. "Real Time Physics." ACM
SIGGRAPH 2008 Course Notes. Available at http://www. matthiasmueller.info/realtimephysics/
index.hUnl.

[Nvidia 2010] "NVIDIA CUDA Best Practices Guide," Version 3.0, 2010. Available at
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPrac
ticesGuide. pdf.

[Tejada 2005] Eduardo Tejada and Thomas Ertl. "Large Steps in GPU-Based Deformable Bodies
Simulation." Simulation Modelling Practice and Theory 13:8 (November 2005), pp. 703-715.

23
Chapter 23 A Jitter-Tolerant Rigid Body Sleep Condition

Eric Lengyel
Terathon Software

23.1 Introduction

One of the primary optimizations employed by any physics engine is the ability to put a
rigid body to sleep when it has reached a resting state. A sleeping rigid body is not processed by
the physics engine until some kind of event occurs, such as a collision or broken contact,
necessitating that it is woken up and simulated once again. The fact that most rigid bodies are
in the sleeping state at any one time is what allows a large number of simulated objects to exist
in a game level without serious performance problems.

A problem faced by all physics engines is how to decide that a rigid body has actually come
to rest. If we put an object to sleep without being sure that it has come to rest, then we risk
accidentally freezing it in mid-simulation, which can look odd to the player. On the other hand,
if we are too conservative and wait for too strict of a condition to be met before we put an object
to sleep, then we can run into a situation where too many objects are being simulated
unnecessarily and performance suffers.

The sleep decision problem is complicated by the fact that all physics engines exhibit some
jitter no matter how good the constraint solver is. If the right sleep condition isn't chosen in the
design of a physics engine, then jitter can prevent an object from ever going to sleep. Or at the
very least, jitter can delay an object from entering the sleep state, and this generally causes a
higher number of objects to be simulated at any given time. This chapter discusses a simple
condition that can be used to determine when it is the proper time to put a rigid body to sleep,
and it is highly tolerant to jitter.

386 Game Engine Gems

23.2 The Sleep Condition

A physics engine typically puts a rigid body to sleep once some condition has been satisfied
for a certain number of simulation steps. The most obvious condition to test is that the linear
velocity and angular velocity of the rigid body both stay under particular thresholds. However,
using such a condition is not robust because even if the object isn't really going anywhere, jitter
can cause its step-tostep velocity to be higher than the threshold value.

The solution is to maintain an axis-aligned world-space bounding box for a rigid body's
center of mass C. We begin with a bounding box whose minimal and maximal corners are both
C (so that the box's dimensions are zero), and we expand the box at each simulation step to
include the new center of mass. After a certain number of steps n have been accumulated, we
look at the size of the bounding box. If the largest dimension is less than a certain threshold
value t, then we can put the object to sleep. The object can jitter around inside the box all it
wants, but as long as it doesn't move further than t units of distance along any axis over n steps,
then it still goes to sleep.

Of course, this solution isn't quite enough. The rigid body could be rotating about its center
of mass without any linear translation, in which case the center of mass stays inside our
bounding box, and the physics engine mistakenly decides to put it to sleep. To prevent this from
happening, we can add a second bounding box away from the center of mass that represents
the volume containing some other point that moves with the rigid body. The easiest point to
choose would be a point one unit away from the center of mass along the object's world-space
x-axis. If the matrix [x y z] transforms the rigid body into world space, then our new point is
given by C + x. As we accumulate a bounding box for the point C, we also accumulate a second
bounding box for the point C + x calculated at every step. If the size of both boxes stays under
our threshold t for n steps, then the object can be put to sleep.

We aren't quite done yet. The rigid body could be rotating about the axis x through its
center of mass, in which case the points C and C + x would stay inside their bounding box
thresholds, but the object should not be put to sleep. We need to add one more test point that
lies off of the x-axis. The most straightforward choice would be a point one unit away from the
center of mass along the y-axis. So we maintain bounding boxes for the three points C, C + x,
and C + y, as shown in Figure 23.1. Using three points that are not collinear ensures that there
is no motion that a rigid body can undergo that would be mistaken for a resting state.

Chapter 23 A Jitter-Tolerant Rigid Body Sleep Condition 387

Figure 23.1. Bounding boxes are maintained for the center of mass C and the two points C + x and
C + y, where x and y are the first two columns of the matrix transforming the rigid body into world
space.

The number of steps n and the bounding box size threshold t are parameters that can be
adjusted in the physics engine. Typically, if the three test points remain inside small enough
bounding boxes for one second, then it's safe to put a rigid body to sleep. The size threshold for
the two points away from the center of mass can be different from that used for the center of
mass in order to impose angular velocity limits.

Whenever the sleep test fails because one of the bounding boxes has grown too large during
a particular simulation step, the whole test should be reset. That is, the current values of C, C +
x, and C + y should be used to reinitialize the bounding boxes, and the resting step count should
be restarted at one. For a rigid body that is actively moving in some way, this reset occurs on
every simulation step.

Part Ⅲ

Part III Systems Programming

24
Chapter 24 Bit Hacks for Games

Eric Lengyel
Terathon Software

Game programmers have long been known for coming up with clever tricks that allow
various short calculations to be performed more efficiently. These tricks are often applied inside
tight loops of code, where even a tiny savings in CPU clock cycles can add up to a significant
boost in speed overall. The techniques usually employ some kind of logical bit manipulation, or
"bit twiddling," to obtain a result in a roundabout way with the goal of reducing the number of
instructions, eliminating expensive instructions like divisions, or removing costly branches.
This chapter describes a variety of interesting bit hacks that are likely to be applicable to game
engine codebases.

Many of the techniques we describe require knowledge of the number of bits used to
represent an integer value. The most efficient implementations of these techniques typically
operate on integers whose size is equal to the native register width of the CPU running the code.
This chapter is written for integer registers that are 32 bits wide, and that is the size assumed
for the int type in C/C++. All of the techniques can be adapted to CPUs having different native
register widths (most commonly, 64 bits) by simply changing occurrences of the constants 31
and 32 in the code listings and using the appropriately sized data type.

24.1 Integer Sign Manipulation

We begin with a group of techniques that can be used to extract or modify information
about the sign of an integer value. These techniques, and many more throughout this chapter,
rely on the assumption that a signed right shift using the >> operator preserves the sign of the
input by smearing the original sign bit across the high bits opened by the shift operation. Strictly

392 Game Engine Gems

speaking, shifting a negative number to the right produces implementation-defined results
according to the C++ standard1, but all compilers likely to be encountered in game development
give the expected outcome-if the bits are shifted to the right by n bit positions, then the value of
the highest bit of the input is replicated to the highest n bits of the result.

Absolute Value

Most CPU instruction sets do not include an integer absolute value operation. The most
straightforward way of calculating an absolute value involves comparing the input to zero and
branching around a single instruction that negates the input if it happens to be less than zero.
These kinds of code sequences execute with poor performance because the branch prevents
good instruction scheduling and pollutes the branch history table used by the hardware for
dynamic branch prediction.

A better solution makes clever use of the relationship

−𝑥𝑥 = ~𝑥𝑥 + 1 , (24.1)

where the unary operator ~ represents the bitwise NOT operation that inverts each bit in x. In
addition to using the ~ operator in C/C++, the NOT operation can be performed by taking the
exclusive OR between an input value and a value whose bits are all Is, which is the
representation of the integer value -1. So we can rewrite Equation (24.1) in the form

−𝑥𝑥 = (𝑥𝑥∧ − 1) − (−1) , (24.2)

where the reason for subtracting -1 at the end will become clear in a moment.

If we shift a signed integer right by 31 bits, then the result is a value that is all ones for any
negative integer and all zeros for everything else. Let m be the value of x shifted right by 31 bits.
Then a formula for the absolute value of x is given by

|𝑥𝑥| = (𝑥𝑥∧𝑚𝑚) − 𝑚𝑚 . (24.3)

If x < 0, then m = -1 and this is equivalent to Equation (24.2). If x ≥ 0, then m = 0, and the right-
hand side of Equation (24.3) becomes a no-op because performing an exclusive OR with zero
does nothing and subtracting zero does nothing. So now we have a simple formula that
calculates the absolute value in three instructions, as shown in Listing 24.1. The negative
absolute value operation is also shown, and it is achieved by simply reversing the subtraction
on the right-hand side of Equation (24.3).

Chapter 24 Bit Hacks for Games 393

Since there is no branching in Listing 24.1 (and the functions are inlined), the basic block
sizes are larger in the calling code, and the compiler is free to schedule other instructions among
the instructions used for the absolute value. This results in higher instruction throughput, and
thus faster code.

Listing 24.1. These functions calculate the absolute value and negative absolute value.

inline int Abs(int x)

{

 int m= x >> 31; // m= (x < 0) ? -1 : 0

 return ((x ^ m) - m);

}

inline int Nabs(int x)

{

 int m= x >> 31; // m= (x < 0) ? -1 : 0

 return (m - (x ^ m));

}

Note that the absolute value function breaks down if the input value is 0x80000000. This
is technically considered a negative number because the most significant bit is a one, but there
is no way to represent its negation in 32 bits. The value 0x80000000 often behaves as though it
were the opposite of zero, and like zero, is neither positive nor negative. Several other bit hacks
discussed in this chapter also fail for this particular value, but in practice, no problems typically
arise as a result.

Sign Function

The sign function sgn (x) is defined as

sgn(𝑥𝑥) = �
 1, if 𝑥𝑥 > 0
0, if 𝑥𝑥 = 0
−1, if 𝑥𝑥 < 0

 (24.4)

This function can be calculated efficiently without branching by realizing that for a nonzero
input x, either x >> 31 is all ones or -x >> 31 is all ones, but not both. If x is zero, then both
shifts also produce the value zero. This leads us to the code shown in Listing 24.2, which requires
four instructions. Note that on PowerPC processors, the sign function can be evaluated in three

394 Game Engine Gems

instructions, but that sequence makes use of the carry bit, which is inaccessible in C/C++. (See
[Hoxey et al. 1996] for details.)

Listing 24.2. This function calculates the sign function given by Equation (24.4).

inline int Sgn(int x)

{

 return ((x >> 31) - (-x >> 31));

}

Sign Extension

Processors typically have native instructions that can extend the sign of an 8-bit or 16-bit
integer quantity to the full width of a register. For quantities of other bit sizes, a sign extension
can be achieved with two shift instructions, as shown in Listing 24.3. An n-bit integer is first
shifted right by 32 - n bits so that the value occupies the n most significant bits of a register.
(Note that this destroys the bits of the original value that are shifted out, so the state of those
bits can be ignored in cases when an n-bit quantity is being extracted from a larger data word.)
The result is shifted right by the same number of bits, causing the sign bit to be smeared.

On some PowerPC processors, it's important that the value of n in Listing 24.3 be a
compile-time constant because shifts by register values are microcoded and cause a pipeline
flush.

Listing 24.3. This function extends the sign of an n-bit integer to a full 32 bits.

template <int n> inline int ExtendSign(int x)

{

 return (x << (32-n) >> (32 -n));

}

24.2 Predicates

We have seen that the expression x >> 31 can be used to produce a value of 0 or -1
depending on whether x is less than zero. There may also be times when we want to produce a
value of 0 or 1, and we might also want to produce these values based on different conditions.
In general, there are six comparisons that we can make against zero, and an expression

Chapter 24 Bit Hacks for Games 395

generating a value based on these comparisons is called a predicate.

Table 24.1 lists the six predicates and the branchless C/C++ code that can be used to
generate a 0 or 1 value based on the boolean result of each comparison. Table 24.2 lists negations
of the same predicates and the code that can be used to generate a mask of all Os or all is (or a
value of 0 or -1) based on the result of each comparison. The only difference between the code
shown in Tables 24.1 and 24.2 is that the code in the first table uses unsigned shifts (a.k.a. logical
shifts), and the second table uses signed shifts (a.k.a. arithmetic or algebraic shifts).

Table 24.1. For each predicate, the code generates the value 1 if the condition is true and generates
the value 0 if the condition is false. The type of a and x is signed integer.

Predicate Code Instructions
x = (a == 0); x = (unsigned) ~ (a | -a) >> 31; 4

x = (a != 0); x = (unsigned) (a | -a) >> 31; 3

x = (a > 0); x = (unsigned) -a >> 31; 2

x = (a < 0); x = (unsigned) a >> 31; 1

x = (a >= 0); x = (unsigned) ~a >> 31; 2

x = (a <= 0); x = (unsigned) (a – 1) >> 31; 2

Table 24.2. For each predicate, the code generates the value -1 if the condition is true and generates
the value 0 if the condition is false. The type of a and x is signed integer.

Predicate Code Instructions
x = - (a == 0); x = ~ (a | -a) >> 31; 4

x = - (a != 0); x = (a | -a) >> 31; 3

x = - (a > 0); x = -a >> 31; 2

x = - (a < 0); x = a >> 31; 1

x = - (a >= 0); x = ~a >> 31; 2

x = - (a <= 0); x = (a – 1) >> 31; 2

On PowerPC processors, the cntlzw (count leading zeros word) instruction can be used
to evaluate the first expression in Table 24.1, (a==0) by calculating cntlzw(a) >> 5. This
works because the cntlzw instruction produces the value 32 when its input is zero and a lower
value for any other input. When shifted right five bits, the value 32 becomes 1, and all other
values are completely shifted out to produce 0. A similar instruction called BSR (bit scan reverse)
exists on x86 processors, but it produces undefined results when the input is zero, so it cannot

396 Game Engine Gems

achieve the same result without a branch to handle the zero case.

Predicates can be used to perform a variety of conditional operations. The expressions
shown in Table 24.1 are typically used to change some other value by one (or a power of two
with the proper left shift), and the expressions shown in Table 24.2 are typically used as masks
that conditionally preserve or clear some other value. We look at several examples in the
remainder of this section.

Conditional Increment and Decrement

To perform conditional increment or decrement operations, the expressions shown in
Table 24.1 can simply be added to or subtracted from another value, respectively. For example,
the conditional statement

if (a >= 0) x++;

can be replaced by the following non-branching code:

x += (unsigned) ~A >> 31;

Conditional Addition and Subtraction

Conditional addition and subtraction can be performed by using the expressions shown
in Table 24.2 to mask the operations. For example, the conditional statement

if (a >= 0) x += y;

can be replaced by the following non-branching code:

x += y & (~a >>31);

Increment or Decrement Modulo N

The mask for the predicate (a<0) can be used to implement increment and decrement
operations modulo a number n. Incrementing modulo 3 is particularly common in game
programming because it's used to iterate over the vertices of a triangle or to iterate over the
columns of a 3 × 3 matrix from an arbitrary starting index in the range [0, 2].

To increment a number modulo n, we can subtract n -1 from it and compare against zero.

Chapter 24 Bit Hacks for Games 397

If the result is negative, then we keep the new value; otherwise, we wrap around to zero. For the
decrement operation, we subtract one and then compare against zero. If the result is negative,
then we add the modulus n. These operations are shown in Listing 24.4, and both generate four
instructions when n is a compile-time constant.

Listing 24.4. These functions increment and decrement the input value modulo n.

template <int n> inline int IncMod(int x)

{

 return ((x + 1) & ((x - (n - 1)) >> 31));

}

template <int n> inline int DecMod(int x)

{

 x--;

 return (x + ((x >> 31) & n));

}

Clamping to Zero

Another use of masks is clamping against zero. The minimum and maximum functions
shown in Listing 24.5 take a single input and clamp to a minimum of zero or a maximum of
zero. On processors that have a logical AND with complement instruction, like the PowerPC,
both of these functions generate only two instructions.

Listing 24.5. These functions take the minimum and maximum of the input with zero.

inline int MinZero(int x)

{

 return (x & (x >> 31));

}

inline int MaxZero(int x)

{

 return (x & ~(x >> 31));

}

398 Game Engine Gems

Minimum and Maximum

Branchless minimum and maximum operations are difficult to achieve when they must
work for the entire range of 32-bit integers. (However, see [1] for some examples that use special
instructions.) They become much easier when we can assume that the difference between the
two input operands doesn't underflow or overflow when one is subtracted from the other.
Another way of putting this is to say that the input operands always have two bits of sign or that
they are always in the range [-230, 230-1]. When this is the case, we can compare the difference
to zero in order to produce a mask used to choose the minimum or maximum value. The code
is shown in Listing 24.6. Both functions generate four instructions if a logical AND with
complement is available; otherwise, the Min() function generates five instructions.

Listing 24.6. These functions return the minimum and maximum of a pair of integers when we can
assume two bits of sign.

inline int Min(int x, int y)

{

 int a = x -y;

 return (x - (a & ~(a >> 31)));

}

inline int Max(int x, int y)

{

 int a = x - y;

 return (x - (a & (a >> 31)));

}

24.3 Miscellaneous Tricks

This section presents several miscellaneous tricks that can be used to optimize code. Some
of the tricks are generic and can be applied to many different situations, while others are meant
for specific tasks.

Chapter 24 Bit Hacks for Games 399

Clear the Least Significant 1 Bit

The least significant 1 bit of any value x can be cleared by logically ANDing it with x-1.
This property can be used to count the number of 1 bits in a value by repeatedly clearing the
least significant 1 bit until the value becomes zero. (See [Anderson 2005] for more efficient
methods, however.)

Test for Power of Two

If we clear the least significant 1 bit and find that the result is zero, then we know that the
original value was either zero or was a power of two because only a single bit was set. Functions
that test whether a value is a power of two, with and without returning a positive result for zero,
are shown in Listing 24.7.

Listing 24.7. These functions test whether a value is a power of two.

inline bool PowerOfTwo(int x)

{

 int y = x - 1; // y is negative only if x == 0.

 return ((x & y) - (y >> 31) == 0);

}

inline bool PowerOfTwoOrZero(int x)

{

 return ((x & (x - 1)) == 0);

}

Test for Power of Two Minus One

The bits to the right of the least significant 0 bit of any value x can be cleared by logically
ANDing it with x + 1. If the result is zero, then that means that the value was composed of a
contiguous string of n 1 bits with no trailing 0 bits, which is the representation of 2n – 1. Note
that this test gives a positive result for zero, which is correct because zero is one less than 20.

Determine Whether a Voxel Contains Triangles

In the marching cubes algorithm, an 8-bit code is determined for every cell in a voxel grid,
and this code maps to a set of triangulation cases that tell how many vertices and triangles are

400 Game Engine Gems

necessary to extract the isosurface within the cell. The codes 0x00 and 0xFF correspond to cells
containing no triangles, and such cells are skipped during the mesh generation process. We
would like to avoid making two comparisons and instead make only one so that empty cells are
skipped more efficiently.

Suppose that voxel values are signed 8-bit integers. We form the case code by shifting the
sign bits from the voxels at each of the eight cell corners into a different position in an 8-bit
byte, as shown in Listing 24.8. We then exclusive OR the case code with any one of the voxel
values shifted right seven bits. The result is zero for exactly the cases 0x00 and 0xFF, and it's
nonzero for everything else.

Listing 24.8. The case code for a cell is constructed by shifting the sign bits from the eight corner
voxel values into specific bit positions. One of the voxel values is shifted seven bits right to produce
a mask of all Os or all Is, and it is then exclusive ORed with the case code to determine whether a
cell contains triangles.

unsigned long caseCode = ((corner[0] >> 7) & 0x01)

 | ((corner[1] >> 6) & 0x02)

 | ((corner[1] >> 5) & 0x04)

 | ((corner[1] >> 4) & 0x08)

 | ((corner[1] >> 3) & 0x10)

 | ((corner[1] >> 2) & 0x20)

 | ((corner[1] >> 1) & 0x40)

 | (corner[7] & 0x80);

if ((caseCode ^ ((corner[7] >> 7) & 0xFF)) != 0)

{

 // Cell has a nontrivial triangulation.

}

Determine the Index of the Greatest Value in a Set of Three

Given a set of three values (which could be floating-point), we sometimes need to determine
the index of the largest value in the set, in the range [0, 2]. In particular, this arises when finding
the support point for a triangle in a given direction for the Gilbert-Johnson-Keerthi (GJK)
algorithm. It's easy to perform a few comparisons and return different results based on the
outcome, but we would like to eliminate some of the branches involved in doing that.

Chapter 24 Bit Hacks for Games 401

For a set of values {v0, v1, v2}, Table 24.3 enumerates the six possible combinations of the
truth values for the comparisons v1> v0, v2> v0 and v2> v1, which we label as b0, b1, and b2,
respectively. As it turns out, the sum of b0 | b1 and b1 & b2 produces the correct index for all
possible cases. This leads us to the code shown in Listing 24.9.

Table 24.3. This table lists all possible combinations for the truth values b0, b1 and b2 relating the
values v0, v1 and v2. The sum of b0 | b1 and b0 & b1 gives the index of the largest value.

Case b0 = (v1 > v0) b1 = (v2 > v0) b2 = (v2 > v1) b0 | b1 b0 & b1 Sum
v0 largest 0 0 0 0 0 0
 0 0 1 0 0 0
v1 largest 1 0 0 1 0 1
 1 1 0 1 0 1
v2 largest 0 1 1 1 1 2
 1 1 1 1 1 2
Impossible 0 1 0 1 0 1
 1 0 1 1 0 1

Listing 24.9. This function returns the index, in the range [0, 2], corresponding to the largest value
in a set of three.

template <typename T> int GetGreatestValueIndex(const t *value)

{

 bool b0 = (value[1] > value[0]);

 bool b1 = (value[2] > value[0]);

 bool b2 = (value[2] > value[1]);

 return ((b0 | b1) + (b1 & b2));

}

24.4 Logic Formulas

We end this chapter with Table 24.4, which lists several simple logic formulas and their
effect on the binary representation of a signed integer. (See also [Ericson 2008].) With the
exception of the last entry in the table, all of the formulas can be calculated using two
instructions on the PowerPC processor due to the availability of the andc, orc, and e`qv

402 Game Engine Gems

instructions. Other processors may require up to three instructions.

Table 24.4. Logic formulas and their effect on the binary representation of a signed integer.

Formula Operation / Effect Notes
x & (x – 1) Clear lowest 1 bit. if result is 0, then x is 2n.
x | (x + 1) Set lowest 0 bit.
x | (x – 1) Set all bits to right of lowest 1 bit.
x & (x + 1) Clear all bits to right of lowest 0 bit. if result is 0, then x is 2n - 1.
x & -x Extract lowest 1 bit.
~x & (x + 1) Extract lowest 0 bit (as a 1 bit).
~x | (x - 1) Create mask for bits other than lowest 1 bit
x | ~ (x + 1) Create mask for bits other than lowest 0 bit.
x | -x Create mask for bits left of lowest 1 bit, inclusive.
x ^ -x Create mask for bits left of lowest 1bit, exclusive.
~x | (x + 1) Create mask for bits left of lowest 0 bit, inclusive.
~x ^ (x + 1) Create mask for bits left of lowest 0 bit, exclusive. Also x = (x + 1).
x ^ (x - 1) Create mask for bits right of lowest 1 bit, inclusive. 0 becomes -1.
~x & (x – 1) Create mask for bits right of lowest 1 bit, exclusive 0 becomes -1.
x ^ (x + 1) Create mask for bits right of lowest 0 bit, inclusive -1 remains -1.
x & (~x - 1) Create mask for bits right of lowest 0 bit, exclusive. -1 remains -1.

References

[Anderson 2005] Sean Eton Anderson. "Bit Twiddling Hacks." 2005. Available at http://
graphics.stanford.edu/-seander/bithacks.html.

[Ericson 2008] Christer Ericson. "Advanced Bit Manipulation-fu." realtimecollision detection.net -
the blog, August 24, 2008. Available at http://realtimecollision detection.net/blog/?p=78.

[Hoxey et al. 1996] Steve Hoxey, Faraydon Karim, Bill Hay, and Hank Warren, eds. The PowerPC
Compiler Writer's Guide. Palo Alto, CA: Warthman Associates, 1996.

25
Chapter 25 Introspection for C++ Game Engines

Jon Watte
IMVU, Inc.

25.1 Introduction

This gem describes a mechanism for adding general-purpose introspection of data types
to a C++ program, using a minimum of macros, mark-up, or repetition. Introspection is the
capability of a computer program to look at its own data and make modifications to it. Any
high-level language of note has a rich introspection API, generally as part of an even larger
reflection API, but users of C++ have had to make do with the built-in class type_info ever
since the early days. A conversation with the introspection system of a language such as C#,
Java, or Python might look something like this:

"Hello, introspection system, I'd like you to tell me a bit about this here piece of data I
have!"

"Why, certainly, game program! It's a data structure you'd like to call a TreasureChest."

"That's useful to know, but what I really want to know is whether it has a property called
`Position'?"

"Yes, it does! It's of type float3, containing the position in the world."

"That's great! Actually, now that I think about it, the designer just clicked on it, and wants
to edit all the properties. What are they?"

"Well, we've got `Name', which is a string, and `Contents', which is a list of references to
Object templates, and `Model', which is a string used to reference the 3D mesh used to render
the object,

404 Game Engine Gems

In code, it looks something more like Listing 25.1 (using C#/.NET).

Listing 25.1. Properties in a dynamic language.

string typename = theObject.GetType().Name;

PropertyInfo info = theObject.GetType().GetProperty("Position");

/* ... */

foreach (PropertyInfo pi in theObject.GetType().GetProperties())

{

 theEditor.AddProperty(theObject, pi.Name,

 new GetterSetter(pi.ReflectedType));

}

So, what can we do in C++? Using only the standard language and library, we can't do
much. You can find out the name of a type (using typeid), and the size of a type (using sizeof),
and that's about it. You can also find out whether a given object instance derives from a given
base class (using the horribly expensive dynamic_cast<>) but only if the type has a virtual table,
and you can't iterate over the set of base classes that it derives from, except perhaps by testing
against all possible base classes. Despite these draw-backs, C++ game programmers still need
to deal with data, display it in editors, save it to files, send it over networks, wire compatible
properties together in object/component systems, and do all the other data-driven game
development magic that a modern game engine must provide.

Trying to solve this problem, many engines end up with a number of different mechanisms
to describe the data in a given object, entity, or data structure. For example, you may end up
having to write code that's something like what is shown in Listing 25.2.

Listing 25.2. TreasureChest introspection, the verbose way.

class TreasureChest: public GameObject

{

private:

 /* properties */

 string name;

 float3 position;

 list<ObjectRef> contents;

 string model;

Chapter 25 Introspection for C++ Game Engines 405

public:

 /*saving*/

 void WriteOut(Achive &ar)

 {

 ar.beginObject("TreasureChest");

 GameObject::WriteOut(ar);

 ar.write(position);

 ar.write(contents.size());

 for (list<ObjectRef>::iterator ptr(contents.begin()),

 end(contents.end()); ptr != end; ++ptr)

 {

 ar.write(*ptr);

 }

 ar.write(model);

 ar.endObject();

 }

 /*loading*/

 void ReadIn(Archive &ar)

 {

 ar.beginObject("TreasureChest");

 GameObject::ReadIn(ar);

 ar.read(name);

 ar.read(position);

 size_t size;

 ar.read(size);

 while (size-- > 0)

 {

 contents.push_back(ObjectRef());

 ar.read(contents.back());

406 Game Engine Gems

 }

 ar.read(model);

 ar.endObject();

 }

#if EDITOR

 /*editing*/

 void AddToEditor(Editor &ed)

 {

 ed.beginGroup("TreasureChest");

 GameObject::AddToEditor(ed);

 ed.addString(name, "name", "The name of the object");

 ed.addPosition(position, "position",

 "Where the object is in the world");

 ed.addObjectRefCollection(contents, "contents",

 "What the chest looks like", "*.mdl");

 ed.endGroup();

 }

#endif

};

This approach has several problems, however. For example, each addition of a new
property requires adding it in several parts of the code. You have to remember the order in
which properties are serialized, and you generally have to write even more support code to
support cloning, templating, and other common operations used by most game engines and
editors. More than one game has shipped with bugs caused by getting one of these many manual
details wrong. If you apply the technique in this gem, you will be able to avoid this whole class
of bugs-as well as avoid a lot of boring, error-prone typing. Next to having the language run-
time library do it for you, this is the best you can get!

Chapter 25 Introspection for C++ Game Engines 407

25.2 The Demo

The code that comes with this gem implements a simple network protocol for a text-based
chat server. A user can join a chat, get a list of other users in the chat, and send and receive chat
text. The chat server itself stores and edits some information about each user, such as an email
address and a password. While simple, this is enough to show how to apply the mechanism of
this gem to solve a variety of problems in a real program.

There are four related programs:

 A test program, which exercises the API mechanisms one at a time to let you easily verify

the functionality of the different pieces.

 A server program, which lets you host a simple chat server (from the command line).

 A client program, which lets you connect to a running chat server and exchange chat

messages with other users (again, from the command line).

 An editor program, which lets you edit the list of users used by the server program, using

the introspection mechanisms outlined in this chapter.

These are baked into two executables: the introspection test program, to verify that the
API works as intended, and the simplechat program, to act as a client, server, or user list editor
for the simple chat system.

To build the programs, either use the included solution and project files for Microsoft
Visual Studio 2010 (tested on Windows 7) or use the included GNU make file for GCC (tested
on Ubuntu Linux 10.04). Run the sample programs from the command line.

25.3 The Gem

The implementation of this gem lives in the files introspection.h, introspection.cpp,
and protocol.cpp. While the implementation makes use of type inference and other template
metaprogramming tricks, the API from a user's perspective is designed to be simple.

Decorate each data structure you want to introspect using an INTROSPECTION() macro, as
illustrated by the example shown in Listing 25.3. This macro takes two arguments: the name of

408 Game Engine Gems

the data structure itself and a list of members that you want to introspect. Each introspection
member is described using a separate macro that lists its name and a description of the role of
the member. This can be as simple as a plain C string (to display in an editor interface, for
example) or as complex as a rules-enforcing and network-encoding object that makes sure
floating-point values are within a given range and transmitted using a specified number of bits
and other variant behavior.

While you still have to list each member twice, once for declaring it as an actual member
and once for declaring it introspectable, this mechanism cuts down on the amount of boilerplate
code you need to write. It also keeps the declaration of introspection in the header, right near
the declaration of the members, to reduce the likelihood that someone adds a member without
adding the appro priate introspection information. Compared to the previous example, this is
a significant improvement in both maintainability and ease of use!

Listing 25.3. Introspection example (the simple way).

#include <introspection/introspection.h>

struct UserInfo

{

 std::string name;

 std::string email;

 std::string password;

 int shoe_size;

 INTROSPECTION

 (

 UserInfo,

 MEMBER(name, "user name")

 MEMBER(email, "e-mail address")

 MEMBER(password, "user password")

 MEMBER(shoe_size,

introspection::int_range("shoe size (European"), 30, 50))

);

};

The new example uses the standard C++ library string class for storage of strings. This is

Chapter 25 Introspection for C++ Game Engines 409

because, when dealing with strings of indeterminate size (such as those found in files, network
packets, or graphical user interface editors), memory allocation and deallocation can otherwise
become a problem. Because every C++ compiler comes with a decent implementation of the
string class, as well as container classes like set, list, and vector, I have chosen to use those
implementations in this gem rather than build custom, game-specific containers. If you have
special needs, such as fitting into a tight console memory space with a fixed-address memory
allocator, adapting the implementation to other string and container classes is quite possible-
read the implementation in introspection.h for more details.

To use the code as is in your own game, it's easiest to copy the files introspection.cpp,
introspection.h, not_win32.h, and protocol.cpp into your own project where they can be
easily found. A more structured approach would be to build a library out of the .cpp files and
set the include files in the project settings (or the makefile) to reference the parent of the
introspection directory. Note that include files in the samples are included using angle brackets,
naming the introspection directory <introspection/introspection.h>.

Given the above declaration, you can now do a number of interesting things to any
instance of struct Userlnfo. Most importantly, you can get a list of the members of the
structure, as well as their type and offset within the structure, programmatically. The function
test_introspection() in the sample main.cpp file shows how to do this and is illustrated in
Listing 25.4.

Listing 25.4. Implementation of the test_introspection() function.

void test_introspection()

{

 std::stringstream ss;

 const type_info_base& tib = UserInfo::member_info();

 for (member_t::iterator ptr(tib.begin()), end(tib.end());

 ptr != end; ++ptr)

 {

 ss << "member: " << (*ptr).name() <<

 " desc: " << (*ptr).info().desc() <<

 " offset: " << (*ptr).access().offset() <<

 " size: " << (*ptr).access().size();

410 Game Engine Gems

 if ((*ptr).access().compound())

 {

 ss << " [compound]";

 }

 if ((*ptr).access().collection())

 {

 ss << " {collection}";

 }

 ss << std::endl;

 std::cout << ss.str();

 ss.str("");

 }

}

The name of the type that contains information about each compound type is
type_info_base. It contains standard-template-library-style iterator accessors begin() and
end() to iterate over the members of the type, each of which is described using a member_t
instance. Additionally, type_info_base contains an access() accessor for the
member_access_base type, which implements operations on the compound type itself, such as
serializing it to and from a binary stream, converting it to and from a text representation, and
creating and destroying instances in raw memory. Each type (including the basic types like int
and float) has a corresponding member_access_base, so this structure tells you whether a
type is compound (such as struct Userlnfo) and whether it is a collection (such as a list or a
vector).

25.4 Lifting the Veil

Examining every line of the implementation of the gem in detail is beyond the scope of
this chapter, but there are a few important things that deserve particular attention.

Syntactically, the simple INTROSPECTION (name, member member ...) macro takes only two
arguments. Instead of listing each member using a comma, each member is listed as a separate

Chapter 25 Introspection for C++ Game Engines 411

MEMBER() macro, which in turn expands to contain the comma if the implementation requires
it. The current implementation expands the INTROSPECTION() macro to a static inline member
function that returns a static local instance of the member description type, and it initializes
that instance using the expansion of the member macros. The implementation of the macros is
shown in Listing 25.5.

Listing 25.5. The INTROSPECTION macro implementation.

#define INTROSPECTION(type, members) \

typedef type self_t;) \

 static inline const introspection::type_info_base& member_info() \

{ \

 static introspection::member_t data[] = \

 { \

 members \

 }; \

 \

 static introspection::type_info_t<type> info (\

 data, sizeof(data) / sizeof(data[0]), \

 introspection::struct_access_t<type>::instance()); \

 \

 return (info); \

 \

} \

\

#define MEMBER(name, desc) \

introspection::member_instance(&self_t::name,#name,desc), \

This keeps the namespace of the introspected type (such as Userlnfo) clean, only
introducing the typedef self_t and the member_info() member function. Access to each
member of the structure is done using pointer-to-member syntax. However, the actual pointer
to member does not need to be dereferenced because template metaprogramming can pick it
apart and turn it into an offset-andtypecast construct, to save run-time CPU cycles.

412 Game Engine Gems

25.5 To and From a Network

When you receive a piece of data from a network, you need to instantiate the right data
type, based on what the received packet is. Once the data type is dispatched, you have to
correctly destroy the instance again, freeing up any additional memory used by members of
types such as string or list. The introspection mechanism of this gem builds this into the
member_access_base type, giving you the size() function to let you know how much memory
to allocate, and create() and destroy() functions to manage the lifetime of the structure
instance.

Additionally, the gem provides the PROTOCOL() and PDU() macros to allow definition of a
suite of related data types. Each data type added with the PDU() macro is given a small integer
ID, which you can use on the network to identify which kind of packet is being sent. Given the
PROTOCOL instance, you can map a type to an ID and an ID to a type using the protocol_t type
members (to get the integer code for a type) and type() (to get the type_info_base for a code).

On top of this, you can build a type-safe protocol packet dispatcher, where each dispatcher
is selected by the appropriate type. End to end, the networking API then uses the actual
structure type to select which code to prefix the packet with and serialize the structure to a
sequence of bytes using the serialization from the INTROSPECTION() macro. It then sends this
data to the other end, prefixed by the size of the packet. The receiving end first decodes the
integer of the packet type and then selects the appropriate unpacker type instance based on the
code. Using the size() and create() functions, it inflates an instance of the appropriate
structure into an allocated array of bytes and constructs it using the appropriate C++
constructor, after which it passes the instance through a dispatcher selected by the integer code
(type) of the packet. When the dispatcher returns, the destroy() function calls the appropriate
C++ destructor, and the memory can be returned to the system as an array of bytes again.

This is illustrated in more detail in the client and server programs, where it is
implemented in the protocol_t::encode() and protocol_t::decode() functions,
respectively, using the memory stream functions of the simple_stream class. A good example
use of this mechanism is the send_a_message() function from the client.cpp file, as shown
in Listing 25.6.

Chapter 25 Introspection for C++ Game Engines 413

Listing 25.6. Sending a C++ data structure using automatic marshaling.

static bool send_a_message(const char *line)

{

 SaySomethingPacket ssp;

 simple_stream ss;

 ssp.message = line;

 // Make space for the frame size field (short).

 ss.write_bytes(2, "\0");

 my_proto.encode(ssp, ss);

 size_t plen = ss.position() - 2;

 unsigned char* pdata = (unsigned char *) ss.unsafe_data();

 // Generate a big-endian short for number of bytes count.

 pdata[0] = (plen >> 8) & 0xFF;

 pdata[1] = plen & 0xFF;

 int l = send(sockfd, (const char *)pdata, plen + 2, 0);

 if (l < 0)

 {

 // WSAGetLastError() may have been cleared by the other thread.

 fprintf(stderr, "send error: %d\n", WSAGetLastError());

 }

 return (l == plen + 2);

}

25.6 In Closing

Finally, I have set up a forum for discussion about this gem, as well as any errata and code
update releases, that you can find at my website: http://www.enchantedage.com/geg2-
introspection. I hope you find that this gem saves you a lot of error-prone typing, and I hope to
hear your experiences and feedback in the forum!

26
Chapter 26 A Highly Optimized Portable Memory Manager

Jason Hughes
Steel Penny Games, Inc.

26.1 Introduction

Every game has a memory manager of some sort. On PCs, this tends to be Microsoft's C
run-time library memory manager. On the various consoles, it's likely to either be the platform-
specific memory manager that was written by the hardware vendor or the one provided by the
compiler company in its run-time library. Do they all work the same way? No. Do they exhibit
the same performance characteristics? Absolutely no. Some allow the heap to become
fragmented very quickly, while others may be very slow for small allocations or when the
number of allocations becomes quite large, and still others may have a high per-allocation
overhead that invisibly eats away at your memory.

Memory allocation is a fundamental operation, thus, it has to satisfy a wide number of use
cases robustly and efficiently. This is a serious technical challenge. Even a good implementation
can harm a game's performance if exercised in just the wrong way. A naive implementation can
utterly cripple performance or cause crashes due to artificial low-memory situations (e.g.,
fragmentation or overhead). The good news is that most of the provided memory managers are
relatively efficient and work well enough for simple cases with few allocations.

After enough experiences where cross-platform stability and performance came down
strictly to the memory manager, however, you may be tempted to implement your own that is
scalable and easy to tune for best performance. These days, with so many platforms to support,
it's a mark of quality for an engine to run well across all machines.

416 Game Engine Gems

Alternatives to Rolling Your Own

Surely someone has already written a good heap. Doug Lea's dlmalloc is one of the best
and is typically the memory manager of choice on Linux. There are many derivatives on the
internet that claim some improvements, but there are many flavors to choose from. dlmalloc is
a good choice primarily because it's very stable and well-tested, it's public domain code that is
freely available, and it runs on 32-bit and 64-bit systems of either endianness. Very compelling.

The main gripes with dlmalloc is that it is a mess to look at, it's horrible to debug in case
of heap corruption, and it's easily corrupted in case of a buffer overrun. As for usability, there's
no way to create one-off heaps with it that have been optimized for special use cases, where you
can predict sizes and counts of allocations. dlmalloc also has a fairly high per-allocation
overhead that chews up memory. As general-purpose heaps go, it's excellent, but for games, we
sometimes need custom solutions with more bells and whistles.

Desirable Properties

After writing about eight or nine different memory managers, a list of priorities emerges
from recognizing the importance of certain attributes that make a memory manager good. Here
are a few:

1. Must not thrash the CPU cache. High performance comes with limiting the number of bytes

that have to interact with RAM. Whatever is touched should fit within a minimum number

of cache lines, both to reduce memory latency and to limit the amount of cache disruption

to the rest of the program.

2. No searching for free space. The naive implementation of a memory manager is a

linked list of blocks that are marked free or empty. Scanning this list is hugely expensive

and slow under all circumstances. Good memory managers have lookup tables of some

sort that point to places where free blocks of memory of various sizes are.

3. Minimum overhead per allocation. Reducing overhead in a memory manager is almost

like adding compression to memory-you can fit more data in the same physical space.

4. Should be easy to debug. Sometimes memory problems happen, and it's important to

consider the difficulty in tracking down such issues. Sometimes this means temporarily

adding features to the memory manager. Ideally, the debug build should do some basic

Chapter 26 A Highly Optimized Portable Memory Manager 417

instrumentation as it runs that determines whether memory has been trampled without

slowing down the system.

5. Should resist corruption. Most memory managers are organized such that blocks of

program data are sandwiched between heaps tracking information. This is particularly

fragile because buffer overruns tend to be utterly fatal to the system, but not immediately.

The system keeps running until the memory manager has to allocate or free memory in

that region and attempts to use a pointer that is garbage. However, determining what

exactly is smashing the heap is a challenge, but one made less critical if the memory

manager itself doesn't crash in response to a programming error. Ideally, program data

should only be able to trample other program data, and heap tracking information is

separated and thus protected.

6. Should not fragment easily. Fragmentation leads to situations where a small allocation

in the middle of memory prevents a large allocation from succeeding, even though the total

number of available bytes (if you add the separate free chunks together) is more than

enough to accommodate the allocation. It's also a common failure of memory managers to

spend a lot of run-time cycles reducing existing fragmentation or actively attempting to

prevent it. The wrong approach is creating complex policies that define where allocations

should go, in what order allocations should be placed in the heap, or how to coalesce

adjacent free blocks. Some systems even go to the extent of relocating memory to manually

defragment the heap, similar to Java's memory model. In the end, preventing

fragmentation should be a design criterion that is inherent in the system, not paid for at

run time.

26.2 Overview

The following design is one such system that satisfies the minimum criteria, as specified in
the introduction, though there are many others possible. There are certain trade-offs that are
often made during large design processes that ultimately shape the final software product.
Although we describe a specific instance of the memory manager, the version found on the
website is actually a templatebased solution that allows reconfiguration of many parameters so

418 Game Engine Gems

you can easily experiment with what is right for your specific situation. In fact, it would be easy
to capture all allocations and deletions in a log file with your current memory manager, then
replay the operations in a unit test setting to measure exactly what performance and memory
fragmentation would be under realistic heap conditions.

Fighting Fragmentation Is Job #1

From experience, the greatest problem that needs to be addressed by a games memory
manager is fragmentation. There are two types of fragmentation: internal and external.

 Internal fragmentation occurs when a single allocation is requested for M bytes, but the

memory manager cannot allocate exactly M bytes, so it rounds up by an extra N bytes, so

M+N bytes are reserved for the allocation. Internal fragmentation can be considered a

factor of systemic overhead, and is tolerable if kept to a minimum, because all that unusable

memory will be fully reclaimed when the block is freed.

 External fragmentation occurs when memory is known to be free and available by the

memory manager but has been subdivided by allocations so that it is not contiguous and,

thus, cannot be allocated in a single large block. The degree of fragmentation can be

measured in many ways, but developers are traditionally concerned with the "big block,"

that is, the single largest allocation possible at any given time. The ratio of the big block to

total available memory is another meaningful way to express how fragmented memory is.

As that ratio tends toward zero, the number of free regions increases while the sizes of free

spaces decrease, and the largest single allocation possible becomes a fraction of total

available memory.

External fragmentation, henceforth referred to simply as fragmentation, is the source of
many apparent stability problems in otherwise well-written programs. For games, this is
particularly challenging because in this industry, memory tends to be considerably more limited,
and players are more likely to play the game without resetting for hours or even days on end.
Thus, the dreaded "uptime crash" is almost unavoidable without special precautions, careful
planning, and perhaps a custom memory management strategy that attempts to avoid
fragmentation automatically.

Chapter 26 A Highly Optimized Portable Memory Manager 419

 Large Alloc Free Space

Free Space

 Small Alloc Small Alloc

 Free Space

Figure 26.1. From left to right: the heap is free and unfragmented, one large allocation is made, one
small allocation is made, the large allocation is freed. In the rightmost diagram, the heap is
partitioned in half and exhibits an approximately 0.5 fragmentation ratio.

For further clarification of how fragmentation can occur within a program, see Figure 26.1.
Fragmentation can be demonstrated in three simple operations: allocate twice and free once. If
one allocation is quite large and is followed by a small allocation, then once you release the large
block back to the system, the memory manager now has an approximate 0.5 fragmentation ratio.
If the next allocation is slightly larger than 50 percent of the total available memory, it will fail.

Most decent memory managers have allocation strategies that react differently based on
the size of the allocation. Often, there is a specific handler for tiny allocations (under 256 bytes,
for instance) as well as a general allocation method for everything larger. The idea behind this
is primarily to reduce overhead in allocating very small blocks of memory that tend to represent
the lion's share of allocations in most C/C++ programs. One happy consequence is that it
prevents that group of allocations from possibly splitting the big block in half and causing
fragmentation by preventing them from coming from the same memory pool.

By extending this understanding to the design of a memory manager, it is possible to

420 Game Engine Gems

reduce external fragmentation, at some small expense of internal fragmentation. To illuminate
by exaggeration, if you round up all of your allocations to the largest size you'll ever allocate,
then no external fragmentation is important because no allocation will ever fail due to a
fragmented heap, and any allocation that gets freed can always fit any other allocation that may
come in the future. Of course, all of your memory would be exhausted before that could happen!
Preposterous as it is, scaling back the idea and applying it to smaller allocations, where rounding
up the size is less significant, makes the concept viable. The trick is to make it fast and limit the
amount of internal fragmentation (i.e., wasted space) the strategy produces.

Our approach is to make a very fast small block allocator (SBA) for allocations under 256
bytes, a reasonably fast medium block allocator (MBA) for allocations that are larger than 256
bytes but smaller than a large allocation, and a large block allocator (LBA) for any allocation of
at least 4096 bytes. As mentioned above, the code on the website is templatized, so these
numbers can be modified trivially for your purposes, and when set to equal sizes, you can
completely remove the SBA, the MBA, or both.

Paged Allocation

It is fine to suggest different allocation strategies for different-sized memory requests, but
that memory has to come from somewhere. The simplest method is to preallocate a fixed
number of blocks for each allocation size and hope you don't exceed that limit. Having done
this on shipped titles, we honestly don't recommend it. However, it has one benefit in that you
can determine the size of an allocation based on the address alone (because it is either in the
small, medium, or large region of memory). Still, it is far better to have a flexible solution that
doesn't require tweaking for every project having slightly different memory allocation
characteristics.

The solution is to preallocate in large batches, or pages, and string these pages together to
serve as small- and medium-sized memory heaps. Ideally, these are quite large, granular pages
of equal sizes for both SBA and MBA pages, or MBA pages are at least an even multiple of the
page size used for SBA. This is preferable, as mentioned above, due to the inherent resistance
to fragmentation when allocations are all the same size. By making page sizes large, there are
fewer of them allocated, leading to fewer chances for failure and less overall CPU time spent
managing pages.

Inevitably, a single page does not hold all of the allocations the game needs for a specific-
sized allocation, so pages must be linked together by some data structure. We selected a linked

Chapter 26 A Highly Optimized Portable Memory Manager 421

list for pages to make the traversal cheap and to make it easy to extract or insert pages with
minimal cache line misses. Searching a linked list is slow, so we come up with ways to prevent
the search entirely.

Easing Portability with the OSAPI Class

The exact policy for how and where pages come from is going to vary per platform, so the
memory manager template is parameterized by a class called OSAPI. OSAPI has functions to
allocate and free SBA and MBA pages, allocate and free large blocks, and identify whether a
pointer was allocated by an SBA, MBA, or LBA call. It also specifies the small and medium page
sizes that are created when new pages are requested.

By making this a separate class, you can experiment with various page management
methods without requiring modifications to the rest of the memory manager. Considering the
OSAPI implementation is likely to be almost identical across platforms except for how memory
is allocated, the separation may seem unnecessary, but in the event that one platform needs to
pay very special attention to where memory comes from for certain kinds of data, this class
makes just such an implementation simple. For example, MEM1 is faster than MEM2 on the
Nintendo Wii. It is reasonable to force all small and medium allocations to be in MEM1 by
providing all pages from MEM1, and meanwhile force all large allocations to be in MEM2,
which is fine because the CPU is unlikely to need direct access to large allocations.

26.3 Small Block Allocator

The SBA is implemented as a full page of equally sized blocks, minus a small section of
data at the end of the page called the Tail, which includes a bit mask indicating which blocks
are free, pointers to the previous and next pages, a count of free blocks in the page (for
verification purposes only), and the number of bytes in a single block. Since the number of
blocks in an SBA page depends on both the number of bytes in a block and the size of the page,
this is a variablesized structure and is thus slightly more complicated to deal with than your
typical C structure. Figure 26.2 shows the memory layout for a 4-kB page. The entire Tail and
bit mask fits entirely within a single 32-byte block, which is also smaller than the L1 and L2
cache line size for modern processors.

422 Game Engine Gems

Figure 26.2. This is the memory layout for an example SBA page that totals 4 kB segmented into
32-byte allocations. Notice the tail is the last block and is quite small relative to the amount of
memory managed.

Due to the added complexity of handling variable-sized structures at the Tail, the code is
written in such a way that the fixed-sized portion of the structure is stored in the Tail, and the
bit mask is arranged such that it ends just before the start of the Tail.

Why put the data at the end of the page rather than at the start? It's done partly out of habit
and partly because placing a variable structure at the start of the page would most likely require
some decision making about whether the first block should occur on the next byte, or on the
next 32-byte address, or aligned based on the last block in the page. The choices are likely to be
platform-specific, too. Since this is meant to be a simple, portable system that operates
identically as much as possible on all platforms, the decision to move the metadata to the end
of the page removes all doubt and simplifies the code somewhat. The main risk is that a very
misbehaving program could smash the entire page by overrunning its memory and destroying
the tracking information at the end of the page. True, but this is one reason why the free block
count exists in the Tail structure-to sanity-check the validity of the block whenever problems
arise.

How Alloc() Works

Once a page is found that provides memory allocations of the appropriate size, the job of
the SBA is straightforward. First, we use the page size to determine the location of the Tail

Chapter 26 A Highly Optimized Portable Memory Manager 423

structure and use the block size to locate the start of the free block bit mask. Then, we scan
through the entire bit mask looking for a bit set to one. A bit set to one indicates a free block at
that index. Once found, the bit is set to zero, the free count in the Tail structure is decremented
for accounting purposes, and a pointer is returned to the caller that points to the newly allocated
block of memory.

Notice that we do not describe a failure case for allocation. Of course, we could devise a
system that allows for depleted pages to coexist in the same list as pages with blocks remaining,
but this would be wasteful. Completely depleted pages mixed in with those that have allocations
available would always degenerate into a linked-list search through pages, ending either in an
allocation or a new page being created in the list. A little experimentation with a profiler showed
75 percent of all CPU time was spent waiting for memory cache misses on each page. So, the
memory manager must also handle segregating depleted pages from those that have blocks
remaining. Thus, every time an allocation is requested, it is always found on the very first page
it checks. The result of an allocation can cause that page to be put in the depleted page list or a
new page to be created should the free block page list be empty.

How Free() Works

Deleting a block of memory is a thornier problem. All the system knows is that, based on
the address falling within an SBA page, the SBA must free this pointer. To determine this, it
must also have found the page it came from. Knowing that all pages in the SBA are the same
size, the Tail structure is always at the same offset from the start of a page. However, the start
of the bit mask varies depending on the number of blocks in the page. This can be calculated
from the number of bytes per block, which we stored in the Tail structure for this purpose.

Based on the block size and the pointer, the index into the free block bit mask that
represents this memory is simply (ptr - pageStart) / blockSize. We set the bit to one,
indicating it is free for allocation. Notice that there is no need to explicitly handle adjacent free
block coalescing because every block in the page is the exact size that is allocated.

Finally, the results of a free operation on a page that was completely depleted of free blocks,
is to reinsert the page into the list of available memory pages.

Performance Analysis

The two major operations, allocation and deallocation, are very fast. Deallocation is a
constant-time O(1) operation and has no loops once the SBA page has been located. Locating

424 Game Engine Gems

the page is a separate operation, described in Section 26.6. Allocation requires scanning for set
bits in a bit mask, on average n/2, where a page is divided into n blocks. A naive C
implementation of scanning for set bits using bytes can be this slow, however, we can trivially
test 32, 64, or even 128 bits at a time by loading the mask into a register and comparing against
zero, generally in just two instructions. Intel CPUs can use the bit scan forward (BSF)
instruction to check for the first set bit in either a 32- or 64-bit register in just a few cycles. In
addition, for most practical page and block sizes, the entire Tail structure and free block bit
mask fits within a single L1 cache line, ensuring the fastest possible allocation performance.

As a specific example, given a 4-kB page with 32 bytes per block, there are 127 allocatable
blocks per page plus one reserved block for the Tail structure. This is 127 bits for the bit mask,
which fits in only four 32-bit words. Worst case, obtaining an allocation requires four 4-byte
requests from memory, but on average finds a free block in two requests. The first load causes
a delay as a cache line is flushed and another is pulled into the L2 and L1 caches, but the second
load requires only one or two cycles on typical hardware.

Memory Overhead

The SBA scheme described is very memory-efficient. For a given page, there is a fixed
amount of overhead due to the Tail structure of exactly 12 bytes. There is also a variable
amount of overhead for the bit mask, which is always rounded up to the next four-byte
boundary, and occupies one bit per block in the page. For the 4-kB page with 32 bytes per block
above, this works out to 16 bytes for the bit mask. So the total amount of management overhead
within a single SBA page is less than two bits per allocation. In practical settings, pages are
probably larger than 4 kB, resulting in overhead that rapidly approaches one bit per allocation.
Contrast this with dlmalloc, which has a relatively efficient 16 bytes of overhead per allocation.

26.4 Medium Block Allocator

The MBA serves a slightly different purpose than the SBA, but does so through similar
techniques. The MBA works by always rounding up allocations to a fixed block size so that
fragmentation is more manageable. Similar to the SBA, the MBA expects to be handed pages of
some fixed size, requiring a Tail structure at the end of each page to manage multiple memory
pages. Also, a bit mask is used to mark individual blocks as free or available. The similarities
end there.

Chapter 26 A Highly Optimized Portable Memory Manager 425

Since the MBA must service many different allocation lengths, it is infeasible to create
separate large pages just for each granular jump in size. This is particularly true since the page
size is fixed-as the medium allocations increase in size, a single page might not hold more than
one or two allocations of maximum length, and any remainder is wasted. Thus, a new technique
is required that allows many allocations of varying length to share a single page. Further, all
pages need to have the same block size, or allocation granularity, as a method of improving
performance as well as simplifying the code that handles allocation and deallocation. It would
be difficult, if not impossible, to predict the ideal block size for a page since allocation sizes vary,
so it works out better to have the user just supply one that is globally applied for MBA pages.

The logical first step is to allow sequential blocks to be considered as a single allocation.
The allocation function can be modified to scan the free block bit mask to find a sequence of set
bits long enough to enclose the allocation or step to the next page. Should no page have enough
blocks, a new page can be allocated. However, this is a slow operation due to the number of bit
scans and potential number of page traversals, sometimes resulting in a long linked list traversal
that ultimately fails.

A major improvement is to record the largest block that can be allocated in the Tail
structure of the page, along with the bit index of where that block is located. Armed with this
information, the memory manager can simply keep a table of page lists, ordered by big block
size, so that allocation is always attempted on a page that is known to have enough space. Thus,
no searching is required once a page is located, and pages can be located very quickly. More
details are provided on this later.

The second wrinkle is that allocation can work with the data as specified, but we cannot
free a block of memory without knowing how many blocks are in each allocation. And without
knowing how long the allocation is, there's no way to embed a length variable at the end of each
allocation. Most competing memory managers embed the length variable just before the pointer
address in memory, but we reject that option since it means wasting the first block in any given
page (which would precede any allocation on the page). That's much too wasteful. Instead, we
could store a value in an array at the end of the page, similar to how the free block bit mask is
stored, although that is quite expensive as well. Considering most of the allocations are larger
than one block, many of the entries in this array would be unused at any given time. Even if we
stored the length per block in one byte, it would be far too wasteful!

426 Game Engine Gems

Figure 26.3. This is the memory layout of an MBA page. This particular example is a 16 kB page
with 128-byte blocks. All of the management metadata fits within a single block at the end of the
page.

The solution: store a single bit in a bit mask that identifies whether a block is at the end of
an allocation. The pointer passed in to the Free() function identifies the start of the block
already. Using these two pieces of information, we can extrapolate the length of an allocation
simply by scanning the bit mask forward looking for a set bit. As a matter of standards, in the
code provided, unallocated blocks have their end-of-allocation bit set to zero, but it won't ever
be checked so it shouldn't matter. See Figure 26.3 for a more visual explanation.

How Alloc() Works

Once a page is found, the MBA simply looks up the large block index in the Tail structure,
marks the range of bits as allocated in the free block bit mask, and clears all the bits except the
last one in the end-of-allocation bit mask. This is enough information to allow the Free()
function to determine the length of the original allocation given only the pointer address.

Now that the big block in the page has been at least partially allocated, we have to find the

Chapter 26 A Highly Optimized Portable Memory Manager 427

new big block in the page. This entails scanning the free block bit mask and finding the longest
run of set bits, remembering the index and size of the longest one. Once this is done, it is stored
in the Tail structure in the page for future use.

The pointer to the allocation is returned to the memory manager. The memory manager
then must grab the big block size from the page and rearrange that page to a different list based
on the size of its big block, so future allocations do not need to skip over insufficient memory
pages.

How Free() Works

Once the page manager has identified the page, the MBA begins by scanning the end-of-
allocation bit mask at the end of the page and counting 0 bits until a 1 bit is found. This marks
the end of the allocation and implicitly defines the length of the allocation. We set the free block
bit mask to one for all the blocks between the start and end of the allocation, and clear the end-
of-allocation bit to zero (though this is not strictly necessary).

Since the memory region that was just released plus any adjacent free blocks might sum to
a larger big block, we update the big block size, just as was done in the Alloc() function. Again,
the memory manager requests this updated information from the page and reorders its internal
structures based on the big block size in this page to optimize the next allocation.

Performance Analysis

Allocation and deallocation are very fast. The act of taking possession of the requested
memory once a page is found is simply a few pointer additions and a couple of memory
dereferences. Setting a few bits in the free block bit mask is a relatively quick n/32 operation
when using 32-bit bitset operations, where n is the number of blocks that the allocation spans.
Free() performs the same operations as Alloc() , except that it reads bits from the free block
bit mask rather than sets them. However, searching for the big block takes m/32 memory
accesses, where m is the number of blocks in the page. Since m is a constant for a given page
and block size, technically both of these analyses are bound by a constant time (O(1)), meaning
the number of cycles that is required can be computed at compile time. Practically speaking, it
is very fast, requiring only one L1 cache line to be loaded if page and block sizes are carefully
chosen for your architecture.

Here's a specific example: given a 16-kB page with 128 bytes per block, there are 127
allocatable blocks per page plus one reserved block for the Tail structure. This is 127 bits for

428 Game Engine Gems

the bit mask, which fits in only four 32-bit words. A good target is to make all MBA pages at
least two times larger than the maximum medium block allocation size to improve memory
performance when allocating close to the maximum. In the worst case, a single allocation might
be half the size of a page, thus writing 64 bits, 32 bits at a time. The first load causes a delay as a
cache line is flushed and another is pulled into the L2 and L1 caches, but the second load takes
only one or two cycles on typical hardware.

Memory Overhead

The MBA scheme is almost as efficient as the SBA approach, given that the memory
requirements are very similar with an extra bit mask and a couple more words stored in the
Tail structure. For any page, the Tail structure is 20 bytes in size. There is a fixed amount of
overhead for the two bit masks, which is two bits per block, aligned and rounded up to the next
32-bit word. For a 16-kB page with 128 bytes per block, this is 32 bytes for bit masks.
Management overhead for this example is under three bits per block, but since allocations tend
to span many blocks, this could add up. The largest reasonable allocation in this example page
size would be 8 kB (half the page size), which covers 64 blocks. At two bits per block, this worst-
case allocation overhead is 16 bytes. dlmalloc appears to have 16 bytes of overhead per allocation,
regardless of its size, and those bytes are spread out in memory causing random cache misses.
In our system, the cache lines involved in storing memory management metadata are far more
likely to be accessed again in the future.

26.5 Large Block Allocator

There are many techniques for making memory management faster, but none so easy as
handling a few large allocations. In general, dealing with a few large allocations is the simplest
of all possible cases and, thus, is really not worth putting effort into. For this, feel free to
substitute any allocation strategy that is suitably efficient. dlmalloc can be configured to have
an mspace heap constrained within the address range from which your large blocks are allocated.
This is quite sufficient.

If you plan to write your own LBA, a simple linked list of free blocks and a separate linked
list of allocated blocks would work fine. Best-fit strategies tend to fragment more over time, but
if your memory use tends to be generational (e.g., many allocations have matching lifetimes and
are freed at the same time), almost any method works fine. For very specific cases, you might

Chapter 26 A Highly Optimized Portable Memory Manager 429

explicitly carve out memory for all large allocations or even use a simple stack allocator, where
the entire heap is reset with a single pointer being reset to the top of the stack. Use what makes
sense for your team and project.

The one point that should be made is that the system should have some way of deciding
whether a pointer is an LBA pointer or whether it belongs to the SBA or MBA. The simplest
way is to check the SBA and MBA first, although this may become a performance problem if
those operations are slow. Alternatively, keeping a map, a hash table, or even a simple array of
allocations may be fine. There shouldn't be too many large allocations, and unless your project
allocates and deallocates them frequently, any slowdown here is acceptable.

26.6 Page Management in the Memory Manager

One of the early performance bottlenecks of our system was the handling and searching of
pages inside the memory manager. Once each allocation strategy is fast inside a single page, it
is all the more critical to make sure the memory manager itself can quickly figure out from what
page to allocate memory. Finding the right page to free memory from is really an operation that
is performed by the OSAPZ because it may have special knowledge of determining that based on
the page handling implementation.

SBA Pages

Page management for small block pages is relatively straightforward. Since each page has
a specific block size that it can allocate, the memory manager simply keeps two tables of linked
lists of pages. One table contains pages that have absolutely no free space in them (and are thus
useless when trying to allocate memory). The other table contains pages that have at least one
free block available. As shown in Figure 26.4, each list contains pages that have equal block sizes,
so whenever a page fills up, it can be moved to the full table, and the next page in the available
list will service the next request. Any time a block is freed from a page in the full list, that page
is moved back to the available list for that block size. Because of this, no searching for an
allocation is ever required!

430 Game Engine Gems

Figure 26.4. The SBA always allocates a single sized object from each list of pages. So to prevent
searching, full pages are removed from the list from which we allocate.

It should be noted that the current implementation of the page management feature for
SBA always requires allocations be as tightly fitting as possible. As a result, any time there are
no pages of exactly the correct block size, a new page must be allocated for that block size and
added to the available list. In lowmemory conditions, however, this could cause an early failure
to allocate because larger block sizes might be available but not considered for allocation. You
may wish to implement this as a fallback in case of page allocation failure to extend the life of
your game in the event of memory exhaustion. Alternatively, you might always return a piece
of memory that is already in an available page rather than allocating a new page when a block
size runs out of pages, which may help utilize memory more effectively (although it is quite
wasteful) because it will wait until the absolute last allocation is used before requesting a new
page. Or use some hybrid approach in which the next three or four block sizes are considered
valid if the correct one is full.

MBA Pages

Medium block page management is more complicated only because the lists are
constructed based on the size of the largest available block in each page. Consequently, for
nearly every allocation or deallocation, the affected page most likely has its list pointers adjusted.
Unlike SBA, it is entirely possible that no big block matches the requested allocation size exactly
(see Figure 26.5 for an example of a sparse page list). In fact, a brand-new page would show the
big block being the full size of the page (minus the metadata overhead in the Tail structure),
so requesting a new page is also not likely to add a page in the list to which the allocation first
indexes. So, whenever a specific-sized list is empty, the page manager must scan the larger lists

16 bytes

24 bytes

32 bytes

40 bytes

48 bytes

56 bytes

Pages with Blocks Available

16 bytes

24 bytes
 32 bytes
 40 bytes
 48 bytes
 56 bytes

Full Pages

Chapter 26 A Highly Optimized Portable Memory Manager 431

looking for a page, guaranteeing that the allocation function succeeds. However, since list
pointers are four bytes each in a 32-bit machine, an array of pointers actually requires multiple
cache lines and far too many fetches from memory for good performance. Instead, we
implement the lookup first as a bit mask that uses 0 to indicate a null pointer and 1 to indicate
any non-null pointer. In this way, a single cache line can track the availability of hundreds of
lists with just a few memory fetches.

Figure 26.5. This MBA page table shows two pages that are completely full, one with 384 bytes in
a single block, and another with 640 bytes in a single block. It makes no statement about how many
blocks of that size might exist or how many smaller ones exist.

26.7 OSAPI Ideas

All interactions that the memory manager has with the underlying operating system are
tucked away in the OSAPI. The OSAPI has to be able to tell immediately what kind of page an
allocation comes from and be able to return the pointer to the start of that page. This has to be
very fast, or it becomes the bottleneck for all other memory operations. It also must be able to
allocate new pages and delete pages that are empty and no longer needed.

There are many possible approaches to implementing the OSAPI. Our research on this has
not yet reached a final best solution, and indeed, we believe that the right solution depends on
the project and platform. Even so, there are a few ways to implement the OSAPI's page tracking,
so we discuss some here.

The OSAPIForWindows is implemented such that all SBA and MBA pages are tracked in a
std::set, which is implemented as a red-black tree. While theoretically fast, each node requires

0 bytes

128 bytes

256 bytes

384 bytes

512 bytes

640 bytes

Arranged by Big Block Size

432 Game Engine Gems

its own allocation, which can both fragment the underlying heap and be slow. Pages are
allocated using the VirtualAlloc() function, which has some implications for ideal page size,
especially on 32-bit systems where the amount of address space mapped should be equal to the
physical memory being mapped. Performance is not great, but it does work well as a
rudimentary example of how to implement the features required by the interface. It also suffers
due to the many calls to VirtualAlloc() and VirtualFree() , causing thunks into the kernel
to allocate memory. With this technique, operating system functions show up on performance
profiles-never a good sign.

The OSAPIFastForWindows is an improved version that preallocates a big chunk of
memory and assigns pages from this chunk. To maximize flexible use of this space, SBA and
MBA pages are set to the same size and are allowed to change from small- to medium-sized
pages while the page is empty. This is accomplished simply by tracking the type of page with an
array of bits and tracking whether the page is in use with another array of bits. To limit time
spent searching for free pages, a simple start index is stored in the class that remembers the last
index to a freed page. It is not required to be accurate, but it does give a good place to start
searching and usually returns a hit on the first attempt to allocate a page. However, this
implementation has the downside of being rather static, and if there are times when too many
large allocations are made, or too many small or medium allocations are made, the system could
catastrophically fail.

Future systems could be written to have completely different allocation strategies. For
instance, it could be smart about allocating pages from lower memory addresses and allocating
large blocks from higher memory addresses until the two collide somewhere in the middle.

It is also intended that the OSAPI be platform-specific, tuned to the exact amount of
memory that is used in the system. There is no real benefit to having a generic page handling
system if there is no flexibility in the amount of memory available to the game on a specific
piece of hardware. A custom page handler, specifically one that knows the address range that
could possibly exist for allocations and can reduce the identification of pages to a shift and bit
mask operation to create an index into a hash table is ideal. For instance, the Nintendo Wii can
only return certain addresses for MEMI and MEM2, so if the LBA is known to allocate
exclusively from MEM2, it is easy to identify. Similarly, if the SBA and MBA allocate from
MEM1, we can create a simple bit array that maps exactly the memory addresses used on the
console and know which kind of page each pointer belongs to simply by rounding off the
address and looking it up.

27
Chapter 27 Simple Remote Heaps

Jason Hughes
Steel Penny Games, Inc.

27.1 Introduction

A remote heap is an old tool in the memory management toolbox. It is appropriate to
consider using a remote heap whenever a memory architecture is segmented, such as on the
Wii, where MEMI is much faster than MEM2 and can benefit from having all the allocation and
deletion work done with lower latency. A remote heap is also useful when a processor has to
handle feeding other custom processors with their own local memory, such as pushing audio
data to a sound chip, when the only way to touch that memory is via bulk DMA calls that have
significant latency. Similarly, on the PlayStation 3, the PPU may want to treat the memory
associated with each SPU as a remote heap so that it can play traffic cop, with data whizzing
back and forth, without needing to have direct access to their individual memories.
Conceptually, remote heaps could also be used in a unified memory architecture using multiple
processors, such as the Xbox 360, where each heap is mutually distinct and partitions memory
for each CPU to work on, with a guarantee that no other processor will cause mutex blocking
at the central memory manager.

Considerations

There are limitations to every technique. Unfortunately, remote heaps suffer from a
significant overhead in performance and local memory footprint, which can be traced primarily
back to the fact that the only data that a typical program has to refer to an allocation is its address.
In a standard heap, metadata describing each allocation is stored a few bytes before each
allocated block of memory, so operations such as Free() tend to do some quick pointer

434 Game Engine Gems

arithmetic to do their work. This is not as straightforward with a remote heap because that
metadata has to be associated with an address, without the benefit of storing data at that address.
Designing a good remote heap means flirting with hash tables, red-black trees, or similar data
structures.

Unfortunately, hash tables of addresses are terrible when searching for memory to allocate
(sequential allocations would be randomly scattered through memory and have O(n) allocation
time, where n scales with the hash table rather than with the entries used) and equally bad for
merging adjacent free blocks.

Red-black trees of addresses (such as the standard template library map) are memory
hungry and somewhat tedious to set up with allocators from fixed memory pools but do work
very well when freeing blocks in O(log n) time, where n is the number of current allocations,
and merging adjacent free blocks is a constant-time operation (neglecting the reordering of the
tree when a node is deleted). Unfortunately, they have O(n) running time for allocation because
bestfit and first-fit strategies must scan all blocks to find free space.

One solution is to carefully pack bits so that the O(n) searches are as fast as possible. Here,
we accept the worst-case performance and try to make the best of it. There are some benefits to
this method, which is why we present it. Sometimes it is ideal. In general, though, it lacks
performance. We call this the "bitwise remote heap" approach because each unit of memory is
represented as a single bit.

The other solution is to realize that a single address-based data structure is not ideal for all
functions. However, keeping two structures in sync tends to force each data structure to have
the worst-case performance of the other. Our solution is to allow them to fall out of sync and
correct mistakes as they are detected. We call this the "blockwise remote heap" because it tracks
individual allocations as single units.

27.2 Bitwise Remote Heap

Overview

The bitwise remote heap is very similar to the Medium Page Allocation scheme described
in the previous chapter. The basic idea is to manage a block of memory (or rather, a range of
addresses) in equally sized chunks by associating each chunk's availability with a single bit in a
packed bitmap. If the bit is true, the block is currently free. If the bit is false, it is part of an

Chapter 27 Simple Remote Heaps 435

allocation already. This convention may seem strange, but it was chosen specifically because
Intel CPUs can find the next set bit in a single instruction1, and we're always looking for free
blocks. On other processors, the opposite might be true.

One downside of this approach is that all allocations must be rounded to an even
granularity of the chunk size, which can be wasteful if this size is set too large. Another
disadvantage is that, when finding an allocation, the implementation may need to scan all of
the bits in the bitmap, only to fail. This failure grows slower as the number of bits in the bitmap
increases.

Consequently, this kind of implementation is ideal when relatively few allocations are
required, they can be easily rounded to a specific size, and the amount of memory managed is
relatively small. This sounds like a lot of restrictions to place on a remote heap, but in reality,
they are satisfied quite frequently. Most remote heaps dealing with custom hardware, such as
audio processors or specialized processors (vector units, GPUs, etc.), have alignment
requirements anyway, and they often have a relatively small block of memory that needs to be
managed.

Algorithm

The bitwise remote heap has only two important functions:

 A11oc(). The obvious method for finding a free block of memory in a bitmap is to scan

for a sequence of bits that are set. This can be accomplished by loading 32 bits at a time,

scanning for the first 1 bit, noting that location, then scanning for the first 0 bit after it.

Often this requires spanning multiple 32-bit values in sequence, so an optimized routine

is required. Also, many processor architectures have assembly language mnemonics that

do this kind of search in a single instruction for further performance enhancement. Clearly,

this operation has worst-case n/32 memory fetches, where n is the number of bits in the

heap bitmap. Once the range is found, the bits in the range are set to zero. A single bit is

set in an end-of-allocation bitmap that tells what the last block in the allocation is. Think

of it like null-terminating a string.

 When deleting a chunk of memory, we simply turn a range of 0 bits into 1 bits, scanning

forward until we find the allocation terminator bit in the end-of-allocation bitmap. Once

436 Game Engine Gems

found, we clear the terminating bit as well. Coalescing free blocks is completely

unnecessary because adjacent free bits implicitly represent contiguous free memory. Thus,

there is relatively little management overhead in deallocation.

Certain small changes can dramatically improve performance. One major bottleneck is
scanning thousands of bits to look for memory. The simple trick of remembering a good place
to start searching can cut the search time significantly when making repeated calls to
A11oc().When doing this, every allocation that succeeds remembers the very next bit as the
starting point, since large blocks of memory tend to be partitioned into smaller ones, and the
next piece of free memory is likely to be next. Also, whenever a block of memory is released in
Free(), we reset the starting point if the address is lower than the current starting point. This
is very similar to a first-fit allocation strategy, while skipping a lot of searching. However, this
method can fail when an allocation occurs close to the end of memory and most of the free
blocks are at the start, so an additional loop must check for allocations up to the starting point
in the event of an allocation failure. This tiny change is extremely important for good
performance. See Table 27.2 at the end of the article for a comparison.

A further improvement, which we have not personally implemented, would be to remove
the O(n) search entirely. This could be accomplished by keeping a hierarchical table of bitmaps,
where each bit represents the free status of several bits at the lower level. Along with such a
system comes inaccuracies in determining whether a block is available for an allocation,
meaning more A11oc() failures, but it fails more quickly. Sometimes that's a good trade-off.

Finally, a simple, cheap improvement would be to create a table of free block addresses
that is sorted by the size of the free block. This makes allocation extremely quick because any
allocation request is simply a query against this table for any block of at least the requested size,
running up the table to larger blocks if no blocks of the right size are available. However,
deallocation becomes slower because now, bits must be scanned in both directions to effectively
coalesce blocks. The bookkeeping required to maintain a useful table is slightly complicated and
might become a significant overhead if many small fragments begin filling up the table. Thus,
we would not bother keeping small free chunks in the table, since searching is likely to provide
a valid block, but anything over some threshold that is less likely to find space would be a good
candidate for keeping in the table. This probably results in O(n) deallocation, but on a heavily
loaded heap, it would be negligible in practice. So, again, it might be a good trade-off.

Chapter 27 Simple Remote Heaps 437

27.3 Blockwise Remote Heap

Overview

The blockwise remote heap is quite similar in implementation to a standard heap, except
that it does not benefit from storing extra data immediately prior to the address in user-memory.
Since we cannot use the address to quickly find metadata about allocations, the naive
implementation leaves us with a linked list of tracking blocks, ordered by address. A naive
implementation forces all allocations to scan the heap's tracking linked list before allocating or
freeing any memory. A naive implementation has a slow O(n) running time, where n is the
number of allocations in the heap.

The implementation on the website does not attempt to make Free() as fast as possible
but, rather, does a simple linked list search. This could be improved by creating a second data
structure that keeps the tracking block pointer associated with each allocated address, perhaps
in a hash table or balanced tree, but that is an exercise left to the reader. The memory
requirements for such a structure are substantial and may be entirely unnecessary for
applications where Free() is rarely or never called, but rather, the entire heap is dropped all at
once.

However, since fast allocation is actually a complicated problem, we present a solution that
is nearly constant-time for the majority of allocations and is linear for the rest. We do this by
maintaining a bookmark table that essentially points to the first free block of each power-of-
two-sized block of free memory. It remembers the last place the code found a free block of each
size. Once we allocate a block, that entry in the table may no longer be accurate. Updating the
entry may require a full traversal of the heap, a very slow operation, so we allow it to become
stale. Instead, during allocation and free calls, we store any blocks we come across in the table
at the appropriate (rounded down to the next) power of two. While there is no guarantee that
the table is updated, in practice it tends to be close, at no additional performance cost. During
an allocation, if a table entry appears invalid, we can always check the next-higher power of two,
or the next, until one is found to be valid. In most cases, this works very well. In empirical tests,
65 percent of the allocations have positive hits on the cached references in the bookmark table,
which means 65 percent of the long searches for free memory were avoided.

The tracking data for allocations is stored in a pool with a threaded free-list, making the
location of a valid metadata block during allocation and deletion an O(1) operation. Threaded

438 Game Engine Gems

free-lists act like a stack, since we simply want a blank node to write to when allocating (pop)
and want to return a node to the unused pool when freeing (push). As in any other standard
pool implementation, the used and unused structures occupy the same physical memory at
different times, and we just cast to one or the other, depending on the current state of that block.
To aid in debugging, as well as to facilitate lazy bookmarking, unused metadata nodes are
marked with a sentinel value that cannot appear in an allocation, so we can repair the bookmark
table when it gets out of date.

Many heap implementations treat free and used blocks with separate tracking data types
and store a flag or sentinel to know which metadata is which. I always simplify mine by
combining tracking data for used and free blocks into a single structure. This has two benefits:
first, the memory requirements are extremely minimal to do so, and second, half the number
of linked list iterations are required to walk the entire heap. If you think about it, just about
every allocation will have at least a few bytes of free space after it (for hardware alignment
reasons), and the heap has to decide whether to assign each tiny piece of memory its own node
in the heap or consider that memory to be part of the allocation. These decisions need not be
made at all if there is no distinction made, and thus, no cost added.

Even when there is no free memory between two allocations, this is no less efficient. It does
have a minor downside in that the memory requirements for each metadata node are slightly
higher, but not significantly so. See Listing 27.1 for an example of a metadata node.

Listing 27.1. An AllocatedBlock represents an allocated chunk of memory in the remote address
space and some number of unallocated bytes that immediately follow it.

struct AllocateBlock

{

 unsigned int mAddress; // This is where the block starts.

 unsigned int mAllocBytes; // Allocated bytes are at the BEGINNING

 // of the allocation.

 unsigned int mFreeBytes; // Free bytes are at the END.

 unsigned int mNextBlockIndex; // This is a linked list in address-order

 // and makes allocation and merging quick.

};

Chapter 27 Simple Remote Heaps 439

In a standard heap, a metadata block, such as AllocatedBlock, is stored just prior to the
actual address of the allocation. In a remote heap, we can't do that. Instead, we store these blocks
in a typical allocation pool, where some of the blocks are currently in use, and some are not (see
the UnusedBlock declaration in Listing 27.2). Note that both structures have "next" pointers.
An AllocatedBlock only points to other AllocatedBlock structures, so scans of the heap are
limited to real allocations. The UnusedBlock only points to other UnusedBlock structures and
is effectively a threaded free list.

Recall that the lazy power-of-two table that helps with allocation keeps pointers into this
pool to know where free spaces are. Under normal circumstanc es, a pool structure would never
link to an unused node, but with a lazy bookmark table, we can and do. We must, therefore,
have a way to detect an unused node and handle it gracefully. This is the reason for the sentinel
value. Whenever we look for an allocation using the bookmark table, we can tell if the block is
still allocated by casting the block to an UnusedBlock and checking the mSentinel variable. If
it is UINT_MAX, clearly the table is out of date, and we should look elsewhere. Otherwise, we cast
to an AllocatedBlock and see if the number of free bytes is sufficient to satisfy the new
allocation.

Listing 27.2. These are placeholders in the local memory pool of AllocationBlocks, the
metadata for the remote heap.

struct UnusedBlock

{

 // This is a threaded free list inside the mAllocations pool.

 // Doing this allows for O(1) location of AllocatedBlock

 // objects in the pool.

 unsigned int mSentinel;

};

One other trick that simplifies the code is the use of a dummy block in the linked list of
allocations. Since the initial block has all the free memory and no allocations, we need to have
some way to represent that for the Free() function. Rather than write a hairy mess of special-
case code for the first allocation, we just initialize one node to have the minimum allocated
block and all the remaining free bytes and stick it in the list of allocations. This node always
stays at the head of the list, and consequently, all other allocations come after it. Note, however,
we never count that node as a user allocation, so the number of real allocations available to the

440 Game Engine Gems

user is one fewer than what is actually present.

Algorithm

The blockwise remote heap also has only two interesting functions:

 A11oc(). First, we compute what power of two can contain the allocation, use that as an

index into the bookmark table, and find the metadata block for the associated slot in the

table. If we find a valid block with enough free space, we're set. If not, we iteratively search

the next-highest power of two until we run out of table entries. (This scan is why

fragmentation is so high, because we're more likely to cut a piece out of the big block rather

than search the heap looking for a tighter fit someplace else.) If no large block is verified,

we search the entire heap from the start of the memory address space looking for a node

with enough free bytes to afford this new allocation. Then, the new allocation information

is stored in local memory in a metadata node. The allocation of a metadata block is quite

simple. We pop an AllocatedBlock off the metadata pool (which is always the first

UnusedBlock), fill out the structure with information about our new allocation, reduce

the free bytes of the source block to zero and assign them to the new block, and link the

new block into the list after the source block, returning the remote memory pointer to the

caller. Since we have a dummy block in the linked list that is always at the head, we never

need to worry about updating the head pointer of this list.

 Free(). The operation that hurts performance most is searching the heap for a memory

address (or free block of sufficient size). Free() has to search to figure out where an

address is in the heap. This is quite slow and dominates the running time of the heap

implementation. While searching, we keep the pointer to the previous node so we can

collapse all the memory into it once the address is found. The merging operation simply

adds the free and allocated bytes to the previous node, links around the deleted node, and

releases the metadata back to the pool. Consequently, freeing data is an O(n) operation,

where n is the number of live allocations.

The bookmark table is updated after every allocation and deletion so that any time a piece of
free memory is available, the appropriate power-of-two indexed slot is given the address to its

Chapter 27 Simple Remote Heaps 441

metadata node. There is no sense in checking hundreds or thousands of nodes if they are in the
bookmark table during every operation, so updates are limited to overwriting what is currently
stored there, not cleaning out the table when sizes change. As a result, the table can sometimes
point to metadata nodes that are smaller or larger than expected, or have even been completely
deleted. So, anywhere the code consults the bookmark table, it verifies the data is good and
corrects the data (by marking it empty) if not.

For better performance, an improvement could be made by using a doubly linked list of
metadata nodes and a hash table or tree structure that maps addresses to metadata pointers. At
some expense to memory, you can get as good as O(1) running time by doing this. We have not
done this, but it is a straightforward extension.

27.4 Testing Results

The testing methodology is intentionally brutal to show worst-case behavior. The test unit
performs 1,000,000 allocations and deletions in a random but identically reproducible order,
with an average of five allocations for every four deletions, eventually filling memory and
causing memory allocation failures. The memory block size managed by the heap is 8 MB.
Given the differences in each heap's allocation strategy, the number and size of allocation
failures would grow at different rates based on the various parameters to each heap.

Memory Efficiency

The results in Table 27.1 show that the bitwise method is very good at packing the
maximum amount of data into a remote heap, regardless of the granularity. Comparatively
worse, the blockwise method is not as economical on memory use (i.e., it results in fewer
successful allocations) and scales even more poorly as the number of managed allocations drops,
most likely because the metadata table is full.

Table 27.1. Memory allocation efficiency comparison between remote heap types.

Heap Type Parameter Allocation Failures
(lower is btter) Local Memory Usage

Bitwise 8-byte granularity 25268 64 KB
Bitwise 32-byte granularity 25291 16 KB
Bitwise 128-byte granularity 25425 4 KB
Blockwise 4096 metadata blocks 25898 64 KB

442 Game Engine Gems

Blockwise 1024 metadata blocks 28802 16 KB
Blockwise 256 metadata blocks 30338 4 KB

The allocation count reservations for the blockwise tests are chosen such that the amount
of local memory used is roughly equal between the two heap types. We chose this metric not
only because it's a valid comparison but also because we found that there is a hard limit above
which adding more allocation space to the blockwise heap yields no benefit whatsoever, and
indeed, begins to lose its CPU performance edge. The second key point is that the bitwise
method is significantly more compact in memory, if memory is tight.

Performance

Table 27.2 shows how drastically different the performance is between bitwise remote
heaps and traditional metadata remote heaps. The two bitwise tests differ solely on the basis of
whether the cached starting point was used. These test results clearly show that avoiding a
complete search by caching the last free block's location is at least 50 percent better and
improves performance further as the allocation bitmap gets longer. Some CPU architectures
are much faster or much slower, depending on how the bit scan operation is handled. Moving
to a wider data path, such as 128-bit MMX instructions, or using 64-bit registers, could
potentially double or quadruple the performance, making bitwise an excellent choice.
Hierarchical bitmasks could also take numerous O(n) operations and make them O(log n).

Table 27.2. Raw CPU performance tells a very different story.

Heap Type Parameter Time, in Seconds
(lower is btter) Local Memory Usage

Bitwise (no cache) 8-byte granularity 41.31 64 KB
Bitwise (no cache) 32-byte granularity 24.54 16 KB
Bitwise (no cache) 128-byte granularity 13.37 4 KB
Bitwise (cache) 8-byte granularity 19.90 64 KB
Bitwise (cache) 32-byte granularity 13.15 16 KB
Bitwise (cache) 128-byte granularity 8.92 4 KB
Blockwise 4096 metadata blocks 5.62 64 KB
Blockwise 1024 metadata blocks 1.60 16 KB
Blockwise 256 metadata blocks 0.56 4 KB

With these performance characteristics in mind, it does appear that a blockwise heap is far
superior in terms of performance; however, be aware that the number of allocations that the

Chapter 27 Simple Remote Heaps 443

blockwise heap can fit is reduced significantly as the allocation count is reduced. The time
required to allocate with the blockwise heap is relatively constant, but the current
implementation causes deallocation to scale linearly with the number of allocations in the heap,
hence the linear relation between allocation count and speed.

28
Chapter 28 A Cache-Aware Hybrid Sorter

Manny Ko
Dream Works Animation

Sorting is one of the most basic building blocks of many algorithms. In graphics, a sort is
commonly used for depth-sorting for transparency [Patney et al. 2010] or to get better Z-cull
performance. It is a key part of collision detection [Lin 2000]. Dynamic state sorting is critical
for minimizing state changes in a scene graph renderer. Recently, Garanzha and Loop [2010]
demonstrated that it is highly profitable to buffer and sort rays within a ray tracer to extract
better coherency, which is key to high GPU performance. Ray sorting is one example of a
wellknown practice in scientific computing, where parallel sorts are used to handle irregular
communication patterns and workloads.

Well, can't we just use the standard template library (STL) sort? We can, but we can also
do better. How about up to six times better? Quicksort is probably the best comparison-based
sort and, on average, works well. However, its worstcase behavior can be O(n2), and its memory
access pattern is not very cachefriendly. Radix sort is the only practical O(n) sort out there (see
the appendix for a quick overview of radix sort). Its memory access pattern during the first pass,
where we are building counts, is very cache-friendly. However, the final output phase uses
random scatter writes. Is there a way for us to use radix sort but minimize its weaknesses?

Modern parallel external sort (e.g., AlphaSort [Nyberg et al. 1995]) almost always uses a
two-pass approach of in-memory sort followed by a merge. Each item only has to be read from
disk twice. More importantly, the merge phase is very I/O friendly since the access is purely
sequential. Substitute "disk" with "main memory" and "memory" with "cache," and the same
considerations apply-we want to minimize reads from main memory and also love the
sequential access pattern of the merge phase.

Hence, if we partition the input into substreams that fit into the cache and sort each of

446 Game Engine Gems

them with radix sort, then the scatter writes now hit the cache, and our main concern is
addressed. One can substitute shared memory for cache in the above statement and apply it to
a GPU-based sort. Besides the scattering concern, substreams also enable us to keep the output
of each pass in cache so that it is ready for the next pass without hitting main memory
excessively.

Our variant of radix sort first makes one pass through the input and accumulates four sets
of counters, one for each radix digit. We are using radix-256, which means each digit is one
byte. Next, we compute the prefix sums of the counters, giving us the final positions for each
item. Finally, we make several passes through the input, one for each digit, and scatter the items
into the correct order. The output of the scattering pass becomes the input to the next pass.

Radix sort was originally developed for integers since it relies on extracting parts of it using
bit operations. Applying it directly to floating-point values works fine for positive numbers, but
for negative numbers, the results are sorted in the wrong order. One common approach is to
treat the most significant radix digit as a special case [Terdiman 2000]. However, that involves
a test in the inner loop that we would like to avoid. A nice bit hack by [Herf 2001] solves this
nasty problem for radix sort.

For efficient merging, we use an oldie but goodie called the loser tree. It is a lot more
efficient than the common heap-based merger.

At the end we get a sorter that is two to six times faster than STL and has stable
performance across a wide range of datasets and platforms.

28.1 Stream Splitting

This chapter discusses a class using Wright's [2006] sample as a base to obtain the cache
and translation lookaside buffer description of various Intel and AMD CPUs. The basic code is
very simple since it uses the cpuid instruction, as shown in Listing 28.1. Some of the detailed
information is not available directly from the returned results. In the sample code on the website,
a lot of the details based on Intel's application notes are manually entered. They are not needed
for the purpose of the sample code, which only requires the size of the caches.

Chapter 28 A Cache-Aware Hybrid Sorter 447

Listing 28.1. Returns the actual cache sizes on the CPU.

U32 CPU::CacheSize(U32 cachelevel)

{

 U32 cx, dx, ax, bx;

 cx = cachelevel;

 cpuid(kCacheParameters, &ax, &bx, &cx, &dx);

 if ((ax & 0x1f) == 0) return 0;

 U32 sets = (cx + 1);

 U32 linesize = (bx & 0xfff); //[11:0]

 U32 partitions = (bx >> 12) & 0x3ff; //[21:12]

 U32 ways = (bx >> 22) & 0x3ff; //[31:22]

 return (ways+1) * (partitions+1) * (linesize+1) * sets;

}

static void GetCacheInfo(U32* cacheLineSize)

{

 U32 cx, dx, ax, bx;

 cpuid(kProcessorInfo, &ax, &bx, &cx, &dx);

 *cacheLineSize = ((bx >> 8) & 0xff) * 8; //Intel only

 // For AMD Microprocessors, the data Cache Line Size is in cl and

 // the instruction Cache Line Size is in DL after calling cpuid

 // function 0x80000005.

 U32 csize0 = CacheSize(0); //L0

 U32 csize1 = CacheSize(1); //L1

 U32 csize2 = CacheSize(2); //L2

 U32 csize3 = CacheSize(3); //L3

}

To determine our substream size, we have to consider the critical step for our radix sorter,
the scatter phase. To perform scattering, the code has to access the count table using the next

448 Game Engine Gems

input radix digit to determine where to write the item to in the output buffer. The input stream
access is sequential, which is good for the prefetcher and for cache hits. The count table and
output buffer writes are both random accesses using indexing, which means they should both
be in the cache. This is very important since we need to make several passes, one for each radix
digit. If we are targeting the L1 cache, then we should reserve space for the counters (1-2 kB)
and local temporaries (about four to eight cache lines). If we are targeting the L2 cache, then we
might have to reserve a little more space in L2 since the set-associative mechanism is not perfect.

For the counting phase, the only critical data that should be in the cache is the counts table.
Our use of radix-256 implies a table size of 256*sizeof(int), which is 1 kB or 2 kB. For a GPU-
based sort that has limited shared memory, one might consider a lower radix and a few extra
passes.

28.2 Substream Sorting

At first glance, once we have partitioned the input, we can just use the "best" serial sort
within each partition. Our interest is in first developing a good usable serial algorithm that is
well suited for parallel usage. In a parallel context, we would like each thread to finish in roughly
the same time given a substream of identical length. Keep in mind that one thread can stall the
entire process since other threads must wait for it to finish before the merge phase can
commence. Quicksort's worst-case behavior can be O(n2) and is data dependent. Radix sort is
O(n), and its run time is not dependent on the data.

Our radix sorter is a highly optimized descendent of Herfls code, which is built on top of
Terdiman's. It is a radix-256 least-significant-bit sort. The main difficulty with using radix sort
on game data is handling floating-point values. An IEEE floating-point value uses a sign-
exponent-mantissa format. The sign bit makes all negative numbers appear to be larger than
positive ones. For example, 2.0 is 0x40000000, and -2.0 is 0xC0000000 in hexadecimal, while -
4.0 is 0xC0800000, which implies -4.0 > -2.0 > 2.0, just the opposite of what we want. The key
idea is Herfls rule for massaging floats:

1. Always invert the sign bit.

2. If the sign bit was set, then invert the exponent and mantissa too.

Rule 1 turns 2.0 into 0xC0000000, -2.0 into 0x40000000, and -4.0 into 0x40800000, which
implies 2.0 > -4.0 > -2.0. This is better, but still wrong. Applying rule 2 turns -2.0 into

Chapter 28 A Cache-Aware Hybrid Sorter 449

0x3FFFFFFF and -4.0 into 0x3F7FFFFF, giving 2.0 > -2.0 > -4.0, which is the result we want. This
bit hack has great implications for radix sort since we can now treat all the digits the same.
Interested readers can compare Terdiman's and Herf's code to see how much this simple hack
helps to simplify the code.

The code in Listing 28.2 is taken from Herfls webpage. Like Herf's code, we build all four
histograms in one pass. If you plan on sorting a large number of items and you are running on
the CPU, you can consider Herf's radix-2048 opti mization, which reduces the number of
scattering passes from four to three. The histogram table is bigger since 211 = 2 kB, and you need
three of them. Herf reported a speedup of 40 percent. Keep in mind that the higher radix
demands more L1 cache and increases the fixed overhead of the sorter. Our substream split
strategy reduces the benefit of a higher radix since we strive to keep the output of each pass
within the cache.

Listing 28.2. Herf s original bit hack for floats and its inverse (IFloatFlip).

static inline U32 FloatFlip(U32 f)

{

 U32 mask = -int32(f >> 31) | 0x80000000;

 return (f ^ mask);

}

static inline U32 IFloatFlip(U32 &f)

{

 U32 mask = -int32(f >> 31) | 0x80000000;

 return (f ^ mask);

}

One small but important optimization for FloatFlip is to utilize the natural sign
extension while shifting signed numbers. Instead of the following line:

U32 mask = -int32(f >> 31) | 0x80000000;

we can write

int32 mask = (int32(f) >> 31) | 0x80000000;

The right shift smears the sign bit into a 32-bit mask that is used to flip the input if the sign
bit is set, hence implementing rule 2. Strictly speaking, this behavior is not guaranteed by the

450 Game Engine Gems

C++ standard. Practically all compilers we are likely to encounter during game development do
the right thing. Please refer to the chapter "Bit Hacks for Games" in this book for more details.
The same idea can be applied to IFloatFlip, as follows:

static inline void IFloatFlip(U32 &f)

{

 f ^= (int32(f ^ 0x80000000) >> 31) | 0x80000000;

}

28.3 Stream Merging and Loser Tree

Our substreams are now sorted, and all we need is to merge them into one output stream.
The most common approach is to use a priority queue (PQ). We insert the head of each
substream into the PQ together with the stream_id. Then we remove the "min-member" and
output it. We then take the next item from the substream in which the min-member was located,
and insert it into the PQ. Finally, we re-establish the heap property and repeat. This approach
was tried using one of the best available heap-based PQs, and the result was poor.

The best approach we found is to utilize an old idea reported by Knuth [1973] called the
loser tree1. A loser tree is a kind of tournament tree where pairs of players engage in rounds of
a single-elimination tournament. The loser is kept in the tree while the winner moves on, in a
register. Our tree node consists of a floating-point key and a payload of stream_id, as shown
in Listing 28.3. The loser tree is stored as a linearized complete binary tree, which enables us to
avoid storing pointers. Navigating up and down the tree is done by shifts and adds.

The loser tree is initialized by inserting the head of each substream, as shown in Listing
28.4. At the end of this, the winner literally rises to the top. We remove the winner and output
the key to the output buffer since this is the smallest among the heads of the sorted substreams.
The winner node also carries the stream_id from which it came. We use that to pull the next
item from the stream to take the place of the last winner. A key idea of a loser tree is that the
new winner can only come from matches that the last winner had won-i.e., the path from the
root of the tree to the original position of the winner at the bottom. We repeat those matches
with the new item, and a new winner emerges, as demonstrated in Listing 28.5.

Chapter 28 A Cache-Aware Hybrid Sorter 451

Listing 28.3. Data structures and abstractions for a loser tree.

struct Node

{

 float key; // Our key

 int m_value; // Always the substream index 'key' is from

};

// Returns our parent's index:

int Parent(int index) { return (index >> 1); }

int Left(int index) { return (index << 1); }

int Right(int index) { return ((index << 1) + 1); }

Listing 28.4. Initialization for a loser tree.

// Build the loser tree after populating all the leaf nodes:

int InitWinner(int root)

{

 if (root >= kStreams)

 {

 // leaf reached

 return (root); //leaf index

 }

 else

 {

 int left = InitWinner(root * 2);

 int right = InitWinner(root * 2 + 1);

 Key lk = m_nodes[left].m_key;

 Key rk = m_nodes[right].m_key;

 if (lk <= rk)

 {

 // right subtree loses

 m_nodes[root] = m_nodes[right]; //store loser

 return (left); // return winner

452 Game Engine Gems

 }

 else

 {

 m_nodes[root] = m_nodes[left];

 return (right);

 }

 }

}

The next little trick to speed up the merge is to mark each substream with an end-of-stream
marker that is guaranteed to be larger than all keys. The marker stops the merger from pulling
from that substream when it reaches the merger. We chose infinity() as our marker. This
also allows us to handle the uneven substream lengths when the input is not exactly divisible by
the number of substreams. In the sample code on the website, we copy the input and allocate
the extra space needed by the marker. With some careful coding, we only need the extra space
for the last substream. In a production environment, if one can be sure the input buffer always
has extra space at the end, then we can avoid the extra buffer and copying. For example, we can
define the interface to the sorter as such or take an extra input argument that defines the actual
size of the input buffer and copy only if no room is reserved.

Listing 28.5. Update method for a loser tree.

// Update loser tree after storing 'nextval' at 'slot':

int Update(int slot, Key newKey)

{

 m_nodes[slot].m_key = newKey;

 assert(m_nodes[slot].m_value == slot);//should always be the same stream

 int loserslot = Parent(slot);

 int winner = slot;

 float loser;

 while (loserslot != 0)

 {

 loser = m_nodes[loserslot].m_key; //previous loser

Chapter 28 A Cache-Aware Hybrid Sorter 453

 if (newKey > loser) //newKey is losing to old loser

 {

 newKey = loser; //new winner's key

 int newwinner = m_nodes[loserslot].m_value; //new winner's slot

 m_nodes[loserslot] = m_nodes[winner]; // newKey is the new loser

 winner = newwinner;

 }

 loserslot = Parent(loserslot);

 }

 return (winner);

}

Our merge phase is very cache friendly since all the memory operations are sequential. The
sorted streams are accessed sequentially, and the output is streamed out from the merger. The
merger is small since it only needs space to store one item from each stream. The size of the tree
is 2 * kNumStreams and, therefore, fits into the L1 cache easily. One can even consider keeping
the merger entirely within registers for maximum speed. For small datasets, our sort is 2.1 to
3.5 times faster than STL sort. The relative disadvantage of quicksort is smaller when the dataset
is smaller and fits nicely into the caches.

The loser tree might not be the best approach if you are writing GPU-based applications.
An even-odd or bitonic merge network is probably a better way to exploit the wide SIMD
parallelism. That being said, the merge phase is only a small fraction of the total processing time
(-25%). The sorter is encapsulated in a class to hide details, like the stream markers and
substream sizes, and to reuse temporary buffers for multiple sorts.

28.4 Multicore Implementation

The sorter is refactored to expose the initialization, substream sort, and merge as separate
methods. In the sample code on the website, the initialization function is called from the main
thread before firing off the worker threads, each of which sorts one of the substreams. Some
care is taken to create the threads up front and to use auto-reset events to reduce the overhead
with thread synchronization. The class is carefully designed to leave the threading logic outside

454 Game Engine Gems

of the sorter, without impacting performance. The merging is performed on the main thread.

The data set used for our performance tests consists of 0.89 million floatingpoint values
that happen to be the x coordinates for the Stanford Dragon. The one-stream times in Table
28.1 show that our threading code is efficient, and only about 0.12 to 0.17 ms of overhead is
introduced. One can see the per-core scalability is not great on the Q6600-using four threads
only doubles the speed of the sort phase. This is somewhat understandable since radix sort is
very bandwidth hungry. Keep in mind we are sorting substreams that have been spliced. If we
directly sort the whole input array using a single radix-256 sort, then the runtime is 28 ms. The
serial merge costs 5 to 6 ms, which gives us a 65 percent improvement. Most of that
improvement can be had with as little as two cores. For a point of reference, STL sort runs in 76
ms, and while using four threads, our sort runs in 16 to 17 ms. The picture is very different on
an 17, which shows better scalability, where four threads is about three times faster than serially
sorting the four substreams. The runtime for STL sort is 58 ms on an 17, which is a six-times
speed-up for the hybrid sorter.

Table 28.1. Threading performance, in milliseconds.

 Threaded (Q6600) Serial (Q6600) Threaded (I7) Serial (I7)
1 stream 5.12 5 3.89 3.62
2 streams 6.90 10.04 4.20 7.1
3 streams 8.08 15.07 4.56 10.69
4 steams 10.97 20.55 4.86 14.2
4 + merge 16.4 26.01 9.61 19.0

Parallel Loser Tree

The Update() operation of the loser tree is the key step during merging. Can we find a
way to parallelize the Update() step? Superficially, in Listing 28.5, the loserslot appears to be
dependent on the previous loop's result. However, if we remember our invariants for a loser
tree, the matches between entries in the tree have already been played earlier. Hence, any new
loser must be a new player i.e., the one we inserted, triggering the call to We arrive at the critical
insight that all tournaments along the path from a new leaf to the root are independent of each
other. In addition, the path to the root for a given leaf is always the same. This means that all
the addressing needed is known at compile time. This kind of parallelization can never be
derived automatically by a compiler. Marin [1997] presented the following parallel Update()
step for a binary tournament tree:

Chapter 28 A Cache-Aware Hybrid Sorter 455

for n in [0..height - 1] do in parallel

 Parent = Parent(n)

 if (m_nodes[parent].m_key > loser)

 m_nodes[parent] = m_nodes[winner]

28.5 Conclusion

We now have a sorter that is fast in a single-threaded application and also functions well
in a multicore setting. The sort is a stable sort and has a predictable run time, which is critical
for real-time rendering environments. It can also be used as an external sorter, where inputs are
streamed from the disk and each core performs the radix sort independently. The merging step
would be executed on a single core, but the I/O is purely sequential. The merger is very efficient;
it took 6 milliseconds to merge one million items on a single core of a 2.4-GHz Q6600. It can
be further improved by simple loop unrolling since the number of tournaments is always equal
to the height of the tree.

This chapter is heavily influenced by research in cache-aware and cacheoblivious sorting.
Interested readers are encouraged to follow up with excellent works like Brodal et al. [2008],
where funnel sort is introduced. While this work is independently conceived, a paper by Satish
et al. [2009] shares a lot of the same ideas and shows great results by carefully using radix sort
to get great parallelism on a GPU.

Appendix

Radix sort is a refinement of distribution sort. If we have a list of n input bytes, we need
256 bins of size n to distribute the inputs into, since in the worst case, all the inputs can be the
same byte value. Of course, we could have dynamically grown each of the bins, but that would
incur a large overhead in calls to the memory allocator and also fragments our heap. The
solution is a two-pass approach, where we allocate 256 counters and only count how many items
belong in each bin during the first pass. Next, we form the prefix sum within the array of
counters and use that to distribute each input digit to an output buffer of size n. We have just
discovered counting sort.

The most commonly used form of radix sort is called the least-significantdigit sort. That is,
we start from the least-significant digit and work ourselves towards more significant digits. For

456 Game Engine Gems

a 32-bit integer, the most common practice is to use radix-256-i.e., we break the integer into
four 8-bit digits and perform the sort in four passes. For each pass, we perform the above
counting sort. Since counting sort is a stable sort, the ordering of a pass is preserved in the later
passes.

Acknowledgements

We would like to thank Michael Herf for his permission to include his radix sort code and
for inventing the bit hack for floating-point values. We would also like to thank Warren Hunt
for supplying his excellent radix sort implementation for another project that uses negative
indexing and the improved version of the bit hack.

References

[Brodal et al. 2008] Gerth Stolting Brodal, Rolf Fagerberg, and Kristoffer Vinther. "Engineering a
Cache-Oblivious Sorting Algorithm." Journal of Experimental Algorithms 12 (June 2008).

[Herf 2001] Michael Herf. "Radix Tricks." 2001. Available at http://www.stereopsis.com/radix.html.

[Knuth 1973] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Reading, MA: Addison-Wesley, 1973.

[Garanzha and Loop 2010] Kirill Garanzha and Charles Loop. "Fast Ray Sorting and Breadth-First
Packet Traversal for GPU Ray Tracing." Computer Graphics Forum 29:2 (2010).

[Lin 2000] Ming C. Lin. "Fast Proximity Queries for Large Game Environments." Game Developers
Conference Course Notes. Available at http://www.cs.unc.edu/-lin/ gdc2000_files/frame.htm.

[Mario 1997] Mauricio Marin. "Priority Queues Operations on EREW-PRAM." Proceedings of
Euro-Par '97 Parallel Processing. Springer, 1997.

[Nyberg et al. 1995] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and Dave Lomet.
"AlphaSort: A Cache Sensitive Parallel External Sort." The VLDB Journal 4:4 (October 1995), pp.
603-627.

[Patney et al. 2010] Anjul Patney, Stanley Tzeng, and John D. Owens. "FragmentParallel Composite
and Filter." Computer Graphics Forum 29:4 (June 2010), pp. 1251-1258.

Chapter 28 A Cache-Aware Hybrid Sorter 457

[Satish et al. 2009] Nadathur Satish, Mark Harris, and Michael Garland. "Designing Efficient Sorting
Algorithms for Manycore GPUs." Proceedings of the 2009 IEEE International Symposium on
Parallel & Distributed Processing.

[Terdiman 2000] Pierre Terdiman. "Radix Sort Revisited." April 1, 2000. Available at http://
codercomer.com/RadixSortRevisited.htm.

[Wright 2006] Christopher Wright. "Using CPUID for SIMD Detection." 2006. Available at http://
softpixel.com/-cwright/programming/simd/cpuid.php.

29
Chapter 29 Thread Communication Techniques

Julien Hamaide
Fishing Cactus

Multithreaded systems are common nowadays. They usually involve synchronization and
lock primitives implemented at the operating system level. Working with those primitives is far
from trivial and can lead to problems such as deadlocks. This chapter introduces
communication techniques that do not use such primitives and rely on simple concepts. They
can be applied to a lot of common threading systems.

29.1 Latency and Threading

When writing multithreaded code, care should be taken to protect all data that could be
accessed simultaneously by several threads. Most of the time, by using a mutex or a critical
section, the problem is avoided. But this approach has a cost: threads may stall waiting for a
resource to be released. If the resource is heavily accessed, it may put all threads to sleep, wasting
cycles. On the other hand, this approach has a low latency. When working on protected data,
the thread waits until the action can be executed and then executes it right away. But does the
action really need it to be executed instantaneously? Latency of some actions is not critical (e.g.,
playing a sound). Fortunately, few problems in video games need a very low-latency treatment.
While writing multithreaded code, don't try to solve the general problem. Solve your particular
problem. For example, if we use a thread pool, we know the number of threads is limited and
that a thread won't be destroyed.

Communication among threads is accomplished by simply sending data from one thread
to another, whether by using an operating system primitive, such as a semaphore, or a piece of
memory. A common practice is to send data through shared variables, variables that should be

460 Game Engine Gems

protected by primitives such as critical sections. But most of the time, those variables are falsely
shared. If a first-infirst-out (FIFO) queue is used to communicate commands between threads,
the item count is a shared variable. If only a single thread writes to the collection, and only a
single thread is reading from the collection, should both threads share that variable? The item
count can always be expressed with two variables-one that counts the inserted element and one
that counts the removed element, the difference being the item currently in the queue. This
strategy is used in the simple structures presented here.

29.2 Single Writer, Single Reader

This problem is the classic producer-consumer model. A thread produces items that are
consumed by another thread. It is this example that is generally employed to teach how
semaphores are used. The goal is to provide a single writer, single reader (SWSR) FIFO queue,
without using synchronization objects. A fixed-size item table is preallocated. This table serves
as memory storage for the data transfer. Two indices are used, one for the first object to be
popped and the other for the storage of the next item to be pushed. The object is "templatized"
with item type and maximum item count, as shown in Listing 29.1.

Listing 29.1. FIFO class definition.

template <typename Item, int ItemCount> class ProducerConsumerFIFO

{

 Item ItemTable[ItemCount];

 volatile unsigned int ReadIndex, WriteIndex;

};

A variable must not be written to by two threads at the same time, but nothing prevents
two threads from reading that variable concurrently. If the producer thread only writes to
WriteIndex, and the consumer thread only writes to ReadIndex, then there should be no
conflict [Acton 2009]. The code shown in Listing 29.2 introduces the Push() method, used by
the producer to add an item at the end of the queue.

The method first tests if there is space available. If no, it simply returns false, letting the
caller decide what to do (retry after some sleep, delay to next frame, etc.). If some space is
available, the item is copied to the local item table using the WriteIndex, and then a write
barrier is inserted. Finally, the WriteIndex is incremented. The call to WriteBarrier() is the

Chapter 29 Thread Communication Techniques 461

most important step of this method. It prevents both the compiler and CPU from reordering
the writes to memory and ensures the item is completely copied to memory before the index is
incremented. Let's imagine that the CPU had reordered the writes and the WriteIndex has
already updated to its new value, but the item is not yet copied. If at the same time, the consumer
queries the WriteIndex and detects that a new item is available, it might start to read the item,
although it is not completely copied.

Listing 29.2. FIFO Push() method.

bool ProducerConsumerFIFO::Push(const Item& item)

{

 if (!IsFull())

 {

 unsigned int index = WriteIndex;

 ItemTable[index % ItemCount] = item;

 WriteBarrier();

 WriteIndex = index + 1;

 return (true);

 }

 return (false);

}

When the WriteIndex is incremented, the modulo operator is not applied to it. Instead,
the modulo operator is applied only when accessing the item table. The WriteIndex is then
equal to the number of items ever pushed onto the queue, and the ReadIndex is equal to the
number of items ever popped off the queue. So the difference between these is equal to the
number of items left in the queue. As shown in Listing 29.3, the queue is full if the difference
between the indices is equal to the maximum item count. If the indices wrap around to zero,
the difference stays correct as long as indices are unsigned. If ItemCount is not a power of two,
the modulo operation is implemented with a division. Otherwise, the modulo can be
implemented as index & (ItemCount-1).

462 Game Engine Gems

Listing 29.3. FIFO IsFul10 method.

bool ProducerConsumerFIFO::IsFull() const

{

 return ((WriteIndex - ReadIndex) == ItemCount);

}

The Push() method only writes to WriteIndex and ItemTable. The write index is only
written to by the producer thread, so no conflict can appear. But the item table is shared by both
threads. That's why we check that the queue is not full before copying the new item.

At the other end of the queue, the Pop() method is used by the consumer thread (see
Listing 29.4). A similar mechanism is used to pop an item. The IsEmpty() method ensures
there is an item available. If so, the item is read. A read barrier is then inserted, ensuring
ReadIndex is written to after reading the item. If incremented ReadIndex was stored before the
end of the copy, the item contained in the item table might be changed by another Push() .

Listing 29.4. FIFO Pop() method.

bool ProducerConsumerFIFO::Pop(Item& item)

{

 if (!IsEmpty())

 {

 unsigned int index = ReadIndex;

 item = ItemTable[index % ItemCount];

 ReadBarrier();

 ReadIndex = index + 1;

 return (true);

 }

 return (false);

}

bool IsEmpty() const

{

 return (WriteIndex == ReadIndex);

}

Chapter 29 Thread Communication Techniques 463

A question that may arise is what happens if the consumer has already consumed an item,
but the read index is not updated yet? Nothing important-the producer still thinks the item is
not consumed yet. This is conservative. At worst, the producer misses a chance to push its item.
The latency of this system is then dependent on the traffic.

For this technique to work, a fundamental condition must be met: writing an index to the
shared memory must be atomic. For x86 platforms, 32-bit and 64-bit writes are atomic. On
PowerPC platforms, only 32-bit writes are atomic. But on the PlayStation 3 SPU, there are no
atomic writes under 128 bytes! That means each index must use 128 bytes, even though only
four bytes are really used. If some undefined behavior occurs, always verify the generated code.

We now have a simple SWSR FIFO queue using no locks. Let's see what can be built with
this structure.

29.3 The Aggregator

By using the structure we have introduced, an aggregator can be created. This structure
allows several threads to queue items for a single receiver thread. This kind of system can be
used as a command queue for some subsystems (e.g., sound system, streaming system). While
commands might not be treated in the order they are queued, commands inserted by a single
thread are processed in order. For example, if you create a sound, then set its volume, and finally
play it, the pushed commands are processed in order. As shown by Listing 29.5, the aggregator
is built upon the FIFO queue described earlier.

Each pushing thread is assigned to a SWSR FIFO. This FIFO must be accessible to the
thread when it pushes an item, and this can be accomplished through thread local storage or a
simple table containing a mapping between thread ID and its assigned FIFO. Listing 29.6 shows
the Push() method using a thread local storage. This code assumes that a FIFO has already been
assigned to the thread. To assign it, a registration method is called from each producer thread.
This registration method stores the pointer of the FIFO assigned to the caller thread in the
thread local storage, as shown in Listing 29.7. The GetNextAvailableFifo() function returns
the next available FIFO and asserts whether any are available.

Listing 29.8 presents the consumer code. It needs to select an item from all threads using
the most equitable repartition. In this example, a simple roundrobin algorithm is used, but this
algorithm might be adapted to special situations. Once again, it depends on your problem and

464 Game Engine Gems

your data.

Listing 29.5. Aggregator class definition.

template <typename Item, int ItemCount, int ThreadCount>

class Aggregator

{

 ProducerConsumerFIFO<Item, ItemCount> ThreadFifoTable[ThreadCount];

};

Listing 29.6. Aggregator Push() method.

bool Aggregator::Push(const Item& item)

{

 // From thread local storage.

 ProducerConsumerFIFO *fifo = ThreadFifo.GetValue();

 assert(fifo);

 return (fifo->Push(item));

}

Listing 29.7. Method used to register writer threads.

void Aggregator::InitializeWriterThread()

{

 int data_index = GetNextAvailableFifo();

 assert((index != -1) && (!"No buffer left"));

 ThreadFifo.SetValue(&ThreadFifoTable[data_index]);

}

Listing 29.8. Aggregator Pop() method.

bool Aggregator::Pop(Item& item)

{

 assert(GetCurrentThreadId() == ReaderThreadIdentifier);

 int current_table_index = LastTableIndex;

 do

 {

Chapter 29 Thread Communication Techniques 465

 current_table_index = (current_table_index + 1) % ThreadCount;

 ProducerConsumerFIFO *fifo =

 &ThreadFifoTable[current_table_index];

 if (fifo->Pop(item))

 {

 LastTableIndex = current_table_index;

 return (true);

 }

 } while (current_table_index != LastTableIndex);

 return (false);

}

If no element is available at all after checking each thread's FIFO, the function returns false.
The function does not wait for an element, and lets the caller decide what to do if none are
available. It can decide to sleep, to do some other work, or to retry if low latency is important.
For example, in a sound system, the update might process all commands until there are no
commands left and then update the system.

To prevent any other thread from reading from the aggregator, we also register the reader
thread and store its identifier. The identifiers are then matched in Pop() in debug mode.

This implementation does not allow more than a fixed number of threads. But generally
in a game application, the number of threads is fixed, and a thread pool is used, thus limiting
the need for a variable-size architecture.

From a performance point of view, care should be taken with memory usage. Depending
on the architecture, different FIFO structures should be placed on different cache lines. To
ensure consistency, when a thread writes to a memory slot, the corresponding line cache is
invalidated in all other processor caches. An updated version must be requested by the thread
reading the same cache line. The traffic on the bus can increase substantially, and the waiting
threads are stalled by cache misses. The presented implementation does not take this problem
into account, but an ideal solution would be to align the FIFO items with cache lines, thus
padding the item up to the cache line size so that neighbor items are not stored in the same
cache line.

466 Game Engine Gems

29.4 The Dispatcher

In the case of a single producer and multiple consumers, we can create a dispatcher. The
dispatcher is a single writer, multiple readers queue. This system can be used to dispatch work
to several threads, and it can be implemented using the SWSR FIFO. The implementation is
similar to that of the aggregator.

29.5 The Gateway

The final structure presented here is the gateway. It is a multiple writers, multiple readers
queue. This queue is not really a FIFO anymore since a thread must be used to pop items from
the aggregator and push them in the dispatcher. Its role is quite similar to a scheduler, with the
central task of distributing items. This distribution can process the data before dispatching it.
Nothing prevents this central thread from reading every possible item, doing some work on
them (e.g., sorting or filtering), and finally pushing them to the reader threads. As an exam ple,
in a job system, this thread can pop all jobs in local variables and sort them by priority before
pushing them to each worker thread. It might also try to prevent two ALU-intensive jobs from
being assigned to threads that shared the same ALU.

While implementing this structure, some important questions drive its details. Do all
writer threads also read from the queue? Is the central thread one of the writer or reader threads?
Or is it a special thread that only works on dispatching the items? No generic implementation
of the gateway is practical. A custom implementation is recommended for each system.

29.6 Debugging

Multithreading and debugging frequently can't get along. Every queue we have presented
is made from an SWSR queue. This means that a condition must be satisfied: for a single SWSR
queue, only a single thread can read and only a single thread can write. The queue should be
able to detect if an unexpected thread accesses its data. Comparing the ID of the accessing
thread with the expected thread ID and asserting their equality is strongly advised. If some crash
continues to occur despite the correct thread accessing the collection, it might be the barrier.
Check compiler-generated code and validate that the correct instructions are issued to prevent

Chapter 29 Thread Communication Techniques 467

reordering (e.g., lwsync on the PowerPC).

References

[Acton 2009] Mike Acton. "Problem #1: Increment Problem." CellPerformance. August 7, 2009.
Available at http://cellperformance.beyond3d.com/articles/index.html.

30
Chapter 30 A Cross-Platform Multithreading Framework

Martin Fleisz
Thinstuff s. r. o.

Over the last couple of years, a new trend in game engine design has started due to
changing processor designs. With the increasing popularity of multicore CPUs, game engines
have entered the world of parallel computing. While older engines tried to avoid multithreading
at all costs, it is now a mandatory technique in order to be able to take full advantage of the
available processing power.

To be able to focus on the important parts of a game engine, like the graphics engine or
the networking code, it is useful to have a robust, flexible, and easy to use multithreading
framework. This framework also serves as an abstraction layer between the platform-dependent
thread and the platform-independent game engine code. While the C++0x standard provides
support for threading, developers still have to refer to external libraries like Boost to gain
platform-independent threading support. The design and interface of the Boost threading
framework strongly resembles the POSIX Threads (or Pthreads) library, which is a rather low-
level threading library. In contrast, our framework offers a higher-level interface for threading
and synchronization. What we provide is a collection of easy to use synchronization objects, a
flexible and simple way of handling threads, and additional features like deadlock detection. We
also show a few examples of how to extend and customize our framework to your own needs.

30.1 Threading

ThreadManager

Let us first take a look at the core component of our threading framework, the
ThreadManager class. As can be seen in the sample code on the website, this class is

470 Game Engine Gems

implemented using a simple singleton pattern [Meyers 1995]. We decided to use this pattern
for two reasons. First, we want global access to the ThreadManager in order to be able to start a
thread from any location in our engine. The second reason is that we want to have just one
instance of this class at a time because we use it to create snapshots of our application's current
state.

The ThreadManager has several responsibilities in our framework. Whenever we start a
new thread, the manager attaches a ThreadInfo object to the new thread instance. The
ThreadManager also provides a unique ID for each synchronization object. Upon creation, a
synchronization object registers with the ThreadManager, which keeps a complete list of all
existing threads and synchronization objects. This information is used to create a snapshot of
the application that shows us which threads exist and in what state the currently used
synchronization objects are. Using this information, we can get an overview of our application
run-time behavior, helping us to find deadlocks or performance bottlenecks.

ThreadInfo

The most important component in our framework, when working with threads, is the
ThreadInfo class. In order to be able to uniquely identify a thread, our ThreadInfo class stores
a thread name and a thread ID. This information can be used during logging in order to identify
which thread wrote which log entry. ThreadInfo also offers methods to wait for a thread, to
stop it, or to kill it, although killing a thread should usually be avoided.

Another important feature of ThreadInfo is the recording of wait object information.
Whenever a synchronization object changes its wait state, it stores that information in the
ThreadInfo's wait object information array. With this information, the ThreadManager is able
to construct a complete snapshot of the threading framework's current state. Additionally, each
thread is able to detect whether there are any pending wait operations left before it is stopped
(e.g., a mutex might still be locked after an exception occurred). In this case, it can issue a
warning as such a scenario could potentially lead to a deadlock.

Another feature that we have built into our ThreadInfo objects is active deadlock detection.
Using a simple trigger system, we can easily create a watchdog service thread that keeps
checking for locked threads. In order for this feature to work, a thread has to continuously call
the TriggerThread() method of its ThreadInfo instance. If the gap between the last
TriggerThread() call and the current timestamp becomes too large, a thread might be
deadlocked. Do not use too small values (i.e., smaller than a second) in order to prevent

Chapter 30 A Cross-Platform Multithreading Framework 471

accidental timeouts. If a thread is known to be blocking, you can temporarily disable the trigger
system using the SetIgnoreTrigger() method. You can also use this method to permanently
disable triggering in the current thread in order to avoid the overhead caused by
TriggerThread() .

ThreadInfo objects are stored and managed by the ThreadManager. For faster access, a
reference to each thread's own ThreadInfo is stored in thread local storage (TLS). The
ThreadManager uses our TLSEntry class in order to allocate a storage slot. This storage slot is
local to each thread, which means we only have to allocate one slot in order to store a reference
for each thread's ThreadInfo. Another nice feature of the ThreadInfo class is that it provides
a great way to easily extend the threading framework, as discussed later.

30.2 Synchronization Objects

In order to coordinate two or more threads, we need a set of tools that enable us to
synchronize their execution, depending on certain criteria. There are various different
synchronization mechanisms available, but they all have one thing in common-they all use
atomic operations. An atomic operation guarantees that its effect appears to the rest of the
system instantaneously. A few examples of atomic operations include test-and-set, compare-
and-swap, and load-link/storeconditional. All higher-level synchronization methods, like
mutexes or semaphores are implemented using these atomic primitives.

Our framework orients along the Windows API synchronization methods, including
critical sections, mutexes, semaphores, and events. On other platforms, we use the Pthreads
library to emulate the Windows API. The abstraction of the platform-dependent
synchronization APIs can be found in the BasicSync.cpp source file. All the classes defined
in this file are used later in higher-level synchronization classes in order to provide enhanced
functionality like wait state tracking. In the following subsections, we take a closer look at how
we implemented each synchronization object and what tweaks were necessary in order to
provide as much functionality as possible on all the different platforms.

Critical Section (class BasicSection)

A critical section can be compared to a lightweight version of a mutex. Just like a mutex, a
critical section is used to ensure mutually exclusive access to a shared resource. However, it
lacks some advanced functionality like support for interprocess communication (IPC) or timed

472 Game Engine Gems

wait operations. If you don't need any of these features, then you should always prefer using a
critical section over a mutex for performance reasons.

The Pthreads standard does not provide us with an exact critical section equivalent. In
order to provide the same functionality, our BasicSection class can either use a mutex or a
spin lock. Spin locks, depending on their implementation, can cause various problems or
performance issues [Sandler 2009]. Therefore, we decided to go with the safer option and
implemented the BasicSection class using a mutex. Of course, this doesn't result in any
performance improvement compared to using the BasicMutex class.

Mutex (class BasicMutex)

As already described in the previous section, a mutex ensures mutually exclusive access to
a shared resource. However, a mutex is able to provide this exclusive access on a system-wide
basis, across process boundaries. Windows uses socalled named mutexes to enable this way of
IPC. If two threads create a mutex with the same name, one is going to actually create the mutex
object, whereas the other just opens a handle to it. The mutex implementation in Pthreads
works very similarly to an unnamed mutex in the Windows API. Unfortunately, there is no
support for IPC-capable mutexes in Pthreads.

In order to provide this functionality in our framework, we have two different code paths
in our basic mutex implementation. One path implements a simple unnamed mutex using the
Pthreads mutex API. The other path provides support for named mutexes using a binary
semaphore. While a binary semaphore doesn't offer as much functionality as a mutex (i.e., the
semaphore lacks recursivity), it still provides mutual exclusivity and can be used to synchronize
across process boundaries.

Semaphore (class BasicSemaphore)

A semaphore can be seen as a protected variable that controls access by several processes
to a single resource. A special form is the binary semaphore, which has either a value of one
(free) or zero (locked) and exposes behavior similar to that of a mutex. The implementation of
BasicSemaphore for Windows is quite simple and basically just wraps the semaphore API
functions. On other platforms, we can choose between two, quite different APIs, POSIX
semaphores and System V semaphores.

POSIX semaphores are an extension to the Pthreads standard and are similar to the
semaphores in the Windows API. In order to create a semaphore, we can either use the

Chapter 30 A Cross-Platform Multithreading Framework 473

sem_init()(unnamed) or the sem_open()(named) function. Both functions also atomically
initialize the semaphore to a specified value. This is an important feature, as discussed later. To
acquire a semaphore, we use the sem_wait() function, which decrements the semaphore value
on success. If the count is zero, then the thread is suspended (unless sem_trywait() is used,
which is non-blocking) until the semaphore value becomes greater than zero again. The
sem_post() function is used to release the semaphore lock, and it simply increments the
internal counter. Cleanup is performed using either the sem_destroy() (unnamed) or
sem_unlink() (named) function, which both destroy the semaphore.

The System V semaphore interface is not as simple as its POSIX counterpart. For example,
instead of just a single semaphore counter, System V works with sets of one to n semaphore
counters, all identified by a single semaphore ID. To create such a set, we have to use the
semget() function to specify the number of semaphore counters in the set and whether the set
is unnamed or named. Instead of strings, keys are used to identify a semaphore set in other
threads or processes. We use a simple hash function to generate a key value for a given
semaphore name, and we use the constant IPC_PRIVATE for unnamed semaphores.
Semaphore operations are performed using the semop() function, which is a very powerful tool,
as discussed later.

Before a System V semaphore can be used, it has to be initialized to its initial value. This is
a disadvantage of the System V API because it does not provide any way to create and initialize
semaphores atomically. The two code snippets shown in Listings 30.1 and 30.2 illustrate how
we create and initialize a System V semaphore set correctly1.

We start by creating a new semaphore or opening an existing semaphore using a
precalculated hash of the semaphore name (hash) as the key value. As you can see in the code
snippet, we create a semaphore set with three counters. Counter 0 contains the actual
semaphore value, counter 1 tracks how many objects reference the semaphore set (required
later for cleanup), and counter 2 serves as a binary lock semaphore used during creation and
destruction. Next, we lock semaphore 2 in our set by checking whether the counter's value is
zero. If it is, we increment it, locking out any other threads or processes. We need to execute
semget() and semop() within a loop to avoid a race condition where another thread or process
could delete the semaphore between those two function calls. This is also the reason why we
ignore EINVAL and EIDRM errors returned by semop().

After successful creation, we retrieve the value of semaphore 1 in order to determine
whether we created the set (semval equals zero) or whether it already existed. In case a new

474 Game Engine Gems

semaphore set was created, we set the semaphore value to p_Initialvalue and the semaphore
reference count to a large integer value (we cannot count up from zero because we use this state
to determine whether the set has been initialized). Finally, we decrement our reference counter
and release the lock on semaphore 2 to complete the initialization.

In Listings 30.1 and 30.2, we can also see the power of the semop() function. Beside the
semaphore set ID, this function also expects an array of semaphore operations. Each entry in
this array is of type sembuf and has the data fields described in Table 30.1.2

Listing 30.1. System V semaphore creation.

int sem;

int hash = CalcHashFromString("SemaphoreName");

for (;;)

{

 // Create the semaphore.

 if((sem = semget(p_Hash, 3, 0666 |IPC_CREAT)) == -1)

 THROW_LAST_UNIX_ERROR();

 // lock the newly created semaphore set

 if(semop(sem, m_OpBeginCreate, sizeof(m_OpBeginCreate) / sizeof(sembuf)) >=

0)

 break;

 if(errno != EINVAL && errno != EIDRM)

 THROW_LAST_UNIX_ERROR();

}

Listing 30.2. System V semaphore initialization.

int semval;

if((semval = semctl(m_Semaphore, 1, GETVAL, 0)) < 0)

 THROW_LAST_UNIX_ERROR();

// If semaphore 1's value is 0 the set has not been initialized.

Chapter 30 A Cross-Platform Multithreading Framework 475

if(semval == 0)

{

 // initialize semaphore value

 if(semctl(sem, 0, SETVAL, p_InitialValue) < 0)

 THROW_LAST_UNIX_ERROR();

 // init semaphore object references counter

 if(semctl(sem, 1, SETVAL, MaxSemObjectRefs) < 0)

 THROW_LAST_UNIX_ERROR();

}

// Decrement reference counter and unlock semaphore set.

if(semop(m_Semaphore, m_OpEndCreate, sizeof(m_OpEndCreate) / sizeof(sembuf)) <

0)

 THROW_LAST_UNIX_ERROR();

Table 30.1. System V semaphore operation fields.

Member Descirption
sem_num Identifies a semaphore within the current semaphore set.
sem_op Semaphore operation.
sem_flg Operation flags.

The operation member specifies the value that should be added to the semaphore counter
(or subtracted in case it is negative). If we subtract a value that is greater than the semaphore's
current value, then the function suspends execution of the calling thread. When we are using
an operation value of zero, semop() checks whether the given semaphore's value is zero. If it is,
the function returns immediately, otherwise, it suspends execution. Additionally, there are two
flags that can be specified with each operation, IPC NOWAIT and SEM UNDO. If IPC NOWAIT is
specified, then semop() always returns immediately and never blocks. Each operation
performed with SEM_UNDO is recorded internally in the semaphore set. In case the program
terminates unexpectedly, the kernel uses this information to reverse all effects of the recorded
operations. Using this mechanism, we avoid any situation in which a semaphore remains locked
by a dead process.

Cleanup of our semaphore set works in a way similar to its creation. First, we acquire the

476 Game Engine Gems

lock of our binary semaphore with ID 2 and increment the reference count of semaphore 1.
Then, we compare the current value of semaphore 1 to the constant integer we used to initialize
it. If they have the same value, then we can go ahead and delete the semaphore from the system
using semctl() with the IPC_RMID flag. If the values do not match, we know that there are still
references to the semaphore set, and we proceed by freeing our lock on semaphore 2.

Our implementation of BasicSemaphore makes use of both POSIX and System V
semaphores for various reasons. For named semaphores, we use the System V API because of
its SEM_UNDO feature. While developing the framework, it so happened that an application with
a locked POSIX semaphore crashed. After restarting the application and trying to obtain a lock
to the same semaphore, we became deadlocked because the lock from our previous run was still
persisting. This problem doesn't arise when we use System V semaphores because the kernel
undoes all recorded operations and frees the lock when an application crashes. A problem that
both solutions still suffer from is that semaphore objects remain alive in case of an application
crash since there is no automatic cleanup performed by the operating system. POSIX
semaphores are used for processinternal communication because they have a little smaller
overhead than private System V semaphores.

Event (class BasicEvent)

The last type of synchronization mechanism we implemented in our framework is the
event. An event can have two different states, signaled or nonsignaled. In a common scenario,
a thread waits for an event until another thread sets its state to signaled. If a thread waits for an
event and receives a signal, then the event may remain signaled; or in case of an auto-reset event,
the event is returned to the nonsignaled state. This behavior is slightly different from the
Pthreads counterpart, the condition variable. A condition variable has two functions to set its
state to signaled. The first, pthread_cond_signal(),unblocks at least one waiting thread; the
other, pthread_cond_broadcast(), unblocks all waiting threads. If a thread is not already
waiting when the signal is sent, it simply misses that signal and blocks. Another difference with
the Windows API is that each condition variable must be used together with a Pthreads mutex.
Before a thread is able to wait on a condition variable, it first has to lock the associated mutex.
The thread is granted the ownership of this mutex after it receives a signal and leaves the
pthread_cond_wait() function.

Again, our implementation orients along the Windows API, and functions such as
Wait(),Set(), and Reset() simply call Wait_ForSingleObject(),SetEvent(), and

Chapter 30 A Cross-Platform Multithreading Framework 477

ResetEvent(). To support other platforms, we once more have two different implementation
paths. Because Pthreads provides no support for system-wide condition variables, we emulate
this scenario using a System V semaphore. The other implementation uses a Pthread condition
variable in conjunction with a boolean flag indicating the state of the event.

Let us now take a closer look at the Pthreads implementation, starting with the Set()
method. After acquiring the lock on our mutex, we set the signaled flag to true and continue by
signaling the condition variable. If our event has manual reset enabled, then we use
pthread_cond_broadcast() to resume all threads waiting on our condition variable. In the
other case, we use pthread_cond_signal() to wake up exactly one waiting thread.

Pseudocode for the implementation of the Wait() method, when specifying an infinite
timeout, is illustrated in Listing 30.3. After locking the mutex, we check the state of the signaled
flag. If it is true, we can leave the wait function immediately. If we do not use a manual reset
event, then the signal flag is reset to false before leaving the method. In case the event state is
nonsignaled, we enter a loop that keeps waiting on the condition variable until the event state
changes to signaled or an error occurs.

Listing 30.3. Pseudocode for waiting for an event.

Lock Mutex

 if signal flag set to true

 if manaul reset disabled

 Set signal flag to false

 Unlock Mutex and return true

Loop infinitely

 Wait on Condition Variable

 if return code is 0

 if signal flag set to true

 if manual reset disabled

 Set signal flag to false

 Unlock Mutex and return true

 else

 HANDLE Error

478 Game Engine Gems

End Loop

Unlock Mutex

The pseudocode in Listing 30.3 is one of three separate cases that require distinct handling,
depending on the timeout value passed to the Wait() method. It shows the execution path when
passing an infinite timeout value. If we use a timeout value of zero, then we just test the current
signal state and return immediately. In this case, we only execute the first block and skip the
loop. If neither zero nor infinite is used as the timeout value, then we can use the same code as
in the listing with two minor changes. First, we use pthread_cond_broadcast() to wait on the
condition variable with a given timeout. The second adaption is that our Wait() method has to
return false in case pthread_cond_timedwait() returns ETIMEDOUT.

The last method, which is rather easy to implement, is used to set an event's state to
nonsignaled and is called Reset(). All we need to do is to obtain the lock on our mutex and set
the event's signal state to false.

Thanks to the flexibility of System V semaphores, we can easily rebuild the functionality
of an event using a binary semaphore. Construction and cleanup is performed exactly as
described for the BasicSemaphore class. The value of our semaphore is directly mapped to the
event state-a value of one indicates nonsignaled and a value of zero represents a signaled state.
The Set() method is a simple call to semop() that decrements the semaphore value. We also
specify the flag to avoid blocking in case the event is already in the signaled state. If the
semaphore value is zero, then the semop() call simply fails with EAGAIN, which means that Set()
can be called multiple times without any unexpected side effects. The Reset() method works
almost as simply, but uses two operations. The first operation checks whether the event is
currently in signaled state using the IPC_NOWAIT flag. In case the semaphore value is zero, the
first operation succeeds and performs the second operation, which increments the value. In case
the event is already reset, the semaphore value is already one, and the first operation fails with
EAGAIN. In this case, the second operation is not executed, which ensures the coherence of our
event status in the semaphore.

The implementation of the Wait() method for our semaphore-based event is also quite
easy. Again, we have three different scenarios, depending on the specified timeout value. In
order to check whether the event is in signaled state, we use semop() with either one or two
operations, depending on whether the event is a manual reset event. The first operation simply

Chapter 30 A Cross-Platform Multithreading Framework 479

checks whether the semaphore value equals zero, with or without (zero or infinite timeout
specified, respectively) using the IPC_NOWAIT flag. If we are not using a manual reset event, we
increment the semaphore value after testing for zero, thus setting the state back to nonsignaled.
This is almost the same trick we used in the Reset() method, again using the flexibility and
power of semop O. Some systems also support a timed version of called semtimedop(), which
can be used for the remaining timeout scenario. Our implementation does not use semtimedop()
in order to maintain a high level of portability. Instead, we poll the semaphore at a predefined
interval using the nanosleep() function to put the thread to sleep between attempts. Of course,
this is not the best solution and, if semtimedop() is available on your platform, you should favor
using it.

Wait Objects

Now that we have the basic implementation of our synchronization mechanism, we have
to extend our objects in order to add state recording functionality. To do so, we introduce a new
class called WaitObj ect that implements state recording using the wait state array from our
ThreadInfo class. This array is a simple integer array with a constant size, and it belongs to
exactly one thread. Because only the owner thread is allowed to modify the content of the array,
we do not have to use any synchronization during state recording.

The format of a single state record is shown in Table 30.2. The first field specifies the
current state of the object, which can be either STATE_WAIT or STATE_LOCK. The next two fields
specify the time at which the object entered the current state and, in case of a wait operation,
the specified timeout. The object count field defines how many object IDs are to follow, which
might be more than one in case of a WaitForMultipleObjects() operation. Finally, the last
field specifies the total size of the record in integers, which in most cases is six. You might
wonder why we put the state size field at the end and not at the beginning of a record. In most
cases, we remove a record from the end of our wait state array, and it therefore makes sense that
we start our search from the end of the integer array, which means the state size field is actually
the first element in our record.

Table 30.2. Wait state record.

Field State Timestamp Timeout Object Count Object IDs State Size
Integers 1 1 1 1 1 – object count 1

480 Game Engine Gems

In order to set an object's state to wait, we use the SetStateWait() function from our
WaitObject class, which simply fills the array with the required information. If an object's state
becomes locked, then we need to call the SetStateLock() method. This method requires a
parameter that specifies whether the object immediately entered the locked state or whether it
made a state transition from a previous wait. In the first case, again we can simply fill the array
with the lock state information. However, in the second case, we have to find the wait state
record of our object in the wait state array, change the state to locked, and set the timestamp
value. Thanks to the state size field, scanning the array for the right entry can be done very
quickly. RemoveStatewait() and RemoveStateLock() work in a similar fashion. First, we
search for the wait or lock entry of the current object in the array. Then we delete it by setting
all fields to zero. Of course, it might happen that the entry is not the last in the array, in which
case we have to relocate all of the following entries.

WaitObjtect() also defines four important abstract methods that need to be implemented
by derived classes: Lock(), Unlock(), LockedExtern(), and UnlockedExtern(). We provide
classes derived from WaitObject for each of our basic synchronization objects. Each class
implements Lock() and Unlock() by forwarding the call to the underlying object and setting
the according wait and lock states. LockedExtern() and UnlockedExtern() are called if a
WaitObject’s internal synchronization object is locked or unlocked outside the class. These
methods are helper functions used by our implementation in order to keep each state correctly
upto-date. In order to prevent someone else from messing up our wait states with these methods,
we declared them private and made the WaitList class a friend of WaitObject.

With the recorded wait state information, our ThreadManager is now able to construct a
complete snapshot of the current program state as in the example shown in Listing 30.4. The
output shows us that we have three different threads. We start with the first one with the ID
27632, which is our main program thread. Because our ThreadManager did not create this
thread but only attached itself to it, no thread name is given. We can see that our main thread
owns a lock (since the timestamp is 500 ms) on a wait object with ID 1013 named WaitMutex.
WaitThread is the name of the next thread in the list, and this thread is blocked in a
WaitForMultipleObjects() call. It waits for an event named WaitEvent with ID 1012, and it
waits for the same mutex that our main thread has locked. We can also see that we have already
been waiting for 500 ms and that the specified timeout value is infinite. Finally, the last thread
in the list is called DumpThread. This is the thread that was used to output the status information,
and it has neither waits nor locks.

Chapter 30 A Cross-Platform Multithreading Framework 481

Listing 30.4. Example dump of wait state information.

Thread WaitObject Information:

 27632: Attached thread

 - Locked (500ms) wait Object 1013: WaitMutex

 28144: WaitThread

 - Waiting (500ms/INFINITE) for multiple wait objects (2)

 - 1012 : WaitEvent

 - 1013 : WaitMutex

 28145: DumpThread

 - No Locks

Lock Helper Classes

An important practice when programming in multithreaded environments is to release
object ownership once a thread is done with its work. Of course, ownership must also be
released in case of an error, which is actually not that easy. Common pitfalls include functions
that do not have a single point of exit and unhandled exceptions. To better illustrate this
problem, take a look at the code in Listing 30.5, which contains one obvious error where it fails
to release the mutex lock. In the case that an error occurs, we simply return false but forget to
release our lock. While this issue can be easily fixed by adding the missing Unlock() call before
the return statement, we still have another error hiding in the sample code. Imagine that
somewhere between the Lock() and Unlock() calls, an exception occurs. If this exception does
not occur within a try-catch block, we exit the function, leaving the mutex in a locked state.

A simple and elegant solution to this problem is to provide RAII-style3 locking using a
little helper class. Our framework offers two different versions of this class called LockT and
WaitLock. LockT is a simple template class that works with all synchronization objects that
implement a Lock() and Unlock() method. On construction, this class receives a reference to
the guarded synchronization object and, if requested, immediately locks it. LockT() also offers
explicit Lock() and Unlock() functions, but the most important feature is that it unlocks a
locked object in its destructor. Listing 30.6 shows how to use LockT() to fix all issues in Listing
30.5.

The WaitLock class implementation is almost identical to LockT's-the only difference is
that it only works with synchronization objects derived from There are two reasons why we do
not use LockT for WaitObjects. The first is that these objects are reference counted and need

482 Game Engine Gems

special handling when passing a raw pointer to our helper class. The other reason is that
WaitObjects introduce a certain overhead due to the additional wait state recording. Therefore,
you should carefully choose what synchronization object type to use when performance matters.

Listing 30.5. A bad example for using the mutex class.

BasicMutex mtx;

mtx.Lock();

...// do some work here

if (errorOccured) return false;

mtx.Unlock();

return true;

Listing 30.6. Example for using a mutex with the LockT helper class

BasicMutex mtx;

LockT<BasicMutex> mtxLock(mtx, true); // true means lock the Mutex

...// do some work here

if (errorOccured) return false;

mtx.Unlock();

return true;

Waiting for Multiple Objects

A nice feature on Windows platforms is the ability to wait for several different objects to
enter the signaled state. These objects can be synchronization objects (mutex, semaphore,
event), as well as other object types like sockets or threads. Unfortunately, the POSIX standard
doesn't specify a similar API. In order to provide the same functionality on UNIX platforms,
we introduce the concept of wait lists. A WaitList is a simple container that holds an array of
Waitobjects that we want to wait for. It provides two wait methods, WaitForSignalObject()
and WaitForMultipleObjects(), where the first method waits for a specific wait object to
enter the signaled state, and the second method waits for any object in the list to become
signaled. On Windows platforms, we can simply call the corresponding Windows API
functions, WaitForSignalObject() and WaitForMultipleObjects(). However, our UNIX

Chapter 30 A Cross-Platform Multithreading Framework 483

implementation is a bit more complex.

Of course, the easiest solution is to simply poll our wait object list and try to lock each
object with a zero timeout (nonblocking). If one of our attempts succeeds, then we can return
true immediately. Otherwise, if all attempts fail, then we put our thread to sleep for a short
period. This solution is not the most elegant one since we keep waking up the thread and polling
the wait objects even though none of their states have changed. Therefore, our implementation
uses a different approach, slightly based on [Nagarajayya and Gupta 2000].

Figure 30.1 shows the different states and the respective transitions in our
WaitForMultipleObjects() implementation. We start off by trying to lock one of the wait
objects in our list. If this step is not successful, then we put our thread to sleep, waiting on a
condition variable. We are using a single global condition variable that notifies us whenever a
synchronization object has changed its state to signaled. Every synchronization object in our
framework sets this variable when its Unlock() or Reset() method is called. Only if such a
state transition has occurred do we go through our list of wait objects again and try to lock each
one. The advantage of this solution is that it only resumes the thread and checks whether a lock
can be obtained after an object has actually changed to a signaled state. The overhead of our
solution is also relatively small because we only use one additional condition variable in the
whole framework. Of course, it can still happen that the thread performs unnecessary checks in
the case that an object is unlocked but is not part of the WaitList. Therefore, this function
should be used with caution on UNIX systems.

Figure 30.1. WaitForMultipleObjects() states.

484 Game Engine Gems

30.3 Limitations

Now that we have provided an overview of our threading framework and its features, it is
time to discuss some limitations and potential pitfalls. The first thing we want to discuss is the
possibility of a Mac OS X port. The source code provided on the website is basically ready to be
built on a Mac, but there are a few things to consider. The first one is that the Mac OS X kernel
only supports a total of 10 System V semaphores, using the SEM_UNDO flag, in the whole system
[Huyler 2003]. This means that if no other application is using a System V semaphore, we can
have a maximum of three named semaphores, mutexes, or events with our framework on Mac
OS X. A simple solution to this problem is to use only POSIX semaphores for both named and
unnamed synchronization objects on Mac OS X platforms. However, a problem that is
introduced by this fix is that the named auto-reset event implementation in our framework
requires the flexibility of System V's semop() function. A POSIX implementation could be
made similar to the one for an unnamed event, but it has to keep the signal flag in a shared
memory segment. Another problem we experienced on Mac OS X was that the sem_init()
function always failed with an ENOSYS error. This is because the POSIX semaphores
implementation on Mac OS X only supports named semaphores and does not implement
sem_init() [Jew 2004]. Apart from these limitations, the framework should already work
perfectly on Mac OS X, without requiring any code changes.

In this chapter, we also showed how to implement a wait function similar to the Windows
API WatiForMultipleObjects() function. However, our implementation currently only
works with unnamed events. This limitation is caused by the condition variable used to signal
that an object has been unlocked, which is only visible to a single process. This means that if a
named mutex is unlocked in process A, our wait function in process B won't be notified of the
state change and will remain blocked. A possible solution to this problem is to use a System V
semaphore to signal a state change across process boundaries. However, this should be used
with care since our processes might end up receiving many notifications, resulting in a lot of
polling in the WaitList. On Windows, you can also specify whether you want to wait for any
or all objects in the WaitList. Our current implementation only supports the first case, but
adding support for the second case should be straightforward. Finally, if you are really
concerned about performance, you might want to add a BasicWaitList class that works with
the basic synchronization classes, instead of WaitObject-derived ones.

The last potential pitfall that we want to highlight occurs when using named mutexes. On

Chapter 30 A Cross-Platform Multithreading Framework 485

Windows, mutexes can be locked by the same thread multiple times without blocking. With
Pthreads, you can specify whether the mutex should be recursive using the
PTHREAD_MUTER_RECURSIVE type. Unfortunately, our implementation does not offer this
functionality using our System V semaphore without introducing additional overhead to keep
track of the current thread and its lock count. Therefore, if you really require recursive mutexes,
then you should try to avoid using named mutex instances. One more thing left to do when
integrating the framework into your own projects is to implement logging. If you search
through the code, you will find some comments containing TRACE statements. These lines
should be replaced with your engine's own logging facilities.

30.4 Future Extensions

We believe that our framework can be extended in many useful ways. In the code on the
website, we show two examples in the WaitObjectEx.* files. The first is a small class that
derives from WaitObject and encapsulates the thread stop event found in ThreadInfo. Using
this class, we can construct a thread wait object from a ThreadInfo instance, which can be used
in a WaitForMultipleObjects() call to wait for a thread to exit. Additionally, it also enables
wait state tracking for thread events. The second example is a simple last-in-first-out queue that
is in the signaled state when elements are in the queue and in the nonsignaled state when the
queue is empty. The class is derived from WaitEvent, which means that the queue can also be
used with a WaitList.

Another possibility to enhance the threading framework is offered by the ThreadInfo class.
In our system, we are using an exception-based error handling framework that is tightly
integrated into the threading framework. If an exception occurs in a thread, then we have a
generic exception handler in our thread start procedure (in the ThreadInfo class) that collects
the exception information for any uncaught exception and stores it in the thread's ThreadInfo.
The parent thread is then able to retrieve the exact error information from that same
ThreadInfo and use it for proper error reporting.

References

[Meyers 1995] Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and
Designs. Reading, MA: Addison-Wesley, 1995.

486 Game Engine Gems

[Sandler 2009] Alexander Sandler. "pthread mutex vs pthread spinlock." Alex on Linux, May 17,
2009. Available at http://www.alexonlinux.com/pthread-mutex-vspthread-spinlock.

[Nagarajayya and Gupta 2000] Nagendra Nagarajayya and Alka Gupta. "Porting of Win32 API
WaitFor to Solaris." September 2000. Available at http://developers. sun.com/solaris/articles/waitfor
api.pdf.

[Huyler 2003] Christopher Huyler. "SEM_UNDO and SEMUME kernel value issues." osdir.com,
June 2003. Available at http://osdir.com/ml/macosx.devel/2003-06/ msg00215.html.

[Jew 2004] Matthew Jew. "semaphore not initialized - Question on how to implement." FreeRADIUS
Mailing List, October 28, 2004. Available at http://lists.cistron.nl/ pip ermail/freeradius-devel/2004-
October/007620. html.

31
Chapter 31 Producer-Consumer Queues

Matthew Johnson
Advanced Micro Devices, Inc.

31.1 Introduction

The producer-consumer queue is a common multithreaded algorithm for handling a
thread-safe queue with first-in-first-out (FIFO) semantics. The queue may be bounded, which
means the size of the queue is fixed, or it may be unbounded, which means the size can grow
dynamically based on available memory. Finally, the individual items in the queue may be fixed
or variable in size. Typically, the implementation is derived from a circular array or a linked list
data structure. For simplicity, this chapter describes bounded queues with elements of the same
size.

Multithreaded queues are a common occurrence in existing operating system (OS) APIs.
One example of a thread-safe queue is the Win32 message model, which is the main
communication model for applications to process OS and user events. Figure 31.1 shows a
diagram of a single-producer and single-consumer model. In this model, the OS produces
events such as WM_CHAR, WM_MOUSEMOVE, WM_PAINT, etc., and the Win32 application consumes
them.

Figure 31.1. Single producer and single thread.

488 Game Engine Gems

The applications for producer and consumer queues extend beyond input messaging.
Imagine a real-time strategy game where the user produces a list of tasks such as "build factory,"
"move unit here," "attack with hero," etc. Each task is consumed by a separate game logic thread
that uses pathfinding knowledge of the environment to execute each task in parallel. Suppose
the particular consumer thread uses an A* algorithm to move a unit and hit a particularly worst-
case performance path. The producer thread can still queue new tasks for the consumer without
having to stall and wait for the algorithm to finish.

The producer-consumer queue naturally extends to data parallelism. Imagine an
animation engine that uses the CPU to update N animated bone-skin skeletons using data from
static geometry to handle collision detection and response. As pictured in Figure 31.2, the
animation engine can divide the work into several threads from a thread pool by producing
multiple "update bone-skin" tasks, and the threads can consume the tasks in parallel. When the
queue is empty, the animation thread can continue, perhaps to signal the rendering thread to
draw all of the characters.

Figure 31.2. Single producer and multiple consumers.

In Figure 31.3, only one item at a time is consumed from the queue (since the queue is read
atomically from the tail); however, the actual time the consumer thread starts or finishes the
task may be out of order because the OS thread scheduler can preempt the consumer thread
before useful work begins.

Chapter 31 Producer-Consumer Queues 489

Figure 31.3. Sample timeline for producer-consumer model from Figure 31.2.

31.2 Multithreading Overview

Since the producer pushes items onto the head of the queue and the consumer pops items
off of the tail, the algorithm must serialize access between these memory locations atomically.
An atomic operation is an operation that appears to all processors in the system as occurring
instantly and is uninterruptible by other processes or threads. Although C++ does not natively
support atomic data types (until C++0x), many libraries have other mechanisms to achieve the
same results.

Serialization is typically supported by the OS and its API in various forms. At the process
level, a critical section can be used to synchronize access among multiple threads, whereas a
mutex can synchronize access among multiple processes. When a thread enters a critical section,
no other thread can execute the code until that thread leaves the critical section. Finally,
synchronization primitives can be avoided in the design of a lock-free algorithm by exclusively
using atomic instructions to serialize resources. This requires detailed working knowledge of
the compiler, memory model, and processor.

31.3 A First Approach: Using Win32 Semaphores and Critical

Sections

Since this chapter covers bounded queues, where each item is fixed in size, we need a
thread-safe way to internally manage the item count in the queue. Semaphores are an
appropriate way to handle this.

Our first implementation of a FIFO, shown in Listing 31.1, uses a standard circular queue,
which is not thread safe. Note that the head precedes the tail but, if wrapped around zero for an

490 Game Engine Gems

unsigned integer, continues to work because the modulus is used for each array access. A
common optimization is to use a power of two for the queue size, allowing the modulus
operation to be replaced with a bitwise AND with one less than the queue size. To keep track of
the number of elements currently in the queue, an m_size member variable can be added. It is
incremented for each insert at the tail and decremented for each removal at the head.

Listing 31.1. A simple FIFO queue.

template <typename T> class Fifo

{

public:

 Fifo(UINT maxItems): m_maxSize(maxItems), m_head(0), m_tail(0)

 {

 m_items = new T[m_maxSize];

 }

 ~Fifo()

 {

 delete m_items;

 }

 bool IsEmpty()

 {

 return (m_tail == m_head);

 }

 bool IsFull()

 {

 return (m_tail == m_head + m_maxSize);

 }

 void Insert(const T& item)

 {

 assert(!IsFull());

 m_items[m_tail++ % m_maxSize] = item;

Chapter 31 Producer-Consumer Queues 491

 }

 T Remove()

 {

 assert(!IsEmpty());

 return (m_items[m_head++ % m_maxSize]);

 }

private:

 T *m_items;

 UINT m_head;

 UINT m_tail;

 const UINT m_maxSize;

};

Next, a producer-consumer class can be created for thread-safe access to the FIFO queue.
The code in Listing 31.2 demonstrates a thread-safe queue using a semaphore to maintain a
count of the maximum number of items allowed in the queue. The semaphore is initialized to
zero by default. Calling ReleaseSemaphore() causes the OS to atomically increment the
semaphore count by one. Calling WaitForSignalObjects() waits if the semaphore count is
zero; otherwise, the OS atomically decrements the count by one and returns from the function.

Listing 31.2. A simple producer-consumer queue.

template <typename T> class ProducerConsumerQueue

{

public:

 enum

 {

 MaxItemsInQueue = 256

 };

 ProducerConsumerQueue(): m_queue(MaxItemsInQueue)

 {

 InitializeCriticalSection(&m_cs);

492 Game Engine Gems

 m_sm = CreateSemaphore(NULL, // security attributes

 0, // initial semaphore count

 MaxItemsInQueue, // maximum semaphore count

 NULL); // name (useful for IPC)

 }

 void Insert(const T& item)

 {

 for (;;)

 {

 EnterCriticalSection(&m_cs);

 if (m_queue.IsFull())

 {

 LeaveCriticalSection(&m_cs);

 SwitchToThread();

 continue; //Queue full

 }

 else if (SUCCEEDED(ReleaseSemaphore(m_sm, 1, NULL)))

 {

 m_queue.Insert(item);

 }

 LeaveCriticalSection(&m_cs);

 break;

 }

 }

 T Remove()

 {

 T item;

 for (;;)

Chapter 31 Producer-Consumer Queues 493

 {

 if (WAIT_OBJECT_0 != WaitForSingleObject(m_sm, INFINITE))

 break;

 EnterCriticalSection(&m_cs);

 if (!m_queue.IsEmpty())

 {

 item = m_queue.Remove();

 LeaveCriticalSection(&m_cs);

 break;

 }

 else

 {

 LeaveCriticalSection(&m_cs); //Queue empty

 }

 }

 return (item);

 }

 DWORD LastError()

 {

 return (::GetLastError());

 }

private:

 Fifo<T> m_queue;

 CRITICAL_SECTION m_cs;

 HANDLE m_sm;

};

When the semaphore count is zero, the consumer(s) enter into a lowoverhead wait state
until a producer inserts an item at the head of the queue. Note that in this implementation, the
Insert() function can still return without inserting an item, for example, if the

494 Game Engine Gems

ReleaseSemaphore() function fails. Finally, the Remove() function can still return without
removing an item, for example, if the function fails. These failure paths are rare, and the
application can call the LastError() function to get the Win32 error result.

Some designs may want to defer to the application to retry the operation on the producer
side if the queue is full. For example, one may want to return false if an item can't be inserted at
that moment in time because the queue is full. In the implementation of a thread-safe queue,
one needs to be careful how to proceed if the queue is empty or full. For example, when
removing an object, the code in Listing 31.2 first requests exclusive access to check if the queue
has at least one item, but backs out and tries again if it has no items to remove. If the check was
done before entering the critical section, a thread context switch could occur and another
consumer could remove the last item right before entering the critical section, which would
result in trying to remove an item from an empty queue!

This particular class has a few limitations. For example, there is no way to signal to all the
consumers to stop waiting for the producer(s) to insert more data. One way to handle this is by
adding a manual reset event that is initially nonsignaled and calling the
WaitForMultipleObjects() function on both the stop event and semaphore, with the
bWaitAll set to FALSE. After a SetEvent() call, all consumers would then wake up, and the
return value of the WaitForMultipleObject() function indicates whether it was the event that
signaled it.

Finally, the semaphore object maintains an exact physical count of the objects, but this is
only internal to the OS. To modify the consumer to get the number of items currently in the
queue, we can add a member variable that is incremented or decremented whenever the queue
is locked. However, every time the count is read, it would only be a logical snapshot at that point
in time since another thread could insert or remove an item from the queue. This might be
useful for gauging a running count to see if the producer is producing data too quickly (or the
consumer is consuming it too quickly), but the only way to ensure the count would remain
accurate would be to lock the whole queue before checking the count.

31.4 A Second Approach: Lock-Free Algorithms

The goal of every multithreaded algorithm is to maximize parallelism. However, once a
resource is requested for exclusive access, all threads must stall while waiting for that resource

Chapter 31 Producer-Consumer Queues 495

to become available. This causes contention. Also, many OS locks (such as mutexes) require
access to the kernel mode and can take hundreds of clock cycles or more to execute the lock. To
improve performance, some multithreaded algorithms can be designed not to use any OS locks.
These are referred to as lock-free algorithms.

Lock-free algorithms have been around for decades, but these techniques are seeing more
and more exposure in user-mode code as multicore architectures become commonplace and
developers seek to improve parallelism. For example, Valve's Source Engine internally uses
lock-free algorithms for many of the multithreaded components in their game engine [Leonard
2007].

The design of new lock-free algorithms is notoriously difficult and should be based on
published, peer-reviewed techniques. Most lock-free algorithms are engineered around modern
x86 and x64 architectures, which requires compiler and processor support around a specific
multiprocessor memory model. Despite the complexity, many algorithms that have high thread
contention or low latency requirements can achieve measurable performance increases when
switching to a lock-free algorithm. Lock-free algorithms, when implemented correctly, general
ly do not suffer from deadlocks, starvation, or priority inversion. There is, however, no
guarantee that a lock-free algorithm will outperform one with locks, and the additional
complexity makes it not worth the headache in many cases. Finally, another disadvantage is that
the range of algorithms that can be converted to a lock-free equivalent is limited. Luckily,
queues are not among them.

One of the challenges when accessing variables shared among threads is the reordering of
read and write operations, and this can break many multithreaded algorithms. Both the
compiler and processor can reorder reads and writes. Using the volatile keyword does not
necessarily fix this problem, since there are no guarantees in the C++ standard that a memory
barrier is created between instructions. A memory barrier is either a compiler intrinsic or a
CPU instruction that prevents reads or writes from occurring out of order across the execution
point. A full barrier is a barrier that operates on the compiler level and the instruction (CPU)
level. Unfortunately, the volatile keyword was designed for memorymapped I/O where access
is serialized at the hardware level, not for modern multicore architectures with shared memory
caches.

In Microsoft Visual C++, one can prevent the compiler from reordering instructions by
using the _ReadBarrier(),_ReadWriteBarrier() or _WriteBarrier() compiler intrinsics.
In Microsoft Visual C++ 2003 and beyond, volatile variables act as a compiler memory barrier

496 Game Engine Gems

as well. Finally, the MemoryBarrier() macro can be used for inserting a CPU memory barrier.
Interlocked instructions such as InterlockedIncrement() or
InterlockedCompareAndExchange() also act as full barriers.

31.5 Processor Architecture Overview and Memory Models

Synchronization requirements for individual memory locations depend on the
architecture and memory model. On the x86 architecture, reads and writes to aligned 32-bit
values are atomic. On the x64 architecture, reads and writes to aligned 32-bit and 64-bit values
are atomic. As long as the compiler is not optimizing away the access to memory (use the
volatile keyword to ensure this), the value is preserved and the operation is completed
without being interrupted. However, when it comes to the ordering of reads and writes as it
appears to a particular processor in a multiprocessor machine, the rules become more
complicated.

Processors such as the AMD Athlon 64 and Intel Core 2 Duo operate on a "write ordered
with store-buffer forwarding" memory model. For modern x86 or x64 multiprocessor
architectures, reads are not reordered relative to reads, and writes are not reordered relative to
writes. However, reads may be reordered with a previous write if the read accesses a different
memory address.

During write buffering, it is possible that the order of writes across all processors appears
to be committed to memory out of order to a local processor. For example, if processor A writes
A.O, Al, .and A.2 to three different memory locations and processor B writes B.3, B.4, and B.5
to three other memory locations in parallel, the actual order of the writes to memory could
appear to be written ordered A.O, A.1, B.3, B.4, A.2, B.5. Note that neither the A.O, A.1, and
A.2 writes nor the B.3, B.4, and B.5 writes are reordered locally, but they may be interleaved
with the other writes when committed to memory.

Since a read can be reordered with a write in certain circumstances, and writes can be done
in parallel on multiprocessor machines, the default memory model breaks for certain
multithreaded algorithms. Due to these memory model intricacies, certain lock-free algorithms
could fail without a proper CPU memory barrier such as Dekker's mutual exclusion algorithm,
shown in Listing 31.3.

Chapter 31 Producer-Consumer Queues 497

Listing 31.3. Dekker's mutual exclusion algorithm.

static declspec(align(4)) volatile bool a = false, b = false, turn = false;

void threadA()

{

 a = true;

 // <- write a, read b reorder possible, needs MemoryBarrier()

 while (b)

 {

 if (turn)

 {

 a = false;

 while (turn) {/*spin*/};

 a = true;

 }

 }

 // critical section

 turn = true;

 a = false;

}

void threadB()

{

 b = true;

 // <- write a, read b reorder possible, needs MemoryBarrier()

 while (a)

 {

498 Game Engine Gems

 if (turn)

 {

 b = false;

 while (!turn) {/*spin*/};

 b = true;

 }

 }

 // critical section

 turn = false;

 b = false;

}

Assuming that each thread is running in a different process, Figure 31.4 shows a parallel
operation that fails with the write-ordered, store-buffer forwarding memory model. Since the
read (cmp) can be reordered relative to the previous write on each processor, it is possible for
threadA to read b as false on processor A and threadB to read a as false on processor B,
before any instructions to set them to true are finished executing. This causes both threads to
enter into the critical section at the same time, which breaks the algorithm. The way to solve
this is by inserting a CPU memory barrier before the write and read.

Processor A Processor B

mov dword ptr [a], 1 mov dword ptr [b], 1

cmp dword ptr [b], 0 cmp dword ptr [a], 0

Figure 31.4. On modem x86 or x64 processors, a read instruction can be reordered with a previous
write instruction if they are addressing different memory locations.

Microsoft Visual C++ 2008 has a compiler-specific feature to treat access to volatile
variables with acquire and release semantics [Dawson 2008]. In order to enforce acquire and
release semantics completely on modern x86/64 processors, the compiler would need to enforce
compiler memory barriers up the call stack in addition to using atomic or lock instructions.
Unfortunately, when disassembling Dekker's algorithm on a Core2 Duo platform, locking
instructions were not used, thus leaving the possibility of a race condition. Therefore, to be safe,
aligned integers that are shared across threads should be accessed using interlocked instructions,

Chapter 31 Producer-Consumer Queues 499

which provide a full barrier when compiled under Microsoft Visual C++. A cross-platform
implementation may require the use of preprocessor defines or different code paths depending
on the target compiler and target architecture.

31.6 Lock-Free Algorithm Design

On x86 and x64 architectures, lock-free algorithms center around the compareand-swap
(CAS) operation, which is implemented atomically when supported as a CPU instruction.
Pseudocode for a 32-bit CAS operation is shown in Listing 31.4. If implemented in C++, this
operation would not be atomic. However, on x86 and x64 processors, the 32-bit CMPXCHG
instruction is atomic and introduces a processor memory barrier (the instruction is prefixed
with a LOCK). There are also 64-bit (CAS2) and 128-bit (CAS4) versions on supported platforms
(CMPXCHG8B and CMPXCHG16B). In Win32, these are available as the
InterlockedCompareExchange() and InterlockedCompareExchange64() functions. At the
time of this writing, there is no InterlockedExchange128() function, but there is a
InterlockedExchange128() intrinsic in Visual C++ 2010.

Listing 31.4. CAS pseudocode.

UINT32 CAS(UINT32 *dest, UINT32 old, UINT32 new)

{

 UINT32 cur = *dest;

 if (cur == old) *dest = new;

 return (old);

}

Support for the 64-bit CMPXCHG4B instruction has been available since the Pentium, so
availability is widespread. The 128-bit CMPXCHG8B instruction is available on newer AMD64
architectures and Intel 64 architectures. These features can be checked using the _cpuid()
intrinsic function, as shown in Listing 31.5.

500 Game Engine Gems

Listing 31.5. Verifying CAS processor support.

struct ProcessorSupport

{

 ProcessorSupport()

 {

 int cpuInfo[4] = {0};

 __cpuid(cpuInfo, 1);

 supportsCmpXchg64 = ((cpuInfo[2] & 0x200) != 0);

 supportsCmpXchg128 = ((cpuInfo[3] & 0x100) != 0);

 };

 bool supportsCmpXchg64;

 bool supportsCmpXchg128;

};

ProcessorSupport processorSupport;

if (processorSupport.supportsCmpXchg64) { /*...*/ }

This chapter uses the 32-bit CAS and 64-bit CAS2 in its design. The advantage of using a
CAS operation is that one can ensure, atomically, that the memory value being updated is
exactly as expected before updating it. This promotes data integrity. Unfortunately, using the
CAS operation alone in the design of a lock-free stack and queue isn't enough. Many lock-free
algorithms suffer from an "ABA" problem, where an operation on another thread can modify
the state of the stack or queue but not appear visible to the original thread, since the original
item appears to be the same.

This problem can be solved using a version tag (also known as a reference counter) that is
automatically incremented and stored atomically with the item when a CAS operation is
performed. This makes the ABA problem extremely unlikely (although technically possible,
since the version tag could eventually wrap around). The implementation requires the use of a
CAS2 primitive to reserve room for an additional version tag.

Chapter 31 Producer-Consumer Queues 501

31.7 Lock-Free Implementation of a Free List

The A11ocRef data structure in Listing 31.6 contains the union shared by both the stack
and the queue algorithm. It is a maximum of 64 bits wide to accommo- date the CAS2 primitive.
In addition, it includes a version tag to prevent the ABA problem.

Listing 31.6. A 64-bit allocation block reference.

declspec(align(8)) union AllocRef

{

 enum

 {

 NullIndex = 0x000FFFFF

 };

 AllocRef(UINT64 idx, UINT64 ver)

 {

 arrayIndex = idx;

 version = ver;

 }

 AllocRef(UINT64 idx, UINT64 si, UINT64 v)

 {

 arrayIndex = idx;

 stackIndex = si;

 version = v;

 }

 AllocRef(): arrayIndex(NullIndex), version(0)

 {

 }

 AllocRef(volatile AllocRef& a)

 {

502 Game Engine Gems

 val = a.val;

 }

 struct

 {

 UINT64 arrayIndex: 20;

 UINT64 stackIndex: 20;

 UINT64 version: 24;

 };

 UINT64 val;

};

The Allocator class in Listing 31.7 implements a free list, which is an algorithm that
manages a preallocated pool of memory. The code uses an array-based lock-free
implementation of a stack algorithm by Shafiei [2009]. Since this algorithm also requires a stack
index, we pack the stack index, stack value (array index), and version number in one 64-bit
value. This limits the maximum number of items in the stack and queue to 1,048,575 entries
(2020 -1) and the version number to 24 bits. The 20-bit index 0x000FFFFF is reserved as a null
index.

Listing 31.7. A free list memory block allocator.

__declspec(align(8)) class Allocator

{

public:

 Allocator(UINT maxAllocs): m_maxSize(maxAllocs + 1)

 {

 m_pFreeList = new AllocRef[m_maxSize];

 assert(m_pFreeList != NULL);

 m_pFreeList[0].arrayIndex = AllocRef::NullIndex;

 m_pFreeList[0].stackIndex = 0;

 m_pFreeList[0].version = 0;

Chapter 31 Producer-Consumer Queues 503

 for (UINT i = 1; i < m_maxSize; ++i)

 {

 m_pFreeList[i].arrayIndex = i - 1;

 m_pFreeList[i].stackIndex = i;

 m_pFreeList[i].version = i;

 }

 m_top.val = m_pFreeList[m_maxSize - 1].val;

 }

 ~Allocator()

 {

 delete[] m_pFreeList;

 }

 inline bool IsFull() const

 {

 return (m_top.stackIndex == m_maxSize - 1);

 }

 inline bool IsEmpty() const

 {

 return (m_top.stackIndex == 0);

 }

 void Free(UINT32 arrayIndex);

 UINT32 Alloc();

private:

 volatile AllocRef *m_pFreeList;

 volatile AllocRef m_top;

 const UINT m_maxSize;

};

504 Game Engine Gems

UINT32 Allocator::Alloc()

{

 for (;;)

 {

 AllocRef top = m_top;

 AllocRef stackTop = m_pFreeList[top.stackIndex];

 CAS2(&m_pFreeList[top.stackIndex].val,

 AllocRef(stackTop.arrayIndex, stackTop.stackIndex,

 top.version - 1).val,

 AllocRef(top.arrayIndex, stackTop.stackIndex,

 top.version).val);

 if (top.stackIndex == 0) continue; // Stack Empty?

 AllocRef belowTop = m_pFreeList[top.stackIndex - 1];

 if (CAS2(&m_top.val, AllocRef(top.arrayIndex, top.stackIndex,

 top.version).val,

 AllocRef(belowTop.arrayIndex, top.stackIndex - 1,

 belowTop.version + 1).val))

 {

 return (top.arrayIndex);

 }

 }

}

void Allocator::Free(UINT32 arrayIndex)

{

 for (;;)

 {

 AllocRef top = m_top;

 AllocRef stackTop = m_pFreeList[top.stackIndex];

Chapter 31 Producer-Consumer Queues 505

 CAS2(&m_pFreeList[top.stackIndex].val,

 AllocRef(stackTop.arrayIndex, stackTop.stackIndex,

 top.version - 1).val,

 AllocRef(top.arrayIndex, stackTop.stackIndex,

 top.version).val);

 if (top.stackIndex == m_maxSize - 1) continue; //Stack full?

 UINT16 aboveTopCounter = m_pFreeList[top.stackIndex + 1].version;

 if (CAS2(&m_top.val, AllocRef(top.arrayIndex, top.stackIndex,

top.version).val,

 AllocRef(arrayIndex, top.stackIndex + 1,

 aboveTopCounter + 1).val))

 {

 return;

 }

 }

}

31.8 Lock-Free Implementation of a Queue

The implementation shown in Listing 31.8 is based on the lock-free, array-based queue
algorithm by Shann and Haung [2000] with bug fixes by Colvin and Groves [2005]. In the
original algorithm, the complete item in the queue is atom ically swapped. Unfortunately, due
to the absence of a hardware CASn instruction, this limits an item size to 32 bits (further limited
to 20 bits since we share the same index value in the stack algorithm). Therefore, the algorithm
is extended to use a circular queue of index elements that are offsets to the specific item in an
array. When a producer wants to insert an item, the index is atomically retrieved from the free
list, and it is not inserted into the queue until the data is finished being copied into the array.
Finally, the index can't be reused until a consumer retrieves the index from the queue, copies
the data locally, and returns the index back to the free list.

506 Game Engine Gems

Listing 31.8. A lock-free, array-based producer-consumer queue.

/* Lock-free Array-based Producer-Consumer (FIFO) Queue

Producer: Inserting an item to the tail of the queue.

- The allocator atomically retrieves a free index from the free pool

- This index points to an unused entry in the item array.

- The item is copied into the array at the index.

- The index is inserted atomically at the queue's tail and is now visible.

- The index will remain unavailable until consumer atomically removes it.

- When that happens, the index will be placed back on the free pool.

Consumer: Removing an item from the head of the queue.

- The index is atomically removed from the head of the queue.

- If successfully removed, the head is atomically incremented.

- The item is copied from the array to a local copy.

- The index is placed back on the free pool and is now available for reuse.

*/

template <typename T> class Queue

{

public:

private:

 Allocator m_allocator; // Free list allocator.

 T *m_pItems; //Array of items.

 volatile AllocRef *m_pQueue; //FIFO queue.

 volatile UINT m_head; //Head of queue.

 volatile UINT m_tail; //Tail of queue.

 const UINT m_maxQueueSize; //Max items in queue.

};

Chapter 31 Producer-Consumer Queues 507

template <typename T> void Queue<T>::Insert(const T& item)

{

 UINT32 index;

 do

 {

 // Obtain free index from free list.

 index = m_allocator.Alloc();

 } while (index == AllocRef::NullIndex); // Spin until free index.

 m_pItems[index] = item;

 for (;;) // Spin until successfully inserted.

 {

 UINT tail = m_tail;

 AllocRef alloc = m_pQueue[tail % m_maxQueueSize];

 UINT head = m_head;

 if (tail != m_tail) continue;

 if (tail == m_head + m_maxQueueSize)

 {

 if (m_pQueue[head % m_maxQueueSize].arrayIndex !=

 AllocRef::NullIndex)

 if (head == m_head) continue; //Queue is full.

 CAS(&m_head, head, head + 1);

 continue;

 }

 if (alloc.arrayIndex == AllocRef::NullIndex)

 {

 if (CAS2(&m_pQueue[tail % m_maxQueueSize].val, alloc.val,

 AllocRef(index, alloc.version + 1).val))

508 Game Engine Gems

 {

 CAS(&m_tail, tail, tail + 1);

 return;

 }

 }

 else if (m_pQueue[tail % m_maxQueueSize].arrayIndex !=

 AllocRef::NullIndex)

 {

 CAS(&m_tail, tail, tail + 1);

 }

 }

}

template <typename T> T Queue<T>::Remove()

{

 for (;;) // Spin until successfully removed.

 {

 UINT32 head = m_head;

 AllocRef alloc = m_pQueue[head % m_maxQueueSize];

 UINT32 tail = m_tail;

 if (head != m_head) continue;

 if (head == m_tail)

 {

 if (m_pQueue[tail % m_maxQueueSize].arrayIndex ==

 AllocRef::NullIndex)

 if (tail == m_tail) continue; // Queue is empty.

 CAS(&m_tail, tail, tail + 1);

 }

 if (alloc.arrayIndex != AllocRef::NullIndex)

 {

Chapter 31 Producer-Consumer Queues 509

 if (CAS2(&m_pQueue[head % m_maxQueueSize].val, alloc.val,

 AllocRef(AllocRef::NullIndex, alloc.version + 1).val))

 {

 CAS(&m_head, head, head + 1);

 T item = m_pItems[alloc.arrayIndex];

 // Release index back to free list.

 m_allocator.Free(alloc.arrayIndex);

 return (item);

 }

 }

 else if (m_pQueue[head % m_maxQueueSize].arrayIndex ==

 AllocRef::NullIndex)

 {

 CAS(&m_head, head, head + 1);

 }

 }

}

When inserting an item, both the stack and queue continue spinning until they are not full.
When removing an item, both the stack and queue continue spinning until they are not empty.
To modify these methods to return an error code instead, replace continue with return at the
appropriate locations. This is a better strategy when data is being inserted and removed from
the queue sporadically, since the application can handle the best way to wait. For example, the
application can call SwitchToThread() to allow the OS thread scheduler to yield execution to
another thread instead of pegging the processor at 100% with unnecessary spinning.

31.9 Interprocess Communication

Both the semaphore-based model and the lock-free model can be extended for use for
interprocess communication. Win32 memory-mapped files can act as shared storage for all the
volatile and constant memory used by the algorithms. To extend to the semaphore-based queue,
replace the critical sections with named mutexes and the semaphores with named semaphores.
The queue will be managed using kernel locks, and the head and tail offsets can be maintained

510 Game Engine Gems

as reserved space in the memory-mapped file.

The lock-free implementation is handled similarly, except no locks are needed, even across
processes. However, just like the semaphore-based queue, the lock-free queue requires all
producers and consumers to use the same lock-free code to ensure thread safety.

From the perspective of both algorithms, there are no differences between an array in one
process and the same array remapped in different processes, since each algorithm is designed
to operate using array indices instead of pointers.

References

[AMD 2010] AMD. AMD64 Architecture Programmer's Manual Volume 2: System Programming.
Advanced Micro Devices, 2010. Available at http://support.amd.

[Colvin and Groves 2005] Robert Colvin and Lindsay Groves. "Formal Verification of an Array-
Based Nonblocking Queue." Proceedings of Engineering of Complex Computer Systems, June 2005.

[Dawson 2008] Bruce Dawson. "Lockless Programming Considerations for Xbox 360 and Microsoft
Windows." MSDN, June 2008. Available at http://msdn.microsoft.com/en-us/library/ee4l8650%
28VS.85%29.aspx.

[Intel 2010] Intel. Intel 64 and IA-32 Architectures. Software Developer's Manual. Volume 3A: System
Programming Guide. Intel, 2010. Available at http://www. intel.com/Assets/PDF/manua
U253669.pdf.

[Leonard 2007] Tom Leonard. "Dragged Kicking and Screaming: Source Multicore." Game
Developers Conference, 2007. Available at http://www.valvesoftware.com/pub lications/2007/
GDC2007_SourceMulticore.pdf.

[Newcomer 2001] Joseph M. Newcomer. "Using Semaphores: Multithreaded Producer/Consumer."
The Code Project, June 14, 2001. Available at http://www. codeproject.com/KB/threads/
semaphores.aspx.

[Sedgewick 1998] Robert Sedgewick. Algorithms in C++, 3rd Edition. Reading, MA: Addison-Wesley,
1998.

[Shafiei 2009] Niloufar Shafiei. "Non-blocking Array-Based Algorithms for Stacks and Queues."
Proceedings of Distributed Computing and Networking, 2009.

Chapter 31 Producer-Consumer Queues 511

[Shann et al. 2000] Chien-Hua Shann, Ting-Lu Huang, and Cheng Chen. "A Practical Nonblocking
Queue Algorithm using Compare-and-Swap." Proceedings of Parallel and Distributed Systems, 2000.

	Preface
	Part I Graphics and Rendering
	Chapter 1 Fast Computation of Tight-Fitting Oriented Bounding Boxes
	1.1 Introduction
	1.2 Algorithm
	Selecting the Extremal Points
	Finding the Axes of the OBB
	Handling Detrimental Cases

	1.3 Evaluation
	Bounding Volume Hierarchy Quality

	1.4 Optimization Using SIMD Instructions
	1.5 Discussion and Future Work
	References

	Chapter 2 Modeling, Lighting, and Rendering Techniques for Volumetric Clouds
	2.1 Modeling Cloud Formation
	Growing Clouds with Cellular Automata
	Simulating the Distribution of Clouds

	2.2 Cloud Lighting Techniques
	2.3 Cloud Rendering Techniques
	Volumetric Splatting
	Volumetric Slicing
	GPU Ray Casting
	Hybrid Approaches
	References

	Chapter 3 Simulation of Night-Vision and Infrared Sensors
	3.1 The Physics of the Infrared
	3.2 Simulating Infrared Sensor Effects
	3.3 Night-Vision Goggle Simulation
	References

	Chapter 4 Screen-Space Classification for Efficient Deferred Shading
	4.1 Introduction
	4.2 Overview of Method
	4.3 Depth-Related Classification
	4.4 Pixel Classification
	4.5 Combining Classification Results
	4.6 Index Buffer Generation
	4.7 Tile Rendering
	4.8 Shader Management
	4.9 Platform Specifics
	Xbox 360
	PlayStation 3

	4.10 Optimizations
	Reducing Shader Count
	Tile Coalescing

	4.11 Performance Comparison
	References

	Chapter 5 Delaying OpenGL Calls
	5.1 Introduction
	5.2 Motivation
	5.3 Possible Implementations
	5.4 Delayed Calls Implementation
	5.5 Implementation Notes
	5.6 Improved Flexibility
	5.7 Concluding Remarks
	Acknowledgements
	References

	Chapter 6 A Framework for GLSL Engine Uniforms
	6.1 Introduction
	6.2 Motivation
	6.3 Implementation
	6.4 Beyond GLSL Built-in Uniforms
	6.5 Implementation Tips
	6.6 Concluding Remarks
	Acknowledgements

	Chapter 7 A Spatial and Temporal Coherence Framework for Real-Time Graphics
	7.1 Introduction
	7.2 The Spatiotemporal Framework
	Bilateral Upsampling
	Reprojection Caching
	Bilateral Filtering
	Spatiotemporal Coherency

	7.3 Applications
	Screen-Space Ambient Occlusion
	Soft Shadows
	Shadows and Ambient Occlusion Combined
	Postprocessing

	7.4 Future Work
	Antialiasing
	High-Quality Spatiotemporal Reconstruction
	References

	Chapter 8 Implementing a Fast DDOF Solver
	8.1 Introduction
	8.2 Modifying the Basic CR Solver
	8.3 Results
	References

	Chapter 9 Automatic Dynamic Stereoscopic 3D
	9.1 General Problems in S3D
	Window Violations
	Convergence Fatigue
	Accommodation/Convergence Deviation

	9.2 Problems in S3D Unique to Games
	Keystone Distortions
	2D Image-Based Effects
	HUD and Subtitles

	9.3 Dynamic Controls
	9.4 A Simple Dynamic S3D Camera
	Camera Target Tracking
	Dynamic Parallax Separation

	9.5 Content-Adaptive Feedback
	References

	Chapter 10 Practical Stereo Rendering
	10.1 Introduction to Stereo 3D
	10.2 Overview of Stereo Displays
	10.3 Introduction to Rendering Stereo
	10.4 The Mathematics of Stereo Views and Projection
	10.5 Using Geometry Shader to Render Stereo Pairs
	References

	Chapter 11 Making 3D Stereoscopic Games
	11.1 Introduction
	11.2 How Stereoscopic 3D Works
	11.3 How to Set Up the Virtual 3D Cameras
	11.4 Safe Area
	11.5 Technical Considerations
	11.6 Same Scene, Both Eyes, and How to Optimize
	11.7 Scene Traversal
	11.8 Supporting Both Monoscopic and Stereoscopic Versions
	11.9 Visual Quality
	Stereo Coherence
	Fast Action
	3D Slider
	Color Enhancement
	Crosstalk Reduction

	11.10 Going One Step Further
	11.11 Conclusion
	References

	Chapter 12 A Generic Multiview Rendering Engine Architecture
	12.1 Introduction
	12.2 Analyzing Multiview Displays
	12.3 The Architecture
	12.4 The Multiview Camera
	12.5 The Multiview Buffer
	12.6 The Multiview Compositor
	12.7 Rendering Management
	Shared Data between Different Views

	12.8 Rendering Optimizations
	Multiview Level-of-Detail for Objects
	Multiview Level-of-Detail for Multiview Buffers
	Other Optimization Approaches

	12.9 Discussion
	Multiview Scene Setup
	Enabling/Disabling Multiview Rendering at Run Time
	Postprocessing Pipelines
	Integration with Other Stereo-Rendering APIs
	3D Video Playback
	Using Multiview Pipeline for Other Rendering Techniques
	Acknowledgements
	References

	Chapter 13 3D in a Web Browser
	13.1 A Brief History
	13.2 Fast Forward
	13.3 3D with Flash
	13.4 3D with Java
	13.5 3D with a Game Engine Plug-In
	13.6 Google Native Client
	13.7 3D with HTMLS
	13.8 Conclusion
	References

	Chapter 14 2D Magic
	14.1 Tools of the Trade
	14.2 Position
	Scale Effects
	Motion Effects
	Perspective Effects

	14.3 Color and Opacity
	Colored UI Model
	Opacity Separate from Color
	Interpolation
	Day and Night

	14.4 Texture (UV) Coordinates
	UI Frames
	Texture Scrolling
	Texture Sheets

	14.5 What a Mesh!
	14.6 Mesh Architecture
	Mesh
	Space
	State
	Modifiers

	14.7 Mesh Examples
	Point Light
	Sunrise and Double Rainbows
	Flashlight
	Pinch
	Optimization

	14.8 Conclusion
	Acknowledgements
	References

	Part II Game Engine Design
	Chapter 15 High-Performance Programming with Data-Oriented Design
	15.1 Modern Hardware
	15.2 Principles of Data-Oriented Design
	15.3 Data-Oriented Design Benefits
	15.4 How to Apply Data-Oriented Design
	15.5 Real-World Situations
	Homogeneous, Sequential Data
	Heterogeneous Data
	Break and Batch
	Conditional Execution
	Polymorphism

	15.6 Parallelization
	15.7 Conclusion

	Chapter 16 Game Tuning Infrastructure
	16.1 Introduction
	16.2 The Need for Tweak
	16.3 Design Considerations
	16.4 The Tuning Tool
	Using the Debugger
	Using a Console Window
	Integrating with an Existing DCC1 Tool
	Dedicated Editor Application

	16.5 Data Exchange
	Direct Value Access
	Interprocess Communication
	Cross-Platform Communication

	16.6 Schema and Exposure
	Marking Tunable Variables
	Reflection
	Explicit Definition

	16.7 Data Storage
	Text or Binary
	Divide and Conquer
	Supporting Structure Changes
	File Format
	Writing Data

	16.8 Case Studies
	Quraish
	Unreal 3/Unreal Development Kit

	16.9 Final Words
	Acknowledgements
	References

	Chapter 17 Placeholders beyond Static Art Replacement
	17.1 Placeholder Assets in a Game
	Placeholders as Development Productivity Tools
	Desired Features of a Placeholder System

	17.2 Preaching by Example: The Articulated Placeholder Model
	Skeleton Construction
	Placeholder Mesh Generation with implicit Surfaces
	Automatic Vertex Weight Assignment
	Skinning
	Limitations

	17.3 Integration in a Production Environment
	Who Makes It, and Where Do You Make It?
	Game Pipeline Integration

	17.4 In the End, Is It Really Needed?
	17.5 Implementation
	References

	Chapter 18 Believable Dead Reckoning for Networked Games
	18.1 Introduction
	18.2 Fundamentals
	Myth Busting-Ground Truth
	Basic Math
	Myth Busting-Discontinuities Are Not Minor

	18.3 Pick an Algorithm, Any Algorithm
	Projective Velocity Blending
	Prove It!

	18.4 Time for T
	What Time Is It?
	Time to Put It Together
	Just in Time Notes

	18.5 Publish or Perish
	When to Publish?
	What to Publish
	Myth Busting-Acceleration Is Not Always Your Friend
	Publishing Tips
	The Whole Story

	18.6 Ground Clamping
	Can We Fix It?
	Other Considerations

	18.7 Orientation
	Myth Busting-Quaternions
	Two Wrong Turns Don't Make a Right

	18.8 Advanced Topics
	Integrating Physics with Dead Reckoning
	Server Validation
	Who Hit Who?
	Articulations
	Path-Based Dead Reckoning
	Delayed Dead Reckoning
	Subscription Zones

	18.9 Conclusion
	Acknowledgements
	References

	Chapter 19 An Egocentric Motion Management System
	19.1 Fundamental Components of the ECMMS
	19.2 Collision Sensors
	19.3 Query Space
	Query Space Allows for an Understanding of Space

	19.4 Modeling the Environment
	19.5 The ECMMS Architecture
	19.6 Modeling an ECMMS-Enabled Agent
	19.7 Generating a Behavior Model with the ECMMS
	19.8 Animation Validation
	19.9 A Single Agent Behavioral Response Algorithm and Example
	References

	Chapter 20 Pointer Patching Assets
	20.1 Introduction
	Bad Solutions
	Analysis
	An Alternative, High-Performance, Solution
	Considerations

	20.2 Overview of the Technique
	Desirable Properties

	20.3 A Brief Example
	Tools Side
	The Run-Time Pointer Patching Process

	Chapter 21 Data-Driven Sound Pack Loading and Organization
	21.1 Introduction
	21.2 Constructing a Sound Map
	21.3 Constructing Sound Packs by Analyzing the Event Table
	Determining Which Sound Events to Stream
	Constructing Sound Packs

	21.4 Constructing and Using Sound Loading Triggers
	Optimizing Sound Loaders
	Out of Memory Detection
	Loading Sound Packs While Running the Game

	21.5 Conclusion

	Chapter 22 GPGPU Cloth Simulation Using GLSL, OpenCL, and CUDA
	22.1 Introduction
	22.2 Numerical Algorithm
	22.3 Collision Handling
	22.4 CPU Implementation
	22.5 GPU Implementations
	22.6 GLSL Implementation
	22.7 CUDA Implementation
	22.8 OpenCL Implementation
	22.9 Results
	22.10 Future Work
	22.11 Demo
	Acknowledgements
	References

	Chapter 23 A Jitter-Tolerant Rigid Body Sleep Condition
	23.1 Introduction
	23.2 The Sleep Condition

	Part III Systems Programming
	Chapter 24 Bit Hacks for Games
	24.1 Integer Sign Manipulation
	Absolute Value
	Sign Function
	Sign Extension

	24.2 Predicates
	Conditional Increment and Decrement
	Conditional Addition and Subtraction
	Increment or Decrement Modulo N
	Clamping to Zero
	Minimum and Maximum

	24.3 Miscellaneous Tricks
	Clear the Least Significant 1 Bit
	Test for Power of Two
	Test for Power of Two Minus One
	Determine Whether a Voxel Contains Triangles
	Determine the Index of the Greatest Value in a Set of Three

	24.4 Logic Formulas
	References

	Chapter 25 Introspection for C++ Game Engines
	25.1 Introduction
	25.2 The Demo
	25.3 The Gem
	25.4 Lifting the Veil
	25.5 To and From a Network
	25.6 In Closing

	Chapter 26 A Highly Optimized Portable Memory Manager
	26.1 Introduction
	Alternatives to Rolling Your Own
	Desirable Properties

	26.2 Overview
	Fighting Fragmentation Is Job #1
	Paged Allocation
	Easing Portability with the OSAPI Class

	26.3 Small Block Allocator
	How Alloc() Works
	How Free() Works
	Performance Analysis
	Memory Overhead

	26.4 Medium Block Allocator
	How Alloc() Works
	How Free() Works
	Performance Analysis
	Memory Overhead

	26.5 Large Block Allocator
	26.6 Page Management in the Memory Manager
	SBA Pages
	MBA Pages

	26.7 OSAPI Ideas

	Chapter 27 Simple Remote Heaps
	27.1 Introduction
	Considerations

	27.2 Bitwise Remote Heap
	Overview
	Algorithm

	27.3 Blockwise Remote Heap
	Overview
	Algorithm

	27.4 Testing Results
	Memory Efficiency
	Performance

	Chapter 28 A Cache-Aware Hybrid Sorter
	28.1 Stream Splitting
	28.2 Substream Sorting
	28.3 Stream Merging and Loser Tree
	28.4 Multicore Implementation
	Parallel Loser Tree

	28.5 Conclusion
	Appendix
	Acknowledgements
	References

	Chapter 29 Thread Communication Techniques
	29.1 Latency and Threading
	29.2 Single Writer, Single Reader
	29.3 The Aggregator
	29.4 The Dispatcher
	29.5 The Gateway
	29.6 Debugging
	References

	Chapter 30 A Cross-Platform Multithreading Framework
	30.1 Threading
	ThreadManager
	ThreadInfo

	30.2 Synchronization Objects
	Critical Section (class BasicSection)
	Mutex (class BasicMutex)
	Semaphore (class BasicSemaphore)
	Event (class BasicEvent)
	Wait Objects
	Lock Helper Classes
	Waiting for Multiple Objects

	30.3 Limitations
	30.4 Future Extensions
	References

	Chapter 31 Producer-Consumer Queues
	31.1 Introduction
	31.2 Multithreading Overview
	31.3 A First Approach: Using Win32 Semaphores and Critical Sections
	31.4 A Second Approach: Lock-Free Algorithms
	31.5 Processor Architecture Overview and Memory Models
	31.6 Lock-Free Algorithm Design
	31.7 Lock-Free Implementation of a Free List
	31.8 Lock-Free Implementation of a Queue
	31.9 Interprocess Communication
	References

